prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.backend_bases import key_press_handler import os import numpy as np import sys import random from scipy.interpolate import interp1d, interp2d, griddata from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.spatial import ConvexHull from matplotlib.path import Path from matplotlib.patches import PathPatch import warnings from tkinter import * from tkinter import filedialog, messagebox, simpledialog import datetime from pygimli.physics import Refraction import pygimli as pg from matplotlib.colors import LogNorm import matplotlib.colors warnings.filterwarnings('ignore') class Sisref(Frame): def __init__(self, master): Frame.__init__(self, master) self.grid(row = 0, column = 0, sticky = NSEW) master.geometry("1360x768") master.resizable(0,0) #master.protocol("WM_DELETE_WINDOW", self.fechar) master.title('REFRAINV') menuBar = Menu(master) fileMenu = Menu(master, tearoff=0) ttMenu = Menu(master, tearoff=0) tomoMenu = Menu(master, tearoff=0) layerIntMenu = Menu(master, tearoff=0) createpygimli = Menu(master, tearoff=0) tomoinversion = Menu(master, tearoff=0) tomoVMplot = Menu(master, tearoff=0) tomocmap = Menu(master, tearoff=0) editTTtomo = Menu(master, tearoff=0) runInvMenu = Menu(master, tearoff=0) editTT = Menu(master, tearoff=0) TTplot = Menu(master, tearoff=0) VMplot = Menu(master, tearoff=0) TTcolors = Menu(master, tearoff=0) VMcolors = Menu(master, tearoff=0) helpMenu = Menu(master, tearoff=0) menuBar.add_cascade(label = 'File', menu = fileMenu) fileMenu.add_cascade(label='Open travel times file', command= lambda: print("")) fileMenu.add_cascade(label='Save results', command= lambda: print("")) fileMenu.add_cascade(label='Restart all analysis', command= lambda: print("")) fileMenu.add_separator() fileMenu.add_cascade(label='Exit', command= lambda: print("")) menuBar.add_cascade(label = 'Time-term analysis', menu = ttMenu) ttMenu.add_cascade(label='Layer interpretation', menu = layerIntMenu) layerIntMenu.add_command(label="Star/stop layer assignment", command = lambda: print("")) layerIntMenu.add_separator() layerIntMenu.add_command(label="Layer 1", command = lambda: print("")) layerIntMenu.add_command(label="Layer 2", command = lambda: print("")) layerIntMenu.add_command(label="Layer 3", command = lambda: print("")) layerIntMenu.add_separator() layerIntMenu.add_command(label="Clear assignmanets", command = lambda: print("")) ttMenu.add_cascade(label='Inversion', menu = runInvMenu) runInvMenu.add_command(label="Use elevation file", command = lambda: print("")) runInvMenu.add_separator() runInvMenu.add_command(label="Run default inversion", command = lambda: print("")) runInvMenu.add_command(label="Run inversion choosing regularization parameter", command = lambda: print("")) ttMenu.add_cascade(label='Edit travel times', menu = editTT) editTT.add_command(label="Open travel times file", command = lambda: print("")) editTT.add_command(label="Save travel times file", command = lambda: print("")) ttMenu.add_separator() ttMenu.add_cascade(label='Travel-times plot', menu = TTplot) TTplot.add_cascade(label='Travel-times color', menu = TTcolors) TTcolors.add_command(label="Use colors", command = self.tt_TTcolors) TTcolors.add_command(label="Black", command = self.tt_TTblack) TTplot.add_separator() TTplot.add_command(label="Show/hide sources", command = self.tt_TTshowS) TTplot.add_command(label="Show/hide grid", command = self.tt_TTshowGrid) ttMenu.add_cascade(label='Velocity model plot', menu = VMplot) VMplot.add_cascade(label='Layer colors', menu = VMcolors) VMcolors.add_command(label="Use colors", command = self.tt_LayerColors) VMcolors.add_command(label="Black", command = self.tt_LayerBlack) VMplot.add_separator() VMplot.add_command(label="Show/hide sources", command = self.tt_VMshowS) VMplot.add_command(label="Show/hide geophones", command = self.tt_VMshowG) VMplot.add_command(label="Show/hide grid", command = self.tt_VMshowGrid) ttMenu.add_separator() ttMenu.add_command(label="Save analysis results", command = self.tt_save) ttMenu.add_command(label="Restart analysis", command = self.restart) menuBar.add_cascade(label = 'Tomography analysis', menu = tomoMenu) tomoMenu.add_cascade(label='Create pyGIMLi travel-times file', command = self.tomo_create) tomoMenu.add_cascade(label='Inversion', menu = tomoinversion) tomoinversion.add_command(label="Run inversion", command = self.tomo_invert) tomoinversion.add_separator() tomoinversion.add_command(label="Load parameters", command = self.tomo_loadParams) tomoinversion.add_separator() tomoinversion.add_command(label="Show fit", command = self.tomo_showFit) tomoMenu.add_cascade(label='Edit travel-times', menu = editTTtomo) editTTtomo.add_command(label="Open travel-times file", command = self.tomo_editTT) editTTtomo.add_command(label="Save travel-times file", command = lambda: print("")) tomoMenu.add_separator() tomoMenu.add_cascade(label='Velocity model plot', menu = tomoVMplot) tomoVMplot.add_cascade(label='Colormap', menu = tomocmap) tomocmap.add_command(label="jet", command = self.tomo_cmapJet) tomocmap.add_command(label="gist rainbow", command = self.tomo_cmapGistr) tomocmap.add_command(label="viridis", command = self.tomo_cmapGistn) tomocmap.add_command(label="spectral", command = self.tomo_cmapNipys) tomocmap.add_command(label="brw", command = self.tomo_cmapbrw) tomocmap.add_command(label="greys", command = self.tomo_cmapGreys) tomoVMplot.add_separator() tomoVMplot.add_command(label="Show triangular mesh model", command = self.tomo_triangular) tomoVMplot.add_command(label="Show interpolated model", command = self.tomo_interpolated) tomoVMplot.add_separator() tomoVMplot.add_command(label="Plot time-terms results", command = self.tomo_usett) tomoVMplot.add_separator() tomoVMplot.add_command(label="Show/hide sources", command = self.tomo_VMshowS) tomoVMplot.add_command(label="Show/hide geophones", command = self.tomo_VMshowG) tomoVMplot.add_command(label="Show/hide ray path", command = self.tomo_showRP) tomoVMplot.add_command(label="Show/hide grid", command = lambda: print("")) tomoMenu.add_separator() tomoMenu.add_cascade(label='Save analysis result',command= self.tomo_save) tomoMenu.add_cascade(label='Restart analysis',command= self.restart) menuBar.add_cascade(label = 'Help', menu = helpMenu) helpMenu.add_cascade(label='Tutorial',command= lambda: print("")) helpMenu.add_cascade(label='Report a bug',command= lambda: print("")) helpMenu.add_cascade(label='Credits',command= lambda: print("")) master.configure(menu=menuBar) plt.rcParams.update({'font.size': 8}) self.tt_frame1 = Frame(self) self.tt_frame1.grid(row = 1, column = 0, sticky = NSEW) self.tt_fig1 = plt.figure(figsize = (6.85,3.65)) self.tt_ax1 = self.tt_fig1.add_subplot(111) tt_tela1 = FigureCanvasTkAgg(self.tt_fig1, self.tt_frame1) tt_tela1.draw() tt_tela1.get_tk_widget().pack(fill='both', expand=True) tt_toolbar1 = NavigationToolbar2Tk(tt_tela1, self.tt_frame1) tt_toolbar1.update() tt_tela1._tkcanvas.pack(fill='both', expand=True) self.tt_ax1.set_title("Traveltime curves panel") self.tt_frame2 = Frame(self) self.tt_frame2.grid(row = 1, column = 2, sticky = NSEW) self.tt_fig2 = plt.figure(figsize = (6.85,3.65), facecolor = "white") self.tt_ax2 = self.tt_fig2.add_subplot(111) tt_tela2 = FigureCanvasTkAgg(self.tt_fig2, self.tt_frame2) tt_tela2.draw() tt_tela2.get_tk_widget().pack(fill='both', expand=True) tt_toolbar2 = NavigationToolbar2Tk(tt_tela2, self.tt_frame2) tt_toolbar2.update() tt_tela2._tkcanvas.pack(fill='both', expand=True) self.tt_ax2.set_title("Fit and edditing panel") self.tt_frame3 = Frame(self) self.tt_frame3.grid(row = 2, column = 0, columnspan=3, sticky = NSEW) self.tt_fig3 = plt.figure(figsize = (13.7,3.04)) self.tt_ax3 = self.tt_fig3.add_subplot(111) self.tt_ax3.set_aspect("equal") tt_tela3 = FigureCanvasTkAgg(self.tt_fig3, self.tt_frame3) tt_tela3.draw() tt_tela3.get_tk_widget().pack(fill='both', expand=True) tt_toolbar3 = NavigationToolbar2Tk(tt_tela3, self.tt_frame3) tt_toolbar3.update() tt_tela3._tkcanvas.pack(fill='both', expand=True) self.tt_ax3.set_title("Time-terms velocity model panel") #--------------- self.tomo_frame1 = Frame(self) self.tomo_frame1.grid(row = 1, column = 0, sticky = NSEW) self.tomo_fig1 = plt.figure(figsize = (6.85,3.65)) self.tomo_ax1 = self.tomo_fig1.add_subplot(111) tomo_tela1 = FigureCanvasTkAgg(self.tomo_fig1, self.tomo_frame1) tomo_tela1.draw() tomo_tela1.get_tk_widget().pack(fill='both', expand=True) tomo_toolbar1 = NavigationToolbar2Tk(tomo_tela1, self.tomo_frame1) tomo_toolbar1.update() tomo_tela1._tkcanvas.pack(fill='both', expand=True) self.tomo_ax1.set_title("Traveltime curves panel") self.tomo_frame2 = Frame(self) self.tomo_frame2.grid(row = 1, column = 2, sticky = NSEW) self.tomo_fig2 = plt.figure(figsize = (6.85,3.65)) self.tomo_ax2 = self.tomo_fig2.add_subplot(111) tomo_tela2 = FigureCanvasTkAgg(self.tomo_fig2, self.tomo_frame2) tomo_tela2.draw() tomo_tela2.get_tk_widget().pack(fill='both', expand=True) tomo_toolbar2 = NavigationToolbar2Tk(tomo_tela2, self.tomo_frame2) tomo_toolbar2.update() tomo_tela2._tkcanvas.pack(fill='both', expand=True) self.tomo_ax2.set_title("Fit and edditing panel") self.tomo_frame3 = Frame(self) self.tomo_frame3.grid(row = 2, column = 0, columnspan=3, sticky = NSEW) self.tomo_fig3 = plt.figure(figsize = (13.7,3.04)) self.tomo_ax3 = self.tomo_fig3.add_subplot(111) self.tomo_ax3.set_aspect("equal") tomo_tela3 = FigureCanvasTkAgg(self.tomo_fig3, self.tomo_frame3) tomo_tela3.draw() tomo_tela3.get_tk_widget().pack(fill='both', expand=True) tomo_toolbar3 = NavigationToolbar2Tk(tomo_tela3, self.tomo_frame3) tomo_toolbar3.update() tomo_tela3._tkcanvas.pack(fill='both', expand=True) self.tomo_ax3.set_title("Tomography velocity model panel") self.tomo_frame4 = Frame(self) self.tomo_frame4.grid(row = 2, column = 0, columnspan=3, sticky = NSEW) self.tomo_fig4 = plt.figure(figsize = (13.7,3.04)) self.tomo_ax4 = self.tomo_fig4.add_subplot(111) self.tomo_ax4.set_aspect("equal") tomo_tela4 = FigureCanvasTkAgg(self.tomo_fig4, self.tomo_frame4) tomo_tela4.draw() tomo_tela4.get_tk_widget().pack(fill='both', expand=True) tomo_toolbar4 = NavigationToolbar2Tk(tomo_tela4, self.tomo_frame4) tomo_toolbar4.update() tomo_tela4._tkcanvas.pack(fill='both', expand=True) self.tomo_ax4.set_title("Tomography velocity model panel") toolbar_frame = Frame(self) toolbar_frame.grid(row = 0, column = 0, columnspan=3, sticky = NSEW) self.img_abrir = PhotoImage(file="%s/images/abrir.gif"%os.getcwd()) self.img_salvar = PhotoImage(file="%s/images/salvar.gif"%os.getcwd()) self.img_proximo = PhotoImage(file="%s/images/proximo.gif"%os.getcwd()) self.img_voltar = PhotoImage(file="%s/images/voltar.gif"%os.getcwd()) self.img_camadas = PhotoImage(file="%s/images/camadas.gif"%os.getcwd()) self.img_edit = PhotoImage(file="%s/images/edit.gif"%os.getcwd()) self.img_L1 = PhotoImage(file="%s/images/layer1.gif"%os.getcwd()) self.img_L2 = PhotoImage(file="%s/images/layer2.gif"%os.getcwd()) self.img_L3 = PhotoImage(file="%s/images/layer3.gif"%os.getcwd()) self.img_vm = PhotoImage(file="%s/images/vm.gif"%os.getcwd()) self.img_limpar = PhotoImage(file="%s/images/limpar.gif"%os.getcwd()) self.img_topo = PhotoImage(file="%s/images/topo.gif"%os.getcwd()) self.img_editOK = PhotoImage(file="%s/images/editOK.gif"%os.getcwd()) self.img_star = PhotoImage(file="%s/images/star.gif"%os.getcwd()) self.img_geophone = PhotoImage(file="%s/images/geophone.gif"%os.getcwd()) self.img_tomogram = PhotoImage(file="%s/images/tomogram.gif"%os.getcwd()) self.img_restart = PhotoImage(file="%s/images/restart.gif"%os.getcwd()) self.img_create = PhotoImage(file="%s/images/create.gif"%os.getcwd()) self.img_inv = PhotoImage(file="%s/images/inv.gif"%os.getcwd()) root.tk.call('wm', 'iconphoto', root._w, self.img_inv) Abrir = Button(toolbar_frame, command = self.openTT) Abrir.config(image = self.img_abrir) Abrir.grid(row=0,column=0,sticky=W) Salvar = Button(toolbar_frame, command = lambda: print("ai")) Salvar.config(image = self.img_salvar) Salvar.grid(row=0,column=1,sticky=W) Voltar = Button(toolbar_frame, command = self.back) Voltar.config(image = self.img_voltar) Voltar.grid(row=0,column=2,sticky=W) Proximo = Button(toolbar_frame, command = self.next) Proximo.config(image = self.img_proximo) Proximo.grid(row=0,column=3,sticky=W) Camadas = Button(toolbar_frame, command = self.tt_layerInterpretation) Camadas.config(image = self.img_camadas) Camadas.grid(row=0,column=4,sticky=W) L1 = Button(toolbar_frame, command = self.tt_L1) L1.config(image = self.img_L1) L1.grid(row=0,column=5,sticky=W) L2 = Button(toolbar_frame, command = self.tt_L2) L2.config(image = self.img_L2) L2.grid(row=0,column=6,sticky=W) L3 = Button(toolbar_frame, command = self.tt_L3) L3.config(image = self.img_L3) L3.grid(row=0,column=7,sticky=W) VM = Button(toolbar_frame, command = self.tt_invert) VM.config(image = self.img_vm) VM.grid(row=0,column=8,sticky=W) Edit = Button(toolbar_frame, command = self.editTT) Edit.config(image = self.img_edit) Edit.grid(row=0,column=9,sticky=W) EditOK = Button(toolbar_frame, command = self.saveTT) EditOK.config(image = self.img_editOK) EditOK.grid(row=0,column=10,sticky=W) Limpar = Button(toolbar_frame, command = self.tt_clearInterpretation) Limpar.config(image = self.img_limpar) Limpar.grid(row=0,column=11,sticky=W) #Topo = Button(toolbar_frame, command = self.tt_topo) #Topo.config(image = self.img_topo) #Topo.grid(row=0,column=12,sticky=W) Create = Button(toolbar_frame, command = self.tomo_create) Create.config(image = self.img_create) Create.grid(row=0,column=12,sticky=W) Tomogram = Button(toolbar_frame, command = self.tomo_invert) Tomogram.config(image = self.img_tomogram) Tomogram.grid(row=0,column=13,sticky=W) '''Fonte = Button(toolbar_frame, command = self.tt_topo) Fonte.config(image = self.img_star) Fonte.grid(row=0,column=14,sticky=W) Geofone = Button(toolbar_frame, command = self.tt_topo) Geofone.config(image = self.img_geophone) Geofone.grid(row=0,column=15,sticky=W)''' Restart = Button(toolbar_frame, command = self.restart) Restart.config(image = self.img_restart) Restart.grid(row=0,column=14,sticky=W) self.tt_pltTT = False self.tt_vmGrid = True self.tt_TTGrid = True self.tt_TTSources = True self.tt_VMSources = False self.tt_VMGeophones = False self.tt_pltG = False self.tt_pltS = False self.cm = False self.TTfile = False self.TTfile_ext = False self.tomo_TTplot = False self.tomo_pltS = False self.tomo_pltG = False self.tomo_pltG_triang = False self.tomo_pltS_triang = False self.tomo_cmap = plt.cm.get_cmap("jet") self.tt_frame1.tkraise() self.tt_frame2.tkraise() self.tt_frame3.tkraise() self.page = 1 def openTT(self): try: self.TTfile = filedialog.askopenfilename(title='Open',filetypes=[('Refrapy pick','*.rp'), ('pyGIMLi pick','*.sgt')]) filename, file_extension = os.path.splitext(self.TTfile) if file_extension == ".rp": self.TTfile_ext = ".rp" self.tt_openTT() elif file_extension == ".sgt": self.TTfile_ext = ".sgt" self.tomo_openTT() except: pass def tomo_interpolated(self): if self.cm: self.tomo_raise() self.tomo_frame3.tkraise() def tomo_triangular(self): if self.cm: #self.tomo_ax4.cla() #self.tomo_ax4.set_xlabel("Distance (m)") #self.tomo_ax4.set_ylabel("Elevation (m)") #self.tomo_ax4.set_title("Tomography velocity model panel") #pg.show(self.m, self.vest, label="Velocity [m/s]", cMap = self.tomo_cmap, # ax = self.tomo_ax4, colorBar = False, logScale = False) #self.tomo_raise() self.tomo_frame4.tkraise() def tomo_showRP(self): if self.cm: self.ra.showRayPaths(lw=0.75, color = "white", ax = self.tomo_ax3) self.ra.showRayPaths(lw=0.75, color = "white", ax = self.tomo_ax4) #self.tomo_raise() self.tomo_frame4.tkraise() def tomo_updateCmap(self): if self.cm: self.cm.set_cmap(self.tomo_cmap) #update cmap of interpolated tomogram #self.tomo_ax4.cla() pg.show(self.m, self.vest, label="Velocity [m/s]", cMap = self.tomo_cmap, #overlap the triang mesh result with this new plot ax = self.tomo_ax4, colorBar = False, logScale = False) self.tomo_fig3.canvas.draw() self.tomo_fig4.canvas.draw() def tomo_cmapNipys(self): if self.cm: self.tomo_cmap = plt.cm.get_cmap("Spectral") self.tomo_updateCmap() def tomo_cmapJet(self): if self.cm: self.tomo_cmap = plt.cm.get_cmap("jet") self.tomo_updateCmap() def tomo_cmapGistr(self): if self.cm: self.tomo_cmap = plt.cm.get_cmap("gist_rainbow") self.tomo_updateCmap() def tomo_cmapGreys(self): if self.cm: self.tomo_cmap = plt.cm.get_cmap("Greys") self.tomo_updateCmap() def tomo_cmapbrw(self): if self.cm: self.tomo_cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["blue","red","white"]) self.tomo_updateCmap() def tomo_cmapGistn(self): if self.cm: self.tomo_cmap = plt.cm.get_cmap("viridis") self.tomo_updateCmap() def tomo_usett(self): if self.tt_pltVM and self.cm: if self.layer2: self.tomo_ax3.plot(self.gp, self.depthLayer2, '--', c="k") self.tomo_ax4.plot(self.gp, self.depthLayer2, '--', c="k") '''#artigo from scipy.interpolate import interp1d f = interp1d([0,14,32,50,64], [-10,-12,-18,-12,-10], kind="cubic") y = f(np.arange(0,64,1)) self.tomo_ax4.plot(np.arange(0,64,1),y, c = "k") self.tomo_ax3.plot(np.arange(0,64,1),y, c = "k")''' if self.layer3: self.tomo_ax3.plot(self.gp, self.depthLayer3, '--', c="k") self.tomo_ax4.scatter(self.gp, self.depthLayer3, '--', c="k") self.tomo_fig3.canvas.draw() self.tomo_fig4.canvas.draw() #self.tomo_raise() def tomo_create(self): tomo_topoFile = False tomo_rpTTfile = False if messagebox.askyesno("Refrapy", "Use elevation file?"): try: tomo_topoFile = filedialog.askopenfilename(title='Open',filetypes=[('Elevation file','*.txt'), ('All files','*.*')]) except: pass if tomo_topoFile: p, e = np.loadtxt(tomo_topoFile, usecols = (0,1), unpack = True) messagebox.showinfo('Refrapy','Elevation data loaded successfully!') try: tomo_rpTTfile = filedialog.askopenfilename(title='Open',filetypes=[('Refrapy pick file','*.rp'), ('All files','*.*')]) except: pass if tomo_rpTTfile: x, t = np.genfromtxt(tomo_rpTTfile, usecols = (0,1), unpack = True) fg = x[1] gn = t[0] gs = t[1] x = np.delete(x,[0,1]) t = np.delete(t,[0,1]) sp = [] for i in range(len(t)): if np.isnan(x[i]): sp.append(t[i]) gp = np.arange(fg,fg+gn*gs,gs) sgp = np.sort(np.concatenate((np.arange(fg,fg+gn*gs,gs),np.array(sp)))) for i in range(len(sgp)): try: if sgp[i+1] == sgp[i]: if sgp[i] <= min(gp): sp[sp.index(sgp[i])] = sgp[i]-0.01 sgp[i] = sgp[i]-0.01 elif sgp[i] >= max(gp): sp[sp.index(sgp[i])] = sgp[i]+0.01 sgp[i] = sgp[i]+0.01 else: sp[sp.index(sgp[i])] = sgp[i]+0.01 sgp[i] = sgp[i]+0.01 except: pass out_sgtFile = filedialog.asksaveasfilename(title='Save',filetypes=[('pyGIMLi travel-times file', '*.sgt')]) with open(out_sgtFile+".sgt", "w") as f: f.write("%d # shot/geophone points\n#x y\n"%(gn+len(sp))) for i in range(len(sgp)): if tomo_topoFile: f.write("%.2f %.2f\n"%(sgp[i], e[i])) else: f.write("%.2f 0\n"%sgp[i]) f.write("%d # measurements\n#s g t\n"%(len(t)-len(sp))) si = np.where(np.isin(np.sort(np.concatenate((np.arange(fg,fg+gn*gs,gs),np.array(sp)))), sp))[0] a = 0 for i in range(len(t)): if a <= len(si)-1: if not np.isnan(x[i]): f.write("%d %d %.6f\n"%(1+np.where(np.isclose(sgp, sp[a]))[0][0], 1+np.where(np.isclose(np.sort(np.concatenate((np.arange(fg,fg+gn*gs,gs),np.array(sp)))), x[i]))[0][-1], t[i]/1000)) else: a += 1 messagebox.showinfo('Refrapy',"pyGIMLI's travel-times file has been created succesfully!") def tomo_openTT(self): if self.tomo_TTplot: messagebox.showinfo('Refrapy','A tomographic analysis is already happening\nTo start a new one, please restart the current analysis.') else: from pygimli.physics import Refraction import pygimli as pg data = pg.DataContainer(self.TTfile, 's g') ra = Refraction(data) ra.showData(ax = self.tomo_ax1) self.tomo_ax1.invert_yaxis() self.tomo_raise() self.pars = [] self.tomo_TTplot = True messagebox.showinfo('Refrapy',"pyGIMLI's travel-times file has been loaded succesfully!") def tomo_showFit(self): if self.TTfile: self.ra.showData(response = self.ra.inv.response(), ax = self.tomo_ax2) self.tomo_ax2.scatter([], [], marker = '+', s = 20, c = "k", label="Observed traveltimes") self.tomo_ax2.scatter([], [], marker = '_', c = "k", label="Calculated traveltimes") self.tomo_ax2.legend(loc='upper right', bbox_to_anchor=(1.01, 1.15)) self.tomo_raise() def tomo_editTT(self): self.win.destroy if self.TTfile: try: ttFile = filedialog.askopenfilename(title='Open',filetypes=[('Refrapy pick','*.rp')]) except: pass if ttFile: x, t = np.genfromtxt(ttFile, usecols = (0,1), unpack = True) fg = x[1] self.fg = fg gn = t[0] self.gn = gn gs = t[1] self.gs = gs x = np.delete(x,[0,1]) t = np.delete(t,[0,1])/1000 sp = [] for i in range(len(t)): if np.isnan(x[i]): sp.append(t[i]) sp = np.array(sp)*1000 self.sp = sp self.datax, self.datat = [], [] artb = [] for i in range(len(sp)): self.datax.append({sp[i]:[]}) self.datat.append({sp[i]:[]}) artb.append({sp[i]:[]}) colors = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(sp))] s = 0 for i in range(len(t)): if not np.isnan(x[i]): self.datax[s][sp[s]].append(x[i]) self.datat[s][sp[s]].append(t[i]) if i == 0: b = self.tomo_ax2.scatter(x[i],t[i], s = 20, c = "white", edgecolor = "k", picker = 4,zorder=10, label = "Observed travel-times") else: b = self.tomo_ax2.scatter(x[i],t[i], s = 20, c = "white", edgecolor = "k", picker = 4,zorder=10) artb[s][sp[s]].append(b) else: s+=1 lines = [] for i in range(len(sp)): self.tomo_ax2.scatter(sp[i],0, marker = "*", c = "yellow", edgecolor = "k", s = 20, zorder=10) l = self.tomo_ax2.plot(self.datax[i][sp[i]],self.datat[i][sp[i]], c = "k", lw = 0.75) lines.append(l) def onpick(event): self.art = event.artist artx = self.art.get_offsets()[0][0] artt = self.art.get_offsets()[0][1] for i in range(len(sp)): for b in artb[i][sp[i]]: bx = b.get_offsets()[0][0] bt = b.get_offsets()[0][1] if artx == bx and artt == bt: self.arts = sp[i] self.i = i self.arti = np.where(np.array(self.datax[i][sp[i]]) == artx)[0][0] def onrelease(event): try: self.datat[self.i][self.arts][self.arti] = event.ydata self.art.set_offsets((self.art.get_offsets()[0][0],event.ydata)) for i in range(len(sp)): lines[i][0].set_data(self.datax[i][sp[i]],self.datat[i][sp[i]]) self.tomo_fig2.canvas.draw() except: pass self.art = None self.arts = None self.i = None self.arti = None event = self.tomo_fig2.canvas.mpl_connect('pick_event', onpick) event2 = self.tomo_fig2.canvas.mpl_connect('button_release_event', onrelease) self.tomo_ax2.legend(loc="best") self.tomo_raise() self.editTT_panel = 2 messagebox.showinfo('Refrapy','Travel-times file loaded successfully!\nDrag and drop travel-times (circles) to edit\nWhen done, save the results into a new file') def tomo_loadParams(self): self.pars = [] tomoParFile = filedialog.askopenfilename(title='Open',filetypes=[('Parameter file','*.txt'),('All files','*.*')]) if tomoParFile: try: with open(tomoParFile, "r") as arq: for i in arq: self.pars.append(float(i.split()[1])) messagebox.showinfo('Refrapy',"Tomography inversion parameters loaded successfully!") except: messagebox.showinfo('Refrapy',"Invalid parameters! Please, check the file (in doubt view the Help menu)") def tomo_save(self): if self.cm: now = datetime.datetime.now() np.savetxt("tomoXYZ_%s-%s-%s__%sh%s.txt"%(now.day, now.month, now.year, now.hour, now.minute), np.c_[self.tomo_cellsx, self.tomo_cellsy, self.tomo_cellsv], fmt='%.2f') messagebox.showinfo('Refrapy',"The velocity tomogram XYZ file has been saved successfully!") def tomo_invert(self): if self.TTfile_ext == ".sgt": self.tomo_ax3.cla() a = np.genfromtxt(self.TTfile, usecols = (0), unpack = True) with open(self.TTfile) as f: head = [next(f).split() for x in range(2+int(a[0]))][2:] data = pg.DataContainer(self.TTfile, 's g') ra = Refraction(data) self.ra = ra meshpar = simpledialog.askstring("Refrapy", "Enter mesh parameters separated by comma (e.g. 1,2,3) or cancel for default:\n\nOrder: maxDepth,meshDx,maxCellSize\n\n") if meshpar == None: m = ra.createMesh() elif len(meshpar.split(",")) == 3: maxDepth = int(meshpar.split(",")[0]) meshDx = float(meshpar.split(",")[1]) maxCellSize = float(meshpar.split(",")[2]) m = ra.createMesh(data=data,paraMaxCellSize=maxCellSize,paraDX=meshDx, depth=maxDepth) else: messagebox.showinfo('Refrapy',"Values were not properly assigned. A default mesh will be used.") invpar = simpledialog.askstring("Refrapy", "Enter inversion parameters separated by comma (e.g. 1,2,3) or cancel for default:\n\nOrder: smoothing,vertWeight,minVel,maxVel,secNodes,maxIterations\n\n") if invpar == None: vest = ra.invert(mesh=m) elif len(invpar.split(",")) == 6: smoothing = float(invpar.split(",")[0]) vertWeight = float(invpar.split(",")[1]) minVel = float(invpar.split(",")[2]) maxVel = float(invpar.split(",")[3]) sNodes = int(invpar.split(",")[4]) maxIterations = int(invpar.split(",")[5]) vest = ra.invert(mesh=m,lam=smoothing,zWeight=vertWeight,useGradient=True,vTop=minVel,vBottom=maxVel,verbose=False,maxIter=maxIterations,secNodes=sNodes) else: messagebox.showinfo('Refrapy',"Values were not properly assigned. A default inversion will be executed.") '''if len(self.pars) == 0: m = ra.createMesh() vest = ra.invert() else: m = ra.createMesh(paraMaxCellSize=float(self.pars[2]), secNodes=int(self.pars[3])) vest = ra.invert(mesh = m, useGradient = True, vtop = self.pars[0], vbottom = self.pars[1], zWeight=self.pars[4], lam = float(self.pars[6]), verbose = int(self.pars[5]))''' #except: # messagebox.showinfo('Refrapy',"Invalid parameters! Please, check the file (in doubt view the Help menu)") self.m = m self.vest = vest rrms = ra.inv.relrms() # relative RMS arms = ra.inv.absrms() # Absolute RMS chi2 = ra.inv.chi2() # chi2 #print("maxDepth %.2f\nmeshDx %.2f\nmaxCellSize %.2f\nlam %.2f\nzW %.2f\nminVel %.2f\nmaxVal %.2f\nsecNodes %.2f\nmaxIter %.5f\narms %.2f\nrrms %.2f\nchi2 %.2f\n"%(maxDepth, meshDx, maxCellSize, # smoothing,vertWeight,minVel,maxVel,sNodes, # maxIterations, arms,rrms,chi2)) messagebox.showinfo('Refrapy',"Relative RMS = %.2f%%\nAbsolute RMS = %.2f ms\nChi-square = %.2f"%(rrms,1000*arms,chi2)) x = np.array([i for i in pg.x(m.cellCenters())]) y = np.array([i for i in pg.y(m.cellCenters())]) v = np.array([i for i in vest]) self.tomo_cellsx, self.tomo_cellsy, self.tomo_cellsv = x,y,v spi = np.unique(ra.dataContainer("s"), return_inverse=False) gi = np.unique(ra.dataContainer("g"), return_inverse=False) a = np.genfromtxt(self.TTfile, usecols = (0), skip_header = 2, unpack = True) sp = [a[:len(spi)+len(gi)][int(i)] for i in spi] self.tomo_sp = sp gp = [a[:len(spi)+len(gi)][int(i)] for i in gi] self.tomo_gp = gp x_grid = np.linspace(x.min(), x.max(), 500) y_grid = np.linspace(y.min(), y.max(), 500) xi,yi = np.meshgrid(x_grid,y_grid) self.xi, self.yi = xi,yi zi = griddata((x, y), v,(xi,yi), method='cubic') self.zi = zi if min(v) < 0: vmin = 0 else: vmin = min(v) d = ra.getDepth() head = [(float(head[i][0]),float(head[i][1])) for i in range(len(head))] e = np.array([head[i][1] for i in range(len(head))]) sgp = np.array([head[i][0] for i in range(len(head))]) tail = [(head[i][0],max(y)-d) for i in range(len(head))] p = head+list(reversed(tail)) poly = plt.Polygon(p, ec="none", fc="none") self.tomo_ax3.add_patch(poly) #cm = self.tomo_ax3.imshow(zi, cmap = "Spectral", origin='lower', interpolation = 'spline36', # vmin = vmin, vmax = max(v), # extent=[x.min(),x.max(),y.min(),y.max()], clip_path=poly, clip_on=True) cm =self.tomo_ax3.contourf(zi, cmap = self.tomo_cmap, levels = 20, origin='lower', extent=[x.min(),x.max(),y.min(),y.max()]) #cm2 =self.tomo_ax3.contourf(xi,yi,zi, levels = [2100], origin='lower', extent=[x.min(),x.max(),y.min(),y.max()]) pg.show(self.m, self.vest, label="Velocity [m/s]", cMap = self.tomo_cmap, ax = self.tomo_ax4, colorBar = False, logScale = False) self.tomo_ax4.set_xlabel("Distance (m)") self.tomo_ax4.set_ylabel("Elevation (m)") self.tomo_ax4.set_title("Tomography velocity model panel") #gx = np.linspace(0,63,24) #self.tomo_ax3.plot(gx, [-5+(i*0) for i in range(len(gx))], lw = 1, ls = "--", c = "black") #self.tomo_ax3.plot(gx, [-10+(i*0) for i in range(len(gx))],lw = 1, ls = "--", c = "black") #cm = self.tomo_ax3.imshow(zi, norm=LogNorm(vmin = vmin, vmax= max(v)), cmap = "gist_rainbow", origin='lower', interpolation = 'spline36', # extent=[x.min(),x.max(),y.min(),y.max()], clip_path=poly, clip_on=True) self.cm = cm self.tomo_ge = [e[np.where(np.array(sgp) == np.array(gp)[i])[0]][0] for i in range(len(gp))] self.tomo_se = [e[np.where(np.array(sgp) == np.array(sp)[i])[0]][0] for i in range(len(sp))] divider = make_axes_locatable(self.tomo_ax3) divider2 = make_axes_locatable(self.tomo_ax4) cax = divider.append_axes("right", size="1%", pad=0.05) cax2 = divider2.append_axes("right", size="1%", pad=0.05) #plt.colorbar(cm,orientation="vertical",aspect =20, # cax = cax, label = "Velocity (m/s)") self.tomo_fig3.colorbar(cm,orientation="vertical",aspect =20, cax = cax, label = "Velocity (m/s)") self.tomo_fig4.colorbar(cm,orientation="vertical",aspect =20, cax = cax2, label = "Velocity (m/s)") self.tomo_ax3.set_xlabel("Distance (m)") self.tomo_ax3.set_ylabel("Elevation (m)") self.tomo_ax3.set_title("Tomography velocity model panel") self.tomo_ax3.grid(ls = '--', lw = 0.5) self.tomo_pltVM = True self.tomo_showFit() self.tomo_raise() def restart(self): self.tt_ax1.cla() self.tt_ax2.cla() self.tt_ax3.cla() self.tt_pltTT = False self.tomo_TTplot = False self.tt_vmGrid = True self.tt_TTGrid = True self.tt_TTSources = True self.tt_pltG = False self.tt_pltS = False self.tomo_ax1.cla() self.tomo_ax2.cla() self.tomo_ax3.cla() self.tomo_ax4.cla() self.tomo_fig3.clf() self.tomo_fig4.clf() self.tomo_ax3 = self.tomo_fig3.add_subplot(111) self.tomo_ax3.set_aspect("equal") self.tomo_ax4 = self.tomo_fig4.add_subplot(111) self.tomo_ax4.set_aspect("equal") self.tomo_pltVM = False self.tomo_pltS = False self.tomo_pltG = False self.tomo_pltS_triang = False self.tomo_pltG_triang = False self.TTfile = False self.TTfile_ext = False self.pars = [] self.tt_raise() self.tomo_ax4.set_title("Tomography velocity model panel") self.tomo_ax3.set_title("Tomography velocity model panel") self.tomo_ax2.set_title("Fit and edditing panel") self.tomo_ax1.set_title("Traveltime curves panel") self.tt_ax3.set_title("Time-terms velocity model panel") self.tt_ax2.set_title("Fit and edditing panel") self.tt_ax1.set_title("Traveltime curves panel") messagebox.showinfo('Refrapy','All analysis have been restarted!') def tt_save(self): if self.tt_pltVM == True: now = datetime.datetime.now() with open("timeterms_%s-%s-%s__%sh%s.txt"%(now.day, now.month, now.year, now.hour, now.minute), "w") as arq: print(self.depthLayer2) if self.tt_topoFile: arq.write("Layer 1\n") arq.write("Velocity = %.2f m/s\n"%self.velocity1) for i in range(len(self.gp)): arq.write("%.2f %.2f\n"%(self.gp[i], self.ge[i])) arq.write("\nLayer 2\n") arq.write("Velocity = %.2f m/s\n"%self.velocity2) for i in range(len(self.gp)): arq.write("%.2f %.2f\n"%(self.gp[i], self.depthLayer2[i])) else: arq.write("Layer 1\n") arq.write("Velocity = %.2f m/s\n"%self.velocity1) for i in range(len(self.gp)): arq.write("%.2f 0\n"%self.gp[i]) arq.write("\nLayer 2\n") arq.write("Velocity = %.2f m/s\n"%self.velocity2) for i in range(len(self.gp)): arq.write("%.2f %.2f\n"%(self.gp[i], self.depthLayer2[i])) if self.layer3: arq.write("\nLayer 3\n") arq.write("Velocity = %.2f m/s\n"%self.velocity3) for i in range(len(self.gp)): arq.write("%.2f %.2f\n"%(self.gp[i], self.depthLayer3[i])) self.tt_fig1.savefig('timeterms_layerInterpretation_%s-%s-%s__%sh%s.png'%(now.day, now.month, now.year, now.hour, now.minute)) self.tt_fig3.savefig('timeterms_velocityModel_%s-%s-%s__%sh%s.png'%(now.day, now.month, now.year, now.hour, now.minute)) messagebox.showinfo('Refrapy',"All figures were saved and time-terms analysis results are in timeterms_%s-%s-%s__%sh%s.txt"%(now.day, now.month, now.year, now.hour, now.minute)) def tt_raise(self): self.tt_frame1.tkraise() self.tt_frame2.tkraise() self.tt_frame3.tkraise() self.tt_fig1.canvas.draw() self.tt_fig2.canvas.draw() self.tt_fig3.canvas.draw() self.page = 1 def tomo_raise(self): self.tomo_frame1.tkraise() self.tomo_frame2.tkraise() self.tomo_frame3.tkraise() self.tomo_fig1.canvas.draw() self.tomo_fig2.canvas.draw() self.tomo_fig3.canvas.draw() self.page = 2 def back(self): if self.page == 2: self.tt_raise() def next(self): if self.page == 1: self.tomo_raise() def tt_VMshowG(self): if self.tt_pltVM: if self.tt_pltG == False: if self.tt_topoFile: self.tt_pltG = self.tt_ax3.scatter(self.gp, self.ge ,marker = 7, color = 'k', edgecolor = "k", s = 50) else: self.tt_pltG = self.tt_ax3.scatter(self.gp, [i*0 for i in range(len(self.gp))],marker = 7, color = 'k', edgecolor = "k", s = 50) else: self.tt_pltG.remove() self.tt_pltG = False self.tt_fig3.canvas.draw() def tt_VMshowS(self): if self.tt_pltVM: if self.tt_pltS == False: if self.tt_topoFile: self.tt_pltS = self.tt_ax3.scatter(self.sp, self.se ,marker = "*", color = 'yellow', edgecolor = "k", s = 100) else: self.tt_pltS = self.tt_ax3.scatter(self.sp, [i*0 for i in range(len(self.sp))],marker = "*", color = 'yellow', edgecolor = "k", s = 100) else: self.tt_pltS.remove() self.tt_pltS = False self.tt_fig3.canvas.draw() def tomo_VMshowS(self): #show/hide source positions in tomography velocity model panel if self.tomo_pltVM: if self.tomo_pltS: self.tomo_pltS.remove() self.tomo_pltS_triang.remove() self.tomo_pltS = False self.tomo_pltS_triang = False else: self.tomo_pltS = self.tomo_ax3.scatter(self.tomo_sp, self.tomo_se ,marker = "*", color = 'yellow', edgecolor = "k", s = 100, zorder=10) self.tomo_pltS_triang = self.tomo_ax4.scatter(self.tomo_sp, self.tomo_se ,marker = "*", color = 'yellow', edgecolor = "k", s = 100, zorder=10) self.tomo_fig3.canvas.draw() self.tomo_fig4.canvas.draw() def tomo_VMshowG(self): #show/hide geophone positions in tomography velocity model panel if self.tomo_pltVM: if self.tomo_pltG: self.tomo_pltG.remove() self.tomo_pltG_triang.remove() self.tomo_pltG = False self.tomo_pltG_triang = False else: self.tomo_pltG = self.tomo_ax3.scatter(self.tomo_gp, self.tomo_ge ,marker = 7, color = 'k', edgecolor = "k", s = 50, zorder=10) self.tomo_pltG_triang = self.tomo_ax4.scatter(self.tomo_gp, self.tomo_ge ,marker = 7, color = 'k', edgecolor = "k", s = 50, zorder=10) self.tomo_fig3.canvas.draw() self.tomo_fig4.canvas.draw() def tt_TTshowGrid(self): if self.tt_pltTT == True: if self.tt_TTGrid == True: self.tt_ax1.grid(False) self.tt_ax2.grid(False) self.tt_TTGrid = False else: self.tt_ax1.grid(ls = '--', lw = 0.5) self.tt_ax2.grid(ls = '--', lw = 0.5) self.tt_TTGrid = True self.tt_fig1.canvas.draw() self.tt_fig2.canvas.draw() def tt_TTshowS(self): if self.tt_pltTT == True: if self.tt_TTSources == True: for i in range(len(self.tt_S)): self.tt_S[i].set_alpha(0) self.tt_TTSources = False else: for i in range(len(self.tt_S)): self.tt_S[i].set_alpha(1) self.tt_TTSources = True self.tt_fig1.canvas.draw() self.tt_fig2.canvas.draw() def tt_VMshowGrid(self): if self.tt_pltVM == True: if self.tt_vmGrid == True: self.tt_ax3.grid(False) self.tt_vmGrid = False else: self.tt_ax3.grid(ls = '--', lw = 0.5) self.tt_vmGrid = True self.tt_fig3.canvas.draw() def tt_LayerColors(self): if self.tt_pltVM == True: self.tt_layer1.set_color("red") self.tt_layer2.set_color("green") if self.layer3: self.tt_layer3.set_color("blue") self.tt_ax3.legend(loc="best") self.tt_fig3.canvas.draw() def tt_LayerBlack(self): if self.tt_pltVM == True: self.tt_layer1.set_color("lightgrey") self.tt_layer2.set_color("grey") if self.layer3: self.tt_layer3.set_color("black") self.tt_ax3.legend(loc="best") self.tt_fig3.canvas.draw() def tt_TTcolors(self): if self.tt_pltTT: colors = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(self.sp))] for i in range(len(self.tt_TTlines)): self.tt_TTlines[i][0].set_color(colors[i]) self.tt_fig1.canvas.draw() def tt_TTblack(self): if self.tt_pltTT: for i in range(len(self.tt_TTlines)): self.tt_TTlines[i][0].set_color("k") self.tt_fig1.canvas.draw() def tt_openTT(self): if self.tt_pltTT: messagebox.showinfo('Refrapy','An analysis of travel-time curves is already happening\nTo start a new one, please clear the current analysis.') else: #if ttFile != None: x, t = np.genfromtxt(self.TTfile, usecols = (0,1), unpack = True) self.fg = x[1] self.gn = t[0] self.gs = t[1] x = np.delete(x,[0,1]) t = np.delete(t,[0,1]) self.sp = [] for i in range(len(t)): if np.isnan(x[i]): self.sp.append(t[i]) self.gp = np.arange(self.fg,self.fg+self.gn*self.gs,self.gs) self.tt_ax1.grid(ls = '--', lw = 0.5) self.tt_ax1.set_xlabel("Distance (m)") self.tt_ax1.set_ylabel("Traveltime (ms)") datax, datat = [], [] self.artb = [] for i in range(len(self.sp)): datax.append({self.sp[i]:[]}) datat.append({self.sp[i]:[]}) self.artb.append({self.sp[i]:[]}) colors = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(self.sp))] s = 0 for i in range(len(t)): if not np.isnan(x[i]): datax[s][self.sp[s]].append(x[i]) datat[s][self.sp[s]].append(t[i]) b = self.tt_ax1.scatter(x[i],t[i], s = 20, c = "white", edgecolor = "k", picker = 4) self.artb[s][self.sp[s]].append(b) else: s+=1 self.tt_TTlines = [] self.tt_S = [] for i in range(len(self.sp)): sPlot = self.tt_ax1.scatter(self.sp[i],0, marker = "*", c = 'white', edgecolor = "k", s = 100) self.tt_S.append(sPlot) l = self.tt_ax1.plot(datax[i][self.sp[i]],datat[i][self.sp[i]], c = colors[i], lw = 0.75) self.tt_TTlines.append(l) self.tt_fig1.canvas.draw() self.tt_topoFile = False self.tt_interpretation = False self.layer1, self.layer2, self.layer3 = [],[],[] self.layer = 1 self.tt_pltS = False self.tt_pltG = False self.tt_pltTT = True self.tt_pltVM = False self.tt_raise() messagebox.showinfo('Refrapy','Travel-times file was loaded successfully!') def tt_L1(self): if self.tt_interpretation: self.layer = 1 self.tt_ax1.set_title('Traveltime curves panel - Layer %d interpratation activated!'%self.layer) self.tt_fig1.canvas.draw() def tt_L2(self): if self.tt_interpretation: self.layer = 2 self.tt_ax1.set_title('Traveltime curves panel - Layer %d interpratation activated!'%self.layer) self.tt_fig1.canvas.draw() def tt_L3(self): if self.tt_interpretation: self.layer = 3 self.tt_ax1.set_title('Traveltime curves panel - Layer %d interpratation activated!'%self.layer) self.tt_fig1.canvas.draw() def tt_clearInterpretation(self): if self.tt_interpretation: if messagebox.askyesno("Refrainv", "Clear layer interpretation?"): del self.layer1[:] del self.layer2[:] del self.layer3[:] for i in range(len(self.sp)): for b in self.artb[i][self.sp[i]]: b.set_color("white") b.set_edgecolor("k") self.tt_fig1.canvas.draw() messagebox.showinfo('Refrapy','Layer interpretation was restarted!') def tt_layerInterpretation(self): if self.tt_interpretation == False: self.tt_interpretation = True self.tt_ax1.set_title('Traveltime curves panel - Layer %d interpratation activated!'%self.layer) def onpick(event): art = event.artist artx = art.get_offsets()[0][0] artt = art.get_offsets()[0][1] for i in range(len(self.sp)): if art in self.artb[i][self.sp[i]]: arts = self.sp[i] iS = i if artx >= arts: for b in self.artb[iS][arts]: bx = b.get_offsets()[0][0] iG = np.where(np.array(self.artb[iS][arts]) == b)[0][0] if arts <= bx <= artx: bt = b.get_offsets()[0][1] if self.layer == 1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1: b.set_color("red") self.layer1.append((bx,bt,arts,abs(arts-bx),iS, iG))#geophone_position , arrival_time , source_poisition , offset , index_source , index_geophone if (bx,bt,arts,abs(arts-bx),iS, iG) in self.layer2: self.layer2.remove((bx,bt,arts,abs(arts-bx),iS, iG)) elif self.layer == 2 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer2: b.set_color("lightgreen") self.layer2.append((bx,bt,arts,abs(arts-bx),iS, iG)) if (bx,bt,arts,abs(arts-bx),iS, iG) in self.layer3: self.layer3.remove((bx,bt,arts,abs(arts-bx),iS, iG)) elif self.layer == 3 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer2 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer3: b.set_color("blue") self.layer3.append((bx,bt,arts,abs(arts-bx),iS, iG)) elif artx <= arts: for b in self.artb[iS][arts]: bx = b.get_offsets()[0][0] iG = np.where(np.array(self.artb[iS][arts]) == b)[0][0] if arts >= bx >= artx: bt = b.get_offsets()[0][1] if self.layer == 1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1: b.set_color("red") self.layer1.append((bx,bt,arts,abs(arts-bx),iS, iG)) if (bx,bt,arts,abs(arts-bx),iS, iG) in self.layer2: self.layer2.remove((bx,bt,arts,abs(arts-bx),iS, iG)) elif self.layer == 2 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer2: b.set_color("lightgreen") self.layer2.append((bx,bt,arts,abs(arts-bx),iS, iG)) if (bx,bt,arts,abs(arts-bx),iS, iG) in self.layer3: self.layer3.remove((bx,bt,arts,abs(arts-bx),iS, iG)) elif self.layer == 3 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer2 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer1 and (bx,bt,arts,abs(arts-bx),iS, iG) not in self.layer3: b.set_color("blue") self.layer3.append((bx,bt,arts,abs(arts-bx),iS, iG)) self.tt_fig1.canvas.draw() def onkey(event): if event.key == "1": self.layer = 1 elif event.key == "2": self.layer = 2 elif event.key == "3": self.layer = 3 self.tt_ax1.set_title('Layer %d interpratation activated!'%self.layer) if event.key == "C" or event.key == "c": if messagebox.askyesno("Refrainv", "Clear layer interpretation?"): del self.layer1[:] del self.layer2[:] del self.layer3[:] for i in range(len(self.sp)): for b in self.artb[i][self.sp[i]]: b.set_color("white") b.set_edgecolor("k") self.tt_fig1.canvas.draw() self.tt_pickEvent = self.tt_fig1.canvas.mpl_connect('pick_event', onpick) self.tt_keyEvent = self.tt_fig1.canvas.mpl_connect('key_press_event', onkey) messagebox.showinfo('Refrapy','Layer interpretation is now activated!') self.tt_raise() else: self.tt_fig1.canvas.mpl_disconnect(self.tt_pickEvent) self.tt_fig1.canvas.mpl_disconnect(self.tt_keyEvent) self.tt_ax1.set_title('Layer interpratation off') messagebox.showinfo('Refrapy','Layer interpretation is now off!') self.tt_raise() self.tt_interpretation = False def saveTT(self): if self.editTT_panel == 1: out_ttFile = filedialog.asksaveasfilename(title='Save',filetypes=[('Refrapy pick', '*.rp')]) with open(out_ttFile+".rp",'w') as arqpck: arqpck.write("%d %d\n%.2f %.2f\n"%(len(self.spED),self.gnED,self.fgED,self.gsED)) for i in range(len(self.spED)): for j in range(len(self.dataxED[i][self.spED[i]])): arqpck.write('%f %f 1\n'%(self.dataxED[i][self.spED[i]][j],self.datatED[i][self.spED[i]][j])) arqpck.write('/ %f\n'%self.spED[i]) elif self.editTT_panel == 2: if self.TTfile: out_ttFile = filedialog.asksaveasfilename(title='Save',filetypes=[('Refrapy pick', '*.rp')]) with open(out_ttFile+".sgt",'w') as arqpck: arqpck.write("%d %d\n%.2f %.2f\n"%(len(self.sp),self.gn,self.fg,self.gs)) for i in range(len(self.sp)): for j in range(len(self.datax[i][self.sp[i]])): arqpck.write('%f %f 1\n'%(self.datax[i][self.sp[i]][j],self.datat[i][self.sp[i]][j]*1000)) arqpck.write('/ %f\n'%self.sp[i]) messagebox.showinfo('Refrapy',"%s was saved!"%out_ttFile) def editTT(self): self.win = Toplevel() self.win.geometry("250x75") self.win.resizable(0,0) self.win.title('Refrainv') message = "This will delete stuff" Label(self.win, text="Choose the edditing panel").grid(row=0,column=0,columnspan=2) Button(self.win, text='Time-terms panel', command= lambda: choose_tt()).grid(row=1,column=0, pady=10, padx=10) Button(self.win, text='Tomograpy panel', command = lambda: choose_tomo()).grid(row=1,column=1, padx= 10) def choose_tt(): self.tt_editTT() self.win.destroy def choose_tomo(): self.tomo_editTT() self.win.destroy self.win.mainloop() def tt_editTT(self): self.win.destroy try: ttFile = filedialog.askopenfilename(title='Open',filetypes=[('Refrapy pick','*.rp')]) except: pass if ttFile: self.tt_ax2.cla() x, t = np.genfromtxt(ttFile, usecols = (0,1), unpack = True) self.fgED = x[1] self.gnED = t[0] self.gsED = t[1] x = np.delete(x,[0,1]) t = np.delete(t,[0,1]) self.spED = [] for i in range(len(t)): if
np.isnan(x[i])
numpy.isnan
import numpy as np from sklearn import neighbors from mpl_toolkits.mplot3d import Axes3D import random from sklearn.decomposition import PCA from PIL import Image from sklearn.cluster import KMeans import scipy.spatial.distance as dist from matplotlib.colors import ListedColormap class Question1(object): def pcaeig(self, data): """ Implement PCA via the eigendecomposition. Parameters: 1. data (N, d) numpy ndarray. Each row as a feature vector. Outputs: 1. W (d,d) numpy array. PCA transformation matrix (Note that each row of the matrix should be a principal component) 2. s (d,) numpy array. Vector consisting of the amount of variance explained in the data by each PCA feature. Note that the PCA features are ordered in decreasing amount of variance explained, by convention. """ covMatrix = np.dot(data.T, data) / data.shape[0] w, v = np.linalg.eigh(covMatrix) W = np.fliplr(v).T s = np.flip(w) # Remember to check your data types return (W, s) def pcadimreduce(self, data, W, k): """ Implements dimension reduction via PCA. Parameters: 1. data (N, d) numpy ndarray. Each row as a feature vector. 2. W (d,d) numpy array. PCA transformation matrix 3. k number. Number of PCA features to retain Outputs: 1. reduced_data (N,k) numpy ndarray, where each row contains PCA features corresponding to its input feature. """ reduced_data = np.dot(W[0:k, :], data.T).T return reduced_data def pcareconstruct(self, pcadata, W, k): """ Implements dimension reduction via PCA. Parameters: 1. pcadata (N, k) numpy ndarray. Each row as a PCA vector. (e.g. generated from pcadimreduce) 2. W (d,d) numpy array. PCA transformation matrix 3. k number. Number of PCA features Outputs: 1. reconstructed_data (N,d) numpy ndarray, where the i-th row contains the reconstruction of the original i-th input feature vector (in `data`) based on the PCA features contained in `pcadata`. """ reconstructed_data = np.dot(W[0:k, :].T, pcadata.T).T return reconstructed_data def pcasvd(self, data): """Implements PCA via SVD. Parameters: 1. data (N, d) numpy ndarray. Each row as a feature vector. Returns: 1. Wsvd (d,d) numpy array. PCA transformation matrix (Note that each row of the matrix should be a principal component) 2. ssvd (d,) numpy array. Vector consisting of the amount of variance explained in the data by each PCA feature. Note that the PCA features are ordered in decreasing amount of variance explained, by convention. """ _, s, v = np.linalg.svd(data) Wsvd = v ssvd = s*s / data.shape[0] return Wsvd, ssvd class Question2(object): def unexp_var(self, X): """Returns an numpy array with the fraction of unexplained variance on X by retaining the first k principal components for k =1,...200. Parameters: 1. X The input image Returns: 1. pca The PCA object fit on X 2. unexpv A (200,) numpy ndarray, where the i-th element contains the percentage of unexplained variance on X by retaining i+1 principal components """ for i in range(200): pca = PCA(n_components=i+1) pca.fit(X) unexpv = 1 - np.cumsum(pca.explained_variance_ratio_) return pca, unexpv def pca_approx(self, X_t, pca, i): """Returns an approimation of `X_t` using the the first `i` principal components (learned from `X`). Parameters: 1. X_t The input image to be approximated 2. pca The PCA object to use for the transform 3. i Number of principal components to retain Returns: 1. recon_img The reconstructed approximation of X_t using the first i principal components learned from X (As a sanity check it should be of size (1,4096)) """ transX_t = pca.transform(X_t.reshape(1,-1)) transX_t[0, i:] = 0 recon_img = pca.inverse_transform(transX_t) return recon_img class Question3(object): def pca_classify(self, traindata, trainlabels, valdata, vallabels): """Returns validation errors using 1-NN on the PCA features using 1,2,...,256 PCA features, the minimum validation error, and number of PCA features used. Parameters: traindata trainlabels valdata valabels Returns: ve numpy array of length 256 containing the validation errors using 1,...,256 features min_ve minimum validation error pca_feat Number of PCA features to retain. Integer. """ from sklearn.neighbors import KNeighborsClassifier ve = np.zeros(256) for i in range(256): pca = PCA(n_components=i+1) pca.fit(traindata) classifier= KNeighborsClassifier(n_neighbors=1) classifier.fit(pca.transform(traindata), trainlabels) predlabels = classifier.predict(pca.transform(valdata)) ve[i] = np.mean(predlabels != vallabels) min_ve = ve[
np.argmin(ve)
numpy.argmin
from hcipy.mode_basis.zernike import zernike import numpy as np import hcipy as hc import matplotlib.pyplot as plt from misc import normalize,resize,printProgressBar,resize2,overlap from os import path import time import LPmodes import h5py import screen from astropy.io import fits import PIAA import PIAA_raytrace as RTPIAA import zernike as zk def get_u(wf:hc.Wavefront): '''extract 2D array of complex field data from hcipy wavefront object''' field = wf.electric_field * np.sqrt(wf.grid.weights) size = int(np.sqrt(field.shape[0])) shape=(size,size) reals,imags = np.array(np.real(field)),np.array(np.imag(field)) u = reals + 1.j*imags u = u.reshape(shape) return u def get_phase(wf:hc.Wavefront): phase = wf.phase size = int(np.sqrt(phase.shape[0])) shape=(size,size) phase = phase.reshape(shape) return phase def get_strehl(u,u_perfect): return np.max(u*np.conj(u))/np.max(u_perfect*np.conj(u_perfect)) class AOtele: #imaged star parameters zero_magnitude_flux = 3.9e10 #phot/s star_mag = 0 #lo_pupil_res = 128 # this resolution is used for the DM correction algorithm #hi_pupil_res = 1024 # this resolution is used for propagation def __init__(self, diameter, fnum, wavelength, num_DM_acts = 30, wavelength_0 = None, obstr_frac = 0.244, fast_boot = False, hi_pupil_res = 512, lo_pupil_res = 128, remove_TT = False): self.remove_TT = remove_TT self.hi_pupil_res = hi_pupil_res self.lo_pupil_res = lo_pupil_res if wavelength_0 is None: wavelength_0 = wavelength self.reference_wavelength = wavelength_0 self.diameter = diameter self.fnum = fnum self.num_acts = num_DM_acts self.obstr_frac = obstr_frac self.wavelength = wavelength ## setting up low and high res pupil grids. the low res grid is used for to only calibrate/control the DM num_pupil_pixels = self.lo_pupil_res pupil_pixel_samps = self.lo_pupil_res #the keck pupil fits seems be padded with zeros around border by ~5% self.pupil_plane_res = (num_pupil_pixels,num_pupil_pixels) pupil_grid_diam = diameter * num_pupil_pixels / pupil_pixel_samps self.pupil_grid_diam = pupil_grid_diam self.pupil_sample_rate = pupil_grid_diam / num_pupil_pixels self.pupil_grid = hc.make_pupil_grid(self.lo_pupil_res,diameter = pupil_grid_diam) self.pupil_grid_hires = hc.make_pupil_grid(self.hi_pupil_res,diameter = pupil_grid_diam) ## now set up the actual pupil fields keck_pupil_hires = np.array(fits.open("pupil_KECK_high_res.fits")[0].data,dtype=np.float32)[50:-50,50:-50] ap_arr = resize2(keck_pupil_hires, (self.lo_pupil_res,self.lo_pupil_res) ) ap_arr_hires = resize2(keck_pupil_hires, (self.hi_pupil_res,self.hi_pupil_res) ) eps = 1e-6 ap_arr[np.abs(ap_arr)<eps] = 0 ap_arr_hires[np.abs(ap_arr_hires)<eps] = 0 self.ap_data = ap_arr_hires.reshape((hi_pupil_res,hi_pupil_res)) self.ap = hc.Field(ap_arr.flatten(),self.pupil_grid) self.ap_hires = hc.Field(ap_arr_hires.flatten(),self.pupil_grid_hires) ## we need to make two DMs, one sampled on the low res pupil grid and another on the hi res pupil grid if not fast_boot: # this stuff can be skipped if we're not using the telescope to sim ao correction act_spacing = diameter / num_DM_acts influence_funcs = hc.make_gaussian_influence_functions(self.pupil_grid,num_DM_acts,act_spacing) self.DM = hc.DeformableMirror(influence_funcs) influence_funcs_hires = hc.make_gaussian_influence_functions(self.pupil_grid_hires,num_DM_acts,act_spacing) self.DM_hires = hc.DeformableMirror(influence_funcs_hires) ## make the rest of our optics (besides PIAA/collimator) self.pwfs = hc.PyramidWavefrontSensorOptics(self.pupil_grid,wavelength_0=wavelength_0) self.detector = hc.NoiselessDetector() num_airy = 16 ## focal grid set up. linear resolution in pixels is 2 * q * num_airy\ self.q, self.num_airy = int(self.hi_pupil_res/num_airy/2), num_airy self.focal_grid = hc.make_focal_grid(q = self.q, num_airy = num_airy, f_number = fnum, reference_wavelength=wavelength_0) #self.focal_grid = hc.make_focal_grid(q = 16, num_airy = 16, f_number = fnum, reference_wavelength=wavelength_0) self.ref_image = None self.rmat = None ## pupil -> focal and focal -> pupil propagators self.propagator = hc.FraunhoferPropagator(self.pupil_grid,self.focal_grid,focal_length=diameter*fnum) self.focal_length = diameter*fnum ## misc other stuff that is useful to cache/save self.t_arr = None self.DMshapes = None self.psgen = None self.apodize = None self.apodize_backwards = None self.collimate = None self.collimator_grid = None self.beam_radius = None self.current_phase_screen = None self.wf_pupil,self.wf_pupil_hires,self.wf_focal = None,None,None self.PIAA_args,self.col_args = None,None self.inject_TT = None def get_args(self): fp0 = self.fp0 wl0 = self.reference_wavelength OSL = 0 vel = self.vel dt = self.dt diam = self.diameter fnum = self.fnum num_acts = self.num_acts obstr_frac = self.obstr_frac seed = self.seed col_args,PIAA_args = self.col_args,self.PIAA_args if col_args is None: col_args = (0,0) if PIAA_args is None: PIAA_args = (0,0,0,0) else: PIAA_args = PIAA_args[1:] return [fp0,wl0,OSL,vel,dt,diam,fnum,num_acts,obstr_frac,seed,*col_args,*PIAA_args] def rescale(self,fnum): """ change the F# of the optical system""" self.fnum = fnum self.focal_grid = hc.make_focal_grid(q = self.q, num_airy = self.num_airy, f_number = fnum, reference_wavelength=self.reference_wavelength) if self.collimate is None and self.apodize is None: # no collimation or piaa self.propagator = hc.FraunhoferPropagator(self.pupil_grid,self.focal_grid,focal_length=self.diameter*fnum) elif self.collimate is not None and self.apodize is None: # just collimation self.propagator = hc.FraunhoferPropagator(self.collimator_grid,self.focal_grid,focal_length=fnum*2*self.beam_radius) else: # piaa (which needs collimation, from both simulation and practical consideratrions) self.propagator = self.propagator = hc.FraunhoferPropagator(self.collimator_grid,self.focal_grid,focal_length=fnum*2*self.beam_radius*0.55) def init_collimator(self,beam_radius): """the collimator runs on a higher res than the low res grid used for DM correction to prevent phase aliasing""" col_res = self.hi_pupil_res self.beam_radius = beam_radius print("setting up collimator...") self.collimator_grid = hc.make_pupil_grid(col_res, diameter = beam_radius*2) self.propagator = hc.FraunhoferPropagator(self.collimator_grid,self.focal_grid,focal_length=self.fnum*2*beam_radius) # what's the focal length after PIAA??? self.focal_length = self.fnum*2*beam_radius def _inner_(wf): _power = wf.total_power new_wf = hc.Wavefront(hc.Field(wf.electric_field,self.collimator_grid), wf.wavelength) # make sure power is conserved new_wf.total_power = _power return new_wf self.collimate = _inner_ print("collimator setup complete") def init_PIAA(self,beam_radius,sep,inner=0,outer=3,IOR=1.48,mode="FR"): ''' make a PIAA lens system that maps planar wavefronts to truncated Gaussians. beam radius is preserved, with the inner edge at <inner * obstruction fraction> and the outer edge of of the truncated Gaussian is at <outer * sigma>. ''' #modes: FR, RT,RM self.PIAA_args = (beam_radius,sep,inner,outer,IOR) #Olivier's suggestion, shrink by a factor of 3 (mult by outer to get it in units of sigma) inner = self.obstr_frac * inner * outer print("setting up PIAA lenses...") collimator_grid = self.collimator_grid if self.collimator_grid is not None else self.pupil_grid #adjusting the focal length so that PIAA and no PIAA psfs are same size on screen (the coeff is empirically determined) self.propagator = hc.FraunhoferPropagator(self.collimator_grid,self.focal_grid,focal_length=self.fnum*2*beam_radius*0.55) self.focal_length = self.fnum*2*beam_radius*0.55 r1,r2 = PIAA.make_remapping_gauss_annulus(self.pupil_plane_res[0],self.obstr_frac,inner,outer) r1 *= beam_radius r2 *= beam_radius z1,z2 = PIAA.make_PIAA_lenses(r1,r2,IOR,IOR,sep) if mode == "FR": self.apodize,self.apodize_backwards = PIAA.fresnel_apodizer(collimator_grid,beam_radius,sep,r1,r2,z1,z2,IOR,IOR) elif mode == "RT": self.apodize = RTPIAA.RT_apodize(r1,r2,z1,z2,IOR,IOR,sep,self.reference_wavelength,nres=self.hi_pupil_res,ret_wf=True) else: self.apodize = RTPIAA.remap_apodize(r1,r2,inner,outer,beam_radius,res) print("PIAA setup complete") def init_PIAA_LP0m(self,m,beam_radius,lens_sep,rcore,ncore,nclad,wl=None,IOR=1.48,inner_trunc=0.0,outer_trunc=-1.0,use_RT=False): ''' all units meters. initialize PIAA lenses which remap to a (potentially truncated) LP0m mode. outer_trunc=-1.0 sets PIAA lens to preserve beam size (roughly) ''' self.PIAA_args = (beam_radius,lens_sep,inner_trunc,outer_trunc,IOR) if outer_trunc == -1.0: outer_trunc = None print("setting up PIAA lenses...") collimator_grid = self.collimator_grid #adjusting the focal length so that PIAA and no PIAA psfs are same size on screen (the coeff is empirically determined) self.propagator = hc.FraunhoferPropagator(self.collimator_grid,self.focal_grid,focal_length=self.fnum*2*beam_radius*0.55) self.focal_length = self.fnum*2*beam_radius*0.55 if wl is None: wl = self.reference_wavelength r1,r2 = PIAA.make_remapping_LP0m(m,1024,self.obstr_frac,beam_radius,rcore,ncore,nclad,wl,self.focal_length,inner_trunc,outer_trunc) #plt.plot(np.zeros_like(r1),r1,color='white',marker='.',ls='None') #plt.plot(np.ones_like(r2),r2,color='white',marker='.',ls='None') #plt.show() z1,z2 = PIAA.make_PIAA_lenses(r1,r2,IOR,IOR,lens_sep) if not use_RT: self.apodize,self.apodize_backwards = PIAA.fresnel_apodizer(collimator_grid,beam_radius,lens_sep,r1,r2,z1,z2,IOR,IOR) else: self.apodize = RTPIAA.RT_apodize(r1,r2,z1,z2,IOR,IOR,lens_sep,wl,nres=self.hi_pupil_res,ret_wf=True,nlaunch=2048) print("PIAA setup complete") def gen_wf(self,wl=None): if wl is None: wl = self.wavelength return hc.Wavefront(self.ap,wl) def read_out(self, wf, poisson = False): self.detector.integrate(wf,self.dt) if poisson: image = hc.large_poisson(self.detector.read_out()).astype(np.float) else: image = self.detector.read_out() image /= image.sum() return image def calibrate_DM(self, rcond = 0.1, fname_append=None, force_new = False): """Calculate and save the imagae reconstruction matrix for the AO system""" from os import path if fname_append is not None: fname = "rmat_"+str(self.DM.num_actuators)+"_"+str(rcond).replace(".","")+"_"+fname_append else: fname = "rmat_"+str(self.DM.num_actuators)+"_"+str(rcond).replace(".","") #first we make a reference image for an unaberrated wavefront passing through the pwfs wf = hc.Wavefront(self.ap,wavelength=self.reference_wavelength) wf_pwfs = self.pwfs.forward(wf) self.ref_image = self.read_out(wf_pwfs,poisson=False) if path.exists(fname+".npy") and not force_new: print("trying to load reconstruction matrix from "+fname) rmat = np.load(fname+str(".npy")) print("loaded cached rmat") else: print("computing reconstruction matrix") #compute the interaction matrix relating incoming abberations to wfs response probe_disp = 0.01 * self.wavelength slopes = [] for i in range(self.DM.num_actuators): printProgressBar(i,self.DM.num_actuators) slope = 0 for s in (-1,1): disps = np.zeros((self.DM.num_actuators,)) disps[i] = s*probe_disp self.DM.actuators = disps wf_dm = self.DM.forward(wf) #pass through DM wf_dm_pwfs = self.pwfs.forward(wf_dm) #pass through wfs image = self.read_out(wf_dm_pwfs) slope += s * (image - self.ref_image) / (2*probe_disp) slopes.append(slope) print("matrix inversion...") basis = hc.ModeBasis(slopes) rmat = hc.inverse_tikhonov(basis.transformation_matrix,rcond = rcond, svd = None) np.save(fname,rmat) self.DM.actuators = np.zeros((self.DM.num_actuators,)) self.rmat = rmat return rmat def make_turb(self,r0,wl0,T,v=10,seed = None): """ set up phase screen generator according Mike's code. flow direction is fixed straight up because i am lazy. will will be replaced with my phase screen generator when testing is complete """ if seed is None: seed = 123456789 # save the atmos params self.fp0 = r0 self.seed = seed self.wl0 = wl0 self.OSL = "N/A" self.vel = v self.dt = T size = self.pupil_grid_diam sampling_scale = size / self.hi_pupil_res if self.remove_TT == True: filt = zk.high_pass(3) self.psgen = screen.PhaseScreenGenerator(size, sampling_scale, v, 0, T, r0, wl0, wl0, seed=seed,filter_func=filt,filter_scale=self.diameter/2) else: self.psgen = screen.PhaseScreenGenerator(size, sampling_scale, v, 0, T, r0, wl0, wl0, seed=seed) def get_screen(self): '''advances timestep and gets the next phase screen''' self.current_phase_screen = self.psgen.generate() def propagate_through_turb(self,wf,downsample=False,screen=None): '''propagate through turbulence, assuming alternate turbulence method (Mike's code) has been set up''' wf = wf.copy() if screen is None: phase_screen = self.current_phase_screen * self.reference_wavelength / wf.wavelength else: phase_screen = screen * self.reference_wavelength / wf.wavelength if downsample: # if not doing full optical propagation, downsample the phase screen phase_screen = resize(phase_screen, (self.lo_pupil_res,self.lo_pupil_res) ) wf.electric_field *= np.exp(1j * phase_screen.flatten()) return wf def setup_TT_injector(self,rms,wavelength=None): '''rms amplitude is at reference wavelength''' if wavelength is None: wavelength = self.reference_wavelength xa=ya=np.linspace(-1,1,self.hi_pupil_res) xg,yg=np.meshgrid(xa,ya) tip = zk.Zj_cart(2)(xg,yg) * self.reference_wavelength / wavelength tilt = zk.Zj_cart(3)(xg,yg) * self.reference_wavelength / wavelength self.rs = np.random.RandomState(seed=123456789) def _inner_(wf:hc.Wavefront): tip_amp = self.rs.normal(scale=rms) tilt_amp = self.rs.normal(scale=rms) wf = wf.copy() wf.electric_field *= np.exp(1.j*tip_amp*tip.flatten()) wf.electric_field *= np.exp(1.j*tilt_amp*tilt.flatten()) return wf self.inject_TT = _inner_ return def update_DM(self,wf_lowres,leakage,gain): '''takes a low-res pupil plane wavefront and updates DM according to leaky integrator''' wf_turb = self.propagate_through_turb(wf_lowres,True) wf_dm = self.DM.forward(wf_turb) wf_pyr = self.pwfs.forward(wf_dm) wfs_image = self.read_out(wf_pyr,poisson=False) #DONT ENABLE POISSON it messes w/ random number generation! diff_image = wfs_image-self.ref_image #leaky integrator correction algorithm self.DM.actuators = (1-leakage) * self.DM.actuators - gain * self.rmat.dot(diff_image) def propagate(self,wf_hires,screen=None,get_TT_stats=False): self.DM_hires.actuators = self.DM.actuators _wf = self.propagate_through_turb(wf_hires,False,screen) _wf = self.DM_hires.forward(_wf) #optionally, now add extra tip tilt if self.inject_TT is not None: _wf = self.inject_TT(_wf) if self.collimate is not None: _wf = self.collimate(_wf) if self.apodize is not None: _wf = self.apodize(_wf) _wf = self.propagator.forward(_wf) return _wf def half_propagate(self,wf_hires): self.DM_hires.actuators = self.DM.actuators _wf = self.propagate_through_turb(wf_hires,False) _wf = self.DM_hires.forward(_wf) if self.collimate is not None: _wf = self.collimate(_wf) return _wf def save_args_to_file(self,f): _args = f.create_group("tele_args") _args.create_dataset("fp0",data=self.fp0) _args.create_dataset("wl0",data=self.wl0) _args.create_dataset("OSL",data=self.OSL) _args.create_dataset("vel",data=self.vel) _args.create_dataset("dt",data=self.dt) _args.create_dataset("diam",data=self.diameter) _args.create_dataset("fnum",data = self.fnum) _args.create_dataset("num_acts",data = self.num_acts) _args.create_dataset("obstr_frac",data = self.obstr_frac) _args.create_dataset("seed",data = self.seed,dtype = int) _args.create_dataset("res",data = self.hi_pupil_res,dtype = int) _args.create_dataset("remove_TT",data = self.remove_TT,dtype = bool) if self.collimate is not None: _args.create_dataset("beam_radius",data=self.beam_radius) if self.apodize is not None: _args.create_dataset("PIAA_args",data=self.PIAA_args) def get_perfect_wfs(self,wl=None): """compute and save perfect pupil plane and focal plane wavefronts""" if wl is None: wf_pupil = hc.Wavefront(self.ap,wavelength = self.wavelength) wf_pupil_hires = hc.Wavefront(self.ap_hires,wavelength = self.wavelength) else: wf_pupil = hc.Wavefront(self.ap,wavelength = wl) wf_pupil_hires = hc.Wavefront(self.ap_hires,wavelength = wl) wf_pupil.total_power = 1 wf_pupil_hires.total_power = 1 wf_focal = wf_pupil_hires.copy() if self.collimate is not None: wf_focal = self.collimate(wf_focal) if self.apodize is not None: wf_focal = self.apodize(wf_focal) wf_focal = self.propagator.forward(wf_focal) # note that the total power in the focal plane is not 1. some power gets deflected # away due to turbulence. self.wf_pupil,self.wf_pupil_hires,self.wf_focal = wf_pupil,wf_pupil_hires,wf_focal return wf_pupil,wf_pupil_hires,wf_focal def run_closed_loop(self,leakage,gain,fileout,run_for = 10,freq = 1000,save_every = 100, wl=None): """like the original function but use's Mike's phase screen code""" #reset DM self.DM.actuators[:] = 0. t_arr = np.linspace(0,run_for, int(run_for*freq) + 1) wf_pupil,wf_pupil_hires,wf_focal = self.wf_pupil,self.wf_pupil_hires,self.wf_focal perfect_p = get_u(wf_pupil_hires) perfect_u = get_u(wf_focal) num_saves = int(len(t_arr)/save_every) DMshapes = np.empty((num_saves,len(self.DM.actuators))) avg = np.zeros_like(perfect_u,dtype=np.float) psf_arr = np.zeros((num_saves,perfect_u.shape[0],perfect_u.shape[1]),dtype=np.complex128) pupil_arr =
np.zeros((num_saves,perfect_p.shape[0],perfect_p.shape[1]),dtype=np.complex128)
numpy.zeros
from __future__ import division # For Python 2 import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import itertools import os import json import numpy as np import seaborn as sns MAX_BW = 10e6 STATS_DICT = {"backlog": 0, "olimit": 1, "drops": 2, "bw_rx": 3, "bw_tx": 4} NUM_IFACES = 6 NUM_ACTIONS = 4 def check_plt_dir(plt_name): plt_dir = os.path.dirname(plt_name) if not plt_dir == '' and not os.path.exists(plt_dir): print("Folder %s does not exist! Creating..." % plt_name) os.makedirs(plt_dir) def running_mean(x, N=100): if (len(x) < N or N < 1): return x cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[int(N):] - cumsum[:-int(N)]) / float(N) def parse_config(results_dir): with open(results_dir + "/test_config.json") as conf_file: return json.load(conf_file) def load_file(filename): out = [] with open(filename, 'rb') as f: fsz = os.fstat(f.fileno()).st_size while f.tell() < fsz: item = np.load(f) if item.size > 0: out.append(item) item = None flat_out = [x for sublist in out for x in sublist] out = None return np.array(flat_out) def plot_barchart(plt_stats, plt_name): algos = plt_stats.keys() fig, ax = plt.subplots(2, 1, figsize=(20, 10)) ax_overlimits = ax[0] ax_drops = ax[1] ax_overlimits.set_ylabel('drop avg') ax_drops.set_ylabel('overlimit avg') ax_overlimits.get_xaxis().set_visible(False) bar_overlimits = [] bar_drops = [] bar_labels = [] for algo in algos: bar_overlimits.append(plt_stats[algo]["overlimits"]) bar_drops.append(plt_stats[algo]["drops"]) bar_labels.append(algo) ax_overlimits.bar(range(len(bar_labels)), bar_overlimits, tick_label=bar_labels) ax_drops.bar(range(len(bar_labels)), bar_drops, tick_label=bar_labels) plt.savefig(plt_name + "_bar.pdf") plt.savefig(plt_name + "_bar.png") plt.gcf().clear() def plot_lineplot(plt_stats, num_timesteps, plt_name): algos = plt_stats.keys() # get the maximum values of reward_max = -np.inf reward_min = np.inf queue_max = 0 bw_max = 0 for i, algo in enumerate(algos): if np.amax(plt_stats[algo]["rewards"]) > reward_max: reward_max = np.amax(plt_stats[algo]["rewards"]) if np.amin(plt_stats[algo]["rewards"]) < reward_min: reward_min =
np.amin(plt_stats[algo]["rewards"])
numpy.amin
import sys import numpy as np from scipy.sparse import csr_matrix if sys.version_info[0] >= 3: from topn import topn as ct from topn import topn_threaded as ct_thread else: import topn as ct import topn_threaded as ct_thread def awesome_topn(r, c, d, ntop, n_rows=-1, n_jobs=1): """ r, c, and d are 1D numpy arrays all of the same length N. This function will return arrays rn, cn, and dn of length n <= N such that the set of triples {(rn[i], cn[i], dn[i]) : 0 < i < n} is a subset of {(r[j], c[j], d[j]) : 0 < j < N} and that for every distinct value x = rn[i], dn[i] is among the first ntop existing largest d[j]'s whose r[j] = x. Input: r and c: two 1D integer arrays of the same length d: 1D array of single or double precision floating point type of the same length as r or c ntop maximum number of maximum d's returned n_rows: an int. If > -1 it will replace output rn with Rn the index pointer array for the compressed sparse row (CSR) matrix whose elements are {C[rn[i], cn[i]] = dn: 0 < i < n}. This matrix will have its number of rows = n_rows. Thus the length of Rn is n_rows + 1 n_jobs: number of threads, must be >= 1 Output: (rn, cn, dn) where rn, cn, dn are all arrays as described above, or (Rn, cn, dn) where Rn is described above """ dtype = r.dtype assert c.dtype == dtype idx_dtype = np.int32 rr = r.astype(idx_dtype) len_r = len(r) if (n_rows + 1) > len_r: rr.resize(n_rows + 1, refcheck=False) cc = c.astype(idx_dtype) dd = d.copy() new_len = ct_thread.topn_threaded( rr, cc, dd, ntop, n_rows, n_jobs ) rr.resize((new_len if n_rows < 0 else (n_rows + 1)), refcheck=False) cc.resize(new_len, refcheck=False) dd.resize(new_len, refcheck=False) return rr, cc, dd def awesome_hstack_topn(blocks, ntop, sort=True, use_threads=False, n_jobs=1): """ Returns, in CSR format, the matrix formed by horizontally stacking the sequence of CSR matrices in parameter 'blocks', with only the largest ntop elements of each row returned. Also, each row will be sorted in descending order only when ntop < total number of columns in blocks or sort=True, otherwise the rows will be unsorted. :param blocks: list of CSR matrices to be stacked horizontally. :param ntop: int. The maximum number of elements to be returned for each row. :param sort: bool. Each row of the returned matrix will be sorted in descending order only when ntop < total number of columns in blocks or sort=True, otherwise the rows will be unsorted. :param use_threads: bool. Will use the multi-threaded versions of this routine if True otherwise the single threaded version will be used. In multi-core systems setting this to True can lead to acceleration. :param n_jobs: int. When use_threads=True, denotes the number of threads that are to be spawned by the multi-threaded routines. Recommended value is number of cores minus one. Output: (scipy.sparse.csr_matrix) matrix in CSR format """ n_blocks = len(blocks) r = np.concatenate([b.indptr for b in blocks]) c = np.concatenate([b.indices for b in blocks]) d = np.concatenate([b.data for b in blocks]) n_cols = np.array([b.shape[1] for b in blocks]).astype(c.dtype) M = blocks[0].shape[0] N = np.sum(n_cols) if len(d) > 0: hstack_indptr = np.empty(M + 1, dtype=c.dtype) hstack_indices = np.empty(len(c), dtype=c.dtype) hstack_data = np.empty(len(d), dtype=d.dtype) if (ntop < N) or sort: if not use_threads: ct.sparse_topn( n_blocks, M, n_cols, r, c, d, ntop, hstack_indptr, hstack_indices, hstack_data ) else: ct_thread.sparse_topn_threaded( n_blocks, M, n_cols, r, c, d, ntop, hstack_indptr, hstack_indices, hstack_data, n_jobs ) else: if not use_threads: ct.sparse_hstack( n_blocks, M, n_cols, r, c, d, hstack_indptr, hstack_indices, hstack_data ) else: ct_thread.sparse_hstack_threaded( n_blocks, M, n_cols, r, c, d, hstack_indptr, hstack_indices, hstack_data, n_jobs ) else: hstack_indptr = np.zeros(M + 1, dtype=c.dtype) hstack_indices = np.empty(0, dtype=c.dtype) hstack_data = np.empty(0, dtype=d.dtype) return csr_matrix((hstack_data, hstack_indices, hstack_indptr), shape=(M, N)) def awesome_hstack(blocks, use_threads=False, n_jobs=1): """ Returns, in CSR format, the matrix formed by horizontally stacking the sequence of CSR matrices in parameter blocks. :param blocks: list of CSR matrices to be stacked horizontally. :param use_threads: bool. Will use the multi-threaded versions of this routine if True otherwise the single threaded version will be used. In multi-core systems setting this to True can lead to acceleration. :param n_jobs: int. When use_threads=True, denotes the number of threads that are to be spawned by the multi-threaded routines. Recommended value is number of cores minus one. Output: (scipy.sparse.csr_matrix) matrix in CSR format """ n_blocks = len(blocks) r = np.concatenate([b.indptr for b in blocks]) c =
np.concatenate([b.indices for b in blocks])
numpy.concatenate
import numpy as np from scipy.ndimage.interpolation import zoom import keras.backend as K def grad_cam(input_model, images, layer_name, cls=-1, method = "naive",resize_to_input=True): #check input shape first. whether its a batch or not. batch = True if len(images.shape) == 3: images = np.expand_dims(images,axis=0) batch = False #image shape will be (batch,H,W,channel) H = images.shape[1] W = images.shape[2] cam = [] for i in range(images.shape[0]): if cls == -1: _cls = np.argmax(input_model.predict(images[i:i+1])) else: _cls = cls y_c = input_model.output[0, _cls] conv_output = input_model.get_layer(layer_name).output #print(i) if method == "naive": grads = K.gradients(y_c, conv_output)[0] gradient_function = K.function([input_model.input, K.learning_phase()], [conv_output, grads]) _output, _grads_val = gradient_function([images[i:i+1],0]) _output, _grads_val = _output[0,:,:,:], _grads_val[0, :, :, :] _weights = np.mean(_grads_val, axis=(0, 1)) _cam = np.dot(_output, _weights) elif method == "gradcampp": grads = K.gradients(y_c, conv_output)[0] first = K.exp(y_c)*grads second = K.exp(y_c)*grads*grads third = K.exp(y_c)*grads*grads gradient_function = K.function([input_model.input, K.learning_phase()], [first,second,third, conv_output, grads]) conv_first_grad, conv_second_grad,conv_third_grad, conv_output, grads_val = gradient_function([images[i:i+1],0]) global_sum = np.sum(conv_output[0].reshape((-1,conv_first_grad[0].shape[2])), axis=0) alpha_num = conv_second_grad[0] alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum.reshape((1,1,conv_first_grad[0].shape[2])) alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, np.ones(alpha_denom.shape)) alphas = alpha_num/alpha_denom _weights = np.maximum(conv_first_grad[0], 0.0) alpha_normalization_constant = np.sum(
np.sum(alphas, axis=0)
numpy.sum
from __future__ import division from matplotlib import pyplot as plt import numpy as np # Input description rows = 4 cols = 4 start = (0,0) goal = (3,3) badStates = [ (1,2) ] # Parameters gamma = 0.99 probA = 0.9 probB = 0.05 # epsilon = 0.05 epsilon = 0.2 sigma = 1e-1 rewardGoal = 100 rewardBad = -70 rewardGeneral = -1 numEpisodes = 10000 actions = { "L" : (-1,0), "R" : (1,0), "U" : (0,1), "D" : (0,-1) } ACard = len(actions.keys()) Q = np.zeros((rows, cols, ACard)) actionIndices = { "L" : 0, "R" : 1, "U" : 2, "D" : 3 } Nsa = np.zeros((rows, cols, ACard)) def whatHappens(action): happens = np.random.choice(["intended", "lateral"], p=[probA, 2*probB]) if happens == "intended": a = action else: if action == "L" or action == "R": a = np.random.choice(["U", "D"]) else: a = np.random.choice(["L", "R"]) return a def nextState(state, action): a = whatHappens(action) tryStateX = state[0] + actions[a][0] tryStateY = state[1] + actions[a][1] if tryStateX >= rows or tryStateX < 0 or tryStateY >= cols or tryStateY < 0: s = state else: s = (tryStateX, tryStateY) return s def getReward(state): if state == goal: return rewardGoal elif state in badStates: return rewardBad else: return rewardGeneral def takeAction(state): probabilities = np.zeros(ACard) aStar = np.argmax(Q[state[0]][state[1]]) probabilities = [epsilon / ACard] * ACard probabilities[aStar] = 1 - epsilon + (epsilon / ACard) a = np.random.choice(["L", "R", "U", "D"], p=probabilities) return a def calcExpectation(state): exp = 0 aStar =
np.argmax(Q[state[0]][state[1]])
numpy.argmax
#!/usr/bin/python3 # # Original code by <NAME>.: # https://stackoverflow.com/questions/26936094/python-load-data-and-do-multi-gaussian-fit # # Author: <NAME> # Date: 09/2020 # # Plot fitted data # import numpy as np import matplotlib.pyplot as plt from scipy import optimize INDEX_INPUT = 3 INDEX_STATIC = 7 INDEX_DYNAMIC = 8 INDEX_LASER = 10 data = np.genfromtxt('dualRailAS_0mW.csv', delimiter=';') def gaussian(x, height, center, width, offset): return height*np.exp(-(x - center)**2/(2*width**2)) + offset def three_gaussians(x, h1, c1, w1, h2, c2, w2, h3, c3, w3, offset): return (gaussian(x, h1, c1, w1, offset=0) + gaussian(x, h2, c2, w2, offset=0) + gaussian(x, h3, c3, w3, offset=0) + offset) def two_gaussians(x, h1, c1, w1, h2, c2, w2, offset): return three_gaussians(x, h1, c1, w1, h2, c2, w2, 0,0,1, offset) errfunc3 = lambda p, x, y: (three_gaussians(x, *p) - y)**2 errfunc2 = lambda p, x, y: (two_gaussians(x, *p) - y)**2 # compute hist COL_STATIC = [] COL_DYNAMIC = [] COL_LASER = [] COL_INPUT = [] BIN_SIZE = 0.000001 # 1uA STEP = 0.001 # 1mA ROUND = 3 for i in range(1, len(data[:, INDEX_STATIC])): COL_STATIC.append(round(float(int(data[i, INDEX_STATIC]/BIN_SIZE))*STEP,ROUND)) COL_DYNAMIC.append(round(float(int(data[i, INDEX_DYNAMIC]/BIN_SIZE))*STEP,ROUND)) COL_LASER.append(round(float(int(data[i, INDEX_LASER]/BIN_SIZE))*STEP,ROUND)) COL_INPUT.append(data[i, INDEX_INPUT]) static_hist, bin_edges = np.histogram(COL_STATIC, bins = sorted(set(COL_STATIC))) dynamic_hist, bin_edges = np.histogram(COL_DYNAMIC, bins = sorted(set(COL_DYNAMIC))) laser_hist, bin_edges = np.histogram(COL_LASER, bins = sorted(set(COL_LASER))) static_X=np.array(sorted(set(COL_STATIC))[0:-1]) dynamic_X=np.array(sorted(set(COL_DYNAMIC))[0:-1]) laser_X=np.array(sorted(set(COL_LASER))[0:-1]) static_histRel = np.array([]) dynamic_histRel =
np.array([])
numpy.array
# In the most cases it is enough to train ones with fixed sn and sf (b were assumed to be always fixed) # and optional S, U depending on the data-set with about 50 to 100 iterations owd = 'C:/Users/flo9fe/Desktop/GIT_IP_true/python_ip_true' #owd = '/usr/local/home/GIT_IP_true/python_ip_true' import os; os.chdir(owd) from DEEPvSSGP_opt_SV2_IP import DEEPvSSGP_opt from scipy.optimize import minimize import scipy.io as sio import numpy as np np.set_printoptions(precision=2, suppress=True) from time import gmtime, strftime, time strftime("%Y-%m-%d %H:%M:%S", gmtime()) os.chdir('data') dataset = 'load_python' run = input('Enter something: ') mat = sio.loadmat(dataset + '.mat', squeeze_me=True) # specify filename to load os.chdir(owd) non_rec = 0 # choose 1, if your setting in matlab was non_rec = 'on'; otherwise 0 X = mat['X'] # input data, structured y = mat['y'] # output data lengthscale = mat['lengthscale'] # lengthscales l lengthscale_p = mat['lengthscale_p'] # lengthscales p sn = mat['sn'] # noise parameter sf = mat['sf'] # power parameter S = mat['S'] # spectral points MU = mat['MU'] # variational latent state SIGMA = mat['SIGMA'] # variational latent state variance U = np.array(mat['U'], dtype=np.float64) # pseudo input points b = mat['b'] # phases D = mat['D'] # input dimensions layers = mat['layers'] # layers order = mat['order'] # time horizon X = np.require(X,dtype=None,requirements='A') y = np.require(y,dtype=None,requirements='A') lengthscale = np.require(lengthscale,dtype=None,requirements='A') lengthscale_p = np.require(lengthscale_p,dtype=None,requirements='A') sn = np.require(sn,dtype=None,requirements='A') sf = np.require(sf,dtype=None,requirements='A') S = np.require(S,dtype=None,requirements='A') MU = np.require(MU,dtype=None,requirements='A') SIGMA = np.require(SIGMA,dtype=None,requirements='A') U = np.require(U,dtype=None,requirements='A') b = np.require(b,dtype=None,requirements='A') D = np.require(D,dtype=None,requirements='A') layers =
np.require(layers,dtype=None,requirements='A')
numpy.require
from os.path import abspath, dirname, join, isfile, normpath, relpath from pandas.testing import assert_frame_equal from numpy.testing import assert_allclose from scipy.interpolate import interp1d import matplotlib.pylab as plt from datetime import datetime import mhkit.wave as wave from io import StringIO import pandas as pd import numpy as np import contextlib import unittest import netCDF4 import inspect import pickle import json import sys import os import time from random import seed, randint testdir = dirname(abspath(__file__)) datadir = normpath(join(testdir,relpath('../../examples/data/wave'))) class TestResourceSpectrum(unittest.TestCase): @classmethod def setUpClass(self): omega = np.arange(0.1,3.5,0.01) self.f = omega/(2*np.pi) self.Hs = 2.5 self.Tp = 8 df = self.f[1] - self.f[0] Trep = 1/df self.t = np.arange(0, Trep, 0.05) @classmethod def tearDownClass(self): pass def test_pierson_moskowitz_spectrum(self): S = wave.resource.pierson_moskowitz_spectrum(self.f,self.Tp) Tp0 = wave.resource.peak_period(S).iloc[0,0] error = np.abs(self.Tp - Tp0)/self.Tp self.assertLess(error, 0.01) def test_bretschneider_spectrum(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) Hm0 = wave.resource.significant_wave_height(S).iloc[0,0] Tp0 = wave.resource.peak_period(S).iloc[0,0] errorHm0 = np.abs(self.Tp - Tp0)/self.Tp errorTp0 = np.abs(self.Hs - Hm0)/self.Hs self.assertLess(errorHm0, 0.01) self.assertLess(errorTp0, 0.01) def test_surface_elevation_seed(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default eta0 = wave.resource.surface_elevation(S, self.t) eta1 = wave.resource.surface_elevation(S, self.t, seed=seednum) assert_frame_equal(eta0, eta1) def test_surface_elevation_phasing(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) eta0 = wave.resource.surface_elevation(S, self.t) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default np.random.seed(seednum) phases = np.random.rand(len(S)) * 2 * np.pi eta1 = wave.resource.surface_elevation(S, self.t, phases=phases) assert_frame_equal(eta0, eta1) def test_surface_elevation_phases_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) phases_np = np.random.rand(S.shape[0], S.shape[1]) * 2 * np.pi phases_pd = pd.DataFrame(phases_np, index=S.index, columns=S.columns) eta_np = wave.resource.surface_elevation(S, self.t, phases=phases_np) eta_pd = wave.resource.surface_elevation(S, self.t, phases=phases_pd) assert_frame_equal(eta_np, eta_pd) def test_surface_elevation_frequency_bins_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) eta0 = wave.resource.surface_elevation(S, self.t) f_bins_np = np.array([np.diff(S.index)[0]]*len(S)) f_bins_pd = pd.DataFrame(f_bins_np, index=S.index, columns=['df']) eta_np = wave.resource.surface_elevation(S, self.t, frequency_bins=f_bins_np) eta_pd = wave.resource.surface_elevation(S, self.t, frequency_bins=f_bins_pd) assert_frame_equal(eta0, eta_np) assert_frame_equal(eta_np, eta_pd) def test_surface_elevation_moments(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) eta = wave.resource.surface_elevation(S, self.t) dt = self.t[1] - self.t[0] Sn = wave.resource.elevation_spectrum(eta, 1/dt, len(eta.values), detrend=False, window='boxcar', noverlap=0) m0 = wave.resource.frequency_moment(S,0).m0.values[0] m0n = wave.resource.frequency_moment(Sn,0).m0.values[0] errorm0 = np.abs((m0 - m0n)/m0) self.assertLess(errorm0, 0.01) m1 = wave.resource.frequency_moment(S,1).m1.values[0] m1n = wave.resource.frequency_moment(Sn,1).m1.values[0] errorm1 = np.abs((m1 - m1n)/m1) self.assertLess(errorm1, 0.01) def test_surface_elevation_rmse(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) eta = wave.resource.surface_elevation(S, self.t) dt = self.t[1] - self.t[0] Sn = wave.resource.elevation_spectrum(eta, 1/dt, len(eta), detrend=False, window='boxcar', noverlap=0) fSn = interp1d(Sn.index.values, Sn.values, axis=0) rmse = (S.values - fSn(S.index.values))**2 rmse_sum = (np.sum(rmse)/len(rmse))**0.5 self.assertLess(rmse_sum, 0.02) def test_jonswap_spectrum(self): S = wave.resource.jonswap_spectrum(self.f, self.Tp, self.Hs) Hm0 = wave.resource.significant_wave_height(S).iloc[0,0] Tp0 = wave.resource.peak_period(S).iloc[0,0] errorHm0 = np.abs(self.Tp - Tp0)/self.Tp errorTp0 = np.abs(self.Hs - Hm0)/self.Hs self.assertLess(errorHm0, 0.01) self.assertLess(errorTp0, 0.01) def test_plot_spectrum(self): filename = abspath(join(testdir, 'wave_plot_spectrum.png')) if isfile(filename): os.remove(filename) S = wave.resource.pierson_moskowitz_spectrum(self.f,self.Tp) plt.figure() wave.graphics.plot_spectrum(S) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_chakrabarti(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti.png')) if isfile(filename): os.remove(filename) D = 5 H = 10 lambda_w = 200 wave.graphics.plot_chakrabarti(H, lambda_w, D) plt.savefig(filename) def test_plot_chakrabarti_np(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti_np.png')) if isfile(filename): os.remove(filename) D = np.linspace(5, 15, 5) H = 10 * np.ones_like(D) lambda_w = 200 * np.ones_like(D) wave.graphics.plot_chakrabarti(H, lambda_w, D) plt.savefig(filename) self.assertTrue(isfile(filename)) def test_plot_chakrabarti_pd(self): filename = abspath(join(testdir, 'wave_plot_chakrabarti_pd.png')) if isfile(filename): os.remove(filename) D = np.linspace(5, 15, 5) H = 10 * np.ones_like(D) lambda_w = 200 * np.ones_like(D) df = pd.DataFrame([H.flatten(),lambda_w.flatten(),D.flatten()], index=['H','lambda_w','D']).transpose() wave.graphics.plot_chakrabarti(df.H, df.lambda_w, df.D) plt.savefig(filename) self.assertTrue(isfile(filename)) class TestResourceMetrics(unittest.TestCase): @classmethod def setUpClass(self): omega = np.arange(0.1,3.5,0.01) self.f = omega/(2*np.pi) self.Hs = 2.5 self.Tp = 8 file_name = join(datadir, 'ValData1.json') with open(file_name, "r") as read_file: self.valdata1 = pd.DataFrame(json.load(read_file)) self.valdata2 = {} file_name = join(datadir, 'ValData2_MC.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['MC'] = data for i in data.keys(): # Calculate elevation spectra elevation = pd.DataFrame(data[i]['elevation']) elevation.index = elevation.index.astype(float) elevation.sort_index(inplace=True) sample_rate = data[i]['sample_rate'] NFFT = data[i]['NFFT'] self.valdata2['MC'][i]['S'] = wave.resource.elevation_spectrum(elevation, sample_rate, NFFT) file_name = join(datadir, 'ValData2_AH.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['AH'] = data for i in data.keys(): # Calculate elevation spectra elevation = pd.DataFrame(data[i]['elevation']) elevation.index = elevation.index.astype(float) elevation.sort_index(inplace=True) sample_rate = data[i]['sample_rate'] NFFT = data[i]['NFFT'] self.valdata2['AH'][i]['S'] = wave.resource.elevation_spectrum(elevation, sample_rate, NFFT) file_name = join(datadir, 'ValData2_CDiP.json') with open(file_name, "r") as read_file: data = json.load(read_file) self.valdata2['CDiP'] = data for i in data.keys(): temp = pd.Series(data[i]['S']).to_frame('S') temp.index = temp.index.astype(float) self.valdata2['CDiP'][i]['S'] = temp @classmethod def tearDownClass(self): pass def test_kfromw(self): for i in self.valdata1.columns: f = np.array(self.valdata1[i]['w'])/(2*np.pi) h = self.valdata1[i]['h'] rho = self.valdata1[i]['rho'] expected = self.valdata1[i]['k'] k = wave.resource.wave_number(f, h, rho) calculated = k.loc[:,'k'].values error = ((expected-calculated)**2).sum() # SSE self.assertLess(error, 1e-6) def test_kfromw_one_freq(self): g = 9.81 f = 0.1 h = 1e9 w = np.pi*2*f # deep water dispersion expected = w**2 / g calculated = wave.resource.wave_number(f=f, h=h, g=g).values[0][0] error =
np.abs(expected-calculated)
numpy.abs
import numpy import unittest import sys PyRLA_dir = '../../' sys.path.append(PyRLA_dir) from optimization import lsr def approx_lsr(sketch_size, sketch_type): w_sketch_vec, obj_val = lsr.sketched_lsr(x_mat, y_vec, sketch_size=sketch_size, sketch_type=sketch_type) dist = w_sketch_vec - w_opt_vec dist = numpy.sum(dist ** 2) return obj_val, dist class TestLSR(unittest.TestCase): def test_srft(self): print('######## SRFT ########') sketch_size = 3 obj_val1, dist1 = approx_lsr(sketch_size, 'srft') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val1)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist1)) sketch_size = 5 obj_val2, dist2 = approx_lsr(sketch_size, 'srft') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val2)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist2)) sketch_size = 10 obj_val3, dist3 = approx_lsr(sketch_size, 'srft') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val3)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist3)) self.assertTrue(dist3 < dist1) def test_count(self): print('######## Count Sketch ########') sketch_size = 3 obj_val1, dist1 = approx_lsr(sketch_size, 'count') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val1)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist1)) sketch_size = 5 obj_val2, dist2 = approx_lsr(sketch_size, 'count') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val2)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist2)) sketch_size = 10 obj_val3, dist3 = approx_lsr(sketch_size, 'count') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val3)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist3)) self.assertTrue(dist3 < dist1) def test_leverage(self): print('######## Leverage Score Sampling ########') sketch_size = 3 obj_val1, dist1 = approx_lsr(sketch_size, 'leverage') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val1)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist1)) sketch_size = 5 obj_val2, dist2 = approx_lsr(sketch_size, 'leverage') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val2)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist2)) sketch_size = 10 obj_val3, dist3 = approx_lsr(sketch_size, 'leverage') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val3)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist3)) self.assertTrue(dist3 < dist1) def test_shrink(self): print('######## Shrinked Leverage Score Sampling ########') sketch_size = 3 obj_val1, dist1 = approx_lsr(sketch_size, 'shrink') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val1)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist1)) sketch_size = 5 obj_val2, dist2 = approx_lsr(sketch_size, 'shrink') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val2)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist2)) sketch_size = 10 obj_val3, dist3 = approx_lsr(sketch_size, 'shrink') print('Objective function value (s=' + str(sketch_size) + 'd): ' + str(obj_val3)) print('Distance to optimal (s=' + str(sketch_size) + 'd): ' + str(dist3)) self.assertTrue(dist3 < dist1) if __name__ == '__main__': rawdata_mat = numpy.load(PyRLA_dir + 'data/YearPredictionMSD.npy', mmap_mode='r') rawdata_mat = rawdata_mat[0:50000, :] x_mat = rawdata_mat[:, 1:] n_int, d_int = x_mat.shape y_vec = rawdata_mat[:, 0].reshape((n_int, 1)) w_opt_vec = numpy.dot(
numpy.linalg.pinv(x_mat)
numpy.linalg.pinv
""" The windfarm manager contains everything required to set up a windfarm. """ import __main__ import os ### Get the name of program importing this package ### if hasattr(__main__,"__file__"): main_file = os.path.basename(__main__.__file__) else: main_file = "ipython" ### This checks if we are just doing documentation ### if not main_file in ["sphinx-build", "__main__.py"]: from dolfin import * import numpy as np from sys import platform import math import time import shutil, copy from scipy.special import gamma import scipy.interpolate as interp ### Import the cumulative parameters ### from windse import windse_parameters, BaseHeight, CalculateDiskTurbineForces, UpdateActuatorLineForce, RadialChordForce ### Check if we need dolfin_adjoint ### if windse_parameters.dolfin_adjoint: from dolfin_adjoint import * ### This import improves the plotter functionality on Mac ### if platform == 'darwin': import matplotlib matplotlib.use('TKAgg') import matplotlib.pyplot as plt class GenericWindFarm(object): """ A GenericProblem contains on the basic functions required by all problem objects. Args: dom (:meth:`windse.DomainManager.GenericDomain`): a windse domain object. """ def __init__(self, dom): ### save a reference of option and create local version specifically of domain options ### self.params = windse_parameters self.dom = dom self.rd_first_save = True self.fprint = self.params.fprint self.tag_output = self.params.tag_output self.debug_mode = self.params.debug_mode ### Init empty design variables ### self.cl = None; self.mcl = None self.cd = None; self.mcd = None self.chord = None; self.mchord = None self.x = None; self.mx = None self.y = None; self.my = None self.yaw = None; self.myaw = None self.axial = None; self.maxial = None ### Init empty design variables ### self.cl = None; self.mcl = None self.cd = None; self.mcd = None self.chord = None; self.mchord = None self.x = None; self.mx = None self.y = None; self.my = None self.yaw = None; self.myaw = None self.axial = None; self.maxial = None ### Update attributes based on params file ### for key, value in self.params["wind_farm"].items(): if isinstance(value,list): setattr(self,key,np.array(value)) else: setattr(self,key,value) ### Check if we need a self.extra_kwarg = {} if self.params.dolfin_adjoint: self.extra_kwarg["annotate"] = False self.optimizing = False if self.params.performing_opt_calc: self.layout_bounds = self.params["optimization"]["layout_bounds"] self.control_types = self.params["optimization"]["control_types"] self.optimizing = True def DebugOutput(self): if self.debug_mode: self.tag_output("min_x", np.min(self.x)) self.tag_output("max_x", np.max(self.x)) self.tag_output("avg_x", np.mean(self.x)) self.tag_output("min_y", np.min(self.y)) self.tag_output("max_y", np.max(self.y)) self.tag_output("avg_y", np.mean(self.y)) self.tag_output("min_z", np.min(self.z)) self.tag_output("max_z", np.max(self.z)) self.tag_output("avg_z", np.mean(self.z)) self.tag_output("min_yaw", np.min(self.yaw)) self.tag_output("max_yaw", np.max(self.yaw)) self.tag_output("avg_yaw", np.mean(self.yaw)) # x, y, z, yaw, chord, def PlotFarm(self,show=False,filename="wind_farm",power=None): """ This function plots the locations of each wind turbine and saves the output to output/.../plots/ :Keyword Arguments: * **show** (*bool*): Default: True, Set False to suppress output but still save. """ if self.numturbs == 0: return ### Create the path names ### folder_string = self.params.folder+"/plots/" file_string = self.params.folder+"/plots/"+filename+".pdf" ### Check if folder exists ### if not os.path.exists(folder_string) and self.params.rank == 0: os.makedirs(folder_string) ### Create a list that outlines the extent of the farm ### if self.optimizing and "layout" in self.control_types and self.layout_bounds != "wind_farm": ex_list_x = [self.layout_bounds[0][0],self.layout_bounds[0][1],self.layout_bounds[0][1],self.layout_bounds[0][0],self.layout_bounds[0][0]] ex_list_y = [self.layout_bounds[1][0],self.layout_bounds[1][0],self.layout_bounds[1][1],self.layout_bounds[1][1],self.layout_bounds[1][0]] else: ex_list_x = [self.ex_x[0],self.ex_x[1],self.ex_x[1],self.ex_x[0],self.ex_x[0]] ex_list_y = [self.ex_y[0],self.ex_y[0],self.ex_y[1],self.ex_y[1],self.ex_y[0]] ### Generate and Save Plot ### fig, ax = plt.subplots() if hasattr(self.dom,"boundary_line"): ax.plot(*self.dom.boundary_line/self.dom.xscale,c="k") ax.plot(np.array(ex_list_x)/self.dom.xscale, np.array(ex_list_y)/self.dom.xscale,c="r") ### Plot Blades for i in range(self.numturbs): blade_n = [np.cos(self.yaw[i]),np.sin(self.yaw[i])] rr = self.RD[i]/2.0 blade_x = np.array([self.x[i]+rr*blade_n[1],self.x[i]-rr*blade_n[1]])/self.dom.xscale blade_y = np.array([self.y[i]-rr*blade_n[0],self.y[i]+rr*blade_n[0]])/self.dom.xscale ax.plot(blade_x,blade_y,c='k',linewidth=2,zorder=1) ### Choose coloring for the turbines ### if isinstance(power,(list,np.ndarray)): coloring = power else: coloring = np.array(self.z)/self.dom.xscale ### Plot Hub Locations p=ax.scatter(self.x/self.dom.xscale,self.y/self.dom.xscale,c=coloring,cmap="coolwarm",edgecolors=(0, 0, 0, 1),s=20,zorder=2) # p=plt.scatter(self.x,self.y,c="k",s=70) plt.xlim(self.dom.x_range[0]/self.dom.xscale,self.dom.x_range[1]/self.dom.xscale) plt.ylim(self.dom.y_range[0]/self.dom.xscale,self.dom.y_range[1]/self.dom.xscale) clb = plt.colorbar(p) clb.ax.set_ylabel('Hub Elevation') ### Annotate ### for i in range(self.numturbs): ax.annotate(i, (self.x[i]/self.dom.xscale,self.y[i]/self.dom.xscale),(5,0),textcoords='offset pixels') if power is None: plt.title("Location of the Turbines") elif isinstance(power,(list,np.ndarray)): plt.title("Objective Value: {: 5.6f}".format(sum(power))) else: plt.title("Objective Value: {: 5.6f}".format(power)) plt.savefig(file_string, transparent=True) if show: plt.show() plt.close() def PlotChord(self,show=False,filename="chord_profiles",power=None, bounds=None): ### Create the path names ### folder_string = self.params.folder+"/plots/" file_string = self.params.folder+"/plots/"+filename+".pdf" ### Check if folder exists ### if not os.path.exists(folder_string) and self.params.rank == 0: os.makedirs(folder_string) ### Calculate x values ### x = np.linspace(0,1,self.blade_segments) ### Plot Chords ### plt.figure() plt.plot(x,self.baseline_chord,label="baseline",c="k") if bounds is None: lower=[] upper=[] c_avg = 0 for k, seg_chord in enumerate(self.baseline_chord): modifier = 2.0 max_chord = self.max_chord lower.append(seg_chord/modifier) upper.append(max(min(seg_chord*modifier,max_chord),c_avg)) c_avg = (c_avg*k+seg_chord)/(k+1) plt.plot(x,lower,"--r",label="Optimization Boundaries") plt.plot(x,upper,"--r") else: plt.plot(x,bounds[0][-self.blade_segments:],"--r",label="Optimization Boundaries") plt.plot(x,bounds[1][-self.blade_segments:],"--r") for i in range(self.numturbs): y = np.array(self.chord[i],dtype=float) plt.plot(x,y,'.-',label=i) plt.xlim(0,1) if power is None: plt.title("Chord along blade span") elif isinstance(power,(list,np.ndarray)): plt.title("Objective Value: {: 5.6f}".format(sum(power))) else: plt.title("Objective Value: {: 5.6f}".format(power)) plt.xlabel("Blade Span") plt.ylabel("Chord") plt.legend() plt.savefig(file_string, transparent=True) if show: plt.show() plt.close() def SaveWindFarm(self,val=None,filename="wind_farm"): ### Create the path names ### folder_string = self.params.folder+"/data/" if val is not None: file_string = self.params.folder+"/data/"+filename+"_"+repr(val)+".txt" else: file_string = self.params.folder+"/data/"+filename+".txt" ### Check if folder exists ### if not os.path.exists(folder_string) and self.params.rank == 0: os.makedirs(folder_string) ### Define the header string ### head_str="# x y HH Yaw Diameter Thickness Axial_Induction" ### Save text file ### Sx = self.dom.xscale output =
np.array([self.x/Sx, self.y/Sx, self.HH/Sx, self.yaw, self.RD/Sx, self.thickness/Sx, self.axial])
numpy.array
""" Routines for building qutrit gates and models """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np from scipy import linalg as _linalg from .. import objects as _objs from ..tools import unitary_to_process_mx, change_basis, Basis #Define 2 qubit to symmetric (+) antisymmetric space transformation A: A = _np.matrix([[1, 0, 0, 0], # [0,0,0,1], [0, 1. / _np.sqrt(2), 1. / _np.sqrt(2), 0], [0, 1. / _np.sqrt(2), -1. /
_np.sqrt(2)
numpy.sqrt
from __future__ import print_function import os import sys import torch import torch.utils.data import pickle, gzip import numpy as np import scipy.io as sio import cv2 import json from PIL import Image, ImageDraw from collections import defaultdict, Sequence from pycocotools.cocoeval import COCOeval from upsnet.config.config import config from upsnet.dataset.json_dataset import JsonDataset, extend_with_flipped_entries, filter_for_training, add_bbox_regression_targets from upsnet.dataset.base_dataset import BaseDataset from upsnet.rpn.assign_anchor import add_rpn_blobs from upsnet.bbox.sample_rois import sample_rois from lib.utils.logging import logger import pycocotools.mask as mask_util class Cityscapes_CVRN(BaseDataset): def __init__(self, image_sets, flip=False, proposal_files=None, phase='train', result_path=''): super(Cityscapes_CVRN, self).__init__() self.image_dirs = { 'train': os.path.join(config.dataset.dataset_path, 'images'), 'val': os.path.join(config.dataset.dataset_path, 'images'), 'test': os.path.join(config.dataset.dataset_path, 'images'), 'train_extra': os.path.join(config.dataset.dataset_path, 'images'), 'debug': os.path.join(config.dataset.dataset_path, 'images'), } self.anno_files = { 'train': 'instancesonly_gtFine_train.json', 'val': 'instancesonly_gtFine_val.json', 'test': 'image_info_test.json', 'train_extra': 'instancesonly_gtCoarse_train_extra.json', 'debug': 'instancesonly_gtFine_debug.json', } self.panoptic_json_file = os.path.join(config.dataset.dataset_path, 'annotations_7cls', 'cityscapes_fine_val.json') self.panoptic_gt_folder = 'data/cityscapes/panoptic' self.flip = flip self.result_path = result_path self.num_classes = 9 self.phase = phase self.image_sets = image_sets if image_sets[0] == 'demoVideo': assert len(image_sets) == 1 assert phase == 'test' im_path = [_.strip() for _ in open('data/cityscapes/split/demoVideo_img.txt', 'r').readlines()] self.roidb = [{'image': _, 'flipped': False} for _ in im_path] return if proposal_files is None: proposal_files = [None] * len(image_sets) if phase == 'train' and len(image_sets) > 1: # combine multiple datasets roidbs = [] for image_set, proposal_file in zip(image_sets, proposal_files): dataset = JsonDataset('cityscapes_' + image_set, image_dir=self.image_dirs[image_set], anno_file=os.path.join(config.dataset.dataset_path, 'annotations_7cls', self.anno_files[image_set])) roidb = dataset.get_roidb(gt=True, proposal_file=proposal_file, crowd_filter_thresh=config.train.crowd_filter_thresh) if flip: if logger: logger.info('Appending horizontally-flipped training examples...') extend_with_flipped_entries(roidb, dataset) roidbs.append(roidb) roidb = roidbs[0] for r in roidbs[1:]: roidb.extend(r) roidb = filter_for_training(roidb) add_bbox_regression_targets(roidb) else: assert len(image_sets) == 1 self.dataset = JsonDataset('cityscapes_' + image_sets[0], image_dir=self.image_dirs[image_sets[0]], anno_file=os.path.join(config.dataset.dataset_path, 'annotations_7cls', self.anno_files[image_sets[0]])) roidb = self.dataset.get_roidb(gt=True, proposal_file=proposal_files[0], crowd_filter_thresh=config.train.crowd_filter_thresh if phase != 'test' else 0) if flip: if logger: logger.info('Appending horizontally-flipped training examples...') extend_with_flipped_entries(roidb, self.dataset) if phase != 'test': roidb = filter_for_training(roidb) add_bbox_regression_targets(roidb) else: if logger: logger.info('Filtered roidb entries: {}'.format(len(roidb))) else: print('Filtered roidb entries: {}'.format(len(roidb))) self.roidb = roidb def __getitem__(self, index): blob = defaultdict(list) im_blob, im_scales = self.get_image_blob([self.roidb[index]]) if config.network.has_rpn: if self.phase != 'test': add_rpn_blobs(blob, im_scales, [self.roidb[index]]) data = {'data': im_blob, 'im_info': blob['im_info']} label = {'roidb': blob['roidb'][0]} for stride in config.network.rpn_feat_stride: label.update({ 'rpn_labels_fpn{}'.format(stride): blob['rpn_labels_int32_wide_fpn{}'.format(stride)].astype( np.int64), 'rpn_bbox_targets_fpn{}'.format(stride): blob['rpn_bbox_targets_wide_fpn{}'.format(stride)], 'rpn_bbox_inside_weights_fpn{}'.format(stride): blob[ 'rpn_bbox_inside_weights_wide_fpn{}'.format(stride)], 'rpn_bbox_outside_weights_fpn{}'.format(stride): blob[ 'rpn_bbox_outside_weights_wide_fpn{}'.format(stride)] }) else: data = {'data': im_blob, 'im_info': np.array([[im_blob.shape[-2], im_blob.shape[-1], im_scales[0]]], np.float32), } # label = {'roidb': self.roidb[index]} label = None else: if self.phase != 'test': data = {'data': im_blob, 'im_info': blob['im_info']} label = {'roidb': self.roidb[index]} else: data = {'data': im_blob, 'rois': np.hstack( (np.zeros((self.roidb[index]['boxes'].shape[0], 1)), self.roidb[index]['boxes'])).astype( np.float32), 'im_info': np.array([[im_blob.shape[-2], im_blob.shape[-1], im_scales[0]]], np.float32), 'id': self.roidb[index]['id']} label = None if config.network.has_fcn_head: if self.phase != 'test': seg_gt = np.array(Image.open(self.roidb[index]['image'].replace('images', 'labels_16cls').replace('leftImg8bit.png', 'gtFine_labelTrainIds.png'))) if self.roidb[index]['flipped']: seg_gt = np.fliplr(seg_gt) seg_gt = cv2.resize(seg_gt, None, None, fx=im_scales[0], fy=im_scales[0], interpolation=cv2.INTER_NEAREST) label.update({'seg_gt': seg_gt}) label.update({'gt_classes': label['roidb']['gt_classes']}) label.update({'mask_gt': np.zeros((len(label['gt_classes']), im_blob.shape[-2], im_blob.shape[-1]))}) for i in range(len(label['gt_classes'])): img = Image.new('L', (int(im_blob.shape[-1] / im_scales[0]), int(im_blob.shape[-2] / im_scales[0])), 0) for j in range(len(label['roidb']['segms'][i])): ImageDraw.Draw(img).polygon(tuple(label['roidb']['segms'][i][j]), outline=1, fill=1) label['mask_gt'][i] = cv2.resize(np.array(img), None, None, fx=im_scales[0], fy=im_scales[0], interpolation=cv2.INTER_NEAREST) if config.train.fcn_with_roi_loss: gt_boxes = label['roidb']['boxes'][np.where(label['roidb']['gt_classes'] > 0)[0]] gt_boxes = np.around(gt_boxes * im_scales[0]).astype(np.int32) label.update({'seg_roi_gt': np.zeros((len(gt_boxes), config.network.mask_size, config.network.mask_size), dtype=np.int64)}) for i in range(len(gt_boxes)): if gt_boxes[i][3] == gt_boxes[i][1]: gt_boxes[i][3] += 1 if gt_boxes[i][2] == gt_boxes[i][0]: gt_boxes[i][2] += 1 label['seg_roi_gt'][i] = cv2.resize(seg_gt[gt_boxes[i][1]:gt_boxes[i][3], gt_boxes[i][0]:gt_boxes[i][2]], (config.network.mask_size, config.network.mask_size), interpolation=cv2.INTER_NEAREST) else: pass return data, label, index # return data.copy(), label, index def get_image_blob(self, roidb): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) # Sample random scales to use for each image in this batch if self.phase == 'train': scale_inds = np.random.randint( 0, high=len(config.train.scales), size=num_images ) else: scale_inds = np.random.randint( 0, high=len([config.test.scales[0]]), size=num_images ) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) assert im is not None, \ 'Failed to read image \'{}\''.format(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] if self.phase == 'train': target_size = config.train.scales[scale_inds[i]] im, im_scale = self.prep_im_for_blob( im, config.network.pixel_means, [target_size], config.train.max_size ) else: target_size = config.test.scales[0] im, im_scale = self.prep_im_for_blob( im, config.network.pixel_means, [target_size], config.test.max_size ) im_scales.append(im_scale[0]) processed_ims.append(im[0].transpose(2, 0, 1)) # Create a blob to hold the input images assert len(processed_ims) == 1 blob = processed_ims[0] return blob, im_scales def vis_all_mask(self, all_boxes, all_masks, save_path=None): """ visualize all detections in one image :param im_array: [b=1 c h w] in rgb :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ] :param class_names: list of names in imdb :param scale: visualize the scaled image :return: """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.patches import Polygon import random import cv2 palette = { 'person': (220, 20, 60), 'rider': (255, 0, 0), 'car': (0, 0, 142), 'bus': (0, 60, 100), 'motorcycle': (0, 0, 230), 'bicycle': (119, 11, 32), # 'road': (128, 64, 128), 'sidewalk': (244, 35, 232), 'building': (70, 70, 70), 'wall': (102, 102, 156), 'fence': (190, 153, 153), 'pole': (153, 153, 153), 'sky': (70, 130, 180), 'traffic light': (250, 170, 30), 'traffic sign': (220, 220, 0), 'vegetation': (107, 142, 35) } name2id = { 'road': 0, 'sidewalk': 1, 'building': 2, 'wall': 3, 'fence': 4, 'pole': 5, 'traffic light': 6, 'traffic sign': 7, 'vegetation': 8, 'terrain': 9 } self.classes = [ '__background__', 'person', 'rider', 'car', 'bus', 'motorcycle', 'bicycle', ] if save_path is not None: os.makedirs(save_path, exist_ok=True) for i in range(len(self.roidb)): im = np.array(Image.open(self.roidb[i]['image'])) fig = plt.figure(frameon=False) fig.set_size_inches(im.shape[1] / 200, im.shape[0] / 200) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) ax.imshow(im) for j, name in enumerate(self.classes): if name == '__background__': continue boxes = all_boxes[j][i] segms = all_masks[j][i] if segms == []: continue masks = mask_util.decode(segms) for k in range(boxes.shape[0]): score = boxes[k, -1] mask = masks[:, :, k] if score < 0.5: continue bbox = boxes[k, :] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=2, alpha=0.5) ) # ax.text(bbox[0], bbox[1] - 2, name + '{:0.2f}'.format(score).lstrip('0'), fontsize=6, family='serif', # bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'), color='white') # contour, hier = cv2.findContours(mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) _, contour, hier = cv2.findContours(mask.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) color = (palette[name][0] / 255, palette[name][1] / 255, palette[name][2] / 255) for c in contour: ax.add_patch( Polygon( c.reshape((-1, 2)), fill=True, facecolor=color, edgecolor='w', linewidth=1, alpha=0.5 ) ) if save_path is None: plt.show() else: fig.savefig(os.path.join(save_path, '{}.png'.format(self.roidb[i]['image'].split('/')[-1][:-16])), dpi=100) plt.close('all') def evaluate_masks( self, all_boxes, all_segms, output_dir, ): res_file = os.path.join( output_dir, 'segmentations_' + self.dataset.name + '_results.json' ) results = [] for cls_ind, cls in enumerate(self.dataset.classes): if cls == '__background__': continue if cls_ind >= len(all_boxes): break cat_id = self.dataset.category_to_id_map[cls] results.extend(self.segms_results_one_category(all_boxes[cls_ind], all_segms[cls_ind], cat_id)) if logger: logger.info( 'Writing segmentation results json to: {}'.format( os.path.abspath(res_file))) with open(res_file, 'w') as fid: json.dump(results, fid) coco_dt = self.dataset.COCO.loadRes(str(res_file)) coco_eval = COCOeval(self.dataset.COCO, coco_dt, 'segm') coco_eval.evaluate() coco_eval.accumulate() # self.log_detection_eval_metrics(coco_eval, os.path.join(output_dir, 'instance_segmentation_results.txt')) mAP, AP_all = self.log_detection_eval_metrics_ap50(coco_eval) return mAP, AP_all def get_pallete(self): pallete_raw = np.zeros((256, 3)).astype('uint8') pallete =
np.zeros((256, 3))
numpy.zeros
#!/usr/bin/env python # Spacenet challenge # Creates and trains CNN to recgonize buildings # vklimkov Dec 2016 import argparse import os import sys import numpy as np import glob from random import shuffle import matplotlib.pyplot as plt import keras from keras.models import Sequential from keras.layers import Dense from keras.layers import Reshape from keras.layers import TimeDistributed from keras.layers import BatchNormalization from keras.layers import Activation from keras.layers import Dropout from keras.layers import Flatten from keras.constraints import maxnorm from keras.optimizers import adam from keras.layers.convolutional import Convolution2D from keras.layers.convolutional import Deconvolution2D from keras.layers.convolutional import MaxPooling2D from keras.layers.convolutional import ZeroPadding2D from keras.utils import np_utils from keras import backend as K # fix random seed for reproducibility seed = 42 np.random.seed(seed) DIM = 128 CHANNELS = 4 CLASSES = 2 BATCHSIZE = 16 # this was calculated from the assumtion: # 776kb per training sample * 3 augmentation moves = 2.273 mB per sample # 12 gB RAM on GPU. (200) DATAGEN_PERSTEP = BATCHSIZE * 80 EPOCHS = 100 SAVE_MODEL_EVERY_NTH_EPOCH = 10 # just vertical and horizontal flip AUGMENTATION = 3 LEARNING_RATE = 0.0001 class DataGenerator: def __init__(self, indir, targetdir, perstep=DATAGEN_PERSTEP, minibatch=BATCHSIZE): self.train_idx = 0 self.perstep = perstep self.minibatch = minibatch print('training step %d' % self.perstep) self.indir = indir self.targetdir = targetdir # some sanity checks innames = glob.glob('%s/*.npy' % indir) # dont forget to remove "in_" from names innames = [os.path.splitext(os.path.basename(x))[0][3:] for x in innames] targetnames = glob.glob('%s/*.npy' % targetdir) # dont forget to remove "target_" from names targetnames = [os.path.splitext(os.path.basename(x))[0][7:] for x in targetnames] if len(innames) != len(targetnames): raise RuntimeError('different amount of in and target files') targetnames = set(targetnames) for i in innames: if i not in targetnames: raise RuntimeError('%s is missing from target directory' % i) shuffle(innames) self.train_names = innames print('total num of training imgs %d' % len(self.train_names)) def flow_training(self): train_to = min(len(self.train_names), self.train_idx + self.perstep) samples = (train_to - self.train_idx) * AUGMENTATION x_train = np.zeros((samples, DIM, DIM, CHANNELS)) y_train = np.zeros((samples, DIM * DIM, CLASSES)) sample_idx = 0 for i in range(self.train_idx, train_to): name = self.train_names[i] x = np.load(os.path.join(self.indir, 'in_%s.npy' % name)) y = np.load(os.path.join(self.targetdir, 'target_%s.npy' % name)) x_train[sample_idx, :, :, :] = x y_train[sample_idx, :, :] = y sample_idx += 1 # augmentation yy = np.reshape(y, (DIM, DIM, CLASSES)) # left-to-right mirror x_aug = np.fliplr(x) y_aug = np.fliplr(yy) y_aug = np.reshape(y_aug, (DIM * DIM, CLASSES)) x_train[sample_idx, :, :, :] = x_aug y_train[sample_idx, :, :] = y_aug sample_idx += 1 # up to down mirror x_aug = np.flipud(x) y_aug = np.flipud(yy) y_aug =
np.reshape(y_aug, (DIM * DIM, CLASSES))
numpy.reshape
import pathlib import numpy as np import PIL.Image import torch import torch.utils.data import torch.nn.functional import random import utils_dset ######################################################################################################################## def read_file_lines(filename): """ Reads a text file, skips comments, and lines. :param filename: :return: """ with open(filename) as f: lines = [l.replace('\n', '') for l in f if (len(l) > 0 and l[0] != '#')] return lines ######################################################################################################################## def parse_camera_lines(lines): """ Parse metadata: youtube URL + cam intrinsics + extrinsics :param lines: :return: """ # The first line contains the YouTube video URL. # Format of each subsequent line: timestamp fx fy px py k1 k2 row0 row1 row2 # Column number: 0 1 2 3 4 5 6 7-10 11-14 15-18 youtube_url = lines[0] # record_defaults = ([['']] + [[0.0]] * 18) data = [[float(n) if idx > 0 else int(n) for idx, n in enumerate(l.split(' '))] for l in lines[1:]] # simple parse csv by splitting by space # We don't accept non-zero k1 and k2. assert (0 == len(list([x for x in data if x[5] != 0.0 or x[6] != 0.0]))) timestamps = [l[0] for l in data] intrinsics = [l[1:5] for l in data] # tf.stack(data[1:5], axis=1) poses = [[l[7:11], l[11:15], l[15:19], [0., 0., 0., 1.]] for l in data] # utils.build_matrix([data[7:11], data[11:15], data[15:19]]) # In camera files, the video id is the last part of the YouTube URL, it comes # after the =. youtubeIDOffset = youtube_url.find("/watch?v=") + len('/watch?v=') youtube_id = youtube_url[youtubeIDOffset:] return { 'youtube_id': youtube_id, 'timestamps': timestamps, 'intrinsics': intrinsics, 'poses': poses, # poses is world to camera (c_f_w o w_t_c) } ######################################################################################################################## class DsetRealEstate1(torch.utils.data.Dataset): """ Real estate dataset """ def __init__(self, dataset_path, is_valid=False, min_dist=200e3, max_dist=1500e3, im_w=200, im_h=200, num_planes=10, num_views=3, max_w=600, no_crop = False): print(f'DsetRealEstate: dataset_path={dataset_path}, is_valid={is_valid}') self.is_valid = is_valid self.dataset_path = pathlib.Path(dataset_path) self.min_dist = min_dist self.max_dist = max_dist self.im_w = im_w self.im_h = im_h self.max_w = max_w self.max_h = None self.num_planes = num_planes self.num_views = num_views self.no_crop = no_crop metadata_path = self.dataset_path / 'RealEstate10K' / ('test' if is_valid else 'train') scenes = [] for p in metadata_path.iterdir(): lines = read_file_lines(p) scene = parse_camera_lines(lines) scenes.append(scene) self.scenes = [scene for scene in scenes if self.get_scene_idx(scene)] def __len__(self): return len(self.scenes) def get_scene_idx(self, scene): tss = scene['timestamps'] n_ts = len(tss) if n_ts < self.num_views + 1: return None img_range = list(range(n_ts)) ref_random_range = np.array(img_range)
np.random.shuffle(ref_random_range)
numpy.random.shuffle
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module provides tools for simulating rank deficient operators.""" import itertools import numpy from openfermion.config import EQ_TOLERANCE import openfermion.utils as utils def get_chemist_two_body_coefficients(two_body_coefficients, spin_basis=True): r"""Convert two-body operator coefficients to low rank tensor. The input is a two-body fermionic Hamiltonian expressed as $\sum_{pqrs} h_{pqrs} a^\dagger_p a^\dagger_q a_r a_s$ We will convert this to the chemistry convention expressing it as $\sum_{pqrs} g_{pqrs} a^\dagger_p a_q a^\dagger_r a_s$ but without the spin degree of freedom. In the process of performing this conversion, constants and one-body terms come out, which will be returned as well. Args: two_body_coefficients (ndarray): an N x N x N x N numpy array giving the $h_{pqrs}$ tensor. spin_basis (bool): True if the two-body terms are passed in spin orbital basis. False if already in spatial orbital basis. Returns: one_body_correction (ndarray): an N x N array of floats giving coefficients of the $a^\dagger_p a_q$ terms that come out. chemist_two_body_coefficients (ndarray): an N x N x N x N numpy array giving the $g_{pqrs}$ tensor in chemist notation. Raises: TypeError: Input must be two-body number conserving FermionOperator or InteractionOperator. """ # Initialize. n_orbitals = two_body_coefficients.shape[0] chemist_two_body_coefficients = numpy.transpose(two_body_coefficients, [0, 3, 1, 2]) # If the specification was in spin-orbitals, chop down to spatial orbitals # assuming a spin-symmetric interaction. if spin_basis: n_orbitals = n_orbitals // 2 alpha_indices = list(range(0, n_orbitals * 2, 2)) beta_indices = list(range(1, n_orbitals * 2, 2)) chemist_two_body_coefficients = chemist_two_body_coefficients[numpy.ix_( alpha_indices, alpha_indices, beta_indices, beta_indices)] # Determine a one body correction in the spin basis from spatial basis. one_body_correction = numpy.zeros((2 * n_orbitals, 2 * n_orbitals), complex) for p, q, r, s in itertools.product(range(n_orbitals), repeat=4): for sigma, tau in itertools.product(range(2), repeat=2): if (q == r) and (sigma == tau): one_body_correction[2 * p + sigma, 2 * s + tau] -= ( chemist_two_body_coefficients[p, q, r, s]) # Return. return one_body_correction, chemist_two_body_coefficients def low_rank_two_body_decomposition(two_body_coefficients, truncation_threshold=1e-8, final_rank=None, spin_basis=True): r"""Convert two-body operator into sum of squared one-body operators. As in arXiv:1808.02625, this function decomposes $\sum_{pqrs} h_{pqrs} a^\dagger_p a^\dagger_q a_r a_s$ as $\sum_{l} \lambda_l (\sum_{pq} g_{lpq} a^\dagger_p a_q)^2$ l is truncated to take max value L so that $\sum_{l=0}^{L-1} (\sum_{pq} |g_{lpq}|)^2 |\lambda_l| < x$ Args: two_body_coefficients (ndarray): an N x N x N x N numpy array giving the $h_{pqrs}$ tensor. This tensor must be 8-fold symmetric (real integrals). truncation_threshold (optional Float): the value of x, above. final_rank (optional int): if provided, this specifies the value of L at which to truncate. This overrides truncation_threshold. spin_basis (bool): True if the two-body terms are passed in spin orbital basis. False if already in spatial orbital basis. Returns: eigenvalues (ndarray of floats): length L array giving the $\lambda_l$. one_body_squares (ndarray of floats): L x N x N array of floats corresponding to the value of $g_{pql}$. one_body_correction (ndarray): One-body correction terms that result from reordering to chemist ordering, in spin-orbital basis. truncation_value (float): after truncation, this is the value $\sum_{l=0}^{L-1} (\sum_{pq} |g_{lpq}|)^2 |\lambda_l| < x$ Raises: TypeError: Invalid two-body coefficient tensor specification. """ # Initialize N^2 by N^2 interaction array. one_body_correction, chemist_two_body_coefficients = ( get_chemist_two_body_coefficients(two_body_coefficients, spin_basis)) n_orbitals = chemist_two_body_coefficients.shape[0] full_rank = n_orbitals**2 interaction_array = numpy.reshape(chemist_two_body_coefficients, (full_rank, full_rank)) # Make sure interaction array is symmetric and real. asymmetry = numpy.sum( numpy.absolute(interaction_array - interaction_array.transpose())) imaginary_norm = numpy.sum(numpy.absolute(interaction_array.imag)) if asymmetry > EQ_TOLERANCE or imaginary_norm > EQ_TOLERANCE: raise TypeError('Invalid two-body coefficient tensor specification.') # Decompose with exact diagonalization. eigenvalues, eigenvectors = numpy.linalg.eigh(interaction_array) # Get one-body squares and compute weights. term_weights = numpy.zeros(full_rank) one_body_squares = numpy.zeros((full_rank, 2 * n_orbitals, 2 * n_orbitals), complex) # Reshape and add spin back in. for l in range(full_rank): one_body_squares[l] = numpy.kron( numpy.reshape(eigenvectors[:, l], (n_orbitals, n_orbitals)), numpy.eye(2)) term_weights[l] = abs(eigenvalues[l]) * numpy.sum( numpy.absolute(one_body_squares[l]))**2 # Sort by weight. indices = numpy.argsort(term_weights)[::-1] eigenvalues = eigenvalues[indices] term_weights = term_weights[indices] one_body_squares = one_body_squares[indices] # Determine upper-bound on truncation errors that would occur. cumulative_error_sum =
numpy.cumsum(term_weights)
numpy.cumsum
# -*- coding:Utf-8 -*- """ This module handles CORMORAN measurement data CorSer Class ============ .. autoclass:: CorSer :members: Notes ----- Useful members distdf : distance between radio nodes (122 columns) devdf : device data frame """ #import mayavi.mlab as mlabc import os import pdb import sys import pandas as pd import numpy as np import numpy.ma as ma import scipy.io as io from pylayers.util.project import * from pylayers.util.pyutil import * from pylayers.mobility.ban.body import * from pylayers.gis.layout import * import pylayers.antprop.antenna as antenna from matplotlib.widgets import Slider, CheckButtons, Button, Cursor from pylayers.signal.DF import * # from moviepy.editor import * from skimage import img_as_ubyte import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import pickle try: from tvtk.api import tvtk from mayavi.sources.vtk_data_source import VTKDataSource from mayavi import mlab except: print('Layout:Mayavi is not installed') #Those lines handle incompatibility between mayavi and VTK #and redirect noisy warning message into a log file # import vtk # output=vtk.vtkFileOutputWindow() # output.SetFileName("mayaviwarninglog.tmp") # vtk.vtkOutputWindow().SetInstance(output) def cor_log(short=True): """ display cormoran measurement campaign logfile Parameters ---------- short : boolean enable short version Examples -------- >>> from pylayers.measures.cormoran import * >>> cor_log(short=True) """ filelog = os.path.join(os.environ['CORMORAN'],'RAW','Doc','MeasurementLog.csv') log = pd.read_csv(filelog) if short : log['day'] = [x.split('/')[0] for x in log['Date'].values] log['serie']=log['Meas Serie'] return log[['serie','day','Subject','techno','Short Notes']] else: return log def time2npa(lt): """ convert pd.datetime.time to numpy array Parameters ---------- lt : pd.datetime.time Returns ------- ta : numpy array time in seconds """ ta = (lt.microsecond*1e-6+ lt.second+ lt.minute*60+ lt.hour*3600) return(ta) class CorSer(PyLayers): """ Handle CORMORAN measurement data Hikob data handling from CORMORAN measurement campaign 11/06/2014 single subject (Bernard and Nicolas) 12/06/2014 several subject (Jihad, Eric , Nicolas) """ def __init__(self,serie=6,day=11,source='CITI',layout=False): """ Parameters ---------- serie : int day : int source : string Notes ----- The environment variable CORMORAN is indicating the location of data directory """ assert (day in [11,12]),"wrong day" try: self.rootdir = os.environ['CORMORAN'] except: raise NameError('Please add a CORMORAN environement variable \ pointing to the data') # infos self.serie = serie self.day = day self.loadlog() if day == 11: if serie in [7,8]: raise 'Serie '+str(serie) + ' has no hkb data and will not be loaded' if day ==12: if serie in [17,18,19,20]: raise AttributeError('Serie '+str(serie) + \ ' has no hkb data and will not be loaded') #Measures if day==11: self.stcr = [1,2,3,4,10,11,12,32,33,34,35,9,17,18,19,20,25,26] self.shkb = [5,6,13,14,15,16,21,22,23,24,27,28,29,30,31,32,33,34,35] self.sbs = [5,6,7,8,13,14,15,16,21,22,23,24,27,28,29,30,31,32,33,34,35] self.mocap = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] self.mocapinterf=[] if day==12: self.stcr = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] self.shkb = [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] self.sbs = [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] self.mocap =[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] self.mocapinterf = [5,6,7,8,13,14,15,16,21,22,23,24,] self.typ='' # HIKOB if serie in self.shkb: self._loadhkb(serie=serie,day=day,source=source) # IR-UWB TCR if serie in self.stcr: self._loadTCR(serie=serie,day=day) # BeSpoon if serie in self.sbs: self._loadBS(serie=serie,day=day) # set filename if self.typ=='FULL': self._filename = 'Sc' + self.scenario + '_S' + str(self.serie) + '_R' + str(self.run) + '_' + self.typ.capitalize() else: self._filename = 'Sc' + self.scenario + '_S' + str(self.serie) + '_R' + str(self.run) + '_' + self.typ #Layout if layout: self.L= Layout('MOCAP-small2.lay') # Load Infrastructure Nodes self._loadinfranodes() # Load cameras self._loadcam() #BODY & interferers self.subject = str(self.log['Subject'].values[0].replace('jihad','Jihad')).split(' ') #filter typos in self.subject self.subject = [ x for x in self.subject if len(x)!=0 ] if 'Jihad' in self.subject : uj = self.subject.index('Jihad') self.subject[uj]='Jihan' if serie in self.mocap : # load bodies from mocap file self._loadbody(serie=serie,day=day) self._distancematrix() self._computedevpdf() if isinstance(self.B,dict): for b in self.B: if hasattr(self,'L'): self.B[b].traj.Lfilename=copy.copy(self.L._filename) else: self.B[b].traj.Lfilename='notloaded' else : self.B.traj.Lfilename=copy.copy(self.L._filename) # reference time is tmocap self.tmocap = self.B[self.subject[0]].time # load offset dict self.offset= self._load_offset_dict() ######################## #realign Radio on mocap ######################## # 1 - Resample radio time => mocap time # 2 - (if available) apply offset if ('BS' in self.typ) or ('FULL' in self.typ): print( '\nBS data frame index: ',) self._align_on_devdf(typ='BS') print( 'Align on mocap OK...',) try: self._apply_offset('BS') print ('time-offset applied OK') except: print ('WARNING time-offset NOT applied') print ('No BS offset not yet set => use self.offset_setter ') if ('TCR' in self.typ) or ('FULL' in self.typ): print ('\nTCR data frame index:', ) self._align_on_devdf(typ='TCR') print ('Align on mocap OK...',) try: self._apply_offset('TCR') print ('time-offset applied OK') except: print ('WARNING time-offset NOT applied') print ('No TCR offset not yet set => use self.offset_setter') if ('HK' in self.typ) or ('FULL' in self.typ): print ('\nHKB data frame index:',) self._align_on_devdf(typ='HKB') print ('Align on mocap OK...',) try: # self._apply_offset('HKB') print ('time-offset applied OK') except: print ('WARNING time-offset NOT applied') print ('No HKB offset not yet set => use self.offset_setter') print ('\nCreate distance Dataframe...',) self._computedistdf() print ('OK',) def __repr__(self): st = '' st = st + 'filename : ' + self._filename + '\n' st = st + 'filewear : ' + self.filewear + '\n' st = st + 'filebody : ' + self.filebody + '\n' st = st + 'filemocap : ' + self.filemocap + '\n' st = st + 'Day : '+ str(self.day)+'/06/2014'+'\n' st = st + 'Serie : '+ str(self.serie)+'\n' st = st + 'Scenario : '+str(self.scenario)+'\n' st = st + 'Run : '+ str(self.run)+'\n' st = st + 'Type : '+ str(self.typ)+'\n' st = st + 'Original Video Id : '+ str(self.video)+'\n' st = st + 'Subject(s) : ' for k in self.subject: st = st + k + ' ' st = st + '\n\n' st = st+'Body available: ' + str('B' in dir(self)) + '\n\n' try : st = st+'BeSPoon : '+self._fileBS+'\n' except: pass try : st = st+'HIKOB : '+self._filehkb+'\n' except: pass try : st = st+'TCR : '+self._fileTCR+'\n' except: pass st = st + '----------------------\n\n' for k in self.log.columns: st = st + k + ' :' + str(self.log[k].values)+'\n' return(st) # @property # def dev(self): # """ display device techno, id , id on body, body owner,... # """ # title = '{0:21} | {1:7} | {2:8} | {3:10} '.format('Name in Dataframe', 'Real Id', 'Body Id', 'Subject') # print title + '\n' + '-'*len(title) # if ('HK' in self.typ) or ('FULL' in self.typ): # hkbkeys = self.idHKB.keys() # hkbkeys.sort() # for d in hkbkeys: # dev = self.devmapper(self.idHKB[d],'HKB') # print '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3]) # if ('TCR' in self.typ) or ('FULL' in self.typ): # tcrkeys = self.idTCR.keys() # tcrkeys.sort() # for d in tcrkeys: # dev = self.devmapper(self.idTCR[d],'TCR') # print '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3]) @property def dev(self): """ display device techno, id , id on body, body owner,... """ title = '{0:21} | {1:7} | {2:8} | {3:10} '.format('Name in Dataframe', 'Real Id', 'Body Id', 'Subject') print( title + '\n' + '='*len(title)) # access points HKB for d in self.din: if ('HK' in d) : dev = self.devmapper(d,'HKB') print('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) if 'FULL' in self.typ: print ('{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.din: if ('BS' in d) : dev = self.devmapper(d,'BS') print ('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) if 'FULL' in self.typ: print ('{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) # access points TCR for d in self.din: if ('TCR' in d) : dev = self.devmapper(d,'TCR') print ('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) print ('{0:66}'.format('-'*len(title) )) #device per RAT per body for b in self.B: if b not in self.interf: #HKB per body for d in self.B[b].dev.keys(): if ('HK' in d): dev = self.devmapper(d,'HKB') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) #bespoon if ('FULL' in self.typ) or ('HKB' in self.typ): print( '{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.B[b].dev.keys(): if ('BS' in d): dev = self.devmapper(d,'BS') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) # print '{0:66}'.format('-'*len(title) ) #TCR per body if 'FULL' in self.typ: print ('{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.B[b].dev.keys(): if ('TCR' in d): dev = self.devmapper(d,'TCR') print ('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) print ('{0:66}'.format('-'*len(title) )) @property def ant(self): """ display device techno, id , id on body, body owner,... """ title = '{0:21} | {1:7} | {2:8} | {3:10} '.format('Name in Dataframe', 'Real Id', 'Body Id', 'Subject') print (title + '\n' + '='*len(title) ) # access points HKB for d in self.din: if ('HK' in d) : dev = self.devmapper(d,'HKB') print ('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) if 'FULL' in self.typ: print ('{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.din: if ('BS' in d) : dev = self.devmapper(d,'BS') print ('{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) if 'FULL' in self.typ: print( '{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) # access points TCR for d in self.din: if ('TCR' in d) : dev = self.devmapper(d,'TCR') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) print ('{0:66}'.format('-'*len(title) )) #device per RAT per body for b in self.B: if b not in self.interf: #HKB per body for d in self.B[b].dev.keys(): if ('HK' in d): dev = self.devmapper(d,'HKB') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) #bespoon if ('FULL' in self.typ) or ('HKB' in self.typ): print( '{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.B[b].dev.keys(): if ('BS' in d): dev = self.devmapper(d,'BS') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) # print '{0:66}'.format('-'*len(title) ) #TCR per body if 'FULL' in self.typ: print( '{0:21} | {1:7} | {2:8} | {3:10} '.format('','','','')) for d in self.B[b].dev.keys(): if ('TCR' in d): dev = self.devmapper(d,'TCR') print( '{0:21} | {1:7} | {2:8} | {3:10} '.format(dev[0],dev[1],dev[2],dev[3])) print( '{0:66}'.format('-'*len(title) )) def _loadcam(self): """ load camera position Returns ------- update self.cam """ self.cam = np.array([ [-6502.16643961174,5440.97951452912,2296.44437108561], [-7782.34866625776,4998.47624994092,2417.5861326688], [8308.82897665828,3618.50516290547,2698.07710953287], [5606.68337709102,-6354.17891528277,2500.27779697402], [-8237.91886515041,-2332.98639475305,4765.31798299242], [5496.0942989988,6216.91946236788,2433.30012872688], [-8296.19706598514,2430.07325486109,4794.01607841197], [7718.37527064615,-4644.26760522485,2584.75330667172], [8471.27154730777,-3043.74550832061,2683.45089703377], [-8213.04824602894,-4034.57371591121,2368.54548665579], [-7184.66711497403,-4950.49444503781,2317.68563412347], [7531.66103727189,5279.02353243886,2479.36291603544], [-6303.08628709464,-7057.06193926342,2288.84938553817], [-5441.17834354692,6637.93014323586,2315.15657646861], [8287.79937470615,59.1614281340528,4809.14535447027] ])*1e-3 def _loadinfranodes(self): """ load infrastructure nodes nico A4 mpts[6,7,8] X A3 A1 mpts[9,10,11] mpts[3,4,5] X X A2 mpts[0,1,2] X TCR = mpts[0,3,6,9] HKB = mpts[1,2, 4,5, 7,8, 10,11] bernard A3 mpts[3,4,5] X A2 A4 mpts[6,7,8] mpts[0,1,2] X X A1 mpts[9,10,11] X TCR = mpts[0,3,6,9] HKB = mpts[1,2, 4,5, 7,8, 10,11] """ filename = os.path.join(self.rootdir,'RAW','11-06-2014','MOCAP','scene.c3d') print( "\nload infrastructure node position:",) a, self.infraname, pts, i = c3d.ReadC3d(filename) pts = pts/1000. mpts = np.mean(pts, axis=0) self.din={} if ('HK' in self.typ) or ('FULL' in self.typ): uhkb = np.array([[1,2], [4,5], [7,8], [10,11]]) mphkb = np.mean(mpts[uhkb], axis=1) self.din.update( {'HKB:1':{'p' : mphkb[3], # 'T' : np.eye(3), 's3off' : 0.}, 'HKB:2':{'p' : mphkb[2], # 'T': np.array([[-0.44807362, 0.89399666, 0.], # [-0.89399666, -0.44807362, 0.], # [ 0.,0.,1. ]]), 's3off':0.} , 'HKB:3':{'p':mphkb[1], # 'T':array([[-0.59846007, -0.80115264, 0.], # [ 0.80115264, -0.59846007, 0.], # [ 0.,0., 1.]]), 's3off':0.}, 'HKB:4':{'p':mphkb[0], # 'T':array([[-0.44807362, -0.89399666, 0.], # [ 0.89399666, -0.44807362, 0.], # [ 0.,0., 1.]]), 's3off':0.} }) # TCR:31 is the coordinator which was not captured. # The position has been determined via optimization if ('TCR' in self.typ) or ('FULL' in self.typ): self.din.update({'TCR:32':{'p':mpts[9], 'T':np.eye(3), 's3off':0.1}, 'TCR:24':{'p':mpts[6], # 'T': np.array([[-0.44807362, 0.89399666, 0.], # [-0.89399666, -0.44807362, 0.], # [ 0.,0.,1. ]]), 's3off':0.1}, 'TCR:27':{'p':mpts[3], # 'T':array([[-0.59846007, -0.80115264, 0.], # [ 0.80115264, -0.59846007, 0.], # [ 0.,0., 1.]]), 's3off':0.1}, 'TCR:28':{'p':mpts[0], # 'T':array([[-0.44807362, -0.89399666, 0.], # [ 0.89399666, -0.44807362, 0.], # [ 0.,0., 1.]]), 's3off':0.1}, 'TCR:31':{'p':array([1.7719,-3.2655,1.74]), # 'T':array([[-0.44807362, -0.89399666, 0.], # [ 0.89399666, -0.44807362, 0.], # [ 0.,0., 1.]]), 's3off':0.0} }) if self.day == 12: #BS idem HKB:1 and HKB:2 if ('BS' in self.typ) or ('FULL' in self.typ): self.din.update( {'BS:74':{'p':mphkb[3], # 'T':np.eye(3), 's3off':-0.2}, 'BS:157':{'p':mphkb[2], # 'T': np.array([[-0.44807362, 0.89399666, 0.], # [-0.89399666, -0.44807362, 0.], # [ 0.,0.,1. ]]), 's3off':-0.2} , }) #load extra information from inifile (antenna, rotation matrix,...) inifile = os.path.join(self.rootdir,'POST-TREATED',str(self.day)+'-06-2014','BodyandWear','AccesPoints.ini') config = ConfigParser.ConfigParser() config.read(inifile) for d in self.din: self.din[d]['antname']=config.get(d,'file') self.din[d]['ant']=antenna.Antenna(config.get(d,'file')) self.din[d]['T']=eval(config.get(d,'t')) self.din[d]['comment']=config.get(d,'comment') # self.pts= np.empty((12,3)) # self.pts[:,0]= -mpts[:,1] # self.pts[:,1]= mpts[:,0] # self.pts[:,2]= mpts[:,2] # return mpts # self.dist = np.sqrt(np.sum((mpts[:,np.newaxis,:]-mpts[np.newaxis,:])**2,axis=2)) def loadlog(self): """ load in self.log the log of the current serie from MeasurementLog.csv """ filelog = os.path.join(self.rootdir,'RAW','Doc','MeasurementLog.csv') log = pd.read_csv(filelog) date = str(self.day)+'/06/14' self.log = log[(log['Meas Serie'] == self.serie) & (log['Date'] == date)] def _loadbody(self,day=11,serie=''): """ load body from motion capture file Parameters ---------- day : serie : """ assert day in [11,12],"wrong day in _loadbody" self.B={} color=['LightBlue','YellowGreen','PaleVioletRed','white','white','white','white','white','white','white'] for us,subject in enumerate(self.subject): print( "\nload ",subject, " body:",) seriestr = str(self.serie).zfill(3) if day == 11: self.filemocap = os.path.join(self.rootdir,'RAW',str(self.day)+'-06-2014','MOCAP','serie_'+seriestr+'.c3d') elif day == 12: self.filemocap = os.path.join(self.rootdir,'RAW',str(self.day)+'-06-2014','MOCAP','Nav_serie_'+seriestr+'.c3d') # body and wear directory baw = os.path.join(self.rootdir,'POST-TREATED',str(self.day)+'-06-2014','BodyandWear') if subject =='Jihad': subject ='Jihan' # # Load body cylinder description : "Subject.ini" # Load wearable device description (contains antenna filename) : # self.filebody = os.path.join(baw, subject + '.ini') self.filewear = os.path.join(baw,subject + '_' +str(self.day)+'-06-2014_' + self.typ + '.ini') if len(self.subject) >1 or self.mocapinterf: multi_subject=True else: multi_subject=False self.B.update({subject:Body(_filebody=self.filebody, _filemocap=self.filemocap,unit = 'mm', loop=False, _filewear=self.filewear, centered=False, multi_subject_mocap=multi_subject, color=color[us])}) if self.serie in self.mocapinterf: self.interf = ['Anis_Cylindre:', 'Benoit_Cylindre:', 'Bernard_Cylindre:', 'Claude_Cylindre:', 'Meriem_Cylindre:'] intertmp=[] if self.serie==13: self.interf.remove('Bernard_Cylindre:') for ui,i in enumerate(self.interf): #try: print( "load ",i, " interfering body:",) _filemocap = pyu.getshort(self.filemocap) self.B.update({i:Cylinder(name=i, _filemocap=_filemocap, unit = 'mm', color = color[ui])}) intertmp.append(i) #except: # print "Warning ! load ",i, " FAIL !" self.interf=intertmp else : self.interf=[] # if len(self.subject) == 1: # self.B = self.B[self.subject] def _loadTCR(self,day=11,serie='',scenario='20',run=1): """ load TCR data Parameters ---------- day : serie : scenario : run : """ # # TNET : (NodeId,MAC) # self.TNET={0:31, 1:2, 7:24, 8:25, 9:26, 10:27, 11:28, 12:30, 14:32, 15:33, 16:34, 17:35, 18:36, 19:37, 20:48, 21:49} if day==11: self.dTCR ={'Unused':49, 'COORD':31, 'AP1':32, 'AP2':24, 'AP3':27, 'AP4':28, 'HeadRight':34, 'TorsoTopRight':25, 'TorsoTopLeft':30, 'BackCenter':35, 'HipRight':2, 'WristRight':26, 'WristLeft':48, 'KneeLeft':33, 'AnkleRight':36, 'AnkleLeft':37} dirname = os.path.join(self.rootdir,'POST-TREATED','11-06-2014','TCR') if day==12: dirname = os.path.join(self.rootdir,'POST-TREATED','12-06-2014','TCR') self.dTCR ={ 'COORD':31, 'AP1':32, 'AP2':24, 'AP3':27, 'AP4':28, 'Jihad:TorsoTopRight':35, 'Jihad:TorsoTopLeft':2, 'Jihad:BackCenter':33, 'Jihad:ShoulderLeft':37, 'Nicolas:TorsoTopRight':34, 'Nicolas:TorsoTopLeft':49, 'Nicolas:BackCenter':48, 'Nicolas:ShoulderLeft':36, 'Eric:TorsoCenter':30, 'Eric:BackCenter':25, 'Eric:ShoulderLeft':26} # # TCR : (Name , MAC) # iTCR : (MAC , Name) # dTCR : (NodeId, Name) # self.idTCR={} for k in self.dTCR: self.idTCR[self.dTCR[k]]=k dTCRni={} for k in self.TNET.keys(): dTCRni[k]=self.idTCR[self.TNET[k]] files = os.listdir(dirname) if serie != '': try: self._fileTCR = filter(lambda x : '_S'+str(serie)+'_' in x ,files)[0] except: self._fileTCR = filter(lambda x : '_s'+str(serie)+'_' in x ,files)[0] tt = self._fileTCR.split('_') self.scenario=tt[0].replace('Sc','') self.run = tt[2].replace('R','') self.typ = tt[3].replace('.csv','').upper() self.video = 'NA' else: filesc = filter(lambda x : 'Sc'+scenario in x ,files) self._fileTCR = filter(lambda x : 'R'+str(run) in x ,filsc)[0] self.scenario= scenario self.run = str(run) filename = os.path.join(dirname,self._fileTCR) dtTCR = pd.read_csv(filename) tcr={} for k in dTCRni: for l in dTCRni: if k!=l: d = dtTCR[((dtTCR['ida']==k) & (dtTCR['idb']==l))] d.drop_duplicates('time',inplace=True) del d['lqi'] del d['ida'] del d['idb'] d = d[d['time']!=-1] d.index = d['time'] del d['time'] if len(d)!=0: sr = pd.Series(d['dist']/1000,index=d.index) tcr[dTCRni[k]+'-'+dTCRni[l]]= sr self.tcr = pd.DataFrame(tcr) self.tcr = self.tcr.fillna(0) ts = 75366400./1e9 t = np.array(self.tcr.index)*ts t = t-t[0] self.tcr.index = t self.ttcr=self.tcr.index def _loadBS(self,day=11,serie='',scenario='20',run=1): """ load BeSpoon data Parameters ---------- day : int serie : string scenario : string run : int """ if day == 11: self.dBS = {'WristRight':157,'AnkleRight':74,'HandRight':0} elif day == 12: self.dBS = {'AP1':157,'AP2':74,'HandRight':0} self.idBS={} for k in self.dBS: self.idBS[self.dBS[k]]=k if day==11: dirname = os.path.join(self.rootdir,'POST-TREATED','11-06-2014','BeSpoon') if day==12: dirname = os.path.join(self.rootdir,'POST-TREATED','12-06-2014','BeSpoon') files = os.listdir(dirname) if serie != '': #self._fileBS = filter(lambda x : 'S'+str(serie) in x ,files)[0] self._fileBS = [ x for x in files if 'S'+str(serie) in x ][0] else: self._fileBS = [ x for x in files if 'R'+str(serie) in x ][0] #filesc = filter(lambda x : 'Sc'+scenario in x ,files) self._fileBS = filter(lambda x : 'R'+str(run) in x ,filsc)[0] bespo = pd.read_csv(os.path.join(dirname,self._fileBS),index_col='ts') gb = bespo.groupby(['Sensor']) #get device id devid,idevid = np.unique(bespo['Sensor'],return_index=True) # get index of each group dgb={d:gb.get_group(d) for d in devid} lgb=[] for i in dgb: ind = dgb[i].index/1e3 dti = pd.to_datetime(ind,unit='s') npai = time2npa(dti) npai = npai - npai[0] dgb[i].index=pd.Index(npai) lgb.append(pd.DataFrame(dgb[i]['d'].values,columns=[self.idBS[0]+'-'+self.idBS[i]],index=dgb[i].index)) df = lgb[0].join(lgb[1]) self.bespo = df #self.s157 = self.bespo[self.bespo['Sensor']==157] #self.s157.set_index(self.s157['tu'].values/1e9) #self.s74 = self.bespo[self.bespo['Sensor']==74] #self.s74.set_index(self.s74['tu'].values/1e9) #t157 = np.array(self.s157['tu']/(1e9)) #self.t157 = t157-t157[0] #t74 = np.array(self.s74['tu']/(1e9)) #self.t74 = t74 - t74[0] def _loadhkb(self,day=11,serie='',scenario='20',run=1,source='CITI'): """ load hkb measurement data Parameters ---------- day : string serie : string scenario : string run : int source : 'string' Returns ------- update self.hkb """ if day == 11: if serie == 5: source = 'UR1' if day==11: self.dHKB ={'AP1':1,'AP2':2,'AP3':3,'AP4':4, 'HeadRight':5,'TorsoTopRight':6,'TorsoTopLeft':7,'BackCenter':8,'ElbowRight':9,'ElbowLeft':10,'HipRight':11,'WristRight':12,'WristLeft':13,'KneeLeft':14,'AnkleRight':16,'AnkleLeft':15} if source=='UR1' : dirname = os.path.join(self.rootdir,'POST-TREATED','11-06-2014','HIKOB') elif source=='CITI': dirname = os.path.join(self.rootdir,'POST-TREATED','11-06-2014','HIKOB','CITI') if day==12: self.dHKB= {'AP1':1,'AP2':2,'AP3':3,'AP4':4,'Jihad:TorsoTopRight':10,'Jihad:TorsoTopLeft':9,'Jihad:BackCenter':11,'JihadShoulderLeft':12, 'Nicolas:TorsoTopRight':6,'Nicolas:TorsoTopLeft':5,'Nicolas:BackCenter':7,'Nicolas:ShoulderLeft':8, 'Eric:TooTopRight':15,'Eric:TorsoTopLeft':13,'Eric:BackCenter':16,'Eric:ShoulderLeft':14} #if source=='UR1': dirname = os.path.join(self.rootdir,'POST-TREATED','12-06-2014','HIKOB') files = os.listdir(dirname) self.idHKB={} for k in self.dHKB: self.idHKB[self.dHKB[k]]=k if serie != '': self._filehkb = [ x for x in files if 'S'+str(serie) in x][0] tt = self._filehkb.split('_') if source == 'UR1': self.scenario=tt[0].replace('Sc','') self.run = tt[2].replace('R','') self.typ = tt[3] self.video = tt[4].replace('.mat','') elif source == 'CITI': self.scenario=tt[0].replace('Sc','')+tt[1] self.run = tt[3].replace('r','') self.typ = tt[4] if self.typ == 'HKB': self.typ = 'HKBS' self.video = tt[5].replace('.mat','') else: filesc = [ x for x in files if x in 'Sc'+scenario ][0] if source=='UR1': self._filehkb = [ x for x in filesc if x in 'R'+str(run)][0] else: self._filehkb = [ x for x in filesc if x in 'r'+str(run)][0] data = io.loadmat(os.path.join(dirname,self._filehkb)) if source=='UR1': self.rssi = data['rssi'] self.thkb = data['t'] else: self.rssi = data['val'] self.thkb = np.arange(np.shape(self.rssi)[2])*25.832e-3 def topandas(): try: self.hkb = pd.DataFrame(index=self.thkb[0]) except: self.hkb = pd.DataFrame(index=self.thkb) for k in self.idHKB: for l in self.idHKB: if k!=l: col = self.idHKB[k]+'-'+self.idHKB[l] rcol = self.idHKB[l]+'-'+self.idHKB[k] if rcol not in self.hkb.columns: rssi = self.rssi[k-1,l-1,:] self.hkb[col] = rssi topandas() self.hkb = self.hkb[self.hkb!=0] def compute_visibility(self,techno='HKB',square_mda=True,all_links=True): """ determine visibility of links for a given techno Parameters ---------- techno string select the given radio technology of the nodes to determine the visibility matrix square_mda boolean select ouput format True : (device x device x timestamp) False : (link x timestamp) all_links : bool compute all links or just those for which data is available Return ------ if square_mda = True intersection : (ndevice x nbdevice x nb_timestamp) matrice of intersection (1 if link is cut 0 otherwise) links : (nbdevice) name of the links if square_mda = False intersection : (nblink x nb_timestamp) matrice of intersection (1 if link is cut 0 otherwise) links : (nblink x2) name of the links Example ------- >>> from pylayers.measures.cormoran import * >>> import matplotlib.pyplot as plt >>> C=CorSer(serie=14,day=12) >>> inter,links=C.compute_visibility(techno='TCR',square_mda=True) >>> inter.shape (15, 15, 12473) >>>C.imshowvisibility_i(inter,links) """ if techno == 'TCR': if not ((self.typ == 'TCR') or (self.typ == 'FULL')): raise AttributeError('Serie has not data for techno: ',techno) hname = self.tcr.keys() dnode=copy.copy(self.dTCR) dnode.pop('COORD') prefix = 'TCR:' elif techno=='HKB': if not ((self.typ == 'HKBS') or (self.typ == 'FULL')): raise AttributeError('Serie has not data for techno: '+techno) hname = self.hkb.keys() dnode=self.dHKB prefix = 'HKB:' # get link list if all_links: import itertools links =[l for l in itertools.combinations(dnode.keys(),2)] else: links=[n.split('-') for n in hname] links = [l for l in links if ('COORD' not in l[0]) and ('COORD' not in l[1])] #mapping between device name in self.hkb and on body/in self.devdf dev_bid = [self.devmapper(k,techno=techno)[2] for k in dnode.keys()] nb_totaldev=len(np.unique(self.devdf['id'])) # extract all dev position on body # Mpdev : (3 x (nb devices and nb infra nodes) x nb_timestamp) Mpdev = np.empty((3,len(dev_bid),len(self.devdf.index)/nb_totaldev)) # get all positions for ik,i in enumerate(dev_bid) : if i in self.din: Mpdev[:,ik,:] = self.din[i]['p'][:,np.newaxis] else: pts = self.devdf[self.devdf['id']==i][['x','y','z']].values.T if np.prod(pts.shape)!=0: Mpdev[:,ik,:] = pts # create A and B from links nA = np.array([prefix+ str(dnode[l[0]]) for l in links]) nB = np.array([prefix+ str(dnode[l[1]]) for l in links]) dma = dict(zip(dev_bid,range(len(dev_bid)))) mnA = [dma[n] for n in nA] mnB = [dma[n] for n in nB] A=Mpdev[:,mnA] B=Mpdev[:,mnB] # intersect2D matrix is # d_0: nb links #d_1: (cylinder number) * nb body + 1 * nb cylinder_object # d_2 : nb frame intersect2D = np.zeros((len(links), 11*len(self.subject) + len(self.interf), Mpdev.shape[-1])) # usub : index axes subject usub_start=0 usub_stop=0 # C-D correspond to bodies segments #C or D : 3 x 11 body segments x time # radius of cylinders are (nb_cylinder x time) for b in self.B: print( 'processing shadowing from ',b) # if b is a body not a cylinder if not 'Cylindre' in b: uta = self.B[b].sl[:,0].astype('int') uhe = self.B[b].sl[:,1].astype('int') rad = self.B[b].sl[:,2] C = self.B[b].d[:,uta,:] D = self.B[b].d[:,uhe,:] try: radius = np.concatenate((radius,rad[:,np.newaxis]*np.ones((1,C.shape[2]))),axis=0) except: radius = rad[:,np.newaxis]*np.ones((1,C.shape[2])) usub_start=usub_stop usub_stop=usub_stop+11 else: cyl = self.B[b] # top of cylinder top = cyl.d[:,cyl.topnode,:] # bottom of cylinder =top with z =0 bottom = copy.copy(cyl.d[:,cyl.topnode,:]) bottom[2,:]=0.02 #top 3 x 1 X time C=top[:,np.newaxis,:] D=bottom[:,np.newaxis,:] radius = np.concatenate((radius,cyl.radius[np.newaxis])) usub_start=usub_stop usub_stop=usub_stop+1 f,g,X,Y,alpha,beta,dmin=seg.segdist(A,B,C,D,hard=True) intersect2D[:,usub_start:usub_stop,:]=g # import ipdb # ipdb.set_trace() #USEFUL Lines for debug ######################### # def plt3d(ndev=53,ncyl=0,kl=11499): # fig=plt.figure() # ax=fig.add_subplot(111,projection='3d') # if not isinstance(kl,list): # kl=[kl] # for ktime in kl: # ax.plot([A[0,ndev,ktime],B[0,ndev,ktime]],[A[1,ndev,ktime],B[1,ndev,ktime]],[A[2,ndev,ktime],B[2,ndev,ktime]]) # [ax.plot([C[0,k,ktime],D[0,k,ktime]],[C[1,k,ktime],D[1,k,ktime]],[C[2,k,ktime],D[2,k,ktime]],'k') for k in range(11) ] # ax.plot([X[0,ndev,ncyl,ktime],Y[0,ndev,ncyl,ktime]],[X[1,ndev,ncyl,ktime],Y[1,ndev,ncyl,ktime]],[X[2,ndev,ncyl,ktime],Y[2,ndev,ncyl,ktime]]) # ax.auto_scale_xyz([-5, 5], [-5, 5], [0, 2]) # plt.show() # import ipdb # ipdb.set_trace() uinter1 = np.where((intersect2D<=(radius-0.01))) uinter0 = np.where((intersect2D>(radius-0.01))) # intersect2D_=copy.copy(intersect2D) intersect2D[uinter1[0],uinter1[1],uinter1[2]]=1 intersect2D[uinter0[0],uinter0[1],uinter0[2]]=0 # #integrate the effect of all bodies by summing on axis 1 intersect = np.sum(intersect2D,axis=1)>0 if square_mda: dev= np.unique(links) ddev = dict(zip(dev,range(len(dev)))) lmap = np.array(map(lambda x: (ddev[x[0]],ddev[x[1]]),links)) M = np.nan*np.ones((len(dev),len(dev),intersect.shape[-1])) for i in range(len(intersect)): id1 = lmap[i][0] id2 = lmap[i][1] M[id1,id2,:]=intersect[i,:] M[id2,id1,:]=intersect[i,:] intersect=M links = dev self._visilinks = links self._visiintersect = intersect return intersect,links def imshowvisibility(self,techno='HKB',t=0,**kwargs): """ imshow visibility mda Parameters ---------- techno : (HKB|TCR) t : float time in second Examples -------- >>> from pylayers.measures.cormoran import * >>> import matplotlib.pyplot as plt >>> C=CorSer(serie=6,day=12) >>> inter,links=C.compute_visibility(techno='TCR',square_mda=True) >>> i,l=C.imshowvisibility_i(inter,links) See Also -------- pylayers.measures.CorSer.compute_visibility() """ defaults = { 'grid':True, } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] if 'fig' not in kwargs: fig = plt.figure() else: fig = kwargs.pop('fig') if 'ax' not in kwargs: ax = fig.add_subplot(111) else: ax = kwargs.pop('ax') if not '_visiintersect' in dir(self): print( 'Visibility computed only once') self.compute_visibility(techno=techno) links = self._visilinks inter = self._visiintersect kt=np.where(self.tmocap <= t)[0][-1] plt.xticks(np.arange(0, len(links), 1.0)) plt.yticks(np.arange(0, len(links), 1.0)) ax.set_xlim([-0.5,len(links)-0.5]) ax.set_ylim([len(links)-0.5,-0.5]) ax.xaxis.set_ticks_position('top') xtickNames = plt.setp(ax, xticklabels=links) ytickNames = plt.setp(ax, yticklabels=links) plt.setp(xtickNames, rotation=90, fontsize=8) plt.setp(ytickNames, rotation=0, fontsize=8) ims=[] ax.imshow(inter[:,:,kt],interpolation='nearest') if kwargs['grid']: ax.grid() return fig,ax def _show3i(self,t=0,**kwargs): """ show3 interactive """ fig =plt.figure(num='Jog',figsize=(5,1.5)) #set time to -10 is a trick to make appear interferers cylinder #because __refreshshow3i only update the data of the cylinder. # if cylinder is not present in the first _show3, they are not displayed # later. time=self.B[self.subject[0]].time fId = np.where(time<= t)[0][-1] kwargs['bodytime']=[self.tmocap[-10]] kwargs['returnfig']=True kwargs['tagtraj']=False mayafig = self._show3(**kwargs) self.__refreshshow3i(fId) # ax.grid() # matplotlib Widgets slax=plt.axes([0.1, 0.5, 0.8, 0.3]) slax.set_title('t='+str(time[fId]),loc='left') sliderx = Slider(slax, "time", 0, len(time), valinit=fId, color='#AAAAAA') def update_x(val): value = int(sliderx.val) self.__refreshshow3i(val) slax.set_title('t='+str(time[val]),loc='left') fig.canvas.draw_idle() sliderx.on_changed(update_x) def plus(event): sliderx.set_val(sliderx.val +1) fig.canvas.draw_idle() def minus(event): sliderx.set_val(sliderx.val -1) fig.canvas.draw_idle() def pplus(event): sliderx.set_val(sliderx.val +10) fig.canvas.draw_idle() def mminus(event): sliderx.set_val(sliderx.val -10) fig.canvas.draw_idle() #QUIT by pressing 'q' def press(event): if event.key == 'q': mlab.close(mayafig) plt.close(fig) fig.canvas.mpl_connect('key_press_event', press) #-1 frame axes axm = plt.axes([0.2, 0.05, 0.1, 0.15]) bm = Button(axm, '-1') bm.on_clicked(minus) #+1 frame axes axp = plt.axes([0.7, 0.05, 0.1, 0.15]) bp = Button(axp, '+1') bp.on_clicked(plus) #-10 frames axes axmm = plt.axes([0.1, 0.05, 0.1, 0.15]) bmm = Button(axmm, '-10') bmm.on_clicked(mminus) #+10 frames axes axpp = plt.axes([0.8, 0.05, 0.1, 0.15]) bpp = Button(axpp, '+10') bpp.on_clicked(pplus) plt.show() def _show3idemo(self,t=0,**kwargs): """ show3 interactive """ defaults={'nodename':'TorsoTopLeft'} for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] fig =plt.figure(num='Jog',figsize=(5,1.5)) #set time to -10 is a trick to make appear interferers cylinder #because __refreshshow3i only update the data of the cylinder. # if cylinder is not present in the first _show3, they are not displayed # later. time=self.B[self.subject[0]].time fId = np.where(time<= t)[0][-1] kwargs['bodytime']=[self.tmocap[-10]] kwargs['returnfig']=True kwargs['tagtraj']=False mayafig = self._show3(**kwargs) self.__refreshshow3i(fId) # ax.grid() # matplotlib Widgets slax=plt.axes([0.1, 0.5, 0.8, 0.3]) slax.set_title('t='+str(time[fId]),loc='left') sliderx = Slider(slax, "time", 0, len(time), valinit=fId, color='#AAAAAA') def update_x(val): value = int(sliderx.val) self.__refreshshow3i(val) slax.set_title('t='+str(time[val]),loc='left') vline0.set_data(([time[value],time[value]],[0,1])) vline1.set_data(([time[value],time[value]],[0,1])) vline2.set_data(([time[value],time[value]],[0,1])) vline3.set_data(([time[value],time[value]],[0,1])) fig.canvas.draw_idle() fig2.canvas.draw_idle() sliderx.on_changed(update_x) def plus(event): sliderx.set_val(sliderx.val +1) fig.canvas.draw_idle() def minus(event): sliderx.set_val(sliderx.val -1) fig.canvas.draw_idle() def pplus(event): sliderx.set_val(sliderx.val +10) fig.canvas.draw_idle() def mminus(event): sliderx.set_val(sliderx.val -10) fig.canvas.draw_idle() #QUIT by pressing 'q' def press(event): if event.key == 'q': mlab.close(mayafig) plt.close(fig) plt.close(fig2) fig.canvas.mpl_connect('key_press_event', press) #-1 frame axes axm = plt.axes([0.2, 0.05, 0.1, 0.15]) bm = Button(axm, '-1') bm.on_clicked(minus) #+1 frame axes axp = plt.axes([0.7, 0.05, 0.1, 0.15]) bp = Button(axp, '+1') bp.on_clicked(plus) #-10 frames axes axmm = plt.axes([0.1, 0.05, 0.1, 0.15]) bmm = Button(axmm, '-10') bmm.on_clicked(mminus) #+10 frames axes axpp = plt.axes([0.8, 0.05, 0.1, 0.15]) bpp = Button(axpp, '+10') bpp.on_clicked(pplus) fig2,ax2 = plt.subplots(4,1,figsize=(12,6)) ax2=ax2.ravel() df0 = self.getlink(kwargs['nodename'],'AP1',techno='HKB') df0.plot(ax=ax2[0],fig=fig2) df1 = self.getlink(kwargs['nodename'],'AP2',techno='HKB') df1.plot(ax=ax2[1],fig=fig2) df2 = self.getlink(kwargs['nodename'],'AP3',techno='HKB') df2.plot(ax=ax2[2],fig=fig2) df3 = self.getlink(kwargs['nodename'],'AP4',techno='HKB') df3.plot(ax=ax2[3],fig=fig2) ax2[0].set_ylabel('AP1') ax2[1].set_ylabel('AP2') ax2[2].set_ylabel('AP3') ax2[3].set_ylabel('AP4') vline0 = ax2[0].axvline(x=time[fId], color='red') vline1 = ax2[1].axvline(x=time[fId], color='red') vline2 = ax2[2].axvline(x=time[fId], color='red') vline3 = ax2[3].axvline(x=time[fId], color='red') fig2.suptitle(kwargs['nodename']) plt.show() def __refreshshow3i(self,kt): """ show3 update for interactive mode USED in imshowvisibility_i """ t=self.tmocap[kt] for ib,b in enumerate(self.B): self.B[b].settopos(t=t,cs=True) try: # body X=np.hstack((self.B[b]._pta,self.B[b]._phe)) self.B[b]._mayapts.mlab_source.set(x=X[0,:], y=X[1,:], z=X[2,:]) # device udev = [self.B[b].dev[i]['uc3d'][0] for i in self.B[b].dev] Xd=self.B[b]._f[kt,udev,:].T self.B[b]._mayadev.mlab_source.set(x=Xd[0,:], y=Xd[1,:], z=Xd[2,:]) # name uupper = np.where(X[2]==X[2].max())[0] self.B[b]._mayaname.actors.pop() self.B[b]._mayaname = mlab.text3d(X[0,uupper][0],X[1,uupper][0],X[2,uupper][0],self.B[b].name,scale=0.05,color=(1,0,0)) # s = np.hstack((cylrad,cylrad)) except: # cylinder X=np.vstack((self.B[b].top,self.B[b].bottom)) self.B[b]._mayapts.mlab_source.set(x=X[:,0], y=X[:,1], z=X[:,2]) # name self.B[b]._mayaname.actors.pop() self.B[b]._mayaname = mlab.text3d(self.B[b].top[0],self.B[b].top[1],self.B[b].top[2],self.B[b].name,scale=0.05,color=(1,0,0)) #vdict V = self.B[b].traj[['vx','vy','vz']].iloc[self.B[b].toposFrameId].values self.B[b]._mayavdic.mlab_source.set(x= self.B[b].top[0],y=self.B[b].top[1],z=self.B[b].top[2],u=V[ 0],v=V[ 1],w=V[ 2]) def imshowvisibility_i(self,techno='HKB',t=0,**kwargs): """ imshow visibility mda interactive Parameters ---------- inter : (nb link x nb link x timestamps) links : (nblinks) time : intial time (s) Example ------- >>> from pylayers.measures.cormoran import * >>> import matplotlib.pyplot as plt >>> C=CorSer(serie=6,day=12) >>> inter,links=C.visimda(techno='TCR',square_mda=True) >>> i,l=C.imshowvisibility_i(inter,links) """ # if in_ipynb(): # notebook = False #program launch in ipyhon notebook # from IPython.html import widgets # Widget definitions # from IPython.display import display, clear_output# Used to display widgets in the notebook # else : # notebook = False if not '_visiintersect' in dir(self): print( 'Visibility is computed only once, Please wait\n') self.compute_visibility(techno=techno) links = self._visilinks inter = self._visiintersect fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.3) time=self.tmocap fId = np.where(time<=t)[0][-1] vertc = [(0,-10),(0,-10),(0,10),(0,-10)] poly = plt.Polygon(vertc) pp = ax.add_patch(poly) plt.xticks(np.arange(0, len(links), 1.0)) plt.yticks(np.arange(0, len(links), 1.0)) ax.set_xlim([-0.5,len(links)-0.5]) ax.set_ylim([len(links)-0.5,-0.5]) ax.xaxis.set_ticks_position('top') xtickNames = plt.setp(ax, xticklabels=links) ytickNames = plt.setp(ax, yticklabels=links) plt.setp(xtickNames, rotation=90, fontsize=8) plt.setp(ytickNames, rotation=0, fontsize=8) ims=[] l=ax.imshow(inter[:,:,fId],interpolation='nearest') #set time to -10 is a trick to make appear interferers cylinder #because __refreshshow3i only update the data of the cylinder. # if cylinder is not present in the first _show3, they are not displayed # later. kwargs['bodytime']=[self.tmocap[-10]] kwargs['returnfig']=True kwargs['tagtraj']=False mayafig = self._show3(**kwargs) self.__refreshshow3i(fId) # ax.grid() # matplotlib Widgets slax=plt.axes([0.1, 0.15, 0.8, 0.05]) slax.set_title('t='+str(time[fId]),loc='left') sliderx = Slider(slax, "time", 0, inter.shape[-1], valinit=fId, color='#AAAAAA') # else : # int_range = widgets.IntSliderWidget(min=0,max=inter.shape[-1],step=1,value=fId) # display(int_range) def update_x(val): value = int(sliderx.val) sliderx.valtext.set_text('{}'.format(value)) l.set_data(inter[:,:,value]) self.__refreshshow3i(val) slax.set_title('t='+str(time[val]),loc='left') fig.canvas.draw_idle() sliderx.on_changed(update_x) # else: # def update_x(name,value): # clear_output(wait=True) # display(plt.gcf()) # plt.imshow(inter[:,:,value],interpolation='nearest') # # l.set_data(inter[:,:,value]) # kwargs['bodytime']=[self.tmocap[value]] # self._show3(**kwargs) # myu.inotshow('fig1',width=200,height=200,magnification=1) # # slax.set_title('t='+str(time[val]),loc='left') # # fig.canvas.draw_idle() # int_range.on_trait_change(update_x, 'value') def plus(event): sliderx.set_val(sliderx.val +1) fig.canvas.draw_idle() # if not notebook: sliderx.on_changed(update_x) def minus(event): sliderx.set_val(sliderx.val -1) fig.canvas.draw_idle() # if not notebook: sliderx.on_changed(update_x) def pplus(event): sliderx.set_val(sliderx.val +10) fig.canvas.draw_idle() # if not notebook: sliderx.on_changed(update_x) def mminus(event): sliderx.set_val(sliderx.val -10) fig.canvas.draw_idle() # if not notebook: sliderx.on_changed(update_x) # #QUIT by pressing 'q' # def press(event): # if event.key == 'q': # mlab.close(mayafig) # plt.close(fig) # fig.canvas.mpl_connect('key_press_event', press) # if not notebook: #-1 frame axes axm = plt.axes([0.3, 0.05, 0.1, 0.075]) bm = Button(axm, '-1') bm.on_clicked(minus) #+1 frame axes axp = plt.axes([0.7, 0.05, 0.1, 0.075]) bp = Button(axp, '+1') bp.on_clicked(plus) #-10 frames axes axmm = plt.axes([0.1, 0.05, 0.1, 0.075]) bmm = Button(axmm, '-10') bmm.on_clicked(mminus) #+10 frames axes axpp = plt.axes([0.9, 0.05, 0.1, 0.075]) bpp = Button(axpp, '+10') bpp.on_clicked(pplus) plt.show() def _distancematrix(self): """Compute the distance matrix between the nodes self.dist : (nb frame x nb_node x nb_node) self.dist_nodesmap : list of used nodes (useful to make the association ;) ) """ if not isinstance(self.B,dict): B={self.subject[0]:self.B} else : B=self.B bn= [] for b in B: if 'dev' in dir(B[b]): tdev=[] for k in B[b].dev: bn.append(k) tdev.append(B[b].dev[k]['uc3d'][0]) tdev=np.array(tdev) try: pnb = np.concatenate((pnb,B[b]._f[:,tdev,:]),axis=1) except: pnb = B[b]._f[:,tdev,:] ln = [] uin = [] # infrastructure nodes if ('HK' in self.typ) or ('FULL' in self.typ): uin.extend(['HKB:1','HKB:2','HKB:3','HKB:4']) if ('TCR' in self.typ) or ('FULL' in self.typ): # TCR:31 is the coordinator (1.7719,-3.26) uin.extend(['TCR:32','TCR:24','TCR:27','TCR:28','TCR:31']) if self.day == 12: if ('BS' in self.typ) or ('FULL' in self.typ): uin.extend(['BS:74','BS:157']) ln = uin + bn pin = np.array([self.din[d]['p'] for d in uin]) pin2 = np.empty((pnb.shape[0],pin.shape[0],pin.shape[1])) pin2[:,:,:] = pin p = np.concatenate((pin2,pnb),axis=1) self.points = p self.dist = np.sqrt(np.sum((p[:,:,np.newaxis,:]-p[:,np.newaxis,:,:])**2,axis=3)) self.dist_nodesmap = ln def _computedistdf(self): """Compute the distance dataframe from distance matrix """ # HIKOB if ('HK' in self.typ) or ('FULL' in self.typ): devmap = {self.devmapper(k,'hkb')[0]:self.devmapper(k,'hkb')[2] for k in self.dHKB} udev = np.array([[self.dist_nodesmap.index(devmap[k.split('-')[0]]),self.dist_nodesmap.index(devmap[k.split('-')[1]])] for k in self.hkb.keys()]) iudev =np.array([(self.dist_nodesmap[u[0]]+'-'+self.dist_nodesmap[u[1]]) for u in udev]) df = pd.DataFrame(self.dist[:,udev[:,0],udev[:,1]],columns=iudev,index=self.tmocap) # BE Spoon if ('BS' in self.typ) or ('FULL' in self.typ): devmap = {self.devmapper(k,'BS')[0]:self.devmapper(k,'BS')[2] for k in self.dBS} udev = np.array([[self.dist_nodesmap.index(devmap[k.split('-')[0]]),self.dist_nodesmap.index(devmap[k.split('-')[1]])] for k in self.bespo.keys()]) iudev =np.array([(self.dist_nodesmap[u[0]]+'-'+self.dist_nodesmap[u[1]]) for u in udev]) dfb = pd.DataFrame(self.dist[:,udev[:,0],udev[:,1]],columns=iudev,index=self.tmocap) df = df.join(dfb) del dfb if ('TCR' in self.typ) or ('FULL' in self.typ): devmap = {self.devmapper(k,'tcr')[0]:self.devmapper(k,'tcr')[2] for k in self.dTCR} udev = np.array([[self.dist_nodesmap.index(devmap[k.split('-')[0]]), self.dist_nodesmap.index(devmap[k.split('-')[1]])] for k in self.tcr.keys() ]) # for k in self.tcr.keys() if not 'COORD' in k]) iudev =np.array([(self.dist_nodesmap[u[0]]+'-'+self.dist_nodesmap[u[1]]) for u in udev]) dft = pd.DataFrame(self.dist[:,udev[:,0],udev[:,1]],columns=iudev,index=self.tmocap) if ('FULL' in self.typ): df = df.join(dft) else : df = dft del dft self.distdf=df # def accessdm(self,a,b,techno=''): # """ access to the distance matrix # give name|id of node a and b and a given techno. retrun Groung truth # distance between the 2 nodes # # """ # # a,ia,bia,subja=self.devmapper(a,techno) # # b,ib,bib,subjb=self.devmapper(b,techno) # if 'HKB' in techno : # if isinstance(a,str): # ia = self.dHKB[a] # else: # ia = a # a = self.idHKB[a] # if isinstance(b,str): # ib = self.dHKB[b] # else: # ib = b # b = self.idHKB[b] # elif 'TCR' in techno : # if isinstance(a,str): # ia = self.dTCR[a] # else: # ia = a # a = self.idTCR[a] # if isinstance(b,str): # ib = self.dTCR[b] # else: # ib = b # b = self.idTCR[b] # else : # raise AttributeError('please give only 1 techno or radio node') # ka = techno+':'+str(ia) # kb = techno+':'+str(ib) # ua = self.dist_nodesmap.index(ka) # ub = self.dist_nodesmap.index(kb) # return(ua,ub) # c3ds = self.B._f.shape # if 'Full' in self.typ: # pdev= np.empty((c3ds[0],len(self.dHKB)+len(self.tcr)+len(bs),3)) # elif 'HK' in self.typ: # pdev= np.empty((c3ds[0],len(self.dHKB)+len(bs),3)) # elif 'TCR' in self.typ: # pdev= np.empty((c3ds[0],len(self.tcr),3)) # else: # raise AttributeError('invalid self.typ') # self.B.network() # DB = self.B.D2 # ludev = np.array([[i,self.B.dev[i]['uc3d'][0]] for i in self.B.dev]) # for i in ludev: # pdev[:,eval(i[0])-1,:] = self.B._f[:,i[1],:] # # self.dist = np.sqrt(np.sum((mpts[:,np.newaxis,:]-mpts[np.newaxis,:])**2,axis=2)) def vlc(self): """ play video of the associated serie """ videofile = os.path.join(self.rootdir,'POST-TREATED', str(self.day)+'-06-2014','Videos') ldir = os.listdir(videofile) luldir = map(lambda x : self._filename in x,ldir) try: uldir = luldir.index(True) _filename = ldir[uldir] filename = os.path.join(videofile,_filename) os.system('vlc '+filename +'&' ) except: raise AttributeError('file '+ self._filename + ' not found') def snapshot(self,t0=0,offset=15.5,title=True,save=False,fig=[],ax=[],figsize=(10,10)): """ single snapshot plot Parameters ---------- t0: float offset : float title : boolean save : boolean fig ax figsize : tuple """ if fig ==[]: fig=plt.figure(figsize=figsize) if ax == []: ax = fig.add_subplot(111) if 'video_sec' in self.offset[self._filename]: offset = self.offset[self._filename]['video_sec'] elif offset != '': offset = offset else: offset=0 videofile = os.path.join(self.rootdir,'POST-TREATED',str(self.day)+'-06-2014','Videos') ldir = os.listdir(videofile) luldir = map(lambda x : self._filename in x,ldir) uldir = luldir.index(True) _filename = ldir[uldir] filename = os.path.join(videofile,_filename) vc = VideoFileClip(filename) F0 = vc.get_frame(t0+offset) I0 = img_as_ubyte(F0) ax.imshow(F0) if title: ax.set_title('t = '+str(t0)+'s') if save : plt.savefig(self._filename +'_'+str(t0) + '_snap.png',format='png') return fig,ax def snapshots(self,t0=0,t1=10,offset=15.5): """ take snapshots Parameters ---------- t0 : float t1 : float """ if 'video_sec' in self.offset[self._filename]: offset = self.offset[self._filename]['video_sec'] elif offset != '': offset = offset else: offset=0 videofile = os.path.join(self.rootdir,'POST-TREATED',str(self.day)+'-06-2014','Videos') ldir = os.listdir(videofile) luldir = [ self._filename in x for x in ldir ] uldir = luldir.index(True) _filename = ldir[uldir] filename = os.path.join(videofile,_filename) vc = VideoFileClip(filename) F0 = vc.get_frame(t0+offset) F1 = vc.get_frame(t1+offset) I0 = img_as_ubyte(F0) I1 = img_as_ubyte(F1) plt.subplot(121) plt.imshow(F0) plt.title('t = '+str(t0)+'s') plt.subplot(122) plt.imshow(F1) plt.title('t = '+str(t1)+'s') def _show3(self,**kwargs): """ mayavi 3d show of scenario Parameters ---------- L : boolean display layout (True) body :boolean display bodytime(True) bodyname : boolean display body name bodytime: list list of time instant where body topos has to be shown devsize : float device on body size (100) devlist : list list of device name to show on body pattern : boolean display devices pattern trajectory : boolean display trajectory (True) tagtraj : boolean tag on trajectory at the 'bodytime' instants (True) tagname : list name of the tagtrajs tagpoffset : ndarray offset of the tag positions (nb_of_tags x 3) fontsizetag : float size of the tag names inodes : boolean display infrastructure nodes inname : boolean display infra strucutre node name innamesize : float, size of name of infrastructure nodes (0.1) incolor: str color of infrastructure nodes ('r') insize size of infrastructure nodes (0.1) camera : boolean display Vicon camera position (True) cameracolor : str color of camera nodes ('b') camerasize : float size of camera nodes (0.1) Examples -------- >>> S = Corser(6) >>> S._show3() """ defaults = { 'L':True, 'body':True, 'bodyname':True, 'subject':[], 'interf':True, 'trajectory' :False, 'trajectory_list' :[], 'devsize':100, 'devlist':[], 'pattern':False, 'inodes' : True, 'inname' : True, 'innamesize' : 0.1, 'incolor' : 'r', 'insize' : 0.1, 'camera':True, 'cameracolor' :'k', 'camerasize' :0.1, 'bodytime':[], 'tagtraj':True, 'tagname':[], 'tagpoffset':[], 'fontsizetag':0.1, 'trajectory_color_range':True, 'trajectory_linewidth':0.01 } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] cold = pyu.coldict() camhex = cold[kwargs['cameracolor']] cam_color = tuple(pyu.rgb(camhex)/255.) inhex = cold[kwargs['incolor']] in_color = tuple(pyu.rgb(inhex)/255.) if kwargs['subject'] == []: subject = self.subject else: subject = kwargs['subject'] if kwargs['L']: self.L._show3(opacity=0.5) v = self.din.items() if kwargs['inodes']: X= np.array([v[i][1]['p'] for i in range(len(v))]) mlab.points3d(X[:,0],X[:,1], X[:,2],scale_factor=kwargs['insize'],color=in_color) if kwargs['pattern']: for i in range(len(v)): if not hasattr(self.din[v[i][0]]['ant'],'SqG'): self.din[v[i][0]]['ant'].eval() self.din[v[i][0]]['ant']._show3(po=v[i][1]['p'], T=self.din[v[i][0]]['T'], ilog=False, minr=0.01, maxr=0.2, newfig=False, title=False, colorbar=False, ) if kwargs['inname']: [mlab.text3d(v[i][1]['p'][0], v[i][1]['p'][1], v[i][1]['p'][2]+v[i][1]['s3off'], v[i][0], scale=kwargs['innamesize'],color=in_color) for i in range(len(v))] if kwargs['body']: if kwargs['bodytime']==[]: time =np.linspace(0,self.B[subject[0]].time[-1],5).astype(int) # time=range(10,100,20) else : time=kwargs['bodytime'] for ki, i in enumerate(time): for ib,b in enumerate(subject): self.B[b].settopos(t=i,cs=True) self.B[b]._show3(dev=True, name = kwargs['bodyname'], devlist=kwargs['devlist'], devsize=kwargs['devsize'], tube_sides=12, pattern=kwargs['pattern']) if kwargs['tagtraj']: X=self.B[b].traj[['x','y','z']].values[self.B[b].toposFrameId] if kwargs['tagpoffset']==[]: X[2]=X[2]+0.2 else : X=X+kwargs['tagpoffset'][ki] if kwargs['tagname']==[]: name = 't='+str(i)+'s' else : name = str(kwargs['tagname'][ki]) mlab.text3d(X[0],X[1],X[2],name,scale=kwargs['fontsizetag']) if kwargs['interf']: for ib,b in enumerate(self.interf): self.B[b].settopos(t=i,cs=True) self.B[b]._show3(name=kwargs['bodyname'],tube_sides=12) if kwargs['trajectory']: if kwargs['trajectory_list']==[]: tr_subject = subject else: tr_subject = kwargs['trajectory_list'] for b in tr_subject: self.B[b].traj._show3(color_range=kwargs['trajectory_color_range'], linewidth=kwargs['trajectory_linewidth']) if kwargs['camera'] : mlab.points3d(self.cam[:,0],self.cam[:,1], self.cam[:,2],scale_factor=kwargs['camerasize'],color=cam_color) mlab.view(-111.44127634143871, 60.40674368088245, 24.492297713984197, array([-0.07235499, 0.04868631, -0.00314969])) mlab.view(-128.66519195313163, 50.708933839573511, 24.492297713984247, np.array([-0.07235499, 0.04868631, -0.00314969])) def anim(self): self._show3(body=False,inname=False,trajectory=False) [self.B[b].anim() for b in self.B] mlab.view(-43.413544538477254, 74.048193730704611, 11.425837641867618, array([ 0.48298163, 0.67806043, 0.0987967 ])) def imshow(self,time=100,kind='time'): """ DEPRECATED Parameters ---------- kind : string 'mean','std' """ fig = plt.figure(figsize=(10,10)) self.D = self.rssi-self.rssi.swapaxes(0,1) try: timeindex = np.where(self.thkb[0]-time>0)[0][0] except: timeindex = np.where(self.thkb-time>0)[0][0] if kind=='time': dt1 = self.rssi[:,:,timeindex] dt2 = self.D[:,:,timeindex] if kind == 'mean': dt1 = ma.masked_invalid(self.rssi).mean(axis=2) dt2 = ma.masked_invalid(self.D).mean(axis=2) if kind == 'std': dt1 = ma.masked_invalid(self.rssi).std(axis=2) dt2 = ma.masked_invalid(self.D).std(axis=2) ax1 = fig.add_subplot(121) #img1 = ax1.imshow(self.rssi[:,:,timeindex],interpolation='nearest',origin='lower') img1 = ax1.imshow(dt1,interpolation='nearest') labels = [ self.idHKB[x] for x in range(1,17)] plt.xticks(range(16),labels,rotation=80,fontsize=14) plt.yticks(range(16),labels,fontsize=14) if kind=='time': plt.title('t = '+str(time)+ ' s') if kind=='mean': plt.title(u'$mean(\mathbf{L})$') if kind=='std': plt.title(u'$std(\mathbf{L})$') divider = make_axes_locatable(ax1) cax1 = divider.append_axes("right", size="5%", pad=0.05) clb1 = fig.colorbar(img1,cax1) clb1.set_label('level dBm',fontsize=14) ax2 = fig.add_subplot(122) #img2 = ax2.imshow(self.D[:,:,timeindex],interpolation='nearest',origin='lower') img2 = ax2.imshow(dt2,interpolation='nearest') plt.title(u'$\mathbf{L}-\mathbf{L}^T$') divider = make_axes_locatable(ax2) plt.xticks(range(16),labels,rotation=80,fontsize=14) plt.yticks(range(16),labels,fontsize=14) cax2 = divider.append_axes("right", size="5%", pad=0.05) clb2 = fig.colorbar(img2,cax2) clb2.set_label('level dBm',fontsize=14) plt.tight_layout() plt.show() #for k in range(1,17): # for l in range(1,17): # self.dHKB[(k,l)]=iHKB[k]+' - '+iHKB[l] # cpt = cpt + 1 return fig,(ax1,ax2) def lk2nd(self,lk): """ transcode a lk from Id to real name Parameters ---------- lk : string Examples -------- >>> C=Corser(6) >>> lk = 'HKB:15-HKB:7' >>> C.lk2nd(lk) """ u = lk.replace('HKB:','').split('-') v = [ self.idHKB[int(x)] for x in u ] return(v) def _load_offset_dict(self): """ load offset_dictionnary.bin Returns ------- d : dict {'Sc20_S5_R1_HKBS': {'hkb_index': -148, 'video_sec': 32.622087273809527}, 'Sc20_S6_R2_HKBS': {'bs_index': -124, 'hkb_index': -157}, 'Sc21a_S13_R1_HKBS': {'hkb_index': 537}, 'Sc21a_S14_R2_HKBS': {'hkb_index': 752}, 'Sc21a_S15_R3_HKBS': {'hkb_index': 438}, 'Sc21a_S16_R4_HKBS': {'hkb_index': 224}, 'Sc21b_S21_R1_HKBS': {'hkb_index': 368}, 'Sc21b_S22_R2_HKBS': {'hkb_index': -333}, 'Sc21b_S23_R3_HKBS': {'hkb_index': 136}, 'Sc22a_S9_R1_Full': {'hkb_index': 678}} Notes ----- This is used for synchronization purpose """ path = os.path.join(os.environ['CORMORAN'],'POST-TREATED') d = pickle.load( open( os.path.join(path,'offset_dictionnary.bin'), "rb" ) ) return d def _save_offset_dict(self,d): path = os.path.join(os.environ['CORMORAN'],'POST-TREATED') d = pickle.dump( d, open( os.path.join(path,'offset_dictionnary.bin'), "wb" ) ) def _save_data_off_dict(self,filename,typ,value): """ save - a given "value" of an for, - a serie/run "filename", - of a given typ (video|hkb|tcr|...) """ d = self._load_offset_dict() try: d[filename].update({typ:value}) except: d[filename]={} d[filename][typ]=value self._save_offset_dict(d) def offset_setter_video(self,a='AP1',b='WristRight',**kwargs): """ video offset setter """ defaults = { 'inverse':True } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] fig, axs = plt.subplots(nrows=2,ncols=1) fig.subplots_adjust(bottom=0.3) if isinstance(a,str): ia = self.dHKB[a] else: ia = a a = self.idHKB[a] if isinstance(b,str): ib = self.dHKB[b] else: ib = bq b = self.idHKB[b] time = self.thkb if len(time) == 1: time=time[0] sab = self.hkb[a+'-'+b].values sabt = self.hkb[a+'-'+b].index hkb = axs[1].plot(sabt,sab,label = a+'-'+b) axs[1].legend() try : init = self.offset[self._filename]['video_sec'] except: init=time[0] videofile = os.path.join(self.rootdir,'POST-TREATED',str(self.day)+'-06-2014','Videos') ldir = os.listdir(videofile) luldir = [ self._filename in x for x in ldir ] uldir = luldir.index(True) _filename = ldir[uldir] filename = os.path.join(videofile,_filename) vc = VideoFileClip(filename) F0 = vc.get_frame(init) I0 = img_as_ubyte(F0) axs[0].imshow(F0) ######## # slider ######## slide_xoffset_ax = plt.axes([0.1, 0.15, 0.8, 0.05]) sliderx = Slider(slide_xoffset_ax, "video offset", 0, self.hkb.index[-1], valinit=init, color='#AAAAAA') # vertc = [(0,-10),(0,-10),(0,10),(0,-10)] # poly = plt.Polygon(vertc) # pp = axs[1].add_patch(poly) def update_x(val): F0 = vc.get_frame(val) I0 = img_as_ubyte(F0) axs[0].imshow(F0) fig.canvas.draw_idle() sliderx.on_changed(update_x) # def cursor(val): # try : # pp.remove() # except: # pass # vertc = [(sabt[0]+val,min(sab)-10),(sabt[0]+val,min(sab)-10),(sabt[0]+val,max(sab)+10),(sabt[0]+val,max(sab)-10)] # poly = plt.Polygon(vertc) # pp = axs[1].add_patch(poly) # sliderx.on_changed(cursor) def plus(event): sliderx.set_val(sliderx.val +0.2) fig.canvas.draw_idle() sliderx.on_changed(update_x) def minus(event): sliderx.set_val(sliderx.val -0.2) fig.canvas.draw_idle() sliderx.on_changed(update_x) def setter(event): self._save_data_off_dict(self._filename,'video_sec',sliderx.val) self.offset= self._load_offset_dict() axp = plt.axes([0.3, 0.05, 0.1, 0.075]) axset = plt.axes([0.5, 0.05, 0.1, 0.075]) axm = plt.axes([0.7, 0.05, 0.1, 0.075]) bp = Button(axp, '<-') bp.on_clicked(minus) bset = Button(axset, 'SET offs.') bset.on_clicked(setter) bm = Button(axm, '->') bm.on_clicked(plus) plt.show() def offset_setter(self,a='HKB:1',b='HKB:12',techno='',**kwargs): """ offset setter """ defaults = { 'inverse':True } for k in defaults: if k not in kwargs: kwargs[k] = defaults[k] if plt.isinteractive(): interactive = True plt.ioff() else : interactive = False fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.2, left=0.3) a,ia,bia,subja,techno=self.devmapper(a,techno) b,ib,bib,subjb,techno=self.devmapper(b,techno) time = self.tmocap if len(time.shape) == 2: time = time[0,:] try : init = time[0]#self.offset[self._filename]['hkb_index'] except: init=time[0] var = self.getlinkd(ia,ib,techno).values if kwargs['inverse']: var = 10*np.log10(1./(var)**2) gt = ax.plot(time,var) ab = self.getlink(ia,ib,techno) sab = ab.values sabt = ab.index.values technoval = ax.plot(sabt,sab) ######## # slider ######## slide_xoffset_ax = plt.axes([0.1, 0.15, 0.8, 0.02]) sliderx = Slider(slide_xoffset_ax, techno + " offset", -(len(sabt)/16), (len(sabt)/16), valinit=init, color='#AAAAAA') slide_yoffset_ax = plt.axes([0.1, 0.10, 0.8, 0.02]) slidery = Slider(slide_yoffset_ax, "gt_yoff", -100, 0, valinit=0, color='#AAAAAA') slide_alpha_ax = plt.axes([0.1, 0.05, 0.8, 0.02]) slideralpha = Slider(slide_alpha_ax, "gt_alpha", 0, 60, valinit=30, color='#AAAAAA') def update_x(val): value = int(sliderx.val) rtechnoval = np.roll(sab,value) sliderx.valtext.set_text('{}'.format(value)) technoval[0].set_xdata(sabt) technoval[0].set_ydata(rtechnoval) fig.canvas.draw_idle() sliderx.on_changed(update_x) sliderx.drawon = False def update_y(val): yoff = slidery.val alpha = slideralpha.val gt[0].set_ydata(alpha*var + yoff) fig.canvas.draw_idle() #initpurpose update_y(5) slidery.on_changed(update_y) slideralpha.on_changed(update_y) def setter(event): value = int(sliderx.val) try : nval = self.offset[self._filename][techno.lower()+'_index'] + value except : nval = value self._save_data_off_dict(self._filename,techno.lower()+'_index',nval) self.offset= self._load_offset_dict() ax.set_title('WARNING : Please Reload serie to Valide offset change',color='r',weight='bold') axset = plt.axes([0.0, 0.5, 0.2, 0.05]) bset = Button(axset, 'SET ' +techno+' offs.') bset.on_clicked(setter) plt.show() if interactive : plt.ion() # def offset_setter_hkb(self,a='AP1',b='WristRight',**kwargs): # """ offset setter # """ # defaults = { 'inverse':True # } # for k in defaults: # if k not in kwargs: # kwargs[k] = defaults[k] # if plt.isinteractive(): # interactive = True # plt.ioff() # else : # interactive = False # fig, ax = plt.subplots() # fig.subplots_adjust(bottom=0.2, left=0.3) # a,ia,bia,subja,techno=self.devmapper(a,'HKB') # b,ib,bib,subjb,techno=self.devmapper(b,'HKB') # time = self.thkb # if len(time.shape) == 2: # time = time[0,:] # try : # init = time[0]#self.offset[self._filename]['hkb_index'] # except: # init=time[0] # var = self.getlinkd(ia,ib,'HKB').values # if kwargs['inverse']: # var = 10*np.log10(1./(var)**2) # gt = ax.plot(self.B[self.B.keys()[0]].time,var) # sab = self.hkb[a+'-'+b].values # sabt = self.hkb[a+'-'+b].index # hkb = ax.plot(sabt,sab) # ######## # # slider # ######## # slide_xoffset_ax = plt.axes([0.1, 0.15, 0.8, 0.02]) # sliderx = Slider(slide_xoffset_ax, "hkb offset", -(len(sabt)/16), (len(sabt)/16), # valinit=init, color='#AAAAAA') # slide_yoffset_ax = plt.axes([0.1, 0.10, 0.8, 0.02]) # slidery = Slider(slide_yoffset_ax, "gt_yoff", -100, 0, # valinit=0, color='#AAAAAA') # slide_alpha_ax = plt.axes([0.1, 0.05, 0.8, 0.02]) # slideralpha = Slider(slide_alpha_ax, "gt_alpha", 0, 10, # valinit=5, color='#AAAAAA') # def update_x(val): # value = int(sliderx.val) # rhkb = np.roll(sab,value) # sliderx.valtext.set_text('{}'.format(value)) # hkb[0].set_xdata(sabt) # hkb[0].set_ydata(rhkb) # fig.canvas.draw_idle() # sliderx.on_changed(update_x) # sliderx.drawon = False # def update_y(val): # yoff = slidery.val # alpha = slideralpha.val # gt[0].set_ydata(alpha*var + yoff) # fig.canvas.draw_idle() # #initpurpose # update_y(5) # slidery.on_changed(update_y) # slideralpha.on_changed(update_y) # def setter(event): # value = int(sliderx.val) # try : # nval = self.offset[self._filename]['hkb_index'] + value # except : # nval = value # self._save_data_off_dict(self._filename,'hkb_index',nval) # self.offset= self._load_offset_dict() # ax.set_title('WARNING : Please Reload serie to Valide offset change',color='r',weight='bold') # axset = plt.axes([0.0, 0.5, 0.2, 0.05]) # bset = Button(axset, 'SET offs.') # bset.on_clicked(setter) # plt.show() # if interactive: # plt.ion() def mtlbsave(self): """ Matlab format save S{day}_{serie} node_name node_place node_coord HKB.{linkname}.tr HKB.{linkname}.rssi HKB.{linkname}.td HKB.{linkname}.dist HKB.{linkname}.sh HKB.{linkname}.dsh TCR.{linkname}.tr HKB.{linkname}.range HKB.{linkname}.td HKB.{linkname}.dist HKB.{linkname}.sh """ key = 'S'+str(self.day)+'_'+str(self.serie) filemat = key+'.mat' d = {} d[key]={} d[key]['node_name'] = self.dist_nodesmap d[key]['node_place'] = [ self.devmapper(x)[0] for x in self.dist_nodesmap ] d[key]['node_coord'] = self.points for subject in self.interf: sub = subject.replace(':','') d[key][sub]=np.mean(self.B[subject].d,axis=1) if ('HKB' in self.typ.upper()) or ('FULL' in self.typ.upper()): d[key]['HKB']={} links = list(self.hkb.columns) inter,lks = self.compute_visibility(techno='HKB') for l in links: ls = l.split('-') nl = ls[0]+'_'+ls[1] nl=nl.replace('Jihad','J').replace('Nicolas','N').replace('Eric','E') d[key]['HKB'][nl] = {} ix0 = np.where(lks==ls[0])[0] ix1 =
np.where(lks==ls[1])
numpy.where
from collections import Counter import os import sys; sys.path.append('./../../') import pickle import numpy as np import pandas as pd import networkx as nx import scipy.stats as st import multiprocessing as mp from pathlib import Path from src.Tree import TreeNode from src.utils import load_pickle from src.graph_stats import GraphStats from src.graph_comparison import GraphPairCompare def load_df(path): for subdir, dirs, files in os.walk(path): for filename in files: if 'csv' in filename: print(f'\tloading {subdir} {filename} ... ', end='', flush=True) df = pd.read_csv(os.path.join(subdir, filename), sep=','), filename print('done') yield df def compute_stats(densities): #padding = max(len(l) for l in js) #for idx, l in enumerate(js): # while len(js[idx]) < padding: # js[idx] += [np.NaN] for idx, l in enumerate(densities): if l == []: densities[idx] = [0] print(densities) mean = np.nanmean(densities, axis=0) ci = [] for row in np.asarray(densities).T: ci.append(st.t.interval(0.95, len(row)-1, loc=np.mean(row), scale=st.sem(row))) return np.asarray(mean),
np.asarray(ci)
numpy.asarray
############################################################################################################# ################################################## IMPORTS ################################################## ############################################################################################################# from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet152V2, preprocess_input, decode_predictions from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam, SGD, RMSprop, Nadam from tensorflow.keras.losses import CategoricalCrossentropy, SparseCategoricalCrossentropy, BinaryCrossentropy from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout from tensorflow.keras.utils import to_categorical from sklearn.utils.class_weight import compute_class_weight from sklearn.preprocessing import LabelEncoder from sklearn.metrics import classification_report, confusion_matrix from keras import backend as K from random import shuffle import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os, math import getpass # from trains import Task # task = Task.init(project_name="DL_CNN_Final_Project", task_name="Overfitting_Model") # logger = task.get_logger() ############################################################################################################## ################################################## SETTINGS ################################################## ############################################################################################################## classes = [ 'Animals', 'Buildings', 'Carts', 'Children', 'Corpses', 'German Symbols', 'Gravestones', 'Railroad cars', 'Signs', 'Snow', "Uniforms", "Vehicles", "Views", 'Weapons', 'Women', ] classes = sorted(classes) IM_WIDTH, IM_HEIGHT = 224, 224 EPOCHS = 30 BATCH_SIZE = 64*8 FC_SIZE = 2048 NUM_CLASSES = len(classes) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) if getpass.getuser() == 'assafsh': train_directory = "/mnt/data/Storage/yad-vashem-dataset/data/train" validation_directory = "/mnt/data/Storage/yad-vashem-dataset/data/validation" test_directory = "/mnt/data/Storage/yad-vashem-dataset/data/test" else: train_directory = os.path.join(BASE_DIR, "data/train") validation_directory = os.path.join(BASE_DIR, "data/validation") test_directory = os.path.join(BASE_DIR, "data/test") ############################################################################################################### ################################################## FUNCTIONS ################################################## ############################################################################################################### def categorical_focal_loss(alpha, gamma=2.): """ Softmax version of focal loss. When there is a skew between different categories/labels in your data set, you can try to apply this function as a loss. m FL = ∑ -alpha * (1 - p_o,c)^gamma * y_o,c * log(p_o,c) c=1 where m = number of classes, c = class and o = observation Parameters: alpha -- the same as weighing factor in balanced cross entropy. Alpha is used to specify the weight of different categories/labels, the size of the array needs to be consistent with the number of classes. gamma -- focusing parameter for modulating factor (1-p) Default value: gamma -- 2.0 as mentioned in the paper alpha -- 0.25 as mentioned in the paper References: Official paper: https://arxiv.org/pdf/1708.02002.pdf https://www.tensorflow.org/api_docs/python/tf/keras/backend/categorical_crossentropy Usage: model.compile(loss=[categorical_focal_loss(alpha=[[.25, .25, .25]], gamma=2)], metrics=["accuracy"], optimizer=adam) """ alpha = np.array(alpha, dtype=np.float32) def categorical_focal_loss_fixed(y_true, y_pred): """ :param y_true: A tensor of the same shape as `y_pred` :param y_pred: A tensor resulting from a softmax :return: Output tensor. """ # Clip the prediction value to prevent NaN's and Inf's epsilon = K.epsilon() y_pred = K.clip(y_pred, epsilon, 1. - epsilon) # Calculate Cross Entropy cross_entropy = -y_true * K.log(y_pred) # Calculate Focal Loss loss = alpha * K.pow(1 - y_pred, gamma) * cross_entropy # Compute mean loss in mini_batch return K.mean(K.sum(loss, axis=-1)) return categorical_focal_loss_fixed def generators(): ''' This function creates a generator for the dataset - generator for train, generator for validation and generator for test For each image in the dataset an augmentation is being executed ''' # Set train and test data generators train_datagen = ImageDataGenerator( preprocessing_function=preprocess_input, rescale=1./255, rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = ImageDataGenerator( rescale=1./255 ) # Get images from train directory and insert into generator train_generator = train_datagen.flow_from_directory( train_directory, target_size=(IM_WIDTH, IM_HEIGHT), batch_size=BATCH_SIZE, shuffle=True, ) # Get images from validation directory and insert into generator validation_generator = test_datagen.flow_from_directory( validation_directory, target_size=(IM_WIDTH, IM_HEIGHT), batch_size=BATCH_SIZE, shuffle=True, ) # Get images from test directory and insert into generator test_generator = test_datagen.flow_from_directory( test_directory, target_size=(IM_WIDTH, IM_HEIGHT), batch_size=BATCH_SIZE, shuffle=True, ) return train_generator, validation_generator, test_generator ''' End function ''' def generate_class_weights(train_generator): ''' Input: Output: ''' labels_dict = { 'Animals': 1559, 'Buildings':9052, 'Carts': 1540, 'Children': 16525, 'Corpses': 4606, "German Symbols": 2476, 'Gravestones': 5648, 'Railroad cars': 1018, 'Signs': 2038, 'Snow': 1716, "Uniforms": 12356, "Vehicles": 3036, "Views": 8776, 'Weapons': 1260, 'Women': 27642 } class_weights_dict = dict() total_samples = sum(labels_dict.values()) mu = 0.15 for key in labels_dict.keys(): score = math.log(mu * total_samples / float(labels_dict[key])) class_weights_dict[classes.index(key)] = score if score > 1.0 else 1.0 print(class_weights_dict) return class_weights_dict ''' End function ''' def create_classifier(base_model): ''' Creates new classifiers based on ResNet50 ''' # Add global average pooling and 2 FC for fine tuning x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(FC_SIZE, activation='relu')(x) x = Dense(FC_SIZE//2, activation='relu')(x) predictions = Dense(NUM_CLASSES, activation='softmax')(x) # Create the model model = Model(base_model.input, predictions) return model ''' End function ''' def fit_predict_overfitting(classifier, number, class_weight_dict): ''' Input: classifier Output: train on 80 images per class, validate on 10 and test on 10. ''' train_df, validation_df, test_df = [], [], [] categories_path_train, categories_path_validation, categories_path_test = [], [], [] for category in classes: if ' ' in category: category = category.replace(" ", "_") categories_path_train.append(os.path.join(train_directory, category)) categories_path_validation.append(os.path.join(validation_directory, category)) categories_path_test.append(os.path.join(test_directory, category)) for class_num, path in enumerate(categories_path_train): dir_path = os.listdir(path) for i, child in enumerate(dir_path): if i == 80: break img = load_img(os.path.join(path, child), target_size=(IM_HEIGHT, IM_WIDTH, 3)) x = img_to_array(img) train_df.append([x, class_num]) for class_num, path in enumerate(categories_path_validation): dir_path = os.listdir(path) for i, child in enumerate(dir_path): if i == 10: break img = load_img(os.path.join(path, child), target_size=(IM_HEIGHT, IM_WIDTH, 3)) x = img_to_array(img) validation_df.append([x, class_num]) for class_num, path in enumerate(categories_path_test): dir_path = os.listdir(path) for i, child in enumerate(dir_path): if i == 10: break img = load_img(os.path.join(path, child), target_size=(IM_HEIGHT, IM_WIDTH, 3)) x = img_to_array(img) test_df.append([x, class_num]) shuffle(train_df) shuffle(validation_df) shuffle(test_df) X_train, X_validation, X_test = [], [], [] Y_train, Y_validation, Y_test = [], [], [] for image, label in train_df: X_train.append(image) Y_train.append(label) for image, label in validation_df: X_validation.append(image) Y_validation.append(label) for image, label in test_df: X_test.append(image) Y_test.append(label) X_train = np.array(X_train) / 255.0 Y_train = np.array(Y_train) X_validation = np.array(X_validation) / 255.0 Y_validation = np.array(Y_validation) X_test =
np.array(X_test)
numpy.array
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest import re import numpy as np from accuracy_checker.config import ConfigError from accuracy_checker.launcher.input_feeder import InputFeeder from accuracy_checker.data_readers import DataRepresentation # InputInfo from openvino is needed here, but there is no appropriate API # to create InputInfo with specific shape, therefore lets use analog class InputInfo_test: layout = '' precision = '' shape = [] def __init__(self, layout = '', precision = '', shape = []): self.layout = layout self.precision = precision self.shape = shape class TestInputFeeder: def test_create_input_feeder_without_inputs_raise_config_error(self): with pytest.raises(ConfigError): InputFeeder([], {}) def test_create_input_feeder_with_config_inputs_and_empty_network_inputs_raise_config_error(self): with pytest.raises(ConfigError): InputFeeder([{'name': 'const_data', 'type': 'CONST_INPUT', 'value': '[1, 1, 1, 1]'}], {}) def test_create_input_feeder_with_config_const_inputs_not_in_network_inputs_raise_config_error(self): with pytest.raises(ConfigError): InputFeeder([{'name': 'const_data', 'type': 'CONST_INPUT', 'value': '[1, 1, 1, 1]'}], {'data': (1, 3, 10, 10)}) def test_create_input_feeder_with_config_inputs_not_in_network_inputs_raise_config_error(self): with pytest.raises(ConfigError): InputFeeder([{'name': 'data2', 'type': 'INPUT', 'value': '.'}], {'data': (1, 3, 10, 10)}) def test_create_input_feeder_without_config_inputs(self): input_feeder = InputFeeder([], {'data': (1, 3, 10, 10)}) assert not input_feeder.const_inputs assert not input_feeder.inputs_mapping assert input_feeder.non_constant_inputs == ['data'] def test_create_input_feeder_config_inputs_fully_match_to_network_inputs(self): input_feeder = InputFeeder([{'name': 'data', 'type': 'INPUT', 'value': '.'}], {'data': (1, 3, 10, 10)}) assert not input_feeder.const_inputs assert input_feeder.inputs_mapping == {'data': re.compile('.')} assert input_feeder.non_constant_inputs == ['data'] def test_create_input_feeder_config_inputs_contain_only_const_inputs_with_list_value(self): input_feeder = InputFeeder([{'name': 'const_data', 'type': 'CONST_INPUT', 'value': [1, 1, 1, 1]}], {'data': (1, 3, 10, 10), 'const_data': (1, 4)}) assert np.array_equal(input_feeder.const_inputs['const_data'], np.ones(4)) assert not input_feeder.inputs_mapping assert input_feeder.non_constant_inputs == ['data'] def test_create_input_feeder_config_inputs_contain_only_const_inputs_with_not_list_value(self): input_feeder = InputFeeder( [{'name': 'const_data', 'type': 'CONST_INPUT', 'value': 'value'}], {'data': (1, 3, 10, 10), 'const_data': (1, 4)} ) assert input_feeder.const_inputs['const_data'] == 'value' assert not input_feeder.inputs_mapping assert input_feeder.non_constant_inputs == ['data'] def test_create_input_feeder_not_all_non_constant_inputs_in_config_raise_config_error(self): with pytest.raises(ConfigError): InputFeeder( [{'name': '0', 'type': 'INPUT', 'value': '.'}], {'0': (1, 3, 10, 10), '1': (1, 3, 10, 10)} ) def test_fill_non_constant_input_with_one_input_without_specific_mapping_batch_1(self): input_feeder = InputFeeder([], { 'input': InputInfo_test(shape=(1, 3, 10, 10)) }) result = input_feeder.fill_non_constant_inputs([DataRepresentation(np.zeros((10, 10, 3)), identifier='0')])[0] expected_data = np.zeros((1, 3, 10, 10)) assert 'input' in result assert np.array_equal(result['input'], expected_data) def test_fill_non_constant_input_without_specific_mapping_batch_2(self): input_feeder = InputFeeder([], { 'input': InputInfo_test(shape=(1, 3, 10, 10))}) result = input_feeder.fill_non_constant_inputs([ DataRepresentation(np.zeros((10, 10, 3)), identifier='0'), DataRepresentation(np.zeros((10, 10, 3)), identifier='1') ])[0] expected_data = np.zeros((2, 3, 10, 10)) assert 'input' in result assert np.array_equal(result['input'], expected_data) def test_fill_non_constant_input_with_specific_mapping_batch_1(self): input_feeder = InputFeeder([{'name': 'input', 'type': 'INPUT', 'value': '.'}], {'input': InputInfo_test(shape=(1, 3, 10, 10))}) result = input_feeder.fill_non_constant_inputs([DataRepresentation(np.zeros((10, 10, 3)), identifier='0')])[0] expected_data = np.zeros((1, 3, 10, 10)) assert 'input' in result assert np.array_equal(result['input'], expected_data) def test_fill_non_constant_input_with_specific_mapping_sevaral_image_matched(self): input_feeder = InputFeeder([{'name': 'input', 'type': 'INPUT', 'value': '.'}], {'input': InputInfo_test(shape=(1, 3, 10, 10))}) result = input_feeder.fill_non_constant_inputs([DataRepresentation([np.zeros((10, 10, 3)), np.ones((10, 10, 3))], identifier=['0', '1'])])[0] expected_data = np.zeros((1, 3, 10, 10)) assert 'input' in result assert np.array_equal(result['input'], expected_data) def test_fill_non_constant_input_with_specific_mapping_not_match_raise_config_error(self): input_feeder = InputFeeder([{'name': 'input', 'type': 'INPUT', 'value': '1.'}], {'input': InputInfo_test(shape=(1, 3, 10, 10))}) with pytest.raises(ConfigError): input_feeder.fill_non_constant_inputs([DataRepresentation(np.zeros((10, 10, 3)), identifier='0')]) def test_fill_non_constant_input_with_specific_mapping_batch_2(self): input_feeder = InputFeeder([{'name': 'input', 'type': 'INPUT', 'value': '.'}], {'input': InputInfo_test(shape=(1, 3, 10, 10))}) result = input_feeder.fill_non_constant_inputs([ DataRepresentation(np.zeros((10, 10, 3)), identifier='0'), DataRepresentation(np.zeros((10, 10, 3)), identifier='1') ])[0] expected_data = np.zeros((2, 3, 10, 10)) assert 'input' in result assert np.array_equal(result['input'], expected_data) def test_fill_non_constant_input_with_specific_mapping_not_all_image_in_batch_matched_raise_config_error(self): input_feeder = InputFeeder([{'name': 'input', 'type': 'INPUT', 'value': '0+'}], {'input': InputInfo_test(shape=(1, 3, 10, 10))}) with pytest.raises(ConfigError): input_feeder.fill_non_constant_inputs([ DataRepresentation(np.zeros((10, 10, 3)), identifier='0'), DataRepresentation(np.zeros((10, 10, 3)), identifier='1') ]) def test_fill_non_constant_inputs_without_specific_mapping_batch_1(self): input_feeder = InputFeeder([], { 'input1': InputInfo_test(shape=(1, 3, 10, 10)), 'input2': InputInfo_test(shape=(1, 3, 10, 10))}) result = input_feeder.fill_non_constant_inputs([DataRepresentation(np.zeros((10, 10, 3)), identifier='0')])[0] expected_data = np.zeros((1, 3, 10, 10)) assert 'input1' in result assert np.array_equal(result['input1'], expected_data) assert 'input2' in result assert
np.array_equal(result['input2'], expected_data)
numpy.array_equal
import sys import os import time import telnetlib import multiprocessing import numpy as np import logging import logging.handlers import numpy.core._methods import numpy.lib.format class hp4195a(multiprocessing.Process): def __init__(self, command_queue, message_queue, data_queue, logger_queue): super(hp4195a, self).__init__() self.command_queue = command_queue self.message_queue = message_queue self.data_queue = data_queue self.logging_queue = logger_queue self.mag_data = [] self.phase_data = [] self.freq_data = [] self.host = 'bi-gpib-01.dyndns.cern.ch' self.port = '1234' self.gpib_addr = 11 self.telnet_id = 'Prologix GPIB-ETHERNET Controller version 01.06.06.00' self.device_id = 'HP4195A' def run(self): ''' This function will run when the class is launched as a separate process. ''' self.qh = logging.handlers.QueueHandler(self.logging_queue) self.root = logging.getLogger() self.root.setLevel(logging.DEBUG) self.root.addHandler(self.qh) self.logger = logging.getLogger(__name__) while True: self.command = self.command_queue.get() self.logger.info('Received \"{}\" from GUI'.format(self.command)) self.logger.info('Command queue size = {}'.format(self.command_queue.qsize())) if self.command == 'connect': self.logger.info('Connecting to HP4195A') self.telnet_connect() elif self.command == 'disconnect': self.logger.info('Disconnecting from HP4195A') self.telnet_disconnect() elif self.command == 'start_acquisition': self.logger.info('Starting data acquisition') if self.acquire_mag_data(): if self.acquire_phase_data(): if self.acquire_freq_data(): self.logger.info('Acquired data OK') else: self.logger.warning('Frequency data acquisition failed') self.message_queue.put(False) else: self.logger.warning('Phase data acquisition failed') self.message_queue.put(False) else: self.logger.warning('Magnitude data acquisition failed') self.message_queue.put(False) mag_check = len(self.mag_data) == len(self.freq_data) phase_check = len(self.phase_data) == len(self.freq_data) if mag_check and phase_check: self.logger.info('Data length check passed ({}, {}, {})'.format(len(self.mag_data),len(self.phase_data),len(self.freq_data))) self.message_queue.put(True) self.data_queue.put(self.mag_data) self.data_queue.put(self.phase_data) self.data_queue.put(self.freq_data) self.mag_data = [] self.phase_data = [] self.freq_data = [] else: self.logger.warning('Data length check failed ({}, {}, {})'.format(len(self.mag_data),len(self.phase_data),len(self.freq_data))) self.message_queue.put(False) elif self.command == 'send_command': self.command = self.command_queue.get() self.logger.info('Sending GPIB command: {}'.format(self.command)) self.response = self.send_query(self.command) self.logger.info('Response: {}'.format(self.response)) self.data_queue.put(self.response) def telnet_connect(self): self.logger.info('Starting Telnet communications') self.tn = telnetlib.Telnet(self.host, self.port) if self.send_query('++ver') == self.telnet_id: self.logger.info('Successfully established connection with {}'.format(self.telnet_id)) self.init_device() else: self.tn.close() self.logger.warning('Failed to setup Telnet communications') self.message_queue.put(False) def telnet_disconnect(self): self.logger.info('Disconnecting Telnet connection') self.tn.close() self.message_queue.put(True) def init_device(self): self.logger.info('Querying HP4195A') if self.send_query('ID?') == self.device_id: self.logger.info('Successfully found {}'.format(self.device_id)) self.logger.info('Initialising HP4195A') self.send_command('++auto 1') self.message_queue.put(True) else: self.tn.close() self.logger.warning('Error unrecognised device') self.message_queue.put(False) def acquire_mag_data(self): raw_mag_data = self.send_query('A?') mag_data = np.fromstring(raw_mag_data, dtype=float, sep=',') if len(mag_data) > 0: self.mag_data = mag_data return True def acquire_phase_data(self): raw_phase_data = self.send_query('B?') phase_data =
np.fromstring(raw_phase_data, dtype=float, sep=',')
numpy.fromstring
# -*- coding: utf-8 -*- """ Created on Mon Mar 22 2021 @author: <NAME> """ import torch.optim as optim import matplotlib.pyplot as plt import numpy as np from environment import Environment from agent import Agent from pg import PolicyNet from utils import * # Define Environments and Agents gamma = 0.8 train_environment = Environment(display=False, magnification=500, id=' Train') train_agent = Agent(train_environment, gamma=gamma) test_environment = Environment(display=False, magnification=500, id=' Test') test_agent = Agent(test_environment, gamma=gamma) policy = PolicyNet(2, 256, train_agent.environment.num_actions) num_episodes = 200 num_episode_steps = 20 # Model Parameters lr = 0.002 optimiser = optim.Adam(policy.parameters(), lr=lr) print_every_episode = 1 lookback = 5 train_rewards = [] test_rewards = [] for episode in range(1, num_episodes + 1): # Training loss, train_reward, train_trace = train(train_agent, policy, optimiser, gamma, num_episode_steps) train_agent.environment.plot_trace(train_trace) # Validation test_reward, test_trace = evaluate(test_agent, policy, num_episode_steps) test_agent.environment.plot_trace(test_trace) train_rewards.append(train_reward) test_rewards.append(test_reward) mean_train_rewards = np.mean(train_rewards[-lookback:]) mean_test_rewards =
np.mean(test_rewards[-lookback:])
numpy.mean
from typing import Tuple, Union, Optional, Any, Dict, Type import gym import numpy as np import torch as th from stable_baselines3.common.type_aliases import Schedule, GymEnv from torch import nn from torch.nn import functional as F from gym import spaces from stable_baselines3 import PPO as SB3PPO from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.policies import ActorCriticPolicy from stable_baselines3.common.utils import obs_as_tensor, explained_variance from stable_baselines3.common.vec_env import VecEnv from yacht.agents.buffers import StudentRolloutBuffer, SupervisedRolloutBuffer from yacht.agents.modules.torch_layers import SupervisedMlpExtractor class PPO(SB3PPO): def train(self) -> None: super().train() self.logger.dump() # TODO: Merge SupervisedPPO with StudentPPO. # TODO: Fork stable_baselines3 and move implementation there. class SupervisedPPO(SB3PPO): class SupervisedActorCriticPolicy(ActorCriticPolicy): def __init__(self, *args, **kwargs): num_labels = kwargs.pop('num_labels') assert num_labels is not None self.num_labels = num_labels self.supervised_labels_net = None super().__init__(*args, **kwargs) def _build_mlp_extractor(self) -> None: """ Create the policy and value networks. Part of the layers can be shared. """ # Note: If net_arch is None and some features extractor is used, # net_arch here is an empty list and mlp_extractor does not # really contain any layers (acts like an identity module). self.mlp_extractor = SupervisedMlpExtractor( self.features_dim, net_arch=self.net_arch, activation_fn=self.activation_fn, device=self.device, ) def _build(self, lr_schedule: Schedule) -> None: super()._build(lr_schedule) latent_dim_supervised = self.mlp_extractor.latent_dim_supervised self.supervised_labels_net = nn.Sequential( nn.Linear(latent_dim_supervised, self.num_labels), nn.Sigmoid() ) def forward( self, obs: th.Tensor, deterministic: bool = False ) -> Tuple[th.Tensor, th.Tensor, th.Tensor, th.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: Observation :param deterministic: Whether to sample or use deterministic actions :return: action, value and log probability of the action """ latent_pi, latent_vf, latent_sde, latent_supervised = self._get_latent(obs) supervised_predictions = self.supervised_labels_net(latent_supervised) # Evaluate the values for the given observations values = self.value_net(latent_vf) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde=latent_sde) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) return actions, values, log_prob, supervised_predictions def evaluate_actions( self, obs: th.Tensor, actions: th.Tensor ) -> Tuple[th.Tensor, th.Tensor, th.Tensor, th.Tensor]: """ Evaluate actions according to the current policy, given the observations. :param obs: :param actions: :return: estimated value, log likelihood of taking those actions and entropy of the action distribution. """ latent_pi, latent_vf, latent_sde, latent_supervised = self._get_latent(obs) supervised_predictions = self.supervised_labels_net(latent_supervised) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde) log_prob = distribution.log_prob(actions) values = self.value_net(latent_vf) return values, log_prob, distribution.entropy(), supervised_predictions def _predict(self, observation: th.Tensor, deterministic: bool = False) -> th.Tensor: """ Get the action according to the policy for a given observation. :param observation: :param deterministic: Whether to use stochastic or deterministic actions :return: Taken action according to the policy """ latent_pi, _, latent_sde, _ = self._get_latent(observation) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde) return distribution.get_actions(deterministic=deterministic) def _get_latent(self, obs: th.Tensor) -> Tuple[th.Tensor, th.Tensor, th.Tensor, th.Tensor]: """ Get the latent code (i.e., activations of the last layer of each network) for the different networks. :param obs: Observation :return: Latent codes for the actor, the value function and for gSDE function """ # Preprocess the observation if needed features = self.extract_features(obs) latent_pi, latent_vf, latent_supervised = self.mlp_extractor(features) # Features for sde latent_sde = latent_pi if self.sde_features_extractor is not None: latent_sde = self.sde_features_extractor(features) return latent_pi, latent_vf, latent_sde, latent_supervised def __init__( self, # Policy is not used, but it is kept for interface compatibility. policy: Union[str, Type[ActorCriticPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, n_steps: int = 2048, batch_size: Optional[int] = 64, n_epochs: int = 10, gamma: float = 0.99, gae_lambda: float = 0.95, clip_range: Union[float, Schedule] = 0.2, clip_range_vf: Union[None, float, Schedule] = None, ent_coef: float = 0.0, vf_coef: float = 0.5, supervised_coef: float = 0.5, max_grad_norm: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, target_kl: Optional[float] = None, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, num_labels: int = 1 ): if policy_kwargs is not None: policy_kwargs['num_labels'] = num_labels self.num_labels = num_labels self.supervised_coef = supervised_coef super().__init__( policy=self.SupervisedActorCriticPolicy, env=env, learning_rate=learning_rate, n_steps=n_steps, batch_size=batch_size, n_epochs=n_epochs, gamma=gamma, gae_lambda=gae_lambda, clip_range=clip_range, clip_range_vf=clip_range_vf, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, use_sde=use_sde, sde_sample_freq=sde_sample_freq, target_kl=target_kl, tensorboard_log=tensorboard_log, policy_kwargs=policy_kwargs, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, _init_setup_model=_init_setup_model, ) def _setup_model(self): super()._setup_model() self.rollout_buffer = SupervisedRolloutBuffer( buffer_size=self.n_steps, observation_space=self.observation_space, action_space=self.action_space, device=self.device, gamma=self.gamma, gae_lambda=self.gae_lambda, n_envs=self.n_envs, num_labels=self.num_labels ) def collect_rollouts( self, env: VecEnv, callback: BaseCallback, rollout_buffer: SupervisedRolloutBuffer, n_rollout_steps: int, ) -> bool: """ Collect experiences using the current policy and fill a ``RolloutBuffer``. The term rollout here refers to the model-free notion and should not be used with the concept of rollout used in model-based RL or planning. :param env: The training environment :param callback: Callback that will be called at each step (and at the beginning and end of the rollout) :param rollout_buffer: Buffer to fill with rollouts :param n_steps: Number of experiences to collect per environment :return: True if function returned with at least `n_rollout_steps` collected, False if callback terminated rollout prematurely. """ assert self._last_obs is not None, "No previous observation was provided" n_steps = 0 rollout_buffer.reset() # Sample new weights for the state dependent exploration if self.use_sde: self.policy.reset_noise(env.num_envs) callback.on_rollout_start() while n_steps < n_rollout_steps: if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0: # Sample a new noise matrix self.policy.reset_noise(env.num_envs) with th.no_grad(): # Convert to pytorch tensor or to TensorDict obs_tensor = obs_as_tensor(self._last_obs, self.device) actions, values, log_probs, _ = self.policy.forward(obs_tensor) actions = actions.cpu().numpy() # Rescale and perform action clipped_actions = actions # Clip the actions to avoid out of bound error if isinstance(self.action_space, gym.spaces.Box): clipped_actions = np.clip(actions, self.action_space.low, self.action_space.high) new_obs, rewards, dones, infos = env.step(clipped_actions) self.num_timesteps += env.num_envs # Give access to local variables callback.update_locals(locals()) if callback.on_step() is False: return False self._update_info_buffer(infos) n_steps += 1 if isinstance(self.action_space, gym.spaces.Discrete): # Reshape in case of discrete action actions = actions.reshape(-1, 1) labels = np.array([info['label'] for info in infos], dtype=np.float32) rollout_buffer.add( self._last_obs, actions, rewards, self._last_episode_starts, values, log_probs, labels ) self._last_obs = new_obs self._last_episode_starts = dones with th.no_grad(): # Compute value for the last timestep obs_tensor = obs_as_tensor(new_obs, self.device) _, values, _, _ = self.policy.forward(obs_tensor) rollout_buffer.compute_returns_and_advantage(last_values=values, dones=dones) callback.on_rollout_end() return True def train(self) -> None: """ Update policy using the currently gathered rollout buffer. """ # Update optimizer learning rate self._update_learning_rate(self.policy.optimizer) # Compute current clip range clip_range = self.clip_range(self._current_progress_remaining) # Optional: clip range for the value function if self.clip_range_vf is not None: clip_range_vf = self.clip_range_vf(self._current_progress_remaining) entropy_losses = [] pg_losses, value_losses = [], [] clip_fractions = [] supervised_losses = [] continue_training = True # train for n_epochs epochs for epoch in range(self.n_epochs): approx_kl_divs = [] # Do a complete pass on the rollout buffer for rollout_data in self.rollout_buffer.get(self.batch_size): actions = rollout_data.actions if isinstance(self.action_space, spaces.Discrete): # Convert discrete action from float to long actions = rollout_data.actions.long().flatten() # Re-sample the noise matrix because the log_std has changed # TODO: investigate why there is no issue with the gradient # if that line is commented (as in SAC) if self.use_sde: self.policy.reset_noise(self.batch_size) values, log_prob, entropy, predictions = self.policy.evaluate_actions(rollout_data.observations, actions) values = values.flatten() # Normalize advantage advantages = rollout_data.advantages advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) # ratio between old and new policy, should be one at the first iteration ratio = th.exp(log_prob - rollout_data.old_log_prob) # clipped surrogate loss policy_loss_1 = advantages * ratio policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) policy_loss = -th.min(policy_loss_1, policy_loss_2).mean() # Logging pg_losses.append(policy_loss.item()) clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item() clip_fractions.append(clip_fraction) if self.clip_range_vf is None: # No clipping values_pred = values else: # Clip the different between old and new value # NOTE: this depends on the reward scaling values_pred = rollout_data.old_values + th.clamp( values - rollout_data.old_values, -clip_range_vf, clip_range_vf ) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(rollout_data.returns, values_pred) value_losses.append(value_loss.item()) # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -th.mean(-log_prob) else: entropy_loss = -th.mean(entropy) entropy_losses.append(entropy_loss.item()) # Supervised loss supervised_loss = F.binary_cross_entropy( predictions, rollout_data.labels, reduction='mean' ) supervised_losses.append(supervised_loss.item()) loss = \ policy_loss + \ self.ent_coef * entropy_loss + \ self.vf_coef * value_loss + \ self.supervised_coef * supervised_loss # Calculate approximate form of reverse KL Divergence for early stopping # see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417 # and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419 # and Schulman blog: http://joschu.net/blog/kl-approx.html with th.no_grad(): log_ratio = log_prob - rollout_data.old_log_prob approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy() approx_kl_divs.append(approx_kl_div) if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl: continue_training = False if self.verbose >= 1: print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}") break # Optimization step self.policy.optimizer.zero_grad() loss.backward() # Clip grad norm th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) self.policy.optimizer.step() if not continue_training: break self._n_updates += self.n_epochs explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten()) # Logs self.logger.record("train/entropy_loss", np.mean(entropy_losses)) self.logger.record("train/policy_gradient_loss", np.mean(pg_losses)) self.logger.record("train/value_loss", np.mean(value_losses)) self.logger.record("train/supervised_loss", np.mean(supervised_losses)) self.logger.record("train/approx_kl", np.mean(approx_kl_divs)) self.logger.record("train/clip_fraction", np.mean(clip_fractions)) self.logger.record("train/loss", loss.item()) self.logger.record("train/explained_variance", explained_var) if hasattr(self.policy, "log_std"): self.logger.record("train/std", th.exp(self.policy.log_std).mean().item()) self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard") self.logger.record("train/clip_range", clip_range) if self.clip_range_vf is not None: self.logger.record("train/clip_range_vf", clip_range_vf) self.logger.dump() class StudentPPO(PPO): class StudentActorCriticPolicy(ActorCriticPolicy): def forward( self, obs: th.Tensor, deterministic: bool = False ) -> Tuple[th.Tensor, th.Tensor, th.Tensor, th.Tensor]: """ Forward pass in all the networks (actor and critic) :param obs: Observation :param deterministic: Whether to sample or use deterministic actions :return: action, value, log probability of the action, probabilities of the action """ latent_pi, latent_vf, latent_sde = self._get_latent(obs) # Evaluate the values for the given observations values = self.value_net(latent_vf) distribution = self._get_action_dist_from_latent(latent_pi, latent_sde=latent_sde) actions = distribution.get_actions(deterministic=deterministic) log_prob = distribution.log_prob(actions) probabilities = th.cat([th.unsqueeze(d.probs, dim=-1) for d in distribution.distribution], dim=-1) return actions, values, log_prob, probabilities def __init__( self, # Policy is not used, but it is kept for interface compatibility. policy: Union[str, Type[ActorCriticPolicy]], env: Union[GymEnv, str], learning_rate: Union[float, Schedule] = 3e-4, n_steps: int = 2048, batch_size: Optional[int] = 64, n_epochs: int = 10, gamma: float = 0.99, gae_lambda: float = 0.95, clip_range: Union[float, Schedule] = 0.2, clip_range_vf: Union[None, float, Schedule] = None, ent_coef: float = 0.0, vf_coef: float = 0.5, max_grad_norm: float = 0.5, use_sde: bool = False, sde_sample_freq: int = -1, target_kl: Optional[float] = None, tensorboard_log: Optional[str] = None, create_eval_env: bool = False, policy_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 0, seed: Optional[int] = None, device: Union[th.device, str] = "auto", _init_setup_model: bool = True, distillation_coef: float = 0.01, distillation_loss_weights: Optional[list] = None ): super(PPO, self).__init__( policy=self.StudentActorCriticPolicy, env=env, learning_rate=learning_rate, n_steps=n_steps, batch_size=batch_size, n_epochs=n_epochs, gamma=gamma, gae_lambda=gae_lambda, clip_range=clip_range, clip_range_vf=clip_range_vf, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, use_sde=use_sde, sde_sample_freq=sde_sample_freq, target_kl=target_kl, tensorboard_log=tensorboard_log, policy_kwargs=policy_kwargs, verbose=verbose, device=device, create_eval_env=create_eval_env, seed=seed, _init_setup_model=_init_setup_model, ) self.distillation_coef = distillation_coef if distillation_loss_weights is not None: self.distillation_loss_weights = th.tensor(distillation_loss_weights, dtype=th.float32) self.distillation_loss_weights = self.distillation_loss_weights.to(self.device) else: self.distillation_loss_weights = None def _setup_model(self): super()._setup_model() self.rollout_buffer = StudentRolloutBuffer( self.n_steps, self.observation_space, self.action_space, self.device, gamma=self.gamma, gae_lambda=self.gae_lambda, n_envs=self.n_envs, ) def collect_rollouts( self, env: VecEnv, callback: BaseCallback, rollout_buffer: StudentRolloutBuffer, n_rollout_steps: int, ) -> bool: """ Collect experiences using the current policy and fill a ``RolloutBuffer``. The term rollout here refers to the model-free notion and should not be used with the concept of rollout used in model-based RL or planning. :param env: The training environment :param callback: Callback that will be called at each step (and at the beginning and end of the rollout) :param rollout_buffer: Buffer to fill with rollouts :param n_steps: Number of experiences to collect per environment :return: True if function returned with at least `n_rollout_steps` collected, False if callback terminated rollout prematurely. """ assert self._last_obs is not None, "No previous observation was provided" n_steps = 0 rollout_buffer.reset() # Sample new weights for the state dependent exploration if self.use_sde: self.policy.reset_noise(env.num_envs) callback.on_rollout_start() while n_steps < n_rollout_steps: if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0: # Sample a new noise matrix self.policy.reset_noise(env.num_envs) with th.no_grad(): # Convert to pytorch tensor or to TensorDict obs_tensor = obs_as_tensor(self._last_obs, self.device) actions, values, log_probs, all_actions_probs = self.policy.forward(obs_tensor) actions = actions.cpu().numpy() # Rescale and perform action clipped_actions = actions # Clip the actions to avoid out of bound error if isinstance(self.action_space, gym.spaces.Box): clipped_actions = np.clip(actions, self.action_space.low, self.action_space.high) new_obs, rewards, dones, infos = env.step(clipped_actions) self.num_timesteps += env.num_envs # Give access to local variables callback.update_locals(locals()) if callback.on_step() is False: return False self._update_info_buffer(infos) n_steps += 1 if isinstance(self.action_space, gym.spaces.Discrete): # Reshape in case of discrete action actions = actions.reshape(-1, 1) teacher_actions = np.array([info['teacher_action'] for info in infos], dtype=np.float32) rollout_buffer.add( self._last_obs, actions, rewards, self._last_episode_starts, values, log_probs, teacher_actions, all_actions_probs, ) self._last_obs = new_obs self._last_episode_starts = dones with th.no_grad(): # Compute value for the last timestep obs_tensor = obs_as_tensor(new_obs, self.device) _, values, _, _ = self.policy.forward(obs_tensor) rollout_buffer.compute_returns_and_advantage(last_values=values, dones=dones) callback.on_rollout_end() return True def train(self) -> None: """ Update policy using the currently gathered rollout buffer. """ # Update optimizer learning rate self._update_learning_rate(self.policy.optimizer) # Compute current clip range clip_range = self.clip_range(self._current_progress_remaining) # Optional: clip range for the value function if self.clip_range_vf is not None: clip_range_vf = self.clip_range_vf(self._current_progress_remaining) entropy_losses = [] pg_losses, value_losses = [], [] clip_fractions = [] distillation_losses = [] continue_training = True # train for n_epochs epochs for epoch in range(self.n_epochs): approx_kl_divs = [] # Do a complete pass on the rollout buffer for rollout_data in self.rollout_buffer.get(self.batch_size): actions = rollout_data.actions if isinstance(self.action_space, spaces.Discrete): # Convert discrete action from float to long actions = rollout_data.actions.long().flatten() # Re-sample the noise matrix because the log_std has changed # TODO: investigate why there is no issue with the gradient # if that line is commented (as in SAC) if self.use_sde: self.policy.reset_noise(self.batch_size) values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions) values = values.flatten() # Normalize advantage advantages = rollout_data.advantages advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) # ratio between old and new policy, should be one at the first iteration ratio = th.exp(log_prob - rollout_data.old_log_prob) # clipped surrogate loss policy_loss_1 = advantages * ratio policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range) policy_loss = -th.min(policy_loss_1, policy_loss_2).mean() # Logging pg_losses.append(policy_loss.item()) clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item() clip_fractions.append(clip_fraction) if self.clip_range_vf is None: # No clipping values_pred = values else: # Clip the different between old and new value # NOTE: this depends on the reward scaling values_pred = rollout_data.old_values + th.clamp( values - rollout_data.old_values, -clip_range_vf, clip_range_vf ) # Value loss using the TD(gae_lambda) target value_loss = F.mse_loss(rollout_data.returns, values_pred) value_losses.append(value_loss.item()) # Entropy loss favor exploration if entropy is None: # Approximate entropy when no analytical form entropy_loss = -th.mean(-log_prob) else: entropy_loss = -th.mean(entropy) entropy_losses.append(entropy_loss.item()) # Policy distillation loss. probabilities = rollout_data.action_probabilities teacher_actions = rollout_data.teacher_actions assert teacher_actions[teacher_actions == -1].shape[0] == 0 distillation_loss = F.nll_loss( input=probabilities.log(), target=teacher_actions, weight=self.distillation_loss_weights ) distillation_losses.append(distillation_loss.item()) loss = \ policy_loss + \ self.ent_coef * entropy_loss + \ self.vf_coef * value_loss + \ self.distillation_coef * distillation_loss # Calculate approximate form of reverse KL Divergence for early stopping # see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417 # and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419 # and Schulman blog: http://joschu.net/blog/kl-approx.html with th.no_grad(): log_ratio = log_prob - rollout_data.old_log_prob approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy() approx_kl_divs.append(approx_kl_div) if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl: continue_training = False if self.verbose >= 1: print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}") break # Optimization step self.policy.optimizer.zero_grad() loss.backward() # Clip grad norm th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) self.policy.optimizer.step() if not continue_training: break self._n_updates += self.n_epochs explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten()) # Logs self.logger.record("train/entropy_loss",
np.mean(entropy_losses)
numpy.mean
import numpy as np from numpy import reshape from flask import Flask, request, jsonify, render_template import pickle app = Flask(__name__) print(__name__) model = pickle.load(open('model_pricing.pkl', 'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict',methods=['POST']) def predict(): ''' For rendering results on HTML GUI ''' print("request values : ", request.form.values()) int_features = [int(x) for x in request.form.values()] print("int_features : ", int_features) final_features = [np.array(int_features)] print("final features : ", final_features) final_features =
reshape(final_features, (-1, 1))
numpy.reshape
from typing import Dict, Mapping, List, Tuple import itertools import demes import numpy as np import matplotlib import matplotlib.patheffects from . import utils class Tube: """ A deme represented as a tube. The tube has a length along the time dimension and a width equal to the deme's population size, which may change over time. :ivar list[float] time: Coordinates along the time dimension. :ivar list[float] size1: Coordinates along the non-time dimension, corresponding to the first side of the tube. :ivar list[float] size2: Coordinates along the non-time dimension, corresponding to the second side of the tube. """ def __init__( self, deme: demes.Deme, mid: float, inf_start_time: float, log_time: bool = False, ): """ :param demes.Deme deme: The deme for which to calculate coordinates. :param float mid: The mid point of the deme along the non-time dimension. :param float inf_start_time: The value along the time dimension which is used instead of infinity (for epochs with infinite start times). :param bool log_time: The time axis uses a log-10 scale. """ self.deme = deme self.mid = mid self._coords(deme, mid, inf_start_time, log_time) def _coords( self, deme: demes.Deme, mid: float, inf_start_time: float, log_time: bool, num_points: int = 100, ) -> None: """Calculate tube coordinates.""" time: List[float] = [] size1: List[float] = [] size2: List[float] = [] for k, epoch in enumerate(deme.epochs): start_time = epoch.start_time if np.isinf(start_time): start_time = inf_start_time end_time = epoch.end_time if epoch.size_function == "constant": t = np.array([start_time, end_time]) N1 = [mid - epoch.start_size / 2] * 2 N2 = [mid + epoch.end_size / 2] * 2 elif epoch.size_function == "exponential": if log_time: t = np.exp( np.linspace( np.log(start_time), np.log(max(1, end_time)), num=num_points ) ) else: t = np.linspace(start_time, end_time, num=num_points) dt = (start_time - t) / (start_time - end_time) r = np.log(epoch.end_size / epoch.start_size) N = epoch.start_size * np.exp(r * dt) N1 = mid - N / 2 N2 = mid + N / 2 elif epoch.size_function == "linear": if log_time: t = np.exp( np.linspace( np.log(start_time), np.log(max(1, end_time)), num=num_points ) ) else: t =
np.linspace(start_time, end_time, num=num_points)
numpy.linspace
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= import unittest from enum import Enum import libpymo import numpy as np from scipy.stats import norm class TestBiasCorrection(unittest.TestCase): def test_bias_correction(self): # Generating random numbers from a normal distribution for the weights and biases of the current and prev layer np.random.seed(1) shape = (2, 3, 2, 2) # output 1 o1 = np.random.randn(*shape) # output 2 o2 = np.random.randn(*shape) biasCorrection = libpymo.BiasCorrection() biasCorrection.storePreActivationOutput(o1) biasCorrection.storePreActivationOutput(o1) biasCorrection.storeQuantizedPreActivationOutput(o2) biasCorrection.storeQuantizedPreActivationOutput(o2) bias_tensor = libpymo.TensorParamBiasCorrection() bias = np.array(np.random.randn(shape[1])) bias_tensor.data = bias biasCorrection.correctBias(bias_tensor) bias_python = correct_bias(o1, o2, bias) print(bias_tensor.data) print(bias_python) assert np.allclose(bias_tensor.data, bias_python) def test_bias_correction_bn_params_no_activation(self): np.random.seed(1) shape = (3, 3, 2, 2) weight = np.random.randn(*shape) quantized_weight = np.random.randn(*shape) bn_params = libpymo.BnParamsBiasCorr() gamma = np.array(np.random.randn(3)) beta = np.array(np.random.randn(3)) bn_params.gamma = gamma bn_params.beta = beta bias_tensor = libpymo.TensorParamBiasCorrection() bias = np.array(np.random.randn(shape[1])) bias_copy = bias.copy() bias_tensor.data = bias activation = libpymo.ActivationType.noActivation biasCorrection = libpymo.BnBasedBiasCorrection() biasCorrection.correctBias(bias_tensor, quantized_weight, weight, bn_params, activation) bias_python = bn_based_bias_correction(weight, quantized_weight, bias_copy, beta, gamma, ActivationType.no_activation) assert (np.allclose(bias_python, bias_tensor.data)) def test_bias_correction_bn_params_relu_activation(self):
np.random.seed(1)
numpy.random.seed
# -*- coding: utf-8 -*- """ Unittests for pointcloud @author: simlk """ import os # import sys import unittest # import time import logging import numpy as np import tempfile import json # import ctypes from thatsDEM2 import pointcloud, osr_utils LOG = logging.getLogger(__name__) class TestPointcloud(unittest.TestCase): def test_pointcloud_constructor1(self): LOG.info("Testing pointcloud constructor") pc = pointcloud.Pointcloud(
np.ones((2, 2))
numpy.ones
# EXPRES-specific functions from which Excalibur emerges # Ha ha, get it? import os from os.path import basename, join, isfile from glob import glob import numpy as np import pandas as pd from astropy.io import fits from astropy.constants import c from astropy.time import Time from scipy.io import readsav from tqdm.auto import tqdm # LFC Constants rep_rate = 14e9 lfc_offset = 6.19e9 ########################################################### # Functions for Reading in Data ########################################################### def readParams(file_name): """ Given the file name of a check_point file, load in all relevant data into 1D vectors Returns vectors for line center in pixel (x), order (y), error in line center fit in pixels (e), and wavelength of line (w) """ try: info = np.load(file_name,allow_pickle=True)[()] except FileNotFoundError: if file_name.split('/')[-2] == 'checkpoint': lfc_id_dir = '/expres/extracted/lfc_cal/lfc_id/' file_name = lfc_id_dir + os.path.basename(file_name) info = np.load(file_name,allow_pickle=True)[()] else: raise FileNotFoundError # Assemble information into "fit-able" form num_orders = len(info['params']) lines = [p[:,1] for p in info['params'] if p is not None] errs = [np.sqrt(cov[:,1,1]) for cov in info['cov'] if cov is not None] ordrs = [o for o in np.arange(86) if info['params'][o] is not None] waves = [w for w in info['wvln'] if w is not None] # I believe, but am not sure, that the wavelengths are multiplied by order # to separate them from when orders overlap at the edges waves = [wvln for order, wvln in zip(ordrs,waves)] ordrs = [np.ones_like(x) * m for m,x in zip(ordrs, lines)] x = np.concatenate(lines) y =
np.concatenate(ordrs)
numpy.concatenate
import numpy as np import scipy as sp from matplotlib import pyplot as plt from interaction3.reconstruction import sim_functions as sim from interaction3.reconstruction import Beamformer filename = 'test_rf_data.npz' nelements = 32 pitch = 300e-6 angles = np.linspace(-5, 5, 21) xx, yy, zz = np.mgrid[-0.02:0.02:81j, 0:1:1j, 0.001:0.041:81j] field_pos = np.c_[xx.ravel(), yy.ravel(), zz.ravel()] xv, yv, zv = np.linspace(0, (nelements - 1) * pitch, nelements) - (nelements - 1) * pitch / 2, 0, 0 xx, yy, zz = np.meshgrid(xv, yv, zv) array_pos = np.c_[xx.ravel(), yy.ravel(), zz.ravel()] def test_planewave_beamformer(): with np.load(filename) as file: rfdata = file['planewave_rf'] t0 = file['planewave_t0'] kwargs = dict() kwargs['sample_frequency'] = 100e6 kwargs['t0'] = t0 kwargs['window'] = 101 kwargs['transmit_pos'] = [0, 0, 0] kwargs['receive_pos'] = array_pos kwargs['field_pos'] = field_pos kwargs['rfdata'] = rfdata kwargs['planewave'] = True kwargs['resample'] = 8 bf = Beamformer(**kwargs) bfdata = bf.run() envdata = sim.envelope(bfdata, axis=1) imgdata = np.max(envdata, axis=1).reshape((81, 81)) plt.figure() plt.imshow(imgdata) return bfdata, imgdata def test_synthetic_beamformer(): with np.load(filename) as file: rfdata = file['synthetic_rf'] t0 = file['synthetic_t0'] kwargs = dict() kwargs['sample_frequency'] = 100e6 kwargs['t0'] = t0 kwargs['window'] = 101 kwargs['transmit_pos'] = array_pos kwargs['receive_pos'] = array_pos kwargs['field_pos'] = field_pos kwargs['rfdata'] = rfdata kwargs['planewave'] = False kwargs['resample'] = 8 bf = Beamformer(**kwargs) bfdata = bf.run() envdata = sim.envelope(np.sum(bfdata, axis=-1), axis=1) # envdata = sim.envelope(bfdata, axis=1) imgdata =
np.max(envdata, axis=1)
numpy.max
# coding: utf-8 # # Linear Regression # # ## 1. Introduction # # ### 1.1 Abstract # # In this exercise, we illustrate Hoeffding's inequality in the context of virtual coin flips. # # ### 1.2 Hoeffding's Inequality for a Single Bin # # For an infinite bin, from which we pick a sample of size $N$, we can calculate the probability bounds between the sample frequency, $\nu$, and unknown the bin frequency, $\mu$ via [Hoeffding's Inequality](https://en.wikipedia.org/wiki/Hoeffding%27s_inequality): # # $$\mathbb{P} \left[ \left| \nu - \mu \right| > \epsilon \right] \le 2e^{-2\epsilon^2 N}$$ # # It is valid for all $N$ and $\epsilon$ and the bound does not depend on $\mu$. It illustrates the tradeoff between $N$, $\epsilon$, and the bound. # # ### 1.3 Libraries # # The Python libraries used are: # In[1]: from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import multiprocessing as mp import itertools import numpy as np import matplotlib.pyplot as plt np.set_printoptions(edgeitems=3,infstr='inf',linewidth=75,nanstr='nan',precision=4,suppress=False,threshold=500,formatter=None) get_ipython().magic('matplotlib inline') # ## 2. Virtual Coin Flips # # ### 2.1 Mean Frequency of "Obtaining a Head" for Three Coins # # In this virtual experiment, 1000 fair coins are simulated. Each coin is flipped 10 times. The data is stored in a matrix where the 10 columns represent each of the 10 flips and the 1000 rows represent the 1000 individual coins. # # It is assumed that 'heads' are represented by '1' and 'tails' are represented by '0', so that we can use `np.sum(..., axis=1)` to get the number of heads for each coin. # # A total of three coins are selected from the 1000 fair coins - $c_1$ is the first coin, $c_{rand}$ is a random coin, and $c_{min}$ is the coin that yielded the minimum number of heads (out of the 10 coin flips). The following code calculates the mean frequency of "obtaining a head" for each of these three coins. # In[2]: def get_coin_flip_data(): c = np.random.randint(2,size=(1000,10)) idx = np.random.choice(1000) # choose index for a random coin n_heads =
np.sum(c,axis=1)
numpy.sum
from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_, assert_approx_equal, assert_allclose, assert_array_equal, assert_equal, assert_array_almost_equal_nulp, suppress_warnings) import pytest from pytest import raises as assert_raises from scipy import signal from scipy.fft import fftfreq from scipy.signal import (periodogram, welch, lombscargle, csd, coherence, spectrogram, stft, istft, check_COLA, check_NOLA) from scipy.signal.spectral import _spectral_helper class TestPeriodogram(object): def test_real_onesided_even(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.linspace(0, 0.5, 9)) q = np.ones(9) q[0] = 0 q[-1] /= 2.0 q /= 8 assert_allclose(p, q) def test_real_onesided_odd(self): x = np.zeros(15) x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.arange(8.0)/15.0) q = np.ones(8) q[0] = 0 q *= 2.0/15.0 assert_allclose(p, q, atol=1e-15) def test_real_twosided(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x, return_onesided=False) assert_allclose(f, fftfreq(16, 1.0)) q = np.full(16, 1/16.0) q[0] = 0 assert_allclose(p, q) def test_real_spectrum(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x, scaling='spectrum') g, q = periodogram(x, scaling='density') assert_allclose(f, np.linspace(0, 0.5, 9)) assert_allclose(p, q/16.0) def test_integer_even(self): x = np.zeros(16, dtype=int) x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.linspace(0, 0.5, 9)) q = np.ones(9) q[0] = 0 q[-1] /= 2.0 q /= 8 assert_allclose(p, q) def test_integer_odd(self): x = np.zeros(15, dtype=int) x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.arange(8.0)/15.0) q = np.ones(8) q[0] = 0 q *= 2.0/15.0 assert_allclose(p, q, atol=1e-15) def test_integer_twosided(self): x = np.zeros(16, dtype=int) x[0] = 1 f, p = periodogram(x, return_onesided=False) assert_allclose(f, fftfreq(16, 1.0)) q = np.full(16, 1/16.0) q[0] = 0 assert_allclose(p, q) def test_complex(self): x = np.zeros(16, np.complex128) x[0] = 1.0 + 2.0j f, p = periodogram(x, return_onesided=False) assert_allclose(f, fftfreq(16, 1.0)) q = np.full(16, 5.0/16.0) q[0] = 0 assert_allclose(p, q) def test_unk_scaling(self): assert_raises(ValueError, periodogram, np.zeros(4, np.complex128), scaling='foo') def test_nd_axis_m1(self): x = np.zeros(20, dtype=np.float64) x = x.reshape((2,1,10)) x[:,:,0] = 1.0 f, p = periodogram(x) assert_array_equal(p.shape, (2, 1, 6)) assert_array_almost_equal_nulp(p[0,0,:], p[1,0,:], 60) f0, p0 = periodogram(x[0,0,:]) assert_array_almost_equal_nulp(p0[np.newaxis,:], p[1,:], 60) def test_nd_axis_0(self): x = np.zeros(20, dtype=np.float64) x = x.reshape((10,2,1)) x[0,:,:] = 1.0 f, p = periodogram(x, axis=0) assert_array_equal(p.shape, (6,2,1)) assert_array_almost_equal_nulp(p[:,0,0], p[:,1,0], 60) f0, p0 = periodogram(x[:,0,0]) assert_array_almost_equal_nulp(p0, p[:,1,0]) def test_window_external(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x, 10, 'hann') win = signal.get_window('hann', 16) fe, pe = periodogram(x, 10, win) assert_array_almost_equal_nulp(p, pe) assert_array_almost_equal_nulp(f, fe) win_err = signal.get_window('hann', 32) assert_raises(ValueError, periodogram, x, 10, win_err) # win longer than signal def test_padded_fft(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x) fp, pp = periodogram(x, nfft=32) assert_allclose(f, fp[::2]) assert_allclose(p, pp[::2]) assert_array_equal(pp.shape, (17,)) def test_empty_input(self): f, p = periodogram([]) assert_array_equal(f.shape, (0,)) assert_array_equal(p.shape, (0,)) for shape in [(0,), (3,0), (0,5,2)]: f, p = periodogram(np.empty(shape)) assert_array_equal(f.shape, shape) assert_array_equal(p.shape, shape) def test_empty_input_other_axis(self): for shape in [(3,0), (0,5,2)]: f, p = periodogram(np.empty(shape), axis=1) assert_array_equal(f.shape, shape) assert_array_equal(p.shape, shape) def test_short_nfft(self): x = np.zeros(18) x[0] = 1 f, p = periodogram(x, nfft=16) assert_allclose(f, np.linspace(0, 0.5, 9)) q = np.ones(9) q[0] = 0 q[-1] /= 2.0 q /= 8 assert_allclose(p, q) def test_nfft_is_xshape(self): x = np.zeros(16) x[0] = 1 f, p = periodogram(x, nfft=16) assert_allclose(f, np.linspace(0, 0.5, 9)) q = np.ones(9) q[0] = 0 q[-1] /= 2.0 q /= 8 assert_allclose(p, q) def test_real_onesided_even_32(self): x = np.zeros(16, 'f') x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.linspace(0, 0.5, 9)) q = np.ones(9, 'f') q[0] = 0 q[-1] /= 2.0 q /= 8 assert_allclose(p, q) assert_(p.dtype == q.dtype) def test_real_onesided_odd_32(self): x = np.zeros(15, 'f') x[0] = 1 f, p = periodogram(x) assert_allclose(f, np.arange(8.0)/15.0) q = np.ones(8, 'f') q[0] = 0 q *= 2.0/15.0 assert_allclose(p, q, atol=1e-7) assert_(p.dtype == q.dtype) def test_real_twosided_32(self): x = np.zeros(16, 'f') x[0] = 1 f, p = periodogram(x, return_onesided=False) assert_allclose(f, fftfreq(16, 1.0)) q = np.full(16, 1/16.0, 'f') q[0] = 0 assert_allclose(p, q) assert_(p.dtype == q.dtype) def test_complex_32(self): x = np.zeros(16, 'F') x[0] = 1.0 + 2.0j f, p = periodogram(x, return_onesided=False) assert_allclose(f, fftfreq(16, 1.0)) q = np.full(16, 5.0/16.0, 'f') q[0] = 0 assert_allclose(p, q) assert_(p.dtype == q.dtype) class TestWelch(object): def test_real_onesided_even(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8) assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.08333333, 0.15277778, 0.22222222, 0.22222222, 0.11111111]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_onesided_odd(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=9) assert_allclose(f, np.arange(5.0)/9.0) q = np.array([0.12477455, 0.23430933, 0.17072113, 0.17072113, 0.17072113]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_twosided(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.08333333, 0.07638889, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_spectrum(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8, scaling='spectrum') assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.015625, 0.02864583, 0.04166667, 0.04166667, 0.02083333]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_onesided_even(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8) assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.08333333, 0.15277778, 0.22222222, 0.22222222, 0.11111111]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_onesided_odd(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=9) assert_allclose(f, np.arange(5.0)/9.0) q = np.array([0.12477455, 0.23430933, 0.17072113, 0.17072113, 0.17072113]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_twosided(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.08333333, 0.07638889, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_complex(self): x = np.zeros(16, np.complex128) x[0] = 1.0 + 2.0j x[8] = 1.0 + 2.0j f, p = welch(x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.41666667, 0.38194444, 0.55555556, 0.55555556, 0.55555556, 0.55555556, 0.55555556, 0.38194444]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_unk_scaling(self): assert_raises(ValueError, welch, np.zeros(4, np.complex128), scaling='foo', nperseg=4) def test_detrend_linear(self): x = np.arange(10, dtype=np.float64) + 0.04 f, p = welch(x, nperseg=10, detrend='linear') assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_no_detrending(self): x = np.arange(10, dtype=np.float64) + 0.04 f1, p1 = welch(x, nperseg=10, detrend=False) f2, p2 = welch(x, nperseg=10, detrend=lambda x: x) assert_allclose(f1, f2, atol=1e-15) assert_allclose(p1, p2, atol=1e-15) def test_detrend_external(self): x = np.arange(10, dtype=np.float64) + 0.04 f, p = welch(x, nperseg=10, detrend=lambda seg: signal.detrend(seg, type='l')) assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_detrend_external_nd_m1(self): x = np.arange(40, dtype=np.float64) + 0.04 x = x.reshape((2,2,10)) f, p = welch(x, nperseg=10, detrend=lambda seg: signal.detrend(seg, type='l')) assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_detrend_external_nd_0(self): x = np.arange(20, dtype=np.float64) + 0.04 x = x.reshape((2,1,10)) x = np.rollaxis(x, 2, 0) f, p = welch(x, nperseg=10, axis=0, detrend=lambda seg: signal.detrend(seg, axis=0, type='l')) assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_nd_axis_m1(self): x = np.arange(20, dtype=np.float64) + 0.04 x = x.reshape((2,1,10)) f, p = welch(x, nperseg=10) assert_array_equal(p.shape, (2, 1, 6)) assert_allclose(p[0,0,:], p[1,0,:], atol=1e-13, rtol=1e-13) f0, p0 = welch(x[0,0,:], nperseg=10) assert_allclose(p0[np.newaxis,:], p[1,:], atol=1e-13, rtol=1e-13) def test_nd_axis_0(self): x = np.arange(20, dtype=np.float64) + 0.04 x = x.reshape((10,2,1)) f, p = welch(x, nperseg=10, axis=0) assert_array_equal(p.shape, (6,2,1)) assert_allclose(p[:,0,0], p[:,1,0], atol=1e-13, rtol=1e-13) f0, p0 = welch(x[:,0,0], nperseg=10) assert_allclose(p0, p[:,1,0], atol=1e-13, rtol=1e-13) def test_window_external(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, 10, 'hann', nperseg=8) win = signal.get_window('hann', 8) fe, pe = welch(x, 10, win, nperseg=None) assert_array_almost_equal_nulp(p, pe) assert_array_almost_equal_nulp(f, fe) assert_array_equal(fe.shape, (5,)) # because win length used as nperseg assert_array_equal(pe.shape, (5,)) assert_raises(ValueError, welch, x, 10, win, nperseg=4) # because nperseg != win.shape[-1] win_err = signal.get_window('hann', 32) assert_raises(ValueError, welch, x, 10, win_err, nperseg=None) # win longer than signal def test_empty_input(self): f, p = welch([]) assert_array_equal(f.shape, (0,)) assert_array_equal(p.shape, (0,)) for shape in [(0,), (3,0), (0,5,2)]: f, p = welch(np.empty(shape)) assert_array_equal(f.shape, shape) assert_array_equal(p.shape, shape) def test_empty_input_other_axis(self): for shape in [(3,0), (0,5,2)]: f, p = welch(np.empty(shape), axis=1) assert_array_equal(f.shape, shape) assert_array_equal(p.shape, shape) def test_short_data(self): x = np.zeros(8) x[0] = 1 #for string-like window, input signal length < nperseg value gives #UserWarning, sets nperseg to x.shape[-1] with suppress_warnings() as sup: sup.filter(UserWarning, "nperseg = 256 is greater than input length = 8, using nperseg = 8") f, p = welch(x,window='hann') # default nperseg f1, p1 = welch(x,window='hann', nperseg=256) # user-specified nperseg f2, p2 = welch(x, nperseg=8) # valid nperseg, doesn't give warning assert_allclose(f, f2) assert_allclose(p, p2) assert_allclose(f1, f2) assert_allclose(p1, p2) def test_window_long_or_nd(self): assert_raises(ValueError, welch, np.zeros(4), 1, np.array([1,1,1,1,1])) assert_raises(ValueError, welch, np.zeros(4), 1, np.arange(6).reshape((2,3))) def test_nondefault_noverlap(self): x = np.zeros(64) x[::8] = 1 f, p = welch(x, nperseg=16, noverlap=4) q = np.array([0, 1./12., 1./3., 1./5., 1./3., 1./5., 1./3., 1./5., 1./6.]) assert_allclose(p, q, atol=1e-12) def test_bad_noverlap(self): assert_raises(ValueError, welch, np.zeros(4), 1, 'hann', 2, 7) def test_nfft_too_short(self): assert_raises(ValueError, welch, np.ones(12), nfft=3, nperseg=4) def test_real_onesided_even_32(self): x = np.zeros(16, 'f') x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8) assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.08333333, 0.15277778, 0.22222222, 0.22222222, 0.11111111], 'f') assert_allclose(p, q, atol=1e-7, rtol=1e-7) assert_(p.dtype == q.dtype) def test_real_onesided_odd_32(self): x = np.zeros(16, 'f') x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=9) assert_allclose(f, np.arange(5.0)/9.0) q = np.array([0.12477458, 0.23430935, 0.17072113, 0.17072116, 0.17072113], 'f') assert_allclose(p, q, atol=1e-7, rtol=1e-7) assert_(p.dtype == q.dtype) def test_real_twosided_32(self): x = np.zeros(16, 'f') x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.08333333, 0.07638889, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889], 'f') assert_allclose(p, q, atol=1e-7, rtol=1e-7) assert_(p.dtype == q.dtype) def test_complex_32(self): x = np.zeros(16, 'F') x[0] = 1.0 + 2.0j x[8] = 1.0 + 2.0j f, p = welch(x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.41666666, 0.38194442, 0.55555552, 0.55555552, 0.55555558, 0.55555552, 0.55555552, 0.38194442], 'f') assert_allclose(p, q, atol=1e-7, rtol=1e-7) assert_(p.dtype == q.dtype, 'dtype mismatch, %s, %s' % (p.dtype, q.dtype)) def test_padded_freqs(self): x = np.zeros(12) nfft = 24 f = fftfreq(nfft, 1.0)[:nfft//2+1] f[-1] *= -1 fodd, _ = welch(x, nperseg=5, nfft=nfft) feven, _ = welch(x, nperseg=6, nfft=nfft) assert_allclose(f, fodd) assert_allclose(f, feven) nfft = 25 f = fftfreq(nfft, 1.0)[:(nfft + 1)//2] fodd, _ = welch(x, nperseg=5, nfft=nfft) feven, _ = welch(x, nperseg=6, nfft=nfft) assert_allclose(f, fodd) assert_allclose(f, feven) def test_window_correction(self): A = 20 fs = 1e4 nperseg = int(fs//10) fsig = 300 ii = int(fsig*nperseg//fs) # Freq index of fsig tt = np.arange(fs)/fs x = A*np.sin(2*np.pi*fsig*tt) for window in ['hann', 'bartlett', ('tukey', 0.1), 'flattop']: _, p_spec = welch(x, fs=fs, nperseg=nperseg, window=window, scaling='spectrum') freq, p_dens = welch(x, fs=fs, nperseg=nperseg, window=window, scaling='density') # Check peak height at signal frequency for 'spectrum' assert_allclose(p_spec[ii], A**2/2.0) # Check integrated spectrum RMS for 'density' assert_allclose(np.sqrt(np.trapz(p_dens, freq)), A*np.sqrt(2)/2, rtol=1e-3) def test_axis_rolling(self): np.random.seed(1234) x_flat = np.random.randn(1024) _, p_flat = welch(x_flat) for a in range(3): newshape = [1,]*3 newshape[a] = -1 x = x_flat.reshape(newshape) _, p_plus = welch(x, axis=a) # Positive axis index _, p_minus = welch(x, axis=a-x.ndim) # Negative axis index assert_equal(p_flat, p_plus.squeeze(), err_msg=a) assert_equal(p_flat, p_minus.squeeze(), err_msg=a-x.ndim) def test_average(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = welch(x, nperseg=8, average='median') assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([.1, .05, 0., 1.54074396e-33, 0.]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) assert_raises(ValueError, welch, x, nperseg=8, average='unrecognised-average') class TestCSD: def test_pad_shorter_x(self): x = np.zeros(8) y = np.zeros(12) f = np.linspace(0, 0.5, 7) c = np.zeros(7,dtype=np.complex128) f1, c1 = csd(x, y, nperseg=12) assert_allclose(f, f1) assert_allclose(c, c1) def test_pad_shorter_y(self): x = np.zeros(12) y = np.zeros(8) f = np.linspace(0, 0.5, 7) c = np.zeros(7,dtype=np.complex128) f1, c1 = csd(x, y, nperseg=12) assert_allclose(f, f1) assert_allclose(c, c1) def test_real_onesided_even(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=8) assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.08333333, 0.15277778, 0.22222222, 0.22222222, 0.11111111]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_onesided_odd(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=9) assert_allclose(f, np.arange(5.0)/9.0) q = np.array([0.12477455, 0.23430933, 0.17072113, 0.17072113, 0.17072113]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_twosided(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.08333333, 0.07638889, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_real_spectrum(self): x = np.zeros(16) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=8, scaling='spectrum') assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.015625, 0.02864583, 0.04166667, 0.04166667, 0.02083333]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_onesided_even(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=8) assert_allclose(f, np.linspace(0, 0.5, 5)) q = np.array([0.08333333, 0.15277778, 0.22222222, 0.22222222, 0.11111111]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_onesided_odd(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=9) assert_allclose(f, np.arange(5.0)/9.0) q = np.array([0.12477455, 0.23430933, 0.17072113, 0.17072113, 0.17072113]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_integer_twosided(self): x = np.zeros(16, dtype=int) x[0] = 1 x[8] = 1 f, p = csd(x, x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.08333333, 0.07638889, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_complex(self): x = np.zeros(16, np.complex128) x[0] = 1.0 + 2.0j x[8] = 1.0 + 2.0j f, p = csd(x, x, nperseg=8, return_onesided=False) assert_allclose(f, fftfreq(8, 1.0)) q = np.array([0.41666667, 0.38194444, 0.55555556, 0.55555556, 0.55555556, 0.55555556, 0.55555556, 0.38194444]) assert_allclose(p, q, atol=1e-7, rtol=1e-7) def test_unk_scaling(self): assert_raises(ValueError, csd, np.zeros(4, np.complex128), np.ones(4, np.complex128), scaling='foo', nperseg=4) def test_detrend_linear(self): x = np.arange(10, dtype=np.float64) + 0.04 f, p = csd(x, x, nperseg=10, detrend='linear') assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_no_detrending(self): x = np.arange(10, dtype=np.float64) + 0.04 f1, p1 = csd(x, x, nperseg=10, detrend=False) f2, p2 = csd(x, x, nperseg=10, detrend=lambda x: x) assert_allclose(f1, f2, atol=1e-15) assert_allclose(p1, p2, atol=1e-15) def test_detrend_external(self): x = np.arange(10, dtype=np.float64) + 0.04 f, p = csd(x, x, nperseg=10, detrend=lambda seg: signal.detrend(seg, type='l')) assert_allclose(p, np.zeros_like(p), atol=1e-15) def test_detrend_external_nd_m1(self): x = np.arange(40, dtype=np.float64) + 0.04 x = x.reshape((2,2,10)) f, p = csd(x, x, nperseg=10, detrend=lambda seg: signal.detrend(seg, type='l')) assert_allclose(p,
np.zeros_like(p)
numpy.zeros_like
from __future__ import annotations import numpy as np from numpy import ndarray as Array from functools import total_ordering from typing import List, Dict, Tuple, Iterable, Callable, NamedTuple, Union, Optional class Point(NamedTuple): """ Position tuple """ x: int = 0 y: int = 0 def __add__(self, other: Union[Point, Tuple[int, int]]) -> Point: """ Component wise add onto the point :param other: Other point to add :return: The resulting point """ return Point(self.x + other[0], self.y + other[1]) def __sub__(self, other: Union[Point, Tuple[int, int]]) -> Point: """ Component wise subtract onto the point :param other: Other point to subtract :return: The resulting point """ return Point(self.x - other[0], self.y - other[1]) def __mod__(self, other: Union[Point, Tuple[int, int]]) -> Point: """ Component wise modulo onto the point :param other: Other point to mod by :return: The resulting point """ return Point(self.x % other[0], self.y % other[1]) @staticmethod def manhattan_distance(a: Point, b: Point) -> Point: """ Manhattan distance between two points :param a: First point :param b: Second point :return: The distance between the points """ return Point(abs(a.x - b.x), abs(a.y - b.y)) class State(NamedTuple): """ Board state, consisting of cost and associated board """ cost: int target: int board: Board @total_ordering class Board: """ Chi-Puzzle board """ def __init__(self, array: Array, zero: Point, goals: Tuple[Array, ...], heuristic: Optional[Callable[[Board], int]], sort_g: bool, cost: int = 0, parent: Optional[State] = None) -> None: """ Creates a new board with the specified parameters :param array: Board array :param zero: Position of the zero :param goals: Tuple of goal states :param heuristic: Heuristic function used :param cost: Cost to reach this board :param parent: Parent board """ self.height: int self.width: int self.height, self.width = array.shape self.array = array self.zero = zero self.goals = goals self._heuristic = heuristic self._sort_g = sort_g self.g = cost self.parent = parent self._hash: Optional[int] = None self.is_goal = any(np.array_equal(self.array, goal) for goal in self.goals) # Calculate heuristic self.h = heuristic(self) if heuristic is not None else 0 self.f = self.g + self.h if self._sort_g else self.h # region Ordering def __hash__(self) -> int: if self._hash is None: self._hash = hash(tuple(self.array.flat)) return self._hash def __eq__(self, other: Board) -> bool: return np.array_equal(self.array, other.array) def __lt__(self, other: Board) -> bool: return self.f < other.f def __str__(self) -> str: return " ".join(map(str, self.array.flat)) # endregion # region Move generation def generate_moves(self) -> Iterable[State]: """ Generates all possible moves from the current board state :return: Iterable of all the possible moves """ targets: Dict[Point, State] = {} # Check cardinal direction moves self._check_cardinal(self.zero + (1, 0), targets) self._check_cardinal(self.zero - (1, 0), targets) self._check_cardinal(self.zero + (0, 1), targets) self._check_cardinal(self.zero - (0, 1), targets) # Check the corner moves max_x = self.height - 1 max_y = self.width - 1 if self.zero in ((0, 0), (max_x, max_y)): # Top left/bottom right corners self._check_corner(self.zero + (1, 1), targets) self._check_corner(self.zero - (1, 1), targets) elif self.zero in ((max_x, 0), (0, max_y)): # Bottom left/top right corners self._check_corner(self.zero + (1, -1), targets) self._check_corner(self.zero - (1, -1), targets) return targets.values() def _check_cardinal(self, target: Point, targets: Dict[Point, State]) -> None: """ Checks for wrapping on a cardinal move and adjusts the position and cost :param target: Target move :param targets: Known targets so far """ # Check if we're wrapping with this move if target.x in (-1, self.height) or target.y in (-1, self.width): cost = 2 target %= self.array.shape else: cost = 1 self._check_target(target, cost, targets) def _check_corner(self, target: Point, targets: Dict[Point, State]) -> None: """ Adjusts the wrapping on corner moves and sets the correct cost :param target: Target move :param targets: Known targets so far """ # Adjust wrapping bounds target %= self.array.shape self._check_target(target, 3, targets) def _check_target(self, target: Point, cost: int, targets: Dict[Point, State]) -> None: """ Validates the target move and adds it to or adjusts known targets if possible :param target: Target move :param cost: Move cost :param targets: Known targets so far """ # Check if not in targets if target not in targets: # Copy array, then apply the move a = self.array.copy() t = a[target] a[self.zero], a[target] = t, a[self.zero] board = Board(a, target, self.goals, self._heuristic, self._sort_g, self.g + cost, State(cost, t, self)) else: # Check if we have a lower cost state = targets[target] if cost >= state.cost: # If not do nothing return # Reuse the same board if possible board = state.board board.g = self.g + cost # Create state targets[target] = State(cost, 0, board) # endregion # region Heuristics @staticmethod def h0(self: Board) -> int: """ Heuristic 0 - A naive heuristic base one the position of 0 :param self: The board to calculate the heuristic for :return: The value of the heuristic """ return 0 if self.array[(self.height - 1, self.width - 1)] == 0 else 1 @staticmethod def h1(self: Board) -> int: """ Heuristic 1 - Hamming Distance :param self: The board to calculate the heuristic for :return: The value of the heuristic """ # Find the lowest heuristic over all goal states, return 0 if a goal state return min(map(self._heuristic_hamming, self.goals)) if not self.is_goal else 0 @staticmethod def h2(self: Board) -> int: """ Heuristic 2 - Wrapped Manhattan Distance We are using regular Manhattan Distance, and accounting for wraps. If a wrap is the shorter path, one is also added to account for the more expensive move. :param self: The board to calculate the heuristic for :return: The value of the heuristic """ # Find the lowest heuristic over all goal states, return 0 if a goal state return min(map(self._heuristic_manhattan, self.goals)) if not self.is_goal else 0 def _heuristic_hamming(self, goal: Array) -> int: """ Hamming Distance heuristic :param goal: Goal state the calculate the heuristic from :return: The Hamming Distance from the given goal state """ # Running total total = 0 for index in np.ndindex(goal.shape): i = goal[index] if i == 0: # Skip zero since it's out "empty" position continue # If the spots do not match, add one if i != self.array[index]: total += 1 return total def _heuristic_manhattan(self, goal: Array) -> int: """ Manhattan Distance heuristic :param goal: Goal state the calculate the heuristic from :return: The Manhattan Distance from the given goal state """ # Running total total = 0 for index in np.ndindex(goal.shape): i = goal[index] if i == 0: # Skip zero since it's out "empty" position continue g = Point(*index) t = self._find_point(self.array, i) x, y = Point.manhattan_distance(g, t) # Take care of wrapping wraps = 0 if x > self.height // 2: x = self.height - x wraps = 1 if y > self.width // 2: y = self.width - y wraps = 1 # Make sure we don't add two wrapping penalties total += x + y + wraps return total # endregion # region Static methods @staticmethod def _find_point(array: Array, value: int) -> Point: return Point(*np.asarray(np.where(array == value)).T[0]) @staticmethod def from_list(data: List[int], shape: Tuple[int, int], heuristic: Optional[Callable[[Board], int]] = None, sort_g: bool = True, dtype: Optional[object] = np.int16) -> Board: """ Creates a new board from a list and a specified size :param data: List to create the board from :param shape: Shape of the board (height, width) :param heuristic: Heuristic function :param sort_g: If the sorting should account g(n) :param dtype: Type used within the Numpy arrays :return: The created board """ # Create the board array array: Array = np.array(data, dtype=dtype).reshape(shape) # Find the location of the zero zero = Board._find_point(array, 0) # Create both solution boards g1: Array = np.roll(
np.arange(array.size, dtype=dtype)
numpy.arange
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # python3 """NeuTra implementation.""" # pylint: disable=invalid-name,missing-docstring import time from typing import Any, Text, Tuple, NamedTuple from absl import logging import gin import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from hmc_swindles import targets from hmc_swindles import utils from tensorflow.python.util import nest # pylint: disable=g-direct-tensorflow-import # pylint: disable=g-import-not-at-top USE_LOCAL_FUN_MC = True if USE_LOCAL_FUN_MC: from fun_mc import using_tensorflow as fun_mc # pylint: disable=reimported tfd = tfp.distributions tfb = tfp.bijectors tfkl = tf.keras.layers @gin.configurable("head_tail_bijector") def MakeHeadTailBijectorFn(num_dims, head_layers=(), activation=tf.nn.elu, train=False, head_dims=3): """A RealNVP for stochastic volatility model.""" # pylint: disable=no-value-for-parameter del train tail_dims = num_dims - head_dims @utils.MakeTFTemplate def head_bijector_fn(x): x.set_shape(list(x.shape)[:-1] + [head_dims]) input_shape = x.shape for i, units in enumerate(head_layers): x = utils.MaskedDense( inputs=x, units=units, num_blocks=head_dims, exclusive=True if i == 0 else False, kernel_initializer=utils.L2HMCInitializer(factor=0.01), activation=activation, ) x = utils.MaskedDense( inputs=x, units=2 * head_dims, num_blocks=head_dims, activation=None, kernel_initializer=utils.L2HMCInitializer(factor=0.01), ) x = tf.reshape(x, shape=tf.concat([input_shape, [2]], axis=0)) shift, log_scale = tf.unstack(x, num=2, axis=-1) return tfb.Chain([tfb.Shift(shift=shift), tfb.Scale(log_scale=log_scale)]) @utils.MakeTFTemplate def head_to_tail_bijector_fn(x, _): for units in head_layers: x = tfkl.Dense( units=units, activation=activation, kernel_initializer=utils.L2HMCInitializer(factor=0.01), )(x,) shift = tfkl.Dense( units=1, activation=None, kernel_initializer=utils.L2HMCInitializer(factor=0.01), )(x,) return tfb.Chain( [tfb.Shift(shift=shift), tfb.Scale(log_scale=tf.Variable(0.))]) @utils.MakeTFTemplate def tail_to_head_bijector_fn(x, _): x = tf.reduce_mean(x, axis=-1, keepdims=True) for units in head_layers: x = tfkl.Dense(units=units, activation=activation)(x) shift = tfkl.Dense(units=head_dims, activation=None)(x) return tfb.Chain( [tfb.Shift(shift=shift), tfb.Scale(log_scale=tf.Variable(tf.zeros(head_dims)))]) b = tfb.Identity() b = tfb.Blockwise( [ tfb.Invert( tfb.MaskedAutoregressiveFlow( bijector_fn=head_bijector_fn("head"))), tfb.Identity(), ], [head_dims, tail_dims], )(b,) b = tfb.RealNVP( num_masked=head_dims, bijector_fn=head_to_tail_bijector_fn("head_to_tail"))( b) b = tfb.Permute(list(reversed(range(num_dims))))(b) b = tfb.RealNVP( num_masked=tail_dims, bijector_fn=tail_to_head_bijector_fn("tail_to_head"))( b) b = tfb.Permute(list(reversed(range(num_dims))))(b) b = tfb.Blockwise( [ tfb.Identity(), tfb.Shift(shift=tf.Variable(tf.zeros([tail_dims]))) ], [head_dims, tail_dims], )(b,) # Construct the variables _ = b.forward(tf.zeros([1, num_dims])) return b @gin.configurable("affine_bijector") def MakeAffineBijectorFn(num_dims, train=False, use_tril=False): mu = tf.Variable(tf.zeros([num_dims]), name="mean", trainable=train) if use_tril: tril_flat = tf.Variable( tf.zeros([num_dims * (num_dims + 1) // 2]), name="tril_flat", trainable=train) tril_raw = tfp.math.fill_triangular(tril_flat) sigma = tf.nn.softplus(tf.linalg.diag_part(tril_raw)) tril = tf.linalg.set_diag(tril_raw, sigma) return tfb.Shift(shift=mu)(tfb.ScaleMatvecTriL(scale_tril=tril)) else: sigma = tf.nn.softplus( tf.Variable(tf.zeros([num_dims]), name="invpsigma", trainable=train)) return tfb.Shift(shift=mu)(tfb.ScaleMatvecDiag(scale_diag=sigma)) @gin.configurable("rnvp_bijector") def MakeRNVPBijectorFn(num_dims, num_stages, hidden_layers, scale=1.0, activation=tf.nn.elu, train=False, learn_scale=False, dropout_rate=0.0): swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_stages): _rnvp_template = utils.DenseShiftLogScale( "rnvp_%d" % i, hidden_layers=hidden_layers, activation=activation, kernel_initializer=utils.L2HMCInitializer(factor=0.01), dropout_rate=dropout_rate, train=train) def rnvp_template(x, output_units, t=_rnvp_template): # # TODO(siege): I don't understand why the shape gets lost. # x.set_shape([None, num_dims - output_units]) return t(x, output_units) bijectors.append( tfb.RealNVP( num_masked=num_dims // 2, shift_and_log_scale_fn=rnvp_template)) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] if learn_scale: scale = tf.Variable(tfp.math.softplus_inverse(scale), name="isp_global_scale") bijectors.append(tfb.Scale(scale=scale)) bijector = tfb.Chain(bijectors) # Construct the variables _ = bijector.forward(tf.zeros([1, num_dims])) return bijector @gin.configurable("iaf_bijector") def MakeIAFBijectorFn( num_dims, num_stages, hidden_layers, scale=1.0, activation=tf.nn.elu, train=False, dropout_rate=0.0, learn_scale=False, ): swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_stages): _iaf_template = utils.DenseAR( "iaf_%d" % i, hidden_layers=hidden_layers, activation=activation, kernel_initializer=utils.L2HMCInitializer(factor=0.01), dropout_rate=dropout_rate, train=train) def iaf_template(x, t=_iaf_template): # # TODO(siege): I don't understand why the shape gets lost. # x.set_shape([None, num_dims]) return t(x) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=iaf_template))) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] if learn_scale: scale = tf.nn.softplus( tf.Variable(tfp.math.softplus_inverse(scale), name="isp_global_scale")) bijectors.append(tfb.Scale(scale=scale)) bijector = tfb.Chain(bijectors) # Construct the variables _ = bijector.forward(tf.zeros([1, num_dims])) return bijector @utils.register_namedtuple class TargetSpec(NamedTuple): name: Any num_dims: Any x_min: Any x_max: Any y_min: Any y_max: Any stats: Any bijector: Any transforms: Any @gin.configurable("target_spec") def GetTargetSpec( name, **kwargs): target_density = utils.VectorTargetDensity(getattr(targets, name)()) num_dims = target_density.event_shape.num_elements() target = utils.LogProbDist(num_dims=num_dims, log_prob_fn=target_density) spec = TargetSpec( name=name, num_dims=num_dims, x_min=0.10, x_max=0.15, y_min=0.10, y_max=0.15, stats={ k + "_mean": v.ground_truth_mean.astype(np.float32) for k, v in target_density.expectations.items() if v.ground_truth_mean is not None }, transforms=list(target_density.expectations.items()), bijector=target_density.constraining_bijectors, ) return target, spec._replace(**kwargs) @utils.register_namedtuple class MCMCOutputs(NamedTuple): x_chain: Any = () xcv_chain: Any = () xa_chain: Any = () xcva_chain: Any = () p_accept: Any = () p_accept_cv: Any = () is_accepted: Any = () is_accepted_cv: Any = () is_accepted_a: Any = () log_accept_ratio: Any = () num_leapfrog_steps: Any = () step_size: Any = () extra: Any = () def GetIntegrator(integrator, step_size, num_steps, target_log_prob_fn): integrators = { "leapfrog": (fun_mc.leapfrog_step, 1), "ruth4": (fun_mc.ruth4_step, 3), "blanes_3_stage": (fun_mc.blanes_3_stage_step, 3), "blanes_4_stage": (fun_mc.blanes_4_stage_step, 5), } integrator_step_fn, leapfrog_multiplier = integrators[integrator] kinetic_energy_fn = fun_mc.make_gaussian_kinetic_energy_fn(1) integrator_fn = lambda state: fun_mc.hamiltonian_integrator( # pylint: disable=g-long-lambda state, num_steps=num_steps, integrator_step_fn=lambda state: integrator_step_fn( # pylint: disable=g-long-lambda state, step_size=step_size, target_log_prob_fn=target_log_prob_fn, kinetic_energy_fn=kinetic_energy_fn), kinetic_energy_fn=kinetic_energy_fn) return integrator_fn, leapfrog_multiplier @gin.configurable("cva_neutra") def MakeCVANeuTra(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def joint_log_prob_fn(z_zcv): # N.B. z is concatenated real + antithetic chain. z, zcv = tf.split(z_zcv, [batch_size * 2, batch_size], axis=0) lpz, (x, _) = transformed_log_prob_fn(z) lpzcv = q.distribution.log_prob(zcv) xcv = q.bijector.forward(zcv) x_xcv = tf.concat([x, xcv], axis=0) return tf.concat([lpz, lpzcv], axis=0), x_xcv integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, joint_log_prob_fn) def transition_operator(hmc_state): momentum = tf.random.normal(tf.shape(x_init)) log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the momentum for everything, but negate it for antithetic chain. # Share the log_uniform between z and zcv as is. momentum = tf.concat([momentum, -momentum, momentum], axis=0) log_uniform = tf.concat([log_uniform] * 3, axis=0) return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=joint_log_prob_fn, momentum=momentum, log_uniform=log_uniform, integrator_fn=integrator) def trace_fn(state, extra): x_xcv = state.state_extra zcva = -state.state[-batch_size:] return (x_xcv, zcva, extra.log_accept_ratio, extra.is_accepted) (_, (x_xcv_chain, zcva_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init( tf.concat([z_init, -z_init, z_init], axis=0), joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean( tf.cast(is_accepted[:, :2 * batch_size], tf.float32)) p_accept_cv = tf.reduce_mean( tf.cast(is_accepted[:, -batch_size:], tf.float32)) is_accepted_a = is_accepted[:, batch_size:2 * batch_size] is_accepted_cv = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain, xa_chain, xcv_chain = tf.split(x_xcv_chain, 3, axis=1) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xa_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], xa_chain], 0)) xcv_chain = tf.stop_gradient( tf.concat([x_init[tf.newaxis, Ellipsis], xcv_chain], 0)) zcva_chain = tf.concat([-z_init[tf.newaxis, Ellipsis], zcva_chain], 0) xcva_chain = tf.stop_gradient(q.bijector.forward(zcva_chain)) return MCMCOutputs( x_chain=x_chain, xcv_chain=xcv_chain, xa_chain=xa_chain, xcva_chain=xcva_chain, p_accept=p_accept, p_accept_cv=p_accept_cv, is_accepted=is_accepted, is_accepted_cv=is_accepted_cv, is_accepted_a=is_accepted_a, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @gin.configurable("a_neutra") def MakeANeuTra(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, transformed_log_prob_fn) def transition_operator(hmc_state): momentum = tf.random.normal(tf.shape(x_init)) log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the momentum for everything, but negate it for antithetic chain. momentum = tf.concat([momentum, -momentum], axis=0) log_uniform = tf.concat([log_uniform] * 2, axis=0) return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=transformed_log_prob_fn, momentum=momentum, log_uniform=log_uniform, integrator_fn=integrator) def trace_fn(state, extra): x_xa = state.state_extra[0] return (x_xa, extra.log_accept_ratio, extra.is_accepted) (_, (x_xa_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init( tf.concat([z_init, -z_init], axis=0), transformed_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) is_accepted_a = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain, xa_chain = tf.split(x_xa_chain, 2, axis=1) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xa_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], xa_chain], 0)) return MCMCOutputs( x_chain=x_chain, xa_chain=xa_chain, p_accept=p_accept, is_accepted=is_accepted, is_accepted_a=is_accepted_a, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @gin.configurable("cv_neutra") def MakeCVNeuTra(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def joint_log_prob_fn(z_zcv): z, zcv = tf.split(z_zcv, 2, axis=0) lpz, (x, _) = transformed_log_prob_fn(z) lpzcv = q.distribution.log_prob(zcv) xcv = q.bijector.forward(zcv) x_xcv = tf.concat([x, xcv], axis=0) return tf.concat([lpz, lpzcv], axis=0), x_xcv integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, joint_log_prob_fn) def transition_operator(hmc_state): momentum = tf.random.normal(tf.shape(x_init)) momentum_cv = momentum log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the momentum and log_uniform between z and zcv momentum = tf.concat([momentum, momentum_cv], axis=0) log_uniform = tf.concat([log_uniform] * 2, axis=0) return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=joint_log_prob_fn, momentum=momentum, log_uniform=log_uniform, integrator_fn=integrator) def trace_fn(state, extra): x, xcv = tf.split(state.state_extra, 2, axis=0) return (x, xcv, extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, xcv_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init( tf.concat([z_init] * 2, axis=0), joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted[:, :batch_size], tf.float32)) p_accept_cv = tf.reduce_mean( tf.cast(is_accepted[:, -batch_size:], tf.float32)) is_accepted_cv = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xcv_chain = tf.stop_gradient( tf.concat([x_init[tf.newaxis, Ellipsis], xcv_chain], 0)) return MCMCOutputs( x_chain=x_chain, xcv_chain=xcv_chain, p_accept=p_accept, p_accept_cv=p_accept_cv, is_accepted=is_accepted, is_accepted_cv=is_accepted_cv, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @gin.configurable("neutra") def MakeNeuTra(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, transformed_log_prob_fn) def transition_operator(hmc_state): return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=transformed_log_prob_fn, integrator_fn=integrator) def trace_fn(state, extra): return (state.state_extra[0], extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init(z_init, transformed_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) return MCMCOutputs( x_chain=x_chain, p_accept=p_accept, is_accepted=is_accepted, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @gin.configurable("neutra_rwm") def MakeNeuTraRWM(target, q, batch_size=32, num_steps=100, step_size=0.1, x_init=None, **_): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def proposal_fn(x, seed): return x + step_size * tf.random.normal(x.shape, seed=seed), ((), 0.) def transition_operator(rwm_state): return fun_mc.random_walk_metropolis_step( rwm_state, target_log_prob_fn=transformed_log_prob_fn, proposal_fn=proposal_fn) def trace_fn(state, extra): return (state.state_extra[0], extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.random_walk_metropolis_init(z_init, transformed_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) return MCMCOutputs( x_chain=x_chain, p_accept=p_accept, is_accepted=is_accepted, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=1) @gin.configurable("cv_neutra_rwm") def MakeCVNeuTraRWM(target, q, batch_size=32, num_steps=100, step_size=0.1, x_init=None, **_): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def joint_log_prob_fn(z_zcv): z, zcv = tf.split(z_zcv, 2, axis=0) lpz, (x, _) = transformed_log_prob_fn(z) lpzcv = q.distribution.log_prob(zcv) xcv = q.bijector.forward(zcv) x_xcv = tf.concat([x, xcv], axis=0) return tf.concat([lpz, lpzcv], axis=0), x_xcv def transition_operator(rwm_state): log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the log_uniform and proposal between z and zcv log_uniform = tf.concat([log_uniform] * 2, axis=0) def proposal_fn(x, seed): proposal = tf.random.normal(tf.shape(x_init), seed=seed) proposal = tf.concat([proposal] * 2, axis=0) return x + step_size * proposal, ((), 0.) return fun_mc.random_walk_metropolis_step( rwm_state, target_log_prob_fn=joint_log_prob_fn, proposal_fn=proposal_fn, log_uniform=log_uniform) def trace_fn(state, extra): x, xcv = tf.split(state.state_extra, 2, axis=0) return (x, xcv, extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, xcv_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.random_walk_metropolis_init( tf.concat([z_init] * 2, axis=0), joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted[:, :batch_size], tf.float32)) p_accept_cv = tf.reduce_mean( tf.cast(is_accepted[:, -batch_size:], tf.float32)) is_accepted_cv = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xcv_chain = tf.stop_gradient( tf.concat([x_init[tf.newaxis, Ellipsis], xcv_chain], 0)) return MCMCOutputs( x_chain=x_chain, xcv_chain=xcv_chain, p_accept=p_accept, p_accept_cv=p_accept_cv, is_accepted=is_accepted, is_accepted_cv=is_accepted_cv, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=1) @gin.configurable("a_neutra_rwm") def MakeANeuTraRWM(target, q, batch_size=32, num_steps=100, step_size=0.1, x_init=None, **_): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def transition_operator(rwm_state): log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the log_uniform and proposal between z and zcv log_uniform = tf.concat([log_uniform] * 2, axis=0) def proposal_fn(x, seed): proposal = tf.random.normal(tf.shape(x_init), seed=seed) proposal = tf.concat([proposal, -proposal], axis=0) return x + step_size * proposal, ((), 0.) return fun_mc.random_walk_metropolis_step( rwm_state, target_log_prob_fn=transformed_log_prob_fn, proposal_fn=proposal_fn, log_uniform=log_uniform, ) def trace_fn(state, extra): x_xa = state.state_extra[0] return (x_xa, extra.log_accept_ratio, extra.is_accepted) (_, (x_xa_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.random_walk_metropolis_init( tf.concat([z_init, -z_init], axis=0), transformed_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) is_accepted_a = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain, xa_chain = tf.split(x_xa_chain, 2, axis=1) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xa_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], xa_chain], 0)) return MCMCOutputs( x_chain=x_chain, xa_chain=xa_chain, p_accept=p_accept, is_accepted=is_accepted, is_accepted_a=is_accepted_a, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=1) @gin.configurable("cva_neutra_rwm") def MakeCVANeuTraRWM(target, q, batch_size=32, num_steps=100, step_size=0.1, x_init=None): if x_init is None: x_init = q.sample(batch_size) (transformed_log_prob_fn, z_init) = fun_mc.transform_log_prob_fn(lambda x: (target.log_prob(x), ()), q.bijector, x_init) def joint_log_prob_fn(z_zcv): # N.B. z is concatenated real + antithetic chain. z, zcv = tf.split(z_zcv, [batch_size * 2, batch_size], axis=0) lpz, (x, _) = transformed_log_prob_fn(z) lpzcv = q.distribution.log_prob(zcv) xcv = q.bijector.forward(zcv) x_xcv = tf.concat([x, xcv], axis=0) return tf.concat([lpz, lpzcv], axis=0), x_xcv def transition_operator(rwm_state): log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the log_uniform between z and zcv as is. log_uniform = tf.concat([log_uniform] * 3, axis=0) # Share the proposal for everything, but negate it for antithetic chain. def proposal_fn(x, seed): proposal = tf.random.normal(tf.shape(x_init), seed=seed) proposal = tf.concat([proposal, -proposal, proposal], axis=0) return x + step_size * proposal, ((), 0.) return fun_mc.random_walk_metropolis_step( rwm_state, target_log_prob_fn=joint_log_prob_fn, proposal_fn=proposal_fn, log_uniform=log_uniform) def trace_fn(state, extra): x_xcv = state.state_extra zcva = -state.state[-batch_size:] return (x_xcv, zcva, extra.log_accept_ratio, extra.is_accepted) (_, (x_xcv_chain, zcva_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.random_walk_metropolis_init( tf.concat([z_init, -z_init, z_init], axis=0), joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean( tf.cast(is_accepted[:, :2 * batch_size], tf.float32)) p_accept_cv = tf.reduce_mean( tf.cast(is_accepted[:, -batch_size:], tf.float32)) is_accepted_a = is_accepted[:, batch_size:2 * batch_size] is_accepted_cv = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain, xa_chain, xcv_chain = tf.split(x_xcv_chain, 3, axis=1) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xa_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], xa_chain], 0)) xcv_chain = tf.stop_gradient( tf.concat([x_init[tf.newaxis, Ellipsis], xcv_chain], 0)) zcva_chain = tf.concat([-z_init[tf.newaxis, Ellipsis], zcva_chain], 0) xcva_chain = tf.stop_gradient(q.bijector.forward(zcva_chain)) return MCMCOutputs( x_chain=x_chain, xcv_chain=xcv_chain, xa_chain=xa_chain, xcva_chain=xcva_chain, p_accept=p_accept, p_accept_cv=p_accept_cv, is_accepted=is_accepted, is_accepted_cv=is_accepted_cv, is_accepted_a=is_accepted_a, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=1) @gin.configurable("cv_hmc") def MakeCVHMC(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) def joint_log_prob_fn(x_xcv): x, xcv = tf.split(x_xcv, 2, axis=0) lpx = target.log_prob(x) lpxcv = q.log_prob(xcv) return tf.concat([lpx, lpxcv], axis=0), () integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, joint_log_prob_fn) def transition_operator(hmc_state): momentum = tf.random.normal(tf.shape(x_init)) log_uniform = tf.math.log(tf.random.uniform(shape=tf.shape(x_init)[:-1])) # Share the momentum and log_uniform between z and zcv momentum = tf.concat([momentum] * 2, axis=0) log_uniform = tf.concat([log_uniform] * 2, axis=0) return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=joint_log_prob_fn, momentum=momentum, log_uniform=log_uniform, integrator_fn=integrator) def trace_fn(state, extra): x, xcv = tf.split(state.state, 2, axis=0) return (x, xcv, extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, xcv_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init( tf.concat([x_init] * 2, axis=0), joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted[:, :batch_size], tf.float32)) p_accept_cv = tf.reduce_mean( tf.cast(is_accepted[:, -batch_size:], tf.float32)) is_accepted_cv = is_accepted[:, -batch_size:] is_accepted = is_accepted[:, :batch_size] x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) xcv_chain = tf.stop_gradient( tf.concat([x_init[tf.newaxis, Ellipsis], xcv_chain], 0)) return MCMCOutputs( x_chain=x_chain, xcv_chain=xcv_chain, p_accept=p_accept, p_accept_cv=p_accept_cv, is_accepted=is_accepted, is_accepted_cv=is_accepted_cv, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @gin.configurable("hmc") def MakeHMC(target, q, batch_size=32, num_steps=100, num_leapfrog_steps=2, step_size=0.1, integrator="leapfrog", x_init=None): if x_init is None: x_init = q.sample(batch_size) def joint_log_prob_fn(x): return target.log_prob(x), () integrator, leapfrog_multiplier = GetIntegrator(integrator, step_size, num_leapfrog_steps, joint_log_prob_fn) def transition_operator(hmc_state): return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=joint_log_prob_fn, integrator_fn=integrator) def trace_fn(state, extra): return (state.state, extra.log_accept_ratio, extra.is_accepted) (_, (x_chain, log_accept_ratio, is_accepted)) = fun_mc.trace( state=fun_mc.hamiltonian_monte_carlo_init(x_init, joint_log_prob_fn), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) x_chain = tf.stop_gradient(tf.concat([x_init[tf.newaxis, Ellipsis], x_chain], 0)) return MCMCOutputs( x_chain=x_chain, p_accept=p_accept, is_accepted=is_accepted, log_accept_ratio=log_accept_ratio, num_leapfrog_steps=num_leapfrog_steps * leapfrog_multiplier) @utils.register_namedtuple class ChainLossState(NamedTuple): z_state: Any step_size: Any @utils.register_namedtuple class ChainLossOutputs(NamedTuple): x_fin: Any loss: Any p_accept: Any @gin.configurable("chain_loss") def ChainLoss(chain_loss_state, target, q, batch_size=32, step_size=0.1, trajectory_length=1., num_steps=1, target_accept_prob=0.9): if chain_loss_state is None: x_init = q.sample(batch_size) z_init = q.bijector.inverse(x_init) chain_loss_state = ChainLossState( z_state=z_init, step_size=tf.convert_to_tensor(step_size, tf.float32)) transformed_log_prob_fn = fun_mc.transform_log_prob_fn( lambda x: (target.log_prob(x), ()), q.bijector) def transition_operator(hmc_state): num_leapfrog_steps = tf.cast( tf.math.ceil(trajectory_length / chain_loss_state.step_size), tf.int32) return fun_mc.hamiltonian_monte_carlo_step( hmc_state, target_log_prob_fn=transformed_log_prob_fn, step_size=chain_loss_state.step_size, num_integrator_steps=num_leapfrog_steps) def trace_fn(_state, extra): return (extra.log_accept_ratio, extra.is_accepted) (final_state, (_, is_accepted)) = fun_mc.trace( state=fun_mc.HamiltonianMonteCarloState( state=chain_loss_state.z_state, state_grads=None, target_log_prob=None, state_extra=None, ), fn=transition_operator, num_steps=num_steps, trace_fn=trace_fn) p_accept = tf.reduce_mean(tf.cast(is_accepted, tf.float32)) step_size = fun_mc.sign_adaptation( control=chain_loss_state.step_size, output=p_accept, set_point=target_accept_prob, adaptation_rate=0.01) # step_size = chain_loss_state.step_size chain_loss_state = chain_loss_state._replace( z_state=final_state.state, step_size=step_size) x_fin = q.bijector.forward(final_state.state) x_fin = tf.stop_gradient(x_fin) loss = -tf.reduce_mean(q.log_prob(x_fin)) return chain_loss_state, ChainLossOutputs( x_fin=x_fin, loss=loss, p_accept=p_accept) @utils.register_namedtuple class QStats(NamedTuple): bias: Any def ComputeQStats(q_samples, target_mean): return QStats(bias=target_mean - tf.reduce_mean(q_samples, 0)) @utils.register_namedtuple class ChainStats(NamedTuple): bias: Any inst_bias: Any variance: Any inst_variance: Any error_sq: Any ess: Any ess_per_grad: Any rhat: Any autocorr: Any warmupped_bias: Any warmupped_variance: Any overall_variance: Any per_chain_variance: Any @gin.configurable("chain_stats") @utils.compile def ComputeChainStats(chain, target_mean, num_leapfrog_steps, compute_stats_over_time=False, target_variance=None): # Chain is [num_steps, batch, num_dims] num_steps = tf.shape(chain)[0] batch = tf.shape(chain)[1] if compute_stats_over_time: counts = tf.cast(tf.range(1, num_steps + 1), tf.float32) chain_mean = tf.cumsum(chain, 0) / counts[:, tf.newaxis, tf.newaxis] bias = target_mean - tf.reduce_mean(chain_mean, 1) variance = tf.math.reduce_variance(chain_mean, 1) inst_bias = target_mean - tf.reduce_mean(chain, 1) # XXX: This looks wrong, why are we using target_mean here? inst_variance = tf.reduce_sum(tf.square(target_mean - chain), 1) / tf.cast( batch - 1, tf.float32) def reducer(_, idx): chain_mean = tf.reduce_mean(chain[idx // 2:idx], 0) bias = tf.reduce_mean(target_mean - chain_mean, 0) variance = tf.math.reduce_variance(chain_mean, 0) return bias, variance indices = 1 + tf.range(num_steps) warmupped_bias, warmupped_variance = tf.scan( reducer, indices, initializer=(chain[0, 0], chain[0, 0])) half_steps = num_steps // 2 half_chain = chain[half_steps:] error_sq = tf.reduce_mean( tf.square(tf.reduce_mean(half_chain, 0) - target_mean), 0) if target_variance is None: target_variance = tf.math.reduce_variance(half_chain, [0, 1]) ess = utils.EffectiveSampleSize( half_chain / tf.sqrt(target_variance), use_geyer=True, normalize=False) / tf.cast(half_steps, tf.float32) ess_per_grad = ess / tf.cast(num_leapfrog_steps, tf.float32) rhat = tfp.mcmc.potential_scale_reduction(half_chain) autocorr = utils.SanitizedAutoCorrelationMean( half_chain, axis=0, reduce_axis=1, max_lags=300) # Brute ESS is computed as the ratio of these two, NB these are not normalized # by chain length. overall_variance = tf.math.reduce_variance(half_chain, [0, 1]) per_chain_variance = tf.math.reduce_variance(tf.reduce_mean(half_chain, 0), 0) return ChainStats( bias=bias if compute_stats_over_time else (), variance=variance if compute_stats_over_time else (), error_sq=error_sq, inst_bias=inst_bias if compute_stats_over_time else (), inst_variance=inst_variance if compute_stats_over_time else (), ess=ess, ess_per_grad=ess_per_grad, rhat=rhat, warmupped_bias=warmupped_bias if compute_stats_over_time else (), warmupped_variance=warmupped_variance if compute_stats_over_time else (), autocorr=autocorr, overall_variance=overall_variance, per_chain_variance=per_chain_variance, ) @utils.register_namedtuple class VRChainOutputs(NamedTuple): vr_chain: Any cv_beta: Any cv_rho: Any def ChainCov(xs, ys): n = tf.shape(xs)[0] mx = tf.reduce_mean(xs, 0) my = tf.reduce_mean(ys, 0) return tf.einsum("abi,abj->ij", xs - mx, ys - my) / tf.cast(n - 1, tf.float32) def ChainCovDiag(xs, ys): n = tf.shape(xs)[0] mx = tf.reduce_mean(xs, 0) my = tf.reduce_mean(ys, 0) return tf.einsum("abi,abi->i", xs - mx, ys - my) / tf.cast(n - 1, tf.float32) def ChainCorr(xs, ys): cov_ys_ys = ChainCovDiag(ys, ys) cov_xs_ys = ChainCovDiag(xs, ys) cov_xs_xs = ChainCovDiag(xs, xs) return cov_xs_ys / tf.sqrt(cov_ys_ys * cov_xs_xs) @utils.compile def GetCVBeta(chain, cv_chain): num_steps = tf.shape(chain)[0] half_steps = num_steps // 2 half_chain = chain[half_steps:] half_cv_chain = cv_chain[half_steps:] cov_cv_chain = ChainCov(half_cv_chain, half_chain) cov_cv_cv = ChainCov(half_cv_chain, half_cv_chain) cov_cv_cv += tf.eye(cov_cv_cv.shape[-1]) * 1e-6 return tf.linalg.solve(cov_cv_cv, cov_cv_chain) @utils.compile def GetCVBetaVec(chain, cv_chain): num_steps = tf.shape(chain)[0] half_steps = num_steps // 2 half_chain = chain[half_steps:] half_cv_chain = cv_chain[half_steps:] cov_cv_chain = ChainCovDiag(half_cv_chain, half_chain) cov_cv_cv = ChainCovDiag(half_cv_chain, half_cv_chain) beta_vec = cov_cv_chain / cov_cv_cv return beta_vec @utils.compile def GetVarianceReducedChain(chain, cv_chain, cv_mean, cv_beta): num_steps = tf.shape(chain)[0] half_steps = num_steps // 2 half_chain = chain[half_steps:] half_cv_chain = cv_chain[half_steps:] if cv_beta.shape.rank == 2: vr_chain = chain - tf.einsum("abi,ij->abj", cv_chain - cv_mean, cv_beta) else: vr_chain = chain - (cv_chain - cv_mean) * cv_beta cv_rho = ChainCorr(half_chain, half_cv_chain) return VRChainOutputs(vr_chain=vr_chain, cv_beta=cv_beta, cv_rho=cv_rho) @utils.compile def GetMHDecoupleRate(is_accepted_1, is_accepted_2): return tf.reduce_mean(tf.cast(is_accepted_1 != is_accepted_2, tf.float32)) @utils.compile def GetMHAgreeAcceptRate(is_accepted_1, is_accepted_2): return tf.reduce_mean(tf.cast(is_accepted_1 & is_accepted_2, tf.float32)) @utils.register_namedtuple class MCMCStats(NamedTuple): chain_stats: Any = () chain_stats_tune: Any = () chain_stats_cv: Any = () chain_stats_a: Any = () chain_stats_vr_cv: Any = () chain_stats_vr_a: Any = () chain_stats_vr_cva: Any = () chain_stats_vr_cv_one: Any = () chain_stats_vr_cva_one: Any = () chain_stats_vr_cv_vec: Any = () chain_stats_vr_cva_vec: Any = () vr_outputs_cva: Any = () vr_outputs_cva_one: Any = () vr_outputs_cva_vec: Any = () vr_outputs_cv: Any = () vr_outputs_cv_one: Any = () vr_outputs_cv_vec: Any = () p_accept: Any = () p_accept_cv: Any = () p_mh_agree_accept_cv: Any = () p_mh_agree_accept_a: Any = () p_mh_decouple_cv: Any = () p_mh_decouple_a: Any = () a_corr: Any = () def AverageStats(stats): def classify(path): if "ess" in path: return lambda x: 1. / np.mean(1. / np.array(x), 0) else: return lambda x: np.mean(x, 0) def to_numpy(t): if isinstance(t, tf.Tensor): return t.numpy() else: return t def is_sentinel(x): return isinstance(x, tuple) and not x stats = tf.nest.map_structure(to_numpy, stats) avg_type = [ classify("".join(map(str, path))) # pylint: disable=g-complex-comprehension for path, _ in nest.flatten_with_tuple_paths(stats[0]) ] flat_stats = [tf.nest.flatten(r) for r in stats] trans_stats = zip(*flat_stats) trans_mean_stats = [ r if is_sentinel(r[0]) else avg(r) for avg, r in zip(avg_type, trans_stats) ] mean_stats = tf.nest.pack_sequence_as(stats[0], trans_mean_stats) return mean_stats @utils.register_namedtuple class TuneOutputs(NamedTuple): num_leapfrog_steps: Any step_size: Any @utils.register_namedtuple class TuneObjective(NamedTuple): objective: Any step_size: Any num_leapfrog_steps: Any @utils.register_namedtuple class BenchmarkOutputs(NamedTuple): mcmc_secs_per_step: Any q_secs_per_sample: Any @gin.configurable("neutra_experiment") class NeuTraExperiment(tf.Module): def __init__( # pylint: disable=dangerous-default-value self, mcmc_type = "neutra", bijector = "iaf", log_dir="/tmp/neutra", base_learning_rate=1e-3, q_base_scale=1., loss="kl_qp", learning_rate_schedule=[[6000, 1e-1]], do_polyak=False, polyak_start=0, polyak_rate=0.999, ): target, target_spec = GetTargetSpec() # pylint: disable=no-value-for-parameter self._target = target self.target_spec = target_spec with gin.config_scope("train"): train_target, train_target_spec = GetTargetSpec() # pylint: disable=no-value-for-parameter self.train_target = train_target self.train_target_spec = train_target_spec if bijector == "rnvp": bijector_fn = utils.Template( "bijector", MakeRNVPBijectorFn, num_dims=self.target_spec.num_dims) elif bijector == "iaf": bijector_fn = utils.Template( "bijector", MakeIAFBijectorFn, num_dims=self.target_spec.num_dims) elif bijector == "affine": bijector_fn = utils.Template( "bijector", MakeAffineBijectorFn, num_dims=self.target_spec.num_dims) elif bijector == "head_tail": bijector_fn = utils.Template( "bijector", MakeHeadTailBijectorFn, num_dims=self.target_spec.num_dims) else: bijector_fn = utils.Template("bijector", lambda *args, **kwargs: tfb.Identity()) if self.train_target_spec.bijector is not None: print("Using train target bijector") # For var tracking. self.base_bijector_fn = bijector_fn bijector_fn = lambda train: tfb.Chain( # pylint: disable=g-long-lambda [train_target_spec.bijector, self.base_bijector_fn(train=train)]) self.bijector_fn = bijector_fn self.q_base_scale = q_base_scale # Training self.base_learning_rate = base_learning_rate self.learning_rate_schedule = learning_rate_schedule self.loss = loss self.mcmc_type = mcmc_type # Construct the variables self.bijector_fn(train=True) self.InitTargetStats() self.do_polyak = do_polyak self.polyak_rate = polyak_rate self.polyak_start = polyak_start if self.do_polyak: self.polyak_variables = [] for v in self.trainable_variables: self.polyak_variables.append( tf.Variable(v, name=v.name[:-2] + "_poly", trainable=False)) self.checkpoint = tf.train.Checkpoint(experiment=self) self.log_dir = log_dir self.global_step = tf.Variable(0, dtype=tf.int64, trainable=False) @property def target(self): # Some bug with nested TF functions, need to re-construct the target # distribution to break the cache. return self._target.copy() def UpdatePolyVars(self, rate=None): if rate is None: rate = self.polyak_rate for pv, v in zip(self.polyak_variables, self.trainable_variables): pv.assign(rate * pv + (1. - rate) * v) return rate def UpdateFromPolyVars(self): for pv, v in zip(self.polyak_variables, self.trainable_variables): v.assign(pv) @utils.compile def QStats(self, num_samples=16384 * 8): q_stats = {} q_samples = self.Q().sample(num_samples) for name, f in self.functions: q_stats[name] = ComputeQStats(f(q_samples), self.target_mean[name]) return q_stats def Q(self, bijector=None): if bijector is None: bijector = self.bijector_fn(train=False) q_base = tfd.Independent( tfd.Normal( loc=tf.zeros(self.target_spec.num_dims), scale=self.q_base_scale * tf.ones(self.target_spec.num_dims)), 1) return tfd.TransformedDistribution(q_base, bijector) @utils.compile def MCMC(self, batch_size=4096, test_num_steps=1000, test_num_leapfrog_steps=2, test_step_size=0.1, **kwargs): if self.mcmc_type == "hmc": mcmc_fn = MakeHMC elif self.mcmc_type == "cv_hmc": mcmc_fn = MakeCVHMC elif self.mcmc_type == "neutra": mcmc_fn = MakeNeuTra elif self.mcmc_type == "a_neutra": mcmc_fn = MakeANeuTra elif self.mcmc_type == "cv_neutra": mcmc_fn = MakeCVNeuTra elif self.mcmc_type == "cva_neutra": mcmc_fn = MakeCVANeuTra elif self.mcmc_type == "neutra_rwm": mcmc_fn = MakeNeuTraRWM elif self.mcmc_type == "a_neutra_rwm": mcmc_fn = MakeANeuTraRWM elif self.mcmc_type == "cv_neutra_rwm": mcmc_fn = MakeCVNeuTraRWM elif self.mcmc_type == "cva_neutra_rwm": mcmc_fn = MakeCVANeuTraRWM return mcmc_fn( target=self.target, q=self.Q(), batch_size=batch_size, num_steps=test_num_steps, num_leapfrog_steps=test_num_leapfrog_steps, step_size=test_step_size, **kwargs, ) def InitTargetStats(self, batch_size=16384 * 8): target_samples = utils.compile( lambda: self.target.sample(batch_size))() def variance(x, mean_stat): x -= self.target_mean[mean_stat] return tf.square(x) transforms = [] transforms.extend(self.target_spec.transforms) self.functions = [] # This is because there is some horrid nonsense with lambdas and loops that # I couldn't figure out... I hate Python. def body(tname, transform): def get_name(fname): if tname is not None: return "_".join([tname, fname]) return fname def make_fn(f): return lambda x: f(transform(x)) self.functions.append((get_name("mean"), make_fn(tf.identity))) self.functions.append( (get_name("var"), make_fn(lambda x: variance(x, get_name("mean"))))) for tname, transform in transforms: body(tname, transform) self.target_mean = {} for name, f in self.functions: if self.target_spec.stats is not None and name in self.target_spec.stats: target_mean = tf.convert_to_tensor(self.target_spec.stats[name]) else: target_mean = tf.reduce_mean(f(target_samples), 0) self.target_mean[name] = target_mean @gin.configurable("mcmc_stats") def MCMCStats(self, neutra_outputs, return_vr_chains=False, num_q_samples=8192, compute_mat_beta=False, num_beta_chains=None): ret = MCMCStats( chain_stats={}, chain_stats_cv={}, chain_stats_a={}, chain_stats_vr_cv={}, chain_stats_vr_a={}, chain_stats_vr_cva={}, chain_stats_vr_cv_one={}, chain_stats_vr_cva_one={}, chain_stats_vr_cv_vec={}, chain_stats_vr_cva_vec={}, vr_outputs_cva={}, vr_outputs_cva_vec={}, vr_outputs_cva_one={}, vr_outputs_cv={}, vr_outputs_cv_vec={}, vr_outputs_cv_one={}, p_accept=neutra_outputs.p_accept, p_accept_cv=neutra_outputs.p_accept_cv, a_corr={}, ) ret = ret._replace(chain_stats_tune=ret.chain_stats) # TODO(siege): We should compute these only once... q_means = {} for name, f in self.functions: q_means[name] = tf.reduce_mean(f(self.Q().sample(num_q_samples)), 0) for name, f in self.functions: fx_chain = f(neutra_outputs.x_chain) half_steps = fx_chain.shape[0] // 2 target_variance = tf.math.reduce_variance(fx_chain[half_steps:], [0, 1]) ret.chain_stats[name] = ComputeChainStats( fx_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps) if self.mcmc_type in [ "cv_neutra", "cv_hmc", "cv_neutra_rwm" ]: ret = ret._replace( p_mh_decouple_cv=GetMHDecoupleRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_cv, ), p_mh_agree_accept_cv=GetMHAgreeAcceptRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_cv, ), chain_stats_tune=ret.chain_stats_vr_cv_vec, ) fxcv_chain = f(neutra_outputs.xcv_chain) ret.chain_stats_cv[name] = ComputeChainStats( fxcv_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) if num_beta_chains is None: fx_chain_beta = fx_chain fxcv_chain_beta = fxcv_chain else: fx_chain_beta = fx_chain[:, :num_beta_chains] fxcv_chain_beta = fxcv_chain[:, :num_beta_chains] # TODO(siege): This introduces an annoying off-by-num_beta_chains # shift. We should only do this when computing the stats... fx_chain = fx_chain[:, num_beta_chains:] fxcv_chain = fxcv_chain[:, num_beta_chains:] cv_beta_vec = GetCVBetaVec(fx_chain_beta, fxcv_chain_beta) cv_beta_one = tf.ones(cv_beta_vec.shape[-1]) vr_inputs = [ (ret.chain_stats_vr_cv_vec, ret.vr_outputs_cv_vec, cv_beta_vec), (ret.chain_stats_vr_cv_one, ret.vr_outputs_cv_one, cv_beta_one), ] fxcv_mean = q_means[name] if compute_mat_beta: cv_beta = GetCVBeta(fx_chain_beta, fxcv_chain_beta) vr_inputs.append((ret.chain_stats_vr_cv, ret.vr_outputs_cv, cv_beta)) for chain_stats_vr_cv, vr_outputs_cv, cv_beta_val in vr_inputs: vr_outputs_cv1 = GetVarianceReducedChain(fx_chain, fxcv_chain, fxcv_mean, cv_beta_val) if return_vr_chains: vr_outputs_cv[name] = vr_outputs_cv1 else: vr_outputs_cv[name] = vr_outputs_cv1._replace(vr_chain=()) chain_stats_vr_cv[name] = ComputeChainStats( vr_outputs_cv1.vr_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) elif self.mcmc_type in ["cva_neutra", "cva_neutra_rwm"]: ret = ret._replace( p_mh_decouple_cv=GetMHDecoupleRate(neutra_outputs.is_accepted, neutra_outputs.is_accepted_cv), p_mh_agree_accept_cv=GetMHAgreeAcceptRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_cv, ), p_mh_decouple_a=GetMHDecoupleRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_a, ), p_mh_agree_accept_a=GetMHAgreeAcceptRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_a, ), chain_stats_tune=ret.chain_stats_vr_cva_vec, ) fxa_chain = f(neutra_outputs.xa_chain) fxcv_chain = f(neutra_outputs.xcv_chain) fxcva_chain = f(neutra_outputs.xcva_chain) ret.a_corr[name] = ChainCorr(fx_chain, fxa_chain) ret.chain_stats_a[name] = ComputeChainStats( fxa_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) ret.chain_stats_cv[name] = ComputeChainStats( fxcv_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) ret.chain_stats_vr_a[name] = ComputeChainStats( 0.5 * (fx_chain + fxa_chain), self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) if num_beta_chains is None: fx_chain_beta = fx_chain fxcv_chain_beta = fxcv_chain fxa_chain_beta = fxa_chain fxcva_chain_beta = fxcva_chain else: fx_chain_beta = fx_chain[:, :num_beta_chains] fxcv_chain_beta = fxcv_chain[:, :num_beta_chains] fxa_chain_beta = fxa_chain[:, :num_beta_chains] fxcva_chain_beta = fxcva_chain[:, :num_beta_chains] # TODO(siege): This introduces an annoying off-by-num_beta_chains # shift. We should only do this when computing the stats... fx_chain = fx_chain[:, num_beta_chains:] fxcv_chain = fxcv_chain[:, num_beta_chains:] fxa_chain = fxa_chain[:, num_beta_chains:] fxcva_chain = fxcva_chain[:, num_beta_chains:] fxcv_mean = q_means[name] cv_beta_vec = GetCVBetaVec(fx_chain_beta, fxcv_chain_beta) cv_beta_vec_a = GetCVBetaVec(fxa_chain_beta, fxcva_chain_beta) cv_beta_one = tf.ones(cv_beta_vec.shape[-1]) vr_inputs = [ (ret.chain_stats_vr_cv_vec, ret.chain_stats_vr_cva_vec, ret.vr_outputs_cv_vec, ret.vr_outputs_cva_vec, cv_beta_vec, cv_beta_vec_a), (ret.chain_stats_vr_cv_one, ret.chain_stats_vr_cva_one, ret.vr_outputs_cv_one, ret.vr_outputs_cva_one, cv_beta_one, cv_beta_one), ] if compute_mat_beta: cv_beta = GetCVBeta(fx_chain_beta, fxcv_chain_beta) cv_beta_a = GetCVBeta(fxa_chain_beta, fxcva_chain_beta) vr_inputs.append( (ret.chain_stats_vr_cv, ret.chain_stats_vr_cva, ret.vr_outputs_cv, ret.vr_outputs_cva, cv_beta, cv_beta_a)) for (chain_stats_vr_cv, chain_stats_vr_cva, vr_outputs_cv, vr_outputs_cva, cv_beta_val, cv_beta_a_val) in vr_inputs: vr_outputs_cv1 = GetVarianceReducedChain(fx_chain, fxcv_chain, fxcv_mean, cv_beta_val) vr_outputs_cv2 = GetVarianceReducedChain(fxa_chain, fxcva_chain, fxcv_mean, cv_beta_a_val) if return_vr_chains: vr_outputs_cv[name] = vr_outputs_cv1 vr_outputs_cva[name] = vr_outputs_cv2 else: vr_outputs_cv[name] = vr_outputs_cv1._replace(vr_chain=()) vr_outputs_cva[name] = vr_outputs_cv2._replace(vr_chain=()) chain_stats_vr_cv[name] = ComputeChainStats( vr_outputs_cv1.vr_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) chain_stats_vr_cva[name] = ComputeChainStats( 0.5 * (vr_outputs_cv1.vr_chain + vr_outputs_cv2.vr_chain), self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) elif self.mcmc_type in ["a_neutra", "a_neutra_rwm"]: ret = ret._replace( p_mh_decouple_a=GetMHDecoupleRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_a, ), p_mh_agree_accept_a=GetMHAgreeAcceptRate( neutra_outputs.is_accepted, neutra_outputs.is_accepted_a, ), chain_stats_tune=ret.chain_stats_vr_a, ) fxa_chain = f(neutra_outputs.xa_chain) ret.a_corr[name] = ChainCorr(fx_chain, fxa_chain) ret.chain_stats_a[name] = ComputeChainStats( fxa_chain, self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) ret.chain_stats_vr_a[name] = ComputeChainStats( 0.5 * (fx_chain + fxa_chain), self.target_mean[name], neutra_outputs.num_leapfrog_steps, target_variance=target_variance) return ret @utils.compile def TrainLoss(self, batch_size=4096, step=None, state=()): bijector = self.bijector_fn(train=True) q_x_train = self.Q(bijector) if self.loss == "kl_qp": train_q_samples = q_x_train.sample(batch_size) train_log_q_x = q_x_train.log_prob(train_q_samples) kl_q_p = tf.reduce_mean(train_log_q_x - self.target.log_prob(train_q_samples)) loss = kl_q_p tf.summary.scalar("kl_qp", kl_q_p, step=step) elif self.loss == "kl_pq": state, out = ChainLoss(state, self.target, q_x_train, batch_size) loss = out.loss tf.summary.scalar("xent", loss, step=step) tf.summary.scalar("step_size", state.step_size, step=step) tf.summary.scalar("p_accept", out.p_accept, step=step) return loss, state @gin.configurable("train") def Train(self, num_steps, summary_every=500, batch_size=4096, plot_callback=None): times =
np.zeros(num_steps)
numpy.zeros
import pickle from configparser import ConfigParser from itertools import repeat from pathlib import Path import numpy as np import pandas as pd from keras import Sequential from keras.layers import Embedding from torchnlp.word_to_vector import GloVe from spacy_encoder import SpacyEncoder def get_data(data_frame): data = [] for idx, row in data_frame.iterrows(): if idx == 0: continue sentiment = (int(row['sentiment']) - 1) title = row['title'] review = row['review'] if title != title: title = "" if review != review: review = "" data.append((sentiment, title + " : " + review)) return data def retrieve_texts(data): return [tup[1] for tup in data] def pad(max_len, idxs): if len(idxs) > max_len: return idxs[:max_len] padding = max_len - len(idxs) zeros = list(repeat(0, padding)) idxs = idxs + zeros return idxs def docs2idxs(corpus, max_len=-1, encoder=None): if encoder is None: encoder = SpacyEncoder(corpus) indices = [encoder.encode(doc).numpy().tolist() for doc in corpus] if max_len <= 0: max_len = max([len(lst) for lst in indices]) indices = [pad(max_len, idxs) for idxs in indices] return encoder, indices, max_len def weights(encoder, vectors): ws = np.zeros((encoder.vocab_size, vectors.dim)) for index, word in enumerate(encoder.vocab): ws[index] = vectors[word] return ws config = ConfigParser() config.read('config.INI') train_csv = config.get('TRAINING', 'train_csv') test_csv = config.get('TRAINING', 'test_csv') amazon_training_csv = pd.read_csv(train_csv, header=None, names=['sentiment', 'title', 'review']) training_data = get_data(amazon_training_csv) training_texts = retrieve_texts(training_data) enc, training_indices, training_seq_len = docs2idxs(training_texts) training_indices_and_sentiment = [(idxs, d[0]) for (idxs, d) in zip(training_indices, training_data)] amazon_test_csv = pd.read_csv(test_csv, header=None, names=['sentiment', 'title', 'review']) test_data = get_data(amazon_test_csv) test_texts = retrieve_texts(test_data) _, test_indices, _ = docs2idxs(test_texts, max_len=training_seq_len, encoder=enc) test_indices_and_sentiment = [(idxs, d[0]) for (idxs, d) in zip(test_indices, test_data)] training_titles = set(amazon_training_csv['title']) training_reviews = set(amazon_training_csv['review']) for idx, item in amazon_test_csv.iterrows(): if item['review'] in training_reviews: if item['title'] in training_titles: raise AssertionError("Row w/ title {} redundant.".format(item['title'])) vecs = GloVe(cache=config.get('PREPARATION', 'word_vector_cache')) embedding_weights = weights(enc, vecs) embedding_model = Sequential() embedding_model.add(Embedding(enc.vocab_size, vecs.dim, weights=[embedding_weights], input_length=training_seq_len, trainable=False)) embedding_model.compile('rmsprop', 'mse') input_shape = (training_seq_len, vecs.dim, 1) x_train_unshaped = [embedding_model.predict(np.array(sample[0]).reshape(1, -1)) for sample in training_indices_and_sentiment] # shape n * (1 * seq_len * vector_dim) x_test_unshaped = [embedding_model.predict(np.array(sample[0]).reshape(1, -1)) for sample in test_indices_and_sentiment] # shape n * (1 * seq_len * vector_dim) x_train = [sample.reshape(input_shape) for sample in x_train_unshaped] x_train =
np.array(x_train)
numpy.array
import numpy as np from argparse import ArgumentParser from sklearn.datasets import load_breast_cancer, load_iris, load_boston, load_wine from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, roc_auc_score from gp_lib.gp import ConstantMeanGP from gp_lib.kernels import * if __name__ == "__main__": np.random.seed(123) argparser = ArgumentParser() argparser.add_argument("--lr", type=float, default=1.0) argparser.add_argument("--r2", type=float, default=0.75) argparser.add_argument("--tol", type=float, default=1e-3) argparser.add_argument("--m", type=int, default=1000) argparser.add_argument("--n", type=int, default=100) argparser.add_argument("--verbose", action="store_true") args = argparser.parse_args() x = np.random.randn(args.m, args.n) x = np.c_[x, np.ones(args.m)] theta =
np.random.randn(args.n + 1)
numpy.random.randn
import numpy as np import pandas as pd from toolz.itertoolz import partition_all def calculate_iq( scattering_factors_df, atom_distance_matrix_df, qmin, qmax, qstep, q_partition_size=500, ): """ Parameters ---------- scattering_factors_df: pandas.DataFrame 9 rows atoms on columns """ # atom_element looks like # ['O', 'Co', 'O', 'O', 'O', 'O', 'O', 'Co', 'Co',...] atom_element = atom_distance_matrix_df.index print("atom_element") print(atom_element) # set(atom_element) looks like {'O', 'Co'} unique_elements = set(atom_element) print(f"unique elements: {unique_elements}") atom_distance_matrix = atom_distance_matrix_df.to_numpy() # work with only the scattering_factors for elements # in the atom distance matrix # do a little extra work to keep the rows of # reduced_scattering_factor_df in the same order as # in scattering_factors_df elements_of_interest = [ element for element in scattering_factors_df.index if element in atom_distance_matrix_df.index ] reduced_scattering_factors_df = scattering_factors_df.loc[elements_of_interest] reduced_scattering_factors = reduced_scattering_factors_df.to_numpy() print(f"reduced_scattering_factors.shape: {reduced_scattering_factors.shape}") # loop on q q_range = np.arange(qmin, qmax, qstep) # print(f"q_range: {q_range}") print(f"q_range.shape: {q_range.shape}") # how much memory are we looking at for all the q? q_reduced_scattering_size = len(q_range) * np.product( reduced_scattering_factors.shape ) print(f"q_reduced_scattering_size: {q_reduced_scattering_size}") # we need to expand the shape of q_range from (Q, ) to (Q, 1, 1) # so that reduced_scattering_factors[:, 1:9:2] * qs_expanded # has shape (E, 4) * (Q, 1, 1) -> (Q, E, 4) # where E is the number of elements and Q is the number of qs qs =
np.expand_dims(q_range, axis=(1, 2))
numpy.expand_dims
import numpy as np import copy import logging from sklearn.neighbors import KDTree # each action -> a lru_knn buffer # alpha is for updating the internal reward i.e. count based reward class LRU_KNN_PS(object): def __init__(self, capacity, obs_shape, z_dim, env_name, action, num_actions=6, knn=4, debug=True, gamma=0.99, alpha=0.1, beta=0.01): self.obs =
np.empty((capacity,) + obs_shape, dtype=np.uint8)
numpy.empty
import h5py import numpy as np ####################################### #--- get information on data series ---# ####################################### def get_attrs_from_dict(obj, meta): def init_meta(p): for key, value in p.items(): meta[key] = np.empty(nfiles, dtype=np.dtype(value[1])) def get_attr(header, p): try: attr = p[1](header[p[0]]) except: attr = 0 return attr nfiles = len(meta['master']) p = obj.attributes init_meta(p) for i, m in enumerate(meta.copy()['master']): filename = obj.datdir + m header = obj.get_header(filename) for key, value in p.items(): meta[key][i] = get_attr(header, value) def get_header_h5(*args, **kwargs): return 0 def get_attrs_h5(obj, meta,): def init_meta(p): for key, value in p.items(): meta[key] = np.empty(nfiles, dtype=np.dtype(value[1])) def get_attr(f, p, key): if p[0] == obj.h5opt['data']: attr = f[p[0]].attrs[key] else: if p[0]: attr = f[p[0]] if attr.dtype.kind == 'V': attr = np.mean(attr.value['value']).astype(
np.dtype(p[1])
numpy.dtype
import numpy as np from .unet import UNet from pathlib import Path from random import sample import pdb import math from math import ceil import pickle import cv2 from ..tools.pytorch_batchsize import * from ..tools.heatmap_to_points import * from ..tools.helper import * from ..tools.image_tools import * from .basic import * from .unet_revised import SE_Res_UNet from PIL import Image import glob import sys from fastprogress.fastprogress import master_bar, progress_bar from torch.utils.data import Dataset, DataLoader from torchvision import transforms #from .basic import * from torch import nn import random import platform import matplotlib.pyplot as plt import pickle import os import sys import warnings from .hourglass import hg __all__ = ["DataAugmentation", "HeatmapLearner", "HeatLoss_OldGen_0", "HeatLoss_OldGen_1", "HeatLoss_OldGen_2", "HeatLoss_OldGen_3", "HeatLoss_OldGen_4", "HeatLoss_NextGen_0", "HeatLoss_NextGen_1", "HeatLoss_NextGen_2", "HeatLoss_NextGen_3", "Loss_weighted"] class UnNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) # The normalize code -> t.sub_(m).div_(s) return tensor class CustomHeatmapDataset(Dataset): "CustomImageDataset with `image_files`,`y_func`, `convert_mode` and `size(height, width)`" def __init__(self, data, hull_path, size=(512,512), grayscale=False, normalize_mean=None, normalize_std=None, data_aug=None, is_valid=False, do_normalize=True, clahe=True): self.data = data self.size = size if normalize_mean is None: if grayscale: normalize_mean = [0.131] else: normalize_mean = [0.485, 0.456, 0.406] if normalize_std is None: if grayscale: normalize_std = [0.308] else: normalize_std = [0.229, 0.224, 0.225] self.normalize = transforms.Normalize(normalize_mean,normalize_std) self.un_normalize = UnNormalize(mean=normalize_mean, std=normalize_std) self.hull_path = hull_path self.convert_mode = "L" if grayscale else "RGB" self.data_aug = data_aug self.to_t = transforms.ToTensor() self.is_valid = is_valid self.do_normalize = do_normalize self.clahe = cv2.createCLAHE(clipLimit=20.0,tileGridSize=(30,30)) if clahe else None def __len__(self): return len(self.data) def load_labels(self,idx): heatmaps = [] for fname in self.data[idx][1]: mask_file = fname.parent/(fname.stem + "_mask"+ fname.suffix) heatmaps.append([load_heatmap(fname, size=self.size),load_heatmap(mask_file, size=self.size)]) return heatmaps def load_hull(self, idx): return load_heatmap(self.hull_path/self.data[idx][0].name, size=self.size) def apply_clahe(self,img): if self.clahe == None: return img img = np.asarray(img) img = self.clahe.apply(img) return Image.fromarray(img) def __getitem__(self, idx): image = load_image(self.data[idx][0], size=self.size, convert_mode=self.convert_mode, to_numpy=False) labels = self.load_labels(idx) hull = self.load_hull(idx) image = self.apply_clahe(image) if (not self.is_valid) and (self.data_aug is not None): image, labels, hull = self.data_aug.transform(image, labels, hull) hull = torch.squeeze(self.to_t(hull),dim=0).type(torch.bool) labels_extraced = [label[0] for label in labels] masks_extraced = [label[1] for label in labels] labels_extraced = self.to_t(np.stack(labels_extraced, axis=2)) masks_extraced = self.to_t(np.stack(masks_extraced, axis=2)).type(torch.bool) image = self.to_t(image) if self.do_normalize: image = self.normalize(image) return self.data[idx][0].stem, image, labels_extraced, masks_extraced, hull class RandomRotationImageTarget(transforms.RandomRotation): def __call__(self, img, targets, hull): angle = self.get_params(self.degrees) img = transforms.functional.rotate(img, angle, self.resample, self.expand, self.center) hull = transforms.functional.rotate(hull, angle, self.resample, self.expand, self.center) for idx in range(len(targets)): targets[idx][0] = transforms.functional.rotate(targets[idx][0], angle, self.resample, self.expand, self.center) targets[idx][1] = transforms.functional.rotate(targets[idx][1], angle, self.resample, self.expand, self.center) return img, targets, hull class RandomHorizontalFlipImageTarget(transforms.RandomHorizontalFlip): def __call__(self, img, targets, hull): if random.random() < self.p: img = transforms.functional.hflip(img) hull = transforms.functional.hflip(hull) for idx in range(len(targets)): targets[idx][0] = transforms.functional.hflip(targets[idx][0]) targets[idx][1] = transforms.functional.hflip(targets[idx][1]) return img,targets,hull class RandomVerticalFlipImageTarget(transforms.RandomVerticalFlip): def __call__(self, img, targets, hull): if random.random() < self.p: img = transforms.functional.vflip(img) hull = transforms.functional.vflip(hull) for idx in range(len(targets)): targets[idx][0] = transforms.functional.vflip(targets[idx][0]) targets[idx][1] = transforms.functional.vflip(targets[idx][1]) return img,targets,hull class RandomPerspectiveImageTarget(transforms.RandomPerspective): def __call__(self, img, targets, hull): if not transforms.functional._is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if random.random() < self.p: with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="torch.lstsq") width, height = img.size startpoints, endpoints = self.get_params(width, height, self.distortion_scale) img = transforms.functional.perspective(img, startpoints, endpoints, self.interpolation, self.fill) hull = transforms.functional.perspective(hull, startpoints, endpoints, self.interpolation, self.fill) for idx in range(len(targets)): targets[idx][0] = transforms.functional.perspective(targets[idx][0], startpoints, endpoints, self.interpolation, self.fill) targets[idx][1] = transforms.functional.perspective(targets[idx][1], startpoints, endpoints, self.interpolation, self.fill) return img,targets,hull class ComposeImageTarget(transforms.Compose): def __call__(self, img, targets, hull): for t in self.transforms: img,targets,hull = t(img, targets, hull) return img,targets,hull class DataAugmentation: "DataAugmentation class with `size(height,width)`" def __init__(self, rotation=20,horizontal_flip_p=0.5, vertical_flip_p=0.5,warp=0.3,warp_p=0.5, zoom=0.8, brightness=0.6, contrast=0.6, GaussianBlur=1): self.lightning_transforms = transforms.Compose([transforms.ColorJitter(brightness=brightness,contrast=contrast), #transforms.GaussianBlur(kernel_size=GaussianBlur) ]) self.affine_transforms = ComposeImageTarget([ RandomRotationImageTarget(degrees=(-rotation,rotation)), RandomHorizontalFlipImageTarget(p=horizontal_flip_p), RandomVerticalFlipImageTarget(p=vertical_flip_p), RandomPerspectiveImageTarget(distortion_scale=warp, p=warp_p), #transforms.RandomResizedCrop(size=size,scale=(zoom,1.0),ratio=(1.0,1.0)) ]) def transform(self,features,labels, hull): #do lighting transforms for features features = self.lightning_transforms(features) #do affine transforms for features and labels features,labels,hull = self.affine_transforms(features, labels, hull) return features,labels,hull class heatmap_metric(LearnerCallback): def __init__(self, features, true_positive_threshold=10, metric_counter=1): self.__counter_epoch = 0 self.__metric_counter = metric_counter self.__custom_metrics = {"metrics":[],"types":[]} self.__features = features self.__true_positive_threshold = true_positive_threshold self.numeric_metric = 1 self.accuracy_metric = 2 for item in self.__features.keys(): self.__custom_metrics["metrics"].append(item+"_pos_train") self.__custom_metrics["types"].append(self.numeric_metric) self.__custom_metrics["metrics"].append(item+"_pos_valid") self.__custom_metrics["types"].append(self.numeric_metric) self.__custom_metrics["metrics"].append(item+"_accuracy_train") self.__custom_metrics["types"].append(self.accuracy_metric) self.__custom_metrics["metrics"].append(item+"_accuracy_valid") self.__custom_metrics["types"].append(self.accuracy_metric) def get_metric_names(self): return self.__custom_metrics["metrics"] def __calc_metrics(self, targets, outputs, metric_values, train): ext = "train" if train else "valid" for target,output,feature in zip(targets, outputs, list(self.__features.keys())): type_of = self.__features[feature]["type"] if (type_of == "circle"): points_target = heatmap_to_circle(target) points_output = heatmap_to_circle(output) if (points_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += 1 if (points_target is not None) and (points_output is not None): mid_point_output = np.round(np.sum(points_output, axis=0)/len(points_output)).astype(np.int) mid_point_target = np.round(np.sum(points_target, axis=0)/len(points_target)).astype(np.int) diff_circle_midpoint = np.sqrt(np.sum((mid_point_output - mid_point_target)**2)) metric_values[feature+"_pos_"+ext].append(diff_circle_midpoint) if diff_circle_midpoint < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 elif type_of == "single_point": center_point_target = heatmap_to_max_confidence_point(target) center_point_output = heatmap_to_max_confidence_point(output) if (center_point_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += 1 if (center_point_target is not None) and (center_point_output is not None): diff_center = np.sqrt(np.sum((center_point_output - center_point_target)**2)) metric_values[feature+"_pos_"+ext].append(diff_center) if diff_center < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 elif type_of == "multi_point": all_peaks_target = heatmap_to_multiple_points(target) all_peaks_output = heatmap_to_multiple_points(output) if (all_peaks_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += len(all_peaks_target) if (all_peaks_target is not None) and (all_peaks_output is not None): diffs = [] for peak_target in all_peaks_target: if len(all_peaks_output) == 0: break s = np.argmin(np.sqrt(np.sum((all_peaks_output - peak_target)**2, axis=1))) diffs.append(np.sqrt(np.sum((all_peaks_output[s] - peak_target)**2))) if diffs[-1] < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 all_peaks_output = np.delete(all_peaks_output, s, axis=0) diff_nut_edges = np.array(diffs).mean() metric_values[feature+"_pos_"+ext].append(diff_nut_edges) else: raise("The Heatmaptype " + type_of + " is not implemented yet.") return metric_values def on_batch_end(self, last_output, last_target, train): if self.__counter_epoch % self.__metric_counter == 0: last_target = last_target.numpy() last_output = last_output.numpy() for target_batch,output_batch in zip(last_target, last_output): self.metrics_values = self.__calc_metrics(target_batch,output_batch, self.metrics_values, train) def on_epoch_begin(self): if self.__counter_epoch % self.__metric_counter == 0: self.metrics_values = {} for idx,metric in enumerate(self.__custom_metrics["metrics"]): if self.__custom_metrics["types"][idx] == self.numeric_metric: self.metrics_values[metric] = [] else: self.metrics_values[metric] = {"total_targets":0,"total_true_positives":0} def on_epoch_end(self): metrics = list(np.zeros(len(self.__custom_metrics["metrics"]), dtype=np.float32)) if self.__counter_epoch % self.__metric_counter == 0: for idx,metric in enumerate(self.__custom_metrics["metrics"]): if self.__custom_metrics["types"][idx] == self.numeric_metric: if len(self.metrics_values[metric]) == 0: metrics[idx] = 0 else: metrics[idx] = np.array(self.metrics_values[metric]).mean() else: if self.metrics_values[metric]["total_targets"] != 0: metrics[idx] = self.metrics_values[metric]["total_true_positives"] / self.metrics_values[metric]["total_targets"] else: metrics[idx] = 0 self.__counter_epoch += 1 return metrics class HeatLoss_OldGen_0(nn.Module): def __init__(self): super().__init__() r"""Class for HeatLoss calculation. This variant includes no masks, simple Mean absolute error over all pixles: """ def forward(self, input, target, masks, hull): return torch.mean(torch.abs(input - target)) class HeatLoss_OldGen_1(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific features """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) ret1 = torch.abs(input[m1] - target[m1]) mean1 = torch.mean(ret1) if self.print_out_losses: print("specific features:",mean1.item(), end="\r") return mean1 class HeatLoss_OldGen_2(nn.Module): def __init__(self, print_out_losses=False): r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - Background (no heat at all) - specific features """ super().__init__() self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.logical_not(m1) ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) if self.print_out_losses: print("specific features:",mean1.item(), "background:",mean2.item(), end="\r") return (mean1+mean2)/2 class HeatLoss_OldGen_3(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific feature - all features in a image """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.zeros(m1.shape, dtype=torch.bool, device=input.device) for dset in range(input.shape[0]): logor = torch.zeros((input.shape[2], input.shape[3]), dtype=torch.bool, device=input.device) for i in range(input.shape[1]): logor = logor | m1[dset,i,:,:] for i in range(input.shape[1]): m2[dset,i,:,:] = logor ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) if self.print_out_losses: print("specific feature:",mean1.item(), "all features:",mean2.item(), end="\r") return (mean1+mean2)/2 class HeatLoss_OldGen_4(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific feature - all features in a image - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.zeros(m1.shape, dtype=torch.bool, device=input.device) m3 = torch.logical_not(m1) for dset in range(input.shape[0]): logor = torch.zeros((input.shape[2], input.shape[3]), dtype=torch.bool, device=input.device) for i in range(input.shape[1]): logor = logor | m1[dset,i,:,:] for i in range(input.shape[1]): m2[dset,i,:,:] = logor ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) ret3 = torch.abs(input[m3] - target[m3]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) mean3 = torch.mean(ret3) if self.print_out_losses: print("specific feature:",mean1.item(), "all features:",mean2.item(), "background:",mean3.item(), end="\r") return (mean1+mean2+mean3)/3 class HeatLoss_NextGen_0(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (single loss calculation for every feature) - convex hull of all featureswith maks dilation - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): hull_not = torch.logical_not(hull) feature_count = target.shape[1] loss_items = torch.zeros(feature_count, dtype=torch.float32, device=input.device) for idx in range(feature_count): diff = torch.abs(input[:,idx,:,:][masks[:,idx,:,:]] - target[:,idx,:,:][masks[:,idx,:,:]]) if len(diff) > 0: loss_items[idx] = torch.mean(diff) loss_hull = torch.mean(torch.abs(input[hull] - target[hull])) loss_backgrond = torch.mean(torch.abs(input[hull_not] - target[hull_not])) if self.print_out_losses: # print loss begin out_str = "" print_items_loss = [] sum_items_loss = torch.zeros(1, dtype=torch.float32, device=input.device) for idx in range(len(loss_items)): out_str = out_str + "loss_item_"+str(idx) + " {:.4f} " print_items_loss.append(round(loss_items[idx].item(),4)) sum_items_loss += loss_items[idx] print_items_loss.append(round(loss_hull.item(),4)) print_items_loss.append(round(loss_backgrond.item(),4)) print((out_str+" loss_hull {:.4f} loss_backgrond {:.4f}").format(*print_items_loss), end="\r") # print loss end return (sum_items_loss+loss_hull+loss_backgrond)/(feature_count+2) class HeatLoss_NextGen_1(nn.Module): def __init__(self): super().__init__(print_out_losses=False) r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (calculation of feature loss all the same) - convex hull of all featureswith maks dilation - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): hull_not = torch.logical_not(hull) loss_features = torch.mean(torch.abs(input[masks] - target[masks])) loss_hull = torch.mean(torch.abs(input[hull] - target[hull])) loss_backgrond = torch.mean(torch.abs(input[hull_not] - target[hull_not])) if self.print_out_losses: print(("loss_features {:.4f} loss_hull {:.4f} loss_backgrond {:.4f}").format(loss_features,loss_hull,loss_backgrond), end="\r") return (loss_features+loss_hull+loss_backgrond)/3 class HeatLoss_NextGen_2(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (calculation of feature loss all the same) - all features in a image (calculation of feature loss all the same) - background (calculation of feature loss all the same) """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): all_mask = torch.any(masks,dim=1)[:,None].repeat(1,target.shape[1],1,1) mask_not = torch.logical_not(masks) loss_features = torch.mean(torch.abs(input[masks] - target[masks])) loss_all_features = torch.mean(torch.abs(input[all_mask] - target[all_mask])) loss_backgrond = torch.mean(torch.abs(input[mask_not] - target[mask_not])) if self.print_out_losses: print(("loss_features {:.4f} loss_all_features {:.4f} loss_backgrond {:.4f}").format(loss_features.item(),loss_all_features.item(),loss_backgrond.item()), end="\r") return (loss_features+loss_all_features+loss_backgrond)/3 class HeatLoss_NextGen_3(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (single loss calculation for every feature) - all features in a image (single loss calculation for every feature) - background (single loss calculation for every feature) """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): feature_count = target.shape[1] mask_not = torch.logical_not(masks) all_mask = torch.any(masks,dim=1)[:,None].repeat(1,target.shape[1],1,1) loss_features = torch.zeros(feature_count, dtype=torch.float32, device=input.device) loss_backgrond = torch.zeros(feature_count, dtype=torch.float32, device=input.device) loss_all_features = torch.zeros(feature_count, dtype=torch.float32, device=input.device) for idx in range(feature_count): diff = torch.abs(input[:,idx,:,:][masks[:,idx,:,:]] - target[:,idx,:,:][masks[:,idx,:,:]]) diff_not = torch.abs(input[:,idx,:,:][mask_not[:,idx,:,:]] - target[:,idx,:,:][mask_not[:,idx,:,:]]) diff_all = torch.abs(input[:,idx,:,:][all_mask[:,idx,:,:]] - target[:,idx,:,:][all_mask[:,idx,:,:]]) if len(diff) > 0: loss_features[idx] = torch.mean(diff) if len(diff_not) > 0: loss_backgrond[idx] = torch.mean(diff_not) if len(diff_all) > 0: loss_all_features[idx] = torch.mean(diff_all) loss_features = torch.mean(loss_features) loss_backgrond = torch.mean(loss_backgrond) loss_all_features = torch.mean(loss_all_features) if self.print_out_losses: print(("loss_features {:.4f} loss_all_features {:.4f} loss_backgrond {:.4f}").format(loss_features.item(),loss_all_features.item(),loss_backgrond.item()), end="\r") return (loss_features+loss_all_features+loss_backgrond)/3 class AWing(nn.Module): def __init__(self, alpha=2.1, omega=14, epsilon=1, theta=0.5): super().__init__() self.alpha = float(alpha) self.omega = float(omega) self.epsilon = float(epsilon) self.theta = float(theta) def forward(self, y_pred , y): lossMat = torch.zeros_like(y_pred) A = self.omega * (1/(1+(self.theta/self.epsilon)**(self.alpha-y)))*(self.alpha-y)*((self.theta/self.epsilon)**(self.alpha-y-1))/self.epsilon C = self.theta*A - self.omega*torch.log(1+(self.theta/self.epsilon)**(self.alpha-y)) case1_ind = torch.abs(y-y_pred) < self.theta case2_ind = torch.abs(y-y_pred) >= self.theta lossMat[case1_ind] = self.omega*torch.log(1+torch.abs((y[case1_ind]-y_pred[case1_ind])/self.epsilon)**(self.alpha-y[case1_ind])) lossMat[case2_ind] = A[case2_ind]*torch.abs(y[case2_ind]-y_pred[case2_ind]) - C[case2_ind] return lossMat class Loss_weighted(nn.Module): def __init__(self, W=10, alpha=2.1, omega=14, epsilon=1, theta=0.5): super().__init__() self.W = float(W) self.Awing = AWing(alpha, omega, epsilon, theta) def forward(self, y_pred , y, M, hull): #pdb.set_trace() M = M.float() Loss = self.Awing(y_pred,y) weighted = Loss * (self.W * M + 1.) return weighted.mean() class HeatmapLearner: def __init__(self, features, root_path, images_path, hull_path, size=(512,512), bs=-1, items_count=-1, gpu_id=0, norm_stats=None, data_aug=None, preload=False, sample_results_path="sample_results", unet_init_features=16, valid_images_store="valid_images.npy", image_convert_mode="L", metric_counter=1, sample_img=None, true_positive_threshold=0.02, ntype="unet", lr=1e-03, file_filters_include=None, file_filters_exclude=None, clahe=False, disable_metrics=False, file_prefix="", loss_func=None, weight_decay=0, num_load_workers=None, dropout=True, dropout_rate=0.15, save_counter=10): r"""Class for train an Unet-style Neural Network, for heatmap based image recognition Args: features : Heatmap features for the neural net. This must be a dict. The Keys must be the folder names for the heatmap features. Every entry is a dict with the feature types: single_point, multi_point, circle Example: {"feature_1":{"type":"single_point"}, "feature_2":{"type":"multi_point"}, "feature_3":{"type":"circle"}} root_path : The root path, where image files and label files are located images_path : The path, where the images are located, in relation to the root_path size : Size of images to pass through the neural network. The sizes must be a power of two with the dimensions of (Heigth, Width). bs : The Batch Size norm_stats : Normalize values for images in the form (mean,std). file_filters_incluce : incluce file filter in images_path, must be a list with include search strings file_filters_exclude : exclude file filter in images_path, must be a list with exclude search strings Example: """ # check assertions assert power_of_2(size), "size must be a power of 2, to work with this class" #static variables (they are fix) heatmap_paths = list(features.keys()) for idx in range(len(heatmap_paths)): heatmap_paths[idx] = Path(heatmap_paths[idx]) self.features = features self.__size = size self.save_counter = save_counter self.__num_load_workers = num_load_workers self.__root_path = Path(root_path) self.__images_path = Path(images_path) self.__hull_path = self.__root_path/Path(hull_path) self.__sample_results_path = Path(sample_results_path) (self.__root_path/self.__sample_results_path).mkdir(parents=True, exist_ok=True) self.stacked_net = True if ntype=="stacked_hourglass" else False self.__gpu_id = gpu_id self.__file_prefix = file_prefix data_aug = DataAugmentation() if data_aug is None else data_aug if norm_stats is None: norm_stats = ([0.131],[0.308]) if image_convert_mode == "L" else ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) if sample_img is None: t_img_files = glob.glob(str(self.__root_path/self.__images_path/"*")) idx = random.randint(0, len(t_img_files)-1) self.__sample_img = self.__root_path/self.__images_path/Path(t_img_files[idx]).name else: self.__sample_img = self.__root_path/self.__images_path/sample_img true_positive_threshold = round(true_positive_threshold*self.__size[0]) # dynamic variables (they can change during learning) self.__epochs = 0 self.__train_losses = None self.__valid_losses = None self.__metrics = None file_filters_include = np.array(file_filters_include) if file_filters_include is not None else None file_filters_exclude = np.array(file_filters_exclude) if file_filters_exclude is not None else None self.__create_learner(file_filters_include=file_filters_include, file_filters_exclude=file_filters_exclude, valid_images_store=valid_images_store, items_count=items_count, features=features, bs=bs, data_aug=data_aug,image_convert_mode=image_convert_mode, heatmap_paths=heatmap_paths, true_positive_threshold=true_positive_threshold, metric_counter=metric_counter, lr=lr, clahe=clahe, norm_stats=norm_stats, unet_init_features=unet_init_features, ntype=ntype, disable_metrics=disable_metrics, loss_func=loss_func, weight_decay = weight_decay, dropout=dropout, dropout_rate=dropout_rate) def __create_learner(self, file_filters_include, file_filters_exclude, valid_images_store, items_count, features, bs, data_aug, image_convert_mode, heatmap_paths, true_positive_threshold, metric_counter, lr, clahe, norm_stats, unet_init_features, ntype, disable_metrics, loss_func, weight_decay, dropout, dropout_rate): training_data, valid_data = self.__load_data(features=features,file_filters_include=file_filters_include, file_filters_exclude = file_filters_exclude, valid_images_store=valid_images_store, items_count=items_count) self.__unet_in_channels = 1 if image_convert_mode == "L" else 3 self.__unet_out_channls = len(heatmap_paths) heatmap_files_sample = [] for feat in features.keys(): heatmap_files_sample.append(self.__root_path/feat/self.__sample_img.name) self.sample_dataset = CustomHeatmapDataset(data=[[self.__sample_img,heatmap_files_sample]], hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], is_valid=True, clahe=clahe, size=self.__size) self.train_dataset = CustomHeatmapDataset(data=training_data, hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], data_aug=data_aug, clahe=clahe, size=self.__size) self.valid_dataset = CustomHeatmapDataset(data=valid_data, hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], is_valid=True, clahe=clahe, size=self.__size) sample_img = None if self.__sample_img is not None: to_t = transforms.ToTensor() img = to_t(load_image(self.__root_path/self.__images_path/self.__sample_img, convert_mode=image_convert_mode, size=self.__size, to_numpy=False)) masks = [] for idx in range(len(heatmap_paths)): heat = to_t(load_heatmap(self.__root_path/heatmap_paths[idx]/self.__sample_img)) masks.append(heat) sample_img = (img,masks) metric = None if disable_metrics else heatmap_metric(features = features, true_positive_threshold = true_positive_threshold, metric_counter = metric_counter) net = self.__get_net(ntype, unet_init_features, dropout, dropout_rate).to(torch.device("cuda:"+str(self.__gpu_id))) opt = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay) loss_func = HeatLoss_NextGen_1() if loss_func is None else loss_func loss_func = loss_func.to(torch.device("cuda:"+str(self.__gpu_id))) if bs == -1: batch_estimator = Batch_Size_Estimator(net=net, opt=opt, loss_func=loss_func, gpu_id=self.__gpu_id, dataset = self.train_dataset) bs = batch_estimator.find_max_bs() train_dl = DataLoader(self.train_dataset, batch_size=bs, shuffle=True, num_workers=num_workers() if self.__num_load_workers is None else self.__num_load_workers, pin_memory=False) valid_dl = DataLoader(self.valid_dataset, batch_size=bs, shuffle=True, num_workers=num_workers() if self.__num_load_workers is None else self.__num_load_workers, pin_memory=False) self.learner = Learner(model=net,loss_func=loss_func, train_dl=train_dl, valid_dl=valid_dl, optimizer=opt, learner_callback= metric,gpu_id= self.__gpu_id, predict_smaple_func=self.predict_sample, save_func=self.save_func, stacked_net= self.stacked_net) def __get_net(self, ntype, unet_init_features, dropout, dropout_rate): if ntype == "res_unet++": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=True, aspp=True, attention=True, bn_relu_at_first=True, bn_relu_at_end=False) elif ntype == "res_unet_bn_relu_end": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "attention_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=False, attention=True, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "aspp_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=True, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "squeeze_excite_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=True, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "res_unet_bn_relu_first": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=True, bn_relu_at_end=False) elif ntype == "unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "res34": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=True, bn_relu_at_end=False, block_sizes_down = res34_downsample, downsample_method=downsample_stride, blocksize_bottleneck = 2, block_sizes_up=[2,2,2,2]) elif ntype == "sp_unet": net = SE_Res_UNet(n_channels=self.__unet_in_channels, n_classes= self.__unet_out_channls, init_features=unet_init_features, dropout=dropout, rate=dropout_rate) elif ntype == "stacked_hourglass": net = hg(num_stacks=4,num_blocks=2,num_classes=self.__unet_out_channls, input_features=self.__unet_in_channels) else: raise("Net type ´"+ ntype+"´ is not implemented!") return net def __load_data(self, features, file_filters_include, file_filters_exclude, valid_images_store, items_count): def find_valid_imgs_func(all_image_files): if not (self.__root_path/valid_images_store).is_file(): valid_images = [img for img in sample(list(all_image_files), int(len(all_image_files)*0.2))] np.save(self.__root_path/valid_images_store, valid_images, allow_pickle=True) return list(np.load(self.__root_path/valid_images_store, allow_pickle=True)) def filter_files(all_image_files): if file_filters_include is not None: new_filenames = [] for filename in all_image_files: for ffilter in file_filters_include: if filename.find((ffilter)) != -1: new_filenames.append(filename) break all_image_files = np.array(new_filenames) if file_filters_exclude is not None: new_filenames = [] for filename in all_image_files: include_in = True for ffilter in file_filters_exclude: if filename.find((ffilter)) != -1: include_in = False break if include_in: new_filenames.append(filename) all_image_files = np.array(new_filenames) return all_image_files all_image_files = [fname.name for fname in list((self.__root_path/self.__images_path).glob("*.png"))] all_image_files = all_image_files if items_count == -1 else all_image_files[:items_count] all_image_files = filter_files(all_image_files) valid_images_files = find_valid_imgs_func(all_image_files) training_data = [] valid_data = [] pbar = progress_bar(range(len(all_image_files))) pbar.comment = "loading files" for idx in pbar: img_file = all_image_files[idx] heatmap_files = [] for feat in features.keys(): heatmap_files.append(self.__root_path/feat/img_file) add_file = self.__root_path/self.__images_path/img_file if img_file in valid_images_files: valid_data.append((add_file,heatmap_files)) else: training_data.append((add_file,heatmap_files)) return training_data, valid_data def save_losses(self, filename=None, train=True,valid=True): assert ((self.__train_losses is not None) and (self.__valid_losses is not None)), "Call `fit` Before losses can be saved" filename = "losses" if filename is None else filename if train: np.save(self.__root_path/self.__sample_results_path/(self.__file_prefix+filename+"_train.npy"), self.__train_losses) if valid: np.save(self.__root_path/self.__sample_results_path/(self.__file_prefix+filename+"_valid.npy"), self.__valid_losses) def get_metric_names(self): return np.array(self.learner.metric_names) def save_metrics(self,filename=None): assert ((self.__metrics is not None)),"Call `fit` Before metrics can be saved" filename = "metrics" if filename is None else filename data = {"names":self.get_metric_names(),"metrics":self.__metrics} pickle.dump(data, open(self.__root_path/self.__sample_results_path/(self.__file_prefix+filename+".pkl"),"wb")) def get_metrics(self, specific_metric_names=None): assert ((self.__metrics is not None)), "Call `fit` Before metrics can be retrived" if specific_metric_names is None: return self.__metrics specific_metric_names =
np.array(specific_metric_names)
numpy.array
""" Mask R-CNN Common utility functions and classes. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by <NAME> """ import sys import os import cv2 import math import random import numpy as np import scipy.misc import _pickle as cPickle from ctypes import * import copy import glob import time from aligning import estimateSimilarityTransform #sys.path.append('./cocoapi/PythonAPI') #from pycocotools.cocoeval import COCOeval #from pycocotools import mask as maskUtils import matplotlib.pyplot as plt ############################################################ # Bounding Boxes ############################################################ def extract_bboxes(mask): """Compute bounding boxes from masks. mask: [height, width, num_instances]. Mask pixels are either 1 or 0. Returns: bbox array [num_instances, (y1, x1, y2, x2)]. """ boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32) for i in range(mask.shape[-1]): m = mask[:, :, i] # Bounding box. horizontal_indicies = np.where(np.any(m, axis=0))[0] vertical_indicies = np.where(np.any(m, axis=1))[0] if horizontal_indicies.shape[0]: x1, x2 = horizontal_indicies[[0, -1]] y1, y2 = vertical_indicies[[0, -1]] # x2 and y2 should not be part of the box. Increment by 1. x2 += 1 y2 += 1 else: # No mask for this instance. Might happen due to # resizing or cropping. Set bbox to zeros x1, x2, y1, y2 = 0, 0, 0, 0 boxes[i] = np.array([y1, x1, y2, x2]) return boxes.astype(np.int32) def compute_iou(box, boxes, box_area, boxes_area): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2] boxes: [boxes_count, (y1, x1, y2, x2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficiency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) union = box_area + boxes_area[:] - intersection[:] iou = intersection / union return iou def compute_overlaps(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. For better performance, pass the largest set first and the smaller second. """ # Areas of anchors and GT boxes area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(overlaps.shape[1]): box2 = boxes2[i] overlaps[:, i] = compute_iou(box2, boxes1, area2[i], area1) return overlaps def compute_overlaps_masks(masks1, masks2): '''Computes IoU overlaps between two sets of masks. masks1, masks2: [Height, Width, instances] ''' # flatten masks masks1 = np.reshape(masks1 > .5, (-1, masks1.shape[-1])).astype(np.float32) masks2 = np.reshape(masks2 > .5, (-1, masks2.shape[-1])).astype(np.float32) area1 = np.sum(masks1, axis=0) area2 = np.sum(masks2, axis=0) # intersections and union intersections = np.dot(masks1.T, masks2) union = area1[:, None] + area2[None, :] - intersections overlaps = intersections / union return overlaps def compute_mean_l1_coord_diff(mask1, mask2, coord1, coord2, synset, cls_id): '''Computes IoU overlaps between two sets of masks. mask1, mask2: [Height, Width] coord1, coord2: [Height, Width, 3] ''' # flatten masks num_pixels = mask1.shape[0] * mask1.shape[1] mask1 = np.reshape(mask1 > .5, (-1)).astype(np.float32) mask2 = np.reshape(mask2 > .5, (-1)).astype(np.float32) coord1 = np.reshape(coord1, (-1, 3)).astype(np.float32) coord2 = np.reshape(coord2, (-1, 3)).astype(np.float32) # intersections and union intersections = np.logical_and(mask1, mask2) num_pixel_intersection = len(np.where(intersections)[0]) pts1 = coord1[intersections, :].transpose() - 0.5 pts2 = coord2[intersections, :].transpose() - 0.5 def rotation_y_matrix(theta): rotation_matrix = \ np.array([ np.cos(theta), 0, np.sin(theta), 0, 1, 0, -np.sin(theta), 0, np.cos(theta)]) rotation_matrix = np.reshape(rotation_matrix, (3, 3)) return rotation_matrix if synset[cls_id] in ['bottle', 'bowl', 'can']: M = 20 pts1_symmetry = np.zeros(pts1.shape+(M,)) ## shape: (3, N, 6) for i in range(M): rotated_pts1 = rotation_y_matrix(float(i)*np.float32(2*math.pi/M)) @ pts1 pts1_symmetry[:, :, i] = rotated_pts1 pts2_reshape = pts2.reshape([3, -1, 1]) mean_dists = np.mean(np.linalg.norm(pts1_symmetry - pts2_reshape, axis=0), axis=0) mean_dist = np.amin(mean_dists) elif synset[cls_id] in ['phone']: pts1_symmetry = np.zeros(pts1.shape+(2,)) for i in range(2): rotated_pts1 = rotation_y_matrix(float(i)*np.float32(2*math.pi/2)) @ pts1 #print(rotated_pts1) pts1_symmetry[:, :, i] = rotated_pts1 pts2_reshape = pts2.reshape([3, -1, 1]) mean_dists = np.mean(np.linalg.norm(pts1_symmetry - pts2_reshape, axis=0), axis=0) mean_dist = np.amin(mean_dists) else: #print(synset[cls_id]) diff = pts1 - pts2 dist = np.linalg.norm(diff, axis=0) assert dist.shape[0] == num_pixel_intersection mean_dist = np.mean(dist) mean_l1_coord_diff = mean_dist #print(mean_l1_coord_diff, pts1.shape[0]) return mean_l1_coord_diff def compute_3d_iou(bbox_3d_1, bbox_3d_2, handle_visibility, class_name_1, class_name_2): '''Computes IoU overlaps between two 3d bboxes. bbox_3d_1, bbox_3d_1: [3, 8] ''' # flatten masks def asymmetric_3d_iou(bbox_3d_1, bbox_3d_2): bbox_1_max = np.amax(bbox_3d_1, axis=0) bbox_1_min = np.amin(bbox_3d_1, axis=0) bbox_2_max = np.amax(bbox_3d_2, axis=0) bbox_2_min = np.amin(bbox_3d_2, axis=0) overlap_min = np.maximum(bbox_1_min, bbox_2_min) overlap_max = np.minimum(bbox_1_max, bbox_2_max) # intersections and union if np.amin(overlap_max - overlap_min) <0: intersections = 0 else: intersections = np.prod(overlap_max - overlap_min) union = np.prod(bbox_1_max - bbox_1_min) + np.prod(bbox_2_max - bbox_2_min) - intersections overlaps = intersections / union return overlaps if bbox_3d_1 is None or bbox_3d_2 is None: return -1 symmetry_flag = False if class_name_1 in ['bottle', 'bowl', 'can'] and class_name_1 == class_name_2: symmetry_flag = True if class_name_1 == 'mug' and class_name_1 == class_name_2 and handle_visibility==0: symmetry_flag = True if symmetry_flag: print('*'*10) n = 20 theta = 2*math.pi/n y_rotation_matrix = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) max_iou = 0 for i in range(n): bbox_center = np.mean(bbox_3d_1, -1, keepdims=True) bbox_3d_1 = y_rotation_matrix @ (bbox_3d_1 - bbox_center) + bbox_center max_iou = max(max_iou, asymmetric_3d_iou(bbox_3d_1, bbox_3d_2)) return max_iou else: return asymmetric_3d_iou(bbox_3d_1, bbox_3d_2) def compute_3d_iou_new(RT_1, RT_2, scales_1, scales_2, handle_visibility, class_name_1, class_name_2): '''Computes IoU overlaps between two 3d bboxes. bbox_3d_1, bbox_3d_1: [3, 8] ''' # flatten masks def asymmetric_3d_iou(RT_1, RT_2, scales_1, scales_2): noc_cube_1 = get_3d_bbox(scales_1, 0) bbox_3d_1 = transform_coordinates_3d(noc_cube_1, RT_1) noc_cube_2 = get_3d_bbox(scales_2, 0) bbox_3d_2 = transform_coordinates_3d(noc_cube_2, RT_2) bbox_1_max = np.amax(bbox_3d_1, axis=0) bbox_1_min = np.amin(bbox_3d_1, axis=0) bbox_2_max = np.amax(bbox_3d_2, axis=0) bbox_2_min = np.amin(bbox_3d_2, axis=0) overlap_min = np.maximum(bbox_1_min, bbox_2_min) overlap_max = np.minimum(bbox_1_max, bbox_2_max) # intersections and union if np.amin(overlap_max - overlap_min) <0: intersections = 0 else: intersections = np.prod(overlap_max - overlap_min) union = np.prod(bbox_1_max - bbox_1_min) + np.prod(bbox_2_max - bbox_2_min) - intersections overlaps = intersections / union return overlaps if RT_1 is None or RT_2 is None: return -1 symmetry_flag = False if (class_name_1 in ['bottle', 'bowl', 'can'] and class_name_1 == class_name_2) or (class_name_1 == 'mug' and class_name_1 == class_name_2 and handle_visibility==0): print('*'*10) noc_cube_1 = get_3d_bbox(scales_1, 0) noc_cube_2 = get_3d_bbox(scales_2, 0) bbox_3d_2 = transform_coordinates_3d(noc_cube_2, RT_2) def y_rotation_matrix(theta): return np.array([[np.cos(theta), 0, np.sin(theta), 0], [0, 1, 0 , 0], [-np.sin(theta), 0, np.cos(theta), 0], [0, 0, 0 , 1]]) n = 20 max_iou = 0 for i in range(n): rotated_RT_1 = RT_1@y_rotation_matrix(2*math.pi*i/float(n)) max_iou = max(max_iou, asymmetric_3d_iou(rotated_RT_1, RT_2, scales_1, scales_2)) else: max_iou = asymmetric_3d_iou(RT_1, RT_2, scales_1, scales_2) return max_iou def compute_RT_distances(RT_1, RT_2): ''' :param RT_1: [4, 4]. homogeneous affine transformation :param RT_2: [4, 4]. homogeneous affine transformation :return: theta: angle difference of R in degree, shift: l2 difference of T in centimeter ''' #print(RT_1[3, :], RT_2[3, :]) ## make sure the last row is [0, 0, 0, 1] if RT_1 is None or RT_2 is None: return -1 try: assert np.array_equal(RT_1[3, :], RT_2[3, :]) assert np.array_equal(RT_1[3, :], np.array([0, 0, 0, 1])) except AssertionError: print(RT_1[3, :], RT_2[3, :]) R1 = RT_1[:3, :3]/np.cbrt(np.linalg.det(RT_1[:3, :3])) T1 = RT_1[:3, 3] R2 = RT_2[:3, :3]/np.cbrt(np.linalg.det(RT_2[:3, :3])) T2 = RT_2[:3, 3] R = R1 @ R2.transpose() theta = np.arccos((np.trace(R) - 1)/2) * 180/np.pi shift = np.linalg.norm(T1-T2) * 100 # print(theta, shift) if theta < 5 and shift < 5: return 10 - theta - shift else: return -1 def compute_RT_degree_cm_symmetry(RT_1, RT_2, class_id, handle_visibility, synset_names): ''' :param RT_1: [4, 4]. homogeneous affine transformation :param RT_2: [4, 4]. homogeneous affine transformation :return: theta: angle difference of R in degree, shift: l2 difference of T in centimeter synset_names = ['BG', # 0 'bottle', # 1 'bowl', # 2 'camera', # 3 'can', # 4 'cap', # 5 'phone', # 6 'monitor', # 7 'laptop', # 8 'mug' # 9 ] synset_names = ['BG', # 0 'bottle', # 1 'bowl', # 2 'camera', # 3 'can', # 4 'laptop', # 5 'mug' # 6 ] ''' ## make sure the last row is [0, 0, 0, 1] if RT_1 is None or RT_2 is None: return -1 try: assert np.array_equal(RT_1[3, :], RT_2[3, :]) assert np.array_equal(RT_1[3, :], np.array([0, 0, 0, 1])) except AssertionError: print(RT_1[3, :], RT_2[3, :]) exit() R1 = RT_1[:3, :3] / np.cbrt(np.linalg.det(RT_1[:3, :3])) T1 = RT_1[:3, 3] R2 = RT_2[:3, :3] / np.cbrt(np.linalg.det(RT_2[:3, :3])) T2 = RT_2[:3, 3] print(T1,T2) # try: # assert np.abs(np.linalg.det(R1) - 1) < 0.01 # assert np.abs(np.linalg.det(R2) - 1) < 0.01 # except AssertionError: # print(np.linalg.det(R1), np.linalg.det(R2)) if synset_names[class_id] in ['bottle', 'can', 'bowl']: ## symmetric when rotating around y-axis y = np.array([0, 1, 0]) y1 = R1 @ y y2 = R2 @ y theta = np.arccos(y1.dot(y2) / (np.linalg.norm(y1) * np.linalg.norm(y2))) elif synset_names[class_id] == 'mug' and handle_visibility==0: ## symmetric when rotating around y-axis y = np.array([0, 1, 0]) y1 = R1 @ y y2 = R2 @ y theta = np.arccos(y1.dot(y2) / (np.linalg.norm(y1) * np.linalg.norm(y2))) elif synset_names[class_id] in ['phone', 'eggbox', 'glue']: y_180_RT = np.diag([-1.0, 1.0, -1.0]) R = R1 @ R2.transpose() R_rot = R1 @ y_180_RT @ R2.transpose() theta = min(np.arccos((np.trace(R) - 1) / 2), np.arccos((np.trace(R_rot) - 1) / 2)) else: R = R1 @ R2.transpose() theta = np.arccos((np.trace(R) - 1) / 2) theta *= 180 / np.pi shift = np.linalg.norm(T1 - T2) * 100 result = np.array([theta, shift]) return result def compute_RT_projection_2d_symmetry(RT_1, RT_2, class_id, handle_visibility, mesh_vertices, intrinsics, synset_names, num_rotation=20): ''' :param RT_1: [4, 4]. homogeneous affine transformation :param RT_2: [4, 4]. homogeneous affine transformation :param vertices: [3, N]. :param intrinsics: [4, 4] :return: mean 2d projection distance in pixel synset_names = ['BG', # 0 'bottle', # 1 'bowl', # 2 'camera', # 3 'can', # 4 'laptop', # 5 'mug' # 6 ] ''' ## make sure the last row is [0, 0, 0, 1] if RT_1 is None or RT_2 is None: return -1 try: assert np.array_equal(RT_1[3, :], RT_2[3, :]) assert np.array_equal(RT_1[3, :], np.array([0, 0, 0, 1])) except AssertionError: print(RT_1[3, :], RT_2[3, :]) exit() RT_1[:3, :3] = RT_1[:3, :3]/np.cbrt(np.linalg.det(RT_1[:3, :3])) R1 = RT_1[:3, :3] #T1 = RT_1[:3, 3] RT_2[:3, :3] = RT_2[:3, :3]/np.cbrt(np.linalg.det(RT_2[:3, :3])) R2 = RT_2[:3, :3] #T2 = RT_2[:3, 3] try: assert np.abs(np.linalg.det(R1) - 1) < 0.01 assert np.abs(np.linalg.det(R2) - 1) < 0.01 except AssertionError: print(np.linalg.det(R1), np.linalg.det(R2)) # check the vertices are in meter unit vertices = np.copy(mesh_vertices)/1000 assert np.amax(vertices) < 0.5, np.amax(vertices) assert np.amax(vertices) > 0, np.amax(vertices) assert np.amin(vertices) < 0, np.amin(vertices) assert np.amin(vertices) > -0.5, np.amin(vertices) assert vertices.shape[0] == 3 num_vertices = vertices.shape[1] coords_3d_1 = transform_coordinates_3d(vertices, RT_1) projected_1 = calculate_2d_projections(coords_3d_1, intrinsics) coords_3d_2 = transform_coordinates_3d(vertices, RT_2) projected_2 = calculate_2d_projections(coords_3d_2, intrinsics) # calculate reprojection 2d error dists = np.linalg.norm(projected_1 - projected_2, axis=1) assert len(dists) == num_vertices min_mean_dist = np.mean(dists) ## take care of symmetry categories # freely rotate around y axis if (synset_names[class_id] in ['bottle', 'can', 'bowl']) or (synset_names[class_id] == 'mug' and handle_visibility==0): def y_rotation_matrix(theta): return np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) for i in range(1, num_rotation): theta = 2*math.pi*i/float(num_rotation) coords_3d_2 = transform_coordinates_3d(y_rotation_matrix(theta)@vertices, RT_2) projected_2 = calculate_2d_projections(coords_3d_2, intrinsics) dists = np.linalg.norm(projected_1 - projected_2, axis=1) assert len(dists) == num_vertices min_mean_dist = min(min_mean_dist, np.mean(dists)) # rotate 180 around y axis elif synset_names[class_id] in ['phone']: y_180_RT = np.diag([-1.0, 1.0, -1.0]) coords_3d_2 = transform_coordinates_3d(y_180_RT@vertices, RT_2) projected_2 = calculate_2d_projections(coords_3d_2, intrinsics) dists = np.linalg.norm(projected_1 - projected_2, axis=1) assert len(dists) == num_vertices min_mean_dist = min(min_mean_dist, np.mean(dists)) # rotate 180 around z axis elif synset_names[class_id] in ['eggbox', 'glue']: z_180_RT = np.diag([-1.0, -1.0, 1.0]) coords_3d_2 = transform_coordinates_3d(z_180_RT@vertices, RT_2) projected_2 = calculate_2d_projections(coords_3d_2, intrinsics) dists = np.linalg.norm(projected_1 - projected_2, axis=1) assert len(dists) == num_vertices min_mean_dist = min(min_mean_dist, np.mean(dists)) else: ## normal asymmetric objects min_mean_dist = min_mean_dist return min_mean_dist def non_max_suppression(boxes, scores, threshold): """Performs non-maximum suppression and returns indices of kept boxes. boxes: [N, (y1, x1, y2, x2)]. Notice that (y2, x2) lays outside the box. scores: 1-D array of box scores. threshold: Float. IoU threshold to use for filtering. """ assert boxes.shape[0] > 0 if boxes.dtype.kind != "f": boxes = boxes.astype(np.float32) # Compute box areas y1 = boxes[:, 0] x1 = boxes[:, 1] y2 = boxes[:, 2] x2 = boxes[:, 3] area = (y2 - y1) * (x2 - x1) # Get indicies of boxes sorted by scores (highest first) ixs = scores.argsort()[::-1] pick = [] while len(ixs) > 0: # Pick top box and add its index to the list i = ixs[0] pick.append(i) # Compute IoU of the picked box with the rest iou = compute_iou(boxes[i], boxes[ixs[1:]], area[i], area[ixs[1:]]) # Identify boxes with IoU over the threshold. This # returns indicies into ixs[1:], so add 1 to get # indicies into ixs. remove_ixs = np.where(iou > threshold)[0] + 1 # Remove indicies of the picked and overlapped boxes. ixs = np.delete(ixs, remove_ixs) ixs = np.delete(ixs, 0) return np.array(pick, dtype=np.int32) def apply_box_deltas(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, (y1, x1, y2, x2)]. Note that (y2, x2) is outside the box. deltas: [N, (dy, dx, log(dh), log(dw))] """ boxes = boxes.astype(np.float32) # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= np.exp(deltas[:, 2]) width *= np.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width return np.stack([y1, x1, y2, x2], axis=1) def box_refinement_graph(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)] """ box = tf.cast(box, tf.float32) gt_box = tf.cast(gt_box, tf.float32) height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = tf.log(gt_height / height) dw = tf.log(gt_width / width) result = tf.stack([dy, dx, dh, dw], axis=1) return result def box_refinement(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)]. (y2, x2) is assumed to be outside the box. """ box = box.astype(np.float32) gt_box = gt_box.astype(np.float32) height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = np.log(gt_height / height) dw = np.log(gt_width / width) return np.stack([dy, dx, dh, dw], axis=1) def get_3d_bbox(scale, shift = 0): """ Input: scale: [3] or scalar shift: [3] or scalar Return bbox_3d: [3, N] """ if hasattr(scale, "__iter__"): bbox_3d = np.array([[scale[0] / 2, +scale[1] / 2, scale[2] / 2], [scale[0] / 2, +scale[1] / 2, -scale[2] / 2], [-scale[0] / 2, +scale[1] / 2, scale[2] / 2], [-scale[0] / 2, +scale[1] / 2, -scale[2] / 2], [+scale[0] / 2, -scale[1] / 2, scale[2] / 2], [+scale[0] / 2, -scale[1] / 2, -scale[2] / 2], [-scale[0] / 2, -scale[1] / 2, scale[2] / 2], [-scale[0] / 2, -scale[1] / 2, -scale[2] / 2]]) + shift else: bbox_3d = np.array([[scale / 2, +scale / 2, scale / 2], [scale / 2, +scale / 2, -scale / 2], [-scale / 2, +scale / 2, scale / 2], [-scale / 2, +scale / 2, -scale / 2], [+scale / 2, -scale / 2, scale / 2], [+scale / 2, -scale / 2, -scale / 2], [-scale / 2, -scale / 2, scale / 2], [-scale / 2, -scale / 2, -scale / 2]]) +shift bbox_3d = bbox_3d.transpose() return bbox_3d def transform_coordinates_3d(coordinates, RT): """ Input: coordinates: [3, N] RT: [4, 4] Return new_coordinates: [3, N] """ assert coordinates.shape[0] == 3 coordinates = np.vstack([coordinates, np.ones((1, coordinates.shape[1]), dtype=np.float32)]) new_coordinates = RT @ coordinates new_coordinates = new_coordinates[:3, :]/new_coordinates[3, :] return new_coordinates def calculate_2d_projections(coordinates_3d, intrinsics): """ Input: coordinates: [3, N] intrinsics: [3, 3] Return projected_coordinates: [N, 2] """ projected_coordinates = intrinsics @ coordinates_3d projected_coordinates = projected_coordinates[:2, :] / projected_coordinates[2, :] projected_coordinates = projected_coordinates.transpose() projected_coordinates = np.array(projected_coordinates, dtype=np.int32) return projected_coordinates ############################################################ # IMAGE AUGMENTATION ############################################################ def calculate_rotation(image_size, angle): image_center = tuple(np.array(image_size) / 2) # Convert the OpenCV 3x2 rotation matrix to 3x3 rot_mat = np.vstack( [cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]] ) rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2]) # Shorthand for below calcs image_w2 = image_size[0] * 0.5 image_h2 = image_size[1] * 0.5 # Obtain the rotated coordinates of the image corners rotated_coords = [ (np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0], (np.array([image_w2, image_h2]) * rot_mat_notranslate).A[0], (np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0], (np.array([image_w2, -image_h2]) * rot_mat_notranslate).A[0] ] # Find the size of the new image x_coords = [pt[0] for pt in rotated_coords] x_pos = [x for x in x_coords if x > 0] x_neg = [x for x in x_coords if x < 0] y_coords = [pt[1] for pt in rotated_coords] y_pos = [y for y in y_coords if y > 0] y_neg = [y for y in y_coords if y < 0] right_bound = max(x_pos) left_bound = min(x_neg) top_bound = max(y_pos) bot_bound = min(y_neg) new_w = int(abs(right_bound - left_bound)) new_h = int(abs(top_bound - bot_bound)) # We require a translation matrix to keep the image centred trans_mat = np.matrix([ [1, 0, int(new_w * 0.5 - image_w2)], [0, 1, int(new_h * 0.5 - image_h2)], [0, 0, 1] ]) # Compute the tranform for the combined rotation and translation affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :] return new_w, new_h, affine_mat def rotate_image(image, new_w, new_h, affine_mat, interpolation=cv2.INTER_LINEAR): """ Rotates an OpenCV 2 / NumPy image about it's centre by the given angle (in degrees). The returned image will be large enough to hold the entire new image, with a black background """ # Get the image size # No that's not an error - NumPy stores image matricies backwards # Apply the transform result = cv2.warpAffine( image, affine_mat, (new_w, new_h), flags=interpolation ) return result def largest_rotated_rect(w, h, angle): """ Given a rectangle of size wxh that has been rotated by 'angle' (in radians), computes the width and height of the largest possible axis-aligned rectangle within the rotated rectangle. Original JS code by 'Andri' and <NAME> from Stack Overflow Converted to Python by <NAME> """ quadrant = int(math.floor(angle / (math.pi / 2))) & 3 sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle alpha = (sign_alpha % math.pi + math.pi) % math.pi bb_w = w * math.cos(alpha) + h * math.sin(alpha) bb_h = w * math.sin(alpha) + h * math.cos(alpha) gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w) delta = math.pi - alpha - gamma length = h if (w < h) else w d = length * math.cos(alpha) a = d * math.sin(alpha) / math.sin(delta) y = a * math.cos(gamma) x = y * math.tan(gamma) return ( bb_w - 2 * x, bb_h - 2 * y ) def crop_around_center(image, width, height): """ Given a NumPy / OpenCV 2 image, crops it to the given width and height, around it's centre point """ image_size = (image.shape[1], image.shape[0]) image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5)) if(width > image_size[0]): width = image_size[0] if(height > image_size[1]): height = image_size[1] x1 = int(image_center[0] - width * 0.5) x2 = int(image_center[0] + width * 0.5) y1 = int(image_center[1] - height * 0.5) y2 = int(image_center[1] + height * 0.5) return image[y1:y2, x1:x2] def rotate_and_crop(image, rotate_degree, interpolation): image_height, image_width = image.shape[0:2] new_w, new_h, affine_mat = calculate_rotation(image.shape[0:2][::-1], rotate_degree) image_rotated = rotate_image(image, new_w, new_h, affine_mat, interpolation) image_rotated_cropped = crop_around_center( image_rotated, *largest_rotated_rect( image_width, image_height, math.radians(rotate_degree) ) ) return image_rotated_cropped def rotate_and_crop_images(image, masks, coords, rotate_degree): image_height, image_width = image.shape[0:2] new_w, new_h, affine_mat = calculate_rotation(image.shape[0:2][::-1], rotate_degree) image_rotated = rotate_image(image, new_w, new_h, affine_mat, cv2.INTER_LINEAR) mask_rotated = rotate_image(masks, new_w, new_h, affine_mat, cv2.INTER_NEAREST) rect = largest_rotated_rect( image_width, image_height, math.radians(rotate_degree) ) image_rotated_cropped = crop_around_center(image_rotated, *rect) mask_rotated_cropped = crop_around_center(mask_rotated, *rect) image_rotated_cropped = cv2.resize(image_rotated_cropped, (image_width, image_height),interpolation=cv2.INTER_LINEAR) mask_rotated_cropped = cv2.resize(mask_rotated_cropped, (image_width, image_height), interpolation=cv2.INTER_NEAREST) if coords is not None: coord_rotated = rotate_image(coords, new_w, new_h, affine_mat, cv2.INTER_NEAREST) coord_rotated_cropped = crop_around_center(coord_rotated, *rect) coord_rotated_cropped = cv2.resize(coord_rotated_cropped, (image_width, image_height), interpolation=cv2.INTER_NEAREST) return image_rotated_cropped, mask_rotated_cropped, coord_rotated_cropped else: return image_rotated_cropped, mask_rotated_cropped ############################################################ # Dataset ############################################################ class Dataset(object): """The base class for dataset classes. To use it, create a new class that adds functions specific to the dataset you want to use. For example: class CatsAndDogsDataset(Dataset): def load_cats_and_dogs(self): ... def load_mask(self, image_id): ... def image_reference(self, image_id): ... See COCODataset and ShapesDataset as examples. """ def __init__(self, class_map=None): self._image_ids = [] self.image_info = [] # Background is always the first class self.class_info = [{"source": "", "id": 0, "name": "BG"}] self.source_class_ids = {} def add_class(self, source, class_id, class_name): assert "." not in source, "Source name cannot contain a dot" # Does the class exist already? for info in self.class_info: if info['source'] == source and info["id"] == class_id: # source.class_id combination already available, skip return # Add the class self.class_info.append({ "source": source, "id": class_id, "name": class_name, }) def add_image(self, source, image_id, path, **kwargs): image_info = { "id": image_id, "source": source, "path": path, } image_info.update(kwargs) self.image_info.append(image_info) def image_reference(self, image_id): """Return a link to the image in its source Website or details about the image that help looking it up or debugging it. Override for your dataset, but pass to this function if you encounter images not in your dataset. """ return "" def prepare(self, class_map=None): """Prepares the Dataset class for use.d """ def clean_name(name): """Returns a shorter version of object names for cleaner display.""" return ",".join(name.split(",")[:1]) # Build (or rebuild) everything else from the info dicts. #self.num_classes = len(self.class_info) self.num_classes = 0 #self.class_ids = np.arange(self.num_classes) self.class_ids = [] #self.class_names = [clean_name(c["name"]) for c in self.class_info] self.class_names = [] #self.class_from_source_map = {"{}.{}".format(info['source'], info['id']): id # for info, id in zip(self.class_info, self.class_ids)} self.class_from_source_map = {} for cls_info in self.class_info: source = cls_info["source"] if source == 'coco': map_key = "{}.{}".format(cls_info['source'], cls_info['id']) self.class_from_source_map[map_key] = self.class_names.index(class_map[cls_info["name"]]) else: self.class_ids.append(self.num_classes) self.num_classes += 1 self.class_names.append(cls_info["name"]) map_key = "{}.{}".format(cls_info['source'], cls_info['id']) self.class_from_source_map[map_key] = self.class_ids[-1] self.num_images = len(self.image_info) self._image_ids = np.arange(self.num_images) # Mapping from source class and image IDs to internal IDs self.image_from_source_map = {"{}.{}".format(info['source'], info['id']): id for info, id in zip(self.image_info, self.image_ids)} # Map sources to class_ids they support self.sources = list(set([i['source'] for i in self.class_info])) ''' self.source_class_ids = {} # Loop over datasets for source in self.sources: self.source_class_ids[source] = [] # Find classes that belong to this dataset for i, info in enumerate(self.class_info): # Include BG class in all datasets if i == 0 or source == info['source']: self.source_class_ids[source].append(i) ''' print(self.class_names) print(self.class_from_source_map) print(self.sources) #print(self.source_class_ids) def map_source_class_id(self, source_class_id): """Takes a source class ID and returns the int class ID assigned to it. For example: dataset.map_source_class_id("coco.12") -> 23 """ return self.class_from_source_map[source_class_id] if source_class_id in self.class_from_source_map else None def get_source_class_id(self, class_id, source): """Map an internal class ID to the corresponding class ID in the source dataset.""" info = self.class_info[class_id] assert info['source'] == source return info['id'] def append_data(self, class_info, image_info): self.external_to_class_id = {} for i, c in enumerate(self.class_info): for ds, id in c["map"]: self.external_to_class_id[ds + str(id)] = i # Map external image IDs to internal ones. self.external_to_image_id = {} for i, info in enumerate(self.image_info): self.external_to_image_id[info["ds"] + str(info["id"])] = i @property def image_ids(self): return self._image_ids def source_image_link(self, image_id): """Returns the path or URL to the image. Override this to return a URL to the image if it's availble online for easy debugging. """ return self.image_info[image_id]["path"] def load_image(self, image_id): """Load the specified image and return a [H,W,3] Numpy array. """ # Load image image = scipy.misc.imread(self.image_info[image_id]['path']) # If grayscale. Convert to RGB for consistency. if image.ndim != 3: image = skimage.color.gray2rgb(image) return image def load_mask(self, image_id): """Load instance masks for the given image. Different datasets use different ways to store masks. Override this method to load instance masks and return them in the form of am array of binary masks of shape [height, width, instances]. Returns: masks: A bool array of shape [height, width, instance count] with a binary mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # Override this function to load a mask from your dataset. # Otherwise, it returns an empty mask. mask = np.empty([0, 0, 0]) class_ids = np.empty([0], np.int32) return mask, class_ids def resize_image(image, min_dim=None, max_dim=None, padding=False): """ Resizes an image keeping the aspect ratio. min_dim: if provided, resizes the image such that it's smaller dimension == min_dim max_dim: if provided, ensures that the image longest side doesn't exceed this value. padding: If true, pads image with zeros so it's size is max_dim x max_dim Returns: image: the resized image window: (y1, x1, y2, x2). If max_dim is provided, padding might be inserted in the returned image. If so, this window is the coordinates of the image part of the full image (excluding the padding). The x2, y2 pixels are not included. scale: The scale factor used to resize the image padding: Padding added to the image [(top, bottom), (left, right), (0, 0)] """ # Default window (y1, x1, y2, x2) and default scale == 1. h, w = image.shape[:2] window = (0, 0, h, w) scale = 1 # Scale? if min_dim: # Scale up but not down scale = max(1, min_dim / min(h, w)) # Does it exceed max dim? if max_dim: image_max = max(h, w) if round(image_max * scale) > max_dim: scale = max_dim / image_max # Resize image and mask if scale != 1: image = scipy.misc.imresize( image, (round(h * scale), round(w * scale))) # Need padding? if padding: # Get new height and width h, w = image.shape[:2] top_pad = (max_dim - h) // 2 bottom_pad = max_dim - h - top_pad left_pad = (max_dim - w) // 2 right_pad = max_dim - w - left_pad padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)] image = np.pad(image, padding, mode='constant', constant_values=0) window = (top_pad, left_pad, h + top_pad, w + left_pad) return image, window, scale, padding def resize_mask(mask, scale, padding): """Resizes a mask using the given scale and padding. Typically, you get the scale and padding from resize_image() to ensure both, the image, the mask, and the coordinate map are resized consistently. scale: mask scaling factor padding: Padding to add to the mask in the form [(top, bottom), (left, right), (0, 0)] """ h, w = mask.shape[:2] # for instance mask if len(mask.shape) == 3: mask = scipy.ndimage.zoom(mask, zoom=[scale, scale, 1], order=0) new_padding = padding # for coordinate map elif len(mask.shape) == 4: mask = scipy.ndimage.zoom(mask, zoom=[scale, scale, 1, 1], order=0) new_padding = padding + [(0, 0)] else: assert False mask =
np.pad(mask, new_padding, mode='constant', constant_values=0)
numpy.pad
''' FOREST CARBON BALANCE BY SPARSE GRID SAMPLING ''' #%% Import modules import os import numpy as np import pandas as pd import geopandas as gpd import fiona import matplotlib.pyplot as plt import numpy.matlib as ml import matplotlib.pyplot as plt import time from shapely.geometry import Polygon,Point from fcgadgets.macgyver import utilities_general as gu from fcgadgets.macgyver import utilities_gis as gis from fcgadgets.macgyver import utilities_inventory as invu from fcgadgets.cbrunner import cbrun_utilities #%% Define paths meta={} meta['Paths']={} meta['Paths']['Project']=r'D:\Data\FCI_Projects\FCI_SparseGrid' #meta['Paths']['Project']=r'D:\Data\FCI_Projects\SparseGrid_HighRes' meta['Paths']['Geospatial']=meta['Paths']['Project'] + '\\Geospatial' meta['Paths']['Results']=r'C:\Users\rhember\Documents\Data\ForestInventory\Results\20210401' meta['Paths']['VRI']=r'C:\Users\rhember\Documents\Data\ForestInventory\VRI\20210401' meta['Paths']['Disturbances']=r'C:\Users\rhember\Documents\Data\ForestInventory\Disturbances\20210401' meta['Paths']['LandUse']=r'C:\Users\rhember\Documents\Data\ForestInventory\LandUse\20210401' meta['Paths']['Taz Datasets']=r'C:\Users\rhember\Documents\Data\Taz Datasets' # Save gu.opickle(meta['Paths']['Project'] + '\\Inputs\\Metadata.pkl',meta) #%% Define sparse grid sample # Import TSA maps zTSA=gis.OpenGeoTiff(r'C:\Users\rhember\Documents\Data\BC1ha\Admin\tsa.tif') lut_tsa=pd.read_excel(r'C:\Users\rhember\Documents\Data\BC1ha\Admin\lut_tsa.xlsx') tsa_boundaries=gpd.read_file(r'C:\Users\rhember\Documents\Data\TSA\tsa_boundaries.shp') # Import land cover zLC2=gis.OpenGeoTiff(r'C:\Users\rhember\Documents\Data\BC1ha\VRI\lc2.tif') # Define regular grid sampling frequency sfreq=100 # 10 km #sfreq=50 # 5 km #sfreq=20 # High res # Extract subgrid zTSA['X']=zTSA['X'][0::sfreq,0::sfreq] zTSA['Y']=zTSA['Y'][0::sfreq,0::sfreq] zTSA['m'],zTSA['n']=zTSA['X'].shape zTSA['Data']=zTSA['Data'][0::sfreq,0::sfreq] zLC2['Data']=zLC2['Data'][0::sfreq,0::sfreq] # Define additional inclusion criteria # Treed, province-wide iIreg=np.where( (zLC2['Data']==4) ) # Treed, Williams Lake TSA only #iTSA=lut_tsa.loc[lut_tsa.Name=='Williams Lake TSA','VALUE'].values #ind=np.where( (zLC2.Data==4) & (zTSA.Data==iTSA) ) # Save grid flg=0 if flg==1: z=zTSA.copy() z['Data']=np.zeros(zTSA['Data'].shape,dtype='int16') z['Data'][iIreg]=1 # Treed = 1 gis.SaveGeoTiff(z,meta['Paths']['Project'] + '\\Geospatial\\GridSXY.tiff') plt.matshow(z['Data']) #%% Generate sparse grid # Apply filters to BC1ha grid sxy={} sxy['x']=zTSA['X'][iIreg] sxy['y']=zTSA['Y'][iIreg] sxy['ID_TSA']=zTSA['Data'][iIreg] # Save to pickle file gu.opickle(meta['Paths']['Geospatial'] + '\\sxy.pkl',sxy) # Save as geojson flg=1 if flg==1: points=[] for k in range(sxy['x'].size): points.append(Point(sxy['x'][k],sxy['y'][k])) gdf_sxy=gpd.GeoDataFrame({'geometry':points,'ID_TSA':sxy['ID_TSA']}) gdf_sxy.crs=tsa_boundaries.crs gdf_sxy.to_file(meta['Paths']['Geospatial'] + '\\sxy.geojson',driver='GeoJSON') #%% Plot # Load basemap gdf_bm=gpd.read_file(r'C:\Users\rhember\Documents\Data\Basemaps\Basemaps.gdb',layer='NRC_POLITICAL_BOUNDARIES_1M_SP') plt.close('all') fig,ax=plt.subplots(figsize=gu.cm2inch(7.8,6.6)) #mngr=plt.get_current_fig_manager() #mngr.window.setGeometry(700,20,620,600) gdf_bm.plot(ax=ax,facecolor=[0.8,0.8,0.8],edgecolor=[0,0,0],label='Political Boundary',linewidth=0.25,alpha=1) tsa_boundaries.plot(ax=ax,facecolor='none',edgecolor=[0,0,0],linewidth=0.25) gdf_sxy.plot(ax=ax,markersize=1,facecolor=[0,0,0.75],edgecolor=None,linewidth=0.75,alpha=1) ax.grid(color='k',linestyle='-',linewidth=0.25) #iP=2000 #for iD in range(len(nddat[iP])): # x,y=nddat[iP][iD]['Geometry'].exterior.xy # plt.plot(x,y,'r-') ax.set(position=[0.01,0.01,0.98,0.98],xticks=[],yticks=[]) #plt.savefig(PathProject + '\\SparseGrid_Map.png',format='png',dpi=900) ##%% Get N deposition time series for each sparse grid cell # #tv=np.arange(1971,2021,1) #ndep=np.zeros((tv.size,len(gdf_sxy))) #for iMP in range(len(nddat)): # print(iMP) # it=np.where(tv==nddat[iMP][0]['Year'])[0] # if it.size==0: # continue # FlagDone=np.zeros(len(gdf_sxy)) # for iD in range(len(nddat[iMP])): # InPoly=gdf_sxy.within(nddat[iMP][iD]['Geometry']) # ind=np.where( (InPoly==True) & (FlagDone==0) )[0] # #gdf_sxy.loc[InPoly].plot(ax=ax,markersize=1,facecolor=[1,0,0.25],edgecolor=None,linewidth=0.75,alpha=1) # if ind.size>0: # ndep[it,ind]=ndep[it,ind]+nddat[iMP][iD]['N deposition'] # FlagDone[ind]=1 # #plt.plot(tv,np.prctile(ndep,axis=1),'-k.') # #gu.opickle(r'C:\Users\rhember\Documents\Data\FCI_Projects\FertilizationSummaryNdep\Geospatial\ndep.pkl',ndep) #%% Open crosswalk between missing AT geometries and opening geometries # If this doesn't work, you need to run the script that creates the crosswalk missing_geo_atu_list=gu.ipickle(meta['Paths']['Results'] + '\\missing_geo_atu_list.pkl') missing_geo_op_geos=gu.ipickle(meta['Paths']['Results'] + '\\missing_geo_op_geos.pkl') missing_geo_fc_geos=gu.ipickle(meta['Paths']['Results'] + '\\missing_geo_fc_geos.pkl') #%% Import inventory layer information (names, variables, LUTs) InvLyrInfo=invu.DefineInventoryLayersAndVariables() for iLyr in range(len(InvLyrInfo)): lut=gu.ipickle(InvLyrInfo[iLyr]['Path'] + '\\LUTs_' + InvLyrInfo[iLyr]['Layer Name'] +'.pkl') for key in lut.keys(): InvLyrInfo[iLyr]['LUT'][key]=lut[key] del lut #%% Compile inventory layers for iLyr in range(len(InvLyrInfo)): # Loop through features in layer t_start=time.time() # Define path path=InvLyrInfo[iLyr]['Path'] + '\\' + InvLyrInfo[iLyr]['File Name'] # Define layer lyr_nam=InvLyrInfo[iLyr]['Layer Name'] print(lyr_nam) # Don't run this for planting - planting is done seperately below if lyr_nam=='RSLT_PLANTING_SVW': continue # Initialize index to inventory IdxToInv=[None]*sxy['x'].size # Initialize inventory dictionary L=5000000 data={} data['IdxToSXY']=np.zeros(L,dtype=int) for fnam,flag,dtype in InvLyrInfo[iLyr]['Field List']: if dtype=='<U20': data[fnam]=np.zeros(L,dtype=dtype) else: data[fnam]=-999*np.ones(L,dtype=dtype) cnt_inventory=0 # Scan through layer file to extract selected variables, and convert string # variables to numeric based on LUTs cc=0 with fiona.open(path,layer=lyr_nam) as source: for feat in source: # Extract attributes and geometry prp=feat['properties'] geom=feat['geometry'] # Fill missing AT spatial with OP spatial if (lyr_nam=='RSLT_ACTIVITY_TREATMENT_SVW'): # No need to record surveys #if prp['SILV_BASE_CODE']=='SU': # continue # Populate missing ATU layer geometry with geometry from # OPENING or FC layer where possible. flg_geom_from_op=0 flg_geom_from_fc=0 if (geom==None): # Check to see if the opening is listed in the AT missing dictionary indMis=np.where( (missing_geo_atu_list['ACTIVITY_TREATMENT_UNIT_ID']==prp['ACTIVITY_TREATMENT_UNIT_ID']) )[0] if indMis.size>0: idx2fc=missing_geo_atu_list['IdxToFC'][indMis[0]] if len(idx2fc)>0: # Use forest cover geometries geom={} geom['coordinates']=[] for i in range(len(idx2fc)): geo0=missing_geo_fc_geos[prp['OPENING_ID']][idx2fc[i]] if type(geo0)==dict: geo1=geo0['coordinates'] geom['coordinates'].append(geo1[0]) else: for j in range(len(geo0)): geo1=geo0[j]['coordinates'] geom['coordinates'].append(geo1[0]) flg_geom_from_fc=1 # Plot (not working) #flg=0 #if flg==1: # plt.close('all') # fig,ax=plt.subplots(1) # gdf_fc=gpd.GeoDataFrame.from_features(feat_fc) # gdf_fc.plot(ax=ax,facecolor='None',edgecolor='r',linewidth=1.25,linestyle='--') if prp['OPENING_ID'] in missing_geo_op_geos: if len(missing_geo_op_geos[prp['OPENING_ID']])>0: # Use opening geometry geom={} geom['coordinates']=[] geo0=missing_geo_op_geos[prp['OPENING_ID']] if type(geo0)==dict: geo1=geo0['coordinates'] geom['coordinates'].append(geo1[0]) else: for j in range(len(geo0)): geo1=geo0[j]['coordinates'] geom['coordinates'].append(geo1[0]) flg_geom_from_op=1 else: # Could not use either FC or opening layer print('Missing spatial could not be recovered') # Only continue if spatial info exists if (geom==None) | (geom==[]): continue # Extract multipolygon coords0=geom['coordinates'] # loop through multipolygon for i in range(len(coords0)): # Extract multipolygon coords1=coords0[i] # loop through multipolygon for j in range(len(coords1)): # Extract polygon coords2=
np.asarray(coords1[j])
numpy.asarray
""" .. module:: skrf.calibration.deembedding ==================================================== deembedding (:mod:`skrf.calibration.deembedding`) ==================================================== De-embedding is the procedure of removing effects of the test fixture that is often present in the measurement of a device or circuit. It is based on a lumped element approximation of the test fixture which needs removal from the raw data, and its equivalent circuit often needs to be known a-priori. This is often required since implementation of calibration methods such as Thru-Reflect-Line (TRL) becomes too expensive for implementation in on-wafer measurement environments where space is limited, or insufficiently accurate as in the case of Short-Open-Load-Thru (SOLT) calibration where the load cannot be manufactured accurately. De-embedding is often performed as a second step, after a SOLT, TRL or similar calibration to the end of a known reference plane, like the probe-tips in on-wafer measurements. This module provides objects to implement commonly used de-embedding method in on-wafer applications. Each de-embedding method inherits from the common abstract base class :class:`Deembedding`. Base Class ---------- .. autosummary:: :toctree: generated/ Deembedding De-embedding Methods -------------------- .. autosummary:: :toctree: generated/ OpenShort Open ShortOpen Short SplitPi SplitTee AdmittanceCancel ImpedanceCancel """ from abc import ABC, abstractmethod from ..frequency import * from ..network import * import warnings import numpy as np from numpy import concatenate, conj, flip, real, angle, exp, zeros from scipy.interpolate import interp1d import matplotlib.pyplot as plt class Deembedding(ABC): """ Abstract Base Class for all de-embedding objects. This class implements the common mechanisms for all de-embedding algorithms. Specific calibration algorithms should inherit this class and over-ride the methods: * :func:`Deembedding.deembed` """ def __init__(self, dummies, name=None, *args, **kwargs): r""" De-embedding Initializer Notes ----- Each de-embedding algorithm may use a different number of dummy networks. We check that each of these dummy networks have matching frequencies to perform de-embedding. It should be known a-priori what the equivalent circuit of the parasitic network looks like. The proper de-embedding method should then be chosen accordingly. Parameters ---------- dummies : list of :class:`~skrf.network.Network` objects Network info of all the dummy structures used in a given de-embedding algorithm. name : string Name of this de-embedding instance, like 'open-short-set1' This is for convenience of identification. \*args, \*\*kwargs : keyword arguments stored in self.args and self.kwargs, which may be used by sub-classes if needed. """ # ensure all the dummy Networks' frequency's are the same for dmyntwk in dummies: if dummies[0].frequency != dmyntwk.frequency: raise(ValueError('Dummy Networks dont have matching frequencies.')) # TODO: attempt to interpolate if frequencies do not match self.frequency = dummies[0].frequency self.dummies = dummies self.args = args self.kwargs = kwargs self.name = name def __str__(self): if self.name is None: name = '' else: name = self.name output = '%s Deembedding: %s, %s, %s dummy structures'\ %(self.__class__.__name__, name, str(self.frequency),\ len(self.dummies)) return output def __repr_(self): return self.__str__() @abstractmethod def deembed(self, ntwk): """ Apply de-embedding correction to a Network """ pass class OpenShort(Deembedding): """ Remove open parasitics followed by short parasitics. This is a commonly used de-embedding method for on-wafer applications. A deembedding object is created with two dummy measurements: `dummy_open` and `dummy_short`. When :func:`Deembedding.deembed` is applied, the Y-parameters of the dummy_open are subtracted from the DUT measurement, followed by subtraction of Z-parameters of dummy-short. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are closest to device under test, followed by the parallel parasitics. For more information, see [1]_ References ------------ .. [1] <NAME>, <NAME> and <NAME>, "An improved de-embedding technique for on-wafer high frequency characterization", IEEE 1991 Bipolar Circuits and Technology Meeting, pp. 188-191, Sep. 1991. Example -------- >>> import skrf as rf >>> from skrf.calibration import OpenShort Create network objects for dummy structures and dut >>> op = rf.Network('open_ckt.s2p') >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = OpenShort(dummy_open = op, dummy_short = sh, name = 'test_openshort') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_open, dummy_short, name=None, *args, **kwargs): """ Open-Short De-embedding Initializer Parameters ----------- dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() self.short = dummy_short.copy() dummies = [self.open, self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() # remove open parasitics caled.y = ntwk.y - self.open.y # remove short parasitics caled.z = caled.z - self.short.z return caled class Open(Deembedding): """ Remove open parasitics only. A deembedding object is created with just one open dummy measurement, `dummy_open`. When :func:`Deembedding.deembed` is applied, the Y-parameters of the open dummy are subtracted from the DUT measurement, This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are assumed to be negligible, but parallel parasitics are unwanted. Example -------- >>> import skrf as rf >>> from skrf.calibration import Open Create network objects for dummy structure and dut >>> op = rf.Network('open_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = Open(dummy_open = op, name = 'test_open') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_open, name=None, *args, **kwargs): """ Open De-embedding Initializer Parameters ----------- dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() dummies = [self.open] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() # remove open parasitics caled.y = ntwk.y - self.open.y return caled class ShortOpen(Deembedding): """ Remove short parasitics followed by open parasitics. A deembedding object is created with two dummy measurements: `dummy_open` and `dummy_short`. When :func:`Deembedding.deembed` is applied, the Z-parameters of the dummy_short are subtracted from the DUT measurement, followed by subtraction of Y-parameters of dummy_open. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the parallel parasitics are closest to device under test, followed by the series parasitics. Example -------- >>> import skrf as rf >>> from skrf.calibration import ShortOpen Create network objects for dummy structures and dut >>> op = rf.Network('open_ckt.s2p') >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = ShortOpen(dummy_short = sh, dummy_open = op, name = 'test_shortopen') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_short, dummy_open, name=None, *args, **kwargs): """ Short-Open De-embedding Initializer Parameters ----------- dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure dummy_open : :class:`~skrf.network.Network` object Measurement of the dummy open structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.open = dummy_open.copy() self.short = dummy_short.copy() dummies = [self.open, self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.open.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() # remove short parasitics caled.z = ntwk.z - self.short.z # remove open parasitics caled.y = caled.y - self.open.y return caled class Short(Deembedding): """ Remove short parasitics only. This is a useful method to remove pad contact resistances from measurement. A deembedding object is created with just one dummy measurement: `dummy_short`. When :func:`Deembedding.deembed` is applied, the Z-parameters of the dummy_short are subtracted from the DUT measurement, This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where only series parasitics are to be removed while retaining all others. Example -------- >>> import skrf as rf >>> from skrf.calibration import Short Create network objects for dummy structures and dut >>> sh = rf.Network('short_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = Short(dummy_short = sh, name = 'test_short') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_short, name=None, *args, **kwargs): """ Short De-embedding Initializer Parameters ----------- dummy_short : :class:`~skrf.network.Network` object Measurement of the dummy short structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.short = dummy_short.copy() dummies = [self.short] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.short.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() # remove short parasitics caled.z = ntwk.z - self.short.z return caled class SplitPi(Deembedding): """ Remove shunt and series parasitics assuming pi-type embedding network. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance and series impedance of the thru dummy are removed. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the series parasitics are closest to device under test, followed by the shunt parasitics. For more information, see [2]_ References ------------ .. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “Experimental Characterization of the Effect of Metal Dummy Fills on Spiral Inductors,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2007, pp. 307–310. Example -------- >>> import skrf as rf >>> from skrf.calibration import SplitPi Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = SplitPi(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_thru, name=None, *args, **kwargs): """ SplitPi De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match left = self.thru.copy() left_y = left.y left_y[:,0,0] = (self.thru.y[:,0,0] - self.thru.y[:,1,0] + self.thru.y[:,1,1] - self.thru.y[:,0,1]) / 2 left_y[:,0,1] = self.thru.y[:,1,0] + self.thru.y[:,0,1] left_y[:,1,0] = self.thru.y[:,1,0] + self.thru.y[:,0,1] left_y[:,1,1] = - self.thru.y[:,1,0] - self.thru.y[:,0,1] left.y = left_y right = left.flipped() caled = left.inv ** ntwk ** right.inv return caled class SplitTee(Deembedding): """ Remove series and shunt parasitics assuming tee-type embedding network. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance and series impedance of the thru dummy are removed. This method is applicable only when there is a-priori knowledge of the equivalent circuit model of the parasitic network to be de-embedded, where the shunt parasitics are closest to device under test, followed by the series parasitics. For more information, see [3]_ References ------------ .. [3] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “Experimental validation of crosstalk simulations for on-chip interconnects using S-parameters,” IEEE Transactions on Advanced Packaging, vol. 28, no. 1, pp. 57–62, Feb. 2005. Example -------- >>> import skrf as rf >>> from skrf.calibration import SplitTee Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = SplitTee(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_thru, name=None, *args, **kwargs): """ SplitTee De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match left = self.thru.copy() left_z = left.z left_z[:,0,0] = (self.thru.z[:,0,0] + self.thru.z[:,1,0] + self.thru.z[:,1,1] + self.thru.z[:,0,1]) / 2 left_z[:,0,1] = self.thru.z[:,1,0] + self.thru.z[:,0,1] left_z[:,1,0] = self.thru.z[:,1,0] + self.thru.z[:,0,1] left_z[:,1,1] = self.thru.z[:,1,0] + self.thru.z[:,0,1] left.z = left_z right = left.flipped() caled = left.inv ** ntwk ** right.inv return caled class AdmittanceCancel(Deembedding): """ Cancel shunt admittance by swapping (a.k.a Mangan's method). A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the shunt admittance of the thru dummy are canceled, from the DUT measurement by left-right mirroring operation. This method is applicable to only symmetric (i.e. S11=S22 and S12=S21) 2-port DUTs, but suitable for the characterization of transmission lines at mmW frequencies. For more information, see [4]_ References ------------ .. [4] <NAME>, <NAME>, <NAME>, and <NAME>, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 235–241, Feb. 2006. Example -------- >>> import skrf as rf >>> from skrf.calibration import AdmittanceCancel Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = AdmittanceCancel(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_thru, name=None, *args, **kwargs): """ AdmittanceCancel De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() h = ntwk ** self.thru.inv h_ = h.flipped() caled.y = (h.y + h_.y) / 2 return caled class ImpedanceCancel(Deembedding): """ Cancel series impedance by swapping. A deembedding object is created with just one thru dummy measurement `dummy_thru`. The thru dummy is, for example, a direct cascaded connection of the left and right test pads. When :func:`Deembedding.deembed` is applied, the series impedance of the thru dummy are canceled, from the DUT measurement by left-right mirroring operation. This method is applicable to only symmetric (i.e. S11=S22 and S12=S21) 2-port DUTs, but suitable for the characterization of transmission lines at mmW frequencies. For more information, see [5]_ References ------------ .. [5] <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “Comparative analysis of on-chip transmission line de-embedding techniques,” in 2015 IEEE International Symposium on Radio-Frequency Integration Technology, Sendai, Japan, Aug. 2015, pp. 91–93. Example -------- >>> import skrf as rf >>> from skrf.calibration import ImpedanceCancel Create network objects for dummy structure and dut >>> th = rf.Network('thru_ckt.s2p') >>> dut = rf.Network('full_ckt.s2p') Create de-embedding object >>> dm = ImpedanceCancel(dummy_thru = th, name = 'test_thru') Remove parasitics to get the actual device network >>> realdut = dm.deembed(dut) """ def __init__(self, dummy_thru, name=None, *args, **kwargs): """ ImpedanceCancel De-embedding Initializer Parameters ----------- dummy_thru : :class:`~skrf.network.Network` object Measurement of the dummy thru structure name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.thru = dummy_thru.copy() dummies = [self.thru] Deembedding.__init__(self, dummies, name, *args, **kwargs) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which parasitics needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.thru.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match caled = ntwk.copy() h = ntwk ** self.thru.inv h_ = h.flipped() caled.z = (h.z + h_.z) / 2 return caled class IEEEP370_SE_NZC_2xThru(Deembedding): """ Creates error boxes from a test fixture 2x thru. Based on https://opensource.ieee.org/elec-char/ieee-370/-/blob/master/TG1/IEEEP3702xThru.m commit 49ddd78cf68ad5a7c0aaa57a73415075b5178aa6 A deembedding object is created with one 2x thru measurement, `dummy_2xthru` which is split into left and right fixtures with IEEEP370 2xThru method. When :func:`Deembedding.deembed` is applied, the s-parameters of the left and right fixture are deembedded from fixture-dut-fixture measurement. This method is applicable only when there is a 2xthru measurement. Example -------- >>> import skrf as rf >>> from skrf.calibration import IEEEP370_SE_NZC_2xThru Create network objects for dummy structure and dut >>> s2xthru = rf.Network('2xthru.s2p') >>> fdf = rf.Network('f-dut-f.s2p') Create de-embedding object >>> dm = IEEEP370_SE_NZC_2xThru(dummy_2xthru = s2xthru, name = '2xthru') Remove parasitics to get the actual device network >>> dut = dm.deembed(fdf) """ def __init__(self, dummy_2xthru, name=None, z0 = 50, *args, **kwargs): """ IEEEP370_SE_NZC_2xThru De-embedding Initializer Parameters ----------- dummy_2xthru : :class:`~skrf.network.Network` object Measurement of the 2x thru. z0 : reference impedance of the S-parameters (default: 50) name : string Optional name of de-embedding object args, kwargs: Passed to :func:`Deembedding.__init__` See Also --------- :func:`Deembedding.__init__` """ self.s2xthru = dummy_2xthru.copy() self.z0 = z0 dummies = [self.s2xthru] Deembedding.__init__(self, dummies, name, *args, **kwargs) self.s_side1, self.s_side2 = self.split2xthru(self.s2xthru) def deembed(self, ntwk): """ Perform the de-embedding calculation Parameters ---------- ntwk : :class:`~skrf.network.Network` object Network data of device measurement from which thru fixtures needs to be removed via de-embedding Returns ------- caled : :class:`~skrf.network.Network` object Network data of the device after de-embedding """ # check if the frequencies match with dummy frequencies if ntwk.frequency != self.s2xthru.frequency: raise(ValueError('Network frequencies dont match dummy frequencies.')) # TODO: attempt to interpolate if frequencies do not match return self.s_side1.inv ** ntwk ** self.s_side2.inv def dc_interp(self, s, f): """ enforces symmetric upon the first 10 points and interpolates the DC point. """ sp = s[0:9] fp = f[0:9] snp = concatenate((conj(flip(sp)), sp)) fnp = concatenate((-1*flip(fp), fp)) # mhuser : used cubic instead spline (not implemented) snew = interp1d(fnp, snp, axis=0, kind = 'cubic') return real(snew(0)) def COM_receiver_noise_filter(self, f,fr): """ receiver filter in COM defined by eq 93A-20 """ fdfr = f / fr # eq 93A-20 return 1 / (1 - 3.414214 * fdfr**2 + fdfr**4 + 1j*2.613126*(fdfr - fdfr**3)) def makeStep(self, impulse): #mhuser : no need to call step function here, cumsum will be enough and efficient #step = np.convolve(np.ones((len(impulse))), impulse) #return step[0:len(impulse)] return np.cumsum(impulse, axis=0) def makeSymmetric(self, nonsymmetric): """ this takes the nonsymmetric frequency domain input and makes it symmetric. The function assumes the DC point is in the nonsymmetric data """ symmetric_abs = concatenate((
np.abs(nonsymmetric)
numpy.abs
from __future__ import print_function from ..sa_net_data_provider import AbstractDataProvider; from numpy import random; from distutils.util import strtobool; import scipy.io as spio; import numpy as np; import glob; import os; from skimage import io; from skimage import transform as sktransform; import torchvision.transforms as transforms import torchvision import torch import matplotlib; # Force matplotlib to not use any Xwindows backend. matplotlib.use('Agg'); import matplotlib.pyplot as plt; import cv2 as cv; import skimage.filters as skfilters; import skimage.color as skcolor; import pickle; class MultiplexAutoencoderDataProviderRGB(AbstractDataProvider): def __init__(self, is_test, filepath_data, filepath_label, n_channels, n_classes, do_preprocess, do_augment, data_var_name=None, label_var_name=None, permute=False, repeat=True, kwargs={}): args = {'input_img_height':460, 'input_img_width': 700, 'file_name_suffix':'' , 'pre_resize':'False', 'pre_center':'False', 'pre_edge':'False' , 'postprocess':'False', 'invert_img':'False', 'pad_y':0, 'pad_x':0}; args.update(kwargs); self.input_img_height = int(args['input_img_height']); self.input_img_width = int(args['input_img_width']); self.file_name_suffix = args['file_name_suffix']; self.pre_resize = bool(strtobool(args['pre_resize'])); self.pre_center = bool(strtobool(args['pre_center'])); self.pre_edge = bool(strtobool(args['pre_edge'])); self.do_postprocess = bool(strtobool(args['postprocess'])); self.invert_img = bool(strtobool(args['invert_img'])); self.pad_y = int(args['pad_y']); self.pad_x = int(args['pad_x']); self.pad_y1 = int(np.floor(self.pad_y / 2.0)); self.pad_y2 = int(np.ceil(self.pad_y / 2.0)); self.pad_x1 = int(np.floor(self.pad_y / 2.0)); self.pad_x2 = int(np.ceil(self.pad_y / 2.0)); #print('do_augment = {}'.format(do_augment)); if(do_augment): self.create_augmentation_map(kwargs); if(self.do_postprocess): self.read_postprocess_parameters(kwargs); self.is_test = is_test; # note that label will be None when is_test is true self.filepath_data = filepath_data; self.dir_data = os.path.split(self.filepath_data)[0] ; if(filepath_label == None or filepath_label.strip() == ''): self.filepath_label = None ; else: self.filepath_label = filepath_label ; self.n_channels = n_channels; self.n_classes = n_classes; self.do_preprocess = do_preprocess; self.do_augment = do_augment; #self.data_var_name = data_var_name; #self.label_var_name = label_var_name; self.do_permute = permute; self.do_repeat = repeat; self.is_loaded = False; ##debug self.tmp_index = 0; def load_data(self): self.data = None; self.label = None; self.last_fetched_indx = -1; self.permutation = None; self.data_count = 0; #self.transform_data = transforms.Compose( # [transforms.ToTensor(), # transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]); #self.transform_data = transforms.Compose( # [transforms.ToTensor()]); # https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683/9 # https://github.com/pytorch/examples/blob/master/imagenet/main.py#L92-L93 #self.transform_data = transforms.Compose( # [transforms.ToTensor(), # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]); #self.transform_data = transforms.Compose( # [transforms.ToTensor(), # transforms.Normalize(mean=[0.79, 0.62, 0.7], std=[1.0, 1.0, 1.0])]); #self.transform_data = transforms.Compose( # [transforms.ToTensor(), # transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[2.0, 2.0, 2.0])]); self.transform_data = transforms.Compose( [transforms.ToTensor()]); img_path_files = glob.glob(os.path.join(self.filepath_data,'**', "*.png"), recursive=True); #img_path_files = glob.glob(os.path.join(self.filepath_label, "*-img_rel_path*.pkl")); #imgs_rel_path_list = []; #for file in img_path_files: # imgs_rel_path_list.append(pickle.load(open(file, 'rb'))); # filename = os.path.split(file)[1]; # wsi_name = filename[:filename.rfind("-")]; #imgs_rel_path = sum(imgs_rel_path_list, []); self.data_count = len(img_path_files); print('data_count') print(self.data_count) self.data = img_path_files; # Permutation if(self.do_permute == True): self.permutation = np.random.permutation(self.data_count) else: self.permutation = None; self.is_loaded = True; def reset(self, repermute=None): self.last_fetched_indx = -1; if(repermute == True): self.do_permute = True; self.permutation = np.random.permutation(self.data_count); def get_next_one(self): ## make sure data is loaded first if(self.is_loaded == False): self.load_data(); ## get next data point self.last_fetched_indx = (self.last_fetched_indx + 1); if(self.do_repeat == False): if (self.last_fetched_indx >= self.data_count): return None; else: self.last_fetched_indx = self.last_fetched_indx % self.data_count; actual_indx = self.last_fetched_indx ; if(self.permutation is not None): actual_indx = self.permutation[self.last_fetched_indx]; self.img_id = self.data[actual_indx] ## debug #self.imshow_torch(data_point); #print('img_id = {}'.format(img_id)); #data_point = self.pytorch_to_tf_format(data_point); ## debug #self.imshow_tf(data_point); data_point = self.load_image(self.img_id, do_match_size=(not self.do_preprocess and not self.do_postprocess)); #data_point = self.load_image(os.path.join(self.dir_data, str(self.img_id)+ self.file_name_suffix+ '.png'), do_match_size=(not self.do_preprocess and not self.do_postprocess)); ##debug #print(os.path.join(self.dir_data, str(img_id)+ self.file_name_suffix+ '.png')); ##debug #print('load: ', data_point.shape); # debug #self.imshow(data_point); ## process the data if(self.do_preprocess == True): data_point = self.preprocess(data_point); ##debug #print('preprocess: ', data_point.shape); if(self.do_augment == True): data_point = self.augment(data_point); ##debug #print('augment: ', data_point.shape); #self.imshow_torch(data_point); ##debug #io.imsave('/gpfs/projects/KurcGroup/sabousamra/debug/'+ str(self.tmp_index) + '_' + str(self.img_id)+ '_aug.png', data_point); if(self.do_postprocess): data_point = self.postprocess(data_point); ##debug #print('self.tmp_index = ', self.tmp_index); #print('self.img_id = ', self.img_id); #io.imsave('/gpfs/projects/KurcGroup/sabousamra/debug/'+ str(self.tmp_index) + '_' + str(self.img_id)+ '_post.png', data_point); ##a #data_point = self.transform_data(data_point); #print('data_point.shape', data_point.shape) #print('dself.transform_data(data_point).shape', self.transform_data(data_point).size()) data_point = data_point.astype(np.float); ############################ ##data_point /= 255; #data_point /= 4; #data_point -= 0.5; #data_point *= 2; ##print('np.transpose(data_point, (1, 2, 0)).shape = ', np.transpose(data_point, (2, 0, 1)).shape) #data_point = torch.tensor(np.transpose(data_point, (2,0, 1))); data_point = np.transpose(data_point, (2,0, 1)); ##b #data_point = self.tf_to_pytorch_format(data_point); #data_point = torch.tensor(data_point); ##debug #print('torch transform: ', data_point.shape); ##debug #print(data_point.shape); return data_point; ## returns None, None if there is no more data to retrieve and repeat = false def get_next_n(self, n:int): ## validate parameters if(n <= 0): return None, None; ## make sure data is loaded first if(self.is_loaded == False): self.load_data(); ## Get number of data points to retrieve if(self.do_repeat == False): if (self.last_fetched_indx + n >= self.data_count): n = self.data_count - self.last_fetched_indx - 1; if(n <= 0): return None, None; ## Get data shape #data_size_x = self.data.shape[1]; #data_size_y = self.data.shape[2]; data_size_x = self.input_img_width; data_size_y = self.input_img_height; #print(data_size_x, data_size_y); #data_points = torch.zeros((n, self.n_channels, data_size_y, data_size_x)) #data_points = np.zeros((n, self.n_channels, data_size_y, data_size_x)) data_points = []; for i in range(0, n): d = self.get_next_one(); # returns the rgb image if(d is None): break; data_points.append(d); data_points = np.stack(data_points, axis=0) # label is rgb - transform to whatever in train/loss labels = np.copy(data_points); #print('data_points.shape before = ', data_points.shape) # normalize the input #data_points /= 255; #data_points -= 0.5; #data_points *= 2; if(self.pad_y > 0 or self.pad_x > 0): #data_points = np.pad(data_points, ((0,0),(0,0),(self.pad_y1, self.pad_y2),(self.pad_x1, self.pad_x2)),'constant'); #data_points = np.pad(data_points, ((0,0),(0,0),(self.pad_y1, self.pad_y2),(self.pad_x1, self.pad_x2)),'constant', constant_values=1); data_points = np.pad(data_points, ((0,0),(0,0),(self.pad_y1, self.pad_y2),(self.pad_x1, self.pad_x2)),'constant', constant_values=128); #print('labels max = ', np.max(labels)) #print('data_points max = ', np.max(data_points)) data_points = torch.tensor(data_points, dtype = torch.float); # to avoid the error: Input type (torch.cuda.DoubleTensor) and weight type (torch.cuda.FloatTensor) should be the same labels = torch.tensor(labels, dtype = torch.float) #print('data_points.shape after = ', data_points.size()) #print('labels.shape after = ', labels.size()) return data_points, labels; def preprocess(self, data_point): data_point2 = data_point; if(not(data_point.shape[0] == self.input_img_height) or not(data_point.shape[1] == self.input_img_width)): ##debug #print('before resize: ', data_point2.shape); if(self.pre_resize): data_point2 = sktransform.resize(data_point, (self.input_img_height, self.input_img_width), preserve_range=True, anti_aliasing=True).astype(np.uint8); elif(self.pre_center): diff_y = self.input_img_height - data_point.shape[0]; diff_x = self.input_img_width - data_point.shape[1]; diff_y_div2 = diff_y//2; diff_x_div2 = diff_x//2; data_point2 = np.zeros((self.input_img_height, self.input_img_width, data_point.shape[2])); if(diff_y >= 0 and diff_x >= 0): data_point2[diff_y:diff_y+self.input_img_height, diff_x:diff_x+self.input_img_width, :] = data_point; if(self.pre_edge): data_point2 = skcolor.rgb2gray(data_point2); data_point2 = skfilters.sobel(data_point2); data_point2 = data_point2.reshape(data_point2.shape[0], data_point2.shape[1], 1); data_point2 = np.concatenate((data_point2, data_point2, data_point2), axis=2); print(data_point2.shape); ##debug #print('after resize: ', data_point2.shape); return data_point2; # prepare the mapping from allowed operations to available operations index def create_augmentation_map(self, kwargs={}): args = {'aug_flip_h': 'True', 'aug_flip_v': 'True', 'aug_flip_hv': 'True' \ , 'aug_rot180': 'True', 'aug_rot90': 'False', 'aug_rot270': 'False', 'aug_rot_rand': 'False' \ , 'aug_brightness': 'False', 'aug_brightness_min': -50, 'aug_brightness_max': 50 \ , 'aug_saturation': 'False', 'aug_saturation_min': -1.5, 'aug_saturation_max': 1.5 \ , 'aug_hue': 'False', 'aug_hue_min': -50, 'aug_hue_max': 50 \ , 'aug_scale': 'False', 'aug_scale_min': 1.0, 'aug_scale_max': 2.0 \ , 'aug_translate': 'False', 'aug_translate_y_min': -20, 'aug_translate_y_max': 20, 'aug_translate_x_min': -20, 'aug_translate_x_max': 20 }; print(args); args.update(kwargs); print(args); self.aug_flip_h = bool(strtobool(args['aug_flip_h'])); self.aug_flip_v = bool(strtobool(args['aug_flip_v'])); self.aug_flip_hv = bool(strtobool(args['aug_flip_hv'])); self.aug_rot180 = bool(strtobool(args['aug_rot180'])); self.aug_rot90 = bool(strtobool(args['aug_rot90'])); self.aug_rot270 = bool(strtobool(args['aug_rot270'])); self.aug_rot_random = bool(strtobool(args['aug_rot_rand'])); self.aug_brightness = bool(strtobool(args['aug_brightness'])); self.aug_saturation = bool(strtobool(args['aug_saturation'])); self.aug_hue = bool(strtobool(args['aug_hue'])); self.aug_scale = bool(strtobool(args['aug_scale'])); self.aug_translate = bool(strtobool(args['aug_translate'])); ''' map allowed operation to the following values 0: same (none) 1: horizontal flip 2: vertical flip 3: horizontal and vertical flip 4: rotate 180 5: rotate 90 6: rotate 270 or -90 7: rotate random angle ''' self.aug_map = {}; self.aug_map[0] = 0; # (same) none i = 1; if(self.aug_flip_h): self.aug_map[i] = 1; i += 1; if(self.aug_flip_v): self.aug_map[i] = 2; i += 1; if(self.aug_flip_hv): self.aug_map[i] = 3; i += 1; if(self.aug_rot180): self.aug_map[i] = 4; i += 1; if(self.aug_rot90): #print('self.aug_rot90={}'.format(self.aug_rot90)); self.aug_map[i] = 5; i += 1; if(self.aug_rot270): #print('self.aug_rot270={}'.format(self.aug_rot270)); self.aug_map[i] = 6; i += 1; if(self.aug_rot_random): #self.aug_map[i] = 7; self.aug_rot_min = int(args['aug_rot_min']); self.aug_rot_max = int(args['aug_rot_max']); if(self.aug_brightness): # self.aug_map[i] = 7; self.aug_brightness_min = int(args['aug_brightness_min']); self.aug_brightness_max = int(args['aug_brightness_max']); # i += 1; if(self.aug_saturation): self.aug_saturation_min = float(args['aug_saturation_min']); self.aug_saturation_max = float(args['aug_saturation_max']); if(self.aug_hue): self.aug_hue_min = int(args['aug_hue_min']); self.aug_hue_max = int(args['aug_hue_max']); if(self.aug_scale): self.aug_scale_min = float(args['aug_scale_min']); self.aug_scale_max = float(args['aug_scale_max']); if(self.aug_translate): self.aug_translate_y_min = int(args['aug_translate_y_min']); self.aug_translate_y_max = int(args['aug_translate_y_max']); self.aug_translate_x_min = int(args['aug_translate_x_min']); self.aug_translate_x_max = int(args['aug_translate_x_max']); print(self.aug_map) def augment(self, data_point): ''' select augmentation: 0: same (none) 1: horizontal flip 2: vertical flip 3: horizontal and vertical flip 4: rotate 180 5: rotate 90 6: rotate 270 or -90 7: rotate random ''' # because width and height are not equal cannot do rotation 90 and 270 #op = random.randint(0,7); #print('data_point.shape'); #print(data_point.shape); #op = random.randint(0,5); # select one of the valid operations and map it to its index in the available operations op = random.randint(0,len(self.aug_map)); op = self.aug_map[op]; ## debug #print('op = ', op); data_point2 = data_point; # important: use ndarray.copy() when indexing with negative # It will alocate new memory for numpy array which make it normal, I mean the stride is not negative any more. # Otherwise get the error: ValueError: some of the strides of a given numpy array are negative. This is currently not supported, but will be added in future releases. if(op == 1): data_point2 = data_point[:,::-1,:].copy(); elif(op == 2): data_point2 = data_point[::-1,:,:].copy(); elif(op == 3): data_point2 = data_point[:,::-1,:]; data_point2 = data_point2[::-1,:,:].copy(); elif(op == 4): data_point2 = np.rot90(data_point, k=2, axes=(0,1)).copy(); elif(op == 5): data_point2 = np.rot90(data_point, k=1, axes=(0,1)).copy(); elif(op == 6): data_point2 = np.rot90(data_point, k=3, axes=(0,1)).copy(); if(self.aug_rot_random): angle = random.randint(self.aug_rot_min, self.aug_rot_max); ##debug #print('angle = ', angle); #data_point2 = sktransform.rotate(data_point2, angle, mode='edge', preserve_range=True).astype(np.uint8); data_point2 = sktransform.rotate(data_point2, angle, preserve_range=True).astype(np.uint8); ###debug #print('self.tmp_index = ', self.tmp_index); #print('self.img_id = ', self.img_id); op_brightness = random.random(); op_saturation = random.random(); op_hue = random.random(); op_scale = random.random(); if((self.aug_saturation and op_saturation > 0.5) or (self.aug_hue and op_hue > 0.5) or (self.aug_brightness and op_brightness > 0.5)): ##debug #print(data_point2.shape); #print(data_point2.dtype); data_point2 = data_point2.astype(np.uint8); data_point2_hsv = cv.cvtColor(data_point2, cv.COLOR_RGB2HLS); data_point2_hsv = data_point2_hsv.astype(np.float) saturation = 1.0; hue = 0; brightness = 0; if(self.aug_hue and op_hue > 0.5): #hue = random.random()*(self.aug_hue_max-self.aug_hue_min) + self.aug_hue_min; hue = random.randint(self.aug_hue_min, self.aug_hue_max); data_point2_hsv[:,:,0] += hue; data_point2_hsv[:,:,0][np.where(data_point2_hsv[:,:,0] > 179)] = 179; if(self.aug_saturation and op_saturation > 0.5): #saturation = random.randint(self.aug_saturation_min, self.aug_saturation_max); saturation = random.random() * (self.aug_saturation_max-self.aug_saturation_min) + self.aug_saturation_min; data_point2_hsv[:,:,2] *= saturation; data_point2_hsv[:,:,2][np.where(data_point2_hsv[:,:,2] > 255)] = 255; if(self.aug_brightness and op_brightness > 0.5): brightness = random.randint(self.aug_brightness_min, self.aug_brightness_max); data_point2_hsv[:,:,1] += brightness; data_point2_hsv[:,:,1][np.where(data_point2_hsv[:,:,1] > 255)] = 255; ##debug #print('hu-sat-br = ', hue, ' - ', saturation, ' - ', brightness); # The ranges that OpenCV manage for HSV format are the following: # For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]. Different softwares use different scales. data_point2_hsv[np.where(data_point2_hsv < 0)] = 0; data_point2_hsv = data_point2_hsv.astype(np.uint8); data_point2 = cv.cvtColor(data_point2_hsv, cv.COLOR_HLS2RGB); #elif(self.aug_saturation and op_saturation > 0.5): # #saturation = random.randint(self.aug_saturation_min, self.aug_saturation_max); # saturation = random.random() * (self.aug_saturation_max-self.aug_saturation_min) + self.aug_saturation_min; # ##debug # print('sat= ', saturation) # data_point2 = data_point2.astype(np.uint8); # data_point2_hsv = cv.cvtColor(data_point2, cv.COLOR_RGB2HSV); # data_point2_hsv = data_point2_hsv.astype(np.float) # data_point2_hsv[:,:,1] *= saturation; # data_point2_hsv[:,:,1][np.where(data_point2_hsv[:,:,1] > 255)] = 255; # data_point2_hsv[np.where(data_point2_hsv < 0)] = 0; # data_point2_hsv = data_point2_hsv.astype(np.uint8); # data_point2 = cv.cvtColor(data_point2_hsv, cv.COLOR_HSV2RGB); #elif(self.aug_hue and op_hue > 0.5): # #hue = random.random()*(self.aug_hue_max-self.aug_hue_min) + self.aug_hue_min; # hue = random.randint(self.aug_hue_min, self.aug_hue_max); # ##debug # print('hu = ', hue) # data_point2 = data_point2.astype(np.uint8); # data_point2_hsv = cv.cvtColor(data_point2, cv.COLOR_RGB2HSV); # data_point2_hsv = data_point2_hsv.astype(np.float) # data_point2_hsv[:,:,0] += hue; # data_point2_hsv[:,:,0][np.where(data_point2_hsv[:,:,0] > 179)] = 179; # data_point2_hsv[np.where(data_point2_hsv < 0)] = 0; # data_point2_hsv = data_point2_hsv.astype(np.uint8); # data_point2 = cv.cvtColor(data_point2_hsv, cv.COLOR_HSV2RGB); #if(self.aug_brightness and op_brightness > 0.5): # brightness = random.randint(self.aug_brightness_min, self.aug_brightness_max); # ##debug # print('br = ', brightness) # data_point2 = data_point2.astype(np.int16) # data_point2 += brightness; # data_point2[np.where(data_point2 > 255)] = 255; # data_point2[np.where(data_point2 < 0)] = 0; # data_point2 = data_point2.astype(np.uint8); if(self.aug_translate): #translate_y = random.random()*(self.aug_translate_y_max-self.aug_translate_y_min) + self.aug_translate_y_min; #translate_x = random.random()*(self.aug_translate_x_max-self.aug_translate_x_min) + self.aug_translate_x_min; translate_y = np.random.randint(self.aug_translate_y_min, high = self.aug_translate_y_max); translate_x = np.random.randint(self.aug_translate_x_min, high = self.aug_translate_x_max); translate_transform = sktransform.AffineTransform(translation = (translate_x, translate_y)); data_point2 = sktransform.warp(data_point2, translate_transform, preserve_range=True).astype(np.uint8); if(self.aug_scale and op_scale > 0.5): scale = random.random()*(self.aug_scale_max-self.aug_scale_min) + self.aug_scale_min; ###debug #print('sc = ', scale) data_point2 = sktransform.rescale(data_point2, scale, preserve_range=True).astype(np.uint8); scale_height, scale_width,_ = data_point2.shape; diff_height = scale_height - self.input_img_height; diff_width = scale_width - self.input_img_width; start_y = 0; start_x = 0; if(diff_height > 0): start_y = random.randint(0, diff_height); if(diff_width > 0): start_x = random.randint(0, diff_width); ####debug #io.imsave('/gpfs/projects/KurcGroup/sabousamra/debug/'+ str(self.tmp_index) + '_' + str(self.img_id)+ '_rescale.png', data_point2); data_point2 = data_point2[start_y : start_y+self.input_img_height, start_x : start_x+self.input_img_width, : ] #print('data_point2.shape'); #print(data_point2.shape); ###debug #print('self.tmp_index = ', self.tmp_index); #print('self.img_id = ', self.img_id); #io.imsave('/gpfs/projects/KurcGroup/sabousamra/debug/'+ str(self.tmp_index) + '_' + str(self.img_id)+ '.png', data_point2); self.tmp_index += 1; return data_point2; def load_image(self, filepath, do_match_size=False): img = io.imread(filepath); if(img.shape[2] > 3): # remove the alpha img = img[:,:,0:3]; if(do_match_size): if((not (img.shape[0] == self.input_img_height)) \ or (not (img.shape[1] == self.input_img_width))): ##debug print('shape mismatch: {}'.format(img.shape)); print('filepath: ', filepath); valid_height = self.input_img_height; valid_width = self.input_img_width; if(img.shape[0] < self.input_img_height): valid_height = img.shape[0]; if(img.shape[1] < self.input_img_width): valid_width = img.shape[1]; ##debug print('valid_height= {}, valid_width: {}'.format(valid_height, valid_width)); img_new = np.zeros((self.input_img_height, self.input_img_width, img.shape[2])); img_new[0:valid_height, 0:valid_width, :] = img[0:valid_height, 0:valid_width, :]; img = img_new; #filename = os.path.splitext(os.path.split(filepath)[1])[0]; #io.imsave(os.path.join("/gpfs/projects/KurcGroup/sabousamra/multiplex/models-ae", filename + '_before_' +'.png'), img.astype(np.uint8)); if(self.invert_img): img = 255 - img; #img[np.where(img <1)] = 1; img[np.where(img <5)] = 5; img[
np.where(img >250)
numpy.where
from __future__ import division, print_function import numpy as np import cv2 as cv import scipy.ndimage.interpolation as sii import os import signal from DataUtil.VoxelizerUtil import load_volume_from_mat, rotate_volume from Constants import consts import threading import sys if sys.version_info >= (2, 0): print (sys.version) import Queue as queue if sys.version_info >= (3, 0): print (sys.version) import queue class DataLoader(threading.Thread): def __init__(self, batch_size, data_dir, data_indices, vol_res_x_w=128, vol_res_x_h=192, vol_res_y_w=128, vol_res_y_h=192, augmentation=True): super(DataLoader, self).__init__() if vol_res_x_h != 192 or vol_res_x_w != 128 or vol_res_y_h != 192 or vol_res_y_w != 128: print('Unsupported resolution!') raise ValueError self.batch_index = 0 self.batch_size = batch_size self.vox_res_x = (vol_res_x_w, vol_res_x_h, vol_res_x_w) self.vox_res_y = (vol_res_y_w, vol_res_y_h, vol_res_y_w) self.data_dir = data_dir self.data_num = len(data_indices) self.data_indices = np.copy(data_indices) self.augmentation = augmentation self.reshuffle_indices() if augmentation: max_idx = np.max(self.data_indices) self.alpha = np.random.rand(max_idx+1)*0.3 + 0.85 # random from [0.9, 1.1] self.beta = np.random.rand(max_idx+1)*0.3 - 0.15 # random from [-0.05, 0.05] self.crop_size = np.random.randint(0, 20, (max_idx+1, 4)) self.movement = np.random.randint(0, 11, (max_idx+1, 3)) - 5 self.queue = queue.Queue(8) self.stop_queue = False self.total_batch_num = int(len(self.data_indices) // self.batch_size) def reshuffle_indices(self): self.batch_index = 0 np.random.shuffle(self.data_indices) if self.augmentation: max_idx = np.max(self.data_indices) self.alpha = np.random.rand(max_idx+1)*0.3 + 0.85 # random from [0.9, 1.1] self.beta = np.random.rand(max_idx+1)*0.3 - 0.15 # random from [-0.05, 0.05] self.crop_size = np.random.randint(0, 20, (max_idx+1, 4)) self.movement = np.random.randint(0, 11, (max_idx+1, 3)) - 5 def load_volume(self, idx): volume_id = idx // 4 * 4 view_id = idx - volume_id if consts.fill: volume = load_volume_from_mat('%s/voxel2/voxel_%08d.mat' % (self.data_dir, volume_id)) else: volume = load_volume_from_mat('%s/voxel/voxel_%08d.mat' % (self.data_dir, volume_id)) mesh_volume = rotate_volume(volume['mesh_volume'], view_id) smpl_v_volume = rotate_volume(volume['smpl_v_volume'], view_id) # convert from WHD format to DHW format (as required by tensorflow) mesh_volume = np.transpose(mesh_volume, (2, 1, 0)) smpl_v_volume = np.transpose(smpl_v_volume, (2, 1, 0, 3)) # flip upside down mesh_volume = np.flip(mesh_volume, axis=1) smpl_v_volume = np.flip(smpl_v_volume, axis=1) # if self.augmentation: # movement = self.movement[idx, :] # x_m, y_m, z_m = movement[0], movement[1], movement[2] # smpl_v_volume = sii.shift(smpl_v_volume, (0, x_m, y_m, 0), cval=0) return smpl_v_volume, mesh_volume @staticmethod def resize_and_crop_img(img): img = cv.resize(img, (2*consts.dim_h, 2*consts.dim_h)) edg = (2*consts.dim_h - 2*consts.dim_w) // 2 if len(img.shape) == 2: img =
np.expand_dims(img, axis=-1)
numpy.expand_dims
import os, time, argparse, pickle from inspect import Traceback import numpy as np from numpy.lib.function_base import append import pybullet as p import matplotlib.pyplot as plt from PIL import Image import cv2 from torch import set_default_tensor_type from .env import AssistiveEnv from .agents.human_mesh import HumanMesh from gym.utils import seeding class BeddingManipulationEnv(AssistiveEnv): def __init__(self, robot, human, use_mesh=False): if robot is None: super(BeddingManipulationEnv, self).__init__(robot=None, human=human, task='bedding_manipulation', obs_robot_len=12, obs_human_len=0, frame_skip=1, time_step=0.01, deformable=True) self.use_mesh = use_mesh self.bm_config = self.configp[self.task] if self.bm_config['target_limb_code'] == 'random': self.fixed_target_limb = False else: self.fixed_target_limb = True self.target_limb_code = int(self.bm_config['target_limb_code']) self.body_shape = None if self.bm_config.getboolean('vary_body_shape') else np.zeros((1, 10)) if self.bm_config.getboolean('take_images'): self.take_images = True self.save_image_dir = self.bm_config['save_image_dir'] # * all the parameters below are False unless spepcified otherwise by args self.render_body_points = self.bm_config.getboolean('render_body_points') self.fixed_pose = self.bm_config.getboolean('fixed_human_pose') self.verbose = self.bm_config.getboolean('bm_verbose') self.blanket_pose_var = self.bm_config.getboolean('vary_blanket_pose') self.take_images = self.bm_config.getboolean('take_images') self.cmaes_dc = self.bm_config.getboolean('cmaes_data_collect') # * these parameters don't have cmd args to modify them self.seed_val = 1001 self.save_pstate = False self.pstate_file = None def step(self, action): obs = self._get_obs() if self.verbose: print("Target Limb Code:", self.target_limb_code) print("Observation:\n", obs, obs.dtype) print("Action: ", action) # * scale bounds the 2D grasp and release locations to the area over the mattress (action nums only in range [-1, 1]) scale = [0.44, 1.05] grasp_loc = action[0:2]*scale release_loc = action[2:4]*scale # * get points on the blanket, initial state of the cloth data = p.getMeshData(self.blanket, -1, flags=p.MESH_DATA_SIMULATION_MESH, physicsClientId=self.id) # * get rid of any nontarget points that are not covered by the initial state of the blanket (will not be considered in reward calculation at the end of the step) self.non_target_initially_uncovered(data) head_points = len(self.points_pos_nontarget_limb_world[self.human.head]) point_counts = [self.total_target_point_count, self.total_nontarget_point_count-head_points, head_points] # * calculate distance between the 2D grasp location and every point on the blanket, anchor points are the 4 points on the blanket closest to the 2D grasp location dist = [] for i, v in enumerate(data[1]): v = np.array(v) d = np.linalg.norm(v[0:2] - grasp_loc) dist.append(d) anchor_idx = np.argpartition(np.array(dist), 4)[:4] # for a in anchor_idx: # print("anchor loc: ", data[1][a]) # * if no points on the blanket are within 2.8 cm of the grasp location, track that it would have been clipped clipped = False if not np.any(np.array(dist) < 0.028): clipped = True # * update grasp_loc var with the location of the central anchor point on the cloth grasp_loc = np.array(data[1][anchor_idx[0]][0:2]) # * move sphere down to the anchor point on the blanket, create anchor point (central point first, then remaining points) and store constraint ids self.sphere_ee.set_base_pos_orient(data[1][anchor_idx[0]], np.array([0,0,0])) constraint_ids = [] constraint_ids.append(p.createSoftBodyAnchor(self.blanket, anchor_idx[0], self.sphere_ee.body, -1, [0, 0, 0])) for i in anchor_idx[1:]: pos_diff = np.array(data[1][i]) - np.array(data[1][anchor_idx[0]]) constraint_ids.append(p.createSoftBodyAnchor(self.blanket, i, self.sphere_ee.body, -1, pos_diff)) # * take image after blanket grasped if self.take_images: self.capture_images() # * move sphere 40 cm from the top of the bed current_pos = self.sphere_ee.get_base_pos_orient()[0] delta_z = 0.4 # distance to move up (with respect to the top of the bed) bed_height = 0.58 # height of the bed final_z = delta_z + bed_height # global goal z position while current_pos[2] <= final_z: self.sphere_ee.set_base_pos_orient(current_pos + np.array([0, 0, 0.005]), np.array([0,0,0])) p.stepSimulation(physicsClientId=self.id) current_pos = self.sphere_ee.get_base_pos_orient()[0] # * take image after blanket lifted up by 40 cm if self.take_images: self.capture_images() # * move sphere to the release location, release the blanket travel_dist = release_loc - grasp_loc # * determine delta x and y, make sure it is, at max, close to 0.005 num_steps = np.abs(travel_dist//0.005).max() delta_x, delta_y = travel_dist/num_steps current_pos = self.sphere_ee.get_base_pos_orient()[0] for _ in range(int(num_steps)): self.sphere_ee.set_base_pos_orient(current_pos + np.array([delta_x, delta_y, 0]), np.array([0,0,0])) p.stepSimulation(physicsClientId=self.id) current_pos = self.sphere_ee.get_base_pos_orient()[0] # * continue stepping simulation to allow the cloth to settle before release for _ in range(20): p.stepSimulation(physicsClientId=self.id) # * take image after moving to grasp location, before releasing cloth if self.take_images: self.capture_images() # * release the cloth at the release point, sphere is at the same arbitrary z position in the air for i in constraint_ids: p.removeConstraint(i, physicsClientId=self.id) for _ in range(50): p.stepSimulation(physicsClientId=self.id) # * take image after cloth is released and settled if self.take_images: self.capture_images() # * get points on the blanket, final state of the cloth data = p.getMeshData(self.blanket, -1, flags=p.MESH_DATA_SIMULATION_MESH, physicsClientId=self.id) # * compute rewards reward_uncover_target, uncovered_target_count = self.uncover_target_reward(data) reward_uncover_nontarget, uncovered_nontarget_count = self.uncover_nontarget_reward(data) reward_distance_btw_grasp_release = -150 if np.linalg.norm(grasp_loc - release_loc) >= 1.5 else 0 reward_head_kept_uncovered, covered_head_count = self.keep_head_uncovered_reward(data) # * sum and weight rewards from individual functions to get overall reward reward = self.config('uncover_target_weight')*reward_uncover_target + self.config('uncover_nontarget_weight')*reward_uncover_nontarget + self.config('grasp_release_distance_max_weight')*reward_distance_btw_grasp_release + self.config('keep_head_uncovered_weight')*reward_head_kept_uncovered if self.verbose: print(f"Rewards for each measure:\n\tUncover Target: {reward_uncover_target}, Uncover Nontarget: {reward_uncover_nontarget}, Cover Head: {reward_head_kept_uncovered}, Excessive Distance: {reward_distance_btw_grasp_release}") print("overall reward: ", reward) # * prepare info split_reward = [reward_uncover_target, reward_uncover_nontarget, reward_distance_btw_grasp_release, reward_head_kept_uncovered] post_action_point_counts = [uncovered_target_count, uncovered_nontarget_count, covered_head_count] info = {'split_reward':split_reward, 'total_point_counts':point_counts,'post_action_point_counts': post_action_point_counts, 'clipped':clipped} self.iteration += 1 done = self.iteration >= 1 # * take image after reward computed if self.take_images: self.capture_images() # return 0, 0, 1, {} return obs, reward, done, info def change_point_color(self, points_target_limb, limb, ind, rgb = [0, 1, 0.5, 1]): p.changeVisualShape(points_target_limb[limb][ind].body, -1, rgbaColor=rgb, flags=0, physicsClientId=self.id) def uncover_target_reward(self, blanket_state): ''' give the robot a reward for uncovering the target body part ''' points_covered = 0 uncovered_rgb = [0, 1, 0.5, 1] covered_rgb = [1, 1, 1, 1] threshold = 0.028 total_points = self.total_target_point_count # * count # of target points covered by the blanket, subtract from # total points to get the # point uncovered for limb, points_pos_target_limb_world in self.points_pos_target_limb_world.items(): for point in range(len(points_pos_target_limb_world)): covered = False for i, v in enumerate(blanket_state[1]): if abs(np.linalg.norm(v[0:2]-points_pos_target_limb_world[point][0:2])) < threshold: covered = True points_covered += 1 break if self.render_body_points: rgb = covered_rgb if covered else uncovered_rgb self.change_point_color(self.points_target_limb, limb, point, rgb = rgb) points_uncovered = total_points - points_covered if self.verbose: print(f"Total Target Points: {total_points}, Target Uncovered: {points_uncovered}") return (points_uncovered/total_points)*100, points_uncovered def uncover_nontarget_reward(self, blanket_state): ''' discourage the robot from learning policies that uncover nontarget body parts ''' points_covered = 0 uncovered_rgb = [1, 0, 0, 1] covered_rgb = [0, 0, 1, 1] threshold = 0.028 total_points = self.total_nontarget_point_count - len(self.points_pos_nontarget_limb_world[self.human.head]) total_target_points = self.total_target_point_count # account for case where all nontarget points were initially uncovered if total_points == 0: return 0, 0 # count number of target points covered by the blanket for limb, points_pos_nontarget_limb_world in self.points_pos_nontarget_limb_world.items(): if limb != self.human.head: # print(limb) for point in range(len(points_pos_nontarget_limb_world)): covered = False for i, v in enumerate(blanket_state[1]): if abs(np.linalg.norm(v[0:2]-points_pos_nontarget_limb_world[point][0:2])) < threshold: covered = True points_covered += 1 break # print("limb", limb, "covered", covered) if self.render_body_points: rgb = covered_rgb if covered else uncovered_rgb self.change_point_color(self.points_nontarget_limb, limb, point, rgb = rgb) points_uncovered = total_points - points_covered if self.verbose: print(f"Total Nontarget Points: {total_points}, Nontarget Uncovered: {points_uncovered}") # if the same number of target and nontarget points are uncovered, total reward is 0 return -(points_uncovered/total_target_points)*100, points_uncovered def keep_head_uncovered_reward(self, blanket_state): ''' discourage the robot from learning policies that cover the head ''' points_covered = 0 uncovered_rgb = [0, 0, 1, 1] covered_rgb = [1, 0, 0, 1] threshold = 0.028 points_pos_head_world = self.points_pos_nontarget_limb_world[self.human.head] total_points = len(points_pos_head_world) if total_points == 0: return 0, 0 # count number of target points covered by the blanket for point in range(len(self.points_pos_nontarget_limb_world[self.human.head])): covered = False for i, v in enumerate(blanket_state[1]): if abs(np.linalg.norm(v[0:2]-points_pos_head_world[point][0:2])) < threshold: covered = True points_covered += 1 break if self.render_body_points: rgb = covered_rgb if covered else uncovered_rgb self.change_point_color(self.points_nontarget_limb, self.human.head, point, rgb = rgb) if self.verbose: print(f"Total Head Points: {total_points}, Covered Head Points: {points_covered}") # penalize on double the percentage of head points covered (doubled to increase weight of covering the head) return -(points_covered/total_points)*200, points_covered def non_target_initially_uncovered(self, blanket_state): ''' removes nontarget points on the body that are uncovered when the blanket is in it's initial state from the nontarget point set also handles points on the head that are initially covered ''' points_covered = 0 threshold = 0.028 points_to_remove = {} points_to_remove_count = 0 # * create a list of the nontarget points not covered by the blanket for limb, points_pos_nontarget_limb_world in self.points_pos_nontarget_limb_world.items(): # if limb != self.human.head: points_to_remove[limb] = [] for point in range(len(points_pos_nontarget_limb_world)): covered = False for i, v in enumerate(blanket_state[1]): if abs(np.linalg.norm(v[0:2]-points_pos_nontarget_limb_world[point][0:2])) < threshold: covered = True points_covered += 1 break if limb == self.human.head: if covered == True: points_to_remove[limb].append(point) elif covered == False: points_to_remove[limb].append(point) # * remove the identified points from the list of all nontarget points for each limb # * points removed in reverse order so that indexs of identified points don't shift for limb in self.points_pos_nontarget_limb_world.keys(): # if limb != self.human.head: points_to_remove_count += len(points_to_remove[limb]) # print("count of points on nontarget initially:", len(self.points_pos_nontarget_limb_world[limb]), len(self.points_nontarget_limb[limb])) for point in reversed(points_to_remove[limb]): self.points_pos_nontarget_limb_world[limb].pop(point) if self.render_body_points: p.removeBody(self.points_nontarget_limb[limb][point].body) self.points_nontarget_limb[limb].pop(point) # print("count of points on nontarget now:", len(self.points_pos_nontarget_limb_world[limb]), len(self.points_nontarget_limb[limb])) # print(self.total_nontarget_point_count) self.total_nontarget_point_count -= points_to_remove_count def _get_obs(self, agent=None): pose = [] for limb in self.human.obs_limbs: pos, orient = self.human.get_pos_orient(limb) # print("pose", limb, pos, orient) pos2D = pos[0:2] yaw = p.getEulerFromQuaternion(orient)[-1] pose.append(np.concatenate((pos2D, np.array([yaw])), axis=0)) pose = np.concatenate(pose, axis=0) # * collect more infomation for cmaes data collect, enables you to train model with different observations if you want to if self.cmaes_dc: output = [None]*12 all_joint_angles = self.human.get_joint_angles(self.human.all_joint_indices) all_pos_orient = [self.human.get_pos_orient(limb) for limb in self.human.all_body_parts] output[0], output[1], output[2] = pose, all_joint_angles, all_pos_orient return output return pose.astype('float32') def set_seed_val(self, seed = 1001): if seed != self.seed_val: self.seed_val = seed def set_target_limb_code(self, target_limb_code=None): if target_limb_code == None: self.target_limb_code = self.np_random.randint(0,12) else: self.target_limb_code = target_limb_code def set_pstate_file(self, filename): if self.pstate_file != filename: self.pstate_file = filename self.save_pstate = True def reset(self): super(BeddingManipulationEnv, self).reset() if not self.fixed_pose and not self.cmaes_dc: self.set_seed_val(seeding.create_seed()) self.seed(self.seed_val) self.build_assistive_env(fixed_human_base=False, gender='female', human_impairment='none', furniture_type='hospital_bed', body_shape=self.body_shape) # * enable rendering p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1, physicsClientId=self.id) # * configure directory to save captured images to if self.take_images: self.image_dir = os.path.join(self.save_image_dir, time.strftime("%Y%m%d-%H%M%S")) if not os.path.exists(self.image_dir): os.makedirs(self.image_dir) # * Setup human in the air, with legs and arms slightly seperated joints_positions = [(self.human.j_left_hip_y, -10), (self.human.j_right_hip_y, 10), (self.human.j_left_shoulder_x, -20), (self.human.j_right_shoulder_x, 20)] self.human.setup_joints(joints_positions, use_static_joints=False, reactive_force=None) self.human.set_base_pos_orient([0, -0.2, 1.1], [-np.pi/2.0, 0, np.pi]) if not self.fixed_pose: # * Add small variation to the body pose motor_indices, motor_positions, motor_velocities, motor_torques = self.human.get_motor_joint_states() # print(motor_positions) self.human.set_joint_angles(motor_indices, motor_positions+self.np_random.uniform(-0.2, 0.2, size=len(motor_indices))) # self.increase_pose_variation() # * Increase friction of joints so human doesn't fail around exessively as they settle # print([p.getDynamicsInfo(self.human.body, joint)[1] for joint in self.human.all_joint_indices]) self.human.set_whole_body_frictions(spinning_friction=2) # * Let the person settle on the bed p.setGravity(0, 0, -1, physicsClientId=self.id) # * step the simulation a few times so that the human has some initial velocity greater than the at rest threshold for _ in range(5): p.stepSimulation(physicsClientId=self.id) # * continue stepping the simulation until the human joint velocities are under the threshold threshold = 1e-2 settling = True numsteps = 0 while settling: settling = False for i in self.human.all_joint_indices: if np.any(np.abs(self.human.get_velocity(i)) >= threshold): p.stepSimulation(physicsClientId=self.id) numsteps += 1 settling = True break if numsteps > 400: break # print("steps to rest:", numsteps) # * Lock the person in place self.human.control(self.human.all_joint_indices, self.human.get_joint_angles(), 0.05, 100) self.human.set_mass(self.human.base, mass=0) self.human.set_base_velocity(linear_velocity=[0, 0, 0], angular_velocity=[0, 0, 0]) # * take image after human settles if self.take_images: self.capture_images() if self.use_mesh: # * we do not use a mesh in this work # Replace the capsulized human with a human mesh self.human = HumanMesh() joints_positions = [(self.human.j_right_shoulder_z, 60), (self.human.j_right_elbow_y, 90), (self.human.j_left_shoulder_z, -10), (self.human.j_left_elbow_y, -90), (self.human.j_right_hip_x, -60), (self.human.j_right_knee_x, 80), (self.human.j_left_hip_x, -90), (self.human.j_left_knee_x, 80)] body_shape = np.zeros((1, 10)) gender = 'female' # 'random' self.human.init(self.directory, self.id, self.np_random, gender=gender, height=None, body_shape=body_shape, joint_angles=joints_positions, left_hand_pose=[[-2, 0, 0, -2, 0, 0]]) chair_seat_position = np.array([0, 0.1, 0.55]) self.human.set_base_pos_orient(chair_seat_position - self.human.get_vertex_positions(self.human.bottom_index), [0, 0, 0, 1]) # * select a target limb to uncover (may be fixed or random), generate points along the body accordingly if not self.fixed_target_limb: self.set_target_limb_code() self.target_limb = self.human.all_possible_target_limbs[self.target_limb_code] if self.body_shape is None: self.generate_points_along_body_vary_body_shape() else: self.generate_points_along_body() # * take image after points generated (only visible if --render_body_points flag is used) if self.take_images: self.capture_images() # * spawn blanket self.blanket = p.loadSoftBody(os.path.join(self.directory, 'clothing', 'blanket_2089v.obj'), scale=0.75, mass=0.15, useBendingSprings=1, useMassSpring=1, springElasticStiffness=1, springDampingStiffness=0.0005, springDampingAllDirections=1, springBendingStiffness=0, useSelfCollision=1, collisionMargin=0.006, frictionCoeff=0.5, useFaceContact=1, physicsClientId=self.id) # * change alpha value so that it is a little more translucent, easier to see the relationship the human p.changeVisualShape(self.blanket, -1, rgbaColor=[0, 0, 1, 0.75], flags=0, physicsClientId=self.id) p.changeVisualShape(self.blanket, -1, flags=p.VISUAL_SHAPE_DOUBLE_SIDED, physicsClientId=self.id) p.setPhysicsEngineParameter(numSubSteps=4, numSolverIterations = 4, physicsClientId=self.id) if self.blanket_pose_var: delta_y = self.np_random.uniform(-0.25, 0.05) delta_x = self.np_random.uniform(-0.02, 0.02) deg = 45 delta_rad = self.np_random.uniform(-np.radians(deg), np.radians(deg)) # * +/- degrees p.resetBasePositionAndOrientation(self.blanket, [0+delta_x, 0.2+delta_y, 1.5], self.get_quaternion([np.pi/2.0, 0, 0+delta_rad]), physicsClientId=self.id) else: p.resetBasePositionAndOrientation(self.blanket, [0, 0.2, 1.5], self.get_quaternion([np.pi/2.0, 0, 0]), physicsClientId=self.id) # * Drop the blanket on the person, allow to settle p.setGravity(0, 0, -9.81, physicsClientId=self.id) for _ in range(100): p.stepSimulation(physicsClientId=self.id) # * Initialize enviornment variables # * if using the sphere manipulator, spawn the sphere and run a modified version of init_env_variables() if self.robot is None: # * spawn sphere manipulator position = np.array([-0.3, -0.86, 0.8]) self.sphere_ee = self.create_sphere(radius=0.025, mass=0.0, pos = position, visual=True, collision=True, rgba=[1, 0, 0, 1]) # * initialize env variables from gym import spaces # * update observation and action spaces obs_len = len(self._get_obs()) self.observation_space.__init__(low=-
np.ones(obs_len, dtype=np.float32)
numpy.ones
import numpy as np import numpy.linalg as la import pdb class Map(): """map object Attributes: getGlobalPosition: convert position from (s, ey) to (X,Y) """ def __init__(self, halfWidth): """Initialization halfWidth: track halfWidth Modify the vector spec to change the geometry of the track """ # Goggle-shaped track # self.slack = 0.15 # self.halfWidth = halfWidth # spec = np.array([[60 * 0.03, 0], # [80 * 0.03, -80 * 0.03 * 2 / np.pi], # # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2 # [20 * 0.03, 0], # [80 * 0.03, -80 * 0.03 * 2 / np.pi], # [40 * 0.03, +40 * 0.03 * 10 / np.pi], # [60 * 0.03, -60 * 0.03 * 5 / np.pi], # [40 * 0.03, +40 * 0.03 * 10 / np.pi], # [80 * 0.03, -80 * 0.03 * 2 / np.pi], # [20 * 0.03, 0], # [80 * 0.03, -80 * 0.03 * 2 / np.pi]]) # L-shaped track self.halfWidth = 0.45 self.slack = 0.45 lengthCurve = 4.5 spec = np.array([[1.0, 0], [lengthCurve, lengthCurve / np.pi], # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2 [lengthCurve / 2, -lengthCurve / np.pi], [lengthCurve, lengthCurve / np.pi], [lengthCurve / np.pi * 2, 0], [lengthCurve / 2, lengthCurve / np.pi]]) # spec = np.array([[1.0, 0], # [lengthCurve, lengthCurve / np.pi], # # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2 # [lengthCurve / 4, lengthCurve / (2 * np.pi)], # [lengthCurve / 4, - lengthCurve / (2 * np.pi)], # [lengthCurve / np.pi * 2, 0], # [lengthCurve / 2, lengthCurve / np.pi]]) # Oval track # spec = np.array([[2.0, 0], # [4.5, -4.5 / np.pi], # # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2 # [4.0, 0], # [4.5, -4.5 / np.pi], # [2.0, 0]]) # Now given the above segments we compute the (x, y) points of the track and the angle of the tangent vector (psi) at # these points. For each segment we compute the (x, y, psi) coordinate at the last point of the segment. Furthermore, # we compute also the cumulative s at the starting point of the segment at signed curvature # PointAndTangent = [x, y, psi, cumulative s, segment length, signed curvature] ######################################################## #SS: Need to do something to mark the coordinate points of the lane boundaries. #SS: Use OpenCV to measure attitude of the car w.r.t. the lane boundary angle. ######################################################### PointAndTangent = np.zeros((spec.shape[0] + 1, 6)) for i in range(0, spec.shape[0]): if spec[i, 1] == 0.0: # If the current segment is a straight line l = spec[i, 0] # Length of the segments if i == 0: ang = 0 # Angle of the tangent vector at the starting point of the segment x = 0 + l * np.cos(ang) # x coordinate of the last point of the segment y = 0 + l * np.sin(ang) # y coordinate of the last point of the segment else: ang = PointAndTangent[i - 1, 2] # Angle of the tangent vector at the starting point of the segment x = PointAndTangent[i-1, 0] + l * np.cos(ang) # x coordinate of the last point of the segment y = PointAndTangent[i-1, 1] + l * np.sin(ang) # y coordinate of the last point of the segment psi = ang # Angle of the tangent vector at the last point of the segment if i == 0: NewLine = np.array([x, y, psi, PointAndTangent[i, 3], l, 0]) else: NewLine =
np.array([x, y, psi, PointAndTangent[i-1, 3] + PointAndTangent[i-1, 4], l, 0])
numpy.array
# Licensed under a ??? style license - see LICENSE.rst import numpy as np def lat_lon(x,y,ob_lon,ob_lat,pixscale_km,np_ang,req,rpol): ''' Projection of an ellipsoid onto a 2-D array with latitude and longitude grid Parameters ---------- Returns ------- Examples -------- ''' np_ang = -np_ang x1 = pixscale_km*(np.cos(np.radians(np_ang))*x - np.sin(np.radians(np_ang))*y) y1 = pixscale_km*(np.sin(np.radians(np_ang))*x + np.cos(np.radians(np_ang))*y) olrad = np.radians(ob_lat) #set up quadratic equation for ellipsoid r2 = (req/rpol)**2 a = 1 + r2*(np.tan(olrad))**2 #second order b = 2*y1*r2*np.sin(olrad) / (np.cos(olrad)**2) #first order c = x1**2 + r2*y1**2 / (np.cos(olrad))**2 - req**2 #constant radical = b**2 - 4*a*c #will equal nan outside planet since radical < 0 with warnings.catch_warnings(): warnings.simplefilter("ignore") #suppresses error for taking sqrt nan x3s1=(-b+np.sqrt(radical))/(2*a) x3s2=(-b-np.sqrt(radical))/(2*a) z3s1=(y1+x3s1*np.sin(olrad))/np.cos(olrad) z3s2=(y1+x3s2*np.sin(olrad))/np.cos(olrad) odotr1=x3s1*np.cos(olrad)+z3s1*np.sin(olrad) odotr2=x3s2*np.cos(olrad)+z3s2*
np.sin(olrad)
numpy.sin
import pickle import numpy as np import torch from torch import nn from torch.nn import functional as F import utils class Model(nn.Module): def __init__(self, size=4, alpha=1, n=100, d=2, sigma=1, half_empty=True): super().__init__() self.alpha = alpha self.d = d self.sigma = sigma self.size = size self.half_empty = half_empty self.locs = nn.Parameter(torch.randn(size, n), requires_grad=False) if half_empty: self.p = nn.Parameter(torch.randn(1, size // 2) * 5.0) else: self.p = nn.Parameter(torch.randn(1, size) * 5.0) self.q = nn.Parameter(torch.randn(1, size) * 5.0) def forward(self): log_K = -(utils.batch_pdist(self.locs, self.locs) / self.sigma) ** self.d # RBF # log_K = -2.0 * torch.log(1 + utils.batch_pdist(self.locs, self.locs)) # polynomial if self.half_empty: p = torch.cat([F.softmax(self.p, dim=1), torch.zeros_like(self.p)], dim=1) else: p = F.softmax(self.p, dim=1) q = F.softmax(self.q, dim=1) log_pK = torch.logsumexp(log_K[None, ...] + torch.log(p[:, None, :]), dim=2) log_qK = torch.logsumexp(log_K[None, ...] + torch.log(q[:, None, :]), dim=2) rat1 = (log_pK, log_qK) rat2 = (log_qK, log_pK) if np.abs(self.alpha - 1.0) < 1e-8: dp1 = (p * (rat1[0] - rat1[1])).sum(-1) dp2 = (q * (rat2[0] - rat2[1])).sum(-1) loss = 0.5 * (dp1 + dp2) else: power_pq = torch.log(p) + (self.alpha - 1) * (rat1[0] - rat1[1]) power_qp = torch.log(q) + (self.alpha - 1) * (rat2[0] - rat2[1]) loss = 0.5 * (1 / (self.alpha - 1)) * (torch.logsumexp(power_pq, -1) + torch.logsumexp(power_qp, -1)) return loss #, p, q, torch.exp(log_K) if __name__ == '__main__': torch.set_default_dtype(torch.float64) losses = [] for n in [100, 5]: for half_empty in [False, True]: for size in [1000, 10]: for alpha in [0.5, 1, 2]: local_losses = [] print('n', n, 'alpha', alpha, 'size', size, 'half_empty', half_empty) model = Model(alpha=alpha, size=size, half_empty=half_empty, n=n).cuda() optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999)) for itr in range(10000): optimizer.zero_grad() loss = model() if itr % 100 == 0: print(loss) local_losses.append(loss.item()) loss.backward() optimizer.step() losses.append((half_empty, size, alpha, n, local_losses)) print() with open('losses_fixed_%d.pk' %
np.random.randint(1000)
numpy.random.randint
import pandas as pd import numpy as np import matplotlib.pyplot as plt import csv #hhids=[86, 59, 77, 26, 93, 101, 114, 171, 1086, 1403] hhids=['1202', '871', '1103', '585', '59', '2755', '2233', '86', '114', '2575', '1700', '974', '1800', '370', '187', '1169', '1718', '545', '94', '2018', '744', '2859', '2925', '484', '2953', '171', '2818', '1953', '1697', '1463', '499', '1790', '1507', '1642', '93', '1632', '1500', '2472', '2072', '2378', '1415', '2986', '1403', '2945', '77', '1792', '624', '379', '2557', '890', '1192', '26', '2787', '2965', '2980', '434', '2829', '503', '2532', '946', '2401', '1801','2337','1086','1714','1283','252','2814'] scenarios=["sb4b64","sb4b135","sb8b64","sb8b135","sb10b64","sb10b135","sb20b64","sb20b135"] #compile for j in scenarios: nos_list=[] nob_list=[] nob_fg_list=[] nob_tg_list=[] rbc_list=[] rbc_fg_list=[] rbc_tg_list=[] mpc_list=[] mpc_fg_list=[] mpc_tg_list=[] print("In scenarios",j) csvfile = open('roi_table_all/panel4{}.csv'.format(j),'w', newline='') writer = csv.writer(csvfile, delimiter=',') writer.writerow(["Home","no_solar","no_battery","NoB FG","NoB TG","RBC","RBC FG","RBC TG","MPC","MPC FG","MPC TG"]) for i in hhids: #no solar no battery #table = pd.read_csv('nopv_4/{}_2_nopv/{}.csv'.format(i,j)) if j[2]=='4': table = pd.read_csv('nopv_4/{}_4_nopv/sb4b0.csv'.format(i)) if j[2]=='8': table = pd.read_csv('nopv_4/{}_4_nopv/sb8b0.csv'.format(i)) if j[2]=='1': table = pd.read_csv('nopv_4/{}_4_nopv/sb10b0.csv'.format(i)) if j[2]=='2': table = pd.read_csv('nopv_4/{}_4_nopv/sb20b0.csv'.format(i)) nos = table['Base_Bill'].iloc[8735]-table['Base_Bill'].iloc[167] print("no solar bill: ",nos) nos_list.append(nos) #solar no battery if j[2]=='4': table = pd.read_csv('nostorage_4/{}_4_nostorage/sb4b0.csv'.format(i)) if j[2]=='8': table = pd.read_csv('nostorage_4/{}_4_nostorage/sb8b0.csv'.format(i)) if j[2]=='1': table = pd.read_csv('nostorage_4/{}_4_nostorage/sb10b0.csv'.format(i)) if j[2]=='2': table = pd.read_csv('nostorage_4/{}_4_nostorage/sb20b0.csv'.format(i)) nob = table['Base_Bill'].iloc[8735]-table['Base_Bill'].iloc[167] print("no battery bill: ",nob) nob_list.append(nob) nob_fg = nos nob_fg_list.append(nob_fg) nob_tg = -1*(nob_fg-nob) nob_tg_list.append(nob_tg) #Baseline bill table = pd.read_csv('rbc_4_bill/{}_4_rbc_bill/{}.csv'.format(i,j)) rbc = table['Bill'].iloc[-1] rbc_fg = table['Total FG bill'].iloc[-1] rbc_tg = table['Total TG bill'].iloc[-1] print(" bill: ",rbc) rbc_list.append(rbc) rbc_fg_list.append(rbc_fg) rbc_tg_list.append(rbc_tg) #MPC table = pd.read_csv('mpc_4_par/{}_4_mpc_par/{}.csv'.format(i,j)) mpc = table['Bill'].iloc[-1] mpc_fg = table['Total FG bill'].iloc[-1] mpc_tg = table['Total TG bill'].iloc[-1] print("mpc bill: ",mpc) mpc_list.append(mpc) mpc_fg_list.append(mpc_fg) mpc_tg_list.append(mpc_tg) print("\n") writer.writerow([i,nos,nob,nob_fg,nob_tg,rbc,rbc_fg,rbc_tg,mpc,mpc_fg,mpc_tg]) writer.writerow(["mean",np.mean(nos_list),
np.mean(nob_list)
numpy.mean
import cv2 as cv import numpy as np # cascade face detector def face_detector(image): face_cascade = cv.CascadeClassifier('./haarcascade_frontalface_default.xml') gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.2, 3) if len(faces) == 0: return 0, 0, 0, 0 return faces[0] if __name__ == '__main__': # read video video = cv.VideoCapture('input.avi') ret, frame = video.read() # get video frame's width and height frame_width = int(video.get(3)) frame_height = int(video.get(4)) if ret: # create VideoWriter object.The output will be stored in 'output.avi' file. out = cv.VideoWriter( 'output.avi', cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 10, (frame_width, frame_height) ) # get 4 points of face rectangle x, y, w, h = face_detector(frame) # initialize Kalman filter parameters # 4 state(F), 2 measurement(H) and 0 control kalman = cv.KalmanFilter(4, 2, 0) # a rudimentary constant speed model: # x_t+1 = x_t + v_t kalman.transitionMatrix = np.array([[1., 0., .1, 0.], [0., 1., 0., .1], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # measurement matrix (H) kalman.measurementMatrix = 1. * np.eye(2, 4) # gaussian distribution for process error (Q) kalman.processNoiseCov = 1e-5 * np.eye(4, 4) # gaussian distribution for measurement error (R) kalman.measurementNoiseCov = 1e-3 * np.eye(2, 2) kalman.errorCovPost = 1e-1 * np.eye(4, 4) kalman.statePost = np.array([x + w / 2, y + h / 2, 0, 0], dtype='float64') lw = w lh = h lx = x ly = y # do prediction, measurement and correction on each frame while True: ret, frame = video.read() if not ret: break x, y, w, h = face_detector(frame) lw = w if w != 0 else lw lh = h if h != 0 else lh ly = y if y != 0 else ly lx = x if x != 0 else lx # draw red rectangle of image detection img = cv.rectangle(frame, (lx, ly), (lx + lw, ly + lh), (0, 0, 255), 3) # prediction predicted = kalman.predict() # measurement measurement =
np.array([x + w / 2, y + h / 2], dtype='float64')
numpy.array
import ctypes from ctypes import * from ctypes.util import find_library import numpy as np from numpy import ma class bson_error_t(Structure): _fields_ = [('domain', c_uint32), ('code', c_uint32), ('msg', c_char * 504)] bson_error_ptr = POINTER(bson_error_t) class bson_t(Structure): _fields_ = [('flags', c_uint32), ('len', c_uint32), ('padding', c_byte * 120)] bson_ptr = POINTER(bson_t) bson_iter_t = c_byte * 80 bson_iter_ptr = POINTER(bson_iter_t) class bson_writer_t(Structure): pass bson_writer_ptr = POINTER(bson_writer_t) class bson_reader_t(Structure): pass bson_reader_ptr = POINTER(bson_reader_t) libbson = cdll.LoadLibrary(find_library( "/Users/emptysquare/.virtualenvs/c-driver/libbson/.libs/libbson-1.0.0.dylib" )) libbson.bson_strdup.argtypes = [c_char_p] libbson.bson_strdup.restype = c_char_p libbson.bson_new.restype = bson_ptr for type_name in ['double', 'int32']: ctypes_type = getattr(ctypes, 'c_' + type_name) # E.g., bool bson_append_int32 (bson_t *, char *key, int key_len, int32_t). append = getattr(libbson, 'bson_append_' + type_name) append.argtypes = [bson_ptr, c_char_p, ctypes_type] append.restype = c_bool # E.g., int32_t bson_iter_int32 (bson_iter_t *). get = getattr(libbson, 'bson_iter_' + type_name) get.argtypes = [bson_iter_ptr] get.restype = ctypes_type libbson.bson_as_json.argtypes = [bson_ptr, POINTER(c_size_t)] libbson.bson_as_json.restype = c_char_p libbson.bson_new_from_json.argtypes = [c_char_p, c_ssize_t, bson_error_ptr] libbson.bson_new_from_json.restype = bson_ptr libbson.bson_destroy.argtypes = [bson_ptr] libbson.bson_destroy.restype = None libbson.bson_iter_init.argtypes = [bson_iter_ptr, bson_ptr] libbson.bson_iter_init.restype = c_bool libbson.bson_iter_key.argtypes = [bson_iter_ptr] libbson.bson_iter_key.restype = c_char_p libbson.bson_iter_type.argtypes = [bson_iter_ptr] libbson.bson_iter_type.restype = c_int libbson.bson_get_data.argtypes = [bson_ptr] libbson.bson_get_data.restype = POINTER(c_uint8) libbson.bson_new_from_data.argtypes = [POINTER(c_uint8), c_size_t] libbson.bson_new_from_data.restype = bson_ptr libbson.bson_new_from_buffer.argtypes = [POINTER(POINTER(c_uint8)), POINTER(c_size_t), c_void_p, c_void_p] libbson.bson_new_from_buffer.restype = bson_ptr libbson.bson_init_static.argtypes = [bson_ptr, POINTER(c_uint8), c_size_t] libbson.bson_init_static.restype = c_bool libbson.bson_reader_new_from_data.argtypes = [POINTER(c_uint8), c_size_t] libbson.bson_reader_new_from_data.restype = bson_reader_ptr libbson.bson_reader_read.argtypes = [bson_reader_ptr, POINTER(c_bool)] libbson.bson_reader_read.restype = bson_ptr libbson.bson_writer_new.argtypes = [POINTER(POINTER(c_uint8)), POINTER(c_size_t), c_size_t, c_void_p, c_void_p] libbson.bson_writer_new.restype = bson_writer_ptr # TODO: Decimal128, plus other types defined in Monary but not here NUMPY_TYPES = { 'objectid': np.dtype('<V12'), # TODO: modern way to express this? 'bool': np.bool, 'int8': np.int8, 'int16': np.int16, 'int32': np.int32, 'int64': np.int64, 'uint8': np.uint8, 'uint16': np.uint16, 'uint32': np.uint32, 'uint64': np.uint64, 'float32': np.float32, 'float64': np.float64, 'date': np.int64, 'timestamp': np.uint64, } BSON_TYPES = dict([v, k] for k, v in NUMPY_TYPES.items()) ITER_FUNCS = { np.float64: libbson.bson_iter_double, np.int32: libbson.bson_iter_int32, # TODO: the rest } def from_bson_buffer(buf, buf_len, dtype, fields=None): """Convert from buffer of catenated BSON documents to NumPy array.""" ret = [] mask = [] dtype = np.dtype(dtype) # Convert from list of tuples if necessary. field_offsets = dict((field, i) for i, field in enumerate(dtype.fields)) it = byref(bson_iter_t()) eof = c_bool() reader = libbson.bson_reader_new_from_data(buf, buf_len) assert reader b = libbson.bson_reader_read(reader, byref(eof)) while b: assert libbson.bson_iter_init(it, b) row = [] row_mask = [] for field, field_type in dtype.fields.items(): # All entries in this row are masked out to begin. row.append(field_type[0].type()) row_mask.append(1) while libbson.bson_iter_next(it): field = libbson.bson_iter_key(it) if field in dtype.fields: field_type = dtype.fields[field][0] fn = ITER_FUNCS[field_type.type] row[field_offsets[field]] = fn(it) row_mask[field_offsets[field]] = 0 ret.append(tuple(row)) mask.append(tuple(row_mask)) b = libbson.bson_reader_read(reader, byref(eof)) return ma.array(ret, mask=mask, dtype=dtype) def from_bson_array(buf, buf_len, dtype, fields=None): """Convert from BSON array like {"0": doc, "1": doc, ...} to NumPy array. The MongoDB "find" command and others return batches of documents like: {"firstBatch": {"0": doc, "1": doc, ...}} Or, from the "getMore" command: {"nextBatch": {"0": doc, "1": doc, ...}} The batch element is a BSON array, which is like a document whose keys are ASCII decimal numbers. Pull each document from the array and add its fields the resulting NumPy array, converted according to "dtype". """ ret = [] mask = [] dtype = np.dtype(dtype) # Convert from list of tuples if necessary. field_offsets = dict((field, i) for i, field in enumerate(dtype.fields)) bson_array_doc = bson_t() assert libbson.bson_init_static(byref(bson_array_doc), buf, buf_len) array_it = byref(bson_iter_t()) assert libbson.bson_iter_init(array_it, byref(bson_array_doc)) it = byref(bson_iter_t()) while libbson.bson_iter_next(array_it): assert libbson.bson_iter_type(array_it) == 0x3 # BSON document. row = [] row_mask = [] for field, field_type in dtype.fields.items(): # All entries in this row are masked out to begin. row.append(field_type[0].type()) row_mask.append(1) assert libbson.bson_iter_recurse(array_it, it) while libbson.bson_iter_next(it): field = libbson.bson_iter_key(it) if field in dtype.fields: field_type = dtype.fields[field][0] fn = getattr(libbson, 'bson_iter_' + BSON_TYPES[field_type.type]) row[field_offsets[field]] = fn(it) row_mask[field_offsets[field]] = 0 ret.append(tuple(row)) mask.append(tuple(row_mask)) return
ma.array(ret, mask=mask, dtype=dtype)
numpy.ma.array
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import time import numpy as np from numpy.random import uniform import theano import theano.tensor as T from theano.tensor.nnet import sigmoid from theano.tensor import tanh from theano.tensor import exp # from theano.tensor.nnet.nnet import softmax # 作用于2d-matrix,按行处理。 from theano.tensor.extra_ops import Unique from GRU import GruBasic __docformat__ = 'restructedtext en' def exe_time(func): def new_func(*args, **args2): t0 = time.time() print("-- @%s, {%s} start" % (time.strftime("%X", time.localtime()), func.__name__)) back = func(*args, **args2) print("-- @%s, {%s} end" % (time.strftime("%X", time.localtime()), func.__name__)) print("-- @%.3fs taken for {%s}" % (time.time() - t0, func.__name__)) return back return new_func def softmax(x): # 竖直方向取softmax。 # theano里的是作用于2d-matrix,按行处理。我文中scan里有一步是处理(n,),直接用会报错,所以要重写。 # 按axis=0处理(n, ),会超级方便。 e_x = exp(x - x.max(axis=0, keepdims=True)) out = e_x / e_x.sum(axis=0, keepdims=True) return out # 'Obo' is one by one. 逐条训练。 # ====================================================================================================================== class OboSpatialGru(GruBasic): def __init__(self, train, test, dist, alpha_lambda, n_user, n_item, n_dists, n_in, n_hidden): super(OboSpatialGru, self).__init__(train, test, alpha_lambda, n_user, n_item, n_in, n_hidden) # 用mask进行补全后的距离序列train/test,就是序列里idx=1和idx=0之间的间隔所在的区间。 tra_dist_masks, tes_dist_masks, tra_dist_neg_masks = dist self.tra_dist_masks = theano.shared(borrow=True, value=np.asarray(tra_dist_masks, dtype='int32')) self.tes_dist_masks = theano.shared(borrow=True, value=np.asarray(tes_dist_masks, dtype='int32')) self.tra_dist_neg_masks = theano.shared(borrow=True, value=np.asarray(tra_dist_neg_masks, dtype='int32')) rang = 0.5 ui = uniform(-rang, rang, (3, n_hidden, 2 * n_in)) # input是40d,hidden是20d. self.ui = theano.shared(borrow=True, value=ui.astype(theano.config.floatX)) # params -------------------------------------------------------------------------- # 各距离间隔的向量表示,shape=(381,)。 n_dist, dd = n_dists self.dd = dd di = uniform(-rang, rang, (n_dist+1, n_in)) # 多出来一个(填充符),存放用于补齐用户购买序列/实际不存在的item self.di = theano.shared(borrow=True, value=di.astype(theano.config.floatX)) # 生存分析,基于ht产生t+1时刻各距离间隔的概率。softmax(v*h+b) vs = uniform(-rang, rang, (n_dist+1, n_hidden)) # shape=(381, 20) bs = np.zeros((n_dist+1, ), dtype=theano.config.floatX) self.vs = theano.shared(borrow=True, value=vs.astype(theano.config.floatX)) self.bs = theano.shared(borrow=True, value=bs) # 计算user对item评分时,除了兴趣,还有一个是距离的差异。添加一个权重,表示距离间隔的影响。 wd = uniform(0, rang) # 一个值。在test计算用户对商品评分时,作为一个权重参数。 self.wd = theano.shared(borrow=True, value=wd) # loss weight添加约束,相加之和等于1,在此添加了softmax loss_weight = uniform(-rang, rang, (2,)) self.loss_weight = theano.shared(borrow=True, value=loss_weight.astype(dtype=theano.config.floatX)) # 训练结束后:-------------------------------------------------------------- # 训练好的距离间隔的向量表示, trained_dists = uniform(-rang, rang, (n_dist + 1, n_in)) self.trained_dists = theano.shared(borrow=True, value=trained_dists.astype(theano.config.floatX)) # usr对各pois在距离间隔区间上的概率。 prob = uniform(-rang, rang, (n_user, n_item)) self.prob = theano.shared(borrow=True, value=prob.astype(theano.config.floatX)) # params:----------------------------------------------------------------- self.params = [ self.ui, self.wh, self.bi, self.vs, self.bs, self.wd, self.loss_weight] self.l2_sqr = ( T.sum(self.lt ** 2) + # 各poi的向量表示 T.sum(self.di ** 2) + # 各距离间隔的向量表示 T.sum([T.sum(param ** 2) for param in self.params])) self.l2 = ( 0.5 * self.alpha_lambda[1] * self.l2_sqr) self.__theano_train__(n_in, n_hidden) self.__theano_predict__(n_in, n_hidden) def load_params(self, loaded_objects): self.loss_weight.set_value(np.asarray(loaded_objects[0], dtype=theano.config.floatX), borrow=True) self.wd.set_value(np.asarray(loaded_objects[1], dtype=theano.config.floatX), borrow=True) self.lt.set_value(np.asarray(loaded_objects[2], dtype=theano.config.floatX), borrow=True) self.di.set_value(np.asarray(loaded_objects[3], dtype=theano.config.floatX), borrow=True) self.ui.set_value(np.asarray(loaded_objects[4], dtype=theano.config.floatX), borrow=True) self.wh.set_value(np.asarray(loaded_objects[5], dtype=theano.config.floatX), borrow=True) self.bi.set_value(np.asarray(loaded_objects[6], dtype=theano.config.floatX), borrow=True) self.vs.set_value(np.asarray(loaded_objects[7], dtype=theano.config.floatX), borrow=True) self.bs.set_value(np.asarray(loaded_objects[8], dtype=theano.config.floatX), borrow=True) def s_update_neg_masks(self, tra_buys_neg_masks, tes_buys_neg_masks, tra_dist_neg_masks): # 每个epoch都更新负样本 self.tra_buys_neg_masks.set_value(np.asarray(tra_buys_neg_masks, dtype='int32'), borrow=True) self.tes_buys_neg_masks.set_value(np.asarray(tes_buys_neg_masks, dtype='int32'), borrow=True) self.tra_dist_neg_masks.set_value(np.asarray(tra_dist_neg_masks, dtype='int32'), borrow=True) def update_trained_dists(self): # 更新最终的distance表达 di = self.di.get_value(borrow=True) self.trained_dists.set_value(np.asarray(di, dtype=theano.config.floatX), borrow=True) # update def update_prob(self, prob): self.prob.set_value(np.asarray(prob, dtype=theano.config.floatX), borrow=True) # update def compute_sub_all_scores(self, start_end): # 其实可以直接传过来实数参数 # 计算users * items,每个用户对所有商品的评分(需去掉填充符) sub_all_scores = T.dot(self.trained_users[start_end], self.trained_items[:-1].T) + \ self.wd * self.prob[start_end] # sub_all_scores = (1.0 - self.wd) * T.dot(self.trained_users[start_end], self.trained_items[:-1].T) + \ # self.wd * self.prob[start_end] return sub_all_scores.eval() # shape=(sub_n_user, n_item) def __theano_train__(self, n_in, n_hidden): """ 训练阶段跑一遍训练序列 """ ui, wh = self.ui, self.wh vs, bs = self.vs, self.bs tra_mask = T.ivector() seq_length = T.sum(tra_mask) # 有效长度 h0 = self.h0 bi = self.bi xpidxs = T.ivector() xqidxs = T.ivector() dpidxs = T.ivector() dqidxs = T.ivector() xps = self.lt[xpidxs] # shape=(seq_length, n_in) xqs = self.lt[xqidxs] xds = self.di[dpidxs] xs = T.concatenate((xps, xds), axis=1) pqs = T.concatenate((xpidxs, xqidxs)) # 先拼接 uiq_pqs = Unique(False, False, False)(pqs) # 再去重 uiq_x = self.lt[uiq_pqs] # 相应的items特征 uiq_ds = Unique(False, False, False)(dpidxs) uiq_d = self.di[uiq_ds] wd = self.wd ls = softmax(self.loss_weight) """ 输入t时刻正负样本、t-1时刻隐层,计算当前隐层、当前损失. 公式里省略了时刻t # 根据性质:T.dot((m, n), (n, ))得到shape=(m, ),且是矩阵每行与(n, )相乘 # GRU z = sigmoid(ux_z * xp + wh_z * h_pre1) r = sigmoid(ux_r * xp + wh_r * h_pre1) c = tanh(ux_c * xp + wh_c * (r 点乘 h_pre1)) h = z * h_pre1 + (1.0 - z) * c # 根据性质:T.dot((n, ), (n, ))得到scalar upq = h_pre1 * (xp - xq) loss = log(1.0 + e^(-upq)) """ def recurrence(x_t, xp_t1, xq_t1, dp_t1, dq_t1, h_t_pre1): # 隐层 z_r = sigmoid(T.dot(ui[:2], x_t) + T.dot(wh[:2], h_t_pre1) + bi[:2]) z, r = z_r[0], z_r[1] c = tanh(T.dot(ui[2], x_t) + T.dot(wh[2], (r * h_t_pre1)) + bi[2]) h_t = (T.ones_like(z) - z) * h_t_pre1 + z * c # 下一时刻各间隔区间的概率 s_t = softmax(T.dot(vs, h_t) + bs) # shape=(381, ) # loss. 使用下一时刻的样本。 # compute_sub_all_scores也要做更改。。。。。 upq_t = T.dot(h_t, xp_t1 - xq_t1) + wd * (s_t[dp_t1] - s_t[dq_t1]) # upq_t = (1.0 - wd) * T.dot(h_t, xp_t1 - xq_t1) + wd * (s_t[dp_t1] - s_t[dq_t1]) loss_t_bpr = T.log(sigmoid(upq_t)) # loss_t_bpr = T.log(sigmoid(upq_t)) loss_t_sur = T.sum(s_t[:dp_t1 + 1]) - T.log(s_t[dp_t1]) # 这个不能用BPR的形式,loss会Nan。 # s_t[:d_t + 1]:从0区间到该距离间隔区间,所有区间概率的和。 return [h_t, loss_t_sur, loss_t_bpr] [h, loss_sur, loss_bpr], _ = theano.scan( fn=recurrence, sequences=[xs, xps[1:], xqs[1:], dpidxs[1:], dqidxs[1:]], outputs_info=[h0, None, None], n_steps=seq_length-1) # ---------------------------------------------------------------------------- # cost, gradients, learning rate, l2 regularization lr, l2 = self.alpha_lambda[0], self.alpha_lambda[1] seq_l2_sq = T.sum([T.sum(par ** 2) for par in [xps, xqs, ui, wh, bi, xds, vs, bs, wd, ls]]) sur = T.sum(loss_sur) upq = - T.sum(loss_bpr) los = ls[0] * sur + ls[1] * upq seq_costs = ( los + 0.5 * l2 * seq_l2_sq) seq_grads = T.grad(seq_costs, self.params) seq_updates = [(par, par - lr * gra) for par, gra in zip(self.params, seq_grads)] update_x = T.set_subtensor(uiq_x, uiq_x - lr * T.grad(seq_costs, self.lt)[uiq_pqs]) update_d = T.set_subtensor(uiq_d, uiq_d - lr * T.grad(seq_costs, self.di)[uiq_ds]) seq_updates.append((self.lt, update_x)) # 会直接更改到seq_updates里 seq_updates.append((self.di, update_d)) # ---------------------------------------------------------------------------- # 输入正、负样本序列及其它参数后,更新变量,返回损失。 uidx = T.iscalar() # T.iscalar()类型是 TensorType(int32, ) self.seq_train = theano.function( inputs=[uidx], outputs=[los, sur, upq, ls], updates=seq_updates, givens={ xpidxs: self.tra_buys_masks[uidx], # 类型是 TensorType(int32, matrix) xqidxs: self.tra_buys_neg_masks[uidx], # negtive poi dpidxs: self.tra_dist_masks[uidx], # 别名表示的两地之间的距离 dqidxs: self.tra_dist_neg_masks[uidx], tra_mask: self.tra_masks[uidx]}) def __theano_predict__(self, n_in, n_hidden): """ 测试阶段再跑一遍训练序列得到各个隐层。用全部数据一次性得出所有用户的表达 """ ui, wh = self.ui, self.wh vs = self.vs tra_mask = T.imatrix() actual_batch_size = tra_mask.shape[0] seq_length = T.max(T.sum(tra_mask, axis=1)) # 获取mini-batch里各序列的长度最大值作为seq_length h0 = T.alloc(self.h0, actual_batch_size, n_hidden) # shape=(n, 20) bi = T.alloc(self.bi, actual_batch_size, 3, n_hidden) # shape=(n, 3, 20), 原维度放在后边 bi = bi.dimshuffle(1, 2, 0) # shape=(3, 20, n) bs = T.alloc(self.bs, actual_batch_size, self.bs.shape[0]) # shape=(n, lmd[0])=(n, 1520) # 隐层是1个GRU Unit:都可以用这个统一的格式。 pidxs = T.imatrix() didxs = T.imatrix() xps = self.trained_items[pidxs] # shape((actual_batch_size, seq_length, n_hidden)) xbs = self.trained_dists[didxs] ps = T.concatenate((xps, xbs), axis=2) ps = ps.dimshuffle(1, 0, 2) # shape=(seq_length, batch_size, n_in) def recurrence(p_t, h_t_pre1): # 特征、隐层都处理成shape=(batch_size, n_hidden)=(n, 20) z_r = sigmoid(T.dot(ui[:2], p_t.T) + T.dot(wh[:2], h_t_pre1.T) + bi[:2]) z, r = z_r[0].T, z_r[1].T # shape=(n, 20) c = tanh(T.dot(ui[2], p_t.T) + T.dot(wh[2], (r * h_t_pre1).T) + bi[2]) # shape=(20, n) h_t = (T.ones_like(z) - z) * h_t_pre1 + z * c.T # shape=(n, 20) return h_t h, _ = theano.scan( # h.shape=(157, n, 20) fn=recurrence, sequences=ps, outputs_info=h0, n_steps=seq_length) # 得到batch_hts.shape=(n, 20),就是这个batch里每个用户的表达ht。 # 必须要用T.sum(),不然无法建模到theano的graph里、报length not known的错 hs = h.dimshuffle(1, 0, 2) # shape=(batch_size, seq_length, n_hidden) hts = hs[ # shape=(n, n_hidden) T.arange(actual_batch_size), # 行. 花式索引a[[1,2,3],[2,5,6]],需给定行列的表示 T.sum(tra_mask, axis=1) - 1] # 列。需要mask是'int32'型的 # 对下次各距离的概率。 sts = softmax(T.dot(vs, hts.T) + bs.T).T # shape=(n, 381) # givens给数据 start_end = T.ivector() self.seq_predict = theano.function( inputs=[start_end], outputs=[hts, sts], givens={ pidxs: self.tra_buys_masks[start_end], # 类型是TensorType(int32, matrix) didxs: self.tra_dist_masks[start_end], tra_mask: self.tra_masks[start_end]}) def train(self, idx): # consider the whole user sequence as a mini-batch and perform one update per sequence return self.seq_train(idx) # 备份。可用。 # ====================================================================================================================== class OboSpatialGruBackUp(GruBasic): def __init__(self, train, test, dist, alpha_lambda, n_user, n_item, n_dist, n_in, n_hidden): super(OboSpatialGruBackUp, self).__init__(train, test, alpha_lambda, n_user, n_item, n_in, n_hidden) # 用mask进行补全后的距离序列train/test,就是序列里idx=1和idx=0之间的间隔所在的区间。 tra_dist_masks, tes_dist_masks = dist self.tra_dist_masks = theano.shared(borrow=True, value=np.asarray(tra_dist_masks, dtype='int32')) self.tes_dist_masks = theano.shared(borrow=True, value=np.asarray(tes_dist_masks, dtype='int32')) rang = 0.5 ui = uniform(-rang, rang, (3, n_hidden, 2 * n_in)) # input是40d,hidden是20d. self.ui = theano.shared(borrow=True, value=ui.astype(theano.config.floatX)) # params -------------------------------------------------------------------------- # 各距离间隔的向量表示,shape=(381,)。 di = uniform(-rang, rang, (n_dist+1, n_in)) # 多出来一个(填充符),存放用于补齐用户购买序列/实际不存在的item self.di = theano.shared(borrow=True, value=di.astype(theano.config.floatX)) # 生存分析,基于ht产生t+1时刻各距离间隔的概率。softmax(v*h+b) vs = uniform(-rang, rang, (n_dist+1, n_hidden)) # shape=(381, 20) bs = np.zeros((n_dist+1, ), dtype=theano.config.floatX) self.vs = theano.shared(borrow=True, value=vs.astype(theano.config.floatX)) self.bs = theano.shared(borrow=True, value=bs) # 计算user对item评分时,除了兴趣,还有一个是距离的差异。添加一个权重,表示距离间隔的影响。 wd =
uniform(-rang, rang)
numpy.random.uniform
import unittest import numpy as np import h5py import os import fastpli.model.solver import fastpli.objects TMP_FILE = os.path.join(os.path.dirname(__file__), 'tmp.fastpli.test') class MainTest(unittest.TestCase): def setUp(self): self._test_fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [0, 0, 1, 2]]) self._test_fiberbundles = fastpli.objects.FiberBundles(self._test_fiber) self.solver = fastpli.model.solver.Solver() self.solver.fiber_bundles = self._test_fiberbundles def test_dict(self): d = self.solver.get_dict() self.assertWarns(UserWarning, self.solver.set_dict, d) def test_number_of_fibers(self): self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 0 self.solver.step() fbs = self.solver.fiber_bundles self.assertTrue(fbs[0][0].shape[0] == 2) self.assertTrue(np.array_equal(self._test_fiber, fbs[0][0])) def test_set_fiber_bundle(self): self.solver.fiber_bundles = [[np.array([[0, 0, 0, 1], [0, 0, 2, 3]])]] fbs = self.solver.fiber_bundles self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) self.solver.fiber_bundles = self._test_fiberbundles fbs = self.solver.fiber_bundles self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) def test_split(self): self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 0.5 self.solver.step() fbs = self.solver.fiber_bundles self.assertTrue(fbs[0][0].shape[0] == 3) self.assertTrue(fbs[0][0][1, -1] == 1.5) fbs = self.solver.apply_boundary_conditions(n_max=1) self.assertTrue(fbs[0][0].shape[0] == 3) self.assertTrue(np.isclose(fbs[0][0][1, -1], 1.5)) def test_combine(self): self.fiber = np.array([[0, 0, 0, 1], [0, 0, 1, 1], [0, 0, 2, 1]]) self._test_fiberbundles = [[self._test_fiber]] self.solver.fiber_bundles = self._test_fiberbundles self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 2 self.solver.step() fbs = self.solver.fiber_bundles self.assertTrue(fbs[0][0].shape[0] == 2) self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 20 self.solver.step() fbs = self.solver.fiber_bundles self.assertTrue(fbs[0][0].shape[0] == 2) def test_fibers(self): self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 2 fiber_0 = np.array([[0, 0, 0, 1], [0, 0, 1, 2]]) fiber_1 = np.array([[0, 0, 0.1, 1], [0, 0, 1.1, 2]]) self.solver.fiber_bundles = [[fiber_0, fiber_1]] self.solver.step() fbs = self.solver.fiber_bundles self.assertFalse(np.array_equal(fiber_0[:, :3], fbs[0][0][:, :3])) self.assertTrue(np.array_equal(fiber_0[:, -1], fbs[0][0][:, -1])) self.assertFalse(np.array_equal(fiber_1[:, :3], fbs[0][1][:, :3])) self.assertTrue(np.array_equal(fiber_1[:, -1], fbs[0][1][:, -1])) def test_fiber_bundles(self): self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 2 fiber_0 = np.array([[0, 0, 0, 1], [0, 0, 1, 2]]) fiber_1 = np.array([[0, 0, 0.1, 1], [0, 0, 1.1, 2]]) self.solver.fiber_bundles = [[fiber_0], [fiber_1]] self.solver.step() fbs = self.solver.fiber_bundles self.assertFalse(np.array_equal(fiber_0[:, :3], fbs[0][0][:, :3])) self.assertTrue(np.array_equal(fiber_0[:, -1], fbs[0][0][:, -1])) self.assertFalse(np.array_equal(fiber_1[:, :3], fbs[1][0][:, :3])) self.assertTrue(np.array_equal(fiber_1[:, -1], fbs[1][0][:, -1])) def test_col_voi(self): self.solver.drag = 0 self.solver.obj_min_radius = 0 self.solver.obj_mean_length = 2 fiber_0 = np.array([[0, 0, 0, 1], [0, 0, 1, 2]]) fiber_1 =
np.array([[0, 0, 0.1, 1], [0, 0, 1.1, 2]])
numpy.array
# Copyright (c) 2021 zfit import itertools import platform from collections import OrderedDict import numpy as np import pytest import scipy.optimize from ordered_set import OrderedSet import zfit.minimizers.optimizers_tf from zfit.minimizers.base_tf import WrapOptimizer from zfit.util.exception import OperationNotAllowedError true_mu = 4.5 true_sigma = 2 true_lambda = -0.03 parameter_tol = 0.1 max_distance_to_min = 2.5 def create_loss(obs1): mu_param = zfit.Parameter("mu", true_mu - 2.5, -5., 9., step_size=0.03 ) sigma_param = zfit.Parameter("sigma", true_sigma * 0.3, 0.01, 10, step_size=0.03) lambda_param = zfit.Parameter("lambda", true_lambda * 0.3, -0.5, -0.0003, step_size=0.001) gauss1 = zfit.pdf.Gauss(mu=mu_param, sigma=sigma_param, obs=obs1) exp1 = zfit.pdf.Exponential(lam=lambda_param, obs=obs1) sum_pdf1 = zfit.pdf.SumPDF([gauss1, exp1], 0.8) # load params for sampling with mu_param.set_value(true_mu): with sigma_param.set_value(true_sigma): with lambda_param.set_value(true_lambda): sampled_data = sum_pdf1.create_sampler(n=25000) sampled_data.resample() loss = zfit.loss.UnbinnedNLL(model=sum_pdf1, data=sampled_data, options={'subtr_const': True}) minimum = loss.value().numpy() return loss, minimum, (mu_param, sigma_param, lambda_param) verbosity = None def make_min_grad_hesse(): minimizers = [ zfit.minimize.ScipyTruncNCV1, # zfit.minimize.ScipyTrustNCGV1, # Too bad # zfit.minimize.ScipyTrustKrylovV1, # Too bad zfit.minimize.ScipySLSQPV1, zfit.minimize.ScipyLBFGSBV1, zfit.minimize.ScipyTrustConstrV1, ] min_options = [] for opt in minimizers: grad = opt._VALID_SCIPY_GRADIENT hess = opt._VALID_SCIPY_HESSIAN if not grad: grad = {None} # the default is None, so this will skip it if not hess: hess = {None} product = itertools.product([opt], grad, hess) min_options.extend(product) return min_options @pytest.mark.parametrize('minimizer_gradient_hessian', make_min_grad_hesse()) @pytest.mark.flaky(reruns=3) def test_scipy_derivative_options(minimizer_gradient_hessian): minimizer_cls, gradient, hessian = minimizer_gradient_hessian loss, true_min, params = create_loss(obs1=obs1) (mu_param, sigma_param, lambda_param) = params kwargs = {} if gradient is not None: kwargs['gradient'] = gradient if hessian is not None: kwargs['hessian'] = hessian try: minimizer = minimizer_cls(**kwargs) except ValueError as error: # we test a not allowed combination if 'Whenever the gradient is estimated via finite-differences' in error.args[0]: return else: raise result = minimizer.minimize(loss=loss) assert result.valid found_min = loss.value().numpy() assert true_min + max_distance_to_min >= found_min aval, bval, cval = zfit.run((mu_param, sigma_param, lambda_param)) assert true_mu == pytest.approx(aval, abs=parameter_tol) assert true_sigma == pytest.approx(bval, abs=parameter_tol) assert true_lambda == pytest.approx(cval, abs=parameter_tol) assert result.converged do_errors_most = False minimizers = [ # minimizers, minimizer_kwargs, do error estimation # TensorFlow minimizers # (zfit.minimizers.optimizers_tf.WrapOptimizer, dict(optimizer=tf.keras.optimizers.Adam(learning_rate=0.05)), # False), (zfit.minimize.Adam, dict(learning_rate=0.05, verbosity=verbosity, tol=0.00001), False), # works # Minuit minimizer (zfit.minimize.Minuit, {"verbosity": verbosity}, {'error': True, 'longtests': True}), # works # Ipyopt minimizer # TensorFlow Probability minimizer # (BFGS, {}, True), # doesn't work as it uses the graph, violates assumption in minimizer # SciPy Minimizer (zfit.minimize.ScipyLBFGSBV1, {"verbosity": verbosity}, {'error': True, 'numgrad': False, 'approx': True}), # (zfit.minimize.ScipyTrustNCGV1, {'tol': 1e-5, "verbosity": verbosity}, True), # (zfit.minimize.ScipyTrustKrylovV1, {"verbosity": verbosity}, True), # Too unstable (zfit.minimize.ScipyTrustConstrV1, {"verbosity": verbosity, }, {'error': True, 'longtests': bool(zfit.run.get_graph_mode())}), (zfit.minimize.ScipyPowellV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.ScipySLSQPV1, {"verbosity": verbosity, }, {'error': do_errors_most}), # (zfit.minimize.ScipyCOBYLAV1, {"verbosity": verbosity, }, {'error': do_errors_most}), # Too bad # (zfit.minimize.ScipyDoglegV1, {'tol': 1e-5, "verbosity": verbosity}, do_errors_most), # works badly # (zfit.minimize.ScipyNewtonCGV1, {"verbosity":verbosity,}, {'error': do_errors_most}), # Too sensitive? Fails in line-search? (zfit.minimize.ScipyTruncNCV1, {"verbosity": verbosity, }, {'error': do_errors_most}), # NLopt minimizer (zfit.minimize.NLoptLBFGSV1, {"verbosity": verbosity, }, {'error': True, 'longtests': bool(zfit.run.get_graph_mode())}), (zfit.minimize.NLoptTruncNewtonV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptSLSQPV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptMMAV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptCCSAQV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptSubplexV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptCOBYLAV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptMLSLV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptStoGOV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptBOBYQAV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptISRESV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptESCHV1, {"verbosity": verbosity, }, {'error': do_errors_most}), (zfit.minimize.NLoptShiftVarV1, {"verbosity": verbosity, }, {'error': do_errors_most}), # (zfit.minimize.Scipy, {'tol': 1e-8, 'algorithm': 'CG'}, False), # (zfit.minimize.Scipy, {'tol': 1e-8, 'algorithm': 'BFGS'}, False), # too bad # (zfit.minimize.NLopt, {'tol': 1e-8, 'algorithm': nlopt.LN_NELDERMEAD}, True), # performs too bad ] # minimizers = [(zfit.minimize.Minuit, {"verbosity": verbosity, 'gradient': True}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.IpyoptV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyLBFGSBV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyPowellV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipySLSQPV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyNelderMeadV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyCOBYLAV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyNewtonCGV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyTrustNCGV1, {'tol': 1e-3, 'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyTruncNCV1, {'tol': 1e-5, 'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyDoglegV1, {'tol': 1e3, 'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyTrustConstrV1, {'tol': 1e-5, 'verbosity': 7}, True)] # minimizers = [(zfit.minimize.ScipyTrustKrylovV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.NLoptLBFGSV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptTruncNewtonV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.NLoptSLSQPV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.NLoptMMAV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.NLoptCCSAQV1, {'verbosity': 7}, True)] # minimizers = [(zfit.minimize.NLoptMLSLV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptStoGOV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # DOESN'T WORK! # minimizers = [(zfit.minimize.NLoptSubplexV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptESCHV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptISRESV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptBOBYQAV1, {'verbosity': 7}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.NLoptShiftVarV1, {'verbosity': 7, 'rank': 2}, {'error': True, 'longtests': True})] # minimizers = [(zfit.minimize.Minuit, {'verbosity': 6}, True)] # minimizers = [(zfit.minimize.BFGS, {'verbosity': 6}, True)] minimizers_small = [ (zfit.minimize.NLoptLBFGSV1, {}, True), (zfit.minimize.ScipyTrustConstrV1, {}, True), (zfit.minimize.Minuit, {}, True), ] if platform.system() not in ('Darwin', 'Windows'): # TODO: Ipyopt installation on macosx not working minimizers_small.append((zfit.minimize.IpyoptV1, {}, False)) minimizers.append((zfit.minimize.IpyoptV1, {"verbosity": verbosity}, {'error': True, 'longtests': True})) # sort for xdist: https://github.com/pytest-dev/pytest-xdist/issues/432 minimizers = sorted(minimizers, key=lambda val: repr(val)) minimizers_small = sorted(minimizers_small, key=lambda val: repr(val)) obs1 = zfit.Space(obs='obs1', limits=(-2.4, 9.1)) obs1_split = (zfit.Space(obs='obs1', limits=(-2.4, 1.3)) + zfit.Space(obs='obs1', limits=(1.3, 2.1)) + zfit.Space(obs='obs1', limits=(2.1, 9.1))) def test_floating_flag(): obs = zfit.Space("x", limits=(-2, 3)) mu = zfit.Parameter("mu", 1.2, -4, 6) sigma = zfit.Parameter("sigma", 1.3, 0.1, 10) sigma.floating = False gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs) normal_np = np.random.normal(loc=2., scale=3., size=10000) data = zfit.Data.from_numpy(obs=obs, array=normal_np) nll = zfit.loss.UnbinnedNLL(model=gauss, data=data) minimizer = zfit.minimize.Minuit() result = minimizer.minimize(nll, params=[mu, sigma]) assert list(result.params.keys()) == [mu] assert sigma not in result.params @pytest.mark.parametrize("params", [ # np.random.normal(size=5), [1.4, 0.6, 1.5], {'value': [1.4, 0.6, 1.5], 'lower': np.ones(3) * (-5), 'upper': np.ones(3) * (9), 'step_size':
np.linspace(0.1, 0.2, 3)
numpy.linspace
import os from os.path import dirname import numpy as np from pystella.rf.rad_func import MagAB2Flux, Flux2MagAB from pystella.util.phys_var import phys __author__ = 'bakl' # see bands: http://svo2.cab.inta-csic.es/theory/fps3/index.php?mode=browse&gname=GALEX # see personal page <NAME>: http://www.mso.anu.edu.au/~brad/filters.html class Band(object): IsLoad = False Cache = dict() Alias = None FileFilters = 'filters.ini' FileSettings = 'settings.ini' NameBol = 'bol' NameUBVRI = 'ubvri' NameBolQuasi = 'bolq' NameZp = 'zp' NameJy = 'Jy' DirRoot = os.path.join(dirname(dirname(dirname(os.path.realpath(__file__)))), 'data/bands') def __init__(self, name=None, fname=None, zp=None, jy=None, is_load=False): """Creates a band instance. Required parameters: name and file.""" self._fwhm = None self.name = name self._fname = fname # location of the filter response self._zp = zp # zero points for mag self._jy = jy # zero points for flux [Jansky] # 1 Jy = 1.51e7 photons sec^-1 m^-2 (dlambda/lambda)^-1 self.sync_zp() self.__freq = None # frequencies of response [Hz] self.__wl = None # wavelength of response [cm] self._resp = None # response self._is_load = False self._wl_eff = None # the effective wavelength self._norm = None self._normWl = None if is_load: # and os.path.isfile(self.fname): self.load() @property def is_load(self): return self._is_load @property def fname(self): return self._fname @property def zp(self): if self._zp is None: return 0. return self._zp @property def is_zp(self): return self._zp is not None @property def Jy(self): if self._jy is None: return 0. return self._jy @property def is_Jy(self): return self._jy is not None @property def freq(self): return self.__freq @property def resp_fr(self): return self._resp[::-1] @property def resp_wl(self): return self._resp @property def wl(self): return self.__wl @property def wl2args(self): return self.__wl * phys.cm_to_angs @property def wlrange(self): return np.min(self.wl),
np.max(self.wl)
numpy.max
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple MNIST classifier which displays summaries in TensorBoard. This is an unimpressive MNIST model, but it is a good example of using tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of naming summary tags so that they are grouped meaningfully in TensorBoard. It demonstrates the functionality of every TensorBoard dashboard. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import matplotlib.pyplot as plt import matplotlib, seaborn import numpy import scipy.stats import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os, sys from tfutil import listify, log, restore_latest from tfutil_deprecated import LayerManager from mnist_basic import classifier flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_integer('max_steps', 100000, 'Number of steps to run trainer.') flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.') flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data') flags.DEFINE_string('summaries_dir', '/tmp/mnist_vae/logs', 'Summaries directory') flags.DEFINE_string('train_dir', '/tmp/mnist_vae/save', 'Saves directory') flags.DEFINE_string('viz_dir', '/tmp/mnist_vae/viz', 'Viz directory') SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' IMAGE_SIZE = 28 IMAGE_AREA = IMAGE_SIZE*IMAGE_SIZE SEED = 66478 # Set to None for random seed. BATCH_SIZE = 64 PRIOR_BATCH_SIZE = 10 NUM_RUNS_FOR_ENTROPY_ESTIMATES = 100 TRAIN = True BNAE = False CONV = False IND_ERROR = False # encourage normality of Q(z|X) across entire training set # LATENT_DIM = 20 LATENT_DIM = 2 NUM_HIDDEN_LAYERS = 2 HIDDEN_LAYER_SIZE = 500 if CONV: small_image_size = IMAGE_SIZE // 4 small_image_area = small_image_size * small_image_size HIDDEN_LAYER_SIZE = (HIDDEN_LAYER_SIZE // small_image_area) * small_image_area def stat_summary(a): a = numpy.array(a) return [numpy.mean(a <= 0.0), numpy.mean(a <= 0.25), numpy.mean(a <= 0.5), numpy.mean(a <= 1.0), numpy.mean(a<=2.0)] #return [numpy.min(a), numpy.percentile(a, 25), numpy.percentile(a, 50), numpy.percentile(a, 75), numpy.max(a)] def train(): print("\nSource code of training file {}:\n\n{}".format(__file__, open(__file__).read())) log('loading MNIST') # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=False) TRAIN_SIZE=mnist.train.images.shape[0] lm = LayerManager(forward_biased_estimate=False) lm_classifier = LayerManager(forward_biased_estimate=False, is_training=False) batch = tf.Variable(0) prior_batch_size = tf.placeholder(tf.int64, []) with tf.name_scope('input'): all_train_data_initializer = tf.placeholder(tf.float32, [TRAIN_SIZE, IMAGE_AREA]) all_train_data = tf.Variable(all_train_data_initializer, trainable=False, collections=[]) random_training_example = tf.train.slice_input_producer([all_train_data]) training_batch = tf.train.batch([random_training_example], batch_size=BATCH_SIZE, enqueue_many=True) fed_input_data = tf.placeholder(tf.float32, [None, IMAGE_AREA]) def id_act(z): return z def log_std_act(z): return tf.clip_by_value(z, -5.0, 5.0) def double_relu(z): return [tf.nn.relu(z), tf.nn.relu(-z)] default_act = tf.nn.relu # double_relu do_bn = dict(bn=False) def encoder(data): last = data - 0.5 if CONV: last = tf.reshape(last, [-1, IMAGE_SIZE, IMAGE_SIZE, 1]) last = lm.conv_layer(last, 3, 3, 32, 'encoder/hidden/conv0', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 32, 'encoder/hidden/conv1', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 32, 'encoder/hidden/conv2', act=default_act, **do_bn) last = lm.max_pool(last, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') last = lm.conv_layer(last, 3, 3, 64, 'encoder/hidden/conv3', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 64, 'encoder/hidden/conv4', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 64, 'encoder/hidden/conv5', act=default_act, **do_bn) last = lm.max_pool(last, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') shape = last.get_shape().as_list() last = tf.reshape(last, [-1, shape[1] * shape[2] * shape[3]]) for i in range(NUM_HIDDEN_LAYERS): last = lm.nn_layer(last, HIDDEN_LAYER_SIZE, 'encoder/hidden/fc{}'.format(i), act=default_act, **do_bn) if BNAE: latent_mean = lm.nn_layer(last, LATENT_DIM, 'latent/mean', act=id_act, **do_bn) #, bias=False, scale=False) else: latent_mean = lm.nn_layer(last, LATENT_DIM, 'latent/mean', act=id_act, **do_bn) latent_log_std = lm.nn_layer(last, LATENT_DIM, 'latent/log_std', act=log_std_act, **do_bn) return latent_mean, latent_log_std def decoder(code): last = code for i in range(NUM_HIDDEN_LAYERS): last = lm.nn_layer(last, HIDDEN_LAYER_SIZE, 'decoder/hidden/fc{}'.format(i), act=default_act, **do_bn) if CONV: last_num_filters = HIDDEN_LAYER_SIZE // ((IMAGE_SIZE // 4)*(IMAGE_SIZE // 4)) last = [tf.reshape(val, [-1, IMAGE_SIZE // 4, IMAGE_SIZE // 4, last_num_filters]) for val in listify(last)] last = lm.conv_layer(last, 3, 3, 64, 'decoder/hidden/conv0', act=default_act, **do_bn) last = [tf.image.resize_images(val, IMAGE_SIZE // 2, IMAGE_SIZE // 2) for val in listify(last)] last = lm.conv_layer(last, 3, 3, 32, 'decoder/hidden/conv1', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 32, 'decoder/hidden/conv2', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 32, 'decoder/hidden/conv3', act=default_act, **do_bn) last = [tf.image.resize_images(val, IMAGE_SIZE, IMAGE_SIZE) for val in listify(last)] last = lm.conv_layer(last, 3, 3, 8, 'decoder/hidden/conv4', act=default_act, **do_bn) last = lm.conv_layer(last, 3, 3, 8, 'decoder/hidden/conv5', act=default_act, **do_bn) output_mean_logit = lm.conv_layer(last, 3, 3, 1, 'output/mean', act=id_act, **do_bn) output_log_std = lm.conv_layer(last, 3, 3, 1, 'output/log_std', act=log_std_act, **do_bn) output_mean_logit = tf.reshape(output_mean_logit, [-1, IMAGE_SIZE*IMAGE_SIZE]) output_log_std = tf.reshape(output_log_std, [-1, IMAGE_SIZE*IMAGE_SIZE]) else: output_mean_logit = lm.nn_layer(last, IMAGE_SIZE*IMAGE_SIZE, 'output/mean', act=id_act, **do_bn) output_log_std = lm.nn_layer(last, IMAGE_SIZE*IMAGE_SIZE, 'output/log_std', act=log_std_act, **do_bn) return output_mean_logit, output_log_std def full_model(data): latent_mean, latent_log_std = encoder(data) if BNAE: latent = latent_mean else: latent = lm.reparam_normal_sample(latent_mean, latent_log_std, 'latent/sample') output_mean_logit, output_log_std = decoder(latent) output_mean = tf.nn.sigmoid(output_mean_logit) with tf.name_scope('likelihood_bound'): minus_kl = 0.5 * tf.reduce_sum( 1.0 + 2.0 * latent_log_std - tf.square(latent_mean) - tf.exp(2.0 * latent_log_std), reduction_indices=[1]) # Normal # reconstruction_error = tf.reduce_sum( # -0.5 * numpy.log(2 * numpy.pi) - output_log_std - 0.5 * tf.square(output_mean - data) / tf.exp( # 2.0 * output_log_std), reduction_indices=[1]) # Laplace # reconstruction_error = tf.reduce_sum(-numpy.log(2.0) - output_log_std - abs(output_mean-data)/tf.exp(output_log_std), reduction_indices=[1]) # Cross Entropy reconstruction_error = -tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(output_mean_logit, data), reduction_indices=[1]) with tf.name_scope('total'): likelihood_bound = tf.reduce_mean(minus_kl + reconstruction_error) lm.summaries.scalar_summary('likelihood bound', likelihood_bound) # Easier to parse graphs if giant negative values of first few iterations are omitted # likelihood_bound = tf.reduce_mean(tf.clip_by_value(tf.cast(batch, tf.float32)/10000.0 - 2.0, 0.0, 1.0)*minus_kl + reconstruction_error) with tf.name_scope('error'): squared_error = tf.reduce_mean(tf.square(data - output_mean)) lm.summaries.scalar_summary('squared_error', squared_error) with tf.name_scope('independence_error'): num_normal_constraints = 20*LATENT_DIM # Who knows what this should be unit = tf.nn.l2_normalize(tf.random_normal((LATENT_DIM, num_normal_constraints)), 0) z = tf.matmul(latent, unit) # random orthogonal projection of latent center = tf.truncated_normal([num_normal_constraints]) width = 0.4 # Who knows what this should be g = tf.nn.tanh((z - center) / (width/2))*tf.exp(tf.square(center)/2) # any family of univariate functions of z gprime, = tf.gradients(g, z) # zero for all g iff z is unit normal by Stein's Lemma stein_lemma_err = tf.reduce_mean(z * g - gprime, reduction_indices=[0], keep_dims=True) #ind_err = tf.squeeze(tf.matmul(tf.nn.softmax(0.1*abs(stein_lemma_err)), tf.square(stein_lemma_err), transpose_b=True)) ind_err = tf.sqrt(tf.cast(tf.shape(latent)[0], tf.float32)) * tf.reduce_mean(tf.square(stein_lemma_err)) # nonlin = tf.nn.relu(tf.sign(tf.random_normal((LATENT_DIM,)))*latent - tf.random_normal((LATENT_DIM,))) # nonlin_mean = tf.reduce_mean(nonlin, reduction_indices=[0], keep_dims=True) # nonlin_cov = tf.matmul(nonlin, nonlin, transpose_a=True)/tf.cast(tf.shape(latent)[0], tf.float32) - tf.matmul(nonlin_mean, nonlin_mean, transpose_a=True) # ind_err = tf.reduce_sum(tf.square(nonlin_cov)) - tf.reduce_sum(tf.diag_part(tf.square(nonlin_cov))) lm.summaries.scalar_summary('ind_err', ind_err) lm.summaries.image_summary('posterior/mean', tf.reshape(output_mean, [-1, IMAGE_SIZE, IMAGE_SIZE, 1]), 10) cov = tf.matmul(latent, latent, transpose_a=True)/tf.cast(tf.shape(latent)[0], tf.float32) eye = tf.diag(tf.ones((LATENT_DIM,))) lm.summaries.image_summary('cov', tf.expand_dims(tf.expand_dims(cov, 0), -1), 1) lm.summaries.image_summary('cov_error', tf.expand_dims(tf.expand_dims(cov-eye, 0), -1), 1) weight_decay = sum([tf.reduce_sum(t**2) for t in lm.weight_factory.variables + lm.bias_factory.variables]) if BNAE: error = squared_error else: error = -likelihood_bound if IND_ERROR: error += ind_err return output_mean, output_log_std, error def prior_model(latent=None): # option to call with latent as numpy array of shape 1xLATENT_DIM if latent is None: latent = tf.random_normal((prior_batch_size, LATENT_DIM)) else: latent = tf.convert_to_tensor(latent, dtype=tf.float32) output_mean_logit, output_log_std = decoder(latent) output_mean = tf.nn.sigmoid(output_mean_logit) sample_image = lm.summaries.image_summary('prior/mean', tf.reshape(output_mean, [-1, IMAGE_SIZE, IMAGE_SIZE, 1]), 10) return output_mean, output_log_std, sample_image classifier_logits = classifier(lm_classifier, fed_input_data) classifier_saver = tf.train.Saver([var for var in tf.trainable_variables() + tf.get_collection('BatchNormInternal') if var != batch]) with tf.name_scope('posterior'): reconstruction, _, error = full_model(training_batch) training_merged = lm.summaries.merge_all_summaries() lm.is_training = False tf.get_variable_scope().reuse_variables() with tf.name_scope('prior'): prior_sample, _, prior_sample_image = prior_model() lm.summaries.reset() with tf.name_scope('test'): test_reconstruction, _, test_error = full_model(fed_input_data) test_merged = lm.summaries.merge_all_summaries() + lm_classifier.summaries.merge_all_summaries() saver = tf.train.Saver(tf.trainable_variables() + tf.get_collection('BatchNormInternal')) learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, batch, 5000, 0.8, staircase=True) train_step = tf.train.AdamOptimizer(learning_rate).minimize(error, global_step=batch, var_list=lm.filter_factory.variables + lm.weight_factory.variables + lm.bias_factory.variables + lm.scale_factory.variables) def feed_dict(mode): """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" if mode == 'test': return {fed_input_data: mnist.test.images, prior_batch_size: 1000} else: return {prior_batch_size: PRIOR_BATCH_SIZE} with tf.Session() as sess: train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph) test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test') sess.run(tf.initialize_all_variables()) sess.run(all_train_data.initializer, feed_dict={all_train_data_initializer: mnist.train.images}) sess.run(tf.initialize_variables(tf.get_collection('BatchNormInternal'))) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) restore_latest(classifier_saver, sess, '/tmp/mnist_basic') runs = [] for _ in range(NUM_RUNS_FOR_ENTROPY_ESTIMATES): new_output_probs, = sess.run([classifier_logits], feed_dict={fed_input_data: mnist.test.images[:1000, :]}) new_output =
numpy.argmax(new_output_probs, 1)
numpy.argmax
""" Example 1 - Single Variable Linear Regression NOTE: The example and sample data is being taken from the "Machine Learning course by <NAME>" in Coursera. Problem: Suppose you are selling your house and you want to know what a good market price would be. One way to do this is to first collect information on recent houses sold and make a model of housing prices. """ import matplotlib.pyplot as plt # initial imports import numpy as np plt.ion() from models.linear_regression import compute_cost, gradient_descent # ----------------Loading X and y matrix --------------- print('Loading data ...') data = np.loadtxt('data/ex1data1.txt', delimiter=',') X = data[:, 0:-1] y = data[:, -1:] m = y.shape[0] # printing first 5 elements print(X[0:5]) # ----------------Plotting Data----------------- fig = plt.figure("data") axes1 = fig.add_subplot() axes1.scatter(X, y, marker="x", c='r') # ---------------Cost and Gradient descent------------ # adding bias units to X X = np.hstack((np.ones([m, 1]), X)) # Some gradient descent settings iterations = 1500 alpha = 0.01 theta = np.zeros([X.shape[1], 1]) print('\nTesting the cost function ...') # compute and display initial cost J = compute_cost(X, y, theta); print('With theta = [0 ; 0]\nCost computed = {}'.format(J)) print('Expected cost value (approx) 32.07') # further testing of the cost function J = compute_cost(X, y, np.array([[-1], [2]])) print('\nWith theta = [-1 ; 2]\nCost computed = {}'.format(J)) print('Expected cost value (approx) 54.24') print('\nRunning Gradient Descent ...') # run gradient descent theta, _ = gradient_descent(X, y, theta, alpha, iterations) # print theta to screen print('Theta found by gradient descent:') print(theta) print('Expected theta values (approx)') print(' [-3.6303\n 1.1664]') # ---------------- plotting the linear model--------------------------- plt.plot(X[:, 1:], np.dot(X, theta), lw=1) plt.show() # ------------------ plotting the J(theta0,theta1)--------------------- print('Visualizing J(theta_0, theta_1) ...\n') # Grid over which we will calculate J theta0_vals = np.linspace(-10, 10, 100) theta1_vals = np.linspace(-1, 4, 100) # initialize J_vals to a matrix of 0's J_vals = np.zeros([theta0_vals.size, theta1_vals.size]) # Fill out J_vals for i in range(theta0_vals.size): for j in range(theta1_vals.size): t = np.array([theta0_vals[i], theta1_vals[j]]).reshape(2, 1) J_vals[i, j] = compute_cost(X, y, t) # Because of the way meshgrids work in the surf command, we need to # transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals.T theta0_vals, theta1_vals =
np.meshgrid(theta0_vals, theta1_vals)
numpy.meshgrid
""" pyrad.util.radar_utils ====================== Miscellaneous functions dealing with radar data .. autosummary:: :toctree: generated/ get_data_along_rng get_data_along_azi get_data_along_ele get_ROI rainfall_accumulation time_series_statistics find_contiguous_times join_time_series get_range_bins_to_avg belongs_roi_indices find_ray_index find_rng_index find_ang_index find_nearest_gate find_neighbour_gates find_colocated_indexes get_target_elevations time_avg_range get_closest_solar_flux get_fixed_rng_data create_sun_hits_field create_sun_retrieval_field compute_quantiles compute_quantiles_from_hist compute_quantiles_sweep compute_histogram compute_histogram_sweep get_histogram_bins compute_2d_stats compute_1d_stats compute_2d_hist quantize_field compute_profile_stats compute_directional_stats project_to_vertical """ from warnings import warn from copy import deepcopy import datetime import numpy as np import scipy try: import shapely _SHAPELY_AVAILABLE = True except ImportError: warn('shapely not available') _SHAPELY_AVAILABLE = False try: import pandas as pd _PANDAS_AVAILABLE = True except ImportError: warn('Pandas not available') _PANDAS_AVAILABLE = False import pyart from .stat_utils import quantiles_weighted def get_data_along_rng(radar, field_name, fix_elevations, fix_azimuths, ang_tol=1., rmin=None, rmax=None): """ Get data at particular (azimuths, elevations) Parameters ---------- radar : radar object the radar object where the data is field_name : str name of the field to filter fix_elevations, fix_azimuths: list of floats List of elevations, azimuths couples [deg] ang_tol : float Tolerance between the nominal angle and the radar angle [deg] rmin, rmax: float Min and Max range of the obtained data [m] Returns ------- xvals : list of float arrays The ranges of each azi, ele pair yvals : list of float arrays The values valid_azi, valid_ele : float arrays The azi, ele pairs """ if rmin is None: rmin = 0. if rmax is None: rmax = np.max(radar.range['data']) rng_mask = np.logical_and( radar.range['data'] >= rmin, radar.range['data'] <= rmax) x = radar.range['data'][rng_mask] xvals = [] yvals = [] valid_azi = [] valid_ele = [] if radar.scan_type == 'ppi': for ele, azi in zip(fix_elevations, fix_azimuths): ind_sweep = find_ang_index( radar.fixed_angle['data'], ele, ang_tol=ang_tol) if ind_sweep is None: warn('No elevation angle found for fix_elevation '+str(ele)) continue new_dataset = radar.extract_sweeps([ind_sweep]) try: dataset_line = pyart.util.cross_section_ppi( new_dataset, [azi], az_tol=ang_tol) except EnvironmentError: warn(' No data found at azimuth '+str(azi) + ' and elevation '+str(ele)) continue yvals.append(dataset_line.fields[field_name]['data'][0, rng_mask]) xvals.append(x) valid_azi.append(dataset_line.azimuth['data'][0]) valid_ele.append(dataset_line.elevation['data'][0]) else: for ele, azi in zip(fix_elevations, fix_azimuths): ind_sweep = find_ang_index( radar.fixed_angle['data'], azi, ang_tol=ang_tol) if ind_sweep is None: warn('No azimuth angle found for fix_azimuth '+str(azi)) continue new_dataset = radar.extract_sweeps([ind_sweep]) try: dataset_line = pyart.util.cross_section_rhi( new_dataset, [ele], el_tol=ang_tol) except EnvironmentError: warn(' No data found at azimuth '+str(azi) + ' and elevation '+str(ele)) continue yvals.append( dataset_line.fields[field_name]['data'][0, rng_mask]) xvals.append(x) valid_azi.append(dataset_line.azimuth['data'][0]) valid_ele.append(dataset_line.elevation['data'][0]) return xvals, yvals, valid_azi, valid_ele def get_data_along_azi(radar, field_name, fix_ranges, fix_elevations, rng_tol=50., ang_tol=1., azi_start=None, azi_stop=None): """ Get data at particular (ranges, elevations) Parameters ---------- radar : radar object the radar object where the data is field_name : str name of the field to filter fix_ranges, fix_elevations: list of floats List of ranges [m], elevations [deg] couples rng_tol : float Tolerance between the nominal range and the radar range [m] ang_tol : float Tolerance between the nominal angle and the radar angle [deg] azi_start, azi_stop: float Start and stop azimuth angle of the data [deg] Returns ------- xvals : list of float arrays The ranges of each rng, ele pair yvals : list of float arrays The values valid_rng, valid_ele : float arrays The rng, ele pairs """ if azi_start is None: azi_start = np.min(radar.azimuth['data']) if azi_stop is None: azi_stop = np.max(radar.azimuth['data']) yvals = [] xvals = [] valid_rng = [] valid_ele = [] for rng, ele in zip(fix_ranges, fix_elevations): ind_rng = find_rng_index(radar.range['data'], rng, rng_tol=rng_tol) if ind_rng is None: warn('No range gate found for fix_range '+str(rng)) continue if radar.scan_type == 'ppi': ind_sweep = find_ang_index( radar.fixed_angle['data'], ele, ang_tol=ang_tol) if ind_sweep is None: warn('No elevation angle found for fix_elevation ' + str(ele)) continue new_dataset = radar.extract_sweeps([ind_sweep]) else: try: new_dataset = pyart.util.cross_section_rhi( radar, [ele], el_tol=ang_tol) except EnvironmentError: warn( ' No data found at range '+str(rng) + ' and elevation '+str(ele)) continue if azi_start < azi_stop: azi_mask = np.logical_and( new_dataset.azimuth['data'] >= azi_start, new_dataset.azimuth['data'] <= azi_stop) else: azi_mask = np.logical_or( new_dataset.azimuth['data'] >= azi_start, new_dataset.azimuth['data'] <= azi_stop) yvals.append( new_dataset.fields[field_name]['data'][azi_mask, ind_rng]) xvals.append(new_dataset.azimuth['data'][azi_mask]) valid_rng.append(new_dataset.range['data'][ind_rng]) valid_ele.append(new_dataset.elevation['data'][0]) return xvals, yvals, valid_rng, valid_ele def get_data_along_ele(radar, field_name, fix_ranges, fix_azimuths, rng_tol=50., ang_tol=1., ele_min=None, ele_max=None): """ Get data at particular (ranges, azimuths) Parameters ---------- radar : radar object the radar object where the data is field_name : str name of the field to filter fix_ranges, fix_azimuths: list of floats List of ranges [m], azimuths [deg] couples rng_tol : float Tolerance between the nominal range and the radar range [m] ang_tol : float Tolerance between the nominal angle and the radar angle [deg] ele_min, ele_max: float Min and max elevation angle [deg] Returns ------- xvals : list of float arrays The ranges of each rng, ele pair yvals : list of float arrays The values valid_rng, valid_ele : float arrays The rng, ele pairs """ if ele_min is None: ele_min = np.min(radar.elevation['data']) if ele_max is None: ele_max = np.max(radar.elevation['data']) yvals = [] xvals = [] valid_rng = [] valid_azi = [] for rng, azi in zip(fix_ranges, fix_azimuths): ind_rng = find_rng_index(radar.range['data'], rng, rng_tol=rng_tol) if ind_rng is None: warn('No range gate found for fix_range '+str(rng)) continue if radar.scan_type == 'ppi': try: new_dataset = pyart.util.cross_section_ppi( radar, [azi], az_tol=ang_tol) except EnvironmentError: warn( ' No data found at range '+str(rng) + ' and elevation '+str(azi)) continue else: ind_sweep = find_ang_index( radar.fixed_angle['data'], azi, ang_tol=ang_tol) if ind_sweep is None: warn('No azimuth angle found for fix_azimuth '+str(azi)) continue new_dataset = radar.extract_sweeps([ind_sweep]) ele_mask = np.logical_and( new_dataset.elevation['data'] >= ele_min, new_dataset.elevation['data'] <= ele_max) yvals.append( new_dataset.fields[field_name]['data'][ele_mask, ind_rng]) xvals.append(new_dataset.elevation['data'][ele_mask]) valid_rng.append(new_dataset.range['data'][ind_rng]) valid_azi.append(new_dataset.elevation['data'][0]) return xvals, yvals, valid_rng, valid_azi def get_ROI(radar, fieldname, sector): """ filter out any data outside the region of interest defined by sector Parameters ---------- radar : radar object the radar object where the data is fieldname : str name of the field to filter sector : dict a dictionary defining the region of interest Returns ------- roi_flag : ndarray a field array with ones in gates that are in the Region of Interest """ roi_flag = np.ma.ones((radar.nrays, radar.ngates), dtype=int) # check for altitude limits if sector['hmin'] is not None: roi_flag[radar.gate_altitude['data'] < sector['hmin']] = 0 if sector['hmax'] is not None: roi_flag[radar.gate_altitude['data'] > sector['hmax']] = 0 # check for range limits if sector['rmin'] is not None: roi_flag[:, radar.range['data'] < sector['rmin']] = 0 if sector['rmax'] is not None: roi_flag[:, radar.range['data'] > sector['rmax']] = 0 # check elevation angle limits if sector['elmin'] is not None: roi_flag[radar.elevation['data'] < sector['elmin'], :] = 0 if sector['elmax'] is not None: roi_flag[radar.elevation['data'] > sector['elmax'], :] = 0 # check min and max azimuth angle if sector['azmin'] is not None and sector['azmax'] is not None: if sector['azmin'] <= sector['azmax']: roi_flag[radar.azimuth['data'] < sector['azmin'], :] = 0 roi_flag[radar.azimuth['data'] > sector['azmax'], :] = 0 if sector['azmin'] > sector['azmax']: roi_flag[np.logical_and( radar.azimuth['data'] < sector['azmin'], radar.azimuth['data'] > sector['azmax']), :] = 0 elif sector['azmin'] is not None: roi_flag[radar.azimuth['data'] < sector['azmin'], :] = 0 elif sector['azmax'] is not None: roi_flag[radar.azimuth['data'] > sector['azmax'], :] = 0 return roi_flag def rainfall_accumulation(t_in_vec, val_in_vec, cum_time=3600., base_time=0., dropnan=False): """ Computes the rainfall accumulation of a time series over a given period Parameters ---------- t_in_vec : datetime array the input date and time array val_in_vec : float array the input values array [mm/h] cum_time : int accumulation time [s] base_time : int base time [s] dropnan : boolean if True remove NaN from the time series Returns ------- t_out_vec : datetime array the output date and time array val_out_vec : float array the output values array np_vec : int array the number of samples at each period """ # get the number of samples per interval t_out_vec, np_vec = time_series_statistics( t_in_vec, np.ones(len(val_in_vec), dtype=float), avg_time=cum_time, base_time=base_time, method='sum', dropnan=dropnan) np_vec[np.isnan(np_vec)] = 0 np_vec = np_vec.astype(int) t_out_vec, val_out_vec = time_series_statistics( t_in_vec, val_in_vec, avg_time=cum_time, base_time=base_time, method='sum', dropnan=dropnan) t_sample = cum_time/np_vec # find accumulation time of each sample val_out_vec *= (t_sample/3600.) # conversion to mm in cum_time period val_out_vec = np.ma.asarray(val_out_vec) val_out_vec[np.isnan(val_out_vec)] = np.ma.masked return t_out_vec, val_out_vec, np_vec def time_series_statistics(t_in_vec, val_in_vec, avg_time=3600, base_time=1800, method='mean', dropnan=False): """ Computes statistics over a time-averaged series. Only of package pandas is available otherwise returns None Parameters ---------- t_in_vec : datetime array the input date and time array val_in_vec : float array the input values array avg_time : int averaging time [s] base_time : int base time [s] method : str statistical method dropnan : boolean if True remove NaN from the time series Returns ------- t_out_vec : datetime array the output date and time array val_out_vec : float array the output values array """ if not _PANDAS_AVAILABLE: warn('Pandas not available. Unable to compute time series statistics') return None, None df_in = pd.DataFrame(data=val_in_vec, index=pd.DatetimeIndex(t_in_vec)) df_out = getattr(df_in.resample( str(avg_time)+'S', closed='right', label='right', base=base_time), method)() if dropnan is True: df_out = df_out.dropna(how='any') t_out_vec = df_out.index.to_pydatetime() val_out_vec = df_out.values.flatten() return t_out_vec, val_out_vec def find_contiguous_times(times, step=600): """ Given and array of ordered times, find those contiguous according to a maximum time step Parameters ---------- times : array of datetimes The array of times step : float The time step [s] Returns ------- start_times, end_times : array of date times The start and end of each consecutive time period """ run = [] periods = [] expect = None for time in times: if expect is None: run.append(time) elif time <= expect: run.append(time) else: run = [time] periods.append(run) expect = time+datetime.timedelta(seconds=step) if not periods: periods = [times] elif periods[0][0] != times[0]: periods.insert(0, [times[0]]) print('number of consecutive periods: '+str(len(periods))) start_times = np.array([], dtype=datetime.datetime) end_times = np.array([], dtype=datetime.datetime) for period in periods: start_times = np.append( start_times, period[0]-datetime.timedelta(seconds=step)) end_times = np.append(end_times, period[-1]) return start_times, end_times def join_time_series(t1, val1, t2, val2, dropnan=False): """ joins time_series. Only of package pandas is available otherwise returns None. Parameters ---------- t1 : datetime array time of first series val1 : float array value of first series t2 : datetime array time of second series val2 : float array value of second series dropnan : boolean if True remove NaN from the time series Returns ------- t_out_vec : datetime array the resultant date time after joining the series val1_out_vec : float array value of first series val2_out_vec : float array value of second series """ if not _PANDAS_AVAILABLE: warn('Pandas not available. Unable to join time series') return None, None, None df1 = pd.DataFrame(data=val1, index=pd.DatetimeIndex(t1)) df2 = pd.DataFrame(data=val2, index=pd.DatetimeIndex(t2)) df_out = pd.concat([df1, df2], join='outer', axis=1) if dropnan is True: df_out = df_out.dropna(how='any') t_out_vec = df_out.index.to_pydatetime() val1_out_vec = df_out.values[:, 0].flatten() val2_out_vec = df_out.values[:, 1].flatten() return t_out_vec, val1_out_vec, val2_out_vec def get_range_bins_to_avg(rad1_rng, rad2_rng): """ Compares the resolution of two radars and determines if and which radar has to be averaged and the length of the averaging window Parameters ---------- rad1_rng : array the range of radar 1 rad2_rng : datetime the range of radar 2 Returns ------- avg_rad1, avg_rad2 : Boolean Booleans specifying if the radar data has to be average in range avg_rad_lim : array with two elements the limits to the average (centered on each range gate) """ rad1_res = rad1_rng[1]-rad1_rng[0] rad2_res = rad2_rng[1]-rad2_rng[0] res_ratio = rad1_res/rad2_res avg_rad1 = False avg_rad2 = False avg_rad_lim = None if res_ratio > 1.5: avg_rad2 = True nbins = int(res_ratio) if nbins % 2 == 0: avg_rad_lim = [-int(nbins/2)-1, int(nbins/2)] else: avg_rad_lim = [-int((nbins-1)/2), int((nbins-1)/2)] elif res_ratio < 1./1.5: avg_rad1 = True nbins = int(1./res_ratio) if nbins % 2 == 0: avg_rad_lim = [-int(nbins/2)-1, int(nbins/2)] else: avg_rad_lim = [-int((nbins-1)/2), int((nbins-1)/2)] return avg_rad1, avg_rad2, avg_rad_lim def belongs_roi_indices(lat, lon, roi): """ Get the indices of points that belong to roi in a list of points Parameters ---------- lat, lon : float arrays latitudes and longitudes to check roi : dict Dictionary describing the region of interest Returns ------- inds : array of ints list of indices of points belonging to ROI is_roi : str Whether the list of points is within the region of interest. Can be 'All', 'None', 'Some' """ if not _SHAPELY_AVAILABLE: warn('shapely package not available. ' + 'Unable to determine if points belong to Region Of Interest') return np.asarray([]), 'None' lon_list = lon.flatten() lat_list = lat.flatten() polygon = shapely.geometry.Polygon(list(zip(roi['lon'], roi['lat']))) points = shapely.geometry.MultiPoint(list(zip(lon_list, lat_list))) inds = [] if polygon.contains(points): warn('All points in the region of interest') is_roi = 'All' inds = np.indices(np.shape(lon)) elif polygon.disjoint(points): warn('No points in the region of interest') is_roi = 'None' else: points_roi = points.intersection(polygon) if points_roi.geom_type == 'Point': ind = np.where( np.logical_and(lon == points_roi.x, lat == points_roi.y)) if len(ind) == 1: ind = ind[0] inds.extend(ind) else: points_roi_list = list(points_roi) for point in points_roi_list: ind = np.where(np.logical_and(lon == point.x, lat == point.y)) if len(ind) == 1: ind = ind[0] inds.extend(ind) nroi = len(lat[inds]) npoint = len(lat_list) warn(str(nroi)+' points out of '+str(npoint) + ' in the region of interest') is_roi = 'Some' return np.asarray(inds), is_roi def find_ray_index(ele_vec, azi_vec, ele, azi, ele_tol=0., azi_tol=0., nearest='azi'): """ Find the ray index corresponding to a particular elevation and azimuth Parameters ---------- ele_vec, azi_vec : float arrays The elevation and azimuth data arrays where to look for ele, azi : floats The elevation and azimuth to search ele_tol, azi_tol : floats Tolerances [deg] nearest : str criteria to define wich ray to keep if multiple rays are within tolerance. azi: nearest azimuth, ele: nearest elevation Returns ------- ind_ray : int The ray index """ ind_ray = np.where(np.logical_and( np.logical_and(ele_vec <= ele+ele_tol, ele_vec >= ele-ele_tol), np.logical_and(azi_vec <= azi+azi_tol, azi_vec >= azi-azi_tol)))[0] if ind_ray.size == 0: return None if ind_ray.size == 1: return ind_ray[0] if nearest == 'azi': ind_min = np.argmin(np.abs(azi_vec[ind_ray]-azi)) else: ind_min = np.argmin(np.abs(ele_vec[ind_ray]-ele)) return ind_ray[ind_min] def find_rng_index(rng_vec, rng, rng_tol=0.): """ Find the range index corresponding to a particular range Parameters ---------- rng_vec : float array The range data array where to look for rng : float The range to search rng_tol : float Tolerance [m] Returns ------- ind_rng : int The range index """ dist = np.abs(rng_vec-rng) ind_rng = np.argmin(dist) if dist[ind_rng] > rng_tol: return None return ind_rng def find_ang_index(ang_vec, ang, ang_tol=0.): """ Find the angle index corresponding to a particular fixed angle Parameters ---------- ang_vec : float array The angle data array where to look for ang : float The angle to search ang_tol : float Tolerance [deg] Returns ------- ind_ang : int The angle index """ dist = np.abs(ang_vec-ang) ind_ang = np.argmin(dist) if dist[ind_ang] > ang_tol: return None return ind_ang def find_nearest_gate(radar, lat, lon, latlon_tol=0.0005): """ Find the radar gate closest to a lat,lon point Parameters ---------- radar : radar object the radar object lat, lon : float The position of the point latlon_tol : float The tolerance around this point Returns ------- ind_ray, ind_rng : int The ray and range index azi, rng : float the range and azimuth position of the gate """ # find gates close to lat lon point inds_ray_aux, inds_rng_aux = np.where(np.logical_and( np.logical_and( radar.gate_latitude['data'] < lat+latlon_tol, radar.gate_latitude['data'] > lat-latlon_tol), np.logical_and( radar.gate_longitude['data'] < lon+latlon_tol, radar.gate_longitude['data'] > lon-latlon_tol))) if inds_ray_aux.size == 0: warn('No data found at point lat '+str(lat)+' +- ' + str(latlon_tol)+' lon '+str(lon)+' +- ' + str(latlon_tol)+' deg') return None, None, None, None # find closest latitude ind_min = np.argmin(np.abs( radar.gate_latitude['data'][inds_ray_aux, inds_rng_aux]-lat)) ind_ray = inds_ray_aux[ind_min] ind_rng = inds_rng_aux[ind_min] azi = radar.azimuth['data'][ind_ray] rng = radar.range['data'][ind_rng] return ind_ray, ind_rng, azi, rng def find_neighbour_gates(radar, azi, rng, delta_azi=None, delta_rng=None): """ Find the neighbouring gates within +-delta_azi and +-delta_rng Parameters ---------- radar : radar object the radar object azi, rng : float The azimuth [deg] and range [m] of the central gate delta_azi, delta_rng : float The extend where to look for Returns ------- inds_ray_aux, ind_rng_aux : int The indices (ray, rng) of the neighbouring gates """ # find gates close to lat lon point if delta_azi is None: inds_ray = np.ma.arange(radar.azimuth['data'].size) else: azi_max = azi+delta_azi azi_min = azi-delta_azi if azi_max > 360.: azi_max -= 360. if azi_min < 0.: azi_min += 360. if azi_max > azi_min: inds_ray = np.where(np.logical_and( radar.azimuth['data'] < azi_max, radar.azimuth['data'] > azi_min))[0] else: inds_ray = np.where(np.logical_or( radar.azimuth['data'] > azi_min, radar.azimuth['data'] < azi_max))[0] if delta_rng is None: inds_rng = np.ma.arange(radar.range['data'].size) else: inds_rng = np.where(np.logical_and( radar.range['data'] < rng+delta_rng, radar.range['data'] > rng-delta_rng))[0] return inds_ray, inds_rng def find_colocated_indexes(radar1, radar2, rad1_ele, rad1_azi, rad1_rng, rad2_ele, rad2_azi, rad2_rng, ele_tol=0.5, azi_tol=0.5, rng_tol=50.): """ Given the theoretical elevation, azimuth and range of the co-located gates of two radars and a given tolerance returns the indices of the gates for the current radars Parameters ---------- radar1, radar2 : radar objects the two radar objects rad1_ele, rad1_azi, rad1_rng : array of floats the radar coordinates of the radar1 gates rad2_ele, rad2_azi, rad2_rng : array of floats the radar coordinates of the radar2 gates ele_tol, azi_tol : floats azimuth and elevation angle tolerance [deg] rng_tol : float range Tolerance [m] Returns ------- ind_ray_rad1, ind_rng_rad1, ind_ray_rad2, ind_rng_rad2 : array of ints the ray and range indexes of each radar gate """ ngates = len(rad1_ele) ind_ray_rad1 = np.ma.masked_all(ngates, dtype=int) ind_rng_rad1 = np.ma.masked_all(ngates, dtype=int) ind_ray_rad2 = np.ma.masked_all(ngates, dtype=int) ind_rng_rad2 = np.ma.masked_all(ngates, dtype=int) for i in range(ngates): ind_ray_rad1_aux = find_ray_index( radar1.elevation['data'], radar1.azimuth['data'], rad1_ele[i], rad1_azi[i], ele_tol=ele_tol, azi_tol=azi_tol) if ind_ray_rad1_aux is None: continue ind_rng_rad1_aux = find_rng_index( radar1.range['data'], rad1_rng[i], rng_tol=rng_tol) if ind_rng_rad1_aux is None: continue ind_ray_rad2_aux = find_ray_index( radar2.elevation['data'], radar2.azimuth['data'], rad2_ele[i], rad2_azi[i], ele_tol=ele_tol, azi_tol=azi_tol) if ind_ray_rad2_aux is None: continue ind_rng_rad2_aux = find_rng_index( radar2.range['data'], rad2_rng[i], rng_tol=rng_tol) if ind_rng_rad2_aux is None: continue ind_ray_rad1[i] = ind_ray_rad1_aux ind_rng_rad1[i] = ind_rng_rad1_aux ind_ray_rad2[i] = ind_ray_rad2_aux ind_rng_rad2[i] = ind_rng_rad2_aux ind_ray_rad1 = ind_ray_rad1.compressed() ind_rng_rad1 = ind_rng_rad1.compressed() ind_ray_rad2 = ind_ray_rad2.compressed() ind_rng_rad2 = ind_rng_rad2.compressed() return ind_ray_rad1, ind_rng_rad1, ind_ray_rad2, ind_rng_rad2 def get_target_elevations(radar_in): """ Gets RHI target elevations Parameters ---------- radar_in : Radar object current radar object Returns ------- target_elevations : 1D-array Azimuth angles el_tol : float azimuth tolerance """ sweep_start = radar_in.sweep_start_ray_index['data'][0] sweep_end = radar_in.sweep_end_ray_index['data'][0] target_elevations = np.sort( radar_in.elevation['data'][sweep_start:sweep_end+1]) el_tol = np.median(target_elevations[1:]-target_elevations[:-1]) return target_elevations, el_tol def time_avg_range(timeinfo, avg_starttime, avg_endtime, period): """ finds the new start and end time of an averaging Parameters ---------- timeinfo : datetime the current volume time avg_starttime : datetime the current average start time avg_endtime: datetime the current average end time period: float the averaging period Returns ------- new_starttime : datetime the new average start time new_endtime : datetime the new average end time """ new_starttime = deepcopy(avg_starttime) new_endtime = deepcopy(avg_endtime) within_range = False while not within_range: if timeinfo > new_endtime: new_starttime += datetime.timedelta(seconds=period) new_endtime += datetime.timedelta(seconds=period) else: within_range = True return new_starttime, new_endtime def get_closest_solar_flux(hit_datetime_list, flux_datetime_list, flux_value_list): """ finds the solar flux measurement closest to the sun hit Parameters ---------- hit_datetime_list : datetime array the date and time of the sun hit flux_datetime_list : datetime array the date and time of the solar flux measurement flux_value_list: ndarray 1D the solar flux values Returns ------- flux_datetime_closest_list : datetime array the date and time of the solar flux measurement closest to sun hit flux_value_closest_list : ndarray 1D the solar flux values closest to the sun hit time """ flux_datetime_closest_list = list() flux_value_closest_list = np.ma.masked_all(len(hit_datetime_list)) i = 0 for hit_dt in hit_datetime_list: flux_datetime_closest = min( flux_datetime_list, key=lambda x: abs(x-hit_dt)) flux_datetime_closest_list.append(flux_datetime_closest) # solar flux observation within 24h of sun hit time_diff = abs(flux_datetime_closest-hit_dt).total_seconds() if time_diff < 86400.: ind = flux_datetime_list.index(flux_datetime_closest) flux_value_closest_list[i] = flux_value_list[ind] else: warn('Nearest solar flux observation further than ' + str(time_diff)+' s in time') i += 1 return flux_datetime_closest_list, flux_value_closest_list def get_fixed_rng_data(radar, field_names, fixed_rng, rng_tol=50., ele_min=None, ele_max=None, azi_min=None, azi_max=None): """ Creates a 2D-grid with (azi, ele) data at a fixed range Parameters ---------- radar : radar object The radar object containing the data field_name : str The field name fixed_rng : float The fixed range [m] rng_tol : float The tolerance between the nominal range and the actual radar range [m] ele_min, ele_max, azi_min, azi_max : float or None The limits of the grid [deg]. If None the limits will be the limits of the radar volume Returns ------- radar : radar object The radar object containing only the desired data """ radar_aux = deepcopy(radar) ind_rng = find_rng_index( radar_aux.range['data'], fixed_rng, rng_tol=rng_tol) if ind_rng is None: warn('No range bin at range '+str(fixed_rng)+' with tolerance ' + str(rng_tol)) return None, None, None # Determine angle limits if radar_aux.scan_type == 'ppi': if ele_min is None: ele_min = np.min(radar_aux.fixed_angle['data']) if ele_max is None: ele_max = np.max(radar_aux.fixed_angle['data']) if azi_min is None: azi_min = np.min(radar_aux.azimuth['data']) if azi_max is None: azi_max = np.max(radar_aux.azimuth['data']) else: if ele_min is None: ele_min = np.min(radar_aux.elevation['data']) if ele_max is None: ele_max = np.max(radar_aux.elevation['data']) if azi_min is None: azi_min = np.min(radar_aux.fixed_angle['data']) if azi_max is None: azi_max = np.max(radar_aux.fixed_angle['data']) if radar_aux.scan_type == 'ppi': # Get radar elevation angles within limits ele_vec = np.sort(radar_aux.fixed_angle['data']) ele_vec = ele_vec[ np.logical_and(ele_vec >= ele_min, ele_vec <= ele_max)] if ele_vec is None: warn('No elevation angles between '+str(ele_min)+' and ' + str(ele_max)) return None, None, None # get sweeps corresponding to the desired elevation angles ind_sweeps = [] for ele in ele_vec: ind_sweeps.append( np.where(radar_aux.fixed_angle['data'] == ele)[0][0]) radar_aux = radar_aux.extract_sweeps(ind_sweeps) # Get indices of rays within limits if azi_min < azi_max: ind_rays = np.where(np.logical_and( radar_aux.azimuth['data'] >= azi_min, radar_aux.azimuth['data'] <= azi_max))[0] else: ind_rays = np.where(np.logical_or( radar_aux.azimuth['data'] >= azi_min, radar_aux.azimuth['data'] <= azi_max))[0] else: # Get radar azimuth angles within limits azi_vec = radar_aux.fixed_angle['data'] if azi_min < azi_max: azi_vec = np.sort(azi_vec[ np.logical_and(azi_vec >= azi_min, azi_vec <= azi_max)]) else: azi_vec = azi_vec[ np.logical_or(azi_vec >= azi_min, azi_vec <= azi_max)] azi_vec = np.append( np.sort(azi_vec[azi_vec >= azi_min]), np.sort(azi_vec[azi_vec < azi_min])) if azi_vec is None: warn('No azimuth angles between '+str(azi_min)+' and ' + str(azi_max)) return None, None, None # get sweeps corresponding to the desired azimuth angles ind_sweeps = [] for azi in azi_vec: ind_sweeps.append( np.where(radar_aux.fixed_angle['data'] == azi)[0][0]) radar_aux = radar_aux.extract_sweeps(ind_sweeps) # Get indices of rays within limits ind_rays = np.where(np.logical_and( radar_aux.elevation['data'] >= ele_min, radar_aux.elevation['data'] <= ele_max))[0] # get new sweep start index and stop index sweep_start_inds = deepcopy(radar_aux.sweep_start_ray_index['data']) sweep_end_inds = deepcopy(radar_aux.sweep_end_ray_index['data']) nrays = 0 for j in range(radar_aux.nsweeps): # get azimuth indices for this elevation rays_in_sweep = np.size( ind_rays[np.logical_and(ind_rays >= sweep_start_inds[j], ind_rays <= sweep_end_inds[j])]) radar_aux.rays_per_sweep['data'][j] = rays_in_sweep if j == 0: radar_aux.sweep_start_ray_index['data'][j] = 0 else: radar_aux.sweep_start_ray_index['data'][j] = int( radar_aux.sweep_end_ray_index['data'][j-1]+1) radar_aux.sweep_end_ray_index['data'][j] = ( radar_aux.sweep_start_ray_index['data'][j]+rays_in_sweep-1) nrays += rays_in_sweep # Get new fields for field_name in field_names: if field_name not in radar_aux.fields: warn('Field '+field_name+' not available') continue radar_aux.fields[field_name]['data'] = ( radar_aux.fields[field_name]['data'][:, ind_rng]) radar_aux.fields[field_name]['data'] = ( radar_aux.fields[field_name]['data'][ind_rays, np.newaxis]) # Update metadata radar_aux.time['data'] = radar_aux.time['data'][ind_rays] radar_aux.range['data'] = np.array([fixed_rng]) radar_aux.azimuth['data'] = radar_aux.azimuth['data'][ind_rays] radar_aux.elevation['data'] = radar_aux.elevation['data'][ind_rays] radar_aux.init_gate_x_y_z() radar_aux.init_gate_longitude_latitude() radar_aux.init_gate_altitude() radar_aux.nrays = nrays radar_aux.ngates = 1 return radar_aux def create_sun_hits_field(rad_el, rad_az, sun_el, sun_az, data, imgcfg): """ creates a sun hits field from the position and power of the sun hits Parameters ---------- rad_el, rad_az, sun_el, sun_az : ndarray 1D azimuth and elevation of the radar and the sun respectively in degree data : masked ndarray 1D the sun hit data imgcfg: dict a dictionary specifying the ranges and resolution of the field to create Returns ------- field : masked ndarray 2D the sun hit field """ if data.compressed().size == 0: warn('No valid sun hits to plot.') return None azmin = imgcfg['azmin'] azmax = imgcfg['azmax'] elmin = imgcfg['elmin'] elmax = imgcfg['elmax'] azres = imgcfg['azres'] elres = imgcfg['elres'] mask = np.ma.getmaskarray(data) rad_el = rad_el[~mask] rad_az = rad_az[~mask] sun_el = sun_el[~mask] sun_az = sun_az[~mask] data = data[~mask] d_el = rad_el-sun_el d_az = (rad_az-sun_az)*np.cos(sun_el*np.pi/180.) npix_az = int((azmax-azmin)/azres) npix_el = int((elmax-elmin)/elres) field = np.ma.masked_all((npix_az, npix_el)) ind_az = ((d_az+azmin)/azres).astype(int) ind_el = ((d_el+elmin)/elres).astype(int) field[ind_az, ind_el] = data return field def create_sun_retrieval_field(par, field_name, imgcfg, lant=0.): """ creates a sun retrieval field from the retrieval parameters Parameters ---------- par : ndarray 1D the 5 retrieval parameters imgcfg: dict a dictionary specifying the ranges and resolution of the field to create Returns ------- field : masked ndarray 2D the sun retrieval field """ azmin = imgcfg['azmin'] azmax = imgcfg['azmax'] elmin = imgcfg['elmin'] elmax = imgcfg['elmax'] azres = imgcfg['azres'] elres = imgcfg['elres'] npix_az = int((azmax-azmin)/azres) npix_el = int((elmax-elmin)/elres) field = np.ma.masked_all((npix_az, npix_el)) d_az = np.array(np.array(range(npix_az))*azres+azmin) d_el = np.array(np.array(range(npix_el))*elres+elmin) d_az_mat = np.broadcast_to(d_az.reshape(npix_az, 1), (npix_az, npix_el)) d_el_mat = np.broadcast_to(d_el.reshape(1, npix_el), (npix_az, npix_el)) field = (par[0]+par[1]*d_az_mat+par[2]*d_el_mat+par[3]*d_az_mat*d_az_mat + par[4]*d_el_mat*d_el_mat) if field_name in ('sun_est_power_h', 'sun_est_power_v'): # account for polarization of the antenna and scanning losses field += 3.+lant return field def compute_quantiles(field, quantiles=None): """ computes quantiles Parameters ---------- field : ndarray 2D the radar field ray_start, ray_end : int starting and ending ray indexes quantiles: float array list of quantiles to compute Returns ------- quantiles : float array list of quantiles values : float array values at each quantile """ if quantiles is None: quantiles = [10., 20., 30., 40., 50., 60., 70., 80., 90., 95.] warn('No quantiles have been defined. Default ' + str(quantiles) + ' will be used') nquantiles = len(quantiles) values = np.ma.masked_all(nquantiles) data_valid = field.compressed() if
np.size(data_valid)
numpy.size
# change lists to arrays for performance --> Missing from sudokuField import field as baseField import numpy as np import colored import math import time import os update = True field = baseField.copy() length = len(field) size = int(math.sqrt(length)) index = 0 cF_field = [] for j in [0, 3, 6, 27, 30, 33, 54, 57, 60]: # hard coded :( --> Missing temp = [] temp.append(j) for i, x in enumerate(range(1, 9)): if x % 3 == 0: n = temp[i] + 7 else: n = temp[i] + 1 temp.append(n) cF_field.append(temp) cF_field = np.array(cF_field) cF_field = np.resize(cF_field, (9, 9)) def isPossible(index, nr): # checks if n can be put into field[index] using sudoku rules ud_index = 0 for i, x in enumerate(range(9, length+1, size)): # (x-size < index < x) # output x: 9, 18, 27, 36, 45, 54,, 63, 72, 81 if index > x-size and index < x: ud_index = i break if index < 9: lr_index = index else: lr_index = int(index/9) if ud_index==0 else index - 9 * ud_index if index%9==0: # why do I have to do this??? lr_index, ud_index = ud_index, lr_index cF_index = 0 for i, x in enumerate(cF_field): if index in x: cF_index = i temp_field = np.array(field, dtype=np.int32) temp_lr = np.resize([temp_field[x::9] for x in range(9)], (size, size)) lr = temp_lr[lr_index] temp_ud = np.resize(temp_field, (size, size)) ud = temp_ud[ud_index] cF = np.array([], dtype=np.int32) for x in cF_field[cF_index]: cF = np.append(cF, field[x]) # print("Testing:", nr, "index:", index, lr_index, lr, ud_index, ud, cF_index, cF) temp = np.concatenate((lr, ud, cF)) # a list containing all numbers intresting to sudoku rules temp = temp[temp!=0] # delete all zeros return False if nr in temp else True def last_number(index): # returns last index that is 0 in baseField while True: index -= 1 # print(index, baseField[index]) if baseField[index] == 0: if field[index] != 9: return index else: field[index] = 0 def change_number(n): global index breaking = False color_temp = "green" for x in range(n+1, 10): output = "Increase the number by 1" if isPossible(index, x): # x is working color_temp = "green" output = "Changing index {}: {} -> {}".format(index, field[index], x) field[index] = x # --> colored output index += 1 n = 0 breaking = True elif x == 9: # no hits for x: backtracking color_temp = "red" output = "Backtracking at:", index field[index] = 0 index = last_number(index) change_number(field[index]) breaking = True else: field[index] = x temp_field = np.resize(field, (9, 9)) # print(output) # print(temp_field) # better looking output --> Missing for col_index, x in enumerate(temp_field): for row_index, i in enumerate(x): current_index = col_index*9+row_index if current_index != index: color = "white" else: color = color_temp print(colored.stylize(i, colored.fg(color)), end=" ") print() if update: time.sleep(.0075) # timedelta? if update: os.system("cls") if breaking: break while True: if index > 80: break if baseField[index] == 0: n = 0 change_number(n) else: index += 1 # index=index+1 if BaseField[index]!=0 else index baseField =
np.resize(baseField, (9,9))
numpy.resize
import numpy as np import torch def plot_train_inout(x, mels, y, y_hat, fig_path): import matplotlib.pyplot as plt batch = 0 f, axarr = plt.subplots(4, 1) axarr[0].plot(x[batch].cpu().numpy()) axarr[0].set_title('Original input audio') axarr[1].imshow(mels[batch].cpu().numpy().T) axarr[1].set_title('Original input mel spec') axarr[2].plot(y[batch].cpu().numpy()) axarr[2].set_title('Original output audio') axarr[3].plot(y_hat[batch].cpu().numpy()) axarr[3].set_title('Predicted output audio') plt.tight_layout() plt.savefig(fig_path) def num_params_count(model): parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1000000 return parameters def num_params(model): print('Trainable Parameters: %.3f million' % num_params_count(model)) # for mulaw encoding and decoding in torch tensors, modified from: https://github.com/pytorch/audio/blob/master/torchaudio/transforms.py def mulaw_quantize(x, quantization_channels=256): """Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1 Args: quantization_channels (int): Number of channels. default: 256 """ mu = quantization_channels - 1 if isinstance(x, np.ndarray): x_mu = np.sign(x) * np.log1p(mu *
np.abs(x)
numpy.abs
import os, sys, random, itertools, json dir_path = os.path.dirname(os.path.realpath(__file__)) import scipy.stats from scipy.stats import ks_2samp from collections import defaultdict, Counter import numpy as np import pandas as pd import matplotlib.pyplot as plt import igraph as ig import seaborn as sns # import networkx as nx from matplotlib.ticker import ScalarFormatter import matplotlib matplotlib.rcParams['figure.figsize'] = (6.0, 4.0) DEL_THRESHOLD = 0 sns.set_context( "talk", font_scale=1, rc={ "lines.linewidth": 2.5, "text.usetex": False, "font.family": 'serif', "font.serif": ['Palatino'], "font.size": 16 }) sns.set_style('white') ################ # MISC ################ get_full_path = lambda p: os.path.join(os.path.dirname(os.path.abspath(__file__)), p) def ig_to_nx(ig_graph, directed=False, nodes=None): g = nx.DiGraph() if directed else nx.Graph() nodes = nodes if nodes else ig_graph.vs edges = ig_graph.induced_subgraph(nodes).es if nodes else ig_graph.es for node in nodes: g.add_node(node.index, **node.attributes()) for edge in edges: g.add_edge(edge.source, edge.target) return g def _get_deg_dist(degree, del_threshold=DEL_THRESHOLD): counter = Counter(degree) for k, v in counter.items(): if v <= del_threshold: del counter[k] deg, freq = map(np.array, zip(*sorted(counter.items()))) prob = freq/float(np.sum(freq)) return deg, prob def renormalize_deg_dist(xk, pk, xk2): xk_, pk_ = [], [] xk2_set = set(xk2) for x,p in zip(xk,pk): if x in xk2_set: xk_.append(x);pk_.append(p) xk_, pk_ = map(np.array, [xk_,pk_]) pk_ /= np.sum(pk_) return xk_, pk_ def get_avg_nbor_indeg(graph, out_to_in=True): """Avg nbor indegree given node outdegree""" d = defaultdict(list) for node in graph.vs: deg = node.outdegree() if out_to_in else node.indegree() for nbor in node.neighbors(mode='OUT'): d[deg].append(nbor.indegree()) d = {k:np.mean(v) for k,v in dict(d).items()} return map(np.array, zip(*sorted(d.items()))) def compute_indeg_map(graph, time_attr): src_tgt_indeg_map = defaultdict(dict) for node in graph.vs: nid = node.index nbors = [n for n in node.neighbors(mode='IN') if n[time_attr] == n[time_attr]] nbors = sorted(nbors, key=lambda n: n[time_attr]) for indeg, nbor in enumerate(nbors): src_tgt_indeg_map[nbor.index][nid] = indeg return dict(src_tgt_indeg_map) def get_chunk_degree_sequence(graph, time_attr, return_keys=True, use_median=False, get_int=True): outdegs, chunks = defaultdict(list), defaultdict(int) for node in graph.vs: time, outdeg = node[time_attr], node.outdegree() outdegs[time].append(outdeg) chunks[time] += 1 f = np.median if use_median else np.mean outdegs = {k: int(round(f(v))) if get_int else f(v) for k,v in outdegs.items() if k in chunks} skeys = sorted(chunks.keys()) chunks = [chunks[k] for k in skeys] outdegs = [outdegs[k] for k in skeys] if return_keys: return skeys, chunks, outdegs return chunks, outdegs def get_config_model(g): config = ig.Graph.Degree_Sequence(g.vs.outdegree(), g.vs.indegree()) for attr in g.vs.attributes(): config.vs[attr] = g.vs[attr] return config def get_time_config_model(g, time_attr, debug=False): """ configuration model controlled for time node u cannot link to nodes that join network in year > year_u """ indeg_map = dict(zip(g.vs.indices, g.vs.indegree())) outdeg_map = dict(zip(g.vs.indices, g.vs.outdegree())) year_nodes_map = defaultdict(list) for node in g.vs: year_nodes_map[node[time_attr]].append(node.index) years = sorted(year_nodes_map.keys()) instubs, new_edges = [], [] if debug: print ("{} time_attr vals".format(len(years))) for year in years: if debug: print (year, end=' ') new_nodes = year_nodes_map[year] for nid in new_nodes: instubs.extend([nid]*indeg_map[nid]) random.shuffle(instubs) for nid in new_nodes: for _ in xrange(outdeg_map[nid]): new_edges.append((nid, instubs.pop())) config = g.copy() config.delete_edges(None) config.add_edges(new_edges) return config def bin_clustering(cc, step=0.005): cc = pd.Series(cc) bins = np.arange(0, 1+step, step) cc = pd.cut(cc, bins=bins, right=False).value_counts() cc = cc.astype(float)/np.sum(cc) cc.index = np.arange(0, 1, step) #+ step/2. return cc def clustering(graph, undirected_max=False, get_indeg=False, del_threshold=DEL_THRESHOLD): N = len(graph.vs) E_counter = [0.]*N # "parents" map target_map = defaultdict(set) for nhood in graph.neighborhood(mode='OUT'): target_map[nhood[0]] = set(nhood[1:]) # increment edge counter of common parents for edge in graph.es: n1, n2 = edge.source, edge.target common_targets = target_map[n1].intersection(target_map[n2]) for tgt in common_targets: E_counter[tgt] += 1 cc, nids, degs = [], [], [] for e, indeg, nid in zip(E_counter, graph.indegree(), graph.vs.indices): if indeg <= 1: continue degs.append(indeg) cc.append(e/(indeg*(indeg-1))) nids.append(nid) cc, nids, degs = map(np.array, [cc, nids, degs]) cc, nids, degs = cc[degs>del_threshold], nids[degs>del_threshold], degs[degs>del_threshold] if undirected_max: cc *= 2 if get_indeg: return cc, nids, degs return cc, nids def ego_clustering(graph, attr_name, same_attr=True, undirected_max=False, get_indeg=False, del_threshold=DEL_THRESHOLD): N = len(graph.vs) E_counter = [0.]*N nid_attr_map = dict(zip(graph.vs.indices, graph.vs[attr_name])) # "parents" map target_map = defaultdict(set) for nhood in graph.neighborhood(mode='OUT'): target_map[nhood[0]] = set(nhood[1:]) # increment edge counter of common parents for edge in graph.es: n1, n2 = edge.source, edge.target same_attr_val = nid_attr_map[n1] == nid_attr_map[n2] if same_attr != same_attr_val: continue common_targets = target_map[n1].intersection(target_map[n2]) for tgt in common_targets: E_counter[tgt] += 1 cc, nids, degs = [], [], [] for e, indeg, nid in zip(E_counter, graph.indegree(), graph.vs.indices): if indeg <= 1: continue degs.append(indeg) cc.append(e/(indeg*(indeg-1))) nids.append(nid) cc, nids, degs = map(np.array, [cc, nids, degs]) cc, nids, degs = cc[degs>del_threshold], nids[degs>del_threshold], degs[degs>del_threshold] if undirected_max: cc *= 2 if get_indeg: return cc, nids, degs return cc, nids def avg_clustering_degree(graph, undirected_max=False, del_threshold=DEL_THRESHOLD, data=None): if data: cc, nids, indeg = data else: cc, nids, indeg = clustering(graph, undirected_max=undirected_max, get_indeg=True) indeg_map = defaultdict(list) for cc_, indeg_ in zip(cc, indeg): indeg_map[indeg_].append(cc_) indeg_map = {k:
np.mean(v)
numpy.mean
from mock import patch import pyCGM_Single.pyCGM as pyCGM import pytest import numpy as np rounding_precision = 6 class TestUpperBodyAxis(): """ This class tests the upper body axis functions in pyCGM.py: headJC thoraxJC findshoulderJC shoulderAxisCalc elbowJointCenter wristJointCenter handJointCenter """ nan_3d = [np.nan, np.nan, np.nan] rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] @pytest.mark.parametrize(["frame", "vsk", "expected"], [ # Test from running sample data ({'LFHD': np.array([184.55158997, 409.68713379, 1721.34289551]), 'RFHD': np.array([325.82983398, 402.55450439, 1722.49816895]), 'LBHD': np.array([197.8621521 , 251.28889465, 1696.90197754]), 'RBHD': np.array([304.39898682, 242.91339111, 1694.97497559])}, {'HeadOffset': 0.2571990469310653}, [[[255.21685582510975, 407.11593887758056, 1721.8253843887082], [254.19105385179665, 406.146809183757, 1721.9176771191715], [255.19034370229795, 406.2160090443217, 1722.9159912851449]], [255.19071197509766, 406.1208190917969, 1721.9205322265625]]), # Basic test with a variance of 1 in the x and y dimensions of the markers ({'LFHD': np.array([1, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[[0.5, 2, 0], [1.5, 1, 0], [0.5, 1, -1]], [0.5, 1, 0]]), # Setting the markers so there's no variance in the x-dimension ({'LFHD': np.array([0, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([0, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[nan_3d, nan_3d, nan_3d], [0, 1, 0]]), # Setting the markers so there's no variance in the y-dimension ({'LFHD': np.array([1, 0, 0]), 'RFHD': np.array([0, 0, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.0}, [[nan_3d, nan_3d, nan_3d], [0.5, 0, 0]]), # Setting each marker in a different xy quadrant ({'LFHD': np.array([-1, 1, 0]), 'RFHD': np.array([1, 1, 0]), 'LBHD': np.array([-1, -1, 0]), 'RBHD': np.array([1, -1, 0])}, {'HeadOffset': 0.0}, [[[0, 2, 0], [-1, 1, 0], [0, 1, 1]], [0, 1, 0]]), # Setting values of the markers so that midpoints will be on diagonals ({'LFHD': np.array([-2, 1, 0]), 'RFHD': np.array([1, 2, 0]), 'LBHD': np.array([-1, -2, 0]), 'RBHD': np.array([2, -1, 0])}, {'HeadOffset': 0.0}, [[[-0.81622777, 2.4486833 , 0], [-1.4486833, 1.18377223, 0], [-0.5, 1.5, 1]], [-0.5, 1.5, 0]]), # Adding the value of 1 in the z dimension for all 4 markers ({'LFHD': np.array([1, 1, 1]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 2, 1], [1.5, 1, 1], [0.5, 1, 0]], [0.5, 1, 1]]), # Setting the z dimension value higher for LFHD and LBHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 2]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 2, 1.5], [1.20710678, 1, 2.20710678], [1.20710678, 1, 0.79289322]], [0.5, 1, 1.5]]), # Setting the z dimension value higher for LFHD and RFHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 2]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, {'HeadOffset': 0.0}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Adding a value for HeadOffset ({'LFHD': np.array([1, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, {'HeadOffset': 0.5}, [[[0.5, 1.87758256, 0.47942554], [1.5, 1, 0], [0.5, 1.47942554, -0.87758256]], [0.5, 1, 0]]), # Testing that when frame is a list of ints and headOffset is an int ({'LFHD': [1, 1, 0], 'RFHD': [0, 1, 0], 'LBHD': [1, 0, 0], 'RBHD': [0, 0, 0]}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a numpy array of ints and headOffset is an int ({'LFHD': np.array([1, 1, 0], dtype='int'), 'RFHD': np.array([0, 1, 0], dtype='int'), 'LBHD': np.array([1, 0, 0], dtype='int'), 'RBHD': np.array([0, 0, 0], dtype='int')}, {'HeadOffset': 1}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a list of floats and headOffset is a float ({'LFHD': [1.0, 1.0, 0.0], 'RFHD': [0.0, 1.0, 0.0], 'LBHD': [1.0, 0.0, 0.0], 'RBHD': [0.0, 0.0, 0.0]}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]]), # Testing that when frame is a numpy array of floats and headOffset is a float ({'LFHD': np.array([1.0, 1.0, 0.0], dtype='float'), 'RFHD': np.array([0.0, 1.0, 0.0], dtype='float'), 'LBHD': np.array([1.0, 0.0, 0.0], dtype='float'), 'RBHD': np.array([0.0, 0.0, 0.0], dtype='float')}, {'HeadOffset': 1.0}, [[[0.5, 1.5403023058681398, 0.8414709848078965], [1.5, 1, 0], [0.5, 1.8414709848078965, -0.5403023058681398]], [0.5, 1, 0]])]) def test_headJC(self, frame, vsk, expected): """ This test provides coverage of the headJC function in pyCGM.py, defined as headJC(frame, vsk) This test takes 3 parameters: frame: dictionary of marker lists vsk: dictionary containing subject measurements from a VSK file expected: the expected result from calling headJC on frame and vsk The function uses the LFHD, RFHD, LBHD, and RBHD markers from the frame to calculate the midpoints of the front, back, left, and right center positions of the head. The head axis vector components are then calculated using the aforementioned midpoints. Afterwords, the axes are made orthogonal by calculating the cross product of each individual axis. Finally, the head axis is then rotated around the y axis based off the head offset angle in the VSK. This test is checking to make sure the head joint center and head joint axis are calculated correctly given the 4 coordinates given in frame. This includes testing when there is no variance in the coordinates, when the coordinates are in different quadrants, when the midpoints will be on diagonals, and when the z dimension is variable. It also checks to see the difference when a value is set for HeadOffSet in vsk. Lastly, it checks that the resulting output is correct when frame is a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats and when headOffset is an int and a float. """ result = pyCGM.headJC(frame, vsk) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "expected"], [ # Test from running sample data ({'C7': np.array([251.22619629, 229.75683594, 1533.77624512]), 'T10': np.array([228.64323425, 192.32041931, 1279.6418457]), 'CLAV': np.array([256.78051758, 371.28042603, 1459.70300293]), 'STRN': np.array([251.67492676, 414.10391235, 1292.08508301])}, [[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]]), # Basic test with a variance of 1 in the x and y dimensions of the markers ({'C7': np.array([1, 1, 0]), 'T10': np.array([0, 1, 0]), 'CLAV': np.array([1, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[[1, 6, 0], [1, 7, 1], [0, 7, 0]], [1, 7, 0]]), # Setting the markers so there's no variance in the x-dimension ({'C7': np.array([0, 1, 0]), 'T10': np.array([0, 1, 0]), 'CLAV': np.array([0, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], nan_3d]), # Setting the markers so there's no variance in the y-dimension ({'C7': np.array([1, 0, 0]), 'T10': np.array([0, 0, 0]), 'CLAV': np.array([1, 0, 0]), 'STRN': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], nan_3d]), # Setting each marker in a different xy quadrant ({'C7': np.array([-1, 1, 0]), 'T10': np.array([1, 1, 0]), 'CLAV': np.array([-1, -1, 0]), 'STRN': np.array([1, -1, 0])}, [[[-1, 5, 0], [-1, 6, -1], [0, 6, 0]], [-1, 6, 0]]), # Setting values of the markers so that midpoints will be on diagonals ({'C7': np.array([-2, 1, 0]), 'T10': np.array([1, 2, 0]), 'CLAV': np.array([-1, -2, 0]), 'STRN': np.array([2, -1, 0])}, [[[-2.8973666, 3.69209979, 0], [-3.21359436, 4.64078309, -1], [-2.26491106, 4.95701085, 0]], [-3.21359436, 4.64078309, 0]]), # Adding the value of 1 in the z dimension for all 4 markers ({'C7': np.array([1, 1, 1]), 'T10': np.array([0, 1, 1]), 'CLAV': np.array([1, 0, 1]), 'STRN': np.array([0, 0, 1])}, [[[1, 6, 1], [1, 7, 2], [0, 7, 1]], [1, 7, 1]]), # Setting the z dimension value higher for C7 and CLAV ({'C7': np.array([1, 1, 2]), 'T10': np.array([0, 1, 1]), 'CLAV': np.array([1, 0, 2]), 'STRN': np.array([0, 0, 1])}, [[[1, 6, 2], [0.29289322, 7, 2.70710678], [0.29289322, 7, 1.29289322]], [1, 7, 2]]), # Setting the z dimension value higher for C7 and T10 ({'C7': np.array([1, 1, 2]), 'T10': np.array([0, 1, 2]), 'CLAV': np.array([1, 0, 1]), 'STRN': np.array([0, 0, 1])}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a list of ints ({'C7': [1, 1, 2], 'T10': [0, 1, 2], 'CLAV': [1, 0, 1], 'STRN': [0, 0, 1]}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a numpy array of ints ({'C7': np.array([1, 1, 2], dtype='int'), 'T10': np.array([0, 1, 2], dtype='int'), 'CLAV': np.array([1, 0, 1], dtype='int'), 'STRN': np.array([0, 0, 1], dtype='int')}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a list of floats ({'C7': [1.0, 1.0, 2.0], 'T10': [0.0, 1.0, 2.0], 'CLAV': [1.0, 0.0, 1.0], 'STRN': [0.0, 0.0, 1.0]}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]]), # Testing that when frame is a numpy array of floats ({'C7': np.array([1.0, 1.0, 2.0], dtype='float'), 'T10': np.array([0.0, 1.0, 2.0], dtype='float'), 'CLAV': np.array([1.0, 0.0, 1.0], dtype='float'), 'STRN': np.array([0.0, 0.0, 1.0], dtype='float')}, [[[1, 4.24264069, 5.24264069], [1, 4.24264069, 6.65685425], [0, 4.94974747, 5.94974747]], [1, 4.94974747, 5.94974747]])]) def test_thoraxJC(self, frame, expected): """ This test provides coverage of the thoraxJC function in pyCGM.py, defined as thoraxJC(frame) This test takes 2 parameters: frame: dictionary of marker lists expected: the expected result from calling thoraxJC on frame The function uses the CLAV, C7, STRN, and T10 markers from the frame to calculate the midpoints of the front, back, left, and right center positions of the thorax. The thorax axis vector components are then calculated using subtracting the pairs (left to right, back to front) of the aforementioned midpoints. Afterwords, the axes are made orthogonal by calculating the cross product of each individual axis. Finally, the head axis is then rotated around the x axis based off the thorax offset angle in the VSK. This test is checking to make sure the thorax joint center and thorax joint axis are calculated correctly given the 4 coordinates given in frame. This includes testing when there is no variance in the coordinates, when the coordinates are in different quadrants, when the midpoints will be on diagonals, and when the z dimension is variable. Lastly, it checks that the resulting output is correct when frame is a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats. """ result = pyCGM.thoraxJC(frame) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "thorax", "wand", "vsk", "expected_args"], [ # Test from running sample data ({'RSHO': np.array([428.88476562, 270.552948, 1500.73010254]), 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998])}, [[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.42380097331767, 364.27770361353487, 1460.6165849382387]], {'RightShoulderOffset': 40.0, 'LeftShoulderOffset': 40.0}, [[[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.149810236564, 364.3090603933987, 1459.6553639290375], np.array([ 428.88476562, 270.552948 , 1500.73010254]), 47.0], [[256.42380097331767, 364.27770361353487, 1460.6165849382387], [256.149810236564, 364.3090603933987, 1459.6553639290375], np.array([68.24668121, 269.01049805, 1510.1072998]), 47.0]]), # Basic test with zeros for all params ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 7.0], [[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 7.0]]), # Testing when values are added to RSHO and LSHO ({'RSHO': np.array([2, -1, 3]), 'LSHO': np.array([-3, 1, 2])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [0, 0, 0], np.array([2, -1, 3]), 7.0], [[0, 0, 0], [0, 0, 0], np.array([-3, 1, 2]), 7.0]]), # Testing when a value is added to thorax_origin ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [5, -2, 7]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[0, 0, 0], [5, -2, 7], np.array([0, 0, 0]), 7.0], [[0, 0, 0], [5, -2, 7], np.array([0, 0, 0]), 7.0]]), # Testing when a value is added to wand ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[2, 6, -4], [-3, 5, 2]], {'RightShoulderOffset': 0.0, 'LeftShoulderOffset': 0.0}, [[[2, 6, -4], [0, 0, 0], np.array([0, 0, 0]), 7.0], [[-3, 5, 2], [0, 0, 0], np.array([0, 0, 0]), 7.0]]), # Testing when values are added to RightShoulderOffset and LeftShoulderOffset ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0])}, [[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], {'RightShoulderOffset': 20.0, 'LeftShoulderOffset': -20.0}, [[[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), 27.0], [[0, 0, 0], [0, 0, 0], np.array([0, 0, 0]), -13.0]]), # Adding when values are added to all params ({'RSHO': np.array([3, -5, 2]), 'LSHO': np.array([-7, 3 , 9])}, [[rand_coor, rand_coor, rand_coor], [-1, -9, -5]], [[-7, -1, 5], [5, -9, 2]], {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3 , 9]), 49.0]]), # Testing that when frame, thorax, wand and vsk are lists of ints ({'RSHO': [3, -5, 2], 'LSHO': [-7, 3, 9]}, [[rand_coor, rand_coor, rand_coor], [-1, -9, -5]], [[-7, -1, 5], [5, -9, 2]], {'RightShoulderOffset': -6, 'LeftShoulderOffset': 42}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, wand and vsk are numpy arrays of ints ({'RSHO': np.array([3, -5, 2], dtype='int'), 'LSHO': np.array([-7, 3, 9], dtype='int')}, [[rand_coor, rand_coor, rand_coor], np.array([-1, -9, -5], dtype='int')], np.array([[-7, -1, 5], [5, -9, 2]], dtype='int'), {'RightShoulderOffset': -6, 'LeftShoulderOffset': 42}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, thorax, wand and vsk are lists of floats ({'RSHO': [3.0, -5.0, 2.0], 'LSHO': [-7.0, 3.0, 9.0]}, [[rand_coor, rand_coor, rand_coor], [-1.0, -9.0, -5.0]], [[-7.0, -1.0, 5.0], [5.0, -9.0, 2.0]], {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]]), # Testing that when frame, wand and vsk are numpy arrays of floats ({'RSHO': np.array([3.0, -5.0, 2.0], dtype='float'), 'LSHO': np.array([-7.0, 3.0, 9.0], dtype='float')}, [[rand_coor, rand_coor, rand_coor], np.array([-1.0, -9.0, -5.0], dtype='float')], np.array([[-7.0, -1.0, 5.0], [5.0, -9.0, 2.0]], dtype='float'), {'RightShoulderOffset': -6.0, 'LeftShoulderOffset': 42.0}, [[[-7, -1, 5], [-1, -9, -5], np.array([3, -5, 2]), 1.0], [[5, -9, 2], [-1, -9, -5], np.array([-7, 3, 9]), 49.0]])]) def test_findshoulderJC(self, frame, thorax, wand, vsk, expected_args): """ This test provides coverage of the findshoulderJC function in pyCGM.py, defined as findshoulderJC(frame, thorax, wand, vsk) This test takes 5 parameters: frame: dictionary of marker lists thorax: array containing several x,y,z markers for the thorax wand: array containing two x,y,z markers for wand vsk: dictionary containing subject measurements from a VSK file expected_args: the expected arguments used to call the mocked function, findJointC The function uses the RSHO and LSHO markers from the frame given, as well as the thorax origin position and the wand. The right shoulder joint center by using the the RSHO marker, right wand position, and thorax origin position, as positions in a plane for the Rodriques' rotation formula to find the right shoulder joint center. It is the same for the left shoulder joint center, although the left wand and LSHO markers are used instead. This test is checking to make sure the shoulder joint center is calculated correctly given the input parameters. This tests mocks findJointC to make sure the correct parameters are being passed into it given the parameters passed into findshoulderJC. Lastly, it checks that the resulting output is correct when frame and wand are a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats, vsk values are either an int or a float, and thorax values are either an int or a float. Thorax cannot be a numpy array due it not being shaped like a multi-dimensional array. """ rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] with patch.object(pyCGM, 'findJointC', return_value=rand_coor) as mock_findJointC: result = pyCGM.findshoulderJC(frame, thorax, wand, vsk) # Asserting that there were only 2 calls to findJointC np.testing.assert_equal(mock_findJointC.call_count, 2) # Asserting that the correct params were sent in the 1st (right) call to findJointC np.testing.assert_almost_equal(expected_args[0][0], mock_findJointC.call_args_list[0][0][0], rounding_precision) np.testing.assert_almost_equal(expected_args[0][1], mock_findJointC.call_args_list[0][0][1], rounding_precision) np.testing.assert_almost_equal(expected_args[0][2], mock_findJointC.call_args_list[0][0][2], rounding_precision) np.testing.assert_almost_equal(expected_args[0][3], mock_findJointC.call_args_list[0][0][3], rounding_precision) # Asserting that the correct params were sent in the 2nd (left) call to findJointC np.testing.assert_almost_equal(expected_args[1][0], mock_findJointC.call_args_list[1][0][0], rounding_precision) np.testing.assert_almost_equal(expected_args[1][1], mock_findJointC.call_args_list[1][0][1], rounding_precision) np.testing.assert_almost_equal(expected_args[1][2], mock_findJointC.call_args_list[1][0][2], rounding_precision) np.testing.assert_almost_equal(expected_args[1][3], mock_findJointC.call_args_list[1][0][3], rounding_precision) # Asserting that findShoulderJC returned the correct result given the return value given by mocked findJointC np.testing.assert_almost_equal(result[0], rand_coor, rounding_precision) np.testing.assert_almost_equal(result[1], rand_coor, rounding_precision) @pytest.mark.parametrize(["thorax", "shoulderJC", "wand", "expected"], [ # Test from running sample data ([[[256.23991128535846, 365.30496976939753, 1459.662169500559], [257.1435863244796, 364.21960599061947, 1459.588978712983], [256.0843053658035, 364.32180498523223, 1458.6575930699294]], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334 ])], [[255.92550222678443, 364.3226950497605, 1460.6297868417887], [256.42380097331767, 364.27770361353487, 1460.6165849382387]], [[np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334 ])], [[[430.12731330596756, 275.9513661907463, 1454.0469882869343], [429.6862168456729, 275.1632337671314, 1452.9587414419757], [428.78061812142147, 275.5243518770602, 1453.9831850281803]], [[64.10400324869988, 275.83192826468195, 1463.7790545425955], [64.59882848203122, 274.80838068265837, 1464.620183745389], [65.42564601518438, 275.3570272042577, 1463.6125331307376]]]]), # Test with zeros for all params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[0, 0, 0], [0, 0, 0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when adding values in thorax but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[0, 0, 0], [0, 0, 0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, [0.78446454, 0.19611614, -0.58834841]], [nan_3d, nan_3d, [0.78446454, 0.19611614, -0.58834841]]]]), # Testing when adding values in shoulderJC but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[0, 0, 0], [0, 0, 0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[nan_3d, nan_3d, [0.830969149054, 4.154845745271, -2.4929074471]], [nan_3d, nan_3d, [0.0, -8.02381293981, 1.783069542181]]]]), # Testing when adding values in wand but zeros for all other params ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[1, 0, -7], [-3, 5, 3]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when adding values to thorax and shoulderJC ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[0, 0, 0], [0, 0, 0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.50428457, 4.62821343, -3.78488277], [1.15140320, 5.85290468, -3.49963055], [1.85518611, 4.63349167, -3.36650833]], [[-0.5611251741, -9.179560055, 1.191979749], [-0.65430149, -8.305871473, 2.3001252440], [0.5069794004, -8.302903324, 1.493020599]]]]), # Testing when adding values to thorax and wand ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([0, 0, 0]), np.array([0, 0, 0])], [[1, 0, -7], [-3, 5, 3]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-0.269430125, 0.96225044, -0.03849001], [0.55859, 0.18871284, 0.80769095], [0.78446454, 0.19611614, -0.58834841]], [[-0.6130824329, 0.10218040549, -0.7833831087], [-0.09351638899, 0.9752423423, 0.20039226212], [0.7844645405, 0.19611613513, -0.5883484054]]]]), # Testing when adding values to shoulderJC and wand ([[rand_coor, rand_coor, rand_coor], [0, 0, 0]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[1.98367400, 4.88758011, -2.85947514], [0.93824211, 5.52256679, -2.14964131], [0.83096915, 4.15484575, -2.49290745]], [[-0.80094836, -9.12988352, 1.41552417], [-0.59873343, -8.82624991, 2.78187543], [0.0, -8.02381294, 1.78306954]]]]), # Testing when adding values to thorax, shoulderJC and wand ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [np.array([1, 5, -3]), np.array([0, -9, 2])], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC, and wand are lists of ints ([[rand_coor, rand_coor, rand_coor], [8, 2, -6]], [[1, 5, -3], [0, -9, 2]], [[1, 0, -7], [-3, 5, 3]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are numpy arrays of ints ([[rand_coor, rand_coor, rand_coor], np.array([8, 2, -6], dtype='int')], np.array([np.array([1, 5, -3], dtype='int'), np.array([0, -9, 2], dtype='int')], dtype='int'), np.array([np.array([1, 0, -7], dtype='int'), np.array([-3, 5, 3], dtype='int')], dtype='int'), [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are lists of floats ([[rand_coor, rand_coor, rand_coor], [8.0, 2.0, -6.0]], [[1.0, 5.0, -3.0], [0.0, -9.0, 2.0]], [[1.0, 0.0, -7.0], [-3.0, 5.0, 3.0]], [[np.array([1, 5, -3]), np.array([0, -9, 2])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]]), # Testing that when thorax, shoulderJC and wand are numpy arrays of floats ([[rand_coor, rand_coor, rand_coor], np.array([8.0, 2.0, -6.0], dtype='float')], np.array([np.array([1.0, 5.0, -3.0], dtype='float'), np.array([0.0, -9.0, 2.0], dtype='float')], dtype='float'), np.array([np.array([1.0, 0.0, -7.0], dtype='float'), np.array([-3.0, 5.0, 3.0], dtype='float')], dtype='float'), [[np.array([1.0, 5.0, -3.0]), np.array([0.0, -9.0, 2.0])], [[[0.93321781, 5.62330046, -3.77912558], [1.51400083, 5.69077360, -2.49143833], [1.85518611, 4.63349167, -3.36650833]], [[-0.64460664, -9.08385127, 1.24009787], [-0.57223612, -8.287942994, 2.40684228], [0.50697940, -8.30290332, 1.4930206]]]])]) def test_shoulderAxisCalc(self, thorax, shoulderJC, wand, expected): """ This test provides coverage of the shoulderAxisCalc function in pyCGM.py, defined as shoulderAxisCalc(frame, thorax, shoulderJC, wand) This test takes 4 parameters: thorax: array containing several x,y,z markers for the thorax shoulderJC: array containing x,y,z position of the shoulder joint center wand: array containing two x,y,z markers for wand expected: the expected result from calling shoulderAxisCalc on thorax, shoulderJC, and wand For the left and right shoulder axis, the respective axis is calculated by taking the difference from the respective direction (left or right) and the throax origin. The difference is then used to get the direction of each respective shoulder joint center for each shoulder axis in the order of Z, X, Y. The direction is then applied backwords to each shoulder joint center to account for variations in marker sizes. Lastly, it checks that the resulting output is correct when shoulderJC and wand are a list of ints, a numpy array of ints, a list of floats, and a numpy array of floats, and thorax values are either an int or a float. Thorax cannot be a numpy array due it not being shaped like a multi-dimensional array. """ result = pyCGM.shoulderAxisCalc(None, thorax, shoulderJC, wand) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "thorax", "shoulderJC", "vsk", "mockReturnVal", "expectedMockArgs", "expected"], [ # Test from running sample data ({'RSHO': np.array([428.88476562, 270.552948, 1500.73010254]), 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998]), 'RELB': np.array([658.90338135, 326.07580566, 1285.28515625]), 'LELB': np.array([-156.32162476, 335.2583313, 1287.39916992]), 'RWRA': np.array([ 776.51898193, 495.68103027, 1108.38464355]), 'RWRB': np.array([ 830.9072876 , 436.75341797, 1119.11901855]), 'LWRA': np.array([-249.28146362, 525.32977295, 1117.09057617]), 'LWRB': np.array([-311.77532959, 477.22512817, 1125.1619873 ])}, [[rand_coor, [257.1435863244796, 364.21960599061947, 1459.588978712983], rand_coor], [256.149810236564, 364.3090603933987, 1459.6553639290375]], [np.array([429.66951995, 275.06718615, 1453.95397813]), np.array([64.51952734, 274.93442161, 1463.6313334])], {'RightElbowWidth': 74.0, 'LeftElbowWidth': 74.0, 'RightWristWidth': 55.0, 'LeftWristWidth': 55.0}, [[633.66707588, 304.95542115, 1256.07799541], [-129.16952219, 316.8671644, 1258.06440717]], [[[429.7839232523795, 96.8248244295684, 904.5644429627703], [429.66951995, 275.06718615, 1453.95397813], [658.90338135, 326.07580566, 1285.28515625], -44.0], [[-409.6146956013004, 530.6280208729519, 1671.682014527917], [64.51952734, 274.93442161, 1463.6313334], [-156.32162476, 335.2583313, 1287.39916992], 44.0]], [[np.array([633.66707587, 304.95542115, 1256.07799541]), np.array([-129.16952218, 316.8671644, 1258.06440717])], [[[633.8107013869995, 303.96579004975194, 1256.07658506845], [634.3524799178464, 305.0538658933253, 1256.799473014224], [632.9532180390149, 304.85083190737765, 1256.770431750491]], [[-129.32391792749496, 315.8807291324946, 1258.008662931836], [-128.45117135279028, 316.79382333592827, 1257.3726028780698], [-128.49119037560908, 316.72030884193634, 1258.7843373067021]]], [[793.3281430325068, 451.2913478825204, 1084.4325513020426], [-272.4594189740742, 485.801522109477, 1091.3666238350822]]]), # Test with zeros for all params ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to frame ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[149.87576359540907, -228.48721408225754, -418.8422716102348], [0, 0, 0], [-9, 1, -4], -7.0], [[282.73117218166414, -326.69276820761615, -251.76957615571214], [0, 0, 0], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to thorax ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to shoulderJC ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [-2, -8, -3], [0, 0, 0], -7.0], [nan_3d, [5, -3, 2], [0, 0, 0], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, [-0.2279211529192759, -0.9116846116771036, -0.3418817293789138]], [nan_3d, nan_3d, [0.8111071056538127, -0.48666426339228763, 0.3244428422615251]]], [nan_3d, nan_3d]]), # Testing when values are added to vsk ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': -38.0, 'LeftElbowWidth': 6.0, 'RightWristWidth': 47.0, 'LeftWristWidth': -7.0}, [[0, 0, 0], [0, 0, 0]], [[nan_3d, [0, 0, 0], [0, 0, 0], 12.0], [nan_3d, [0, 0, 0], [0, 0, 0], 10.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [nan_3d, nan_3d]]), # Testing when values are added to mockReturnVal ({'RSHO': np.array([0, 0, 0]), 'LSHO': np.array([0, 0, 0]), 'RELB': np.array([0, 0, 0]), 'LELB': np.array([0, 0, 0]), 'RWRA': np.array([0, 0, 0]), 'RWRB': np.array([0, 0, 0]), 'LWRA': np.array([0, 0, 0]), 'LWRB': np.array([0, 0, 0])}, [[rand_coor, [0, 0, 0], rand_coor], [0, 0, 0]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[5, 4, -4], [6, 3, 5]], [[nan_3d, [0, 0, 0], [0, 0, 0], -7.0], [nan_3d, [0, 0, 0], [0, 0, 0], 7.0]], [[np.array([5, 4, -4]), np.array([6, 3, 5])], [[nan_3d, nan_3d, [4.337733821467478, 3.4701870571739826, -3.4701870571739826]], [nan_3d, nan_3d, [5.2828628343993635, 2.6414314171996818, 4.4023856953328036]]], [nan_3d, nan_3d]]), # Testing when values are added to frame and thorax ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([0, 0, 0]), np.array([0, 0, 0])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[149.87576359540907, -228.48721408225754, -418.8422716102348], [0, 0, 0], [-9, 1, -4], -7.0], [[282.73117218166414, -326.69276820761615, -251.76957615571214], [0, 0, 0], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to frame, thorax, and shoulderJC ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [np.array([-2, -8, -3]), np.array([5, -3, 2])], {'RightElbowWidth': 0.0, 'LeftElbowWidth': 0.0, 'RightWristWidth': 0.0, 'LeftWristWidth': 0.0}, [[0, 0, 0], [0, 0, 0]], [[[-311.42865408643604, -195.76081109238007, 342.15327877363165], [-2, -8, -3], [-9, 1, -4], -7.0], [[183.9753004933977, -292.7114070209339, -364.32791656553934], [5, -3, 2], [-4, 1, -6], 7.0]], [[np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-0.9661174276011973, 0.2554279765068226, -0.03706298561739535], [0.12111591199009825, 0.3218504585188577, -0.9390118307103527], [-0.2279211529192759, -0.9116846116771036, -0.3418817293789138]], [[-0.40160401780320154, -0.06011448807273248, 0.9138383123989052], [-0.4252287337918506, -0.8715182976051595, -0.24420561192811296], [0.8111071056538127, -0.48666426339228763, 0.3244428422615251]]], [[4.7413281, -5.7386979, -1.35541665], [-4.96790631, 4.69256216, -8.09628108]]]), # Testing when values are added to frame, thorax, shoulderJC, and vsk ({'RSHO': np.array([9, -7, -6]), 'LSHO': np.array([3, -8, 5]), 'RELB': np.array([-9, 1, -4]), 'LELB': np.array([-4, 1, -6]), 'RWRA': np.array([2, -3, 9]), 'RWRB': np.array([-4, -2, -7]), 'LWRA': np.array([-9, 1, -1]), 'LWRB': np.array([-3, -4, -9])}, [[rand_coor, [-9, 5, -5], rand_coor], [-5, -2, -3]], [
np.array([-2, -8, -3])
numpy.array
import anndata import dask.array import h5py import numpy as np import os import pytest import scipy.sparse from sfaira.data import load_store from sfaira.unit_tests.data_for_tests.loaders import PrepareData @pytest.mark.parametrize("store_format", ["h5ad", "dao", "anndata"]) def test_fatal(store_format: str): """ Test if basic methods of stores abort. """ if store_format == "anndata": stores = PrepareData().prepare_store_anndata() else: store_path = PrepareData().prepare_store(store_format=store_format) stores = load_store(cache_path=store_path, store_format=store_format) stores.subset(attr_key="organism", values=["Mus musculus"]) store = stores.stores["Mus musculus"] # Test both single and multi-store: for x in [store, stores]: _ = x.n_obs _ = x.n_vars _ = x.var_names _ = x.shape _ = x.indices _ = x.genome_container @pytest.mark.parametrize("store_format", ["h5ad", "dao"]) def test_config(store_format: str): """ Test that data set config files can be set, written and recovered. """ store_path = PrepareData().prepare_store(store_format=store_format) config_path = os.path.join(store_path, "config_lung") store = load_store(cache_path=store_path, store_format=store_format) store.subset(attr_key="organism", values=["Mus musculus"]) store.subset(attr_key="assay_sc", values=["10x technology"]) store.write_config(fn=config_path) store2 = load_store(cache_path=store_path, store_format=store_format) store2.load_config(fn=config_path + ".pickle") assert np.all(store.indices.keys() == store2.indices.keys()) assert np.all([np.all(store.indices[k] == store2.indices[k]) for k in store.indices.keys()]) @pytest.mark.parametrize("store_format", ["h5ad", "dao"]) def test_store_data(store_format: str): """ Test if the data exposed by the store are the same as in the original Dataset instance after streamlining. """ data = PrepareData() # Run standard streamlining workflow on dsg and compare to object relayed via store. # Prepare dsg. dsg = data.prepare_dsg(load=True) # Prepare store. # Rewriting store to avoid mismatch of randomly generated data in cache and store. store_path = data.prepare_store(store_format=store_format, rewrite=False, rewrite_store=True) store = load_store(cache_path=store_path, store_format=store_format) store.subset(attr_key="doi_journal", values=["no_doi_mock1"]) dataset_id = store.adata_by_key[list(store.indices.keys())[0]].uns["id"] adata_store = store.adata_by_key[dataset_id] x_store = store.data_by_key[dataset_id] adata_ds = dsg.datasets[dataset_id].adata x_ds = adata_ds.X.todense() if isinstance(x_store, dask.array.Array): x_store = x_store.compute() if isinstance(x_store, h5py.Dataset): # Need to load sparse matrix into memory if it comes from a backed anndata object. x_store = x_store[:, :] if isinstance(x_store, anndata._core.sparse_dataset.SparseDataset): # Need to load sparse matrix into memory if it comes from a backed anndata object. x_store = x_store[:, :] if isinstance(x_store, scipy.sparse.csr_matrix): x_store = x_store.todense() if isinstance(x_ds, anndata._core.sparse_dataset.SparseDataset): # Need to load sparse matrix into memory if it comes from a backed anndata object. x_ds = x_ds[:, :] if isinstance(x_ds, scipy.sparse.csr_matrix): x_ds = x_ds.todense() # Check that non-zero elements are the same: assert x_store.shape[0] == x_ds.shape[0] assert x_store.shape[1] == x_ds.shape[1] assert np.all(np.where(x_store > 0)[0] == np.where(x_ds > 0)[0]), (np.sum(x_store > 0), np.sum(x_ds > 0)) assert np.all(np.where(x_store > 0)[1] == np.where(x_ds > 0)[1]), (np.sum(x_store > 0), np.sum(x_ds > 0)) assert np.all(x_store - x_ds == 0.), (
np.sum(x_store)
numpy.sum
import matplotlib.pyplot as plt import numpy as np """ This code computes and plots the efficacy of contact tracing as a function of app uptake among Android and iOS users. The model for tracing efficacy is outline in the Corona paper draft, and the probabilities of detecting a contact are taken from Smittestopp data. """ #probabilities of detecting a contact, i = iOS, a = Android: #p_ii = 0.54; p_ai = 0.53; p_ia = 0.53; p_aa = 0.74 p_ii = 0.54; p_ai = 0.53; p_ia = 0.53; p_aa = 0.74 #p_ia = prob. that a contact between iOS and Android is detected by iOS n = 31 a_i = np.linspace(0,1,n) a_a = np.linspace(0,1,n) #market share iOS, should be replaced with real data: phi = 0.5 #create 2D arrays with identical rows/columns: c_ii = np.outer(a_i*a_i*phi**2,
np.ones(n)
numpy.ones
""" retrieved from https://github.com/princewen/tensorflow_practice/blob/master/RL/Basic-MADDPG-Demo/replay_buffer.py """ import numpy as np import random class ReplayBuffer(object): def __init__(self,size): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): return len(self._storage) def add(self,obs_t,action_agent, action_others, reward,obs_tp1,done): """add a experince into storage""" data = (obs_t, action_agent, action_others, reward, obs_tp1, done) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, agent_actions, other_actions, rewards, obses_tp1, dones = [], [], [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, other_action, reward, obs_tp1, done = data obses_t.append(np.array(obs_t, copy=False)) agent_actions.append(np.array(action, copy=False)) other_actions.append(np.array(other_action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) return
np.array(obses_t)
numpy.array
import sys sys.path.append('..') import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from chebyspectral import * import time deg = 24 # degree of Chebyshev polynomial # Source term f = lambda xq, yq: 0*xq*yq fHat = chebfit2d(f, deg) # Boundary conditions f_bc_x_a = lambda xq: 0 f_bc_y_a = lambda xq: 0 f_bc_x_b = lambda xq: 1/5.0*np.sin(3*np.pi*xq) f_bc_y_b = lambda xq: np.sin(np.pi*xq)**4 * (xq<0) # Boundary conditions bc_derivative_order = 0 # Dirichlet, 0-th derivative bc_position = -1 bc_axis = 0 # x-axis bc_x_1 = [chebfit(f_bc_x_a, deg), bc_derivative_order, bc_position, bc_axis] bc_x_2 = [chebfit(f_bc_x_b, deg), bc_derivative_order, -bc_position, bc_axis] bc_y_1 = [chebfit(f_bc_y_a, deg), bc_derivative_order, bc_position, 1] bc_y_2 = [chebfit(f_bc_y_b, deg), bc_derivative_order, -bc_position, 1] bc = [bc_x_1, bc_x_2, bc_y_1, bc_y_2] # Differentiation matrix l_operator = [[0, 0, 1], [0, 0, 1]] L = chebdiff(l_operator, deg) L, fHat = chebbc(L, fHat, bc) # Compute solution t0 = time.time() uHat = np.dot(np.linalg.pinv(L), fHat) uHat = uHat.reshape((deg+1, deg+1)) print('Elapsed time: {}s'.format(np.round(time.time()-t0,2))) u_analytical = 0.0495946503 u_sol = chebeval(uHat, 0, 0) print('Absolute error at (0, 0): {}'.format(np.abs(u_analytical - u_sol))) # Plot solution N = 100 x = np.linspace(-1, 1, N) y =
np.linspace(-1, 1, N)
numpy.linspace
import numpy as np from numpy.linalg import inv from numpy.linalg import solve from numpy.linalg import eigvals, matrix_rank from scipy.integrate import solve_ivp #odeint from scipy.interpolate import interp1d from scipy.optimize import OptimizeResult as OdeResultsClass from scipy.linalg import expm # Local # --------------------------------------------------------------------------------} # --- Simple statespace functions ltiss (linear time invariant state space) # --------------------------------------------------------------------------------{ def state_function(t, x, u, p): return p['A'].dot(x) + p['B'].dot(u) def output_function(t, x, u, p): return p['C'].dot(x) + p['D'].dot(u) def integrate(t_eval, q0, A, B, fU, method='LSODA', **options): """ Perform time integration of a LTI state space system INPUTS: - q0: initial states, array of length nStates - A: state matrix (nStates x nStates) - B: input matrix (nStates x nInputs) - fU: function/interpolants interface U=fU(t) or U=fU(t,q) U : array of inputs OUTPUTS: - res: object with attributes `t` and `y`(states for now..) and other attributse from solve_ivp """ hasq=False try: fU(t_eval[0],q0) hasq=True except: try: fU(t_eval[0]) hasq=False except: raise if hasq: odefun = lambda t, q : np.dot(A, q) + np.dot(B, fU(t,q)) else: odefun = lambda t, q : np.dot(A, q) + np.dot(B, fU(t) ) res = solve_ivp(fun=odefun, t_span=[t_eval[0], t_eval[-1]], y0=q0, t_eval=t_eval, method=method, vectorized=False, **options) # TODO consider returning y return res def integrate_convolution(time, A, B, fU, C=None): """ Perform time integration of a LTI state space system using convolution method INPUTS: - A: state matrix (nStates x nStates) - B: input matrix (nStates x nInputs) - fU: function/interpolants with interface U=fU(t) or U=fU(t,q) where U is the array of inputs at t OUTPUTS: - x: state vector """ H = impulse_response_matrix(time, A, B) x = np.zeros((A.shape[0], len(time))) from welib.tools.signal import convolution_integral # TODO inline and optimize try: U = fU(time) except: print('[WARN] Cannot evaluate fU for all time, doing a for loop...') U = np.zeros((B.shape[1], len(time))) for it,t in enumerate(time): U[:,it] = fU(t) # NOTE: cannot do state dependency here for i in np.arange(H.shape[0]): x_sum=0 for j in np.arange(H.shape[1]): x_sum += convolution_integral(time, U[j,:], H[i,j,:] ) x[i,:] = x_sum return x # TODO consider returning y def impulse_response_matrix(time, A, B, C=None, outputBoth=False): """ Return the impulse response matrix for all time steps defined by `time` H_x(t) = exp(At) B H_y(t) = C exp(At) B see e.g. Friedland p 76 """ H_x = np.zeros((A.shape[0], B.shape[1], len(time))) for it, t in enumerate(time): H_x[:,:, it] = expm(A*t).dot(B) if outputBoth: raise NotImplementedError() if C is None: raise Exception('Provide `C` to output both impulse response matrices H_x and H_y') H_y = C.dot(H_x) # TODO verify return H_x, H_y else: return H_x # --------------------------------------------------------------------------------} # --- Linear State Space system # --------------------------------------------------------------------------------{ class LinearStateSpace(): """ def setStateInitialConditions(self,q0=None): def setInputTimeSeries(self,vTime,vU): def setInputFunction(self,fn): def Inputs(self,t,x=None): def integrate(self, t_eval, method='RK4', y0=None, **options): def dqdt(self, t, q): def RHS(self,t,q): def nStates(self): def nInputs(self): def nOuputs(self): """ def __init__(self,A,B,C=None,D=None,q0=None): self.A=np.asarray(A) self.B=np.asarray(B) if C is None: self.C=np.eye(A.shape[0]) # output all states else: self.C=np.asarray(C) if D is None: self.D=np.zeros((self.C.shape[0],0)) else: self.D=np.asarray(D) # Initial conditions self.setStateInitialConditions(q0) # Time integration results self.res=None @property def nStates(self): return self.A.shape[0] @property def nInputs(self): return self.B.shape[1] @property def nOuputs(self): if self.C is not None: return self.C.shape[1] else: return 0 # --------------------------------------------------------------------------------} # --- Time domain # --------------------------------------------------------------------------------{ def setStateInitialConditions(self,q0=None): self.q0 =
np.zeros(self.nStates)
numpy.zeros
""" k-Nearest Neighbours Regression """ # Imports import numpy as np # Functions def get_data(data_frame, features, output): """ Purpose: Extract features and prepare a feature matrix Set the first feature x0 = 1 Input : Original Dataframe, list of feature variables, output variable Output : Feature matrix array, output array """ data_frame['constant'] = 1.0 features = ['constant'] + features features_matrix = np.array(data_frame[features]) if output != None: output_array =
np.array(data_frame[output])
numpy.array
import os import sys # Check the postifx!!!!!!!!!!!!!!!!!! in the csv file from PIL import Image import numpy as np from os import path, makedirs import numpy as np import re import pandas as pd from sklearn.cluster import KMeans from PIL import Image, ImageFont, ImageDraw, ImageEnhance from sympy import Interval, Union def ChangeToOtherMachine(filelist, repo="EQanalytics", remote_machine=""): """ Takes a list of file_names located in a repo and changes it to the local machines file names. File must be executed from withing the repository Example: '/home/ubuntu/EQanalytics/Data/Street_View_Images/vulnerable/test.jpg' Get's converted to 'C:/Users/Anton/EQanalytics/Data/Street_View_Images/vulnerable/test.jpg' """ filelist = [x.replace("\\", "/") for x in filelist] if repo[-1] == "/": repo = repo[:-1] if remote_machine: prefix = remote_machine.replace("\\", "/") else: prefix = ( (os.path.dirname( os.path.abspath(__file__)).split(repo))[0]).replace( "\\", "/") new_list = [] for file in filelist: suffix = (file.split(repo))[1] if suffix[0] == "/": suffix = suffix[1:] new_list.append( os.path.join( prefix, repo + "/", suffix).replace( "\\", "/")) return new_list def get_files(directory, ending=".jpg"): result = [] for file in os.listdir(directory): if file.endswith(ending): result.append(file) return result def load_and_filter_df(df_path, file_path, label_dict): file_list = get_files(file_path) file_list = [x[:-14] + ".jpg" for x in file_list] df = pd.read_csv(df_path) df["file"] = df["image"].apply(lambda x: (x.split("/"))[-1]) df["label_name"] = df["label"].apply(lambda x: label_dict[x]) return df[df["file"].isin(file_list)] def get_features( df, label_dict, label_names=[ "door", "window", "blind", "shop"]): df["label_name"] = df["label"].apply(lambda x: label_dict[x]) df.loc[:, "x_len"] = df["xmax"] - df["xmin"] df.loc[:, "y_len"] = df["ymax"] - df["ymin"] df.loc[:, "rel_y_center"] = (df["ymin"] + df["ymax"]) / 2 / df["y_size"] df.loc[:, "area"] = df["x_len"] * df["y_len"] return df[df["label_name"].isin(label_names)] def get_intervall_union(data): """ Given a list of intervals, i.e. a = [(7, 10), (11, 13), (11, 15), (14, 20), (23, 39)], this function return the length of the interval union. In the example it takes the union as [Interval(7, 10), Interval(11, 20), Interval(23, 39)] and computes the length as 28 """ # Convert to list of tuples if the input is list of list: if not data: return 0 if isinstance(data[0], type([])): data = [tuple(l) for l in data] intervals = [Interval(begin, end) for (begin, end) in data] u = Union(*intervals) union_list = [list(u.args[:2])] if isinstance( u, Interval) else list(u.args) length = 0 if isinstance(union_list[0], type([])): union_list = [tuple(l) for l in union_list] union_list = [Interval(begin, end) for (begin, end) in union_list] for item in union_list: length += item.end - item.start return length def get_iou(re1, re2): """ Calculate the Intersection over Union (IoU) of two bounding boxes. Parameters ---------- bb1 : dict Keys: {'x1', 'x2', 'y1', 'y2'} The (x1, y1) position is at the top left corner, the (x2, y2) position is at the bottom right corner bb2 : dict Keys: {'x1', 'x2', 'y1', 'y2'} The (x, y) position is at the top left corner, the (x2, y2) position is at the bottom right corner Returns ------- float in [0, 1] """ bb1 = dict(zip(["x1", "x2", "y1", "y2"], re1)) bb2 = dict(zip(["x1", "x2", "y1", "y2"], re2)) assert bb1["x1"] < bb1["x2"] assert bb1["y1"] < bb1["y2"] assert bb2["x1"] < bb2["x2"] assert bb2["y1"] < bb2["y2"] # determine the coordinates of the intersection rectangle x_left = max(bb1["x1"], bb2["x1"]) y_top = max(bb1["y1"], bb2["y1"]) x_right = min(bb1["x2"], bb2["x2"]) y_bottom = min(bb1["y2"], bb2["y2"]) if x_right < x_left or y_bottom < y_top: return 0.0 # The intersection of two axis-aligned bounding boxes is always an # axis-aligned bounding box intersection_area = (x_right - x_left) * (y_bottom - y_top) # compute the area of both AABBs bb1_area = (bb1["x2"] - bb1["x1"]) * (bb1["y2"] - bb1["y1"]) bb2_area = (bb2["x2"] - bb2["x1"]) * (bb2["y2"] - bb2["y1"]) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = intersection_area / float(bb1_area + bb2_area - intersection_area) assert iou >= 0.0 assert iou <= 1.0 return iou def find_index_to_keep(rect, rects, areas, iou_threshold=0.75): rects = np.asarray(rects) ious = [] for re in rects: ious.append(get_iou(rect, re)) intersect =
np.array(ious)
numpy.array
#!/usr/bin/env python # BSD 3-Clause License; see https://github.com/scikit-hep/aghast/blob/master/LICENSE import unittest import numpy from aghast import * class Test(unittest.TestCase): def runTest(self): pass def test_validity_Metadata(self): h = Collection( {}, metadata=Metadata("""{"one": 1, "two": 2}""", language=Metadata.json) ) h.checkvalid() assert h.metadata.data == """{"one": 1, "two": 2}""" assert h.metadata.language == Metadata.json def test_validity_Decoration(self): h = Collection( {}, decoration=Decoration("""points { color: red }""", language=Decoration.css), ) h.checkvalid() assert h.decoration.data == """points { color: red }""" assert h.decoration.css == Decoration.css def test_validity_RawInlineBuffer(self): h = Ntuple( [Column("one", Column.int32)], [ NtupleInstance( [ Chunk( [ ColumnChunk( [ Page( RawInlineBuffer( numpy.zeros(1, dtype=numpy.int32) ) ) ], [0, 1], ) ] ) ] ) ], ) h.checkvalid() assert len(h.instances[0].chunks[0].column_chunks[0].pages[0].array) == 1 h = Ntuple( [Column("one", Column.int32)], [ NtupleInstance( [ Chunk( [ ColumnChunk( [Page(RawInlineBuffer(b"\x05\x00\x00\x00"))], [0, 1] ) ] ) ] ) ], ) h.checkvalid() assert h.instances[0].chunks[0].column_chunks[0].pages[0].array.tolist() == [5] def test_validity_RawExternalBuffer(self): buf = numpy.zeros(1, dtype=numpy.int32) h = Ntuple( [Column("one", Column.int32)], [ NtupleInstance( [ Chunk( [ ColumnChunk( [ Page( RawExternalBuffer( buf.ctypes.data, buf.nbytes ) ) ], [0, 1], ) ] ) ] ) ], ) h.checkvalid() assert len(h.instances[0].chunks[0].column_chunks[0].pages[0].array) == 1 buf = numpy.array([3.14], dtype=numpy.float64) h = Ntuple( [Column("one", Column.float64)], [ NtupleInstance( [ Chunk( [ ColumnChunk( [ Page( RawExternalBuffer( buf.ctypes.data, buf.nbytes ) ) ], [0, 1], ) ] ) ] ) ], ) h.checkvalid() assert h.instances[0].chunks[0].column_chunks[0].pages[0].array.tolist() == [ 3.14 ] def test_validity_InterpretedInlineBuffer(self): h = BinnedEvaluatedFunction( [Axis()], InterpretedInlineBuffer( numpy.zeros(1, dtype=numpy.int32), dtype=InterpretedInlineBuffer.int32 ), ) h.checkvalid() assert h.values.array.tolist() == [0] h = BinnedEvaluatedFunction( [Axis()], InterpretedInlineBuffer( b"\x07\x00\x00\x00", dtype=InterpretedInlineBuffer.int32 ), ) h.checkvalid() assert h.values.array.tolist() == [7] def test_validity_InterpretedExternalBuffer(self): buf = numpy.zeros(1, dtype=numpy.float64) h = BinnedEvaluatedFunction( [Axis()], InterpretedExternalBuffer( buf.ctypes.data, buf.nbytes, dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() assert h.values.array.tolist() == [0.0] buf = numpy.array([3.14], dtype=numpy.float64) h = BinnedEvaluatedFunction( [Axis()], InterpretedExternalBuffer( buf.ctypes.data, buf.nbytes, dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() assert h.values.array.tolist() == [3.14] def test_validity_IntegerBinning(self): h = BinnedEvaluatedFunction( [Axis(IntegerBinning(10, 20))], InterpretedInlineBuffer( numpy.zeros(11), dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() h = BinnedEvaluatedFunction( [Axis(IntegerBinning(20, 10))], InterpretedInlineBuffer( numpy.zeros(11), dtype=InterpretedInlineBuffer.float64 ), ) assert not h.isvalid h = BinnedEvaluatedFunction( [ Axis( IntegerBinning( 10, 20, loc_underflow=IntegerBinning.nonexistent, loc_overflow=IntegerBinning.nonexistent, ) ) ], InterpretedInlineBuffer( numpy.zeros(11), dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() assert h.values.array.tolist() == [0.0] * 11 h = BinnedEvaluatedFunction( [ Axis( IntegerBinning( 10, 20, loc_underflow=IntegerBinning.below1, loc_overflow=IntegerBinning.nonexistent, ) ) ], InterpretedInlineBuffer( numpy.zeros(12), dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() assert h.values.array.tolist() == [0.0] * 12 h = BinnedEvaluatedFunction( [ Axis( IntegerBinning( 10, 20, loc_underflow=IntegerBinning.nonexistent, loc_overflow=IntegerBinning.above1, ) ) ], InterpretedInlineBuffer( numpy.zeros(12), dtype=InterpretedInlineBuffer.float64 ), ) h.checkvalid() assert h.values.array.tolist() == [0.0] * 12 h = BinnedEvaluatedFunction( [ Axis( IntegerBinning( 10, 20, loc_underflow=IntegerBinning.below1, loc_overflow=IntegerBinning.above1, ) ) ], InterpretedInlineBuffer(
numpy.zeros(13)
numpy.zeros
"""******************************************************* A python implementation of the celestial functions ******************************************************""" #print __doc__ import math import numpy as np import pdb import sys #sys.setrecursionlimit(100000) def cone_in_polysphere(PolesLong,PolesLat,Long,Lat,Radius): """ Check if a cone (small circle) is within a convex spherical polygon Package: Description: Check if a cone (small circle) is within a convex spherical polygon which sides are great circles. Input : - Numpy array 3-by-N, in which each column represent the longitude of the poles of the half-spaces of a spherical polygin, where the pole is directed into the polygon center of mass [rad]. - Numpy array in which each column represent the latitude of the poles of the half-spaces of a spherical polygin, where the pole is directed into the polygon center of mass [rad]. - Vector of longitudes of the cones center [rad]. The size is either 1 or like the number of columns of the first and second input arguments. - Vector of latitudes of the cones center [rad]. The size is either 1 or like the number of columns of the first and second input arguments. - Vector of radii of the cones [rad]. The size is either 1 or like the number of columns of the first and second input arguments. Output : - Flag of logical indicating if cone is in polygon. By : <NAME> (original Matlab function by <NAME>) Feb 2018 URL : http://weizmann.ac.il/home/eofek/matlab/ Example: HTM=celestial.htm.htm_build(4); Flag=celestial.htm.cone_in_polysphere(HTM(end).PolesCoo(:,1),HTM(end).PolesCoo(:,2),5.5,-0.6,0.01); PLong=rand(3,1000); PLat=rand(3,1000); Long=rand(1,1000); Lat=rand(1000,1); Radius=0.01.*rand(1000,1); Flag=celestial.htm.cone_in_polysphere(PLong,PLat,Long,Lat,Radius); Reliable: """ #Longitudes_circle=Long # N longitudes de cercles #Latitudes_circle=Lat # N latitudes de cercles #Radius_circles=Radius # N radius de cercles Dist=np.arccos(np.multiply(np.sin(PolesLat),np.sin(Lat))+np.multiply(np.cos(PolesLat),np.cos(Lat))*np.cos(PolesLong-Long)) Flag=np.zeros(np.shape(Dist)[1]) for i in range(np.shape(Dist)[1]):#optimize Flag[i]=all(Dist[:,i]<=0.5*math.pi+Radius) #1 if all distances are smaller than.. return Flag def sphere_distance_fast(RA_1,Dec_1,RA_2,Dec_2):#RADIANS! Dist = np.arccos(np.sin(Dec_1)*np.sin(Dec_2) + np.cos(Dec_1)* np.cos(Dec_2)* np.cos(RA_1 - RA_2)) return Dist def sphere_dist_fast(RA_1,Dec_1,RA_2,Dec_2):#used by xmatch_2cats and match_cats """Description: Names after the function with the same name by Eran. Calculate the angular distance between two points on the celestial sphere. Works only with radians and calculate only the distance. Input: - np.array of longitudes for the first point [radians] - np.array of latitudes for the first point [radians] - np.array of longitudes for the second point [radians] - np.array of latitudes for the second point [radians] Output: - np.array of distances between points [radians]""" Dist = np.arccos(np.sin(Dec_1)*np.sin(Dec_2) + np.cos(Dec_1)* np.cos(Dec_2)* np.cos(RA_1 - RA_2)) dRA = RA_1 - RA_2 SinPA = np.sin(dRA)* np.cos(Dec_2)/np.sin(Dist) CosPA = (np.sin(Dec_2)* np.cos(Dec_1) - np.cos(Dec_2)* np.sin(Dec_1) * np.cos(dRA))/ np.sin(Dist) PA = np.arctan2(SinPA, CosPA) #print(PA) if type(PA) is np.ndarray: #I = find(PA < 0); PA[(PA<0)] = 2. * math.pi + PA[(PA<0)] else: if PA<0: PA=2*math.pi+PA #print('Dist before nan_to_num',Dist) #print('RA1:',RA_1) #print('DEC1:',Dec_1) #print('RA2',RA_2) #print('DEC2',Dec_2) Distx=np.nan_to_num(Dist) #print('Dist after nan_to_num',Distx) return Distx,PA def number_of_trixels_to_level(N_trixels): """Description: in Eran's library, this is called Input: - N_trixels: number of trixels Output: - number of levels - number of trixels in the lowest level""" number_of_levels=math.floor(math.log(N_trixels/2.)/math.log(4)) number_of_trixels_in_highest_level=2*4**number_of_levels return number_of_levels,number_of_trixels_in_highest_level def coo2cosined(Long,Lat):#TESTED compared with Eran's, ok """Description: Convert coordinates to cosine directions in the same reference frame. Input:-np.array of longitudes [radians] -np.array of lattitudes [radians] Output: - np.array of first cosine directions - np.array of second cosine directions - np.array of third cosine directions""" CosLat=np.cos(Lat) CD1=np.cos(Long)*CosLat CD2=np.sin(Long)*CosLat CD3=np.sin(Lat) return CD1,CD2,CD3 def cosined2coo(CD1,CD2,CD3):#TESTED compared with Eran's, ok """Description: Convert cosine directions into coordinated in the same reference frame. Input: - np.array of first cosine directions - np.array of second cosine directions - np.array of third cosine directions Output:-np.array of longitudes [radians] -np.array of lattitudes [radians] example: [RA,Dec]=cosined2coo(0.1,0,1)""" if type(CD1) is np.ndarray: #print(type(CD1)) #print(type(CD2)) #print(CD2[0]) #print(CD1[0]) #print(np.shape(CD1)) #print(np.shape(CD2)) Long=
np.arctan2(CD2,CD1)
numpy.arctan2
""" Created: 2020-07-15 Author: <NAME> """ from collections.abc import Iterable from pycqed.analysis import fitting_models as fit_mods from pycqed.analysis import measurement_analysis as ma import pycqed.measurement.hdf5_data as hd5 import lmfit import numpy as np import logging # Filter and optimization tools import pycqed.measurement.kernel_functions_ZI as kzi from scipy import signal import cma log = logging.getLogger(__name__) # ###################################################################### # Analysis utilities # ###################################################################### def rough_freq_to_amp( amp_pars, time_ns, freqs, plateau_time_start_ns=-25, plateau_time_end_ns=-5, ): time_ = time_ns[: len(freqs)] time_ref_start = time_[-1] if plateau_time_start_ns < 0 else 0 time_ref_stop = time_[-1] if plateau_time_end_ns < 0 else 0 where = np.where( (time_ > time_ref_start + plateau_time_start_ns) & (time_ < time_ref_stop + plateau_time_end_ns) ) avg_f = np.average(freqs[where]) dac_amp = amp_pars["dac_amp"] Vpp = amp_pars["vpp"] cfg_amp = amp_pars["cfg_amp"] amp = cfg_amp * Vpp / 2 * dac_amp # coarse approximation of the arc assuming centered arc and quadratic fit a = avg_f / (amp ** 2) amps = np.sqrt(freqs / a) amp_plateau = np.average(amps[where]) amps_norm = amps / amp_plateau res = { "amps": amps, "step_response": amps_norm, "amp_plateau": amp_plateau, "frequency_plateau": avg_f, } return res def moving_cos_fitting_window( x_data_ns, y_data, fit_window_pnts_nr: int = 6, init_guess: dict = {"phase": 0.0}, fixed_params: dict = {}, max_params: dict = {}, min_params: dict = {}, ): """ NB: Intended to be used with input data in ns, this assumption is used to generate educated guesses for the fitting """ model = lmfit.Model(fit_mods.CosFunc) if "offset" not in init_guess.keys(): offset_guess = np.average(y_data) init_guess["offset"] = offset_guess if "amplitude" not in init_guess.keys(): amplitude_guess = np.max(y_data[len(y_data) // 2 :]) - init_guess["offset"] init_guess["amplitude"] = amplitude_guess if "frequency" not in init_guess.keys(): min_t = x_data_ns[0] max_t = x_data_ns[-1] total_t = min_t - max_t y_data_for_fft = y_data[ np.where( (x_data_ns > min_t + 0.1 * total_t) & (x_data_ns < max_t - 0.1 * total_t) )[0] ] w = np.fft.fft(y_data_for_fft)[ : len(y_data_for_fft) // 2 ] # ignore negative values f = np.fft.fftfreq(len(y_data_for_fft), x_data_ns[1] - x_data_ns[0])[: len(w)] w[0] = 0 # ignore DC component frequency_guess = f[np.argmax(np.abs(w))] init_guess["frequency"] = frequency_guess print("Frequency guess from FFT: {:.3g} GHz".format(frequency_guess)) warn_thr = 0.7 # GHz if frequency_guess > warn_thr: log.warning( "\nHigh detuning above {} GHz detected. Cosine fitting may fail! " "Consider using lower detuning!".format(warn_thr) ) if "phase" not in init_guess.keys(): init_guess["phase"] = 0.0 params = model.make_params(**init_guess) def fix_pars(params, i): # The large range is just to allow the phase to move continuously # between the adjacent fits even if it is not inside [-pi, pi] params["phase"].min = -100.0 * np.pi params["phase"].max = 100.0 * np.pi params["amplitude"].min = 0.1 * init_guess["amplitude"] params["amplitude"].max = 2.0 * init_guess["amplitude"] # Not expected to be used for > 0.8 GHz params["frequency"].min = 0.1 params["frequency"].max = 0.8 for par, val in fixed_params.items(): # iterable case is for the amplitude params[par].value = val[i] if isinstance(val, Iterable) else val params[par].vary = False for par, val in max_params.items(): params[par].max = val for par, val in min_params.items(): params[par].min = val pnts_per_fit = fit_window_pnts_nr pnts_per_fit_idx = pnts_per_fit + 1 max_num_fits = len(x_data_ns) - pnts_per_fit + 1 middle_fits_num = max_num_fits // 2 results = [None for i in range(max_num_fits)] # print(results) results_stderr = [None for i in range(max_num_fits)] # We iterate from the middle of the data to avoid fitting issue # This was verified to help! # There is an iteration from the middle to the end and another one # from the middle to the beginning for fit_ref, iterator in zip( [-1, +1], [range(middle_fits_num, max_num_fits), reversed(range(middle_fits_num))], ): for i in iterator: if i != middle_fits_num: # Take the adjacent fit as the initial guess for the next fit params = model.make_params( amplitude=results[i + fit_ref][0], frequency=results[i + fit_ref][1], phase=results[i + fit_ref][2], offset=results[i + fit_ref][3], ) fix_pars(params, i) t_fit_data = x_data_ns[i : i + pnts_per_fit_idx] fit_data = y_data[i : i + pnts_per_fit_idx] res = model.fit(fit_data, t=t_fit_data, params=params) res_pars = res.params.valuesdict() results[i] = np.fromiter(res_pars.values(), dtype=np.float64) results_stderr[i] = np.fromiter( (param.stderr for par_name, param in res.params.items()), dtype=np.float64, ) results = np.array(results).T results_stderr = np.array(results_stderr).T results = {key: values for key, values in zip(res_pars.keys(), results)} results_stderr = { key: values for key, values in zip(res_pars.keys(), results_stderr) } return { "results": results, "results_stderr": results_stderr, } def cryoscope_v2_processing( time_ns: np.array, osc_data: np.array, pnts_per_fit_first_pass: int = 4, pnts_per_fit_second_pass: int = 3, init_guess_first_pass: dict = {}, fixed_params_first_pass: dict = {}, init_guess_second_pass: dict = {}, max_params: dict = {}, min_params: dict = {}, vln: str = "", insert_ideal_projection: bool = True, osc_amp_envelop_poly_deg: int = 1, ): """ TBW Provide time in ns to avoid numerical issues, data processing here is elaborated `pnts_per_fit_second_pass` shouldn't be smaller than 3, this is the limit to fit the cosine (technically 2 is the limit but but probably will not work very well) """ assert time_ns[0] != 0.0, "Cryoscope time should not start at zero!" def add_ideal_projection_at_zero(time_ns, y_data, vln, offset, osc_amp): """ Inserts and ideal point at t = 0 based on the type of projection """ if vln: if "mcos" in vln: time_ns = np.insert(time_ns, 0, 0) y_data = np.insert(y_data, 0, offset - osc_amp) elif "cos" in vln: time_ns = np.insert(time_ns, 0, 0) y_data = np.insert(y_data, 0, offset + osc_amp) elif "sin" in vln or "msin" in vln: time_ns = np.insert(time_ns, 0, 0) y_data = np.insert(y_data, 0, offset) else: log.warning( "Projection type not supported. Unexpected results may arise." ) return time_ns, y_data else: log.warning("\nSkipping ideal projection!") return time_ns, y_data res_dict = moving_cos_fitting_window( x_data_ns=time_ns, y_data=osc_data, fit_window_pnts_nr=pnts_per_fit_first_pass, init_guess=init_guess_first_pass, fixed_params=fixed_params_first_pass, max_params=max_params, min_params=min_params, ) results = res_dict["results"] amps_from_fit = results["amplitude"] x_for_fit = time_ns[: len(amps_from_fit)] # Here we are intentionally using poly of deg 1 to avoid the amplitude to be lower # in the beginning which should not be physical line_fit = np.polyfit(x_for_fit, amps_from_fit, osc_amp_envelop_poly_deg) poly1d = np.poly1d(line_fit) fixed_offset = np.average(results["offset"]) if not len(init_guess_second_pass): init_guess_second_pass = { "offset": fixed_offset, # "frequency": np.average(results["frequency"]), "phase": 0.0, } if insert_ideal_projection: # This helps with the uncertainty of not knowing very well what is # the amplitude of the first point of the step response time_ns, osc_data = add_ideal_projection_at_zero( time_ns=time_ns, y_data=osc_data, vln=vln, osc_amp=poly1d(0.0), offset=fixed_offset, ) res_dict = moving_cos_fitting_window( x_data_ns=time_ns, y_data=osc_data, fit_window_pnts_nr=pnts_per_fit_second_pass, init_guess=init_guess_second_pass, fixed_params={"offset": fixed_offset, "amplitude": poly1d(time_ns)}, max_params=max_params, min_params=min_params, ) res_dict["time_ns"] = time_ns res_dict["osc_data"] = osc_data return res_dict def extract_amp_pars( qubit: str, timestamp: str, dac_amp_key: str = "Snapshot/instruments/flux_lm_{}/parameters/sq_amp", vpp_key: str = "Snapshot/instruments/flux_lm_{}/parameters/cfg_awg_channel_range", cfg_amp_key: str = "Snapshot/instruments/flux_lm_{}/parameters/cfg_awg_channel_amplitude", ): """ Assumes centered flux arc and converts cryoscope oscillation frequency to amplitude """ dac_amp_key = dac_amp_key.format(qubit) vpp_key = vpp_key.format(qubit) cfg_amp_key = cfg_amp_key.format(qubit) filepath = ma.a_tools.get_datafilepath_from_timestamp(timestamp) exctraction_spec = { "dac_amp": (dac_amp_key, "attr:value"), "vpp": (vpp_key, "attr:value"), "cfg_amp": (cfg_amp_key, "attr:value"), } extracted = hd5.extract_pars_from_datafile(filepath, param_spec=exctraction_spec) return extracted # ###################################################################### # IIRs (exponential filters) utilities # ###################################################################### def pred_corrected_sig(sig, taus, amps): """ [2020-07-15 Victor] Not tested in a while, see old cryoscope notebooks """ for i, (tau, amp) in enumerate(zip(taus, amps)): sig = kzi.exponential_decay_correction_hw_friendly( sig, tau, amp, sampling_rate=2.4e9 ) return sig def predicted_waveform(time, tau0, amp0, tau1, amp1, tau2, amp2, tau3, amp3): """ [2020-07-15 Victor] Not tested in a while, see old cryoscope notebooks """ taus = [tau0, tau1, tau2, tau3] amps = [amp0, amp1, amp2, amp3] y_pred = pred_corrected_sig(a0, taus, amps) # Normalized y_pred /= np.mean(y_pred[-100:]) # Smooth tail # y_pred[100:] = filtfilt(a=[1], b=1/20*np.ones(20), x=y_pred[100:]) # y_pred[50:100] = filtfilt(a=[1], b=1/5*np.ones(5), x=y_pred[50:100]) return y_pred # ###################################################################### # FIRs utilities # ###################################################################### def print_FIR_loading(qubit, model_num, FIR, real_time=False): print( ( "lin_dist_kern_{}.filter_model_0{:1d}({{'params': {{'weights': np." + repr(FIR) + "}}, 'model': 'FIR', 'real-time': {} }})" ).format(qubit, model_num, real_time) ) def optimize_fir_software( y, baseline_start=100, baseline_stop=None, taps=72, max_taps=72, start_sample=0, stop_sample=None, cma_options={}, ): step_response = np.concatenate((np.array([0]), y)) baseline = np.mean(y[baseline_start:baseline_stop]) x0 = [1] + (max_taps - 1) * [0] def objective_function_fir(x): y = step_response zeros = np.zeros(taps - max_taps) x = np.concatenate((x, zeros)) yc = signal.lfilter(x, 1, y) return np.mean(np.abs(yc[1 + start_sample : stop_sample] - baseline)) / np.abs( baseline ) return cma.fmin2(objective_function_fir, x0, 0.1, options=cma_options) def optimize_fir_HDAWG( y, baseline_start=100, baseline_stop=None, start_sample=0, stop_sample=None, cma_options={}, max_taps=40, hdawg_taps=40, ): step_response = np.concatenate((np.array([0]), y)) baseline = np.mean(y[baseline_start:baseline_stop]) x0 = [1] + (max_taps - 1) * [0] def objective_function_fir(x): y = step_response zeros = np.zeros(hdawg_taps - max_taps) x =
np.concatenate((x, zeros))
numpy.concatenate
import numpy as np import time import logging def print_time(before): logging.info(time.time()-before) return time.time() def linewidth_from_data_units(linewidth, axis, reference='y'): """ Convert a linewidth in data units to linewidth in points. Parameters ---------- linewidth: float Linewidth in data units of the respective reference-axis axis: matplotlib axis The axis which is used to extract the relevant transformation data (data limits and size must not change afterwards) reference: string The axis that is taken as a reference for the data width. Possible values: 'x' and 'y'. Defaults to 'y'. Returns ------- linewidth: float Linewidth in points """ fig = axis.get_figure() if reference == 'x': length = fig.bbox_inches.width * axis.get_position().width value_range = np.diff(axis.get_xlim())[0] elif reference == 'y': length = fig.bbox_inches.height * axis.get_position().height value_range = np.diff(axis.get_ylim())[0] # Convert length to points length *= 72 # Scale linewidth to value range return linewidth * (length / value_range) def add_walls_and_source_to_ax(ax, colors, S, scatter_size): s_mat = np.array(S) M, N = s_mat.shape[0], s_mat.shape[1] scatter_dict = { "color_item_-1_x_y":[] } for iter in range(np.sum(np.unique(s_mat) > 0)): scatter_dict[f"color_item_{iter+1}_x_y"] = [] for i in range(M): for j in range(N): if S[i][j] != 0: scatter_dict[f"color_item_{S[i][j]}_x_y"].append([j,i]) for key in scatter_dict: color_item = int(key.split('_')[2]) mat = np.array(scatter_dict[key]).T j = mat[0].tolist() i = mat[1].tolist() ax.scatter(j, i, s=scatter_size*2, color=colors[color_item] if color_item != 0 else "black", marker = "x" if color_item < 0 else None) def plot_area(S): import matplotlib import matplotlib.pyplot as plt from matplotlib import colors ax = plt.gca() color = [matplotlib.colors.to_hex(c) for c in plt.cm.tab20.colors] s_mat = np.array(S) M, N = s_mat.shape[0], s_mat.shape[1] # create discrete colormap # print(color[:s_mat.max()] + color[-1]) cmap = colors.ListedColormap([color[-1]] + color[:s_mat.max()+1]) # cmap = colors.ListedColormap(['red', 'blue', 'green', 'yellow', 'black']) bounds = [i for i in np.arange(-1, s_mat.max()+2, 1)] norm = colors.BoundaryNorm(bounds, cmap.N) ax.imshow(s_mat + 0.5, cmap=cmap, norm=norm, alpha=0.5) # half is for the threshold # draw gridlines ax.set_facecolor('black') ax.set_ylim(M - 0.5, -0.5) ax.set_xlim(-0.5, N - 0.5) return ax.figure def plot_walls(S): import matplotlib.pyplot as plt plt.clf() plt.cla() ax = plt.gca() colors = plt.cm.tab20.colors s_mat = np.array(S) M, N = s_mat.shape[0], s_mat.shape[1] linewidth = linewidth_from_data_units(0.45, ax) ax.set_ylim(M - 0.5, -0.5) ax.set_xlim(-0.5, N - 0.5) ax.set_aspect('equal') ax.set_facecolor('black') ax.set_yticks([i + 0.5 for i in range(M - 1)], minor=True) ax.set_xticks([j + 0.5 for j in range(N - 1)], minor=True) ax.grid(b=True, which='minor', color='white') ax.set_xticks([]) ax.set_yticks([]) ax.tick_params(axis='both', which='both', length=0) add_walls_and_source_to_ax(ax, colors, S, linewidth) logging.info("finish plot_walls for right side") return ax.figure def put_num_on_matrix(m, walls, in_num): matrix = np.copy(m) for coords in walls: x_min, x_max, y_min, y_max = coords[0], coords[2], coords[1], coords[3] for x in range(x_min, x_max + 1 if (x_min < x_max) else x_max - 1 , 1 if (x_min < x_max) else -1): x = int(x) for y in range(y_min, y_max + 1 if (y_min < y_max) else y_max - 1 , 1 if (y_min < y_max) else -1): y = int(y) if y < len(matrix) and x < len(matrix[0]) and matrix is not None: matrix[y][x] = in_num return matrix def put_rect_source_on_matrix(matrix, coords): number_of_source = 0 x_min, x_max, y_min, y_max = coords[0], coords[2], coords[1], coords[3] for x in range(x_min, x_max + 1 if (x_min < x_max) else x_max - 1 , 1 if (x_min < x_max) else -1): x = int(x) for y in range(y_min, y_max + 1 if (y_min < y_max) else y_max - 1 , 1 if (y_min < y_max) else -1): y = int(y) matrix[y][x] = int(number_of_source/2) + 1 number_of_source += 1 assert number_of_source%2 == 0 and "Number of source outlet must be mutiply of 2!" return matrix def put_point_source_on_matrix(matrix, coords): number_of_source = len(matrix) assert number_of_source%2 == 0 and "Number of source outlet must be mutiply of 2!" print(coords) for x,y,col in coords: print(x,y,col) matrix[int(y)][int(x)] = col return matrix def create_matrix_and_area_matrix(color_dict, canvas_size, pipe_size, source, arr): matrix = np.zeros((np.array(canvas_size)/np.array(pipe_size)).astype('int').tolist()).astype('int') area_matrix = None color_set = list(set([item.split("_")[-1] for item in color_dict.keys()])) for index in color_set: for start_point, end_point in zip(color_dict[f"start_{index}"], color_dict[f"end_{index}"]): # graph.draw_rectangle(start_point, end_point, fill_color=colors[int(index)], line_color=colors[int(index)]) start = np.array(start_point) end = np.array(end_point) start[1] = canvas_size[1]-start[1] end[1] = canvas_size[1]-end[1] start[0], start[1], end[0], end[1] = start[0]/pipe_size[0], start[1]/pipe_size[1], end[0]/pipe_size[0], end[1]/pipe_size[1] arr = np.append(arr, [
np.append(start, end)
numpy.append
#!/usr/bin/env python """ faps -- Frontend for Automated Adsorption Analysis of Porous Solids. aka shpes -- Sorption analysis with a High throughput Python frontend to Examine binding in Structures Strucutre adsorption property analysis for high throughput processing. Run as a script, faps will automatically run complete analysis on a structure. Sensible defaults are implemented, but calculations can be easily customised. Faps also provides classes and methods for adapting the simulation or only doing select parts. """ # Turn on keyword expansion to get revision numbers in version strings # in .hg/hgrc put # [extensions] # keyword = # # [keyword] # faps.py = # # [keywordmaps] # Revision = {rev} try: __version_info__ = (1, 5, 0, int("$Revision$".strip("$Revision: "))) except ValueError: __version_info__ = (1, 5, 0, 0) __version__ = "%i.%i.%i.%i" % __version_info__ import bz2 import code try: import configparser except ImportError: import ConfigParser as configparser import gzip import mmap import os import pickle import re import shlex import shutil import subprocess import sys import tarfile import textwrap import time from copy import copy from glob import glob from itertools import count from logging import warning, debug, error, info, critical from math import ceil, log from os import path import numpy as np from numpy import pi, cos, sin, sqrt, arccos, arctan2 from numpy import array, identity, dot, cross from numpy.linalg import norm from binding_sites.absl import calculate_binding_sites from config import Options from elements import WEIGHT, ATOMIC_NUMBER, UFF, VASP_PSEUDO_PREF from elements import CCDC_BOND_ORDERS, GULP_BOND_ORDERS, OB_BOND_ORDERS, METALS from elements import COVALENT_RADII, UFF_FULL, QEQ_PARAMS from eos import peng_robinson from job_handler import JobHandler from logo import LOGO # Global constants DEG2RAD = pi / 180.0 BOHR2ANG = 0.52917720859 EV2KCAL = 23.060542301389 NAVOGADRO = 6.02214129E23 INFINITY = float('inf') KCAL_TO_KJ = 4.1868 # Steam tables from openbabel FASTMC_DEFAULT_GRID_SPACING = 0.1 # ID values for system state NOT_RUN = 0 RUNNING = 1 FINISHED = 2 UPDATED = 3 SKIPPED = -1 NOT_SUBMITTED = -2 # Possible folder names; need these so that similar_ones_with_underscores are # not globbed FOLDER_SUFFIXES = ['gulp', 'gulp_opt', 'gulp_fit', 'siesta', 'vasp', 'egulp', 'repeat', 'fastmc', 'properties', 'absl', 'gromacs'] class PyNiss(object): """ PyNiss -- Negotiation of Intermediate System States A single property calculation for one structure. Instance with a set of options, then run the job_dispatcher() to begin the calculation. The calculation will pickle itself, or can be pickled at any time, by calling dump_state(). """ def __init__(self, options): """ Instance an empty structure in the calculation; The dispatcher should be called to fill it up with data, as needed. """ self.options = options self.structure = Structure(options.get('job_name')) self.state = {'init': (NOT_RUN, False), 'ff_opt': (NOT_RUN, False), 'dft': (NOT_RUN, False), 'esp': (NOT_RUN, False), 'charges': (NOT_RUN, False), 'properties': (NOT_RUN, False), 'absl': {}, 'gcmc': {}} self.job_handler = JobHandler(options) def dump_state(self): """Write the .niss file holding the current system state.""" job_name = self.options.get('job_name') info("Writing state file, %s.niss." % job_name) os.chdir(self.options.get('job_dir')) # Don't save the job handler in case it changes save_handler = self.job_handler self.job_handler = None my_niss = open(job_name + ".niss", "wb") pickle.dump(self, my_niss) my_niss.close() # put the job handler back and continue self.job_handler = save_handler def re_init(self, new_options): """Re initialize simulation (with updated options).""" if new_options.getbool('update_opts'): info("Using new options.") self.options = new_options self.structure.name = new_options.get('job_name') else: # Just update command line stuff info("Using old options with new command line arguments.") self.options.args = new_options.args self.options.options = new_options.options self.options.cmdopts = new_options.cmdopts self.structure.name = new_options.get('job_name') self.status(initial=True) def job_dispatcher(self): """ Run parts explicity specified on the command line or do the next step in an automated run. Drop to interactive mode, if requested. """ # In case options have changed, re-intitialize self.job_handler = JobHandler(self.options) if 'status' in self.options.args: self.status(initial=True) if self.options.getbool('interactive'): code_locals = locals() code_locals.update(globals()) console = code.InteractiveConsole(code_locals) console.push('import rlcompleter, readline') console.push('readline.parse_and_bind("tab: complete")') banner = ("((-----------------------------------------------))\n" "(( Interactive faps mode ))\n" "(( ===================== ))\n" "(( ))\n" "(( WARNING: mode is designed for devs and ))\n" "(( experts only! ))\n" "(( Current simulation is accessed as 'self' and ))\n" "(( associated methods. Type 'dir()' to see the ))\n" "(( methods in the local namespace and 'help(x)' ))\n" "(( for help on any object. ))\n" "(( Use 'self.dump_state()' to save any changes. ))\n" "((-----------------------------------------------))") console.interact(banner=banner) if self.options.getbool('import'): info("Importing results from a previous simulation") self.import_old() self.dump_state() if self.state['init'][0] == NOT_RUN: info("Reading in structure") # No structure, should get one self.structure.from_file( self.options.get('job_name'), self.options.get('initial_structure_format'), self.options) if self.options.getbool('order_atom_types'): info("Forcing atom re-ordering by types") self.structure.order_by_types() self.state['init'] = (UPDATED, False) self.dump_state() self.step_force_field() self.step_dft() self.step_charges() if self.options.getbool('qeq_fit'): if not 'qeq_fit' in self.state and self.state['charges'][0] == UPDATED: info("QEq parameter fit requested") self.run_qeq_gulp(fitting=True) self.dump_state() self.step_properties() self.step_gcmc() self.step_absl() self.send_to_database() self.post_summary() def status(self, initial=False): """Print the current status to the terminal.""" valid_states = {NOT_RUN: 'Not run', RUNNING: 'Running', FINISHED: 'Finished', UPDATED: 'Processed', SKIPPED: 'Skipped', NOT_SUBMITTED: 'Not submitted'} if initial: info("Previous system state reported from .niss file " "(running jobs may have already finished):") else: info("Current system status:") for step, state in self.state.items(): if step == 'gcmc': if not state: info(" * State of GCMC: Not run") else: for point, job in state.items(): if job[0] is RUNNING: info(" * GCMC %s: Running, jobid: %s" % (point, job[1])) else: info(" * GCMC %s: %s" % (point, valid_states[job[0]])) elif step == 'absl': if not state: info(" * State of ABSL: Not run") else: # ABSL used to be multiple jobs, still treat jobid as list for point, jobs in state.items(): if jobs[0] is RUNNING: info(" * ABSL %s: Running, jobids: %s" % (point, ",".join('%s' % x for x in jobs[1]))) else: info(" * ABSL %s: %s" % (point, valid_states[jobs[0]])) elif state[0] is RUNNING: info(" * State of %s: Running, jobid: %s" % (step, state[1])) else: info(" * State of %s: %s" % (step, valid_states[state[0]])) def send_to_database(self): """If using a database, store the results""" # we can skip if not using a database if not 'sql' in self.options.get('initial_structure_format'): return # extract the database and structure names db_params = self.options.get('job_name').split('.') # import this here so sqlalchemy is not required generally from backend.sql import AlchemyBackend database = AlchemyBackend(db_params[0]) info("Storing results in database") database.store_results(db_params[1], int(db_params[2]), self.structure) debug("Database finished") def post_summary(self): """Summarise any results for GCMC, properties...""" # Also includes excess calculation if void volume calculated # N = pV/RT all_csvs = {} R_GAS = 8.3144621E25 / NAVOGADRO # A^3 bar K-1 molecule job_name = self.options.get('job_name') info("Summary of GCMC results") info("======= ======= ======= ======= =======") nguests = len(self.structure.guests) for idx, guest in enumerate(self.structure.guests): # Determine whether we can calculate the excess for # any different probes void_volume = self.structure.sub_property('void_volume') he_excess, guest_excess = "", "" if 1.0 in void_volume: he_excess = 'He-xs-molc/uc,He-xs-mmol/g,He-xs-v/v,He-xs-wt%,' if hasattr(guest, 'probe_radius'): if guest.probe_radius != 1.0 and guest.probe_radius in void_volume: guest_excess = 'xs-molc/uc,xs-mmol/g,xs-v/v,xs-wt%,' if hasattr(guest, 'c_v') and guest.c_v: #TODO(tdaff): Make standard in 2.0 # makes sure that c_v is there and not empty cv_header = "C_v,stdev," else: cv_header = "" if hasattr(guest, 'fugacities') and guest.fugacities: fuga_header = "f/bar," else: fuga_header = "" # Generate headers separately csv = ["#T/K,p/bar,molc/uc,mmol/g,stdev,", "v/v,stdev,wt%,stdev,hoa/kcal/mol,stdev,", guest_excess, he_excess, cv_header, fuga_header, ",".join("p(g%i)" % gidx for gidx in range(nguests)), "\n"] info(guest.name) info("---------------------------------------") info("molc/uc mmol/g vstp/v hoa T_P") info("======= ======= ======= ======= =======") for tp_point in sorted(guest.uptake): # <N>, sd, supercell uptake = guest.uptake[tp_point] uptake = [uptake[0]/uptake[2], uptake[1]/uptake[2]] hoa = guest.hoa[tp_point] # uptake in mmol/g muptake = 1000*uptake[0]/self.structure.weight muptake_stdev = 1000*uptake[1]/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*uptake[0]/ (6.023E-4*self.structure.volume)) vuptake_stdev = (guest.molar_volume*uptake[1]/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + uptake[0]*guest.weight)) wtpc_stdev = 100*(1 - self.structure.weight/ (self.structure.weight + uptake[1]*guest.weight)) info("%7.2f %7.2f %7.2f %7.2f %s" % ( uptake[0], muptake, vuptake, hoa[0], ("T=%s" % tp_point[0] + ''.join(['P=%s' % x for x in tp_point[1]])))) csv.append("%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f," % ( tp_point[0], tp_point[1][idx], uptake[0], muptake, muptake_stdev, vuptake, vuptake_stdev, wtpc, wtpc_stdev, hoa[0], hoa[1])) if guest_excess: guest_void = void_volume[guest.probe_radius] n_bulk = (tp_point[1][idx]*guest_void)/(tp_point[0]*R_GAS) xs_uptake = uptake[0]-n_bulk # uptake in mmol/g muptake = 1000*xs_uptake/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*xs_uptake/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + xs_uptake*guest.weight)) csv.append("%f,%f,%f,%f," % ( xs_uptake, muptake, vuptake, wtpc,)) if he_excess: guest_void = void_volume[1.0] n_bulk = (tp_point[1][idx]*guest_void)/(tp_point[0]*R_GAS) xs_uptake = uptake[0]-n_bulk # uptake in mmol/g muptake = 1000*xs_uptake/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*xs_uptake/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + xs_uptake*guest.weight)) csv.append("%f,%f,%f,%f," % ( xs_uptake, muptake, vuptake, wtpc,)) if cv_header: csv.append("%f,%f," % (guest.c_v[tp_point])) if fuga_header: try: csv.append("%f," % (guest.fugacities[tp_point])) except KeyError: # Assume it was done without fugacity correction csv.append("%f," % tp_point[1][idx]) # list all the other guest pressures and start a new line csv.append(",".join("%f" % x for x in tp_point[1]) + "\n") csv_filename = '%s-%s.csv' % (job_name, guest.ident) csv_file = open(csv_filename, 'w') csv_file.writelines(csv) csv_file.close() all_csvs[csv_filename] = "".join(csv) info("======= ======= ======= ======= =======") info("Structure properties") # Internally calculated surface area surf_area_results = self.structure.surface_area() if surf_area_results: info("Summary of faps surface areas") info("========= ========= ========= =========") info(" radius/A total/A^2 m^2/cm^3 m^2/g") info("========= ========= ========= =========") for probe, area in surf_area_results.items(): vol_area = 1E4*area/self.structure.volume specific_area = NAVOGADRO*area/(1E20*self.structure.weight) info("%9.3f %9.2f %9.2f %9.2f" % (probe, area, vol_area, specific_area)) info("========= ========= ========= =========") # Messy, but check individual properties that might not be there # and dump them to the screen info("weight (u): %f" % self.structure.weight) if hasattr(self.structure, 'pore_diameter'): info("pores (A): %f %f %f" % self.structure.pore_diameter) channel_results = self.structure.sub_property('dimensionality') if channel_results: for probe, channels in channel_results.items(): info(("channels %.2f probe: " % probe) + " ".join("%i" % x for x in channels)) # The table is copied from above as it does some calculating surf_area_results = self.structure.sub_property('zeo_surface_area') if surf_area_results: info("Summary of zeo++ surface areas") info("========= ========= ========= =========") info(" radius/A total/A^2 m^2/cm^3 m^2/g") info("========= ========= ========= =========") for probe, area in surf_area_results.items(): vol_area = 1E4*area/self.structure.volume specific_area = NAVOGADRO*area/(1E20*self.structure.weight) info("%9.3f %9.2f %9.2f %9.2f" % (probe, area, vol_area, specific_area)) info("========= ========= ========= =========") info("volume (A^3): %f" % self.structure.volume) void_volume_results = self.structure.sub_property('void_volume') if surf_area_results: info("Summary of zeo++ void volumes") info("========= ========= ========= =========") info(" radius/A total/A^3 fraction cm^3/g") info("========= ========= ========= =========") for probe, void in void_volume_results.items(): void_fraction = void/self.structure.volume specific_area = NAVOGADRO*void/(1E24*self.structure.weight) info("%9.3f %9.2f %9.5f %9.4f" % (probe, void, void_fraction, specific_area)) info("========= ========= ========= =========") pxrd = self.structure.sub_property('pxrd') if pxrd: info("Summary of PXRD; see properties for cpi file") for probe, pattern in pxrd.items(): info("%s Powder XRD:" % probe) plot = [['|']*21] # 1000 points makes this 75 columns wide averaged = [sum(pattern[x:x+20])/20.0 for x in range(0, 1000, 20)] # make peaks horizontal first peak = max(averaged) for point in averaged: height = int(round(15*point/peak)) plot.append([' ']*(15-height) + ['|']*height + ['-']) # transpose for printing plot = zip(*plot) for line in plot: info(''.join(line)) # Email at the end so everything is in the .flog self.email(all_csvs) def email(self, csvs=None): """Send an email, if one has not already been sent.""" job_name = self.options.get('job_name') email_addresses = self.options.gettuple('email') if email_addresses: info("Emailing results to %s" % ", ".join(email_addresses)) else: # nobody to email to, why bother? return import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText # Construct an email, thanks documentation! sender = '<NAME> <<EMAIL>>' outer = MIMEMultipart() outer['Subject'] = 'Results for faps job on %s' % job_name outer['To'] = ', '.join(email_addresses) outer['From'] = sender outer.preamble = 'This is a MIME multipart message\n' # Just attach all the csv files if csvs is not None: for csv in csvs: msg = MIMEText(csvs[csv], _subtype='csv') msg.add_header('Content-Disposition', 'attachment', filename=csv) outer.attach(msg) # Include a cif file msg_cif = MIMEText("".join(self.structure.to_cif())) msg_cif.add_header('Content-Disposition', 'attachment', filename="%s.faps.cif" % job_name) outer.attach(msg_cif) # And the flog file try: flog = open("%s.flog" % job_name) msg_flog = MIMEText(flog.read()) flog.close() msg_flog.add_header('Content-Disposition', 'attachment', filename="%s.flog" % job_name) outer.attach(msg_flog) except IOError: # Error reading the file, don't care pass # Send via local SMTP server s = smtplib.SMTP('localhost') s.sendmail(sender, email_addresses, outer.as_string()) s.quit() def step_force_field(self): """Check the force field step of the calculation.""" end_after = False if 'ff_opt' not in self.state: self.state['ff_opt'] = (NOT_RUN, False) if self.state['ff_opt'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_force_field_opt'): info("Skipping force field optimisation") self.state['ff_opt'] = (SKIPPED, False) elif self.state['ff_opt'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['ff_opt'][1]) if not job_state: info("Queue reports force field optimisation has finished") self.state['ff_opt'] = (FINISHED, False) else: # Still running info("Force field optimisation still in progress") end_after = True if self.state['ff_opt'][0] == NOT_RUN or 'ff_opt' in self.options.args: jobid = self.run_ff_opt() sys_argv_strip('ff_opt') end_after = self.postrun(jobid) self.dump_state() if self.state['ff_opt'][0] == FINISHED: self.structure.update_pos(self.options.get('ff_opt_code'), options=self.options) self.state['ff_opt'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_dft(self): """Check the DFT step of the calculation.""" end_after = False if self.state['dft'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_dft'): info("Skipping DFT step completely") info("Job might fail later if you need the ESP") self.state['dft'] = (SKIPPED, False) elif self.state['dft'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['dft'][1]) if not job_state: info("Queue reports DFT step has finished") self.state['dft'] = (FINISHED, False) else: # Still running info("DFT still in progress") end_after = True if self.state['dft'][0] == NOT_RUN or 'dft' in self.options.args: jobid = self.run_dft() sys_argv_strip('dft') end_after = self.postrun(jobid) self.dump_state() if self.state['dft'][0] == FINISHED: self.structure.update_pos(self.options.get('dft_code')) self.state['dft'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_charges(self): """Check the charge step of the calculation.""" end_after = False if self.state['charges'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_charges'): info("Skipping charge calculation") self.state['charges'] = (SKIPPED, False) elif self.state['charges'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['charges'][1]) if not job_state: info("Queue reports charge calculation has finished") self.state['charges'] = (FINISHED, False) else: info("Charge calculation still running") end_after = True if self.state['charges'][0] == NOT_RUN or 'charges' in self.options.args: jobid = self.run_charges() sys_argv_strip('charges') end_after = self.postrun(jobid) self.dump_state() if self.state['charges'][0] == FINISHED: self.structure.update_charges(self.options.get('charge_method'), self.options) self.state['charges'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_gcmc(self): """Check the GCMC step of the calculation.""" end_after = False jobids = {} postrun_ids = [] if self.options.getbool('no_gcmc'): info("Skipping GCMC simulation") return elif not self.state['gcmc'] or 'gcmc' in self.options.args: # The dictionary is empty before any runs info("Starting gcmc step") jobids = self.run_fastmc() sys_argv_strip('gcmc') self.dump_state() for tp_point, jobid in jobids.items(): if jobid is True: self.state['gcmc'][tp_point] = (FINISHED, False) elif jobid is False: self.state['gcmc'][tp_point] = (SKIPPED, False) else: info("FastMC job in queue. Jobid: %s" % jobid) self.state['gcmc'][tp_point] = (RUNNING, jobid) postrun_ids.append(jobid) # unfinished GCMCs end_after = True else: # when the loop completes write out the state self.dump_state() for tp_point in self.state['gcmc']: tp_state = self.state['gcmc'][tp_point] if tp_state[0] == RUNNING: new_state = self.job_handler.jobcheck(tp_state[1]) if not new_state: info("Queue reports GCMC %s finished" % (tp_point,)) # need to know we have finished to update below tp_state = (FINISHED, False) self.state['gcmc'][tp_point] = tp_state self.dump_state() else: info("GCMC %s still running" % (tp_point,)) # unfinished GCMC so exit later end_after = True # any states that need to be updated should have been done by now if tp_state[0] == FINISHED: startdir = os.getcwd() # wooki seems slow to copy output files back # so we give them a few chances to appear max_attempts = 6 for attempt_count in range(max_attempts): time.sleep(attempt_count) try: self.structure.update_gcmc(tp_point, self.options) self.state['gcmc'][tp_point] = (UPDATED, False) self.dump_state() break except IOError: os.chdir(startdir) else: error('OUTPUT file never appeared') if postrun_ids: self.postrun(postrun_ids) if end_after: info("GCMC run has not finished completely") terminate(0) def step_properties(self): """Run the properties calculations if required.""" if self.state['properties'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_properties'): info("Skipping all properties calculations") self.state['properties'] = (SKIPPED, False) if self.state['properties'][0] == NOT_RUN or 'properties' in self.options.args: self.calculate_properties() self.state['properties'] = (UPDATED, False) self.dump_state() def step_absl(self): """Check the binding site step of the calculation.""" end_after = False jobids = {} postrun_ids = [] # check for old simulations with no absl state # TODO(tdaff): remove eventually if 'absl' not in self.state: self.state['absl'] = {} if self.options.getbool('no_absl'): info("Skipping ABSL calculation") return elif self.options.getbool('no_gcmc'): info("no_gcmc requested, can't do ABSL, skipping") return elif not self.options.getbool('mc_probability_plot'): info("No probability plot; Skipping ABSL calculation") return elif not self.options.getbool('find_maxima'): info("No TABASCO maxima; Skipping ABSL calculation") return elif not self.state['absl'] or 'absl' in self.options.args: # The dictionary is empty before any runs info("Starting absl step") jobids = self.run_absl() sys_argv_strip('absl') self.dump_state() for tp_point, jobid in jobids.items(): if set(jobid) == set([True]): self.state['absl'][tp_point] = (FINISHED, False) elif set(jobid) == set([False]): self.state['absl'][tp_point] = (SKIPPED, False) else: info("ABSL job in queue. Jobid: %s" % jobid) self.state['absl'][tp_point] = (RUNNING, jobid) postrun_ids.extend(jobid) # unfinished ABSL calculations end_after = True else: # when the loop completes write out the state self.dump_state() for tp_point in self.state['absl']: tp_state = self.state['absl'][tp_point] if tp_state[0] == RUNNING: new_state = set([self.job_handler.jobcheck(job) for job in tp_state[1]]) if new_state == set([False]): info("Queue reports ABSL %s finished" % (tp_point,)) # need to know we have finished to update below tp_state = (FINISHED, False) self.state['absl'][tp_point] = tp_state self.dump_state() else: info("ABSL %s still running" % (tp_point,)) # unfinished ABSL so exit later end_after = True # any states that need to be updated should have been done by now if tp_state[0] == FINISHED: startdir = os.getcwd() # wooki seems slow to copy output files back # so we give them a few chances to appear max_attempts = 6 for attempt_count in range(max_attempts): time.sleep(attempt_count) try: self.structure.update_absl(tp_point, self.options) self.state['absl'][tp_point] = (UPDATED, False) self.dump_state() break except IOError: os.chdir(startdir) else: #TODO(tdaff): does this matter here? error('ABSL output never appeared') if postrun_ids: self.postrun(postrun_ids) if end_after: info("ABSL run has not finished completely") terminate(0) def import_old(self): """Try and import any data from previous stopped simulation.""" job_name = self.options.get('job_name') job_dir = self.options.get('job_dir') try: self.structure.from_file( job_name, self.options.get('initial_structure_format'), self.options) warning("Ensure that order_atom_types is on for pre-1.4 data") if self.options.getbool('order_atom_types'): info("Forcing atom re-ordering by types") self.structure.order_by_types() self.state['init'] = (UPDATED, False) except IOError: info("No initial structure found to import") try: self.structure.update_pos(self.options.get('ff_opt_code')) self.state['ff_opt'] = (UPDATED, False) except IOError: info("No force field optimised structure found to import") try: self.structure.update_pos(self.options.get('dft_code')) self.state['dft'] = (UPDATED, False) except IOError: info("No optimized structure found to import") try: self.structure.update_charges(self.options.get('charge_method'), self.options) self.state['charges'] = (UPDATED, False) except IOError: info("No charges found to import") # Need to generate supercell here on import so that it is set, and # is based on the cell from dft, if changed self.structure.gen_supercell(self.options) guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests else: # use existing guests that may have data debug("Retaining previous guests") guests = self.structure.guests temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) for tp_point in state_points(temps, presses, indivs, len(guests)): try: self.structure.update_gcmc(tp_point, self.options) self.state['gcmc'][tp_point] = (UPDATED, False) except (IOError, OSError): info("GCMC point %s not found" % str(tp_point)) # Reset directory at end os.chdir(job_dir) def postrun(self, jobid): """Determine if we need the job handler to post submit itself.""" # update the job tracker if jobid is not False and jobid is not True: if self.options.getbool('run_all'): debug('Submitting postrun script') os.chdir(self.options.get('job_dir')) self.job_handler.postrun(jobid) return True else: debug('Postrun script not submitted') return False else: return False def run_ff_opt(self): """Prepare the system and run the selected force field optimisation.""" ff_opt_code = self.options.get('ff_opt_code') info("Checking connectivity/types") if self.structure.check_connectivity(): if self.options.getbool('infer_types_from_bonds'): self.structure.gen_types_from_bonds() else: warning("No types; try with infer_types_from_bonds") else: info("Bonds and types, provided") info("Running a %s calculation" % ff_opt_code) if ff_opt_code == 'gromacs': jobid = self.run_optimise_gromacs() elif ff_opt_code == 'gulp': jobid = self.run_optimise_gulp() else: critical("Unknown force field method: %s" % ff_opt_code) terminate(91) if jobid is True: # job run and finished self.state['ff_opt'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (ff_opt_code, jobid)) self.state['ff_opt'] = (RUNNING, jobid) return jobid def run_dft(self): """Select correct method for running the dft/optim.""" dft_code = self.options.get('dft_code') info("Running a %s calculation" % dft_code) if dft_code == 'vasp': jobid = self.run_vasp() elif dft_code == 'siesta': jobid = self.run_siesta() else: critical("Unknown dft method: %s" % dft_code) terminate(92) # update the job tracker #if jobid is False: # self.state['dft'] = (NOT_SUBMITTED, False) # submission skipped if jobid is True: # job run and finished self.state['dft'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (dft_code, jobid)) self.state['dft'] = (RUNNING, jobid) return jobid def run_charges(self): """Select correct charge processing methods.""" chg_method = self.options.get('charge_method') info("Calculating charges with %s" % chg_method) if chg_method == 'repeat': # Get ESP self.esp_to_cube() jobid = self.run_repeat() elif chg_method == 'gulp': jobid = self.run_qeq_gulp() elif chg_method == 'egulp': jobid = self.run_qeq_egulp() else: critical("Unknown charge calculation method: %s" % chg_method) terminate(93) # update the job tracker if jobid is True: # job run and finished self.state['charges'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (chg_method, jobid)) self.state['charges'] = (RUNNING, jobid) return jobid ## Methods for specific codes start here def run_optimise_gromacs(self): """Run GROMACS to do a UFF optimisation.""" job_name = self.options.get('job_name') optim_code = self.options.get('ff_opt_code') g_verbose = self.options.getbool('gromacs_verbose') # Run in a subdirectory optim_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, optim_code)) mkdirs(optim_dir) os.chdir(optim_dir) debug("Running in %s" % optim_dir) metal_geom = self.options.get('gromacs_metal_geometry') gro_file, top_file, itp_file = self.structure.to_gromacs(metal_geom) # We use default names so we don't have to specify # anything extra on the command line filetemp = open('conf.gro', 'w') filetemp.writelines(gro_file) filetemp.close() filetemp = open('topol.top', 'w') filetemp.writelines(top_file) filetemp.close() filetemp = open('topol.itp', 'w') filetemp.writelines(itp_file) filetemp.close() filetemp = open('grompp.mdp', 'w') filetemp.writelines(mk_gromacs_mdp(self.structure.cell, mode='bfgs', verbose=g_verbose)) filetemp.close() filetemp = open('pcoupl.mdp', 'w') filetemp.writelines(mk_gromacs_mdp(self.structure.cell, mode='pcoupl', verbose=g_verbose)) filetemp.close() # prepare for simulation! # Codes we need; comment out the trjconv if being quiet grompp = self.options.get('grompp_exe') mdrun = self.options.get('mdrun_exe') if g_verbose: trjconv = "echo 0 | %s" % self.options.get('trjconv_exe') else: trjconv = "#echo 0 | %s" % self.options.get('trjconv_exe') # everything runs in a script -- to many steps otherwise # only make the g96 file at the end so we can tell if it breaks gromacs_faps = open('gromacs_faps', 'w') gromacs_faps.writelines([ "#!/bin/bash\n\n", "export OMP_NUM_THREADS=1\n\n", "# preprocess first bfgs\n", "%s -maxwarn 2 &>> g.log\n\n" % grompp, "# bfgs step\n", "%s -nt 1 &>> g.log\n\n" % mdrun, "%s -o traject1.gro -f traj.trr &>> g.log\n" % trjconv, "# overwrite with pcoupl step\n", "%s -maxwarn 2 -t traj.trr -f pcoupl.mdp &>> g.log\n\n" % grompp, "# pcoupl step\n", "%s -nt 1 &>> g.log\n\n" % mdrun, "%s -o traject2.gro -f traj.trr &>> g.log\n" % trjconv, "# overwrite with final bfgs\n", "%s -maxwarn 2 -t traj.trr &>> g.log\n\n" % grompp, "# generate final structure\n", "%s -nt 1 -c confout.g96 &>> g.log\n" % mdrun, "%s -o traject3.gro -f traj.trr &>> g.log\n" % trjconv]) gromacs_faps.close() os.chmod('gromacs_faps', 0o755) # Leave the run to the shell info("Generated gromcas inputs and run script") if self.options.getbool('no_submit'): info("GROMACS input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(optim_code, self.options) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_optimise_gulp(self): """Run GULP to do a UFF optimisation.""" job_name = self.options.get('job_name') optim_code = 'gulp' terse = self.options.getbool('gulp_terse') # put an opt in path to distinguish from the charge calculation optim_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s_opt' % (job_name, optim_code)) mkdirs(optim_dir) os.chdir(optim_dir) debug("Running in %s" % optim_dir) filetemp = open('%s.gin' % job_name, 'w') filetemp.writelines(self.structure.to_gulp(optimise=True, terse=terse)) filetemp.close() if 'GULP_LIB' not in os.environ: warning("gulp library directory not set; optimisation might fail") if self.options.getbool('no_submit'): info("GULP input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(optim_code, self.options, input_file='%s.gin' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_vasp(self): """Make inputs and run vasp job.""" job_name = self.options.get('job_name') nproc = self.options.getint('vasp_ncpu') # Keep things tidy in a subdirectory dft_code = self.options.get('dft_code') vasp_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, dft_code)) mkdirs(vasp_dir) os.chdir(vasp_dir) debug("Running in %s" % vasp_dir) info("Running on %i nodes" % nproc) filetemp = open("POSCAR", "w") filetemp.writelines(self.structure.to_vasp(self.options)) filetemp.close() esp_grid = self.esp_grid #TODO(jlo): self.structure.types gives you each type # e.g ['C', 'C', 'O'... ] # self.options.get('...') to get charge or something set a default # in default.ini # calcualte nelect filetemp = open("INCAR", "w") if self.esp_reduced: # Let VASP do the grid if we don't need to filetemp.writelines(mk_incar(self.options, esp_grid=esp_grid)) else: filetemp.writelines(mk_incar(self.options)) filetemp.close() filetemp = open("KPOINTS", "w") filetemp.writelines(mk_kpoints(self.options.gettuple('kpoints', int))) filetemp.close() potcar_types = unique(self.structure.types) filetemp = open("POTCAR", "w") potcar_dir = self.options.get('potcar_dir') previous_type = "" for at_type in self.structure.types: if at_type == previous_type: continue # Try and get the preferred POTCARS debug("Using %s pseudopotential for %s" % (VASP_PSEUDO_PREF.get(at_type, at_type), at_type)) potcar_src = path.join(potcar_dir, VASP_PSEUDO_PREF.get(at_type, at_type), "POTCAR") shutil.copyfileobj(open(potcar_src), filetemp) previous_type = at_type filetemp.close() if self.options.getbool('no_submit'): info("Vasp input files generated; skipping job submission") # act as if job completed jobid = False else: self.job_handler.env(dft_code, options=self.options) jobid = self.job_handler.submit(dft_code, self.options) # Tidy up at the end and pass on job id os.chdir(self.options.get('job_dir')) return jobid def run_siesta(self): """Make siesta input and run job.""" job_name = self.options.get('job_name') nproc = self.options.getint('siesta_ncpu') # Keep things tidy in a subdirectory dft_code = self.options.get('dft_code') siesta_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, dft_code)) mkdirs(siesta_dir) os.chdir(siesta_dir) debug("Running in %s" % siesta_dir) info("Running on %i nodes" % nproc) filetemp = open('%s.fdf' % job_name, 'w') filetemp.writelines(self.structure.to_siesta(self.options)) filetemp.close() psf_types = unique(self.structure.types) psf_dir = self.options.get('psf_dir') for at_type in psf_types: psf_atm = '%s.psf' % at_type psf_src = path.join(psf_dir, psf_atm) psf_dest = path.join(siesta_dir, psf_atm) try: if not path.exists(psf_atm): os.symlink(psf_src, psf_dest) # symlinks not available pre 3.2 on windows except AttributeError: shutil.copy(psf_src, siesta_dir) filetemp.close() if self.options.getbool('no_submit'): info("Siesta input files generated; skipping job submission") jobid = False else: # sharcnet does weird things for siesta self.job_handler.env(dft_code, options=self.options) jobid = self.job_handler.submit(dft_code, self.options, input_file='%s.fdf' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_qeq_gulp(self, fitting=False): """Run GULP to calculate charge equilibration charges.""" job_name = self.options.get('job_name') qeq_code = 'gulp' if fitting: qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s_fit' % (job_name, qeq_code)) else: qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, qeq_code)) mkdirs(qeq_dir) os.chdir(qeq_dir) debug("Running in %s" % qeq_dir) qeq_dict = parse_qeq_params(self.options.gettuple('qeq_parameters')) filetemp = open('%s.gin' % job_name, 'w') filetemp.writelines(self.structure.to_gulp(qeq_fit=fitting, qeq_dict=qeq_dict)) filetemp.close() if self.options.getbool('no_submit'): info("GULP input files generated; skipping job submission") jobid = False elif fitting: jobid = self.job_handler.submit(qeq_code, self.options, input_file='%s.gin' % job_name) info("Running GULP fitting job in queue. Jobid: %s" % jobid) self.state['qeq_fit'] = (RUNNING, jobid) else: jobid = self.job_handler.submit(qeq_code, self.options, input_file='%s.gin' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_qeq_egulp(self): """Run EGULP to calculate charge equilibration charges.""" job_name = self.options.get('job_name') qeq_code = 'egulp' qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, qeq_code)) typed_atoms = self.options.getbool('egulp_typed_atoms') mkdirs(qeq_dir) os.chdir(qeq_dir) debug("Running in %s" % qeq_dir) filetemp = open('%s.geo' % job_name, 'w') filetemp.writelines(self.structure.to_egulp(typed_atoms)) filetemp.close() # EGULP defaults to GULP parameters if not specified egulp_parameters = self.options.gettuple('qeq_parameters') if 'mepo' in egulp_parameters: from parameters import mepo_qeq info("Using MEPO-QEq base parameters") egulp_parameters = [x for x in egulp_parameters if x != 'mepo'] for element, parameters in mepo_qeq.items(): # Put MEPO parameters at the beginning so they can be # overridden plist = [element, parameters[0], parameters[1]] egulp_parameters = plist + egulp_parameters if not egulp_parameters: # parameters are mandatory in new egulp egulp_parameters = ('H', QEQ_PARAMS['H'][0], QEQ_PARAMS['H'][1]) else: info("Custom EGULP parameters selected") filetemp = open('%s.param' % job_name, 'w') filetemp.writelines(mk_egulp_params(egulp_parameters)) filetemp.close() filetemp = open('%s.ini' % job_name, 'w') filetemp.writelines(mk_egulp_ini(self.options)) filetemp.close() egulp_args = ['%s.geo' % job_name, '%s.param' % job_name, '%s.ini' % job_name] if self.options.getbool('no_submit'): info("EGULP input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(qeq_code, self.options, input_args=egulp_args) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def esp_to_cube(self): """Make the cube for repeat input.""" job_name = self.options.get('job_name') # No case where the esp source will be different from the dft code esp_src = self.options.get('dft_code') repeat_dir = path.join(self.options.get('job_dir'), 'faps_%s_repeat' % job_name) mkdirs(repeat_dir) src_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, esp_src)) os.chdir(src_dir) if esp_src == 'vasp': esp_to_cube_args = shlex.split(self.options.get('vasp_to_cube')) info("Converting vasp esp to cube, this might take a minute...") try: fix_vasp_wrapped_types('LOCPOT') except IOError: error("Couldn't find the LOCPOT file; did VASP fail?") submit = subprocess.Popen(esp_to_cube_args) submit.wait() # Cube should have job_name, but can get truncated; # therefore we try to look for it first cube_file = glob('*.cube') if len(cube_file) == 1: cube_file = cube_file[0] elif len(cube_file) > 1: cube_file = cube_file[0] warning("More or than one .cube found; using %s" % cube_file) else: error("No cube files found; check vasp_to_cube output") # Move it to the repeat directory and give a proper name move_and_overwrite(cube_file, path.join(repeat_dir, job_name + '.cube')) unneeded_files = self.options.gettuple('vasp_delete_files') remove_files(unneeded_files) keep_files = self.options.gettuple('vasp_compress_files') compress_files(keep_files) elif esp_src == 'siesta': esp_to_cube_args = shlex.split(self.options.get('siesta_to_cube')) esp_grid = self.esp_grid info("Generating ESP grid of %ix%ix%i" % esp_grid) siesta_to_cube_input = [ "%s\n" % job_name, "%f %f %f\n" % (0.0, 0.0, 0.0), "%i %i %i\n" % esp_grid] info("Converting siesta esp to cube, this might take a minute...") submit = subprocess.Popen(esp_to_cube_args, stdin=subprocess.PIPE) submit.communicate(input=''.join(siesta_to_cube_input)) move_and_overwrite(job_name + '.cube', repeat_dir) unneeded_files = self.options.gettuple('siesta_delete_files') remove_files(unneeded_files) keep_files = self.options.gettuple('siesta_compress_files') compress_files(keep_files) os.chdir(self.options.get('job_dir')) def run_repeat(self): """Submit the repeat calc to the queue.""" job_name = self.options.get('job_name') charge_code = self.options.get('charge_method') repeat_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, charge_code)) mkdirs(repeat_dir) os.chdir(repeat_dir) if self.options.getbool('symmetry'): mk_repeat(cube_name=job_name + '.cube', symmetry=True) mk_connectivity_ff(self.structure.symmetry_tree) else: mk_repeat(cube_name=job_name + '.cube', symmetry=False) if self.options.getbool('no_submit'): info("REPEAT input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(charge_code, self.options) os.chdir(self.options.get('job_dir')) return jobid def run_fastmc(self): """Submit a fastmc job to the queue.""" job_name = self.options.get('job_name') mc_code = self.options.get('mc_code') # Set the guests before generating the files # Load here as options may change in each run # and before changing directory, or it will not find guests.lib guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests else: # use existing guests that may have data debug("Retaining previous guests") guests = self.structure.guests gcmc_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, mc_code)) mkdirs(gcmc_dir) os.chdir(gcmc_dir) config, field = self.structure.to_config_field(self.options, fastmc=True) filetemp = open("CONFIG", "w") filetemp.writelines(config) filetemp.close() filetemp = open("FIELD", "w") filetemp.writelines(field) filetemp.close() temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) jobids = {} for tp_point in state_points(temps, presses, indivs, len(guests)): temp = tp_point[0] press = tp_point[1] info("Running GCMC: T=%.1f " % temp + " ".join(["P=%.2f" % x for x in press])) tp_path = format_tp_path(tp_point) mkdirs(tp_path) os.chdir(tp_path) try_symlink(path.join('..', 'CONFIG'), 'CONFIG') try_symlink(path.join('..', 'FIELD'), 'FIELD') filetemp = open("CONTROL", "w") # Calculate fugacities for the input if required if self.options.get('equation_of_state').lower() == 'peng-robinson': info("Using Peng-Robinson EOS gas fugacities") ideal = {} for guest, pressure in zip(guests, press): if not hasattr(guest, 'species'): try: guest.species = Guest(guest.ident).species except AttributeError: error("Unable to use equation of state with guest" "%s. Failure imminent." % guest.name) if not hasattr(guest, 'fugacities'): guest.fugacities = {} ideal[guest.species] = pressure # Apply the correction fugacities = peng_robinson(ideal, temp) fuga = [] for guest, pressure in zip(guests, press): info("Fugacity correction for %s: %f bar -> %f bar" % (guest.ident, pressure, fugacities[guest.species])) fuga.append(fugacities[guest.species]) guest.fugacities[tp_point] = fugacities[guest.species] # Expects single guest not in a list if len(guests) == 1: fuga = fuga[0] else: info("Using ideal gas fugacities") for guest, pressure in zip(guests, press): guest.fugacities[tp_point] = pressure fuga = press # make control with fugacities filetemp.writelines(mk_gcmc_control(temp, fuga, self.options, guests, self.structure.gcmc_supercell)) filetemp.close() if self.options.getbool('no_submit'): info("FastMC input files generated; " "skipping job submission") jobids[(temp, press)] = False else: jobid = self.job_handler.submit(mc_code, self.options) jobids[(temp, press)] = jobid os.chdir('..') os.chdir(self.options.get('job_dir')) return jobids def run_absl(self): """Submit absl jobs to the queue.""" job_name = self.options.get('job_name') guests = self.structure.guests # fun in the gcmc directories absl_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, 'absl')) mkdirs(absl_dir) os.chdir(absl_dir) temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) jobids = {} for tp_point in state_points(temps, presses, indivs, len(guests)): temp = tp_point[0] press = tp_point[1] info("Running ABSL: T=%.1f " % temp + " ".join(["P=%.2f" % x for x in press])) tp_path = format_tp_path(tp_point) mkdirs(tp_path) os.chdir(tp_path) # make the dummy; dummy_guest = self.structure.guests[0] dummy_include = {dummy_guest.ident: [[[x, 0.0, 0.0] for x in range(dummy_guest.natoms)]]} with open("CONFIG", "w") as config: with open("FIELD", "w") as field: dlp_files = self.structure.to_config_field( self.options, include_guests=dummy_include, dummy=True) config.writelines(dlp_files[0]) field.writelines(dlp_files[1]) with open("CONTROL", "w") as control: control.writelines(mk_dl_poly_control(self.options, dummy=True)) # Keep track of directories so that we can run jobs at once individual_directories = ['.'] # calculate binding sites here and submit for guest in self.structure.guests: binding_sites = calculate_binding_sites(guest, tp_point, self.structure.cell) if hasattr(guest, 'binding_sites'): guest.binding_sites[tp_point] = binding_sites else: guest.binding_sites = {tp_point: binding_sites} for bs_idx, binding_site in enumerate(binding_sites): bs_directory = "%s_bs_%04d" % (guest.ident, bs_idx) mkdirs(bs_directory) os.chdir(bs_directory) include_guests = {guest.ident: [guest.aligned_to(*binding_site)]} dlp_files = self.structure.to_config_field( self.options, include_guests=include_guests) with open("CONFIG", "w") as config: config.writelines(dlp_files[0]) if bs_idx > 0: # symlink on FIELD to save space zero_directory = "%s_bs_%04d" % (guest.ident, 0) try_symlink(path.join('..', zero_directory, 'FIELD'), 'FIELD') try_symlink(path.join('..', zero_directory, 'CONTROL'), 'CONTROL') else: # Always put the FIELD and CONTORL in zero to symlink to with open("FIELD", "w") as field: field.writelines(dlp_files[1]) with open("CONTROL", "w") as control: control.writelines(mk_dl_poly_control(self.options)) individual_directories.append(bs_directory) os.chdir('..') # Make the script to run all the jobs now, using the individual # directories dl_poly_exe = self.options.get('dl_poly_exe') # Try and delete REVIVE files while running the DL_POLY jobs # we need to keep a few for processing, like OUTPUT, REVCON, CONFIG # STATIS and FIELD and CONTROL will hopefully be symlinks, so we # can't delete them, but REVIVE is never needed absl_delete_files = self.options.get('absl_delete_files') if 'REVIVE' in absl_delete_files or '*_bs_*' in absl_delete_files: rm_line = 'rm REVIVE\n' else: rm_line = '' absl_script = ["#!/bin/bash\n\n", "export FORT_BUFFERED=true\n\n", "export OMP_NUM_THREADS=1\n\n"] for directory in individual_directories: absl_script.extend(["pushd %s > /dev/null\n" % directory, "%s\n" % dl_poly_exe, rm_line, "popd > /dev/null\n"]) absl_faps = open('absl_faps', 'w') absl_faps.writelines(absl_script) absl_faps.close() os.chmod('absl_faps', 0o755) # Submit this script if self.options.getbool('no_submit'): info("ABSL input files generated; skipping job submission") jobids[(temp, press)] = [False] else: jobid = self.job_handler.submit('absl', self.options) jobids[(temp, press)] = [jobid] os.chdir('..') os.chdir(self.options.get('job_dir')) return jobids def calculate_properties(self): """Calculate general structural properties.""" job_name = self.options.get('job_name') job_dir = self.options.get('job_dir') props_dir = path.join(job_dir, 'faps_%s_properties' % job_name) mkdirs(props_dir) os.chdir(props_dir) # Neighbour list is only used by surface area, uncomment if needed # for anything else #self.structure.gen_neighbour_list() # Since this runs before fastmc, and can run without it, check if the # guests are initialised here guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests ## # Surface area calculations ## surf_probes = self.options.gettuple('surface_area_probe', dtype=float) for probe in surf_probes: if self.structure.surface_area(probe) is None: self.structure.surface_area(probe, value=self.calc_surface_area(probe)) # Neighbour list makes .niss too big; remove them for atom in self.structure.atoms: atom.neighbours = None del atom.neighbours # Zeoplusplus gives fast access to many properties if self.options.getbool('zeo++'): try: self.calculate_zeo_properties() except (OSError, IOError): error("Error running zeo++; skipping") # PLATON can calculate the PXRD pattern if self.options.getbool('platon_pxrd'): try: self.calculate_pxrd() except (OSError, IOError): error("Error running platon; skipping") os.chdir(job_dir) def calculate_zeo_properties(self): """Run the zeo++ and update properties with no error trapping.""" job_name = self.options.get('job_name') zeofiles = self.structure.to_zeoplusplus() filetemp = open("%s.cssr" % job_name, 'w') filetemp.writelines(zeofiles[0]) filetemp.close() filetemp = open("%s.rad" % job_name, 'w') filetemp.writelines(zeofiles[1]) filetemp.close() filetemp = open("%s.mass" % job_name, 'w') filetemp.writelines(zeofiles[2]) filetemp.close() probes = set([1.0]) # Always have a helium probe for guest in self.structure.guests: if hasattr(guest, 'probe_radius'): probes.add(guest.probe_radius) zeo_exe = shlex.split(self.options.get('zeo++_exe')) zeo_exe += ['-mass', '%s.mass' % job_name, '-r', '%s.rad' % job_name] cssr_file = ['%s.cssr' % job_name] # incuded sphere, free sphere, included sphere along free path zeo_command = zeo_exe + ['-res'] + cssr_file info("Running zeo++ pore diameters") debug("Running command: '" + " ".join(zeo_command) + "'") zeo_process = subprocess.Popen(zeo_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) zeo_process.wait() zeo_stderr = " ".join(x.strip() for x in zeo_process.stderr.readlines()) debug(zeo_stderr) if "Voronoi volume check failed" in zeo_stderr: warning("Structure is likely bad; zeo++ is unable to complete") warning(zeo_stderr) self.structure.bad_structure = True res_file = open('%s.res' % job_name).read().split() self.structure.pore_diameter = tuple(float(x) for x in res_file[1:]) atom_samples = '%i' % 2000 volume_samples = '%i' % (20*self.structure.cell.volume) for probe in probes: zeo_command = zeo_exe + [ '-chan', '%f' % probe, '-sa', '%f' % probe, '%f' % probe, atom_samples, '-vol', '%f' % probe, '%f' % probe, volume_samples] + cssr_file debug("Running command: '" + " ".join(zeo_command) + "'") zeo_process = subprocess.Popen(zeo_command, stdout=subprocess.PIPE) zeo_process.wait() # channel dimensionality channels = [int(x) for x in open('%s.chan' % job_name).read().split()[5:]] self.structure.sub_property('dimensionality', probe, channels) # surface area for line in open('%s.sa' % job_name): if 'A^2' in line: self.structure.sub_property('zeo_surface_area', probe, value=float(line.split()[-1])) # accessible volume for line in open('%s.vol' % job_name): if 'A^3' in line: self.structure.sub_property('void_volume', probe, value=float(line.split()[-1])) def calculate_pxrd(self): """Run platon PXRD and update properties with no error trapping.""" job_name = self.options.get('job_name') out_cif = self.structure.to_cif() filetemp = open("%s.faps.cif" % job_name, 'w') filetemp.writelines(out_cif) filetemp.close() platon_exe = self.options.get('platon_exe') platon_cmd = [platon_exe, '-Q', '-o', '%s.faps.cif' % job_name] info("Running PLATON PXRD") debug("Running command: '" + " ".join(platon_cmd) + "'") platon_process = subprocess.Popen(platon_cmd, stdout=subprocess.PIPE) platon_process.wait() cpi_file = open('%s.faps.cpi' % job_name).readlines() probe = cpi_file[4].strip() # source metal, e.g. Cu, Mo try: xrd = [int(x) for x in cpi_file[10:]] self.structure.sub_property('pxrd', probe=probe, value=xrd) except ValueError: warning("PXRD gave weird result, check structure") # These are big and useless? remove_files(['%s.faps.lis' % job_name, '%s.faps.eld' % job_name, '%s.faps.ps' % job_name]) @property def esp_grid(self): """Estimate the esp grid based on resolution and memory.""" # If repeat is unsing double precision, use 4 for single repeat_prec = 8 # User defined resolution, try to use this resolution = self.options.getfloat('esp_resolution') repeat_ncpu = self.options.getint('repeat_ncpu') if repeat_ncpu == 1: vmem = self.options.getfloat('serial_memory') else: vmem = self.options.getfloat('threaded_memory') # Nice even grids might scale better in parallel repeat esp_grid = tuple([int(4*np.ceil(x/(4*resolution))) for x in self.structure.cell.params[:3]]) memory_guess = prod(esp_grid)*self.structure.natoms*repeat_prec/1e9 self._esp_reduced = False if memory_guess > vmem: warning("ESP at this resolution might need up to %.1f GB of " "memory but calculation will only request %.1f" % (memory_guess, vmem)) resolution = resolution/pow(vmem/memory_guess, 1.0/3) esp_grid = tuple([int(4*np.ceil(x/(4*resolution))) for x in self.structure.cell.params[:3]]) warning("Reduced grid to %.2f A resolution to fit" % resolution) self._esp_reduced = True elif resolution != 0.1: # VASP defaults to grids of around 0.1, so check if user has # requested a reduced grid info("User requested esp resolution %f" % resolution) self._esp_reduced = True self._esp_grid = esp_grid return esp_grid @property def esp_reduced(self): """Has the esp been reduced to fit the memory requirements?""" if not hasattr(self, '_esp_reduced'): # generate the esp and check memory requirements self.esp_grid return self._esp_reduced def calc_surface_area(self, rprobe=0.0): """Accessible surface area by uniform or Monte Carlo sampling.""" self.structure.gen_neighbour_list() xyz = [] resolution = self.options.getfloat('surface_area_resolution') uniform = self.options.getbool('surface_area_uniform_sample') info("Calculating surface area: %.3f probe, %s points, %.3f res" % (rprobe, ("random","uniform")[uniform], resolution)) total_area = 0.0 hydrophilic_area = 0.0 # gromacs default of 0.2 seems very constrained hydrophilic_threshold = 0.3 cell = self.structure.cell.cell inv_cell = np.linalg.inv(cell.T) # Pre-calculate and organise the in-cell atoms atoms = [(atom.ipos(cell, inv_cell).tolist(), atom.ifpos(inv_cell), atom.vdw_radius+rprobe, atom.neighbours, atom) for atom in self.structure.atoms] # sigma is the vdw_radius plus distance to center of probe, which # gives accessible surface area; all_samples = [] for a1_pos, a1_fpos, a1_sigma, neighbours, atom in atoms: surface_area = 4*pi*(a1_sigma**2) nsamples = int(surface_area/resolution) if not nsamples in all_samples: debug("Atom type with %i samples" % nsamples) all_samples.append(nsamples) ncount = 0 if uniform: # uniform spiral sample of surface z_vals = np.linspace(1, -1, nsamples, endpoint=True) r_vals = sqrt(1-z_vals**2) t_vals = np.linspace(0, pi*(3-(5**0.5))*nsamples, nsamples, endpoint=False) points = array([r_vals*cos(t_vals), r_vals*sin(t_vals), z_vals]).transpose()*a1_sigma + a1_pos else: # random MC sampling phi = 2*np.random.random(nsamples)*pi costheta = np.random.random(nsamples)*2 - 1 theta = arccos(costheta) points = array([sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]).transpose()*a1_sigma + a1_pos # All points are brought into the cell points = [dot(inv_cell, x) for x in points] fpoints = np.mod(points, 1.0) points = [list(
dot(x, cell)
numpy.dot
#Author: <NAME> (c) 2018 from collections import Counter import dill import glob import gzip import igraph as ig import itertools import leidenalg #import magic import matplotlib from matplotlib import pyplot import numba import numpy import os import pickle from plumbum import local import random import re import scipy from scipy.cluster import hierarchy import scipy.sparse as sps from scipy.spatial import distance import scipy.stats as stats from sklearn.feature_extraction.text import TfidfTransformer from sklearn.decomposition import TruncatedSVD from sklearn import neighbors from sklearn import metrics import sys import umap def find_nearest_genes(peak_files, out_subdir, refseq_exon_bed): #get unix utilities bedtools, sort, cut, uniq, awk = local['bedtools'], local['sort'], local['cut'], local['uniq'], local['awk'] #process the peak files to find nearest genes nearest_genes = [] for path in sorted(peak_files): out_path = os.path.join(out_subdir, os.path.basename(path).replace('.bed', '.nearest_genes.txt')) cmd = (bedtools['closest', '-D', 'b', '-io', '-id', '-a', path, '-b', refseq_exon_bed] | cut['-f1,2,3,5,9,12'] | #fields are chrom, start, stop, peak sum, gene name, distance awk['BEGIN{OFS="\t"}{if($6 > -1200){print($1, $2, $3, $6, $5, $4);}}'] | sort['-k5,5', '-k6,6nr'] | cut['-f5,6'])() with open(out_path, 'w') as out: prev_gene = None for idx, line in enumerate(str(cmd).strip().split('\n')): if prev_gene is None or not line.startswith(prev_gene): # print(line) line_split = line.strip().split() prev_gene = line_split[0] out.write(line + '\n') nearest_genes.append(out_path) return nearest_genes def load_expr_db(db_path): if os.path.basename(db_path) == 'RepAvgGeneTPM.csv': with open(db_path) as lines_in: db_headers = lines_in.readline().strip().split(',')[1:] db_vals = numpy.loadtxt(db_path, delimiter=',', skiprows=1, dtype=object)[:,1:] elif os.path.basename(db_path) == 'gexplore_l2_tissue_expr.jonathan_updated.txt.gz': db_headers, db_vals = load_expr_db2(db_path) else: with open(db_path) as lines_in: db_headers = lines_in.readline().strip().split('\t') db_vals = numpy.loadtxt(db_path, delimiter='\t', skiprows=1, dtype=object) print('Loaded DB shape: {!s}'.format(db_vals.shape)) return (db_headers, db_vals) def load_expr_db2(db_path): db_vals = numpy.loadtxt(db_path, delimiter='\t', skiprows=1, dtype=object) gene_set = sorted(set(db_vals[:,0])) tissue_set = sorted(set(db_vals[:,2])) db_data = numpy.zeros((len(gene_set), len(tissue_set))) gene_idx = None gene_name = '' gene_vals = [] tissue_idx = [] for idx in range(db_vals.shape[0]): db_elt = db_vals[idx] #rule out any genes with 95% CI lower bound of zero if float(db_elt[6]) <= 0: continue if db_elt[0] != gene_name: if gene_idx is not None: db_data[gene_idx,tissue_idx] = gene_vals gene_name = db_elt[0] gene_idx = gene_set.index(gene_name) gene_vals = [] tissue_idx = [] #use the bootstrap median value gene_vals.append(float(db_elt[5])) tissue_idx.append(tissue_set.index(db_elt[2])) return (['gene_name'] + tissue_set, numpy.hstack([numpy.array(gene_set, dtype=object)[:,None], db_data.astype(object)])) TOPN=500 def get_gene_data(genes_path, gene_expr_db, topn=TOPN): if isinstance(genes_path, list): genes_list = genes_path else: with open(genes_path) as lines_in: genes_list = [elt.strip().split()[:2] for elt in lines_in] gene_idx = [(numpy.where(gene_expr_db[:,0] == elt[0])[0],elt[1]) for elt in genes_list] gene_idx_sorted = sorted(gene_idx, key=lambda x:float(x[1]), reverse=True) gene_idx, gene_weights = zip(*[elt for elt in gene_idx_sorted if len(elt[0]) > 0][:topn]) gene_idx = [elt[0] for elt in gene_idx] gene_data = gene_expr_db[:,1:].astype(float)[gene_idx,:] denom = numpy.sum(gene_data, axis=1)[:,None] + 1e-8 gene_norm = gene_data/denom return gene_idx, gene_data, gene_norm, len(genes_list),
numpy.array(gene_weights, dtype=float)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import numpy.linalg as la import fenics # CLASS: Bisection Mesh Refinement class BisectionRefinement: def __init__(self, polyhedron): self.polyhedron = polyhedron self.factor = 0.49 # must be < 0.5 self.R0 = self.calc_R0() # converts the geometry corner c_k to fenics.Point(c_k) def convert_to_fenics_format(self, z): x1 = z[0] x2 = z[1] x3 = z[2] return fenics.Point(x1, x2, x3) # calculates R0 for corners def calc_R0(self): num_corners = len(self.polyhedron.corners) R0 = np.zeros(num_corners) for j in range(0, num_corners): d_min = 1e+10 for i in range(0, num_corners): if i != j: d = la.norm(self.polyhedron.corners[i] - self.polyhedron.corners[j]) d_min = min(d_min, d) R0[j] = d_min * self.factor return R0 # area of triangle; Heron's formula def area_triangle(self, a, b, c): p = (a + b + c) / 2 area = np.sqrt(p * (p - a) * (p - b) * (p - c)) return area # distance of given cell from edge def distance_from_edge(self, cell, p1, p2, e): vertices = cell.get_vertex_coordinates() num_vertices = vertices.shape[0] // 3 d2e = np.zeros(num_vertices) for k in range(num_vertices): v = self.convert_to_fenics_format(vertices[k * 3:(k + 1) * 3]) r1 = fenics.Point.distance(v, p1) r2 = fenics.Point.distance(v, p2) triArea = self.area_triangle(e, r1, r2) d2e[k] = 2 * triArea / e # print(k, d2e[k]) return np.amin(d2e) # uniform refinement def uniform(self, h0, mesh): while mesh.hmax() > h0: cell_markers = fenics.MeshFunction("bool", mesh, mesh.topology().dim()) cell_markers.set_all(True) mesh = fenics.refine(mesh, cell_markers) return mesh # local refinement def local(self, deg, h0, mesh): dim = 3 # space dimensions TOL = fenics.DOLFIN_EPS_LARGE singular_edges = self.polyhedron.edges[self.polyhedron.singular_edges - 1, :] num_sin_edges = len(singular_edges) # hmax_init = mesh.hmax() for k in range(num_sin_edges): if self.polyhedron.refine_flags[k] == 1: v1 = singular_edges[k][0] v2 = singular_edges[k][1] p1 = self.polyhedron.corners[v1] p2 = self.polyhedron.corners[v2] R0 = (self.R0[v1] + self.R0[v2]) / 2 p1f = self.convert_to_fenics_format(p1) p2f = self.convert_to_fenics_format(p2) e = fenics.Point.distance(p1f, p2f) gamma = 1. - self.polyhedron.refine_weights[k] K0 = -np.log2(h0) * (2 * deg + dim) / (2 * gamma + dim - 2) - 1 K = np.ceil(K0) NLocRef = int(dim * (K + 1) - 1) print(gamma, K, NLocRef) for l in range(NLocRef): weight = 1. - gamma expo = -2 * l * (deg + weight) / (dim * (2 * deg + dim)) h_min = h0 * np.power(2., expo) R_max = R0 *
np.power(2., -l / dim)
numpy.power
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from saccader import utils def _construct_images(batch_size): image_shape = (50, 50, 3) images = tf.convert_to_tensor( np.random.randn(*((batch_size,) + image_shape)), dtype=tf.float32) return images def _construct_locations_list(batch_size, num_times): locations_list = [ tf.convert_to_tensor( np.random.rand(batch_size, 2) * 2 - 1, dtype=tf.float32) for _ in range(num_times) ] return locations_list def _count_parameters(vars_list): count = 0 for v in vars_list: count += np.prod(v.get_shape().as_list()) return count class UtilsTest(tf.test.TestCase, parameterized.TestCase): def test_draw_bounding_boxes(self): batch_size = 5 images = _construct_images(batch_size) image_shape = tuple(images.get_shape().as_list()[1:]) num_times = 2 box_shape = (12, 12) locations_list = _construct_locations_list(batch_size, num_times) normalized_box_size = box_shape[0] / float(image_shape[0]) images_with_boxes = utils.draw_bounding_boxes(images, locations_list, normalized_box_size) self.assertEqual((batch_size,) + image_shape, self.evaluate(images_with_boxes).shape) def test_location_diversity(self): # Zero distance and sqrt(2) distance cases. locations_list = [ tf.convert_to_tensor([[1, 1]], tf.float32), tf.convert_to_tensor([[1, 1]], tf.float32), tf.convert_to_tensor([[0, 0]], tf.float32) ] diversity = utils.location_diversity(locations_list) expected_result = np.mean([np.sqrt(2.), np.sqrt(2.), 0]) self.assertAlmostEqual(self.evaluate(diversity), expected_result, 5) def test_vectors_alignment(self): # Aligned and orthogonal case locations_list = [ tf.convert_to_tensor([[1, 1], [1, 1], [-1, 1]], tf.float32) ] alignment = utils.vectors_alignment(locations_list) expected_result = np.mean([1, 0, 0]) self.assertAlmostEqual(self.evaluate(alignment), expected_result, 5) def test_normalize_range(self): min_value = -2 max_value = 5 x = tf.convert_to_tensor(np.random.randn(100), dtype=tf.float32) x = utils.normalize_range(x, min_value=min_value, max_value=max_value) x = self.evaluate(x) self.assertEqual(x.min(), min_value) self.assertEqual(x.max(), max_value) def test_position_channels(self): corner_locations = [ (-1, -1), # Upper left. (-1, 1), # Upper right. (1, -1), # Lower left. (1, 1), # Lower right. ] batch_size = len(corner_locations) images = _construct_images(batch_size) channels = utils.position_channels(images) # Corner positions. upper_left = channels[0][0, 0] # Should be position [-1, -1]. upper_right = channels[1][0, -1] # Should be position [-1, 1]. lower_left = channels[2][-1, 0] # Should be position [1, -1]. lower_right = channels[3][-1, -1] # Should be position [1, 1]. corners = (upper_left, upper_right, lower_left, lower_right) corner_locations = tf.convert_to_tensor(corner_locations, dtype=tf.float32) glimpses = tf.image.extract_glimpse( channels, size=(1, 1), offsets=corner_locations, centered=True, normalized=True) # Check shape. self.assertEqual(channels.shape.as_list(), images.shape.as_list()[:-1] + [ 2, ]) corners, glimpses, corner_locations = self.evaluate((corners, glimpses, corner_locations)) glimpses = np.squeeze(glimpses) # Check correct corners self.assertEqual(tuple(corners[0]), tuple(corner_locations[0])) self.assertEqual(tuple(corners[1]), tuple(corner_locations[1])) self.assertEqual(tuple(corners[2]), tuple(corner_locations[2])) self.assertEqual(tuple(corners[3]), tuple(corner_locations[3])) # Check match with extract_glimpse function. self.assertEqual(tuple(corners[0]), tuple(glimpses[0])) self.assertEqual(tuple(corners[1]), tuple(glimpses[1])) self.assertEqual(tuple(corners[2]), tuple(glimpses[2])) self.assertEqual(tuple(corners[3]), tuple(glimpses[3])) def test_index_to_normalized_location(self): image_size = 40 ground_truth = np.array([[-1, -1], [-1, 1], [1, -1], [1, 1]], dtype="float32") corner_ixs = tf.constant( [[0, 0], [0, image_size], [image_size, 0], [image_size, image_size]], dtype=tf.int32) normalized_locations = utils.index_to_normalized_location( corner_ixs, image_size) normalized_locations = self.evaluate(normalized_locations) self.assertEqual(np.sum(np.abs(normalized_locations - ground_truth)), 0.) @parameterized.named_parameters( ("uniform_noise_cover", True), ("zero_cover", False), ) def test_location_guide(self, uniform_noise): image_shape = (20, 20, 3) image = tf.constant(np.random.randn(*image_shape), dtype=tf.float32) image, location, blocked_indicator = utils.location_guide( image, image_size=20, open_fraction=0.2, uniform_noise=uniform_noise, block_probability=0.5) image, location, blocked_indicator = self.evaluate((image, location, blocked_indicator)) self.assertEqual(image.shape, image_shape) self.assertEqual(location.shape, (2,)) def test_extract_glimpse(self): batch_size = 50 glimpse_shape = (8, 8) images = _construct_images(batch_size) location_scale = 1. - float(glimpse_shape[0]) / float( images.shape.as_list()[1]) locations = tf.convert_to_tensor( 2 *
np.random.rand(batch_size, 2)
numpy.random.rand
#!/usr/bin/env python # -*- coding: utf-8 -*- # registration.py """ Classes for registering point sets. Based on: - Myronenko and <NAME> - 2010 - Point Set Registration Coherent Point Drift DOI: 10.1109/TPAMI.2010.46 Copyright (c) 2018, <NAME> """ import itertools import numpy as np import scipy.spatial as spatial import scipy.spatial.distance as distance import scipy.linalg as la from skimage.transform._geometric import _umeyama # plotting import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # get a logger import logging logger = logging.getLogger(__name__) class BaseCPD(object): """Base class for the coherent point drift algorithm. Based on: Myronenko and <NAME> - 2010 - Point Set Registration Coherent Point Drift DOI: 10.1109/TPAMI.2010.46 """ def __init__(self, X: np.ndarray, Y: np.ndarray): """Set up the registration class that will actually perform the CPD algorithm. Parameters ---------- X : ndarray (N, D) Fixed point cloud, an N by D array of N original observations in an n-dimensional space Y : ndarray (M, D) Moving point cloud, an M by D array of N original observations in an n-dimensional space """ # save an internal copy so make sure nothings being mucked with self.X = self._X = X self.Y = self._Y = Y # extract the dimensions self.N, self.D = self.X.shape self.M, D = self.Y.shape assert D == self.D, "Point clouds have different dimensions" assert self.N, "X has no points" assert self.M, "Y has no points" def __repr__(self) -> str: """Nice representation of the model.""" basestr = "Model = {}, X = {}, Y = {}".format(self.__class__, self.X.shape, self.Y.shape) try: extrastr = ", w = {}, i = {}, Q = {}, B = {}, t = {}".format( self.w, self.iteration, self.Q, self.B, self.translation ) except AttributeError: extrastr = ", registration not run" return basestr + extrastr @property def scale(self): """Return the estimated scale of the transformation matrix""" return self.B.mean(axis=1) @property def matches(self) -> np.ndarray: """Return X, Y matches.""" return np.where(self.p_old > max(min(self.w, 0.9), np.finfo(float).eps))[::-1] def _estimate(self): """Overload in the child classes.""" raise NotImplementedError def estimate(self): """Estimate the simple transform for matching pairs.""" logger.debug( "Doing a simple estimation of the transformation for {}".format(self.__class__) ) self._estimate() # this assumes it's being called from a child class self.updateTY() # the match matrix is just the identity matrix by definition self.p_old = np.eye(self.N, self.M) # these need to be filled in for the ploting and str function to work self.iteration = "N/A" self.w = 0 self.Q = "N/A" def plot(self, only2d=False): """Plot the results of the registration.""" if self.X.shape[-1] > 1: if self.X.shape[-1] > 2 and not only2d: projection = "3d" s = slice(None, 3) else: projection = None s = slice(None, 2) fig = plt.figure(figsize=(8, 4)) ax0 = fig.add_subplot(121, projection=projection) ax1 = fig.add_subplot(122) axs = (ax0, ax1) ax0.scatter(*self.Y.T[s], marker=".", c="g") ax0.scatter(*self.TY.T[s], marker="o", c="b") ax0.scatter(*self.X.T[s], marker="x", c="r") ax0.quiver(*self.Y.T[s], *(self.TY.T[s] - self.Y.T[s]), color="orange", pivot="tail") if projection is None: ax0.set_aspect("equal") ax0.set_title( "RMSE = {:.3f}, i = {}\ntvec = {}".format( self.rmse, self.iteration, self.translation ) ) else: fig, ax1 = plt.subplots(1) axs = (ax1,) ax1.matshow(self.p_old) ax1.set_aspect("auto") ax1.set_title( "Num pnts = {}, numcorr = {}".format(len(self.TY), (self.p_old > self.w).sum()) ) return fig, axs def transform(self, other: np.ndarray) -> np.ndarray: """Transform `other` point cloud via the Y -> X registration.""" return other @ self.B.T + self.translation def updateTY(self): """Update the transformed point cloud and distance matrix.""" self.TY = self.transform(self.Y) # we need to update the distance matrix too # This gives us a matrix of ||x - T(y)||**2, eq (1) # But we want the rows to be m and columns n self.dist_matrix = distance.cdist(self.TY, self.X, "sqeuclidean") # make sure we have the right shape assert self.dist_matrix.shape == (self.M, self.N), "Error with dist_matrix" # these are defined in the paper but not used, included here for completeness # @property # def pGMM(self): # """The probability density of the gaussian mixture model along the fixed points""" # norm_factor = self.M * (2 * np.pi * self.var) ** (self.D / 2) # p_mat = np.exp(- self.dist_matrix / 2 / self.var) / norm_factor # # sum along the fixed points # return p_mat.sum(0) # @property # def p(self): # """The total probability including the uniform distribution""" # return self.w / self.N + (1 - self.w) * self.pGMM def estep(self): """Do expectation step were we calculate the posterior probability of the GMM centroids.""" # calculate "P_old" via equation 6 p_mat = np.exp(-self.dist_matrix / 2 / self.var) c = (2 * np.pi * self.var) ** (self.D / 2) c *= self.w / (1 - self.w) c *= self.M / self.N # sum along the moving points, i.e. along M denominator = p_mat.sum(0, keepdims=True) assert denominator.shape == (1, self.N), "Calculation of denominator failed {}".format( denominator.shape ) # check if denominator is all zeros, which means p_mat is all zeros if (denominator <= np.finfo(float).eps).all(): # then the final p should just be a uniform distribution # should log or warn user this is happening logger.debug("P_mat is null, resetting to uniform probabilities") p_old = np.ones_like(p_mat) / self.M else: if c < np.finfo(float).eps: logger.debug("c is small, setting to eps") c = np.finfo(float).eps p_old = p_mat / (denominator + c) # compute Np, make sure it's neither zero nor more than N self.Np = min(self.N, max(p_old.sum(), np.finfo(float).eps)) # update Q so we can track convergence using equation (5) self.Q = (p_old * self.dist_matrix).sum() / 2 / self.var + self.Np * self.D * np.log( self.var ) / 2 # store p_old self.p_old = p_old def updateB(self): """Update B matrix. This is the only method that needs to be overloaded for the various linear transformation subclasses, more will need to be done for non-rigid transformation models. """ raise NotImplementedError def mstep(self): """Maximization step. Update transformation and variance these are the transposes of the equations on p. 2265 and 2266 """ # calculate intermediate values mu_x = (self.p_old @ self.X).sum(0, keepdims=True) / self.Np mu_y = (self.p_old.T @ self.Y).sum(0, keepdims=True) / self.Np assert mu_x.size == mu_y.size == self.D, "Dimensions on mu's are wrong" Xhat = self.Xhat = self.X - mu_x Yhat = self.Yhat = self.Y - mu_y # calculate A self.A = A = Xhat.T @ self.p_old.T @ Yhat # calculate B B = self.updateB() # calculate translation self.translation = mu_x - mu_y @ B.T # calculate estimate of variance self.var = np.trace(Xhat.T @ np.diag(self.p_old.sum(0)) @ Xhat) - np.trace(A @ B.T) self.var /= self.Np * self.D logger.debug("Variance is {}".format(self.var)) # make sure self.var is positive if self.var < np.finfo(float).eps: # self.var = np.finfo(float).eps self.var = self.tol logger.warning( "Variance has dropped below machine precision, setting to {}".format(self.var) ) # self.var = self.init_var = self.init_var * 2 # self.translation = -self.Y.mean(axis=0) + self.X.mean(axis=0) # print("Var small resetting to", self.var) def calc_var(self): """Calculate variance in transform.""" return self.dist_matrix.sum() / (self.D * self.N * self.M) @property def rmse(self): """Return RMSE between X and transformed Y.""" # need to weight the RMSE by the probability matrix ... return np.sqrt((self.p_old * self.dist_matrix).mean()) # return np.sqrt(((self.X - self.TY)**2).sum(1)).mean() def calc_init_scale(self): """Need to overloaded in child classes.""" raise NotImplementedError def norm_data(self): """Normalize data to mean 0 and unit variance.""" # calculate mean displacement logger.debug("Normalizing data") self.ty = self.Y.mean(0, keepdims=True) self.tx = self.X.mean(0, keepdims=True) logger.debug("tx = {}, ty = {}".format(self.tx, self.ty)) # move point clouds self._Y_orig = self.Y self._X_orig = self.X self.Y = self.Y - self.ty self.X = self.X - self.tx # calculate scale self.calc_init_scale() logger.debug("scale_x = {}, scale_y = {}".format(self.scale_x, self.scale_y)) # apply scale Sx = np.diag(self.scale_x) Sy = np.diag(self.scale_y) Sx_1 = np.diag(1 / self.scale_x) Sy_1 = np.diag(1 / self.scale_y) self.Y = self.Y @ Sy self.X = self.X @ Sx self.translation = (self.ty @ self.B.T + self.translation - self.tx) @ Sx logger.debug(f"B = {self.B}") self.B = Sx @ self.B @ Sy_1 logger.debug(f"B = {self.B}") def unnorm_data(self): """Undo the intial normalization.""" logger.debug("Undoing normalization") logger.debug("tx = {}, ty = {}".format(self.tx, self.ty)) logger.debug("scale_x = {}, scale_y = {}".format(self.scale_x, self.scale_y)) Sx = np.diag(self.scale_x) Sy = np.diag(self.scale_y) Sx_1 = np.diag(1 / self.scale_x) Sy_1 = np.diag(1 / self.scale_y) # the scale matrices are diagonal so S.T == S self.Y = self.Y @ Sy_1 + self.ty self.X = self.X @ Sx_1 + self.tx assert np.allclose(self.Y, self._Y_orig), "Failed to revert" assert np.allclose(self.X, self._X_orig), "Failed to revert" # B doesn't need to be transposed and self.B = Sx_1 @ self.B @ Sy self.translation = -self.ty @ self.B.T + self.translation @ Sx_1 + self.tx def __call__( self, tol=1e-6, dist_tol=0, maxiters=1000, init_var=None, weight=0, normalization=True ): """Perform the actual registration. Parameters ---------- tol : float dist_tol : float Stop the iteration of the average distance between matching points is less than this number. This is really only necessary for synthetic data with no noise maxiters : int init_var : float weight : float B : ndarray (D, D) translation : ndarray (1, D) """ # initialize transform self.translation = np.ones((1, self.D)) self.B = np.eye(self.D) self.tol = tol # update to the initial position if normalization: self.norm_data() self.updateTY() # set up initial variance if init_var is None: init_var = self.calc_var() self.var = self.init_var = init_var logger.debug("self.init_var = {}".format(self.var)) # initialize the weight of the uniform distribution assert 0 <= weight < 1, "Weight must be between 0 and 1" self.w = weight for self.iteration in range(maxiters): # do iterations expectation, maximization followed by transformation self.estep() self.mstep() self.updateTY() if self.iteration > 0: # now update Q to follow convergence # we want to minimize Q so Q_old should be more positive than the new Q Q_delta = np.abs(self.Q_old - self.Q) # / np.abs(self.Q_old) if Q_delta < 0: logger.warning("Q_delta = {}".format(Q_delta)) logger.debug("Q_delta = {}".format(Q_delta)) if Q_delta <= tol: logger.info("Objective function converged, Q_delta = {:.3e}".format(Q_delta)) break if self.rmse <= dist_tol: logger.info("Average distance converged") break self.Q_old = self.Q else: logger.warning( ( "Maximum iterations ({}) reached without" + " convergence, final Q = {:.3e}" ).format(self.iteration, self.Q) ) # update p matrix once more self.estep() # unnorm the data and apply the final transformation. if normalization: self.unnorm_data() self.updateTY() return self.TY class TranslationCPD(BaseCPD): """Coherent point drift with a translation only transformation model.""" def updateB(self): """Update step. Translation only means that B should be identity. """ self.B = np.eye(self.D) return self.B def calc_init_scale(self): """For translation only we need to calculate a uniform scaling.""" anisotropic_scale = np.concatenate((self.X, self.Y)).std(0) self.scale_x = self.scale_y = 1 / anisotropic_scale def _estimate(self): """Estimate the translation transform.""" self.B, self.translation = np.eye(self.D), (self.X - self.Y).mean(0, keepdims=True) class SimilarityCPD(BaseCPD): """Coherent point drift with a similarity (translation, rotation and isotropic scaling) transformation model.""" # this class is specifically designed so that it can be easily subclassed to represent # a rigid transformation model. def calculateR(self): """Calculate the estimated rotation matrix, eq. (9).""" U, S, VT = la.svd(self.A) c = np.ones_like(S) c[-1] = la.det(U @ VT) C = np.diag(c) self.R = U @ C @ VT return self.R def calculateS(self): """Calculate the scale factor, Fig 2 p. 2266.""" a = self.Yhat.T @ np.diag(self.p_old.sum(1)) @ self.Yhat self.s = np.trace(self.A.T @ self.R) / np.trace(a) return self.s def updateB(self): """Update B: in this case is just the rotation matrix multiplied by the scale factor.""" R = self.calculateR() s = self.calculateS() self.B = s * R return self.B def calc_init_scale(self): """Calculate scale: for similarity we have isotropic scaling for each point cloud.""" # we can prescale by the same anisotropic scaling factor we use in # TranslationCPD and then augment it by an isotropic scaling factor # for each point cloud. anisotropic_scale = np.concatenate((self.X, self.Y)).std() # self.scale_x = anisotropic_scale / self.X.var() # self.scale_y = anisotropic_scale / self.Y.var() # NOTE: the above doesn't work self.scale_x = self.scale_y = 1 / np.array((anisotropic_scale, anisotropic_scale)) def _umeyama(self): """Calculate Umeyama: for similarity we want to have scaling.""" # the call signature for _umeyama is (src, dst) # which is the reverse of ours return _umeyama(self.Y, self.X, True) def _estimate(self): """Estimate the similarity transform.""" T = self._umeyama() D = self.D # T is in the usual orientation B = T[:D, :D] translation = T[:D, -1:].T assert np.allclose( T[-1, :], np.concatenate((np.zeros(D), np.ones(1))) ), "Error, T = {}".format(T) self.B, self.translation = B, translation class RigidCPD(SimilarityCPD): """Coherent point drift with a rigid or Euclidean (translation and rotation) transformation model.""" def calculateS(self): """No scaling for this guy.""" return 1 def _umeyama(self): """For this class we want to have _umeyama without scaling.""" # the call signature for _umeyama is (src, dst) # which is the reverse of ours return _umeyama(self.Y, self.X, False) # for rigid we also want to avoid anything other than uniform scaling calc_init_scale = TranslationCPD.calc_init_scale EuclideanCPD = RigidCPD class AffineCPD(BaseCPD): """Coherent point drift with a similarity (translation, rotation, shear and anisotropic scaling) transformation model.""" def updateB(self): """Solve for B using equations in Fig. 3 p. 2266.""" a = self.Yhat.T @ np.diag(self.p_old.sum(1)) @ self.Yhat # solve B = self.A @ np.inv(a) == B @ a = self.A == a.T @ B.T = self.A.T # self.B = la.solve(a.T, self.A.T).T # a is a symmetric matrix self.B = la.solve(a, self.A.T).T return self.B def calc_init_scale(self): """Calculate scale.""" # For affine we have anisotropic scaling for each point cloud along each dimension self.scale_x = 1 / self.X.std(0) self.scale_y = 1 / self.Y.std(0) def _estimate(self): """Estimate the affine transformation for a set of corresponding points.""" # affine is quite simple, we want to solve the equation A @ Y = X # or Y.T @ A.T = X.T # where Y and X are augmented matrices (an extra row of ones) # https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix aug_X = np.hstack((self.X, np.ones((self.N, 1)))) aug_Y = np.hstack((self.Y, np.ones((self.N, 1)))) # pull the dimension out D = self.D # solve for matrix transforming Y to X T, res, rank, s = la.lstsq(aug_Y, aug_X) # remember that B = A.T (A not augmented) B = T[:D, :D].T # we want to keep the extra dimension for translation translation = T[-1:, :D] # make sure that the solution makes sense (last column should be 1 | 0) assert np.allclose( T[:, -1], np.concatenate((np.zeros(D), np.ones(1))) ), "Error\nT = {}\nX = {}\nY = {}".format(T, self.X, self.Y) self.B, self.translation = B, translation # a dictionary to choose models from model_dict = { "translation": TranslationCPD, "rigid": RigidCPD, "euclidean": EuclideanCPD, "similarity": SimilarityCPD, "affine": AffineCPD, } def choose_model(model): """Choose model if string.""" if isinstance(model, str): model = model_dict[model.lower()] elif not issubclass(model, BaseCPD): raise ValueError("Model {} is not recognized".format(model)) return model def auto_weight(X, Y, model, resolution=0.01, limits=0.05, **kwargs): """Automatically determine the weight to use in the CPD algorithm. Parameters ---------- X : ndarray (N, D) Fixed point cloud, an N by D array of N original observations in an n-dimensional space Y : ndarray (M, D) Moving point cloud, an M by D array of N original observations in an n-dimensional space model : str or BaseCPD child class The transformation model to use, available types are: Translation Rigid Euclidean Similarity Affine resolution : float the resolution at which to sample the weights limits : float or length 2 iterable The limits of weight to search kwargs : dictionary key word arguments to pass to the model function when its called. """ # test inputs model = choose_model(model) try: # the user has passed low and high limits limit_low, limit_high = limits except TypeError: # the user has passed a single limit limit_low = limits limit_high = 1 - limits # generate weights to test ws = np.arange(limit_low, limit_high, resolution) # container for various registrations regs = [] # iterate through weights for w in ws: kwargs.update(weight=w) reg = model(X, Y) reg(**kwargs) regs.append(reg) # if the dimension of the data is less than 3 use the 1 norm # else use the frobenius norm. This is a heuristic based on simulated data. if reg.D < 3: norm_type = 1 else: norm_type = "fro" # look at all the norms of the match matrices (The match matrix should be sparse # and the norms we've chosen maximize sparsity) norm = np.asarray([np.linalg.norm(reg.p_old, norm_type) for reg in regs]) # find the weight that maximizes sparsity w = ws[norm.argmax()] # update and run the model kwargs.update(weight=w) reg = model(X, Y) reg(**kwargs) # return the model to the user return reg def nearest_neighbors(fids0, fids1, r=100, transform=lambda x: x, coords=["x0", "y0"]): """Find nearest neighbors in both sets.""" idx00, idx01 = closest_point_matches( fids0[coords].values, transform(fids1[coords].values), r=r ) idx11, idx10 = closest_point_matches( transform(fids1[coords].values), fids0[coords].values, r=r ) fids0_filt = fids0.iloc[idx10] fids1_filt = fids1.iloc[idx01] idx0, idx1 = closest_point_matches( fids0_filt[coords].values, transform(fids1_filt[coords].values), r=r ) return fids0_filt.iloc[idx0], fids1_filt.iloc[idx1] # def normed_rmse(reg): # reg.norm_data() # reg.updateTY() # rmse = reg.rmse # reg.unnorm_data() # reg.updateTY() # return rmse def align( fids0, fids1, atol=1, rtol=1e-3, diagnostics=False, model="translation", only2d=False, iters=100, ): """Align two slabs fiducials, assumes that z coordinate has been normalized.""" model = choose_model(model) def register(fids0_filt, fids1_filt, coords): reg = model(fids0_filt[coords].values, fids1_filt[coords].values) try: reg.estimate() except ValueError: reg(weight=0.05) return reg def sub_func(rmse, transform, coords): for i in range(iters): r = max(rmse * 2, 1) try: fids0_filt, fids1_filt = nearest_neighbors( fids0, fids1, r=r, transform=transform, coords=coords ) except ValueError: rmse *= 2 continue reg = register(fids0_filt, fids1_filt, coords) transform = reg.transform rmse_new = reg.rmse rmse_rel = (rmse - rmse_new) / rmse if rmse_new < atol or rmse_rel < rtol: break rmse = rmse_new else: logger.error( "{} failed, rmse = {}, rel = {}, i = {}".format(coords, rmse_new, rmse_rel, i) ) logger.info( "{} succeeded, rmse = {}, rel = {}, i = {}".format(coords, rmse_new, rmse_rel, i) ) if diagnostics: reg.plot() return reg, fids0_filt, fids1_filt reg2d, fids0_filt, fids1_filt = sub_func(50, lambda x: x, ["x0", "y0"]) if only2d: return reg2d new_transform = register(fids0_filt, fids1_filt, ["x0", "y0", "z0"]).transform reg3d, _, _ = sub_func(reg2d.rmse, new_transform, ["x0", "y0", "z0"]) return reg3d def closest_point_matches(X, Y, method="tree", **kwargs): """Keep determine the nearest neighbors in two point clouds. Parameters ---------- X : ndarray (N, D) Y : ndarray (M, D) kwargs ------ r : float The search radius for nearest neighbors Returns ------- xpoints : ndarray indicies of points with neighbors in x ypoints : ndarray indicies of points with neighbors in y """ if method.lower() == "tree": return _keepclosesttree(X, Y, **kwargs) elif method.lower() == "brute": return _keepclosestbrute(X, Y, **kwargs) else: raise ValueError("Method {} not recognized".format(method)) def _keepclosestbrute(X, Y, r=10, percentile=None): # calculate the distance matrix dist_matrix = distance.cdist(X, Y) # if user requests percentile if percentile is not None: r = np.percentile(dist_matrix, percentile * (len(X) + len(Y)) / (len(X) * len(Y))) logger.debug( "r = {}, fraction pairs kept = {}".format(r, (dist_matrix < r).sum() / dist_matrix.size) ) result = [np.unique(a) for a in np.where(dist_matrix < r)] # log percentages logger.debug( "percentage x kept = {}, y kept = {}".format( *[len(a) / len(aa) for a, aa in zip(result, (X, Y))] ) ) return result def _keepclosesttree(X, Y, r=10): # build the trees ytree = spatial.cKDTree(Y) # find nearest neighbors to each point in X in Y, ii are the indices of ytree that match X dd, ii = ytree.query(X) # filter filt = dd < r xpoints = np.arange(len(X))[filt] ypoints = ii[filt] # check for duplicate indexs uypoints = np.unique(ypoints) uxpoints = np.unique(xpoints) if uxpoints.size < xpoints.size or uypoints.size < ypoints.size: logger.debug("taking unique points") xpoints, ypoints = uxpoints, uypoints logger.debug( "percentage x kept = {}, y kept = {}".format(len(xpoints) / len(X), len(ypoints) / len(Y)) ) return xpoints, ypoints # These are tools to propogate slab to slab alignment def to_augmented(B, t): """Convert transform matrix and translation vector to an augmented transformation matrix. https://en.wikipedia.org/wiki/Affine_transformation#Augmented_matrix """ # get the dimension of the transformation d = len(B) # build augmented matrix aug_B =
np.zeros((d + 1, d + 1))
numpy.zeros
from functools import cached_property import os.path import numpy as np import pandas as pd from scipy.optimize import curve_fit class MeasOsc: """Wavesurfer 3024z oscilloscope measurement files""" def __init__(self, path: str): data = pd.read_csv( path, header=None, skiprows=6, names=["0", "1", "2", "t", "V"], engine="c" ) self.t = data["t"].to_numpy() self.voltage = data["V"].to_numpy() @property def zero_level(self) -> float: return self.voltage[:self.voltage.size//3].mean() @property def peak_height(self) -> float: peak_ind =
np.argmax(self.voltage)
numpy.argmax
import basevcstest import vcs import numpy class TestVCSBoxfill10x10Numpy(basevcstest.VCSBaseTest): def testBoxfill10x10Numpy(self): s = numpy.sin(numpy.arange(100)) s =
numpy.reshape(s, (10, 10))
numpy.reshape
import os import math import time from datetime import datetime import numpy as np from sqlalchemy import create_engine # global variable RADIUS_EARTH = 6371e3 def get_env_variable(var_name): '''Get the environment variable or return exception.''' try: return os.environ[var_name] except KeyError: error_msg = 'Set the {} environment variable'.format(var_name) raise KeyError(error_msg) def create_db_engine(user, password, host, port, db): '''Return database engine from user, password, db, host and port''' url_pattern = 'postgresql://{user}:{password}@{host}:{port}/{db}' url = url_pattern.format( user=user, password=password, host=host, port=port, db=db) return create_engine(url, client_encoding='utf8') def distance_two_dimensions_coordinates(this_coordinate, that_coordinate): '''Measure distance in meters between two 2-d points (latitude, longitude). Also measure distance in meters between two 3-d points (latitude, longitude, altitude). For variables naming refer to: https://www.movable-type.co.uk/scripts/latlong.html''' lat1, lon1, *_rest = this_coordinate lat2, lon2, *_rest = that_coordinate dlat = math.radians(lat2-lat1) dlon = math.radians(lon2-lon1) lat1, lat2 = math.radians(lat1), math.radians(lat2) a = math.sin(dlat/2)**2 + ( math.cos(lat1) * math.cos(lat2) * (math.sin(dlon/2)**2)) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) d = RADIUS_EARTH * c return d def distance_three_dimensions_coordinates(this_coordinate, that_coordinate): '''Measure distance in meters between two 3-d points (latitude, longitude, altitude). For variables naming refer to: https://www.movable-type.co.uk/scripts/latlong.html''' this_rect_coordinate = get_cartesian_coordinates(this_coordinate) that_rect_coordinate = get_cartesian_coordinates(that_coordinate) distance = np.linalg.norm( np.array(this_rect_coordinate)-
np.array(that_rect_coordinate)
numpy.array
import numpy as np from typing import Union from numpy import vectorize, ndarray def getOpticsKernels(name: str, alpha: float = 1.): """ #TODO: docs Set of kernels function from physical optics Parameters ---------- name : {"rectangular", "diffraction", "gaussian", "triangular", "dispersive"} name of kernels alpha : float parameter of kernels Returns ------- """ if name=="rectangular": return lambda x,y:rectangular(x-y, alpha) elif name=="diffraction": return lambda x, y: diffraction(x - y, alpha) elif name=="gaussian": return lambda x, y: gaussian(x - y, alpha) elif name=="triangular": return lambda x, y: triangular(x - y, alpha) elif name=="dispersive": return lambda x, y: dispersive(x - y, alpha) elif name=="exponential": return lambda x, y: exponential(x - y, alpha) else: raise ValueError('Bad name of kernel') ## Набор дифферернциальных ядер из оптики # щелеобразная def rectangular(x : Union[ndarray, float], alpha: float = 1.) -> Union[ndarray, float]: if type(x) != np.ndarray: if (np.abs(x)/alpha < 0.5): return 1./alpha else: return 0. else: indx = np.abs(x)/alpha < 0.5 return (indx)/alpha # дифракционная def diffraction(x : Union[ndarray, float], alpha: float = 1.) -> Union[ndarray, float]: s0 = alpha/0.886 res = (np.sin(np.pi * x / s0) / (np.pi * x / s0)) ** 2 / (s0) return res # гауссова def gaussian(x : Union[ndarray, float], alpha: float = 1.) -> Union[ndarray, float]: return (2/alpha)*np.sqrt(np.log(2)/np.pi)*np.exp(-4*
np.log(2)
numpy.log
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # This is the core script used for all experiments in the Turn-taking prediction # of the EgoCom paper. This script requires the preprocessed hd5 named as: # 'egocom_feature_data_normalized_history_{}_future_{}_binary.hdf5' # These are already pre-computed in the Dataset release, but can be recomputed # via `nn_preprocess_data_for_training` # Example calls of this script are provided in `turntaking_script_examples.bash` # Imports # Data processing import pickle import pandas as pd import numpy as np # Multiprocessing import itertools import torch import torch.nn as nn # Need these to use EgoCom validation dataset from skorch.helper import predefined_split from skorch.dataset import Dataset from skorch.callbacks import Checkpoint # Other imports import datetime import os import argparse # Used to parse command line arguments parser = argparse.ArgumentParser(description='EgoCom Turn-Taking Prediction') parser.add_argument('--param-idx', default=0, type=int, help='Specifies which block of hyper parameters' 'you will train here, among the num-param-blocks.' 'The index is zero-based.' 'e.g. if num-param-blocks is 4, then this value can' 'be 0, 1, 2, or 3.') parser.add_argument('--num-param-blocks', default=1, type=int, help='If you want to break up hyper-param optimization' 'across multiple GPUs, specify the number of GPUs' 'here and be sure to also specify --param_idx' 'which specifies which block of the parameters' 'you will train here, among the num-param-blocks.') parser.add_argument('--use-all-perspectives', default=False, action='store_true', help='Only applies for binary prediction tasks.' 'If True, combine all three speakers synchronized' 'perspectives, such that at each second of data,' 'all three speakers features are present. This' 'effectively widens the training data to three' 'times but reduces the number of data points' 'by a third') parser.add_argument('--predict-only-host', default=False, action='store_true', help='Only applies for binary prediction tasks.' 'If True, only predict the hosts labels using either' '(1) only the host data or (2) the combined data' 'if use_all_perspectives == True.') parser.add_argument('--include-prior', default=None, type=str, help='By default (None) this will run train both a model' 'with a prior and a model without a prior.' 'Set to "true" to include the label of the current' 'speaker when predicting who will be speaking in the' 'the future. Set to "false" to not include prior label' 'information. You can think of this as a prior on' 'the person speaking, since the person who will be' 'speaking is highly related to the person who is' 'currently speaking.') parser.add_argument('--prediction-task', default='binary', type=str, help='Set to "multi" to predict the label of the person' 'who will be speaking the future, a multi-class task.' 'Set to "binary" to predict if a given speaker' 'will be speaking in the future.') parser.add_argument('--epochs', default=20, type=int, help='Number of epochs for training.') parser.add_argument('--use-crossval', default=False, action='store_true', help='Optimize hyper-parameters with cross-validation.' 'This script **no longer** supports cross-validation' 'because EgoCom has a predefined test set.' 'Never set this to True. Included for compatibility.') parser.add_argument('--seed', default=0, type=int, help='Seed for stochastic code for reproducibility.') # Extract argument flags args = parser.parse_args() param_idx = args.param_idx num_param_blocks = args.num_param_blocks use_all_perspectives = args.use_all_perspectives predict_only_host = args.predict_only_host if args.include_prior is None: include_prior_list = [True, False] elif args.include_prior.lower() is 'true': include_prior_list = [True] elif args.include_prior.lower() is 'false': include_prior_list = [False] else: raise ValueError('--include prior should be None, "true", or "false') prediction_task = args.prediction_task epochs = args.epochs use_crossval = args.use_crossval seed = args.seed # Make sure flag values are valid. assert (use_all_perspectives, predict_only_host) in [ (True, True), (False, True), (False, False)] # PyTorch and Skorch imports needed based on prediction task. if prediction_task == 'multi': from skorch import NeuralNetClassifier elif prediction_task == 'binary': from skorch import NeuralNetBinaryClassifier else: assert args.prediction_task in ['binary', 'multi'] flag_settings = { 'param_idx': param_idx, 'num_param_blocks': num_param_blocks, 'use_all_perspectives': use_all_perspectives, 'predict_only_host': predict_only_host, 'include_prior': include_prior_list, 'prediction_task': prediction_task, 'epochs': epochs, 'use_crossval': use_crossval, 'seed': seed, } print('Running with settings:', flag_settings) # Location where dataset and pre-processed data is stored. egocom_loc = "/datasets/cgn/EGOCOM/egocom_features/no_audio/" # Seed everything for reproducibility torch.manual_seed(seed) torch.cuda.manual_seed(seed)
np.random.seed(seed)
numpy.random.seed
import gtimer as gt import numpy as np import scipy as sp import torch import math import copy import logging from robolearn.algorithms.rl_algos import RLAlgorithm from robolearn.utils.logging import logger import robolearn.torch.utils.pytorch_util as ptu # from robolearn.utils.plots.core import subplots from collections import OrderedDict from robolearn.algorithms.rl_algos import ConstantPolicyPrior from robolearn.algorithms.rl_algos import generate_noise from robolearn.algorithms.rl_algos import IterationData from robolearn.algorithms.rl_algos import TrajectoryInfo from robolearn.algorithms.rl_algos import PolicyInfo from robolearn.algorithms.rl_algos import DynamicsLRPrior from robolearn.algorithms.rl_algos import DynamicsPriorGMM from robolearn.algorithms.rl_algos import TrajOptLQR class MDGPS(RLAlgorithm): def __init__(self, env, local_policies, global_policy, cost_fcn, eval_env=None, train_cond_idxs=None, test_cond_idxs=None, num_samples=1, test_samples=1, noisy_samples=True, noise_hyperparams=None, seed=10, base_kl_step=0.1, global_opt_iters=5000, global_opt_batch_size=64, global_opt_lr=1e-5, traj_opt_prev='nn_pol', traj_opt_iters=1, traj_opt_min_eta=1e-8, traj_opt_max_eta=1e16, **kwargs): # TO DEFINE self._fit_dynamics = True self._initial_state_var = 1.0e-2 self._global_opt_batch_size = global_opt_batch_size self._global_opt_iters = global_opt_iters self._global_opt_ent_reg = 0.0 # For update pol variance self._global_pol_sample_mode = 'add' self._global_opt_lr = global_opt_lr self._global_samples_counter = 0 self._first_global_eval = False self.base_kl_step = base_kl_step self._max_step_mult = 3.0 self._min_step_mult = 0.5 self._kl_step_rule = 'laplace' self._traj_opt_iters = traj_opt_iters self._max_ent_traj = 0.0 self._traj_opt_prev = traj_opt_prev self.T = kwargs['max_path_length'] self._num_samples = num_samples self._test_samples = test_samples self._train_cond_idxs = train_cond_idxs self._test_cond_idxs = test_cond_idxs # Get dimensions from the environment self.dU = env.action_dim self.dX = env.obs_dim # TODO: DOING THIS TEMPORALLY self.dO = env.obs_dim # Number of initial conditions self.M = len(local_policies) exploration_policy = global_policy RLAlgorithm.__init__( self, env=env, exploration_policy=exploration_policy, eval_env=eval_env, eval_policy=global_policy, eval_sampler=self.sample_global_pol, **kwargs ) # Rename for GPS self.global_policy = self.eval_policy self.local_policies = local_policies # Noise to be used with trajectory distributions self.noise_data = np.zeros((self.num_epochs, self.M, self._num_samples, self.T, self.dU)) self._noisy_samples = noisy_samples if self._noisy_samples: for ii in range(self.num_epochs): for cond in range(self.M): for n in range(self._num_samples): self.noise_data[ii, cond, n, :, :] = \ generate_noise(self.T, self.dU, noise_hyperparams) # IterationData objects for each condition. self.cur = [IterationData() for _ in range(self.M)] self.prev = [IterationData() for _ in range(self.M)] # Trajectory Info for m in range(self.M): self.cur[m].traj_info = TrajectoryInfo() if self._fit_dynamics: sigma_regu = 1e-6 prior = DynamicsPriorGMM( min_samples_per_cluster=40, max_clusters=20, max_samples=20, strength=1., ) self.cur[m].traj_info.dynamics = \ DynamicsLRPrior(prior=prior, sigma_regu=sigma_regu) self.cur[m].traj_distr = local_policies[m] # Cost Fcn self._cost_fcn = cost_fcn # Global Policy Optimization self.global_pol_optimizer = torch.optim.Adam( self.global_policy.parameters(), lr=self._global_opt_lr, betas=(0.9, 0.999), eps=1e-08, # Term added to the denominator for numerical stability # weight_decay=0.005, weight_decay=0.5, amsgrad=True, ) # Local Trajectory Information self._local_pol_optimizer = TrajOptLQR( cons_per_step=False, use_prev_distr=False, update_in_bwd_pass=True, min_eta=traj_opt_min_eta, max_eta=traj_opt_max_eta, ) level = logging.INFO self.logger = logging.getLogger(__name__) self.logger.setLevel(level) console = logging.StreamHandler() self.logger.addHandler(console) for handler in self.logger.handlers: handler.setLevel(level) self.eval_statistics = None self._return_fig = None self._return_axs = None self._return_lines = [None for _ in range(self.n_test_conds)] # MDGPS data # # ---------- # for m in range(self.M): # Same policy prior type for all conditions self.cur[m].pol_info = PolicyInfo( T=self.T, dU=self.dU, dX=self.dX, init_pol_wt=0.01, ) self.cur[m].pol_info.policy_prior = ConstantPolicyPrior() def train(self, start_epoch=0): # Get snapshot of initial stuff if start_epoch == 0: self.training_mode(False) params = self.get_epoch_snapshot(-1) logger.save_itr_params(-1, params) self._n_env_steps_total = start_epoch * self.num_train_steps_per_epoch gt.reset() gt.set_def_unique(False) for epoch in gt.timed_for( range(start_epoch, self.num_epochs), save_itrs=True, ): self._start_epoch(epoch) # self._current_path_builder = PathBuilder() # Sample from environment using current trajectory distributions noise = self.noise_data[epoch] self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Sampling from local trajectories...' % (type(self).__name__, epoch)) paths = self.sample_local_pol(noise=noise) self._exploration_paths = paths # self._handle_path(paths) self._n_env_steps_total += int(self.n_train_conds*self._num_samples*self.T) # Iterative learning step gt.stamp('sample') self._try_to_train() gt.stamp('train') # Evaluate if requirements are met self._try_to_eval(epoch) gt.stamp('eval') self._end_epoch() def _do_training(self): epoch = self._n_epochs # batch = self.get_batch() paths = self.get_exploration_paths() self.logger.info('') self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Creating Sample List...' % (type(self).__name__, epoch)) for m, m_train in enumerate(self._train_cond_idxs): self.cur[m_train].sample_list = SampleList(paths[m]) # Update dynamics model using all samples. self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Updating dynamics linearization...' % (type(self).__name__, epoch)) self._update_dynamic_model() # Evaluate sample costs self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Evaluating samples costs...' % (type(self).__name__, epoch)) self._eval_iter_samples_costs() # Update Networks # On the first iteration, need to catch policy up to init_traj_distr. if self._n_epochs == 1: self.logger.info("\n"*2) self.logger.info('%s: itr:%02d | ' 'S-step for init_traj_distribution (iter=0)...' % (type(self).__name__, epoch)) self.new_traj_distr = [self.cur[cond].traj_distr for cond in range(self.M)] self._update_global_policy() # TODO: self.sample_global_pol() # Update global policy linearizations. self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Updating global policy linearization...' % (type(self).__name__, epoch)) self._update_local_policies_fit() # Update KL step if self._n_epochs > 1: self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Updating KL step size with GLOBAL policy...' % (type(self).__name__, epoch)) self._update_kl_step_size() # C-step self.logger.info('') self.logger.info('%s: itr:%02d | ' 'Updating trajectories...' % (type(self).__name__, epoch)) for ii in range(self._traj_opt_iters): self.logger.info('-%s: itr:%02d | Inner iteration %d/%d' % (type(self).__name__, epoch, ii+1, self._traj_opt_iters)) self._update_local_policies() # S-step self.logger.info('') self.logger.info('%s:itr:%02d | ->| S-step |<-' % (type(self).__name__, epoch)) self._update_global_policy() # if self.eval_statistics is None: # """ # Eval should set this to None. # This way, these statistics are only computed for one batch. # """ # self.eval_statistics = OrderedDict() # # self.eval_statistics['Bellman Residual (QFcn)'] = \ # # np.mean(ptu.get_numpy(bellman_residual)) # self.eval_statistics['Surrogate Reward (Policy)'] = \ # np.mean(ptu.get_numpy(surrogate_cost)) def _can_evaluate(self): return True def evaluate(self, epoch): statistics = OrderedDict() self._update_logging_data() statistics.update(self.eval_statistics) self.eval_statistics = None paths = self.sample_global_pol() if paths is None: print("NO LOGGING LAST SAMPLING") return cond_returns_mean = np.zeros(len(paths)) cond_returns_std = np.zeros(len(paths)) for cc, cond_path in enumerate(paths): sample_list = SampleList(cond_path) true_cost, cost_estimate, cost_compo = \ self._eval_sample_list_cost(sample_list, self._cost_fcn) cond_returns_mean[cc] = np.mean(np.sum(true_cost, axis=-1)) cond_returns_std[cc] = np.std(np.sum(true_cost, axis=-1)) stat_txt = '[Cond-%02d] Global Mean Return' % cc statistics[stat_txt] = cond_returns_mean[cc] stat_txt = '[Cond-%02d] Global Std Return' % cc statistics[stat_txt] = cond_returns_std[cc] stat_txt = '[Cond-%02d] Eta' % cc statistics[stat_txt] = self.cur[cc].eta # stat_txt = 'Mean Return' # statistics[stat_txt] = np.mean(cond_returns_mean) # Record the data for key, value in statistics.items(): logger.record_tabular(key, value) self._update_plot(statistics) def _update_plot(self, statistics): # if self._return_fig is None: # # self._return_fig, self._return_axs = subplots(1, self.n_test_conds+1) # self._return_fig, self._return_axs = plt.subplots(1, self.n_test_conds+1) # for aa, ax in enumerate(self._return_axs[:-1]): # self._return_lines = \ # ax.plot(self._n_epochs, # statistics['[Cond-%02d] Mean Return' % aa], # color='b', # marker='o', # markersize=2 # ) # # plt.show(block=False) # else: # for aa, line in enumerate(self._return_lines[:-1]): # line.set_xdata( # np.append(line.get_xdata(), # self._n_epochs) # ) # line.set_ydata( # np.append(line.get_ydata(), # statistics['[Cond-%02d] Mean Return' % aa]) # ) # self._return_fig.canvas.draw() # plt_pause(0.01) # self._return_fig, self._return_axs = plt.subplots(1, self.n_test_conds+1) # for aa, ax in enumerate(self._return_axs[:-1]): # self._return_lines = \ # ax.plot(self._n_epochs, # statistics['[Cond-%02d] Mean Return' % aa], # color='b', # marker='o', # markersize=2 # ) # self._return_fig.savefig('tempo/fig%02d.png' % self._n_epochs) # # del self._return_fig # del self._return_axs # del self._return_lines pass def _update_logging_data(self): if self.eval_statistics is None: """ Eval should set this to None. This way, these statistics are only computed for one batch. """ self.eval_statistics = OrderedDict() def _end_epoch(self): # TODO: change IterationData to reflect new stuff better del self.prev self.prev = copy.deepcopy(self.cur) for m in range(self.M): self.prev[m].new_traj_distr = self.new_traj_distr[m] # NEW IterationData object, and remove new_traj_distr self.cur = [IterationData() for _ in range(self.M)] for m in range(self.M): self.cur[m].traj_info = TrajectoryInfo() self.cur[m].traj_info.dynamics = \ copy.deepcopy(self.prev[m].traj_info.dynamics) self.cur[m].step_mult = self.prev[m].step_mult self.cur[m].eta = self.prev[m].eta self.cur[m].traj_distr = self.new_traj_distr[m] self.cur[m].traj_info.last_kl_step = \ self.prev[m].traj_info.last_kl_step # MDGPS self.cur[m].pol_info = copy.deepcopy(self.prev[m].pol_info) self.new_traj_distr = None RLAlgorithm._end_epoch(self) def _update_dynamic_model(self): """ Instantiate dynamics objects and update prior. Fit dynamics to current samples. """ for m in range(self.M): cur_data = self.cur[m].sample_list X = cur_data['observations'] U = cur_data['actions'] # Update prior and fit dynamics. self.cur[m].traj_info.dynamics.update_prior(X, U) self.cur[m].traj_info.dynamics.fit(X, U) # Fm = self.cur[m].traj_info.dynamics.Fm # fv = self.cur[m].traj_info.dynamics.fv # T = -2 # N = 0 # oo = X[N, T, :] # uu = U[N, T, :] # oo_uu = np.concatenate((oo, uu), axis=0) # oop1 = Fm[T].dot(oo_uu) + fv[T] # print('real', X[N, T+1, :]) # print('pred', oop1) # input('fds') # Fit x0mu/x0sigma. x0 = X[:, 0, :] x0mu = np.mean(x0, axis=0) self.cur[m].traj_info.x0mu = x0mu self.cur[m].traj_info.x0sigma = \ np.diag(np.maximum(np.var(x0, axis=0), self._initial_state_var)) prior = self.cur[m].traj_info.dynamics.get_prior() if prior: mu0, Phi, priorm, n0 = prior.initial_state() N = len(cur_data) self.cur[m].traj_info.x0sigma += \ Phi + (N*priorm) / (N+priorm) * \ np.outer(x0mu-mu0, x0mu-mu0) / (N+n0) def _eval_iter_samples_costs(self): for cond in range(self.M): sample_list = self.cur[cond].sample_list true_cost, cost_estimate, cost_compo = \ self._eval_sample_list_cost(sample_list, self._cost_fcn) # Cost sample self.cur[cond].cs = true_cost # True value of cost. # Cost composition self.cur[cond].cost_compo = cost_compo # Cost 'composition'. # Cost estimate. self.cur[cond].traj_info.Cm = cost_estimate[0] # Quadratic term (matrix). self.cur[cond].traj_info.cv = cost_estimate[1] # Linear term (vector). self.cur[cond].traj_info.cc = cost_estimate[2] # Constant term (scalar). def _eval_sample_list_cost(self, sample_list, cost_fcn): """ Evaluate costs for a sample_list using a specific cost function. Args: cost: self.cost_function[cond] cond: Condition to evaluate cost on. """ # Constants. T, dX, dU = self.T, self.dX, self.dU N = len(sample_list) # Compute cost. cs = np.zeros((N, T)) cc = np.zeros((N, T)) cv =
np.zeros((N, T, dX+dU))
numpy.zeros
import numpy as np import scipy.linalg,scipy.misc import os,time import tensorflow as tf import matplotlib.pyplot as plt import csv import warp # load GTSRB data def loadGTSRB(opt,fname): if not os.path.exists(fname): # download and preprocess GTSRB dataset os.makedirs(os.path.dirname(fname)) os.system("wget -O data/GTSRB_Final_Training_Images.zip http://benchmark.ini.rub.de/Dataset/GTSRB_Final_Training_Images.zip") os.system("wget -O data/GTSRB_Final_Test_Images.zip http://benchmark.ini.rub.de/Dataset/GTSRB_Final_Test_Images.zip") os.system("wget -O data/GTSRB_Final_Test_GT.zip http://benchmark.ini.rub.de/Dataset/GTSRB_Final_Test_GT.zip") os.system("cd data && unzip GTSRB_Final_Training_Images.zip") os.system("cd data && unzip GTSRB_Final_Test_Images.zip") os.system("cd data && unzip GTSRB_Final_Test_GT.zip") # training data print("preparing training data...") images,bboxes,labels = [],[],[] for c in range(43): prefix = "data/GTSRB/Final_Training/Images/{0:05d}".format(c) with open("{0}/GT-{1:05d}.csv".format(prefix,c)) as file: reader = csv.reader(file,delimiter=";") next(reader) for line in reader: img = plt.imread(prefix+"/"+line[0]) rawH,rawW = img.shape[0],img.shape[1] scaleH,scaleW = float(opt.fullH)/rawH,float(opt.fullW)/rawW imgResize = scipy.misc.imresize(img,(opt.fullH,opt.fullW,3)) images.append(imgResize) bboxes.append([float(line[3])*scaleW,float(line[4])*scaleH, float(line[5])*scaleW,float(line[6])*scaleH]) labels.append(int(line[7])) trainData = { "image": np.array(images), "bbox":
np.array(bboxes)
numpy.array
import numpy as np #Here we define some extra utilities needed for spin-summed, unrestricted CCSD def solveccd(F_a,F_b,G,T,nocca,noccb,nvirta,nvirtb,x=4.0): #Solve for opposite-spin amplitudes Tnew = np.zeros(np.shape(T)) for i in range(nocca): for j in range(noccb): for a in range(nvirta): aa = a + nocca for b in range(nvirtb): bb = b + noccb d = (F_a[i,i] + F_b[j,j] - F_a[aa,aa] - F_b[bb,bb]) Tnew[i,j,a,b] = G[i,j,a,b]/d #Damp amplitudes to improve convergence return(Tnew/x + T*(x-1.0)/x) def Ecorr(F_a,F_b,Eri_aa,Eri_ab,Eri_bb,T2_aa,T2_ab,T2_bb,T1_a,T1_b,nocca,noccb): #unrestricted, spin-summation of the CCSD correlation energy #CCD piece Eaa = 0.25e0*np.einsum('ijab,abij',T2_aa,Eri_aa[nocca:,nocca:,:nocca,:nocca]) Ebb = 0.25e0*np.einsum('ijab,abij',T2_bb,Eri_bb[noccb:,noccb:,:noccb,:noccb]) Eab = np.einsum('ijab,abij',T2_ab,Eri_ab[nocca:,noccb:,:nocca,:noccb]) # print("E2aa =", Eaa) # print("E2ab =", Eab) # print("E2bb =", Ebb) E2 = Eaa + Ebb + Eab #linear in singles E1 = np.einsum('ia,ai',T1_a,F_a[nocca:,:nocca]) E1 += np.einsum('ia,ai',T1_b,F_b[noccb:,:noccb]) #quadratic in singles E1 += 0.5e0*np.einsum('ia,jb,abij',T1_a,T1_a,Eri_aa[nocca:,nocca:,:nocca,:nocca]) E1 += 0.5e0*np.einsum('ia,jb,abij',T1_a,T1_b,Eri_ab[nocca:,noccb:,:nocca,:noccb]) E1 += 0.5e0*np.einsum('ia,jb,baji',T1_b,T1_a,Eri_ab[nocca:,noccb:,:nocca,:noccb]) E1 += 0.5e0*np.einsum('ia,jb,abij',T1_b,T1_b,Eri_bb[noccb:,noccb:,:noccb,:noccb]) # print("E1 =", E1) return E1+E2 def diis_setup(diis_start,diis_dim,nocca,noccb,nvirta,nvirtb): #use direct inversion of the iterative subspace (Pulay Chem Phys Lett 73(390), 1980) to extrapolate CC amplitudes. #This function sets up the various arrays we need for the extrapolation. Errors = np.zeros([diis_dim,nocca,noccb,nvirta,nvirtb]) Ts = np.zeros([diis_dim,nocca,noccb,nvirta,nvirtb]) Err_vec = np.zeros([nocca,noccb,nvirta,nvirtb]) return Errors, Ts, Err_vec def get_Err(F_a,F_b,G,T,nocca,noccb,noccl,noccu,variant): #Calculate the residual for the CC equations at a given value of T2 amplitudes. Just use full contractions, in case we're # doing non canonical CC if (variant == 'roccsd0'): F_c = 0.5e0*(F_a+F_b) soa = noccu-nocca sob = noccu-noccb Ax = -np.einsum('ca,ijcb->ijab',F_a[nocca:,nocca:],T) Ax -= np.einsum('cb,ijac->ijab', F_b[noccb:,noccb:],T) Ax += np.einsum('ki,kjab->ijab', F_a[:nocca,:nocca],T) Ax += np.einsum('kj,ikab->ijab', F_b[:noccb,:noccb],T) #Symmetrize if doing singlet-paired CC if (variant == 'roccsd0'): Ax[:noccl,:noccl,soa:,sob:] = -
np.einsum('ca,ijcb->ijab', F_c[noccu:,noccu:],T[:noccl,:noccl,soa:,sob:])
numpy.einsum
# Copyright 2017 University of Maryland. # # This file is part of Sesame. It is subject to the license terms in the file # LICENSE.rst found in the top-level directory of this distribution. import numpy as np from .observables import * from .defects import defectsF def getF(sys, v, efn, efp, veq): ########################################################################### # organization of the right hand side vector # ########################################################################### # A site with coordinates (i,j,k) corresponds to a site number s as follows: # k = s//(Nx*Ny) # j = s - s//Nx # i = s - j*Nx - k*Nx*Ny # # Rows for (efn_s, efp_s, v_s) # ---------------------------- # fn_row = 3*s # fp_row = 3*s+1 # fv_row = 3*s+2 Nx, Ny, Nz = sys.xpts.shape[0], sys.ypts.shape[0], sys.zpts.shape[0] # right hand side vector global vec vec = np.zeros((3*Nx*Ny*Nz,)) def update(fn, fp, fv, sites): global vec vec[3*sites] = fn vec[3*sites+1] = fp vec[3*sites+2] = fv ########################################################################### # For all sites in the system # ########################################################################### # carrier densities n = sys.Nc * np.exp(+sys.bl + efn + v) p = sys.Nv * np.exp(-sys.Eg - sys.bl - efp - v) # equilibrium carrier densities n_eq = sys.Nc * np.exp(+sys.bl + veq) p_eq = sys.Nv * np.exp(-sys.Eg - sys.bl - veq) # bulk charges rho = sys.rho - n + p # recombination rates r = get_bulk_rr(sys, n, p) # charge defects if len(sys.defects_list) != 0: defectsF(sys, sys.defects_list, n, p, rho, r) # charge devided by epsilon rho = rho / sys.epsilon # reshape the array as array[y-indices, x-indices] _sites = np.arange(Nx*Ny*Nz, dtype=int).reshape(Nz, Ny, Nx) def currents(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites): jnx_s, jnx_sm1, jny_s, jny_smN, jnz_s, jnz_smNN = 0, 0, 0, 0, 0, 0 jpx_s, jpx_sm1, jpy_s, jpy_smN, jpz_s, jpz_smNN = 0, 0, 0, 0, 0, 0 if dx.all() != 0: jnx_s = get_jn(sys, efn, v, sites, sites + 1, dx) jpx_s = get_jp(sys, efp, v, sites, sites + 1, dx) if dxm1.all() != 0: jnx_sm1 = get_jn(sys, efn, v, sites - 1, sites, dxm1) jpx_sm1 = get_jp(sys, efp, v, sites - 1, sites, dxm1) if dy.all() != 0: jny_s = get_jn(sys, efn, v, sites, sites + Nx, dy) jpy_s = get_jp(sys, efp, v, sites, sites + Nx, dy) if dym1.all() != 0: jny_smN = get_jn(sys, efn, v, sites - Nx, sites, dym1) jpy_smN = get_jp(sys, efp, v, sites - Nx, sites, dym1) if dz.all() != 0: jnz_s = get_jn(sys, efn, v, sites, sites + Nx*Ny, dz) jpz_s = get_jp(sys, efp, v, sites, sites + Nx*Ny, dz) if dzm1.all() != 0: jnz_smNN = get_jn(sys, efn, v, sites - Nx*Ny, sites, dzm1) jpz_smNN = get_jp(sys, efp, v, sites - Nx*Ny, sites, dzm1) return jnx_s, jnx_sm1, jny_s, jny_smN, jnz_s, jnz_smNN,\ jpx_s, jpx_sm1, jpy_s, jpy_smN, jpz_s, jpz_smNN def ddp(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites): # Drift diffusion Poisson equations that determine fn, fp, fv # lattice distances dxbar = (dx + dxm1) / 2. dybar = (dy + dym1) / 2. dzbar = (dz + dzm1) / 2. # compute currents jnx_s, jnx_sm1, jny_s, jny_smN, jnz_s, jnz_smNN,\ jpx_s, jpx_sm1, jpy_s, jpy_smN, jpz_s, jpz_smNN = \ currents(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites) # drift diffusion u = sys.g[sites] - r[sites] fn = (jnx_s - jnx_sm1) / dxbar + (jny_s - jny_smN) / dybar \ + (jnz_s - jnz_smNN) / dzbar + u fp = (jpx_s - jpx_sm1) / dxbar + (jpy_s - jpy_smN) / dybar \ + (jpz_s - jpz_smNN) / dzbar - u # Poisson dv_sm1, dv_sp1, dv_smN, dv_spN, dv_smNN, dv_spNN = 0, 0, 0, 0, 0, 0 v_s = v[sites] if dx.all() != 0: dv_sp1 = (v[sites+1] - v_s) / dx if dxm1.all() != 0: dv_sm1 = (v_s - v[sites-1]) / dxm1 if dy.all() != 0: dv_spN = (v[sites+Nx] - v_s) / dy if dym1.all() != 0: dv_smN = (v_s - v[sites-Nx]) / dym1 if dz.all() != 0: dv_spNN = (v[sites+Nx*Ny] - v_s) / dz if dzm1.all() != 0: dv_smNN = (v_s - v[sites-Nx*Ny]) / dzm1 fv = (dv_sm1 - dv_sp1) / dxbar + (dv_smN - dv_spN) / dybar\ + (dv_smNN - dv_spNN) / dzbar - rho[sites] # update vector update(fn, fp, fv, sites) def right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites): # Boundary conditions on the right contact # lattice distances and sites dx = np.array([0]) dxm1 = sys.dx[-1] dxbar = (dx + dxm1) / 2. dybar = (dy + dym1) / 2. dzbar = (dz + dzm1) / 2. # compute currents _, jnx_sm1, jny_s, jny_smN, jnz_s, jnz_smNN,\ _, jpx_sm1, jpy_s, jpy_smN, jpz_s, jpz_smNN = \ currents(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites) # compute jx_s with continuity equation jnx_s = jnx_sm1 + dxbar * (r[sites] - sys.g[sites] - (jny_s - jny_smN)/dybar\ - (jnz_s - jnz_smNN)/dzbar) jpx_s = jpx_sm1 + dxbar * (sys.g[sites] - r[sites] - (jpy_s - jpy_smN)/dybar\ - (jpz_s - jpz_smNN)/dzbar) # b_n, b_p and b_v values bn = jnx_s + sys.Scn[1] * (n[sites] - n_eq[sites]) bp = jpx_s - sys.Scp[1] * (p[sites] - p_eq[sites]) bv = 0 # Dirichlet BC # update right hand side vector update(bn, bp, bv, sites) ########################################################################### # inside the system: 0 < i < Nx-1, 0 < j < Ny-1, 0 < k < Nz-1 # ########################################################################### # We compute fn, fp, fv on the inner part of the system. # list of the sites inside the system sites = _sites[1:Nz-1, 1:Ny-1, 1:Nx-1].flatten() # lattice distances dx = np.tile(sys.dx[1:], (Ny-2)*(Nz-2)) dy = np.repeat(sys.dy[1:], (Nx-2)*(Nz-2)) dz = np.repeat(sys.dz[1:], (Nx-2)*(Ny-2)) dxm1 = np.tile(sys.dx[:-1], (Ny-2)*(Nz-2)) dym1 = np.repeat(sys.dy[:-1], (Nx-2)*(Nz-2)) dzm1 = np.repeat(sys.dz[:-1], (Nx-2)*(Ny-2)) # compute fn, fp, fv and update vector ddp(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites) ########################################################################### # left boundary: i = 0, 0 <= j <= Ny-1, 0 <= k <= Nz-1 # ########################################################################### # list of the sites on the left side sites = _sites[:, :, 0].flatten() # compute the currents jnx = get_jn(sys, efn, v, sites, sites + 1, sys.dx[0]) jpx = get_jp(sys, efp, v, sites, sites + 1, sys.dx[0]) # compute an, ap, av an = jnx - sys.Scn[0] * (n[sites] - n_eq[sites]) ap = jpx + sys.Scp[0] * (p[sites] - p_eq[sites]) av = 0 # to ensure Dirichlet BCs update(an, ap, av, sites) ########################################################################### # right boundaries # ########################################################################### ########################################################################### # right boundary: i = Nx-1, 0 < j < Ny-1, 0 < k < Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[1:Nz-1, 1:Ny-1, Nx-1].flatten() # lattice distances dy = np.repeat(sys.dy[1:], Nz-2) dym1 = np.repeat(sys.dy[:-1], Nz-2) dz = np.repeat(sys.dz[1:], Ny-2) dzm1 = np.repeat(sys.dz[:-1], Ny-2) # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = Ny-1, 0 < k < Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[1:Nz-1, Ny-1, Nx-1].flatten() # lattice distances dy = np.array([0]) dym1 = np.repeat(sys.dy[-1], Nz-2) dz = sys.dz[1:] dzm1 = sys.dz[:-1] # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = 0, 0 < k < Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[1:Nz-1, 0, Nx-1].flatten() # lattice distances dy = np.repeat(sys.dy[-1], Nz-2) dym1 = np.array([0]) dz = sys.dz[1:] dzm1 = sys.dz[:-1] # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, 0 < j < Ny-1, k = Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[Nz-1, 1:Ny-1, Nx-1].flatten() # lattice distances dy = sys.dy[1:] dym1 = sys.dy[:-1] dz = np.array([0]) dzm1 = np.repeat(sys.dz[-1], Ny-2) # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, 0 < j < Ny-1, k = 0 # ########################################################################### # list of the sites on the right side sites = _sites[0, 1:Ny-1, Nx-1].flatten() # lattice distances dy = sys.dy[1:] dym1 = sys.dy[:-1] dz = np.repeat(sys.dz[0], Ny-2) dzm1 = np.array([0]) # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = Ny-1, k = 0 # ########################################################################### # list of the sites on the right side sites = _sites[0, Ny-1, Nx-1].flatten() # lattice distances dy = np.array([0]) dym1 = sys.dy[-1] dz = sys.dz[0] dzm1 = np.array([0]) # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = Ny-1, k = Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[Nz-1, Ny-1, Nx-1].flatten() # lattice distances dy = np.array([0]) dym1 = sys.dy[-1] dz = np.array([0]) dzm1 = sys.dz[-1] # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = 0, k = Nz-1 # ########################################################################### # list of the sites on the right side sites = _sites[Nz-1, 0, Nx-1].flatten() # lattice distances dy = sys.dy[0] dym1 = np.array([0]) dz = np.array([0]) dzm1 = sys.dz[-1] # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # right boundary: i = Nx-1, j = 0, k = 0 # ########################################################################### # list of the sites on the right side sites = _sites[0, 0, Nx-1].flatten() # lattice distances dy = sys.dy[0] dym1 = np.array([0]) dz = sys.dz[0] dzm1 = np.array([0]) # compute the BC and update the right hand side vector right_bc(sys, efn, efp, v, dy, dym1, dz, dzm1, sites) ########################################################################### # faces between contacts: 0 < i < Nx-1, j or k fixed # ########################################################################### # Here we focus on the faces between the contacts. ########################################################################### # z-face top: 0 < i < Nx-1, 0 < j < Ny-1, k = Nz-1 # ########################################################################### # list of the sites sites = _sites[Nz-1, 1:Ny-1, 1:Nx-1].flatten() # lattice distances dx = np.tile(sys.dx[1:], Ny-2) dy = np.repeat(sys.dy[1:], Nx-2) dz = np.array([0]) dxm1 = np.tile(sys.dx[:-1], Ny-2) dym1 = np.repeat(sys.dy[:-1], Nx-2) dzm1 = np.repeat(sys.dz[-1], (Nx-2)*(Ny-2)) # compute fn, fp, fv and update vector ddp(sys, efn, efp, v, dx, dxm1, dy, dym1, dz, dzm1, sites) ########################################################################### # z- face bottom: 0 < i < Nx-1, 0 < j < Ny-1, k = 0 # ########################################################################### # list of the sites sites = _sites[0, 1:Ny-1, 1:Nx-1].flatten() # lattice distances dx = np.tile(sys.dx[1:], Ny-2) dy = np.repeat(sys.dy[1:], Nx-2) dz =
np.repeat(sys.dz[0], (Nx-2)*(Ny-2))
numpy.repeat
# -*- coding: utf-8 -*- """ @Author: <NAME> @Site: https://github.com/liushaoweihua """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf class LoggingMetricsHook(tf.train.SessionRunHook): def __init__(self, metric_ops, label_map_reverse, save_steps, output_dir): self.metric_ops = metric_ops self.metrics_num = len({item: metric_ops[item] for item in metric_ops if not item.endswith('update')}) self.label_map_reverse = label_map_reverse self.save_steps = save_steps self.output_dir = output_dir self.metric_save_path = os.path.join(self.output_dir, 'train_metrics.txt') self.figure_save_path = os.path.join(self.output_dir, 'train_metrics.png') if not tf.gfile.Exists(self.output_dir): tf.gfile.MakeDirs(self.output_dir) def begin(self): self.step = -1 self.metric_results = {metric_name: [] for metric_name in self.metric_ops} self.metric_writer = tf.gfile.GFile(self.metric_save_path, 'w') def before_run(self, run_context): self.step += 1 return tf.train.SessionRunArgs(self.metric_ops) def after_run(self, run_context, run_values): if self.step % self.save_steps == 0: results = run_values.results for metric_name in results: self.metric_results[metric_name].append(results[metric_name]) results = {item: results[item] for item in results if not item.endswith('update')} results_list = {item: results[item] for item in results if isinstance(results[item], list)} results_scalar = {item: results[item] for item in results if not isinstance(results[item], list)} logging_info = 'step = %d, %s, %s' \ % (self.step, ', '.join(['%s = %.6f' % item for item in results_scalar.items()]), ', '.join(['%s = %s' % (item[0], [float(i) for i in list(map(lambda x: '%.6f' % x, item[1]))]) for item in results_list.items()])) print(logging_info) self.metric_writer.write(logging_info + '\n') def end(self, session): self.metric_writer.close() self.metric_results = {item: self.metric_results[item] for item in self.metric_results if not item.endswith('update')} fig, axs = plt.subplots(self.metrics_num, 1, sharex=True) fig.set_size_inches(16, 4.5 * self.metrics_num) for i, metric_name in enumerate(self.metric_results): metric_result = self.metric_results[metric_name] steps = np.arange(0, self.save_steps * len(metric_result), self.save_steps) p = axs[i].plot(steps, self.metric_results[metric_name]) axs[i].set_ylabel(metric_name) axs[i].grid(True) if
np.array(self.metric_results[metric_name])
numpy.array
from warpkern import Anim import numpy as np import math import colorsys class TestAnim1(Anim): def __init__(self, ringcount: int, ledcount: int): self.ringcount = ringcount self.ledcount = ledcount self.totalLeds = ringcount * ledcount self.counter = 0 def tick(self, data: np.array, time: float, dt: float): self.data = data self.counter += 1 if self.counter > self.totalLeds: self.counter = 0 self.data = np.transpose(self.data) for r in range(self.ringcount): #ring = np.arange(self.ledcount) indxs = self.ledcount * r indxe = self.ledcount * (r + 1) self.data[1][indxs:indxe] = np.zeros(self.ledcount) self.data[2][indxs:indxe] =
np.zeros(self.ledcount)
numpy.zeros
import os import sys import numpy as np from pickle import dump, load import matplotlib.pyplot as plt import pandas as pd from information_metrics import * from scipy.stats import spearmanr, pearsonr from matplotlib.lines import Line2D sites_params = pd.read_csv( '../../DATA/EEGS/sel2_sites_params.csv') sites = sites_params['site_id'].values sel = 'revision_0' res_dir = '../../DATA/EEGS/fitted_models_%s' % sel fig_dir = '../../PROJECTS/Stomatal_conductance_eval/NP_figures' timescale = 'd' mod_list = ['WUE_%s' % timescale, 'CM_%s4' % timescale, 'SOX_%s3' % timescale] mod_list_labels = [r'WUE', r'CM', r'SOX'] mod_list_nparams= [2, 4, 3] model_colors = ['#04ABC2', '#B7CE63', '#FDE10D'] markers = [ 'o', 's', '^'] target_m = 'LE' target_o = 'LE_F_MDS' source_1 = 'S' source_2 = 'VPD_a' sensitivity_var = source_1 n_bins = 15 whis = [5, 95] def get_result_dict(): result = {} for l in ['site', 'general']: result[l] = {} for k in [ 'Wet', 'Dry', 'Mesic', 'Full']: result[l][k] = {} for a in ['aic', 'a_p', 'a_ft', 'a_fu1', 'a_fu2', 'a_fs', 'a_fr', 'a_fp']: result[l][k][a] = [] for site_i in sites: data_file = [os.path.join(res_dir, fi) for fi in os.listdir(res_dir) if fi.endswith('gen.csv') and (site_i in fi)][0] data_0 = pd.read_csv(data_file, header = 0, index_col = 0, parse_dates = True, infer_datetime_format = True,) vv = [source_1, source_2, target_o, ] for mi in mod_list: vv.append('%s_%s' % (target_m, mi)) vv.append('%s_%s_gen' % (target_m, mi)) data_0 = data_0[vv].dropna() p25 = np.percentile(data_0[sensitivity_var].values, 25) p75 = np.percentile(data_0[sensitivity_var].values, 75) data_dry = data_0[data_0[sensitivity_var] <= p25] data_med = data_0[(data_0[sensitivity_var] < p75) & (data_0[sensitivity_var] > p25)] data_wet = data_0[data_0[sensitivity_var] >= p75] for tag, dd in zip(['Mesic', 'Wet', 'Dry', 'Full'], [data_med, data_wet, data_dry, data_0]): site_crit = [] for mi, nparams in zip(mod_list, mod_list_nparams): target_g = '%s_%s_gen' % (target_m, mi) aic = aikaike_criterion_rss(dd[target_o].values, dd[target_g].values, nparams) site_crit.append(aic) x_s = list(np.sort(site_crit)) result['general'][tag]['aic'].append([x_s.index(xi) for xi in site_crit]) for tag, dd in zip(['Mesic', 'Wet', 'Dry', 'Full'], [data_med, data_wet, data_dry, data_0]): site_crit = [] for mi, nparams in zip(mod_list, mod_list_nparams): target = '%s_%s' % (target_m, mi) aic = aikaike_criterion_rss(dd[target_o].values, dd[target].values, nparams) site_crit.append(aic) x_s = list(np.sort(site_crit)) result['site'][tag]['aic'].append([x_s.index(xi) for xi in site_crit]) for tag, dd in zip(['Mesic', 'Wet', 'Dry', 'Full'], [data_med, data_wet, data_dry, data_0]): site_crit = [] for mi in mod_list: target_g = '%s_%s_gen' % (target_m, mi) a = cal_it_performance(dd, target_g, target_o, source_1, source_2, nbins=n_bins, norm=1) site_crit.append(a) site_crit = list(zip(*site_crit)) for ai, k in zip(site_crit, ['a_p', 'a_fu1', 'a_fu2', 'a_fs', 'a_fr', 'a_ft', 'a_fp']): result['general'][tag][k].append(ai) for tag, dd in zip(['Mesic', 'Wet', 'Dry' ,'Full'], [data_med, data_wet, data_dry, data_0]): site_crit = [] for mi in mod_list: target = '%s_%s' % (target_m, mi) a = cal_it_performance(dd, target, target_o, source_1, source_2, nbins=n_bins, norm=1) site_crit.append(a) site_crit = list(zip(*site_crit)) for ai, k in zip(site_crit, ['a_p', 'a_fu1', 'a_fu2', 'a_fs', 'a_fr', 'a_ft', 'a_fp']): result['site'][tag][k].append(ai) for l in ['site', 'general']: for k in ['Wet', 'Dry', 'Mesic', 'Full']: for a in ['aic', 'a_p', 'a_ft', 'a_fu1', 'a_fu2', 'a_fs', 'a_fr', 'a_fp']: result[l][k][a] = list(zip(*result[l][k][a])) return result def fig_prediction(fig_name): fig_name = os.path.join(fig_dir, fig_name) fig = plt.figure(figsize=(5.5, 5.5)) result = get_result_dict() positions=range(1, len(mod_list_labels) + 1) ax = fig.add_subplot(3, 3, 7) ax.axhline(0, linestyle=':', color='k') ax = fig.add_subplot(3, 3, 8) ax.axhline(0, linestyle=':', color='k') ax = fig.add_subplot(3, 3, 9) ax.axhline(0, linestyle=':', color='k') for spi, (a_i, a_i_name, ymin, ymax) in enumerate([['aic', '(a) AIC rank', 0.5, len(mod_list_labels) + 0.5], ['a_p', r'(b) $A_{p}$', 0.4, 0.85], ['d_a_p', r'(c) $\Delta$ $A_{p}$', -6, 6], ]): for cii, condition in enumerate(['Dry', 'Mesic', 'Wet']): ax = fig.add_subplot(3, 3, 1 + cii + 3 * spi) if a_i == 'aic': ax.title.set_text(condition) for i, c in enumerate(model_colors): if a_i == 'd_a_p': x = (np.array(result['site'][condition]['a_p'][i]) - np.array(result['general'][condition]['a_p'][i])) * 100 else: x = result['general'][condition][a_i][i] if a_i == 'aic': x = np.array(x) + 1 ax.boxplot([x, ], positions=[positions[i], ], showfliers=False, whis=whis, widths=0.5, patch_artist=True, boxprops=dict(facecolor=c, color=c), medianprops=dict(color='w', lw=0), flierprops=dict(markeredgecolor=c), capprops=dict(color=c, lw=2), whiskerprops=dict(color=c, lw=2)) else: ax.boxplot([x, ], positions=[positions[i], ], showfliers=False, whis=whis, widths=0.5, patch_artist=True, boxprops=dict(facecolor=c, color=c), medianprops=dict(color='w', lw=2), flierprops=dict(markeredgecolor=c), capprops=dict(color=c, lw=2), whiskerprops=dict(color=c, lw=2)) ax.set_xlim([0.5, len(mod_list_labels) + 0.5]) if a_i == 'aic': ax.set_xticks(positions) ax.set_yticks(range(1, len(mod_list_labels) + 1)) ax.set_xticklabels([]) elif a_i == 'a_p': ax.set_xticks(positions) ax.set_xticklabels([]) ax.set_yticks([0.4, 0.6, 0.8]) else: ax.set_xticks(positions) ax.set_yticks([-5, 0, 5]) ax.set_xticklabels(mod_list_labels, fontsize=10) if condition != 'Dry': ax.set_yticklabels([]) else: ax.set_ylabel(a_i_name, fontsize=12) ax.get_yaxis().set_label_coords(-0.25,0.5) ax.tick_params(direction='inout') ax.tick_params(direction='inout') ax.set_ylim([ymin, ymax]) plt.tight_layout() plt.savefig('%s.png' % fig_name, dpi=600) plt.savefig('%s.eps' % fig_name) def fig_function(fig_name): fig_name = os.path.join(fig_dir, fig_name) fig = plt.figure(figsize=(5.5, 8)) result = get_result_dict() positions=range(1, len(mod_list_labels) + 1) iter_criteria = [['a_ft', r'(a) $A_{f, T}$', -0.1, 0.85], ['a_fu1', r'(b) $A_{f, \theta}$', -0.125, 0.125], ['a_fu2', r'(c) $A_{f, D}$', -0.05, 0.35], ['a_fs', r'(d) $A_{f, S}$', -0.35, 0.05], ['a_fr', r'(e) $A_{f, R}$', -0.007, 0.007], ] for spi, (a_i, a_i_name, ymin, ymax) in enumerate(iter_criteria): for cii, condition in enumerate(['Dry', 'Mesic', 'Wet']): ax = fig.add_subplot(5, 3, 1 + cii + 3 * spi) if a_i == 'a_ft': ax.title.set_text(condition) ax.axhline(0, linestyle=':', color='k') for i, c in enumerate(model_colors): x = result['general'][condition][a_i][i] ax.boxplot([x, ], positions=[positions[i], ], showfliers=False, whis=whis, widths=0.5, patch_artist=True, boxprops=dict(facecolor=c, color=c), medianprops=dict(color='w', lw=2), flierprops=dict(markeredgecolor=c), capprops=dict(color=c, lw=2), whiskerprops=dict(color=c, lw=2)) ax.tick_params(direction='inout') ax.set_ylim([ymin, ymax]) ax.set_xlim([0.5, len(mod_list_labels) + 0.5]) if a_i == 'a_fr': ax.set_xticks(positions) ax.set_xticklabels(mod_list_labels, fontsize=10) else: ax.set_xticks(positions) ax.set_xticklabels([]) if condition != 'Dry': ax.set_yticklabels([]) else: ax.set_ylabel(a_i_name, fontsize=12) ax.get_yaxis().set_label_coords(-0.35,0.5) if (a_i == 'a_fr') and (condition == 'Dry'): ax.set_yticks([-0.005, 0, 0.005]) ax.set_yticklabels([-0.005, '0', 0.005]) plt.tight_layout() plt.savefig('%s.png' % fig_name, dpi=600) plt.savefig('%s.eps' % fig_name) def fig_scatter_A(fig_name): fig_name = os.path.join(fig_dir, fig_name) fig = plt.figure(figsize=(7.5, 7.5)) pft_list = ['NF', 'BF', 'G-C3', 'C-C3'] pft_subix = [3, 4, 7, 8] mod_list_ = ['SOX_d3', 'CM_d4', 'WUE_d'] colors_ = [model_colors[2], model_colors[1], model_colors[0]] markers_ = [markers[2], markers[1], markers[0]] legend_elements = [Line2D([0], [0], marker= markers[0], linestyle='', color=model_colors[0], label=r'$WUE$'), Line2D([0], [0], marker=markers[1], linestyle='', color=model_colors[1], label=r'$CM$'), Line2D([0], [0], marker=markers[2], linestyle='', color=model_colors[2], label=r'$SOX$')] for mod, color, marker in zip(mod_list_, colors_, markers_): results = [] for site_i in sites: pft = sites_params[(sites_params['site_id'] == site_i)]['pft'].values[0] subix = pft_subix[pft_list.index(pft)] data_file = [os.path.join(res_dir, fi) for fi in os.listdir(res_dir) if fi.endswith('gen.csv') and (site_i in fi)][0] data_0 = pd.read_csv(data_file, header = 0, index_col = 0, parse_dates = True, infer_datetime_format = True,) target_g = 'LE_%s_gen' % mod vv = ['LE_F_MDS', 'S', 'VPD_a', target_g ] data_0 = data_0[vv].dropna() p25 = np.percentile(data_0['S'].values, 25) p75 = np.percentile(data_0['S'].values, 75) data_dry = data_0[data_0['S'] <= p25] data_med = data_0[(data_0['S'] < p75) & (data_0['S'] > p25)] data_wet = data_0[data_0['S'] >= p75] x_fp = [] x_ft = [] x_p = [] for dd in [data_wet, data_dry, data_med]: a_p, a_fu1, a_fu2, a_fs, a_fr, a_ft, a_f = cal_it_performance(dd, target_g, 'LE_F_MDS', 'S', 'VPD_a', nbins=15, norm=1) x_fp.append(np.abs(a_fu1) + np.abs(a_fu2) + np.abs(a_fs) + np.abs(a_fr)) x_ft.append(np.abs(a_ft)) x_p.append(np.abs(a_p)) x_fp = np.mean(x_fp) x_ft = np.mean(x_ft) x_p = np.mean(x_p) results.append([x_fp, x_ft, x_p]) ax = fig.add_subplot(2, 2, 1) ax.scatter(x_fp, x_p, marker=marker, color=color, s=30) ax = fig.add_subplot(2, 2, 3) ax.scatter(x_ft, x_p, marker=marker, color=color, s=30) ax = fig.add_subplot(2, 2, 4) ax.scatter(x_ft, x_fp, marker=marker, color=color, s=30) ax = fig.add_subplot(4, 4, subix) ax.scatter(x_fp, x_p, marker=marker, color=color, s=20) x_fp, x_ft, x_p = list(zip(*results)) #print (mod[:3], np.round(spearmanr(x_fp, x_p)[0], 2), np.round(spearmanr(x_ft, x_p)[0], 2), np.round(spearmanr(x_fp, x_ft)[0], 2)) ax = fig.add_subplot(2, 2, 1) ax.set_xlim([0, 0.8]) ax.set_ylim([0.35, 0.85]) ax.set_xticks([0, 0.3, 0.6]) ax.set_yticks([0.4, 0.6, 0.8]) ax.tick_params(direction='inout') ax.set_ylabel('$A_{p}$', fontsize=14) ax.set_xlabel(r'$A_{f,P}$', fontsize=14) plt.legend(handles=legend_elements, frameon=False, ncol=1, fontsize=10, loc='lower right') ax.text(0.03, 0.80, '(a)', fontsize=14) ax = fig.add_subplot(2, 2, 3) ax.set_xlim([0, 0.8]) ax.set_ylim([0.35, 0.85]) ax.set_xticks([0, 0.3, 0.6]) ax.set_yticks([0.4, 0.6, 0.8]) ax.tick_params(direction='inout') ax.set_ylabel('$A_{p}$', fontsize=14) ax.set_xlabel('$|A_{f,T}|$', fontsize=14) ax.text(0.03, 0.80, '(b)', fontsize=14) ax = fig.add_subplot(2, 2, 4) ax.set_xlim([0, 0.8]) ax.set_ylim([0, 0.8]) ax.set_xticks([0, 0.3, 0.6]) ax.set_yticks([0, 0.3, 0.6]) ax.tick_params(direction='inout') ax.set_xlabel('$|A_{f,T}|$', fontsize=14) ax.set_ylabel(r'$A_{f,P}$', fontsize=14) ax.text(0.03, 0.73, '(c)', fontsize=14) for pft, xi in zip(['Needleleaf', 'Broadleaf', 'Grass', 'Crop'], pft_subix): ax = fig.add_subplot(4, 4, xi) ax.set_xlim([0, 0.8]) ax.set_ylim([0.35, 0.85]) ax.set_xticks([0, 0.3, 0.6]) ax.set_yticks([0.4, 0.6, 0.8]) ax.tick_params(direction='inout') if (xi == 3) or (xi == 4): ax.set_xticklabels([]) if (xi == 8) or (xi == 4): ax.set_yticklabels([]) ax.plot(0,0, marker='', lw=0, label=pft) ax.legend(loc='lower right', fontsize=10, frameon=False) plt.savefig('%s.png' % fig_name, dpi=600) plt.savefig('%s.eps' % fig_name) def delta_cond(fig_name=None): result = get_result_dict() fig = plt.figure(figsize=(5.5, 10.5)) positions=range(1, len(mod_list_labels) + 1) for spi, (a_i, a_i_name, ymin, ymax) in enumerate([['a_p', r'(a) $\Delta A_{p}$', None, None], ['a_ft', r'(b) $\Delta A_{f, T}$', None, None], ['a_fp', r'(c) $\Delta A_{f}$', None, None], ['a_fu1', r'(d) $\Delta A_{f, \theta}$', None, None], ['a_fu2', r'(e) $\Delta A_{f, D}$', None, None], ['a_fs', r'(f) $\Delta A_{f, S}$', None, None], ['a_fr', r'(g) $\Delta A_{f, R}$', None, None], ]): for cii, condition in enumerate(['Wet - Dry', 'Mesic - Dry', 'Mesic - Wet']): ax = fig.add_subplot(7, 3, 1 + cii + 3 * spi) ax.axhline(0, linestyle=':', color='k') if a_i == 'a_p': ax.title.set_text(condition) for i, c in enumerate(model_colors): if condition == 'Wet - Dry': x = (np.array(result['general']['Wet'][a_i][i]) - np.array(result['general']['Dry'][a_i][i])) elif condition == 'Mesic - Dry': x = (np.array(result['general']['Mesic'][a_i][i]) - np.array(result['general']['Dry'][a_i][i])) elif condition == 'Mesic - Wet': x = (np.array(result['general']['Mesic'][a_i][i]) - np.array(result['general']['Wet'][a_i][i])) ax.boxplot([x, ], positions=[positions[i], ], showfliers=False, whis=whis, widths=0.5, patch_artist=True, boxprops=dict(facecolor=c, color=c), medianprops=dict(color='w', lw=2), flierprops=dict(markeredgecolor=c), capprops=dict(color=c, lw=2), whiskerprops=dict(color=c, lw=2)) print('%s\t%s\t%s\t%-5.1f\t%-5.1f\t%-5.1f\t%-5.1f'%(a_i, mod_list[i], condition, np.mean(x)*100,
np.median(x)
numpy.median
__author__ = 'sibirrer' import numpy as np class Catalogue(object): """ class which analyses data and fits a psf """ def get_source_cat(self, HDUFile): """ :param HDUFile: :return: catalogue """ return HDUFile[2] def get_background(self, HDUFile): """ filters the mean and rms value of the background computed by sextractor :param cat: :return: mean, rms """ mean, rms = False, False list = HDUFile[1].data[0][0] for line in list: line = line.strip() line = line.split() if len(line) > 0: if line[0] == 'SEXBKGND' or line[0] == 'SEXBKGND=': mean = float(line[1]) if line[0] == 'SEXBKDEV' or line[0] == 'SEXBKDEV=': rms = float(line[1]) if mean is False or rms is False: raise ValueError('no mean and rms value found in list.') return mean, rms def estimate_star_thresholds(self, cat): """ estimates the cuts in the different sextractor quantities :param cat: :return: """ mag = np.array(cat.data['MAG_BEST'],dtype=float) size = np.array(cat.data['FLUX_RADIUS'],dtype=float) #ellipticity = cat.data['ELLIPTICITY'] kwargs_cuts = {} mag_max = min(np.max(mag), 34) mag_min = np.min(mag) delta_mag = mag_max - mag_min kwargs_cuts['MagMaxThresh'] = mag_max - 0.7*delta_mag kwargs_cuts['MagMinThresh'] = mag_min #+ 0.01*delta_mag mask = (mag<mag_max-0.5*delta_mag) kwargs_cuts['SizeMinThresh'] = max(0, np.min(size[mask])) kwargs_cuts['SizeMaxThresh'] = max(0, np.min(size[mask])+4) kwargs_cuts['EllipticityThresh'] = 0.1 kwargs_cuts['ClassStarMax'] = 1. kwargs_cuts['ClassStarMin'] = 0.5 return kwargs_cuts def estimate_galaxy_thresholds(self, cat): """ estimates the cuts for selecting some galaxies :param selfself: :return: """ mag =
np.array(cat.data['MAG_BEST'],dtype=float)
numpy.array
#%% [markdown] # Functions which need passing to CHL import glob from logger import log_init, log, log_dict import os os.environ['NUMBA_DISABLE_JIT'] = "0" import pickle import platform from shutil import rmtree import time import matplotlib import numpy as np from colorama import Fore, Style, init from numba import jit, njit from config import Config from network2 import Network from methods import mean_squared_error from printing import (Lexicon, generate_rpm_2_by_2_matrix, generate_rpm_2_by_3_matrix, generate_rpm_3_by_3_matrix, is_running_from_ipython, is_paperspace, target, test_matrix) if not is_running_from_ipython(): if "Darwin" not in platform.platform(): # Must be run before importing matplotlib.pyplot matplotlib.use('agg') import seaborn as sns sns.set(font_scale=0.8) sns.set_style("whitegrid") import matplotlib.pyplot as plt if is_paperspace(): print('{"chart": "Total Loss", "axis": "Epoch"}') print('{"chart": "Pattern accuracy", "axis": "Epoch"}') print('{"chart": "Transformation accuracy", "axis": "Epoch"}') # Colorama init() fixes Windows console, but prevents colours in IPython #init() class Plots: fig1: plt.Figure ax1: plt.Axes ax2: plt.Axes ax3: plt.Axes @njit def calculate_error(p1, p2): """Loss function loss(target, prediction)""" return mean_squared_error(p1, p2[:len(p1)]) # features_error = mean_squared_error(p1[6:11], p2[6:11]) # shape_error = cross_entropy(p1[0:6], p2[0:6]) # #loss = 2 * features_error + 0.5 * shape_error # loss = features_error + shape_error # return loss @njit def calculate_transformation_error(t1, t2): """Loss function loss(target, prediction)""" return mean_squared_error(t1, t2) @njit def closest_node_index(node: np.array, nodes: np.ndarray) -> int: deltas = np.subtract(nodes, node) distance = np.sum(deltas ** 2, axis=1) return np.argmin(distance) @njit def closest_node(node: np.array, nodes: np.ndarray) -> np.array: index: int = closest_node_index(node, nodes) return nodes[index] def color_on(color: str, condition: bool) -> str: if condition: return color else: return '' def color_off() -> str: return Fore.RESET def calculate_is_correct(p1, p2, targets): closest = closest_node(p1, targets) return np.allclose(closest, p2[:len(p1)]) def collect_statistics(network: Network, E: np.ndarray, P: np.ndarray, A: np.ndarray, epoch: int, data: dict): """Reporting function collect_statistics( E = loss by epoch, P = num training patterns correct A = num test patterns [analogies] correct)""" if epoch == 0: log(f'Experiment: {network.config.experiment_name}') log(f'Description: {network.config.experiment_description}') log() log('Configuration:') log_dict(vars(network.config)) checkpoint_frequency = 500 plot_frequency = 500 statistics_frequency = 50 # report every n epochs if epoch % checkpoint_frequency == 0: checkpoint = { 'epoch' : epoch, 'network' : network, 'E' : E, 'P' : P, 'A' : A, 'data' : data } with open(f'{get_checkpoints_folder(network.config)}/checkpoint.{epoch:05}.pickle', 'wb') as f: # Pickle the 'data' dictionary using the highest protocol available. pickle.dump(checkpoint, f, pickle.HIGHEST_PROTOCOL) f.close() # prevent memory leak del checkpoint if epoch % statistics_frequency == 0: if not 'a' in data: data['a'] = [] if not 'by0' in data: data['by0'] = [] if not 'by1' in data: data['by1'] = [] if not 'by2' in data: data['by2'] = [] if not 'by3' in data: data['by3'] = [] if not 'aby0' in data: data['aby0'] = [] if not 'aby1' in data: data['aby1'] = [] if not 'aby2' in data: data['aby2'] = [] if not 'aby3' in data: data['aby3'] = [] if not 'eby0' in data: data['eby0'] = [] if not 'eby1' in data: data['eby1'] = [] if not 'eby2' in data: data['eby2'] = [] if not 'eby3' in data: data['eby3'] = [] if not 'eaby0' in data: data['eaby0'] = [] if not 'eaby1' in data: data['eaby1'] = [] if not 'eaby2' in data: data['eaby2'] = [] if not 'eaby3' in data: data['eaby3'] = [] if not '2by2' in data: data['2by2'] = [] if not '2by2_loss' in data: data['2by2_loss'] = [] if not '2by2s' in data: data['2by2s'] = [] if not '2by2s_loss' in data: data['2by2s_loss'] = [] if not '2by2v' in data: data['2by2v'] = [] if not '2by2v_loss' in data: data['2by2v_loss'] = [] if not '2by3' in data: data['2by3'] = [] if not '2by3_loss' in data: data['2by3_loss'] = [] if not '3by3' in data: data['3by3'] = [] if not '3by3_loss' in data: data['3by3_loss'] = [] if not 't_error' in data: data['t_error'] = [] if not 'tf' in data: data['tf'] = [] if not 'tby0' in data: data['tby0'] = [] if not 'tby1' in data: data['tby1'] = [] if not 'tby2' in data: data['tby2'] = [] if not 'tby3' in data: data['tby3'] = [] if not '22by0' in data: data['22by0'] = [] if not '22by1' in data: data['22by1'] = [] if not '22by2' in data: data['22by2'] = [] if not '22by3' in data: data['22by3'] = [] if not '22by0s' in data: data['22by0s'] = [] if not '22by1s' in data: data['22by1s'] = [] if not 'o_error' in data: data['o_error'] = [] if not 'a_error' in data: data['a_error'] = [] e = 0. # total loss for this epoch sum_t_error = 0. # loss for transformation sum_o_error = 0. # loss for output sum_a_error = 0. # loss for analogies min_error = network.config.min_error max_epochs = network.config.max_epochs num_correct = 0 num_correct_by_num_modifications = [0, 0, 0, 0] num_correct_22_by_num_modifications = [0, 0, 0, 0] num_correct_22s_by_size = [0, 0] is_max_num_correct_by_num_modifications = [False, False, False, False] is_max_num_correct_22_by_num_modifications = [False, False, False, False] is_max_num_analogies_correct_by_num_modifications = [False, False, False, False] is_min_e_by_num_modifications = [False, False, False, False] is_min_e_analogies_by_num_modifications = [False, False, False, False] is_max_num_correct_22s_by_size = [False, False] e_by_num_modifications = [0., 0., 0., 0.] num_analogies_correct = 0 num_analogies_correct_by_num_modifications = [0, 0, 0, 0] e_analogies_by_num_modifications = [0., 0., 0., 0.] num_total_patterns_by_num_modifications = [0, 0, 0, 0] num_total_22_by_num_modifications = [0, 0, 0, 0] num_total_22s_by_size = [0, 0] num_transformations_correct = 0 num_total_transformations_by_type = [0, 0, 0, 0] num_correct_by_transformation = [0, 0, 0, 0] is_max_num_correct_by_transformation = [False, False, False, False] targets = np.asarray([target(p)[:network.n_inputs] for p in network.patterns]) analogy_targets = np.asarray([target(a)[:network.n_inputs] for a in network.analogies]) #a_targets = np.asarray([target(a) for a in network.analogies]) for p, a, c in zip(network.patterns, network.analogies, np.asarray(network.candidates)): t = target(p) t_error = 0 # the amount of error for the current transformation o_error = 0 # the amount of error for the current output object process_transformation_error = True process_analogy_error = True process_2_by_2 = True process_2_by_2_bysize = True and hasattr(network, 'tuples_22s') process_2_by_3 = True process_3_by_3 = True process_2_by_2_vertical = False # Calculate loss on the training data. # Present the network with input and transformation. # Clamp input and transformation. # Let the network settle. # Calculate loss (i.e., distance of prediction from target) # r = network.calculate_transformation(p, t) # o_error = calculate_transformation_error(p[-network.n_transformation:], network.t[0]) # is_correct = False r = network.calculate_response(p) o_error = calculate_error(r, t) is_correct = calculate_is_correct(r, t, targets) sum_o_error += o_error num_modifications = (p[-4:] != 0.5).sum() num_total_patterns_by_num_modifications[num_modifications] += 1 if is_correct: num_correct += 1 num_correct_by_num_modifications[num_modifications] += 1 e_by_num_modifications[num_modifications] += o_error + t_error if process_transformation_error: # Prime the network, that is, present object p and output target(p). # Do not present any transformation. Set the transformation to rest. # Clamp input and output. Do not clamp transformation. # Let the network settle. target_tf = p[-network.n_transformation:] num_total_transformations_by_type = np.add(num_total_transformations_by_type, [x != 0.5 for x in target_tf]) tf = network.calculate_transformation(p, t) is_correct_tf = calculate_is_correct(tf, target_tf, network.transformations) if is_correct_tf: num_transformations_correct += 1 num_correct_by_transformation = np.add(num_correct_by_transformation, [x != 0.5 for x in target_tf]) t_error = calculate_transformation_error(tf, target_tf) sum_t_error += t_error # total error for object + transformation e += o_error + t_error if process_analogy_error: # Now calculate the response of the primed network for new input a. # Clamp input only. Set output to rest. # (Leech paper says to set transformation to rest too.) # Let the network settle. r, t = complete_analogy_22(network, p, a) a_error = calculate_error(r, t) at_error = calculate_transformation_error(a[-network.n_transformation:], network.t[0]) is_correct = calculate_is_correct(r, t, analogy_targets) num_modifications = (p[-4:] != 0.5).sum() if is_correct: num_analogies_correct += 1 num_analogies_correct_by_num_modifications[num_modifications] += 1 e_analogies_by_num_modifications[num_modifications] += a_error + at_error sum_a_error += a_error E.append(e) P.append(num_correct) A.append(num_analogies_correct) data['a'].append(100 * num_analogies_correct / len(network.analogies)) data['tf'].append(num_transformations_correct) data['t_error'].append(sum_t_error) data['o_error'].append(sum_o_error) data['a_error'].append(sum_a_error) percentage_breakdown = [100*x[0]/x[1] if x[1] > 0 else 0 for x in zip(num_correct_by_num_modifications, num_total_patterns_by_num_modifications)] for i, x in enumerate(percentage_breakdown): label = f'by{i}' data[label].append(percentage_breakdown[i]) is_max_num_correct_by_num_modifications[i] = percentage_breakdown[i] > 0.0 and percentage_breakdown[i] == max(data[label]) percentage_breakdown = [100*x[0]/x[1] if x[1] > 0 else 0 for x in zip(num_analogies_correct_by_num_modifications, num_total_patterns_by_num_modifications)] for i, x in enumerate(percentage_breakdown): label = f'aby{i}' data[label].append(percentage_breakdown[i]) is_max_num_analogies_correct_by_num_modifications[i] = percentage_breakdown[i] > 0.0 and percentage_breakdown[i] == max(data[label]) for i, x in enumerate(e_by_num_modifications): label = f'eby{i}' data[label].append(e_by_num_modifications[i]) is_min_e_by_num_modifications[i] = any(data[label]) and e_by_num_modifications[i] == min(data[label]) for i, x in enumerate(e_analogies_by_num_modifications): label = f'eaby{i}' data[label].append(e_analogies_by_num_modifications[i]) is_min_e_analogies_by_num_modifications[i] = any(data[label]) and e_analogies_by_num_modifications[i] == min(data[label]) for i, x in enumerate(num_correct_by_transformation): label = f'tby{i}' data[label].append(num_correct_by_transformation[i]) is_max_num_correct_by_transformation[i] = num_correct_by_transformation[i] > 0 and num_correct_by_transformation[i] == max(data[label]) correct_by_num_modifications = [f'{color_on(Fore.GREEN, x[2])}{x[0]}{color_off()}/{x[1]} {color_on(Fore.GREEN, x[2])}{100*x[0]/x[1] if x[1] > 0 else 0:.1f}%{color_off()}' for x in zip(num_correct_by_num_modifications, num_total_patterns_by_num_modifications, is_max_num_correct_by_num_modifications)] analogies_by_num_modifications = [f'{color_on(Fore.GREEN, x[2])}{x[0]}{color_off()}/{x[1]} {color_on(Fore.GREEN, x[2])}{100*x[0]/x[1] if x[1] > 0 else 0:.1f}%{color_off()}' for x in zip(num_analogies_correct_by_num_modifications, num_total_patterns_by_num_modifications, is_max_num_analogies_correct_by_num_modifications)] loss_by_num_modifications = [f'{color_on(Fore.RED, x[1])}{x[0]:.3f}{color_off()}' for x in zip(e_by_num_modifications, is_min_e_by_num_modifications)] loss_analogies_by_num_modifications = [f'{color_on(Fore.RED, x[1])}{x[0]:.3f}{color_off()}' for x in zip(e_analogies_by_num_modifications, is_min_e_analogies_by_num_modifications)] correct_transformations_by_type = [f'{color_on(Fore.GREEN, x[2])}{x[0]}{color_off()}/{x[1]} {color_on(Fore.GREEN, x[2])}{100*x[0]/x[1] if x[1] > 0 else 0:.1f}%{color_off()}' for x in zip(num_correct_by_transformation, num_total_transformations_by_type, is_max_num_correct_by_transformation)] tuples_22 = network.tuples_22 if hasattr(network, 'tuples_22s'): tuples_22s = network.tuples_22s tuples_23 = network.tuples_23 tuples_33 = network.tuples_33 log() log(f'Epoch = {epoch} of {max_epochs}, Loss = {color_on(Fore.RED, e == min(E[1:]))}{e:.3f}{color_off()}, O/T = {color_on(Fore.RED, sum_o_error == min(data["o_error"]))}{sum_o_error:.3f}{color_off()}/{color_on(Fore.RED, sum_t_error == min(data["t_error"]))}{sum_t_error:.3f}{color_off()}, Terminating when < {min_error * len(network.patterns):.3f}') log(f'Patterns = {color_on(Fore.GREEN, num_correct == max(P))}{num_correct:>5}{color_off()}/{len(network.patterns):>5}, breakdown = {" ".join(correct_by_num_modifications)}') log(f' Loss = {color_on(Fore.RED, any(data["o_error"]) and sum_o_error == min(data["o_error"]))}{sum_o_error:>11.3f}{color_off()}, breakdown = {" ".join(loss_by_num_modifications)}') log(f'Transforms = {color_on(Fore.GREEN, num_transformations_correct == max(data["tf"]))}{num_transformations_correct:>5}{color_off()}/{len(network.patterns):>5}, breakdown = {" ".join(correct_transformations_by_type)} (sz, rt, sh, no)') log(f' Loss = {color_on(Fore.RED, any(data["t_error"]) and sum_t_error == min(data["t_error"]))}{sum_t_error:>11.3f}{color_off()}') log(f'Analogies = {color_on(Fore.GREEN, num_analogies_correct == max(A))}{num_analogies_correct:>5}{color_off()}/{len(network.analogies):>5}, breakdown = {" ".join(analogies_by_num_modifications)}') log(f' Loss = {color_on(Fore.RED, any(data["a_error"]) and sum_a_error == min(data["a_error"]))}{np.sum(e_analogies_by_num_modifications):>11.3f}{color_off()}, breakdown = {" ".join(loss_analogies_by_num_modifications)}') if process_2_by_2: #matrix, test, transformation1, transformation2, analogy num_correct_22 = 0 loss_22 = 0 patterns_22, analogies_22, candidates_22 = [np.concatenate((item[2], item[3])) for item in network.tuples_22], [np.concatenate((item[4], item[3])) for item in tuples_22], np.asarray([item[1] for item in tuples_22]) #targets_2_by_3 = np.asarray([target(np.concatenate([target(a), t2])) for a, t2 in zip(analogies_23, transformations2)]) for p, a, candidates_for_pattern in zip(patterns_22, analogies_22, candidates_22): prediction, actual = complete_analogy_22(network, p, a) loss_22 += calculate_error(prediction, actual) is_correct_22 = calculate_is_correct(prediction, actual, candidates_for_pattern) num_modifications = (p[-4:] != 0.5).sum() num_total_22_by_num_modifications[num_modifications] += 1 if is_correct_22: num_correct_22 += 1 num_correct_22_by_num_modifications[num_modifications] += 1 percentage_breakdown = [100*x[0]/x[1] if x[1] > 0 else 0 for x in zip(num_correct_22_by_num_modifications, num_total_22_by_num_modifications)] for i, x in enumerate(percentage_breakdown): label = f'22by{i}' data[label].append(percentage_breakdown[i]) is_max_num_correct_22_by_num_modifications[i] = percentage_breakdown[i] > 0.0 and percentage_breakdown[i] == max(data[label]) correct_22_by_num_modifications = [f'{color_on(Fore.GREEN, x[2])}{x[0]}{color_off()}/{x[1]} {color_on(Fore.GREEN, x[2])}{100*x[0]/x[1] if x[1] > 0 else 0:.1f}%{color_off()}' for x in zip(num_correct_22_by_num_modifications, num_total_22_by_num_modifications, is_max_num_correct_22_by_num_modifications)] data['2by2'].append(num_correct_22) data['2by2_loss'].append(loss_22) log(f'2x2 = {color_on(Fore.GREEN, num_correct_22 == max(data["2by2"]))}{num_correct_22:>5}{color_off()}/{100:>5}, breakdown = {" ".join(correct_22_by_num_modifications)}') log(f' Loss = {color_on(Fore.RED, loss_22 == min(data["2by2_loss"]))}{loss_22:>11.3f}{color_off()}') if process_2_by_2_bysize: #matrix, test, transformation1, transformation2, analogy num_correct_22s = 0 loss_22s = 0 patterns_22s, analogies_22s, candidates_22s = [np.concatenate((item[2], item[3])) for item in network.tuples_22s], [np.concatenate((item[4], item[3])) for item in tuples_22s],
np.asarray([item[1] for item in tuples_22s])
numpy.asarray
# -*- coding: utf-8 -*- '''МОДУЛЬ РАСЧЕТА ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ (М Р Т К З) Версия 3.15 г.Саратов 27.01.2021 История изменений 27.01.2021 - Рефакторинг кода, исключено применение промежуточного массива для суммирования B/2 подключенных к узлу ветвей и собственной Y узла; - Реализован метод позволяющий выявить висящие, не связанные с землей узлы, ветви, взаимоиндукции и несимметрии что в приводит к вырожденности (сингулярности) формируемой СЛАУ, т.е. к невозможности решения СЛАУ. Параллельные ветви с нулевым сопротивлением (ШСВ и СВ), также приводят к вырожденности, но данный метод не позволяет их выявить!, для предотвращения вырожденности можно предложить использовать некоторое сопротивление на СВ и ШСВ вместо 0, например 0.001 Ом. mdl.Test4Singularity(); - Выявлена и устранена логическая ошибка в условии вывода результатов токов в проводимости узла. 22.01.2021 - С учетом реализации возможности ввода проводимости в узле скорректирован вывод результатов расчетов расчета по узлу - В таблицах вывода результатов заменен знак < на знак ∠ 18.01.2021 - Реализована поддержка проводимостей Y (См) подключенных к узлу, например компенсирующих реакторов (ранее, да и сейчас их можно также представить ветвями на землю); - Реализована поддержка источников тока J(А), что необходимо для учета в схеме замещения сети ветровых и солнечных электростанция и других ЭС со звеном постоянного тока с последующим инвертированием к промышленной частоте 50 Гц. Q(model,name,Y=(Y1,Y2,Y0)) Q(model,name,J=(J1,J2,J0)) Q(model,name,Y=(Y1,Y2,Y0),J=(J1,J2,J0)) 03.12.2020 - Оптимизирован метод mdl.Calc, в части понижения потребляемой памяти и повышения быстродействия, за счет отказа от использования списков python для формирования координатной разреженной матрицы, вместо этого используются вектора numpy; - Произведен переход на расчет фазных, междуфазных (линейных) и прочих величин с помощью матричного умножения результатов в симметричных составляющих на преобразующие матрицы (Ms2f - для вычисления фазных величин, Ms2ff - для вычисления междуфазных (линейных) величин); - При формировании разреженной матрицы в ходе перебора типов несимметрий для повышения быстродействия на первое место поставлены КЗ 'N0' и обрыв 'N0' как наиболее часто встречающиеся в модели; - Оптимизирован код, по выводу результатов расчетов, изменен порядок вывода результата, сначала идут фазные значения, потом симметричные составляющие и наконец междуфазные (линейные) величины. Уменьшено дублирование кода. 28.11.2020 1. В класс Model добавлен метод ImportFromPVL(PVL_Sech), предназначенный для импорта результатов расчетов параметров схемы замещения ВЛ с помощью модуля PVL mdl.ImportFromPVL(PVL_Sech) где PVL_Sech - ссылка на сечение (объект класса sech модуля PVL) 18.11.2020 1. Добавлены описания к функциям, классам и методам МРТКЗ, в том числе дано подробное описание алгоритма метода mdl.Calc() 2. Добавлены специальные нeсимметрии вида: - КЗ по нулевой последовательности - 'N0' для моделирования заземления нейтрали за трансформатором Yg/D или за соответствующей парой обмоток тр-ра - Обрыв по нулевой последовательности - 'N0' для моделирования сети с изолированной нейтралью, устанавливается на ветви разделяющей сеть с глухо или эффективно заземленной нейтралью и сетью с изолированной нейтралью 3. Выверено моделирование ветвей с поперечной емкостной проводимостью B, для этого если pl62w+ или аналогичное ПО выдает (Например) B1 = В2 = 90 мкСм (1/Ом*10^-6), B0 = 60 мкСм (1/Ом*10^-6) то при создании ветви надо заполнять параметры емкостной проводимости B=(90e-6j,90e-6j,60e-6j) 4. Выверено моделирование трансформаторных ветвей T=(Ktrans,GrT) - безразмерные параметры трансформаторной ветви: Ktrans - коэффициент трансформации силового трансформатора, например 115/11 GrT - группа обмоток обмотки подключенной к узлу 2 (от 0 до 11) Так например для трансформатора с номинальными напряжениями обмоток 115 и 10,5 кВ и схемой соединения обмоток Y/D-11 надо заполнять параметры трансформаторной ветви T=(115/10.5,11) 5. Добавлены новые методы класса Model - AddNQ для группового добавления узлов (сечения узлов) mdl.AddNQ(NQ,Nname) где NQ - количество создаваемых узлов Nname - общее имя узлов, к уникальному имени узлу будет добавляться номер из сечения от 1 до NQ - AddNP для группового добавления ветвей (сечения ветвей) в том числе с поперечной емкостной проводимостью B и взаимоиндукцией нулевой последовательности mdl.AddNP(self,Nname,listq1,listq2,Z12,Z0) - без учета емкостной проводимости mdl.AddNP(self,Nname,listq1,listq2,Z12,Z0,B12,B0) - с учетом емкостной проводимости где listq1 и listq2 - сечения (списки) узлов Nname - общее имя сечения ветвей, к уникальному имени ветви будет добавляться номер из сечения от 1 до N, где N - количество создаваемых ветвей Z12 - вектор numpy.ndarray значений сопротивлений ветвей прямой/обратной последовательности Z0 - квадратная матрица numpy.ndarray значений сопротивлений ветвей и взаимоиндукций нулевой последовательности B12 - вектор numpy.ndarray значений поперечной емкостной проводимости прямой/обратной последовательности B0 - квадратная матрица numpy.ndarray значений поперечной емкостной проводимости нулевой последовательности ''' import numpy as np from scipy.sparse import csc_matrix from scipy.sparse.linalg import spsolve Kf = -1j*np.pi/6 r2d = 180/np.pi a = -0.5 + 0.5j*np.sqrt(3) a2 = -0.5 - 0.5j*np.sqrt(3) a0 = 1.0+0.0j vA = np.array([a0,a0,a0]) vB = np.array([a2,a ,a0]) vC = np.array([a, a2,a0]) vAB = vA - vB vBC = vB - vC vCA = vC - vA vABC = np.concatenate((vA,vB,vC)) vBCA = np.concatenate((vB,vC,vA)) vCAB = np.concatenate((vC,vA,vB)) Ms2f = np.array([vA,vB,vC]) Ms2ff = np.array([vAB,vBC,vCA]) arr012 = np.array([0,1,2]) arr000 = np.array([0,0,0]) arr111 = arr000+1 arr222 = arr000+2 arr_111 = -arr111 class Q: '''Класс трехфазного электрического узла, необходим для формирования расчетной модели и получения результатов расчета Создание узла с помощью конструктора Q(model,name,desc='') Q(model,name) где: model - объект расчетной модели в которой создается узел name - краткое название узла, обращение к узлу по его имени не предусмотрено desc - Примечание или любая другая текстовая информация, можно не задавать. Результатом конструктора узла является объект узла, который используется для формирования расчетной модели и вывода результатов расчетов Пользовательские функции для объекта узла q Вывод на экран параметров узла - его номера и названия q.par() Вывод сводной таблицы результатов расчетов для узла q q.res() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах q.res(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA' Вывод конкретного параметра ParName в заданной форме Form: q.res(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах q.ParName где ParName может принимать значения: U1,U2,U0,UA,UB,UC,UABC,UAB,UBC,UCA,UAB_BC_CA''' def __init__(self,model,name,Y=(0,0,0),J=(0,0,0),desc=''): ''' Конструктор объекта узла Q(model,name,desc='') Q(model,name) Q(model,name,Y=(Y1,Y2,Y0)) Q(model,name,J=(J1,J2,J0)) Q(model,name,Y=(Y1,Y2,Y0),J=(J1,J2,J0)) где: model - объект расчетной модели в которой создается узел name - краткое название узла, обращение к узлу по его имени не предусмотрено Y = (Y1,Y2,Y0) - проводимость в узле на землю, См J = (J1,J2,J0) - источник тока подключенный к узлу, А (положительное направление источника тока - "в узел") desc - Примечание или любая другая текстовая информация, можно не задавать. Результатом конструктора узла является объект узла, который используется для формирования расчетной модели и вывода результатов расчетов''' if not isinstance(model, Model): raise TypeError('Ошибка при добавлении узла -', name, '\n', 'Аргумент model должен иметь тип Model!') model.nq += 1 model.bq.append(self) self.id = model.nq self.model = model self.name = name self.Y = Y self.J = J self.desc = desc self.plist = [] self.kn = None def Test4Singularity(self): if self.singulare: self.singulare = False for pk in self.plist: if pk.q1 is pk.q2: pass elif pk.q1 is self: if isinstance(pk.q2, Q): pk.q2.Test4Singularity() elif pk.q2 is self: if isinstance(pk.q1, Q): pk.q1.Test4Singularity() def addp(self,kp): '''Служебный метод, предназачен для информирования узла о подключенных к нему ветвей''' self.plist.append(kp) def update(self): '''Служебный метод, предназачен для проверки информации о подключенных к узлу ветвей''' temp_plist = self.plist self.plist = [] for kp in temp_plist: if (kp.q1 is self) or (kp.q2 is self): self.plist.append(kp) def setn(self,kn): '''Служебный метод, предназачен для информирования узла о наличии КЗ в данном узле''' self.kn = kn def par(self): '''Вывод на экран параметров узла - его номера и названия''' print('Узел №', self.id, ' - ', self.name) def getres(self): '''Служебный метод, возвращает результат расчета по данному узлу - напряжения прямой, обратной и нулевой последовательностей, тоже что и q.res('U120')''' if self.model is None: raise ValueError('Ошибка при выводе результатов расчетов Узла №', self.id, ' - ', self.name, '\n', 'Узел не принадлежит какой либо модели!') if self.model.X is None: raise ValueError('Ошибка при выводе результатов расчетов Узла №', self.id, ' - ', self.name, '\n', 'Не произведен расчет электрических величин!') qId = 3*(self.model.np+self.id-1) return self.model.X[qId:qId+3] def res(self,parname='',subpar=''): '''Вывод сводной таблицы результатов расчетов для узла q q.res() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах q.res(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA' Вывод конкретного параметра ParName в заданной форме Form: q.res(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа''' u120 = self.getres() i120 = np.array(self.Y) * u120 if parname=='': print('Узел № {} - {}'.format(self.id, self.name)) print(StrU(u120)) if (i120 != np.zeros(3)).any(): print("Значения токов проводимости узла") print(StrI(i120)) else: res = mselectz[parname](u120,i120) if isinstance(res, np.ndarray): res = mform3[subpar](res,parname) else: res = mform1[subpar](res,parname) return res def __getattr__(self, attrname): '''Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах q.ParName где ParName может принимать значения: U1,U2,U0,UA,UB,UC,UABC,UAB,UBC,UCA,UAB_BC_CA''' u120 = self.getres() i120 = np.array(self.Y) * u120 return mselectz[attrname](u120,i120) def __repr__(self): '''Еще один способ вывода сводной таблицы результатов расчетов для узла q В командной строке интерпретара набрать название переменной объекта узла и нажать Enter q Enter''' u120 = self.getres() i120 = np.array(self.Y) * u120 strres = [] strres.append("Узел № {} - {}\n".format(self.id, self.name)) strres.append(StrU(u120)) if (i120 != np.zeros(3)).any(): strres.append("Значения токов проводимости узла") strres.append(StrI(i120)) return ''.join(strres) class P: '''Класс трехфазной ветви, необходим для формирования расчетной модели и получения результатов расчета Создание ветви с помощью конструктора P(model,name,q1,q2,Z) - простая ветвь P(model,name,q1,q2,Z,desc='Примечание') - ветвь с текстовым примечанием P(model,name,q1,q2,Z,E=(E1,E2,E0)) - ветвь представляющая энергосистему, генератор (Вольт - фазные) P(model,name,q1,q2,Z,B=(B1,B2,B0)) - ветвь c наличием поперечной емкостной проводимостью B/2 (См) P(model,name,q1,q2,Z,T=(Ktrans,GrT)) - ветвь представляющая трансформатор где: model - объект расчетной модели в которой создается ветвь name - краткое название ветви, обращение к ветви по ее имени не предусмотрено q1,q2 - число 0, что означает подключение ветви соответствующим концом к земле, объект узла принадлежащего той же расчетной модели desc - Примечание или любая другая текстовая информация, можно не задавать. Z=(Z1,Z2,Z0) - комплексные сопротивление ветви (Ом) прямой, обратной и нулевой последовательностей E=(E1,E2,E0) - комплексные фазные значения Э.Д.С. (Вольт) прямой, обратной и нулевой последовательностей B=(B1,B2,B0) - комплексные значения поперечной емкостной проводимости B (См) прямой, обратной и нулевой последовательностей, если pl62w+ или аналогичная выдает Например B1 = В2 = 90 мкСм (1/Ом*10^-6), B0 = 60 мкСм (1/Ом*10^-6) то при создании ветви надо заполнять параметры ветви B=(90e-6j,90e-6j,60e-6j) T=(Ktrans,GrT) - безразмерные параметры трансформаторной ветви: Ktrans - коэффициент трансформации силового трансформатора GrT - группа обмоток обмотки подключенной к узлу 2 (от 0 до 11) Результатом конструктора ветви является объект ветви, который используется для формирования расчетной модели и вывода результатов расчетов Изменить параметры ветви p можно с помощью метода p.edit(name,q1,q2,Z) p.edit(name,q1,q2,Z,desc='Примечание') p.edit(name,q1,q2,Z,E=(E1,E2,E0)) p.edit(name,q1,q2,Z,B=(B1,B2,B0)) p.edit(name,q1,q2,Z,T=(Ktrans,GrT)) Пользовательские функции для объекта ветви p Вывод на экран параметров ветви - ее номера, названия, номеров и наименований узлов к которым она подключена, электрических параметров Z,E,B и T p.par() Вывод сводной таблицы результатов расчетов для ветви p со стороны 1-ого и 2-ого узла соответственно (направление токов и пр. в линию) p.res1() p.res2() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах со стороны 1-ого и 2-ого узла соответственно (направление токов и пр. в линию) p.res1(ParName) p.res2(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA', 'I1','I2','I0','3I0','IA','IB','IC','IABC','IAB','IBC','ICA','IAB_BC_CA', 'Z1','Z2','Z0','ZA','ZB','ZC','ZABC','ZAB','ZBC','ZCA','ZAB_BC_CA', 'S1','S2','S0','SA','SB','SC','SABC','SAB','SBC','SCA','SAB_BC_CA','S' Вывод конкретного параметра ParName в заданной форме Form: p.res1(ParName,Form) p.res2(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах p.ParName где ParName может принимать значения: значения токов от 1-ого ко 2-ому узлу без учета емкостной проводимости I1,I2,I0,I120,IA,IB,IC,IABC,IAB,IBC,ICA,IAB_BC_CA со стороны 1-ого узла q1U1,q1U2,q1U0,q1U120,q1UA,q1UB,q1UC,q1UABC,q1UAB,q1UBC,q1UCA,q1UAB_BC_CA, q1I1,q1I2,q1I0,q1I120,q1IA,q1IB,q1IC,q1IABC,q1IAB,q1IBC,q1ICA,q1IAB_BC_CA, q1Z1,q1Z2,q1Z0,q1Z120,q1ZA,q1ZB,q1ZC,q1ZABC,q1ZAB,q1ZBC,q1ZCA,q1ZAB_BC_CA, q1S1,q1S2,q1S0,q1S120,q1SA,q1SB,q1SC,q1SABC,q1SAB,q1SBC,q1SCA,q1SAB_BC_CA,q1S со стороны 2-ого узла q2U1,q2U2,q2U0,q1U120,q2UA,q2UB,q2UC,q2UABC,q2UAB,q2UBC,q2UCA,q2UAB_BC_CA, q2I1,q2I2,q2I0,q1I120,q2IA,q2IB,q2IC,q2IABC,q2IAB,q2IBC,q2ICA,q2IAB_BC_CA, q2Z1,q2Z2,q2Z0,q1Z120,q2ZA,q2ZB,q2ZC,q2ZABC,q2ZAB,q2ZBC,q2ZCA,q2ZAB_BC_CA, q2S1,q2S2,q2S0,q1S120,q2SA,q2SB,q2SC,q2SABC,q2SAB,q2SBC,q2SCA,q2SAB_BC_CA,q2S ''' def __init__(self,model,name,q1,q2,Z,E=(0, 0, 0),T=(1, 0),B=(0, 0, 0),desc=''): ''' Конструктор ветви P(model,name,q1,q2,Z) - простая ветвь P(model,name,q1,q2,Z,desc='Примечание') - ветвь с текстовым примечанием P(model,name,q1,q2,Z,E=(E1,E2,E0)) - ветвь представляющая энергосистему, генератор (Вольт - фазные) P(model,name,q1,q2,Z,B=(B1,B2,B0)) - ветвь c наличием поперечной емкостной проводимостью B/2 (См) P(model,name,q1,q2,Z,T=(Ktrans,GrT)) - ветвь представляющая трансформатор где: model - объект расчетной модели в которой создается ветвь name - краткое название ветви, обращение к ветви по ее имени не предусмотрено q1,q2 - число 0, что означает подключение ветви соответствующим концом к земле, объект узла принадлежащего той же расчетной модели desc - Примечание или любая другая текстовая информация, можно не задавать. Z=(Z1,Z2,Z0) - комплексные сопротивление ветви (Ом) прямой, обратной и нулевой последовательностей E=(E1,E2,E0) - комплексные фазные значения Э.Д.С. (Вольт) прямой, обратной и нулевой последовательностей B=(B1,B2,B0) - комплексные значения поперечной емкостной проводимости B (См) прямой, обратной и нулевой последовательностей, если pl62w+ или аналогичная выдает Например B1 = В2 = 90 мкСм (1/Ом*10^-6), B0 = 60 мкСм (1/Ом*10^-6) то при создании ветви надо заполнять параметры ветви B=(90e-6j,90e-6j,60e-6j) T=(Ktrans,GrT) - безразмерные параметры трансформаторной ветви: Ktrans - коэффициент трансформации силового трансформатора GrT - группа обмоток обмотки подключенной к узлу 2 (от 0 до 11) Результатом конструктора ветви является объект ветви, который используется для формирования расчетной модели и вывода результатов расчетов''' if not isinstance(model, Model): raise TypeError('Ошибка при добавлении ветви -', name, '\n', 'Аргумент model должен иметь тип Model!') if isinstance(q1, int): if q1 != 0: raise ValueError('Ошибка при добавлении ветви -', name, '\n', 'Для подключения ветви к земле q1=0') elif isinstance(q1, Q): if not q1.model is model: raise ValueError('Ошибка при добавлении ветви -', name, '\n', 'Узел q1 должен принадлежать той-же модели!') else: raise TypeError('Ошибка при добавлении ветви -', name, '\n', 'Аргумент q1 должен иметь тип Q или int!') if isinstance(q2, int): if q2 != 0: raise ValueError('Ошибка при добавлении ветви -', name, '\n', 'Для подключения ветви к земле q2=0') elif isinstance(q2, Q): if not q2.model is model: raise ValueError('Ошибка при добавлении ветви -', name, '\n', 'Узел q2 должен принадлежать той-же модели!') else: raise TypeError('Ошибка при добавлении ветви -', name, '\n', 'Аргумент q2 должен иметь тип Q или int!') if q1 is q2: print('Предупреждение! при добавлении ветви -', name, '\n', 'Ветвь подключается обоими концами к одному и тому же узлу!') model.np += 1 model.bp.append(self) self.id = model.np self.model = model self.name = name self.desc = desc self.q1 = q1 if isinstance(q1, Q): q1.addp(self) self.q2 = q2 if isinstance(q2, Q): q2.addp(self) self.Z = Z self.E = E self.T = T self.B = B self.mlist = [] self.kn = None def edit(self,name,q1,q2,Z,E=(0, 0, 0),T=(1, 0),B=(0, 0, 0),desc=''): '''Изменить параметры ветви можно с помощью метода p.edit(name,q1,q2,Z) p.edit(name,q1,q2,Z,desc='Примечание') p.edit(name,q1,q2,Z,E=(E1,E2,E0)) p.edit(name,q1,q2,Z,B=(B1,B2,B0)) p.edit(name,q1,q2,Z,T=(Ktrans,GrT))''' if isinstance(q1, int): if q1 != 0: raise ValueError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Для подключения ветви к земле q1=0') elif isinstance(q1, Q): if not q1.model is self.model: raise ValueError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Узел q1 должен принадлежать той-же модели!') else: raise TypeError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Аргумент q1 должен иметь тип Q или int!') if isinstance(q2, int): if q2 != 0: raise ValueError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Для подключения ветви к земле q2=0') elif isinstance(q2, Q): if not q2.model is self.model: raise ValueError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Узел q2 должен принадлежать той-же модели!') else: raise TypeError('Ошибка при редактировании ветви №', self.id, ' - ', self.name, '\n', 'Аргумент q2 должен иметь тип Q или int!') if q1 is q2: print('Предупреждение! при добавлении ветви -', name, '\n', 'Ветвь подключается обоими концами к одному и тому же узлу!') self.name = name self.desc = desc self.q1 = q1 if isinstance(q1, Q): q1.addp(self) q1.update() self.q2 = q2 if isinstance(q2, Q): q2.addp(self) q2.update() self.Z = Z self.E = E self.T = T self.B = B def addm(self,mid): '''Служебный метод, предназачен для информирования ветви о подключенных к ней взаимоиндуктивностей''' self.mlist.append(mid) def setn(self,kn): '''Служебный метод, предназачен для информирования ветви о наличии на ней обрыва''' self.kn=kn def par(self): '''Вывод на экран параметров ветви - ее номера, названия, номеров и наименований узлов к которым она подключена, электрических параметров Z,E,B и T p.par()''' if isinstance(self.q1, Q): q1id = self.q1.id q1name = self.q1.name else: q1id = 0; q1name = 'Земля' if isinstance(self.q2, Q): q2id = self.q2.id q2name = self.q2.name else: q2id = 0 q2name = 'Земля' print('Ветвь № {} - {} : {}({}) <=> {}({})'.format(self.id,self.name,q1id,q1name,q2id,q2name)) print('Z = {}; E = {}; T = {}; B = {}'.format(self.Z,self.E,self.T,self.B)) def getres(self): '''Служебный метод, возвращает результат расчета по данной ветви без учета наличия поперечной проводимости и направления от узла 1 к узлу 2 токов прямой, обратной и нулевой последовательностей, тоже что и p.res1('U120') если B=0''' if self.model is None: raise ValueError('Ошибка при выводе результатов расчетов Ветви №', self.id, ' - ', self.name, '\n', 'Ветвь не принадлежит какой либо модели!') if self.model.X is None: raise ValueError('Ошибка при выводе результатов расчетов Ветви №', self.id, ' - ', self.name, '\n', 'Не произведен расчет электрических величин!') pId = 3*(self.id-1) return self.model.X[pId:pId+3] def getresq1(self,i120): '''Служебный метод, возвращает результат расчета по данной ветви c учетом наличия поперечной проводимости и направления от узла 1 к узлу 2 токов прямой, обратной и нулевой последовательностей, тоже что и p.res1('U120')''' if isinstance(self.q1, Q): u120 = self.q1.getres() i120 += u120 * self.B/2 else: u120 = np.zeros(3,dtype=np.complex) return [u120, i120] def getresq2(self,i120): '''Служебный метод, возвращает результат расчета по данной ветви c учетом наличия поперечной проводимости и направления от узла 2 к узлу 1 токов прямой, обратной и нулевой последовательностей, тоже что и p.res2('U120')''' if isinstance(self.q2, Q): u120 = self.q2.getres() else: u120 = np.zeros(3,dtype=np.complex) Kt = self.T[0]*np.exp(Kf*self.T[1]*np.ones(3)) if self.T[1] % 2 != 0: Kt[1] = np.conj(Kt[1]) i120 = -Kt * i120 + u120 * self.B/2 return [u120, i120] def res1(self,parname='',subpar=''): '''Вывод сводной таблицы результатов расчетов для ветви p со стороны 1-ого узла (направление токов и пр. в линию) p.res1() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах со стороны 1-ого узла (направление токов и пр. в линию) p.res1(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA', 'I1','I2','I0','3I0','IA','IB','IC','IABC','IAB','IBC','ICA','IAB_BC_CA', 'Z1','Z2','Z0','ZA','ZB','ZC','ZABC','ZAB','ZBC','ZCA','ZAB_BC_CA', 'S1','S2','S0','SA','SB','SC','SABC','SAB','SBC','SCA','SAB_BC_CA','S' Вывод конкретного параметра ParName в заданной форме Form: p.res1(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа ''' i120 = self.getres() if isinstance(self.q1, Q): q1id = self.q1.id q1name = self.q1.name else: q1id = 0 q1name = 'Земля' u120,i120 = self.getresq1(i120) if parname=='': print("Ветвь № {} - {}".format(self.id, self.name)) print("Значения токов по ветви со стороны узла №{} - {}".format(q1id, q1name)) print(StrI(i120)) print("Значения напряжения в узле №{} - {}".format(q1id, q1name)) print(StrU(u120)) else: res = mselectz[parname](u120,i120) if isinstance(res, np.ndarray): res = mform3[subpar](res,parname) else: res = mform1[subpar](res,parname) return res def res2(self,parname='',subpar=''): '''Вывод сводной таблицы результатов расчетов для ветви p со стороны 2-ого узла (направление токов и пр. в линию) p.res1() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах со стороны 2-ого узла (направление токов и пр. в линию) p.res2(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','U120','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA', 'I1','I2','I0','3I0','I120','IA','IB','IC','IABC','IAB','IBC','ICA','IAB_BC_CA', 'Z1','Z2','Z0','Z120','ZA','ZB','ZC','ZABC','ZAB','ZBC','ZCA','ZAB_BC_CA', 'S1','S2','S0','S120','SA','SB','SC','SABC','SAB','SBC','SCA','SAB_BC_CA','S' Вывод конкретного параметра ParName в заданной форме Form: p.res2(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа ''' i120 = self.getres() if isinstance(self.q2, Q): q2id = self.q2.id q2name = self.q2.name else: q2id = 0 q2name = 'Земля' u120,i120 = self.getresq2(i120) if parname=='': print("Ветвь № {} - {}".format(self.id, self.name)) print("Значения токов по ветви со стороны узла №{} - {}".format(q2id, q2name)) print(StrI(i120)) print("Значения напряжения в узле №{} - {}".format(q2id, q2name)) print(StrU(u120)) else: res = mselectz[parname](u120,i120) if isinstance(res, np.ndarray): res = mform3[subpar](res,parname) else: res = mform1[subpar](res,parname) return res def __repr__(self): '''Еще один способ вывода сводной таблицы результатов расчетов для ветви p В командной строке интерпретара набрать название переменной объекта ветви и нажать Enter p Enter, выводятся результаты с обоих концов ветви''' i120p = self.getres() if isinstance(self.q1, Q): q1id = self.q1.id q1name = self.q1.name else: q1id = 0 q1name = 'Земля' u120,i120 = self.getresq1(i120p) strres = [] strres.append("Ветвь № {} - {}\n".format(self.id, self.name)) strres.append("Значения токов по ветви со стороны узла №{} - {}\n".format(q1id, q1name)) strres.append(StrI(i120)) strres.append("Значения напряжения в узле №{} - {}\n".format(q1id, q1name)) strres.append(StrU(u120)) if isinstance(self.q2, Q): q2id = self.q2.id q2name = self.q2.name else: q2id = 0 q2name = 'Земля' u120,i120 = self.getresq2(i120p) strres.append("Значения токов по ветви со стороны узла №{} - {}\n".format(q2id, q2name)) strres.append(StrI(i120)) strres.append("Значения напряжения в узле №{} - {}\n".format(q2id, q2name)) strres.append(StrU(u120)) return (''.join(strres)) def __getattr__(self, attrname): '''Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах p.ParName где ParName может принимать значения: значения токов от 1-ого ко 2-ому узлу без учета емкостной проводимости I1,I2,I0,I120,IA,IB,IC,IABC,IAB,IBC,ICA,IAB_BC_CA со стороны 1-ого узла q1U1,q1U2,q1U0,q1U120,q1UA,q1UB,q1UC,q1UABC,q1UAB,q1UBC,q1UCA,q1UAB_BC_CA, q1I1,q1I2,q1I0,q1I120,q1IA,q1IB,q1IC,q1IABC,q1IAB,q1IBC,q1ICA,q1IAB_BC_CA, q1Z1,q1Z2,q1Z0,q1Z120,q1ZA,q1ZB,q1ZC,q1ZABC,q1ZAB,q1ZBC,q1ZCA,q1ZAB_BC_CA, q1S1,q1S2,q1S0,q1S120,q1SA,q1SB,q1SC,q1SABC,q1SAB,q1SBC,q1SCA,q1SAB_BC_CA,q1S со стороны 2-ого узла q2U1,q2U2,q2U0,q1U120,q2UA,q2UB,q2UC,q2UABC,q2UAB,q2UBC,q2UCA,q2UAB_BC_CA, q2I1,q2I2,q2I0,q1I120,q2IA,q2IB,q2IC,q2IABC,q2IAB,q2IBC,q2ICA,q2IAB_BC_CA, q2Z1,q2Z2,q2Z0,q1Z120,q2ZA,q2ZB,q2ZC,q2ZABC,q2ZAB,q2ZBC,q2ZCA,q2ZAB_BC_CA, q2S1,q2S2,q2S0,q1S120,q2SA,q2SB,q2SC,q2SABC,q2SAB,q2SBC,q2SCA,q2SAB_BC_CA,q2S''' i120p = self.getres() if not attrname[:2] in ('q1', 'q2'): res = mselectz[attrname](np.zeros(3),i120p) elif attrname[:2] == 'q1': u120,i120 = self.getresq1(i120p) res = mselectz[attrname[2:]](u120,i120) elif attrname[:2] == 'q2': u120,i120 = self.getresq2(i120p) res = mselectz[attrname[2:]](u120,i120) return res class M: '''Класс взаимоиндукции нулевой последовательности, необходим для формирования расчетной модели Создание ветви с помощью конструктора M(model,name,p1,p2,M12,M21) - взаимоиндукция M(model,name,p1,p2,M12,M21,desc='Примечание') - взаимоиндукция с текстовым примечанием где: model - объект расчетной модели в которой создается взаимоиндукция name - краткое название взаимоиндукции, обращение к ветви по ее имени не предусмотрено p1,p2 - объекты ветви принадлежащего той же расчетной модели между которыми создается взаимоиндукция desc - Примечание или любая другая текстовая информация, можно не задавать. M12 - взаимоиндукция влияния ветви p2 на ветвь p1 M21 - взаимоиндукция влияния ветви p1 на ветвь p2 Результатом конструктора ветви является объект взаимоиндукции, который используется для формирования расчетной модели Изменить параметры взаимоиндукции m можно с помощью метода m.edit(name,M12,M21) Пользовательские функции для объекта взаимоиндукции m Вывод на экран параметров ветви - ее номера, названия, номеров и наименований ветвей между которыми создана взаимоиндукция, электрических параметров M12,M21 m.par()''' def __init__(self,model,name,p1,p2,M12,M21,desc=''): ''' Конструктор взаимоиндукции Создание ветви с помощью конструктора M(model,name,p1,p2,M12,M21) - взаимоиндукция M(model,name,p1,p2,M12,M21,desc='Примечание') - взаимоиндукция с текстовым примечанием где: model - объект расчетной модели в которой создается взаимоиндукция name - краткое название взаимоиндукции, обращение к ветви по ее имени не предусмотрено p1,p2 - объекты ветви принадлежащего той же расчетной модели между которыми создается взаимоиндукция desc - Примечание или любая другая текстовая информация, можно не задавать. M12 - взаимоиндукция влияния ветви p2 на ветвь p1 M21 - взаимоиндукция влияния ветви p1 на ветвь p2 ''' if not isinstance(model, Model): raise TypeError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Аргумент model должен иметь тип Model!') if not isinstance(p1, P): raise TypeError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Аргумент p1 должен иметь тип P!') if not isinstance(p2, P): raise TypeError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Аргумент p2 должен иметь тип P!') if not p1.model is model: raise ValueError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Ветвь p1 должна принадлежать той-же модели!') if not p2.model is model: raise ValueError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Ветвь p2 должна принадлежать той-же модели!') if p1 is p2: raise ValueError('Ошибка при добавлении взаимоиндукции -', name, '\n', 'Взаимоиндукция подключается к одной и той же ветви!') model.nm += 1 model.bm.append(self) self.id = model.nm self.model = model self.name = name self.desc = desc self.p1 = p1 p1.addm(self) self.p2 = p2 p2.addm(self) self.M12 = M12 self.M21 = M21 def edit(self,name,M12,M21): ''' Редактирование взаимоиндукции m.edit(model,name,M12,M21)''' self.name = name self.M12 = M12 self.M21 = M21 def par(self): '''Вывод на экран параметров ветви - ее номера, названия, номеров и наименований ветвей между которыми создана взаимоиндукция, электрических параметров M12,M21 m.par()''' print('Взаимоиндукция № {} - {} : {}({}) <=> {}({})'.format(self.id,self.name,self.p1.id,self.p1.name,self.p2.id,self.p2.name)) print('M12 = {}; M21 = {}'.format(self.M12,self.M21)) class N: '''Класс продольной (обрыв) или поперечной (КЗ) несимметрии, необходим для формирования расчетной модели и получения результатов расчета Создание несимметрии с помощью конструктора N(model,name,qp,SC) - несимметрия N(model,name,qp,SC,desc='Примечание') - несимметрия с текстовым примечанием N(model,name,qp,SC,r=Rd) - несимметрия в виде КЗ с переходным сопротивлением где: model - объект расчетной модели в которой создается несимметрия name - краткое название несимметрии, обращение к несимметрии по ее имени не предусмотрено qp - объект узла (КЗ) или ветви (обрыв) в котором создается несимметрия desc - Примечание или любая другая текстовая информация, можно не задавать. SC - вид КЗ, обрыва может принимать значения: 'A0','B0','C0' - металлические однофазные КЗ на землю или обрыв соответствующей фазы 'A0r','B0r','C0r' - однофазные КЗ на землю через переходное сопротивление 'AB','BC','CA' - металлические двухфазные КЗ или обрыв соответствующих фаз 'ABr','BCr','CAr' - двухфазные КЗ через переходное сопротивление 'AB0','BC0','CA0' - металлические двухфазные КЗ на землю 'ABC' - трехфазное КЗ без земли или обрыв трех фаз 'ABC0' - трехфазное КЗ на землю 'N0' - Заземление в узле в схеме нулевой последовательности или обрыв по нулевой последовательности на ветви Результатом конструктора несимметрии является объект несимметрии, который используется для формирования расчетной модели и вывода результатов расчетов Изменить параметры несимметрии n можно с помощью метода n.edit(name,SC) n.edit(name,SC,desc='') n.edit(name,SC,r=0) Пользовательские функции для объекта несимметрии n Вывод на экран параметров несимметрии - ее номера, названия, номера и наименования узла или ветви к которым она подключена, вида несимметрии n.par() Вывод сводной таблицы результатов расчетов для несимметрии n n.res() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах n.res(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','U120','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA', 'I1','I2','I0','3I0','I120','IA','IB','IC','IABC','IAB','IBC','ICA','IAB_BC_CA', 'Z1','Z2','Z0','Z120','ZA','ZB','ZC','ZABC','ZAB','ZBC','ZCA','ZAB_BC_CA', 'S1','S2','S0','S120','SA','SB','SC','SABC','SAB','SBC','SCA','SAB_BC_CA','S' Вывод конкретного параметра ParName в заданной форме Form: n.res(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах n.ParName где ParName может принимать значения: U1,U2,U0,UA,UB,UC,UABC,UAB,UBC,UCA,UAB_BC_CA I1,I2,I0,IA,IB,IC,IABC,IAB,IBC,ICA,IAB_BC_CA Z1,Z2,Z0,Z120,ZA,ZB,ZC,ZABC,ZAB,ZBC,ZCA,ZAB_BC_CA, S1,S2,S0,S120,SA,SB,SC,SABC,SAB,SBC,SCA,SAB_BC_CA,S''' def __init__(self,model,name,qp,SC,r=0,desc=''): ''' Конструктор повреждения (КЗ или обрыва)''' if not isinstance(model, Model): raise TypeError('Ошибка при добавлении несимметрии -', name, '\n', 'Аргумент model должен иметь тип Model!') if not isinstance(qp, (Q,P)): raise TypeError('Ошибка при добавлении несимметрии -', name, '\n', 'Аргумент qp должен иметь тип Q или P!') if not qp.model is model: raise ValueError('Ошибка при добавлении несимметрии -', name, '\n', 'Узел/Ветвь qp должны принадлежать той-же модели!') model.nn += 1 model.bn.append(self) self.id = model.nn self.model = model self.name = name self.desc = desc self.qp = qp qp.setn(self) self.SC = SC self.r = r def edit(self, name,SC,r=0,desc=''): '''Изменить параметры несимметрии n можно с помощью метода n.edit(name,SC) n.edit(name,SC,desc='') n.edit(name,SC,r=0)''' self.name = name self.desc = desc self.SC = SC self.r = r def par(self): '''Вывод на экран параметров несимметрии - ее номера, названия, номера и наименования узла или ветви к которым она подключена, вида несимметрии n.par()''' if isinstance(self.qp, Q): print('КЗ № {} - {} : {} (r={}) в узле № {}({})'.format(self.id,self.name,self.SC,self.r,self.qp.id,self.qp.name)) elif isinstance(self.qp, P): print('Обрыв № {} - {} : {} на ветви № {}({})'.format(self.id,self.name,self.SC,self.qp.id,self.qp.name)) def getres(self): '''Служебный метод, возвращает результат расчета по данной несимметрии для КЗ - токи КЗ прямой, обратной и нулевой последовательностей; для обрывов - напряжения продольной несимметрии прямой, обратной и нулевой последовательностей.''' if self.model is None: raise ValueError('Ошибка при выводе результатов расчетов несимметрии №', self.id, ' - ', self.name, '\n', 'Несимметрия не принадлежит какой либо модели!') if self.model.X is None: raise ValueError('Ошибка при выводе результатов расчетов несимметрии №', self.id, ' - ', self.name, '\n', 'Не произведен расчет электрических величин!') nId = 3*(self.model.np+self.model.nq+self.id-1) return self.model.X[nId:nId+3] def res(self,parname='',subpar=''): '''Вывод сводной таблицы результатов расчетов для несимметрии n n.res() Вывод конкретного параметра ParName в виде компексного числа для последующего использования в расчетах n.res(ParName) где ParName может принимать значения: 'U1','U2','U0','3U0','U120','UA','UB','UC','UABC','UAB','UBC','UCA','UAB_BC_CA', 'I1','I2','I0','3I0','I120','IA','IB','IC','IABC','IAB','IBC','ICA','IAB_BC_CA', 'Z1','Z2','Z0','Z120','ZA','ZB','ZC','ZABC','ZAB','ZBC','ZCA','ZAB_BC_CA', 'S1','S2','S0','S120','SA','SB','SC','SABC','SAB','SBC','SCA','SAB_BC_CA','S' Вывод конкретного параметра ParName в заданной форме Form: n.res(ParName,Form) где Form может принимать значения 'R' - Активная составляющая 'X' - Реактивная составляющая 'M' - Модуль комплексного числа '<f' - Фаза вектора в градусах 'R+jX' - Текстовый вид комплексного числа 'M<f' - Текстовый вид комплексного числа''' if isinstance(self.qp, Q): u120 = self.qp.getres() i120 = self.getres() if parname=='': print('КЗ № {} - {} - {}'.format(self.id, self.name, self.SC)) print('В Узле № {} - {}'.format(self.qp.id, self.qp.name)) print(StrU(u120)) print('Суммарный ток КЗ в Узле № {} - {}'.format(self.qp.id, self.qp.name)) print(StrI(i120)) print('Подтекание токов по ветвям') self.qp.update() for kp in self.qp.plist: i120 = kp.getres() if self.qp is kp.q1: u120,i120 = kp.getresq1(i120) elif self.qp is kp.q2: u120,i120 = kp.getresq2(i120) i120 = -i120 print('Ветвь № {} - {}'.format(kp.id, kp.name)) print(StrI(i120, 0)) else: res = mselectz[parname](u120,i120) if isinstance(res, np.ndarray): res = mform3[subpar](res,parname) else: res = mform1[subpar](res,parname) return res def __repr__(self): '''Еще один способ вывода сводной таблицы результатов расчетов для несимметрии n В командной строке интерпретара набрать название переменной объекта несимметрии n и нажать Enter n Enter''' if isinstance(self.qp, Q): u120 = self.qp.getres() i120 = self.getres() strres = [] strres.append('КЗ №{} - {} - {}\n'.format(self.id, self.name, self.SC)) strres.append('В Узле № {} - {}\n'.format(self.qp.id, self.qp.name)) strres.append(StrU(u120)) strres.append('\nСуммарный ток КЗ в Узле № {} - {}\n'.format(self.qp.id, self.qp.name)) strres.append(StrI(i120)) strres.append('\nПодтекание токов по ветвям') for kp in self.qp.plist: i120p = kp.getres() if self.qp is kp.q1: _,i120p = kp.getresq1(i120p) elif self.qp is kp.q2: _,i120p = kp.getresq2(i120p) i120p = -i120p strres.append('\nВетвь № {} - {}\n'.format(kp.id, kp.name)) strres.append(StrI(i120p,0)) strres = ''.join(strres) elif isinstance(self.qp, P): strres = self.qp.__repr__() return (strres) def __getattr__(self, attrname): '''Еще один способ получения конкректного параметра результата в виде компексного числа для его последующего использования в расчетах n.ParName где ParName может принимать значения: U1,U2,U0,UA,UB,UC,UABC,UAB,UBC,UCA,UAB_BC_CA I1,I2,I0,IA,IB,IC,IABC,IAB,IBC,ICA,IAB_BC_CA Z1,Z2,Z0,Z120,ZA,ZB,ZC,ZABC,ZAB,ZBC,ZCA,ZAB_BC_CA, S1,S2,S0,S120,SA,SB,SC,SABC,SAB,SBC,SCA,SAB_BC_CA,S''' if isinstance(self.qp, Q): u120 = self.qp.getres() i120 = self.getres() elif isinstance(self.qp, P): u120 = self.getres() i120 = self.qp.getres() res = mselectz[attrname](u120,i120) return res class Model: '''Класс представляющий расчетную модель электрической сети, необходим для формирования и хранения расчетной модели, выполнения расчетов Конструктор расчетной модели сети Model() Model(desc='Примечание') Пользовательские функции для модели mdl Обнуление количества и очистка списков (таблиц) узлов, ветвей, взаимоиндукций, несимметрий... mdl.Clear()''' def __init__(self,desc=''): ''' Конструктор расчетной модели''' self.desc = desc self.nq = 0 self.np = 0 self.nm = 0 self.nn = 0 self.bq = [] self.bp = [] self.bm = [] self.bn = [] self.X = None def AddNQ(self,NQ,Nname): '''Множественное создание узлов NQ - количество создаваемых узлов Nname - общее наименование узлов''' listq = [] for ij in range(NQ): listq.append(Q(self,'{} - №{}'.format(Nname,ij+1))) return listq def AddNP(self,Nname,listq1,listq2,Z12,Z0,B12=None,B0=None): '''Множественное создание ветвей и взаимоиндуктивностей NQ - количество создаваемых узлов Nname - общее наименование сечения ветвей listq1 - список объектов узлов к которым буду подключаться ветви listq2 - другой список объектов узлов к которым буду подключаться ветви Z12 - вектор np.ndarray значений сопротивлений ветвей прямой/обратной последовательности Z0 - квадратная матрица np.ndarray значений сопротивлений ветвей и взаимоиндукций нулевой последовательности B12 - вектор np.ndarray значений поперечной емкостной проводимости прямой/обратной последовательности B0 - квадратная матрица np.ndarray значений поперечной емкостной проводимости нулевой последовательности AddNP(Nname,listq1,listq2,Z12,Z0) - при отсутствии поперечной емкостной проводимости AddNP(Nname,listq1,listq2,Z12,Z0,B12,B0) - при наличии поперечной емкостной проводимости''' listp = [] listm = [] nq1 = len(listq1) nq2 = len(listq2) if nq1 != nq2: raise ValueError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Количество узлов с обоих сторон должно совпадать!') if not isinstance(Z12, np.ndarray): raise TypeError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Аргумент Z12 должен иметь тип np.ndarray!') if not isinstance(Z0, np.ndarray): raise TypeError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Аргумент Z0 должен иметь тип np.ndarray!') if nq1 != Z12.shape[0]: raise ValueError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Количество сопротивлений Z12 должно соответствовать количеству узлов!') if nq1 != Z0.shape[0] or nq1 != Z0.shape[1]: raise ValueError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Количество сопротивлений Z0 должно соответствовать количеству узлов!') if isinstance(B12, np.ndarray) and isinstance(B0, np.ndarray): if not isinstance(B12, np.ndarray): raise TypeError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Аргумент B12 должен иметь тип np.ndarray!') if not isinstance(B0, np.ndarray): raise TypeError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Аргумент B0 должен иметь тип np.ndarray!') if nq1 != B12.shape[0]: raise ValueError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Количество сопротивлений B12 должно соответствовать количеству узлов!') if nq1 != B0.shape[0] or nq1 != B0.shape[1]: raise ValueError('Ошибка при добавлении сечения ветвей -', Nname, '\n', 'Количество сопротивлений B0 должно соответствовать количеству узлов!') for ij in range(nq1): #(self,model,name,q1,q2,Z,E=(0, 0, 0),T=(1, 0),B=(0, 0, 0),desc='') listp.append(P(self,'{} - №{}'.format(Nname,ij+1),listq1[ij],listq2[ij]),Z=(Z12[ij],Z12[ij],Z0[ij,ij]),B=(B12[ij],B12[ij],B0[ij,ij])) for ij2 in range(ij): listm.append(M(self,'{} - №{}<=>№{}'.format(Nname,ij+1,ij2+1),listp[ij],listp[ij2],Z0[ij,ij2],Z0[ij2,ij])) else: for ij in range(nq1): listp.append(P(self,'{} - №{}'.format(Nname,ij+1),listq1[ij],listq2[ij]),Z=(Z12[ij],Z12[ij],Z0[ij,ij])) for ij2 in range(ij): listm.append(M(self,'{} - №{}<=>№{}'.format(Nname,ij+1,ij2+1),listp[ij],listp[ij2],Z0[ij,ij2],Z0[ij2,ij])) return listp + listm def ImportFromPVL(self,PVL_Sech): '''Импорт сечений ветвей из PVL''' listp = [] listm = [] PVL_Sech.calc() z1 = PVL_Sech.Len * PVL_Sech.Z1 z0 = PVL_Sech.Len * PVL_Sech.Z0 b1 = PVL_Sech.Len * PVL_Sech.B1 b0 = PVL_Sech.Len * PVL_Sech.B0 for ij,pk in enumerate(PVL_Sech.bp): p1 = P(self, pk.name, pk.q1, pk.q2, (z1[ij,0],z1[ij,0],z0[ij,ij]), B=(b1[ij,0],b1[ij,0],b0[ij,ij]) ) listp.append(p1) for ij2,pk2 in enumerate(PVL_Sech.bp[0:ij]): mname = '{} - №{}<=>№{}'.format(PVL_Sech.name,pk.name,pk2.name) p2 = listp[ij2] m = M(self,mname,p1,p2,z0[ij,ij2],z0[ij2,ij]) listm.append(m) return listp + listm def Clear(self): '''Полная очистка расчетной модели Обнуление количества и очистка списков (таблиц) узлов, ветвей, взаимоиндукций, несимметрий... mdl.Clear()''' self.X = None self.nq = 0 self.np = 0 self.nm = 0 self.nn = 0 for kq in self.bq: kq.model = None kq.plist = [] kq.kn = None for kp in self.bp: kp.model = None kp.q1 = None kp.q2 = None kp.mlist = [] kp.kn = None for km in self.bm: km.model = None km.p1 = None km.p2 = None for kn in self.bn: kn.model = None kn.qp = None self.bq = [] self.bp = [] self.bm = [] self.bn = [] def ClearN(self): '''Очистка всех несимметрий (КЗ и обрывов) в расчетной модели за исключением типа 'N0' - заземлений и обрывов по нулевой последовательности mdl.ClearN()''' self.X = None self.nn = 0 oldbn = self.bn self.bn = [] for kn in oldbn: if kn.SC == 'N0': self.nn += 1 self.bn.append(kn) kn.id = self.nn else: kn.model = None kn.qp.kn = None def List(self): '''Вывод на экран составляющих расчетную модель узлов, ветвей, взаимоиндукций, несимметрий и их параметров... По сути является поочередным применением метода par() ко всем элементам расчетной модели mdl.List()''' print('Количество узлов = {}; ветвей = {}; взаимоиндуктивностей = {}; несимметрий = {}'.format(self.nq,self.np,self.nm,self.nn)) for kq in self.bq: kq.par() for kp in self.bp: kp.par() for km in self.bm: km.par() for kn in self.bn: kn.par() def Test4Singularity(self): '''Тестирование модели на условия приводящие к вырожденности (сингулярности) матрицы уравнений узловых напряжений и токов ветвей mdl.Test4Singularity()''' for kq in self.bq: kq.singulare = True for kp in self.bp: if isinstance(kp.q1, int) and isinstance(kp.q2, Q): kp.q2.Test4Singularity() elif isinstance(kp.q1, Q) and isinstance(kp.q2, int): kp.q1.Test4Singularity() listq = [] listp = [] for kq in self.bq: if kq.singulare: listq.append(kq) for kp in self.bp: if (kp.q1 in listq) or (kp.q2 in listq): listp.append(kp) if listq or listp: print('\nСписок висящих узлов\n') for kq in listq: kq.par() print('\nСписок висящих ветвей\n') for kp in listp: kp.par() print('\nСписок взаимоиндукций между ветвями, хотя-бы одна из которых является висящей\n') for km in self.bm: if (km.p1 in listp) or (km.p2 in listp): km.par() print('\nСписок КЗ на висящем узле или обрывов на висящих ветвях\n') for kn in self.bn: if isinstance(kn.qp, Q): # Короткие замыкания if kn.qp in listq: kn.par() if isinstance(kn.qp, P): # Обрывы if kn.qp in listp: kn.par() raise ValueError('Выявлены висящие узлы, ветви!!! \nВыполнение расчетов электрических параметров невозможно! \nУдалите или закоментируйте висящие узлы, ветви,\n, взаимоиндукции, КЗ и обрывы!') def Calc(self): '''Главный метод модуля МРТКЗ mdl.Calc() Осуществляет формирование разреженной системы линейных алгебраических уравнений (СЛАУ) и последующее ее решение с помощью алгоритма библиотеки scipy - spsolve(LHS,RHS) LHS * X = RHS где LHS - разреженная квадратная матрица RHS - вектор столбец X - искомый результат расчета Для каждого узла и ветви формируется по три уравнения: для схемы прямой, обратной и нулевой последовательностей Для каждой несимметрии формируется по три уравнения: уравнения граничных условий, определяющих несимметрию Размерность (количество уравнений) равняется 3*(np+nq+nn), где: np - количество ветвей в расчетной модели; nq - количество узлов в расчетной модели; nn - количество несимметрий в расчетной модели. Вышеуказанное уравнение представляет собой систему матричных уравнений без учета уравнений описывающих несимметрии: Z*Ip + At*Uq = E A*Ip + (-B/2)*Uq = -J где: 1-ое уравнение сформировано по 2-ому закону Кирхгофа (Zp*Ip - (Uq1 - Uq2) = Ep) 2-ое уравнение сформировано по 1-ому закону Кирхгофа (сумма токов в узле равна нулю) Z - квадратная матрица сопротивлений ветвей и взаимных индуктивностей прямой, обратной и нулевой последовательностей, размерность - (3*np,3*np) A - матрица соединений, размерность - (3*nq,3*np) At - транспонированная матрица соединений, размерность - (3*np,3*nq) (B/2) - квадратная диагональная матрица сумм поперечных проводимостей B/2, подключенных к узлу прямой, обратной и нулевой последовательностей, размерность - (3*nq,3*nq) E - вектор столбец Э.Д.С. ветвей прямой, обратной и нулевой последовательностей, размерность - (3*np,1) J - вектор столбец источников тока подключенных к узлам Ip - искомый вектор столбец значений токов ветвей прямой, обратной и нулевой последовательностей, размерность - (3*np,1) Uq - искомый вектор столбец значений напряжений узлов прямой, обратной и нулевой последовательностей, размерность - (3*nq,1) На каждую несимметрию дополнительно пишется по три уравнения - граничных условий (для понимания указаны в фазных величинах): Короткие замыкания А0 => Uka=0;Ikb=0;Ikc=0 B0 => Ukb=0;Ikc=0;Ika=0 C0 => Ukc=0;Ika=0;Ikb=0 А0r => Uka-r*Ika=0;Ikb=0;Ikc=0 B0r => Ukb-r*Ikb=0;Ikc=0;Ika=0 C0r => Ukc-r*Ikc=0;Ika=0;Ikb=0 АB => Uka-Ukb=0;Ika+Ikb=0;Ikc=0 BC => Ukb-Ukc=0;Ikb+Ikc=0;Ika=0 CА => Ukc-Uka=0;Ikc+Ika=0;Ikb=0 АBr => Uka-Ukb-r*Ika=0;Ika+Ikb=0;Ikc=0 BCr => Ukb-Ukc-r*Ikb=0;Ikb+Ikc=0;Ika=0 CАr => Ukc-Uka-r*Ikc=0;Ikc+Ika=0;Ikb=0 АB0 => Uka=0;Ukb=0;Ikc=0 BC0 => Ukb=0;Ukc=0;Ika=0 CА0 => Ukc=0;Uka=0;Ikb=0 АBC => Uk1=0;Uk2=0;Ik0=0 АBC0 => Uk1=0;Uk2=0;Uk0=0 Заземление нейтрали N0 => Ik1=0;Ik2=0;Uk0=0 Обрывы А0 => Ia=0;dUb=0;dUc=0 B0 => Ib=0;dUc=0;dUa=0 C0 => Ic=0;dUa=0;dUb=0 АB => Ia=0;Ib=0;dUc=0 BC => Ib=0;Ic=0;dUa=0 CА => Ic=0;Ia=0;dUb=0 АBC => I1=0;I2=0;I0=0 Обрыв ветви по нулевой последовательности N0 => dU1=0;dU2=0;I0=0 а также в новых столбцах по каждой из последовательностей прописывается: - Для КЗ в уравнение по 1-ому закону Кирхгофа A*Ip + (-B/2)*Uq - Ik = 0, где Ik - ток поперечной несимметрии - Для обрывов в уравнение по 2-ому закону Кирхгофа Z*Ip + At*Uq + dU = E, где dU - напряжение продольной несимметрии Разреженная матрица LHS формируется в два этапа Этап 1. формируется координатная версия резреженной матрицы в cdata, ri и ci, в которых хранятся значения ненулевых элеметнов матрицы, их номера строк и столбцов Этап 2. формируется CSC (Разреженный столбцовый формат) матрица LHS с помощью метода scipy Решение разреженной СЛАУ осуществляется с помощью метода spsolve(LHS,RHS) библиотеки scipy''' # self.Test4Singularity() n = 3*(self.nq+self.np+self.nn)# Размерность СЛАУ maxnnz = 3*self.nq + 15*self.np + 2*self.nm + 15*self.nn# Максимальное кол-во ненулевых элементов разреженной матрицы RHS = np.zeros(n, dtype=np.complex)# Вектор правой части СЛАУ, в него записывается э.д.с. ветвей и J узлов ij = 3*self.nq # Текущий адрес записи, в результате количество использованной памяти cdata = np.zeros(maxnnz, dtype=np.cdouble)# Вектор для хранения ненулевых элементов СЛАУ ri = np.zeros(maxnnz, dtype=np.int)# Вектор для хранения номеров строк ненулевых элементов СЛАУ ci = np.zeros(maxnnz, dtype=np.int)# Вектор для хранения номеров столбцов ненулевых элементов СЛАУ ri[0:ij] = 3*self.np + np.arange(ij) ci[0:ij] = ri[0:ij] for kp in self.bp: # Перебор всех ветвей pId = 3*(kp.id-1)#Здесь и далее номер строки, столбца относящегося к прямой последовательности ветви lpId = pId+arr012#[pId,pId+1,pId+2] #Запись сопротивлений ветви в разреженную матрицу Dij = 3 ri[ij:ij+Dij] = lpId ci[ij:ij+Dij] = lpId cdata[ij:ij+Dij] = np.array(kp.Z) ij += Dij #Запись Э.Д.С. ветви в RHS RHS[pId:pId+3] = np.array(kp.E) #Расчет комплексных коэф-ов трансформации прямой, обратной и нулевой последовательностей Kt1 = kp.T[0] * np.exp(Kf*kp.T[1]) if kp.T[1] % 2 == 0: Kt2 = Kt1 else: Kt2 = np.conj(Kt1) Kt0 = Kt1 if isinstance(kp.q1, Q): qId = 3*(self.np + kp.q1.id - 1)#Здесь и далее номер строки, столбца относящегося к прямой последовательности узла lqId = qId+arr012#[qId,qId+1,qId+2] qbId = 3*(kp.q1.id-1) #Cуммирование B/2 подключенных ветвей к узлу cdata[qbId:qbId+3] -= np.array(kp.B)/2 #Запись матриц соединений A и At в разреженную матрицу (для q1 -> -1) Dij = 6 ri[ij:ij+Dij] = np.concatenate((lpId,lqId))#[pId,pId+1,pId+2,qId,qId+1,qId+2] ci[ij:ij+Dij] = np.concatenate((lqId,lpId))#[qId,qId+1,qId+2,pId,pId+1,pId+2] cdata[ij:ij+Dij] = np.concatenate((arr_111,arr_111))#[-1.0,-1.0,-1.0,-1.0,-1.0,-1.0] ij += Dij if isinstance(kp.q2, Q): qId = 3*(self.np + kp.q2.id - 1) lqId = qId+arr012#[qId,qId+1,qId+2] qbId = 3*(kp.q2.id-1) #Cуммирование B/2 подключенных ветвей к узлу cdata[qbId:qbId+3] -= np.array(kp.B)/2 #Запись матриц соединений A и At в разреженную матрицу (для q2 -> 1 или Кт для трансформаторов) Dij = 6 ri[ij:ij+Dij] = np.concatenate((lpId,lqId))#[pId,pId+1,pId+2,qId,qId+1,qId+2] ci[ij:ij+Dij] = np.concatenate((lqId,lpId))#[qId,qId+1,qId+2,pId,pId+1,pId+2] cdata[ij:ij+Dij] = np.array([Kt2,Kt1,Kt0,Kt1,Kt2,Kt0]) ij += Dij for km in self.bm: # Перебор всех взаимоиндукций pId1 = 3*(km.p1.id-1)+2 pId2 = 3*(km.p2.id-1)+2 #Запись сопротивлений взаимоиндукции в разреженную матрицу Dij = 2 ri[ij:ij+Dij] = np.array([pId1,pId2]) ci[ij:ij+Dij] = np.array([pId2,pId1]) cdata[ij:ij+Dij] = np.array([km.M12,km.M21]) ij += Dij for kq in self.bq:# Перебор всех узлов qId = 3*(self.np + kq.id-1) qbId = 3*(kq.id-1) cdata[qbId:qbId+3] -= np.array(kq.Y) RHS[qId:qId+3] = -np.array(kq.J) for kn in self.bn: # Перебор всех несимметрий nId = 3*(self.nq+self.np+kn.id-1)#Здесь и далее номер строки, столбца относящегося к несимметрии lnId = nId + arr012 if isinstance(kn.qp, Q): # Короткие замыкания qId = 3*(self.np+kn.qp.id-1) lqId = qId + arr012 #Запись в разреженную матрицу в уравнения по 1-ому закону Кирхгофа наличие КЗ в узле Dij = 3 ri[ij:ij+Dij] = lqId#[qId,qId+1,qId+2] ci[ij:ij+Dij] = lnId#[nId,nId+1,nId+2] cdata[ij:ij+Dij] = arr_111#[-1.0,-1.0,-1.0] ij += Dij if kn.SC=='N0' : #Заземление нейтрали Ik1=0;Ik2=0;Uk0=0 Dij = 3 ri[ij:ij+Dij] = lnId#[nId,nId+1,nId+2] ci[ij:ij+Dij] = np.array([nId,nId+1,qId+2]) cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij elif kn.SC in ('A0','B0','C0'): #Запись в разреженную матрицу граничных условий для КЗ Dij = 9 ri[ij:ij+Dij] = nId + np.concatenate((arr000,arr111,arr222))#[nId,nId,nId,nId+1,nId+1,nId+1,nId+2,nId+2,nId+2] ci[ij:ij+Dij] = np.concatenate((lqId,lnId,lnId))#[qId,qId+1,qId+2,nId,nId+1,nId+2,nId,nId+1,nId+2] if kn.SC == 'A0':# Uka=0;Ikb=0;Ikc=0 cdata[ij:ij+Dij] = vABC#[1.0,1.0,1.0,a2,a,1.0,a,a2,1.0] elif kn.SC == 'B0':# Ukb=0;Ikc=0;Ika=0 cdata[ij:ij+Dij] = vBCA#[a2,a,1.0,1.0,1.0,1.0,a,a2,1.0] else : # 'C0' # Ukc=0;Ika=0;Ikb=0 cdata[ij:ij+Dij] = vCAB#[a,a2,1.0,1.0,1.0,1.0,a2,a,1.0] ij += Dij elif kn.SC in ('A0r','B0r','C0r'): Dij = 12 ri[ij:ij+Dij] = nId + np.concatenate((arr000,arr111,arr222,arr000))#[nId,nId,nId,nId+1,nId+1,nId+1,nId+2,nId+2,nId+2,nId,nId,nId] ci[ij:ij+Dij] = np.concatenate((lqId,lnId,lnId,lnId))#[qId,qId+1,qId+2,nId,nId+1,nId+2,nId,nId+1,nId+2,nId,nId+1,nId+2] if kn.SC == 'A0r':# Uka-r*Ika=0;Ikb=0;Ikc=0 cdata[ij:ij+Dij] = np.concatenate((vABC, -kn.r*vA))#np.array(vA+vB+vC+[-kn.r,-kn.r,-kn.r]) elif kn.SC == 'B0r':# Ukb-r*Ikb=0;Ikc=0;Ika=0 cdata[ij:ij+Dij] = np.concatenate((vBCA, -kn.r*vB))#np.array(vB+vC+vA+[-kn.r*a2,-kn.r*a,-kn.r])# else : # 'C0r'# Ukc-r*Ikc=0;Ika=0;Ikb=0 cdata[ij:ij+Dij] = np.concatenate((vCAB, -kn.r*vC))#np.array(vC+vA+vB+[-kn.r*a,-kn.r*a2,-kn.r]) ij += Dij elif kn.SC in ('AB','BC','CA'): Dij = 5 ri[ij:ij+Dij] = nId + np.array([0,0,1,1,2]) ci[ij:ij+Dij] = np.array([qId,qId+1,nId,nId+1,nId+2]) if kn.SC == 'AB':# Uka-Ukb=0;Ika+Ikb=0;Ikc=0 cdata[ij:ij+Dij] = np.array([1.0-a2,1.0-a,1.0+a2,1.0+a,1.0]) elif kn.SC == 'BC':# Ukb-Ukc=0;Ikb+Ikc=0;Ika=0 cdata[ij:ij+Dij] = np.array([a2-a,a-a2,a2+a,a+a2,1.0]) else : # 'CA'# Ukc-Uka=0;Ikc+Ika=0;Ikb=0 cdata[ij:ij+Dij] = np.array([a-1.0,a2-1.0,a+1.0,a2+1.0,1.0]) ij += Dij elif kn.SC in ('ABr','BCr','CAr'): Dij = 7 ri[ij:ij+Dij] = nId + np.array([0,0,1,1,2,0,0]) ci[ij:ij+Dij] = np.array([qId,qId+1,nId,nId+1,nId+2,nId,nId+1]) if kn.SC == 'ABr':# Uka-Ukb-r*Ika=0;Ika+Ikb=0;Ikc=0 cdata[ij:ij+Dij] = np.array([1.0-a2,1.0-a,1.0+a2,1.0+a,1.0,-kn.r,-kn.r]) elif kn.SC == 'BCr':# Ukb-Ukc-r*Ikb=0;Ikb+Ikc=0;Ika=0 cdata[ij:ij+Dij] = np.array([a2-a,a-a2,a2+a,a+a2,1.0,-kn.r*a2,-kn.r*a]) else : # 'CAr'# Ukc-Uka-r*Ikc=0;Ikc+Ika=0;Ikb=0 cdata[ij:ij+Dij] = np.array([a-1.0,a2-1.0,a+1.0,a2+1.0,1.0,-kn.r*a,-kn.r*a2]) ij += Dij elif kn.SC in ('AB0','BC0','CA0'): Dij = 9 ri[ij:ij+Dij] = nId + np.concatenate((arr000,arr111,arr222))#np.array([nId,nId,nId,nId+1,nId+1,nId+1,nId+2,nId+2,nId+2]) ci[ij:ij+Dij] = np.concatenate((lqId,lqId,lnId))#np.array([qId,qId+1,qId+2,qId,qId+1,qId+2,nId,nId+1,nId+2]) if kn.SC == 'AB0':# Uka=0;Ukb=0;Ikc=0 cdata[ij:ij+Dij] = vABC#[1.0,1.0,1.0,a2,a,1.0,a,a2,1.0] elif kn.SC == 'BC0':# Ukb=0;Ukc=0;Ika=0 cdata[ij:ij+Dij] = vBCA#[a2,a,1.0,a,a2,1.0,1.0,1.0,1.0] else : # 'CA0'# Ukc=0;Uka=0;Ikb=0 cdata[ij:ij+Dij] = vCAB#[a,a2,1.0,1.0,1.0,1.0,a2,a,1.0] ij += Dij elif kn.SC == 'ABC':# Uk1=0;Uk2=0;Ik0=0 Dij = 3 ri[ij:ij+Dij] = lnId#[nId,nId+1,nId+2] ci[ij:ij+Dij] = np.array([qId,qId+1,nId+2]) cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij elif kn.SC == 'ABC0' : # Uk1=0;Uk2=0;Uk0=0 Dij = 3 ri[ij:ij+Dij] = lnId#[nId,nId+1,nId+2] ci[ij:ij+Dij] = lqId#[qId,qId+1,qId+2] cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij else : raise TypeError('Неизвестный вид КЗ!') elif isinstance(kn.qp, P): #Обрывы pId = 3*(kn.qp-1) lpId = pId+arr012 #Запись в разреженную матрицу в уравнения по 2-ому закону Кирхгофа о наличии обрыва на ветви Dij = 3 ri[ij:ij+Dij] = lpId#[pId,pId+1,pId+2] ci[ij:ij+Dij] = lnId#[nId,nId+1,nId+2] cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij if kn.SC == 'N0': #Обрыв ветви по нулевой последовательности dU1=0;dU2=0;I0=0 Dij = 3 ri[ij:ij+Dij] = lnId#[nId, nId+1, nId+2] ci[ij:ij+Dij] = np.array([nId, nId+1, pId+2]) cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij elif kn.SC in ('A0','B0','C0'): Dij = 9 ri[ij:ij+Dij] = nId + np.concatenate((arr000,arr111,arr222))#[nId,nId,nId,nId+1,nId+1,nId+1,nId+2,nId+2,nId+2] ci[ij:ij+Dij] = np.concatenate((lpId,lnId,lnId))#[pId,pId+1,pId+2,nId,nId+1,nId+2,nId,nId+1,nId+2] if kn.SC == 'A0':# Ia=0;dUb=0;dUc=0 cdata[ij:ij+Dij] = vABC#[1.0,1.0,1.0,a2,a,1.0,a,a2,1.0] elif kn.SC=='B0':# Ib=0;dUc=0;dUa=0 cdata[ij:ij+Dij] = vBCA#[a2,a,1.0,a,a2,1.0,1.0,1.0,1.0] else : # 'C0'# Ic=0;dUa=0;dUb=0 cdata[ij:ij+Dij] = vCAB#[a,a2,1.0,1.0,1.0,1.0,a2,a,1.0] ij += Dij elif kn.SC in ('AB','BC','CA'): Dij = 9 ri[ij:ij+Dij] = nId + np.concatenate((arr000,arr111,arr222))#[nId,nId,nId,nId+1,nId+1,nId+1,nId+2,nId+2,nId+2] ci[ij:ij+Dij] = np.concatenate((lpId,lpId,lnId))#[pId,pId+1,pId+2,pId,pId+1,pId+2,nId,nId+1,nId+2] if kn.SC == 'AB':# Ia=0;Ib=0;dUc=0 cdata[ij:ij+Dij] = vABC#[1.0,1.0,1.0,a2,a,1.0,a,a2,1.0] elif kn.SC == 'BC':# Ib=0;Ic=0;dUa=0 cdata[ij:ij+Dij] = vBCA#[a2,a,1.0,a,a2,1.0,1.0,1.0,1.0] else : # 'CA'# Ic=0;Ia=0;dUb=0 cdata[ij:ij+Dij] = vCAB#[a,a2,1.0,1.0,1.0,1.0,a2,a,1.0] ij += Dij elif kn.SC == 'ABC' : # I1=0;I2=0;I0=0 Dij = 3 ri[ij:ij+Dij] = lnId#[nId, nId+1, nId+2] ci[ij:ij+Dij] = lpId#[pId, pId+1, pId+2] cdata[ij:ij+Dij] = vA#[1.0,1.0,1.0] ij += Dij else: raise TypeError('Неизвестный вид обрыва!') else: raise TypeError('Неизвестный вид несимметрии!') #Формирование CSC разреженной матрицы (Разреженный столбцовый формат) LHS = csc_matrix((cdata[0:ij], (ri[0:ij], ci[0:ij])), shape=(n, n)) #решение разреженной СЛАУ с помощью функции из состава scipy self.X = spsolve(LHS,RHS) return self.X mselectz=dict({'U120' : lambda uq,ip: uq, 'U1' : lambda uq,ip: uq[0], 'U2' : lambda uq,ip: uq[1], 'U0' : lambda uq,ip: uq[2], '3U0' : lambda uq,ip: 3*uq[2], 'UA' : lambda uq,ip: vA @ uq, 'UB' : lambda uq,ip: vB @ uq, 'UC' : lambda uq,ip: vC @ uq, 'UAB' : lambda uq,ip: vAB @ uq, 'UBC' : lambda uq,ip: vBC @ uq, 'UCA' : lambda uq,ip: vCA @ uq, 'UABC' : lambda uq,ip: Ms2f @ uq, 'UAB_BC_CA' : lambda uq,ip: Ms2ff @ uq, 'I120' : lambda uq,ip: ip, 'I1' : lambda uq,ip: ip[0], 'I2' : lambda uq,ip: ip[1], 'I0' : lambda uq,ip: ip[2], '3I0' : lambda uq,ip: 3*ip[2], 'IA' : lambda uq,ip: vA @ ip, 'IB' : lambda uq,ip: vB @ ip, 'IC' : lambda uq,ip: vC @ ip, 'IAB' : lambda uq,ip: vAB @ ip, 'IBC' : lambda uq,ip: vBC @ ip, 'ICA' : lambda uq,ip: vCA @ ip, 'IABC' : lambda uq,ip: Ms2f @ ip, 'IAB_BC_CA' : lambda uq,ip: Ms2ff @ ip, 'Z120' : lambda uq,ip: uq / ip, 'Z1' : lambda uq,ip: uq[0] / ip[0], 'Z2' : lambda uq,ip: uq[1] / ip[1], 'Z0' : lambda uq,ip: uq[2] / ip[2], 'ZA' : lambda uq,ip: (vA @ uq) / (vA @ ip), 'ZB' : lambda uq,ip: (vB @ uq) / (vB @ ip), 'ZC' : lambda uq,ip: (vC @ uq) / (vC @ ip), 'ZAB' : lambda uq,ip: (vAB @ uq) / (vAB @ ip), 'ZBC' : lambda uq,ip: (vBC @ uq) / (vBC @ ip), 'ZCA' : lambda uq,ip: (vCA @ uq) / (vCA @ ip), 'ZABC' : lambda uq,ip: (Ms2f @ uq) / (Ms2f @ ip), 'ZAB_BC_CA' : lambda uq,ip: (Ms2ff @ uq) / (Ms2ff @ ip), 'S120' : lambda uq,ip: uq * np.conj(ip), 'S1' : lambda uq,ip: uq[0] * np.conj(ip[0]), 'S2' : lambda uq,ip: uq[1] * np.conj(ip[1]), 'S0' : lambda uq,ip: uq[2] * np.conj(ip[2]), 'SA' : lambda uq,ip: (vA @ uq) * np.conj(vA @ ip), 'SB' : lambda uq,ip: (vB @ uq) * np.conj(vB @ ip), 'SC' : lambda uq,ip: (vC @ uq) * np.conj(vC @ ip), 'SAB' : lambda uq,ip: (vAB @ uq) * np.conj(vAB @ ip), 'SBC' : lambda uq,ip: (vBC @ uq) * np.conj(vBC @ ip), 'SCA' : lambda uq,ip: (vCA @ uq) * np.conj(vCA @ ip), 'SABC' : lambda uq,ip: (Ms2f @ uq) * np.conj(Ms2f @ ip), 'S' : lambda uq,ip: np.sum((Ms2f @ uq) * np.conj(Ms2f @ ip)), 'SAB_BC_CA' : lambda uq,ip: (Ms2ff @ uq) * np.conj(Ms2ff @ ip) }) mform1=dict({'' : lambda res,parname: res, 'R' : lambda res,parname: np.real(res), 'X' : lambda res,parname: np.imag(res), 'M' : lambda res,parname: np.abs(res), '<f' : lambda res,parname: r2d*np.angle(res), 'R+jX' : lambda res,parname: "{0:<4} = {1:>8.1f} + {2:>8.1f}j".format(parname, np.real(res),np.imag(res)), 'M<f' : lambda res,parname: "{0:<4} = {1:>8.1f} ∠ {2:>6.1f}".format(parname, np.abs(res),r2d*np.angle(res)) }) mform3=dict({'' : lambda res,parname: res, 'R' : lambda res,parname: np.real(res), 'X' : lambda res,parname: np.imag(res), 'M' : lambda res,parname: np.abs(res), '<f' : lambda res,parname: r2d*np.angle(res), 'R+jX' : lambda res,parname: "{0:<4} = [{1:>8.1f} + {2:>8.1f}j, {3:>8.1f} + {4:>8.1f}j, {5:>8.1f} + {6:>8.1f}j]".format(parname, np.real(res[0]), np.imag(res[0]), np.real(res[1]), np.imag(res[1]), np.real(res[2]), np.imag(res[2])), 'M<f' : lambda res,parname: "{0:<4} = [{1:>8.1f} ∠ {2:>6.1f}, {3:>8.1f} ∠ {4:>6.1f}, {5:>8.1f} ∠ {6:>6.1f}]".format(parname, np.abs(res[0]), r2d*np.angle(res[0]), np.abs(res[1]), r2d*np.angle(res[1]), np.abs(res[2]), r2d*np.angle(res[2])) }) def StrU(u120): strUABC = "| UA = {0:>7.0f} ∠ {1:>6.1f} | UB = {2:>7.0f} ∠ {3:>6.1f} | UC = {4:>7.0f} ∠ {5:>6.1f} |\n" strU120 = "| U1 = {0:>7.0f} ∠ {1:>6.1f} | U2 = {2:>7.0f} ∠ {3:>6.1f} | 3U0 = {4:>7.0f} ∠ {5:>6.1f} |\n" strUAB_BC_CA = "| UAB = {0:>7.0f} ∠ {1:>6.1f} | UBC = {2:>7.0f} ∠ {3:>6.1f} | UCA = {4:>7.0f} ∠ {5:>6.1f} |\n" u1,u2,u0 = u120 uA,uB,uC = Ms2f @ u120 uAB,uBC,uCA = Ms2ff @ u120 resstr = [] resstr.append(strUABC.format(np.abs(uA),r2d*np.angle(uA),np.abs(uB),r2d*np.angle(uB),np.abs(uC),r2d*np.angle(uC))) resstr.append(strU120.format(np.abs(u1),r2d*np.angle(u1),np.abs(u2),r2d*np.angle(u2),
np.abs(3*u0)
numpy.abs
"""preprocess.py: module for data pre-processing.""" __author__ = "<NAME>, <NAME>, <NAME> and <NAME>" __copyright__ = "Copyright (c) 2020, 2021, <NAME>, <NAME>, <NAME> and <NAME>" __credits__ = ["Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA", "Universite Libre de Bruxelles, Aero-Thermo-Mechanics Laboratory, Brussels, Belgium"] __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = ["<NAME>", "<NAME>"] __email__ = ["<EMAIL>", "<EMAIL>", "<EMAIL>"] __status__ = "Production" import numpy as np import random import copy import operator import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from PCAfold.styles import * ################################################################################ # # Data Manipulation # ################################################################################ _scalings_list = ['none', '', 'auto', 'std', 'pareto', 'vast', 'range', '0to1', '-1to1', 'level', 'max', 'poisson', 'vast_2', 'vast_3', 'vast_4'] # ------------------------------------------------------------------------------ def center_scale(X, scaling, nocenter=False): """ Centers and scales the original data set, :math:`\mathbf{X}`. In the discussion below, we understand that :math:`X_j` is the :math:`j^{th}` column of :math:`\mathbf{X}`. - **Centering** is performed by subtracting the center, :math:`c_j`, from\ :math:`X_j`, where centers for all columns are stored in the matrix :math:`\mathbf{C}`: .. math:: \mathbf{X_c} = \mathbf{X} - \mathbf{C} Centers for each column are computed as: .. math:: c_j = mean(X_j) with the only exceptions of ``'0to1'`` and ``'-1to1'`` scalings, which introduce a different quantity to center each column. - **Scaling** is performed by dividing :math:`X_j` by the scaling\ factor, :math:`d_j`, where scaling factors\ for all columns are stored in the diagonal matrix :math:`\mathbf{D}`: .. math:: \mathbf{X_s} = \mathbf{X} \\cdot \mathbf{D}^{-1} If both centering and scaling is applied: .. math:: \mathbf{X_{cs}} = (\mathbf{X} - \mathbf{C}) \\cdot \mathbf{D}^{-1} Several scaling options are implemented here: +----------------------------+--------------------------+--------------------------------------------------------------------+ | Scaling method | ``scaling`` | Scaling factor :math:`d_j` | +============================+==========================+====================================================================+ | None | ``'none'`` | 1 | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Auto :cite:`Berg2006` | ``'auto'`` or ``'std'`` | :math:`\sigma` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Pareto :cite:`Noda2008` | ``'pareto'`` | :math:`\sqrt{\sigma}` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | VAST :cite:`Keun2003` | ``'vast'`` | :math:`\sigma^2 / mean(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Range :cite:`Berg2006` | ``'range'`` | :math:`max(X_j) - min(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | | 0 to 1 | | ``'0to1'`` | | :math:`d_j = max(X_j) - min(X_j)` | | | | | | | :math:`c_j = min(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | | -1 to 1 | | ``'-1to1'`` | | :math:`d_j = 0.5 \cdot (max(X_j) - min(X_j))` | | | | | | | :math:`c_j = 0.5 \cdot (max(X_j) + min(X_j))` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Level :cite:`Berg2006` | ``'level'`` | :math:`mean(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Max | ``'max'`` | :math:`max(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Poisson :cite:`Keenan2004` |``'poisson'`` | :math:`\sqrt{mean(X_j)}` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Vast-2 | ``'vast_2'`` | :math:`\sigma^2 k^2 / mean(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Vast-3 | ``'vast_3'`` | :math:`\sigma^2 k^2 / max(X_j)` | +----------------------------+--------------------------+--------------------------------------------------------------------+ | Vast-4 | ``'vast_4'`` | :math:`\sigma^2 k^2 / (max(X_j) - min(X_j))` | +----------------------------+--------------------------+--------------------------------------------------------------------+ where :math:`\sigma` is the standard deviation of :math:`X_j` and :math:`k` is the kurtosis of :math:`X_j`. The effect of data preprocessing (including scaling) on low-dimensional manifolds was studied in :cite:`Parente2013`. **Example:** .. code:: python from PCAfold import center_scale import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Center and scale: (X_cs, X_center, X_scale) = center_scale(X, 'range', nocenter=False) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param scaling: ``str`` specifying the scaling methodology. It can be one of the following: ``'none'``, ``''``, ``'auto'``, ``'std'``, ``'pareto'``, ``'vast'``, ``'range'``, ``'0to1'``, ``'-1to1'``, ``'level'``, ``'max'``, ``'poisson'``, ``'vast_2'``, ``'vast_3'``, ``'vast_4'``. :param nocenter: (optional) ``bool`` specifying whether data should be centered by mean. If set to ``True`` data will *not* be centered. :return: - **X_cs** - ``numpy.ndarray`` specifying the centered and scaled data set, :math:`\mathbf{X_{cs}}`. It has size ``(n_observations,n_variables)``. - **X_center** - ``numpy.ndarray`` specifying the centers, :math:`c_j`, applied on the original data set :math:`\mathbf{X}`. It has size ``(n_variables,)``. - **X_scale** - ``numpy.ndarray`` specifying the scales, :math:`d_j`, applied on the original data set :math:`\mathbf{X}`. It has size ``(n_variables,)``. """ if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(scaling, str): raise ValueError("Parameter `scaling` has to be a string.") else: if scaling.lower() not in _scalings_list: raise ValueError("Unrecognized scaling method.") if not isinstance(nocenter, bool): raise ValueError("Parameter `nocenter` has to be a boolean.") if scaling.lower() not in ['max', 'level', 'poisson']: for i in range(0, n_variables): if np.all(X[:,i] == X[0,i]): raise ValueError("Constant variable(s) are detected in the original data set. This will cause division by zero for the selected scaling. Consider removing the constant variables using `preprocess.remove_constant_vars`.") if scaling.lower() in ['max', 'level', 'poisson']: for i in range(0, n_variables): if np.all(X[:,i] == 0): raise ValueError("Constant and zeroed variable(s) are detected in the original data set. This will cause division by zero for the selected scaling. Consider removing the constant variables using `preprocess.remove_constant_vars`.") X_cs = np.zeros_like(X, dtype=float) X_center = X.mean(axis=0) dev = 0 * X_center kurt = 0 * X_center for i in range(0, n_variables): if scaling.lower() in ['auto', 'std', 'vast', 'vast_2', 'vast_3', 'vast_4', 'pareto']: # Calculate the standard deviation (required for some scalings): dev[i] = np.std(X[:, i], ddof=0) if scaling.lower() in ['vast_2', 'vast_3', 'vast_4']: # Calculate the kurtosis (required for some scalings): kurt[i] = np.sum((X[:, i] - X_center[i]) ** 4) / n_observations / (np.sum((X[:, i] - X_center[i]) ** 2) / n_observations) ** 2 scaling = scaling.upper() eps = np.finfo(float).eps if scaling == 'NONE' or scaling == '': X_scale = np.ones(n_variables) elif scaling == 'AUTO' or scaling == 'STD': X_scale = dev elif scaling == 'VAST': X_scale = dev * dev / (X_center + eps) elif scaling == 'VAST_2': X_scale = dev * dev * kurt * kurt / (X_center + eps) elif scaling == 'VAST_3': X_scale = dev * dev * kurt * kurt / np.max(X, axis=0) elif scaling == 'VAST_4': X_scale = dev * dev * kurt * kurt / (np.max(X, axis=0) - np.min(X, axis=0)) elif scaling == 'RANGE': X_scale = np.max(X, axis=0) - np.min(X, axis=0) elif scaling == '0TO1': X_center = np.min(X, axis=0) X_scale = np.max(X, axis=0) - np.min(X, axis=0) elif scaling == '-1TO1': X_center = 0.5*(np.max(X, axis=0) + np.min(X, axis=0)) X_scale = 0.5*(np.max(X, axis=0) - np.min(X, axis=0)) elif scaling == 'LEVEL': X_scale = X_center elif scaling == 'MAX': X_scale = np.max(X, axis=0) elif scaling == 'PARETO': X_scale = np.zeros(n_variables) for i in range(0, n_variables): X_scale[i] = np.sqrt(dev[i]) elif scaling == 'POISSON': X_scale = np.sqrt(X_center) else: raise ValueError('Unsupported scaling option') for i in range(0, n_variables): if nocenter: X_cs[:, i] = (X[:, i]) / X_scale[i] else: X_cs[:, i] = (X[:, i] - X_center[i]) / X_scale[i] if nocenter: X_center = np.zeros(n_variables) return(X_cs, X_center, X_scale) # ------------------------------------------------------------------------------ def invert_center_scale(X_cs, X_center, X_scale): """ Inverts whatever centering and scaling was done by the ``center_scale`` function: .. math:: \mathbf{X} = \mathbf{X_{cs}} \\cdot \mathbf{D} + \mathbf{C} **Example:** .. code:: python from PCAfold import center_scale, invert_center_scale import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Center and scale: (X_cs, X_center, X_scale) = center_scale(X, 'range', nocenter=False) # Uncenter and unscale: X = invert_center_scale(X_cs, X_center, X_scale) :param X_cs: ``numpy.ndarray`` specifying the centered and scaled data set, :math:`\mathbf{X_{cs}}`. It should be of size ``(n_observations,n_variables)``. :param X_center: ``numpy.ndarray`` specifying the centers, :math:`c_j`, applied on the original data set, :math:`\mathbf{X}`. It should be of size ``(n_variables,)``. :param X_scale: ``numpy.ndarray`` specifying the scales, :math:`d_j`, applied on the original data set, :math:`\mathbf{X}`. It should be of size ``(n_variables,)``. :return: - **X** - ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It has size ``(n_observations,n_variables)``. """ if not isinstance(X_cs, np.ndarray): raise ValueError("Parameter `X_cs` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X_cs) except: raise ValueError("Parameter `X_cs` has to have size `(n_observations,n_variables)`.") if not isinstance(X_center, np.ndarray): raise ValueError("Parameter `X_center` has to be of type `numpy.ndarray`.") try: (n_variables_centers,) = np.shape(X_center) except: raise ValueError("Parameter `X_center` has to have size `(n_variables,)`.") if not isinstance(X_scale, np.ndarray): raise ValueError("Parameter `X_scale` has to be of type `numpy.ndarray`.") try: (n_variables_scales,) = np.shape(X_scale) except: raise ValueError("Parameter `X_scale` has to have size `(n_variables,)`.") if n_variables != n_variables_centers: raise ValueError("Parameter `X_center` has different number of variables than parameter `X_cs`.") if n_variables != n_variables_scales: raise ValueError("Parameter `X_scale` has different number of variables than parameter `X_cs`.") if n_variables == 1: X = X_cs * X_scale + X_center else: X = np.zeros_like(X_cs, dtype=float) for i in range(0, n_variables): X[:, i] = X_cs[:, i] * X_scale[i] + X_center[i] return(X) # ------------------------------------------------------------------------------ def log_transform(X, method='log', threshold=1.e-6): """ Performs log transformation of the original data set, :math:`\mathbf{X}`. For an example original function: .. image:: ../images/log_transform-original-function.svg :width: 700 :align: center The symlog transformation can be obtained with ``method='symlog'``: .. image:: ../images/log_transform-symlog.svg :width: 700 :align: center The continuous symlog transformation can be obtained with ``method='continuous-symlog'``: .. image:: ../images/log_transform-continuous-symlog.svg :width: 700 :align: center **Example:** .. code:: python from PCAfold import log_transform import numpy as np # Generate dummy data set: X = np.random.rand(100,20) + 1 # Perform log transformation: X_log = log_transform(X) # Perform symlog transformation: X_symlog = log_transform(X, method='symlog', threshold=1.e-4) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param method: (optional) ``str`` specifying the log-transformation method. It can be one of the following: ``log``, ``ln``, ``symlog``, ``continuous-symlog``. :param threshold: (optional) ``float`` or ``int`` specifying the threshold for symlog transformation. :return: - **X_transformed** - ``numpy.ndarray`` specifying the log-transformed data set. It has size ``(n_observations,n_variables)``. """ __methods = ['log', 'ln', 'symlog', 'continuous-symlog'] if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(method, str): raise ValueError("Parameter `method` has to be a string.") else: if method.lower() not in __methods: raise ValueError("Unrecognized transformation method.") if not isinstance(threshold, float): if not isinstance(threshold, int): raise ValueError("Parameter `threshold` has to be of type `float` or `int`.") X_transformed = np.zeros_like(X) if method == 'log': for j in range(0, n_variables): X_transformed[:,j] = np.log10(X[:,j]) elif method == 'ln': for j in range(0, n_variables): X_transformed[:,j] = np.log(X[:,j]) elif method == 'symlog': for j in range(0, n_variables): for i in range(0,n_observations): if np.abs(X[i,j]) > threshold: X_transformed[i,j] = np.sign(X[i,j]) * np.log10(np.abs(X[i,j])) else: X_transformed[i,j] = X[i,j] elif method == 'continuous-symlog': for j in range(0, n_variables): for i in range(0,n_observations): X_transformed[i,j] = np.sign(X[i,j]) * np.log10(1. + np.abs(X[i,j]/threshold)) return(X_transformed) # ------------------------------------------------------------------------------ class PreProcessing: """ Performs a composition of data manipulation done by ``remove_constant_vars`` and ``center_scale`` functions on the original data set, :math:`\mathbf{X}`. It can be used to store the result of that manipulation. Specifically, it: - checks for constant columns in a data set and removes them, - centers and scales the data. **Example:** .. code:: python from PCAfold import PreProcessing import numpy as np # Generate dummy data set with a constant variable: X = np.random.rand(100,20) X[:,5] = np.ones((100,)) # Instantiate PreProcessing class object: preprocessed = PreProcessing(X, 'range', nocenter=False) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param scaling: ``str`` specifying the scaling methodology. It can be one of the following: ``'none'``, ``''``, ``'auto'``, ``'std'``, ``'pareto'``, ``'vast'``, ``'range'``, ``'0to1'``, ``'-1to1'``, ``'level'``, ``'max'``, ``'poisson'``, ``'vast_2'``, ``'vast_3'``, ``'vast_4'``. :param nocenter: (optional) ``bool`` specifying whether data should be centered by mean. If set to ``True`` data will *not* be centered. **Attributes:** - **X_removed** - (read only) ``numpy.ndarray`` specifying the original data set with any constant columns removed. It has size ``(n_observations,n_variables)``. - **idx_removed** - (read only) ``list`` specifying the indices of columns removed from :math:`\mathbf{X}`. - **idx_retained** - (read only) ``list`` specifying the indices of columns retained in :math:`\mathbf{X}`. - **X_cs** - (read only) ``numpy.ndarray`` specifying the centered and scaled data set, :math:`\mathbf{X_{cs}}`. It should be of size ``(n_observations,n_variables)``. - **X_center** - (read only) ``numpy.ndarray`` specifying the centers, :math:`c_j`, applied on the original data set :math:`\mathbf{X}`. It should be of size ``(n_variables,)``. - **X_scale** - (read only) ``numpy.ndarray`` specifying the scales, :math:`d_j`, applied on the original data set :math:`\mathbf{X}`. It should be of size ``(n_variables,)``. """ def __init__(self, X, scaling='none', nocenter=False): (self.__X_removed, self.__idx_removed, self.__idx_retained) = remove_constant_vars(X) (self.__X_cs, self.__X_center, self.__X_scale) = center_scale(self.X_removed, scaling, nocenter=nocenter) @property def X_removed(self): return self.__X_removed @property def idx_removed(self): return self.__idx_removed @property def idx_retained(self): return self.__idx_retained @property def X_cs(self): return self.__X_cs @property def X_center(self): return self.__X_center @property def X_scale(self): return self.__X_scale # ------------------------------------------------------------------------------ def remove_constant_vars(X, maxtol=1e-12, rangetol=1e-4): """ Removes any constant columns from the original data set, :math:`\mathbf{X}`. The :math:`j^{th}` column, :math:`X_j`, is considered constant if either of the following is true: - The maximum of an absolute value of a column :math:`X_j` is less than ``maxtol``: .. math:: max(|X_j|) < \\verb|maxtol| - The ratio of the range of values in a column :math:`X_j` to :math:`max(|X_j|)` is less than ``rangetol``: .. math:: \\frac{max(X_j) - min(X_j)}{max(|X_j|)} < \\verb|rangetol| Specifically, it can be used as preprocessing for PCA so the eigenvalue calculation doesn't break. **Example:** .. code:: python from PCAfold import remove_constant_vars import numpy as np # Generate dummy data set with a constant variable: X = np.random.rand(100,20) X[:,5] = np.ones((100,)) # Remove the constant column: (X_removed, idx_removed, idx_retained) = remove_constant_vars(X) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param maxtol: (optional) ``float`` specifying the tolerance for :math:`max(|X_j|)`. :param rangetol: (optional) ``float`` specifying the tolerance for :math:`max(X_j) - min(X_j)` over :math:`max(|X_j|)`. :return: - **X_removed** - ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}` with any constant columns removed. It has size ``(n_observations,n_variables)``. - **idx_removed** - ``list`` specifying the indices of columns removed from :math:`\mathbf{X}`. - **idx_retained** - ``list`` specifying the indices of columns retained in :math:`\mathbf{X}`. """ if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(maxtol, float): raise ValueError("Parameter `maxtol` has to be a `float`.") if not isinstance(rangetol, float): raise ValueError("Parameter `rangetol` has to be a `float`.") idx_removed = [] idx_retained = [] for i in reversed(range(0, n_variables)): min = np.min(X[:, i], axis=0) max = np.max(X[:, i], axis=0) maxabs = np.max(np.abs(X[:, i]), axis=0) if (maxabs < maxtol) or ((max - min) / maxabs < rangetol): X = np.delete(X, i, 1) idx_removed.append(i) else: idx_retained.append(i) X_removed = X idx_removed = idx_removed[::-1] idx_retained = idx_retained[::-1] return(X_removed, idx_removed, idx_retained) # ------------------------------------------------------------------------------ def order_variables(X, method='mean', descending=True): """ Orders variables in the original data set, :math:`\mathbf{X}`, using a selected method. **Example:** .. code:: from PCAfold import order_variables import numpy as np # Generate a dummy data set: X = np.array([[100, 1, 10], [200, 2, 20], [300, 3, 30]]) # Order variables by the mean value in the descending order: (X_ordered, idx) = order_variables(X, method='mean', descending=True) The code above should return an ordered data set: .. code-block:: text array([[100, 10, 1], [200, 20, 2], [300, 30, 3]]) and the list of ordered variable indices: .. code-block:: text [1, 2, 0] :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param method: (optional) ``str`` specifying the ordering method. It can be one of the following: ``'mean'``, ``'min'``, ``'max'``, ``'std'`` or ``'var'``. :param descending: (optional) ``bool`` specifying whether variables should be ordered in the descending order. If set to ``False``, variables will be ordered in the ascending order. :return: - **X_ordered** - ``numpy.ndarray`` specifying the original data set with ordered variables. It has size ``(n_observations,n_variables)``. - **idx** - ``list`` specifying the indices of the ordered variables. It has length ``n_variables``. """ __method = ['mean', 'min', 'max', 'std', 'var'] if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(method, str): raise ValueError("Parameter `method` has to be a string.") if method not in __method: raise ValueError("Parameter `method` has to be a 'mean', 'min', 'max', 'std' or 'var'.") if not isinstance(descending, bool): raise ValueError("Parameter `descending` has to be a boolean.") if method == 'mean': criterion = np.mean(X, axis=0) elif method == 'min': criterion = np.min(X, axis=0) elif method == 'max': criterion = np.max(X, axis=0) elif method == 'std': criterion = np.std(X, axis=0) elif method == 'var': criterion = np.var(X, axis=0) sorted_pairs = sorted(enumerate(criterion), key=operator.itemgetter(1)) sorted_indices = [index for index, element in sorted_pairs] if descending: idx = sorted_indices[::-1] else: idx = sorted_indices X_ordered = X[:,idx] return (X_ordered, idx) # ------------------------------------------------------------------------------ def outlier_detection(X, scaling, method='MULTIVARIATE TRIMMING', trimming_threshold=0.5, quantile_threshold=0.9899, verbose=False): """ Finds outliers in the original data set, :math:`\mathbf{X}`, and returns indices of observations without outliers as well as indices of the outliers themselves. Two options are implemented here: - ``'MULTIVARIATE TRIMMING'`` Outliers are detected based on multivariate Mahalanobis distance, :math:`D_M`: .. math:: D_M = \\sqrt{(\mathbf{X} - \mathbf{\\bar{X}})^T \mathbf{S}^{-1} (\mathbf{X} - \mathbf{\\bar{X}})} where :math:`\mathbf{\\bar{X}}` is a matrix of the same size as :math:`\mathbf{X}` storing in each column a copy of the average value of the same column in :math:`\mathbf{X}`. :math:`\mathbf{S}` is the covariance matrix computed as per ``PCA`` class. Note that the scaling option selected will affect the covariance matrix :math:`\mathbf{S}`. Since Mahalanobis distance takes into account covariance between variables, observations with sufficiently large :math:`D_M` can be considered as outliers. For more detailed information on Mahalanobis distance the user is referred to :cite:`Bishop2006` or :cite:`DeMaesschalck2000`. The threshold above which observations will be classified as outliers can be specified using ``trimming_threshold`` parameter. Specifically, the :math:`i^{th}` observation is classified as an outlier if: .. math:: D_{M, i} > \\verb|trimming_threshold| \\cdot max(D_M) - ``'PC CLASSIFIER'`` Outliers are detected based on major and minor principal components (PCs). The method of principal component classifier (PCC) was first proposed in :cite:`Shyu2003`. The application of this technique to combustion data sets was studied in :cite:`Parente2013`. Specifically, the :math:`i^{th}` observation is classified as an outlier if the *first PC classifier* based on :math:`q`-first (major) PCs: .. math:: \sum_{j=1}^{q} \\frac{z_{ij}^2}{L_j} > c_1 or if the *second PC classifier* based on :math:`(Q-k+1)`-last (minor) PCs: .. math:: \sum_{j=k}^{Q} \\frac{z_{ij}^2}{L_j} > c_2 where :math:`z_{ij}` is the :math:`i^{th}, j^{th}` element from the principal components matrix :math:`\mathbf{Z}` and :math:`L_j` is the :math:`j^{th}` eigenvalue from :math:`\mathbf{L}` (as per ``PCA`` class). Major PCs are selected such that the total variance explained is 50%. Minor PCs are selected such that the remaining variance they explain is 20%. Coefficients :math:`c_1` and :math:`c_2` are found such that they represent the ``quantile_threshold`` (by default 98.99%) quantile of the empirical distributions of the first and second PC classifier respectively. **Example:** .. code:: from PCAfold import outlier_detection import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Find outliers: (idx_outliers_removed, idx_outliers) = outlier_detection(X, scaling='auto', method='MULTIVARIATE TRIMMING', trimming_threshold=0.8, verbose=True) # New data set without outliers can be obtained as: X_outliers_removed = X[idx_outliers_removed,:] # Observations that were classified as outliers can be obtained as: X_outliers = X[idx_outliers,:] :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param scaling: ``str`` specifying the scaling methodology. It can be one of the following: ``'none'``, ``''``, ``'auto'``, ``'std'``, ``'pareto'``, ``'vast'``, ``'range'``, ``'0to1'``, ``'-1to1'``, ``'level'``, ``'max'``, ``'poisson'``, ``'vast_2'``, ``'vast_3'``, ``'vast_4'``. :param method: (optional) ``str`` specifying the outlier detection method to use. It should be ``'MULTIVARIATE TRIMMING'`` or ``'PC CLASSIFIER'``. :param trimming_threshold: (optional) ``float`` specifying the trimming threshold to use in combination with ``'MULTIVARIATE TRIMMING'`` method. :param quantile_threshold: (optional) ``float`` specifying the quantile threshold to use in combination with ``'PC CLASSIFIER'`` method. :param verbose: (optional) ``bool`` for printing verbose details. :return: - **idx_outliers_removed** - ``list`` specifying the indices of observations without outliers. - **idx_outliers** - ``list`` specifying the indices of observations that were classified as outliers. """ from PCAfold import PCA _detection_methods = ['MULTIVARIATE TRIMMING', 'PC CLASSIFIER'] if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(scaling, str): raise ValueError("Parameter `scaling` has to be a string.") else: if scaling.lower() not in _scalings_list: raise ValueError("Unrecognized scaling method.") if not isinstance(method, str): raise ValueError("Parameter `method` has to be a string.") else: if method.upper() not in _detection_methods: raise ValueError("Unrecognized outlier detection method.") if trimming_threshold < 0 or trimming_threshold > 1: raise ValueError("Parameter `trimming_threshold` has to be between 0 and 1.") if not isinstance(trimming_threshold, float): raise ValueError("Parameter `trimming_threshold` has to be a `float`.") if not isinstance(quantile_threshold, float): raise ValueError("Parameter `quantile_threshold` has to be a `float`.") if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be a boolean.") (n_observations, n_variables) = np.shape(X) idx_full = np.arange(0, n_observations) idx_outliers_removed = [] idx_outliers = [] pca_X = PCA(X, scaling=scaling, n_components=0) if method.upper() == 'MULTIVARIATE TRIMMING': means_of_X = np.mean(X, axis=0) covariance_matrix = pca_X.S inverse_covariance_matrix = np.linalg.inv(covariance_matrix) mahalanobis_distances = np.zeros((n_observations,)) for n_obs in range(0, n_observations): mahalanobis_distance = np.sqrt(np.dot((X[n_obs,:] - means_of_X), np.dot(inverse_covariance_matrix, (X[n_obs,:] - means_of_X)))) mahalanobis_distances[n_obs,] = mahalanobis_distance minimum_mahalanobis_distance = np.min(mahalanobis_distances) maximum_mahalanobis_distance = np.max(mahalanobis_distances) range_mahalanobis_distance = maximum_mahalanobis_distance - minimum_mahalanobis_distance (idx_outliers, ) = np.where(mahalanobis_distances > trimming_threshold * maximum_mahalanobis_distance) idx_outliers_removed = np.setdiff1d(idx_full, idx_outliers) if verbose: n_outliers = len(idx_outliers) print('Number of observations classified as outliers: ' + str(n_outliers)) elif method.upper() == 'PC CLASSIFIER': principal_components = pca_X.transform(X) eigenvalues = pca_X.L n_components = pca_X.n_components # Select major components based on 50% of the original data variance: pca_major = pca_X.set_retained_eigenvalues(method='TOTAL VARIANCE', option=0.5) n_major_components = pca_major.n_components # Select minor components based on 20% of the total variance in the data: pca_minor = pca_X.set_retained_eigenvalues(method='TOTAL VARIANCE', option=0.8) n_minor_components = pca_minor.n_components if verbose: print("Major components that will be selected are: " + ', '.join([str(i) for i in range(1, n_major_components+1)])) if verbose: print("Minor components that will be selected are: " + ', '.join([str(i) for i in range(n_minor_components, n_components+1)])) scaled_squared_PCs = np.divide(np.square(principal_components), eigenvalues) distances_major = np.sum(scaled_squared_PCs[:,0:n_major_components], axis=1) distances_minor = np.sum(scaled_squared_PCs[:,(n_minor_components-1):n_components], axis=1) # Threshold coefficient c_1 (for major PCs): threshold_coefficient_major = np.quantile(distances_major, quantile_threshold) # Threshold coefficient c_2 (for minor PCs): threshold_coefficient_minor = np.quantile(distances_minor, quantile_threshold) (idx_outliers_major, ) = np.where((distances_major > threshold_coefficient_major)) (idx_outliers_minor, ) = np.where((distances_minor > threshold_coefficient_minor)) idx_outliers = np.vstack((idx_outliers_major[:,np.newaxis], idx_outliers_minor[:,np.newaxis])) idx_outliers = np.unique(idx_outliers) idx_outliers_removed = np.setdiff1d(idx_full, idx_outliers) if verbose: n_outliers = len(idx_outliers) print('Number of observations classified as outliers: ' + str(n_outliers)) idx_outliers_removed = np.sort(idx_outliers_removed.astype(int)) idx_outliers = np.sort(idx_outliers.astype(int)) return (idx_outliers_removed, idx_outliers) # ------------------------------------------------------------------------------ class ConditionalStatistics: """ Enables computing conditional statistics on the original data set, :math:`\\mathbf{X}`. This includes: - conditional mean - conditional minimum - conditional maximum - conditional standard deviation Other quantities can be added in the future at the user's request. **Example:** .. code:: python from PCAfold import ConditionalStatistics import numpy as np # Generate dummy variables: conditioning_variable = np.linspace(-1,1,100) y = -conditioning_variable**2 + 1 # Instantiate object of the ConditionalStatistics class # and compute conditional statistics in 10 bins of the conditioning variable: cond = ConditionalStatistics(y[:,None], conditioning_variable, k=10) # Access conditional statistics: conditional_mean = cond.conditional_mean conditional_min = cond.conditional_minimum conditional_max = cond.conditional_maximum conditional_std = cond.conditional_standard_deviation # Access the centroids of the created bins: centroids = cond.centroids :param X: ``numpy.ndarray`` specifying the original data set, :math:`\\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param conditioning_variable: ``numpy.ndarray`` specifying a single variable to be used as a conditioning variable. It should be of size ``(n_observations,1)`` or ``(n_observations,)``. :param k: ``int`` specifying the number of bins to create in the conditioning variable. It has to be a positive number. :param split_values: ``list`` specifying values at which splits should be performed. If set to ``None``, splits will be performed using :math:`k` equal variable bins. :param verbose: (optional) ``bool`` for printing verbose details. **Attributes:** - **idx** - (read only) ``numpy.ndarray`` of cluster (bins) classifications. It has size ``(n_observations,)``. - **borders** - (read only) ``list`` of values that define borders for the clusters (bins). It has length ``k+1``. - **centroids** - (read only) ``list`` of values that specify bins centers. It has length ``k``. - **conditional_mean** - (read only) ``numpy.ndarray`` specifying the conditional means of all original variables in the :math:`k` bins created. It has size ``(k,n_variables)``. - **conditional_minimum** - (read only) ``numpy.ndarray`` specifying the conditional minimums of all original variables in the :math:`k` bins created. It has size ``(k,n_variables)``. - **conditional_maximum** - (read only) ``numpy.ndarray`` specifying the conditional maximums of all original variables in the :math:`k` bins created. It has size ``(k,n_variables)``. - **conditional_standard_deviation** - (read only) ``numpy.ndarray`` specifying the conditional standard deviations of all original variables in the :math:`k` bins created. It has size ``(k,n_variables)``. """ def __init__(self, X, conditioning_variable, k=20, split_values=None, verbose=False): if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations_X, n_variables_X) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(conditioning_variable, np.ndarray): raise ValueError("Parameter `conditioning_variable` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(conditioning_variable) except: (n_observations,) = np.shape(conditioning_variable) n_variables = 1 if n_observations_X != n_observations: raise ValueError("The original data set `X` and the `conditioning_variable` should have the same number of observations.") if n_variables != 1: raise ValueError("Parameter `conditioning_variable` has to have shape `(n_observations,1)` or `(n_observations,)`.") if not (isinstance(k, int) and k > 0): raise ValueError("Parameter `k` has to be a positive `int`.") if split_values is not None: if not isinstance(split_values, list): raise ValueError("Parameter `split_values` has to be of type `None` or `list`.") if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be of type `bool`.") if split_values is None: if verbose: print('Conditioning the data set based on equal bins of the conditioning variable.') (idx, borders) = variable_bins(conditioning_variable, k, verbose=verbose) if split_values is not None: if verbose: print('Conditioning the data set based on user-specified bins of the conditioning variable.') (idx, borders) = predefined_variable_bins(conditioning_variable, split_values=split_values, verbose=verbose) true_k = len(np.unique(idx)) conditional_mean = np.zeros((true_k, n_variables_X)) conditional_minimum = np.zeros((true_k, n_variables_X)) conditional_maximum = np.zeros((true_k, n_variables_X)) conditional_standard_deviation = np.zeros((true_k, n_variables_X)) centroids = [] for i in range(0,true_k): # Compute the centroids of all bins: centroids.append((borders[i] + borders[i+1])/2) # Compute conditional statistics in the generated bins: conditional_mean[i,:] = np.mean(X[idx==i,:], axis=0)[None,:] conditional_minimum[i,:] = np.min(X[idx==i,:], axis=0)[None,:] conditional_maximum[i,:] = np.max(X[idx==i,:], axis=0)[None,:] conditional_standard_deviation[i,:] = np.std(X[idx==i,:], axis=0)[None,:] self.__idx = idx self.__borders = borders self.__centroids = np.array(centroids) self.__conditional_mean = conditional_mean self.__conditional_minimum = conditional_minimum self.__conditional_maximum = conditional_maximum self.__conditional_standard_deviation = conditional_standard_deviation @property def idx(self): return self.__idx @property def borders(self): return self.__borders @property def centroids(self): return self.__centroids @property def conditional_mean(self): return self.__conditional_mean @property def conditional_minimum(self): return self.__conditional_minimum @property def conditional_maximum(self): return self.__conditional_maximum @property def conditional_standard_deviation(self): return self.__conditional_standard_deviation # ------------------------------------------------------------------------------ class KernelDensity: """ Enables kernel density weighting of the original data set, :math:`\mathbf{X}`, based on *single-variable* or *multi-variable* case as proposed in :cite:`Coussement2012`. The goal of both cases is to obtain a vector of weights, :math:`\\mathbf{W_c}`, that has the same number of elements as there are observations in the original data set, :math:`\mathbf{X}`. Each observation will then get multiplied by the corresponding weight from :math:`\mathbf{W_c}`. .. note:: Kernel density weighting technique is usually very expensive, even on data sets with relatively small number of observations. Since the *single-variable* case is a cheaper option than the *multi-variable* case, it is recommended that this technique is tried first for larger data sets. Gaussian kernel is used in both approaches: .. math:: K_{c, c'} = \sqrt{\\frac{1}{2 \pi h^2}} exp(- \\frac{d^2}{2 h^2}) :math:`h` is the kernel bandwidth: .. math:: h = \Big( \\frac{4 \hat{\sigma}}{3 n} \Big)^{1/5} where :math:`\hat{\sigma}` is the standard deviation of the considered variable and :math:`n` is the number of observations in the data set. :math:`d` is the distance between two observations :math:`c` and :math:`c'`: .. math:: d = |x_c - x_{c'}| **Single-variable** If the ``conditioning_variable`` argument is a single vector, weighting will be performed according to the *single-variable* case. It begins by summing Gaussian kernels: .. math:: \mathbf{K_c} = \sum_{c' = 1}^{c' = n} \\frac{1}{n} K_{c, c'} and weights are then computed as: .. math:: \mathbf{W_c} = \\frac{\\frac{1}{\mathbf{K_c}}}{max(\\frac{1}{\mathbf{K_c}})} **Multi-variable** If the ``conditioning_variable`` argument is a matrix of multiple variables, weighting will be performed according to the *multi-variable* case. It begins by summing Gaussian kernels for a :math:`k^{th}` variable: .. math:: \mathbf{K_c}_{, k} = \sum_{c' = 1}^{c' = n} \\frac{1}{n} K_{c, c', k} Global density taking into account all variables is then obtained as: .. math:: \mathbf{K_{c}} = \prod_{k=1}^{k=Q} \mathbf{K_c}_{, k} where :math:`Q` is the total number of conditioning variables, and weights are computed as: .. math:: \mathbf{W_c} = \\frac{\\frac{1}{\mathbf{K_c}}}{max(\\frac{1}{\mathbf{K_c}})} **Example:** .. code:: python from PCAfold import KernelDensity import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Perform kernel density weighting based on the first variable: kerneld = KernelDensity(X, X[:,0]) # Access the weighted data set: X_weighted = kerneld.X_weighted # Access the weights used to scale the data set: weights = kerneld.weights :param X: ``numpy.ndarray`` specifying the original data set, :math:`\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param conditioning_variable: ``numpy.ndarray`` specifying either a single variable or multiple variables to be used as a conditioning variable for kernel weighting procedure. Note that it can also be passed as the data set :math:`\mathbf{X}`. **Attributes:** - **weights** - ``numpy.ndarray`` specifying the computed weights, :math:`\mathbf{W_c}`. It has size ``(n_observations,1)``. - **X_weighted** - ``numpy.ndarray`` specifying the weighted data set (each observation in\ :math:`\mathbf{X}` is multiplied by the corresponding weight in :math:`\mathbf{W_c}`). It has size ``(n_observations,n_variables)``. """ def __init__(self, X, conditioning_variable, verbose=False): if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations_X, n_variables_X) = np.shape(X) except: raise ValueError("Parameter `X` has to have size `(n_observations,n_variables)`.") if not isinstance(conditioning_variable, np.ndarray): raise ValueError("Parameter `conditioning_variable` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(conditioning_variable) except: (n_observations, n_variables) = np.shape(conditioning_variable[:,np.newaxis]) if n_observations_X != n_observations: raise ValueError("The data set to weight and the conditioning variable should have the same number of observations.") if n_variables == 1: if verbose: print('Single-variable case will be applied.') self.__weights = self.__single_variable_observation_weights(conditioning_variable) elif n_variables > 1: if verbose: print('Multi-variable case will be applied.') self.__weights = self.__multi_variable_observation_weights(conditioning_variable) self.__X_weighted = np.multiply(X, self.weights) @property def weights(self): return self.__weights @property def X_weighted(self): return self.__X_weighted # Computes eq.(26): def __bandwidth(self, n, mean_standard_deviation): """ This function computes kernel bandwidth as: .. math:: h = \Big( \\frac{4 \hat{\sigma}}{3 n} \Big)^{1/5} :param n: number of observations in a data set or a variable vector. :param mean_standard_deviation: mean standard deviation in the entire data set or a variable vector. :returns: - **h** - kernel bandwidth, scalar. """ h = (4*mean_standard_deviation/(3*n))**(1/5) return(h) # Computes eq.(21): def __distance(self, x_1, x_2): """ This function computes distance between two observations: .. math:: d = |x_1 - x_2| :param x_1: first observation. :param x_2: second observation. :returns: - **d** - distance between the first and second observation. """ d = abs(x_1 - x_2) return(d) # Computes eq.(22): def __gaussian_kernel(self, x1, x2, n, mean_standard_deviation): """ This function computes a Gaussian kernel: .. math:: K = \sqrt{\\frac{1}{2 \pi h^2}} exp(- \\frac{d^2}{2 h^2}) :param x_1: first observation. :param x_2: second observation. :param n: number of observations in a data set or a variable vector. :param mean_standard_deviation: mean standard deviation in the entire data set or a variable vector. :returns: - **K** - Gaussian kernel. """ d = self.__distance(x1, x2) h = self.__bandwidth(n, mean_standard_deviation) K = (1/(2*np.pi*h**2))**0.5 * np.exp(- d/(2*h**2)) return(K) # Computes eq.(23): def __variable_density(self, x, mean_standard_deviation): """ This function computes a vector of variable densities for all observations. :param x: single variable vector. :param mean_standard_deviation: mean standard deviation in the entire data set or a variable vector. :returns: - **Kck** - a vector of variable densities for all observations, it has the same size as the variable vector `x`. """ n = len(x) Kck = np.zeros((n,1)) for i in range(0,n): gaussian_kernel_sum = 0 for j in range(0,n): gaussian_kernel_sum = gaussian_kernel_sum + self.__gaussian_kernel(x[i], x[j], n, mean_standard_deviation) Kck[i] = 1/n * gaussian_kernel_sum return(Kck) # Computes eq.(24): def __multi_variable_global_density(self, X): """ This function computes a vector of variable global densities for a multi-variable case, for all observations. :param X: multi-variable data set matrix. :returns: - **Kc** - a vector of global densities for all observations. """ (n, n_vars) = np.shape(X) mean_standard_deviation = np.mean(np.std(X, axis=0)) Kck_matrix = np.zeros((n, n_vars)) for variable in range(0, n_vars): Kck_matrix[:,variable] = np.reshape(self.__variable_density(X[:,variable], mean_standard_deviation), (n,)) # Compute the global densities vector: Kc = np.zeros((n,1)) K = 1 for i in range(0,n): Kc[i] = K * np.prod(Kck_matrix[i,:]) return(Kc) # Computes eq.(25): def __multi_variable_observation_weights(self, X): """ This function computes a vector of observation weights for a multi-variable case. :param X: multi-variable data set matrix. :returns: - **W_c** - a vector of observation weights. """ (n, n_vars) = np.shape(X) W_c = np.zeros((n,1)) Kc = self.__multi_variable_global_density(X) Kc_inv = 1/Kc for i in range(0,n): W_c[i] = Kc_inv[i] / np.max(Kc_inv) return(W_c) # Computes eq.(20): def __single_variable_observation_weights(self, x): """ This function computes a vector of observation weights for a single-variable case. :param x: single variable vector. :returns: - **W_c** - a vector of observation weights. """ n = len(x) mean_standard_deviation = np.std(x) W_c = np.zeros((n,1)) Kc = self.__variable_density(x, mean_standard_deviation) Kc_inv = 1/Kc for i in range(0,n): W_c[i] = Kc_inv[i] / np.max(Kc_inv) return(W_c) ################################################################################ # # Data Sampling # ################################################################################ class DataSampler: """ Enables selecting train and test data samples. **Example:** .. code:: from PCAfold import DataSampler import numpy as np # Generate dummy idx vector: idx = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]) # Instantiate DataSampler class object: selection = DataSampler(idx, idx_test=np.array([5,9]), random_seed=100, verbose=True) :param idx: ``numpy.ndarray`` of cluster classifications. It should be of size ``(n_observations,)`` or ``(n_observations,1)``. :param idx_test: (optional) ``numpy.ndarray`` specifying the user-provided indices for test data. If specified, train data will be selected ignoring the indices in ``idx_test`` and the test data will be returned the same as the user-provided ``idx_test``. If not specified, test samples will be selected according to the ``test_selection_option`` parameter (see documentation for each sampling function). Setting fixed ``idx_test`` parameter may be useful if training a machine learning model on specific test samples is desired. It should be of size ``(n_test_samples,)`` or ``(n_test_samples,1)``. :param random_seed: (optional) ``int`` specifying random seed for random sample selection. :param verbose: (optional) ``bool`` for printing verbose details. """ def __init__(self, idx, idx_test=None, random_seed=None, verbose=False): if isinstance(idx, np.ndarray): if not all(isinstance(i, np.integer) for i in idx.ravel()): raise ValueError("Parameter `idx` can only contain integers.") try: (n_observations, n_dim) = np.shape(idx) except: (n_observations,) = np.shape(idx) n_dim = 1 if n_dim != 1: raise ValueError("Parameter `idx` has to have size `(n_observations,)` or `(n_observations,1)`.") if n_observations == 0: raise ValueError("Parameter `idx` is an empty array.") self.__idx = idx else: raise ValueError("Parameter `idx` has to be of type `numpy.ndarray`.") if idx_test is not None: if isinstance(idx_test, np.ndarray): if not all(isinstance(i, np.integer) for i in idx_test.ravel()): raise ValueError("Parameter `idx_test` can only contain integers.") try: (n_test_samples, n_dim) = np.shape(idx_test) except: (n_test_samples,) = np.shape(idx_test) n_dim = 1 if n_dim != 1: raise ValueError("Parameter `idx_test` has to have size `(n_test_samples,)` or `(n_test_samples,1)`.") self.__idx_test = idx_test else: raise ValueError("Parameter `idx_test` has to be of type `numpy.ndarray`.") if len(np.unique(idx_test)) > len(idx): raise ValueError("Parameter `idx_test` has more unique observations than `idx`.") else: self.__idx_test = idx_test if random_seed is not None: if not isinstance(random_seed, int): raise ValueError("Parameter `random_seed` has to be an integer or None.") if isinstance(random_seed, bool): raise ValueError("Parameter `random_seed` has to be an integer or None.") else: self.__random_seed = random_seed else: self.__random_seed = random_seed if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be a boolean.") else: self.__verbose = verbose if idx_test is not None: if len(np.unique(idx_test)) != 0: self.__using_user_defined_idx_test = True if self.verbose==True: print('User defined test samples will be used. Parameter `test_selection_option` will be ignored.\n') else: self.__using_user_defined_idx_test = False else: self.__using_user_defined_idx_test = False @property def idx(self): return self.__idx @property def idx_test(self): return self.__idx_test @property def random_seed(self): return self.__random_seed @property def verbose(self): return self.__verbose @idx.setter def idx(self, new_idx): if isinstance(new_idx, np.ndarray): if not all(isinstance(i, np.integer) for i in new_idx.ravel()): raise ValueError("Parameter `idx` can only contain integers.") try: (n_observations, n_dim) = np.shape(new_idx) except: (n_observations,) = np.shape(new_idx) n_dim = 1 if n_dim != 1: raise ValueError("Parameter `idx` has to have size `(n_observations,)` or `(n_observations,1)`.") if n_observations == 0: raise ValueError("Parameter `idx` is an empty array.") self.__idx = new_idx else: raise ValueError("Parameter `idx` has to be of type `numpy.ndarray`.") if len(np.unique(self.idx_test)) > len(new_idx): raise ValueError("Parameter `idx` has less observations than current `idx_test`.") @idx_test.setter def idx_test(self, new_idx_test): if new_idx_test is not None: if len(new_idx_test) > len(self.idx): raise ValueError("Parameter `idx_test` has more unique observations than `idx`.") else: if isinstance(new_idx_test, np.ndarray): if not all(isinstance(i, np.integer) for i in new_idx_test.ravel()): raise ValueError("Parameter `idx_test` can only contain integers.") try: (n_test_samples, n_dim) = np.shape(new_idx_test) except: (n_test_samples,) = np.shape(new_idx_test) n_dim = 1 if n_dim != 1: raise ValueError("Parameter `idx_test` has to have size `(n_test_samples,)` or `(n_test_samples,1)`.") self.__idx_test = new_idx_test else: raise ValueError("Parameter `idx_test` has to be of type `numpy.ndarray`.") if len(np.unique(new_idx_test)) != 0: self.__using_user_defined_idx_test = True if self.verbose==True: print('User defined test samples will be used. Parameter `test_selection_option` will be ignored.\n') else: self.__using_user_defined_idx_test = False else: self.__idx_test = new_idx_test self.__using_user_defined_idx_test = False @random_seed.setter def random_seed(self, new_random_seed): if new_random_seed is not None: if not isinstance(new_random_seed, int): raise ValueError("Parameter `random_seed` has to be an integer or None.") if isinstance(new_random_seed, bool): raise ValueError("Parameter `random_seed` has to be an integer or None.") else: self.__random_seed = new_random_seed else: self.__random_seed = new_random_seed @verbose.setter def verbose(self, new_verbose): if not isinstance(new_verbose, bool): raise ValueError("Parameter `verbose` has to be a boolean.") else: self.__verbose = new_verbose def __print_verbose_information_sampling(self, idx, idx_train, idx_test): """ Prints detailed information on train and test sampling when ``verbose=True``. :param idx: ``numpy.ndarray`` of cluster classifications. It should be of size ``(n_observations,)`` or ``(n_observations,1)``. :param idx_train: indices of the train data. :param idx_test: indices of the test data. """ cluster_populations = get_populations(idx) k = np.size(np.unique(idx)) n_observations = len(idx) for cl_id in range(0,k): train_indices = [t_id for t_id in idx_train if idx[t_id,]==cl_id] if cluster_populations[cl_id] != 0: print("Cluster " + str(cl_id) + ": taking " + str(len(train_indices)) + " train samples out of " + str(cluster_populations[cl_id]) + " observations (%.1f" % (len(train_indices)/(cluster_populations[cl_id])*100) + "%).") else: print("Cluster " + str(cl_id) + ": taking " + str(len(train_indices)) + " train samples out of " + str(cluster_populations[cl_id]) + " observations (%.1f" % (0) + "%).") print("") for cl_id in range(0,k): train_indices = [t_id for t_id in idx_train if idx[t_id,]==cl_id] test_indices = [t_id for t_id in idx_test if idx[t_id,]==cl_id] if (cluster_populations[cl_id] - len(train_indices)) != 0: print("Cluster " + str(cl_id) + ": taking " + str(len(test_indices)) + " test samples out of " + str(cluster_populations[cl_id] - len(train_indices)) + " remaining observations (%.1f" % (len(test_indices)/(cluster_populations[cl_id] - len(train_indices))*100) + "%).") else: print("Cluster " + str(cl_id) + ": taking " + str(len(test_indices)) + " test samples out of " + str(cluster_populations[cl_id] - len(train_indices)) + " remaining observations (%.1f" % (0) + "%).") print('\nSelected ' + str(np.size(idx_train)) + ' train samples (%.1f' % (np.size(idx_train)*100/n_observations) + '%) and ' + str(np.size(idx_test)) + ' test samples (%.1f' % (np.size(idx_test)*100/n_observations) + '%).\n') # ------------------------------------------------------------------------------ def number(self, perc, test_selection_option=1): """ Uses classifications into :math:`k` clusters and samples fixed number of observations from every cluster as training data. In general, this results in a balanced representation of features identified by a clustering algorithm. **Example:** .. code:: from PCAfold import DataSampler import numpy as np # Generate dummy idx vector: idx = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]) # Instantiate DataSampler class object: selection = DataSampler(idx, verbose=True) # Generate sampling: (idx_train, idx_test) = selection.number(20, test_selection_option=1) **Train data:** The number of train samples is estimated based on the percentage ``perc`` provided. First, the total number of samples for training is estimated as a percentage ``perc`` from the total number of observations ``n_observations`` in a data set. Next, this number is divided equally into :math:`k` clusters. The result ``n_of_samples`` is the number of samples that will be selected from each cluster: .. math:: \\verb|n_of_samples| = \\verb|int| \Big( \\frac{\\verb|perc| \cdot \\verb|n_observations|}{k \cdot 100} \Big) **Test data:** Two options for sampling test data are implemented. If you select ``test_selection_option=1`` all remaining samples that were not taken as train data become the test data. If you select ``test_selection_option=2``, the smallest cluster is found and the remaining number of observations :math:`m` are taken as test data in that cluster. Next, the same number of samples :math:`m` is taken from all remaining larger clusters. The scheme below presents graphically how train and test data can be selected using ``test_selection_option`` parameter: .. image:: ../images/sampling-test-selection-option-number.svg :width: 700 :align: center Here :math:`n` and :math:`m` are fixed numbers for each cluster. In general, :math:`n \\neq m`. :param perc: percentage of data to be selected as training data from the entire data set. For instance, set ``perc=20`` if you want to select 20%. :param test_selection_option: (optional) ``int`` specifying the option for how the test data is selected. Select ``test_selection_option=1`` if you want all remaining samples to become test data. Select ``test_selection_option=2`` if you want to select a subset of the remaining samples as test data. :return: - **idx_train** - ``numpy.ndarray`` of indices of the train data. It has size ``(n_train,)``. - **idx_test** - ``numpy.ndarray`` of indices of the test data. It has size ``(n_test,)``. """ # Check if `perc` parameter was passed correctly: if (perc < 0) or (perc > 100): raise ValueError("Percentage has to be between 0-100.") # Check if `test_selection_option` parameter was passed correctly: _test_selection_option = [1,2] if test_selection_option not in _test_selection_option: raise ValueError("Test selection option can only be 1 or 2.") # Degrade clusters if needed: if (len(np.unique(self.idx)) != (np.max(self.idx)+1)) or (np.min(self.idx) != 0): (self.idx, _) = degrade_clusters(self.idx, verbose=False) # Initialize vector of indices 0..n_observations: n_observations = len(self.idx) idx_full = np.arange(0, n_observations) if self.idx_test is not None: idx_test = np.unique(np.array(self.idx_test)) else: idx_test = np.array([]) idx_full_no_test = np.setdiff1d(idx_full, idx_test) # Find the number of clusters: k = np.size(np.unique(self.idx)) # Calculate fixed number of samples that will be taken from every cluster as the training data: n_of_samples = int(perc*n_observations/k/100) # Initialize auxiliary variables: idx_train = [] cluster_test = [] # Get clusters and split them into train and test indices: for cl_id in range(0,k): if self.random_seed != None: random.seed(self.random_seed) # Variable `cluster` contains indices of observations that are allowed to be selected as train samples in a particular cluster: cluster = [] for i, id in enumerate(self.idx[idx_full_no_test]): if id == cl_id: cluster.append(idx_full_no_test[i]) # Selection of training data: if int(len(cluster)) < n_of_samples: raise ValueError("The requested percentage requires taking more samples from cluster " + str(cl_id) + " than there are available observations in that cluster. Consider lowering the percentage or use a different sampling function.") else: cluster_train = np.array(random.sample(cluster, n_of_samples)) idx_train = np.concatenate((idx_train, cluster_train)) if self.__using_user_defined_idx_test==False: # Selection of test data - all data that remains is test data: if test_selection_option == 1: cluster_test = np.setdiff1d(cluster, cluster_train) idx_test = np.concatenate((idx_test, cluster_test)) # Selection of test data - equal samples from each cluster: if test_selection_option == 2: cluster_test.append(np.setdiff1d(cluster, cluster_train)) if self.__using_user_defined_idx_test==False: if test_selection_option == 2: # Search for the smallest number of remaining observations in any cluster: minimum_test_samples = n_observations for cl_id in range(0,k): if len(cluster_test[cl_id]) < minimum_test_samples: minimum_test_samples = len(cluster_test[cl_id]) # Sample that amount from every cluster: for cl_id in range(0,k): idx_test = np.concatenate((idx_test, random.sample(list(cluster_test[cl_id]), minimum_test_samples))) idx_train = np.sort(idx_train.astype(int)) idx_test = np.sort(idx_test.astype(int)) # Print detailed information on sampling: if self.verbose == True: self.__print_verbose_information_sampling(self.idx, idx_train, idx_test) return (idx_train, idx_test) # ------------------------------------------------------------------------------ def percentage(self, perc, test_selection_option=1): """ Uses classifications into :math:`k` clusters and samples a certain percentage ``perc`` from every cluster as the training data. **Example:** .. code:: python from PCAfold import DataSampler import numpy as np # Generate dummy idx vector: idx = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]) # Instantiate DataSampler class object: selection = DataSampler(idx, verbose=True) # Generate sampling: (idx_train, idx_test) = selection.percentage(20, test_selection_option=1) *Note:* If the cluster sizes are comparable, this function will give a similar train sample distribution as random sampling (``DataSampler.random``). This sampling can be useful in cases where one cluster is significantly smaller than others and there is a chance that this cluster will not get covered in the train data if random sampling was used. **Train data:** The number of train samples is estimated based on the percentage ``perc`` provided. First, the size of the :math:`i^{th}` cluster is estimated ``cluster_size_i`` and then a percentage ``perc`` of that number is selected. **Test data:** Two options for sampling test data are implemented. If you select ``test_selection_option=1`` all remaining samples that were not taken as train data become the test data. If you select ``test_selection_option=2`` the same procedure will be used to select test data as was used to select train data (only allowed if the number of samples taken as train data from any cluster did not exceed 50% of observations in that cluster). The scheme below presents graphically how train and test data can be selected using ``test_selection_option`` parameter: .. image:: ../images/sampling-test-selection-option-percentage.svg :width: 700 :align: center Here :math:`p` is the percentage ``perc`` provided. :param perc: percentage of data to be selected as training data from each cluster. For instance, set ``perc=20`` if you want to select 20%. :param test_selection_option: (optional) ``int`` specifying the option for how the test data is selected. Select ``test_selection_option=1`` if you want all remaining samples to become test data. Select ``test_selection_option=2`` if you want to select a subset of the remaining samples as test data. :return: - **idx_train** - ``numpy.ndarray`` of indices of the train data. It has size ``(n_train,)``. - **idx_test** - ``numpy.ndarray`` of indices of the test data. It has size ``(n_test,)``. """ # Check if `perc` parameter was passed correctly: if (perc < 0) or (perc > 100): raise ValueError("Percentage has to be between 0-100.") # Check if `test_selection_option` parameter was passed correctly: _test_selection_option = [1,2] if test_selection_option not in _test_selection_option: raise ValueError("Test selection option can only be 1 or 2.") # Degrade clusters if needed: if (len(np.unique(self.idx)) != (np.max(self.idx)+1)) or (np.min(self.idx) != 0): (self.idx, _) = degrade_clusters(self.idx, verbose=False) # Initialize vector of indices 0..n_observations: n_observations = len(self.idx) idx_full = np.arange(0, n_observations) if self.idx_test is not None: idx_test = np.unique(np.array(self.idx_test)) else: idx_test = np.array([]) idx_full_no_test = np.setdiff1d(idx_full, idx_test) # Find the number of clusters: k = np.size(np.unique(self.idx)) # Initialize auxiliary variables: idx_train = [] # Get cluster populations: cluster_populations = get_populations(self.idx) # Get clusters and split them into training and test indices: for cl_id in range(0,k): if self.random_seed != None: random.seed(self.random_seed) # Variable `cluster` contains indices of observations that are allowed to be selected as train samples in a particular cluster: cluster = [] for i, id in enumerate(self.idx[idx_full_no_test]): if id == cl_id: cluster.append(idx_full_no_test[i]) # Selection of training data: if int(len(cluster)) < int(cluster_populations[cl_id]*perc/100): raise ValueError("The requested percentage requires taking more samples from cluster " + str(cl_id) + " than there are available observations in that cluster. Consider lowering the percentage or use a different sampling function.") else: cluster_train = np.array(random.sample(cluster, int(cluster_populations[cl_id]*perc/100))) idx_train = np.concatenate((idx_train, cluster_train)) if self.__using_user_defined_idx_test==False: # Selection of test data - all data that remains is test data: if test_selection_option == 1: cluster_test = np.setdiff1d(cluster, cluster_train) idx_test = np.concatenate((idx_test, cluster_test)) if test_selection_option == 2: # Check if there is enough test samples to select: if perc > 50: raise ValueError("Percentage is larger than 50% and test samples cannot be selected with `test_selection_option=2`.") else: cluster_test = np.setdiff1d(cluster, cluster_train) cluster_test_sampled = np.array(random.sample(list(cluster_test), int(cluster_populations[cl_id]*perc/100))) idx_test = np.concatenate((idx_test, cluster_test_sampled)) idx_train = np.sort(idx_train.astype(int)) idx_test = np.sort(idx_test.astype(int)) # Print detailed information on sampling: if self.verbose == True: self.__print_verbose_information_sampling(self.idx, idx_train, idx_test) return (idx_train, idx_test) # ------------------------------------------------------------------------------ def manual(self, sampling_dictionary, sampling_type='percentage', test_selection_option=1): """ Uses classifications into :math:`k` clusters and a dictionary ``sampling_dictionary`` in which you manually specify what ``'percentage'`` (or what ``'number'``) of samples will be selected as the train data from each cluster. The dictionary keys are cluster classifications as per ``idx`` and the dictionary values are either percentage or number of train samples to be selected. The default dictionary values are percentage but you can select ``sampling_type='number'`` in order to interpret the values as a number of samples. **Example:** .. code:: python from PCAfold import DataSampler import numpy as np # Generate dummy idx vector: idx = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]) # Instantiate DataSampler class object: selection = DataSampler(idx, verbose=True) # Generate sampling: (idx_train, idx_test) = selection.manual({0:1, 1:1, 2:1}, sampling_type='number', test_selection_option=1) **Train data:** The number of train samples selected from each cluster is estimated based on the ``sampling_dictionary``. For ``key : value``, percentage ``value`` (or number ``value``) of samples will be selected from cluster ``key``. **Test data:** Two options for sampling test data are implemented. If you select ``test_selection_option=1`` all remaining samples that were not taken as train data become the test data. If you select ``test_selection_option=2`` the same procedure will be used to select test data as was used to select train data (only allowed if the number of samples taken as train data from any cluster did not exceed 50% of observations in that cluster). The scheme below presents graphically how train and test data can be selected using ``test_selection_option`` parameter: .. image:: ../images/sampling-test-selection-option-manual.svg :width: 700 :align: center Here it is understood that :math:`n_1` train samples were requested from the first cluster, :math:`n_2` from the second cluster and :math:`n_3` from the third cluster, where :math:`n_i` can be interpreted as number or as percentage. This can be achieved by setting: .. code:: python sampling_dictionary = {0:n_1, 1:n_2, 2:n_3} :param sampling_dictionary: ``dict`` specifying manual sampling. Keys are cluster classifications and values are either ``percentage`` or ``number`` of samples to be taken from that cluster. Keys should match the cluster classifications as per ``idx``. :param sampling_type: (optional) ``str`` specifying whether percentage or number is given in the ``sampling_dictionary``. Available options: ``percentage`` or ``number``. The default is ``percentage``. :param test_selection_option: (optional) ``int`` specifying the option for how the test data is selected. Select ``test_selection_option=1`` if you want all remaining samples to become test data. Select ``test_selection_option=2`` if you want to select a subset of the remaining samples as test data. :return: - **idx_train** - ``numpy.ndarray`` of indices of the train data. It has size ``(n_train,)``. - **idx_test** - ``numpy.ndarray`` of indices of the test data. It has size ``(n_test,)``. """ # Check that sampling_type is passed correctly: _sampling_type = ['percentage', 'number'] if sampling_type not in _sampling_type: raise ValueError("Variable `sampling_type` has to be one of the following: 'percentage' or 'number'.") # Degrade clusters if needed: if (len(np.unique(self.idx)) != (np.max(self.idx)+1)) or (np.min(self.idx) != 0): (self.idx, _) = degrade_clusters(self.idx, verbose=False) # Check that dictionary has consistend number of entries with respect to `idx`: if len(np.unique(self.idx)) != len(sampling_dictionary.keys()): raise ValueError("The number of entries inside `sampling_dictionary` does not match the number of clusters specified in `idx`.") # Check that keys and values are properly defined: for key, value in sampling_dictionary.items(): # Check that all keys are present in the `idx`: if key not in np.unique(self.idx): raise ValueError("Key " + str(key) + " does not match an entry in `idx`.") # Check that keys are non-negative integers: if not (isinstance(key, int) and key >= 0): raise ValueError("Error in cluster " + str(key) + ". Key must be a non-negative integer.") # Check that percentage is between 0 and 100: if sampling_type == 'percentage': if not (value >= 0 and value <= 100): raise ValueError("Error in cluster " + str(key) + ". The percentage has to be between 0-100.") # Check that number is a non-negative integer: if sampling_type == 'number': if not (isinstance(value, int) and value >= 0): raise ValueError("Error in cluster " + str(key) + ". The number must be a non-negative integer.") # Check that `test_selection_option` parameter was passed correctly: _test_selection_option = [1,2] if test_selection_option not in _test_selection_option: raise ValueError("Test selection option can only be 1 or 2.") # Initialize vector of indices 0..n_observations: n_observations = len(self.idx) idx_full = np.arange(0,n_observations) if self.idx_test is not None: idx_test = np.unique(
np.array(self.idx_test)
numpy.array
''' description: co-optimization for finger reach task ''' import os import sys example_base_dir = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) sys.path.append(example_base_dir) from parameterization_torch import Design as Design from parameterization import Design as Design_np from renderer import SimRenderer import numpy as np import scipy.optimize import redmax_py as redmax import os import argparse import time from common import * import torch import matplotlib.pyplot as plt torch.set_default_dtype(torch.double) if __name__ == '__main__': parser = argparse.ArgumentParser('') parser.add_argument("--model", type = str, default = 'rss_finger_flip') parser.add_argument('--record', action = 'store_true') parser.add_argument('--record-file-name', type = str, default = 'rss_finger_flip') parser.add_argument('--seed', type=int, default = 0) parser.add_argument('--save-dir', type=str, default = './results/tmp/') parser.add_argument('--no-design-optim', action='store_true', help = 'whether control-only') parser.add_argument('--visualize', type=str, default='True', help = 'whether visualize the simulation') parser.add_argument('--load-dir', type = str, default = None, help = 'load optimized parameters') parser.add_argument('--verbose', default = False, action = 'store_true', help = 'verbose output') parser.add_argument('--test-derivatives', default = False, action = 'store_true') asset_folder = os.path.abspath(os.path.join(example_base_dir, '..', 'assets')) args = parser.parse_args() if args.model[-4:] == '.xml': model_path = os.path.join(asset_folder, args.model) else: model_path = os.path.join(asset_folder, args.model + '.xml') optimize_design_flag = not args.no_design_optim os.makedirs(args.save_dir, exist_ok = True) visualize = (args.visualize == 'True') play_mode = (args.load_dir is not None) '''init sim and task''' sim = redmax.Simulation(model_path, args.verbose) if args.verbose: sim.print_ctrl_info() sim.print_design_params_info() num_steps = 150 ndof_u = sim.ndof_u ndof_r = sim.ndof_r ndof_var = sim.ndof_var ndof_p = sim.ndof_p # set up camera sim.viewer_options.camera_pos = np.array([2.5, -4, 1.8]) # init design params design = Design() design_np = Design_np() cage_params = np.ones(9) ndof_cage = len(cage_params) design_params, meshes = design_np.parameterize(cage_params, True) sim.set_design_params(design_params) Vs = [] for i in range(len(meshes)): Vs.append(meshes[i].V) sim.set_rendering_mesh_vertices(Vs) # init control sequence sub_steps = 5 assert (num_steps % sub_steps) == 0 num_ctrl_steps = num_steps // sub_steps if args.seed == 0: action = np.zeros(ndof_u * num_ctrl_steps) else: np.random.seed(args.seed) action = np.random.uniform(-0.5, 0.5, ndof_u * num_ctrl_steps) if visualize: print('ndof_p = ', ndof_p) print('ndof_u = ', len(action)) print('ndof_cage = ', ndof_cage) if not optimize_design_flag: params = action else: params = np.zeros(ndof_u * num_ctrl_steps + ndof_cage) params[0:ndof_u * num_ctrl_steps] = action params[-ndof_cage:] = cage_params # init optimization history f_log = [] global num_sim num_sim = 0 '''compute the objectives by forward pass''' def forward(params, backward_flag = False): global num_sim num_sim += 1 action = params[:ndof_u * num_ctrl_steps] u = np.tanh(action) if optimize_design_flag: cage_params = params[-ndof_cage:] design_params = design_np.parameterize(cage_params) sim.set_design_params(design_params) sim.reset(backward_flag = backward_flag, backward_design_params_flag = optimize_design_flag) # objectives coefficients coef_u = 5. coef_touch = 1. coef_flip = 50. f_u = 0. f_touch = 0. f_flip = 0. f = 0. if backward_flag: df_dq = np.zeros(ndof_r * num_steps) df_du = np.zeros(ndof_u * num_steps) df_dvar = np.zeros(ndof_var * num_steps) if optimize_design_flag: df_dp = np.zeros(ndof_p) for i in range(num_ctrl_steps): sim.set_u(u[i * ndof_u:(i + 1) * ndof_u]) sim.forward(sub_steps, verbose = args.verbose) variables = sim.get_variables() q = sim.get_q() # compute objective f f_u_i = np.sum(u[i * ndof_u:(i + 1) * ndof_u] ** 2) f_touch_i = 0. if i < num_ctrl_steps // 2: f_touch_i += np.sum((variables[0:3] - variables[3:6]) ** 2) # MSE f_flip_i = 0. f_flip_i += (q[-1] - np.pi / 2.) ** 2 f_u += f_u_i f_touch += f_touch_i f_flip += f_flip_i f += coef_u * f_u_i + coef_touch * f_touch_i + coef_flip * f_flip_i # backward info if backward_flag: df_du[i * sub_steps * ndof_u:(i * sub_steps + 1) * ndof_u] += \ coef_u * 2. * u[i * ndof_u:(i + 1) * ndof_u] if i < num_ctrl_steps // 2: df_dvar[((i + 1) * sub_steps - 1) * ndof_var:((i + 1) * sub_steps - 1) * ndof_var + 3] += \ coef_touch * 2. * (variables[0:3] - variables[3:6]) df_dvar[((i + 1) * sub_steps - 1) * ndof_var + 3:((i + 1) * sub_steps) * ndof_var] += \ -coef_touch * 2. * (variables[0:3] - variables[3:6]) # MSE df_dq[((i + 1) * sub_steps) * ndof_r - 1] += coef_flip * 2. * (q[-1] - np.pi / 2.) if backward_flag: sim.backward_info.set_flags(False, False, optimize_design_flag, True) sim.backward_info.df_du = df_du sim.backward_info.df_dq = df_dq sim.backward_info.df_dvar = df_dvar if optimize_design_flag: sim.backward_info.df_dp = df_dp return f, {'f_u': f_u, 'f_touch': f_touch, 'f_flip': f_flip} '''compute loss and gradient''' def loss_and_grad(params): with torch.no_grad(): f, _ = forward(params, backward_flag = True) sim.backward() grad = np.zeros(len(params)) # gradient for control params action = params[:ndof_u * num_ctrl_steps] df_du_full =
np.copy(sim.backward_results.df_du)
numpy.copy
# ---- Imports ----- # from nlb_tools.nwb_interface import NWBDataset from nlb_tools.make_tensors import make_train_input_tensors, \ make_eval_input_tensors, make_eval_target_tensors, save_to_h5 from nlb_tools.evaluation import evaluate import h5py import sys, gc import numpy as np import pandas as pd import scipy.signal as signal from sklearn.linear_model import PoissonRegressor from datetime import datetime # ---- Run Params ---- # dataset_name = "area2_bump" # one of {'area2_bump', 'dmfc_rsg', 'mc_maze', 'mc_rtt', # 'mc_maze_large', 'mc_maze_medium', 'mc_maze_small'} bin_size_ms = 5 kern_sds = np.linspace(30, 60, 4) alphas = np.logspace(-3, 0, 4) cv_fold = 5 log_offset = 1e-4 # amount to add before taking log to prevent log(0) error # ---- Useful variables ---- # binsuf = '' if bin_size_ms == 5 else f'_{bin_size_ms}' dskey = f'mc_maze_scaling{binsuf}_split' if 'maze_' in dataset_name else (dataset_name + binsuf + "_split") pref_dict = {'mc_maze_small': '[100] ', 'mc_maze_medium': '[250] ', 'mc_maze_large': '[500] '} bpskey = pref_dict.get(dataset_name, '') + 'co-bps' # ---- Data locations ----# datapath_dict = { 'mc_maze': '~/data/000128/sub-Jenkins/', 'mc_rtt': '~/data/000129/sub-Indy/', 'area2_bump': '~/data/000127/sub-Han/', 'dmfc_rsg': '~/data/000130/sub-Haydn/', 'mc_maze_large': '~/data/000138/sub-Jenkins/', 'mc_maze_medium': '~/data/000139/sub-Jenkins/', 'mc_maze_small': '~/data/000140/sub-Jenkins/', } prefix_dict = { 'mc_maze': '*full', 'mc_maze_large': '*large', 'mc_maze_medium': '*medium', 'mc_maze_small': '*small', } datapath = datapath_dict[dataset_name] prefix = prefix_dict.get(dataset_name, '') # ---- Load data ---- # dataset = NWBDataset(datapath, prefix, skip_fields=['hand_pos', 'cursor_pos', 'eye_pos', 'force', 'muscle_vel', 'muscle_len', 'joint_vel', 'joint_ang']) dataset.resample(bin_size_ms) # ---- Prepare n folds ---- # all_mask = np.isin(dataset.trial_info.split, ['train', 'val']) all_idx = np.arange(all_mask.shape[0])[all_mask] train_masks = [] eval_masks = [] for i in range(cv_fold): eval_idx = all_idx[i::cv_fold] # take every n samples for each fold train_idx = all_idx[~np.isin(all_idx, eval_idx)] train_masks.append(np.isin(np.arange(all_mask.shape[0]), train_idx)) eval_masks.append(np.isin(np.arange(all_mask.shape[0]), eval_idx)) # ---- Extract data for each fold ---- # fold_data = [] for i in range(cv_fold): train_dict = make_train_input_tensors(dataset, dataset_name, train_masks[i], save_file=False) eval_dict = make_eval_input_tensors(dataset, dataset_name, eval_masks[i], save_file=False) train_spikes_heldin = train_dict['train_spikes_heldin'] train_spikes_heldout = train_dict['train_spikes_heldout'] eval_spikes_heldin = eval_dict['eval_spikes_heldin'] target_dict = make_eval_target_tensors(dataset, dataset_name, train_masks[i], eval_masks[i], include_psth=True, save_file=False) fold_data.append((train_spikes_heldin, train_spikes_heldout, eval_spikes_heldin, target_dict)) del dataset gc.collect() # ---- Useful shape info ---- # tlen = fold_data[0][0].shape[1] num_heldin = fold_data[0][0].shape[2] num_heldout = fold_data[0][1].shape[2] results = [] # ---- Define helpers ---- # flatten2d = lambda x: x.reshape(-1, x.shape[2]) # flattens 3d -> 2d array def fit_poisson(train_factors_s, test_factors_s, train_spikes_s, test_spikes_s=None, alpha=0.0): """Fit Poisson GLM from factors to spikes and return rate predictions""" train_in = train_factors_s if test_spikes_s is None else np.vstack([train_factors_s, test_factors_s]) train_out = train_spikes_s if test_spikes_s is None else np.vstack([train_spikes_s, test_spikes_s]) train_pred = [] test_pred = [] for chan in range(train_out.shape[1]): pr = PoissonRegressor(alpha=alpha, max_iter=500) pr.fit(train_in, train_out[:, chan]) while pr.n_iter_ == pr.max_iter and pr.max_iter < 10000: print(f"didn't converge - retraining {chan} with max_iter={pr.max_iter * 5}") oldmax = pr.max_iter del pr pr = PoissonRegressor(alpha=alpha, max_iter=oldmax * 5) pr.fit(train_in, train_out[:, chan]) train_pred.append(pr.predict(train_factors_s)) test_pred.append(pr.predict(test_factors_s)) train_rates_s = np.vstack(train_pred).T test_rates_s = np.vstack(test_pred).T return np.clip(train_rates_s, 1e-9, 1e20), np.clip(test_rates_s, 1e-9, 1e20) # ---- Sweep kernel std ---- # for ks in kern_sds: print(f"Evaluating kern_sd = {ks}") # ---- Prepare smoothing kernel ---- # window = signal.gaussian(int(6 * ks / bin_size_ms), int(ks / bin_size_ms), sym=True) window /= np.sum(window) def filt(x): return
np.convolve(x, window, 'same')
numpy.convolve
# -*- coding: utf-8 -*- """ Created on Fri May 04 10:26:49 2018 @author: <NAME> <<EMAIL>> Multi-Fidelity co-Kriging: recursive formulation with autoregressive model of order 1 (AR1) """ from sys import exit import copy from types import FunctionType from sys import exit import copy from types import FunctionType import numpy as np from sklearn.metrics.pairwise import manhattan_distances from scipy.linalg import solve_triangular from scipy import linalg from scipy.spatial.distance import cdist from smt.surrogate_models.krg_based import KrgBased from smt.sampling_methods import LHS from smt.utils.kriging_utils import ( cross_distances, componentwise_distance, standardization, differences, ) from sys import exit class NestedLHS(object): def __init__(self, nlevel, xlimits): """ Constructor where values of options can be passed in. Parameters ---------- nlevel : integer. The number of design of experiments to be built xlimits : ndarray The interval of the domain in each dimension with shape (nx, 2) """ self.nlevel = nlevel self.xlimits = xlimits def __call__(self, nb_samples_hifi): """ Builds nlevel nested design of experiments of dimension dim and size n_samples. Each doe sis built with the optmized lhs procedure. Builds the highest level first; nested properties are ensured by deleting the nearest neighbours in lower levels of fidelity. Parameters ---------- nb_samples_hifi: The number of samples of the highest fidelity model. nb_samples_fi(n-1) = 2 * nb_samples_fi(n) Returns ------ list of length nlevel of design of experiemnts from low to high fidelity level. """ nt = [] for i in range(self.nlevel, 0, -1): nt.append(pow(2, i - 1) * nb_samples_hifi) if len(nt) != self.nlevel: raise ValueError("nt must be a list of nlevel elements") if np.allclose(np.sort(nt)[::-1], nt) == False: raise ValueError("nt must be a list of decreasing integers") doe = [] p0 = LHS(xlimits=self.xlimits, criterion="ese") doe.append(p0(nt[0])) for i in range(1, self.nlevel): p = LHS(xlimits=self.xlimits, criterion="ese") doe.append(p(nt[i])) for i in range(1, self.nlevel)[::-1]: ind = [] d = cdist(doe[i], doe[i - 1], "euclidean") for j in range(doe[i].shape[0]): dj = np.sort(d[j, :]) k = dj[0] l = (np.where(d[j, :] == k))[0][0] m = 0 while l in ind: m = m + 1 k = dj[m] l = (np.where(d[j, :] == k))[0][0] ind.append(l) doe[i - 1] = np.delete(doe[i - 1], ind, axis=0) doe[i - 1] = np.vstack((doe[i - 1], doe[i])) return doe class MFK(KrgBased): def _initialize(self): super(MFK, self)._initialize() declare = self.options.declare declare( "rho_regr", "constant", values=("constant", "linear", "quadratic"), desc="Regression function type for rho", ) declare( "theta0", [1e-2], types=(list, np.ndarray), desc="Initial hyperparameters" ) declare( "optim_var", False, types=bool, values=(True, False), desc="Turning this option to True, forces variance to zero at HF samples ", ) declare( "noise0", 1e-6, types=(float, list), desc="Initial noise hyperparameters" ) self.name = "MFK" def _check_list_structure(self, X, y): """ checks if the data structure is compatible with MFK. sets class attributes such as (number of levels of Fidelity, training points in each level, ...) Arguments : X : list of arrays, each array corresponds to a fidelity level. starts from lowest to highest y : same as X """ if type(X) is not list: nlevel = 1 X = [X] else: nlevel = len(X) if type(y) is not list: y = [y] if len(X) != len(y): raise ValueError("X and y must have the same length.") n_samples = np.zeros(nlevel, dtype=int) n_features = np.zeros(nlevel, dtype=int) n_samples_y = np.zeros(nlevel, dtype=int) for i in range(nlevel): n_samples[i], n_features[i] = X[i].shape if i > 1 and n_features[i] != n_features[i - 1]: raise ValueError("All X must have the same number of columns.") y[i] = np.asarray(y[i]).ravel()[:, np.newaxis] n_samples_y[i] = y[i].shape[0] if n_samples[i] != n_samples_y[i]: raise ValueError("X and y must have the same number of rows.") self.nx = n_features[0] self.nt_all = n_samples self.nlvl = nlevel self.ny = y[0].shape[1] self.X = X[:] self.y = y[:] def _new_train(self): """ Overrides KrgBased implementation Trains the Multi-Fidelity model """ xt = [] yt = [] i = 0 while self.training_points.get(i, None) is not None: xt.append(self.training_points[i][0][0]) yt.append(self.training_points[i][0][1]) i = i + 1 xt.append(self.training_points[None][0][0]) yt.append(self.training_points[None][0][1]) self._check_list_structure(xt, yt) self._check_param() X = self.X y = self.y _, _, self.X_offset, self.y_mean, self.X_scale, self.y_std = standardization( np.concatenate(xt, axis=0), np.concatenate(yt, axis=0) ) nlevel = self.nlvl n_samples = self.nt_all # initialize lists self.noise = nlevel * [0] self.D_all = nlevel * [0] self.F_all = nlevel * [0] self.p_all = nlevel * [0] self.q_all = nlevel * [0] self.optimal_rlf_value = nlevel * [0] self.optimal_par = nlevel * [{}] self.optimal_theta = nlevel * [0] self.X_norma_all = [(x - self.X_offset) / self.X_scale for x in X] self.y_norma_all = [(f - self.y_mean) / self.y_std for f in y] if isinstance(self.options["noise0"], float): self.options["noise0"] = self.nlvl * [self.options["noise0"]] noise0 = self.options["noise0"].copy() if ( isinstance(self.options["theta0"], list) or len(self.options["theta0"].shape) == 1 ): if len(self.options["theta0"]) == self.nx: self.options["theta0"] = np.repeat( np.array(self.options["theta0"]).reshape(1, -1), self.nlvl, axis=0 ) elif len(self.options["theta0"]) == self.nlvl: self.options["theta0"] = np.repeat( np.array(self.options["theta0"]).reshape(-1, 1), self.nx, axis=1 ) theta0 = self.options["theta0"].copy() for lvl in range(nlevel): self.options["noise0"] = noise0[lvl] self.options["theta0"] = theta0[lvl, :] self.X_norma = self.X_norma_all[lvl] self.y_norma = self.y_norma_all[lvl] # Calculate matrix of distances D between samples self.D_all[lvl] = cross_distances(self.X_norma) # Regression matrix and parameters self.F_all[lvl] = self._regression_types[self.options["poly"]](self.X_norma) self.p_all[lvl] = self.F_all[lvl].shape[1] # Concatenate the autoregressive part for levels > 0 if lvl > 0: F_rho = self._regression_types[self.options["rho_regr"]](self.X_norma) self.q_all[lvl] = F_rho.shape[1] self.F_all[lvl] = np.hstack( ( F_rho * np.dot( self._predict_intermediate_values( self.X_norma, lvl, descale=False ), np.ones((1, self.q_all[lvl])), ), self.F_all[lvl], ) ) else: self.q_all[lvl] = 0 n_samples_F_i = self.F_all[lvl].shape[0] if n_samples_F_i != n_samples[lvl]: raise Exception( "Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model." ) if int(self.p_all[lvl] + self.q_all[lvl]) >= n_samples_F_i: raise Exception( ( "Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the regression" " model size p+q=%d." ) % (n_samples[i], self.p_all[lvl] + self.q_all[lvl]) ) # Determine Gaussian Process model parameters self.F = self.F_all[lvl] D, self.ij = self.D_all[lvl] self._lvl = lvl self.nt = self.nt_all[lvl] self.q = self.q_all[lvl] self.p = self.p_all[lvl] ( self.optimal_rlf_value[lvl], self.optimal_par[lvl], self.optimal_theta[lvl], ) = self._optimize_hyperparam(D) if self.options["eval_noise"]: tmp_list = self.optimal_theta[lvl] self.optimal_theta[lvl] = tmp_list[:-1] self.noise[lvl] = tmp_list[-1] del self.y_norma, self.D self.options["noise0"] = noise0 self.options["theta0"] = theta0 if self.options["eval_noise"] and self.options["optim_var"]: for lvl in range(self.nlvl - 1): self.set_training_values( X[lvl], self._predict_intermediate_values(X[lvl], lvl + 1), name=lvl ) self.set_training_values( X[-1], self._predict_intermediate_values(X[-1], self.nlvl) ) self.options["eval_noise"] = False self._new_train() def _componentwise_distance(self, dx, opt=0): d = componentwise_distance(dx, self.options["corr"], self.nx) return d def _predict_intermediate_values(self, X, lvl, descale=True): """ Evaluates the model at a set of points. Used for training the model at level lvl. Allows to relax the order problem. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values lvl : level at which the prediction is made Returns ------- y : np.ndarray Evaluation point output variable values """ n_eval, _ = X.shape # if n_features_X != self.n_features: # raise ValueError("Design must be an array of n_features columns.") # Calculate kriging mean and variance at level 0 mu = np.zeros((n_eval, lvl)) # if self.normalize: if descale: X = (X - self.X_offset) / self.X_scale ## X = (X - self.X_offset[0]) / self.X_scale[0] f = self._regression_types[self.options["poly"]](X) f0 = self._regression_types[self.options["poly"]](X) dx = differences(X, Y=self.X_norma_all[0]) d = self._componentwise_distance(dx) # Get regression function and correlation F = self.F_all[0] C = self.optimal_par[0]["C"] beta = self.optimal_par[0]["beta"] Ft = solve_triangular(C, F, lower=True) yt = solve_triangular(C, self.y_norma_all[0], lower=True) r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[0], d ).reshape(n_eval, self.nt_all[0]) gamma = self.optimal_par[0]["gamma"] # Scaled predictor mu[:, 0] = (
np.dot(f, beta)
numpy.dot
import typing as T from ..data.utils import create_data_object, LabeledData from ..networks import SingleSensorNetwork from ..utils.reshape import nd_to_columns import numpy as np import cv2 from skimage import util as sk_util from tsaug import AddNoise, Drift, TimeWarp from torch_geometric.data import Data def augment_time( ldata: LabeledData, p: T.Any, xaug: np.ndarray, nbands: int, add_noise: bool, warper: T.Union[AddNoise, Drift, TimeWarp] ) -> np.ndarray: """Applies temporal augmentation to a dataset """ # Get the segment min_row, min_col, max_row, max_col = p.bbox xseg = xaug[:, min_row:max_row, min_col:max_col].copy() seg = ldata.segments[min_row:max_row, min_col:max_col].copy() mask = np.uint8(seg == p.label)[np.newaxis] ntime, nrows, ncols = xseg.shape # Reshape from (T x H x W) -> (H*W x T X C) xseg = (xseg.transpose(1, 2, 0) .reshape(nrows*ncols, ntime) .reshape(nrows*ncols, int(ntime/nbands), nbands)) # if xseg.shape[1] < VegetationIndices().n_vis: # raise ValueError('The time series stack should have 3 layers.') # Warp the segment xseg_warped = warper.augment(xseg) if add_noise: noise_warper = AddNoise(scale=np.random.uniform(low=0.01, high=0.05)) xseg_warped = noise_warper.augment(xseg_warped) # Reshape back from (H*W x T x C) -> (T x H x W) xseg_warped = (xseg_warped.transpose(0, 2, 1) .reshape(nrows*ncols, ntime) .T.reshape(ntime, nrows, ncols) .clip(0, 1)) xseg = xseg.reshape(nrows*ncols, ntime).T.reshape(ntime, nrows, ncols) # Insert back into full array xaug[:, min_row:max_row, min_col:max_col] =
np.where(mask == 1, xseg_warped, xseg)
numpy.where
"""Module containing functions to compute the autocorrelation function and estimate the associated autocorrelation length of series. The estimate of the autocorrelation function is based on the method described at http://www.math.nyu.edu/faculty/goodman/software/acor/ and implemented in the associated ``acor`` C++ code, though the implementation details differ. """ import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma def _next_power_of_two(i): pt = 2 while pt < i: pt *= 2 return pt def autocorrelation_function(series, axis=0): """Returns the autocorrelation function of the given series. The function is normalised so that it is 1 at zero lag. If ``series`` is an N-dimensional array, the ACF will be computed along ``axis`` and the result will have the same shape as ``series``. """ series = np.atleast_1d(series) shape = np.array(series.shape) m = [slice(None)] * len(shape) n0 = shape[axis] n = _next_power_of_two(shape[axis]*2) m[axis] = slice(0, n0) shape[axis] = n padded_series = np.zeros(shape) padded_series[m] = series - np.expand_dims(series.mean(axis=axis), axis=axis) ps_tilde = np.fft.fft(padded_series, axis=axis) acf = np.real(np.fft.ifft(ps_tilde*np.conj(ps_tilde), axis=axis))[m] m[axis] = 0 shape[axis] = 1 acf /= acf[m].reshape(shape).repeat(n0, axis) return acf def autocorrelation_length_estimate(series, acf=None, M=5, axis=0): r"""Returns an estimate of the autocorrelation length of the given series: .. math:: L = \int_{-\infty}^\infty \rho(t) dt The estimate is the smallest :math:`L` such that .. math:: L = \rho(0) + 2 \sum_{j = 1}^{M L} \rho(j) In words: the ACL is estimated over a window that is at least :math:`M` ACLs long, with the constraint that :math:`ML < N/2`. Defined in this way, the ACL gives the reduction factor between the number of samples and the "effective" number of samples. In particular, the variance of the estimated mean of the series is given by .. math:: \left\langle \left( \frac{1}{N} \sum_{i=0}^{N-1} x_i - \mu \right)^2 \right\rangle = \frac{\left\langle \left(x_i - \mu\right)^2 \right\rangle}{N/L} Returns ``nan`` if there is no such estimate possible (because the series is too short to fit :math:`2M` ACLs). For an N-dimensional array, returns an array of ACLs of the same shape as ``series``, but with the dimension along ``axis`` removed. """ if acf is None: acf = autocorrelation_function(series, axis=axis) m = [slice(None)] * len(acf.shape) nmax = acf.shape[axis]/2 # Generate ACL candidates. m[axis] = slice(0, nmax) acl_ests = 2.0*np.cumsum(acf[m], axis=axis) - 1.0 # Build array of lags (like arange, but N-dimensional). shape = acf.shape[:axis] + (nmax,) + acf.shape[axis+1:] lags = np.cumsum(np.ones(shape), axis=axis) - 1.0 # Mask out unwanted lags and set corresponding ACLs to nan. mask = M*acl_ests >= lags acl_ests[mask] = np.nan i =
ma.masked_greater(mask, lags, copy=False)
numpy.ma.masked_greater