prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# Copyright 2016 Google Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import random import numpy as np import six import time from multiprocessing import Process, Queue, Pipe import copy from pprint import pprint import deepmind_lab """ Dependencies used for this: pip uninstall numpy pip install --no-cache-dir numpy==1.15.4 pip install --upgrade tensorflow pip install --upgrade tensorflow-probability pip install wrapt """ import tensorflow as tf import trfl # ______PARAMETERS______ # Network parameters state_size = (80,80,3) action_size = 6 kernel_size_1 = [8,8,3] output_filters_conv1 = 32 output_filters_conv2 = 64 output_filters_conv3 = 64 hidden_size = 512 # number of units in each Q-network hidden layer lstm_size = 256 # Training parameters train_episodes = 5000 # max number of episodes to learn from num_envs = 4 # experience mini-batch size learning_rate = 0.001 # learning rate n = 20 # n in n-step updating max_steps = 40 # max steps before reseting the agent gamma = 0.8 # future reward discount entropy_reg_term = 0.05 # regularization term for entropy normalise_entropy = False # when true normalizes entropy to be in [-1, 0] to be more invariant to different size action spaces class ActorCriticNetwork: def __init__(self, name): with tf.variable_scope(name): self.name = name # Input images self.inputs_ = tf.placeholder(tf.float32, [None, state_size[0], state_size[1], state_size[2]], name='inputs') # One hot encode the actions: # [look_left, look_right, strafe_left, strafe_right, forward, backward] self.actions = tf.placeholder(tf.int32, [None, num_envs], name='actions') self.rewards = tf.placeholder(tf.float32, [None, num_envs], name='rewards') # Conv layers self.conv1 = tf.contrib.layers.conv2d(self.inputs_, output_filters_conv1, kernel_size=8, stride=2) self.conv2 = tf.contrib.layers.conv2d(self.conv1, output_filters_conv2, kernel_size=4, stride=2) self.conv3 = tf.contrib.layers.conv2d(self.conv2, output_filters_conv3, kernel_size=4, stride=1) # Constructing input to AC network self.actions_input = tf.reshape(tf.one_hot(self.actions, action_size), [-1, action_size]) self.rewards_input = tf.reshape(self.rewards, [-1, 1]) self.vision_input = tf.reshape(self.conv3, [-1, self.conv3.shape[1]*self.conv3.shape[2]*self.conv3.shape[3]]) self.ac_input = tf.concat([self.actions_input, self.rewards_input, self.vision_input], axis=1) # FC Layer self.fc1 = tf.contrib.layers.fully_connected(self.ac_input, hidden_size) # LSTM Layer self.lstm_cell = tf.nn.rnn_cell.LSTMCell(lstm_size, state_is_tuple=False) self.lstm_hidden_state_input = tf.placeholder_with_default( self.lstm_cell.zero_state(batch_size=num_envs, dtype=tf.float32), [num_envs, hidden_size]) # Should be lstm_size not hidden_size? self.lstm_input = tf.reshape(self.fc1, [-1, num_envs, hidden_size]) # Dynamic RNN code - might not need to be dynamic self.lstm_output, self.lstm_hidden_state_output = tf.nn.dynamic_rnn( self.lstm_cell, self.lstm_input, initial_state=self.lstm_hidden_state_input, dtype=tf.float32, time_major=True, # parallel_iterations=num_envs, # Note: not sure what these do # swap_memory=True, # Note: not sure what these do ) self.lstm_output_flat = tf.reshape(self.lstm_output, [-1, lstm_size]) # TODO: rethink layer shapes? # Value function - Linear output layer self.value_output = tf.contrib.layers.fully_connected(self.lstm_output_flat, 1, activation_fn=None) # Policy - softmax output layer self.policy_logits = tf.contrib.layers.fully_connected(self.lstm_output_flat, action_size, activation_fn=None) self.policy_output = tf.contrib.layers.softmax(self.policy_logits) # Action sampling op self.action_output = tf.squeeze(tf.multinomial(logits=self.policy_logits,num_samples=1), axis=1) # Used for TRFL stuff self.value_output_unflat = tf.reshape(self.value_output, [n, num_envs]) self.policy_logits_unflat = tf.reshape(self.policy_logits, [n, num_envs, -1]) self.discounts = tf.placeholder(tf.float32,[n, num_envs],name="discounts") self.initial_Rs = tf.placeholder(tf.float32, [num_envs], name="initial_Rs") #TRFL loss a2c_loss, extra = trfl.sequence_advantage_actor_critic_loss( policy_logits = self.policy_logits_unflat, baseline_values = self.value_output_unflat, actions = self.actions, rewards = self.rewards, pcontinues = self.discounts, bootstrap_value = self.initial_Rs, entropy_cost = entropy_reg_term, normalise_entropy = normalise_entropy) self.loss = tf.reduce_mean(a2c_loss) self.extra = extra self.opt = tf.train.AdamOptimizer(learning_rate).minimize(self.loss) print("Network shapes:") print("inputs_: ", self.inputs_.shape) print("actions: ", self.actions.shape) print("conv1: ", self.conv1.shape) print("conv2: ", self.conv2.shape) print("conv3: ", self.conv3.shape) print("ac_input: ", self.ac_input.shape) print("fc1: ", self.fc1.shape) print("lstm_hidden_state_input: ", self.lstm_hidden_state_input.shape) print("lstm_input: ", self.lstm_input.shape) print("lstm_hidden_state_output: ", self.lstm_hidden_state_output.shape) print("lstm_output: ", self.lstm_output.shape) print("lstm_output_flat: ", self.lstm_output_flat.shape) print("value_output: ", self.value_output.shape) print("policy_logits: ", self.policy_logits.shape) print("policy_output: ", self.policy_output.shape) print("value_output_unflat: ", self.value_output_unflat.shape) print("policy_logits_unflat: ", self.policy_logits_unflat.shape) # Tensorboard self.average_reward_metric = tf.placeholder(tf.float32, name="average_reward") # self.average_length_of_episode = tf.placeholder(tf.float32, name="average_length_of_episode") policy_summary = tf.summary.tensor_summary('policy', self.policy_output) reward_summary = tf.summary.scalar('average_reward_metric', self.average_reward_metric) loss_summary = tf.summary.scalar('loss', self.loss) entropy_summary = tf.summary.scalar('policy_entropy', tf.math.reduce_mean(self.extra.entropy)) baseline_loss_summary = tf.summary.scalar('baseline_loss', tf.math.reduce_mean(self.extra.baseline_loss)) entropy_loss_summary = tf.summary.scalar('entropy_loss', tf.math.reduce_mean(self.extra.entropy_loss)) policy_gradient_loss = tf.summary.scalar('policy_gradient_loss', tf.math.reduce_mean(self.extra.policy_gradient_loss)) self.train_step_summary = tf.summary.merge([ reward_summary, loss_summary, entropy_summary, baseline_loss_summary, entropy_loss_summary, policy_gradient_loss ]) self.action_step_summary = tf.summary.merge([policy_summary]) # tf.summary.scalar('average_length_of_episode', self.average_length_of_episode) def get_action(self, sess, state, t_list, hidden_state_input, action_list, reward_list): """ Feed forward to get action. """ # Add the extra dimension for feed forward if np.array(action_list).ndim == 1: action_list = np.expand_dims(action_list, axis=0) if np.array(reward_list).ndim == 1: reward_list = np.expand_dims(reward_list, axis=0) print("GET ACTION") print("action_list: ", action_list) print("reward_list: ", reward_list) feed = {self.inputs_: np.reshape(state, [-1, state_size[0], state_size[1], state_size[2]]), self.actions: action_list, self.rewards: reward_list} # Can also do placeholder with default if hidden_state_input is not None: feed[self.lstm_hidden_state_input] = hidden_state_input # policies, hidden_state_output = sess.run([mainA2C.policy_output, mainA2C.lstm_hidden_state_output], feed_dict=feed) actions, logits, policy, hidden_state_output, action_step_summary = \ sess.run([self.action_output, self.policy_logits, self.policy_output, self.lstm_hidden_state_output, self.action_step_summary], feed_dict=feed) print("logits: \n", logits) print("policy: \n", policy) return actions, hidden_state_output, action_step_summary def get_value(self, sess, state, hidden_state_input, action, reward): """ Feed forward to get the value. """ print("GET_VALUE") print("state.shape: ", state.shape) feed = {self.inputs_: np.reshape(state, [-1, state_size[0], state_size[1], state_size[2]]), self.lstm_hidden_state_input: hidden_state_input, self.actions:
np.expand_dims(action, axis=0)
numpy.expand_dims
import numpy as np import pandas as pd import os from ffequity.utils.dataframefile import DataFrameFile from datetime import datetime from IPython.display import display, HTML import matplotlib.pyplot as plt import mpld3 from mpld3 import plugins from mpld3.utils import get_id import collections import matplotlib from ffequity.utils.dataframefile import DataFrameFile class BenchmarkException(Exception): pass class Benchmark: ''' Benchmark will host the back end code for data visualization in the front-end Ipython Notebook to make the user experience cleaner ''' def __init__(self, years, data={}, aggregateTable=None): self.years = years # user will pass in years self.data = data self.aggregateTable = aggregateTable def show_sample_tables(self, switch=None): if switch == "Carbon": columns = ["Company(Company)", "Coal(GtCO2)", "Oil(GtCO2)", "Gas(GtCO2)"] data = { "Company(Company)" : ["Best Coal", "Some Gas", "More Oil", "Better Coal", "Decent Coal"], "Coal(GtCO2)" : [10.0,0.0,0.0,20.0,5.0], "Oil(GtCO2)" : [0, 5.0, 10.0, 0, 0], "Gas(GtCO2)" : [0, 2.5, 2.5, 0, 0], } df = pd.DataFrame(data, columns=columns) elif switch == "Equity": columns2 = ["Stocks", "EndingMarketValue"] #any other columns you include will be preserved but won't be operated on data2 = { "Stocks" : ["SM GAS CLASS A", "MORE OIL", "DCT COAL OPTIONS", "BST COAL", "CLOTHES R US"], "EndingMarketValue" : [54987651.0, 13654977.0, 546879852.0, 1124568.0, 1549865.0] } df = pd.DataFrame(data2, columns=columns2) elif switch == "Financial": columns3 = ["Company", "MarketCap(B)"] # make sure you convert whatever the listed market caps are to B data3 = { "Company(Company)" : ["Best Coal", "Some Gas", "More Oil", "Better Coal", "Decent Coal"], "MarketCap(B)" : [25.8, 50.2, 44.3, 10.0, 0.5] } df = pd.DataFrame(data3, columns=columns3) else: print("Please select a sample table to view.") return display(df) # pull the data frames that were written out by Analyst # modify get_tables to be get_equity_tables from /assessment def get_equity_tables(self): dataframefile = DataFrameFile() data = {} with os.scandir(path="./data/assessment") as it: currentFiles = [x.name for x in it] # store name attributes of all files in a folder # commenting out recent date because I removed that function # recentDate = max([datetime.strptime(fileName[:8], "%Y%m%d") for fileName in currentFiles if fileName != ".gitignore"]) # recentDate = datetime.strftime(recentDate, "%Y%m%d") for fileName in currentFiles: if fileName != ".gitignore": df = dataframefile.read(os.path.join('./data/assessment/', fileName)) data[fileName[:4]] = df assert len(data.keys()) == len(self.years) self.data = data return self.data def get_tables(self): dataframefile = DataFrameFile() data = {} with os.scandir(path="./data/benchmarks") as it: currentFiles = [x.name for x in it] # store name attributes of all files in a folder # recentDate = max([datetime.strptime(fileName[:8], "%Y%m%d") for fileName in currentFiles if fileName != ".gitignore"]) # recentDate = datetime.strftime(recentDate, "%Y%m%d") for fileName in currentFiles: if fileName != ".gitignore": df = dataframefile.read(os.path.join('./data/benchmarks/', fileName)) data[fileName[:4]] = df assert len(data.keys()) == len(self.years) self.data = data return self.data def company_names(self): for year in self.years: matchedCompanies = self.data[year].loc[:, "Company(Company)"].notnull() companyNames = set(self.data[year].loc[matchedCompanies, "Company(Company)"].values) numberOfCompanies = len(companyNames) print(f"{year}") print(f"You owned investments in {numberOfCompanies} fossil fuel companies:") companySentence = ", ".join(companyNames) print(f"{companySentence}\n") def get_total_equity(self): # read in the equity dataframes dataframefile = DataFrameFile() data = {} with os.scandir(path="./data/equity_data") as it: currentFiles = [x.name for x in it if x.name != ".gitignore"] # store name attributes of all files in a folder for fileName in currentFiles: df = dataframefile.read(os.path.join("./data/equity_data/", fileName)) data[fileName[0:4]] = df assert len(data.keys()) == len(self.years) totalEquity = {} for year in data: totalEquity[year] = float(data[year]["EndingMarketValue"].sum()) return totalEquity def aggregate_equity_table(self): # make Total Individual Equity column totalEquity = self.get_total_equity() totalEquity = pd.DataFrame.from_dict(data=totalEquity, orient="index") totalEquity.columns = ["Total Individual Equity"] # make the aggregate columns with Year aggregateColumns = ["Year"] aggregateTable = pd.DataFrame(columns=aggregateColumns) aggregateTable.loc[:, aggregateColumns] = 0 aggregateTable.loc[:, "Year"] = self.data.keys() aggregateTable.set_index("Year", inplace=True) # initiate table to aggregate fossil fuel equity by fuel type fossilFuelEquity = pd.DataFrame() row = 0 for year in self.data: fossilFuelEquity.loc[row, "Year"] = year fossilFuelRows = self.data[year].loc[:, "Company(Company)"].notnull() fossilFuelEquity.loc[row, "Fossil Fuel Equity"] = self.data[year].loc[fossilFuelRows, "EndingMarketValue"].sum() row += 1 fossilFuelEquity.set_index("Year", inplace=True) # dollars by fuel type coalEmv = {} oilEmv = {} gasEmv = {} for year in self.data: coalRows = self.data[year].loc[:, "Coal(GtCO2)"] > 0 oilRows = self.data[year].loc[:, "Oil(GtCO2)"] > 0 gasRows = self.data[year].loc[:, "Gas(GtCO2)"] > 0 # to allocate dollars by fuel type, divide fuel type reserve by sum of total reserves and multiply by EMV totalReservesCoal = self.data[year].loc[coalRows, ["Coal(GtCO2)", "Oil(GtCO2)", "Gas(GtCO2)"]].sum(axis=1) coalEmv[year] = ((self.data[year].loc[coalRows, "Coal(GtCO2)"] / totalReservesCoal) * self.data[year].loc[coalRows, "EndingMarketValue"]) totalReservesOil = self.data[year].loc[oilRows, ["Coal(GtCO2)", "Oil(GtCO2)", "Gas(GtCO2)"]].sum(axis=1) oilEmv[year] = ((self.data[year].loc[oilRows, "Oil(GtCO2)"] / totalReservesOil) * self.data[year].loc[oilRows, "EndingMarketValue"]) totalReservesGas = self.data[year].loc[gasRows, ["Coal(GtCO2)", "Oil(GtCO2)", "Gas(GtCO2)"]].sum(axis=1) gasEmv[year] = ((self.data[year].loc[gasRows, "Gas(GtCO2)"] / totalReservesGas) * self.data[year].loc[gasRows, "EndingMarketValue"]) coalEquity = pd.DataFrame() oilEquity = pd.DataFrame() gasEquity = pd.DataFrame() row = 0 for year in self.data: coalEquity.loc[row, "Year"] = year coalEquity.loc[row, "Coal Equity"] = coalEmv[year].sum() oilEquity.loc[row, "Year"] = year oilEquity.loc[row, "Oil Equity"] = oilEmv[year].sum() gasEquity.loc[row, "Year"] = year gasEquity.loc[row, "Gas Equity"] = gasEmv[year].sum() row += 1 coalEquity.set_index("Year", inplace=True) oilEquity.set_index("Year", inplace=True) gasEquity.set_index("Year", inplace=True) aggregateTable = pd.concat([aggregateTable, fossilFuelEquity, totalEquity, coalEquity, oilEquity, gasEquity] , axis=1) self.aggregateTable = aggregateTable return aggregateTable def aggregate_table(self): # make Total Individual Equity column totalEquity = self.get_total_equity() totalEquity = pd.DataFrame.from_dict(data=totalEquity, orient="index") totalEquity.columns = ["Total Individual Equity"] # make the aggregate columns with Year aggregateColumns = ["Year"] aggregateTable = pd.DataFrame(columns=aggregateColumns) aggregateTable.loc[:, aggregateColumns] = 0 aggregateTable.loc[:, "Year"] = self.data.keys() aggregateTable.set_index("Year", inplace=True) # initiate table to aggregate fossil fuel equity by fuel type fossilFuelEquity = pd.DataFrame() row = 0 for year in self.data: fossilFuelEquity.loc[row, "Year"] = year fossilFuelEquity.loc[row, "Fossil Fuel Equity"] = self.data[year].loc[:, "EndingMarketValue"].sum() row += 1 fossilFuelEquity.set_index("Year", inplace=True) # dollars by fuel type coalEmv = {} oilEmv = {} gasEmv = {} for year in self.data: coalRows = self.data[year].loc[:, "Coal(tCO2)"] > 0 oilRows = self.data[year].loc[:, "Oil(tCO2)"] > 0 gasRows = self.data[year].loc[:, "Gas(tCO2)"] > 0 # to allocate dollars by fuel type, divide fuel type reserve by sum of total reserves and multiply by EMV totalReservesCoal = self.data[year].loc[coalRows, ["Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)"]].sum(axis=1) coalEmv[year] = ((self.data[year].loc[coalRows, "Coal(tCO2)"] / totalReservesCoal) * self.data[year].loc[coalRows, "EndingMarketValue"]) totalReservesOil = self.data[year].loc[oilRows, ["Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)"]].sum(axis=1) oilEmv[year] = ((self.data[year].loc[oilRows, "Oil(tCO2)"] / totalReservesOil) * self.data[year].loc[oilRows, "EndingMarketValue"]) totalReservesGas = self.data[year].loc[gasRows, ["Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)"]].sum(axis=1) gasEmv[year] = ((self.data[year].loc[gasRows, "Gas(tCO2)"] / totalReservesGas) * self.data[year].loc[gasRows, "EndingMarketValue"]) coalEquity = pd.DataFrame() oilEquity = pd.DataFrame() gasEquity = pd.DataFrame() row = 0 for year in self.data: coalEquity.loc[row, "Year"] = year coalEquity.loc[row, "Coal Equity"] = coalEmv[year].sum() oilEquity.loc[row, "Year"] = year oilEquity.loc[row, "Oil Equity"] = oilEmv[year].sum() gasEquity.loc[row, "Year"] = year gasEquity.loc[row, "Gas Equity"] = gasEmv[year].sum() row += 1 coalEquity.set_index("Year", inplace=True) oilEquity.set_index("Year", inplace=True) gasEquity.set_index("Year", inplace=True) # total carbon reserves coalReserves = pd.DataFrame() oilReserves = pd.DataFrame() gasReserves = pd.DataFrame() totalReserves = pd.DataFrame() row = 0 for year in self.data: coalReserves.loc[row, "Year"] = year coalReserves.loc[row, "Coal Reserves (tCO2)"] = self.data[year].loc[:, "Coal(tCO2)"].sum() oilReserves.loc[row, "Year"] = year oilReserves.loc[row, "Oil Reserves (tCO2)"] = self.data[year].loc[:, "Oil(tCO2)"].sum() gasReserves.loc[row, "Year"] = year gasReserves.loc[row, "Gas Reserves (tCO2)"] = self.data[year].loc[:, "Gas(tCO2)"].sum() totalReserves.loc[row, "Year"] = year totalReserves.loc[row, "Total Reserves (tCO2)"] = self.data[year].loc[:, ["Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)"]].sum().sum() row += 1 coalReserves.set_index("Year", inplace=True) oilReserves.set_index("Year", inplace=True) gasReserves.set_index("Year", inplace=True) totalReserves.set_index("Year", inplace=True) # carbon reserves by fuel type aggregateTable = pd.concat([aggregateTable, fossilFuelEquity, totalEquity, coalEquity, oilEquity, gasEquity, coalReserves, oilReserves, gasReserves, totalReserves] , axis=1) self.aggregateTable = aggregateTable return aggregateTable def show_top(self, rows=5, sort="EMV"): sortMap = { "EMV" : "EndingMarketValue", "COAL" : "Coal(tCO2)", "OIL" : "Oil(tCO2)", "GAS" : "Gas(tCO2)" } columns = ["Company(Company)", "Coal(tCO2)", "Oil(tCO2)", "Gas(tCO2)", "EndingMarketValue"] for year in self.years: print(f"Top {rows} sorted by {sortMap[sort]} for {year}") top5 = self.data[year].loc[:, columns].sort_values(by=sortMap[sort], ascending=False).iloc[0:rows, :] display(top5) def plot_fossil_fuel_equity(self): N = len(self.aggregateTable.index) x = self.aggregateTable.loc[:, "Fossil Fuel Equity"] fig, ax = plt.subplots() index =
np.arange(N)
numpy.arange
# Imports: standard library import os import re import logging from abc import ABC from typing import Any, Set, Dict, List, Tuple, Optional from datetime import datetime # Imports: third party import h5py import numpy as np import pandas as pd import unidecode # Imports: first party from ml4c3.utils import get_unix_timestamps from definitions.edw import EDW_FILES, MED_ACTIONS from definitions.icu import ALARMS_FILES, ICU_SCALE_UNITS from definitions.globals import TIMEZONE from ingest.icu.data_objects import ( Event, Procedure, Medication, StaticData, Measurement, BedmasterAlarm, BedmasterSignal, ) from tensorize.bedmaster.bedmaster_stats import BedmasterStats from tensorize.bedmaster.match_patient_bedmaster import PatientBedmasterMatcher # pylint: disable=too-many-branches, dangerous-default-value class Reader(ABC): """ Parent class for our Readers class. As an abstract class, it can't be directly instanced. Its children should be used instead. """ @staticmethod def _ensure_contiguous(data: np.ndarray) -> np.ndarray: if len(data) > 0: dtype = Any try: data = data.astype(float) if all(x.is_integer() for x in data): dtype = int else: dtype = float except ValueError: dtype = "S" try: data = np.ascontiguousarray(data, dtype=dtype) except (UnicodeEncodeError, SystemError): logging.info("Unknown character. Not ensuring contiguous array.") new_data = [] for element in data: new_data.append(unidecode.unidecode(str(element))) data = np.ascontiguousarray(new_data, dtype="S") except ValueError: logging.exception( f"Unknown method to convert np.ndarray of " f"{dtype} objects to numpy contiguous type.", ) raise return data class EDWReader(Reader): """ Implementation of the Reader for EDW data. Usage: >>> reader = EDWReader('MRN') >>> hr = reader.get_measurement('HR') """ def __init__( self, path: str, mrn: str, csn: str, med_file: str = EDW_FILES["med_file"]["name"], move_file: str = EDW_FILES["move_file"]["name"], adm_file: str = EDW_FILES["adm_file"]["name"], demo_file: str = EDW_FILES["demo_file"]["name"], vitals_file: str = EDW_FILES["vitals_file"]["name"], lab_file: str = EDW_FILES["lab_file"]["name"], surgery_file: str = EDW_FILES["surgery_file"]["name"], other_procedures_file: str = EDW_FILES["other_procedures_file"]["name"], transfusions_file: str = EDW_FILES["transfusions_file"]["name"], events_file: str = EDW_FILES["events_file"]["name"], medhist_file: str = EDW_FILES["medhist_file"]["name"], surghist_file: str = EDW_FILES["surghist_file"]["name"], socialhist_file: str = EDW_FILES["socialhist_file"]["name"], ): """ Init EDW Reader. :param path: absolute path of files. :param mrn: MRN of the patient. :param csn: CSN of the patient visit. :param med_file: file containing the medicines data from the patient. Can be inferred if None. :param move_file: file containing the movements of the patient (admission, transfer and discharge) from the patient. Can be inferred if None. :param demo_file: file containing the demographic data from the patient. Can be inferred if None. :param vitals_file: file containing the vital signals from the patient. Can be inferred if None. :param lab_file: file containing the laboratory signals from the patient. Can be inferred if None. :param adm_file: file containing the admission data from the patient. Can be inferred if None. :param surgery_file: file containing the surgeries performed to the patient. Can be inferred if None. :param other_procedures_file: file containing procedures performed to the patient. Can be inferred if None. :param transfusions_file: file containing the transfusions performed to the patient. Can be inferred if None. :param eventss_file: file containing the events during the patient stay. Can be inferred if None. :param medhist_file: file containing the medical history information of the patient. Can be inferred if None. :param surghist_file: file containing the surgical history information of the patient. Can be inferred if None. :param socialhist_file: file containing the social history information of the patient. Can be inferred if None. """ self.path = path self.mrn = mrn self.csn = csn self.move_file = self.infer_full_path(move_file) self.demo_file = self.infer_full_path(demo_file) self.vitals_file = self.infer_full_path(vitals_file) self.lab_file = self.infer_full_path(lab_file) self.med_file = self.infer_full_path(med_file) self.adm_file = self.infer_full_path(adm_file) self.surgery_file = self.infer_full_path(surgery_file) self.other_procedures_file = self.infer_full_path(other_procedures_file) self.transfusions_file = self.infer_full_path(transfusions_file) self.events_file = self.infer_full_path(events_file) self.medhist_file = self.infer_full_path(medhist_file) self.surghist_file = self.infer_full_path(surghist_file) self.socialhist_file = self.infer_full_path(socialhist_file) self.timezone = TIMEZONE def infer_full_path(self, file_name: str) -> str: """ Infer a file name from MRN and type of data. Used if a file is not specified on the input. :param file_name: <str> 8 possible options: 'medications.csv', 'demographics.csv', 'labs.csv', 'flowsheet.scv', 'admission-vitals.csv', 'surgery.csv','procedures.csv', 'transfusions.csv' :return: <str> the inferred path """ if not file_name.endswith(".csv"): file_name = f"{file_name}.csv" full_path = os.path.join(self.path, self.mrn, self.csn, file_name) return full_path def list_vitals(self) -> List[str]: """ List all the vital signs taken from the patient. :return: <List[str]> List with all the available vital signals from the patient """ signal_column = EDW_FILES["vitals_file"]["columns"][0] vitals_df = pd.read_csv(self.vitals_file) # Remove measurements out of dates time_column = EDW_FILES["vitals_file"]["columns"][3] admit_column = EDW_FILES["adm_file"]["columns"][3] discharge_column = EDW_FILES["adm_file"]["columns"][4] admission_df = pd.read_csv(self.adm_file) init_date = admission_df[admit_column].values[0] end_date = admission_df[discharge_column].values[0] vitals_df = vitals_df[vitals_df[time_column] >= init_date] if str(end_date) != "nan": vitals_df = vitals_df[vitals_df[time_column] <= end_date] return list(vitals_df[signal_column].astype("str").str.upper().unique()) def list_labs(self) -> List[str]: """ List all the lab measurements taken from the patient. :return: <List[str]> List with all the available lab measurements from the patient. """ signal_column = EDW_FILES["lab_file"]["columns"][0] labs_df = pd.read_csv(self.lab_file) return list(labs_df[signal_column].astype("str").str.upper().unique()) def list_medications(self) -> List[str]: """ List all the medications given to the patient. :return: <List[str]> List with all the medications on the patients record """ signal_column = EDW_FILES["med_file"]["columns"][0] status_column = EDW_FILES["med_file"]["columns"][1] med_df = pd.read_csv(self.med_file) med_df = med_df[med_df[status_column].isin(MED_ACTIONS)] return list(med_df[signal_column].astype("str").str.upper().unique()) def list_surgery(self) -> List[str]: """ List all the types of surgery performed to the patient. :return: <List[str]> List with all the event types associated with the patient """ return self._list_procedures(self.surgery_file, "surgery_file") def list_other_procedures(self) -> List[str]: """ List all the types of procedures performed to the patient. :return: <List[str]> List with all the event types associated with the patient """ return self._list_procedures( self.other_procedures_file, "other_procedures_file", ) def list_transfusions(self) -> List[str]: """ List all the transfusions types that have been done on the patient. :return: <List[str]> List with all the transfusions type of the patient """ return self._list_procedures(self.transfusions_file, "transfusions_file") @staticmethod def _list_procedures(file_name, file_key) -> List[str]: """ Filter and list all the procedures in the given file. """ signal_column, status_column, start_column, end_column = EDW_FILES[file_key][ "columns" ] data = pd.read_csv(file_name) data = data[data[status_column].isin(["Complete", "Completed"])] data = data.dropna(subset=[start_column, end_column]) return list(data[signal_column].astype("str").str.upper().unique()) def list_events(self) -> List[str]: """ List all the event types during the patient stay. :return: <List[str]> List with all the events type. """ signal_column, _ = EDW_FILES["events_file"]["columns"] data = pd.read_csv(self.events_file) return list(data[signal_column].astype("str").str.upper().unique()) def get_static_data(self) -> StaticData: """ Get the static data from the EDW csv file (admission + demographics). :return: <StaticData> wrapped information """ movement_df = pd.read_csv(self.move_file) admission_df = pd.read_csv(self.adm_file) demographics_df = pd.read_csv(self.demo_file) # Obtain patient's movement (location and when they move) department_id = np.array(movement_df["DepartmentID"], dtype=int) department_nm = np.array(movement_df["DepartmentDSC"], dtype="S") room_bed = np.array(movement_df["BedLabelNM"], dtype="S") move_time = np.array(movement_df["TransferInDTS"], dtype="S") # Convert weight from ounces to pounds weight = float(admission_df["WeightPoundNBR"].values[0]) / 16 # Convert height from feet & inches to meters height = self._convert_height(admission_df["HeightTXT"].values[0]) admin_type = admission_df["HospitalAdmitTypeDSC"].values[0] # Find possible diagnosis at admission diag_info = admission_df["AdmitDiagnosisTXT"].dropna().drop_duplicates() if list(diag_info): diag_info = diag_info.astype("str") admin_diag = diag_info.str.cat(sep="; ") else: admin_diag = "UNKNOWN" admin_date = admission_df["HospitalAdmitDTS"].values[0] birth_date = demographics_df["BirthDTS"].values[0] race = demographics_df["PatientRaceDSC"].values[0] sex = demographics_df["SexDSC"].values[0] end_date = admission_df["HospitalDischargeDTS"].values[0] # Check whether it exists a deceased date or not end_stay_type = ( "Alive" if str(demographics_df["DeathDTS"].values[0]) == "nan" else "Deceased" ) # Find local time, if patient is still in hospital, take today's date if str(end_date) != "nan": offsets = self._get_local_time(admin_date[:-1], end_date[:-1]) else: today_date = datetime.today().strftime("%Y-%m-%d %H:%M:%S.%f") offsets = self._get_local_time(admin_date[:-1], today_date) offsets = list(set(offsets)) # Take unique local times local_time = np.empty(0) for offset in offsets: local_time = np.append(local_time, f"UTC{int(offset/3600)}:00") local_time = local_time.astype("S") # Find medical, surgical and social history of patient medical_hist = self._get_med_surg_hist("medhist_file") surgical_hist = self._get_med_surg_hist("surghist_file") tobacco_hist, alcohol_hist = self._get_social_hist() return StaticData( department_id, department_nm, room_bed, move_time, weight, height, admin_type, admin_diag, admin_date, birth_date, race, sex, end_date, end_stay_type, local_time, medical_hist, surgical_hist, tobacco_hist, alcohol_hist, ) def get_med_doses(self, med_name: str) -> Medication: """ Get all the doses of the input medication given to the patient. :param medication_name: <string> name of the medicine :return: <Medication> wrapped list of medications doses """ ( signal_column, status_column, time_column, route_column, weight_column, dose_column, dose_unit_column, infusion_column, infusion_unit_column, duration_column, duration_unit_column, ) = EDW_FILES["med_file"]["columns"] source = EDW_FILES["med_file"]["source"] med_df = pd.read_csv(self.med_file) med_df = med_df[med_df[status_column].isin(MED_ACTIONS)] med_df = med_df.sort_values(time_column) if med_name not in med_df[signal_column].astype("str").str.upper().unique(): raise ValueError(f"{med_name} was not found in {self.med_file}.") idx = np.where(med_df[signal_column].astype("str").str.upper() == med_name)[0] route = np.array(med_df[route_column])[idx[0]] wt_base_dose = ( bool(1) if np.array(med_df[weight_column])[idx[0]] == "Y" else bool(0) ) if med_df[duration_column].isnull().values[idx[0]]: start_date = self._get_unix_timestamps(np.array(med_df[time_column])[idx]) action = np.array(med_df[status_column], dtype="S")[idx] if ( np.array(med_df[status_column])[idx[0]] in [MED_ACTIONS[0]] or med_df[infusion_column].isnull().values[idx[0]] ): dose = np.array(med_df[dose_column], dtype="S")[idx] units = np.array(med_df[dose_unit_column])[idx[0]] else: dose = np.array(med_df[infusion_column])[idx] units = np.array(med_df[infusion_unit_column])[idx[0]] else: dose = np.array([]) units = np.array(med_df[infusion_unit_column])[idx[0]] start_date = np.array([]) action = np.array([]) for _, row in med_df.iloc[idx, :].iterrows(): dose = np.append(dose, [row[infusion_column], 0]) time = self._get_unix_timestamps(np.array([row[time_column]]))[0] conversion = 1 if row[duration_unit_column] == "Seconds": conversion = 1 elif row[duration_unit_column] == "Minutes": conversion = 60 elif row[duration_unit_column] == "Hours": conversion = 3600 start_date = np.append( start_date, [time, time + float(row[duration_column]) * conversion], ) action = np.append(action, [row[status_column], "Stopped"]) dose = self._ensure_contiguous(dose) start_date = self._ensure_contiguous(start_date) action = self._ensure_contiguous(action) return Medication( med_name, dose, units, start_date, action, route, wt_base_dose, source, ) def get_vitals(self, vital_name: str) -> Measurement: """ Get the vital signals from the EDW csv file 'flowsheet'. :param vital_name: <string> name of the signal :return: <Measurement> wrapped measurement signal """ vitals_df = pd.read_csv(self.vitals_file) # Remove measurements out of dates time_column = EDW_FILES["vitals_file"]["columns"][3] admit_column = EDW_FILES["adm_file"]["columns"][3] discharge_column = EDW_FILES["adm_file"]["columns"][4] admission_df = pd.read_csv(self.adm_file) init_date = admission_df[admit_column].values[0] end_date = admission_df[discharge_column].values[0] vitals_df = vitals_df[vitals_df[time_column] >= init_date] if str(end_date) != "nan": vitals_df = vitals_df[vitals_df[time_column] <= end_date] return self._get_measurements( "vitals_file", vitals_df, vital_name, self.vitals_file, ) def get_labs(self, lab_name: str) -> Measurement: """ Get the lab measurement from the EDW csv file 'labs'. :param lab_name: <string> name of the signal :return: <Measurement> wrapped measurement signal """ labs_df = pd.read_csv(self.lab_file) return self._get_measurements("lab_file", labs_df, lab_name, self.lab_file) def get_surgery(self, surgery_type: str) -> Procedure: """ Get all the surgery information of the input type performed to the patient. :param surgery_type: <string> type of surgery :return: <Procedure> wrapped list surgeries of the input type """ return self._get_procedures("surgery_file", self.surgery_file, surgery_type) def get_other_procedures(self, procedure_type: str) -> Procedure: """ Get all the procedures of the input type performed to the patient. :param procedure: <string> type of procedure :return: <Procedure> wrapped list procedures of the input type """ return self._get_procedures( "other_procedures_file", self.other_procedures_file, procedure_type, ) def get_transfusions(self, transfusion_type: str) -> Procedure: """ Get all the input transfusions type that were done to the patient. :param transfusion_type: <string> Type of transfusion. :return: <Procedure> Wrapped list of transfusions of the input type. """ return self._get_procedures( "transfusions_file", self.transfusions_file, transfusion_type, ) def get_events(self, event_type: str) -> Event: """ Get all the input event type during the patient stay. :param event_type: <string> Type of event. :return: <Event> Wrapped list of events of the input type. """ signal_column, time_column = EDW_FILES["events_file"]["columns"] data = pd.read_csv(self.events_file) data = data.dropna(subset=[time_column]) data = data.sort_values([time_column]) if event_type not in data[signal_column].astype("str").str.upper().unique(): raise ValueError(f"{event_type} was not found in {self.events_file}.") idx = np.where(data[signal_column].astype("str").str.upper() == event_type)[0] time = self._get_unix_timestamps(np.array(data[time_column])[idx]) time = self._ensure_contiguous(time) return Event(event_type, time) def _get_local_time(self, init_date: str, end_date: str) -> np.ndarray: """ Obtain local time from init and end dates. :param init_date: <str> String with initial date. :param end_date: <str> String with end date. :return: <np.ndarray> List of offsets from UTC (it may be two in case the time shift between summer/winter occurs while the patient is in the hospital). """ init_dt = datetime.strptime(init_date, "%Y-%m-%d %H:%M:%S.%f") end_dt = datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S.%f") offset_init = self.timezone.utcoffset( # type: ignore init_dt, is_dst=True, ).total_seconds() offset_end = self.timezone.utcoffset( # type: ignore end_dt, is_dst=True, ).total_seconds() return np.array([offset_init, offset_end], dtype=float) def _get_unix_timestamps(self, time_stamps: np.ndarray) -> np.ndarray: """ Convert readable time stamps to unix time stamps. :param time_stamps: <np.ndarray> Array with all readable time stamps. :return: <np.ndarray> Array with Unix time stamps. """ try: arr_timestamps = pd.to_datetime(time_stamps) except pd.errors.ParserError as error: raise ValueError("Array contains non datetime values.") from error # Convert readable local timestamps in local seconds timestamps local_timestamps = ( np.array(arr_timestamps, dtype=np.datetime64) - np.datetime64("1970-01-01T00:00:00") ) / np.timedelta64(1, "s") # Find local time shift to UTC if not (pd.isnull(local_timestamps[0]) or pd.isnull(local_timestamps[-1])): offsets = self._get_local_time(time_stamps[0][:-1], time_stamps[-1][:-1]) else: offsets = np.random.random(2) # pylint: disable=no-member # Compute unix timestamp (2 different methods: 1st ~5000 times faster) if offsets[0] == offsets[1]: unix_timestamps = local_timestamps - offsets[0] else: unix_timestamps = np.empty(np.size(local_timestamps)) for idx, val in enumerate(local_timestamps): if not pd.isnull(val): ntarray = datetime.utcfromtimestamp(val) offset = self.timezone.utcoffset( # type: ignore ntarray, is_dst=True, ) unix_timestamps[idx] = val - offset.total_seconds() # type: ignore else: unix_timestamps[idx] = val return unix_timestamps def _get_med_surg_hist(self, file_key: str) -> np.ndarray: """ Read medical or surgical history table and its information as arrays. :param file_key: <str> Key name indicating the desired file name. :return: <Tuple> Tuple with tobacco and alcohol information. """ if file_key == "medhist_file": hist_df = pd.read_csv(self.medhist_file) else: hist_df = pd.read_csv(self.surghist_file) hist_df = ( hist_df[EDW_FILES[file_key]["columns"]].fillna("UNKNOWN").drop_duplicates() ) info_hist = [] for _, row in hist_df.iterrows(): id_num, name, comment, date = row info_hist.append( f"ID: {id_num}; DESCRIPTION: {name}; " f"COMMENTS: {comment}; DATE: {date}", ) return self._ensure_contiguous(np.array(info_hist)) def _get_social_hist(self) -> Tuple: """ Read social history table and return tobacco and alcohol patient status. :return: <Tuple> Tuple with tobacco and alcohol information. """ hist_df = pd.read_csv(self.socialhist_file) hist_df = hist_df[EDW_FILES["socialhist_file"]["columns"]].drop_duplicates() concat = [] for col in hist_df: information = hist_df[col].drop_duplicates().dropna() if list(information): information = information.astype(str) concat.append(information.str.cat(sep=" - ")) else: concat.append("NONE") tobacco_hist = f"STATUS: {concat[0]}; COMMENTS: {concat[1]}" alcohol_hist = f"STATUS: {concat[2]}; COMMENTS: {concat[3]}" return tobacco_hist, alcohol_hist def _get_measurements(self, file_key: str, data, measure_name: str, file_name: str): ( signal_column, result_column, units_column, time_column, additional_columns, ) = EDW_FILES[file_key]["columns"] source = EDW_FILES[file_key]["source"] # Drop repeated values and sort data = data[ [signal_column, result_column, units_column, time_column] + additional_columns ].drop_duplicates() data = data.sort_values(time_column) if measure_name not in data[signal_column].astype("str").str.upper().unique(): raise ValueError(f"{measure_name} was not found in {file_name}.") idx = np.where(data[signal_column].astype("str").str.upper() == measure_name)[0] value = np.array(data[result_column])[idx] time = self._get_unix_timestamps(np.array(data[time_column])[idx]) units = np.array(data[units_column])[idx[0]] value = self._ensure_contiguous(value) time = self._ensure_contiguous(time) data_type = "Numerical" additional_data = {} for col in additional_columns: col_data = np.array(data[col])[idx] if "DTS" in col: col_data = self._get_unix_timestamps(col_data) col_data = self._ensure_contiguous(col_data) additional_data[col] = col_data return Measurement( measure_name, source, value, time, units, data_type, additional_data, ) def _get_procedures( self, file_key: str, file_name: str, procedure_type: str, ) -> Procedure: signal_column, status_column, start_column, end_column = EDW_FILES[file_key][ "columns" ] source = EDW_FILES[file_key]["source"] data = pd.read_csv(file_name) data = data[data[status_column].isin(["Complete", "Completed"])] data = data.dropna(subset=[start_column, end_column]) data = data.sort_values([start_column, end_column]) if procedure_type not in data[signal_column].astype("str").str.upper().unique(): raise ValueError(f"{procedure_type} was not found in {file_name}.") idx = np.where(data[signal_column].astype("str").str.upper() == procedure_type)[ 0 ] start_date = self._get_unix_timestamps(np.array(data[start_column])[idx]) end_date = self._get_unix_timestamps(np.array(data[end_column])[idx]) start_date = self._ensure_contiguous(start_date) end_date = self._ensure_contiguous(end_date) return Procedure(procedure_type, source, start_date, end_date) @staticmethod def _convert_height(height_i): if str(height_i) != "nan": height_i = height_i[:-1].split("' ") height_f = float(height_i[0]) * 0.3048 + float(height_i[1]) * 0.0254 else: height_f = np.nan return height_f class BedmasterReader(h5py.File, Reader): """ Implementation of the Reader for Bedmaster data. Usage: >>> reader = BedmasterReader('file.mat') >>> hr = reader.get_vs('HR') """ def __init__( self, file: str, scaling_and_units: Dict[str, Dict[str, Any]] = ICU_SCALE_UNITS, summary_stats: BedmasterStats = None, ): super().__init__(file, "r") self.max_segment = { "vs": {"segmentNo": 0, "maxTime": -1, "signalName": ""}, "wv": {"segmentNo": 0, "maxTime": -1, "signalName": ""}, } self.interbundle_corr: Dict[str, Optional[Dict]] = { "vs": None, "wv": None, } self.scaling_and_units: Dict[str, Dict[str, Any]] = scaling_and_units self.summary_stats = summary_stats if self.summary_stats: self.summary_stats.add_file_stats("total_files") def _update_max_segment(self, sig_name, sig_type, max_time): """ Update the signal that holds the segment with the last timespan. Needed for inter-bundle correction. :param sig_name: <str> name of the new candidate signal :param sig_type: <str> wv or vs :param max_time: <int> latest timespan for that signal """ packet = self["vs_packet"] if sig_type == "vs" else self["wv_time_original"] max_seg = self.max_segment[sig_type] max_seg["maxTime"] = max_time max_seg["segmentNo"] = packet[sig_name]["SegmentNo"][-1][0] max_seg["signalName"] = sig_name def get_interbundle_correction(self, previous_max): """ Calculate interbundle correction parameters from previous bundle maxs. Based on the signal with maximum time from the previous bundle, it calculates the 'maxTime': the last timespan that is overlapped with the previous bundle, and 'timeCorr': the time shifting to be applied on this bundle. Parameters are stored on attribute 'interbundle_corr'. :param previous_max: <Dict> dict with the max timepans info from the previous bundle. Same format than 'max_sement' attribute. """ def _ib_corr(previous_max, segments, time): ib_corr = None overlap_idx = np.where(segments[()] == previous_max["segmentNo"])[0] if overlap_idx.size > 0: # Bundles overlap last_overlap_idx = overlap_idx[-1] if last_overlap_idx >= len(time): last_overlap_idx = len(time) - 1 last_overlap_time = time[last_overlap_idx][0] time_corr = previous_max["maxTime"] - last_overlap_time ib_corr = {"maxTime": last_overlap_time, "timeCorr": time_corr} return ib_corr vs_corr = None last_max_vs = previous_max["vs"]["signalName"] if self.contains_group("vs"): if last_max_vs in self["vs"].keys(): vs_corr = _ib_corr( previous_max=previous_max["vs"], segments=self["vs_packet"][last_max_vs]["SegmentNo"], time=self["vs_time_corrected"][last_max_vs]["res_vs"], ) wv_corr = None last_max_wv = previous_max["wv"]["signalName"] if self.contains_group("wv"): if last_max_wv in self["wv"].keys(): wv_corr = _ib_corr( previous_max=previous_max["wv"], segments=self["wv_time_original"][last_max_wv]["SegmentNo"], time=self["wv_time_corrected"][last_max_wv]["res_wv"], ) self.max_segment = previous_max self.interbundle_corr["vs"] = vs_corr self.interbundle_corr["wv"] = wv_corr def apply_ibcorr(self, signal: BedmasterSignal): """ Apply inter-bundle correction on a given signal. The correction will be applied based on the 'interbundle_corr' attribute, which needs is updated using the method: 'get_interbundle_correction' The correction will cut the overlapping values between this bundle and the previous one. In addition, it will shift the timespans so that the first timespan on this bundle is the continuation of the last timespan of the previouz value. Note that this shifting will occur until a dataevent 1 or 5 is found. :param signal: <BedmasterSignal> a Bedmaster signal. """ source = "vs" if signal._source_type == "vitals" else "wv" if not self.interbundle_corr[source]: return overlap_idx = np.where( signal.time <= self.interbundle_corr[source]["maxTime"], # type: ignore )[0] if overlap_idx.size > 0: first_non_ol_idx = overlap_idx[-1] + 1 signal.time = signal.time[first_non_ol_idx:] signal.time_corr_arr = signal.time_corr_arr[first_non_ol_idx:] value_cut_idx = ( first_non_ol_idx if source == "vs" else np.sum(signal.samples_per_ts[:first_non_ol_idx]) ) signal.value = signal.value[value_cut_idx:] signal.samples_per_ts = signal.samples_per_ts[first_non_ol_idx:] if signal.source == "waveform": signal.sample_freq = self.get_sample_freq_from_channel( channel=signal.channel, first_idx=first_non_ol_idx, ) corr_to_apply = self.interbundle_corr[source]["timeCorr"] # type: ignore if corr_to_apply: de_idx = np.where(signal.time_corr_arr == 1)[0] if de_idx.size > 0: # Contains data events first_event = de_idx[0] signal.time[:first_event] = signal.time[:first_event] + corr_to_apply else: signal.time = signal.time + corr_to_apply if self.summary_stats and overlap_idx.size > 0: if signal.value.size > 0: self.summary_stats.add_signal_stats( signal.name, "overlapped_points", first_non_ol_idx, source=signal.source, ) def contains_group(self, group_name: str) -> bool: """ Check if the .mat file contains the given group. """ has_group = False if group_name in self.keys(): if isinstance(self[group_name], h5py.Group): has_group = True return has_group def list_vs(self) -> List[str]: """ Get the JUST the names of vital signals contained on the .mat file. It doesn't return the value of the vital signs. :return: <list[str]> A list with the vital signals' names contained on the .mat file """ if not self.contains_group("vs"): logging.warning(f"No BM vitalsign found on file {self.filename}.") if self.summary_stats: self.summary_stats.add_file_stats("missing_vs") return [] return list(self["vs"].keys()) def list_wv(self) -> Dict[str, str]: """ Get the the names of waveform signals contained on the .mat file. The format is : {wv_name: channel}, where `channel` is the input channel where the the signal enters. If a channel contains no waveform or contains multiple waveforms, it will be ignored. :return: <Dict[str:str]> A dict with the wave form signals contained on the .mat file, along with their input channel. """ wv_signals: Dict[str, str] = {} if not self.contains_group("wv"): logging.warning(f"No BM waveform found on file {self.filename}.") if self.summary_stats: self.summary_stats.add_file_stats("missing_wv") return wv_signals for ch_name in self["wv"].keys(): signal_name = self.get_wv_from_channel(ch_name) if signal_name: wv_signals[signal_name] = ch_name return wv_signals def format_data(self, data) -> np.ndarray: """ Format multidimensional data into 1D arrays. :param data: <np.array> Data to be formatted :return: <np.array> formatted data """ # Pseudo 1D data to 1D data if data.shape[1] == 1: # Case [[0],[1]] data = np.transpose(data) if data.shape[0] == 1: # Case [[0, 1]] data = data[0] # 2D data unicode encoded to 1D decoded if data.ndim == 2: if data.shape[0] < data.shape[1]: data = np.transpose(data) data = self.decode_data(data) return data @staticmethod def decode_data(data: np.ndarray) -> np.ndarray: """ Decodes data stored as unicode identifiers and returns a 1D array. Example: >>> data # 3D array with unicode codes for '0','.','2' array([[48, 46, 50], [48, 46, 50], [48, 46, 50], [48, 46, 50]]) >>> BedmasterReader.decode_data(data) array([0.2, 0.2, 0.2, 0.2]) :param data: <np.ndarray> Data to decode :return: <np.ndarray> decoded data """ def _decode(row): row = "".join([chr(code) for code in row]).strip() if row in ("X", "None"): return np.nan return row data = np.apply_along_axis(_decode, 1, data) try: data = data.astype(float) if all(x.is_integer() for x in data): dtype = int # type: ignore else: dtype = float # type: ignore except ValueError: dtype = "S" # type: ignore data = data.astype(dtype) return data def get_vs(self, signal_name: str) -> Optional[BedmasterSignal]: """ Get the corrected vs signal from the.mat file. 2. Applies corrections on the signal 3. Wraps the corrected signal and its metadata on a BedmasterDataObject :param signal_name: <string> name of the signal :return: <BedmasterSignal> wrapped corrected signal """ if signal_name not in self["vs"].keys(): raise ValueError( f"In bedmaster_file {self.filename}, the signal {signal_name} " "was not found.", ) # Get values and time values = self["vs"][signal_name][()] if values.ndim == 2: values = self.format_data(values) if values.dtype.char == "S": logging.warning( f"{signal_name} on .mat file {self.filename}, has unexpected " "string values.", ) return None if values.ndim >= 2: raise ValueError( f"Signal {signal_name} on file: {self.filename}. The values" f"of the signal have higher dimension than expected (>1) after" f"being formatted. The signal is probably in a bad format so it " f"won't be written.", ) time = np.transpose(self["vs_time_corrected"][signal_name]["res_vs"][:])[0] # Get the occurrence of event 1 and 5 de_1 = self["vs_time_corrected"][signal_name]["data_event_1"] de_5 = self["vs_time_corrected"][signal_name]["data_event_5"] events = (de_1[:] | de_5[:]).astype(np.bool) # Get scaling factor and units if signal_name in self.scaling_and_units: scaling_factor = self.scaling_and_units[signal_name]["scaling_factor"] units = self.scaling_and_units[signal_name]["units"] else: scaling_factor = 1 units = "UNKNOWN" # Samples per timespan samples_per_ts = np.array([1] * len(time)) signal = BedmasterSignal( name=signal_name, source="vitals", channel=signal_name, value=self._ensure_contiguous(values), time=self._ensure_contiguous(time), units=units, sample_freq=np.array([(0.5, 0)], dtype="float,int"), scale_factor=scaling_factor, time_corr_arr=events, samples_per_ts=self._ensure_contiguous(samples_per_ts), ) # Apply inter-bundle correction if self.interbundle_corr["vs"]: self.apply_ibcorr(signal) if signal.time.size == 0: logging.info( f"Signal {signal} on .mat file {self.filename} doesn't contain new " f"information (only contains overlapped values from previous bundles). " f"It won't be written.", ) if self.summary_stats: self.summary_stats.add_signal_stats( signal.name, "total_overlap_bundles", source=signal.source, ) return None # Compress time_corr_arr signal.time_corr_arr = np.packbits(
np.transpose(signal.time_corr_arr)
numpy.transpose
""" factor analysis model in 'A Unifying Review of Linear Gaussian Models'. """ __docformat__ = 'restructuredtext' from numpy import diag, identity from numpy.linalg import qr, slogdet, solve import numpy symmetric_solve = solve LOG2PI = numpy.log(2 * numpy.pi) def log_likelihood_day(sigma, r): from numpy.linalg import slogdet tr_SiS = numpy.dot(r.T, symmetric_solve(sigma, r)) return -0.5 * (len(sigma) * LOG2PI +
slogdet(sigma)
numpy.linalg.slogdet
""" """ import glob import os from collections import defaultdict, Counter from copy import deepcopy from itertools import combinations from shutil import copyfile import matplotlib.pyplot as plt import numpy as np from scipy.stats import skew, kurtosis from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sliced import SlicedInverseRegression from ar.features.feature import _get_fft from ar.utils.utils import make_confusion_matrix, load, dump, check_path, timer keypoints = [ "nose", "left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder", "right_shoulder", "left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", "left_knee", "right_knee", "left_ankle", "Right_ankle"] def get_missclassified(cm, test_y, pred_y, test_raw_files, model_name, idx2label): res = defaultdict(list) # n, m = cm.shape for i, (y_, y_2) in enumerate(zip(test_y, pred_y)): if y_ != y_2: # print(y_, y_2, test_raw_files[i]) in_file = os.path.relpath(test_raw_files[i], 'examples/classical_ml/out/keypoints3d-20210907/keypoints3d/') # tmp_file = os.path.relpath(in_file, f'data/data-clean/refrigerator/{idx2label[y_]}') out_file = f'examples/classical_ml/out/misclassified_users/{model_name}/{idx2label[y_]}->/{idx2label[y_2]}/{in_file}'[ :-4] check_path(out_file) try: # copyfile(os.path.join('examples', in_file)[:-4], out_file) copyfile(os.path.join('ar/features/videopose3d/out3d_pred', in_file)[:-4], out_file) except Exception as e: print(f'Error: {e}') res[y_].append(test_raw_files[i]) res = sorted(res.items(), key=lambda x: x[0], reverse=False) for vs in res: label, lst = vs print(f'label: {label}, misclassified_num: {len(lst)}, {lst}') return def get_fft_features(raw_data='', m=84, keypoint=7): """ Parameters ---------- npy_file m: without trimmming: m = 84 with trimming: m = 51 keypoint coordinate Returns ------- """ n = raw_data.shape[0] raw_data = raw_data.reshape((n, 51)) res = [] for i in range(51): data = raw_data[:, i] # data = data.reshape((-1,)) flg = 'std1' if flg == 'fft': fft_features = _get_fft(data, fft_bin=m) fft_features = fft_features[0:1 + int(np.ceil((m - 1) / 2))] elif flg == 'std': # fft_features = [np.mean(data), np.std(data)] fft_features = [np.min(data), np.mean(data), np.std(data), np.max(data)] # fft_features = list(np.quantile(data, q=[0, 0.25, 0.5, 0.75, 1])) # fft_features = list(np.quantile(data, q = [0, 0.25, 0.5, 0.75, 1])) + [np.mean(data), np.std(data)] elif flg == 'skew': # fft_features = [np.min(data), np.max(data)] # fft_features = [np.mean(data), np.std(data)] # fft_features = [skew(data), kurtosis(data)] # fft_features = [np.min(data), np.mean(data), np.std(data), np.max(data)] fft_features = [np.mean(data), np.std(data), skew(data), kurtosis(data), np.min(data), np.max(data)] else: n = len(data) step = int(np.ceil(n / m)) fft_features = [] for i in range(0, len(data), step): vs = data[i:i + step] flg2 = 'stats' if flg2 == 'stats': # tmp = list(np.quantile(vs, q = [0, 0.5, 1] )) # [0, 0.25, 0.5, 0.75, 1]+ [np.mean(vs), np.std(vs)] # tmp = list(np.quantile(vs, q=[0, 0.5, 1])) # tmp = [np.mean(vs), np.std(vs)] tmp = [np.mean(vs), np.std(vs), skew(vs), kurtosis(vs), np.min(vs), np.max(vs)] # tmp = [np.mean(vs)] n_feat = len(tmp) elif flg2: tmp = _get_fft(vs) tmp = sorted(tmp[0:1 + int(np.ceil((m - 1) / 2))], reverse=True) n_feat = 2 fft_features.extend(tmp[:n_feat]) fft_features = fft_features + [0] * (n_feat * m - len(fft_features)) res.append(fft_features) return np.asarray(res).reshape(-1, ) def _get_data(root_dir='examples/out/keypoints3d-20210907/keypoints3d/data', camera_type='_1.mp4', classes=[]): dataset = [] users = [] activities = [] raw_files = [] for act in classes: files = glob.glob(f'{root_dir}/data-clean/refrigerator/' + act + f'/*/*{camera_type}.npy') # files = [f'{root_dir}/data-clean/refrigerator/take_out_item/4/take_out_item_2_1616179391_1.mp4.npy', # f'{root_dir}/data-clean/refrigerator/take_out_item/4/take_out_item_2_1616179391_1.mp4.npy'] for file in files: # print('Processing file', file) user = int(file.split('/')[-2]) data = [] raw_data = np.load(file) # for keypoint_idx, _ in enumerate(keypoints): # tmp = get_fft_features(raw_data, keypoint=keypoint_idx) # # data = special_keypoints(np.load(file)) # data.extend(list(tmp)) data = get_fft_features(raw_data) data = np.asarray(data) dataset.append(data) users.append(user) activities.append(classes.index(act)) raw_files.append(file) print(act, len(files)) return np.array(dataset), np.array(users), np.array(activities), raw_files def pca_plot(dataset, activities, classes, title): from sklearn.decomposition import PCA pca = PCA(n_components=2) X = pca.fit_transform(dataset) for i in range(5): plt.scatter(X[activities == i, 0], X[activities == i, 1]) plt.title(title) plt.legend(classes) plt.show() def pca_plot1(dataset, activities, classes, users, title): nrows = 3 ncols = 3 fig, axes = plt.subplots(nrows, ncols, figsize=(20, 15)) # w, h for i in sorted(np.unique(users)): q, r = np.divmod(i - 1, ncols) g = axes[q, r] from sklearn.decomposition import PCA pca = PCA(n_components=2) X_new = pca.fit_transform(dataset) X_new = X_new[users == i] act_new = activities[users == i] for act_idx in range(5): g.scatter(X_new[act_new == act_idx, 0], X_new[act_new == act_idx, 1]) # g.legend(loc='upper left', bbox_to_anchor=(1.05, 1.0), ncol=2, borderaxespad=0, # fancybox=False, shadow=False, fontsize=8, title='classes') handles, labels = g.get_legend_handles_labels() # fig.legend(handles, labels, loc='upper center') g.legend(handles, labels, loc='center left', bbox_to_anchor=(1.25, 1), ncol=1, borderaxespad=0.) g.set_title(f'user_{i}') g.set_ylim([0, 40]) fig.suptitle(f'each user\'s data: {title}') plt.tight_layout() # takes too much time # out_file = f'{coordinate}-{color}-{title}.png' # plt.savefig(out_file, bbox_inches='tight', dpi=300) # print(out_file) plt.show() # takes too much time def plot_3dkeypoints(X, y, random_state=42, title=''): N, D = X.shape y_label = [idx2label[v] for v in y] df = pd.DataFrame(np.concatenate([X, np.reshape(y, (-1, 1)), np.reshape(y_label, (-1, 1))], axis=1), columns=[f'x{i + 1}' for i in range(X.shape[1])] + ['y', 'y_label']) df = df.astype({"x1": float, "x2": float, 'y': int, 'y_label': str}) for i_coord, (coordinate, color) in enumerate(zip(['x', 'y', 'z'], ['r', 'g', 'b'])): # only plot the red channel values for each point(R, G, B) nrows = 4 # using the variable axs for multiple Axes ncols = 5 # D // (17 * 3) print(ncols) fig, axes = plt.subplots(nrows, ncols, figsize=(20, 15)) # w, h for i in range(0, 17): # 17 3d_keypoints # the ith keypoint # df_point = df[:, [(j, j+1, j+2) for j in range(0, 255, 17*3)]] # (j, j+1, j+2): (R, G, B) df_point = df[df.columns[[j + (i * 3) + i_coord for j in range(0, D, 17 * 3)]]] # R # df_point.shape (1000, 5) # 1000 is the number of videos, 5 is the number of timestamps q, r = divmod(i, ncols) if q >= nrows: break g = axes[q, r] for i_video, lab_ in enumerate(y_label): # plt.plot(x, y) g.plot(range(0, D // (17 * 3)), [float(v) for v in df_point.iloc[i_video].values], linestyle='', marker='*', color=label2color[lab_]) # break if r == 0: g.set_ylabel(f'{coordinate} coordinate') if q == 4 - 1: g.set_xlabel('feature (aggregated on frames)') g.set_title(f'{i + 1}th keypoint') print(f'{i}, axes[{q}, {r}]: {g}') fig.suptitle(f'{title}: {coordinate} coordinate.') plt.tight_layout() # takes too much time out_file = f'{coordinate}-{color}-{title}.png' plt.savefig(out_file, bbox_inches='tight', dpi=300) print(out_file) plt.show() # takes too much time # ### FacetGrid # grid = sns.FacetGrid(df, col="y_label", hue="y_label", hue_order=list(sorted(set(y_label))), col_wrap=3) # grid.map(sns.scatterplot, "x1", "x2", s=100, alpha=0.3) # grid.add_legend() # plt.show() def pca_plot2(X, y, classes, title): from sklearn.decomposition import PCA pca = PCA(n_components=2) X = pca.fit_transform(X) for i in range(len(classes)): plt.scatter(X[y == i, 0], X[y == i, 1]) plt.title(title) plt.legend(classes) plt.show() def split_train_test_users(history, data_type='', test_users_list=[]): # test_users_list = [1, 3] if data_type in ['_1.mp4', '_2.mkv', '_3.mp4']: dataset, users, activities, raw_files = history[data_type] # # train_x, test_x, train_y, test_y = train_test_split(dataset, users, test_size=0.3, random_state=42) # train_x, test_x, train_y, test_y, train_raw_files, test_raw_files = train_test_split(dataset, activities, # raw_files, test_size=0.3, # random_state=42) train_x = [] train_y = [] train_users = [] train_raw_files = [] test_x = [] test_y = [] test_users = [] test_raw_files = [] cameras = [[dataset, users, activities, raw_files]] for camera in cameras: for (d, u, a, r) in zip(*camera): if u in test_users_list: test_x.append(d) test_y.append(a) test_users.append(u) test_raw_files.append(r) else: train_x.append(d) train_y.append(a) train_users.append(u) train_raw_files.append(r) train_x = np.asarray(train_x) train_y =
np.asarray(train_y)
numpy.asarray
#!/usr/bin/env python import builtins import operator import warnings from .duckprint import (duck_str, duck_repr, duck_array2string, typelessdata, default_duckprint_options, default_duckprint_formatters, FormatDispatcher) from .common import (is_ndducktype, is_ndscalar, is_ndarr, is_ndtype, new_ducktype_implementation, ducktype_link, get_duck_cls, as_duck_cls) from .ndarray_api_mixin import NDArrayAPIMixin import numpy as np from numpy import newaxis import numpy.core.umath as umath from numpy.lib.mixins import NDArrayOperatorsMixin from numpy.lib.function_base import _quantile_is_valid import numpy.core.numerictypes as ntypes from numpy.core.multiarray import (normalize_axis_index, interp as compiled_interp, interp_complex as compiled_interp_complex) from numpy.lib.stride_tricks import _broadcast_shape from numpy.core.numeric import normalize_axis_tuple class MaskedOperatorMixin(NDArrayOperatorsMixin): # shared implementations for MaskedArray, MaskedScalar # override the NDArrayOperatorsMixin implementations for cmp ops, as # currently those don't work for flexible types. def _cmp_op(self, other, op): if other is X: db, mb = self._data.dtype.type(0), np.bool_(True) else: db, mb = getdata(other), getmask(other) cls = get_duck_cls(self, other) data = op(self._data, db) mask = self._mask | mb return maskedarray_or_scalar(data, mask, cls=cls) def __lt__(self, other): return self._cmp_op(other, operator.lt) def __le__(self, other): return self._cmp_op(other, operator.le) def __eq__(self, other): return self._cmp_op(other, operator.eq) def __ne__(self, other): return self._cmp_op(other, operator.ne) def __gt__(self, other): return self._cmp_op(other, operator.gt) def __ge__(self, other): return self._cmp_op(other, operator.ge) def __complex__(self): raise TypeError("Use .filled() before converting to non-masked scalar") def __int__(self): raise TypeError("Use .filled() before converting to non-masked scalar") def __float__(self): raise TypeError("Use .filled() before converting to non-masked scalar") def __index__(self): raise TypeError("Use .filled() before converting to non-masked scalar") def __array_function__(self, func, types, arg, kwarg): impl, check_args = implements.handled_functions.get(func, (None, None)) if impl is None or not check_args(arg, kwarg, types, self.known_types): return NotImplemented return impl(*arg, **kwarg) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): if ufunc not in _masked_ufuncs: return NotImplemented return getattr(_masked_ufuncs[ufunc], method)(*inputs, **kwargs) def _get_fill_value(self, fill_value, minmax): if minmax is not None: if fill_value != np._NoValue: raise Exception("Do not give fill_value if providing minmax") if minmax == 'max': fill_value = _maxvals[self.dtype] elif minmax == 'maxnan': if issubclass(self.dtype.type, np.inexact): # some functions, eg np.sort, treat nan as largest fill_value = np.nan else: fill_value = _maxvals[self.dtype] elif minmax == 'min': fill_value = _minvals[self.dtype] else: raise ValueError("minmax should be 'min' or 'max'") if fill_value is None: raise ValueError("minmax not supported for dtype {}".format( self.dtype)) elif fill_value is np._NoValue: # default is 0 for all types (*not* np.nan for inexact) fill_value = 0 return fill_value @property def flat(self): return MaskedIterator(self) def duck_require(data, dtype=None, ndmin=0, copy=True, order='K'): """ Return an ndarray-like that satisfies requirements. Returns a view if possible. Parameters ---------- data : array-like Must be an ndarray or ndarray ducktype. dtype : numpy datatype Datatype to convert to ndmin : integer Same as 'ndmin' argument of np.array copy : bool Whether to guarantee a copy is made order : one of 'K', 'F', 'C', 'A' Same as 'order' argument of np.array """ # we must use only properties that work for ndarray ducktypes. # This rules out using np.require newdtype = dtype if dtype is not None else data.dtype if copy or (newdtype != data.dtype): data = data.astype(newdtype, order=order) if order != 'K' and order is not None: warnings.warn('order parameter of MaskedArray is ignored') if ndmin != 0 and data.ndim < ndmin: nd = ndmin - data.ndim data = data[(None,)*nd + (Ellipsis,)] return data def asarr(v, **kwarg): if is_ndarr(v): return duck_require(v, **kwarg) else: # must be ndscalar if is_ndducktype(v): # convert to duck-array class using our ducktype conventions return get_duck_cls(v)(v, **kwarg) else: # usually, np.generic type return np.array(v, **kwarg) class MaskedArray(MaskedOperatorMixin, NDArrayAPIMixin): "An ndarray ducktype allowing array elements to be masked" def __init__(self, data, mask=None, dtype=None, copy=False, order=None, subok=False, ndmin=0): """ Constructs a MaskedArray given data and optional mask. Parameters ---------- data : array-like Any object following the numpy ducktype api or convertible to an ndarray, but also allowing the masked signifier `X` to mark masked elements. See Notes below. mask : array-like Any object convertible to a boolean `ndarray` of the same shape as data, where true elements are masked. If omitted, defaults to all `False`. See Notes below. dtype : data-type, optional The desired data-type for the array. See `np.array` argument. copy : bool, optional If false (default), the MaskedArray will view the data and mask if they are ndarrays with the right properties. Otherwise a they will be copied. order : {'K', 'A', 'C', 'F'}, optional Memory layout of the array. See `np.array` argument. This affects both the data and mask. ndmin : int, optional Specifies the minimum number of dimensions the resulting array should have. See `np.array` argument. Returns ------- out : MaskedArray The resulting MaskedArray. Notes ----- This MaskedArray constructor supports a few different ways to mark masked elements, which are sometimes exclusive. First, `data` may be a MaskedArray, in which case `mask` should not be supplied. If `mask` is not supplied, then masked elements may be marked in the `data` using the masked input element `X`. That is, `data` can be a list-of-lists containing numerical scalars and `ndarray`s, similar to that accepted by `np.array`, but additionally allowing some elements to be replaced with `X`. The dtype will be inferred based on the converted dtype of the non-masked elements. If all elements are `X`, the `dtype` argument of `MaskedArray` must be supplied: >>> a = MaskedArray([[1, X, 3], np.arange(3)]) >>> b = MaskedArray([X, X, X], dtype='f8') If `mask` is supplied, `X` should not be used in the `data. `mask` should be any object convertible to bool datatype and broadcastable to the shape of the data. If `mask` is already a bool ndarray of the same shape as `data`, it will be viewed, otherwise it will be copied. """ if isinstance(data, MaskedScalar): self.__init__(data._data, data._mask, dtype=data.dtype, order=order, ndmin=ndmin) return elif isinstance(data, MaskedArray): self._mask = duck_require(data._mask, copy=copy, order=order, ndmin=ndmin) if mask is not None: self._data = duck_require(data._data, copy=True, order=order, ndmin=ndmin) mask = np.array(mask, dtype=bool, copy=False) self._mask |= np.broadcast_to(mask, self._data.shape) else: self._data = duck_require(data._data, copy=copy, order=order, ndmin=ndmin) return elif data is X and mask is None: # 0d masked array if dtype is None: raise ValueError("must supply dtype if all elements are X") self._data = np.array(dtype.type(0)) self._mask = np.array(True) return # Otherwise got non-masked type, we convert data/mask to MaskedArray: if mask is None: # if mask is None, user can put X in the data. # Otherwise, X will cause some kind of error in np.array below data, mask, _ = replace_X(data, dtype=dtype) # replace_X sometimes uses broadcast_to, which returns a # readonly array with funny strides. Make writeable if so, # since we will end up in the is_ndducktype code-path below. if (isinstance(mask, np.ndarray) and mask.flags['WRITEABLE'] == False): mask = mask.copy() self._data = asarr(data, dtype=dtype, copy=copy,order=order,ndmin=ndmin) if mask is None: self._mask = np.zeros(self._data.shape, dtype='bool', order=order) elif is_ndtype(mask): self._mask = asarr(mask, dtype=np.bool_, copy=copy, order=order) if self._mask.shape != self._data.shape: self._mask = np.broadcast_to(self._mask,self._data.shape).copy() else: self._mask = np.empty(self._data.shape, dtype='bool') self._mask[...] = np.broadcast_to(mask, self._data.shape) @classmethod def __nd_duckprint_dispatcher__(cls): return masked_dispatcher def __str__(self): return duck_str(self) def __repr__(self): return duck_repr(self, showdtype=self._mask.all()) def __getitem__(self, ind): if is_string_or_list_of_strings(ind): # for viewing fields of structured arrays, return readonly view. # (see .real/.imag discussion in user guide) ret = self._data[ind] ret.flags['WRITEABLE'] = False return type(self)(ret, self._mask) if not isinstance(ind, tuple): ind = (ind,) # If a boolean MaskedArray is provided as an ind, treat masked vals as # False. Allows code like "a[a>0]", which is then the same as # "a[np.nonzero(a>0)]" ind = tuple(i.filled(False, view=1) if (isinstance(i, MaskedArray) and i.dtype.type is np.bool_) else i for i in ind) # TODO: Possible future improvement would be to support masked # integer arrays as indices. Then marr[boolmask] should behave # the same as marr[where(boolmask)], i.e. masked indices are # ignored. data = self._data[ind] mask = self._mask[ind] if is_ndscalar(mask): # test mask not data, to account for obj arrays return type(self)._scalartype(data, mask, dtype=self.dtype) return type(self)(data, mask, dtype=self.dtype) def __setitem__(self, ind, val): if not self.flags.writeable: raise ValueError("assignment destination is read-only") if self.dtype.names and is_string_or_list_of_strings(ind): raise ValueError("Cannot assign to fields of a Masked structured " "array") if not isinstance(ind, tuple): ind = (ind,) # If a boolean MaskedArray is provided as an ind, treat masked vals as # False. Allows code like "a[a>0] = X" ind = tuple(i.filled(False, view=1) if (isinstance(i, MaskedArray) and i.dtype.type is np.bool_) else i for i in ind) if val is X: self._mask[ind] = True elif isinstance(val, (MaskedArray, MaskedScalar)): self._data[ind] = val._data self._mask[ind] = val._mask else: self._data[ind] = val self._mask[ind] = False def __len__(self): return len(self._data) @property def shape(self): return self._data.shape @shape.setter def shape(self, shp): self._data.shape = shp self._mask.shape = shp @property def dtype(self): return self._data.dtype @dtype.setter def dtype(self, dt): dt = np.dtype(dt) if self._data.dtype.itemsize != dt.itemsize: raise ValueError("views of MaskedArrays cannot change the " "datatype's itemsize") self._data.dtype = dt @property def flags(self): return self._data.flags @property def strides(self): return self._data.strides @property def mask(self): # return a readonly view of mask m = self._mask.view() m.flags['WRITEABLE'] = False return m def view(self, dtype=None, type=None): if type is not None: raise ValueError("subclasses not yet supported") if dtype is None: dtype = self.dtype else: try: dtype = np.dtype(dtype) except ValueError: raise ValueError("dtype must be a dtype, not subclass") if dtype.itemsize != self.itemsize: raise ValueError("views of MaskedArrays cannot change the " "datatype's itemsize") return type(self)(self._data.view(dtype), self._mask) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): result_data = self._data.astype(dtype, order, casting, subok, copy) # force a copy of mask if data was copied if copy == False and result_data is not self: copy = True result_mask = self._mask.astype(bool, order, casting, subok, copy) return type(self)(result_data, result_mask) def tolist(self): return [x.tolist() for x in self] def filled(self, fill_value=np._NoValue, minmax=None, view=False): """ Parameters ========== fill_value : scalar, optional value to put in masked positions of the array. Defaults to 0 if minmax is not provided. minmax : string 'min', 'max' or 'maxnan', optional If 'min', fill masked elements with the minimum value for this array's datatype. If 'max', fill with maximum value for this datatype. If 'maxnan', fill with nan if a floating type, otherwise same as 'max'. view : boolean, optional If True, then the returned array is a view of the underlying data array rather than a copy (optimization). Be careful, as subsequent actions on the maskedarray can put nonsense data in the view. If the array is writeonly, this option is ignored and a copy is always returned. Returns ======= data : ndarray Returns a copy of this MaskedArray with masked elements replaced by the fill value. (or a view of view=True). """ if view and self._data.flags['WRITEABLE']: d = self._data.view() d[self._mask] = self._get_fill_value(fill_value, minmax) d.flags['WRITEABLE'] = False return d d = self._data.copy(order='K') d[self._mask] = self._get_fill_value(fill_value, minmax) return d def count(self, axis=None, keepdims=False): """ Count the non-masked elements of the array along the given axis. Parameters ---------- axis : None or int or tuple of ints, optional Axis or axes along which the count is performed. The default (`axis` = `None`) is perform the count sum over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or all the axes as before. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the array. Returns ------- result : ndarray or scalar An array with the same shape as self, with the specified axis removed. If self is a 0-d array, or if `axis` is None, a scalar is returned. See Also -------- count_masked : Count masked elements in array or along a given axis. Examples -------- >>> import numpy.ma as ma >>> a = ma.arange(6).reshape((2, 3)) >>> a[1, :] = ma.X >>> a masked_array(data = [[0 1 2] [-- -- --]], mask = [[False False False] [ True True True]], fill_value = 999999) >>> a.count() 3 When the `axis` keyword is specified an array of appropriate size is returned. >>> a.count(axis=0) array([1, 1, 1]) >>> a.count(axis=1) array([3, 0]) """ return (~self._mask).sum(axis=axis, dtype=np.intp, keepdims=keepdims) # This works inplace, unlike np.sort def sort(self, axis=-1, kind='quicksort', order=None): # Note: See comment in np.sort impl below for trick used here. # This is the inplace version self._data[self._mask] = _maxvals[self.dtype] self._data.sort(axis, kind, order) self._mask.sort(axis, kind) # This works inplace, unlike np.resize, and fills with repeat instead of 0 def resize(self, new_shape, refcheck=True): self._data.resize(new_shape, refcheck) self._mask.resize(new_shape, refcheck) class MaskedScalar(MaskedOperatorMixin, NDArrayAPIMixin): "An ndarray scalar ducktype allowing the value to be masked" def __init__(self, data, mask=None, dtype=None): """ Construct masked scalar given a data value and mask value. Parameters ---------- data : numpy scalar, MaskedScalar, or X The value of the scalar. If `X` is given, `dtype` must be supplied. mask : bool If true, the scalar is masked. Default is false. dtype : numpy dtype dtype to convert to the data to Notes ----- To construct a masked MaskedScalar of a certain dtype, it may be preferrable to use ``X(dtype)``. If `data` is a MaskedScalar, do not supply a `mask`. """ if isinstance(data, MaskedScalar): self._data = data._data self._mask = data._mask if mask is not None: raise ValueError("don't use mask if passing a maskedscalar") self._dtype = self._data.dtype return elif data is X: if dtype is None: raise ValueError("Must supply dtype when data is X") if mask is not None: raise ValueError("don't supply mask when data is X") self._data = np.dtype(dtype).type(0) self._mask = np.bool_(True) self._dtype = self._data.dtype return # Otherwise, convert data/mask to MaskedScalar: if dtype is not None: dtype = np.dtype(dtype) if dtype is None or dtype.type is not np.object_: if is_ndtype(data): if dtype is not None and data.dtype != dtype: data = data.astype(dtype, copy=False)[()] if not is_ndscalar(data): data = data[()] self._data = data else: # next line is more complicated than desired due to struct # types, which numpy does not have a constructor for # convert to scalar self._data = np.array(data, dtype=dtype)[()] self._mask = np.bool_(mask) self._dtype = self._data.dtype else: # object dtype treated specially self._data = data self._mask = np.bool_(mask) self._dtype = dtype @property def shape(self): return () @property def dtype(self): return self._dtype def __getitem__(self, ind): if (self.dtype.names and is_string_or_list_of_strings(ind) or isinstance(ind, int)): # like structured scalars, support string indexing and int indexing data = self._data[ind] mask = self._mask return type(self)(data, mask) if ind == (): return self if ind == Ellipsis or ind == (Ellipsis,): return MaskedArray(self) raise IndexError("invalid index to scalar variable.") def __setitem__(self, ind, val): # non-masked structured scalars normally allow assignment (eg, to # individual fields), but here we disallow *all* assignment, because of # ambiguity about what to do with mask. See discussion of .real/.imag raise ValueError("assignment destination is read-only") def __str__(self): if self._mask: return MASK_STR return str(self._data) def __repr__(self): if self._mask: return "X({})".format(str(self.dtype)) if self.dtype.type in typelessdata and self.dtype.names is None: dtstr = '' else: dtstr = ', dtype={}'.format(str(self.dtype)) return "MaskedScalar({}{})".format(repr(self._data), dtstr) def __format__(self, format_spec): if self._mask: return 'X' return format(self._data, format_spec) def __bool__(self): if self._mask: return False return bool(self._data) def __hash__(self): if self._mask: return 0 return hash(self._data) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): result_data = self._data.astype(dtype, order, casting, subok, copy) return MaskedScalar(result_data, self._mask) def tolist(self): if self._mask: return self return self._data.item() @property def mask(self): return self._mask def filled(self, fill_value=np._NoValue, minmax=None, view=False): # view is ignored fill_value = self._get_fill_value(fill_value, minmax) if self._mask: if self.dtype.names: # next line is more complicated than desired due to struct # types, which numpy does not have a constructor for return np.array(fill_value, dtype=self.dtype)[()] return type(self._data)(fill_value) return self._data def count(self, axis=None, keepdims=False): return 0 if self._mask else 1 # create a special dummy object which signifies "masked", which users can put # in lists to pass to MaskedArray constructor, or can assign to elements of # a MaskedArray, to set the mask. class MaskedX: def __repr__(self): return 'masked_input_X' def __str__(self): return 'masked_input_X' # as a convenience, can make this typed by calling with a dtype def __call__(self, dtype): return MaskedScalar(0, True, dtype=dtype) # prevent X from being used as an element in np.array, to avoid # confusing the user. X should only be used in MaskedArrays def __array__(self): # hack: the only Exception that numpy doesn't clear here is MemoryError raise MemoryError("Masked X should only be used in " "MaskedArray assignment or construction") masked = X = MaskedX() ducktype_link(MaskedArray, MaskedScalar, (MaskedX,)) def replace_X(data, dtype=None): """ takes array-like input, replaces masked value by 0 and return filled data & mask. This is more-or-less a reimplementation of PyArray_DTypeFromObject to account for masked values Parameters ========== data : nested tuple.list of ndarrays/MaskedArrays/X dtype : dtype to force for output Returns ======= data : ndarray (or duck) The data array of the combined inputs mask : ndarray (or duck) The mask array of the combined inputs cls : type The most derived MaskedArray subtype seen in the inputs """ if isinstance(data, (list, tuple)) and len(data) == 0: return data, [], MaskedArray # we do two passes: First we figure out the output dtype, then we replace # all masked values by the filler "type(0)". def get_dtype(data, cur_dtype=X): if isinstance(data, (list, tuple)): dtypes = (get_dtype(d, cur_dtype) for d in data) dtypes = [dt for dt in dtypes if dt is not X] if not dtypes: return cur_dtype out_dtype = np.result_type(*dtypes) if cur_dtype is X: return out_dtype else: return np.promote_types(out_dtype, cur_dtype) if data is X: return X if is_ndtype(data): return data.dtype # otherwise try to coerce it to an ndarray (accounts for __array__, # __array_interface__ implementors) return np.array(data).dtype if dtype is None: dtype = get_dtype(data) if dtype is X: raise ValueError("must supply dtype if all elements are X") else: dtype = np.dtype(dtype) fill = dtype.type(0) cls = MaskedArray def replace(data): nonlocal cls if data is X: return fill, True if isinstance(data, (MaskedScalar, MaskedArray)): # whenever we come across a Masked* subtype, update cls cls = get_duck_cls(cls, data) return data._data, data._mask if isinstance(data, list): return (list(x) for x in zip(*(replace(d) for d in data))) if is_ndtype(data): return data, np.broadcast_to(False, data.shape) # otherwise assume it is some kind of scalar return data, False out_dat, out_mask = replace(data) return out_dat, out_mask, cls # used by marr.flat class MaskedIterator: def __init__(self, ma): self.dataiter = ma._data.flat self.maskiter = ma._mask.flat def __iter__(self): return self def __getitem__(self, indx): data = self.dataiter.__getitem__(indx) mask = self.maskiter.__getitem__(indx) return maskedarray_or_scalar(data, mask, cls=type(self)) def __setitem__(self, index, value): if value is X or (isinstance(value, MaskedScalar) and value.mask): self.maskiter[index] = True else: self.dataiter[index] = getdata(value) self.maskiter[index] = getmask(value) def __next__(self): return maskedarray_or_scalar(next(self.dataiter), next(self.maskiter), cls=type(self)) next = __next__ _minvals = ntypes._minvals _minvals.update([(k, -np.inf) for k in [np.float16, np.float32, np.float64]]) _maxvals = ntypes._maxvals _maxvals.update([(k, +np.inf) for k in [np.float16, np.float32, np.float64]]) if 'float128' in ntypes.typeDict: _minvals.update([(np.float128, -np.inf)]) _maxvals.update([(np.float128, +np.inf)]) def is_string_or_list_of_strings(val): if isinstance(val, str): return True if not isinstance(val, list): return False for v in val: if not isinstance(v, str): return False return True ################################################################################ # Printing setup ################################################################################ def as_masked_fmt(formattercls): # we subclass the original formatter class, and wrap the result of # `get_format_func` to take care of masked values. class MaskedFormatter(formattercls): def get_format_func(self, elem, **options): if not elem._mask.any(): default_fmt = super().get_format_func(elem._data, **options) return lambda x: default_fmt(x._data) masked_str = options['masked_str'] # only get fmt_func based on non-masked values # (we take care of masked elements ourselves) unmasked = elem._data[~elem._mask] if unmasked.size == 0: default_fmt = lambda x: '' reslen = len(masked_str) else: default_fmt = super().get_format_func(unmasked, **options) # default_fmt should always give back same str length. # Figure out what this is with a test call. # This is a bit complicated to account for struct types. example_elem = elem._data.ravel()[0] example_str = default_fmt(example_elem) reslen = builtins.max(len(example_str), len(masked_str)) # pad the columns to align when including the masked string if issubclass(elem.dtype.type, np.floating) and unmasked.size > 0: # for floats, try to align with decimal point if present frac = example_str.partition('.') nfrac = len(frac[1]) + len(frac[2]) masked_str = (masked_str + ' '*nfrac).rjust(reslen) # Would it be safer/better to simply center the X? else: masked_str = masked_str.rjust(reslen) def fmt(x): if x._mask: return masked_str return default_fmt(x._data).rjust(reslen) return fmt return MaskedFormatter MASK_STR = 'X' masked_formatters = [as_masked_fmt(f) for f in default_duckprint_formatters] default_options = default_duckprint_options.copy() default_options['masked_str'] = MASK_STR masked_dispatcher = FormatDispatcher(masked_formatters, default_options) ################################################################################ # Ufunc setup ################################################################################ _masked_ufuncs = {} class _Masked_UFunc: def __init__(self, ufunc): self.f = ufunc self.__doc__ = ufunc.__doc__ self.__name__ = ufunc.__name__ def __str__(self): return "Masked version of {}".format(self.f) def getdata(a): if isinstance(a, (MaskedArray, MaskedScalar)): return a._data return a def getmask(a): if isinstance(a, (MaskedArray, MaskedScalar)): return a._mask return False class _Masked_UniOp(_Masked_UFunc): """ Masked version of unary ufunc. Assumes 1 output. Parameters ---------- ufunc : ufunc The ufunc for which to define a masked version. """ def __init__(self, ufunc): super().__init__(ufunc) def __call__(self, a, *args, **kwargs): if a is X: raise ValueError("must supply dtype if all inputs are X") a = as_duck_cls(a, base=MaskedArray) out = kwargs.get('out', ()) if not isinstance(out, tuple): out = (out,) if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") kwargs['out'] = (out[0]._data,) d, m = a._data, a._mask where = ~m kwhere = kwargs.get('where', None) if isinstance(kwhere, (MaskedArray, MaskedScalar)): if kwhere.dtype.type != np.bool_: raise ValueError("'where' only supports masks for boolean " "dtype") kwhere = kwhere.filled(False) if kwhere is not None: where &= kwhere kwargs['where'] = where result = self.f(d, *args, **kwargs) if out != (): out[0]._mask[...] = m return out[0] cls = get_duck_cls(a, base=MaskedArray) if is_ndscalar(result): return type(a)._scalartype(result, m) return type(a)(result, m) class _Masked_BinOp(_Masked_UFunc): """ Masked version of binary ufunc. Assumes 1 output. Parameters ---------- ufunc : ufunc The ufunc for which to define a masked version. reduce_fill : function or scalar, optional Determines what fill_value is used during reductions. If a function is supplied, it shoud accept a dtype as argument and return a fill value with that dtype. A scalar value may also be supplied, which is used for all dtypes of the ufunc. """ def __init__(self, ufunc, reduce_fill=None): super().__init__(ufunc) if reduce_fill is None: reduce_fill = ufunc.identity if (reduce_fill is not None and (is_ndscalar(reduce_fill) or not callable(reduce_fill))): self.reduce_fill = lambda dtype: reduce_fill else: self.reduce_fill = reduce_fill def __call__(self, a, b, **kwargs): # treat X as a masked value of the other array's dtype if a is X: a = X(b.dtype) if b is X: b = X(a.dtype) a, b = as_duck_cls(a, b, base=MaskedArray) da, db = a._data, b._data ma, mb = a._mask, b._mask mkwargs = {} for k in ['where', 'order']: if k in kwargs: mkwargs[k] = kwargs[k] out = kwargs.get('out', ()) if not isinstance(out, tuple): out = (out,) if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") kwargs['out'] = (out[0]._data,) mkwargs['out'] = (out[0]._mask,) m = np.logical_or(ma, mb, **mkwargs) where = ~m kwhere = kwargs.get('where', None) if isinstance(kwhere, (MaskedArray, MaskedScalar)): if kwhere.dtype.type != np.bool_: raise ValueError("'where' only supports masks for boolean " "dtype") kwhere = kwhere.filled(False) if kwhere is not None: where &= kwhere kwargs['where'] = where result = self.f(da, db, **kwargs) if out: return out[0] if is_ndscalar(result): return type(a)._scalartype(result, m) return type(a)(result, m) def reduce(self, a, **kwargs): if self.reduce_fill is None: raise TypeError("reduce not supported for masked {}".format(self.f)) da, ma = getdata(a), getmask(a) mkwargs = kwargs.copy() for k in ['initial', 'dtype']: if k in mkwargs: del mkwargs[k] out = kwargs.get('out', ()) if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") kwargs['out'] = (out[0]._data,) mkwargs['out'] = (out[0]._mask,) initial = kwargs.get('initial', None) if isinstance(initial, (MaskedScalar, MaskedX)): raise ValueError("initial should not be masked") if 0: # two different implementations, investigate performance wheremask = ~ma if 'where' in kwargs: wheremask &= kwargs['where'] kwargs['where'] = wheremask if 'initial' not in kwargs: kwargs['initial'] = self.reduce_fill(da.dtype) result = self.f.reduce(da, **kwargs) m = np.logical_and.reduce(ma, **mkwargs) else: if not is_ndscalar(da): da[ma] = self.reduce_fill(da.dtype) # if da is a scalar, we get correct result no matter fill result = self.f.reduce(da, **kwargs) m = np.logical_and.reduce(ma, **mkwargs) if out: return out[0] cls = get_duck_cls(a, base=MaskedArray) if is_ndscalar(result): return cls._scalartype(result, m) return cls(result, m) def accumulate(self, a, axis=0, dtype=None, out=None): if self.reduce_fill is None: raise TypeError("accumulate not supported for masked {}".format( self.f)) da, ma = getdata(a), getmask(a) dataout, maskout = None, None if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") dataout = out[0]._data maskout = out[0]._mask if not is_ndscalar(da): da[ma] = self.reduce_fill(da.dtype) result = self.f.accumulate(da, axis, dtype, dataout) m = np.logical_and.accumulate(ma, axis, out=maskout) if out: return out[0] if is_ndscalar(result): return MaskedScalar(result, m) return type(a)(result, m) def outer(self, a, b, **kwargs): if self.reduce_fill is None: raise TypeError("outer not supported for masked {}".format(self.f)) da, db = getdata(a), getdata(b) ma, mb = getmask(a), getmask(b) # treat X as a masked value of the other array's dtype if da is X: da, ma = db.dtype.type(0), np.bool_(True) if db is X: db, mb = da.dtype.type(0), np.bool_(True) mkwargs = kwargs.copy() if 'dtype' in mkwargs: del mkwargs['dtype'] out = kwargs.get('out', ()) if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") kwargs['out'] = (out[0]._data,) mkwargs['out'] = (out[0]._mask,) if not is_ndscalar(da): da[ma] = self.reduce_fill(da.dtype) if not is_ndscalar(db): db[mb] = self.reduce_fill(db.dtype) result = self.f.outer(da, db, **kwargs) m = np.logical_or.outer(ma, mb, **mkwargs) if out: return out[0] if is_ndscalar(result): return MaskedScalar(result, m) return type(a)(result, m) def reduceat(self, a, indices, **kwargs): if self.reduce_fill is None: raise TypeError("reduce not supported for masked {}".format(self.f)) da, ma = getdata(a), getmask(a) mkwargs = kwargs.copy() for k in ['initial', 'dtype']: if k in mkwargs: del mkwargs[k] out = kwargs.get('out', ()) if out: if not isinstance(out[0], MaskedArray): raise ValueError("out must be a MaskedArray") kwargs['out'] = (out[0]._data,) mkwargs['out'] = (out[0]._mask,) initial = kwargs.get('initial', None) if isinstance(initial, (MaskedScalar, MaskedX)): raise ValueError("initial should not be masked") if not is_ndscalar(da): da[ma] = self.reduce_fill(da.dtype) # if da is a scalar, we get correct result no matter fill result = self.f.reduceat(da, indices, **kwargs) m = np.logical_and.reduceat(ma, indices, **mkwargs) if out: return out[0] if is_ndscalar(result): return MaskedScalar(result, m) return type(a)(result, m) def at(self, a, indices, b=None): if isinstance(indices, (MaskedArray, MaskedScalar)): raise ValueError("indices should not be masked. " "Use .filled() first") da, ma = getdata(a), getmask(a) db, mb = None, None if b is not None: db, mb = getdata(b), getmask(b) self.f.at(da, indices, db) np.logical_or.at(ma, indices, mb) def _add_ufunc(ufunc, uni=False, glob=globals(), **kwargs): if uni: impl = _Masked_UniOp(ufunc, **kwargs) else: impl = _Masked_BinOp(ufunc, **kwargs) _masked_ufuncs[ufunc] = impl glob[ufunc.__name__] = impl # unary funcs for ufunc in [umath.exp, umath.conjugate, umath.sin, umath.cos, umath.tan, umath.arctan, umath.arcsinh, umath.sinh, umath.cosh, umath.tanh, umath.absolute, umath.fabs, umath.negative, umath.floor, umath.ceil, umath.logical_not, umath.isfinite, umath.isinf, umath.isnan, umath.invert, umath.sqrt, umath.log, umath.log2, umath.log10, umath.tan, umath.arcsin, umath.arccos, umath.arccosh, umath.arctanh]: _add_ufunc(ufunc, uni=True) # binary ufuncs for ufunc in [umath.add, umath.subtract, umath.multiply, umath.arctan2, umath.hypot, umath.equal, umath.not_equal, umath.less_equal, umath.greater_equal, umath.less, umath.greater, umath.logical_and, umath.logical_or, umath.logical_xor, umath.bitwise_and, umath.bitwise_or, umath.bitwise_xor, umath.true_divide, umath.floor_divide, umath.remainder, umath.fmod, umath.mod, umath.power]: _add_ufunc(ufunc) # fill value depends on dtype _add_ufunc(umath.maximum, reduce_fill=lambda dt: _minvals[dt]) _add_ufunc(umath.minimum, reduce_fill=lambda dt: _maxvals[dt]) ################################################################################ # __array_function__ setup ################################################################################ implements = new_ducktype_implementation() def get_maskedout(out): if out is not None: if isinstance(out, MaskedArray): return out._data, out._mask raise Exception("out must be a masked array") return None, None def maskedarray_or_scalar(data, mask, out=None, cls=MaskedArray): if out is not None: return out if is_ndscalar(data): return cls._scalartype(data, mask) return cls(data, mask) def _copy_mask(mask, outmask=None): if outmask is not None: result_mask = outmask result_mask[...] = mask else: result_mask = mask.copy() return result_mask def _inplace_not(v): if isinstance(v, np.ndarray): return np.logical_not(v, out=v) return np.logical_not(v) ################################################################################ # npy-api implementations ################################################################################ @implements(np.all) def all(a, axis=None, out=None, keepdims=np._NoValue): a = as_duck_cls(a, base=MaskedArray) # out can be maskedarray or ndarray since we never return masked elements # (or.. should we only allow ndarray out?) if isinstance(out, MaskedArray): np.all(a.filled(True, view=1), axis, out._data, keepdims) out._mask[...] = False return out return np.all(a.filled(True, view=1), axis, out, keepdims) # Note: returns boolean, not MaskedArray. If case of fully masked, # return True, like np.all([]). @implements(np.any) def any(a, axis=None, out=None, keepdims=np._NoValue): a = as_duck_cls(a, base=MaskedArray) if isinstance(out, MaskedArray): np.any(a.filled(False, view=1), axis, out._data, keepdims) out._mask[...] = False return out return np.any(a.filled(False, view=1), axis, out, keepdims) # Note: returns boolean, not MaskedArray. If case of fully masked, # return False, like np.any([]) @implements(np.amax) @implements(np.max) def max(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=True): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) kwarg = {} if keepdims is not np._NoValue: kwarg['keepdims'] = keepdims if where is not np._NoValue: kwarg['where'] = where initial_m = initial_d = np._NoValue if initial is not np._NoValue: ismasked = isinstance(initial, MaskedScalar) if initial is X or ismasked and initial._mask: raise ValueError("initial cannot be masked") initial_m = False initial_d = initial._data if ismasked else initial filled = a.filled(minmax='min', view=1) result_data = np.max(filled, axis, outdata, initial=initial_d, **kwarg) result_mask = np.logical_and.reduce(a._mask, axis, out=outmask, initial=initial_m, **kwarg) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.argmax) def argmax(a, axis=None, out=None): if isinstance(out, MaskedArray): raise TypeError("out argument of argmax should be an ndarray") a = as_duck_cls(a, base=MaskedArray) # most of the time this is enough filled = a.filled(minmax='min', view=1) result_data = np.argmax(filled, axis, out) # except if the only unmasked elem is minval. Have to check and do carefully data_min = filled == _minvals[a.dtype] is_min = data_min & ~a._mask has_min = np.any(is_min, axis=axis) if np.any(has_min): has_no_other_data = np.all(data_min, axis=axis) has_lonely_min = has_min & has_no_other_data if np.any(has_lonely_min): min_ind = np.argmax(is_min, axis=axis) if is_ndscalar(result_data): return min_ind result_data[has_lonely_min] = min_ind[has_lonely_min] # one day, might speed up with numba/extension. Or with np.take? return result_data @implements(np.amin) @implements(np.min) def min(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) kwarg = {} if keepdims is not np._NoValue: kwarg['keepdims'] = keepdims if where is not np._NoValue: kwarg['where'] = where initial_m = initial_d = np._NoValue if initial is not np._NoValue: ismasked = isinstance(initial, MaskedScalar) if initial is X or ismasked and initial._mask: raise ValueError("initial cannot be masked") initial_m = False initial_d = initial._data if ismasked else initial filled = a.filled(minmax='max', view=1) result_data = np.min(filled, axis, outdata, initial=initial_d, **kwarg) result_mask = np.logical_and.reduce(a._mask, axis, out=outmask, initial=initial_m, **kwarg) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.argmin) def argmin(a, axis=None, out=None): if isinstance(out, MaskedArray): raise TypeError("out argument of argmax should be an ndarray") a = as_duck_cls(a, base=MaskedArray) # most of the time this is enough filled = a.filled(minmax='max', view=1) result_data = np.argmin(filled, axis, out) # except if the only unmasked elem is maxval. Have to check and do carefully data_max = filled == _maxvals[a.dtype] is_max = data_max & ~a._mask has_max = np.any(is_max, axis=axis) if np.any(has_max): has_no_other_data = np.all(data_max, axis=axis) has_lonely_max = has_max & has_no_other_data if np.any(has_lonely_max): max_ind = np.argmax(is_max, axis=axis) if is_ndscalar(result_data): return max_ind result_data[has_lonely_max] = max_ind[has_lonely_max] return result_data @implements(np.sort) def sort(a, axis=-1, kind='quicksort', order=None): a = as_duck_cls(a, base=MaskedArray) # Note: This is trickier than it looks. The first line sorts the mask # together with any min_vals which may be present, so there appears to # be a problem ordering mask vs min_val elements. # But, since we know all the masked elements have to end up at the end # of the axis, we can sort the mask too and everything works out. The # mask-sort only swaps the mask between min_val and masked positions # which have the same underlying data. # np.nan should sort higher than all others, so use it as fill if floating result_data = np.sort(a.filled(minmax='maxnan', view=1), axis, kind, order) result_mask = np.sort(a._mask, axis, kind) #or partition for speed? return maskedarray_or_scalar(result_data, result_mask, cls=type(a)) # Note: lexsort may be faster, but doesn't provide kind or order kwd @implements(np.argsort) def argsort(a, axis=-1, kind='quicksort', order=None): a = as_duck_cls(a, base=MaskedArray) # Similar to mask-sort trick in sort above, here after sorting data we # re-sort based on mask. Use the property that if you argsort the index # array produced by argsort you get the element rank, which can be # argsorted again to get back the sort indices. However, here we # modify the rank based on the mask before inverting back to indices. # Uses two argsorts plus a temp array. inds = np.argsort(a.filled(minmax='maxnan', view=1), axis, kind, order) # next two lines "reverse" the argsort (same as double-argsort) ranks = np.empty(inds.shape, dtype=inds.dtype) np.put_along_axis(ranks, inds, np.arange(a.shape[axis]), axis) # prepare to resort but make masked elem highest rank ranks[a._mask] = _maxvals[ranks.dtype] return np.argsort(ranks, axis, kind) @implements(np.partition) def partition(a, kth, axis=-1, kind='introselect', order=None): a = as_duck_cls(a, base=MaskedArray) inds = np.argpartition(a, kth, axis, kind, order) return np.take_along_axis(a, inds, axis=axis) @implements(np.argpartition) def argpartition(a, kth, axis=-1, kind='introselect', order=None): # see argsort for explanation a = as_duck_cls(a, base=MaskedArray) filled = a.filled(minmax='maxnan', view=1) inds = np.argpartition(filled, kth, axis, kind, order) ranks = np.empty(inds.shape, dtype=inds.dtype) np.put_along_axis(ranks, inds, np.arange(a.shape[axis]), axis) ranks[a._mask] = _maxvals[ranks.dtype] return np.argpartition(ranks, kth, axis, kind) @implements(np.searchsorted, checked_args=('v',)) def searchsorted(a, v, side='left', sorter=None): a = as_duck_cls(a, base=MaskedArray) maskleft = len(a) - np.sum(a._mask) aval = a.filled(minmax='maxnan', view=1) inds = np.searchsorted(aval, v.filled(minmax='maxnan', view=1), side, sorter) # Line above treats mask and maxval as the same, we need to fix it up if side == 'left': # masked vals in v need to be moved right to the left end of the # masked vals in a (which have to be to the right end of a). inds[v._mask] = maskleft else: # maxvals in v meed to be moved left to the left end of the # masked vals in a. if issubclass(v.dtype.type, np.inexact): maxinds = np.isnan(v._data) else: maxinds = v._data == _maxvals[v.dtype] inds[maxinds & ~v._mask] = maskleft return inds @implements(np.digitize) def digitize(x, bins, right=False): x = as_duck_cls(x, base=MaskedArray) # Original comment: # here for compatibility, searchsorted below is happy to take this if np.issubdtype(x.dtype, np.complexfloating): raise TypeError("x may not be complex") if isinstance(bins, (MaskedArray, MaskedScalar)): raise ValueError("bins should not be masked. " "Use .filled() first") mono = np.lib.function_base._monotonicity(bins) if mono == 0: raise ValueError("bins must be monotonically " "increasing or decreasing") # this is backwards because the arguments below are swapped side = 'left' if right else 'right' if mono == -1: # reverse the bins, and invert the results return len(bins) - np.searchsorted(bins[::-1], x, side=side) else: return np.searchsorted(bins, x, side=side) @implements(np.lexsort) def lexsort(keys, axis=-1): if not isinstance(keys, tuple): keys = tuple(keys) keys = as_duck_cls(*keys, base=MaskedArray, single=False) # strategy: for each key, split into a mask and data key. # So, we end up sorting twice as many keys. Mask is primary key (last). keys = tuple(x for k in keys for x in (k._data, k._mask)) return np.lexsort(keys, axis) @implements(np.mean) def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Returns the average of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.mean` for full documentation. See Also -------- ndarray.mean : corresponding function for ndarrays numpy.mean : Equivalent function numpy.ma.average: Weighted average. Examples -------- >>> a = np.ma.array([1,2,3], mask=[False, False, True]) >>> a masked_array(data = [1 2 --], mask = [False False True], fill_value = 999999) >>> a.mean() 1.5 """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) cls = get_duck_cls(a, base=MaskedArray) if type(a) is not cls: a = cls(a) # code partly copied from _mean in numpy/core/_methods.py is_float16_result = False rcount = a.count(axis=axis, **kwargs) # Cast bool, unsigned int, and int to float64 by default if dtype is None: if issubclass(a.dtype.type, (np.integer, np.bool_)): dtype = np.dtype('f8') elif issubclass(a.dtype.type, np.float16): dtype = np.dtype('f4') is_float16_result = True ret = np.sum(a.filled(0, view=1), axis=axis, out=outdata, dtype=dtype, **kwargs) retmask = np.all(a._mask, axis=axis, out=outmask, **kwargs) with np.errstate(divide='ignore', invalid='ignore'): if is_ndarr(ret): ret = np.true_divide( ret, rcount, out=ret, casting='unsafe', subok=False) if is_float16_result and out is None: ret = arr.dtype.type(ret) elif hasattr(ret, 'dtype'): if is_float16_result: ret = arr.dtype.type(ret / rcount) else: ret = ret.dtype.type(ret / rcount) else: ret = ret / rcount return maskedarray_or_scalar(ret, retmask, out, type(a)) @implements(np.var) def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): """ Returns the variance of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.var` for full documentation. See Also -------- ndarray.var : corresponding function for ndarrays numpy.var : Equivalent function """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) # code largely copied from _methods.var rcount = a.count(axis=axis, **kwargs) # Cast bool, unsigned int, and int to float64 by default if dtype is None and issubclass(a.dtype.type, (np.integer, np.bool_)): dtype = np.dtype('f8') # Compute the mean, keeping same dims. Note that if dtype is not of # inexact type then arraymean will not be either. rcount = a.count(axis=axis, keepdims=True) arrmean = a.filled(0).sum(axis=axis, dtype=dtype, keepdims=True) with np.errstate(divide='ignore', invalid='ignore'): if not is_ndscalar(arrmean): arrmean = np.true_divide(arrmean, rcount, out=arrmean, casting='unsafe', subok=False) else: arrmean = arrmean.dtype.type(arrmean / rcount) # Compute sum of squared deviations from mean x = type(a)(a - arrmean) if issubclass(a.dtype.type, np.complexfloating): x = np.multiply(x, np.conjugate(x), out=x).real else: x = np.multiply(x, x, out=x) ret = x.filled(0, view=1).sum(axis, dtype, out=outdata, **kwargs) # Compute degrees of freedom and make sure it is not negative. rcount = a.count(axis=axis, **kwargs) rcount = np.maximum(rcount - ddof, 0) # divide by degrees of freedom with np.errstate(divide='ignore', invalid='ignore'): if is_ndarr(ret): ret = np.true_divide( ret, rcount, out=ret, casting='unsafe', subok=False) elif hasattr(ret, 'dtype'): ret = ret.dtype.type(ret / rcount) else: ret = ret / rcount if out is not None: out[rcount == 0] = X return out return maskedarray_or_scalar(ret, rcount == 0, cls=type(a)) @implements(np.std) def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): a = as_duck_cls(a, base=MaskedArray) ret = var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) if isinstance(ret, MaskedArray): ret = np.sqrt(ret, out=ret) elif hasattr(ret, 'dtype'): ret = np.sqrt(ret).astype(ret.dtype) else: ret = np.sqrt(ret) return ret @implements(np.average, checked_args=('a',)) def average(a, axis=None, weights=None, returned=False): a = as_duck_cls(a, base=MaskedArray) if weights is None: avg = a.mean(axis) if returned: return avg, avg.dtype.type(a.count(axis)) return avg wgt = weights if is_ndtype(weights) else np.array(weights) if isinstance(wgt, MaskedArray): raise TypeError("weight must not be a MaskedArray") if issubclass(a.dtype.type, (np.integer, np.bool_)): result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') else: result_dtype = np.result_type(a.dtype, wgt.dtype) # Note: No float16 special case, since ndarray.average skips it # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape) wgt = wgt.swapaxes(-1, axis) if wgt.shape != a.shape: wgt = np.broadcast_to(wgt, a.shape) wgt = type(a)(wgt, a._mask) scl = wgt.sum(axis=axis, dtype=result_dtype) if np.any(scl == 0.0): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl if returned: return avg, scl return avg def _move_reduction_axis_last(a, axis=None): """ Modified from numpy.lib.function_base._ureduce. Reshape/transpose array so desired axes are grouped at the end. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or iterable of ints axes or axis to reduce Returns ------- arr : ndarray Input ndarray with iteration axis/axes moved to be a single axis at the end. keepdims : tuple a.shape with axis dims set to 1 which can be used to reshape the result of a reduction to the same shape a ufunc with keepdims=True would produce. """ if axis is not None: keepdim = list(a.shape) nd = a.ndim axis = normalize_axis_tuple(axis, nd) for ax in axis: keepdim[ax] = 1 if len(axis) == 1: # arr, with the iteration axis at the end ax = axis[0] dims = list(range(a.ndim)) a = np.transpose(a, dims[:ax] + dims[ax+1:] + [ax]) else: keep = set(range(nd)) - set(axis) nkeep = len(keep) # swap axis that should not be reduced to front for i, s in enumerate(sorted(keep)): a = a.swapaxes(i, s) # merge reduced axis a = a.reshape(a.shape[:nkeep] + (-1,)) keepdim = tuple(keepdim) else: keepdim = (1,) * a.ndim a = a.ravel() return a, keepdim @implements(np.median) def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): return np.quantile(a, 0.5, axis=axis, out=out, overwrite_input=overwrite_input, interpolation='midpoint', keepdims=keepdims) @implements(np.percentile) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): q = np.true_divide(q, 100) q = np.asanyarray(q) # undo any decay the ufunc performed (gh-13105) if not _quantile_is_valid(q): raise ValueError("Percentiles must be in the range [0, 100]") return _quantile_unchecked( a, q, axis, out, overwrite_input, interpolation, keepdims) @implements(np.quantile) def quantile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): q = np.asanyarray(q) if not _quantile_is_valid(q): raise ValueError("Quantiles must be in the range [0, 1]") return _quantile_unchecked( a, q, axis, out, overwrite_input, interpolation, keepdims) def _quantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """Assumes that q is in [0, 1], and is an ndarray""" a = as_duck_cls(a, base=MaskedArray) a, kdim = _move_reduction_axis_last(a, axis) if len(q.shape) > 1: raise ValueError("q must be a scalar or 1d array") out_shape = (q.size,) + a.shape[:-1] if out is None: dt = np.promote_types(a.dtype, np.float64) outarr = get_duck_cls(a)(np.empty(out_shape, dtype=dt)) else: if out.shape == out_shape: outarr = out elif q.size == 1 and (1,)+out.shape == out_shape: outarr = out[None,...] else: raise ValueError('out has wrong shape') inds = np.ndindex(a.shape[:-1]) inds = (ind + (Ellipsis,) for ind in inds) for ind in inds: ai = a[ind] dat = ai._data[~ai.mask] oind = (slice(None),) + ind if dat.size == 0: outarr[oind] = X else: outarr[oind] = np.quantile(dat, q, interpolation=interpolation) if out is not None: return out # return a scalar in simple case if q.shape == () and axis is None: return outarr[0] out_dim = kdim if keepdims else a.shape[:-1] return outarr.reshape(q.shape + out_dim) @implements(np.cov, checked_args=('m', 'y')) def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None): # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError( "ddof must be integer") # Handles complex arrays too if m.ndim > 2: raise ValueError("m has more than 2 dimensions") cls = get_duck_cls(m, base=MaskedArray) if type(m) is not cls: m = cls(m) if y is None: dtype = np.result_type(m, np.float64) else: if not is_ndtype(y): y = cls(y) else: cls = get_duck_cls(m, y, base=MaskedArray) if y.ndim > 2: raise ValueError("y has more than 2 dimensions") dtype = np.result_type(m, y, np.float64) X = cls(m, ndmin=2, dtype=dtype) if not rowvar and X.shape[0] != 1: X = X.T if X.shape[0] == 0: return cls([]).reshape(0, 0) if y is not None: y = cls(y, copy=False, ndmin=2, dtype=dtype) if not rowvar and y.shape[0] != 1: y = y.T X = np.concatenate((X, y), axis=0) if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 # Get the product of frequencies and weights w = None if fweights is not None: fweights = np.asarray(fweights, dtype=float) if not np.all(fweights == np.around(fweights)): raise TypeError( "fweights must be integer") if fweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional fweights") if fweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and fweights") if np.any(fweights < 0): raise ValueError( "fweights cannot be negative") w = fweights if aweights is not None: aweights = np.asarray(aweights, dtype=float) if aweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional aweights") if aweights.shape[0] != X.shape[1]: raise RuntimeError( "incompatible numbers of samples and aweights") if np.any(aweights < 0): raise ValueError( "aweights cannot be negative") if w is None: w = aweights else: w *= aweights avg = np.average(X, axis=1, weights=w) X -= avg[:, None] if w is None: X_T = X.T else: X_T = (X*w).T c = np.dot(X, X_T.conj()) # Determine the normalization nomask = ~X.mask wnm = nomask.astype(dtype) if w is None else w*nomask w_sum = np.dot(wnm, nomask.T) if ddof == 0: fact = w_sum elif aweights is None: fact = w_sum - ddof else: a_sum = np.dot(w*aweights*nomask, nomask.T) fact = w_sum - ddof*a_sum/w_sum nonpos_fact = fact <= 0 if np.any(nonpos_fact): warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=3) fact[nonpos_fact] = X c *= np.true_divide(1, fact) return c.squeeze() @implements(np.corrcoef, checked_args=('x', 'y')) def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue): if bias is not np._NoValue or ddof is not np._NoValue: # 2015-03-15, 1.10 warnings.warn('bias and ddof have no effect and are deprecated', DeprecationWarning, stacklevel=3) c = np.cov(x, y, rowvar) try: d = np.diag(c) except ValueError: # scalar covariance # nan if incorrect value (nan, inf, 0), 1 otherwise return c / c stddev = np.sqrt(d.real) c /= stddev[:, None] c /= stddev[None, :] # Clip real and imaginary parts to [-1, 1]. This does not guarantee # abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without # excessive work. cd = c._data with np.errstate(invalid='ignore'): np.clip(cd.real, -1, 1, out=cd.real) if np.iscomplexobj(cd): np.clip(cd.imag, -1, 1, out=cd.imag) return c @implements(np.clip) def clip(a, a_min, a_max, out=None): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) result_data = np.clip(a._data, a_min, a_max, outdata) result_mask = _copy_mask(a._mask, outmask) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.compress) def compress(condition, a, axis=None, out=None): # Note: masked values in condition treated as False outdata, outmask = get_maskedout(out) cls = get_duck_cls(condition, a, base=MaskedArray) cond = cls(condition).filled(False, view=1) a = cls(a) result_data = np.compress(cond, a._data, axis, outdata) result_mask = np.compress(cond, a._mask, axis, outmask) return maskedarray_or_scalar(result_data, result_mask, out, cls) @implements(np.copy) def copy(a, order='K'): a = as_duck_cls(a, base=MaskedArray) result_data = np.copy(a._data, order=order) result_mask = np.copy(a._mask, order=order) return maskedarray_or_scalar(result_data, result_mask, cls=type(a)) @implements(np.product) @implements(np.prod) def prod(a, axis=None, dtype=None, out=None, keepdims=False): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) result_data = np.prod(a.filled(1, view=1), axis=axis, dtype=dtype, out=outdata, keepdims=keepdims) result_mask = np.all(a._mask, axis=axis, out=outmask, keepdims=keepdims) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.cumproduct) @implements(np.cumprod) def cumprod(a, axis=None, dtype=None, out=None): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) result_data = np.cumprod(a.filled(1, view=1), axis, dtype=dtype, out=outdata) result_mask = np.logical_or.accumulate(~a._mask, axis, out=outmask) result_mask =_inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.sum) def sum(a, axis=None, dtype=None, out=None, keepdims=False): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) result_data = np.sum(a.filled(0, view=1), axis, dtype=dtype, out=outdata, keepdims=keepdims) result_mask = np.all(a._mask, axis, out=outmask, keepdims=keepdims) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.cumsum) def cumsum(a, axis=None, dtype=None, out=None): a = as_duck_cls(a, base=MaskedArray) outdata, outmask = get_maskedout(out) result_data = np.cumsum(a.filled(0, view=1), axis, dtype=dtype, out=outdata) result_mask = np.logical_or.accumulate(~a._mask, axis, out=outmask) result_mask =_inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.diagonal) def diagonal(a, offset=0, axis1=0, axis2=1): a = as_duck_cls(a, base=MaskedArray) result = np.diagonal(a._data, offset=offset, axis1=axis1, axis2=axis2) rmask = np.diagonal(a._mask, offset=offset, axis1=axis1, axis2=axis2) return maskedarray_or_scalar(result, rmask, cls=type(a)) @implements(np.diag) def diag(v, k=0): v = as_duck_cls(v, base=MaskedArray) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = type(v)(np.zeros((n, n), v.dtype)) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return np.diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @implements(np.diagflat) def diagflat(v, k=0): v = as_duck_cls(v, base=MaskedArray) return np.diag(v.ravel(), k) @implements(np.tril) def tril(m, k=0): m = as_duck_cls(m, base=MaskedArray) mask = np.tri(*m.shape[-2:], k=k, dtype=bool) return np.where(mask, m, np.zeros(1, m.dtype)) @implements(np.triu) def triu(m, k=0): m = as_duck_cls(m, base=MaskedArray) mask = np.tri(*m.shape[-2:], k=k-1, dtype=bool) return np.where(mask, np.zeros(1, m.dtype), m) @implements(np.trace) def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): outdata, outmask = get_maskedout(out) a = as_duck_cls(a, base=MaskedArray) result_data = np.trace(a.filled(0, view=1), offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=outdata) result_mask = np.trace(~a._mask, offset=offset, axis1=axis1, axis2=axis2, dtype=bool, out=outmask) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, type(a)) @implements(np.dot) def dot(a, b, out=None): outdata, outmask = get_maskedout(out) cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) result_data = np.dot(a.filled(0, view=1), b.filled(0, view=1), out=outdata) result_mask = np.dot(~a._mask, ~b._mask, out=outmask) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, cls) @implements(np.vdot) def vdot(a, b): cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) result_data = np.vdot(a.filled(0, view=1), b.filled(0, view=1)) result_mask = np.vdot(~a._mask, ~b._mask) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, cls=cls) @implements(np.cross) def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) # because of mask calculation, we don't support vectors of length 2. # convert them if present. First have to do axis manip as in np.cross if axis is not None: axisa, axisb, axisc = (axis,) * 3 axis = None # Check axisa and axisb are within bounds axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa') axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb') # Move working axis to the end of the shape a = moveaxis(a, axisa, -1) b = moveaxis(b, axisb, -1) msg = ("incompatible dimensions for cross product\n" "(dimension must be 2 or 3)") if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3): raise ValueError(msg) if a.shape[-1] == 2: a = np.append(a, np.broadcast_to(0, a.shape[:-1] + (1,)), axis=-1) if b.shape[-1] == 2: b = np.append(b, np.broadcast_to(0, b.shape[:-1] + (1,)), axis=-1) result_data = np.cross(a.filled(0, view=1), b.filled(0, view=1), axisa, axisb, axisc, axis) # trick: use nan behavior to compute mask ma = np.where(a._mask, np.nan, 0) mb = np.where(b._mask, np.nan, 0) mab = np.cross(ma, mb, axisa, axisb, axisc, axis) result_mask = np.isnan(mab) return maskedarray_or_scalar(result_data, result_mask, cls=cls) @implements(np.inner) def inner(a, b): cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) result_data = np.inner(a.filled(0, view=1), b.filled(0, view=1)) result_mask = np.inner(~a._mask, ~b._mask) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, cls=cls) @implements(np.outer) def outer(a, b, out=None): outdata, outmask = get_maskedout(out) cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) result_data = np.outer(a.filled(0, view=1), b.filled(0, view=1), out=outdata) result_mask = np.outer(~a._mask, ~b._mask, out=outmask) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, cls) @implements(np.kron) def kron(a, b): cls = get_duck_cls(a, b, base=MaskedArray) a = cls(a, copy=False, subok=True, ndmin=b.ndim) nda, ndb = a.ndim, b.ndim if (nda == 0 or ndb == 0): return np.multiply(a, b) a_shape = a.shape b_shape = b.shape nd = ndb if ndb > nda: a_shape = (1,)*(ndb-nda) + a_shape elif b.ndim < a.ndim: b_shape = (1,)*(nda-ndb) + b_shape nd = nda result = np.outer(a, b).reshape(a_shape + b_shape) axis = nd-1 for _ in range(nd): result = np.concatenate(result, axis=axis) return result @implements(np.tensordot) def tensordot(a, b, axes=2): try: iter(axes) except Exception: axes_a = list(range(-axes, 0)) axes_b = list(range(0, axes)) else: axes_a, axes_b = axes def nax(ax): try: return len(ax), list(ax) except TypeError: return 1, [ax] na, axes_a = nax(axes_a) nb, axes_b = nax(axes_b) cls = get_duck_cls(a, b, base=MaskedArray) a, b = cls(a), cls(b) ashape, bshape = a.shape, b.shape nda, ndb = a.ndim, b.ndim equal = True if na != nb: equal = False else: for k in range(na): if ashape[axes_a[k]] != bshape[axes_b[k]]: equal = False break if axes_a[k] < 0: axes_a[k] += nda if axes_b[k] < 0: axes_b[k] += ndb if not equal: raise ValueError("shape-mismatch for sum") # Move the axes to sum over to the end of "a" # and to the front of "b" notin = [k for k in range(nda) if k not in axes_a] newaxes_a = notin + axes_a N2 = 1 for axis in axes_a: N2 *= ashape[axis] newshape_a = (int(np.multiply.reduce([ashape[ax] for ax in notin])), N2) olda = [ashape[axis] for axis in notin] notin = [k for k in range(ndb) if k not in axes_b] newaxes_b = axes_b + notin N2 = 1 for axis in axes_b: N2 *= bshape[axis] newshape_b = (N2, int(np.multiply.reduce([bshape[ax] for ax in notin]))) oldb = [bshape[axis] for axis in notin] at = a.transpose(newaxes_a).reshape(newshape_a) bt = b.transpose(newaxes_b).reshape(newshape_b) res = np.dot(at, bt) return res.reshape(olda + oldb) def _process_einsum_operands(operands): # operands can either start with a strong, followed by op arrays, # or can alternate op arrays and axes if isinstance(operands[0], str): arrs = operands[1:] cls = get_duck_cls(*arrs, base=MaskedArray) arrs = tuple(cls(x) for x in arrs) data_ops = (operands[0],) + tuple(a.filled(0) for a in arrs) imask_ops = (operands[0],) + tuple(~a._mask for a in arrs) else: cls = get_duck_cls(*operands[0::2], base=MaskedArray) ops = tuple(o if n%2 else cls(o) for n,o in enumerate(operands)) data_ops = tuple(o if n%2 else o.filled(0) for n,o in enumerate(ops)) imask_ops = tuple(o if n%2 else ~o._mask for n,o in enumerate(ops)) return data_ops, imask_ops, cls @implements(np.einsum) def einsum(*operands, **kwargs): out = kwargs.pop('out', None) outdata, outmask = get_maskedout(out) dtype = kwargs.pop('dtype', None) data_ops, imask_ops, cls = _process_einsum_operands(operands) result_data = np.einsum(*data_ops, out=outdata, dtype=dtype, **kwargs) result_mask = np.einsum(*imask_ops, out=outmask, **kwargs) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, cls) @implements(np.einsum_path) def einsum_path(*operands, **kwargs): out = kwargs.pop('out', None) outdata, outmask = get_maskedout(out) dtype = kwargs.pop('dtype', None) data_ops, imask_ops, cls = _process_einsum_operands(operands) result_data = np.einsum_path(*data_ops, out=outdata, dtype=dtyle, **kwargs) result_mask = np.einsum_path(*imask_ops, out=outmask, **kwargs) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, out, cls) @implements(np.correlate) def correlate(a, v, mode='valid'): cls = get_duck_cls(a, v) result_data = np.correlate(a.filled(view=1), v.filled(view=1), mode) result_mask = np.correlate(~a._mask, v._mask, mode) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, cls=cls) @implements(np.convolve) def convolve(a, v, mode='full'): cls = get_duck_cls(a, v) a, v = cls(a), cls(v) result_data = np.convolve(a.filled(view=1), v.filled(view=1), mode) result_mask = np.convolve(~a._mask, ~v._mask, mode) result_mask = _inplace_not(result_mask) return maskedarray_or_scalar(result_data, result_mask, cls=cls) @implements(np.real) def real(a): result_data = np.real(a._data) result_data.flags['WRITEABLE'] = False result_mask = a._mask.copy() return maskedarray_or_scalar(result_data, result_mask, cls=type(a)) @implements(np.imag) def imag(a): result_data = np.imag(a._data) result_data.flags['WRITEABLE'] = False result_mask = a._mask return maskedarray_or_scalar(result_data, result_mask, cls=type(a)) @implements(np.ptp) def ptp(a, axis=None, out=None, keepdims=False): return np.subtract( np.maximum.reduce(a, axis, None, out, keepdims), np.minimum.reduce(a, axis, None, None, keepdims), out) @implements(np.take) def take(a, indices, axis=None, out=None, mode='raise'): outdata, outmask = get_maskedout(out) if isinstance(indices, (MaskedArray, MaskedScalar)): raise ValueError("indices should not be masked. " "Use .filled() first") result_data = np.take(a._data, indices, axis, outdata, mode) result_mask = np.take(a._mask, indices, axis, outmask, mode) return maskedarray_or_scalar(result_data, result_mask, out, cls=type(a)) @implements(np.put) def put(a, indices, values, mode='raise'): data, mask, _ = replace_X(values, dtype=a.dtype) np.put(a._data, indices, data, mode) np.put(a._mask, indices, mask, mode) return None @implements(np.take_along_axis, checked_args=('arr',)) def take_along_axis(arr, indices, axis): result_data = np.take_along_axis(arr._data, indices, axis) result_mask = np.take_along_axis(arr._mask, indices, axis) return maskedarray_or_scalar(result_data, result_mask, cls=type(arr)) @implements(np.put_along_axis, checked_args=('arr',)) def put_along_axis(arr, indices, values, axis): data, mask, _ = replace_X(values, dtype=arr.dtype)
np.put_along_axis(arr._data, indices, data, axis)
numpy.put_along_axis
# coding: utf-8 # public items __all__ = ["pca", "chopper_calibration", "r_division", "gauss_fit"] # standard library from logging import getLogger # dependent packages import decode as dc import numpy as np from astropy.modeling import fitting, models from sklearn.decomposition import TruncatedSVD def pca(onarray, offarray, n=10, exchs=None, pc=False, mode="mean"): """Apply Principal Component Analysis (PCA) method to estimate baselines at each time. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. n (int): The number of pricipal components. pc (bool): When True, this function also returns eigen vectors and their coefficients. mode (None or str): The way of correcting offsets. 'mean': Mean. 'median': Median. None: No correction. Returns: filtered (decode.array): Baseline-subtracted array. When pc is True: Ps (list(np.ndarray)): Eigen vectors. Cs (list(np.ndarray)): Coefficients. """ logger = getLogger("decode.models.pca") logger.info("n_components exchs mode") if exchs is None: exchs = [16, 44, 46] logger.info("{} {} {}".format(n, exchs, mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) onarray = onarray.copy() # Xarray onarray[:, exchs] = 0 onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offarray[:, exchs] = 0 offvalues = offarray.values offscanid = offarray.scanid.values Ps, Cs = [], [] Xatm = dc.full_like(onarray, onarray) Xatmvalues = Xatm.values model = TruncatedSVD(n_components=n) for i in onid: leftid = np.searchsorted(offid, i) - 1 rightid = np.searchsorted(offid, i) Xon = onvalues[onscanid == i] if leftid == -1: Xoff = offvalues[offscanid == offid[rightid]] Xoff_m = getattr(np, "nan" + mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) elif rightid == len(offid): Xoff = offvalues[offscanid == offid[leftid]] Xoff_m = getattr(np, "nan" + mode)(Xoff, axis=0) if mode is not None else 0 Xon_m = Xoff_m model.fit(Xoff - Xoff_m) else: Xoff_l = offvalues[offscanid == offid[leftid]] Xoff_lm = ( getattr(np, "nan" + mode)(Xoff_l, axis=0) if mode is not None else 0 ) Xoff_r = offvalues[offscanid == offid[rightid]] Xoff_rm = ( getattr(np, "nan" + mode)(Xoff_r, axis=0) if mode is not None else 0 ) Xon_m = ( getattr(np, "nan" + mode)(np.vstack([Xoff_l, Xoff_r]), axis=0) if mode is not None else 0 ) model.fit(np.vstack([Xoff_l - Xoff_lm, Xoff_r - Xoff_rm])) P = model.components_ C = model.transform(Xon - Xon_m) Xatmvalues[onscanid == i] = C @ P + Xon_m # Xatms.append(dc.full_like(Xon, C @ P + Xon_m.values)) Ps.append(P) Cs.append(C) if pc: return Xatm, Ps, Cs else: return Xatm def chopper_calibration(onarray, offarray, rarray, Tamb, mode="mean"): logger = getLogger("decode.models.chopper_calibration") logger.info("mode") logger.info("{}".format(mode)) onarray, offarray = r_division(onarray, offarray, rarray, mode=mode) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) onarray = onarray.copy() # Xarray onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offvalues = offarray.values offscanid = offarray.scanid.values for i in onid: oleftid = np.searchsorted(offid, i) - 1 orightid = np.searchsorted(offid, i) Xon = onvalues[onscanid == i] if oleftid == -1: Xoff = offvalues[offscanid == offid[orightid]] Xoff_m = getattr(np, "nan" + mode)(Xoff, axis=0) elif orightid == len(offid): Xoff = offvalues[offscanid == offid[oleftid]] Xoff_m = getattr(np, "nan" + mode)(Xoff, axis=0) else: Xoff_l = offvalues[offscanid == offid[oleftid]] Xoff_r = offvalues[offscanid == offid[orightid]] Xoff_m = getattr(np, "nan" + mode)(np.vstack([Xoff_l, Xoff_r]), axis=0) onvalues[onscanid == i] = Tamb * (Xon - Xoff_m) / (1 - Xoff_m) for j in offid: Xoff = offvalues[offscanid == j] Xoff_m = getattr(np, "nan" + mode)(Xoff, axis=0) offvalues[offscanid == j] = Tamb * (Xoff - Xoff_m) / (1 - Xoff_m) return onarray, offarray def r_division(onarray, offarray, rarray, mode="mean"): """Apply R division. Args: onarray (decode.array): Decode array of on-point observations. offarray (decode.array): Decode array of off-point observations. rarray (decode.array): Decode array of R observations. mode (str): Method for the selection of nominal R value. 'mean': Mean. 'median': Median. Returns: onarray_cal (decode.array): Calibrated array of on-point observations. offarray_cal (decode.array): Calibrated array of off-point observations. """ logger = getLogger("decode.models.r_division") logger.info("mode") logger.info("{}".format(mode)) offid = np.unique(offarray.scanid) onid = np.unique(onarray.scanid) rid = np.unique(rarray.scanid) onarray = onarray.copy() # Xarray onvalues = onarray.values onscanid = onarray.scanid.values offarray = offarray.copy() # Xarray offvalues = offarray.values offscanid = offarray.scanid.values rarray = rarray.copy() # Xarray rvalues = rarray.values rscanid = rarray.scanid.values for i in onid: rleftid = np.searchsorted(rid, i) - 1 rrightid = np.searchsorted(rid, i) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, "nan" + mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, "nan" + mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, "nan" + mode)(np.vstack([Xr_l, Xr_r]), axis=0) onvalues[onscanid == i] /= Xr_m for j in offid: rleftid = np.searchsorted(rid, j) - 1 rrightid = np.searchsorted(rid, j) if rleftid == -1: Xr = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, "nan" + mode)(Xr, axis=0) elif rrightid == len(rid): Xr = rvalues[rscanid == rid[rleftid]] Xr_m = getattr(np, "nan" + mode)(Xr, axis=0) else: Xr_l = rvalues[rscanid == rid[rleftid]] Xr_r = rvalues[rscanid == rid[rrightid]] Xr_m = getattr(np, "nan" + mode)(np.vstack([Xr_l, Xr_r]), axis=0) offvalues[offscanid == j] /= Xr_m Xon_rdiv = dc.full_like(onarray, onarray) Xoff_rdiv = dc.full_like(offarray, offarray) Xonoff_rdiv = dc.concat([Xon_rdiv, Xoff_rdiv], dim="t") Xonoff_rdiv_sorted = Xonoff_rdiv[np.argsort(Xonoff_rdiv.time.values)] scantype = Xonoff_rdiv_sorted.scantype.values newscanid = np.cumsum(np.hstack([False, scantype[1:] != scantype[:-1]])) onmask = np.in1d(Xonoff_rdiv_sorted.scanid, onid) offmask = np.in1d(Xonoff_rdiv_sorted.scanid, offid) Xon_rdiv = Xonoff_rdiv_sorted[onmask] Xoff_rdiv = Xonoff_rdiv_sorted[offmask] Xon_rdiv.coords.update({"scanid": ("t", newscanid[onmask])}) Xoff_rdiv.coords.update({"scanid": ("t", newscanid[offmask])}) return Xon_rdiv, Xoff_rdiv def gauss_fit( map_data, chs=None, mode="deg", amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, noise=0, **kwargs ): """make a 2D Gaussian model and fit the observed data with the model. Args: map_data (xarray.Dataarray): Dataarray of cube or single chs. chs (list of int): in prep. mode (str): Coordinates for the fitting 'pix' 'deg' amplitude (float or None): Initial amplitude value of Gaussian fitting. x_mean (float): Initial value of mean of the fitting Gaussian in x. y_mean (float): Initial value of mean of the fitting Gaussian in y. x_stddev (float or None): Standard deviation of the Gaussian in x before rotating by theta. y_stddev (float or None): Standard deviation of the Gaussian in y before rotating by theta. theta (float, optional or None): Rotation angle in radians. cov_matrix (ndarray, optional): A 2x2 covariance matrix. If specified, overrides the ``x_stddev``, ``y_stddev``, and ``theta`` defaults. Returns: decode cube (xarray cube) with fitting results in array and attrs. """ if chs is None: chs = np.ogrid[0:63] # the number of channels would be changed if len(chs) > 1: for n, ch in enumerate(chs): subdata = np.transpose( np.full_like(map_data[:, :, ch], map_data.values[:, :, ch]) ) subdata[np.isnan(subdata)] = 0 if mode == "deg": mX, mY = np.meshgrid(map_data.x, map_data.y) elif mode == "pix": mX, mY = np.mgrid[0 : len(map_data.y), 0 : len(map_data.x)] g_init = models.Gaussian2D( amplitude=np.nanmax(subdata), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs ) + models.Const2D(noise) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, mX, mY, subdata) g_init2 = models.Gaussian2D( amplitude=np.nanmax(subdata - g.amplitude_1), x_mean=x_mean, y_mean=y_mean, x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, cov_matrix=cov_matrix, **kwargs ) fit_g2 = fitting.LevMarLSQFitter() g2 = fit_g2(g_init2, mX, mY, subdata) if n == 0: results = np.array([g2(mX, mY)]) peaks = np.array([g2.amplitude.value]) x_means = np.array([g2.x_mean.value]) y_means = np.array([g2.y_mean.value]) x_stddevs = np.array([g2.x_stddev.value]) y_stddevs = np.array([g2.y_stddev.value]) thetas = np.array([g2.theta.value]) if fit_g2.fit_info["param_cov"] is None: uncerts = np.array([0]) else: error = np.diag(fit_g2.fit_info["param_cov"]) ** 0.5 uncerts = np.array([error[0]]) else: results = np.append(results, [g2(mX, mY)], axis=0) peaks =
np.append(peaks, [g2.amplitude.value], axis=0)
numpy.append
# Copyright (c) 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """Computes 2nd derivatives of power injection w.r.t. voltage. """ from numpy import ones, conj, arange from scipy.sparse import csr_matrix as sparse def d2Sbus_dV2(Ybus, V, lam): """Computes 2nd derivatives of power injection w.r.t. voltage. Returns 4 matrices containing the partial derivatives w.r.t. voltage angle and magnitude of the product of a vector C{lam} with the 1st partial derivatives of the complex bus power injections. Takes sparse bus admittance matrix C{Ybus}, voltage vector C{V} and C{nb x 1} vector of multipliers C{lam}. Output matrices are sparse. For more details on the derivations behind the derivative code used in PYPOWER information, see: [TN2] <NAME>, I{"AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation"}, MATPOWER Technical Note 2, February 2010. U{http://www.pserc.cornell.edu/matpower/TN2-OPF-Derivatives.pdf} @author: <NAME> (PSERC Cornell) """ nb = len(V) ib = arange(nb) Ibus = Ybus * V diaglam = sparse((lam, (ib, ib))) diagV = sparse((V, (ib, ib))) A = sparse((lam * V, (ib, ib))) B = Ybus * diagV C = A * conj(B) D = Ybus.H * diagV E = diagV.conj() * (D * diaglam - sparse((D * lam, (ib, ib)))) F = C - A * sparse((
conj(Ibus)
numpy.conj
# Reference: https://www.kaggle.com/c/bengaliai-cv19/discussion/123757 import numpy as np import cv2 # ----------------------------------- Geometric ----------------------------------------- class RandomProjective(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image mag = np.random.uniform(-1, 1) * 0.5 * self.magnitude height, width = image.shape[:2] x0, y0 = 0, 0 x1, y1 = 1, 0 x2, y2 = 1, 1 x3, y3 = 0, 1 mode = np.random.choice(['top', 'bottom', 'left', 'right']) if mode == 'top': x0 += mag x1 -= mag if mode == 'bottom': x3 += mag x2 -= mag if mode == 'left': y0 += mag y3 -= mag if mode == 'right': y1 += mag y2 -= mag s = np.array([[0, 0], [1, 0], [1, 1], [0, 1]]) * [[width, height]] d = np.array([[x0, y0], [x1, y1], [x2, y2], [x3, y3]]) * [[width, height]] transform = cv2.getPerspectiveTransform(s.astype(np.float32), d.astype(np.float32)) image = cv2.warpPerspective(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomPerspective(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image mag = np.random.uniform(-1, 1, (4, 2)) * 0.25 * self.magnitude height, width = image.shape[:2] s = np.array([[0, 0], [1, 0], [1, 1], [0, 1]]) d = s + mag s *= [[width, height]] d *= [[width, height]] transform = cv2.getPerspectiveTransform(s.astype(np.float32), d.astype(np.float32)) image = cv2.warpPerspective(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomRotate(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image angle = 1 + np.random.uniform(-1, 1) * 30 * self.magnitude height, width = image.shape[:2] cx, cy = width // 2, height // 2 transform = cv2.getRotationMatrix2D((cx, cy), -angle, 1.0) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomScale(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image s = 1 + np.random.uniform(-1, 1) * self.magnitude * 0.5 height, width = image.shape[:2] transform = np.array([[s, 0, 0], [0, s, 0], ], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomShearX(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image sx = np.random.uniform(-1, 1) * self.magnitude height, width = image.shape[:2] transform = np.array([[1, sx, 0], [0, 1, 0]], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomShearY(): def __init__(self, prob, magnitude=0.5): self.prob = np.clip(prob, 0.0, 1.0) self.magnitude = 0.5 def __call__(self, image): if np.random.uniform() > self.prob: return image sy = np.random.uniform(-1, 1) * self.magnitude height, width = image.shape[:2] transform = np.array([[1, 0, 0], [sy, 1, 0]], np.float32) image = cv2.warpAffine(image, transform, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) return image class RandomStretchX(): def __init__(self, prob, magnitude=0.5): self.prob =
np.clip(prob, 0.0, 1.0)
numpy.clip
import torch import torch.nn as nn import numpy as np import cv2 from collections import deque EPSILON = 1e-30 def ValidStructTensorIndicator(a,d,b): # return 1-(a**2==d**2)*(b*(a+d)==0) return ((2 * b * (a + d))**2+(a ** 2 - d ** 2)**2)>EPSILON def Latent_channels_desc_2_num_channels(latent_channels_desc): if isinstance(latent_channels_desc,int): return latent_channels_desc elif latent_channels_desc == 'STD_1dir': # Channel 0 controls STD, channel 1 controls horizontal Sobel return 2 elif latent_channels_desc=='STD_directional' or 'structure_tensor' in latent_channels_desc: return 3 class FilterLoss(nn.Module): def __init__(self,latent_channels,constant_Z=None,reference_images=None,masks=None): super(FilterLoss,self).__init__() self.latent_channels = latent_channels self.num_channels = Latent_channels_desc_2_num_channels(self.latent_channels) if self.num_channels==0: print('No control input channels z') return self.NOISE_STD = 1e-15#1/255 # self.model_training = constant_Z is None self.model_training = isinstance(self.latent_channels,str) if self.model_training: if self.latent_channels == 'STD_1dir':#Channel 0 controls STD, channel 1 controls horizontal Sobel DELTA_SIZE = 7 delta_im = np.zeros([DELTA_SIZE,DELTA_SIZE]); delta_im[DELTA_SIZE//2,DELTA_SIZE//2] = 1; dir_filter = cv2.Sobel(delta_im,ddepth=cv2.CV_64F,dx=1,dy=0) filter_margins = np.argwhere(np.any(dir_filter!=0,0))[0][0] dir_filter = dir_filter[filter_margins:-filter_margins,filter_margins:-filter_margins] self.filter = nn.Conv2d(in_channels=3,out_channels=3,kernel_size=dir_filter.shape,bias=False,groups=3) self.filter.weight = nn.Parameter(data=torch.from_numpy(np.tile(np.expand_dims(np.expand_dims(dir_filter, 0), 0), reps=[3, 1, 1, 1])).type(torch.cuda.FloatTensor), requires_grad=False) self.filter.filter_layer = True elif 'structure_tensor' in self.latent_channels: self.NOISE_STD = 1e-7 gradient_filters = [[[-1,1],[0,0]],[[-1,0],[1,0]]] self.filters = [] for filter in gradient_filters: filter = np.array(filter) conv_layer = nn.Conv2d(in_channels=3,out_channels=3,kernel_size=filter.shape,bias=False,groups=3) conv_layer.weight = nn.Parameter(data=torch.from_numpy(np.tile(np.expand_dims(np.expand_dims(filter, 0), 0), reps=[3, 1, 1, 1])).type(torch.cuda.FloatTensor), requires_grad=False) conv_layer.filter_layer = True self.filters.append(conv_layer) else: raise Exception('Unknown latent channel setting %s' % (self.latent_channels)) # if self.model_training: self.collected_ratios = [deque(maxlen=10000) for i in range(self.num_channels)] # else: if constant_Z is not None: self.HR_mask,self.LR_mask = masks['HR'],masks['LR'] self.constant_Z = (constant_Z.to(self.LR_mask.device)*self.LR_mask).sum(dim=(2,3))/self.LR_mask.sum() reference_derivatives = {} for ref_image in reference_images.keys(): reference_derivatives[ref_image] = [] for filter in self.filters: reference_derivatives[ref_image].append(filter(reference_images[ref_image])) reference_derivatives[ref_image] = torch.stack(reference_derivatives[ref_image], 0) reference_derivatives[ref_image] = torch.cat([reference_derivatives[ref_image]**2,torch.prod(reference_derivatives[ref_image],dim=0,keepdim=True)],0) reference_derivatives[ref_image] = (reference_derivatives[ref_image].mean(dim=2)*self.HR_mask[:-1,:-1]).sum(dim=(2,3))/self.HR_mask[:-1,:-1].sum() reference_derivatives['tensor_normalizer'] = torch.sqrt(torch.prod(torch.stack([torch.mean(torch.cat([reference_derivatives[ref_image][i] for ref_image in reference_images.keys()])) for i in range(2)]))).item() for ref_image in reference_images.keys(): reference_derivatives[ref_image] = [(val/(reference_derivatives['tensor_normalizer']+self.NOISE_STD)).item() for val in reference_derivatives[ref_image]] self.reference_derivatives = reference_derivatives def forward(self, data): image_shape = list(data['SR'].size()) LOWER_PERCENTILE,HIGHER_PERCENTILE = 5,95 if self.model_training: cur_Z = data['Z'].mean(dim=(2,3)) else: cur_Z = self.constant_Z if self.latent_channels == 'STD_1dir': dir_filter_output_SR = self.filter(data['SR']) dir_filter_output_HR = self.filter(data['HR']) dir_magnitude_ratio = dir_filter_output_SR.abs().mean(dim=(1, 2, 3)) / ( dir_filter_output_HR.abs().mean(dim=(1, 2, 3)) + self.NOISE_STD) STD_ratio = data['SR'].contiguous().view(tuple(image_shape[:2] + [-1])).std(dim=-1).mean(1) /\ (data['HR'].contiguous().view(tuple(image_shape[:2] + [-1])).std(dim=-1).mean(1) + self.NOISE_STD) normalized_Z = [] for ch_num in range(self.num_channels): self.collected_ratios[ch_num] += [val.item() for val in list(measured_values[:, ch_num])] upper_bound = np.percentile(self.collected_ratios[ch_num], HIGHER_PERCENTILE) lower_bound = np.percentile(self.collected_ratios[ch_num], LOWER_PERCENTILE) normalized_Z.append( (cur_Z[:, ch_num]) / 2 * (upper_bound - lower_bound) + np.mean([upper_bound, lower_bound])) normalized_Z = torch.stack(normalized_Z, 1) measured_values = torch.stack([STD_ratio, dir_magnitude_ratio], 1) elif self.latent_channels == 'STD_directional': horizontal_derivative_SR = (data['SR'][:,:,:,2:]-data['SR'][:,:,:,:-2])[:,:,1:-1,:].unsqueeze(1)/2 vertical_derivative_SR = (data['SR'][:, :, 2:,:] - data['SR'][:, :, :-2, :])[:,:,:,1:-1].unsqueeze(1)/2 horizontal_derivative_HR = (data['HR'][:, :, :, 2:] - data['HR'][:, :, :, :-2])[:,:,1:-1,:].unsqueeze(1)/2 vertical_derivative_HR = (data['HR'][:, :, 2:, :] - data['HR'][:, :, :-2, :])[:,:,:,1:-1].unsqueeze(1)/2 dir_normal = cur_Z[:,1:3] dir_normal = dir_normal/torch.sqrt(torch.sum(dir_normal**2,dim=1,keepdim=True)) dir_filter_output_SR = (dir_normal.unsqueeze(2).unsqueeze(3).unsqueeze(4)*torch.cat([horizontal_derivative_SR,vertical_derivative_SR],dim=1)).sum(1) dir_filter_output_HR = (dir_normal.unsqueeze(2).unsqueeze(3).unsqueeze(4) * torch.cat([horizontal_derivative_HR, vertical_derivative_HR],dim=1)).sum(1) dir_magnitude_ratio = dir_filter_output_SR.abs().mean(dim=(1,2,3))/(dir_filter_output_HR.abs().mean(dim=(1,2,3))+self.NOISE_STD) self.collected_ratios[1] += [val.item() for val in list(dir_magnitude_ratio)] STD_ratio = (data['SR'][:,:,1:-1,1:-1]-dir_filter_output_SR).abs().mean(dim=(1,2,3))/((data['HR'][:,:,1:-1,1:-1]-dir_filter_output_HR).abs().mean(dim=(1,2,3))+self.NOISE_STD) self.collected_ratios[0] += [val.item() for val in list(STD_ratio)] STD_upper_bound = np.percentile(self.collected_ratios[0], HIGHER_PERCENTILE) STD_lower_bound = np.percentile(self.collected_ratios[0],LOWER_PERCENTILE) dir_magnitude_upper_bound = np.percentile(self.collected_ratios[1], HIGHER_PERCENTILE) dir_magnitude_lower_bound = np.percentile(self.collected_ratios[1], LOWER_PERCENTILE) mag_normal = (cur_Z[:,1:3]**2).sum(1).sqrt() normalized_Z = torch.stack([cur_Z[:,0]*(STD_upper_bound-STD_lower_bound)+np.mean([STD_upper_bound,STD_lower_bound]), mag_normal/np.sqrt(2)*(dir_magnitude_upper_bound-dir_magnitude_lower_bound)+np.mean([dir_magnitude_upper_bound,dir_magnitude_lower_bound])],1) measured_values = torch.stack([STD_ratio, dir_magnitude_ratio], 1) elif'structure_tensor' in self.latent_channels: ZERO_CENTERED_IxIy = False if not self.model_training: RATIO_LOSS = 'No' elif self.latent_channels == 'SVD_structure_tensor': RATIO_LOSS = 'OnlyDiagonals' elif self.latent_channels=='SVDinNormedOut_structure_tensor': RATIO_LOSS = 'SingleNormalizer' else: RATIO_LOSS = 'OnlyDiagonals' #'No','All','OnlyDiagonals','Diagonals_IxIyRelative' assert not (RATIO_LOSS=='All' and ZERO_CENTERED_IxIy),'Do I want to combine these two flags?' derivatives_SR,derivatives_HR = [],[] for filter in self.filters: derivatives_SR.append(filter(data['SR'])) if RATIO_LOSS!='No': derivatives_HR.append(filter(data['HR'])) non_squared_derivatives_SR = torch.stack(derivatives_SR,0) derivatives_SR = torch.cat([non_squared_derivatives_SR**2,torch.prod(non_squared_derivatives_SR,dim=0,keepdim=True)],0) if self.model_training: derivatives_SR = derivatives_SR.mean(dim=(2, 3,4)) # In ALL configurations, I also average all values before taking ratios - should think whether it might be a problem. else: derivatives_SR = (derivatives_SR.mean(dim=2)*self.HR_mask[:-1,:-1]).sum(dim=(2,3))/self.HR_mask[:-1,:-1].sum() if self.latent_channels == 'SVD_structure_tensor': lambda0_SR,lambda1_SR,theta_SR = SVD_Symmetric_2x2(*derivatives_SR) images_validity_4_backprop = ValidStructTensorIndicator(*derivatives_SR) else: measured_values = [derivatives_SR[i] for i in range(derivatives_SR.size(0))] if RATIO_LOSS!='No': non_squared_derivatives_HR = torch.stack(derivatives_HR, 0) derivatives_HR = torch.cat([non_squared_derivatives_HR**2,torch.prod(non_squared_derivatives_HR,dim=0,keepdim=True)],0) derivatives_HR = derivatives_HR.mean(dim=(2, 3, 4)) if self.latent_channels == 'SVD_structure_tensor': lambda0_HR, lambda1_HR, theta_HR = SVD_Symmetric_2x2(*derivatives_HR) images_validity_4_backprop = images_validity_4_backprop*ValidStructTensorIndicator(*derivatives_HR) measured_values = [lambda0_SR/(lambda0_HR+self.NOISE_STD),lambda1_SR/(lambda1_HR+self.NOISE_STD),theta_SR] # measured_values = [val.mean(dim=(1,2,3)).to() for val in measured_values] elif self.latent_channels=='SVDinNormedOut_structure_tensor': tensor_normalizer = torch.prod(torch.sqrt(derivatives_HR[:2]),dim=0) measured_values = [measured_val/(tensor_normalizer+self.NOISE_STD) for measured_val in measured_values] else: measured_values = [measured_values[i]/((derivatives_HR[i]+torch.sign(measured_values[i])*self.NOISE_STD) if (i<2 or RATIO_LOSS=='All') else 1) for i in range(derivatives_SR.size(0))] elif not self.model_training: measured_values = [measured_val / (self.reference_derivatives['tensor_normalizer'] + self.NOISE_STD) for measured_val in measured_values] normalized_Z = [] for i in range(len(measured_values)): if self.model_training: self.collected_ratios[i] += [val.item() for val in measured_values[i]] upper_bound = np.percentile(self.collected_ratios[i], HIGHER_PERCENTILE) lower_bound =
np.percentile(self.collected_ratios[i], LOWER_PERCENTILE)
numpy.percentile
from clustviz.denclue import ( gaussian_density, gradient_gaussian_density, square_wave_density, FindRect, pop_cubes, highly_pop_cubes, check_connection, find_connected_cubes, near_with_cube, near_without_cube, density_attractor, assign_cluster, DENCLUE, ) import numpy as np from sklearn.datasets import make_blobs def test_gaussian_density(): D = np.array([[1, 0], [0, 0], [2, 0]]) point = np.array([0, 0]) res = gaussian_density(point, D, 1, dist="euclidean") assert round(res, 2) == 1.74 def test_gradient_gaussian_density(): D = np.array([[1, 0], [0, 2]]) point = np.array([0, 0]) res = gradient_gaussian_density(point, D, 1, dist="euclidean") first_component = round(res[0], 2) == 0.61 second_component = round(res[1], 2) == 0.27 assert first_component & second_component def test_square_wave_density(): D = np.array([[1, 0], [0, 0], [2, 0]]) point = np.array([0, 0]) res = square_wave_density(point, D, 1, dist="euclidean") assert res == 2 def test_pop_cubes(): D = np.array([[0, 0], [0, 1], [0, 2]]) res = pop_cubes(D, 1) expected_first = { (0, 0): {"num_points": 2, "linear_sum": np.array([0, 1]), "points_coords": np.array([[0, 0], [0, 1]])}, (0, 1): {"num_points": 1, "linear_sum": np.array([0, 2]), "points_coords": np.array([[0, 2]])}, } expected_second = { (0, 0): (-0.05, -0.05, 1.95, 1.95), (0, 1): (-0.05, 1.95, 1.95, 3.95), } condition0 = res[0][(0, 0)]["num_points"] == expected_first[(0, 0)]["num_points"] condition1 = (res[0][(0, 0)]["linear_sum"] == expected_first[(0, 0)]["linear_sum"]).all() condition2 = (res[0][(0, 0)]["points_coords"] == expected_first[(0, 0)]["points_coords"]).all() condition3 = res[0][(0, 1)]["num_points"] == expected_first[(0, 1)]["num_points"] condition4 = (res[0][(0, 1)]["linear_sum"] == expected_first[(0, 1)]["linear_sum"]).all() condition5 = (res[0][(0, 1)]["points_coords"] == expected_first[(0, 1)]["points_coords"]).all() condition6 = res[1] == expected_second assert condition0 & condition1 & condition2 & condition3 & condition4 & condition5 & condition6 def test_FindRect(): coord_dict = { (0, 0): (-0.05, -0.05, 1.95, 1.95), (0, 1): (-0.05, 1.95, 1.95, 3.95), } point = np.array([0, 2]) assert FindRect(point, coord_dict) == (0, 1) def test_highly_pop_cubes(): z = { (0, 0): {"num_points": 3, "linear_sum": np.array([1, 2]), "points_coords": np.array([[0, 0], [0, 1], [1, 1]])}, (0, 1): {"num_points": 1, "linear_sum": np.array([0, 2]), "points_coords": np.array([[0, 2]])} } res = {(0, 0): {"num_points": 3, "linear_sum": np.array([1, 2]), "points_coords": np.array([[0, 0], [0, 1], [1, 1]])}} res = highly_pop_cubes(z, 2) condition0 = res[(0, 0)]["num_points"] == z[(0, 0)]["num_points"] condition1 = (res[(0, 0)]["linear_sum"] == z[(0, 0)]["linear_sum"]).all() condition2 = (res[(0, 0)]["points_coords"] == z[(0, 0)]["points_coords"]).all() assert condition0 & condition1 & condition2 def test_check_connection(): hpc = { (0, 0): {"num_points": 2, "linear_sum": np.array([0, 1]), "points_coords": np.array([[0, 0], [0, 1]])}, (0, 1): {"num_points": 1, "linear_sum": np.array([0, 2]), "points_coords": np.array([[0, 2]])} } assert check_connection(hpc[(0, 0)], hpc[0, 1], 1) def test_find_connected_cubes(): z = { (0, 0): {"num_points": 4, "linear_sum": np.array([2.1, 3.0]), "points_coords":
np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [1.1, 1.0]])
numpy.array
""" desispec.fiberfluxcorr ======================== Routines to compute fiber flux corrections based on the fiber location, the exposure seeing, and the target morphology. """ import numpy as np from desiutil.log import get_logger from desimodel.fastfiberacceptance import FastFiberAcceptance from desimodel.io import load_platescale def flat_to_psf_flux_correction(fibermap,exposure_seeing_fwhm=1.1) : """ Multiplicative factor to apply to the flat-fielded spectroscopic flux of a fiber to calibrate the spectrum of a point source, given the current exposure seeing Args: fibermap: fibermap of frame, astropy.table.Table exposure_seeing_fwhm: seeing FWHM in arcsec Returns: 1D numpy array with correction factor to apply to fiber fielded fluxes, valid for point sources. """ log = get_logger() for k in ["FIBER_X","FIBER_Y"] : if k not in fibermap.dtype.names : log.warning("no column '{}' in fibermap, cannot do the flat_to_psf correction, returning 1") return np.ones(len(fibermap)) #- Compute point source flux correction and fiber flux correction fa = FastFiberAcceptance() x_mm = fibermap["FIBER_X"] y_mm = fibermap["FIBER_Y"] bad = np.isnan(x_mm)|np.isnan(y_mm) x_mm[bad]=0. y_mm[bad]=0. if "DELTA_X" in fibermap.dtype.names : dx_mm = fibermap["DELTA_X"] # mm else : log.warning("no column 'DELTA_X' in fibermap, assume DELTA_X=0") dx_mm = np.zeros(len(fibermap)) if "DELTA_Y" in fibermap.dtype.names : dy_mm = fibermap["DELTA_Y"] # mm else : log.warning("no column 'DELTA_Y' in fibermap, assume DELTA_Y=0") dy_mm = np.zeros(len(fibermap)) bad = np.isnan(dx_mm)|np.isnan(dy_mm) dx_mm[bad]=0. dy_mm[bad]=0. ps = load_platescale() isotropic_platescale = np.interp(x_mm**2+y_mm**2,ps['radius']**2,np.sqrt(ps['radial_platescale']*ps['az_platescale'])) # um/arcsec sigmas_um = exposure_seeing_fwhm/2.35 * isotropic_platescale # um offsets_um = np.sqrt(dx_mm**2+dy_mm**2)*1000. # um fiber_frac = fa.value("POINT",sigmas_um,offsets_um) # at large r, # isotropic_platescale is larger # fiber angular size is smaller # fiber flat is smaller # fiber flat correction is larger # have to divide by isotropic_platescale^2 ok = (fiber_frac>0.01) point_source_correction = np.zeros(x_mm.shape) point_source_correction[ok] = 1./fiber_frac[ok]/isotropic_platescale[ok]**2 # normalize to one because this is a relative correction here point_source_correction[ok] /= np.mean(point_source_correction[ok]) return point_source_correction def psf_to_fiber_flux_correction(fibermap,exposure_seeing_fwhm=1.1) : """ Multiplicative factor to apply to the psf flux of a fiber to obtain the fiber flux, given the current exposure seeing. The fiber flux is the flux one would collect for this object in a fiber of 1.5 arcsec diameter, for a 1 arcsec seeing, FWHM (same definition as for the Legacy Surveys). Args: fibermap: fibermap of frame, astropy.table.Table exposure_seeing_fwhm: seeing FWHM in arcsec Returns: 1D numpy array with correction factor to apply to fiber fielded fluxes, valid for any sources. """ log = get_logger() for k in ["FIBER_X","FIBER_Y"] : if k not in fibermap.dtype.names : log.warning("no column '{}' in fibermap, cannot do the flat_to_psf correction, returning 1".format(k)) return np.ones(len(fibermap)) # compute the seeing and plate scale correction fa = FastFiberAcceptance() x_mm = fibermap["FIBER_X"] y_mm = fibermap["FIBER_Y"] bad = np.isnan(x_mm)|
np.isnan(y_mm)
numpy.isnan
import torch import os import logging import math from pathlib import Path import warnings from rasterio import Affine, MemoryFile from rasterio.profiles import DefaultGTiffProfile from rasterio.warp import calculate_default_transform, reproject, Resampling import numpy as np from scipy.spatial import distance from functools import reduce import rasterio from rasterio.mask import mask from rasterio.crs import CRS import rasterio.warp import rasterio.shutil from rasterio.enums import Resampling from rasterio import shutil as rio_shutil from rasterio.vrt import WarpedVRT from rasterio.coords import disjoint_bounds from rasterio.enums import Resampling from rasterio.windows import Window from deepbiosphere.scripts import new_window from deepbiosphere.scripts import GEOCLEF_Utils as utils from rasterio.transform import Affine import rasterio.transform as transforms import matplotlib as mpl import matplotlib.patches as patches import math import matplotlib.cm as cm import matplotlib as mpl import time # deepbio packages from deepbiosphere.scripts.GEOCLEF_Config import paths import deepbiosphere.scripts.GEOCLEF_Config as config from deepbiosphere.scripts.GEOCLEF_Run import setup_dataset import deepbiosphere.scripts.GEOCLEF_Utils as utils import deepbiosphere.scripts.GEOCLEF_CNN as cnn import pandas as pd import geopandas as gpd from shapely.geometry import Point, Polygon, MultiPolygon, LineString import shapely.speedups # Standard packages import tempfile import warnings import urllib import shutil import os # Less standard, but still pip- or conda-installable import matplotlib.pyplot as plt import numpy as np import rasterio import re # regex import rtree import shapely import pickle # pip install progressbar2, not progressbar import progressbar from geopy.geocoders import Nominatim from rasterio.merge import merge from tqdm import tqdm import fiona import fiona.transform import requests import json import torch import numpy as np ## fields # not all the NAIP are teh same coorediate reference system # this is WGS84, what the VRT are converted to NAIP_CRS='EPSG:4326' ALPHA_NODATA = 9999 class DownloadProgressBar(): """ https://stackoverflow.com/questions/37748105/how-to-use-progressbar-module-with-urlretrieve """ def __init__(self): self.pbar = None def __call__(self, block_num, block_size, total_size): if not self.pbar: self.pbar = progressbar.ProgressBar(max_value=total_size) self.pbar.start() downloaded = block_num * block_size if downloaded < total_size: self.pbar.update(downloaded) else: self.pbar.finish() # very important class! class NAIPTileIndex: """ Utility class for performing NAIP tile lookups by location. """ tile_rtree = None tile_index = None base_path = None def __init__(self, index_blob_root, index_files, base_path=None, temp_dir=None): temp_dir = os.path.join(tempfile.gettempdir(),'naip') if temp_dir is None else temp_dir if base_path is None: base_path = temp_dir os.makedirs(base_path,exist_ok=True) for file_path in index_files: download_url(index_blob_root + file_path, base_path + '/' + file_path, progress_updater=DownloadProgressBar()) self.base_path = base_path # tile_rtree is an rtree that stores I believe bounding boxes for the tifs self.tile_rtree = rtree.index.Index(base_path + "/tile_index") self.tile_index = pickle.load(open(base_path + "/tiles.p", "rb")) def lookup_tile(self, lat, lon): """" Given a lat/lon coordinate pair, return the list of NAIP tiles that contain that location. Returns a list of COG file paths. """ point = shapely.geometry.Point(float(lon),float(lat)) intersected_indices = list(self.tile_rtree.intersection(point.bounds)) # oh wow so this rtree does ALL the heavy lifting, phew.... intersected_files = [] tile_intersection = False for idx in intersected_indices: intersected_file = self.tile_index[idx][0] intersected_geom = self.tile_index[idx][1] if intersected_geom.contains(point): # Ohh I see, so it might be an rtree miss so still have to check to be sure tile_intersection = True intersected_files.append(intersected_file) if not tile_intersection and len(intersected_indices) > 0: # How can this be?? print('''Error: there are overlaps with tile index, but no tile completely contains selection''') return None elif len(intersected_files) <= 0: print("No tile intersections") return None else: return intersected_files def download_url(url, destination_filename=None, progress_updater=None, force_download=False): """ Download a URL to a temporary file """ # This is not intended to guarantee uniqueness, we just know it happens to guarantee # uniqueness for this application. if destination_filename is None: url_as_filename = url.replace('://', '_').replace('/', '_') destination_filename = \ os.path.join(temp_dir,url_as_filename) if (not force_download) and (os.path.isfile(destination_filename)): print('Bypassing download of already-downloaded file {}'.format(os.path.basename(url))) return destination_filename print('Downloading file {} to {}'.format(os.path.basename(url),destination_filename),end='') urllib.request.urlretrieve(url, destination_filename, progress_updater) assert(os.path.isfile(destination_filename)) nBytes = os.path.getsize(destination_filename) print('...done, {} bytes.'.format(nBytes)) return destination_filename def display_naip_tile(filename): """ Display a NAIP tile using rasterio. """ # NAIP tiles are enormous; downsize for plotting in this notebook dsfactor = 10 with rasterio.open(filename) as raster: # NAIP imagery has four channels: R, G, B, IR # # Stack RGB channels into an image; we won't try to render the IR channel # # rasterio uses 1-based indexing for channels. h = int(raster.height/dsfactor) w = int(raster.width/dsfactor) print('Resampling to {},{}'.format(h,w)) r = raster.read(1, out_shape=(1, h, w)) g = raster.read(2, out_shape=(1, h, w)) b = raster.read(3, out_shape=(1, h, w)) rgb =
np.dstack((r,g,b))
numpy.dstack
""" Tests for FitBenchmarking object """ from __future__ import absolute_import, division, print_function import inspect import os import unittest import numpy as np from fitbenchmarking import mock_problems from fitbenchmarking.cost_func.nlls_cost_func import NLLSCostFunc from fitbenchmarking.hessian.analytic_hessian import \ Analytic as AnalyticHessian from fitbenchmarking.jacobian.scipy_jacobian import Scipy from fitbenchmarking.parsing.parser_factory import parse_problem_file from fitbenchmarking.utils.fitbm_result import FittingResult from fitbenchmarking.utils.options import Options class FitbmResultTests(unittest.TestCase): """ Tests for FitBenchmarking results object """ def setUp(self): """ Setting up FitBenchmarking results object """ self.options = Options() mock_problems_dir = os.path.dirname(inspect.getfile(mock_problems)) problem_dir = os.path.join(mock_problems_dir, "cubic.dat") self.problem = parse_problem_file(problem_dir, self.options) self.problem.correct_data() self.chi_sq = 10 self.minimizer = "test_minimizer" self.runtime = 0.01 self.params = np.array([1, 3, 4, 4]) self.initial_params = np.array([0, 0, 0, 0]) self.cost_func = NLLSCostFunc(self.problem) self.jac = Scipy(self.cost_func) self.jac.method = "2-point" self.hess = AnalyticHessian(self.cost_func.problem, self.jac) self.result = FittingResult( options=self.options, cost_func=self.cost_func, jac=self.jac, hess=self.hess, chi_sq=self.chi_sq, runtime=self.runtime, minimizer=self.minimizer, initial_params=self.initial_params, params=self.params, error_flag=0) self.min_chi_sq = 0.1 self.result.min_chi_sq = self.min_chi_sq self.min_runtime = 1 self.result.min_runtime = self.min_runtime def test_fitting_result_str(self): """ Test that the fitting result can be printed as a readable string. """ self.assertEqual(str(self.result), "+================================+\n" "| FittingResult |\n" "+================================+\n" "| Cost Function | NLLSCostFunc |\n" "+--------------------------------+\n" "| Problem | cubic |\n" "+--------------------------------+\n" "| Software | None |\n" "+--------------------------------+\n" "| Minimizer | test_minimizer |\n" "+--------------------------------+\n" "| Jacobian | Scipy |\n" "+--------------------------------+\n" "| Hessian | Analytic |\n" "+--------------------------------+\n" "| Chi Squared | 10 |\n" "+--------------------------------+\n" "| Runtime | 0.01 |\n" "+--------------------------------+") def test_init_with_dataset_id(self): """ Tests to check that the multifit id is setup correctly """ chi_sq = [10, 5, 1] minimizer = "test_minimizer" runtime = 0.01 params = [np.array([1, 3, 4, 4]), np.array([2, 3, 57, 8]), np.array([4, 2, 5, 1])] initial_params = np.array([0, 0, 0, 0]) self.problem.data_x = [
np.array([3, 2, 1, 4])
numpy.array
from astropy.io import fits import matplotlib.pyplot as plt import numpy as np # Import the .fits file which contains all the pec dat and # extract the information. hdulist = fits.open('pec_dat_650_950_lowdens.fits') pec_temps = hdulist[0].data # The array of temps in eV n_meta = hdulist[1].data # Array listing the metastable # pec_dens = hdulist[2].data # Density array pec_wave = hdulist[3].data # Wavelengths corresponiding to each PEC pec_pec = hdulist[4].data.T # 3-D array containing all PEC's data = np.loadtxt('temp_5_dens2.5e16.dat') ALEXIS_wavelengths = data[0] ALEXIS_spect = data[1] wavelist = np.zeros((np.size(pec_wave),2)) for i in range(0,np.size(pec_wave)): wavelist[i,0] = i wavelist[i,1] = pec_wave[i] templist = np.zeros((np.size(pec_temps),2)) for i in range(0,np.size(pec_temps)): templist[i,0] = i templist[i,1] = pec_temps[i] denslist = np.zeros((np.size(pec_dens),2)) for i in range(0,np.size(pec_dens)): denslist[i,0] = i denslist[i,1] = pec_dens[i] # Declare some variables size_meta = n_meta.size # Number of metastables n_pec = pec_wave.size # Number of PEC's for each metastable wl_min = int(pec_wave[0]) # smallest wavelength wl_max = pec_wave[n_pec - 1] # largest wavelength # Spectrometer Resolution (nm) lambda_d = 2.0 fwhm = 2.0*(np.log(2.0))**0.5*lambda_d # These variables will be needed for Doppler Broadening fwhm = 2.0*(np.log(2.0))**0.5*lambda_d dwavel = np.amin(fwhm)/20.0 n_wavel = int(((wl_max-wl_min)/dwavel)) flux_lam = np.linspace(wl_min, wl_max, n_wavel) # Create dictionaries to hold the invidual meta PEC's and Broadened flux pec_meta = dict() flux = dict() for i in range(size_meta): pec_meta[i] = pec_pec[:, :, n_pec*i:n_pec*(i+1)] flux[i] = np.zeros(n_wavel) # Choose a temp and density t_indx = 8 d_indx = 18 print("t_e = {:6.2e} eV".format(templist[t_indx,1])) print("n_e = {:6.2e} cm^-3 ".format(denslist[d_indx,1])) # %% Doppler Broadening # Doppler Broaden the array for the specified t_indx and d_indx for i in range(n_wavel): for j in range(pec_wave.size): for k in range(size_meta): if flux_lam[i] > (pec_wave[j]-fwhm*5.0) and flux_lam[i] < \ (pec_wave[j]+fwhm*5.0): flux[k][i] = flux[k][i] + pec_meta[k][t_indx, d_indx, j] * \ (2 * np.pi) ** (-0.5)/lambda_d * np.exp(-abs((flux_lam[i] \ - pec_wave[j]) / lambda_d) ** 2.0) # %% # %% from astropy.io import fits from scipy.optimize import curve_fit from scipy import stats import os os.chdir(spect_dir) import datetime now = datetime.datetime.now() import tkinter from tkinter import filedialog # we don't want a full GUI, so keep the root window from appearing root = tkinter.Tk() root.withdraw() # show an "Open" dialog box and return the path to the selected file filename = filedialog.askopenfilename() hdulist = fits.open(filename) # hdu_info = hdulist.info() def spect_get(): hdu_size = np.size(hdulist) scan_lambda = hdulist[hdu_size - 2].data.T wavelengths =
np.array(scan_lambda[0])
numpy.array
import pandas as pd import numpy as np from .. import extensions as ext import pytest import itertools def _as_2d_waterfall_signal(arg, repeat_n=3): return np.transpose(np.tile(arg, (repeat_n, 1))) @pytest.fixture def butterworth_test_signals(): sr = 100 t = np.linspace(0, 1, sr, False) mix_10_20_sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t) single_10_sig = np.sin(2*np.pi*10*t) constant_sig = np.ones(t.shape) zero_sig = np.zeros(t.shape) sigs = [mix_10_20_sig, _as_2d_waterfall_signal(mix_10_20_sig), constant_sig, _as_2d_waterfall_signal(constant_sig) ] low_pass_expects = [single_10_sig, _as_2d_waterfall_signal(single_10_sig), constant_sig, _as_2d_waterfall_signal(constant_sig), ] low_pass_cases = list( itertools.starmap( lambda sig, expected: ( {'X': sig, 'sr': sr, 'cut_offs': 15, 'order': 4, 'filter_type': 'low'}, expected ), zip(sigs, low_pass_expects) ) ) band_pass_expects = [zero_sig, _as_2d_waterfall_signal(zero_sig), zero_sig, _as_2d_waterfall_signal(zero_sig)] band_pass_cases = list( itertools.starmap( lambda sig, expected: ( {'X': sig, 'sr': sr, 'cut_offs': [13, 17], 'order': 4, 'filter_type': 'pass'}, expected), zip(sigs, band_pass_expects) ) ) return low_pass_cases + band_pass_cases @pytest.fixture def resample_test_signals(): list_sr = [100, 80, 50, 30] test_cases = [] signals = [] for sr in list_sr: t = np.linspace([0, 0], [1, 1], sr, False, axis=0) mix_2_5_sig = np.sin(2*np.pi*2*t) + np.sin(2*np.pi*5*t) signals.append(mix_2_5_sig) sr_signal_pairs = zip(list_sr, signals) test_cases = itertools.combinations(sr_signal_pairs, 2) return test_cases @pytest.fixture def regularize_test_signals(): results = [] for et, expected in zip([1, 1.1, 1.11, 1.01], [80, 88, 88, 80]): t = np.linspace(0, et, num=85) X = np.random.rand(len(t), 3) results.append((t, X, 80, expected)) return results @pytest.fixture(scope='module') def test_sensor_data(spades_lab_data): dw_sensor_file = spades_lab_data['subjects']['SPADES_1']['sensors']['DW'][0] da_sensor_file = spades_lab_data['subjects']['SPADES_1']['sensors']['DA'][0] dw_data = pd.read_csv(dw_sensor_file, parse_dates=[0]) da_data = pd.read_csv(da_sensor_file, parse_dates=[0]) st = max([dw_data.iloc[0, 0], da_data.iloc[0, 0]]) dw_data = ext.pandas.segment_by_time( dw_data, st, st + pd.Timedelta(12.8 * 5, unit='seconds')) da_data = ext.pandas.segment_by_time( da_data, st, st + pd.Timedelta(12.8 * 5, unit='seconds')) return dw_data, da_data class TestPandas: def test_merge_all(self): df1 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 5], 'group': [1, 1, 2, 2]}) df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [5, 6, 7, 8], 'group': [1, 1, 2, 2]}) df3 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [9, 10, 11, 12], 'group': [1, 1, 2, 2]}) dfs = [df1, df2, df3] merged, cols_with_suffixes = ext.pandas.merge_all(*dfs, suffix_names=['DW', 'DA', 'DT'], suffix_cols=[ 'value'], on=['key', 'group'], how='inner', sort=False) np.testing.assert_array_equal( cols_with_suffixes, ['value_DW', 'value_DA', 'value_DT']) np.testing.assert_array_equal( merged[['key', 'group']], df1[['key', 'group']] ) np.testing.assert_array_equal( set(merged.columns), set(['key', 'value_DW', 'value_DA', 'value_DT', 'group'])) merged, cols_with_suffixes = ext.pandas.merge_all(df1, suffix_names=['DW'], suffix_cols=[ 'value'], on=['key', 'group'], how='inner', sort=False) np.testing.assert_array_equal(merged.values, df1.values) np.testing.assert_array_equal( set(merged.columns), set(['key', 'value_DW', 'group'])) def test_filter_column(self): df1 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 5], 'group': [1, 1, 2, 2]}) filtered = ext.pandas.filter_column( df1, col='key', values_to_filter_out=['foo']) np.testing.assert_array_equal(filtered['value'].values, [2, 3]) np.testing.assert_array_equal(filtered['key'].values, ['bar', 'baz']) filtered = ext.pandas.filter_column( df1, col='value', values_to_filter_out=[2, 5]) np.testing.assert_array_equal(filtered['value'].values, [1, 3]) np.testing.assert_array_equal(filtered['key'].values, ['foo', 'baz']) @pytest.mark.parametrize('start_time', [None, "2015-09-24 14:17:00.000"]) @pytest.mark.parametrize('stop_time', [None, "2015-09-24 14:17:00.000"]) def test_get_common_timespan(self, test_sensor_data, start_time, stop_time): dw_data, da_data = test_sensor_data st, et = ext.pandas.get_common_timespan( dw_data, da_data, st=start_time, et=stop_time) if start_time is None: assert st.timestamp() == pd.Timestamp( '2015-09-24 14:17:48.013').timestamp() else: assert st.timestamp() == pd.Timestamp(start_time).timestamp() if stop_time is None: assert et.timestamp() == pd.Timestamp( '2015-09-24 14:18:52.000').timestamp() else: assert et.timestamp() == pd.Timestamp(stop_time).timestamp() @pytest.mark.parametrize('start_time', [None, "2015-09-24 14:17:48.000"]) @pytest.mark.parametrize('stop_time', [None, "2015-09-24 14:17:00.000"]) def test_split_into_windows(self, test_sensor_data, start_time, stop_time): dw_data, da_data = test_sensor_data window_start_markers = ext.pandas.split_into_windows( dw_data, da_data, step_size=12.8, st=start_time, et=stop_time) if start_time is None and stop_time is None: assert len(window_start_markers) == 5 assert np.all( np.diff(window_start_markers)[:-1].astype('timedelta64[ms]').astype(int) == 12800) assert window_start_markers[0].timestamp() == pd.Timestamp( '2015-09-24 14:17:48.013').timestamp() elif start_time is not None and stop_time is None: assert len(window_start_markers) == 5 assert np.all( np.diff(window_start_markers)[:-1].astype('timedelta64[ms]').astype(int) == 12800) assert window_start_markers[0].timestamp() == pd.Timestamp( start_time).timestamp() elif stop_time is not None: assert len(window_start_markers) == 0 def test_fixed_window_slider(self, test_sensor_data): def sample_counter(*dfs, st, et, placements): result = { 'START_TIME': [st], 'STOP_TIME': [et] } for df, p in zip(dfs, placements): result[p] = [df.shape[0]] return pd.DataFrame.from_dict(result) dw_df, da_df = test_sensor_data count_df = ext.pandas.fixed_window_slider( *[dw_df, da_df], slider_fn=sample_counter, window_size=12.8, step_size=None, placements=['DW', 'DA']) assert count_df.shape[1] == 4 assert count_df.shape[0] == 5 assert (count_df.iloc[:, 2] == 1024).all() class TestNumpy: def test_mutate_nan(self): # test signal without nan X = np.random.rand(10, 3) X_new = ext.numpy.mutate_nan(X) np.testing.assert_array_almost_equal(X, X_new) X = np.random.rand(10, 1) X_new = ext.numpy.mutate_nan(X) np.testing.assert_array_almost_equal(X, X_new) # test signal with single sample without nan X = np.array([[0.]]) X_new = ext.numpy.mutate_nan(X) np.testing.assert_array_almost_equal(X, X_new) X = np.array([[0., 0, 0, ]]) X_new = ext.numpy.mutate_nan(X) np.testing.assert_array_almost_equal(X, X_new) # test signal with nan X = np.atleast_2d(np.sin(2*np.pi * 1 * np.arange(0, 1, 1.0 / 100))).T X_nan = np.copy(X) X_nan[5:10, 0] = np.nan X_new = ext.numpy.mutate_nan(X_nan) np.testing.assert_array_almost_equal(X, X_new, decimal=4) X = np.tile(np.sin(2*np.pi * 1 * np.arange(0, 1, 1.0 / 100.)), (3, 1)).T X_nan = np.copy(X) X_nan[5:10, 0:3] = np.nan X_new = ext.numpy.mutate_nan(X_nan) np.testing.assert_array_almost_equal(X, X_new, decimal=4) def test_butterworth(self, butterworth_test_signals): for args, expected in butterworth_test_signals: result = ext.numpy.butterworth(**args) diff = expected[10:90, ] - result[10:90, ] assert expected.shape == result.shape assert np.all(diff < 0.1) def test_resample(self, resample_test_signals): for test_signal_pair_1, test_signal_pair_2 in resample_test_signals: sr1 = test_signal_pair_1[0] signal1 = test_signal_pair_1[1] sr2 = test_signal_pair_2[0] signal2 = test_signal_pair_2[1] result12 = ext.numpy.resample(signal1, sr1, sr2) expected12 = signal2 st = int(sr2/10) et = int(sr2 - sr2/10) diff12 = expected12[st:et, ] - \ result12[st:et, ] print('{}, {}'.format(sr1, sr2)) assert expected12.shape == result12.shape assert np.all(diff12 < 0.1) result21 = ext.numpy.resample(signal2, sr2, sr1) expected21 = signal1 st = int(sr1/10) et = int(sr1 - sr1/10) diff21 = expected21[st:et, ] - \ result21[st:et, ] print('{}, {}'.format(sr2, sr1)) assert expected21.shape == result21.shape assert np.all(diff21 < 0.1) def test_apply_over_subwins(self): func = np.mean # test on single row array with subwins and subwin_samples not set X = ext.numpy.atleast_float_2d(np.array([1., 1., 1.])) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=None, subwins=None, axis=0) assert np.array_equal(result, X) # test on single row array with subwin_samples not set X = ext.numpy.atleast_float_2d(np.array([1., 1., 1.])) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=None, subwins=1, axis=0) assert np.array_equal(result, X) # test on single row array with subwins not set X = ext.numpy.atleast_float_2d(np.array([1., 1., 1.])) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=1, subwins=None, axis=0) assert np.array_equal(result, X) # test on single row array with subwins to be zero X = ext.numpy.atleast_float_2d(np.array([1., 1., 1.])) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=2, subwins=None, axis=0) assert np.array_equal(result, X) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=None, subwins=0, axis=0) assert np.array_equal(result, X) # test on single row array with subwin_samples to be zero X = ext.numpy.atleast_float_2d(np.array([1., 1., 1.])) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=0, subwins=None, axis=0) assert np.array_equal(result, X) result = ext.numpy.apply_over_subwins( X, func, subwin_samples=None, subwins=2, axis=0) assert np.array_equal(result, X) # test on 2d array X = ext.numpy.atleast_float_2d(
np.ones((10, 3))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 31 10:20:27 2019 Metropolis Hastings step for Gorkha case @author: duttar """ # %% # load libraries import numpy as np import scipy.io as sio import random import sys import os from scipy.optimize import lsq_linear #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import Axes3D #simport matplotlib.tri as mtri from collections import namedtuple sys.path.append('additional_scripts/') sys.path.append('additional_scripts/geompars/') sys.path.append('additional_scripts/greens/') sys.path.append('additional_scripts/SMC-python/') from Gorkhamakemesh import * from greenfunction import * from posteriorGorkha import * from SMC import * import time #%% Define functions # %% mat_c1 = sio.loadmat('additional_scripts/GPS_subsampledGorkha.mat') covall = mat_c1['covall'] subdisp = mat_c1['subdisp'] subloc1 = mat_c1['subloc'] sublos = mat_c1['sublos'] numdis = subloc1.shape[0] subloc = np.hstack((subloc1,np.zeros((numdis,1)))) for i in range(numdis): covall[i,i] = 1.19*covall[i,i] invcov = np.linalg.inv(covall) W = np.linalg.cholesky(invcov).T surf_pts = np.array([[215.8972,3.0950e+03],[442.8739,3.0097e+03]]) bestgeo = np.array([1.0927 ,0.0241, 5.6933,-20.0000, 2.1345, \ 0.3529, 4.4643, 0.0336, -12, -2.8494, 0.0043]) disct_x = 20; disct_z = 12 NT1 = namedtuple('NT1', \ 'trired p q r xfault yfault zfault disct_x disct_z surfpts model') mesh = NT1(None, None, None, None, None, None, None, \ disct_x, disct_z, surf_pts, bestgeo) # get the geometry start = time.time() finalmesh = Gorkhamesh(mesh, NT1) end = time.time() print(end - start) ################# make a plot ################################# #fig = plt.figure(figsize=plt.figaspect(0.5)) #ax = fig.add_subplot(1, 1, 1, projection='3d') #ax.plot_trisurf(finalmesh.p, finalmesh.q, finalmesh.r, \ # triangles=finalmesh.trired, cmap=plt.cm.Spectral) #plt.axis('equal') #ax.set(xlim=(200, 500), ylim=(2900, 3400), zlim=(-25, -5)) #plt.show() ############################################################## # run the greens function start = time.time() #grn1, obsdata = grn_func(subloc, subdisp, sublos, finalmesh.trired, \ # finalmesh.p, finalmesh.q, finalmesh.r) end = time.time() print(end - start) ############################################################## lowslip1 = np.zeros((1,finalmesh.trired.shape[0])) lowslip2 = -10*np.ones((1,finalmesh.trired.shape[0])) maxslip1 = 25*np.ones((1,finalmesh.trired.shape[0])) maxslip2 = 10*np.ones((1,finalmesh.trired.shape[0])) LBslip = np.append(lowslip1, lowslip2) UBslip = np.append(maxslip1, maxslip2) LB = np.append(
np.array([-5, -.5, 3, -25, -5, -.5, -5, -.5, -13, -8, -8])
numpy.array
import unittest import matplotlib import matplotlib.pyplot matplotlib.use("Agg") matplotlib.pyplot.switch_backend("Agg") class Test(unittest.TestCase): def test_cantilever_beam(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import CantileverBeam ndim = 3 problem = CantileverBeam(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(0.01, 0.05, num) x[:, 1] = 0.5 x[:, 2] = 0.5 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_robot_arm(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import RobotArm ndim = 2 problem = RobotArm(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(0.0, 1.0, num) x[:, 1] = np.pi y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_rosenbrock(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Rosenbrock ndim = 2 problem = Rosenbrock(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-2, 2.0, num) x[:, 1] = 0.0 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_sphere(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Sphere ndim = 2 problem = Sphere(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-10, 10.0, num) x[:, 1] = 0.0 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_branin(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Branin ndim = 2 problem = Branin(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-5.0, 10.0, num) x[:, 1] = np.linspace(0.0, 15.0, num) y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_lp_norm(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import LpNorm ndim = 2 problem = LpNorm(ndim=ndim, order=2) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-1.0, 1.0, num) x[:, 1] = np.linspace(-1.0, 1.0, num) y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_tensor_product(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import TensorProduct ndim = 2 problem = TensorProduct(ndim=ndim, func="cos") num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-1, 1.0, num) x[:, 1] = 0.0 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_torsion_vibration(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import TorsionVibration ndim = 15 problem = TorsionVibration(ndim=ndim) num = 100 x = np.ones((num, ndim)) for i in range(ndim): x[:, i] = 0.5 * (problem.xlimits[i, 0] + problem.xlimits[i, 1]) x[:, 0] = np.linspace(1.8, 2.2, num) y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_water_flow(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import WaterFlow ndim = 8 problem = WaterFlow(ndim=ndim) num = 100 x = np.ones((num, ndim)) for i in range(ndim): x[:, i] = 0.5 * (problem.xlimits[i, 0] + problem.xlimits[i, 1]) x[:, 0] = np.linspace(0.05, 0.15, num) y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_welded_beam(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import WeldedBeam ndim = 3 problem = WeldedBeam(ndim=ndim) num = 100 x = np.ones((num, ndim)) for i in range(ndim): x[:, i] = 0.5 * (problem.xlimits[i, 0] + problem.xlimits[i, 1]) x[:, 0] = np.linspace(5.0, 10.0, num) y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_wing_weight(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import WingWeight ndim = 10 problem = WingWeight(ndim=ndim) num = 100 x = np.ones((num, ndim)) for i in range(ndim): x[:, i] = 0.5 * (problem.xlimits[i, 0] + problem.xlimits[i, 1]) x[:, 0] = np.linspace(150.0, 200.0, num) y = problem(x) yd =
np.empty((num, ndim))
numpy.empty
"""An implementation of a distributed EP algorithm described in an article "Expectation propagation as a way of life" (arXiv:1412.4869). This implementation works with parallel EP but the calculations are done serially with shared memory between workers. The most recent version of the code can be found on GitHub: https://github.com/gelman/ep-stan """ # Licensed under the 3-clause BSD license. # http://opensource.org/licenses/BSD-3-Clause # # Copyright (C) 2014 <NAME> # All rights reserved. __all__ = ['Worker', 'Master'] import sys import time import multiprocessing import numpy as np from scipy import linalg # LAPACK qr routine dgeqrf_routine = linalg.get_lapack_funcs('geqrf') from .util import ( invert_normal_params, olse, get_last_fit_sample, load_stan, copy_fit_samples, stan_sample_time ) from pystan.constants import MAX_UINT as pystan_max_uint def _sample_stan(queue, path, data, stan_params, other_params=None): """Load and fit Stan model in a subprocess. Implemented for multiprocesing. Parameters ---------- queue : multiprocessing.Queue Queue into which the results are put (see Returns). path : str Path to the stan model. data : dict Data for the sampling. stan_params : dict Keyword arguments passed to the Stan. other_params : sequence of str, optional List of additional parameter names. If provided, the associated samples are also returned. Returns ------- samps : ndarray samples of phi lastsamp : dict the last sample of the chains for next iteration initialisation duration : float sampling time msteps : float mean stepsize mrhat : float max Rhat other_samp : dict additional requested samples (returned only if such are requested) """ # Sample from the model sm = load_stan(path) fit, duration = stan_sample_time(sm, data=data, **stan_params) # Extract samples dphi = data['mu_phi'].shape[0] samp = copy_fit_samples(fit, 'phi') # Get the last sample of all lastsamp = get_last_fit_sample(fit) # Mean stepsize msteps = np.mean([ np.mean(p['stepsize__']) for p in fit.get_sampler_params() ]) # Max Rhat (from all but last row in the last column) mrhat = np.max(fit.summary()['summary'][:-1,-1]) # Returned values ret = [samp, lastsamp, duration, msteps, mrhat] # Extract other params if other_params: other_samp = { par : fit.extract(pars=par)[par] for par in other_params } ret.append(other_samp) # Put returns into the queue queue.put(ret) class Worker(object): """Worker responsible of calculations for each site. Parameters ---------- index : integer The index of this site stan_model : StanModel or str The StanModel instance responsible for the MCMC sampling. dphi : int The length of the parameter vector phi. X, y: ndarray The data included in this site. A : dict, optional Additional data included in this site. Other parameters ---------------- See the class DistributedEP """ DEFAULT_OPTIONS = { 'init_prev' : True, 'prec_estim' : 'sample', 'prec_estim_skip' : 0, 'verbose' : False } DEFAULT_STAN_PARAMS = { 'chains' : 4, 'iter' : 1000, 'warmup' : None, 'thin' : 1, 'init' : 'random' } # Available values for option `prec_estim` PREC_ESTIM_OPTIONS = ('sample', 'olse') RESERVED_STAN_PARAMETER_NAMES = ['X', 'y', 'N', 'D', 'mu_phi', 'Omega_phi'] def __init__( self, index, stan_model, dphi, X, y, A=None, **options): # Parse options # Set missing options to defaults for (kw, default) in self.DEFAULT_OPTIONS.items(): if kw not in options: options[kw] = default for (kw, default) in self.DEFAULT_STAN_PARAMS.items(): if kw not in options: options[kw] = default # Extract stan parameters self.stan_params = {} for (kw, val) in options.items(): if kw in self.DEFAULT_STAN_PARAMS: self.stan_params[kw] = val elif kw not in self.DEFAULT_OPTIONS: # Unrecognised option raise TypeError("Unexpected option '{}'".format(kw)) if A is None: A = {} # Allocate space for calculations # After calling the method cavity, self.Mat holds the precision matrix # and self.vec holds the mean of the cavity distribution. After calling # the method tilted, self.Mat holds the unnormalised covariance matrix # and self.vec holds the mean of the tilted distributions. self.Mat = np.empty((dphi,dphi), order='F') self.vec = np.empty(dphi) # The instance variable self.phase indicates if self.Mat and self.vec # contains the cavity or tilted distribution parameters: # 0: neither # 1: cavity # 2: tilted self.phase = 0 # In the case of tilted distribution, the instance variable self.nsamp # indicates how many samples has contributed into the unnormalised # covariance matrix in self.Mat self.nsamp = None # Current iteration global approximations self.Q = None self.r = None # Temporary arrays for calculations self.temp_M = np.empty((dphi,dphi), order='F') self.temp_v = np.empty(dphi) # Data for stan model in method tilted self.data = dict( N=X.shape[0], X=X, y=y, mu_phi=self.vec, Omega_phi=self.Mat.T, # Mat transposed in order to get C-order **A ) # Add param `D` only if `X` is two dimensional if len(X.shape) == 2: self.data['D'] = X.shape[1] # Store other instance variables self.index = index self.stan_model = stan_model self.dphi = dphi self.iteration = 0 # The last elapsed time self.last_time = None self.last_msteps = None self.last_mrhat = None # The samples saved from the last fit self.saved_samples = None # Initialisation self.init_prev = options['init_prev'] if self.init_prev: # Store the original init method so that it can be reset, when # an iteration fails self.init_orig = self.stan_params['init'] if not isinstance(self.init_orig, str): # If init_prev is used, init option has to be a string raise ValueError("Arg. `init` has to be a string if " "`init_prev` is True") # Tilted precision estimate method self.prec_estim = options['prec_estim'] if not self.prec_estim in self.PREC_ESTIM_OPTIONS: raise ValueError("Invalid value for option `prec_estim`") if self.prec_estim != 'sample': self.prec_estim_skip = options['prec_estim_skip'] else: self.prec_estim_skip = 0 # Verbose option self.verbose = options['verbose'] def cavity(self, Q, r, Qi, ri): """Form the cavity distribution and convert them to moment parameters. Parameters ---------- Q, r : ndarray Natural parameters of the global approximation Qi, ri : ndarray Natural site parameters Returns ------- pos_def True if the cavity distribution covariance matrix is positive definite. False otherwise. """ self.Q = Q self.r = r np.subtract(self.Q, Qi, out=self.Mat) np.subtract(self.r, ri, out=self.vec) # Check if positive definite and solve the mean try: np.copyto(self.temp_M, self.Mat) cho = linalg.cho_factor(self.temp_M, overwrite_a=True) linalg.cho_solve(cho, self.vec, overwrite_b=True) except linalg.LinAlgError: # Not positive definite self.phase = 0 return False else: self.phase = 1 return True def tilted(self, dQi, dri, save_samples=None, seed=None): """Estimate the tilted distribution parameters. This method estimates the tilted distribution parameters and calculates the resulting site parameter updates into the given arrays. The cavity distribution has to be calculated before this method is called, i.e. the method cavity has to be run before this. After calling this method the instance variables self.Mat and self.vec hold the tilted distribution moment parameters (note however that the covariance matrix is unnormalised and the number of samples contributing to this matrix is stored in the instance variable self.nsamp). Parameters ---------- dQi, dri : ndarray Output arrays where the site parameter updates are placed. save_samples : sequence of str, optional Additional parameter names, whose samples are to be saved in instance variable `saved_samples` (dict with {pname:samples}). seed : np.random.RandomState or int, optional Seed for the Stan sampling Returns ------- pos_def True if the estimated tilted distribution covariance matrix is positive definite. False otherwise. """ if self.phase != 1: raise RuntimeError('Cavity has to be calculated before tilted.') # set next seed for the sampling if isinstance(seed, np.random.RandomState): rng = seed else: rng = np.random.RandomState(seed) self.stan_params['seed'] = rng.randint(0, pystan_max_uint) # Sample from the model if isinstance(self.stan_model, str): # run in a subprocess q = multiprocessing.Queue() args = [q, self.stan_model, self.data, self.stan_params] if save_samples: args.append(save_samples) p = multiprocessing.Process(target=_sample_stan, args=args) p.start() if save_samples: samp, lastsamp, dur, msteps, mrhat, saved_samp = q.get() self.saved_samp = saved_samp else: samp, lastsamp, dur, msteps, mrhat = q.get() samp = np.copy(samp, order='F') # Needs to be copied for `owndata` p.join() # store info self.last_time = dur self.last_msteps = msteps self.last_mrhat = mrhat else: # run in the same process fit, max_sampling_time = stan_sample_time( self.stan_model, data=self.data, **self.stan_params) time_start = timer() # store info # runtime self.last_time = max_sampling_time # mean stepsize self.last_msteps = np.mean([ np.mean(p['stepsize__']) for p in fit.get_sampler_params() ]) # max Rhat (from all but last row in the last column) self.last_mrhat = np.max(fit.summary()['summary'][:-1,-1]) # Extract samples samp = copy_fit_samples(fit, 'phi') lastsamp = get_last_fit_sample(fit) if save_samples: # Extract other params self.saved_samp = { par : fit.extract(pars=par)[par] for par in save_samples } # Dereference the fit fit = None if self.verbose: print('\n sampling runtime: {:.4}'.format(self.last_time)) print(' mean stepsize: {:.4}'.format(self.last_msteps)) print(' max Rhat: {:.4}'.format(self.last_mrhat)) if self.init_prev: # Store the last sample of each chain self.stan_params['init'] = lastsamp self.nsamp = samp.shape[0] # Estimate precision matrix try: # Basic sample estimate if self.prec_estim == 'sample' or self.prec_estim_skip > 0: # Mean mt = np.mean(samp, axis=0, out=self.vec) # Center samples samp -= mt # Use QR-decomposition for obtaining Cholesky of the scatter # matrix (only R needed, Q-less algorithm would be nice) _, _, _, info = dgeqrf_routine(samp, overwrite_a=True) if info: raise linalg.LinAlgError( "dgeqrf LAPACK routine failed with error code {}" .format(info) ) # Copy the relevant part of the array into contiguous memory np.copyto(self.Mat, samp[:self.dphi,:]) invert_normal_params( self.Mat, mt, out_A=dQi, out_b=dri, cho_form=True ) # Unbiased (for normal distr.) natural parameter estimates unbias_k = (self.nsamp - self.dphi - 2) dQi *= unbias_k dri *= unbias_k if self.prec_estim_skip > 0: self.prec_estim_skip -= 1 # Optimal linear shrinkage estimate elif self.prec_estim == 'olse': # Mean mt = np.mean(samp, axis=0, out=self.vec) # Center samples samp -= mt # Sample covariance np.dot(samp.T, samp, out=self.Mat.T) # Normalise self.Mat into dQi np.divide(self.Mat, self.nsamp, out=dQi) # Estimate olse(dQi, self.nsamp, P=self.Q, out='in-place') np.dot(dQi, mt, out=dri) else: raise ValueError("Invalid value for option `prec_estim`") # Calculate the difference into the output arrays np.subtract(dQi, self.Q, out=dQi) np.subtract(dri, self.r, out=dri) except linalg.LinAlgError: # Precision estimate failed pos_def = False self.phase = 0 dQi.fill(0) dri.fill(0) if self.init_prev: # Reset initialisation method self.init = self.init_orig else: # Set return and phase flag pos_def = True self.phase = 2 self.iteration += 1 return pos_def class Master(object): """Manages the distributed EP algorithm. Parameters ---------- site_model : StanModel or string Model for sampling from the tilted distribution of a site. Can be provided either directly as a PyStan model instance or as filename string pointing to a pickled model or stan source code. The model has a restricted structure (see Notes). X : ndarray Explanatory variable data in an ndarray of shape (N,D), where N is the number of observations and D is the number of variables. `X` should be C-contiguous (copy made if not). N.B. One dimensional array of shape (N,) is also acceptable, in which case D is not provided to the stan model. y : ndarray Response variable data in an ndarray of shape (N,), where N is the number of observations (same N as for X). A : dict, optional Additional data for the site model. The keys in the dict are the names of the variables and the values are the coresponding objects e.g. integers or ndarrays. These arrays are distributed as a whole for each site. Example: {'var':[3,2]} distributes var=[3,2] to each site. A_k : dict, optional Additional data for the site model. The keys in the dict are the names of the variables and the values are array-likes of length K, where K is the number of sites. The first element of the array-likes are distributed to the first site etc. Example: {'var':[3,2]} distributes var=3 to the first site and var=2 to the second site. A_n : dict, optional Additional sliced data arrays provided for the site model. The keys in the dict are the names of the variables and the values are the coresponding ndarrays of size (N, ...). These arrays are sliced for each site (similary as `X` and `y`). site_ind, site_ind_ord, site_sizes : ndarray, optional Arrays indicating which sample belong to which site. Providing one of these keyword arguments is enough. If none of these are provided, a clustering is performed. Description of individual arguments: site_ind : Array of length N containing the site number (non-negative integer) of each point. site_ind_ord : Similary as `site_ind` but the sites are in order, i.e. the samples are sorted. site_sizes : Array of size K, where K is the number of sites, indicating the number of samples in each site. When this argument is provided, the samples are assumed to be in order (similary as for argument `site_ind_ord`). Providing `site_ind_ord` or `site_sizes` is preferable over `site_ind` because then the data arrays `X` and `y` does not have to be copied. dphi : int, optional Number of parameters for the site model, i.e. the length of phi (see Notes). Has to be given if prior is not provided. prior : dict, optional The parameters of the multivariate normal prior distribution for phi provided in a dict containing either: 1) moment parameters with keys 'm' and 'S' 2) natural parameters with keys 'r' and 'Q'. The matrix 'Q' should be F contiguous (copy made if not). Argument `dphi` can be ommited if a prior is given. If prior is not given, the standard normal distribution is used. Other parameters ---------------- init_site : scalar or ndarray, optional The initial site precision matrix. If not provided, improper uniform N(0,inf I), i.e. Q is allzeroes, is used. If scalar, N(0,A^2/K I), where A = `init_site`, is used. overwrite_model : bool, optional If a string for `site_model` is provided, the model is compiled even if a precompiled model is found (see util.load_stan). chains : int, optional The number of chains in the site_model mcmc sampling. Default is 4. iter : int, optional The number of samples in the site_model mcmc sampling. Default is 1000. warmup : int, optional The number of samples to be discarded from the begining of each chain in the site_model mcmc sampling. Default is nsamp//2. thin : int, optional Thinning parameter for the site_model mcmc sampling. Default is 2. init_prev : bool, optional Indicates if the last sample of each chain in the site mcmc sampling is used as the starting point for the next iteration sampling. Default is True. init : {'random', '0', 0, function returning dict, list of dict}, optional Specifies how the initialisation is performed for the sampler (see StanModel.sampling). If `init_prev` is True, this parameter affects only the sampling on the first iteration, and strings 'random' and '0' are the only acceptable values for this argument. prec_estim : {'sample', 'olse', 'glassocv'} Method for estimating the precision matrix from the tilted distribution samples. The available methods are: 'sample' : basic sample estimate 'olse' : optimal linear shrinkage estimate (see util.olse) 'glassocv' : graphical lasso estimate with cross validation prec_estim_skip : int Non-negative integer indicating on how many iterations from the begining the tilted distribution precision matrix is estimated using the default sample estimate instead of anything else. df0 : float or function, optional The initial damping factor for each iteration. Must be a number in the range (0,1]. If a number is given, a constant initial damping factor for each iteration is used. If a function is given, it must return the desired initial damping factor when called with the iteration number. If not provided, damping factor of 1/K is used. df_decay : float, optional The decay multiplier for the damping factor used if the resulting posterior covariance or cavity distributions are not positive definite. Default value is 0.8. df_treshold : float, optional The treshold value for the damping factor. If the damping factor decays below this value, the algorithm is stopped. Default is 1e-6. Notes ----- TODO: Describe the structure of the site model. """ # Return codes for method run INFO_OK = 0 INFO_INVALID_PRIOR = 1 INFO_DF_TRESHOLD_REACHED_GLOBAL = 2 INFO_DF_TRESHOLD_REACHED_CAVITY = 3 INFO_ALL_SITES_FAIL = 4 # Constrain pos.def. min eig.val. MIN_EIG_TRESHOLD = 1e-5 MIN_EIG = 0.5 # List of constructor default keyword arguments DEFAULT_KWARGS = dict( A = {}, A_n = {}, A_k = {}, site_ind = None, site_ind_ord = None, site_sizes = None, dphi = None, prior = None, init_site = None, df0 = None, df_decay = 0.8, df_treshold = 1e-6, overwrite_model = False ) def __init__(self, site_model, X, y, **kwargs): # Parse keyword arguments self.worker_options = {} for (kw, val) in kwargs.items(): if ( kw in Worker.DEFAULT_OPTIONS or kw in Worker.DEFAULT_STAN_PARAMS ): self.worker_options[kw] = val elif kw not in self.DEFAULT_KWARGS: # Unrecognised keyword argument raise TypeError("Unexpected keyword argument '{}'".format(kw)) # Set missing kwargs to defaults for (kw, default) in self.DEFAULT_KWARGS.items(): if kw not in kwargs: kwargs[kw] = default # Set missing worker options to defaults for (kw, default) in Worker.DEFAULT_OPTIONS.items(): if kw not in self.worker_options: self.worker_options[kw] = default for (kw, default) in Worker.DEFAULT_STAN_PARAMS.items(): if kw not in self.worker_options: self.worker_options[kw] = default # Stan model source (or instance) self.site_model = site_model # Validate X self.N = X.shape[0] if len(X.shape) == 2: self.D = X.shape[1] elif len(X.shape) == 1: self.D = None else: raise ValueError("Argument `X` should be one or two dimensional") self.X = X # Validate y if len(y.shape) != 1: raise ValueError("Argument `y` should be one dimensional") if y.shape[0] != self.N: raise ValueError("The shapes of `y` and `X` does not match") self.y = y # Process site indices # K : number of sites # Nk : number of samples per site # k_ind : site index of each sample # k_lim : sample index limits if not kwargs['site_sizes'] is None: # Size of each site provided self.Nk = kwargs['site_sizes'] self.K = len(self.Nk) self.k_lim = np.concatenate(([0], np.cumsum(self.Nk))) self.k_ind = np.empty(self.N, dtype=np.int64) for k in range(self.K): self.k_ind[self.k_lim[k]:self.k_lim[k+1]] = k elif not kwargs['site_ind_ord'] is None: # Sorted array of site indices provided self.k_ind = kwargs['site_ind_ord'] self.Nk = np.bincount(self.k_ind) self.K = len(self.Nk) self.k_lim = np.concatenate(([0], np.cumsum(self.Nk))) elif not kwargs['site_ind'] is None: # Unsorted array of site indices provided k_ind = kwargs['site_ind'] k_sort = k_ind.argsort(kind='mergesort') # Stable sort self.k_ind = k_ind[k_sort] self.Nk = np.bincount(self.k_ind) self.K = len(self.Nk) self.k_lim = np.concatenate(([0], np.cumsum(self.Nk))) # Copy X and y to a new sorted array self.X = self.X[k_sort] self.y = self.y[k_sort] else: raise NotImplementedError("Auto clustering not yet implemented") if self.k_lim[-1] != self.N: raise ValueError("Site definition does not match with `X`") if np.any(self.Nk == 0): raise ValueError("Empty sites: {}. Index the sites from 1 to K-1" .format(np.nonzero(self.Nk==0)[0])) if self.K < 2: raise ValueError("Distributed EP should be run with at least " "two sites.") # Ensure that X and y are C contiguous self.X = np.ascontiguousarray(self.X) self.y = np.ascontiguousarray(self.y) # Process A self.A = kwargs['A'] # Check for name clashes for key in self.A.keys(): if key in Worker.RESERVED_STAN_PARAMETER_NAMES: raise ValueError("Additional data name {} clashes.".format(key)) # Process A_n self.A_n = kwargs['A_n'].copy() for (key, val) in kwargs['A_n'].items(): if val.shape[0] != self.N: raise ValueError("The shapes of `A_n[{}]` and `X` does not " "match".format(repr(key))) # Check for name clashes if ( key in Worker.RESERVED_STAN_PARAMETER_NAMES or key in self.A ): raise ValueError("Additional data name {} clashes.".format(key)) # Ensure C-contiguous if not val.flags['CARRAY']: self.A_n[key] = np.ascontiguousarray(val) # Process A_k self.A_k = kwargs['A_k'] for (key, val) in self.A_k.items(): # Check for length if len(val) != self.K: raise ValueError("Array-like length mismatch in `A_k` " "(should be: {}, found: {})" .format(self.K, len(val))) # Check for name clashes if ( key in Worker.RESERVED_STAN_PARAMETER_NAMES or key in self.A or key in self.A_n ): raise ValueError("Additional data name {} clashes.".format(key)) # Initialise prior prior = kwargs['prior'] self.dphi = kwargs['dphi'] if prior is None: # Use default prior if self.dphi is None: raise ValueError("If arg. `prior` is not provided, " "arg. `dphi` has to be given") self.Q0 = np.eye(self.dphi).T # Transposed for F contiguous self.r0 = np.zeros(self.dphi) else: # Use provided prior if not isinstance(prior, dict): raise TypeError("Argument `prior` is of wrong type") if 'Q' in prior and 'r' in prior: # In a natural form already self.Q0 =
np.asfortranarray(prior['Q'])
numpy.asfortranarray
# This file is part of the Astrometry.net suite. # Licensed under a 3-clause BSD style license - see LICENSE from math import pi import numpy as np def estimate_mode(img, lo=None, hi=None, plo=1, phi=70, bins1=30, flo=0.5, fhi=0.8, bins2=30, return_fit=False, raiseOnWarn=False): # Estimate sky level by: compute the histogram within [lo,hi], fit # a parabola to the log-counts, return the argmax of that parabola. # Coarse bin to find the peak (mode) if lo is None: lo = np.percentile(img, plo) if hi is None: hi = np.percentile(img, phi) binedges1 = np.linspace(lo, hi, bins1+1) counts1,e = np.histogram(img.ravel(), bins=binedges1) bincenters1 = binedges1[:-1] + (binedges1[1]-binedges1[0])/2. maxbin = np.argmax(counts1) maxcount = counts1[maxbin] mode = bincenters1[maxbin] # Search for bin containing < {flo,fhi} * maxcount ilo = maxbin while ilo > 0: ilo -= 1 if counts1[ilo] < flo*maxcount: break ihi = maxbin while ihi < bins1-1: ihi += 1 if counts1[ihi] < fhi*maxcount: break lo = bincenters1[ilo] hi = bincenters1[ihi] binedges = np.linspace(lo, hi, bins2) counts,e = np.histogram(img.ravel(), bins=binedges) bincenters = binedges[:-1] + (binedges[1]-binedges[0])/2. b = np.log10(np.maximum(1, counts)) xscale = 0.5 * (hi - lo) x0 = (hi + lo) / 2. x = (bincenters - x0) / xscale A = np.zeros((len(x), 3)) A[:,0] = 1. A[:,1] = x A[:,2] = x**2 res = np.linalg.lstsq(A, b) X = res[0] mx = -X[1] / (2. * X[2]) mx = (mx * xscale) + x0 warn = None if not (mx > lo and mx < hi): if raiseOnWarn: raise ValueError('sky estimate not bracketed by peak: lo %f, sky %f, hi %f' % (lo, mx, hi)) warn = 'WARNING: sky estimate not bracketed by peak: lo %f, sky %f, hi %f' % (lo, mx, hi) if return_fit: bfit = X[0] + X[1] * x + X[2] * x**2 return (x * xscale + x0, b, bfit, mx, warn, binedges1,counts1) return mx def parse_ranges(s): ''' Parse PBS job array-style ranges: NNN,MMM-NNN,PPP *s*: string Returns: [ int, int, ... ] ''' tiles = [] words = s.split() for w in words: for a in w.split(','): if '-' in a: aa = a.split('-') if len(aa) != 2: raise RuntimeError('With an arg containing a dash, expect two parts, in word "%s"' % a) start = int(aa[0]) end = int(aa[1]) for i in range(start, end+1): tiles.append(i) else: tiles.append(int(a)) return tiles def patch_image(img, mask, dxdy = [(-1,0),(1,0),(0,-1),(0,1)], required=None): ''' Patch masked pixels by iteratively averaging non-masked neighboring pixels. WARNING: this modifies BOTH the "img" and "mask" arrays! mask: True for good pixels required: if non-None: True for pixels you want to be patched. dxdy: Pixels to average in, relative to pixels to be patched. Returns True if patching was successful. ''' assert(img.shape == mask.shape) assert(len(img.shape) == 2) h,w = img.shape Nlast = -1 while True: needpatching = np.logical_not(mask) if required is not None: needpatching *= required I = np.flatnonzero(needpatching) if len(I) == 0: break if len(I) == Nlast: return False #print 'Patching', len(I), 'pixels' Nlast = len(I) iy,ix = np.unravel_index(I, img.shape) psum = np.zeros(len(I), img.dtype) pn = np.zeros(len(I), int) for dx,dy in dxdy: ok = True if dx < 0: ok = ok * (ix >= (-dx)) if dx > 0: ok = ok * (ix <= (w-1-dx)) if dy < 0: ok = ok * (iy >= (-dy)) if dy > 0: ok = ok * (iy <= (h-1-dy)) # darn, NaN * False = NaN, not zero. finite = np.isfinite(img [iy[ok]+dy, ix[ok]+dx]) ok[ok] *= finite psum[ok] += (img [iy[ok]+dy, ix[ok]+dx] * mask[iy[ok]+dy, ix[ok]+dx]) pn[ok] += mask[iy[ok]+dy, ix[ok]+dx] # print 'ix', ix # print 'iy', iy # print 'dx,dy', dx,dy # print 'ok', ok # print 'psum', psum # print 'pn', pn img.flat[I] = (psum / np.maximum(pn, 1)).astype(img.dtype) mask.flat[I] = (pn > 0) #print 'Patched', np.sum(pn > 0) return True def clip_wcs(wcs1, wcs2, makeConvex=True, pix1=None, pix2=None): ''' Returns a pixel-space polygon in WCS1 after it is clipped by WCS2. Returns an empty list if the two WCS headers do not intersect. Note that due to weakness in the clip_polygon method, wcs2 must be convex. If makeConvex=True, we find the convex hull and clip with that. If pix1 is not None, pix1=(xx,yy), xx and yy lists of pixel coordinates defining the boundary of the image, in CLOCKWISE order; default is the edges and midpoints. ''' if pix1 is None: w1,h1 = wcs1.get_width(), wcs1.get_height() x1,x2,x3 = 0.5, w1/2., w1+0.5 y1,y2,y3 = 0.5, h1/2., h1+0.5 xx = [x1, x1, x1, x2, x3, x3, x3, x2] yy = [y1, y2, y3, y3, y3, y2, y1, y1] else: xx,yy = pix1 #rr,dd = wcs1.pixelxy2radec(xx, yy) if pix2 is None: w2,h2 = wcs2.get_width(), wcs2.get_height() x1,x2,x3 = 0.5, w2/2., w2+0.5 y1,y2,y3 = 0.5, h2/2., h2+0.5 XX = [x1, x1, x1, x2, x3, x3, x3, x2] YY = [y1, y2, y3, y3, y3, y2, y1, y1] else: XX,YY = pix2 rr,dd = wcs2.pixelxy2radec(XX, YY) ok,XX,YY = wcs1.radec2pixelxy(rr, dd) # XX,YY is the clip polygon in wcs1 pixel coords. # Not necessarily clockwise at this point! #print 'XX,YY', XX, YY if makeConvex: from scipy.spatial import ConvexHull points = np.vstack((XX,YY)).T #print 'points', points.shape hull = ConvexHull(points) #print 'Convex hull:', hull #print hull.vertices # ConvexHull returns the vertices in COUNTER-clockwise order. Reverse. v = np.array(list(reversed(hull.vertices))).astype(int) XX = XX[v] YY = YY[v] #plt.plot(XX, YY, 'm-') #plt.plot(XX[0], YY[0], 'mo') #plt.savefig('clip2.png') else: # Ensure points are listed in CLOCKWISE order. crosses = [] for i in range(len(XX)): j = (i + 1) % len(XX) k = (i + 2) % len(XX) xi,yi = XX[i], YY[i] xj,yj = XX[j], YY[j] xk,yk = XX[k], YY[k] dx1, dy1 = xj - xi, yj - yi dx2, dy2 = xk - xj, yk - yj cross = dx1 * dy2 - dy1 * dx2 #print 'cross', cross crosses.append(cross) crosses = np.array(crosses) #print 'cross products', crosses if np.all(crosses >= 0): # Reverse #print 'Reversing wcs2 points' XX = np.array(list(reversed(XX))) YY = np.array(list(reversed(YY))) clip = clip_polygon(list(zip(xx, yy)), list(zip(XX, YY))) clip = np.array(clip) if False: import pylab as plt plt.clf() plt.plot(xx, yy, 'b.-') plt.plot(xx[0], yy[0], 'bo') plt.plot(XX, YY, 'r.-') plt.plot(XX[0], YY[0], 'ro') if len(clip) > 0: plt.plot(clip[:,0], clip[:,1], 'm.-', alpha=0.5, lw=2) plt.savefig('clip1.png') return clip def polygon_area(poly): ''' NOTE, unlike many of the other methods in this module, takes: poly = (xx,yy) where xx,yy MUST repeat the starting point at the end of the polygon. ''' xx,yy = poly x,y = np.mean(xx), np.mean(yy) area = 0. for dx0,dy0,dx1,dy1 in zip(xx-x, yy-y, xx[1:]-x, yy[1:]-y): # area: 1/2 cross product area += np.abs(dx0 * dy1 - dx1 * dy0) return 0.5 * area def clip_polygon(poly1, poly2): ''' Returns a new polygon resulting from taking poly1 and clipping it to lie inside poly2. WARNING, the polygons must be listed in CLOCKWISE order. WARNING, the clipping polygon, poly2, must be CONVEX. ''' # from clipper import Clipper, Point, PolyType, ClipType, PolyFillType # ''' # ''' # c = Clipper() # p1 = [Point(x,y) for x,y in poly1] # p2 = [Point(x,y) for x,y in poly2] # c.AddPolygon(p1, PolyType.Subject) # c.AddPolygon(p2, PolyType.Clip) # solution = [] # pft = PolyFillType.EvenOdd # result = c.Execute(ClipType.Intersection, solution, pft, pft) # if len(solution) > 1: # raise RuntimeError('Polygon clipping results in non-simple polygon') # assert(result) # #print 'Result:', result # #print 'Solution:', solution # return [(s.x, s.y) for s in solution[0]] # Sutherland-Hodgman algorithm -- thanks, Wikipedia! N2 = len(poly2) # clip by each edge in turn. for j in range(N2): # target "left_right" value clip1 = poly2[j] clip2 = poly2[(j+1)%N2] LRinside = _left_right(clip1, clip2, poly2[(j+2)%N2]) # are poly vertices inside or outside the clip polygon? isinside = [_left_right(clip1, clip2, p) == LRinside for p in poly1] # the resulting clipped polygon clipped = [] N1 = len(poly1) for i in range(N1): S = poly1[i] E = poly1[(i+1)%N1] Sin = isinside[i] Ein = isinside[(i+1)%N1] if Ein: if not Sin: clipped.append(line_intersection(clip1, clip2, S, E)) clipped.append(E) else: if Sin: clipped.append(line_intersection(clip1, clip2, S, E)) poly1 = clipped return poly1 def polygons_intersect(poly1, poly2): ''' Determines whether the given 2-D polygons intersect. poly1, poly2: np arrays with shape (N,2) ''' # Check whether any points in poly1 are inside poly2, # or vice versa. for (px,py) in poly1: if point_in_poly(px,py, poly2): return (px,py) for (px,py) in poly2: if point_in_poly(px,py, poly1): return (px,py) # Check for intersections between line segments. O(n^2) brutish N1 = len(poly1) N2 = len(poly2) for i in range(N1): for j in range(N2): xy = line_segments_intersect(poly1[i % N1, :], poly1[(i+1) % N1, :], poly2[j % N2, :], poly2[(j+1) % N2, :]) if xy: return xy return False def line_segments_intersect(xy1, xy2, xy3, xy4): ''' Determines whether the two given line segments intersect; (x1,y1) to (x2,y2) and (x3,y3) to (x4,y4) ''' (x1,y1) = xy1 (x2,y2) = xy2 (x3,y3) = xy3 (x4,y4) = xy4 x,y = line_intersection((x1,y1),(x2,y2),(x3,y3),(x4,y4)) if x is None: # Parallel lines return False if x1 == x2: p1,p2 = y1,y2 p = y else: p1,p2 = x1,x2 p = x if not ((p >= min(p1,p2)) and (p <= max(p1,p2))): return False if x3 == x4: p1,p2 = y3,y4 p = y else: p1,p2 = x3,x4 p = x if not ((p >= min(p1,p2)) and (p <= max(p1,p2))): return False return (x,y) def line_intersection(xy1, xy2, xy3, xy4): ''' Determines the point where the lines described by (x1,y1) to (x2,y2) and (x3,y3) to (x4,y4) intersect. Note that this may be beyond the endpoints of the line segments. Probably raises an exception if the lines are parallel, or does something numerically crazy. ''' (x1,y1) = xy1 (x2,y2) = xy2 (x3,y3) = xy3 (x4,y4) = xy4 # This code started with the equation from Wikipedia, # then I added special-case handling. # bottom = ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)) # if bottom == 0: # raise RuntimeError("divide by zero") # t1 = (x1 * y2 - y1 * x2) # t2 = (x3 * y4 - y3 * x4) # px = (t1 * (x3 - x4) - t2 * (x1 - x2)) / bottom # py = (t1 * (y3 - y4) - t2 * (y1 - y2)) / bottom # From http://wiki.processing.org/w/Line-Line_intersection bx = float(x2) - float(x1) by = float(y2) - float(y1) dx = float(x4) - float(x3) dy = float(y4) - float(y3) b_dot_d_perp = bx*dy - by*dx if b_dot_d_perp == 0: return None,None cx = float(x3) - float(x1) cy = float(y3) - float(y1) t = (cx*dy - cy*dx) / b_dot_d_perp return x1 + t*bx, y1 + t*by def _left_right(xy1, xy2, xy3): ''' is (x3,y3) to the 'left' or 'right' of the line from (x1,y1) to (x2,y2) ? ''' (x1,y1) = xy1 (x2,y2) = xy2 (x3,y3) = xy3 dx2,dy2 = x2-x1, y2-y1 dx3,dy3 = x3-x1, y3-y1 return (dx2 * dy3 - dx3 * dy2) > 0 def point_in_poly(x, y, poly): ''' Performs a point-in-polygon test for numpy arrays of *x* and *y* values, and a polygon described as 2-d numpy array (with shape (N,2)) poly: N x 2 array Returns a numpy array of bools. ''' x = np.atleast_1d(x) y =
np.atleast_1d(y)
numpy.atleast_1d
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import os dimensions = range(1,11) for dim in dimensions: file0_name = "gauss_data/gaussian_same_projection_on_each_axis_{0}D_10000_0.0_1.0_1.0_0_euclidean.txt".format(dim) file1_name = "gauss_data/gaussian_same_projection_on_each_axis_{0}D_10000_0.0_0.95_0.95_0_euclidean.txt".format(dim) name = "gaussian_same_projection_on_each_axis_{0}D_10000_0.0_0.95_0.95_0".format(dim) data0 = np.loadtxt(file0_name)[:,None] data1 = np.loadtxt(file1_name)[:,None] xmin = np.min( [np.min(data0[:,0]),np.min(data1[:,0])]) xmax = np.max( [
np.max(data0[:,0])
numpy.max
# -*- coding: utf-8 -*- """ Research topics related to conference designs <NAME> <<EMAIL>> """ from collections import OrderedDict from typing import Union import json_tricks import copy import json import collections import itertools import numpy as np import os import sys import time import pickle import shutil from typing import Tuple, List, Any from functools import reduce import operator from functools import lru_cache import numpy as np from joblib import Parallel, delayed try: import matplotlib.pyplot as plt except BaseException: pass import oapackage from oapackage.oahelper import create_pareto_element import oapackage.conference import oapackage.markup as markup import oapackage.oahelper as oahelper from oapackage.markup import oneliner as e import oaresearch from oaresearch.research import citation import oaresearch.filetools from oapackage.conference import momentMatrix, modelStatistics, conferenceProjectionStatistics #%% class hashable_array(object): r'''Hashable wrapper for ndarray objects. Instances of ndarray are not hashable, meaning they cannot be added to sets, nor used as keys in dictionaries. This is by design - ndarray objects are mutable, and therefore cannot reliably implement the __hash__() method. The hashable class allows a way around this limitation. It implements the required methods for hashable objects in terms of an encapsulated ndarray object. This can be either a copied instance (which is safer) or the original object (which requires the user to be careful enough not to modify it). ''' def __init__(self, wrapped, tight=False): r'''Creates a new hashable object encapsulating an ndarray. wrapped The wrapped ndarray. tight Optional. If True, a copy of the input ndaray is created. Defaults to False. ''' self.__tight = tight self.__wrapped = np.array(wrapped) if tight else wrapped self.__hash = hash(self.__wrapped.tostring()) def __eq__(self, other): return np.all(self.__wrapped == other.__wrapped) def __hash__(self): return self.__hash def unwrap(self): r'''Returns the encapsulated ndarray. If the wrapper is "tight", a copy of the encapsulated ndarray is returned. Otherwise, the encapsulated ndarray itself is returned. ''' if self.__tight: return np.array(self.__wrapped) return self.__wrapped def make_hashable_array(design): return hashable_array(np.array(design)) # %% DesignType = Union[oapackage.array_link, np.ndarray] def conference_design_extensions(array: DesignType, verbose: int = 0, filter_symmetry : bool = True, conference_generator = None) -> List: """ Return list of all extensions of a conference design All extensions are generated, minus symmetry conditions. For details see `oapackage.generateSingleConferenceExtensions` Args: arrays : List of arrays to be extended verbose: Verbosity level filter_symmetry: If True then discard any designs that are now minimal according to the row permutations from the row symmetry group of the input design Returns: List of extensions """ j1zero = 0 if not isinstance(array, oapackage.array_link): array = oapackage.makearraylink(array) conference_type = oapackage.conference_t( array.n_rows, array.n_columns, j1zero) zero_index = -1 filterj2 = 1 filterj3 = 0 filter_symmetry = True # we can use symmetry reduction, since any the other filtering is not related to the symmetry of the design if conference_generator is None: extensions = oapackage.generateSingleConferenceExtensions( array, conference_type, zero_index, verbose >= 2, filter_symmetry, filterj2, filterj3, filter_symmetry) else: # TODO assert proper conference class and symmetry types extensions = conference_generator.generateCandidates (array); extensions = [oapackage.hstack(array, extension) for extension in extensions] return list(extensions) def conference_design_has_extension(design : DesignType) -> bool: """ Return true if specified conference design has an extension with an additional column Args: design: Conference design Returns: True of the design has extensions """ design_np = np.array(design) ee=conference_design_extensions(design_np) return len(ee)>0 #%% from oaresearch.misc_utils import index_sorted_array from collections import namedtuple #%% DesignStack = namedtuple('DesignStack', ['designs', 'nauty_designs', 'nauty_sort_index', 'nauty_designs_sorted']) def reduce_minimal_form(design, design_stack): """ Reduce design to minimal form using full stack of designs """ all_data, all_data_nauty, sort_indices, nauty_designs_sorted= design_stack nauty_form= oapackage.reduceConference(design) k=nauty_form.shape[1] sort_idx = sort_indices[k] if nauty_designs_sorted is None: nauty_sorted = [ all_data_nauty[k][idx] for idx in sort_idx] else: nauty_sorted=nauty_designs_sorted[k] sorted_idx=index_sorted_array(nauty_sorted,nauty_form) idx = sort_idx[sorted_idx] return all_data[k][idx] @lru_cache(maxsize=400000) def cached_conference_design_has_maximal_extension(design, verbose=0, Nmax = None, conference_generator=None): design_stack = conference_design_has_maximal_extension.design_stack if design_stack is None: raise Exception('initialize the design stack first!') if isinstance(design, hashable_array): design=design.unwrap() design_np = np.array(design) N = design_np.shape[0] if Nmax is None: Nmax = N k = design_np.shape[1] if not N==design_stack[0][4][0].shape[0]: raise Exception('N {N} does not match design stack') if k==Nmax: return True ee=conference_design_extensions(design_np, conference_generator = conference_generator) if verbose: print(f'design {N} {k}: check {len(ee)} extensions' ) result = False for subidx, extension_design in enumerate(ee): if verbose: print(f'design {N} {k}: subidx {subidx}' ) extension_design_link = oapackage.makearraylink(extension_design) md=reduce_minimal_form(extension_design_link, design_stack) if cached_conference_design_has_maximal_extension(make_hashable_array(md), verbose=verbose, Nmax=Nmax, conference_generator = conference_generator): result= True break if verbose: print(f'design {N} {k}: {result}' ) return result @oahelper.static_var('design_stack', None) def conference_design_has_maximal_extension(design, verbose=0, Nmax = None, conference_generator = None) -> bool: """ Determine whether a design has an extension to a maximal design The static variable design_stack needs to be initialized with a dictionary containing all designs with the number of rows specifed by the design. Args: design: Conference design N: Number of rows Returns: True if the design can be extended to the full number of columns """ if not isinstance(design, hashable_array): design = make_hashable_array(design) result = cached_conference_design_has_maximal_extension(design, verbose=verbose, Nmax=Nmax, conference_generator=conference_generator) return result def _flatten(data): if len(data) == 0: return data return reduce(operator.concat, data) def _conference_design_extensions_numpy(array, verbose=0): lst = conference_design_extensions(array, verbose) return [np.array(array) for array in lst] def extend_conference_designs_full(extensions: List, number_parallel_jobs=4) -> List: """ Extend a list of conference designs with all possible extensions minus symmetry """ if number_parallel_jobs > 1: extensions_numpy = _flatten(Parallel(n_jobs=number_parallel_jobs)( delayed(_conference_design_extensions_numpy)(np.array(array)) for array in extensions)) extensions = [oapackage.makearraylink( array) for array in extensions_numpy] else: extensions = _flatten([conference_design_extensions(array) for array in extensions]) return extensions def maximal_extension_size(array: oapackage.array_link, verbose: int = 1) -> Tuple[int, list]: """ Calculate maximum number of columns in an extention of specified design Args: design: Returns: Maximum number of columns """ maximum_number_of_columns = array.n_columns N = array.n_rows extensions0 = [array] extensions = extensions0 t0 = time.time() for c in range(extensions[0].n_columns, N): extensions2 = extend_conference_designs_full(extensions) if verbose >= 2: print(f'maximal_extension_size: N {N} columns {c}->{c+1}: {len(extensions)}->{len(extensions2)}') extensionsr = oapackage.selectConferenceIsomorpismClasses( extensions2, verbose=0) if verbose: dt = time.time() - t0 print( f'maximal_extension_size: N {N} columns {c}->{c+1}: {len(extensions)}->{len(extensions2)}->{len(extensionsr)}, {dt:.1f} [s]') if len(extensionsr) == 0: break extensions = extensionsr maximum_number_of_columns = c + 1 return maximum_number_of_columns, extensions # %% def select_even_odd_conference_designs(cfile: str) -> Tuple: """ Select the even-odd conference designs from a file with designs """ na = oapackage.nArrayFile(cfile) eolist: List[Any] = [] if na > 100000: af = oapackage.arrayfile_t(cfile) for ii in range(na): if ii % (200 * 1e3) == 0 or ii == na - 1: print('select_even_odd_conference_designs: %s: %d/%d' % (cfile, ii, af.narrays)) al = af.readnext() if ii == 0: if al.min() > -1: raise Exception('not a conference matrix?!') if not oapackage.isConferenceFoldover(al): eolist += [al] af.closefile() else: ll = oapackage.readarrayfile(cfile) na = len(ll) if len(ll) > 0: if ll[0].min() > -1: raise Exception('not a conference matrix?!') eolist = [al for al in ll if not oapackage.isConferenceFoldover(al)] return na, eolist # %% def cdesignTag(N, kk, page, outputdir, tdstyle='', tags=['cdesign', 'cdesign-diagonal', 'cdesign-diagonal-r'], tagtype=['full', 'r', 'r'], verbose=1, ncache=None, subpage=None, generated_result=None, conference_html_dir=None): """ Create html tag for oa page Args: N (int): number of rows kk (int): number of columns page (object): outputdir (str): tdstyle (str): tags (list): tagtype (list): verbose (int): ncache (dict): store results """ cfile, nn, mode = conferenceResultsFile( N, kk, outputdir, tags=tags, tagtype=tagtype, verbose=1) if ncache is not None: if 'full' not in ncache: ncache['full'] = {} ncache['full']['N%dk%d' % (N, kk)] = nn cfilex = oapackage.oahelper.checkOAfile(cfile) if cfilex is not None: cfilebase = os.path.basename(cfilex) else: cfilebase = None if generated_result is not None and not len(generated_result) == 0: if generated_result['pareto_results']['full_results']: nn = generated_result['pareto_results']['narrays'] cfile = None mode = 'full' if page is not None: if subpage: hreflink = os.path.join('conference', subpage) if verbose: print('cdesignTag: hreflink: %s' % subpage) else: hreflink = 'conference/%s' % cfilebase txt, hyper_link = htmlTag(nn, kk, N, mode=mode, href=hreflink, ncache=ncache, verbose=verbose >= 2) if verbose >= 2: print('cdesignTag: N %d, k %d, html txt %s' % (N, kk, txt,)) if hyper_link and ( cfilex is not None) and not hreflink.endswith('html'): # no html page, just copy OA file if verbose >= 2: print('cdesignTag: N %d, ncols %d: copy OA file' % (N, kk)) shutil.copyfile(cfilex, os.path.join( conference_html_dir, cfilebase)) page.td(txt, style=tdstyle) else: if verbose >= 2: print(cfile) return cfile def generate_even_odd_conference_designs(outputdir): """ Select even-odd conference designs from generated double conference designs """ Nrange = range(0, 82, 2) # full range # Nrange=range(44, 45, 2) # Nrange=range(4, 48, 2) Nrange = range(74, 82, 2) tag = 'dconferencej1j3' for Ni, N in enumerate(Nrange): kmax = int(np.ceil(N / 2) + 1) krange = range(2, kmax) for ki, kk in enumerate(krange): cfile = cdesignTag(N, kk, page=None, outputdir=outputdir, tags=[ tag, tag + '-r'], tagtype=['full', 'r'], conference_html_dir=None) na, eolist = select_even_odd_conference_designs(cfile) cfileout = cfile.replace(tag, tag + '-eo') print(' out: %s: %d -> %d' % (cfileout, na, len(eolist))) if 1: oapackage.writearrayfile( cfileout, eolist, oapackage.ABINARY_DIFF, N, kk) xfile = cfileout + '.gz' if os.path.exists(xfile): print('removing file %s' % (xfile)) os.remove(xfile) if 1: if len(eolist) > 100: cmd = 'gzip -f %s' % cfileout os.system(cmd) # %% def reduce_single_conference(arrays, verbose=0): """ Reduce a list of double conference arrays to single conference arrays Arrays that are not foldover arrays are discarded. Args: arrays (list): list of dobule conference designs Returns: list: list containing the corresponding single conference designs """ narrays = len(arrays) arrays = [ array for array in arrays if oapackage.isConferenceFoldover(array)] if verbose: print('reduce_single_conference: reduce %d arrays to %d single conference designs' % ( narrays, len(arrays))) def reduce_single(array): Nsingle = int(array.n_rows / 2) perm = oapackage.double_conference_foldover_permutation(array) return oapackage.array_link(np.array(array)[perm[0:Nsingle], :]) arrays = [reduce_single(array) for array in arrays] return arrays class SingleConferenceParetoCombiner: def __init__(self, outputdir, cache_dir, cache=False, verbose=1, pareto_method_options=None): """ Class to generate statistics and Pareto optimality results for a conference design class from double conference designs """ self.outputdir = outputdir self.cache_dir = cache_dir self.cache = cache self.verbose = verbose if pareto_method_options is None: pareto_method_options = {} self._pareto_method_options = pareto_method_options def append_basepath(self, afile): return os.path.join(self.outputdir, afile) def pareto_file(self, filename): pfile = os.path.join(self.cache_dir, filename) oapackage.mkdirc(os.path.split(pfile)[0]) return pfile def stats_file(self, filename): pfile = os.path.join(self.cache_dir, filename).replace('.oa', '.json') oapackage.mkdirc(os.path.split(pfile)[0]) return pfile def combined_results_file(self, number_columns): pfile = os.path.join( self.cache_dir, 'combined-single-conference-pareto-results-k%d.json' % number_columns) oapackage.mkdirc(os.path.split(pfile)[0]) return pfile def pre_calculate(self, arrayfiles): for ii, afile in enumerate(arrayfiles): outputfile = self.pareto_file(afile) outputfile_stats = self.stats_file(afile) if os.path.exists(outputfile) and self.cache: continue oapackage.oahelper.tprint( 'ParetoCalculator: pre_calculate file %d/%d: %s' % (ii, len(arrayfiles), afile)) arrays = oapackage.readarrayfile(self.append_basepath(afile)) number_arrays = len(arrays) arrays = reduce_single_conference(arrays, verbose=1) presults, _ = oaresearch.research_conference.calculateConferencePareto( arrays, **self._pareto_method_options) pareto_designs = [oapackage.array_link( array) for array in presults['pareto_designs']] print('generate %s: %d arrays' % (outputfile, len(pareto_designs))) oapackage.writearrayfile(outputfile, oapackage.arraylist_t( pareto_designs), oapackage.ABINARY) with open(outputfile_stats, 'wt') as fid: json.dump({'number_arrays': number_arrays, 'number_conference_arrays': len(arrays)}, fid) @staticmethod def combine_statistics(stats, extra_stats): if stats is None: return copy.copy(extra_stats) combined_stats = copy.copy(stats) for field in ['number_arrays', 'number_conference_arrays']: combined_stats[field] = stats[field] + extra_stats[field] return combined_stats def write_combined_results(self, number_columns, results): results['pareto_designs'] = [ np.array(array) for array in results['pareto_designs']] with open(self.combined_results_file(number_columns), 'wt') as fid: json_tricks.dump(results, fid, indent=4) def load_combined_results(self, number_columns): with open(self.combined_results_file(number_columns), 'rt') as fid: results = json_tricks.load(fid) return results def calculate(self, arrayfiles): """ Calculate statistics over generated designs Args: lst (list): list of files with designs """ pareto_arrays = [] combined_stats = None for afile in arrayfiles: oapackage.oahelper.tprint('ParetoCalculator: calculate %s' % afile) outputfile = self.pareto_file(afile) outputfile_stats = self.stats_file(afile) arrays = oapackage.readarrayfile(outputfile) pareto_arrays += list(arrays) stats = json.load(open(outputfile_stats, 'rt')) combined_stats = self.combine_statistics(combined_stats, stats) presults, _ = oaresearch.research_conference.calculateConferencePareto( pareto_arrays, **self._pareto_method_options) # remove invalid fields for tag in ['B4', 'F4']: if tag + '_max' in presults: presults.pop(tag + '_max') for tag in ['rankinteraction', 'ranksecondorder']: if tag + '_min' in presults: presults.pop(tag + '_min') presults['combined_statistics'] = combined_stats presults['_pareto_method_options'] = self._pareto_method_options return presults # %% def generate_or_load_conference_results(N, number_of_columns, outputdir, dc_outputdir, double_conference_cases=(), addExtensions=True, addMaximumExtensionColumns=False): """ Calculate results for conference designs class In data is either calculated directly, or loaded from pre-generated data gathered from double conference designs. """ pareto_results = OrderedDict( {'N': N, 'ncolumns': number_of_columns, 'full_results': 0, 'no_results': True}) from_double_conference = N in double_conference_cases addExtensions = N <= 26 pareto_method_options = { 'verbose': 1, 'addProjectionStatistics': None, 'addExtensions': addExtensions, 'addMaximumExtensionColumns': addMaximumExtensionColumns} if from_double_conference: if number_of_columns > N: return pareto_results, None print( 'generate_or_load_conference_results: N %d: loading from doubleconference results' % (N,)) dc_dir = os.path.join(dc_outputdir, 'doubleconference-%d' % (2 * N)) if not os.path.exists(dc_dir): return {}, None cache_dir = oapackage.mkdirc(os.path.join(dc_dir, 'sc_pareto_cache')) pareto_calculator = SingleConferenceParetoCombiner( dc_dir, cache_dir=cache_dir, cache=True, pareto_method_options=None) pareto_results = pareto_calculator.load_combined_results( number_of_columns) pareto_results['narrays'] = pareto_results['combined_statistics']['number_conference_arrays'] pareto_results['idstr'] = 'cdesign-%d-%d' % ( pareto_results['N'], pareto_results['ncolumns']) pareto_results['full'] = True pareto_results['full_results'] = True pareto_results['_from_double_conference'] = True cfile = None else: cfile, nn, mode = conferenceResultsFile(N, number_of_columns, outputdir, tags=[ 'cdesign', 'cdesign-diagonal', 'cdesign-diagonal-r'], tagtype=['full', 'r', 'r'], verbose=1) ll = oapackage.readarrayfile(cfile) narrays = len(ll) if mode == 'full' or narrays < 1000: presults, pareto = calculateConferencePareto( ll, N=N, k=number_of_columns, **pareto_method_options) pareto_results = generateConferenceResults( presults, ll, ct=None, full=(mode == 'full')) pareto_results['arrayfile'] = cfile else: cfile = None return pareto_results, cfile # %% def generateConference(N, kmax=None, verbose=1, diagc=False, nmax=None, selectmethod='random', tag='cdesign', outputdir=None): """ Generate sequece of conference designs Arguments: N : integer number of rows in the array kmax : integer maximum number of columns to compute verbose : integer output level diagc : boolean the default value is False. If True, then only the diagonal matrices will be computed (e.g. all zeros are on the diagonal) """ if kmax is None: kmax = N ctype = oapackage.conference_t(N, N, 0) if diagc: ctype.ctype = oapackage.conference_t.CONFERENCE_DIAGONAL tag += '-diagonal' if nmax is not None: tag += '-r' al = ctype.create_root() ll = oapackage.arraylist_t() ll.push_back(al) LL = [[]] * (kmax) LL[1] = ll print('generateConference: start: %s' % ctype) if outputdir is not None: _ = oapackage.writearrayfile( os.path.join(outputdir, 'cdesign-%d-%d.oa' % (N, 2)), LL[1], oapackage.ATEXT, N, 2) for extcol in range(2, kmax): if verbose: print('generateConference: extcol %d: %d designs' % (extcol, len(LL[extcol - 1]))) sys.stdout.flush() LL[extcol] = oapackage.extend_conference( LL[extcol - 1], ctype, verbose=verbose >= 2) LL[extcol] = oapackage.selectConferenceIsomorpismClasses( LL[extcol], verbose >= 1) LL[extcol] = oapackage.sortLMC0(LL[extcol]) if nmax is not None: na = min(nmax, len(LL[extcol])) if na > 0: if selectmethod == 'random': idx = np.random.choice(len(LL[extcol]), na, replace=False) LL[extcol] = [LL[extcol][i] for i in idx] elif selectmethod == 'first': LL[extcol] = [LL[extcol][i] for i in range(na)] else: # mixed case raise Exception('not implemented') afmode = oapackage.ATEXT if (len(LL[extcol]) > 1000): afmode = oapackage.ABINARY if outputdir is not None: _ = oapackage.writearrayfile(os.path.join( outputdir, '%s-%d-%d.oa' % (tag, N, extcol + 1)), LL[extcol], afmode, N, extcol + 1) ll = [len(l) for l in LL] if verbose: print('generated sequence: %s' % ll) return LL # %% def conferenceJ4(al, jj=4): """ Calculate J4 values for a conference matrix """ al = oapackage.makearraylink(al) return oapackage.Jcharacteristics_conference(al, number_of_columns=jj) @oapackage.oahelper.deprecated def conferenceSecondOrder(al, include_so=False): """ Calculate second-order interaction matrix for a conference matrix """ x = np.array(al) k = al.n_columns if include_so: offset = 0 m = int(k * (k + 1) / 2) else: offset = 1 m = int(k * (k - 1) / 2) y = np.zeros((x.shape[0], m)) idx = 0 for ii in range(k): for jj in range(ii + offset, k): y[:, idx] = x[:, ii] * x[:, jj] idx = idx + 1 return y def conferenceStatistics(al, verbose=0): """ Calculate statistics for a conference design Args: al (array): design to use Returns: list: f4, b4, rank X2, rank X2 with quadratics """ f4 = al.FvaluesConference(4) N = al.n_rows j4 = conferenceJ4(al) b4 = np.sum(np.array(j4) ** 2) / N ** 2 ncols = al.n_columns modelmatrix = oapackage.array2modelmatrix(al, 'i')[:, (1 + ncols):] rank = np.linalg.matrix_rank(modelmatrix) modelmatrix_quadratic = oapackage.array2modelmatrix(al, 'q')[ :, (1 + ncols):] rankq = np.linalg.matrix_rank(modelmatrix_quadratic) if verbose: print('f4: %s' % (f4,)) print('j4: %s' % (j4,)) print('rank X2: %s' % (rank,)) print('rank X2+quadratics: %s' % (rankq,)) return [f4, b4, rank, rankq] def test_confJ4(): al = oapackage.exampleArray(18) J = conferenceJ4(al) assert (np.sum(np.abs(np.array(J)) == 12) == 1) assert (np.sum(np.abs(np.array(J)) == 0) == 23) def createConferenceParetoElement(al, addFoldover=True, addProjectionStatistics=True, addMaximality=False, addMaximumExtensionColumns=False, pareto=None, rounding_decimals=3): """ Create Pareto element from conference design Returns: Tuple with pareto_element, data """ rr = conferenceStatistics(al, verbose=0) [f4, b4, rankinteraction, ranksecondorder] = rr[0:4] f4minus = [-float(x) for x in f4] values = [[float(ranksecondorder)], [float( rankinteraction)], list(f4minus), [-float(b4)]] data = OrderedDict(ranksecondorder=ranksecondorder) data['rankinteraction'] = rankinteraction data['F4'] = f4 data['B4'] = b4 if addProjectionStatistics: proj_data = np.zeros((2, 3)) proj_data[0] = oapackage.conference.conferenceProjectionStatistics( al, ncolumns=4) proj_data[1] = oapackage.conference.conferenceProjectionStatistics( al, ncolumns=5) proj_data = np.around(proj_data, rounding_decimals) for tag_index, tag in enumerate(['PEC', 'PIC', 'PPC']): for ni, kk in enumerate([4, 5]): values += [[proj_data[ni, tag_index]]] data[tag + '%d' % kk] = proj_data[ni, tag_index] else: for tag in ['PEC', 'PIC', 'PPC']: for kk in [4, 5]: data[tag + '%d' % kk] = None if addFoldover: foldover = oapackage.isConferenceFoldover(al) values += [[int(foldover)], [int(not foldover)]] data['foldover'] = int(foldover) data['notfoldover'] = int(not foldover) if addProjectionStatistics: assert (len(values) == len(data.keys())) if addMaximality: data['has_extensions'] = conference_design_has_extensions(al) if addMaximumExtensionColumns: data['maximum_extension_size'] = maximal_extension_size(al)[0] if pareto is None: pareto = oapackage.ParetoMultiDoubleLong() pareto_element = create_pareto_element(values, pareto=pareto) return pareto_element, data @oapackage.oahelper.deprecated def makePareto(presults, addFoldover=True): pareto = oapackage.ParetoMultiDoubleLong() for ii in range(len(presults.ranks)): f4minus = tuple([-x for x in presults.f4s[ii]]) values = [[int(presults.ranks[ii])], list( f4minus), [-presults.b4s[ii]]] if addFoldover: values += [[int(presults.foldover[ii])], [int(not presults.foldover[ii])]] val = create_pareto_element(values, pareto=pareto) pareto.addvalue(val, ii) return pareto class pareto_results_structure(collections.OrderedDict): """ Class to hold results of Pareto calculations """ def add_value(self, tag, value): mintag = tag + '_min' maxtag = tag + '_max' if not mintag in self: self[mintag] = value if not maxtag in self: self[maxtag] = value self[mintag] = min(value, self[mintag]) self[maxtag] = max(value, self[maxtag]) def conference_design_has_extensions(array, verbose=0): """ Return True if a single conference design has extensions """ j1zero = 0 conference_type = oapackage.conference_t( array.n_rows, array.n_columns, j1zero) zero_index = -1 filterj2 = 1 filterj3 = 0 filter_symmetry = 1 # we can use symmetry reduction, since any the other filtering is not related to the symmetry of the design extensions = oapackage.generateSingleConferenceExtensions( array, conference_type, zero_index, verbose >= 2, filter_symmetry, filterj2, filterj3, filter_symmetry) result = len(extensions) > 0 if verbose: print('conference_design_has_extensions: %s, found %d extensions' % (result, len(extensions))) if verbose >= 2: oapackage.showCandidates(extensions) return result def conferenceParetoIdentifier(): return '0.4' def calculateConferencePareto(ll, N=None, k=None, verbose=1, add_data=True, addProjectionStatistics=None, addExtensions=False, addMaximumExtensionColumns=False, number_parallel_jobs=1): """ Calculate Pareto optimal designs from a list of designs Args: ll (list): list of designs N (int) k (int) verbose (int) add_data (bool) addProjectionStatistics (None or bool) addExtensions (bool) Returns: presults, pareto """ t0 = time.time() if verbose: print('calculateConferencePareto: analysing %d arrays, addProjectionStatistics %s, addExtensions %s' % ( len(ll), addProjectionStatistics, addExtensions)) if len(ll) > 0: N = ll[0].n_rows k = ll[0].n_columns presults = pareto_results_structure({'pareto_designs': []}) pareto = oapackage.ParetoMultiDoubleLong() if N is None: presults['N'] = None return presults, pareto if addProjectionStatistics is None: if (N <= 20): addProjectionStatistics = True else: addProjectionStatistics = False data = None t0 = time.time() def pareto_worker(al): al = oapackage.makearraylink(al) pareto_element, data = createConferenceParetoElement(al, addFoldover=False, addProjectionStatistics=addProjectionStatistics, pareto=None) pareto_element = [list(e.values) for e in list(pareto_element)] return pareto_element, data block_size = 200 blocks = [(ii, min(len(ll), ii + block_size)) for ii in np.arange(0, len(ll), block_size)] def add_extra_data(presults, data, addProjectionStatistics): if add_data: for tag in ['ranksecondorder', 'rankinteraction', 'B4', 'F4']: presults.add_value(tag, data[tag]) if addProjectionStatistics: for tag in ['PEC4', 'PIC4']: presults.add_value(tag, data[tag]) if number_parallel_jobs > 1: for blockidx, block in enumerate(blocks): dt = time.time() - t0 oapackage.oahelper.tprint(f'calculateConferencePareto: N {N} column {k}: block {blockidx}/{len(blocks)}: ({dt:.1f} [s]): {str(pareto).strip()}') xx = Parallel(n_jobs=number_parallel_jobs)( [delayed(pareto_worker)(np.array(al)) for al in ll[block[0]:block[1]]]) for jj, al in enumerate(ll[block[0]:block[1]]): pareto_element, data = xx[jj] pareto_element = oapackage.vector_mvalue_t_double( [oapackage.mvalue_t_double(x) for x in pareto_element]) ii = int(jj + block[0]) pareto.addvalue(pareto_element, ii) add_extra_data(presults, data, addProjectionStatistics) else: for ii, al in enumerate(ll): oapackage.oahelper.tprint('calculateConferencePareto: N %s column %s: array %d/%d (%.1f [s]): %s' % (str(N), str(k), ii, len(ll), time.time() - t0, str(pareto).strip()), dt=2) pareto_element, data = createConferenceParetoElement(al, addFoldover=False, addProjectionStatistics=addProjectionStatistics, pareto=None) pareto.addvalue(pareto_element, ii) add_extra_data(presults, data, addProjectionStatistics) presults['N'] = N presults['ncolumns'] = k if len(ll) > 0: presults.N = ll[0].n_rows presults.ncolumns = ll[0].n_columns if data is None: presults['pareto_type'] = 'no design' else: presults['pareto_type'] = ', '.join( [key for key in data.keys() if data[key] is not None]) presults['pareto_type'] = presults['pareto_type'].replace( 'ranksecondorder', 'r(2FI, QE)') presults['pareto_type'] = presults['pareto_type'].replace( 'rankinteraction', 'r(2FI)') pareto.show() presults['pareto_indices'] = pareto.allindices() presults['nclasses'] = pareto.number() presults['npareto'] = pareto.numberindices() presults['_version'] = conferenceParetoIdentifier() presults['pareto_designs'] = [ll[ii] for ii in presults['pareto_indices']] presults['pareto_data'] = [] def pareto_worker(al): al = oapackage.makearraylink(al) pareto_element, data = createConferenceParetoElement( al, addFoldover=True, addMaximality=addExtensions, addMaximumExtensionColumns=addMaximumExtensionColumns) return data if number_parallel_jobs > 1: data_results = Parallel(n_jobs=number_parallel_jobs)( [delayed(pareto_worker)(np.array(al)) for al in presults['pareto_designs']]) for ii, data in enumerate(data_results): presults['pareto_data'].append(data) else: for ii, al in enumerate(presults['pareto_designs']): data = pareto_worker(al) presults['pareto_data'].append(data) presults['_pareto_processing_time'] = time.time() - t0 presults = OrderedDict(presults) return presults, pareto def test_calculateConferencePareto(): ll = [oapackage.exampleArray(idx) for idx in [45, 46, 47, 45]] presults, _ = calculateConferencePareto( ll, N=None, k=None, verbose=1, add_data=True) if __name__ == '__main__': test_calculateConferencePareto() def showMaxZ(LL): """ For a list of generated designs show the maximum zero position """ N = LL[3][0].n_rows for ii, L in enumerate(LL): k = ii + 1 s = [oapackage.maxz(al) for al in L] mm, _ = np.histogram(s, range(N + 1)) print('%d cols: maxz seq %s' % (k, list(mm))) def generate_conference_latex_tables(htmlsubdir, verbose=1): """ Generate LaTeX results tables from pre-generated result files """ for N in range(8, 25, 2): lst = oapackage.findfiles(htmlsubdir, 'conference-N%d.*pickle' % N) if verbose: print('latex table: N %d: %d files' % (N, len(lst))) table = None kk = [oapackage.scanf.sscanf( file, 'conference-N%dk%d')[1] for file in lst] lst = [lst[idx] for idx in np.argsort(kk)] for file in (lst): r = pickle.load(open(os.path.join(htmlsubdir, file), 'rb')) ncolumns = r['ncolumns'] rtable = r['rtable'] if rtable.size == 0: continue column = np.vstack( (['k'], ncolumns * np.ones((rtable.shape[0] - 1, 1), dtype=int))) rtable = np.hstack((column, rtable)) if table is None: table = rtable else: rtable = rtable[1:] table = np.vstack((table, rtable)) # r['ncolumns'] print(table) if len(lst) == 0: print('no results for N=%d' % N) continue offset_columns = [1, 2] for row in range(1, table.shape[0]): for col in offset_columns: table[row, col] = str(int(table[row, col]) + 1) latextable = oapackage.array2latex(table, hlines=[0], comment=['conference desgins N=%d' % (N), 'offset for indices is 1']) if verbose: print(latextable) with open(os.path.join(htmlsubdir, 'conference-N%d-overview.tex' % (N,)), 'wt') as fid: fid.write(latextable) def conferenceResultsFile(N, kk, outputdir, tags=['cdesign', 'cdesign-diagonal', 'cdesign-diagonal-r'], tagtype=['full', 'r', 'r'], verbose=1): """ Create html tag for oa page Args: N (int): number of rows kk (int): number of columns outputdir (str): tags (list): tagtype (list): verbose (int): ncache (dict): store results """ for ii, tag in enumerate(tags): cfile0 = '%s-%d-%d.oa' % (tag, N, kk) cfile = os.path.join(outputdir, cfile0) gfile = os.path.join(outputdir, cfile0 + '.gz') if verbose >= 2: print('cdesignTag: try file %s' % cfile0) if os.path.exists(os.path.join(outputdir, cfile0) ) and os.path.exists(gfile): nn1 = oapackage.nArrayFile(cfile) nn2 = oapackage.nArrayFile(gfile) raise Exception('both .oa and .oa.gz exist: %s' % cfile) nn = oapackage.nArrays(cfile) mode = tagtype[ii] cfilex = oapackage.oahelper.checkOAfile(cfile) if cfilex is not None: cfilebase = os.path.basename(cfilex) else: cfilebase = None if nn >= 0: break if verbose: print('cdesignTag: N %d, kk %d: selected tag %s: nn %d' % (N, kk, tag, nn)) # special case if kk == N and tag == 'cdesign-diagonal': mode = 'full' if verbose >= 2: print(cfile) return cfile, nn, mode def generateConferenceResults(presults, ll, ct=None, full=None): pareto_results = presults pareto_results['type'] = 'conference designs' pareto_results['arrayfile'] = None pareto_results['presults'] = None pareto_results['full'] = full pareto_results['full_results'] = full pareto_results['idstr'] = 'cdesign-%d-%d' % ( pareto_results['N'], pareto_results['ncolumns']) if ct is not None: pareto_results['ctidstr'] = ct.idstr() assert (ct.N == pareto_results['N']) assert (ct.ncols == pareto_results['ncolumns']) pareto_results['narrays'] = len(ll) pareto_results['pareto_designs'] = [ np.array(array) for array in presults['pareto_designs']] return pareto_results # %% Webpage generation def nprevzero(N, k, ncache): """ Return true if any previous result was zero """ for ix in range(k - 1, 2, -1): # print(ix) p = ncache['full'].get('N%dk%d' % (N, ix), -1) # p = ncache['full'].get('N%dk%d' % (N, ix), -1) if p == 0: return True return False def htmlTag(nn, kk, N, mode='full', href=None, ncache=None, verbose=0): """ Create html tag for number of designs Args: nn (int): number of arrays kk (int): number of columns N (int): number of rows mode (str) href (None or str): hyperlink to subpage Returns: txt (str): link text hyper_link (bool): True if the txt is a hyperlink """ hyper_link = False if nn >= 0: if mode == 'full': txt = '%d' % nn else: if nn == 0: txt = '?' else: txt = '&ge; %d' % nn if href is not None: if nn < 6000 and nn > 0 or (href.endswith('html')): ss = e.a(txt, href=href, style='text-decoration: none;') hyper_link = True txt = ss else: pass else: if verbose: print('htmlTag: nn is negative') if kk <= N: if ncache is None: txt = '?' else: if verbose >= 1: print('htmlTag: mode %s, N %d, k %d' % (mode, N, kk)) if nprevzero(N, kk, ncache): if verbose >= 1: print( 'htmlTag: nprevzero(%d, %d, ncache) is True' % (N, kk)) txt = '' else: txt = '?' else: txt = '' return txt, hyper_link def latexResults(outputdir): X = [] print('make latex results table...') NN = range(4, 31, 2) kk = range(0, np.max(NN) + 1) X = np.zeros((1 + 1 + len(kk) - 2, 1 + len(NN)), dtype=object) X[:] = '' X[0, 0] = '' X[1, 0] = '$k$' for ii, N in enumerate(NN): X[1, 1 + ii] = N X[0, 1 + ii] = '' for ki, k in enumerate(range(2, N + 1)): if k > N: X[1 + 1 + ki, 1 + ii] = '' else: cfile0 = 'cdesign-%d-%d.oa' % (N, k) nn = oapackage.nArrays(os.path.join(outputdir, cfile0)) if nn < 0 and k == N: cfile0 = 'cdesign-diagonal-%d-%d.oa' % (N, k) nn = oapackage.nArrays(os.path.join(outputdir, cfile0)) if nn < 0: cfile0 = 'cdesign-diagonal-%d-%d.oa' % (N, k) nnm = oapackage.nArrays(os.path.join(outputdir, cfile0)) if nnm > 0: X[1 + 1 + ki, 1 + ii] = r'$\ge %d$' % nnm else: X[1 + 1 + ki, 1 + ii] = '?' else: X[1 + 1 + ki, 1 + ii] = nn X[1 + 1 + ki, 0] = '%d' % k X[0, 1] = '$N$' X[2, 0] = X[2, 0] + r'\rule{0pt}{2.9ex}' return X def createConferenceDesignsPageHeader( page, makeheader, conference_class, ncolumns, full_results=False): xstr = 'C(%d, %d)' % (conference_class.N, ncolumns) xstrplain = xstr if makeheader: page.init(title="Class %s" % xstrplain, css=('../oastyle.css'), lang='en', htmlattrs=dict({'xmlns': 'http://www.w3.org/1999/xhtml', 'xml:lang': 'en'}), header="<!-- Start of page -->", htmlheader=oaresearch.research.oaCssStyle(addframe=True), bodyattrs=dict({'style': 'padding-left: 3px;'}), doctype='<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">', metainfo=({'text/html': 'charset=utf-8', 'keywords': 'conference designs', 'robots': 'index, follow', 'description': 'conference designs'}), footer="<!-- End of page -->") if full_results: page.h1('Conference designs %s ' % xstr) else: page.h1('Conference designs %s (<b>partial results</b>) ' % xstr) oap = e.a('Orthogonal Array package', href=r'http://www.pietereendebak.nl/oapackage/index.html') pstr = 'This page contains information about conference designs. ' pstr += 'The results have been generated with the %s.' % oap pstr += ' If you use these results, please cite the paper ' + \ citation('conference', style='full') + '.' page.p(pstr) def createConferenceDesignsPageResultsTable(page, pareto_results, verbose=0): full_results = pareto_results.get('full') if full_results: page.h2('Results') else: page.h2('Results (partial results)') page.table() page.tr(style='font-weight: bold;') page.td('Statistic', style='padding-right:30px;') page.td(('Results'), style='padding-right:8px;') page.tr.close() def simpleRow(a, b): page.tr(style='') page.td(a, style='padding-right:30px;') page.td(b, style='padding-right:8px;') page.tr.close() narrays = pareto_results['narrays'] simpleRow('Number of non-isomorphic designs', str(pareto_results['narrays'])) if narrays > 0: if 'ranksecondorder_min' in pareto_results: simpleRow('Minimum/Maximum rank of model matrix with 2FI and QE', '%d/%d' % (pareto_results['ranksecondorder_min'], pareto_results['ranksecondorder_max'])) simpleRow('Minimum/Maximum rank of model matrix for 2FI', '%d/%d' % (pareto_results['rankinteraction_min'], pareto_results['rankinteraction_max'])) else: simpleRow('Maximum rank of model matrix with 2FI and QE', '%d' % (pareto_results['ranksecondorder_max'])) simpleRow('Maximum rank of model matrix for 2FI', '%d' % (pareto_results['rankinteraction_max'])) if 'B4_min' in pareto_results: simpleRow('Minimum B4', '%.4f' % pareto_results['B4_min']) if 'B4_max' in pareto_results: simpleRow('Maximum B4', '%.4f' % pareto_results['B4_max']) if 'F4_min' in pareto_results: simpleRow('Minimum F4', '%s' % (pareto_results['F4_min'],)) if 'F4_max' in pareto_results: simpleRow('Maximum F4', '%s' % (pareto_results['F4_max'],)) if 'totaltime' in list(pareto_results.keys()): simpleRow('Processing time', str(pareto_results['totaltime']) + 's') if pareto_results.get('datafile_tag', None) is not None: simpleRow('Data', pareto_results['datafile_tag']) page.table.close() page.p(style='font-size: smaller;') page.add('Note: 2FI: two-factor interaction; QE: quadratic effect') page.p.close() def createConferenceDesignsPageLoadDesignsFile( pareto_results, htmlsubdir=None, verbose=1): havearrayfile = 0 if 'arrayfile' in list(pareto_results.keys()): if not pareto_results['arrayfile'] is None: havearrayfile = 1 if verbose: print('createConferenceDesignsPageLoadDesignsFile: havearrayfile %d' % havearrayfile) if havearrayfile: iafile = pareto_results['arrayfile'] outfile0 = pareto_results['idstr'] + '.oa' na = oapackage.nArrayFile(iafile) if verbose >= 2: print('conferenceDesignsPage: read arrayfile %s: na %d' % (iafile, na)) if na < 5000 and na >= 0: if htmlsubdir is None: raise Exception('need html subdirectory to copy .oa file') outfilefinal = oaresearch.filetools.copyOAfile(iafile, htmlsubdir, outfile0, convert='T', zipfile=None, verbose=1, cache=0) if pareto_results.get('full', False): if verbose: print('conferenceDesignsPage: full results') pareto_results['datafilestr'] = 'all arrays' htag = oaresearch.htmltools.formatArrayHyperlink( pareto_results['datafilestr'], outfile0, iafile) pareto_results['datafilestr'] = 'all arrays' pareto_results['datafile_tag'] = htag else: na = oapackage.nArrayFile( os.path.join(htmlsubdir, outfilefinal)) pareto_results['datafilestr'] = '%d array(s)' % na htag = oaresearch.htmltools.formatArrayHyperlink( pareto_results['datafilestr'], outfile0, iafile) pareto_results['datafile_tag'] = htag else: if verbose: print('conferenceDesignsPage: no datafile (na %d)' % na) pareto_results['datafilestr'] = '-' pareto_results['datafile_tag'] = None def createConferenceDesignsPageParetoTable( page, pareto_results, verbose=0, htmlsubdir=None): """ Create table with Pareto results and add to the markup object Args: page (markup.page): html page to add table to Returns: rtable (array): generated table """ if verbose: print('createConferenceDesignsPageParetoTable: start') pareto_indices = pareto_results['pareto_indices'] pareto_data = pareto_results['pareto_data'] add_extension_information = False add_maximum_extension_size = False if len(pareto_data) > 0: if pareto_data[0].get('has_extensions', None) is not None: add_extension_information = True if pareto_data[0].get('maximum_extension_size', None) is not None: add_maximum_extension_size = True if pareto_results['narrays'] > 0 and pareto_results.get('full_results'): add_extra = True if verbose: print('createConferenceDesignsPageParetoTable: do statistics2htmltable') header = ['Index Pareto file', 'Index design file', 'Rank 2FI and QE', 'Rank 2FI', 'F4', 'B4'] if add_extra: for tag in ['PEC', 'PIC', 'PPC']: for kk in [4, 5]: header += [tag + '%d' % kk] if add_extension_information: header += ['Extensions'] if add_maximum_extension_size: header += ['Max. columns'] rtable = np.zeros( (1 + len(pareto_results['pareto_indices']), len(header)), dtype='|U208') rtable[:] = ' ' for ii, h in enumerate(header): rtable[0, ii] = header[ii] sort_indices = oapackage.sortrows( np.array([p['F4'] for p in pareto_results['pareto_data']])) for ii, sort_index in enumerate(sort_indices): pareto_idx = sort_index array_list_idx = pareto_indices[sort_index] rank_secondorder = str(pareto_data[pareto_idx]['ranksecondorder']) rank_interaction = str(pareto_data[pareto_idx]['rankinteraction']) rowdata = ['%d' % pareto_idx, '%d' % array_list_idx, rank_secondorder, rank_interaction, str(pareto_data[pareto_idx]['F4']), '%.2f' % ((pareto_data[pareto_idx]['B4']))] rtable[ii + 1, 0:len(rowdata)] = rowdata column_offset = len(rowdata) if add_extra: for tag in ['PEC', 'PIC', 'PPC']: for kk in [4, 5]: rtable[ii + 1, column_offset] = '%.3f' % ( pareto_data[pareto_idx][tag + '%d' % kk]) column_offset = column_offset + 1 if add_extension_information: rtable[ii + 1, column_offset] = 'Yes' if pareto_data[pareto_idx]['has_extensions'] > 0 else 'No' column_offset = column_offset + 1 if add_maximum_extension_size: rtable[ii + 1, column_offset] = pareto_data[pareto_idx]['maximum_extension_size'] column_offset = column_offset + 1 subpage = oaresearch.research.array2html(rtable, header=1, tablestyle='border-collapse: collapse;', trclass='', tdstyle='padding-right:1em;', trstyle='', thstyle='text-align:left; padding-right: 1em;', comment=None) page.br(clear='both') page.h2('Pareto optimal designs') page.p() if pareto_results['nclasses'] == 1: pareto_classes_text = 'in %d class' % pareto_results['nclasses'] else: pareto_classes_text = 'in %d classes' % pareto_results['nclasses'] if pareto_results['npareto'] == 1: page.add('There is %d Pareto optimal design %s.' % (pareto_results['npareto'], pareto_classes_text)) else: page.add('There are %d Pareto optimal designs %s.' % (pareto_results['npareto'], pareto_classes_text)) pareto_type = pareto_results['pareto_type'] if ',' in pareto_type: k = pareto_type.rfind(", ") pareto_type = pareto_type[:k] + ", and " + pareto_type[k + 1:] page.add( 'Pareto optimality is according to %s (any other statistics are ignored).' % pareto_type) page.p.close() if pareto_results.get('pareto_designs', None) is not None: pdesigns = pareto_results.get('pareto_designs', None) pfile0 = pareto_results['idstr'] + '-pareto.oa' if htmlsubdir is not None: pfile = os.path.join(htmlsubdir, pfile0) oapackage.writearrayfile( pfile, [oapackage.array_link(array) for array in pdesigns]) page.p('All %s' % e.a('Pareto optimal designs', href=pfile0) + '.') page.add(str(subpage)) page.br(clear='both') else: rtable =
np.zeros((0, 0))
numpy.zeros
""" Random Interval Spectral Forest (RISE). Implementation of Deng's Time Series Forest, with minor changes """ __author__ = "<NAME>" __all__ = ["RandomIntervalSpectralForest","acf","matrix_acf","ps"] import numpy as np import pandas as pd import math from numpy import random from copy import deepcopy from sklearn.ensemble.forest import ForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.utils.multiclass import class_distribution class RandomIntervalSpectralForest(ForestClassifier): """Random Interval Spectral Forest (RISE). Random Interval Spectral Forest: stripped down implementation of RISE from Lines 2018: @article {lines17hive-cote, author = {<NAME>, <NAME> and <NAME>}, title = {Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles}, journal = {ACM Transactions on Knowledge and Data Engineering}, volume = {12}, number= {5}, year = {2018} Overview: Input n series length m for each tree sample a random intervals take the ACF and PS over this interval, and concatenate features build tree on new features ensemble the trees through averaging probabilities. Need to have a minimum interval for each tree This is from the python github. Parameters ---------- n_trees : int, ensemble size, optional (default = 200) random_state : int, seed for random, integer, optional (default to no seed) min_interval : int, minimum width of an interval, optional (default = 16) acf_lag : int, maximum number of autocorellation terms to use (default =100) acf_min_values : int, never use fewer than this number of terms to fnd a correlation (default =4) Attributes ---------- n_classes : int, extracted from the data classifiers : array of shape = [n_trees] of DecisionTree classifiers intervals : array of shape = [n_trees][2] stores indexes of start and end points for all classifiers TO DO: handle missing values, unequal length series and multivariate problems """ def __init__(self, n_trees=200, random_state=None, min_interval=16, acf_lag=100, acf_min_values=4 ): super(RandomIntervalSpectralForest, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_trees) self.n_trees=n_trees self.random_state = random_state random.seed(random_state) self.min_interval=min_interval self.acf_lag=acf_lag self.acf_min_values=acf_min_values # These are all set in fit self.n_classes = 0 self.series_length = 0 self.classifiers = [] self.intervals=[] self.lags=[] self.classes_ = [] def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y) using random intervals and spectral features Parameters ---------- X : array-like or sparse matrix of shape = [n_instances,series_length] or shape = [n_instances,n_columns] The training input samples. If a Pandas data frame is passed it must have a single column (i.e. univariate classification. RISE has no bespoke method for multivariate classification as yet. y : array-like, shape = [n_instances] The class labels. Returns ------- self : object """ if isinstance(X, pd.DataFrame): if X.shape[1] > 1: raise TypeError("RISE cannot handle multivariate problems yet") elif isinstance(X.iloc[0, 0], pd.Series): X = np.asarray([a.values for a in X.iloc[:, 0]]) else: raise TypeError( "Input should either be a 2d numpy array, or a pandas dataframe with a single column of Series objects (TSF cannot yet handle multivariate problems") n_instances, self.series_length = X.shape self.n_classes = np.unique(y).shape[0] self.classes_ = class_distribution(np.asarray(y).reshape(-1, 1))[0][0] self.intervals=np.zeros((self.n_trees, 2), dtype=int) self.intervals[0][0] = 0 self.intervals[0][1] = self.series_length for i in range(1, self.n_trees): self.intervals[i][0]=random.randint(self.series_length - self.min_interval) self.intervals[i][1]=random.randint(self.intervals[i][0] + self.min_interval, self.series_length) # Check lag against global properties if self.acf_lag > self.series_length-self.acf_min_values: self.acf_lag = self.series_length - self.acf_min_values if self.acf_lag < 0: self.acf_lag = 1 self.lags=np.zeros(self.n_trees, dtype=int) for i in range(0, self.n_trees): temp_lag=self.acf_lag if temp_lag > self.intervals[i][1]-self.intervals[i][0]-self.acf_min_values: temp_lag = self.intervals[i][1] - self.intervals[i][0] - self.acf_min_values if temp_lag < 0: temp_lag = 1 self.lags[i] = int(temp_lag) acf_x = np.empty(shape=(n_instances, self.lags[i])) ps_len = (self.intervals[i][1] - self.intervals[i][0]) / 2 ps_x = np.empty(shape=(n_instances, int(ps_len))) for j in range(0, n_instances): acf_x[j] = acf(X[j,self.intervals[i][0]:self.intervals[i][1]], temp_lag) ps_x[j] = ps(X[j, self.intervals[i][0]:self.intervals[i][1]]) transformed_x = np.concatenate((acf_x,ps_x),axis=1) # transformed_x=acf_x tree = deepcopy(self.base_estimator) tree.fit(transformed_x, y) self.classifiers.append(tree) return self def predict(self, X): """ Find predictions for all cases in X. Built on top of predict_proba Parameters ---------- X : array-like or sparse matrix of shape = [n_instances, n_columns] or a data frame. If a Pandas data frame is passed, Returns ------- output : array of shape = [n_instances] """ probs=self.predict_proba(X) return [self.classes_[np.argmax(prob)] for prob in probs] def predict_proba(self, X): """ Find probability estimates for each class for all cases in X. Parameters ---------- X : array-like or sparse matrix of shape = [n_instances, n_columns] The training input samples. If a Pandas data frame is passed, Local variables ---------- n_samps : int, number of cases to classify n_columns : int, number of attributes in X, must match _num_atts determined in fit Returns ------- output : array of shape = [n_instances, n_classes] of probabilities """ if isinstance(X, pd.DataFrame): if X.shape[1] > 1: raise TypeError("RISE cannot handle multivariate problems yet") elif isinstance(X.iloc[0, 0], pd.Series): X = np.asarray([a.values for a in X.iloc[:, 0]]) else: raise TypeError( "Input should either be a 2d numpy array, or a pandas dataframe with a single column of Series objects (TSF cannot yet handle multivariate problems") rows,cols=X.shape #HERE Do transform again n_cases, n_columns = X.shape if n_columns != self.series_length: raise TypeError(" ERROR number of attributes in the train does not match that in the test data") sums = np.zeros((X.shape[0],self.n_classes), dtype=np.float64) for i in range(0, self.n_trees): acf_x =
np.empty(shape=(n_cases, self.lags[i]))
numpy.empty
import numpy as np #-------------------------------------------------------------------------- # Evalute the gradient and objective of QSP function, provided that # phi is symmetric # # Input: # phi --- Variables # delta --- Samples # opts --- Options structure with fields # target: target function # parity: parity of phi (0 -- even, 1 -- odd) # # Output: # grad --- Gradient of obj function # obj --- Objective function value # #-------------------------------------------------------------------------- def QSPHess_sym(phi, delta, options) -> (object, object, object): m = len(delta) d = len(phi) obj = np.zeros((m, 1)) grad = np.zeros((m, d)) hess = np.zeros((d, d, m)) sigmaz = np.array([[1, 0], [0, -1]]) temp_sig = 1j * sigmaz gate = np.array([[np.exp(1j * pi / 4), 0], [0, np.exp(-1j * pi / 4)]]) exp_theta = np.exp(1j * phi) targetx = options["target"] parity = options["parity"] # Start Hessian for i in range(m): x = delta[i] Wx = np.array([[x, 1j * np.sqrt(1 - x**2)], [1j *
np.sqrt(1 - x**2)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mai 19 14:28:46 2020 @author: metzgern """ import os import h5py import torch import numpy as np import csv from tqdm import tqdm from datetime import datetime import lib.utils as utils from lib.utils import FastTensorDataLoader import pdb class SwissCrops(object): # Complete list label = ['0_unknown', 'Barley', 'Beets', 'Berries', 'Biodiversity', 'Chestnut', 'Fallow', 'Field bean', 'Forest', 'Gardens', 'Grain', 'Hedge', 'Hemp', 'Hops', 'Linen', 'Maize', 'Meadow', 'MixedCrop', 'Multiple', 'Oat', 'Orchards', 'Pasture', 'Potatoes', 'Rapeseed', 'Rye', 'Sorghum', 'Soy', 'Spelt', 'Sugar_beets', 'Sunflowers', 'Vegetables', 'Vines', 'Wheat', 'unknownclass1', 'unknownclass2', 'unknownclass3'] #Updated list after selection of most frequent ones.... label = ['Meadow','Potatoes', 'Pasture', 'Maize', 'Sugar_beets', 'Sunflowers', 'Vegetables', 'Vines', 'Wheat', 'WinterBarley', 'WinterRapeseed', 'WinterWheat'] label_dict = {k: i for i, k in enumerate(label)} reverse_label_dict = {v: k for k, v in label_dict.items()} def __init__(self, root, mode='train', device = torch.device("cpu"), neighbourhood=3, cloud_thresh=0.05, nsamples=float("inf"),args=None, step=1, trunc=9, datatype="2", singlepix=False, noskip=False, validation_from_train_split=0.15): self.datatype = datatype self.normalize = True self.shuffle = True self.singlepix = singlepix self.validation_from_train_split = validation_from_train_split self.root = root self.nb = neighbourhood self.cloud_thresh = cloud_thresh self.device = device self.n = nsamples self.mode = mode self.noskip = noskip if noskip: raise Exception("--noskip option not supported for swissdata.") if args==None: argsdict = {"dataset": "swisscrop", "sample_tp": None, "cut_tp": None, "extrap": False} self.args = utils.Bunch(argsdict) # calculated from 50k samples #self.means = [0.40220731, 0.2304579, 0.21944561, 0.22120122, 0.00414104, 0.00608051, 0.00555058, 0.00306677, 0.00378373] #self.stds = [0.24774854, 0.29837374, 0.3176923, 0.29580569, 0.00475051, 0.00396885, 0.00412216, 0.00274612, 0.00241172] # define de previously calculated global training mean and std... self.means = [0.4071655 , 0.2441012 , 0.23429523, 0.23402453, 0.00432794, 0.00615292, 0.00566292, 0.00306609, 0.00367624] self.stds = [0.24994541, 0.30625425, 0.32668449, 0.30204761, 0.00490984, 0.00411067, 0.00426914, 0.0027143 , 0.00221963] # Define some mapping to sort out the labels for fewer cases # All Labels self.labellist = np.array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 75, 76, 77, 78, 81, 84, 85, 88, 91, 93, 95, 108, 109, 110, 113, 114, 120, 121, 123]) self.labellistglob = np.array([ 39, 49, 26, 48, 13, 48, 20, 8, 41, 51, 32, 13, 36, 20, 20, 38, 2, 30, 30, 40, 50, 34, 42, 18, 15, 10, 29, 19, 31, 43, 33, 13, 18, 45, 45, 7, 5, 33, 3, 4, 9, 9, 22, 4, 24, 50, 42, 21, 21, 21, 21, 21, 27, 27, 27, 21, 21, 27, 17, 21, 46, 1, 28, 37, 3, 16, 44, 44, 46, 6, 46, 46, 14, 14, 14, 11, 23, 4, 12, 27]) # 13 Labels self.labellist13 = np.array([ 2, 4, 6, 7, 10, 13, 14, 15, 16, 18, 19, 21, 23, 34, 35, 53, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 74, 88, 93, 95, 123]) self.labellistglob13 = np.array([ 49, 48, 48, 20, 51, 36, 20, 20, 38, 30, 30, 50, 42, 45, 45, 50, 42, 21, 21, 21, 21, 21, 27, 27, 27, 21, 21, 27, 21, 46, 46, 46, 46, 27]) # 23 Labels self.labellist23 = np.array([ 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 26, 27, 34, 35, 44, 45, 53, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 74, 84, 85, 88, 93, 95, 108, 109, 110, 123]) self.labellistglob23 = np.array([49, 26, 48, 48, 20, 8, 41, 51, 32, 36, 20, 20, 38, 30, 30, 50, 34, 42, 10, 29, 45, 45, 9, 9, 50, 42, 21, 21, 21, 21, 21, 27, 27, 27, 21, 21, 27, 21, 46, 44, 44, 46, 46, 46, 14, 14, 14, 27]) if mode=="train" or self.mode=="train_from_train" or self.mode=="validation_from_train": data_file = self.train_file elif mode=="test": data_file = self.test_file if not os.path.exists(data_file): print("haven't found " + data_file + " . Starting to preprocess the whole dataset...") #self.process_data() if not os.path.exists(data_file): print("haven't found " + data_file + " . Starting to preprocess the whole dataset...") #self.process_data() self.hdf5dataloader = h5py.File(data_file, "r", rdcc_nbytes=1024**2*4000,rdcc_nslots=1e7) self.nsamples = self.hdf5dataloader["data"].shape[0] self.nfeatures = self.hdf5dataloader["data"].shape[2] # get timestamps if not os.path.exists( os.path.join(self.processed_folder, self.time_file)): self.read_date_file() self.timestamps = h5py.File(os.path.join(self.processed_folder, self.time_file), "r")["tt"][:] assert(self.timestamps.size==self.hdf5dataloader["data"].shape[1]) self.features = self.hdf5dataloader["data"].shape[2] #selective features and timestamps self.step = step # skippage of timesteps self.trunc = trunc # feature truncation self.feature_trunc = trunc*self.nb**2 #self.mask = np.kron(np.hstack([np.ones(self.trunc),np.zeros( self.nfeatures//self.nb**2 - self.trunc)]), np.ones(9)) def process_data(self): os.makedirs(self.processed_folder, exist_ok=True) train_dataset = Dataset("data/SwissCrops/raw/train_set_24x24_debug.hdf5", mode='train', eval_mode=False) raw_train_samples = len(train_dataset) test_dataset = Dataset("data/SwissCrops/raw/train_set_24x24_debug.hdf5", mode='test', eval_mode=False) raw_test_samples = len(test_dataset) num_invalid_obs = 0 # Calculate the number of trainingsamples raw_batch = (24 - int(self.nb/2)*2)**2 ntrainsamples = raw_batch * raw_train_samples ntestsamples = raw_batch * raw_test_samples # Inplement index aliasing to perform shuffling trainindices = np.arange(ntrainsamples) testindices = np.arange(ntestsamples) ## TRAIN DATASET ## shuffle_chucks = 20 # 30: limit of 64GB RAM, 60: limit of 32GB RAM splits = np.array_split(trainindices, shuffle_chucks) # get measures X, target, target_local_1, target_local_2, cloud_cover = train_dataset[0] raw_features = X.shape[1] nfeatures = raw_features* self.nb**2 seq_length = X.shape[0] ntargetclasses = train_dataset.n_classes ntargetclasses_l1 = train_dataset.n_classes_local_1 ntargetclasses_l2 = train_dataset.n_classes_local_2 # Open a hdf5 files and create arrays hdf5_file_train = h5py.File(self.train_file , mode='w', rdcc_nbytes=1024**2*16000, rdcc_nslots=1e7, libver='latest') hdf5_file_train.create_dataset("data", (ntrainsamples, seq_length, nfeatures), np.float16, chunks=(1500, seq_length, nfeatures) ) hdf5_file_train.create_dataset("mask", (ntrainsamples, seq_length, nfeatures), np.bool, chunks=(1500, seq_length, nfeatures) ) hdf5_file_train.create_dataset("labels", (ntrainsamples, ntargetclasses), np.int8, chunks=(1500, ntargetclasses )) hdf5_file_train.create_dataset("labels_local1", (ntrainsamples, ntargetclasses_l1), np.int8, chunks=(1500, ntargetclasses_l1) ) hdf5_file_train.create_dataset("labels_local2", (ntrainsamples, ntargetclasses_l2), np.int8, chunks=(1500, ntargetclasses_l1) ) #prepare first splitblock X_merge = np.zeros( (len(splits[0]), seq_length, nfeatures) , dtype=np.float16) mask_merge = np.ones( (len(splits[0]), seq_length, nfeatures) , dtype=bool) target_merge = np.ones( (len(splits[0]), ntargetclasses) , dtype=np.int8) target_l1_merge = np.ones( (len(splits[0]), ntargetclasses_l1) , dtype=np.int8) target_l2_merge = np.ones( (len(splits[0]), ntargetclasses_l2) , dtype=np.int8) missing = 0 observed = 0 first_batch = True # will be changed after the first batch accum_counter = 0 split_counter = 0 n_valid = 0 summation = np.zeros( (raw_features) ) sq_summation = np.zeros( (raw_features) ) #for idx in tqdm(range(raw_train_samples)): for idx in tqdm(range(raw_train_samples)): X, target, target_local_1, target_local_2, cloud_cover = train_dataset[idx] # check if data can be cropped cloud_mask = cloud_cover>self.cloud_thresh invalid_obs = np.sum(cloud_mask,axis=0)==0 sub_shape = (self.nb, self.nb) view_shape = tuple(np.subtract(invalid_obs.shape, sub_shape) + 1) + sub_shape strides = invalid_obs.strides + invalid_obs.strides sub_invalid = np.lib.stride_tricks.as_strided(invalid_obs,view_shape,strides) # store the number of invalid observations num_invalid_obs += np.sum ( (np.sum(sub_invalid, axis=(2,3))!=0) ) assert(num_invalid_obs==0) # Prepare for running mean and std calculation valid_ind = np.nonzero( (~cloud_mask)[:,np.newaxis] ) valid_data = X[valid_ind[0],:,valid_ind[2],valid_ind[3]] summation += valid_data.sum(0) sq_summation += (valid_data**2).sum(0) n_valid += (valid_data**2).shape[0] if self.normalize: norm_data = (valid_data-self.means)/self.stds X[valid_ind[0],:,valid_ind[2],valid_ind[3]] = norm_data #prepare mask for later sub_shape = (seq_length, self.nb, self.nb) view_shape = tuple(np.subtract(cloud_mask.shape, sub_shape) + 1) + sub_shape strides = cloud_mask.strides + cloud_mask.strides sub_cloud = np.lib.stride_tricks.as_strided(cloud_mask,view_shape,strides) ravel_mask = sub_cloud.reshape(raw_batch, seq_length, self.nb**2) cloud_mask = np.tile(ravel_mask, (1,1, raw_features)) mask = ~cloud_mask # Subtile the features sub_shape = (seq_length, raw_features, self.nb, self.nb) view_shape = tuple(np.subtract(X.shape, sub_shape) + 1) + sub_shape strides = X.strides + X.strides sub_X = np.lib.stride_tricks.as_strided(X,view_shape,strides) ravel_X = sub_X.reshape(raw_batch, sub_X.shape[4], nfeatures ) # subconvolove Targets sub_shape = (self.nb, self.nb) view_shape = tuple(np.subtract(target.shape, sub_shape) + 1) + sub_shape strides = target.strides + target.strides sub_target = np.lib.stride_tricks.as_strided(target,view_shape,strides) sub_target_local_1 = np.lib.stride_tricks.as_strided(target_local_1,view_shape,strides) sub_target_local_2 = np.lib.stride_tricks.as_strided(target_local_2,view_shape,strides) ravel_mask = sub_invalid.reshape(raw_batch, 1, self.nb**2) ravel_target = sub_target[:,:,self.nb//2, self.nb//2].reshape(-1) ravel_target_local_1 = sub_target_local_1[:,:,self.nb//2, self.nb//2].reshape(-1) ravel_target_local_2 = sub_target_local_2[:,:,self.nb//2, self.nb//2].reshape(-1)[:] # bring to one-hot format OH_target = np.zeros((ravel_target.size, ntargetclasses)) OH_target[np.arange(ravel_target.size),ravel_target] = 1 OH_target_local_1 = np.zeros((ravel_target_local_1.size, ntargetclasses_l1)) OH_target_local_1[np.arange(ravel_target_local_1.size),ravel_target_local_1] = 1 OH_target_local_2 = np.zeros((ravel_target_local_2.size, ntargetclasses_l2)) OH_target_local_2[np.arange(ravel_target_local_2.size),ravel_target_local_2] = 1 # if only one pixel in a neighbourhood is corrupted, we don't use it=> set complete mask of this (sample, timestep) as unobserved mask = np.tile( (mask.sum(2)==nfeatures)[:,:,np.newaxis] , (1,1,nfeatures)) # "destroy" data, that is corrputed by bad weather. We will never use it! ravel_X[~mask] = 0 #for statistics missing += np.sum(mask == 0.) observed += np.sum(mask == 1.) # Accummulate data before writing it to file # fill in HDF5 file if first_batch: start_ix = 0 stop_ix = raw_batch first_batch = False else: start_ix = stop_ix stop_ix += raw_batch if stop_ix<len(splits[split_counter]): #write to memory file X_merge[start_ix:stop_ix] = ravel_X mask_merge[start_ix:stop_ix] = mask target_merge[start_ix:stop_ix] = OH_target target_l1_merge[start_ix:stop_ix] = OH_target_local_1 target_l2_merge[start_ix:stop_ix] = OH_target_local_2 else: #Write to file, if merge is big enough #determine th amount of overdose overdose = stop_ix - len(splits[split_counter]) validdose = raw_batch - overdose # add to memory only how much fits in it X_merge[start_ix:] = ravel_X[:validdose] mask_merge[start_ix:] = mask[:validdose] target_merge[start_ix:] = OH_target[:validdose] target_l1_merge[start_ix:] = OH_target_local_1[:validdose] target_l2_merge[start_ix:] = OH_target_local_2[:validdose] #shuffle the blocks self.shuffle = True if self.shuffle: merge_ind = np.arange(len(splits[split_counter])) np.random.shuffle(merge_ind) X_merge_write = X_merge[merge_ind] mask_merge_write = mask_merge[merge_ind] target_merge_write = target_merge[merge_ind] target_l1_merge_write = target_l1_merge[merge_ind] target_l2_merge_write = target_l2_merge[merge_ind] else: X_merge_write = X_merge mask_merge_write = mask_merge target_merge_write = target_merge target_l1_merge_write = target_l1_merge target_l2_merge_write = target_l2_merge #fill in data to hdf5 file sorted_indices = splits[split_counter] hdf5_file_train["data"][sorted_indices[0]:sorted_indices[-1]+1, ...] = X_merge_write hdf5_file_train["mask"][sorted_indices[0]:sorted_indices[-1]+1, ...] = mask_merge_write hdf5_file_train["labels"][sorted_indices[0]:sorted_indices[-1]+1, ...] = target_merge_write hdf5_file_train["labels_local1"][sorted_indices[0]:sorted_indices[-1]+1, ...] = target_l1_merge_write hdf5_file_train["labels_local2"][sorted_indices[0]:sorted_indices[-1]+1, ...] = target_l2_merge_write accum_counter = 0 split_counter += 1 #prepare next merge variable if split_counter<len(splits): X_merge = np.zeros( (len(splits[split_counter]), seq_length, nfeatures) , dtype=np.float16) mask_merge = np.ones( (len(splits[split_counter]), seq_length, nfeatures) , dtype=bool) target_merge = np.ones( (len(splits[split_counter]), ntargetclasses) , dtype=np.int8) target_l1_merge = np.ones( (len(splits[split_counter]), ntargetclasses_l1) , dtype=np.int8) target_l2_merge = np.ones( (len(splits[split_counter]), ntargetclasses_l2) , dtype=np.int8) # fill in the overdose from the current split/chunck start_ix = 0 stop_ix = overdose X_merge[start_ix:stop_ix] = ravel_X[validdose:] mask_merge[start_ix:stop_ix] = mask[validdose:] target_merge[start_ix:stop_ix] = OH_target[validdose:] target_l1_merge[start_ix:stop_ix] = OH_target_local_1[validdose:] target_l2_merge[start_ix:stop_ix] = OH_target_local_2[validdose:] accum_counter += 1 print("found ", num_invalid_obs, " invalid Neighbourhood-Observations in training data") assert(num_invalid_obs==0) ## TEST DATASET ## shuffle_chucks = 25 #15 # 30: limit of 64GB RAM, 60: limit of 32GB RAM splits = np.array_split(testindices, shuffle_chucks) hdf5_file_test = h5py.File(self.test_file, mode='w', rdcc_nbytes =1024**2*24000, rdcc_nslots=1e7, libver='latest') hdf5_file_test.create_dataset("data", (ntestsamples, seq_length, nfeatures), np.float16, chunks=(10000, seq_length, nfeatures) ) hdf5_file_test.create_dataset("mask", (ntestsamples, seq_length, nfeatures), np.bool, chunks=(10000, seq_length, nfeatures) ) hdf5_file_test.create_dataset("labels", (ntestsamples, ntargetclasses), np.int8, chunks=(10000, ntargetclasses) ) hdf5_file_test.create_dataset("labels_local1", (ntestsamples, ntargetclasses_l1), np.int8, chunks=(10000, ntargetclasses_l1) ) hdf5_file_test.create_dataset("labels_local2", (ntestsamples, ntargetclasses_l2), np.int8, chunks=(10000, ntargetclasses_l2) ) #prepare first splitblock X_merge = np.zeros( (len(splits[0]), seq_length, nfeatures) , dtype=np.float16) mask_merge = np.ones( (len(splits[0]), seq_length, nfeatures) , dtype=bool) target_merge = np.ones( (len(splits[0]), ntargetclasses) , dtype=np.int8) target_l1_merge = np.ones( (len(splits[0]), ntargetclasses_l1) , dtype=np.int8) target_l2_merge = np.ones( (len(splits[0]), ntargetclasses_l2) , dtype=np.int8) missing = 0 observed = 0 first_batch = True # will be changed after the first batch accum_counter = 0 split_counter = 0 #for idx in tqdm(range(raw_test_samples)): for idx in tqdm(range(raw_test_samples)): X, target, target_local_1, target_local_2, cloud_cover = test_dataset[idx] # check if data can be cropped cloud_mask = cloud_cover>self.cloud_thresh invalid_obs = np.sum(cloud_mask,axis=0)==0 sub_shape = (self.nb, self.nb) view_shape = tuple(np.subtract(invalid_obs.shape, sub_shape) + 1) + sub_shape strides = invalid_obs.strides + invalid_obs.strides sub_invalid = np.lib.stride_tricks.as_strided(invalid_obs,view_shape,strides) # store the number of invalid observations num_invalid_obs += np.sum ( (np.sum(sub_invalid, axis=(2,3))!=0) ) assert(num_invalid_obs==0) # Prepare for running mean and std calculation valid_ind = np.nonzero( (~cloud_mask)[:,np.newaxis] ) valid_data = X[valid_ind[0],:,valid_ind[2],valid_ind[3]] if self.normalize: norm_data = (valid_data-self.means)/self.stds X[valid_ind[0],:,valid_ind[2],valid_ind[3]] = norm_data #prepare mask for later sub_shape = (seq_length, self.nb, self.nb) view_shape = tuple(np.subtract(cloud_mask.shape, sub_shape) + 1) + sub_shape strides = cloud_mask.strides + cloud_mask.strides sub_cloud = np.lib.stride_tricks.as_strided(cloud_mask,view_shape,strides) ravel_mask = sub_cloud.reshape(raw_batch, seq_length, self.nb**2) cloud_mask = np.tile(ravel_mask, (1,1, raw_features)) mask = ~cloud_mask # Subtile the features sub_shape = (seq_length, raw_features, self.nb, self.nb) view_shape = tuple(np.subtract(X.shape, sub_shape) + 1) + sub_shape strides = X.strides + X.strides sub_X = np.lib.stride_tricks.as_strided(X,view_shape,strides) ravel_X = sub_X.reshape(raw_batch, sub_X.shape[4], nfeatures ) # subconvolove Targets sub_shape = (self.nb, self.nb) view_shape = tuple(np.subtract(target.shape, sub_shape) + 1) + sub_shape strides = target.strides + target.strides sub_target = np.lib.stride_tricks.as_strided(target,view_shape,strides) sub_target_local_1 = np.lib.stride_tricks.as_strided(target_local_1,view_shape,strides) sub_target_local_2 = np.lib.stride_tricks.as_strided(target_local_2,view_shape,strides) ravel_mask = sub_invalid.reshape(raw_batch, 1, self.nb**2) ravel_target = sub_target[:,:,self.nb//2, self.nb//2].reshape(-1) ravel_target_local_1 = sub_target_local_1[:,:,self.nb//2, self.nb//2].reshape(-1) ravel_target_local_2 = sub_target_local_2[:,:,self.nb//2, self.nb//2].reshape(-1)[:] # bring to one-hot format OH_target =
np.zeros((ravel_target.size, ntargetclasses))
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2016-2017, <NAME>; Luczywo, Nadia # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ============================================================================= # DOCS # ============================================================================= """Methods based on an aggregating function representing “closeness to the ideal”. """ __all__ = ['TOPSIS'] # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from .. import rank from ..validate import MIN, MAX from ..utils.doc_inherit import doc_inherit from ._dmaker import DecisionMaker # ============================================================================= # Function # ============================================================================= def topsis(nmtx, ncriteria, nweights): # apply weights wmtx =
np.multiply(nmtx, nweights)
numpy.multiply
#!/usr/bin/env python3 # from __future__ import division, print_function import os import sys import pints import numpy as np import myokit import argparse if __name__=="__main__": import platform parallel = True if platform.system() == 'Darwin': import multiprocessing multiprocessing.set_start_method('fork') elif platform.system() == 'Windows': parallel = False # Check input arguments parser = argparse.ArgumentParser( description='Fit all the hERG models to sine wave data') parser.add_argument('--cell', type=int, default=2, metavar='N', help='repeat number : 1, 2, 3, 4, 5, 6') parser.add_argument('--model', type=str, default='wang', metavar='N', help='which model to use') parser.add_argument('--repeats', type=int, default=25, metavar='N', help='number of CMA-ES runs from different initial guesses') parser.add_argument('--protocol', type=int, default=1, metavar='N', help='which protocol is used to fit the data: 1 for staircase #1, \ 2 for sine wave, 3 for complex AP') parser.add_argument("--big_pop_size", action='store_true', default=False, help="whether to use big population size of 100 rather than default") args = parser.parse_args() cell = args.cell # Load project modules sys.path.append(os.path.abspath(os.path.join('python'))) import priors import cells import transformation import data import model # Get model string and params if args.model == 'mazhari': model_str = 'Mazhari' x_found = np.loadtxt('cmaesfits/parameter-sets/mazhari-params.txt', unpack=True) elif args.model == 'mazhari-reduced': model_str = 'Maz-red' x_found = np.loadtxt('cmaesfits/parameter-sets/mazhari-reduced-params.txt', unpack=True) elif args.model == 'wang': model_str = 'Wang' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-params.txt', unpack=True) elif args.model == 'wang-r1': model_str = 'Wang-r1' x_found = np.loadtxt('cmaesfits/parameter-sets/wang-r1-params.txt', unpack=True) for i in {0, 2, 4, 5, 6, 8, 13}: x_found[i] = np.exp(x_found[i]) elif args.model == 'wang-r2': model_str = 'Wang-r2' x_found =
np.loadtxt('cmaesfits/parameter-sets/wang-r2-params.txt', unpack=True)
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Wed Jul 20 15:12:49 2016 @author: uzivatel """ import numpy as np import timeit from multiprocessing import Pool, cpu_count from functools import partial from sys import platform import scipy from copy import deepcopy from ..qch_functions import overlap_STO, dipole_STO, quadrupole_STO, norm_GTO from ..positioningTools import fill_basis_transf_matrix from .general import Coordinate # nepocitat self.exct_spec[exct_i]['coeff_mat']=M_mat pokud neni nutne - zdrzuje def _ao_over_line(Coor_lin,Coeffs_lin,Exp_lin,Orient_lin,indx): ''' This Function calculates row in overlap matrix ''' # print('Start of parallel calculation witj process id:',os.getpid()) NAO=len(Coor_lin) AO_over_row=np.zeros(NAO) for ii in range(indx,NAO): AO_over_row[ii]=overlap_STO(Coor_lin[indx],Coor_lin[ii],np.array(Coeffs_lin[indx]),np.array(Coeffs_lin[ii]),np.array(Exp_lin[indx]),np.array(Exp_lin[ii]),np.array(Orient_lin[indx]),np.array(Orient_lin[ii])) # print(os.getpid()) return AO_over_row def _dip_over_line(Coor_lin,Coeffs_lin,Exp_lin,Orient_lin,indx): ''' This Function calculates row in dipole matrix ''' NAO=len(Coor_lin) Dip_over_row=np.zeros((NAO,3)) for ii in range(indx,NAO): Dip_over_row[ii,:]=dipole_STO(Coor_lin[indx],Coor_lin[ii],np.array(Coeffs_lin[indx]),np.array(Coeffs_lin[ii]),np.array(Exp_lin[indx]),np.array(Exp_lin[ii]),np.array(Orient_lin[indx]),np.array(Orient_lin[ii])) return Dip_over_row def _quad_over_line(Coor_lin,Coeffs_lin,Exp_lin,Orient_lin,only_triangle,indx): ''' This Function calculates row in quadrupole matrix ''' NAO=len(Coor_lin) Quad_over_row=np.zeros((NAO,6)) if only_triangle: start=indx else: start=0 for ii in range(start,NAO): Rik=Coor_lin[ii]-Coor_lin[indx] R0=np.zeros(3) Quad_over_row[ii,:]=quadrupole_STO(R0,Rik,np.array(Coeffs_lin[indx]),np.array(Coeffs_lin[ii]),np.array(Exp_lin[indx]),np.array(Exp_lin[ii]),np.array(Orient_lin[indx]),np.array(Orient_lin[ii])) return Quad_over_row class Atom: ''' Class containing atom type and index(position in structure) type : string Atom type e.g. 'C' or 'H'... indx : integer Position of atom in structure class. !Starting from 0! ''' def __init__(self,typ,indx): self.type=typ self.indx=int(indx) class AO: ''' Class containing all information about atomic orbitals name : string Name of the atomic basis e.g. 6-31G*,.. coeff : list of numpy.arrays of real For every atomic orbital contains expansion coefficients of STO orbital into GTO (more expained in Notes) exp : list of numpy.arrays of real For every atomic orbital contains exponents for GTO obitals in expansion of STO (more explaind in Notes) coor : Coordinate class - position units managed Information about center of every atomic orbital. Units are coor.units. Dimension of coor.value is (dimension Norbitals x 3) type : list of string and integer (dimension Norbitals x 2) Orbital types for every orbital (for example ``'s', 'p', 'd', '5d', 'f', '7f'``) atom : list of Atom class (dimesion Norbitals) For every orbital there is a list with atom information. (atom[i].indx index of the atom in structure class, atom[i].type string with atom type) nao : integer Number of orbitals nao_orient : integer number of atomic orbitals with orientation (for 's' type orbital there is only one orientation, for 'p' orbital there are 3 orientaions - x,y and z and so on for oter orbitals) = total number of atomic orbital basis functions orient : list (dimension Norbitals) For every atomic orbital type there is a list with possible atomic orbital spatial orientations (e.g. one possible orientation could be for f orbital [2,0,1] which correspond to X^2Z spatial orinetation or for d orbital [0,1,1] correspond to YZ spatial orientation) indx_orient : list (dimension Norbitals_orient) For every spatialy oriented orbital there is a list with a number of atomic orbitals to which this orientation corresponds, at the fisrt position and orientation of the orbital at the second position. (e.g [2, [0, 1, 0]] which means orientation in y direction of third orbital (numbering from 0) which is p type orbital (summ of all numbers in orient. is 1)) overlap : numpy.array of real (dimension N_AO_orient x N_AO_orient) Overlap matrix between AO: overlap[i,j]=<AO_i|AO_j> dipole : dictionary * **dipole['Dip_X']** = numpy.array of real (dimension N_AO_orient x N_AO_orient) with dipole x coordinate in AO basis: dipole['Dip_X'][i,j]=<AO_i|x|AO_j> * **dipole['Dip_Y']** = numpy.array of real (dimension N_AO_orient x N_AO_orient) with dipole y coordinate in AO basis: dipole['Dip_Y'][i,j]=<AO_i|y|AO_j> * **dipole['Dip_Z']** = numpy.array of real (dimension N_AO_orient x N_AO_orient) with dipole z coordinate in AO basis: dipole['Dip_Z'][i,j]=<AO_i|z|AO_j> grid : list of numpy arrays of float (dimension Nao x Grid_Nx x Grid_Ny x Grid_Nz) Slater orbital basis evaluated on given grid quadrupole : numpy.array of real (dimension 6 x N_AO_orient x N_AO_orient) quadrupole components in AO basis: * quadrupole[0,:,:] = quadrupole xx matrix <AO_i|x^2|AO_j> * quadrupole[1,:,:] = quadrupole xy matrix <AO_i|xy|AO_j> * quadrupole[2,:,:] = quadrupole xz matrix <AO_i|xz|AO_j> * quadrupole[3,:,:] = quadrupole yy matrix <AO_i|yy|AO_j> * quadrupole[4,:,:] = quadrupole yz matrix <AO_i|yz|AO_j> * quadrupole[5,:,:] = quadrupole zz matrix <AO_i|zz|AO_j> Functions ----------- add_orbital : Add atomic orbital including expansion coefficients into gaussian orbitals coordinates, type, atom on which is centered. rotate : Rotate the atomic orbitals and all aditional quantities by specified angles in radians in positive direction. rotate_1 : Inverse totation to rotate move : Moves the atomic orbitals and all aditional quantities along specified vector copy : Create 1 to 1 copy of the atomic orbitals with all classes and types. get_overlap : Calculate overlap matrix between atomic orbitals import_multiwfn_overlap : Imports the overlap matrix from multiwfn output get_dipole_matrix : Calculate dipoles between each pair of atomic orbitals and outputs it as matrix get_quadrupole : Calculate quadrupole moments between each pair of atomic orbitals and outputs it as matrix get_slater_ao_grid : Evaluate slater atomic orbital on given grid get_all_slater_grid Evalueate all slater orbitals on given grid (create slater orbital basis on given grid) Notes ---------- Expansion of STO (slater orbital) into GTO (gaussian orbital) bassis is defined as: STO=Sum(coef*GTO(r,exp)*NormGTO(r,exp)) where r is center of the orbital (position of the corresponding atom) ''' def __init__(self): self.name='AO-basis' self.coeff=[] self.exp=[] self.coor=None self.type=[] self.atom=[] self.nao=0 self.nao_orient=0 self.orient=[] self.indx_orient=[] self.init=False self.overlap=None self.dipole=None self.quadrupole=None self.grid=None def add_orbital(self,coeffs,exps,coor,orbit_type,atom_indx,atom_type): """ Adds atomic orbital including all needed informations Parameters ---------- coeffs : numpy array or list of floats Expansion coefficients of the slater atomic orbital into gaussian atomic orbitals exps : numpy array or list of floats Exponents of gaussian orbitals in expansion of the slater atomic orbital. coor : Coordinate class Centers of atomic orbitals (position units managed) orbit_type : string Type of the orbital e.g. 's','d','5d'... atom_indx : integer index of atom on which orbital is centered atom_type : string Atom type on which orbital is cenetered e.g. 'C','H',... """ if type(atom_type)==list or type(atom_type)==np.ndarray: if not self.init: if type(coeffs)==np.ndarray: self.coeff=list(coeffs) # it should be list of numpy arrays elif type(coeffs)==list: self.coeff=coeffs.copy() else: raise IOError('Imput expansion coefficients of AO should be list of numpy arrays or numpy array') if type(exps)==np.ndarray: self.exp=list(exps) # it should be list of numpy arrays elif type(coeffs)==list: self.exp=exps.copy() else: raise IOError('Imput expansion coefficients of AO should be list of numpy arrays or numpy array') self.coor=Coordinate(coor) # assuming that we all arbital coordinates will be imputed in Bohrs self.type=orbit_type if type(atom_indx)==list: for ii in range(len(atom_indx)): self.atom.append(Atom(atom_type[ii],atom_indx[ii])) else: self.atom.append(Atom(atom_type,atom_indx)) self.nao=len(orbit_type) for ii in range(len(self.type)): orient=l_orient(self.type[ii]) self.orient.append(orient) self.nao_orient+=len(orient) for jj in range(len(orient)): self.indx_orient.append([ii,orient[jj]]) self.init=True else: self.coor.add_coor(coor) for ii in range(len(orbit_type)): self.coeff.append(np.array(coeffs[ii],dtype='f8')) self.exp.append(np.array(exps[ii],dtype='f8')) self.type.append(orbit_type[ii]) self.atom.append(Atom(atom_type[ii],int(atom_indx[ii]))) self.nao+=1 orient=l_orient(orbit_type[ii]) self.orient.append(orient) self.nao_orient+=len(orient) for jj in range(len(orient)): self.indx_orient.append([self.nao-1,orient[jj]]) else: if not self.init: self.coor=Coordinate(coor) else: self.coor.add_coor(coor) self.coeff.append(np.array(coeffs,dtype='f8')) self.exp.append(np.array(exps,dtype='f8')) self.type.append(orbit_type) self.atom.append(Atom(atom_type,atom_indx)) self.nao+=1 orient=l_orient(orbit_type[0]) self.orient.append(orient) self.nao_orient+=len(orient) for jj in range(len(orient)): self.indx_orient.append([self.nao-1,orient[jj]]) self.init=True def get_overlap(self,nt=0,verbose=False): """ Calculate overlap matrix between atomic orbitals Parameters ---------- nt : integer (optional init = 0) Specifies how many cores should be used for the calculation. Secial cases: ``nt=0`` all available cores are used for the calculation. ``nt=1`` serial calculation is performed. verbose : logical (optional init = False) If ``True`` information about time needed for overlap calculation will be printed Notes --------- Overlap matrix is stored in:\n **self.overlap** \n as numpy array of float dimension (Nao_orient x Nao_orient) """ # Toto by chtelo urcite zefektivnit pomoci np if (platform=='cygwin' or platform=="linux" or platform == "linux2") and nt!=1 and nt>=0: typ='paralell' elif platform=='win32' or nt==1: typ='seriall' else: typ='seriall_old' if typ=='seriall' or typ=='paralell': SS=np.zeros((self.nao_orient,self.nao_orient),dtype='f8') start_time = timeit.default_timer() ''' Convert all imput parameters into matrix which has dimension Nao_orient ''' # prepare imput Coor_lin=np.zeros((self.nao_orient,3)) Coeffs_lin=[] Exp_lin=[] Orient_lin=[] counter1=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): Coor_lin[counter1]=self.coor._value[ii] Coeffs_lin.append(self.coeff[ii]) Exp_lin.append(self.exp[ii]) Orient_lin.append(self.orient[ii][jj]) counter1+=1 ao_over_line_partial = partial(_ao_over_line, Coor_lin,Coeffs_lin,Exp_lin,Orient_lin) # Only parameter of this function is number of row whih is calculated elif typ=='seriall_old': SS=np.zeros((self.nao_orient,self.nao_orient),dtype='f8') counter1=0 start_time = timeit.default_timer() percent=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): counter2=0 for kk in range(self.nao): for ll in range(len(self.orient[kk])): if counter1>=counter2: SS[counter1,counter2] = overlap_STO(self.coor._value[ii],self.coor._value[kk],self.coeff[ii],self.coeff[kk],self.exp[ii],self.exp[kk],self.orient[ii][jj],self.orient[kk][ll]) counter2 += 1 counter1 += 1 elapsed = timeit.default_timer() - start_time if elapsed>60.0: if percent!=(counter1*10//self.nao_orient)*10: if percent==0: print('Overlap matrix calculation progres:') percent=(counter1*10//self.nao_orient)*10 print(percent,'% ',sep="",end="") if verbose: print('Elapsed time for serial overlap matrix allocation:',elapsed) for ii in range(self.nao_orient): for jj in range(ii+1,self.nao_orient): SS[ii,jj]=SS[jj,ii] if verbose: print(' ') self.overlap=np.copy(SS) if typ=='paralell': ''' Parallel part ''' # print('Prepairing parallel calculation') if nt>0: pool = Pool(processes=nt) else: pool = Pool(processes=cpu_count()) index_list=range(self.nao_orient) SS= np.array(pool.map(ao_over_line_partial,index_list)) pool.close() # ATTENTION HERE pool.join() elif typ=='seriall': index_list=range(self.nao_orient) SS=np.zeros((self.nao_orient,self.nao_orient)) ''' Seriall part ''' for ii in range(self.nao_orient): SS[ii,:]=ao_over_line_partial(index_list[ii]) ''' Fill the lower triangle of overlap matrix''' for ii in range(self.nao_orient): for jj in range(ii): SS[ii,jj]=SS[jj,ii] elapsed = timeit.default_timer() - start_time if verbose: if typ=='paralell': print('Elapsed time for parallel overlap matrix allocation:',elapsed) elif typ=='seriall': print('Elapsed time for seriall overlap matrix allocation:',elapsed) self.overlap=np.copy(SS) # TODO: include multiwfn script for generation of overlap matrix def import_multiwfn_overlap(self,filename): """ Import overlap matrix from multiwfn output Parameters ---------- filename : string Name of the input file including the path if needed. (output file from multiwfn calculation) Notes --------- Overlap matrix is stored in:\n **self.overlap** \n as numpy array of float dimension (Nao_orient x Nao_orient) """ fid = open(filename,'r') # Open the file flines = fid.readlines() # Read the WHOLE file into RAM fid.close() counter=0 Norb=self.nao_orient SS_inp=np.zeros((Norb,Norb)) for jj in range(Norb//5+1): for ii in range(5*jj,Norb+1): if ii!=5*jj: line = flines[counter] thisline = line.split() for kk in range(5): if kk+5*jj+1<=ii: if 'D' in thisline[kk+1]: SS_inp[ii-1,kk+5*jj]=float(thisline[kk+1].replace('D', 'e')) else: SS_inp[ii-1,kk+5*jj]=float(thisline[kk+1][:-4]+'e'+thisline[kk+1][-4:]) #print(thisline[kk+1],SS_inp[ii-1,kk+5*jj]) #print(5*jj,ii-1,flines[counter]) counter+=1 for ii in range(Norb): for jj in range(ii+1,Norb): SS_inp[ii,jj]=SS_inp[jj,ii] self.overlap=SS_inp def get_dipole_matrix(self,nt=0,verbose=False): """ Calculate dipole matrix between atomic orbitals Parameters ---------- nt : integer (optional init = 0) Specifies how many cores should be used for the calculation. Secial cases: ``nt=0`` all available cores are used for the calculation. ``nt=1`` serial calculation is performed. verbose : logical (optional init = False) If ``True`` information about time needed for overlap calculation will be printed Notes --------- Dipole matrix is stored in:\n **self.dipole** \n as dictionary of numpy arrays of float dimension (Nao_orient x Nao_orient). Dictionary has 3 keys: 'Dip_X', 'Dip_Y', 'Dip_Z'. More information can be found in class documentation """ # select platform if (platform=='cygwin' or platform=="linux" or platform == "linux2") and nt!=1 and nt>=0: typ='paralell' elif platform=='win32' or nt==1: typ='seriall' else: typ='seriall_old' start_time = timeit.default_timer() SS_dipX=np.zeros((self.nao_orient,self.nao_orient),dtype='f8') SS_dipY=np.zeros((self.nao_orient,self.nao_orient),dtype='f8') SS_dipZ=np.zeros((self.nao_orient,self.nao_orient),dtype='f8') if typ=='seriall' or typ=='paralell': ''' Convert all imput parameters into matrix which has dimension Nao_orient ''' # prepare imput Coor_lin=np.zeros((self.nao_orient,3)) Coeffs_lin=[] Exp_lin=[] Orient_lin=[] counter1=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): Coor_lin[counter1]=self.coor._value[ii] Coeffs_lin.append(self.coeff[ii]) Exp_lin.append(self.exp[ii]) Orient_lin.append(self.orient[ii][jj]) counter1+=1 dip_over_line_partial = partial(_dip_over_line, Coor_lin,Coeffs_lin,Exp_lin,Orient_lin) # Only parameter of this function is number of row whih is calculated else: counter1=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): counter2=0 for kk in range(self.nao): for ll in range(len(self.orient[kk])): if counter1>=counter2: dipole=dipole_STO(self.coor._value[ii],self.coor._value[kk],self.coeff[ii],self.coeff[kk],self.exp[ii],self.exp[kk],self.orient[ii][jj],self.orient[kk][ll]) SS_dipX[counter1,counter2] = dipole[0] SS_dipY[counter1,counter2] = dipole[1] SS_dipZ[counter1,counter2] = dipole[2] counter2 += 1 counter1 += 1 for ii in range(self.nao_orient): for jj in range(ii+1,self.nao_orient): SS_dipX[ii,jj]=SS_dipX[jj,ii] SS_dipY[ii,jj]=SS_dipY[jj,ii] SS_dipZ[ii,jj]=SS_dipZ[jj,ii] elapsed = timeit.default_timer() - start_time if verbose: print('Elapsed time slater dipole matrix allocation', elapsed) self.dipole={} self.dipole['Dip_X']=np.copy(SS_dipX) self.dipole['Dip_Y']=np.copy(SS_dipY) self.dipole['Dip_Z']=np.copy(SS_dipZ) if typ=='paralell': ''' Parallel part ''' # print('Prepairing parallel calculation') if nt>0: pool = Pool(processes=nt) else: pool = Pool(processes=cpu_count()) index_list=range(self.nao_orient) DipMat= np.array(pool.map(dip_over_line_partial,index_list)) pool.close() # ATTENTION HERE pool.join() elif typ=='seriall': index_list=range(self.nao_orient) DipMat=np.zeros((self.nao_orient,self.nao_orient,3)) ''' Seriall part ''' for ii in range(self.nao_orient): DipMat[ii,:]=dip_over_line_partial(index_list[ii]) if typ=='seriall' or typ=='paralell': ''' Fill the lower triangle of overlap matrix''' for ii in range(self.nao_orient): for jj in range(ii): DipMat[ii,jj,:]=DipMat[jj,ii,:] elapsed = timeit.default_timer() - start_time if verbose: if typ=='paralell': print('Elapsed time for parallel slater dipole matrix allocation:',elapsed) elif typ=='seriall': print('Elapsed time for seriall slater dipole matrix allocation:',elapsed) if typ=='seriall' or typ=='paralell': self.dipole={} self.dipole['Dip_X']=np.zeros((self.nao_orient,self.nao_orient)) self.dipole['Dip_Y']=np.zeros((self.nao_orient,self.nao_orient)) self.dipole['Dip_Z']=np.zeros((self.nao_orient,self.nao_orient)) self.dipole['Dip_X'][:,:]=np.copy(DipMat[:,:,0]) self.dipole['Dip_Y'][:,:]=np.copy(DipMat[:,:,1]) self.dipole['Dip_Z'][:,:]=np.copy(DipMat[:,:,2]) def get_quadrupole(self,nt=0,verbose=False): """ Calculate quadrupole matrix between atomic orbitals Parameters ---------- nt : integer (optional init = 0) Specifies how many cores should be used for the calculation. Secial cases: ``nt=0`` all available cores are used for the calculation. ``nt=1`` serial calculation is performed. verbose : logical (optional init = False) If ``True`` information about time needed for overlap calculation will be printed Notes --------- Dipole matrix is stored in:\n **self.quadrupole** \n as numpy array of float dimension (6 x Nao_orient x Nao_orient) and ordering of quadrupole moments is: xx, xy, xz, yy, yz, zz \n \n quadrupoles are defined as ``Qij(mu,nu) = \int{AO_mu(r+R_mu)*ri*rj*AO_nu(r+R_mu)}``\n The AO_mu is shifted to zero making the quadrupoles independent to coordinate shifts """ QuadMat=np.zeros((6,self.nao_orient,self.nao_orient),dtype='f8') start_time = timeit.default_timer() do_faster=False if (self.dipole is not None) and (self.overlap is not None): do_faster=True # choose platform for calculation if (platform=='cygwin' or platform=="linux" or platform == "linux2") and nt!=1 and nt>=0: typ='paralell' elif platform=='win32' or nt==1: typ='seriall' else: typ='seriall_old' if typ=='seriall' or typ=='paralell': ''' Convert all imput parameters into matrix which has dimension Nao_orient ''' # prepare imput Coor_lin=np.zeros((self.nao_orient,3)) Coeffs_lin=[] Exp_lin=[] Orient_lin=[] counter1=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): Coor_lin[counter1]=self.coor._value[ii] Coeffs_lin.append(self.coeff[ii]) Exp_lin.append(self.exp[ii]) Orient_lin.append(self.orient[ii][jj]) counter1+=1 quad_over_line_partial = partial(_quad_over_line, Coor_lin,Coeffs_lin,Exp_lin,Orient_lin,do_faster) # Only parameter of this function is number of row whih is calculated else: counter1=0 for ii in range(self.nao): for jj in range(len(self.orient[ii])): counter2=0 for kk in range(self.nao): for ll in range(len(self.orient[kk])): Rik=self.coor._value[kk]-self.coor._value[ii] R0=np.zeros(3) QuadMat[:,counter1,counter2]=quadrupole_STO(R0,Rik,self.coeff[ii],self.coeff[kk],self.exp[ii],self.exp[kk],self.orient[ii][jj],self.orient[kk][ll]) counter2 += 1 counter1 += 1 elapsed = timeit.default_timer() - start_time print('Elapsed time for slater quadrupole matrix allocation:',elapsed) if typ=='paralell': ''' Parallel part ''' # print('Prepairing parallel calculation') if nt>0: pool = Pool(processes=nt) else: pool = Pool(processes=cpu_count()) index_list=range(self.nao_orient) QuadMat_tmp= np.array(pool.map(quad_over_line_partial,index_list)) pool.close() # ATTENTION HERE pool.join() elif typ=='seriall': index_list=range(self.nao_orient) ''' Seriall part ''' for ii in range(self.nao_orient): QuadMat[:,ii,:]=np.swapaxes(quad_over_line_partial(index_list[ii]),0,1) ''' Fill the lower triangle of overlap matrix''' if typ=='seriall' and do_faster: for ii in range(self.nao_orient): for jj in range(ii): counter=0 Rji=self.coor._value[self.indx_orient[ii][0]]-self.coor._value[self.indx_orient[jj][0]] Rj=self.coor._value[self.indx_orient[jj][0]] Dji=np.array([self.dipole['Dip_X'][jj,ii],self.dipole['Dip_Y'][jj,ii],self.dipole['Dip_Z'][jj,ii]]) SSji=self.overlap[jj,ii] for kk in range(3): for ll in range(kk,3): QuadMat[counter,ii,jj]=QuadMat[counter,jj,ii]-Rji[kk]*Dji[ll]-Rji[ll]*Dji[kk]+(Rj[kk]*Rji[ll]+Rj[ll]*Rji[kk]+Rji[kk]*Rji[ll])*SSji counter+=1 if typ=='paralell' and do_faster: for ii in range(self.nao_orient): for jj in range(ii): counter=0 Rji=self.coor._value[self.indx_orient[ii][0]]-self.coor._value[self.indx_orient[jj][0]] Rj=self.coor._value[self.indx_orient[jj][0]] Dji=np.array([self.dipole['Dip_X'][jj,ii],self.dipole['Dip_Y'][jj,ii],self.dipole['Dip_Z'][jj,ii]]) SSji=self.overlap[jj,ii] for kk in range(3): for ll in range(kk,3): QuadMat_tmp[ii,jj,counter]=QuadMat_tmp[jj,ii,counter]-Rji[kk]*Dji[ll]-Rji[ll]*Dji[kk]+(Rj[kk]*Rji[ll]+Rj[ll]*Rji[kk]+Rji[kk]*Rji[ll])*SSji counter+=1 QuadMat=np.copy(np.swapaxes(QuadMat_tmp,0,2)) QuadMat=np.copy(np.swapaxes(QuadMat,1,2)) elapsed = timeit.default_timer() - start_time if verbose: if typ=='paralell': print('Elapsed time for parallel slater quadrupole matrix allocation:',elapsed) elif typ=='seriall': print('Elapsed time for seriall slater quadrupoele matrix allocation:',elapsed) self.quadrupole=np.copy(QuadMat) # def get_quadrupole_old(self,nt=0,verbose=False): # """ Calculate quadrupole matrix between atomic orbitals # # Parameters # ---------- # nt : integer (optional init = 0) # Specifies how many cores should be used for the calculation. # Secial cases: # ``nt=0`` all available cores are used for the calculation. # ``nt=1`` serial calculation is performed. # verbose : logical (optional init = False) # If ``True`` information about time needed for overlap calculation # will be printed # # Notes # --------- # Dipole matrix is stored in:\n # **self.quadrupole** \n # as numpy array of float dimension (6 x Nao_orient x Nao_orient) and # ordering of quadrupole moments is: xx, xy, xz, yy, yz, zz # # """ # # QuadMat=np.zeros((6,self.nao_orient,self.nao_orient),dtype='f8') # start_time = timeit.default_timer() # # do_faster=False # if (self.dipole is not None) and (self.overlap is not None): # do_faster=True # # # choose platform for calculation # if (platform=='cygwin' or platform=="linux" or platform == "linux2") and nt!=1 and nt>=0: # typ='paralell' # elif platform=='win32' or nt==1: # typ='seriall' # else: # typ='seriall_old' # # if typ=='seriall' or typ=='paralell': # ''' Convert all imput parameters into matrix which has dimension Nao_orient ''' # # prepare imput # Coor_lin=np.zeros((self.nao_orient,3)) # Coeffs_lin=[] # Exp_lin=[] # Orient_lin=[] # counter1=0 # for ii in range(self.nao): # for jj in range(len(self.orient[ii])): # Coor_lin[counter1]=self.coor._value[ii] # Coeffs_lin.append(self.coeff[ii]) # Exp_lin.append(self.exp[ii]) # Orient_lin.append(self.orient[ii][jj]) # counter1+=1 # # quad_over_line_partial = partial(_quad_over_line, Coor_lin,Coeffs_lin,Exp_lin,Orient_lin,do_faster) # # Only parameter of this function is number of row whih is calculated # else: # counter1=0 # for ii in range(self.nao): # for jj in range(len(self.orient[ii])): # counter2=0 # for kk in range(self.nao): # for ll in range(len(self.orient[kk])): # Rik=self.coor._value[kk]-self.coor._value[ii] # R0=np.zeros(3) # QuadMat[:,counter1,counter2]=quadrupole_STO(R0,Rik,self.coeff[ii],self.coeff[kk],self.exp[ii],self.exp[kk],self.orient[ii][jj],self.orient[kk][ll]) # counter2 += 1 # counter1 += 1 # # elapsed = timeit.default_timer() - start_time # print('Elapsed time for slater quadrupole matrix allocation:',elapsed) # # if typ=='paralell': # ''' Parallel part ''' ## print('Prepairing parallel calculation') # if nt>0: # pool = Pool(processes=nt) # else: # pool = Pool(processes=cpu_count()) # index_list=range(self.nao_orient) # QuadMat_tmp= np.array(pool.map(quad_over_line_partial,index_list)) # pool.close() # ATTENTION HERE # pool.join() # elif typ=='seriall': # index_list=range(self.nao_orient) # ''' Seriall part ''' # for ii in range(self.nao_orient): # QuadMat[:,ii,:]=np.swapaxes(quad_over_line_partial(index_list[ii]),0,1) # # ''' Fill the lower triangle of overlap matrix''' # if typ=='seriall' and do_faster: # for ii in range(self.nao_orient): # for jj in range(ii): # counter=0 # Rji=self.coor._value[self.indx_orient[ii][0]]-self.coor._value[self.indx_orient[jj][0]] # Rj=self.coor._value[self.indx_orient[jj][0]] # Dji=np.array([self.dipole['Dip_X'][jj,ii],self.dipole['Dip_Y'][jj,ii],self.dipole['Dip_Z'][jj,ii]]) # SSji=self.overlap[jj,ii] # for kk in range(3): # for ll in range(kk,3): # QuadMat[counter,ii,jj]=QuadMat[counter,jj,ii]-Rji[kk]*Dji[ll]-Rji[ll]*Dji[kk]+(Rj[kk]*Rji[ll]+Rj[ll]*Rji[kk]+Rji[kk]*Rji[ll])*SSji # counter+=1 # if typ=='paralell' and do_faster: # for ii in range(self.nao_orient): # for jj in range(ii): # counter=0 # Rji=self.coor._value[self.indx_orient[ii][0]]-self.coor._value[self.indx_orient[jj][0]] # Rj=self.coor._value[self.indx_orient[jj][0]] # Dji=np.array([self.dipole['Dip_X'][jj,ii],self.dipole['Dip_Y'][jj,ii],self.dipole['Dip_Z'][jj,ii]]) # SSji=self.overlap[jj,ii] # for kk in range(3): # for ll in range(kk,3): # QuadMat_tmp[ii,jj,counter]=QuadMat_tmp[jj,ii,counter]-Rji[kk]*Dji[ll]-Rji[ll]*Dji[kk]+(Rj[kk]*Rji[ll]+Rj[ll]*Rji[kk]+Rji[kk]*Rji[ll])*SSji # counter+=1 # QuadMat=np.copy(np.swapaxes(QuadMat_tmp,0,2)) # QuadMat=np.copy(np.swapaxes(QuadMat,1,2)) # # elapsed = timeit.default_timer() - start_time # # if verbose: # if typ=='paralell': # print('Elapsed time for parallel slater quadrupole matrix allocation:',elapsed) # elif typ=='seriall': # print('Elapsed time for seriall slater quadrupoele matrix allocation:',elapsed) # # self.quadrupole=np.copy(QuadMat) def get_slater_ao_grid(self,grid,indx,keep_grid=False,new_grid=True): # Jediny je spravne se spravnou normalizaci """ Evaluate single slater orbital on given grid Parameters ---------- grid : Grid class Information about grid on which slater atomic orbital is evaluated. indx : Index of atomic orbital whic is evaluated (position in indx_orient) keep_grid : logical (optional init = False) If ``True`` local grid (dependent on orbital center) is kept as global internal variable in order to avoid recalculation of the grid for calculation of more orientations of the same orbital. new_grid : logical (optional init = True) If ``True`` local grid (dependent on orbital center) is recalculated and the old one is overwriten. It is needed if local grid for orbital with different center was previously saved. Returns --------- slater_ao_tmp : numpy array of float (dimension Grid_Nx x Grid_Ny x Grid_Nz) Values of slater orbital on grid points defined by grid. """ slater_ao_tmp=np.zeros(np.shape(grid.X)) ii=self.indx_orient[indx][0] # print(indx,'/',mol.ao_spec['Nao_orient']) if new_grid: global X_grid_loc,Y_grid_loc,Z_grid_loc,RR_grid_loc X_grid_loc=np.add(grid.X,-self.coor._value[ii][0]) # posunu grid vzdy tak abych dostal centrum orbitalu do nuly. Y_grid_loc=np.add(grid.Y,-self.coor._value[ii][1]) Z_grid_loc=np.add(grid.Z,-self.coor._value[ii][2]) RR_grid_loc=np.square(X_grid_loc)+np.square(Y_grid_loc)+np.square(Z_grid_loc) # Vytvorena souradnicova sit a vsechny souradnice rozlozeny na grid # Pro kazdou orientaci pouziji ruzny slateruv atomovy orbital kvuli ruzne normalizaci gaussovskych orbitalu # Vypocet slaterova orbitalu na gridu pro AO=ii a orientaci ao_comb[jj+index] if self.type[ii][0] in ['s','p','d','f','5d']: slater_ao=np.zeros(np.shape(grid.X)) for kk in range(len(self.coeff[ii])): coef=self.coeff[ii][kk] exp=self.exp[ii][kk] r_ao= self.coor._value[ii] norm=norm_GTO(r_ao,exp,self.indx_orient[indx][1]) c=coef*norm slater_ao += np.multiply(c,np.exp(np.multiply(-exp,RR_grid_loc))) else: raise IOError('Supported orbitals are so far only s,p,d,5d,f orbitals') #slateruv orbital vytvoren if self.type[ii][0] in ['s','p','d','f']: m=self.indx_orient[indx][1][0] n=self.indx_orient[indx][1][1] o=self.indx_orient[indx][1][2] slater_ao_tmp=np.copy(slater_ao) if m!=0: slater_ao_tmp=np.multiply(np.power(X_grid_loc,m),slater_ao_tmp) if n!=0: slater_ao_tmp=np.multiply(np.power(Y_grid_loc,n),slater_ao_tmp) if o!=0: slater_ao_tmp=np.multiply(np.power(Z_grid_loc,o),slater_ao_tmp) elif self.type[ii][0]=='5d': orient=self.indx_orient[indx][1] if orient[0]==(-2): ## 3Z^2-R^2 slater_ao_tmp=np.copy(slater_ao) slater_ao_tmp=np.multiply(3,np.multiply(np.power(Z_grid_loc,2),slater_ao_tmp)) slater_ao_tmp=slater_ao_tmp-np.multiply(RR_grid_loc,slater_ao) elif orient[0]==(-1) and orient[2]==(-1): ## XZ slater_ao_tmp=np.copy(slater_ao) slater_ao_tmp=np.multiply(Z_grid_loc,slater_ao_tmp) slater_ao_tmp=np.multiply(X_grid_loc,slater_ao_tmp) elif orient[1]==(-1) and orient[2]==(-1): ## YZ slater_ao_tmp=np.copy(slater_ao) slater_ao_tmp=np.multiply(Z_grid_loc,slater_ao_tmp) slater_ao_tmp=np.multiply(Y_grid_loc,slater_ao_tmp) elif orient[1]==(-2): #X^2-Y^2 slater_ao_tmp=np.copy(slater_ao) slater_ao_tmp=np.multiply(np.power(X_grid_loc,2),slater_ao_tmp) slater_ao_tmp=slater_ao_tmp-np.multiply(np.power(Y_grid_loc,2),slater_ao) elif orient[0]==(-1) and orient[1]==(-1): #XY slater_ao_tmp=np.copy(slater_ao) slater_ao_tmp=np.multiply(Y_grid_loc,slater_ao_tmp) slater_ao_tmp=np.multiply(X_grid_loc,slater_ao_tmp) else: raise IOError('5d orbital has only 5 orientations') if not keep_grid: del X_grid_loc del Y_grid_loc del Z_grid_loc del RR_grid_loc return np.array(slater_ao_tmp) def get_all_slater_grid(self,grid,nt=0): # Jediny je spravne se spravnou normalizaci """ Evaluate all slater orbitals on given grid. This way basis for calculation of transition densities or other electron densities. Parameters ---------- grid : Grid class Information about grid on which slater atomic orbital is evaluated. nt : integer (optional init = 0) Specifies how many cores should be used for the calculation. Secial cases: ``nt=0`` all available cores are used for the calculation. ``nt=1`` serial calculation is performed. Notes --------- All oriented slater atomic orbitals evaluated on given grid are stored at:\n **self.grid** \n as a list (size nao_orient) of numpy arrays of float (dimension Grid_Nx x Grid_Ny x Grid_Nz) """ # TODO: add check of OS and decide if calculate serial or parallel All_slater_grid=[] do_parallel=False if nt==1: # serial execution counter=0 keep_grid=True for ii in range(self.nao): new_grid=True print(ii) if ii==0: new_grid=True elif (ii>0) and (self.atom[ii].indx==self.atom[ii-1].indx): new_grid=False for jj in range(len(self.orient[ii])): if counter==self.nao_orient: keep_grid=False All_slater_grid.append(self.get_slater_ao_grid(grid,counter,keep_grid=keep_grid,new_grid=new_grid)) counter+=1 elif nt>1: from multiprocessing import Pool, cpu_count pool = Pool(processes=nt) do_parallel=True else: from multiprocessing import Pool, cpu_count pool = Pool(processes=cpu_count()) do_parallel=True if do_parallel: index_list=range(self.nao_orient) allocate_single_slater_grid_mol_partial = partial(self.get_slater_ao_grid, grid) All_slater_grid_tmp= pool.map(allocate_single_slater_grid_mol_partial,index_list) pool.close() # ATTENTION HERE pool.join() All_slater_grid=np.copy(All_slater_grid_tmp) self.grid=All_slater_grid def _get_ao_rot_mat(self,rotxy,rotxz,rotyz): RotA={} RotB={} RotC={} orbit=['s','p','d','5d','f'] for ii in orbit: RotA[ii],RotB[ii],RotC[ii]=fill_basis_transf_matrix(ii,rotxy,rotxz,rotyz) #TransfMat=np.dot(RotC[self.type[0][0]],np.dot(RotB[self.type[0][0]],RotA[self.type[0][0]])) TransfMat=np.dot(RotC[self.type[0]],np.dot(RotB[self.type[0]],RotA[self.type[0]])) for ii in range(1,self.nao): #Rot_tmp=np.dot(RotC[self.type[ii][0]],np.dot(RotB[self.type[ii][0]],RotA[self.type[ii][0]])) Rot_tmp=np.dot(RotC[self.type[ii]],np.dot(RotB[self.type[ii]],RotA[self.type[ii]])) TransfMat=scipy.linalg.block_diag(TransfMat,Rot_tmp) TransfMat=np.array(TransfMat) return TransfMat def _get_ao_rot_mat_1(self,rotxy,rotxz,rotyz): RotA={} RotB={} RotC={} orbit=['s','p','d','5d','f'] for ii in orbit: RotA[ii],RotB[ii],RotC[ii]=fill_basis_transf_matrix(ii,-rotxy,-rotxz,-rotyz) TransfMat=np.dot(RotA[self.type[0][0]],np.dot(RotB[self.type[0][0]],RotC[self.type[0][0]])) for ii in range(1,self.nao): Rot_tmp=np.dot(RotA[self.type[ii][0]],np.dot(RotB[self.type[ii][0]],RotC[self.type[ii][0]])) TransfMat=scipy.linalg.block_diag(TransfMat,Rot_tmp) TransfMat=np.array(TransfMat) return TransfMat def _rotate_dipole(self,rotxy,rotxz,rotyz): RotA,RotB,RotC=fill_basis_transf_matrix('p',rotxy,rotxz,rotyz) Rot=np.dot(RotC,np.dot(RotB,RotA)) TransfMat=self._get_ao_rot_mat(rotxy,rotxz,rotyz) # Transformation of atomic orbitals self.dipole['Dip_X']=np.dot(TransfMat,np.dot(self.dipole['Dip_X'],TransfMat.T)) self.dipole['Dip_Y']=np.dot(TransfMat,np.dot(self.dipole['Dip_Y'],TransfMat.T)) self.dipole['Dip_Z']=np.dot(TransfMat,np.dot(self.dipole['Dip_Z'],TransfMat.T)) # Transformation of dipole coordinate (x,z,y) Dip_X_tmp=Rot[0,0]*self.dipole['Dip_X']+Rot[0,1]*self.dipole['Dip_Y']+Rot[0,2]*self.dipole['Dip_Z'] Dip_Y_tmp=Rot[1,0]*self.dipole['Dip_X']+Rot[1,1]*self.dipole['Dip_Y']+Rot[1,2]*self.dipole['Dip_Z'] Dip_Z_tmp=Rot[2,0]*self.dipole['Dip_X']+Rot[2,1]*self.dipole['Dip_Y']+Rot[2,2]*self.dipole['Dip_Z'] self.dipole['Dip_X']=np.copy(Dip_X_tmp) self.dipole['Dip_Y']=np.copy(Dip_Y_tmp) self.dipole['Dip_Z']=np.copy(Dip_Z_tmp) # TODO: Test this def _rotate_dipole_1(self,rotxy,rotxz,rotyz): RotA,RotB,RotC=fill_basis_transf_matrix('p',-rotxy,-rotxz,-rotyz) Rot=np.dot(RotA,np.dot(RotB,RotC)) TransfMat=self._get_ao_rot_mat_1(rotxy,rotxz,rotyz) # Transformation of atomic orbitals self.dipole['Dip_X']=np.dot(TransfMat,np.dot(self.dipole['Dip_X'],TransfMat.T)) self.dipole['Dip_Y']=np.dot(TransfMat,np.dot(self.dipole['Dip_Y'],TransfMat.T)) self.dipole['Dip_Z']=np.dot(TransfMat,np.dot(self.dipole['Dip_Z'],TransfMat.T)) # Transformation of dipole coordinate (x,z,y) Dip_X_tmp=Rot[0,0]*self.dipole['Dip_X']+Rot[0,1]*self.dipole['Dip_Y']+Rot[0,2]*self.dipole['Dip_Z'] Dip_Y_tmp=Rot[1,0]*self.dipole['Dip_X']+Rot[1,1]*self.dipole['Dip_Y']+Rot[1,2]*self.dipole['Dip_Z'] Dip_Z_tmp=Rot[2,0]*self.dipole['Dip_X']+Rot[2,1]*self.dipole['Dip_Y']+Rot[2,2]*self.dipole['Dip_Z'] self.dipole['Dip_X']=np.copy(Dip_X_tmp) self.dipole['Dip_Y']=
np.copy(Dip_Y_tmp)
numpy.copy
""" Core framework data structures. Objects from this module can also be imported from the top-level module directly, e.g. from backtesting import Backtest, Strategy """ import multiprocessing as mp import os import sys import warnings from abc import abstractmethod, ABCMeta from concurrent.futures import ProcessPoolExecutor, as_completed from copy import copy from functools import lru_cache, partial from itertools import repeat, product, chain, compress from math import copysign from numbers import Number from typing import Callable, Dict, List, Optional, Sequence, Tuple, Type, Union import numpy as np import pandas as pd try: from tqdm.auto import tqdm as _tqdm _tqdm = partial(_tqdm, leave=False) except ImportError: def _tqdm(seq, **_): return seq from ._plotting import plot from ._util import _as_str, _Indicator, _Data, _data_period, try_ __pdoc__ = { 'Strategy.__init__': False, 'Order.__init__': False, 'Position.__init__': False, 'Trade.__init__': False, } class Strategy(metaclass=ABCMeta): """ A trading strategy base class. Extend this class and override methods `backtesting.backtesting.Strategy.init` and `backtesting.backtesting.Strategy.next` to define your own strategy. """ def __init__(self, broker, data, params): self._indicators = [] self._broker: _Broker = broker self._data: _Data = data self._params = self._check_params(params) def __repr__(self): return '<Strategy ' + str(self) + '>' def __str__(self): params = ','.join(f'{i[0]}={i[1]}' for i in zip(self._params.keys(), map(_as_str, self._params.values()))) if params: params = '(' + params + ')' return f'{self.__class__.__name__}{params}' def _check_params(self, params): for k, v in params.items(): if not hasattr(self, k): raise AttributeError( f"Strategy '{self.__class__.__name__}' is missing parameter '{k}'." "Strategy class should define parameters as class variables before they " "can be optimized or run with.") setattr(self, k, v) return params def I(self, # noqa: E741, E743 func: Callable, *args, name=None, plot=True, overlay=None, color=None, scatter=False, **kwargs) -> np.ndarray: """ Declare indicator. An indicator is just an array of values, but one that is revealed gradually in `backtesting.backtesting.Strategy.next` much like `backtesting.backtesting.Strategy.data` is. Returns `np.ndarray` of indicator values. `func` is a function that returns the indicator array(s) of same length as `backtesting.backtesting.Strategy.data`. In the plot legend, the indicator is labeled with function name, unless `name` overrides it. If `plot` is `True`, the indicator is plotted on the resulting `backtesting.backtesting.Backtest.plot`. If `overlay` is `True`, the indicator is plotted overlaying the price candlestick chart (suitable e.g. for moving averages). If `False`, the indicator is plotted standalone below the candlestick chart. By default, a heuristic is used which decides correctly most of the time. `color` can be string hex RGB triplet or X11 color name. By default, the next available color is assigned. If `scatter` is `True`, the plotted indicator marker will be a circle instead of a connected line segment (default). Additional `*args` and `**kwargs` are passed to `func` and can be used for parameters. For example, using simple moving average function from TA-Lib: def init(): self.sma = self.I(ta.SMA, self.data.Close, self.n_sma) """ if name is None: params = ','.join(filter(None, map(_as_str, chain(args, kwargs.values())))) func_name = _as_str(func) name = (f'{func_name}({params})' if params else f'{func_name}') else: name = name.format(*map(_as_str, args), **dict(zip(kwargs.keys(), map(_as_str, kwargs.values())))) try: value = func(*args, **kwargs) except Exception as e: raise RuntimeError(f'Indicator "{name}" errored with exception: {e}') if isinstance(value, pd.DataFrame): value = value.values.T if value is not None: value = try_(lambda: np.asarray(value, order='C'), None) is_arraylike = value is not None # Optionally flip the array if the user returned e.g. `df.values` if is_arraylike and np.argmax(value.shape) == 0: value = value.T if not is_arraylike or not 1 <= value.ndim <= 2 or value.shape[-1] != len(self._data.Close): raise ValueError( 'Indicators must return (optionally a tuple of) numpy.arrays of same ' f'length as `data` (data shape: {self._data.Close.shape}; indicator "{name}"' f'shape: {getattr(value, "shape" , "")}, returned value: {value})') if plot and overlay is None and np.issubdtype(value.dtype, np.number): x = value / self._data.Close # By default, overlay if strong majority of indicator values # is within 30% of Close with np.errstate(invalid='ignore'): overlay = ((x < 1.4) & (x > .6)).mean() > .6 value = _Indicator(value, name=name, plot=plot, overlay=overlay, color=color, scatter=scatter, # _Indicator.s Series accessor uses this: index=self.data.index) self._indicators.append(value) return value @abstractmethod def init(self): """ Initialize the strategy. Override this method. Declare indicators (with `backtesting.backtesting.Strategy.I`). Precompute what needs to be precomputed or can be precomputed in a vectorized fashion before the strategy starts. If you extend composable strategies from `backtesting.lib`, make sure to call: super().init() """ @abstractmethod def next(self): """ Main strategy runtime method, called as each new `backtesting.backtesting.Strategy.data` instance (row; full candlestick bar) becomes available. This is the main method where strategy decisions upon data precomputed in `backtesting.backtesting.Strategy.init` take place. If you extend composable strategies from `backtesting.lib`, make sure to call: super().next() """ class __FULL_EQUITY(float): def __repr__(self): return '.9999' _FULL_EQUITY = __FULL_EQUITY(1 - sys.float_info.epsilon) def buy(self, *, size: float = _FULL_EQUITY, limit: float = None, stop: float = None, sl: float = None, tp: float = None): """ Place a new long order. For explanation of parameters, see `Order` and its properties. See also `Strategy.sell()`. """ assert 0 < size < 1 or round(size) == size, \ "size must be a positive fraction of equity, or a positive whole number of units" return self._broker.new_order(size, limit, stop, sl, tp) def sell(self, *, size: float = _FULL_EQUITY, limit: float = None, stop: float = None, sl: float = None, tp: float = None): """ Place a new short order. For explanation of parameters, see `Order` and its properties. See also `Strategy.buy()`. """ assert 0 < size < 1 or round(size) == size, \ "size must be a positive fraction of equity, or a positive whole number of units" return self._broker.new_order(-size, limit, stop, sl, tp) @property def equity(self) -> float: """Current account equity (cash plus assets).""" return self._broker.equity @property def data(self) -> _Data: """ Price data, roughly as passed into `backtesting.backtesting.Backtest.__init__`, but with two significant exceptions: * `data` is _not_ a DataFrame, but a custom structure that serves customized numpy arrays for reasons of performance and convenience. Besides OHLCV columns, `.index` and length, it offers `.pip` property, the smallest price unit of change. * Within `backtesting.backtesting.Strategy.init`, `data` arrays are available in full length, as passed into `backtesting.backtesting.Backtest.__init__` (for precomputing indicators and such). However, within `backtesting.backtesting.Strategy.next`, `data` arrays are only as long as the current iteration, simulating gradual price point revelation. In each call of `backtesting.backtesting.Strategy.next` (iteratively called by `backtesting.backtesting.Backtest` internally), the last array value (e.g. `data.Close[-1]`) is always the _most recent_ value. * If you need data arrays (e.g. `data.Close`) to be indexed **Pandas series**, you can call their `.s` accessor (e.g. `data.Close.s`). If you need the whole of data as a **DataFrame**, use `.df` accessor (i.e. `data.df`). """ return self._data @property def position(self) -> 'Position': """Instance of `backtesting.backtesting.Position`.""" return self._broker.position @property def orders(self) -> 'Tuple[Order, ...]': """List of orders (see `Order`) waiting for execution.""" return _Orders(self._broker.orders) @property def trades(self) -> 'Tuple[Trade, ...]': """List of active trades (see `Trade`).""" return tuple(self._broker.trades) @property def closed_trades(self) -> 'Tuple[Trade, ...]': """List of settled trades (see `Trade`).""" return tuple(self._broker.closed_trades) class _Orders(tuple): """ TODO: remove this class. Only for deprecation. """ def cancel(self): """Cancel all non-contingent (i.e. SL/TP) orders.""" for order in self: if not order.is_contingent: order.cancel() def __getattr__(self, item): # TODO: Warn on deprecations from the previous version. Remove in the next. removed_attrs = ('entry', 'set_entry', 'is_long', 'is_short', 'sl', 'tp', 'set_sl', 'set_tp') if item in removed_attrs: raise AttributeError(f'Strategy.orders.{"/.".join(removed_attrs)} were removed in' 'Backtesting 0.2.0. ' 'Use `Order` API instead. See docs.') raise AttributeError(f"'tuple' object has no attribute {item!r}") class Position: """ Currently held asset position, available as `backtesting.backtesting.Strategy.position` within `backtesting.backtesting.Strategy.next`. Can be used in boolean contexts, e.g. if self.position: ... # we have a position, either long or short """ def __init__(self, broker: '_Broker'): self.__broker = broker def __bool__(self): return self.size != 0 @property def size(self) -> float: """Position size in units of asset. Negative if position is short.""" return sum(trade.size for trade in self.__broker.trades) @property def pl(self) -> float: """Profit (positive) or loss (negative) of the current position in cash units.""" return sum(trade.pl for trade in self.__broker.trades) @property def pl_pct(self) -> float: """Profit (positive) or loss (negative) of the current position in percent.""" weights = np.abs([trade.size for trade in self.__broker.trades]) weights = weights / weights.sum() pl_pcts = np.array([trade.pl_pct for trade in self.__broker.trades]) return (pl_pcts * weights).sum() @property def is_long(self) -> bool: """True if the position is long (position size is positive).""" return self.size > 0 @property def is_short(self) -> bool: """True if the position is short (position size is negative).""" return self.size < 0 def close(self, portion: float = 1.): """ Close portion of position by closing `portion` of each active trade. See `Trade.close`. """ for trade in self.__broker.trades: trade.close(portion) def __repr__(self): return f'<Position: {self.size} ({len(self.__broker.trades)} trades)>' class _OutOfMoneyError(Exception): pass class Order: """ Place new orders through `Strategy.buy()` and `Strategy.sell()`. Query existing orders through `Strategy.orders`. When an order is executed or [filled], it results in a `Trade`. If you wish to modify aspects of a placed but not yet filled order, cancel it and place a new one instead. All placed orders are [Good 'Til Canceled]. [filled]: https://www.investopedia.com/terms/f/fill.asp [Good 'Til Canceled]: https://www.investopedia.com/terms/g/gtc.asp """ def __init__(self, broker: '_Broker', size: float, limit_price: float = None, stop_price: float = None, sl_price: float = None, tp_price: float = None, parent_trade: 'Trade' = None): self.__broker = broker assert size != 0 self.__size = size self.__limit_price = limit_price self.__stop_price = stop_price self.__sl_price = sl_price self.__tp_price = tp_price self.__parent_trade = parent_trade def _replace(self, **kwargs): for k, v in kwargs.items(): setattr(self, f'_{self.__class__.__qualname__}__{k}', v) return self def __repr__(self): return '<Order {}>'.format(', '.join(f'{param}={round(value, 5)}' for param, value in ( ('size', self.__size), ('limit', self.__limit_price), ('stop', self.__stop_price), ('sl', self.__sl_price), ('tp', self.__tp_price), ('contingent', self.is_contingent), ) if value is not None)) def cancel(self): """Cancel the order.""" self.__broker.orders.remove(self) trade = self.__parent_trade if trade: if self is trade._sl_order: trade._replace(sl_order=None) elif self is trade._tp_order: trade._replace(tp_order=None) else: assert False # Fields getters @property def size(self) -> float: """ Order size (negative for short orders). If size is a value between 0 and 1, it is interpreted as a fraction of current available liquidity (cash plus `Position.pl` minus used margin). A value greater than or equal to 1 indicates an absolute number of units. """ return self.__size @property def limit(self) -> Optional[float]: """ Order limit price for [limit orders], or None for [market orders], which are filled at next available price. [limit orders]: https://www.investopedia.com/terms/l/limitorder.asp [market orders]: https://www.investopedia.com/terms/m/marketorder.asp """ return self.__limit_price @property def stop(self) -> Optional[float]: """ Order stop price for [stop-limit/stop-market][_] order, otherwise None if no stop was set, or the stop price has already been hit. [_]: https://www.investopedia.com/terms/s/stoporder.asp """ return self.__stop_price @property def sl(self) -> Optional[float]: """ A stop-loss price at which, if set, a new contingent stop-market order will be placed upon the `Trade` following this order's execution. See also `Trade.sl`. """ return self.__sl_price @property def tp(self) -> Optional[float]: """ A take-profit price at which, if set, a new contingent limit order will be placed upon the `Trade` following this order's execution. See also `Trade.tp`. """ return self.__tp_price @property def parent_trade(self): return self.__parent_trade __pdoc__['Order.parent_trade'] = False # Extra properties @property def is_long(self): """True if the order is long (order size is positive).""" return self.__size > 0 @property def is_short(self): """True if the order is short (order size is negative).""" return self.__size < 0 @property def is_contingent(self): """ True for [contingent] orders, i.e. [OCO] stop-loss and take-profit bracket orders placed upon an active trade. Remaining contingent orders are canceled when their parent `Trade` is closed. You can modify contingent orders through `Trade.sl` and `Trade.tp`. [contingent]: https://www.investopedia.com/terms/c/contingentorder.asp [OCO]: https://www.investopedia.com/terms/o/oco.asp """ return bool(self.__parent_trade) class Trade: """ When an `Order` is filled, it results in an active `Trade`. Find active trades in `Strategy.trades` and closed, settled trades in `Strategy.closed_trades`. """ def __init__(self, broker: '_Broker', size: int, entry_price: float, entry_bar): self.__broker = broker self.__size = size self.__entry_price = entry_price self.__exit_price: Optional[float] = None self.__entry_bar: int = entry_bar self.__exit_bar: Optional[int] = None self.__sl_order: Optional[Order] = None self.__tp_order: Optional[Order] = None def __repr__(self): return f'<Trade size={self.__size} time={self.__entry_bar}-{self.__exit_bar or ""} ' \ f'price={self.__entry_price}-{self.__exit_price or ""} pl={self.pl:.0f}>' def _replace(self, **kwargs): for k, v in kwargs.items(): setattr(self, f'_{self.__class__.__qualname__}__{k}', v) return self def _copy(self, **kwargs): return copy(self)._replace(**kwargs) def close(self, portion: float = 1.): """Place new `Order` to close `portion` of the trade at next market price.""" assert 0 < portion <= 1, "portion must be a fraction between 0 and 1" size = copysign(max(1, round(abs(self.__size) * portion)), -self.__size) order = Order(self.__broker, size, parent_trade=self) self.__broker.orders.insert(0, order) # Fields getters @property def size(self): """Trade size (volume; negative for short trades).""" return self.__size @property def entry_price(self) -> float: """Trade entry price.""" return self.__entry_price @property def exit_price(self) -> Optional[float]: """Trade exit price (or None if the trade is still active).""" return self.__exit_price @property def entry_bar(self) -> int: """Candlestick bar index of when the trade was entered.""" return self.__entry_bar @property def exit_bar(self) -> Optional[int]: """ Candlestick bar index of when the trade was exited (or None if the trade is still active). """ return self.__exit_bar @property def _sl_order(self): return self.__sl_order @property def _tp_order(self): return self.__tp_order # Extra properties @property def entry_time(self) -> Union[pd.Timestamp, int]: """Datetime of when the trade was entered.""" return self.__broker._data.index[self.__entry_bar] @property def exit_time(self) -> Optional[Union[pd.Timestamp, int]]: """Datetime of when the trade was exited.""" if self.__exit_bar is None: return None return self.__broker._data.index[self.__exit_bar] @property def is_long(self): """True if the trade is long (trade size is positive).""" return self.__size > 0 @property def is_short(self): """True if the trade is short (trade size is negative).""" return not self.is_long @property def pl(self): """Trade profit (positive) or loss (negative) in cash units.""" price = self.__exit_price or self.__broker.last_price return self.__size * (price - self.__entry_price) @property def pl_pct(self): """Trade profit (positive) or loss (negative) in percent.""" price = self.__exit_price or self.__broker.last_price return copysign(1, self.__size) * (price / self.__entry_price - 1) @property def value(self): """Trade total value in cash (volume × price).""" price = self.__exit_price or self.__broker.last_price return abs(self.__size) * price # SL/TP management API @property def sl(self): """ Stop-loss price at which to close the trade. This variable is writable. By assigning it a new price value, you create or modify the existing SL order. By assigning it `None`, you cancel it. """ return self.__sl_order and self.__sl_order.stop @sl.setter def sl(self, price: float): self.__set_contingent('sl', price) @property def tp(self): """ Take-profit price at which to close the trade. This property is writable. By assigning it a new price value, you create or modify the existing TP order. By assigning it `None`, you cancel it. """ return self.__tp_order and self.__tp_order.limit @tp.setter def tp(self, price: float): self.__set_contingent('tp', price) def __set_contingent(self, type, price): assert type in ('sl', 'tp') assert price is None or 0 < price < np.inf attr = f'_{self.__class__.__qualname__}__{type}_order' order: Order = getattr(self, attr) if order: order.cancel() if price: kwargs = dict(stop=price) if type == 'sl' else dict(limit=price) order = self.__broker.new_order(-self.size, trade=self, **kwargs) setattr(self, attr, order) class _Broker: def __init__(self, *, data, cash, commission, margin, trade_on_close, hedging, exclusive_orders, index): assert 0 < cash, f"cash should be >0, is {cash}" assert -.1 <= commission < .1, \ ("commission should be between -10% " f"(e.g. market-maker's rebates) and 10% (fees), is {commission}") assert 0 < margin <= 1, f"margin should be between 0 and 1, is {margin}" self._data: _Data = data self._cash = cash self._commission = commission self._leverage = 1 / margin self._trade_on_close = trade_on_close self._hedging = hedging self._exclusive_orders = exclusive_orders self._equity = np.tile(np.nan, len(index)) self.orders: List[Order] = [] self.trades: List[Trade] = [] self.position = Position(self) self.closed_trades: List[Trade] = [] def __repr__(self): return f'<Broker: {self._cash:.0f}{self.position.pl:+.1f} ({len(self.trades)} trades)>' def new_order(self, size: float, limit: float = None, stop: float = None, sl: float = None, tp: float = None, *, trade: Trade = None): """ Argument size indicates whether the order is long or short """ size = float(size) stop = stop and float(stop) limit = limit and float(limit) sl = sl and float(sl) tp = tp and float(tp) is_long = size > 0 adjusted_price = self._adjusted_price(size) if is_long: if not (sl or -np.inf) < (limit or stop or adjusted_price) < (tp or np.inf): raise ValueError( "Long orders require: " f"SL ({sl}) < LIMIT ({limit or stop or adjusted_price}) < TP ({tp})") else: if not (tp or -np.inf) < (limit or stop or adjusted_price) < (sl or np.inf): raise ValueError( "Short orders require: " f"TP ({tp}) < LIMIT ({limit or stop or adjusted_price}) < SL ({sl})") order = Order(self, size, limit, stop, sl, tp, trade) # Put the new order in the order queue, # inserting SL/TP/trade-closing orders in-front if trade: self.orders.insert(0, order) else: # If exclusive orders (each new order auto-closes previous orders/position), # cancel all non-contingent orders and close all open trades beforehand if self._exclusive_orders: for o in self.orders: if not o.is_contingent: o.cancel() for t in self.trades: t.close() self.orders.append(order) return order @property def last_price(self) -> float: """ Price at the last (current) close. """ return self._data.Close[-1] def _adjusted_price(self, size=None, price=None) -> float: """ Long/short `price`, adjusted for commisions. In long positions, the adjusted price is a fraction higher, and vice versa. """ return (price or self.last_price) * (1 + copysign(self._commission, size)) @property def equity(self) -> float: return self._cash + sum(trade.pl for trade in self.trades) @property def margin_available(self) -> float: # From https://github.com/QuantConnect/Lean/pull/3768 margin_used = sum(trade.value / self._leverage for trade in self.trades) return max(0, self.equity - margin_used) def next(self): i = self._i = len(self._data) - 1 self._process_orders() # Log account equity for the equity curve equity = self.equity self._equity[i] = equity # If equity is negative, set all to 0 and stop the simulation if equity <= 0: assert self.margin_available <= 0 for trade in self.trades: self._close_trade(trade, self._data.Close[-1], i) self._cash = 0 self._equity[i:] = 0 raise _OutOfMoneyError def _process_orders(self): data = self._data open, high, low = data.Open[-1], data.High[-1], data.Low[-1] prev_close = data.Close[-2] reprocess_orders = False # Process orders for order in list(self.orders): # type: Order # Related SL/TP order was already removed if order not in self.orders: continue # Check if stop condition was hit stop_price = order.stop if stop_price: is_stop_hit = ((high > stop_price) if order.is_long else (low < stop_price)) if not is_stop_hit: continue # > When the stop price is reached, a stop order becomes a market/limit order. # https://www.sec.gov/fast-answers/answersstopordhtm.html order._replace(stop_price=None) # Determine purchase price. # Check if limit order can be filled. if order.limit: is_limit_hit = low < order.limit if order.is_long else high > order.limit # When stop and limit are hit within the same bar, we pessimistically # assume limit was hit before the stop (i.e. "before it counts") is_limit_hit_before_stop = (is_limit_hit and (order.limit < (stop_price or -np.inf) if order.is_long else order.limit > (stop_price or np.inf))) if not is_limit_hit or is_limit_hit_before_stop: continue # stop_price, if set, was hit within this bar price = (min(stop_price or open, order.limit) if order.is_long else max(stop_price or open, order.limit)) else: # Market-if-touched / market order price = prev_close if self._trade_on_close else open price = (max(price, stop_price or -np.inf) if order.is_long else min(price, stop_price or np.inf)) # Determine entry/exit bar index is_market_order = not order.limit and not stop_price time_index = (self._i - 1) if is_market_order and self._trade_on_close else self._i # If order is a SL/TP order, it should close an existing trade it was contingent upon if order.parent_trade: trade = order.parent_trade _prev_size = trade.size # If order.size is "greater" than trade.size, this order is a trade.close() # order and part of the trade was already closed beforehand size = copysign(min(abs(_prev_size), abs(order.size)), order.size) # If this trade isn't already closed (e.g. on multiple `trade.close(.5)` calls) if trade in self.trades: self._reduce_trade(trade, price, size, time_index) assert order.size != -_prev_size or trade not in self.trades if order in (trade._sl_order, trade._tp_order): assert order.size == -trade.size assert order not in self.orders # Removed when trade was closed else: # It's a trade.close() order, now done assert abs(_prev_size) >= abs(size) >= 1 self.orders.remove(order) continue # Else this is a stand-alone trade # Adjust price to include commission (or bid-ask spread). # In long positions, the adjusted price is a fraction higher, and vice versa. adjusted_price = self._adjusted_price(order.size, price) # If order size was specified proportionally, # precompute true size in units, accounting for margin and spread/commissions size = order.size if -1 < size < 1: size = copysign(int((self.margin_available * self._leverage * abs(size)) // adjusted_price), size) # Not enough cash/margin even for a single unit if not size: self.orders.remove(order) continue assert size == round(size) need_size = int(size) if not self._hedging: # Fill position by FIFO closing/reducing existing opposite-facing trades. # Existing trades are closed at unadjusted price, because the adjustment # was already made when buying. for trade in list(self.trades): if trade.is_long == order.is_long: continue assert trade.size * order.size < 0 # Order size greater than this opposite-directed existing trade, # so it will be closed completely if abs(need_size) >= abs(trade.size): self._close_trade(trade, price, time_index) need_size += trade.size else: # The existing trade is larger than the new order, # so it will only be closed partially self._reduce_trade(trade, price, need_size, time_index) need_size = 0 if not need_size: break # If we don't have enough liquidity to cover for the order, cancel it if abs(need_size) * adjusted_price > self.margin_available * self._leverage: self.orders.remove(order) continue # Open a new trade if need_size: self._open_trade(adjusted_price, need_size, order.sl, order.tp, time_index) # We need to reprocess the SL/TP orders newly added to the queue. # This allows e.g. SL hitting in the same bar the order was open. # See https://github.com/kernc/backtesting.py/issues/119 if order.sl or order.tp: if is_market_order: reprocess_orders = True elif (low <= (order.sl or -np.inf) <= high or low <= (order.tp or -np.inf) <= high): warnings.warn( f"({data.index[-1]}) A contingent SL/TP order would execute in the " "same bar its parent stop/limit order was turned into a trade. " "Since we can't assert the precise intra-candle " "price movement, the affected SL/TP order will instead be executed on " "the next (matching) price/bar, making the result (of this trade) " "somewhat dubious. " "See https://github.com/kernc/backtesting.py/issues/119", UserWarning) # Order processed self.orders.remove(order) if reprocess_orders: self._process_orders() def _reduce_trade(self, trade: Trade, price: float, size: float, time_index: int): assert trade.size * size < 0 assert abs(trade.size) >= abs(size) size_left = trade.size + size assert size_left * trade.size >= 0 if not size_left: close_trade = trade else: # Reduce existing trade ... trade._replace(size=size_left) if trade._sl_order: trade._sl_order._replace(size=-trade.size) if trade._tp_order: trade._tp_order._replace(size=-trade.size) # ... by closing a reduced copy of it close_trade = trade._copy(size=-size, sl_order=None, tp_order=None) self.trades.append(close_trade) self._close_trade(close_trade, price, time_index) def _close_trade(self, trade: Trade, price: float, time_index: int): self.trades.remove(trade) if trade._sl_order: self.orders.remove(trade._sl_order) if trade._tp_order: self.orders.remove(trade._tp_order) self.closed_trades.append(trade._replace(exit_price=price, exit_bar=time_index)) self._cash += trade.pl def _open_trade(self, price: float, size: int, sl: float, tp: float, time_index: int): trade = Trade(self, size, price, time_index) self.trades.append(trade) # Create SL/TP (bracket) orders. # Make sure SL order is created first so it gets adversarially processed before TP order # in case of an ambiguous tie (both hit within a single bar). # Note, sl/tp orders are inserted at the front of the list, thus order reversed. if tp: trade.tp = tp if sl: trade.sl = sl class Backtest: """ Backtest a particular (parameterized) strategy on particular data. Upon initialization, call method `backtesting.backtesting.Backtest.run` to run a backtest instance, or `backtesting.backtesting.Backtest.optimize` to optimize it. """ def __init__(self, data: pd.DataFrame, strategy: Type[Strategy], *, cash: float = 10_000, commission: float = .0, margin: float = 1., trade_on_close=False, hedging=False, exclusive_orders=False ): """ Initialize a backtest. Requires data and a strategy to test. `data` is a `pd.DataFrame` with columns: `Open`, `High`, `Low`, `Close`, and (optionally) `Volume`. If any columns are missing, set them to what you have available, e.g. df['Open'] = df['High'] = df['Low'] = df['Close'] The passed data frame can contain additional columns that can be used by the strategy (e.g. sentiment info). DataFrame index can be either a datetime index (timestamps) or a monotonic range index (i.e. a sequence of periods). `strategy` is a `backtesting.backtesting.Strategy` _subclass_ (not an instance). `cash` is the initial cash to start with. `commission` is the commission ratio. E.g. if your broker's commission is 1% of trade value, set commission to `0.01`. Note, if you wish to account for bid-ask spread, you can approximate doing so by increasing the commission, e.g. set it to `0.0002` for commission-less forex trading where the average spread is roughly 0.2‰ of asking price. `margin` is the required margin (ratio) of a leveraged account. No difference is made between initial and maintenance margins. To run the backtest using e.g. 50:1 leverge that your broker allows, set margin to `0.02` (1 / leverage). If `trade_on_close` is `True`, market orders will be filled with respect to the current bar's closing price instead of the next bar's open. If `hedging` is `True`, allow trades in both directions simultaneously. If `False`, the opposite-facing orders first close existing trades in a [FIFO] manner. If `exclusive_orders` is `True`, each new order auto-closes the previous trade/position, making at most a single trade (long or short) in effect at each time. [FIFO]: https://www.investopedia.com/terms/n/nfa-compliance-rule-2-43b.asp """ if not (isinstance(strategy, type) and issubclass(strategy, Strategy)): raise TypeError('`strategy` must be a Strategy sub-type') if not isinstance(data, pd.DataFrame): raise TypeError("`data` must be a pandas.DataFrame with columns") if not isinstance(commission, Number): raise TypeError('`commission` must be a float value, percent of ' 'entry order price') data = data.copy(deep=False) # Convert index to datetime index if (not isinstance(data.index, pd.DatetimeIndex) and not isinstance(data.index, pd.RangeIndex) and # Numeric index with most large numbers (data.index.is_numeric() and (data.index > pd.Timestamp('1975').timestamp()).mean() > .8)): try: data.index = pd.to_datetime(data.index, infer_datetime_format=True) except ValueError: pass if 'Volume' not in data: data['Volume'] = np.nan if len(data) == 0: raise ValueError('OHLC `data` is empty') if len(data.columns.intersection({'Open', 'High', 'Low', 'Close', 'Volume'})) != 5: raise ValueError("`data` must be a pandas.DataFrame with columns " "'Open', 'High', 'Low', 'Close', and (optionally) 'Volume'") if data[['Open', 'High', 'Low', 'Close']].isnull().values.any(): raise ValueError('Some OHLC values are missing (NaN). ' 'Please strip those lines with `df.dropna()` or ' 'fill them in with `df.interpolate()` or whatever.') if np.any(data['Close'] > cash): warnings.warn('Some prices are larger than initial cash value. Note that fractional ' 'trading is not supported. If you want to trade Bitcoin, ' 'increase initial cash, or trade μBTC or satoshis instead (GH-134).', stacklevel=2) if not data.index.is_monotonic_increasing: warnings.warn('Data index is not sorted in ascending order. Sorting.', stacklevel=2) data = data.sort_index() if not isinstance(data.index, pd.DatetimeIndex): warnings.warn('Data index is not datetime. Assuming simple periods, ' 'but `pd.DateTimeIndex` is advised.', stacklevel=2) self._data: pd.DataFrame = data self._broker = partial( _Broker, cash=cash, commission=commission, margin=margin, trade_on_close=trade_on_close, hedging=hedging, exclusive_orders=exclusive_orders, index=data.index, ) self._strategy = strategy self._results = None def run(self, **kwargs) -> pd.Series: """ Run the backtest. Returns `pd.Series` with results and statistics. Keyword arguments are interpreted as strategy parameters. >>> Backtest(GOOG, SmaCross).run() Start 2004-08-19 00:00:00 End 2013-03-01 00:00:00 Duration 3116 days 00:00:00 Exposure Time [%] 93.9944 Equity Final [$] 51959.9 Equity Peak [$] 75787.4 Return [%] 419.599 Buy & Hold Return [%] 703.458 Return (Ann.) [%] 21.328 Volatility (Ann.) [%] 36.5383 Sharpe Ratio 0.583718 Sortino Ratio 1.09239 Calmar Ratio 0.444518 Max. Drawdown [%] -47.9801 Avg. Drawdown [%] -5.92585 Max. Drawdown Duration 584 days 00:00:00 Avg. Drawdown Duration 41 days 00:00:00 # Trades 65 Win Rate [%] 46.1538 Best Trade [%] 53.596 Worst Trade [%] -18.3989 Avg. Trade [%] 2.35371 Max. Trade Duration 183 days 00:00:00 Avg. Trade Duration 46 days 00:00:00 Profit Factor 2.08802 Expectancy [%] 8.79171 SQN 0.916893 _strategy SmaCross _equity_curve Eq... _trades Size EntryB... dtype: object """ data = _Data(self._data.copy(deep=False)) broker: _Broker = self._broker(data=data) strategy: Strategy = self._strategy(broker, data, kwargs) strategy.init() data._update() # Strategy.init might have changed/added to data.df # Indicators used in Strategy.next() indicator_attrs = {attr: indicator for attr, indicator in strategy.__dict__.items() if isinstance(indicator, _Indicator)}.items() # Skip first few candles where indicators are still "warming up" # +1 to have at least two entries available start = 1 + max((np.isnan(indicator.astype(float)).argmin(axis=-1).max() for _, indicator in indicator_attrs), default=0) # Disable "invalid value encountered in ..." warnings. Comparison # np.nan >= 3 is not invalid; it's False. with np.errstate(invalid='ignore'): for i in range(start, len(self._data)): # Prepare data and indicators for `next` call data._set_length(i + 1) for attr, indicator in indicator_attrs: # Slice indicator on the last dimension (case of 2d indicator) setattr(strategy, attr, indicator[..., :i + 1]) # Handle orders processing and broker stuff try: broker.next() except _OutOfMoneyError: break # Next tick, a moment before bar close strategy.next() else: # Close any remaining open trades so they produce some stats for trade in broker.trades: trade.close() # Re-run broker one last time to handle orders placed in the last strategy # iteration. Use the same OHLC values as in the last broker iteration. if start < len(self._data): try_(broker.next, exception=_OutOfMoneyError) # Set data back to full length # for future `indicator._opts['data'].index` calls to work data._set_length(len(self._data)) self._results = self._compute_stats(broker, strategy) return self._results def optimize(self, *, maximize: Union[str, Callable[[pd.Series], float]] = 'SQN', method: str = 'grid', max_tries: Union[int, float] = None, constraint: Callable[[dict], bool] = None, return_heatmap: bool = False, return_optimization: bool = False, random_state: int = None, **kwargs) -> Union[pd.Series, Tuple[pd.Series, pd.Series], Tuple[pd.Series, pd.Series, dict]]: """ Optimize strategy parameters to an optimal combination. Returns result `pd.Series` of the best run. `maximize` is a string key from the `backtesting.backtesting.Backtest.run`-returned results series, or a function that accepts this series object and returns a number; the higher the better. By default, the method maximizes Van Tharp's [System Quality Number](https://google.com/search?q=System+Quality+Number). `method` is the optimization method. Currently two methods are supported: * `"grid"` which does an exhaustive (or randomized) search over the cartesian product of parameter combinations, and * `"skopt"` which finds close-to-optimal strategy parameters using [model-based optimization], making at most `max_tries` evaluations. [model-based optimization]: \ https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html `max_tries` is the maximal number of strategy runs to perform. If `method="grid"`, this results in randomized grid search. If `max_tries` is a floating value between (0, 1], this sets the number of runs to approximately that fraction of full grid space. Alternatively, if integer, it denotes the absolute maximum number of evaluations. If unspecified (default), grid search is exhaustive, whereas for `method="skopt"`, `max_tries` is set to 200. `constraint` is a function that accepts a dict-like object of parameters (with values) and returns `True` when the combination is admissible to test with. By default, any parameters combination is considered admissible. If `return_heatmap` is `True`, besides returning the result series, an additional `pd.Series` is returned with a multiindex of all admissible parameter combinations, which can be further inspected or projected onto 2D to plot a heatmap (see `backtesting.lib.plot_heatmaps()`). If `return_optimization` is True and `method = 'skopt'`, in addition to result series (and maybe heatmap), return raw [`scipy.optimize.OptimizeResult`][OptimizeResult] for further inspection, e.g. with [scikit-optimize]\ [plotting tools]. [OptimizeResult]: \ https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html [scikit-optimize]: https://scikit-optimize.github.io [plotting tools]: https://scikit-optimize.github.io/stable/modules/plots.html If you want reproducible optimization results, set `random_state` to a fixed integer or a `numpy.random.RandomState` object. Additional keyword arguments represent strategy arguments with list-like collections of possible values. For example, the following code finds and returns the "best" of the 7 admissible (of the 9 possible) parameter combinations: backtest.optimize(sma1=[5, 10, 15], sma2=[10, 20, 40], constraint=lambda p: p.sma1 < p.sma2) .. TODO:: Improve multiprocessing/parallel execution on Windos with start method 'spawn'. """ if not kwargs: raise ValueError('Need some strategy parameters to optimize') maximize_key = None if isinstance(maximize, str): maximize_key = str(maximize) stats = self._results if self._results is not None else self.run() if maximize not in stats: raise ValueError('`maximize`, if str, must match a key in pd.Series ' 'result of backtest.run()') def maximize(stats: pd.Series, _key=maximize): return stats[_key] elif not callable(maximize): raise TypeError('`maximize` must be str (a field of backtest.run() result ' 'Series) or a function that accepts result Series ' 'and returns a number; the higher the better') have_constraint = bool(constraint) if constraint is None: def constraint(_): return True elif not callable(constraint): raise TypeError("`constraint` must be a function that accepts a dict " "of strategy parameters and returns a bool whether " "the combination of parameters is admissible or not") if return_optimization and method != 'skopt': raise ValueError("return_optimization=True only valid if method='skopt'") def _tuple(x): return x if isinstance(x, Sequence) and not isinstance(x, str) else (x,) for k, v in kwargs.items(): if len(_tuple(v)) == 0: raise ValueError(f"Optimization variable '{k}' is passed no " f"optimization values: {k}={v}") class AttrDict(dict): def __getattr__(self, item): return self[item] def _grid_size(): size = np.prod([len(_tuple(v)) for v in kwargs.values()]) if size < 10_000 and have_constraint: size = sum(1 for p in product(*(zip(repeat(k), _tuple(v)) for k, v in kwargs.items())) if constraint(AttrDict(p))) return size def _optimize_grid() -> Union[pd.Series, Tuple[pd.Series, pd.Series]]: rand = np.random.RandomState(random_state).random grid_frac = (1 if max_tries is None else max_tries if 0 < max_tries <= 1 else max_tries / _grid_size()) param_combos = [dict(params) # back to dict so it pickles for params in (AttrDict(params) for params in product(*(zip(repeat(k), _tuple(v)) for k, v in kwargs.items()))) if constraint(params) # type: ignore and rand() <= grid_frac] if not param_combos: raise ValueError('No admissible parameter combinations to test') if len(param_combos) > 300: warnings.warn(f'Searching for best of {len(param_combos)} configurations.', stacklevel=2) heatmap = pd.Series(np.nan, name=maximize_key, index=pd.MultiIndex.from_tuples( [p.values() for p in param_combos], names=next(iter(param_combos)).keys())) def _batch(seq): n = np.clip(int(len(seq) // (os.cpu_count() or 1)), 1, 300) for i in range(0, len(seq), n): yield seq[i:i + n] # Save necessary objects into "global" state; pass into concurrent executor # (and thus pickle) nothing but two numbers; receive nothing but numbers. # With start method "fork", children processes will inherit parent address space # in a copy-on-write manner, achieving better performance/RAM benefit. backtest_uuid = np.random.random() param_batches = list(_batch(param_combos)) Backtest._mp_backtests[backtest_uuid] = (self, param_batches, maximize) # type: ignore try: # If multiprocessing start method is 'fork' (i.e. on POSIX), use # a pool of processes to compute results in parallel. # Otherwise (i.e. on Windos), sequential computation will be "faster". if mp.get_start_method(allow_none=False) == 'fork': with ProcessPoolExecutor() as executor: futures = [executor.submit(Backtest._mp_task, backtest_uuid, i) for i in range(len(param_batches))] for future in _tqdm(as_completed(futures), total=len(futures), desc='Backtest.optimize'): batch_index, values = future.result() for value, params in zip(values, param_batches[batch_index]): heatmap[tuple(params.values())] = value else: if os.name == 'posix': warnings.warn("For multiprocessing support in `Backtest.optimize()` " "set multiprocessing start method to 'fork'.") for batch_index in _tqdm(range(len(param_batches))): _, values = Backtest._mp_task(backtest_uuid, batch_index) for value, params in zip(values, param_batches[batch_index]): heatmap[tuple(params.values())] = value finally: del Backtest._mp_backtests[backtest_uuid] best_params = heatmap.idxmax() if pd.isnull(best_params): # No trade was made in any of the runs. Just make a random # run so we get some, if empty, results stats = self.run(**param_combos[0]) else: stats = self.run(**dict(zip(heatmap.index.names, best_params))) if return_heatmap: return stats, heatmap return stats def _optimize_skopt() -> Union[pd.Series, Tuple[pd.Series, pd.Series], Tuple[pd.Series, pd.Series, dict]]: try: from skopt import forest_minimize from skopt.space import Integer, Real, Categorical from skopt.utils import use_named_args from skopt.callbacks import DeltaXStopper from skopt.learning import ExtraTreesRegressor except ImportError: raise ImportError("Need package 'scikit-optimize' for method='skopt'. " "pip install scikit-optimize") nonlocal max_tries max_tries = (200 if max_tries is None else max(1, int(max_tries * _grid_size())) if 0 < max_tries <= 1 else max_tries) dimensions = [] for key, values in kwargs.items(): values = np.asarray(values) if values.dtype.kind in 'mM': # timedelta, datetime64 # these dtypes are unsupported in skopt, so convert to raw int # TODO: save dtype and convert back later values = values.astype(int) if values.dtype.kind in 'iumM': dimensions.append(Integer(low=values.min(), high=values.max(), name=key)) elif values.dtype.kind == 'f': dimensions.append(Real(low=values.min(), high=values.max(), name=key)) else: dimensions.append(Categorical(values.tolist(), name=key, transform='onehot')) # Avoid recomputing re-evaluations: # "The objective has been evaluated at this point before." # https://github.com/scikit-optimize/scikit-optimize/issues/302 memoized_run = lru_cache()(lambda tup: self.run(**dict(tup))) # np.inf/np.nan breaks sklearn, np.finfo(float).max breaks skopt.plots.plot_objective INVALID = 1e300 progress = iter(_tqdm(repeat(None), total=max_tries, desc='Backtest.optimize')) @use_named_args(dimensions=dimensions) def objective_function(**params): next(progress) # Check constraints # TODO: Adjust after https://github.com/scikit-optimize/scikit-optimize/pull/971 if not constraint(AttrDict(params)): return INVALID res = memoized_run(tuple(params.items())) value = -maximize(res) if np.isnan(value): return INVALID return value with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', 'The objective has been evaluated at this point before.') res = forest_minimize( func=objective_function, dimensions=dimensions, n_calls=max_tries, base_estimator=ExtraTreesRegressor(n_estimators=20, min_samples_leaf=2), acq_func='LCB', kappa=3, n_initial_points=min(max_tries, 20 + 3 * len(kwargs)), initial_point_generator='lhs', # 'sobel' requires n_initial_points ~ 2**N callback=DeltaXStopper(9e-7), random_state=random_state) stats = self.run(**dict(zip(kwargs.keys(), res.x))) output = [stats] if return_heatmap: heatmap = pd.Series(dict(zip(map(tuple, res.x_iters), -res.func_vals)), name=maximize_key) heatmap.index.names = kwargs.keys() heatmap = heatmap[heatmap != -INVALID] heatmap.sort_index(inplace=True) output.append(heatmap) if return_optimization: valid = res.func_vals != INVALID res.x_iters = list(compress(res.x_iters, valid)) res.func_vals = res.func_vals[valid] output.append(res) return stats if len(output) == 1 else tuple(output) if method == 'grid': output = _optimize_grid() elif method == 'skopt': output = _optimize_skopt() else: raise ValueError(f"Method should be 'grid' or 'skopt', not {method!r}") return output @staticmethod def _mp_task(backtest_uuid, batch_index): bt, param_batches, maximize_func = Backtest._mp_backtests[backtest_uuid] return batch_index, [maximize_func(stats) if stats['# Trades'] else np.nan for stats in (bt.run(**params) for params in param_batches[batch_index])] _mp_backtests: Dict[float, Tuple['Backtest', List, Callable]] = {} @staticmethod def _compute_drawdown_duration_peaks(dd: pd.Series): iloc = np.unique(np.r_[(dd == 0).values.nonzero()[0], len(dd) - 1]) iloc = pd.Series(iloc, index=dd.index[iloc]) df = iloc.to_frame('iloc').assign(prev=iloc.shift()) df = df[df['iloc'] > df['prev'] + 1].astype(int) # If no drawdown since no trade, avoid below for pandas sake and return nan series if not len(df): return (dd.replace(0, np.nan),) * 2 df['duration'] = df['iloc'].map(dd.index.__getitem__) - df['prev'].map(dd.index.__getitem__) df['peak_dd'] = df.apply(lambda row: dd.iloc[row['prev']:row['iloc'] + 1].max(), axis=1) df = df.reindex(dd.index) return df['duration'], df['peak_dd'] def _compute_stats(self, broker: _Broker, strategy: Strategy) -> pd.Series: data = self._data index = data.index equity = pd.Series(broker._equity).bfill().fillna(broker._cash).values dd = 1 - equity / np.maximum.accumulate(equity) dd_dur, dd_peaks = self._compute_drawdown_duration_peaks(pd.Series(dd, index=index)) equity_df = pd.DataFrame({ 'Equity': equity, 'DrawdownPct': dd, 'DrawdownDuration': dd_dur}, index=index) trades = broker.closed_trades trades_df = pd.DataFrame({ 'Size': [t.size for t in trades], 'EntryBar': [t.entry_bar for t in trades], 'ExitBar': [t.exit_bar for t in trades], 'EntryPrice': [t.entry_price for t in trades], 'ExitPrice': [t.exit_price for t in trades], 'PnL': [t.pl for t in trades], 'ReturnPct': [t.pl_pct for t in trades], 'EntryTime': [t.entry_time for t in trades], 'ExitTime': [t.exit_time for t in trades], }) trades_df['Duration'] = trades_df['ExitTime'] - trades_df['EntryTime'] pl = trades_df['PnL'] returns = trades_df['ReturnPct'] durations = trades_df['Duration'] def _round_timedelta(value, _period=_data_period(index)): if not isinstance(value, pd.Timedelta): return value resolution = getattr(_period, 'resolution_string', None) or _period.resolution return value.ceil(resolution) s = pd.Series(dtype=object) s.loc['Start'] = index[0] s.loc['End'] = index[-1] s.loc['Duration'] = s.End - s.Start have_position = np.repeat(0, len(index)) for t in trades: have_position[t.entry_bar:t.exit_bar + 1] = 1 # type: ignore s.loc['Exposure Time [%]'] = have_position.mean() * 100 # In "n bars" time, not index time s.loc['Equity Final [$]'] = equity[-1] s.loc['Equity Peak [$]'] = equity.max() s.loc['Return [%]'] = (equity[-1] - equity[0]) / equity[0] * 100 c = data.Close.values s.loc['Buy & Hold Return [%]'] = (c[-1] - c[0]) / c[0] * 100 # long-only return def geometric_mean(returns): returns = returns.fillna(0) + 1 return (0 if np.any(returns <= 0) else np.exp(np.log(returns).sum() / (len(returns) or np.nan)) - 1) day_returns = gmean_day_return = np.array(np.nan) annual_trading_days = np.nan if isinstance(index, pd.DatetimeIndex): day_returns = equity_df['Equity'].resample('D').last().dropna().pct_change() gmean_day_return = geometric_mean(day_returns) annual_trading_days = float( 365 if index.dayofweek.to_series().between(5, 6).mean() > 2/7 * .6 else 252) # Annualized return and risk metrics are computed based on the (mostly correct) # assumption that the returns are compounded. See: https://dx.doi.org/10.2139/ssrn.3054517 # Our annualized return matches `empyrical.annual_return(day_returns)` whereas # our risk doesn't; they use the simpler approach below. annualized_return = (1 + gmean_day_return)**annual_trading_days - 1 s.loc['Return (Ann.) [%]'] = annualized_return * 100 s.loc['Volatility (Ann.) [%]'] = np.sqrt((day_returns.var(ddof=int(bool(day_returns.shape))) + (1 + gmean_day_return)**2)**annual_trading_days - (1 + gmean_day_return)**(2*annual_trading_days)) * 100 # noqa: E501 # s.loc['Return (Ann.) [%]'] = gmean_day_return * annual_trading_days * 100 # s.loc['Risk (Ann.) [%]'] = day_returns.std(ddof=1) * np.sqrt(annual_trading_days) * 100 # Our Sharpe mismatches `empyrical.sharpe_ratio()` because they use arithmetic mean return # and simple standard deviation s.loc['Sharpe Ratio'] = np.clip(s.loc['Return (Ann.) [%]'] / (s.loc['Volatility (Ann.) [%]'] or np.nan), 0, np.inf) # noqa: E501 # Our Sortino mismatches `empyrical.sortino_ratio()` because they use arithmetic mean return s.loc['Sortino Ratio'] = np.clip(annualized_return / (np.sqrt(np.mean(day_returns.clip(-np.inf, 0)**2)) *
np.sqrt(annual_trading_days)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from functools import lru_cache import os import vtk import numpy as np import vedo from vedo import settings import vedo.utils as utils from vedo.colors import printc, getColor, colorMap, cmaps_names from vedo.mesh import Mesh, merge from vedo.pointcloud import Points from vedo.picture import Picture from vedo.settings import font_parameters from deprecated import deprecated __doc__ = ("""Submodule to generate basic geometric shapes.""" + vedo.docs._defs) __all__ = [ "Marker", "Line", "DashedLine", "RoundedLine", "Tube", "Lines", "Spline", "KSpline", "CSpline", "Bezier", "Brace", "NormalLines", "Ribbon", "Arrow", "Arrows", "Arrow2D", "Arrows2D", "FlatArrow", "Polygon", "Rectangle", "Disc", "Circle", "Arc", "Star", "Star3D", "Cross3D", "Sphere", "Spheres", "Earth", "Ellipsoid", "Grid", "TessellatedBox", "Plane", "Box", "Cube", "Spring", "Cylinder", "Cone", "Pyramid", "Torus", "Paraboloid", "Hyperboloid", "TextBase", "Text", "Text3D", "Text2D", "CornerAnnotation", "Latex", "Glyph", "Tensors", "ParametricShape", "ConvexHull", "VedoLogo", ] ############################################## _reps = [ ("\nabla", "∇"), ("\infty", "∞"), ("\rightarrow", "→"), ("\lefttarrow", "←"), ("\partial", "∂"), ("\sqrt", "√"), ("\approx", "≈"), ("\neq", "≠"), ("\leq", "≤"), ("\geq", "≥"), ("\foreach", "∀"), ("\permille", "‰"), ("\euro", "€"), ("\dot", "·"), ("\varnothing", "∅"), ("\int", "∫"), ("\pm", "±"), ("\times","×"), ("\Gamma", "Γ"), ("\Delta", "Δ"), ("\Theta", "Θ"), ("\Lambda", "Λ"), ("\Pi", "Π"), ("\Sigma", "Σ"), ("\Phi", "Φ"), ("\Chi", "X"), ("\Xi", "Ξ"), ("\Psi", "Ψ"), ("\Omega", "Ω"), ("\alpha", "α"), ("\beta", "β"), ("\gamma", "γ"), ("\delta", "δ"), ("\epsilon", "ε"), ("\zeta", "ζ"), ("\eta", "η"), ("\theta", "θ"), ("\kappa", "κ"), ("\lambda", "λ"), ("\mu", "μ"), ("\lowerxi", "ξ"), ("\nu", "ν"), ("\pi", "π"), ("\rho", "ρ"), ("\sigma", "σ"), ("\tau", "τ"), ("\varphi", "φ"), ("\phi", "φ"), ("\chi", "χ"), ("\psi", "ψ"), ("\omega", "ω"), ("\circ", "°"), ("\onehalf", "½"), ("\onefourth", "¼"), ("\threefourths", "¾"), ("\^1", "¹"), ("\^2", "²"), ("\^3", "³"), ("\,", "~"), ] ######################################################################## def Marker(symbol, pos=(0, 0, 0), c='lb', alpha=1, s=0.1, filled=True): """ Generate a marker shape. Can be used in association with ``Glyph``. """ if isinstance(symbol, int): symbs = ['.', 'p','*','h','D','d','o','v','^','>','<','s', 'x', 'a'] symbol = symbol % 14 symbol = symbs[symbol] if symbol == '.': mesh = Polygon(nsides=24, r=s*0.75) elif symbol == 'p': mesh = Polygon(nsides=5, r=s) elif symbol == '*': mesh = Star(r1=0.65*s*1.1, r2=s*1.1, line=not filled) elif symbol == 'h': mesh = Polygon(nsides=6, r=s) elif symbol == 'D': mesh = Polygon(nsides=4, r=s) elif symbol == 'd': mesh = Polygon(nsides=4, r=s*1.1).scale([0.5,1,1]) elif symbol == 'o': mesh = Polygon(nsides=24, r=s*0.75) elif symbol == 'v': mesh = Polygon(nsides=3, r=s).rotateZ(180) elif symbol == '^': mesh = Polygon(nsides=3, r=s) elif symbol == '>': mesh = Polygon(nsides=3, r=s).rotateZ(-90) elif symbol == '<': mesh = Polygon(nsides=3, r=s).rotateZ(90) elif symbol == 's': mesh = Polygon(nsides=4, r=s).rotateZ(45) elif symbol == 'x': mesh = Text3D('+', pos=(0,0,0), s=s*2.6, justify='center', depth=0) mesh.rotateZ(45) elif symbol == 'a': mesh = Text3D('*', pos=(0,0,0), s=s*3, justify='center', depth=0) else: mesh = Text3D(symbol, pos=(0,0,0), s=s*2, justify='center', depth=0) mesh.flat().lighting('off').wireframe(not filled).c(c).alpha(alpha) if len(pos) == 2: pos = (pos[0], pos[1], 0) mesh.SetPosition(pos) mesh.name = "Marker" return mesh class Star3D(Mesh): """ Build a 3D star shape of 5 cusps, mainly useful as a 3D marker. """ def __init__(self, pos=(0,0,0), r=1.0, thickness=0.1, c="blue4", alpha=1): if len(pos) == 2: pos = (pos[0], pos[1], 0) pts = ((1.34, 0., -0.37), (5.75e-3, -0.588, thickness/10), (0.377, 0.,-0.38), (0.0116, 0., -1.35), (-0.366, 0., -0.384), (-1.33, 0., -0.385), (-0.600, 0., 0.321), (-0.829, 0., 1.19), (-1.17e-3, 0., 0.761), (0.824, 0., 1.20), (0.602, 0., 0.328), (6.07e-3, 0.588, thickness/10)) fcs = [[0, 1, 2], [0, 11,10], [2, 1, 3], [2, 11, 0], [3, 1, 4], [3, 11, 2], [4, 1, 5], [4, 11, 3], [5, 1, 6], [5, 11, 4], [6, 1, 7], [6, 11, 5], [7, 1, 8], [7, 11, 6], [8, 1, 9], [8, 11, 7], [9, 1,10], [9, 11, 8], [10,1, 0],[10,11, 9]] Mesh.__init__(self, [pts, fcs], c, alpha) self.rotateX(90).scale(r).lighting('shiny') self.SetPosition(pos) self.name = "Star3D" def Cross3D(pos=(0,0,0), s=1.0, thickness=0.3, c="b", alpha=1): """ Build a 3D cross shape, mainly useful as a 3D marker. """ c1 = Cylinder(r=thickness*s, height=2*s) c2 = Cylinder(r=thickness*s, height=2*s).rotateX(90) c3 = Cylinder(r=thickness*s, height=2*s).rotateY(90) cr = merge(c1,c2,c3).color(c).alpha(alpha) cr.SetPosition(pos) cr.name = "Cross3D" return cr class Glyph(Mesh): """ At each vertex of a mesh, another mesh - a `'glyph'` - is shown with various orientation options and coloring. The input ``mesh`` can also be a simple list of 2D or 3D coordinates. Color can be specified as a colormap which maps the size of the orientation vectors in `orientationArray`. :param orientationArray: list of vectors, ``vtkAbstractArray`` or the name of an already existing points array. :type orientationArray: list, str, vtkAbstractArray :param bool scaleByScalar: glyph mesh is scaled by the active scalars. :param bool scaleByVectorSize: glyph mesh is scaled by the size of the vectors. :param bool scaleByVectorComponents: glyph mesh is scaled by the 3 vectors components. :param bool colorByScalar: glyph mesh is colored based on the scalar value. :param bool colorByVectorSize: glyph mesh is colored based on the vector size. :param float tol: set a minimum separation between two close glyphs (not compatible with `orientationArray` being a list). |glyphs.py|_ |glyphs_arrows.py|_ |glyphs| |glyphs_arrows| """ def __init__(self, mesh, glyphObj, orientationArray=None, scaleByScalar=False, scaleByVectorSize=False, scaleByVectorComponents=False, colorByScalar=False, colorByVectorSize=False, tol=0, c='k8', alpha=1, ): if utils.isSequence(mesh): # create a cloud of points poly = Points(mesh).polydata() elif isinstance(mesh, vtk.vtkPolyData): poly = mesh else: poly = mesh.polydata() if tol: cleanPolyData = vtk.vtkCleanPolyData() cleanPolyData.SetInputData(poly) cleanPolyData.SetTolerance(tol) cleanPolyData.Update() poly = cleanPolyData.GetOutput() if isinstance(glyphObj, Points): glyphObj = glyphObj.polydata() cmap='' if c in cmaps_names: cmap = c c = None elif utils.isSequence(c): # user passing an array of point colors ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("glyph_RGB") for col in c: cl = getColor(col) ucols.InsertNextTuple3(cl[0]*255, cl[1]*255, cl[2]*255) poly.GetPointData().AddArray(ucols) poly.GetPointData().SetActiveScalars("glyph_RGB") c = None gly = vtk.vtkGlyph3D() gly.SetInputData(poly) gly.SetSourceData(glyphObj) if scaleByScalar: gly.SetScaleModeToScaleByScalar() elif scaleByVectorSize: gly.SetScaleModeToScaleByVector() elif scaleByVectorComponents: gly.SetScaleModeToScaleByVectorComponents() else: gly.SetScaleModeToDataScalingOff() if colorByVectorSize: gly.SetVectorModeToUseVector() gly.SetColorModeToColorByVector() elif colorByScalar: gly.SetColorModeToColorByScalar() else: gly.SetColorModeToColorByScale() if orientationArray is not None: gly.OrientOn() if isinstance(orientationArray, str): if orientationArray.lower() == "normals": gly.SetVectorModeToUseNormal() else: # passing a name poly.GetPointData().SetActiveVectors(orientationArray) gly.SetInputArrayToProcess(0, 0, 0, 0, orientationArray) gly.SetVectorModeToUseVector() elif utils.isSequence(orientationArray) and not tol: # passing a list varr = vtk.vtkFloatArray() varr.SetNumberOfComponents(3) varr.SetName("glyph_vectors") for v in orientationArray: varr.InsertNextTuple(v) poly.GetPointData().AddArray(varr) poly.GetPointData().SetActiveVectors("glyph_vectors") gly.SetInputArrayToProcess(0, 0, 0, 0, "glyph_vectors") gly.SetVectorModeToUseVector() gly.Update() Mesh.__init__(self, gly.GetOutput(), c, alpha) self.flat() if cmap: lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(512) lut.Build() for i in range(512): r, g, b = colorMap(i, cmap, 0, 512) lut.SetTableValue(i, r, g, b, 1) self.mapper().SetLookupTable(lut) self.mapper().ScalarVisibilityOn() self.mapper().SetScalarModeToUsePointData() if gly.GetOutput().GetPointData().GetScalars(): rng = gly.GetOutput().GetPointData().GetScalars().GetRange() self.mapper().SetScalarRange(rng[0], rng[1]) self.name = "Glyph" class Tensors(Mesh): """Geometric representation of tensors defined on a domain or set of points. Tensors can be scaled and/or rotated according to the source at eache input point. Scaling and rotation is controlled by the eigenvalues/eigenvectors of the symmetrical part of the tensor as follows: For each tensor, the eigenvalues (and associated eigenvectors) are sorted to determine the major, medium, and minor eigenvalues/eigenvectors. The eigenvalue decomposition only makes sense for symmetric tensors, hence the need to only consider the symmetric part of the tensor, which is 1/2*(T+T.transposed()). :param str source: preset type of source shape ['ellipsoid', 'cylinder', 'cube' or any specified ``Mesh``] :param bool useEigenValues: color source glyph using the eigenvalues or by scalars. :param bool threeAxes: if `False` scale the source in the x-direction, the medium in the y-direction, and the minor in the z-direction. Then, the source is rotated so that the glyph's local x-axis lies along the major eigenvector, y-axis along the medium eigenvector, and z-axis along the minor. If `True` three sources are produced, each of them oriented along an eigenvector and scaled according to the corresponding eigenvector. :param bool isSymmetric: If `True` each source glyph is mirrored (2 or 6 glyphs will be produced). The x-axis of the source glyph will correspond to the eigenvector on output. :param float length: distance from the origin to the tip of the source glyph along the x-axis :param float scale: scaling factor of the source glyph. :param float maxScale: clamp scaling at this factor. |tensors| |tensors.py|_ |tensor_grid.py|_ """ def __init__(self, domain, source='ellipsoid', useEigenValues=True, isSymmetric=True, threeAxes=False, scale=1, maxScale=None, length=None, c=None, alpha=1): if isinstance(source, Points): src = source.normalize().polydata(False) else: if 'ellip' in source: src = vtk.vtkSphereSource() src.SetPhiResolution(24) src.SetThetaResolution(12) elif 'cyl' in source: src = vtk.vtkCylinderSource() src.SetResolution(48) src.CappingOn() elif source == 'cube': src = vtk.vtkCubeSource() src.Update() tg = vtk.vtkTensorGlyph() if isinstance(domain, vtk.vtkPolyData): tg.SetInputData(domain) else: tg.SetInputData(domain.GetMapper().GetInput()) tg.SetSourceData(src.GetOutput()) if c is None: tg.ColorGlyphsOn() else: tg.ColorGlyphsOff() tg.SetSymmetric(int(isSymmetric)) if length is not None: tg.SetLength(length) if useEigenValues: tg.ExtractEigenvaluesOn() tg.SetColorModeToEigenvalues() else: tg.SetColorModeToScalars() tg.SetThreeGlyphs(threeAxes) tg.ScalingOn() tg.SetScaleFactor(scale) if maxScale is None: tg.ClampScalingOn() maxScale = scale*10 tg.SetMaxScaleFactor(maxScale) tg.Update() tgn = vtk.vtkPolyDataNormals() tgn.SetInputData(tg.GetOutput()) tgn.Update() Mesh.__init__(self, tgn.GetOutput(), c, alpha) self.name = "Tensors" class Line(Mesh): """ Build the line segment between points `p0` and `p1`. If `p0` is a list of points returns the line connecting them. A 2D set of coords can also be passed as p0=[x..], p1=[y..]. :param bool closed: join last to first point :param c: color name, number, or list of [R,G,B] colors. :type c: int, str, list :param float alpha: transparency in range [0,1]. :param lw: line width. :param int res: resolution, number of points along the line (only relevant if only 2 points are specified) """ def __init__(self, p0, p1=None, closed=False, c="k4", alpha=1, lw=1, res=2): if isinstance(p1, vtk.vtkActor): p1 = p1.GetPosition() if isinstance(p0, vtk.vtkActor): p0 = p0.GetPosition() if isinstance(p0, Points): p0 = p0.points() self.slope = [] # filled by analysis.fitLine self.center = [] self.variances = [] self.coefficients = [] # filled by pyplot.fit() self.covarianceMatrix = [] self.coefficients = [] self.coefficientErrors = [] self.MonteCarloCoefficients = [] self.reducedChi2 = -1 self.ndof = 0 self.dataSigma = 0 self.errorLines = [] self.errorBand = None self.res=res # detect if user is passing a 2D list of points as p0=xlist, p1=ylist: if len(p0) > 3: if not utils.isSequence(p0[0]) and not utils.isSequence(p1[0]) and len(p0)==len(p1): # assume input is 2D xlist, ylist p0 = np.stack((p0, p1), axis=1) p1 = None if len(p0[0]) == 2: # make it 3d p0 = np.c_[np.array(p0), np.zeros(len(p0))] # detect if user is passing a list of points: if utils.isSequence(p0[0]): if len(p0[0]) == 2: # make it 3d p0 = np.c_[np.array(p0), np.zeros(len(p0))] ppoints = vtk.vtkPoints() # Generate the polyline ppoints.SetData(utils.numpy2vtk(p0, dtype=float)) lines = vtk.vtkCellArray() npt = len(p0) if closed: lines.InsertNextCell(npt+1) else: lines.InsertNextCell(npt) for i in range(npt): lines.InsertCellPoint(i) if closed: lines.InsertCellPoint(0) poly = vtk.vtkPolyData() poly.SetPoints(ppoints) poly.SetLines(lines) top = p0[-1] base = p0[0] self.res = 2 else: # or just 2 points to link lineSource = vtk.vtkLineSource() if len(p0) == 2: # make it 3d p0 = [p0[0],p0[1],0] if len(p1) == 2: p1 = [p1[0],p1[1],0] lineSource.SetPoint1(p0) lineSource.SetPoint2(p1) lineSource.SetResolution(res-1) lineSource.Update() poly = lineSource.GetOutput() top = np.array(p1) base = np.array(p0) Mesh.__init__(self, poly, c, alpha) self.lw(lw).lighting('off') self.PickableOff() self.DragableOff() self.base = base self.top = top self.name = "Line" def eval(self, x): """ Calculate the position of an intermediate point as a fraction of the length of the line, being x=0 the first point and x=1 the last point. This corresponds to an imaginary point that travels along the line at constant speed. Can be used in conjunction with `linInterpolate()` to map any range to the [0,1] range. """ distance1 = 0. length = self.length() pts = self.points() for i in range(1, len(pts)): p0 = pts[i-1] p1 = pts[i] seg = p1-p0 distance0 = distance1 distance1 += np.linalg.norm(seg) w1 = distance1/length if w1 >= x: break w0 = distance0/length v = p0 + seg*(x-w0)/(w1-w0) return v def pattern(self, stipple, repeats=10): """ Define a stipple pattern for dashing the line. Pass the stipple pattern as a string like '- - -'. Repeats controls the number of times the pattern repeats in a single segment. Examples are: '- -', '-- - --', etc. The resolution of the line (nr of points) can affect how pattern will show up. :Example: .. code-block:: python from vedo import Line pts = [[1, 0, 0], [5, 2, 0], [3, 3, 1]] ln = Line(pts, c='r', lw=5).pattern('- -', repeats=10) ln.show(axes=1) """ stipple = str(stipple) * int(2*repeats) dimension = len(stipple) image = vtk.vtkImageData() image.SetDimensions(dimension, 1, 1) image.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, 4) image.SetExtent(0, dimension-1, 0, 0, 0, 0) i_dim = 0 while i_dim < dimension: for i in range(dimension): image.SetScalarComponentFromFloat(i_dim, 0, 0, 0, 255) image.SetScalarComponentFromFloat(i_dim, 0, 0, 1, 255) image.SetScalarComponentFromFloat(i_dim, 0, 0, 2, 255) if stipple[i] == ' ': image.SetScalarComponentFromFloat(i_dim, 0, 0, 3, 0) else: image.SetScalarComponentFromFloat(i_dim, 0, 0, 3, 255) i_dim += 1 polyData = self.polydata(False) # Create texture coordinates tcoords = vtk.vtkDoubleArray() tcoords.SetName("TCoordsStippledLine") tcoords.SetNumberOfComponents(1) tcoords.SetNumberOfTuples(polyData.GetNumberOfPoints()) for i in range(polyData.GetNumberOfPoints()): tcoords.SetTypedTuple(i, [i/2]) polyData.GetPointData().SetTCoords(tcoords) polyData.GetPointData().Modified() texture = vtk.vtkTexture() texture.SetInputData(image) texture.InterpolateOff() texture.RepeatOn() self.SetTexture(texture) return self def length(self): """Calculate length of the line.""" distance = 0. pts = self.points() for i in range(1, len(pts)): distance += np.linalg.norm(pts[i]-pts[i-1]) return distance def sweep(self, direction=(1,0,0), res=1): """ Sweep the Line along the specified vector direction. Returns a Mesh surface. Line position is updated to allow for additional sweepings. :Example: .. code-block:: python from vedo import Line, show aline = Line([(0,0,0),(1,3,0),(2,4,0)]) surf1 = aline.sweep((1,0.2,0), res=3) surf2 = aline.sweep((0.2,0,1)) aline.color('r').lineWidth(4) show(surf1, surf2, aline, axes=1) """ line = self.polydata() rows = line.GetNumberOfPoints() spacing = 1 / res surface = vtk.vtkPolyData() res += 1 numberOfPoints = rows * res numberOfPolys = (rows - 1) * (res - 1) points = vtk.vtkPoints() points.Allocate(numberOfPoints) cnt = 0 x = [0.,0.,0.] for row in range(rows): for col in range(res): p = [0.,0.,0.] line.GetPoint(row, p) x[0] = p[0] + direction[0] * col * spacing x[1] = p[1] + direction[1] * col * spacing x[2] = p[2] + direction[2] * col * spacing points.InsertPoint(cnt, x) cnt += 1 # Generate the quads polys = vtk.vtkCellArray() polys.Allocate(numberOfPolys*4) pts = [0,0,0,0] for row in range(rows-1): for col in range(res-1): pts[0] = col + row * res pts[1] = pts[0] + 1 pts[2] = pts[0] + res + 1 pts[3] = pts[0] + res polys.InsertNextCell(4, pts) surface.SetPoints(points) surface.SetPolys(polys) asurface = vedo.Mesh(surface) prop = vtk.vtkProperty() prop.DeepCopy(self.GetProperty()) asurface.SetProperty(prop) asurface.property = prop asurface.lighting('default') self.points(self.points()+direction) return asurface class DashedLine(Line): """ Consider using `Line.pattern()` instead. Build a dashed line segment between points `p0` and `p1`. If `p0` is a list of points returns the line connecting them. A 2D set of coords can also be passed as p0=[x..], p1=[y..]. :param bool closed: join last to first point :param float spacing: relative size of the dash. :param c: color name, number, or list of [R,G,B] colors. :type c: int, str, list :param float alpha: transparency in range [0,1]. :param lw: line width. """ def __init__(self, p0, p1=None, spacing=0.1, closed=False, c="k5", alpha=1, lw=2): if isinstance(p1, vtk.vtkActor): p1 = p1.GetPosition() if isinstance(p0, vtk.vtkActor): p0 = p0.GetPosition() if isinstance(p0, Points): p0 = p0.points() # detect if user is passing a 2D list of points as p0=xlist, p1=ylist: if len(p0) > 3: if not utils.isSequence(p0[0]) and not utils.isSequence(p1[0]) and len(p0)==len(p1): # assume input is 2D xlist, ylist p0 = np.stack((p0, p1), axis=1) p1 = None if len(p0[0]) == 2: # make it 3d p0 = np.c_[np.array(p0), np.zeros(len(p0))] if closed: p0 = np.append(p0, [p0[0]], axis=0) if p1 is not None: # assume passing p0=[x,y] if len(p0) == 2 and not utils.isSequence(p0[0]): p0 = (p0[0], p0[1], 0) if len(p1) == 2 and not utils.isSequence(p1[0]): p1 = (p1[0], p1[1], 0) # detect if user is passing a list of points: if utils.isSequence(p0[0]): listp = p0 else: # or just 2 points to link listp = [p0, p1] listp = np.array(listp) if listp.shape[1]==2: listp = np.c_[listp, np.zeros(listp.shape[0])] xmn = np.min(listp, axis=0) xmx = np.max(listp, axis=0) dlen = np.linalg.norm(xmx-xmn)*np.clip(spacing, 0.01,1.0)/10 if not dlen: Mesh.__init__(self, vtk.vtkPolyData(), c, alpha) self.name = "DashedLine (void)" return qs = [] for ipt in range(len(listp)-1): p0 = listp[ipt] p1 = listp[ipt+1] v = p1-p0 vdist = np.linalg.norm(v) n1 = int(vdist/dlen) if not n1: continue res = 0 for i in range(n1+2): ist = (i-0.5)/n1 if ist<0: ist=0 qi = p0 + v * (ist - res/vdist) if ist>1: qi = p1 res = np.linalg.norm(qi-p1) qs.append(qi) break qs.append(qi) polylns = vtk.vtkAppendPolyData() for i,q1 in enumerate(qs): if not i%2: continue q0 = qs[i-1] lineSource = vtk.vtkLineSource() lineSource.SetPoint1(q0) lineSource.SetPoint2(q1) lineSource.Update() polylns.AddInputData(lineSource.GetOutput()) polylns.Update() Mesh.__init__(self, polylns.GetOutput(), c, alpha) self.lw(lw).lighting('off') self.base = listp[0] if closed: self.top = listp[-2] else: self.top = listp[-1] self.name = "DashedLine" def RoundedLine(pts, lw, c='gray4', alpha=1, res=10): """ Create a 2D line of specified thickness (in absolute units) passing through a list of input points. Borders of the line are rounded. Parameters ---------- pts : list a list of points in 2D or 3D (z will be ignored). lw : float thickness of the line. res : int, optional resolution of the rounded regions. The default is 10. Example ------- .. code-block:: python from vedo import * pts = [(-4,-3),(1,1),(2,4),(4,1),(3,-1),(2,-5),(9,-3)] ln = Line(pts, c='r', lw=2).z(0.01) rl = RoundedLine(pts, 0.6) show(Points(pts), ln, rl, axes=1) """ pts = np.asarray(pts) if len(pts[0]) == 2: # make it 3d pts = np.c_[pts, np.zeros(len(pts))] def _getpts(pts, revd=False): if revd: pts = list(reversed(pts)) if len(pts)==2: p0, p1 = pts v = p1-p0 dv = np.linalg.norm(v) nv = np.cross(v, (0,0,-1)) nv = nv/np.linalg.norm(nv)*lw return [p0+nv, p1+nv] ptsnew = [] for k in range(len(pts)-2): p0 = pts[k] p1 = pts[k+1] p2 = pts[k+2] v = p1-p0 u = p2-p1 du = np.linalg.norm(u) dv = np.linalg.norm(v) nv = np.cross(v, (0,0,-1)) nv = nv/np.linalg.norm(nv)*lw nu = np.cross(u, (0,0,-1)) nu = nu/np.linalg.norm(nu)*lw uv = np.cross(u,v) if k==0: ptsnew.append(p0+nv) if uv[2]<=0: alpha = np.arccos(np.dot(u,v)/du/dv) db = lw*np.tan(alpha/2) p1new = p1+nv -v/dv * db ptsnew.append(p1new) else: p1a = p1+nv p1b = p1+nu for i in range(0,res+1): pab = p1a*(res-i)/res + p1b*i/res vpab = pab-p1 vpab = vpab/np.linalg.norm(vpab)*lw ptsnew.append(p1+vpab) if k == len(pts)-3: ptsnew.append(p2+nu) if revd: ptsnew.append(p2-nu) return ptsnew ptsnew = _getpts(pts) + _getpts(pts, revd=True) lk = Line(ptsnew).triangulate().lw(0).lighting('off') lk.name = "RoundedLine" return lk class Lines(Line): """ Build the line segments between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. :param float scale: apply a rescaling factor to the lengths. |lines| .. hint:: |fitspheres2.py|_ """ def __init__(self, startPoints, endPoints=None, c='k4', alpha=1, lw=1, dotted=False, scale=1, res=1): if isinstance(startPoints, Points): startPoints = startPoints.points() if isinstance(endPoints, Points): endPoints = endPoints.points() if endPoints is not None: startPoints = np.stack((startPoints, endPoints), axis=1) polylns = vtk.vtkAppendPolyData() for twopts in startPoints: lineSource = vtk.vtkLineSource() lineSource.SetResolution(res) if len(twopts[0])==2: lineSource.SetPoint1(twopts[0][0], twopts[0][1], 0.0) else: lineSource.SetPoint1(twopts[0]) if scale == 1: pt2 = twopts[1] else: vers = (np.array(twopts[1]) - twopts[0]) * scale pt2 = np.array(twopts[0]) + vers if len(pt2)==2: lineSource.SetPoint2(pt2[0], pt2[1], 0.0) else: lineSource.SetPoint2(pt2) polylns.AddInputConnection(lineSource.GetOutputPort()) polylns.Update() Mesh.__init__(self, polylns.GetOutput(), c, alpha) self.lw(lw).lighting('off') if dotted: self.GetProperty().SetLineStipplePattern(0xF0F0) self.GetProperty().SetLineStippleRepeatFactor(1) self.name = "Lines" class Spline(Line): """ Find the B-Spline curve through a set of points. This curve does not necessarly pass exactly through all the input points. Needs to import `scipy`. Return an ``Mesh`` object. :param float smooth: smoothing factor. - 0 = interpolate points exactly [default]. - 1 = average point positions. :param int degree: degree of the spline (1<degree<5) :param str easing: control sensity of points along the spline. Available options are [InSine, OutSine, Sine, InQuad, OutQuad, InCubic, OutCubic, InQuart, OutQuart, InCirc, OutCirc]. Can be used to create animations (move objects at varying speed). See e.g.: https://easings.net :param int res: number of points on the spline See also: ``CSpline`` and ``KSpline``. """ def __init__(self, points, smooth=0, degree=2, closed=False, s=2, res=None, easing="", ): from scipy.interpolate import splprep, splev if isinstance(points, Points): points = points.points() if len(points[0]) == 2: # make it 3d points = np.c_[np.array(points), np.zeros(len(points))] per = 0 if closed: points = np.append(points, [points[0]], axis=0) per = 1 if res is None: res = len(points)*10 points = np.array(points) minx, miny, minz = np.min(points, axis=0) maxx, maxy, maxz = np.max(points, axis=0) maxb = max(maxx - minx, maxy - miny, maxz - minz) smooth *= maxb / 2 # must be in absolute units x = np.linspace(0, 1, res) if easing: if easing=="InSine": x = 1 - np.cos((x * np.pi) / 2) elif easing=="OutSine": x = np.sin((x * np.pi) / 2) elif easing=="Sine": x = -(np.cos(np.pi * x) - 1) / 2 elif easing=="InQuad": x = x*x elif easing=="OutQuad": x = 1 - (1 - x) * (1 - x) elif easing=="InCubic": x = x*x elif easing=="OutCubic": x = 1 - np.power(1 - x, 3) elif easing=="InQuart": x = x * x * x * x elif easing=="OutQuart": x = 1 - np.power(1 - x, 4) elif easing=="InCirc": x = 1 - np.sqrt(1 - np.power(x, 2)) elif easing=="OutCirc": x = np.sqrt(1 - np.power(x - 1, 2)) else: printc("Unkown ease mode", easing, c='r') # find the knots tckp, _ = splprep(points.T, task=0, s=smooth, k=degree, per=per) # evaluate spLine, including interpolated points: xnew, ynew, znew = splev(x, tckp) Line.__init__(self, np.c_[xnew, ynew, znew], lw=2) self.lighting('off') self.name = "Spline" class KSpline(Line): """ Return a Kochanek spline which runs exactly through all the input points. See: https://en.wikipedia.org/wiki/Kochanek%E2%80%93Bartels_spline :param float continuity: changes the sharpness in change between tangents :param float tension: changes the length of the tangent vector :param float bias: changes the direction of the tangent vector :param bool closed: join last to first point to produce a closed curve :param int res: approximate resolution of the output line. Default is 20 times the number of input points. See also: ``Spline`` and ``CSpline``. |kspline| """ def __init__(self, points, continuity=0, tension=0, bias=0, closed=False, res=None): if isinstance(points, Points): points = points.points() if not res: res = len(points)*20 if len(points[0]) == 2: # make it 3d points = np.c_[np.array(points), np.zeros(len(points))] xspline = vtk.vtkKochanekSpline() yspline = vtk.vtkKochanekSpline() zspline = vtk.vtkKochanekSpline() for s in [xspline, yspline, zspline]: if bias: s.SetDefaultBias(bias) if tension: s.SetDefaultTension(tension) if continuity: s.SetDefaultContinuity(continuity) s.SetClosed(closed) for i,p in enumerate(points): xspline.AddPoint(i, p[0]) yspline.AddPoint(i, p[1]) if len(p)>2: zspline.AddPoint(i, p[2]) ln = [] for pos in np.linspace(0, len(points), res): x = xspline.Evaluate(pos) y = yspline.Evaluate(pos) z = 0 if len(p)>2: z = zspline.Evaluate(pos) ln.append((x,y,z)) Line.__init__(self, ln, lw=2) self.clean() self.lighting('off') self.name = "KSpline" self.base = np.array(points[0]) self.top = np.array(points[-1]) class CSpline(Line): """ Return a Cardinal spline which runs exactly through all the input points. :param bool closed: join last to first point to produce a closed curve :param int res: approximateresolution of the output line. Default is 20 times the number of input points. See also: ``Spline`` and ``KSpline``. """ def __init__(self, points, closed=False, res=None): if isinstance(points, Points): points = points.points() if not res: res = len(points)*20 if len(points[0]) == 2: # make it 3d points = np.c_[np.array(points), np.zeros(len(points))] xspline = vtk.vtkCardinalSpline() yspline = vtk.vtkCardinalSpline() zspline = vtk.vtkCardinalSpline() for s in [xspline, yspline, zspline]: s.SetClosed(closed) for i,p in enumerate(points): xspline.AddPoint(i, p[0]) yspline.AddPoint(i, p[1]) if len(p)>2: zspline.AddPoint(i, p[2]) ln = [] for pos in np.linspace(0, len(points), res): x = xspline.Evaluate(pos) y = yspline.Evaluate(pos) z = 0 if len(p)>2: z = zspline.Evaluate(pos) ln.append((x,y,z)) Line.__init__(self, ln, lw=2) self.clean() self.lighting('off') self.name = "CSpline" self.base = np.array(points[0]) self.top = np.array(points[-1]) def Bezier(points, res=None): """Generate the Bezier line that links the first to the last point. :Example: .. code-block:: python from vedo import * import numpy as np pts = np.random.randn(25,3) for i,p in enumerate(pts): p += [5*i, 15*sin(i/2), i*i*i/200] show(Points(pts), Bezier(pts), axes=1) |bezier| """ N = len(points) if res is None: res = 10 * N t = np.linspace(0, 1, num=res) bcurve = np.zeros((res, len(points[0]))) def binom(n, k): b = 1 for t in range(1, min(k, n-k)+1): b *= n/t n -= 1 return b def bernstein(n, k): coeff = binom(n, k) def _bpoly(x): return coeff * x**k * (1-x)**(n-k) return _bpoly for ii in range(N): b = bernstein(N-1, ii)(t) bcurve += np.outer(b, points[ii]) ln = Line(bcurve, lw=2) ln.name = "BezierLine" return ln def Brace(q1, q2, style='}', pad=0.2, thickness=1, font='Kanopus', comment='', s=1, c='k1', alpha=1): """ Create a brace (bracket) shape which spans from point q1 to point q2. Parameters ---------- q1 : list point 1. q2 : list point 2. style : str, optional style of the bracket, eg. {}, [], (), <>. The default is '{'. pad : float, optional padding space in percent. The default is 0.2. thickness : float, optional thickness factor for the bracket. The default is 1. font : str, optional font type. The default is 'Kanopus'. comment : str, optional additional text to appear next to the bracket. The default is ''. s : float, optional scale factor for the comment |scatter3| |scatter3.py|_ """ if isinstance(q1, vtk.vtkActor): q1 = q1.GetPosition() if isinstance(q2, vtk.vtkActor): q2 = q2.GetPosition() if len(q1)==2: q1 = [q1[0],q1[1],0.0] if len(q2)==2: q2 = [q2[0],q2[1],0.0] q1 = np.array(q1) q2 = np.array(q2) q2[2] = q1[2] if style not in '{}[]()<>|I': printc("Warning in Brace(): unknown style", style, c='y') br = Text3D(style, c=c, alpha=alpha, font=font) x0,x1, y0,y1, _,_ = br.bounds() flip = False if style in ['}',']',')','>']: flip = True if flip: br.origin(x0-pad*(x1-x0),y0,0) else: br.origin(x1+pad*(x1-x0),y0,0) angle = np.arctan2( q2[1]-q1[1], q2[0]-q1[0] )*57.3 - 90 br.rotateZ(angle) fy = 1/(y1-y0)*np.linalg.norm(q1-q2) fx = fy*0.3*thickness br.scale([fx,fy,1]) br.pos(q1-br.origin()) if comment: extra_angle = 90 just = 'center-bottom' if q2[0]-q1[0] < 0: extra_angle = -90 just = 'center-top' if flip: just = 'center-top' if q2[0]-q1[0] < 0: just = 'center-bottom' cmt = Text3D(comment, c=c, alpha=alpha, font=font, justify=just) cx0,cx1, cy0,cy1, _,_ = cmt.bounds() if len(comment)>1: cmt.rotateZ(angle+extra_angle) cmt.scale(1/(cy1-cy0)*np.linalg.norm(q1-q2)/6*s) cm = br.centerOfMass() cmt.pos(cm+(cm-(q1+q2)/2)*1.4) br = merge(br, cmt) br.name = "Brace" return br def NormalLines(mesh, ratio=1, atCells=True, scale=1): """ Build an ``Mesh`` made of the normals at cells shown as lines. if `atCells` is `False` normals are shown at vertices. """ poly = mesh.clone().computeNormals().polydata() if atCells: centers = vtk.vtkCellCenters() centers.SetInputData(poly) centers.Update() poly = centers.GetOutput() maskPts = vtk.vtkMaskPoints() maskPts.SetInputData(poly) maskPts.SetOnRatio(ratio) maskPts.RandomModeOff() maskPts.Update() ln = vtk.vtkLineSource() ln.SetPoint1(0, 0, 0) ln.SetPoint2(1, 0, 0) ln.Update() glyph = vtk.vtkGlyph3D() glyph.SetSourceData(ln.GetOutput()) glyph.SetInputData(maskPts.GetOutput()) glyph.SetVectorModeToUseNormal() b = poly.GetBounds() sc = max([b[1] - b[0], b[3] - b[2], b[5] - b[4]]) / 50 *scale glyph.SetScaleFactor(sc) glyph.OrientOn() glyph.Update() glyphActor = Mesh(glyph.GetOutput()) glyphActor.mapper().SetScalarModeToUsePointFieldData() glyphActor.PickableOff() glyphActor.SetProperty(mesh.GetProperty()) glyphActor.property = mesh.GetProperty() return glyphActor class Tube(Mesh): """Build a tube along the line defined by a set of points. :param r: constant radius or list of radii. :type r: float, list :param c: constant color or list of colors for each point. :type c: float, list :para int res: resolution, number of sides of the tube |ribbon.py|_ |tube.py|_ |ribbon| |tube| """ def __init__(self, points, r=1, cap=True, c=None, alpha=1, res=12): if isinstance(points, Mesh): polyln = points.polydata() points = points.points() else: vpoints = vtk.vtkPoints() idx = len(points) for p in points: if len(p)==3: vpoints.InsertNextPoint(p[0],p[1],p[2]) else: vpoints.InsertNextPoint(p[0],p[1],0) line = vtk.vtkPolyLine() line.GetPointIds().SetNumberOfIds(idx) for i in range(idx): line.GetPointIds().SetId(i, i) lines = vtk.vtkCellArray() lines.InsertNextCell(line) polyln = vtk.vtkPolyData() polyln.SetPoints(vpoints) polyln.SetLines(lines) tuf = vtk.vtkTubeFilter() tuf.SetCapping(cap) tuf.SetNumberOfSides(res) tuf.SetInputData(polyln) if utils.isSequence(r): arr = utils.numpy2vtk(r, dtype=float) arr.SetName("TubeRadius") polyln.GetPointData().AddArray(arr) polyln.GetPointData().SetActiveScalars("TubeRadius") tuf.SetVaryRadiusToVaryRadiusByAbsoluteScalar() else: tuf.SetRadius(r) usingColScals = False if utils.isSequence(c): usingColScals = True cc = vtk.vtkUnsignedCharArray() cc.SetName("TubeColors") cc.SetNumberOfComponents(3) cc.SetNumberOfTuples(len(c)) for i, ic in enumerate(c): r, g, b = getColor(ic) cc.InsertTuple3(i, int(255 * r), int(255 * g), int(255 * b)) polyln.GetPointData().AddArray(cc) c = None tuf.Update() Mesh.__init__(self, tuf.GetOutput(), c, alpha) self.phong() if usingColScals: self.mapper().SetScalarModeToUsePointFieldData() self.mapper().ScalarVisibilityOn() self.mapper().SelectColorArray("TubeColors") self.mapper().Modified() self.base = np.array(points[0]) self.top = np.array(points[-1]) self.name = "Tube" class Ribbon(Mesh): """Connect two lines to generate the surface inbetween. Set the mode by which to create the ruled surface. It also works with a single line in input. In this case the ribbon is formed by following the local plane of the line in space. :param int mode: If mode=0, resample evenly the input lines (based on length) and generates triangle strips. If mode=1, use the existing points and walks around the polyline using existing points. :param bool closed: if True, join the last point with the first to form a closed surface :param list res: ribbon resolutions along the line and perpendicularly to it. |ribbon| |ribbon.py|_ """ def __init__(self, line1, line2=None, mode=0, closed=False, width=None, c="indigo3", alpha=1, res=(200,5)): if isinstance(line1, Points): line1 = line1.points() if isinstance(line2, Points): line2 = line2.points() elif line2 is None: RibbonFilter = vtk.vtkRibbonFilter() aline = Line(line1) RibbonFilter.SetInputData(aline.polydata(False)) if width is None: width = aline.diagonalSize()/20. RibbonFilter.SetWidth(width) RibbonFilter.Update() Mesh.__init__(self, RibbonFilter.GetOutput(), c, alpha) self.name = "Ribbon" return ####################### if closed: line1 = line1.tolist() line1 += [line1[0]] line2 = line2.tolist() line2 += [line2[0]] if len(line1[0]) == 2: line1 = np.c_[np.asarray(line1), np.zeros(len(line1))] if len(line2[0]) == 2: line2 = np.c_[np.asarray(line2), np.zeros(len(line2))] ppoints1 = vtk.vtkPoints() # Generate the polyline1 ppoints1.SetData(utils.numpy2vtk(line1, dtype=float)) lines1 = vtk.vtkCellArray() lines1.InsertNextCell(len(line1)) for i in range(len(line1)): lines1.InsertCellPoint(i) poly1 = vtk.vtkPolyData() poly1.SetPoints(ppoints1) poly1.SetLines(lines1) ppoints2 = vtk.vtkPoints() # Generate the polyline2 ppoints2.SetData(utils.numpy2vtk(line2, dtype=float)) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(len(line2)) for i in range(len(line2)): lines2.InsertCellPoint(i) poly2 = vtk.vtkPolyData() poly2.SetPoints(ppoints2) poly2.SetLines(lines2) # build the lines lines1 = vtk.vtkCellArray() lines1.InsertNextCell(poly1.GetNumberOfPoints()) for i in range(poly1.GetNumberOfPoints()): lines1.InsertCellPoint(i) polygon1 = vtk.vtkPolyData() polygon1.SetPoints(ppoints1) polygon1.SetLines(lines1) lines2 = vtk.vtkCellArray() lines2.InsertNextCell(poly2.GetNumberOfPoints()) for i in range(poly2.GetNumberOfPoints()): lines2.InsertCellPoint(i) polygon2 = vtk.vtkPolyData() polygon2.SetPoints(ppoints2) polygon2.SetLines(lines2) mergedPolyData = vtk.vtkAppendPolyData() mergedPolyData.AddInputData(polygon1) mergedPolyData.AddInputData(polygon2) mergedPolyData.Update() rsf = vtk.vtkRuledSurfaceFilter() rsf.CloseSurfaceOff() rsf.SetRuledMode(mode) rsf.SetResolution(res[0], res[1]) rsf.SetInputData(mergedPolyData.GetOutput()) rsf.Update() Mesh.__init__(self, rsf.GetOutput(), c, alpha) self.name = "Ribbon" class Arrow(Mesh): """ Build a 3D arrow from `startPoint` to `endPoint` of section size `s`, expressed as the fraction of the window size. If c is a `float` less than 1, the arrow is rendered as a in a color scale from white to red. .. note:: If ``s=None`` the arrow is scaled proportionally to its length |OrientedArrow| """ def __init__(self, startPoint=(0,0,0), endPoint=(1,0,0), s=None, c="r4", alpha=1, res=12 ): # in case user is passing meshs if isinstance(startPoint, vtk.vtkActor): startPoint = startPoint.GetPosition() if isinstance(endPoint, vtk.vtkActor): endPoint = endPoint.GetPosition() axis = np.asarray(endPoint) - np.asarray(startPoint) length = np.linalg.norm(axis) if length: axis = axis / length theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) self.arr = vtk.vtkArrowSource() self.arr.SetShaftResolution(res) self.arr.SetTipResolution(res) if s: sz = 0.02 self.arr.SetTipRadius(sz) self.arr.SetShaftRadius(sz / 1.75) self.arr.SetTipLength(sz * 15) self.arr.Update() t = vtk.vtkTransform() t.RotateZ(np.rad2deg(phi)) t.RotateY(np.rad2deg(theta)) t.RotateY(-90) # put it along Z if s: sz = 800 * s t.Scale(length, sz, sz) else: t.Scale(length, length, length) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(self.arr.GetOutput()) tf.SetTransform(t) tf.Update() Mesh.__init__(self, tf.GetOutput(), c, alpha) self.phong() self.SetPosition(startPoint) self.PickableOff() self.DragableOff() self.base = np.array(startPoint) self.top = np.array(endPoint) self.tipIndex = None self.name = "Arrow" def tipPoint(self, returnIndex=False): """Return the coordinates of the tip of the Arrow, or the point index.""" if self.tipIndex is None: arrpts = utils.vtk2numpy(self.arr.GetOutput().GetPoints().GetData()) self.tipIndex = np.argmax(arrpts[:,0]) if returnIndex: return self.tipIndex else: return self.points()[self.tipIndex] def Arrows(startPoints, endPoints=None, s=None, thickness=1, c=None, alpha=1, res=12): """ Build arrows between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. Color can be specified as a colormap which maps the size of the arrows. :param float s: fix aspect-ratio of the arrow and scale its cross section :param c: color or color map name. :param float alpha: set transparency :param int res: set arrow resolution |glyphs_arrows| |glyphs_arrows.py|_ """ if isinstance(startPoints, Points): startPoints = startPoints.points() if isinstance(endPoints, Points): endPoints = endPoints.points() startPoints = np.array(startPoints) if endPoints is None: strt = startPoints[:,0] endPoints = startPoints[:,1] startPoints = strt else: endPoints = np.array(endPoints) if startPoints.shape[1] == 2: # make it 3d startPoints = np.c_[startPoints, np.zeros(len(startPoints))] if endPoints.shape[1] == 2: # make it 3d endPoints = np.c_[np.array(endPoints), np.zeros(len(endPoints))] arr = vtk.vtkArrowSource() arr.SetShaftResolution(res) arr.SetTipResolution(res) if s: sz = 0.02 * s arr.SetTipRadius(sz*2) arr.SetShaftRadius(sz*thickness) arr.SetTipLength(sz*10) arr.Update() out = arr.GetOutput() orients = endPoints - startPoints arrg = Glyph(startPoints, out, orientationArray=orients, scaleByVectorSize=True, colorByVectorSize=True, c=c, alpha=alpha) arrg.flat().lighting('plastic') arrg.name = "Arrows" return arrg class Arrow2D(Mesh): """ Build a 2D arrow from `startPoint` to `endPoint`. :param float shaftLength: fractional shaft length :param float shaftWidth: fractional shaft width :param float headLength: fractional head length :param float headWidth: fractional head width :param bool fill: if False only generate the outline """ def __init__(self, startPoint=(0,0,0), endPoint=(1,0,0), shaftLength=0.8, shaftWidth=0.05, headLength=0.25, headWidth=0.2, fill=True, c="r4", alpha=1): # in case user is passing meshs if isinstance(startPoint, vtk.vtkActor): startPoint = startPoint.GetPosition() if isinstance(endPoint, vtk.vtkActor): endPoint = endPoint.GetPosition() if len(startPoint) == 2: startPoint = [startPoint[0], startPoint[1], 0] if len(endPoint) == 2: endPoint = [endPoint[0], endPoint[1], 0] headBase = 1 - headLength if headWidth < shaftWidth: headWidth = shaftWidth if headLength is None or headBase > shaftLength: headBase = shaftLength verts = [] verts.append([0, -shaftWidth/2, 0]) verts.append([shaftLength,-shaftWidth/2, 0]) verts.append([headBase, -headWidth/2, 0]) verts.append([1,0,0]) verts.append([headBase, headWidth/2, 0]) verts.append([shaftLength, shaftWidth/2, 0]) verts.append([0, shaftWidth/2, 0]) if fill: faces = ((0,1,3,5,6), (5,3,4), (1,2,3)) poly = utils.buildPolyData(verts, faces) else: lines = ((0,1,2,3,4,5,6,0)) poly = utils.buildPolyData(verts, [], lines=lines) axis = np.array(endPoint) - np.array(startPoint) length = np.linalg.norm(axis) if length: axis = axis / length theta = np.arccos(axis[2]) phi = np.arctan2(axis[1], axis[0]) t = vtk.vtkTransform() t.RotateZ(np.rad2deg(phi)) t.RotateY(np.rad2deg(theta)) t.RotateY(-90) # put it along Z t.Scale(length, length, length) tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(poly) tf.SetTransform(t) tf.Update() Mesh.__init__(self, tf.GetOutput(), c, alpha) self.SetPosition(startPoint) self.lighting('off') self.DragableOff() self.PickableOff() self.base = np.array(startPoint) self.top = np.array(endPoint) self.name = "Arrow2D" def Arrows2D(startPoints, endPoints=None, shaftLength=0.8, shaftWidth=0.09, headLength=None, headWidth=0.2, fill=True, c=None, cmap=None, alpha=1): """ Build 2D arrows between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. Color can be specified as a colormap which maps the size of the arrows. :param float shaftLength: fractional shaft length :param float shaftWidth: fractional shaft width :param float headLength: fractional head length :param float headWidth: fractional head width :param bool fill: if False only generate the outline :param c: color :param float alpha: set transparency :Example: .. code-block:: python from vedo import Grid, Arrows2D g1 = Grid(sx=1, sy=1) g2 = Grid(sx=1.2, sy=1.2).rotateZ(4) arrs2d = Arrows2D(g1, g2, c='jet') arrs2d.show(axes=1, bg='white') |quiver| """ if isinstance(startPoints, Points): startPoints = startPoints.points() if isinstance(endPoints, Points): endPoints = endPoints.points() startPoints = np.array(startPoints) if endPoints is None: strt = startPoints[:,0] endPoints = startPoints[:,1] startPoints = strt else: endPoints = np.array(endPoints) if headLength is None: headLength = 1 - shaftLength arr = Arrow2D((0,0,0), (1,0,0), shaftLength, shaftWidth, headLength, headWidth, fill) orients = endPoints - startPoints if orients.shape[1] == 2: # make it 3d orients = np.c_[np.array(orients), np.zeros(len(orients))] pts = Points(startPoints) arrg = Glyph(pts, arr.polydata(False), orientationArray=orients, scaleByVectorSize=True, c=c, alpha=alpha).flat().lighting('off') if c is not None: arrg.color(c) arrg.name = "Arrows2D" return arrg def FlatArrow(line1, line2, c="r4", alpha=1, tipSize=1, tipWidth=1): """Build a 2D arrow in 3D space by joining two close lines. |flatarrow| |flatarrow.py|_ """ if isinstance(line1, Points): line1 = line1.points() if isinstance(line2, Points): line2 = line2.points() sm1, sm2 = np.array(line1[-1]), np.array(line2[-1]) v = (sm1-sm2)/3*tipWidth p1 = sm1+v p2 = sm2-v pm1 = (sm1+sm2)/2 pm2 = (np.array(line1[-2])+np.array(line2[-2]))/2 pm12 = pm1-pm2 tip = pm12/np.linalg.norm(pm12)*np.linalg.norm(v)*3*tipSize/tipWidth + pm1 line1.append(p1) line1.append(tip) line2.append(p2) line2.append(tip) resm = max(100, len(line1)) mesh = Ribbon(line1, line2, alpha=alpha, c=c, res=(resm, 1)).phong() mesh.PickableOff() mesh.DragableOff() mesh.name = "FlatArrow" return mesh class Polygon(Mesh): """ Build a polygon in the `xy` plane of `nsides` of radius `r`. |Polygon| """ def __init__(self, pos=(0, 0, 0), nsides=6, r=1, c="coral", alpha=1): if len(pos) == 2: pos = (pos[0], pos[1], 0) t = np.linspace(np.pi/2, 5/2*np.pi, num=nsides, endpoint=False) x, y = utils.pol2cart(np.ones_like(t)*r, t) faces = [list(range(nsides))] Mesh.__init__(self, [np.c_[x,y], faces], c, alpha) self.SetPosition(pos) self.GetProperty().LightingOff() self.name = "Polygon " + str(nsides) class Circle(Polygon): """ Build a Circle of radius `r`. """ def __init__(self, pos=(0,0,0), r=1, c="gray5", alpha=1, res=120): if len(pos) == 2: pos = (pos[0], pos[1], 0) Polygon.__init__(self, pos, nsides=res, r=r) self.alpha(alpha).c(c) self.name = "Circle" class Star(Mesh): """ Build a 2D star shape of `n` cusps of inner radius `r1` and outer radius `r2`. :param bool line: only build the outer line (no internal surface meshing). |extrude| |extrude.py|_ """ def __init__(self, pos=(0,0,0), n=5, r1=0.7, r2=1.0, line=False, c="blue6", alpha=1): if len(pos) == 2: pos = (pos[0], pos[1], 0) t = np.linspace(np.pi/2, 5/2*np.pi, num=n, endpoint=False) x, y = utils.pol2cart(np.ones_like(t)*r2, t) pts = np.c_[x,y, np.zeros_like(x)] apts=[] for i,p in enumerate(pts): apts.append(p) if i+1<n: apts.append((p+pts[i+1])/2*r1/r2) apts.append((pts[-1]+pts[0])/2*r1/r2) if line: apts.append(pts[0]) poly = utils.buildPolyData(apts, lines=list(range(len(apts)))) Mesh.__init__(self, poly, c, alpha) self.lw(2) else: apts.append((0,0,0)) cells=[] for i in range(2*n-1): cell = [2*n, i, i+1] cells.append(cell) cells.append([2*n, i+1, 0]) Mesh.__init__(self, [apts, cells], c, alpha) self.SetPosition(pos) self.name = "Star" class Disc(Mesh): """ Build a 2D disc of inner radius `r1` and outer radius `r2`. :param list res: resolution in R and Phi |Disk| """ def __init__(self, pos=(0, 0, 0), r1=0.5, r2=1, c="gray4", alpha=1, res=12, ): if len(pos) == 2: pos = (pos[0], pos[1], 0) if utils.isSequence(res): res_r, res_phi = res else: res_r, res_phi = res, 12*res ps = vtk.vtkDiskSource() ps.SetInnerRadius(r1) ps.SetOuterRadius(r2) ps.SetRadialResolution(res_r) ps.SetCircumferentialResolution(res_phi) ps.Update() Mesh.__init__(self, ps.GetOutput(), c, alpha) self.flat() self.SetPosition(pos) self.name = "Disc" class Arc(Mesh): """ Build a 2D circular arc between points `point1` and `point2`. If `normal` is specified then `center` is ignored, and normal vector, a starting `point1` (polar vector) and an angle defining the arc length need to be assigned. Arc spans the shortest angular sector point1 and point2, if invert=True, then the opposite happens. """ def __init__(self, center, point1, point2=None, normal=None, angle=None, invert=False, c="gray4", alpha=1, res=48, ): if len(point1) == 2: point1 = (point1[0], point1[1], 0) if point2 is not None and len(point2) == 2: point2 = (point2[0], point2[1], 0) ar = vtk.vtkArcSource() if point2 is not None: ar.UseNormalAndAngleOff() ar.SetPoint1(point1) ar.SetPoint2(point2) ar.SetCenter(center) elif normal is not None and angle is not None: ar.UseNormalAndAngleOn() ar.SetAngle(angle) ar.SetPolarVector(point1) ar.SetNormal(normal) else: printc("Error in Arc(): incorrect input.", c='r') return None ar.SetNegative(invert) ar.SetResolution(res) ar.Update() Mesh.__init__(self, ar.GetOutput(), c, alpha) self.lw(2).lighting('off') self.name = "Arc" class Sphere(Mesh): """Build a sphere at position `pos` of radius `r`. :param r float: sphere radius :param int res: resolution in phi, resolution in theta is 2*res :param bool quads: sphere mesh will be made of quads instead of triangles |Sphere| |sphericgrid| """ def __init__(self, pos=(0, 0, 0), r=1, c="r5", alpha=1, res=24, quads=False): self.radius = r # used by fitSphere self.center = pos self.residue = 0 if quads: if res<4: res=4 img = vtk.vtkImageData() img.SetDimensions(res-1,res-1,res-1) rs = 1./(res-2) img.SetSpacing(rs,rs,rs) gf = vtk.vtkGeometryFilter() gf.SetInputData(img) gf.Update() Mesh.__init__(self, gf.GetOutput(), c, alpha) self.lw(0.1) cgpts = self.points() - (0.5,0.5,0.5) x, y, z = cgpts.T x = x*(1+x*x)/2 y = y*(1+y*y)/2 z = z*(1+z*z)/2 _, theta, phi = utils.cart2spher(x, y, z) pts = utils.spher2cart(np.ones_like(phi)*r, theta, phi) self.points(pts) else: if utils.isSequence(res): res_t, res_phi = res else: res_t, res_phi = 2*res, res ss = vtk.vtkSphereSource() ss.SetRadius(r) ss.SetThetaResolution(res_t) ss.SetPhiResolution(res_phi) ss.Update() Mesh.__init__(self, ss.GetOutput(), c, alpha) self.phong() self.SetPosition(pos) self.name = "Sphere" class Spheres(Mesh): """ Build a (possibly large) set of spheres at `centers` of radius `r`. Either `c` or `r` can be a list of RGB colors or radii. |manyspheres| |manyspheres.py|_ """ def __init__(self, centers, r=1, c="r5", alpha=1, res=8): if isinstance(centers, Points): centers = centers.points() cisseq = False if utils.isSequence(c): cisseq = True if cisseq: if len(centers) > len(c): printc("Mismatch in Spheres() colors", len(centers), len(c), c='r') raise RuntimeError() if len(centers) != len(c): printc("\lightningWarning: mismatch in Spheres() colors", len(centers), len(c)) risseq = False if utils.isSequence(r): risseq = True if risseq: if len(centers) > len(r): printc("Mismatch in Spheres() radius", len(centers), len(r), c='r') raise RuntimeError() if len(centers) != len(r): printc("\lightning Warning: mismatch in Spheres() radius", len(centers), len(r)) if cisseq and risseq: printc("\noentry Limitation: c and r cannot be both sequences.", c='r') raise RuntimeError() src = vtk.vtkSphereSource() if not risseq: src.SetRadius(r) if utils.isSequence(res): res_t, res_phi = res else: res_t, res_phi = 2*res, res src.SetThetaResolution(res_t) src.SetPhiResolution(res_phi) src.Update() psrc = vtk.vtkPointSource() psrc.SetNumberOfPoints(len(centers)) psrc.Update() pd = psrc.GetOutput() vpts = pd.GetPoints() glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(src.GetOutputPort()) if cisseq: glyph.SetColorModeToColorByScalar() ucols = vtk.vtkUnsignedCharArray() ucols.SetNumberOfComponents(3) ucols.SetName("Colors") for acol in c: cx, cy, cz = getColor(acol) ucols.InsertNextTuple3(cx * 255, cy * 255, cz * 255) pd.GetPointData().AddArray(ucols) pd.GetPointData().SetActiveScalars("Colors") glyph.ScalingOff() elif risseq: glyph.SetScaleModeToScaleByScalar() urads = utils.numpy2vtk(2*np.ascontiguousarray(r), dtype=float) urads.SetName("Radii") pd.GetPointData().AddArray(urads) pd.GetPointData().SetActiveScalars("Radii") vpts.SetData(utils.numpy2vtk(centers, dtype=float)) glyph.SetInputData(pd) glyph.Update() Mesh.__init__(self, glyph.GetOutput(), alpha=alpha) self.phong() if cisseq: self.mapper().ScalarVisibilityOn() else: self.mapper().ScalarVisibilityOff() self.GetProperty().SetColor(getColor(c)) self.name = "Spheres" class Earth(Mesh): """Build a textured mesh representing the Earth. |geodesic| |geodesic.py|_ """ def __init__(self, style=1, r=1): tss = vtk.vtkTexturedSphereSource() tss.SetRadius(r) tss.SetThetaResolution(72) tss.SetPhiResolution(36) Mesh.__init__(self, tss, c="w") atext = vtk.vtkTexture() pnmReader = vtk.vtkJPEGReader() fn = os.path.join(settings.textures_path, "earth"+ str(style) +".jpg") pnmReader.SetFileName(fn) atext.SetInputConnection(pnmReader.GetOutputPort()) atext.InterpolateOn() self.SetTexture(atext) self.name = "Earth" class Ellipsoid(Mesh): """ Build a 3D ellipsoid centered at position `pos`. .. note:: `axis1` and `axis2` are only used to define sizes and one azimuth angle. |projectsphere| |pca| |pca.py|_ """ def __init__(self, pos=(0, 0, 0), axis1=(1, 0, 0), axis2=(0, 2, 0), axis3=(0, 0, 3), c="cyan4", alpha=1, res=24): self.center = pos self.va_error = 0 self.vb_error = 0 self.vc_error = 0 self.axis1 = axis1 self.axis2 = axis2 self.axis3 = axis3 self.nr_of_points = 1 # used by pcaEllipsoid if utils.isSequence(res): res_t, res_phi = res else: res_t, res_phi = 2*res, res elliSource = vtk.vtkSphereSource() elliSource.SetThetaResolution(res_t) elliSource.SetPhiResolution(res_phi) elliSource.Update() l1 = np.linalg.norm(axis1) l2 = np.linalg.norm(axis2) l3 = np.linalg.norm(axis3) self.va = l1 self.vb = l2 self.vc = l3 axis1 = np.array(axis1) / l1 axis2 =
np.array(axis2)
numpy.array
# code adapted from https://github.com/lmcinnes/umap/blob/7e051d8f3c4adca90ca81eb45f6a9d1372c076cf/umap/plot.py import warnings from matplotlib import patches from matplotlib.lines import Line2D import numpy as np import pandas as pd from pandas.api.types import is_categorical_dtype import anndata from numbers import Number import matplotlib.cm from matplotlib.axes import Axes from anndata import AnnData from typing import Union, Optional, List from ..configuration import _themes, reset_rcParams from .utils import ( despline_all, deaxis_all, _select_font_color, arrowed_spines, is_gene_name, is_cell_anno_column, is_list_of_lists, is_layer_keys, _matplotlib_points, _datashade_points, save_fig, ) from ..preprocessing.utils import ( gen_rotation_2d, affine_transform, ) from ..tools.utils import ( update_dict, get_mapper, flatten, ) from ..tools.moments import calc_1nd_moment from ..dynamo_logger import main_info, main_debug, main_warning from ..docrep import DocstringProcessor docstrings = DocstringProcessor() @docstrings.get_sectionsf("scatters") def scatters( adata: AnnData, basis: str = "umap", x: int = 0, y: int = 1, color: str = "ntr", layer: str = "X", highlights: Optional[list] = None, labels: Optional[list] = None, values: Optional[list] = None, theme: Optional[str] = None, cmap: Optional[str] = None, color_key: Union[dict, list] = None, color_key_cmap: Optional[str] = None, background: Optional[str] = None, ncols: int = 4, pointsize: Union[None, float] = None, figsize: tuple = (6, 4), show_legend="on data", use_smoothed: bool = True, aggregate: Optional[str] = None, show_arrowed_spines: bool = False, ax: Optional[matplotlib.axes.Axes] = None, sort: str = "raw", save_show_or_return: str = "show", save_kwargs: dict = {}, return_all: bool = False, add_gamma_fit: bool = False, frontier: bool = False, contour: bool = False, ccmap: Optional[str] = None, alpha: float = 0.1, calpha: float = 0.4, sym_c: bool = False, smooth: bool = False, dpi: int = 100, inset_dict: dict = {}, marker: str = None, group: str = None, add_group_gamma_fit=False, affine_transform_degree=0, affine_transform_A=None, affine_transform_b=None, stack_colors=False, stack_colors_threshold=0.001, stack_colors_title="stacked colors", stack_colors_legend_size=2, despline: bool = True, deaxis: bool = True, despline_sides: Union[None, List[str]] = None, **kwargs, ) -> Union[None, Axes]: """Plot an embedding as points. Currently this only works for 2D embeddings. While there are many optional parameters to further control and tailor the plotting, you need only pass in the trained/fit umap model to get results. This plot utility will attempt to do the hard work of avoiding overplotting issues, and make it easy to automatically colour points by a categorical labelling or numeric values. This method is intended to be used within a Jupyter notebook with ``%matplotlib inline``. Parameters ---------- adata: :class:`~anndata.AnnData` an Annodata object basis: `str` The reduced dimension. x: `int` (default: `0`) The column index of the low dimensional embedding for the x-axis. y: `int` (default: `1`) The column index of the low dimensional embedding for the y-axis. color: `string` (default: `ntr`) Any column names or gene expression, etc. that will be used for coloring cells. layer: `str` (default: `X`) The layer of data to use for the scatter plot. highlights: `list` (default: None) Which color group will be highlighted. if highligts is a list of lists - each list is relate to each color element. labels: array, shape (n_samples,) (optional, default None) An array of labels (assumed integer or categorical), one for each data sample. This will be used for coloring the points in the plot according to their label. Note that this option is mutually exclusive to the ``values`` option. values: array, shape (n_samples,) (optional, default None) An array of values (assumed float or continuous), one for each sample. This will be used for coloring the points in the plot according to a colorscale associated to the total range of values. Note that this option is mutually exclusive to the ``labels`` option. theme: string (optional, default None) A color theme to use for plotting. A small set of predefined themes are provided which have relatively good aesthetics. Available themes are: * 'blue' * 'red' * 'green' * 'inferno' * 'fire' * 'viridis' * 'darkblue' * 'darkred' * 'darkgreen' cmap: string (optional, default 'Blues') The name of a matplotlib colormap to use for coloring or shading points. If no labels or values are passed this will be used for shading points according to density (largely only of relevance for very large datasets). If values are passed this will be used for shading according the value. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key: dict or array, shape (n_categories) (optional, default None) A way to assign colors to categoricals. This can either be an explicit dict mapping labels to colors (as strings of form '#RRGGBB'), or an array like object providing one color for each distinct category being provided in ``labels``. Either way this mapping will be used to color points according to the label. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. color_key_cmap: The name of a matplotlib colormap to use for categorical coloring. If an explicit ``color_key`` is not given a color mapping for categories can be generated from the label list and selecting a matching list of colors from the given colormap. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. background: string or None (optional, default 'None`) The color of the background. Usually this will be either 'white' or 'black', but any color name will work. Ideally one wants to match this appropriately to the colors being used for points etc. This is one of the things that themes handle for you. Note that if theme is passed then this value will be overridden by the corresponding option of the theme. ncols: int (optional, default `4`) Number of columns for the figure. pointsize: `None` or `float` (default: None) The scale of the point size. Actual point cell size is calculated as `500.0 / np.sqrt(adata.shape[0]) * pointsize` figsize: `None` or `[float, float]` (default: None) The width and height of a figure. show_legend: bool (optional, default True) Whether to display a legend of the labels use_smoothed: bool (optional, default True) Whether to use smoothed values (i.e. M_s / M_u instead of spliced / unspliced, etc.). aggregate: `str` or `None` (default: `None`) The column in adata.obs that will be used to aggregate data points. show_arrowed_spines: bool (optional, default False) Whether to show a pair of arrowed spines representing the basis of the scatter is currently using. ax: `matplotlib.Axis` (optional, default `None`) The matplotlib axes object where new plots will be added to. Only applicable to drawing a single component. sort: `str` (optional, default `raw`) The method to reorder data so that high values points will be on top of background points. Can be one of {'raw', 'abs', 'neg'}, i.e. sorted by raw data, sort by absolute values or sort by negative values. save_show_or_return: `str` {'save', 'show', 'return'} (default: `show`) Whether to save, show or return the figure. If "both", it will save and plot the figure at the same time. If "all", the figure will be saved, displayed and the associated axis and other object will be return. save_kwargs: `dict` (default: `{}`) A dictionary that will passed to the save_fig function. By default it is an empty dictionary and the save_fig function will use the {"path": None, "prefix": 'scatter', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} as its parameters. Otherwise you can provide a dictionary that properly modify those keys according to your needs. return_all: `bool` (default: `False`) Whether to return all the scatter related variables. Default is False. add_gamma_fit: `bool` (default: `False`) Whether to add the line of the gamma fitting. This will automatically turn on if `basis` points to gene names and those genes have went through gamma fitting. frontier: `bool` (default: `False`) Whether to add the frontier. Scatter plots can be enhanced by using transparency (alpha) in order to show area of high density and multiple scatter plots can be used to delineate a frontier. See matplotlib tips & tricks cheatsheet (https://github.com/matplotlib/cheatsheets). Originally inspired by figures from scEU-seq paper: https://science.sciencemag.org/content/367/6482/1151. If `contour` is set to be True, `frontier` will be ignored as `contour` also add an outlier for data points. contour: `bool` (default: `False`) Whether to add an countor on top of scatter plots. We use tricontourf to plot contour for non-gridded data. The shapely package was used to create a polygon of the concave hull of the scatters. With the polygon we then check if the mean of the triangulated points are within the polygon and use this as our condition to form the mask to create the contour. We also add the polygon shape as a frontier of the data point (similar to when setting `frontier = True`). When the color of the data points is continuous, we will use the same cmap as for the scatter points by default, when color is categorical, no contour will be drawn but just the polygon. cmap can be set with `ccmap` argument. See below. This has recently changed to use seaborn's kdeplot. ccmap: `str` or `None` (default: `None`) The name of a matplotlib colormap to use for coloring or shading points the contour. See above. calpha: `float` (default: `0.4`) Contour alpha value passed into sns.kdeplot. The value should be inbetween [0, 1] sym_c: `bool` (default: `False`) Whether do you want to make the limits of continuous color to be symmetric, normally this should be used for plotting velocity, jacobian, curl, divergence or other types of data with both positive or negative values. smooth: `bool` or `int` (default: `False`) Whether do you want to further smooth data and how much smoothing do you want. If it is `False`, no smoothing will be applied. If `True`, smoothing based on one step diffusion of connectivity matrix (`.uns['moment_cnn'] will be applied. If a number larger than 1, smoothing will based on `smooth` steps of diffusion. dpi: `float`, (default: 100.0) The resolution of the figure in dots-per-inch. Dots per inches (dpi) determines how many pixels the figure comprises. dpi is different from ppi or points per inches. Note that most elements like lines, markers, texts have a size given in points so you can convert the points to inches. Matplotlib figures use Points per inch (ppi) of 72. A line with thickness 1 point will be 1./72. inch wide. A text with fontsize 12 points will be 12./72. inch heigh. Of course if you change the figure size in inches, points will not change, so a larger figure in inches still has the same size of the elements.Changing the figure size is thus like taking a piece of paper of a different size. Doing so, would of course not change the width of the line drawn with the same pen. On the other hand, changing the dpi scales those elements. At 72 dpi, a line of 1 point size is one pixel strong. At 144 dpi, this line is 2 pixels strong. A larger dpi will therefore act like a magnifying glass. All elements are scaled by the magnifying power of the lens. see more details at answer 2 by @ImportanceOfBeingErnest: https://stackoverflow.com/questions/47633546/relationship-between-dpi-and-figure-size inset_dict: `dict` (default: {}) A dictionary of parameters in inset_ax. Example, something like {"width": "5%", "height": "50%", "loc": 'lower left', "bbox_to_anchor": (0.85, 0.90, 0.145, 0.145), "bbox_transform": ax.transAxes, "borderpad": 0} See more details at https://matplotlib.org/api/_as_gen/mpl_toolkits.axes_grid1.inset_locator.inset_axes.html or https://stackoverflow.com/questions/39803385/what-does-a-4-element-tuple-argument-for-bbox-to-anchor-mean -in-matplotlib marker: `str` (default: None) The marker style. marker can be either an instance of the class or the text shorthand for a particular marker. See matplotlib.markers for more information about marker styles. affine_transform_degree: Transform coordinates of points according to some degree. affine_transform_A: Coefficients in affine transformation Ax + b. 2D for now. affine_transform_b: Bias in affine transformation Ax + b. stack_colors: Whether to stack all color on the same ax passed above. Currently only support 18 sequential matplotlib default cmaps assigning to different color groups. (#colors should be smaller than 18, reuse if #colors > 18. To-do: generate cmaps according to #colors) stack_colors_threshold: A threshold for filtering points values < threshold when drawing each color. E.g. if you do not want points with values < 1 showing up on axis, set threshold to be 1 stack_colors_title: The title for the stack_color plot. stack_colors_legend_size: Control the legend size in stack color plot. despline: Whether to remove splines of the figure. despline_sides: Which side of splines should be removed. Can be any combination of `["bottom", "right", "top", "left"]`. deaxis: Whether to remove axis ticks of the figure. kwargs: Additional arguments passed to plt.scatters. Returns ------- result: Either None or a matplotlib axis with the relevant plot displayed. If you are using a notbooks and have ``%matplotlib inline`` set then this will simply display inline. """ import matplotlib.pyplot as plt from matplotlib import rcParams from matplotlib.colors import to_hex from matplotlib.colors import rgb2hex if calpha < 0 or calpha > 1: main_warning( "calpha=%f is invalid (smaller than 0 or larger than 1) and may cause potential issues. Please check." % (calpha) ) group_colors = ["b", "g", "r", "c", "m", "y", "k", "w"] sequential_cmaps = [ "Greys", "Purples", "Blues", "Greens", "Oranges", "Reds", "YlOrBr", "YlOrRd", "OrRd", "PuRd", "RdPu", "BuPu", "GnBu", "PuBu", "YlGnBu", "PuBuGn", "BuGn", "YlGn", ] stack_legend_handles = [] if stack_colors: color_key = None def _get_adata_color(adata, cur_l, cur_c): if cur_l in ["protein", "X_protein"]: _color = adata.obsm[cur_l].loc[cur_c, :] elif cur_l == "X": _color = adata.obs_vector(cur_c, layer=None) else: _color = adata.obs_vector(cur_c, layer=cur_l) return _color if not (affine_transform_degree is None): affine_transform_A = gen_rotation_2d(affine_transform_degree) affine_transform_b = 0 if contour: frontier = False if background is None: _background = rcParams.get("figure.facecolor") _background = to_hex(_background) if type(_background) is tuple else _background # if save_show_or_return != 'save': set_figure_params('dynamo', background=_background) else: _background = background # if save_show_or_return != 'save': set_figure_params('dynamo', background=_background) x, y = ( [x] if type(x) in [int, str] else x, [y] if type(y) in [ int, str, ] else y, ) if all([is_gene_name(adata, i) for i in basis]): if x[0] not in ["M_s", "X_spliced", "M_t", "X_total", "spliced", "total"] and y[0] not in [ "M_u", "X_unspliced", "M_n", "X_new", "unspliced", "new", ]: if "M_t" in adata.layers.keys() and "M_n" in adata.layers.keys(): x, y = ["M_t"], ["M_n"] elif "X_total" in adata.layers.keys() and "X_new" in adata.layers.keys(): x, y = ["X_total"], ["X_new"] elif "M_s" in adata.layers.keys() and "M_u" in adata.layers.keys(): x, y = ["M_s"], ["M_u"] elif "X_spliced" in adata.layers.keys() and "X_unspliced" in adata.layers.keys(): x, y = ["X_spliced"], ["X_unspliced"] elif "spliced" in adata.layers.keys() and "unspliced" in adata.layers.keys(): x, y = ["spliced"], ["unspliced"] elif "total" in adata.layers.keys() and "new" in adata.layers.keys(): x, y = ["total"], ["new"] else: raise ValueError( "your adata oject is corrupted. Please make sure it has at least one of the following " "pair of layers:" "'M_s', 'X_spliced', 'M_t', 'X_total', 'spliced', 'total' and " "'M_u', 'X_unspliced', 'M_n', 'X_new', 'unspliced', 'new'. " ) if use_smoothed: mapper = get_mapper() # check color, layer, basis -> convert to list if type(color) is str: color = [color] if type(layer) is str: layer = [layer] if type(basis) is str: basis = [basis] if stack_colors and len(color) > len(sequential_cmaps): main_warning( "#color: %d passed in is greater than #sequential cmaps: %d, will reuse sequential maps" % (len(color), len(sequential_cmaps)) ) main_warning("You should consider decreasing your #color") n_c, n_l, n_b, n_x, n_y = ( 1 if color is None else len(color), 1 if layer is None else len(layer), 1 if basis is None else len(basis), 1 if x is None else 1 if type(x) in [anndata._core.views.ArrayView, np.ndarray] else len(x), # check whether it is an array 1 if y is None else 1 if type(y) in [anndata._core.views.ArrayView, np.ndarray] else len(y), # check whether it is an array ) if pointsize is None: point_size = 16000.0 / np.sqrt(adata.shape[0]) else: point_size = 16000.0 / np.sqrt(adata.shape[0]) * pointsize scatter_kwargs = dict( alpha=alpha, s=point_size, edgecolor=None, linewidth=0, rasterized=True, marker=marker, ) # (0, 0, 0, 1) if kwargs is not None: scatter_kwargs.update(kwargs) font_color = _select_font_color(_background) total_panels, ncols = ( n_c * n_l * n_b * n_x * n_y, min(max([n_c, n_l, n_b, n_x, n_y]), ncols), ) nrow, ncol = int(np.ceil(total_panels / ncols)), ncols if figsize is None: figsize = plt.rcParams["figsize"] if total_panels >= 1 and ax is None: plt.figure( None, (figsize[0] * ncol, figsize[1] * nrow), facecolor=_background, dpi=dpi, ) gs = plt.GridSpec(nrow, ncol, wspace=0.12) ax_index = 0 axes_list, color_list = [], [] color_out = None def _plot_basis_layer(cur_b, cur_l): """a helper function for plotting a specific basis/layer data Parameters ---------- cur_b : current basis cur_l : current layer """ nonlocal adata, x, y, _background, cmap, color_out, labels, values, ax, sym_c, scatter_kwargs, ax_index if cur_l in ["acceleration", "curvature", "divergence", "velocity_S", "velocity_T"]: cur_l_smoothed = cur_l cmap, sym_c = "bwr", True # To-do: maybe use other divergent color map in future else: if use_smoothed: cur_l_smoothed = cur_l if cur_l.startswith("M_") | cur_l.startswith("velocity") else mapper[cur_l] if cur_l.startswith("velocity"): cmap, sym_c = "bwr", True prefix = cur_l + "_" if any([key == cur_l + "_" + cur_b for key in adata.obsm.keys()]) else "X_" # if prefix + cur_b in adata.obsm.keys(): # if type(x) != str and type(y) != str: # x_, y_ = ( # adata.obsm[prefix + cur_b][:, int(x)], # adata.obsm[prefix + cur_b][:, int(y)], # ) # else: # continue if stack_colors: _stack_background_adata_indices = np.ones(len(adata), dtype=bool) for cur_c in color: main_debug("coloring scatter of cur_c: %s" % str(cur_c)) if not stack_colors: cur_title = cur_c else: cur_title = stack_colors_title _color = _get_adata_color(adata, cur_l, cur_c) # select data rows based on stack color thresholding _values = values if stack_colors: main_debug("Subsetting adata by stack_colors") _adata = adata[_color > stack_colors_threshold] _stack_background_adata_indices = np.logical_and( _stack_background_adata_indices, (_color < stack_colors_threshold) ) if values: _values = values[_color > stack_colors_threshold] _color = _color[_color > stack_colors_threshold] main_debug("stack colors: _adata len after thresholding by color value: %d" % (len(_adata))) if len(_color) == 0: main_info("skipping color %s because no point of %s is above threshold" % (cur_c, cur_c)) continue else: _adata = adata if ( type(x) in [anndata._core.views.ArrayView, np.ndarray] and type(y) in [anndata._core.views.ArrayView, np.ndarray] and len(x) == _adata.n_obs and len(y) == _adata.n_obs ): x, y = [x], [y] elif hasattr(x, "__len__") and hasattr(y, "__len__"): x, y = list(x), list(y) for cur_x, cur_y in zip(x, y): # here x / y are arrays main_debug("handling coordinates, cur_x: %s, cur_y: %s" % (cur_x, cur_y)) if type(cur_x) is int and type(cur_y) is int: points = pd.DataFrame( { cur_b + "_0": _adata.obsm[prefix + cur_b][:, cur_x], cur_b + "_1": _adata.obsm[prefix + cur_b][:, cur_y], } ) points.columns = [cur_b + "_0", cur_b + "_1"] elif is_gene_name(_adata, cur_x) and is_gene_name(_adata, cur_y): points = pd.DataFrame( { cur_x: _adata.obs_vector(k=cur_x, layer=None) if cur_l_smoothed == "X" else _adata.obs_vector(k=cur_x, layer=cur_l_smoothed), cur_y: _adata.obs_vector(k=cur_y, layer=None) if cur_l_smoothed == "X" else _adata.obs_vector(k=cur_y, layer=cur_l_smoothed), } ) # points = points.loc[(points > 0).sum(1) > 1, :] points.columns = [ cur_x + " (" + cur_l_smoothed + ")", cur_y + " (" + cur_l_smoothed + ")", ] cur_title = cur_x + " VS " + cur_y elif is_cell_anno_column(_adata, cur_x) and is_cell_anno_column(_adata, cur_y): points = pd.DataFrame( { cur_x: _adata.obs_vector(cur_x), cur_y: _adata.obs_vector(cur_y), } ) points.columns = [cur_x, cur_y] cur_title = cur_x + " VS " + cur_y elif is_cell_anno_column(_adata, cur_x) and is_gene_name(_adata, cur_y): points = pd.DataFrame( { cur_x: _adata.obs_vector(cur_x), cur_y: _adata.obs_vector(k=cur_y, layer=None) if cur_l_smoothed == "X" else _adata.obs_vector(k=cur_y, layer=cur_l_smoothed), } ) # points = points.loc[points.iloc[:, 1] > 0, :] points.columns = [ cur_x, cur_y + " (" + cur_l_smoothed + ")", ] cur_title = cur_y elif is_gene_name(_adata, cur_x) and is_cell_anno_column(_adata, cur_y): points = pd.DataFrame( { cur_x: _adata.obs_vector(k=cur_x, layer=None) if cur_l_smoothed == "X" else _adata.obs_vector(k=cur_x, layer=cur_l_smoothed), cur_y: _adata.obs_vector(cur_y), } ) # points = points.loc[points.iloc[:, 0] > 0, :] points.columns = [ cur_x + " (" + cur_l_smoothed + ")", cur_y, ] cur_title = cur_x elif is_layer_keys(_adata, cur_x) and is_layer_keys(_adata, cur_y): cur_x_, cur_y_ = ( _adata[:, cur_b].layers[cur_x], _adata[:, cur_b].layers[cur_y], ) points = pd.DataFrame({cur_x: flatten(cur_x_), cur_y: flatten(cur_y_)}) # points = points.loc[points.iloc[:, 0] > 0, :] points.columns = [cur_x, cur_y] cur_title = cur_b elif type(cur_x) in [anndata._core.views.ArrayView, np.ndarray] and type(cur_y) in [ anndata._core.views.ArrayView, np.ndarray, ]: points = pd.DataFrame({"x": flatten(cur_x), "y": flatten(cur_y)}) points.columns = ["x", "y"] cur_title = cur_b else: raise Exception("Make sure your `x` and `y` are integers, gene names, column names in .obs, etc.") if aggregate is not None: groups, uniq_grp = ( _adata.obs[aggregate], list(_adata.obs[aggregate].unique()), ) group_color, group_median = ( np.zeros((1, len(uniq_grp))).flatten() if isinstance(_color[0], Number) else np.zeros((1, len(uniq_grp))).astype("str").flatten(), np.zeros((len(uniq_grp), 2)), ) grp_size = _adata.obs[aggregate].value_counts()[uniq_grp].values scatter_kwargs = ( {"s": grp_size} if scatter_kwargs is None else update_dict(scatter_kwargs, {"s": grp_size}) ) for ind, cur_grp in enumerate(uniq_grp): group_median[ind, :] = np.nanmedian( points.iloc[np.where(groups == cur_grp)[0], :2], 0, ) if isinstance(_color[0], Number): group_color[ind] = np.nanmedian(np.array(_color)[np.where(groups == cur_grp)[0]]) else: group_color[ind] = pd.Series(_color)[np.where(groups == cur_grp)[0]].value_counts().index[0] points, _color = ( pd.DataFrame( group_median, index=uniq_grp, columns=points.columns, ), group_color, ) # https://stackoverflow.com/questions/4187185/how-can-i-check-if-my-python-object-is-a-number # answer from Boris. is_not_continuous = not isinstance(_color[0], Number) or _color.dtype.name == "category" if is_not_continuous: labels = np.asarray(_color) if is_categorical_dtype(_color) else _color if theme is None: if _background in ["#ffffff", "black"]: _theme_ = "glasbey_dark" else: _theme_ = "glasbey_white" else: _theme_ = theme else: _values = _color if theme is None: if _background in ["#ffffff", "black"]: _theme_ = "inferno" if cur_l != "velocity" else "div_blue_black_red" else: _theme_ = "viridis" if not cur_l.startswith("velocity") else "div_blue_red" else: _theme_ = theme _cmap = _themes[_theme_]["cmap"] if cmap is None else cmap if stack_colors: main_debug("stack colors: changing cmap") _cmap = sequential_cmaps[ax_index % len(sequential_cmaps)] max_color = matplotlib.cm.get_cmap(_cmap)(float("inf")) legend_circle = Line2D( [0], [0], marker="o", color="w", markerfacecolor=max_color, label=cur_c, markersize=stack_colors_legend_size, ) stack_legend_handles.append(legend_circle) _color_key_cmap = _themes[_theme_]["color_key_cmap"] if color_key_cmap is None else color_key_cmap _background = _themes[_theme_]["background"] if _background is None else _background if labels is not None and values is not None: raise ValueError("Conflicting options; only one of labels or values should be set") if total_panels > 1 and not stack_colors: ax = plt.subplot(gs[ax_index]) ax_index += 1 # if highligts is a list of lists - each list is relate to each color element if highlights is not None: if is_list_of_lists(highlights): _highlights = highlights[color.index(cur_c)] _highlights = _highlights if all([i in _color for i in _highlights]) else None else: _highlights = highlights if all([i in _color for i in highlights]) else None if smooth and not is_not_continuous: main_debug("smooth and not continuous") knn = _adata.obsp["moments_con"] values = ( calc_1nd_moment(values, knn)[0] if smooth in [1, True] else calc_1nd_moment(values, knn ** smooth)[0] ) if affine_transform_A is None or affine_transform_b is None: point_coords = points.values else: point_coords = affine_transform(points.values, affine_transform_A, affine_transform_b) if points.shape[0] <= figsize[0] * figsize[1] * 100000: main_debug("drawing with _matplotlib_points function") ax, color_out = _matplotlib_points( # points.values, point_coords, ax, labels, _values, highlights, _cmap, color_key, _color_key_cmap, _background, figsize[0], figsize[1], show_legend, sort=sort, frontier=frontier, contour=contour, ccmap=ccmap, calpha=calpha, sym_c=sym_c, inset_dict=inset_dict, **scatter_kwargs, ) if labels is not None: color_dict = {} colors = [rgb2hex(i) for i in color_out] for i, j in zip(labels, colors): color_dict[i] = j adata.uns[cur_title + "_colors"] = color_dict else: main_debug("drawing with _datashade_points function") ax = _datashade_points( # points.values, point_coords, ax, labels, values, highlights, _cmap, color_key, _color_key_cmap, _background, figsize[0], figsize[1], show_legend, sort=sort, frontier=frontier, contour=contour, ccmap=ccmap, calpha=calpha, sym_c=sym_c, **scatter_kwargs, ) if ax_index == 1 and show_arrowed_spines: arrowed_spines(ax, points.columns[:2], _background) else: if despline: despline_all(ax, despline_sides) if deaxis: deaxis_all(ax) ax.set_title(cur_title) axes_list.append(ax) color_list.append(color_out) labels, values = None, None # reset labels and values if add_gamma_fit and cur_b in _adata.var_names[_adata.var.use_for_dynamics]: xnew = np.linspace( points.iloc[:, 0].min(), points.iloc[:, 0].max() * 0.80, ) k_name = "gamma_k" if _adata.uns["dynamics"]["experiment_type"] == "one-shot" else "gamma" if k_name in _adata.var.columns: if not ("gamma_b" in _adata.var.columns) or all(_adata.var.gamma_b.isna()): _adata.var.loc[:, "gamma_b"] = 0 ax.plot( xnew, xnew * _adata[:, cur_b].var.loc[:, k_name].unique() + _adata[:, cur_b].var.loc[:, "gamma_b"].unique(), dashes=[6, 2], c=font_color, ) else: raise Exception( "_adata does not seem to have %s column. Velocity estimation is required " "before running this function." % k_name ) if group is not None and add_group_gamma_fit and cur_b in _adata.var_names[_adata.var.use_for_dynamics]: cell_groups = _adata.obs[group] unique_groups = np.unique(cell_groups) k_suffix = "gamma_k" if _adata.uns["dynamics"]["experiment_type"] == "one-shot" else "gamma" for group_idx, cur_group in enumerate(unique_groups): group_k_name = group + "_" + cur_group + "_" + k_suffix group_adata = _adata[_adata.obs[group] == cur_group] group_points = points.iloc[
np.array(_adata.obs[group] == cur_group)
numpy.array
""" Tests for corrections module """ # Copyright (c) <NAME> # Distributed under the terms of the MIT License # author: <NAME> (<EMAIL>) # pylint: disable=R0201 import os import unittest import numpy as np import io import islatu from PIL import Image as PILIm from numpy.testing import assert_almost_equal, assert_equal from uncertainties import unumpy as unp from islatu.image import Image from islatu import cropping, background, image EXAMPLE_FILE = ( "0. 0. 1. 1. 4. 113. 117. 7. 1. 0. \n" "0. 0. 0. 3. 4. 127. 144. 9. 2. 0. \n" "2. 0. 0. 7. 7. 232. 271. 13. 5. 2. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "2.0000e+00 2.0000e+00 5.0000e+00 1.3000e+01 " "3.5800e+02 3.4490e+04 3.1763e+04 9.1100e+02 " "5.5000e+01 7.0000e+00 \n" "2.0000e+00 2.0000e+00 9.0000e+00 2.0000e+01 " "9.6300e+02 6.5535e+04 5.5515e+04 1.4450e+03 " "8.2000e+01 1.0000e+01 \n" "2.000e+00 2.000e+00 3.000e+00 2.100e+01 " "1.080e+02 5.337e+03 3.077e+03 1.900e+02 " "2.500e+01 8.000e+00 \n" "0. 2. 1. 2. 27. 697. 324. 25. 6. 0. \n" "0. 2. 1. 3. 16. 525. 245. 15. 4. 3. \n" "0. 0. 0. 1. 4. 355. 167. 4. 1. 0." ) EXAMPLE_HOT_PIXEL = ( "5. 0. 1. 1. 4. 113. 117. 7. 1. 0. \n" "0. 0. 0. 3. 4. 127. 144. 9. 2. 0. \n" "2. 0. 5.000e+04 7. 7. 232. 271. 13. 5. 2. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "0. 0. 0. 1. 4. 355. 167. 4. 1. 0." ) EXAMPLES_HOT_PIXEL_CORNERA = ( "5.000e+04 2. 1. 1. 4. 113. 117. 7. 1. 0. \n" "5. 3. 0. 3. 4. 127. 144. 9. 2. 0. \n" "2. 0. 5. 7. 7. 232. 271. 13. 5. 2. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "0. 0. 0. 1. 4. 355. 167. 4. 1. 0." ) EXAMPLES_HOT_PIXEL_CORNERB = ( "5. 0. 1. 1. 4. 113. 117. 7. 1. 0. \n" "0. 0. 0. 3. 4. 127. 144. 9. 2. 0. \n" "2. 0. 5. 7. 7. 232. 271. 13. 5. 2. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 10. 3. \n" "1. 0. 5. 6. 31. 672. 703. 55. 9. 3. \n" "0. 0. 0. 1. 4. 355. 167. 4. 0. 5.0000e+04" ) class TestImage(unittest.TestCase): """ Unit tests for Image class """ def test_init(self): """ Test file reading """ b = io.StringIO(EXAMPLE_FILE) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf) data = io.StringIO(EXAMPLE_FILE) expected_image = np.loadtxt(data) assert_equal((10, 10), test_image.shape) assert_almost_equal(expected_image, test_image.n) def test_hot_pixel(self): """ Test file reading """ b = io.StringIO(EXAMPLE_HOT_PIXEL) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf, hot_pixel_max=4e4) assert_equal((10, 10), test_image.shape) assert_almost_equal(2, test_image.n[2, 2]) def test_hot_pixel_cornera(self): """ Test file reading """ b = io.StringIO(EXAMPLES_HOT_PIXEL_CORNERA) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf, hot_pixel_max=4e4) assert_equal((10, 10), test_image.shape) assert_almost_equal(2, test_image.n[0, 0]) def test_hot_pixel_cornerb(self): """ Test file reading """ b = io.StringIO(EXAMPLES_HOT_PIXEL_CORNERB) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf, hot_pixel_max=4e4) assert_equal((10, 10), test_image.shape) assert_almost_equal(4, test_image.n[-1, -1]) def test_init_with_transpose(self): """ Test for transposing with reading """ b = io.StringIO(EXAMPLE_FILE) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf, transpose=True) data = io.StringIO(EXAMPLE_FILE) expected_image = np.loadtxt(data, unpack=True) assert_equal((10, 10), test_image.shape) assert_almost_equal(expected_image, test_image.n) def test_nominal_values(self): """ Test nominal values """ b = io.StringIO(EXAMPLE_FILE) buf = io.BytesIO() im = PILIm.fromarray(np.loadtxt(b).astype(np.uint32)) im.save(buf, format="png") buf.seek(0) test_image = Image(buf) data = io.StringIO(EXAMPLE_FILE) expected_image = np.loadtxt(data)
assert_equal((10, 10), test_image.shape)
numpy.testing.assert_equal
import numpy as np import matplotlib.pyplot as plt from scipy import integrate with open('./resources/naca0012.dat') as file_name: x, y = np.loadtxt(file_name, dtype=float, delimiter='\t', unpack=True) val_x, val_y = 0.1, 0.2 x_min, x_max = x.min(), x.max() y_min, y_max = y.min(), y.max() x_start, x_end = (x_min - val_x * (x_max - x_min), x_max + val_x * (x_max - x_min)) y_start, y_end = (y_min - val_y * (y_max - y_min), y_max + val_y * (y_max - y_min)) size = 10 plt.figure(figsize=(size, (y_end - y_start) / (x_end - x_start) * size)) plt.grid(True) plt.xlabel('x', fontsize=16) plt.ylabel('y', fontsize=16) plt.xlim(x_start, x_end) plt.ylim(y_start, y_end) plt.plot(x, y, color='k', linestyle='-', linewidth=2) plt.show() class Panel: def __init__(self, xa, ya, xb, yb): self.xa, self.ya = xa, ya self.xb, self.yb = xb, yb self.xc, self.yc = (xa + xb) / 2, (ya + yb) / 2 self.length = np.sqrt((xb - xa)**2 + (yb - ya)**2) if xb - xa <= 0.0: self.beta = np.arccos((yb - ya) / self.length) elif xb - xa > 0.0: self.beta = np.pi + np.arccos(-(yb - ya) / self.length) if self.beta <= np.pi: self.loc = 'upper' else: self.loc = 'lower' self.sigma = 0.0 self.vt = 0.0 self.cp = 0.0 def define_panels(x, y, N=40): R = (x.max() - x.min()) / 2 x_center = (x.max() + x.min()) / 2 x_circle = x_center + R * np.cos(np.linspace(0, 2 * np.pi, N + 1)) x_ends = np.copy(x_circle) y_ends = np.empty_like(x_ends) x, y = np.append(x, x[0]), np.append(y, y[0]) I = 0 for i in range(N): while I < len(x) - 1: if (x[I] <= x_ends[i] <= x[I + 1]) or (x[I + 1] <= x_ends[i] <= x[I]): break else: I += 1 a = (y[I + 1] - y[I]) / (x[I + 1] - x[I]) b = y[I + 1] - a * x[I + 1] y_ends[i] = a * x_ends[i] + b y_ends[N] = y_ends[0] panels = np.empty(N, dtype=object) for i in range(N): panels[i] = Panel(x_ends[i], y_ends[i], x_ends[i + 1], y_ends[i + 1]) return panels N = 40 # number of panels panels = define_panels(x, y, N) # discretizes of the geometry into panels # plots the geometry and the panels val_x, val_y = 0.1, 0.2 x_min, x_max = min(panel.xa for panel in panels), max( panel.xa for panel in panels) y_min, y_max = min(panel.ya for panel in panels), max( panel.ya for panel in panels) x_start, x_end = x_min - val_x * \ (x_max - x_min), x_max + val_x * (x_max - x_min) y_start, y_end = y_min - val_y * \ (y_max - y_min), y_max + val_y * (y_max - y_min) size = 10 plt.figure(figsize=(size, (y_end - y_start) / (x_end - x_start) * size)) plt.grid(True) plt.xlabel('x', fontsize=16) plt.ylabel('y', fontsize=16) plt.xlim(x_start, x_end) plt.ylim(y_start, y_end) plt.plot(x, y, color='k', linestyle='-', linewidth=2) plt.plot(np.append([panel.xa for panel in panels], panels[0].xa), np.append([panel.ya for panel in panels], panels[0].ya), linestyle='-', linewidth=1, marker='o', markersize=6, color='#CD2305') plt.show() class Freestream: def __init__(self, u_inf=1.0, alpha=0.0): self.u_inf = u_inf self.alpha = alpha * np.pi / 180 u_inf = 1.0 alpha = 0.0 freestream = Freestream(u_inf, alpha) def integral(x, y, panel, dxdz, dydz): def func(s): return (((x - (panel.xa - np.sin(panel.beta) * s)) * dxdz + (y - (panel.ya + np.cos(panel.beta) * s)) * dydz) / ((x - (panel.xa - np.sin(panel.beta) * s))**2 + (y - (panel.ya + np.cos(panel.beta) * s))**2)) return integrate.quad(lambda s: func(s), 0.0, panel.length)[0] def build_matrix(panels): N = len(panels) A = np.empty((N, N), dtype=float) np.fill_diagonal(A, 0.5) for i, p_i in enumerate(panels): for j, p_j in enumerate(panels): if i != j: A[i, j] = (0.5 / np.pi * integral(p_i.xc, p_i.yc, p_j, np.cos(p_i.beta), np.sin(p_i.beta))) return A def build_rhs(panels, freestream): b = np.empty(len(panels), dtype=float) for i, panel in enumerate(panels): b[i] = - freestream.u_inf * np.cos(freestream.alpha - panel.beta) return b A = build_matrix(panels) b = build_rhs(panels, freestream) sigma = np.linalg.solve(A, b) for i, panel in enumerate(panels): panel.sigma = sigma[i] def get_tangencial_velocity(panels, freestream): N = len(panels) A = np.empty((N, N), dtype=float) np.fill_diagonal(A, 0.0) for i, p_i in enumerate(panels): for j, p_j in enumerate(panels): if i != j: A[i, j] = (0.5 / np.pi * integral(p_i.xc, p_i.yc, p_j, -
np.sin(p_i.beta)
numpy.sin
test_input1 = """ inp w add z w mod z 2 div w 2 add y w mod y 2 div w 2 add x w mod x 2 div w 2 mod w 2 """ input = """ inp w mul x 0 add x z mod x 26 div z 1 add x 14 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 7 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 12 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 4 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 11 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 8 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -4 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 1 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 10 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 5 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 10 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 14 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 15 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 12 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -9 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 10 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -9 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 5 mul y x add z y inp w mul x 0 add x z mod x 26 div z 1 add x 12 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 7 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -15 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 6 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -7 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 8 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x -10 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 4 mul y x add z y inp w mul x 0 add x z mod x 26 div z 26 add x 0 eql x w eql x 0 mul y 0 add y 25 mul y x add y 1 mul z y mul y 0 add y w add y 6 mul y x add z y """ import itertools from functools import lru_cache import math import numpy as np from sympy import (symbols, Function, Integer, Symbol, Add, Mul, S, Tuple, cse, lambdify) from sympy.printing.lambdarepr import LambdaPrinter from numba import njit def parse_input(data): instructions = [] for line in data.strip().splitlines(): if line.startswith('inp'): instr, a = line.split() instructions.append((instr, a)) else: instr, a, b = line.split() if b in 'xyzw': instructions.append((instr, a, b)) else: instructions.append((instr, a, int(b))) return instructions def run(instructions, inputs): vars = {i: 0 for i in 'xyzw'} for instruction in instructions: if instruction[0] == 'inp': res = inputs.pop(0) vars[instruction[1]] = res continue else: instr, a, b = instruction assert a in list('xyzw') A = vars[a] B = b if isinstance(b, int) else vars[b] if instr == 'add': vars[a] = A + B elif instr == 'mul': vars[a] = A*B elif instr == 'div': if B == 0: raise ZeroDivisionError("div by 0") if A*B < 0: # Division needs to round towards 0 vars[a] = -((-A)//(-B)) else: vars[a] = A//B elif instr == 'mod': if A < 0 or B <= 0: raise ZeroDivisionError("mod with nonpositive inputs") vars[a] = A % B elif instr == 'eql': vars[a] = int(A == B) else: raise ValueError(f"Invalid instruction: {instr!r}") return vars class FloorDivide(Function): @classmethod def eval(cls, x, y): if x.is_Integer and y.is_Integer: if x*y < 0: # Division needs to round towards 0 return -((-x)//(-y)) else: return x//y if y == 1: return x # if isinstance(x, Add): # return x.func(*[FloorDivide(i, y) for i in x.args]) class Mod(Function): @classmethod def eval(cls, x, y): if x.is_Integer and y.is_Integer: if x < 0 or y <= 0: raise ZeroDivisionError("mod with nonpositive inputs") return x % y if isinstance(x, Symbol) and 'input' in x.name and y.is_Integer and y > 9: return x # if isinstance(x, Add): # coeff, rest = x.as_coeff_Add() # if coeff != 0: # return coeff % y + Mod(rest, y) if isinstance(x, Equal): return x class Equal(Function): @classmethod def eval(cls, x, y): if x.is_Integer and y.is_Integer: return Integer(x == y) if isinstance(x, Symbol) and y.is_Integer and not (1 <= y <= 9): return S(0) if isinstance(y, Symbol) and x.is_Integer and not (1 <= x <= 9): return S(0) free_vars = list(x.free_symbols | y.free_symbols) possibilities = set() if len(free_vars) <= 0: for vals in itertools.product(*[range(1, 10)]*len(free_vars)): if len(possibilities) == 2: return s = list(zip(free_vars, vals)) x_ = x.subs(s) y_ = y.subs(s) assert x_.is_Integer and y_.is_Integer, (x_, y_) possibilities.add(Integer(x_ == y_)) if len(possibilities) == 1: return possibilities.pop() def run_sympy(instructions, inputs): vars = {i: 0 for i in 'xyzw'} input_counter = 0 for instruction in instructions: if instruction[0] == 'inp': res = inputs[input_counter] input_counter += 1 vars[instruction[1]] = res continue else: instr, a, b = instruction assert a in list('xyzw') A = vars[a] B = b if isinstance(b, int) else vars[b] if instr == 'add': vars[a] = A + B elif instr == 'mul': vars[a] = A*B elif instr == 'div': if B == 0: raise ZeroDivisionError("div by 0") # if A*B < 0: # # Division needs to round towards 0 # vars[a] = -((-A)//(-B)) # else: # vars[a] = A//B vars[a] = FloorDivide(A, B) elif instr == 'mod': # if A < 0 or B <= 0: # raise ZeroDivisionError("mod with nonpositive inputs") vars[a] = Mod(A, B) # vars[a] = A % B elif instr == 'eql': vars[a] = Equal(A, B) else: raise ValueError(f"Invalid instruction: {instr!r}") return vars def part1(instructions): for N in range(10**14-1, 0, -1): inputs = [int(i) for i in str(N)] if 0 in inputs: continue print(N) res = run(instructions, inputs) if res['z'] == 0: return N class CustomPrinter(LambdaPrinter): def _print_Equal(self, expr): x, y = expr.args return f"int({self._print(x)} == {self._print(y)})" def _print_FloorDivide(self, expr): x, y = expr.args return f"({self._print(x)} // {self._print(y)})" def _print_Mod(self, expr): x, y = expr.args return f"({self._print(x)} % {self._print(y)})" # modules = {"Equal": lambda x, y: int(x == y), # "FloorDivide": lambda x, y: x//y, # "Mod": lambda x, y: x % y, # } def inner_lambdify(variables, expr): # Cache only the free variables in the subexpression. Otherwise caching # cannot work. free_vars = sorted(expr.free_symbols, key=variables.index) mapping = [variables.index(i) for i in free_vars] f = lru_cache(None)(njit(lambdify(free_vars, expr, printer=CustomPrinter))) return lambda *vars: f(*[vars[i] for i in mapping]) # https://stackoverflow.com/questions/11144513/cartesian-product-of-x-and-y-array-points-into-single-array-of-2d-points def cartesian_product(*arrays): if len(arrays) == 0: return np.empty((1, 0)) la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la) @njit def boolallvals2(f, x1, x2): res = np.zeros((2, 2), dtype=np.int64) for i1 in x1: for i2 in x2: res[int(f(i1, i2))] = np.array([i1, i2]) return res @njit def boolallvals4(f, x1, x2, x3, x4): res = np.zeros((2, 4), dtype=np.int64) for i1 in x1: for i2 in x2: for i3 in x3: for i4 in x4: res[int(f(i1, i2, i3, i4))] =
np.array([i1, i2, i3, i4])
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Dec 18 11:45:32 2018 Empirical Wavelet Transform implementation for 1D signals Original paper: <NAME>., 2013. Empirical Wavelet Transform. IEEE Transactions on Signal Processing, 61(16), pp.3999–4010. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6522142. Original Matlab toolbox: https://www.mathworks.com/matlabcentral/fileexchange/42141-empirical-wavelet-transforms @author: <NAME> Programa de pós graduação em engenharia elétrica - PPGEE UFMG Universidade Federal de Minas Gerais - Belo Horizonte, Brazil Núcleo de Neurociências - NNC """ import numpy as np #%EWT functions def EWT1D(f, N = 5, log = 0,detect = "locmax", completion = 0, reg = 'average', lengthFilter = 10,sigmaFilter = 5): """ ========================================================================= ewt, mfb ,boundaries = EWT1D(f, N = 5, log = 0,detect = "locmax", completion = 0, reg = 'average', lengthFilter = 10,sigmaFilter = 5): Perform the Empirical Wavelet Transform of f over N scales. See also the documentation of EWT_Boundaries_Detect for more details about the available methods and their parameters. Inputs: -f: the 1D input signal Optional Inputs: -log: 0 or 1 to indicate if we want to work with the log spectrum -method: 'locmax','locmaxmin','locmaxminf' -reg: 'none','gaussian','average' -lengthFilter: width of the above filters (Gaussian or average) -sigmaFilter: standard deviation of the above Gaussian filter -N: maximum number of supports (modes or signal components) -completion: 0 or 1 to indicate if we try to complete or not the number of modes if the detection find a lower number of mode than N Outputs: -ewt: contains first the low frequency component and then the successives frequency subbands -mfb: contains the filter bank (in the Fourier domain) -boundaries: vector containing the set of boundaries corresponding to the Fourier line segmentation (normalized between 0 and Pi) Original MATLAB Version: Author: <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 2.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências % ========================================================================= """ #signal spectrum ff = np.fft.fft(f) ff = abs(ff[0:int(np.ceil(ff.size/2))])#one-sided magnitude #extract boundaries of Fourier Segments boundaries = EWT_Boundaries_Detect(ff,log,detect,N,reg,lengthFilter,sigmaFilter) boundaries = boundaries*np.pi/round(ff.size) if completion == 1 and len(boundaries)<N-1: boundaries = EWT_Boundaries_Completion(boundaries,N-1) #Filtering #extend the signal by mirroring to deal with boundaries ltemp = int(np.ceil(f.size/2)) #to behave the same as matlab's round fMirr = np.append(np.flip(f[0:ltemp-1],axis = 0),f) fMirr = np.append(fMirr,np.flip(f[-ltemp-1:-1],axis = 0)) ffMirr = np.fft.fft(fMirr) #build the corresponding filter bank mfb=EWT_Meyer_FilterBank(boundaries,ffMirr.size) #filter the signal to extract each subband ewt = np.zeros(mfb.shape) for k in range(mfb.shape[1]): ewt[:,k] = np.real(np.fft.ifft(np.conjugate(mfb[:,k])*ffMirr)) ewt = ewt[ltemp-1:-ltemp,:] return ewt, mfb ,boundaries def EWT_Boundaries_Detect(ff,log,detect, N, reg, lengthFilter,sigmaFilter): """This function segments f into a certain amount of supports by using different technics: - middle point between consecutive local maxima (default), - lowest minima between consecutive local maxima (locmaxmin), - lowest minima between consecutive local maxima of original spectrum (locmaxminf), Regularized version of the spectrum can be obtained by the following methods: - Gaussian filtering (its parameters are filter of width lengthFilter and standard deviation sigmaFilter)scalesp - Average filtering (its parameters are filter of width lengthFilter) Note: the detected boundaries are given in term of indices Inputs: -f: the function to segment Optional parameters: -log: 0 or 1 to indicate if we want to work with the log of the ff -reg: 'none','gaussian','average' -lengthFilter: width of the above filters (Gaussian or average) -sigmaFilter: standard deviation of the above Gaussian filter -N: maximum number of supports (modes or signal components) -completion: 0 or 1 to indicate if we try to complete or not the number of modes if the detection find a lower number of mode than N Outputs: -boundaries: list of detected boundaries TODO Preprocessing steps not yet implemented Original MATLAB version: Author: <NAME> + <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 2.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências """ from scipy.ndimage.filters import gaussian_filter #apply log if needed if log == 1: ff = np.log(ff) #Global trend removal - TODO #Regularization if reg == 'average': regFilter = np.ones(lengthFilter)/lengthFilter presig = np.convolve(ff,regFilter,mode = 'same') #for even lenght, numpy's convolve is shifted when compared with MATLAB's elif reg == 'gaussian': regFilter = np.zeros(lengthFilter) regFilter[regFilter.size//2] = 1 #prefer odd filter lengths - otherwise the gaussian is skewed presig = np.convolve(ff,gaussian_filter(regFilter,sigmaFilter),mode = 'same') else: presig = ff #Boundaries detection if detect == "locmax":#Mid-point between two consecutive local maxima computed on the regularized spectrum boundaries = LocalMax(presig,N) elif detect == "locmaxmin":#extract the lowest local minima between two selected local maxima boundaries = LocalMaxMin(presig,N) elif detect == "locmaxminf":#We extract the lowest local minima on the original spectrum between #two local maxima selected on the regularized signal boundaries = LocalMaxMin(presig,N,fm = ff) #elif detect == "adaptivereg": #TODO return boundaries+1 def LocalMax(ff, N): """ ================================================================ bound = LocalMax(f,N) This function segments f into a maximum of N supports by taking the middle point between the N largest local maxima. Note: the detected boundaries are given in term of indices Inputs: -f: the function to segment -N: maximal number of bands Outputs: -bound: list of detected boundaries Original MATLAB version: Author: <NAME> + <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 1.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências %=============================================================== """ N=N-1 locmax = np.zeros(ff.size) locmin = max(ff)*np.ones(ff.size) for i in
np.arange(1,ff.size-1)
numpy.arange
# # ########################################################################### # # Standard Library import os from copy import deepcopy, copy # 3rd Party import pandas as pd import scipy.ndimage.filters as filters import scipy.ndimage.morphology as morphology import scipy.fftpack as fftpack import scipy.sparse import scipy.sparse.linalg from scipy.interpolate import interp1d import numpy as np from astropy import units from astropy import coordinates import astropy.io.fits as fits import scipy.optimize from scipy import integrate from functools import reduce try: import cvxopt import cvxopt.solvers with_cvxopt = True except ImportError: with_cvxopt = False # Internal #import thimbles as tmb #from thimbles import hydrogen from thimbles import resampling from . import partitioning from . import piecewise_polynomial from thimbles.profiles import voigt, gauss from . import piecewise_polynomial as ppol # ########################################################################### # def AngleRA (angle,unit=units.hourangle,raise_errors=False): """ An object which represents a right ascension angle see `astropy.coordinates.RA` for more extensive documentation The primary difference with astropy is that if the call to coordinates.RA errors you have the option to ignore it and return None for the angle i.e. when raise_errors=False """ try: result = coordinates.RA(angle,unit=unit) except Exception as e: result = None if raise_errors: raise e return result def AngleDec (angle,unit=units.degree,raise_errors=False): """ An object which represents a declination angle see `astropy.coordinates.Dec` for more extensive documentation The primary difference with astropy is that if the call to coordinates.RA errors you have the option to ignore it and return None for the angle i.e. when raise_errors=False """ try: result = coordinates.Dec(angle,unit=unit) except Exception as e: result = None if raise_errors: raise e return result def invert(arr): return np.where(arr > 0, 1.0/(arr+(arr==0)), np.inf) def inv_var_2_var (inv_var): """ Takes an inv_var and converts it to a variance. Carefully handling zeros and inf values """ fill = np.inf inv_var = np.asarray(inv_var).astype(float) zeros = (inv_var <= 0.0) # find the non_zeros inv_var[zeros] = -1.0 var = 1.0/inv_var # inverse var[zeros] = fill return var def var_2_inv_var (var): """ Takes variance and converts to an inverse variance. Carefully handling zeros and inf values """ fill = np.inf var = np.asarray(var).astype(float) zeros = (var <= 0.0) # find non zeros var[zeros] = -1.0 inv_var = 1.0/var # inverse inv_var[zeros] = fill return inv_var def clean_variances(variance, zero_ok=False, fill=np.inf): """takes input variances which may include nan's 0's and negative values and replaces those values with a fill value. variance: ndarray the array of variances array zero_ok: bool if True zero entries will be allowed to persist in the output fill: float the value to replace bad variances with """ bad_mask = np.isnan(variance) if zero_ok: bad_mask += variance < 0 else: bad_mask += variance <= 0 new_variance = np.where(bad_mask, fill, variance) return new_variance def clean_inverse_variances(inverse_variance): """takes input inverse variances which may include nan's, negative values and np.inf and replaces those values with 0 """ bad_mask = np.isnan(inverse_variance) bad_mask += inverse_variance < 0 bad_mask += inverse_variance == np.inf new_ivar = np.where(bad_mask, 0, inverse_variance) return new_ivar def reduce_output_shape (arr): shape = arr.shape new_shape = tuple() for i in range(len(shape)): if shape[i] != 1: new_shape += (shape[i],) return arr.reshape(new_shape) def local_gaussian_fit( y_values, y_variance=None, peak_idx=None, fit_width=1, xvalues=None, opt_cleanup=False, cleanup_width=3, return_fit_dict=False ): """fit a quadratic function taking pixels from peak_idx - fit_width to peak_idx + fit_width, to the log of the y_values passed in. Giving back the parameters of a best fit gaussian. inputs: values: numpy.ndarray the asarray of input values to which the fit will be made peak_idx: int the rough pixel location of the maximum about which to fit. if None the global maximum is found and used. fit_width: float the width of the gaussian fit xvalues: numpy.ndarray if None then the parameters of the gaussian will be determined in terms of indicies (e.g. the center occurs at index=20.82) if given xvalues is interpreted as the corresponding x values for the yvalues asarray and the returned coefficients will be for that coordinate space instead. returns: center, sigma, peak_y_value """ if peak_idx is None: peak_idx = np.argmax(y_values) if y_variance is None: y_variance = y_values lb = max(peak_idx - fit_width, 0) ub = min(peak_idx + fit_width, len(y_values)-1) if xvalues is None: chopped_xvals = np.arange(lb, ub+1) peak_xval = peak_idx else: assert len(y_values) == len(xvalues) chopped_xvals = xvalues[lb:ub+1] peak_xval = xvalues[peak_idx] xmatrix = np.ones((len(chopped_xvals), 3)) delta = chopped_xvals-peak_xval x_scale = np.std(delta) delta /= x_scale xmatrix[:, 1] = delta xmatrix[:, 2] = delta**2 chopped_y = y_values[lb:ub+1] #make sure there are no negative numbers chopped_y = np.where(chopped_y > 0, chopped_y, 0.0) chopped_var = y_variance[lb:ub+1] inv_noise_mat = np.diag(chopped_y/chopped_var, 0) #factor of y for log transform chopped_y = np.log(chopped_y) poly_covar = np.linalg.pinv(np.dot(np.dot(xmatrix.transpose(), inv_noise_mat), xmatrix)) poly_var = np.abs(np.dot(poly_covar, np.ones(3))) diag_var_est = np.diag(poly_covar) poly_var = np.where(poly_var > diag_var_est, poly_var, diag_var_est) poly_coeffs = np.dot(poly_covar, np.dot(xmatrix.transpose(), np.dot(inv_noise_mat, chopped_y))) #poly_coeffs = np.linalg.lstsq(xmatrix, chopped_yvalues)[0] offset = -(poly_coeffs[1]/(2*poly_coeffs[2]))*x_scale center = peak_xval + offset sigma = x_scale/np.sqrt(2*np.abs(poly_coeffs[2])) center_p_vec = np.asarray([1.0, offset, offset**2]) peak_y_value = np.dot(center_p_vec, poly_coeffs) def _gauss_resids(pvec, center, x, y): prof = gauss(x, center, pvec[0]) opt_mult = np.sum(prof*y)/np.sum(prof**2) resids = y-opt_mult*prof return resids if opt_cleanup: lb = max(peak_idx - cleanup_width, 0) ub = min(peak_idx + cleanup_width, len(y_values)-1) if xvalues is None: xvalues = np.arange(lb, ub+1) chopped_x = xvalues[lb:ub+1].copy() chopped_y = y_values[lb:ub+1].copy() start_vec = [sigma] opt_res = scipy.optimize.leastsq(_gauss_resids, start_vec, args=(offset+peak_xval, chopped_x, chopped_y)) sigma = np.abs(opt_res[0][0]) if return_fit_dict: fd = {} fd["poly_var"] = poly_var fd["poly_covar"] = poly_covar fd["poly_coeffs"] = poly_coeffs fd["x_scale"] = x_scale fd["center"] = center fd["sigma"] = sigma fd["peak_value"] = peak_y_value #applying first order error propagation theory cent_var = (poly_var[1]/poly_coeffs[2])**2 cent_var += (poly_coeffs[1]/poly_coeffs[2]**2 * poly_var[2])**2 cent_err = 0.5*x_scale*np.sqrt(cent_var) fd["center_error"] = cent_err sigma_var = 1.0/8.0*(np.power(np.abs(poly_coeffs[2]), -3.0/2.0)*poly_var[2])**2 sigma_err = x_scale*np.sqrt(sigma_var) fd["sigma_error"] = sigma_err return (center, sigma, np.exp(peak_y_value)), fd else: return center, sigma, np.exp(peak_y_value) def get_local_maxima(arr): # http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-asarray/3689710#3689710 """ Takes an asarray and detects the peaks using the local maximum filter. Returns a boolean mask of the peaks (i.e. 1 when the pixel's value is the neighborhood maximum, 0 otherwise) """ # define an connected neighborhood # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure neighborhood = morphology.generate_binary_structure(len(arr.shape),2) # apply the local maximum filter; all locations of maximum value # in their neighborhood are set to 1 # http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#minimum_filter local_max = (filters.maximum_filter(arr, footprint=neighborhood)==arr) # local_max is a mask that contains the peaks we are # looking for, but also the background. # In order to isolate the peaks we must remove the background from the mask. # # we create the mask of the background background = (arr==0) # # a little technicality: we must erode the background in order to # successfully subtract it from local_max, otherwise a line will # appear along the background border (artifact of the local maximum filter) # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion eroded_background = morphology.binary_erosion( background, structure=neighborhood, border_value=1) # # we obtain the final mask, containing only peaks, # by removing the background from the local_min mask detected_maxima = local_max - eroded_background return detected_maxima def wavelet_transform_fft(values, g_widths): """create a grid of gaussian line profiles and perform a wavelet transform over the grid. (a.k.a. simply convolve the data with all line profiles in the grid in an efficient way and then return an asarray that contains all of these convolutions. inputs: values: the asarray of values to transform g_widths: an asarray of gaussian widths (in pixels) to create profiles for """ n_pts ,= values.shape n_trans = 2**(int(np.log2(n_pts) + 1.5)) n_g_widths = len(g_widths) val_fft = fftpack.fft(values, n=n_trans) out_dat = np.zeros((n_g_widths, n_pts), dtype=float) for g_width_idx in range(n_g_widths): c_g_width = g_widths[g_width_idx] l2norm = np.power(1.0/(np.pi*c_g_width), 0.25) deltas = np.arange(n_pts, dtype=float) - n_pts/2 lprof = l2norm*np.exp(-(deltas/(2.0*c_g_width))**2) #we should normalize them via the L2 norm so we can see maxima effectively ltrans = np.abs(fftpack.fft(lprof, n=n_trans)) wvtrans = fftpack.ifft(val_fft*ltrans) out_dat[g_width_idx] = wvtrans[:n_pts].real return out_dat def wavelet_transform(values, g_widths, mask): """create a grid of gaussian line profiles and perform a wavelet transform over the grid. (a.k.a. simply convolve the data with all line profiles in the grid in an efficient way and then return an asarray that contains all of these convolutions. inputs: values: the asarray of values to transform g_widths: an asarray of gaussian widths (in pixels) to create profiles for """ n_pts ,= values.shape n_g_widths = len(g_widths) out_dat = np.zeros((n_g_widths, n_pts), dtype=float) max_delt = min((n_pts-1)/2, 5*np.max(g_widths)) deltas = np.arange(2*max_delt+1) - max_delt if mask==None: mask = np.ones(values.shape) for g_width_idx in range(n_g_widths): c_g_width = g_widths[g_width_idx] lprof = np.exp(-0.5*(deltas/c_g_width)**2) conv_norm = np.convolve(lprof, mask, mode="same") conv_norm = np.where(conv_norm, conv_norm, 1.0) out_dat[g_width_idx] = np.convolve(values*mask, lprof, mode="same")/conv_norm return out_dat def _incr_left(idx, maxima, bad_mask): if (idx - 1) < 0: return idx, True elif bad_mask[idx-1]: return idx, True elif maxima[idx-1]: return idx-1, True else: return idx-1, False def _incr_right(idx, maxima, bad_mask): if (idx + 1) > len(maxima) -1: return idx, True elif bad_mask[idx+1]: return idx, True elif maxima[idx+1]: return idx+1, True else: return idx+1, False def trough_bounds(maxima, start_idx, bad_mask=None): if bad_mask==None: bad_mask = np.zeros(maxima.shape, dtype=bool) left_blocked = False right_blocked = False left_idx = start_idx right_idx = start_idx while not left_blocked: left_idx, left_blocked = _incr_left(left_idx, maxima, bad_mask) while not right_blocked: right_idx, right_blocked = _incr_right(right_idx, maxima, bad_mask) return left_idx, right_idx class MinimaStatistics: pass def minima_statistics(values, variance, last_delta_fraction=1.0, max_sm_radius=0.5): #import pdb; pdb.set_trace() n_pts = len(values) bad_vals = np.isnan(variance)+(variance <= 0)+(variance > 1.0e40) sm_pix = int(max_sm_radius*12) sm_pix += sm_pix % 2 sm_pix += 1 window = np.exp(-np.linspace(-3, 3, sm_pix)**2) sm_norm = np.convolve(True-bad_vals, window, mode="same") sm_norm = np.where((sm_norm > 0), sm_norm, 1.0) smoothed_vals = np.convolve(values*(True-bad_vals), window, mode="same")/sm_norm maxima = get_local_maxima(smoothed_vals) #import pdb; pdb.set_trace() minima = get_local_maxima(-values) min_idxs ,= np.where(minima*(True-bad_vals)) l_z = [] r_z = [] n_cons = [] left_idxs = [] right_idxs = [] for min_idx in min_idxs: min_val = values[min_idx] left_idx, right_idx = trough_bounds(maxima, min_idx, bad_vals) left_delta_cor = np.abs(values[left_idx] - values[min(n_pts-1, left_idx+1)]) left_h = (values[left_idx]-min_val) left_h -= (1.0-last_delta_fraction)*left_delta_cor left_z = left_h/np.sqrt(variance[left_idx] + variance[min_idx]) right_delta_cor = np.abs(values[right_idx] - values[max(0, right_idx-1)]) right_h = (values[right_idx]-min_val) right_h -= (1.0-last_delta_fraction)*right_delta_cor right_z = right_h/np.sqrt(variance[right_idx] + variance[min_idx]) l_z.append(left_z) r_z.append(right_z) n_cons.append(right_idx-left_idx) left_idxs.append(left_idx) right_idxs.append(right_idx) l_z = np.asarray(l_z) r_z = np.asarray(r_z) n_cons = np.asarray(n_cons) left_idxs = np.asarray(left_idxs) right_idxs = np.asarray(right_idxs) ms = MinimaStatistics() ms.left_idxs = left_idxs ms.min_idxs = min_idxs ms.right_idxs = right_idxs ms.l_z = l_z ms.r_z = r_z ms.n_c = n_cons return ms def detect_features( values, variance, reject_fraction=0.5, last_delta_fraction=1.0, mask_back_off=-1, max_sm_radius=0.5, stat_func=lambda lz, rz, nc: np.sqrt(lz**2+rz**2+0.25*(nc-2)**2), min_stats=None ): """detect spectral features using an arbitrary statistic by default the stat_func is s = np.sqrt(l_z**2+r_z**2+0.25*(n_c-2)**2) where l_z is the z score of the difference between the minima and the closest local maximum on the left, r_z is the same for the right. n_c is the number of contiguous points around the minimum for which the value monotonically increases. inputs values: ndarray the flux values variance: ndarray the variance values associated to the flux values threshold: float the threshold to put on the statistic s for a detection last_delta_fraction: float the fraction of the difference between the first maxima pixel found and the pixel value immediately prior to be used. mask_back_off: int the number of pixels to back off from the local maxima when creating the feature mask. a value of 0 would mask the maxima a value of 1 would leave the maxima unmasked, a value of -1 masks the maximum and one pixel out, a value of -2 masks the maxima and 2 pixels out etc etc. max_sm_radius: float the pixel with a local maximum min_stats: MinimaStatistics if the minima statistics have already been calculated you can pass it in and it will not be recalculated. returns: a tuple of left_idxs, min_idxs, right_idxs, feature_mask left_idxs: the index of the left bounding maximum min_idxs: the index of the local minimum right_idxs: the index of the right bounding maximum feature_mask: a boolean asarray the shape of values which is true if there is no detected feature affecting the associated pixel. """ #import matplotlib.pyplot as plt #import pdb; pdb.set_trace() if min_stats != None: msres = min_stats msres = minima_statistics(values, variance, last_delta_fraction) left_idxs, min_idxs, right_idxs = msres.left_idxs, msres.min_idxs, msres.right_idxs l_z, r_z, n_cons = msres.l_z, msres.r_z, msres.n_c s = stat_func(l_z, r_z, n_cons) sorted_s = np.sort(s) switch_idx = int(len(sorted_s)*(1.0-reject_fraction)) threshold = np.mean(sorted_s[switch_idx:switch_idx+2]) mask = s > threshold left_idxs = left_idxs[mask].copy() min_idxs = min_idxs[mask].copy() right_idxs = right_idxs[mask].copy() feature_mask = np.ones(values.shape, dtype=bool) for left_idx, right_idx in zip(left_idxs, right_idxs): feature_mask[max(0, left_idx+mask_back_off):right_idx-mask_back_off+1] = False return msres, feature_mask def smoothed_mad_error( values, smoothing_scale=3, median_scale = 200, apply_poisson=True, rejection_threshold=1e-5, post_smooth=0, max_snr=1000.0, ): """estimate the noise characteristics of an input data vector under the assumption that the underlying "true" value is slowly varying and the high frequency fluctuations are representative of the level of the noise. """ good_mask = np.ones(len(values), dtype=bool) if hasattr(values, "ivar") and hasattr(values, "flux"): if not values.ivar is None: good_mask *= values.ivar > 0 values = values.flux #detect and reject perfectly flat regions #sec_der = scipy.gradient(scipy.gradient(values)) #good_mask *= filters.uniform_filter(np.abs(sec_der) > 0, 2) > 0 good_mask *= values > rejection_threshold #smooth the flux accross the accepted fluxes smfl = np.where(good_mask, values, 0) num_fr = filters.uniform_filter(smfl, smoothing_scale) denom_fr = filters.uniform_filter(smfl, smoothing_scale) smfl = np.where(denom_fr > 0, num_fr/denom_fr, 0) #smfl[good_mask] = filters.gaussian_filter(values[good_mask], smoothing_scale) diffs = values - smfl #use the running median change to protect ourselves from outliers mad = np.repeat(np.inf, len(values)) mad[good_mask] = filters.median_filter(np.abs(diffs)[good_mask], median_scale) eff_width = 2.0*smoothing_scale #effective filter width #need to correct for loss of variance from the averaging correction_factor = eff_width/max(1, (eff_width-1)) char_sigma = correction_factor*1.48*mad #the characteristic noise level #smooth the running median filter so we don't have wildly changing noise levels if post_smooth > 0: char_sigma = filters.gaussian_filter(char_sigma, post_smooth) if apply_poisson: #scale the noise at each point to be proportional to its value var = ((smfl+1e-10)/np.median(smfl[good_mask]))*char_sigma**2 else: var = char_sigma**2 #put an upper limit on detected snr var = np.where(np.abs(values)**2/var < max_snr**2, var, 1.0/max_snr**2) #var = clean_variances(var) return var def min_delta_bins(x, min_delta, target_n=1, forced_breaks=None): """return a set of x values which partition x into bins. each bin must be at least min_delta wide and must contain at least target_n points in the x asarray (with an exception made when forced_breaks are used). The bins attempt to be the smallest that they can be while achieving both these constraints. Bins are simply built up from the left until the constraints are met and then a new bin is begun, so the optimum bins do not necessarily result. inputs x: iterable the coordinates to choose a binning for min_delta: float the smallest allowed bin size target_n: int the desired number of objects per bin forced_breaks: list if forced_breaks is specified then the numbers in forced_breaks will be included in the output bins. The bins will otherwise still attempt to meet the min_delta and target_n values. """ sorted_x = np.sort(np.asarray(x)) x_diff = np.abs(sorted_x[1:]-sorted_x[:-1]) if forced_breaks == None: forced_breaks = [] forced_breaks = sorted(forced_breaks) diff_sum = np.cumsum(x_diff) last_diff_sum = 0 last_diff_idx = 0 current_n = 0 bins = [sorted_x[0]] last_bin_forced = True next_force_idx = 0 for i in range(len(x_diff)): current_n += 1 if len(forced_breaks) > next_force_idx: next_fb = forced_breaks[next_force_idx] if sorted_x[i+1] > next_fb: bins.append(next_fb) next_force_idx += 1 last_diff_sum = diff_sum[i] below_target_n = current_n < target_n below_target_delta = next_fb - sorted_x[last_diff_idx] if below_target_n or below_target_delta: if not last_bin_forced: bins.pop() last_bin_forced = True last_diff_idx = i last_diff_sum = diff_sum[i] current_n = 0 if diff_sum[i]-last_diff_sum > min_delta and current_n >= target_n: avg_br = 0.5*(sorted_x[i] + sorted_x[i+1]) bins.append(avg_br) last_diff_sum = diff_sum[i] last_diff_idx = i current_n = 0 last_bin_forced = False if not last_bin_forced: bins.pop() if bins[-1] != sorted_x[-1]: bins.append(sorted_x[-1]) return bins def layered_median_mask(arr, n_layers=3, first_layer_width=31, last_layer_width=11, rejection_sigma=2.0): marr = np.asarray(arr) assert n_layers > 1 assert first_layer_width >= 1 assert last_layer_width >= 1 layer_widths = np.asarray(np.linspace(first_layer_width, last_layer_width, n_layers), dtype=int) mask = np.ones(marr.shape, dtype=bool) for layer_idx in range(n_layers): lw = layer_widths[layer_idx] masked_arr = marr[mask] filtered = filters.median_filter(masked_arr, int(lw)) local_mad = filters.median_filter(np.abs(masked_arr-filtered), int(lw)) mask[mask] = masked_arr >= (filtered - rejection_sigma*1.4*local_mad) return mask def smooth_ppol_fit(x, y, y_inv=None, order=3, mask=None, mult=None, partition="adaptive", partition_kwargs=None): if partition_kwargs == None: partition_kwargs = {} if y_inv == None: y_inv = np.ones(y.shape) if mult==None: mult = np.ones(y.shape, dtype=float) if mask == None: mask = np.ones(y.shape, dtype=bool) masked_x = x[mask] if partition == "adaptive": try: partition = min_delta_bins(masked_x, **partition_kwargs)[1:-1] except: partition = [np.median(masked_x)] pp_gen = piecewise_polynomial.RCPPB(poly_order=order, control_points=partition) ppol_basis = pp_gen.get_basis(masked_x).transpose() ppol_basis *= mult.reshape((-1, 1)) in_sig = 1.0/np.sqrt(y_inv[mask]) med_sig = np.median(in_sig) fit_coeffs = irls(ppol_basis, y, sigma=in_sig, gamma=5.0, max_iter=5, ) n_polys = len(partition) + 1 n_coeffs = order+1 out_coeffs = np.zeros((n_polys, n_coeffs)) for basis_idx in range(pp_gen.n_basis): c_coeffs = pp_gen.basis_coefficients[basis_idx].reshape((n_polys, n_coeffs)) out_coeffs += c_coeffs*fit_coeffs[basis_idx] out_ppol = piecewise_polynomial.PiecewisePolynomial(out_coeffs, partition, centers=pp_gen.centers, scales=pp_gen.scales, bounds=pp_gen.bounds) return out_ppol def echelle_normalize(spectra, masks="layered median", partition="adaptive", mask_kwargs=None, partition_kwargs=None): """normalize in a way that shares normalization shape accross nearby orders""" n_spec = len(spectra) if mask_kwargs == None: mask_kwargs = {} if partition_kwargs == None: partition_kwargs = {} if masks == "layered median": masks = [] for spec_idx in range(n_spec): flux = spectra[spec_idx].flux mask = layered_median_mask(flux, **mask_kwargs) masks.append(mask) elif len(masks) == n_spec and len(masks[0]) == len(flux): masks = [
np.asarray(mask, dtype=bool)
numpy.asarray
import gym from gym import error, spaces, utils from gym.utils import seeding from gym import spaces import numpy as np from collections import namedtuple from enum import Enum import copy import logging logger = logging.getLogger(__name__) random = None AgentState = Enum('AgentState', 'alive crashed finished out') LaneSpec = namedtuple('LaneSpec', ['cars', 'speed_range']) GridDrivingState = namedtuple('GridDrivingState', ['cars', 'agent', 'finish_position', 'occupancy_trails', 'agent_state']) MaskSpec = namedtuple('MaskSpec', ['type', 'radius']) class DenseReward: FINISH_REWARD = 100 MISSED_REWARD = -5 CRASH_REWARD = -20 TIMESTEP_REWARD = -1 class SparseReward: FINISH_REWARD = 10 MISSED_REWARD = 0 CRASH_REWARD = 0 TIMESTEP_REWARD = 0 class DefaultConfig: LANES = [ LaneSpec(1, [-2, -1]), LaneSpec(2, [-3, -3]), LaneSpec(3, [-3, -1]), ] WIDTH = 10 PLAYER_SPEED_RANGE = [-1, -1] STOCHASTICITY = 1.0 class ActionNotFoundException(Exception): pass class AgentCrashedException(Exception): pass class AgentOutOfBoundaryException(Exception): pass class AgentFinishedException(Exception): pass class CarNotStartedException(Exception): pass class Point(object): def __init__(self, x=0, y=0): self.x = x self.y = y def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __eq__(self, other): return self.x == other.x and self.y == other.y def __mul__(self, other): return Point(self.x * other, self.y * other) def __rmul__(self, other): return self.__mul__(other) def __str__(self): return "Point(x={},y={})".format(self.x, self.y) def __repr__(self): return str(self) def __hash__(self): return hash(str(self)) @property def tuple(self): return (self.x, self.y) class Rectangle(object): def __init__(self, w, h, x=0, y=0): self.w, self.h = w, h self.x, self.y = x, y def sample_point(self): return Point(random.randint(self.x, self.x + self.w), random.randint(self.y, self.y + self.h)) def bound(self, point, bound_x=True, bound_y=True): x = np.minimum(np.maximum(point.x, self.x), self.x + self.w - 1) if bound_x else point.x y = np.minimum(np.maximum(point.y, self.y), self.y + self.h - 1) if bound_y else point.y return Point(x, y) def circular_bound(self, point, bound_x=True, bound_y=True): x = self.x + ((point.x - self.x) % self.w) if bound_x else point.x y = self.y + ((point.y - self.y) % self.h) if bound_y else point.y return Point(x, y) def contains(self, point): return (point.x >= self.x and point.x < self.x + self.w) and (point.y >= self.y and point.y < self.y + self.h) def __str__(self): return "Rectangle(w={},h={},x={},y={})".format(self.w, self.h, self.x, self.y) class Car(object): def __init__(self, position, speed_range, world, circular=True, auto_brake=True, auto_lane=True, p=1.0, id=None, ignore=False): self.id = id self.position = position self.speed_range = speed_range self.world = world self.bound = self.world.boundary.circular_bound if self.world and self.world.boundary and circular else lambda x, **kwargs: x self.auto_brake = auto_brake self.auto_lane = auto_lane self.p = p self.done() self.ignore = ignore self.ignored = self.ignore self.speed = 0 def sample_speed(self): if random.random_sample() > self.p: return np.round(
np.average(self.speed_range)
numpy.average
import numpy as np import sys import os import cv2 import torch.nn.functional as F import torch import re import matplotlib.pyplot as plt TAG_FLOAT = 202021.25 # testing vim, and git push def readflo(file): assert type(file) is str, "file is not str %r" % str(file) assert os.path.isfile(file) is True, "file does not exist %r" % str(file) assert file[-4:] == '.flo', "file ending is not .flo %r" % file[-4:] f = open(file, 'rb') flo_number = np.fromfile(f, np.float32, count=1)[0] assert flo_number == TAG_FLOAT, 'Flow number %r incorrect. Invalid .flo file' % flo_number w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) data = np.fromfile(f, np.float32, count=2 * w[0] * h[0]) flow = np.resize(data, (int(h[0]), int(w[0]), 2)) f.close() return flow def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == 'PF': color = True elif header.decode("ascii") == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception('Malformed PFM header.') scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data[:, :, :2] def makeColorwheel(): RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) # r g b col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY, 1) / RY) col += RY # YG colorwheel[col:YG + col, 0] = 255 - np.floor(255 * np.arange(0, YG, 1) / YG) colorwheel[col:YG + col, 1] = 255 col += YG # GC colorwheel[col:GC + col, 1] = 255 colorwheel[col:GC + col, 2] = np.floor(255 * np.arange(0, GC, 1) / GC) col += GC # CB colorwheel[col:CB + col, 1] = 255 - np.floor(255 * np.arange(0, CB, 1) / CB) colorwheel[col:CB + col, 2] = 255 col += CB # BM colorwheel[col:BM + col, 2] = 255 colorwheel[col:BM + col, 0] = np.floor(255 * np.arange(0, BM, 1) / BM) col += BM # MR colorwheel[col:MR + col, 2] = 255 - np.floor(255 * np.arange(0, MR, 1) / MR) colorwheel[col:MR + col, 0] = 255 return colorwheel def computeColor(u, v): colorwheel = makeColorwheel() nan_u = np.isnan(u) nan_v = np.isnan(v) nan_u = np.where(nan_u) nan_v = np.where(nan_v) u[nan_u] = 0 u[nan_v] = 0 v[nan_u] = 0 v[nan_v] = 0 ncols = colorwheel.shape[0] radius = np.sqrt(u ** 2 + v ** 2) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) # -1~1 maped to 1~ncols k0 = fk.astype(np.uint8) # 1, 2, ..., ncols k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 img = np.empty([k1.shape[0], k1.shape[1], 3]) ncolors = colorwheel.shape[1] for i in range(ncolors): tmp = colorwheel[:, i] col0 = tmp[k0] / 255 col1 = tmp[k1] / 255 col = (1 - f) * col0 + f * col1 idx = radius <= 1 col[idx] = 1 - radius[idx] * (1 - col[idx]) # increase saturation with radius col[~idx] *= 0.75 # out of range img[:, :, 2 - i] = np.floor(255 * col).astype(np.uint8) #img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) return img.astype(np.uint8) def computeImg(flow, verbose=False, savePath=None): eps = sys.float_info.epsilon UNKNOWN_FLOW_THRESH = 1e9 UNKNOWN_FLOW = 1e10 if flow.shape[0] == 2: u = flow[0, :, :] v = flow[1, :, :] else: u = flow[:, :, 0] v = flow[:, :, 1] maxu = -999 maxv = -999 minu = 999 minv = 999 maxrad = -1 # fix unknown flow greater_u = np.where(u > UNKNOWN_FLOW_THRESH) greater_v = np.where(v > UNKNOWN_FLOW_THRESH) u[greater_u] = 0 u[greater_v] = 0 v[greater_u] = 0 v[greater_v] = 0 maxu = max([maxu, np.amax(u)]) minu = min([minu, np.amin(u)]) maxv = max([maxv, np.amax(v)]) minv = min([minv, np.amin(v)]) rad = np.sqrt(np.multiply(u, u) + np.multiply(v, v)) maxrad = max([maxrad, np.amax(rad)]) u = u / (maxrad + eps) v = v / (maxrad + eps) img = computeColor(u, v) if savePath is not None: cv2.imwrite(savePath, img) if verbose: cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def computerArrows(flow, step=16, verbose=False, savePath=None, img=None): h, w = flow.shape[:2] y, x = np.mgrid[step / 2:h:step, step / 2:w:step].reshape(2, -1).astype(int) fx, fy = flow[y, x].T lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) if img is None: vis = np.ones((h, w)).astype('uint8')*255 else: vis = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x2, y2), (x1, y1) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) if savePath is not None: cv2.imwrite(savePath, vis) if verbose: cv2.imshow('arrowsViz', vis) cv2.waitKey(0) cv2.destroyAllWindows() return vis def disp_function(pred_flo, true_flo): height, width = true_flo.shape[1:] pred_flo = F.interpolate(pred_flo, (height, width), mode='bilinear', align_corners=False) pred_flo = computeImg(pred_flo[0].cpu().numpy()) if true_flo.shape[0] == 2: true_flo = computeImg(true_flo.cpu().numpy()) image1, image2 = np.expand_dims(pred_flo, axis=0), np.expand_dims(true_flo, axis=0) return np.concatenate((image1, image2), axis=0) else: true_flo = true_flo[:3] true_flo = true_flo.transpose(0, 2) true_flo = true_flo.transpose(0, 1) image1, image2 =
np.expand_dims(pred_flo, axis=0)
numpy.expand_dims
''' Copyright 2018 <NAME> E-mail: <EMAIL> This is the implementation of Deep-reinforcement-learning-based scheduler for High-Level Synthesis. This file contains the supervised learning (SL) part of the training pipeline. ''' import time, sys, os, argparse import random import numpy as np import visdom import matplotlib.pyplot as plt from logger import LogHandler import torch import torch.nn as nn from torch.utils.data import DataLoader from graph import Graph from preprocess import preprocess from policy import Policy from dag_dataset import DagDataset parser = argparse.ArgumentParser(description="Deep-RL-Based HLS Scheduler (Supervised Learning)") parser.add_argument("--use_cuda", type=int, default=1, help="Use cuda? (default: True, the 1st GPU)") parser.add_argument("--input_graphs", type=int, default=3500, help="Number of input graphs? (default: 3500)") parser.add_argument("--batch_size", type=int, default=128, help="Batch size? (default: 128)") parser.add_argument("--learning_rate", type=float, default=5e-4, help="Learning rate? (default: 5e-4)") parser.add_argument("--epoch", type=int, default=10000, help="Number of epoch? (default: 10000)") parser.add_argument("--use_network", type=str, default="", help="Use previous network? Input the name of the network. (default: None)") args = parser.parse_args() logger_num, logger = LogHandler("sl").getLogger() logger.info("Deep-RL-Based HLS Scheduler (Supervised Learning)") print("Logger num: %d" % logger_num) device = torch.device(("cuda:%d" % (args.use_cuda-1)) if args.use_cuda != 0 else "cpu") file_name = "_sl_" + time.strftime("%Y%m%d_") + str(logger_num) STATE_SIZE = (50,50) if args.use_network == "": net = Policy(STATE_SIZE[0]).to(device) print("Build a new network!") else: try: net = torch.load("./Networks/" + args.use_network).to(device) print("Loaded %s." % args.use_network) logger.info("Pretrained network: %s (%s)" % (args.use_network,"gpu" if args.use_cuda else "cpu")) except: print("No such network named %s. Rebuild a new network!" % args.use_network) net = Policy(STATE_SIZE[0]).to(device) network_file = "./Networks/policy" + file_name + ".pkl" logger.info("New network: %s (%s)" % (network_file,"gpu" if args.use_cuda else "cpu")) criterion = nn.NLLLoss() optimizer = torch.optim.Adam(net.parameters(),lr=args.learning_rate) logger.info(net.features) logger.info(net.classifier) logger.info("NLLLoss (Negative Log likelihood loss) + Adam") logger.info("Batch size: %d, Learning rate: %f" % (args.batch_size,args.learning_rate)) best_accuracy = 0 viz = visdom.Visdom() cur_batch_win, epoch_loss_win = None, None def train(epoch): global cur_batch_win net.train() total_correct = 0 loss_list, batch_list = [], [] for i, (state, action) in enumerate(data_train_loader): state = torch.Tensor(state.float()).to(device) action = torch.Tensor(action.float()).type(torch.LongTensor).to(device) optimizer.zero_grad() output = net(state) # bs*50 <- bs labels loss = criterion(output,action) loss_list.append(loss.item()) batch_list.append(i+1) predict = output.data.max(1)[1] total_correct += predict.eq(action.data.view_as(predict)).sum() if i % 10 == 0: logger.info("Train - Epoch %d, Batch: %d, Loss: %f" % (epoch,i,loss.item())) if viz.check_connection(): cur_batch_win = viz.line(X=torch.FloatTensor(batch_list), Y=torch.FloatTensor(loss_list), win=cur_batch_win, name='current_batch_loss', update=(None if cur_batch_win is None else 'replace'), opts={'title': 'Epoch Loss Trace','xlabel': 'Batch Number','ylabel': 'Loss','width': 1200,'height': 600}) loss.backward() optimizer.step() avg_loss = np.array(loss_list).sum() / len(data_train_loader) accuracy = float(total_correct) / len(data_train) logger.info("Train Epoch %d: Avg. Loss: %f, Accuracy: %f" % (epoch,avg_loss,accuracy)) print("Train Epoch %d: Avg. Loss: %f, Accuracy: %f" % (epoch,avg_loss,accuracy)) return avg_loss def test(epoch): global best_accuracy net.eval() total_correct = 0 avg_loss = 0.0 for i, (state, action) in enumerate(data_test_loader): state = torch.Tensor(state.float()).to(device) action = torch.Tensor(action.float()).type(torch.LongTensor).to(device) output = net(state) avg_loss += criterion(output, action).item() # sum() predict = output.data.max(1)[1] total_correct += predict.eq(action.data.view_as(predict)).sum() avg_loss /= (len(data_test_loader)) accuracy = float(total_correct) / len(data_test) logger.info("Test Epoch %d: Avg. Loss: %f, Accuracy: %f" % (epoch,avg_loss,accuracy)) print("Test Epoch %d: Avg. Loss: %f, Accuracy: %f" % (epoch,avg_loss,accuracy)) if best_accuracy < accuracy: best_accuracy = accuracy torch.save(net,network_file[:-4]+"_best.pkl") return avg_loss def visualization(epoch,train_loss,test_loss): fig = plt.figure() ax = fig.add_subplot(111) ax.plot([i for i in range(1,epoch+1)],np.array(train_loss),label="train") ax.plot([i for i in range(1,epoch+1)],np.array(test_loss),label="test") ax.set_xlabel("Epoch") ax.set_ylabel("Loss") ax.legend() fig.savefig("./Loss/fig" + file_name + ".jpg") plt.cla() plt.close() np.save("./Loss/train_loss" + file_name + ".npy",np.array(train_loss)) np.save("./Loss/test_loss" + file_name + ".npy",
np.array(test_loss)
numpy.array
import abc import contextlib import random import collections import copy import numpy as np import networkx as nx """A general Interface""" class GraphSimilarityDataset(object): """Base class for all the graph similarity learning datasets. This class defines some common interfaces a graph similarity dataset can have, in particular the functions that creates iterators over pairs and triplets. """ @abc.abstractmethod def triplets(self, batch_size): """Create an iterator over triplets. Args: batch_size: int, number of triplets in a batch. Yields: graphs: a `GraphData` instance. The batch of triplets put together. Each triplet has 3 graphs (x, y, z). Here the first graph is duplicated once so the graphs for each triplet are ordered as (x, y, x, z) in the batch. The batch contains `batch_size` number of triplets, hence `4*batch_size` many graphs. """ pass @abc.abstractmethod def pairs(self, batch_size): """Create an iterator over pairs. Args: batch_size: int, number of pairs in a batch. Yields: graphs: a `GraphData` instance. The batch of pairs put together. Each pair has 2 graphs (x, y). The batch contains `batch_size` number of pairs, hence `2*batch_size` many graphs. labels: [batch_size] int labels for each pair, +1 for similar, -1 for not. """ pass """Graph Edit Distance Task""" # Graph Manipulation Functions def permute_graph_nodes(g): """Permute node ordering of a graph, returns a new graph.""" n = g.number_of_nodes() new_g = nx.Graph() new_g.add_nodes_from(range(n)) perm = np.random.permutation(n) edges = g.edges() new_edges = [] for x, y in edges: new_edges.append((perm[x], perm[y])) new_g.add_edges_from(new_edges) return new_g def substitute_random_edges(g, n): """Substitutes n edges from graph g with another n randomly picked edges.""" g = copy.deepcopy(g) n_nodes = g.number_of_nodes() edges = list(g.edges()) # sample n edges without replacement e_remove = [ edges[i] for i in np.random.choice(np.arange(len(edges)), n, replace=False) ] edge_set = set(edges) e_add = set() while len(e_add) < n: e = np.random.choice(n_nodes, 2, replace=False) # make sure e does not exist and is not already chosen to be added if ( (e[0], e[1]) not in edge_set and (e[1], e[0]) not in edge_set and (e[0], e[1]) not in e_add and (e[1], e[0]) not in e_add ): e_add.add((e[0], e[1])) for i, j in e_remove: g.remove_edge(i, j) for i, j in e_add: g.add_edge(i, j) return g class GraphEditDistanceDataset(GraphSimilarityDataset): """Graph edit distance dataset.""" def __init__( self, n_nodes_range, p_edge_range, n_changes_positive, n_changes_negative, permute=True, ): """Constructor. Args: n_nodes_range: a tuple (n_min, n_max). The minimum and maximum number of nodes in a graph to generate. p_edge_range: a tuple (p_min, p_max). The minimum and maximum edge probability. n_changes_positive: the number of edge substitutions for a pair to be considered positive (similar). n_changes_negative: the number of edge substitutions for a pair to be considered negative (not similar). permute: if True (default), permute node orderings in addition to changing edges; if False, the node orderings across a pair or triplet of graphs will be the same, useful for visualization. """ self._n_min, self._n_max = n_nodes_range self._p_min, self._p_max = p_edge_range self._k_pos = n_changes_positive self._k_neg = n_changes_negative self._permute = permute def _get_graph(self): """Generate one graph.""" n_nodes = np.random.randint(self._n_min, self._n_max + 1) p_edge = np.random.uniform(self._p_min, self._p_max) # do a little bit of filtering n_trials = 100 for _ in range(n_trials): g = nx.erdos_renyi_graph(n_nodes, p_edge) if nx.is_connected(g): return g raise ValueError("Failed to generate a connected graph.") def _get_pair(self, positive): """Generate one pair of graphs.""" g = self._get_graph() if self._permute: permuted_g = permute_graph_nodes(g) else: permuted_g = g n_changes = self._k_pos if positive else self._k_neg changed_g = substitute_random_edges(g, n_changes) return permuted_g, changed_g def _get_triplet(self): """Generate one triplet of graphs.""" g = self._get_graph() if self._permute: permuted_g = permute_graph_nodes(g) else: permuted_g = g pos_g = substitute_random_edges(g, self._k_pos) neg_g = substitute_random_edges(g, self._k_neg) return permuted_g, pos_g, neg_g def triplets(self, batch_size): """Yields batches of triplet data.""" while True: batch_graphs = [] for _ in range(batch_size): g1, g2, g3 = self._get_triplet() batch_graphs.append((g1, g2, g1, g3)) yield self._pack_batch(batch_graphs) def pairs(self, batch_size): """Yields batches of pair data.""" while True: batch_graphs = [] batch_labels = [] positive = True for _ in range(batch_size): g1, g2 = self._get_pair(positive) batch_graphs.append((g1, g2)) batch_labels.append(1 if positive else -1) positive = not positive packed_graphs = self._pack_batch(batch_graphs) labels = np.array(batch_labels, dtype=np.int32) yield packed_graphs, labels def _pack_batch(self, graphs): """Pack a batch of graphs into a single `GraphData` instance. Args: graphs: a list of generated networkx graphs. Returns: graph_data: a `GraphData` instance, with node and edge indices properly shifted. """ Graphs = [] for graph in graphs: for inergraph in graph: Graphs.append(inergraph) graphs = Graphs from_idx = [] to_idx = [] graph_idx = [] n_total_nodes = 0 n_total_edges = 0 for i, g in enumerate(graphs): n_nodes = g.number_of_nodes() n_edges = g.number_of_edges() edges = np.array(g.edges(), dtype=np.int32) # shift the node indices for the edges from_idx.append(edges[:, 0] + n_total_nodes) to_idx.append(edges[:, 1] + n_total_nodes) graph_idx.append(np.ones(n_nodes, dtype=np.int32) * i) n_total_nodes += n_nodes n_total_edges += n_edges GraphData = collections.namedtuple('GraphData', [ 'from_idx', 'to_idx', 'node_features', 'edge_features', 'graph_idx', 'n_graphs']) return GraphData( from_idx=np.concatenate(from_idx, axis=0), to_idx=np.concatenate(to_idx, axis=0), # this task only cares about the structures, the graphs have no features. # setting higher dimension of ones to confirm code functioning # with high dimensional features. node_features=np.ones((n_total_nodes, 8), dtype=np.float32), edge_features=
np.ones((n_total_edges, 4), dtype=np.float32)
numpy.ones
import pandas as pd import config import numpy as np import python_speech_features as spe_feats from scipy.stats import kurtosis, skew from scipy.signal import lfilter import librosa from pydub import AudioSegment from pydub.silence import split_on_silence from pydub.utils import mediainfo from pydub.playback import play import math #compute RMS value of a signal and return it (in dB scale) #seems not to work? def get_RMS(s): s_rms = np.sqrt(np.mean(np.power(s,2))) #convert to dB scale #s_db = 20*np.log10(s_rms/1.0) return s_rms #seems not to work either #RMS-based normalization of a signal, based on a target level (in dB) def RMS_normalization(s, dB_targ): #desired level is converted to linear scale rms_targ = 10**(dB_targ/20.0) #compute scaling factor scale = rms_targ/get_RMS(s) #scale amplitude of input signal scaled_s = scale*s return scaled_s def match_target_amplitude(audioSegment_sound, target_dBFS): dBFS_diff = target_dBFS - audioSegment_sound.dBFS return audioSegment_sound.apply_gain(dBFS_diff) #Apply pre-emphasis (high-pass) filter def apply_preEmph(x): x_filt = lfilter([1., -0.97], 1, x) return x_filt #Obtain autocorrelation def autocorr(x): result =
np.correlate(x, x, mode='full')
numpy.correlate
from functools import lru_cache import os import glob import binarytree as bt import numpy as np import emcee # in case we don't have this module try: import classifier.photometry import classifier.spectra classifier_module = True except ImportError: classifier_module = False from . import model from . import photometry from . import spectrum from . import filter from . import utils from . import result from . import db from . import config as cfg # these are for getting info to pymultinest global_obs = () global_mod = () global_p_rng = () def fit_results(file,update_mn=False,update_an=False, update_json=False,update_thumb=False, sort=True,custom_sort=True,nospec=False): """Return a list of fitting results. Parameters ---------- file : str The raw photometry file to use as input. update_mn : bool, optional Force update of multinest fitting. update_an : bool, optional Force update of post-multinest fitting analysis. sort : bool, optional Sort results by decreasing evidence. custom_sort: bool, optional Additonally sort results using per-target config. nospec : bool, optional Exclude observed specta from fitting (for speed). """ print(" Fitting") results = [] # fit any extra models that we'll append later extra = [] if len(cfg.fitting['extra_models']) > 0: for m in cfg.fitting['extra_models']: print(" ",m) r = result.Result.get( file,m,update_mn=update_mn, update_an=update_an,update_json=update_json, update_thumb=update_thumb,nospec=nospec ) # check for files with no photometry if not hasattr(r,'obs'): print(" no photometry = no results") return None extra.append(r) # get results for models defined by conf, overrides default if len(cfg.fitting['models']) > 0: for m in cfg.fitting['models']: print(" ",m) r = result.Result.get( file,m,update_mn=update_mn, update_an=update_an,update_json=update_json, update_thumb=update_thumb,nospec=nospec ) # check for files with no photometry if not hasattr(r,'obs'): print(" no photometry = no results") return None results.append(r) else: # binary tree-based fitting t = model_director(file) try: print_model_tree(t) except: print_model_tree(t, cute=False) while t.left is not None and t.right is not None: print(" ",t.left.value,"vs.",t.right.value) r1 = result.Result.get( file,t.left.value,update_mn=update_mn, update_an=update_an,update_json=update_json, update_thumb=update_thumb,nospec=nospec ) r2 = result.Result.get( file,t.right.value,update_mn=update_mn, update_an=update_an,update_json=update_json, update_thumb=update_thumb,nospec=nospec ) # check for files with no photometry if not hasattr(r1,'obs'): print(" no photometry = no results") return None # append results, only append left result at start since where # on lower branches the left model has already been done if len(results) == 0: results.append(r1) results.append(r2) # move on down the tree if r2.evidence > r1.evidence + cfg.fitting['ev_threshold']: t = t.right else: t = t.left # sort list of results by evidence (required for subsequent custom sort) print(' Sorting') if sort or custom_sort: print(' sorting results by evidence') results = [results[i] for i in result.sort_results(results)] else: print(' no results sorting') # sort list of results by custom method if custom_sort: print(' applying db.custom_sort results sorting') srt = db.custom_sort(file, results) if srt is None: print(" couldn't get config") else: results = [results[i] for i in srt] # append extra results if len(extra) > 0: print(' Appending') [print(' {}'.format(m)) for m in cfg.fitting['extra_models']] results = results + extra # save a thumb of the best fit next to the input file, update every # time since we may have changed best fit (but not fitting itself) results[0].sed_thumbnail(file='{}/{}_thumb.png'.format(results[0].path, results[0].id), update=True) return results def model_director(file,reddening=False,use_classifier=False): """Workflow for model fitting. Parameters ---------- file : str Name of the photometry file we are fitting. reddening : bool, optional Use models with reddening. use_classifier : bool, optional Use classifier. """ # default model tries star + up to two bb components if reddening: star = 'phoenix_m_av' else: star = 'phoenix_m' t_star = model_tree(top=(star,), extra='modbb_disk_r',n_extra=2) # cool star model if reddening: cool = 'phoenix_cool_av' else: cool = 'phoenix_cool' t_cool = model_tree(top=(cool,), extra='modbb_disk_r') # look for spectral type, LTY types get cool models, other types # default to star models, and M5-9 (or just M) get both tree = t_star cool = 0 kw = utils.get_sdb_keywords(file) if 'sp_type' in kw.keys(): if kw['sp_type'] is None: pass elif kw['sp_type'][:2] == 'DA' or kw['sp_type'][:2] == 'DB' or kw['sp_type'][:2] == 'DC': tree = model_tree(top=('koester_wd',), extra='bb_disk_r') elif kw['sp_type'][0] in 'LTY': tree = t_cool elif kw['sp_type'][0] == 'M': if len(kw['sp_type']) > 1: if kw['sp_type'][1] in '56789': cool = 1 elif kw['sp_type'][0:2] == 'dM': if len(kw['sp_type']) > 2: if kw['sp_type'][2] in '56789': cool = 1 if cool == 1: tree = bt.Node(('top',)) tree.left = t_cool tree.right = t_star tree.value = ('top',) return tree def model_tree(top=('phoenix_m',),extra='modbb_disk_r',n_extra=1): """Return a binary tree for alternative models. Parameters ---------- top : str, optional Name of the first model. extra : str, optional Name of the additional model component. n_extra : int, optional Include two extra component branch. """ # the top node doesn't matter unless this tree becomes a branch # of a bigger tree t = bt.Node( top ) t.left = bt.Node( top ) t.right = bt.Node( top + (extra,) ) if n_extra == 2: t.right.left = bt.Node( top + (extra,) ) t.right.right = bt.Node( top + (extra, extra) ) return t def print_model_tree(t, cute=True): """Print a model tree, shortening the model names. Unicode symbols here https://unicode-table.com/en/ Parameters ---------- t : binary tree Tree to print. cute : bool, optional Print cute ascii symbols. """ if cute: r = {'top':u'\u2602', 'phoenix_m':u'\u2606', 'phoenix_m_av':u'\u2605', 'phoenix_cool':u'\u2733', 'phoenix_cool_av':u'\u2739', 'modbb_disk_r':u'\u29b8', 'bb_disk_r':u'\u25cb' } else: r = {'top':'t', 'phoenix_m':'p', 'phoenix_m_av':'pr', 'phoenix_cool':'c', 'phoenix_cool_av':'cr', 'modbb_disk_r':'mb', 'bb_disk_r':'b' } l = bt.convert(t) for i in range(len(l)): x = () if l[i] is not None: for j in range(len(l[i])): if l[i][j] in r.keys(): x += (r[l[i][j]],) else: x += (l[i][j],) l[i] = x = ''.join(x) bt.convert(l).show() @lru_cache(maxsize=2) def concat_obs(o): """Concatenate observations Concatenate the observations (filters and spectra), not shifting the normalisation of the spectra, but noting how many observations there are in each component (as the models will probably contain more due to colours/indices). """ obs_wav = np.array([],dtype=float) obs_filt = np.array([],dtype=object) obs_fnu = np.array([],dtype=float) obs_e_fnu = np.array([],dtype=float) obs_uplim = np.array([],dtype=bool) obs_ignore = np.array([],dtype=bool) obs_bibcode = np.array([],dtype=str) obs_nel = np.array([],dtype=int) ispec = -2 # start one extra from end, we will put -1 there for phot obs_ispec = np.array([],dtype=int) for obs in o: if isinstance(obs,photometry.Photometry): obs_wav = np.append(obs_wav,obs.mean_wavelength()) obs_filt = np.append(obs_fnu,obs.filters) obs_fnu = np.append(obs_fnu,obs.fnujy) obs_e_fnu = np.append(obs_e_fnu,obs.e_fnujy) obs_ispec = np.append(obs_ispec,np.repeat(-1,len(obs.filters))) obs_uplim = np.append(obs_uplim,obs.upperlim) obs_ignore = np.append(obs_ignore,obs.ignore) obs_bibcode = np.append(obs_bibcode,obs.bibcode) elif isinstance(obs,spectrum.ObsSpectrum): n = len(obs.wavelength) obs_wav =
np.append(obs_wav,obs.wavelength)
numpy.append
try: import sys,logging from reportlab.pdfgen import canvas from reportlab.platypus import Table,TableStyle from reportlab.lib import colors from reportlab.lib.pagesizes import A4 from reportlab.graphics import renderPDF from svglib.svglib import svg2rlg from io import BytesIO from datetime import date import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np from reportlab.platypus.tables import Table import seaborn as sns import os import pandas as pd from sklearn.cross_decomposition import PLSRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import cross_val_predict from sklearn import preprocessing # sys.path.append(r"F:\Work\Maptor\venv\HelpingModel") from PLSR_SSS_Helper import PLSR_SSS_Helper from RFHelper import RFHelper from osgeo import gdal, ogr, gdal_array # I/O image data import numpy as np # math and array handling import matplotlib.pyplot as plt # plot figures import pandas as pd # handling large data as table sheets from joblib import dump, load from operator import itemgetter from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import cross_val_predict except Exception as e: print('Can not import files:' + str(e)) input("Press Enter to exit!") sys.exit(0) class ReportModule(): def build_doc(self,path,mode): try: doc = canvas.Canvas(path) doc.setLineWidth(.3) doc.setFont('Helvetica-Bold', 16) doc.drawString(30, 810, mode) doc.setFont('Helvetica', 12) doc.drawString(30, 793, 'Software Maptor v1.4') doc.drawString(30, 779, "Developer: <NAME> & <NAME>") doc.drawString(30, 765, 'Support: <EMAIL>') today = date.today() doc.drawString(30, 751, "Date: " + str(today)) doc.drawString(30, 737, '') doc.line(20, 735, 570, 735) return doc except ValueError as e: logging.error("Exception occurred", exc_info=True) print(e) def Clf_prepare_report(self,doc,img,roi,importance,table_M,trees,ob_score,class_prediction,ValidationData,attribute,dir_path): try: os.mkdir(dir_path+"/Graphs") path = dir_path + "/Graphs/" fig = plt.figure(figsize=(6, 6)) plt.subplot(221) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) plt.title('RS Image - first band') plt.subplot(222) plt.imshow(class_prediction, cmap=plt.cm.Spectral) plt.title('Classification result') plt.subplot(223) plt.imshow(roi, cmap=plt.cm.Spectral) plt.title('Training Data') plt.subplot(224) plt.imshow(ValidationData, cmap=plt.cm.Spectral) plt.title('Validation Data') imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 30, 210) fig.clf() plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) plt.title('RS Image - first band') plt.savefig(path + "'RS_Image.png", dpi=300) plt.clf() plt.imshow(class_prediction, cmap=plt.cm.Spectral) plt.title('Classification result') plt.savefig(path + "Classification_result.png", dpi=300) plt.clf() plt.imshow(roi, cmap=plt.cm.Spectral) plt.title('Training Data') plt.savefig(path + "Training_Data.png", dpi=300) plt.clf() plt.imshow(ValidationData, cmap=plt.cm.Spectral) plt.title('Validation Data') plt.savefig(path + "Validation_Data.png", dpi=300) plt.clf() doc.showPage() # doc.line(20, 810, 570, 810) # doc.setLineWidth(.3) # doc.setFont('Helvetica-Bold', 14) # doc.drawString(30, 790, 'Section 1: General Information and Training') # doc.drawString(30, 770, "Section 2: Validation") # doc.line(20, 750, 570, 750) n_samples = (roi > 0).sum() # doc.drawString(30, 730, "Section :1") doc.setFont('Helvetica', 12) doc.drawString(30, 710, 'Image Extent: ' + str(img.shape[0]) + " x " + str(img.shape[1])) doc.drawString(30, 690, 'Number of Bands: ' + str(len(importance))) doc.drawString(30, 670, 'Field Name (shape file) of your classes: ' + attribute) doc.drawString(30, 650, 'Random Forest Training: ') doc.drawString(30, 630, 'Number of Trees: ' + str(trees)) doc.drawString(30, 610, 'Number of training Pixel: ' + str(n_samples)) # What are our classification labels? labels = np.unique(roi[roi > 0]) # print('Number of classes :'+ labels.size) doc.drawString(30, 590, 'Number of classes :' + str(labels.size)) doc.drawString(30, 570, 'Out-Of-Bag prediction of accuracy: ' + str(ob_score)) # doc.showPage() X = img[roi > 0, :] y = roi[roi > 0] data = ["Band","Importance"] data= [(k, v) for k, v in importance.items()] data2 = data[:] # dummy = [['00', '01'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['00', '01'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['00', '01'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['00', '01'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['20', '21'], # ['10', '11'], # ['20', '21'], # ['30', '31'], # ['20', '21'], # ['20', '21'], # ['20', '21']] # # data.extend(dummy) data2.sort(key=lambda x: x[1], reverse=True) data.insert(0, ("Band", "Importance")) data2.insert(0, ("Band", "Importance")) fig = plt.figure(figsize=(6, 6)) sns.heatmap(table_M, annot=True, cmap="BuPu", fmt='g') #plt.show() imgdata = BytesIO() fig.savefig(path+"pred_acc_training.png") fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) doc.setFont('Helvetica-Bold', 14) doc.drawString(30,520,"Convolution matrix (prediction accuracy of the training data):") renderPDF.draw(drawing, doc, 30, 30) doc.showPage() doc.drawString(30, 700, "Band importance (left: ordered by band number | right: ordered by importance):") if (len(data) > 21): chunks = (self.chunks(data, 20)) ordered_chunks = (self.chunks(data2, 20)) iterationNumer = 0 for unorder, ordered in zip(chunks, ordered_chunks): if iterationNumer != 0: unorder.insert(0, ("Band", "Importance")) ordered.insert(0, ("Band", "Importance")) unordered_table = Table(unorder) ordered_table = Table(ordered) unordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) ordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) unordered_table.wrapOn(doc, 60, 200) unordered_table.drawOn(doc, 60, 200) ordered_table.wrapOn(doc, 280, 200) ordered_table.drawOn(doc, 280, 200) # else: # unordered_table.wrapOn(doc, 60, 400) # unordered_table.drawOn(doc, 60, 400) # # ordered_table.wrapOn(doc, 280, 400) # ordered_table.drawOn(doc, 280, 400) columns = [""] ordered_table = Table(columns) unordered_table = Table(columns) doc.showPage() iterationNumer += 1 else: table = Table(data) table2 = Table(data2) table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table2.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table.wrapOn(doc, 60, 400) table.drawOn(doc, 60, 400) table2.wrapOn(doc, 280, 400) table2.drawOn(doc, 280, 400) doc.showPage() #print(trees) #print(table) #print(importance) return doc except ValueError as e: logging.error("Exception occurred", exc_info=True) print(e) def Clf_prepare_section3(self,doc,X_v,y_v,convolution_mat,df_sum_mat,score,roi_v,model_path,Image_savePath,dir_path): try: #print(Image_savePath+"here.................!!") dir_path +="/Graphs/" n_samples = (roi_v > 0).sum() #print("Number of validation Pixels: "+ str(n_samples)) doc.setFont('Helvetica-Bold', 12) doc.drawString(30, 780, "Number of validation Pixels: "+ str(n_samples)) doc.setFont('Helvetica-Bold', 12) #print(score) doc.drawString(30, 760, str(score)) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 720, "Convolution matrix (prediction accuracy of the validation data") convolution_mat.index = convolution_mat.index.rename('truth') convolution_mat.columns = convolution_mat.columns.rename('predict') del convolution_mat['All'] convolution_mat = convolution_mat.drop('All', axis=0) fig = plt.figure(figsize=(6, 5)) sns.heatmap(convolution_mat, annot=True, cmap="BuPu", fmt='g') # plt.show() imgdata = BytesIO() fig.savefig(dir_path + "pred_acc_validation.png") fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 40, 300) fig.clf() df_sum_mat = df_sum_mat.round(3) accuracy = df_sum_mat.iloc[-3:] df_sum_mat = df_sum_mat.head(-3) r, c = df_sum_mat.shape seq = list(range(1, r+1)) df_sum_mat.insert(0,"band",seq) data = np.array(df_sum_mat).tolist() data.insert(0,("class","precision","recall","f1-score","support")) t1 = Table(data) t1.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) doc.showPage() doc.drawString(30, 760,"Precision, recall, F-measure and support for each class:") t1.wrapOn(doc, 30, 500) t1.drawOn(doc, 90, 500) # acc_col_name = ['accuracy','macro avg','weighted avg'] # accuracy.insert(0,".",acc_col_name) # acc_data = np.array(accuracy).tolist() # t2 = Table(acc_data) # # t2.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), # ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) # t2.wrapOn(doc, 30, 100) # t2.drawOn(doc, 330, 100) doc.setFont('Helvetica', 8) doc.drawString(20, 370, "Image Saved to Path: "+Image_savePath) # if model_path!="/": # doc.drawString(30, 20, "Model Saved to Path: Model not Save") # else: doc.drawString(20, 350, "Model Saved to Path:"+ model_path) return doc except ValueError as e: logging.error("Exception occurred", exc_info=True) print(e) def make_rf_reg_report(self,doc,img,RFHelper,dir_path): # Display images try: os.mkdir(dir_path + "/Graphs") path = dir_path + "/Graphs/" width, height = A4 print("here........."+RFHelper.reportpath) print(RFHelper.prediction_map) print(RFHelper.modelsavepath) print(RFHelper.img_path) print(RFHelper.train_data) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 700,"DIRECTORIES:") doc.setFont('Helvetica', 7) doc.drawString(30, 680, "Remote Sensing Image: " + RFHelper.img_path) doc.drawString(30, 660, "Shape file: " + RFHelper.train_data) doc.drawString(30, 640, "Report Save Path: "+ RFHelper.reportpath) doc.drawString(30, 620, "Regression image saved to: " +RFHelper.prediction_map) if RFHelper.modelsavepath !='/': doc.drawString(30, 600, "Model saved to: "+RFHelper.modelsavepath) else: doc.drawString(30, 600, "Model saved to: Model not saved") doc.line(20, 580, 570, 580) if img.shape[0] > img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) print(img.shape) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(RFHelper.training > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('first RS band and sample points', fontsize=8) plt.title('RS image - first band') imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 160) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(RFHelper.prediction, cmap=plt.cm.Spectral) plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 400, 160) fig.clf() plt.close(fig) doc.showPage() if img.shape[0]<= img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) print(img.shape) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(RFHelper.training > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('first RS band and sample points', fontsize=8) imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 360) # else: # renderPDF.draw(drawing, doc, 50, 250) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(RFHelper.prediction, cmap=plt.cm.Spectral) plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 70, 60) fig.clf() plt.close(fig) doc.showPage() plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(RFHelper.training > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('first RS band and sample points', fontsize=8) plt.savefig(path + "RS image-first_band.png", dpi=300) plt.clf() # plt.imshow(RFHelper.training, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # plt.savefig(path + "Training_Image.png", dpi=300) # plt.clf() plt.imshow(RFHelper.prediction, cmap=plt.cm.Spectral) plt.title('Prediction') plt.savefig(path + "Prediction.png", dpi=300) plt.clf() # doc.line(20,800, 570, 800) # doc.setLineWidth(.3) # doc.setFont('Helvetica-Bold', 14) # doc.drawString(30, 780, 'Section 1: General Information and Training') # doc.drawString(30, 765, "Section 2: Validation") # doc.line(20, 750, 570, 750) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 730, 'Section 1:') doc.setFont('Helvetica', 14) doc.drawString(30, 710,"Image extent: "+RFHelper.helper.imageExtent + "(Rows x Columns)") doc.drawString(30, 690, "Number of Bands: "+ str(RFHelper.helper.BandNumber)) doc.drawString(30, 670, "Field name (shape file) of your classes: "+RFHelper.helper.FieldName) doc.setFont('Helvetica', 14) doc.drawString(30,650," Random Forrest Training") doc.setFont('Helvetica', 14) doc.drawString(30, 630, " Number of Tress: "+ str(RFHelper.helper.TreesNo)) doc.drawString(30, 610, " Number of samples: "+ str(RFHelper.helper.SampleNo)) doc.drawString(30, 590, " Split size for Test: "+str(RFHelper.helper.SplitSize)) doc.drawString(30, 570, " Training samples: "+str(RFHelper.helper.TrainingSample)) doc.drawString(30, 550, " Test sample: "+str(RFHelper.helper.TestSample)) doc.drawString(30, 530, "Co efficient of determination R^2 of the prediction : "+RFHelper.helper.Coeff) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 510, "left: ordered by band number| right: ordered by importance ") data = ["Band", "Importance"] data = [(k, v) for k, v in RFHelper.helper.BandImportance.items()] # dummy = [('Band',1.33),('Band',5),('Band',4),('Band',2),('Band',6),('Band',8),('Band',43),('Band',3),('Band',113),('Band',233),('Band',13),('Band',133)] # data.extend(dummy) data2 = data[:] data2.sort(key=lambda x: x[1], reverse=True) data.insert(0, ("Band", "Importance")) data2.insert(0, ("Band", "Importance")) datalen = len(data) print((datalen)) if(len(data)>21): chunks = (self.chunks(data,20)) ordered_chunks = (self.chunks(data2, 20)) iterationNumer = 0 for unorder,ordered in zip(chunks,ordered_chunks): if iterationNumer != 0: unorder.insert(0, ("Band", "Importance")) ordered.insert(0, ("Band", "Importance")) unordered_table = Table(unorder) ordered_table = Table(ordered) unordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) ordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) if iterationNumer == 0: unordered_table.wrapOn(doc, 60, 100) unordered_table.drawOn(doc, 60, 100) ordered_table.wrapOn(doc, 280, 100) ordered_table.drawOn(doc,280, 100) else: unordered_table.wrapOn(doc, 60, 400) unordered_table.drawOn(doc, 60, 400) ordered_table.wrapOn(doc, 280, 400) ordered_table.drawOn(doc, 280, 400) columns = [""] ordered_table = Table(columns) unordered_table = Table(columns) doc.showPage() iterationNumer += 1 else: table = Table(data) table2 = Table(data2) table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table2.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table.wrapOn(doc, 0,0) table.drawOn(doc, 60, 100) table2.wrapOn(doc, 60, 100) table2.drawOn(doc, 280, 100) doc.showPage() doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 790, 'Section 2:') doc.setFont('Helvetica', 14) doc.drawString(30, 770, "n of the data: " + str(RFHelper.helper.n_testdata)) doc.drawString(30, 750, "Mean of the Variable : " + str(RFHelper.helper.meanvariable)) doc.drawString(30, 730, "Standard Deviation of the Variable: " + str(round(RFHelper.helper.stdDev,2))) doc.drawString(30, 710, "----------------------------------------") doc.setFont('Helvetica', 14) doc.drawString(30, 670, " Mean Absolute Error : " + str(round(RFHelper.helper.absError,2))) doc.drawString(30, 650, " Mean Squared Error:" + str(round(RFHelper.helper.meanSqError,2))) doc.drawString(30, 630, " RMSE:" + str(round(RFHelper.helper.RMSE,2))) x = str(round(RFHelper.helper.MAPE,2)) doc.drawString(30, 600, " Mean absoulute percentage error(MAPE)/ Accuracy :" + x + " %") doc.drawString(30, 560, "----------------------------------------") doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 540, "Co efficient of determination R^2 of the prediction : " + str(round(RFHelper.helper.coeffR,2))) fig, ax = plt.subplots() ax.scatter(RFHelper.helper.testlabels, RFHelper.helper.pred_test_ds) ax.plot([RFHelper.helper.testlabels.min(), RFHelper.helper.testlabels.max()], [RFHelper.helper.testlabels.min(), RFHelper.helper.testlabels.max()], 'k--', lw=1) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) plt.savefig(path + "r2_Prediction.png", dpi=300) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 30, 110) fig.clf() plt.close(fig) return doc except ValueError as e: logging.error("Exception occurred", exc_info=True) print(e) def make_plsr_sss_report(self, doc, img, dir_path, PLSR_SSS_Helper): # self, doc, img, TrainingData, X, mse, msemin, component, y, y_c, y_cv, attribute, importance, prediction, dir_path, reportpath, prediction_map, modelsavepath, img_path, trn_path try: # reportparameters = PLSR_SSS_Helper() # reportparameters = helpermodel print(PLSR_SSS_Helper) print(type(PLSR_SSS_Helper)) os.mkdir(dir_path + "/Graphs") path = dir_path + "/Graphs/" width, height = A4 doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 705, "DIRECTORIES:") doc.setFont('Helvetica', 10) doc.drawString(30, 680, "Remote Sensing Image: " + str(PLSR_SSS_Helper.img_path)) doc.drawString(30, 660, "Shape file: " + str(PLSR_SSS_Helper.tran_path)) doc.drawString(30, 640, "Report Save Path: " + str(PLSR_SSS_Helper.reportpath)) doc.drawString(30, 620, "Regression image saved to: " + str(PLSR_SSS_Helper.prediction_map)) # if modelsavepath != '/': doc.drawString(30, 600, "Model saved to: " + str(PLSR_SSS_Helper.modelsavepath)) # else: # doc.drawString(30, 600, "Model saved to: Model not saved") doc.line(20, 580, 570, 580) mask = np.copy(img[:, :, 0]) mask[mask > 0.0] = 1.0 # all actual pixels have a value of 1.0 # plt.imshow(mask) prediction_ = PLSR_SSS_Helper.prediction * mask if img.shape[0] > img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(PLSR_SSS_Helper.train_data > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('first RS band and sample points', fontsize=8) plt.subplot(122) plt.imshow(prediction_, cmap=plt.cm.Spectral, vmin=PLSR_SSS_Helper.y.min(), vmax=PLSR_SSS_Helper.y.max()) plt.title('Prediction: ' + PLSR_SSS_Helper.attribute, fontsize=8) plt.colorbar() imgdata = BytesIO() plt.savefig(path + "RS image-first_band.png", dpi=300) fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 160) fig.clf() plt.close(fig) doc.showPage() if img.shape[0] <= img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(PLSR_SSS_Helper.train_data > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('first RS band and sample points') plt.subplot(122) plt.imshow(prediction_, cmap=plt.cm.Spectral, vmin=PLSR_SSS_Helper.y.min(), vmax=PLSR_SSS_Helper.y.max()) plt.title('Prediction') plt.colorbar() imgdata = BytesIO() plt.savefig(path + "RS image-first_band.png", dpi=300) fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 100, 160) fig.clf() plt.close(fig) doc.showPage() n_samples = (PLSR_SSS_Helper.train_data > 0).sum() # doc.drawString(30, 720, 'We have {n} training samples'.format(n=n_samples)) # Subset the image dataset with the training image = X # Mask the classes on the training dataset = y # These will have n_samples rows features = pd.DataFrame(PLSR_SSS_Helper.X) band_names = [] for i in range(PLSR_SSS_Helper.X.shape[1]): # for i in range(0,2500): nband = "Band_" + str(i + 1) band_names.append(nband) features.columns = band_names print(features.shape) doc.line(20, 810, 570, 810) doc.setLineWidth(.3) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 785, 'Section : General Information and Training') doc.line(20, 770, 570, 770) doc.setFont('Helvetica', 10) doc.drawString(30, 700, 'The Image Extend: ' + str(img.shape[0]) + " x " + str(img.shape[1]) + " (Rows x Columns)") doc.drawString(30, 680, 'The number of bands is: ' + str(features.shape[1])) # doc.drawString(30, 680,'The shape of our features is: '+str(features.shape)) doc.drawString(30, 660, 'Selected Attribute: ' + str(PLSR_SSS_Helper.attribute)) doc.drawString(30, 640, 'The number of Sample is: ' + str(features.shape[0])) doc.drawString(30, 620, '---------------------------------------------------------') # features['value'] = PLSR_SSS_Helper.y features.head() # Labels are the values we want to predict labels = np.array(features['value']) # Remove the labels from the features # axis 1 refers to the columns features = features.drop('value', axis=1) # Saving feature names for later use feature_list = list(features.columns) # Convert to numpy array features = np.array(features) # doc.drawString(30, 620, 'Training Features Shape: ' + str(features.shape)) # doc.drawString(30, 600, 'Training Labels Shape: ' + str(labels.shape)) # return [doc, labels, features] # # doc.showPage() suggested_comp = PLSR_SSS_Helper.msemin + 1 print("Suggested number of components: ", suggested_comp) doc.drawString(30, 560, "Selected number of PLS components: " + str(suggested_comp)) fig = plt.figure(figsize=(5, 4)) with plt.style.context(('ggplot')): plt.plot(PLSR_SSS_Helper.component, np.array(PLSR_SSS_Helper.mse), '-v', color='blue', mfc='blue') plt.plot(PLSR_SSS_Helper.component[PLSR_SSS_Helper.msemin], np.array(PLSR_SSS_Helper.mse)[PLSR_SSS_Helper.msemin], 'P', ms=10, mfc='red') plt.xlabel('Number of PLS components') plt.ylabel('MSE') plt.title('PLSR MSE vs. Components') plt.xlim(left=-1) plt.savefig(path + "PLSR MSE vs. Components.png", dpi=300) # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 150) fig.clf() plt.close(fig) doc.showPage() score_c = r2_score(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_c) score_cv = r2_score(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_cv) # Calculate mean squared error for calibration and cross validation mse_c = mean_squared_error(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_c) mse_cv = mean_squared_error(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_cv) # print("2 HERE!!!!!! mse_cv"+str(mse_cv)) print('R2 calib: %5.3f' % score_c) doc.drawString(30, 730, 'R2 of the training: %5.3f' % score_c) print('R2 LOOCV: %5.3f' % score_cv) doc.drawString(30, 710, 'R2 LOOCV: %5.3f' % score_cv) print('MSE calib: %5.3f' % mse_c) doc.drawString(30, 690, 'MSE of the training: %5.3f' % mse_c) print('MSE LOOCV: %5.3f' % mse_cv) doc.drawString(30, 670, 'MSE LOOCV: %5.3f' % mse_cv) imp = {} for i in range(features.shape[1]): print('Band {}: {}'.format(i + 1, round(PLSR_SSS_Helper.importance[i], 2))) imp['Band{}'.format(i + 1)] = round(PLSR_SSS_Helper.importance[i], 2) data = [(k, v) for k, v in imp.items()] # dummy = [('Band',1.33),('Band',5),('Band',4),('Band',2),('Band',6),('Band',8),('Band',43),('Band',3),('Band',113),('Band',233),('Band',13),('Band',133)] # data.extend(dummy) data2 = data[:] data2.sort(key=lambda x: x[1], reverse=True) data.insert(0, ("Band", "Importance")) data2.insert(0, ("Band", "Importance")) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 510, "Band importance (left: ordered by band number | right: ordered by importance):") doc.setFont('Helvetica', 10) if (len(data) > 21): chunks = (self.chunks(data, 20)) ordered_chunks = (self.chunks(data2, 20)) iterationNumer = 0 for unorder, ordered in zip(chunks, ordered_chunks): if iterationNumer != 0: unorder.insert(0, ("Band", "Importance")) ordered.insert(0, ("Band", "Importance")) unordered_table = Table(unorder) ordered_table = Table(ordered) unordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) ordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) if iterationNumer == 0: unordered_table.wrapOn(doc, 60, 100) unordered_table.drawOn(doc, 60, 100) ordered_table.wrapOn(doc, 280, 100) ordered_table.drawOn(doc, 280, 100) else: unordered_table.wrapOn(doc, 60, 400) unordered_table.drawOn(doc, 60, 400) ordered_table.wrapOn(doc, 280, 400) ordered_table.drawOn(doc, 280, 400) columns = [""] ordered_table = Table(columns) unordered_table = Table(columns) doc.showPage() iterationNumer += 1 else: table = Table(data) table2 = Table(data2) table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table2.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table.wrapOn(doc, 0, 0) table.drawOn(doc, 60, 100) table2.wrapOn(doc, 60, 100) table2.drawOn(doc, 280, 100) doc.showPage() doc.line(20, 810, 570, 810) doc.setLineWidth(.3) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 785, 'Section : Validation') doc.line(20, 770, 570, 770) z = np.polyfit(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_c, 1) with plt.style.context(('ggplot')): fig, ax = plt.subplots(figsize=(5, 5)) ax.scatter(PLSR_SSS_Helper.y_c, PLSR_SSS_Helper.y, c='red', edgecolors='k') # Plot the best fit line ax.plot(np.polyval(z, PLSR_SSS_Helper.y), PLSR_SSS_Helper.y, c='blue', linewidth=1) # Plot the ideal 1:1 line ax.plot(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y, color='green', linewidth=1) plt.title('$R^{2}$ (CV): ' + str(score_cv)) plt.xlabel('Predicted') plt.ylabel('Measured') plt.legend(['best fit line', 'ideal 1:1 line', 'samples']) imgdata = BytesIO() plt.savefig(path + "R2CV", dpi=300) fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 300) fig.clf() plt.close(fig) # In[16]: # Calculate the absolute errors errors = abs(PLSR_SSS_Helper.y - PLSR_SSS_Helper.y_cv) # Print out the mean absolute error (mae) # Print out the mean absolute error (mae) doc.setFont('Helvetica', 10) doc.drawString(30, 270, '----------------------------') print('-------------') print('n of the test data: {}'.format(len(labels))) doc.drawString(30, 250, 'n of the test data: ' + str((len(labels)))) print('Mean of the variable: {:.2f}'.format(np.mean(labels))) doc.drawString(30, 230, 'Mean of the Samples: ' + str(round((np.mean(labels)), 2))) print('Standard deviation of the variable: {:.2f}'.format(np.std(labels))) doc.drawString(30, 210, 'Standard deviation of the Samples: ' + str(round(np.std(labels), 2))) print('-------------') doc.drawString(30, 190, '----------------------------') print('Mean Absolute Error: {:.2f}'.format(np.mean(errors))) doc.drawString(30, 170, 'MAE: ' + str(round(np.mean(errors), 2))) print('Mean squared error: {:.2f}'.format(mse_cv)) doc.drawString(30, 150, 'MSE: ' + str(round(mse_cv, 2))) print('RMSE: {:.2f}'.format(np.sqrt(mse_cv))) doc.drawString(30, 130, 'RMSE: ' + str(round(np.sqrt(mse_cv), 2))) RPD = np.std(labels) / np.sqrt(mse_cv) print('RPD: {:.2f} | How often does RMSE of Prediction fit in the Standard Deviation of the samples'.format( RPD)) doc.drawString(30, 110, 'RPD: ' + str( round(RPD, 2)) + "| How often does RMSE of Prediction fit in the Standard Deviation of the samples") mape = 100 * (errors / labels) # Calculate and display accuracy accuracy = 100 - np.mean(mape) print('mean absolute percentage error (MAPE): {:.2f} %'.format(np.mean(mape))) doc.drawString(30, 90, 'Mean Absolute Percentage Error (MAPE): ' + str(round(np.mean(mape), 2)) + " %") print('accuracy (100 % - mape): {:.2f} %'.format(accuracy)) doc.drawString(30, 70, 'Accuracy (100 % - MAPE): ' + str(round(accuracy, 2)) + " %") print('-------------') doc.drawString(30, 50, '----------------------------') # The coefficient of determination: 1 is perfect prediction print('Coefficient of determination r²: {:.2f}'.format(r2_score(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_cv))) doc.drawString(30, 30, 'Coefficient of determination r²: ' + str(round(r2_score(PLSR_SSS_Helper.y, PLSR_SSS_Helper.y_cv), 2))) # return doc except ValueError as e: logging.error("Exception occurred", exc_info=True) print(e) def make_plsr_lds_report(self,doc,dir_path,PLSR_LDS_Helper): os.mkdir(dir_path+"/Graphs") path = dir_path +"/Graphs/" doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 705, "DIRECTORIES:") doc.setFont('Helvetica', 10) doc.drawString(30, 680, "Remote Sensing Image: " + str(PLSR_LDS_Helper.img_path)) doc.drawString(30, 660, "Shape file: " + str(PLSR_LDS_Helper.tran_path)) doc.drawString(30, 640, "Report Save Path: " + str(PLSR_LDS_Helper.reportpath)) doc.drawString(30, 620, "Regression image saved to: " + str(PLSR_LDS_Helper.prediction_map)) # if modelsavepath != '/': doc.drawString(30, 600, "Model saved to: " + str(PLSR_LDS_Helper.modelsavepath)) doc.line(20, 580, 570, 580) mask = np.copy(PLSR_LDS_Helper.img[:, :, 0]) mask[mask > 0.0] = 1.0 # all actual pixels have a value of 1.0 prediction_ = PLSR_LDS_Helper.prediction * mask if PLSR_LDS_Helper.img.shape[0] > PLSR_LDS_Helper.img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) print(PLSR_LDS_Helper.img.shape) plt.imshow(PLSR_LDS_Helper.img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(PLSR_LDS_Helper.train_data > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') # plt.subplot(122) # plt.imshow(PLSR_LDS_Helper.train_data, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 160) # else: # renderPDF.draw(drawing, doc, 50, 250) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(PLSR_LDS_Helper.prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 400, 160) fig.clf() plt.close(fig) doc.showPage() if PLSR_LDS_Helper.img.shape[0] <= PLSR_LDS_Helper.img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) print(PLSR_LDS_Helper.img.shape) plt.imshow(PLSR_LDS_Helper.img[:, :, 0], cmap=plt.cm.Greys_r) roi_positions = np.where(PLSR_LDS_Helper.train_data > 0) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') # plt.subplot(122) # plt.imshow(PLSR_LDS_Helper.train_data, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 160) # else: # renderPDF.draw(drawing, doc, 50, 250) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(PLSR_LDS_Helper.prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 100, 160) fig.clf() plt.close(fig) doc.showPage() roi_positions = np.where(PLSR_LDS_Helper.train_data > 0) plt.imshow(PLSR_LDS_Helper.img[:, :, 0], cmap=plt.cm.Greys_r) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') plt.savefig(path + "RS image-first_band.png", dpi=300) plt.clf() # plt.imshow(PLSR_LDS_Helper.train_data, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # plt.savefig(path + "Training_Image.png", dpi=300) # plt.clf() plt.imshow(PLSR_LDS_Helper.prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') plt.savefig(path + "Prediction.png", dpi=300) plt.clf() n_samples = (PLSR_LDS_Helper.train_data > 0).sum() print( 'We have {n} training samples'.format(n=n_samples)) # Subset the image dataset with the training image = X print('The shape of our features is:', PLSR_LDS_Helper.features.shape) print('The number of Spectra is:', PLSR_LDS_Helper.features.shape[0]) print('The number of bands is:', PLSR_LDS_Helper.features.shape[1]) doc.line(20, 810, 570, 810) doc.setLineWidth(.3) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 785, 'Section : General Information and Training') doc.line(20, 770, 570, 770) doc.setFont('Helvetica', 10) doc.drawString(30, 700, 'The Image Extend: ' + str(PLSR_LDS_Helper.img.shape[0]) + " x " + str(PLSR_LDS_Helper.img.shape[1]) + " (Rows x Columns)") doc.drawString(30, 680, 'The number of bands is: ' + str(PLSR_LDS_Helper.features.shape[1])) # doc.drawString(30, 680,'The shape of our features is: '+str(features.shape)) doc.drawString(30, 660, 'Selected Attribute: ' + str(PLSR_LDS_Helper.attribute)) doc.drawString(30, 640, 'The number of Sample is: ' + str(PLSR_LDS_Helper.features.shape[0])) doc.drawString(30, 620, '---------------------------------------------------------') # from sklearn import preprocessing # # min_max_scaler = preprocessing.MinMaxScaler() # # xscaled = min_max_scaler.fit_transform(features) # features_ = pd.DataFrame(xscaled) # # features_.transpose().plot(figsize=(20, 7)) # plt.legend(bbox_to_anchor=(0.1, -0.1), loc='upper left', ncol=7) # plt.title('Reference Spectra') # plt.plot() # # print('Training Features Shape:', PLSR_LDS_Helper.train_features.shape) print('Training Labels Shape:', PLSR_LDS_Helper.train_labels.shape) print('Testing Features Shape:', PLSR_LDS_Helper.test_features.shape) print('Testing Labels Shape:', PLSR_LDS_Helper.test_labels.shape) # msemin = np.argmin(PLSR_LDS_Helper.mse) suggested_comp = msemin + 1 print("Suggested number of components: ", suggested_comp) fig = plt.figure(figsize=(5, 4)) with plt.style.context(('ggplot')): plt.plot(PLSR_LDS_Helper.component, np.array(PLSR_LDS_Helper.mse), '-v', color='blue', mfc='blue') plt.plot(PLSR_LDS_Helper.component[msemin], np.array(PLSR_LDS_Helper.mse)[msemin], 'P', ms=10, mfc='red') plt.xlabel('Number of PLS components') plt.ylabel('MSE') plt.title('PLSR MSE vs. Components') plt.xlim(left=-1) plt.savefig(path + "PLSR MSE vs. Components.png", dpi=300) # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 150) fig.clf() plt.close(fig) doc.showPage() # print(sorted_imp) imp = {} for i in range(PLSR_LDS_Helper.features.shape[1]): print('Band {}: {}'.format(i + 1, round(PLSR_LDS_Helper.importance[i], 2))) imp['Band{}'.format(i + 1)] = round(PLSR_LDS_Helper.importance[i], 2) data = [(k, v) for k, v in imp.items()] # dummy = [('Band',1.33),('Band',5),('Band',4),('Band',2),('Band',6),('Band',8),('Band',43),('Band',3),('Band',113),('Band',233),('Band',13),('Band',133)] # data.extend(dummy) data2 = data[:] data2.sort(key=lambda x: x[1], reverse=True) data.insert(0, ("Band", "Importance")) data2.insert(0, ("Band", "Importance")) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 710, "Band importance (left: ordered by band number | right: ordered by importance):") doc.setFont('Helvetica', 10) if (len(data) > 21): chunks = (self.chunks(data, 20)) ordered_chunks = (self.chunks(data2, 20)) iterationNumer = 0 for unorder, ordered in zip(chunks, ordered_chunks): if iterationNumer != 0: unorder.insert(0, ("Band", "Importance")) ordered.insert(0, ("Band", "Importance")) unordered_table = Table(unorder) ordered_table = Table(ordered) unordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) ordered_table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) if iterationNumer == 0: unordered_table.wrapOn(doc, 60, 100) unordered_table.drawOn(doc, 60, 100) ordered_table.wrapOn(doc, 280, 100) ordered_table.drawOn(doc, 280, 100) else: unordered_table.wrapOn(doc, 60, 400) unordered_table.drawOn(doc, 60, 400) ordered_table.wrapOn(doc, 280, 400) ordered_table.drawOn(doc, 280, 400) columns = [""] ordered_table = Table(columns) unordered_table = Table(columns) doc.showPage() iterationNumer += 1 else: table = Table(data) table2 = Table(data2) table.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table2.setStyle(TableStyle([("BOX", (0, 0), (-1, -1), 0.25, colors.black), ('INNERGRID', (0, 0), (-1, -1), 0.25, colors.black)])) table.wrapOn(doc, 0, 0) table.drawOn(doc, 60, 100) table2.wrapOn(doc, 60, 100) table2.drawOn(doc, 280, 100) doc.showPage() # errors = abs(PLSR_LDS_Helper.predictions_test_ds - PLSR_LDS_Helper.test_labels) # Print out the mean absolute error (mae) # Print out the mean absolute error (mae) print('-------------') print('n of the test data: {}'.format(len(PLSR_LDS_Helper.test_labels))) print('Mean of the variable: {:.2f}'.format(np.mean(PLSR_LDS_Helper.labels))) print('Standard deviation of the variable: {:.2f}'.format(np.std(PLSR_LDS_Helper.labels))) print('-------------') print('Mean Absolute Error: {:.2f}'.format(np.mean(errors))) mse = mean_squared_error(PLSR_LDS_Helper.test_labels, PLSR_LDS_Helper.predictions_test_ds) print('Mean squared error: '+ str(round(mse,2))) print('RMSE: '+str(round(np.sqrt(mse),2))) # mape = 100 * (errors / PLSR_LDS_Helper.test_labels) # Calculate and display accuracy accuracy = 100 - np.mean(mape) print('mean absolute percentage error (MAPE) / Accuracy: {:.2f}'.format(accuracy), '%.') print('-------------') # The coefficient of determination: 1 is perfect prediction print('Coefficient of determination r²: {:.2f}'.format(r2_score(PLSR_LDS_Helper.test_labels, PLSR_LDS_Helper.predictions_test_ds))) # # doc.drawString(30, 785, 'n of the test data: {}'.format(len(PLSR_LDS_Helper.test_labels))) doc.drawString(30, 765,'Mean of the variable: {:.2f}'.format(np.mean(PLSR_LDS_Helper.labels))) doc.drawString(30, 745,'Standard deviation of the variable: {:.2f}'.format(np.std(PLSR_LDS_Helper.labels))) doc.drawString(30, 735,'------------------------------------------------------') doc.drawString(30, 715,'Mean Absolute Error: {:.2f}'.format(np.mean(errors))) mse = mean_squared_error(PLSR_LDS_Helper.test_labels, PLSR_LDS_Helper.predictions_test_ds) doc.drawString(30, 685,'Mean squared error: {:.2f}'.format(mse)) doc.drawString(30, 670,'RMSE: {:.2f}'.format(np.sqrt(mse))) mape = 100 * (errors / PLSR_LDS_Helper.test_labels) # Calculate and display accuracy accuracy = 100 - np.mean(mape) doc.drawString(30, 655,"mean absolute percentage error (MAPE) / Accuracy: "+ str(round(accuracy,2))+" %") doc.drawString(30, 640,'----------------------------------------------------') fig, ax = plt.subplots(figsize=(5,5)) ax.scatter(PLSR_LDS_Helper.test_labels, PLSR_LDS_Helper.predictions_test_ds) ax.plot([PLSR_LDS_Helper.test_labels.min(), PLSR_LDS_Helper.test_labels.max()], [PLSR_LDS_Helper.test_labels.min(), PLSR_LDS_Helper.test_labels.max()], 'k--', lw=1) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') imgdata = BytesIO() plt.savefig(path + "R2CV", dpi=300) fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 240) fig.clf() plt.close(fig) # mask = np.copy(img[:, :, 0]) # mask[mask > 0.0] = 1.0 # all actual pixels have a value of 1.0 # plot mask # plt.imshow(mask) # mask classification an plot # prediction_ = prediction * mask # # plt.subplot(121) # plt.imshow(prediction, cmap=plt.cm.Spectral, vmax=prediction.mean() + prediction.std() * 2, # vmin=prediction.mean() - prediction.std() * 2) # plt.title('prediction unmasked') # # plt.subplot(122) # plt.imshow(prediction_, cmap=plt.cm.Spectral, vmax=prediction_.mean() + prediction_.std() * 2, # vmin=prediction_.mean() - prediction_.std() * 2) # plt.title('prediction masked') # # plt.show() # # # plt.subplot(121) # plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) # plt.title('RS image - first band') # # plt.subplot(122) # plt.imshow(prediction, cmap=plt.cm.Spectral, vmax=prediction_.mean() + prediction_.std() * 2, # vmin=prediction_.mean() - prediction_.std() * 2) # plt.colorbar() # # plt.title('Prediction') # # plt.show() # return doc def make_rfr_sss_report(self,doc,reportpath,dir_path,train_data,prediction_map,modelsavepath,img_path,TrainingData,img,attributes,prediction, y_c, y_cv, RFR): try: os.mkdir(dir_path + "/Graphs") path = dir_path + "/Graphs/" width, height = A4 # print("here........."+reportpath) print(prediction_map) print(modelsavepath) print(img_path) print(train_data) doc.setFont('Helvetica-Bold', 14) doc.drawString(30, 700,"DIRECTORIES:") doc.setFont('Helvetica', 7) doc.drawString(30, 680, "Remote Sensing Image: " + img_path) doc.drawString(30, 660, "Shape file: " + train_data) doc.drawString(30, 640, "Report Save Path: "+ reportpath) doc.drawString(30, 620, "Regression image saved to: " + prediction_map) if modelsavepath !='/': doc.drawString(30, 600, "Model saved to: "+modelsavepath) else: doc.drawString(30, 600, "Model saved to: Model not saved") doc.line(20, 580, 570, 580) n_samples = (TrainingData > 0).sum() print('We have {n} training samples'.format( n=n_samples)) # Subset the image dataset with the training image = X roi_positions = np.where(TrainingData > 0) if img.shape[0] > img.shape[1]: fig = plt.figure(figsize=(5, 4)) plt.subplot(121) print(img.shape) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') # plt.subplot(122) # plt.imshow(TrainingData, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # #plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 160) # else: # renderPDF.draw(drawing, doc, 50, 250) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 400, 160) fig.clf() plt.close(fig) doc.showPage() if img.shape[0]<= img.shape[1]: fig = plt.figure(figsize=(6, 4)) plt.subplot(121) print(img.shape) plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') # plt.subplot(122) # plt.imshow(TrainingData, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral # plt.title('Training Image') # #plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 50, 360) # else: # renderPDF.draw(drawing, doc, 50, 250) fig.clf() plt.close(fig) fig = plt.figure(figsize=(5, 4)) plt.imshow(prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') # plt.show() imgdata = BytesIO() fig.savefig(imgdata, format='svg', bbox_inches='tight', pad_inches=0) imgdata.seek(0) # rewind the data drawing = svg2rlg(imgdata) renderPDF.draw(drawing, doc, 70, 60) fig.clf() plt.close(fig) doc.showPage() plt.imshow(img[:, :, 0], cmap=plt.cm.Greys_r) plt.scatter(roi_positions[1], roi_positions[0], marker='x', c='r') plt.title('RS image - first band') plt.savefig(path + "RS image-first_band.png", dpi=300) plt.clf() plt.imshow(TrainingData, cmap=plt.cm.Spectral) # data = roi && cmap = plt.cm.Spectral plt.title('Training Image') plt.savefig(path + "Training_Image.png", dpi=300) plt.clf() plt.imshow(prediction, cmap=plt.cm.Spectral) plt.colorbar() plt.title('Prediction') plt.savefig(path + "Prediction.png", dpi=300) plt.clf() settings_sns = {'axes.facecolor': 'white', 'axes.edgecolor': '0', 'axes.grid': True, 'axes.axisbelow': True, 'axes.labelcolor': '.15', 'figure.facecolor': 'white', 'grid.color': '.8', 'grid.linestyle': '--', 'text.color': '0', 'xtick.color': '0', 'ytick.color': '0', 'xtick.direction': 'in', 'ytick.direction': 'in', 'lines.solid_capstyle': 'round', 'patch.edgecolor': 'w', 'patch.force_edgecolor': True, 'image.cmap': 'Greys', 'font.family': ['serif'], 'font.sans-serif': ['Arial', 'Liberation Sans', 'DejaVu Sans', 'Bitstream Vera Sans', 'sans-serif'], 'xtick.bottom': True, 'xtick.top': True, 'ytick.left': True, 'ytick.right': True, 'axes.spines.left': True, 'axes.spines.bottom': True, 'axes.spines.right': True, 'axes.spines.top': True} X = img[TrainingData > 0, :] y = TrainingData[TrainingData > 0] features = pd.DataFrame(X) band_names = [] for i in range(X.shape[1]): # for i in range(0,2500): nband = "Band_" + str(i + 1) band_names.append(nband) # print("*******************") # print(band_names) # print("*******************") features.columns = band_names print('The shape of our features is:', features.shape) print('The number of Spectra is:', features.shape[0]) print('The number of bands is:', features.shape[1]) features['value'] = y # min_max_scaler = preprocessing.MinMaxScaler() # # xscaled = min_max_scaler.fit_transform(features) # features_ = pd.DataFrame(xscaled) # # features_.transpose().plot(figsize=(20, 7)) # plt.legend(bbox_to_anchor=(0.1, -0.1), loc='upper left', ncol=7) # plt.title('Reference Spectra') # plt.plot() # # # # In[10]: # Labels are the values we want to predict labels =
np.array(features['value'])
numpy.array
import torch from torch.utils.data import Dataset import os import json from random import randint from torch import nn from torch.nn import functional as F import pandas as pd import numpy as np import librosa from tqdm import tqdm def make_dataset(directory, class_to_idx): instances = [] directory = os.path.expanduser(directory) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) item = path, class_index instances.append(item) return instances class RAVDESS_LANDMARK(Dataset): def __init__(self, root, samples=None,min_frames=25,n_mels = 128,audio=False,audio_only=False,audio_separate=False, test=False, zero_start=False, contrastive=False, mixmatch=False, random_aug=False, drop_kp=False): super(RAVDESS_LANDMARK, self).__init__() self.root = root classes, class_to_idx = self._find_classes(self.root) if samples is None: samples = make_dataset(self.root, class_to_idx) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) raise RuntimeError(msg) self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.min_frames = min_frames self.test = test self.zero_start = zero_start self.contrastive = contrastive self.mixmatch = mixmatch self.random_aug = random_aug self.drop_kp = drop_kp self.audio = audio self.audio_only = audio_only self.n_mels = n_mels self.audio_separate = audio_separate self.preprocess_landmark(audio=True) if self.audio: self.preprocess_audio(audio=True) def __len__(self): return len(self.samples) def _find_classes(self, dir): """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def preprocess_landmark(self,audio=False): new_samples = [] print("preprocessing landmarks") for idx in tqdm(range(len(self.samples))): path_ld = self.samples[idx][0] if audio: kx = np.zeros((90,68)) ky = np.zeros((90,68)) else: data = pd.read_csv(path_ld) kx = data.iloc[:,297:365].to_numpy() ky = data.iloc[:,365:433].to_numpy() kx = (kx - np.min(kx))/np.ptp(kx) ky = (ky - np.min(ky))/np.ptp(ky) if self.audio: new_samples.append(([kx,ky],self.samples[idx][1],self.samples[idx][2])) else: new_samples.append(([kx,ky],self.samples[idx][1])) self.samples = new_samples def preprocess_audio(self,audio=False): new_samples = [] print("preprocessing audio") for idx in tqdm(range(len(self.samples))): path_audio = self.samples[idx][2] with open(path_audio, 'rb') as f: mel_spect = np.load(f) len_seq = mel_spect.shape[0] # use the db inside the graph does not help, performance are significately worst if self.audio_separate: mel_spect = librosa.power_to_db(mel_spect, ref=np.max) if audio: new_samples.append(([np.zeros((len_seq,68)),np.zeros((len_seq,68))],self.samples[idx][1],torch.Tensor(mel_spect))) else: new_samples.append((self.samples[idx][0],self.samples[idx][1],torch.Tensor(mel_spect))) self.samples = new_samples def get_class_sample_count(self): count =np.zeros(len(self.classes), dtype=int) for s in self.samples: count[s[1]] +=1 weight = 1. /count sample_weight = [] for s in self.samples: sample_weight.append(weight[s[1]]) return count, torch.Tensor(sample_weight) def rotate(self, out, origin=(0.5, 0.5), degrees=0): out_rot = torch.Tensor([]) for p in out: angle = np.deg2rad(degrees) R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) o = np.atleast_2d(origin) p = np.atleast_2d(p) p = np.squeeze((R @ (p.T-o.T) + o.T).T) out_rot = torch.cat((out_rot,torch.Tensor(p).unsqueeze(0))) return out_rot def __getitem__(self, index: int): target = self.samples[index][1] kx,ky = self.samples[index][0][0], self.samples[index][0][1] noise = torch.normal(0, 0.003, size=(51, 2)) if self.audio: mel_spect = self.samples[index][2] if self.audio_only: ld = np.array([kx,ky]).T elif not self.audio_separate: mel_spect = mel_spect.mean(1).numpy() mel_spect = np.array([np.repeat(mv,68) for mv in mel_spect]) ld = np.array([kx,ky,mel_spect]).T else: ld =
np.array([kx,ky])
numpy.array
import json import numpy as np import tkinter from tkinter import * from collections import namedtuple from geometry import Cube, Point class Scene(object): def __init__(self): self.distance = 1000 self.start_point = Point((0, 0, 0)) self.filled = False self.load_scene() def load_scene(self): scene = [] scene.append(Cube((-10, -10, 40), 10, 'red')) scene.append(Cube((10, -10, 40), 10, 'green')) scene.append(Cube((10, -10, 60), 10, 'orange')) scene.append(Cube((-10, -10, 60), 10, 'Turquoise')) scene.append(Cube((-10, 10, 40), 10, 'Magenta')) scene.append(Cube((10, 10, 40), 10, 'Lime')) scene.append(Cube((10, 10, 60), 10, 'white')) scene.append(Cube((-10, 10, 60), 10, 'yellow')) self.scene_data = scene self.render() def move(self, axis, direction): transform = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) if axis == "x": transform[0, 3] = direction elif axis == "y": transform[1, 3] = direction else: transform[2, 3] = direction for poly in self.scene_data: for point in poly.points: point.transform(transform) print(transform) def zoom(self, close): if close: self.distance = self.distance + 50 #print(scene.distance) else: self.distance = self.distance - 50 print(scene.distance) def turn(self, axis, direction): angle = direction * 10 * np.pi / 180. transform = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) if axis == 'x': transform[1:3, 1:3] = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) elif axis == 'y': transform[0:3, 0:3] = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0,
np.cos(angle)
numpy.cos
#!/usr/local/sci/bin/python2.7 #***************************** # # general utilities & classes for Python gridding. # # #************************************************************************ ''' Author: <NAME> Created: March 2016 Last update: 12 April 2016 Location: /project/hadobs2/hadisdh/marine/PROGS/Build ----------------------- CODE PURPOSE AND OUTPUT ----------------------- A set of class definitions and routines to help with the gridding of HadISDH Marine ----------------------- LIST OF MODULES ----------------------- None ----------------------- DATA ----------------------- None ----------------------- HOW TO RUN THE CODE ----------------------- All routines to be called from external scripts. ----------------------- OUTPUT ----------------------- None ----------------------- VERSION/RELEASE NOTES ----------------------- Version 2 (26 Sep 2016) <NAME> --------- Enhancements This now works with doNOWHOLE which is BC total but no data with whole number flags Changes Bug fixes Version 2 (26 Sep 2016) <NAME> --------- Enhancements This can now work with the 3 QC iterations and BC options This has a ShipOnly option in read_qc_data to pull through only ship data --ShipOnly Bug fixed to work with ship only bias corrected data - platform_meta[:,2] rather than the QConly platform_meta[:,3] Changes Bug fixes Possible bug fix in set_qc_flag_list This had an incomplete list of QC flags for the full list and wasn't matching the QC flags up correctly. This is now based on MDS_RWtools standard list. Possible number of elements mistake in read_qc_data This was causing an error where it was trying to treat 'None' as an intefer. I think it was miscounting the elements. This is now based on MDS_RWtools standard list. Version 1 (release date) --------- Enhancements Changes Bug fixes ----------------------- OTHER INFORMATION ----------------------- ''' import os import datetime as dt import numpy as np import sys import argparse import matplotlib import struct import netCDF4 as ncdf import pdb #********************************************* class MetVar(object): ''' Bare bones class for meteorological variable ''' def __init__(self, name, long_name): self.name = name self.long_name = long_name def __str__(self): return "variable: {}, long_name: {}".format(self.name, self.long_name) __repr__ = __str__ #********************************************* class TimeVar(object): ''' Bare bones class for times ''' def __init__(self, name, long_name, units, standard_name): self.name = name self.long_name = long_name self.units = units self.standard_name = standard_name def __str__(self): return "time: {}, long_name: {}, units: {}".format(self.name, self.long_name, self.units) __repr__ = __str__ #***************************************************** # KATE modified - added BC options #def set_qc_flag_list(doBC = False, doUncert = False): def set_qc_flag_list(doBC = False, doBCtotal = False, doBChgt = False, doBCscn = False, doNOWHOLE = False, doUncert = False): # end ''' Set the QC flags present in the raw data :param bool doBC: run for bias corrected data :param bool doUncert: work on files with uncertainty information (not currently used) :returns: QC_FLAGS - np string array ''' # KATE modified - added BC options # if doBC: if doBC | doBCtotal | doBChgt | doBCscn | doNOWHOLE: # end # reduced number of QC flags. return np.array(["day","land","trk","date1","date2","pos","blklst","dup",\ "SSTbud","SSTclim","SSTnonorm","SSTfreez","SSTrep",\ "ATbud","ATclim","ATnonorm","ATround","ATrep",\ "DPTbud","DPTclim","DPTssat","DPTround","DPTrep","DPTrepsat"]) else: # KATE modified - this doesn't seem to be working and I can't quite see how the subset listed below would work without any former subsetting of the read in data # This now uses the complete list from MDS_RWtools.py standard version # full list return np.array(["day","land","trk","date1","date2","pos","blklst","dup","POSblank1",\ "SSTbud","SSTclim","SSTnonorm","SSTfreez","SSTnoval","SSTnbud","SSTbbud","SSTrep","SSTblank",\ "ATbud","ATclim","ATnonorm","ATblank1","ATnoval","ATround","ATbbud","ATrep","ATblank2",\ "DPTbud","DPTclim","DPTnonorm","DPTssat","DPTnoval","DPTround","DPTbbud","DPTrep","DPTrepsat",\ "few","ntrk","POSblank2","POSblank3","POSblank4","POSblank5","POSblank6","POSblank7"]) # set_qc_flag_list # # full number # return np.array(["day","land","trk","date1","date2","pos","blklst","dup",\ #"SSTbud","SSTclim","SSTnonorm","SSTfreez","SSTrep",\ #"ATbud","ATclim","ATnonorm","ATnoval","ATround","ATrep",\ #"DPTbud","DPTclim","DPTnonorm","DPTssat","DPTnoval","DPTround","DPTrep","DPTrepsat"]) # set_qc_flag_list # end # RD - kept original flag array here just in case MDS_RWtools isn't used before next read #np.array(["day","land","trk","date1","date2","pos","blklst","dup","POSblank1",\ #"SSTbud","SSTclim","SSTnonorm","SSTfreez","SSTnoval","SSTnbud","SSTbbud","SSTrep","SSTblank",\ #"ATbud","ATclim","ATnonorm","ATblank1","ATnoval","ATnbud","ATbbud","ATrep","ATblank2",\ #"DPTbud","DPTclim","DPTnonorm","DPTssat","DPTnoval","DPTnbud","DPTbbud","DPTrep","DPTrepsat",\ #"few","ntrk","DUMblank1","DUMblank2","DUMblank3","DUMblank4","DUMblank5","DUMblank6"]) #***************************************************** # KATE modified - added BC options #def read_qc_data(filename, location, fieldwidths, doBC = False): def read_qc_data(filename, location, fieldwidths, doBC = False, doBCtotal = False, doBChgt = False, doBCscn = False, doNOWHOLE = False, ShipOnly = False): # end """ Read in the QC'd data and return Expects fixed field format http://stackoverflow.com/questions/4914008/efficient-way-of-parsing-fixed-width-files-in-python :param str filename: filename to read :param str location: location of file :param str fieldwidths: fixed field widths to use :param bool doBC: run on the bias corrected data # KATE modified - added BC options :param bool doBCtotal: run on the full bias corrected data :param bool doBChgt: run on the height only bias corrected data :param bool doBCscn: run on the screen only bias corrected data # end :param bool doNOWHOLE: run on the bias corrected data with no whole number flags set # KATE modified - added BC options :param bool ShipOnly: select only ship platform (0:5) data # end :returns: data - np.array of string data """ fmtstring = ''.join('%ds' % f for f in fieldwidths) parse = struct.Struct(fmtstring).unpack_from platform_data = [] platform_meta = [] platform_obs = [] platform_qc = [] # pdb.set_trace() with open(os.path.join(location, filename), 'r') as infile: for line in infile: try: if doBC: # some lines might not be the correct length assert len(line) == 751 fields = parse(line) # now unpack and process platform_data += [fields[: 8]] dummy_obs = [fields[8: 8+18]] # used to help counting the fields platform_obs += [fields[8+18: 8+18+14]] # the ???tbc fields dummy_obs = [fields[8+18+14: 8+18+14+14+14+14]] # ditto platform_meta += [fields[8+18+14+14+14+14: 8+18+14+14+14+14+12]] platform_qc += [fields[8+18+14+14+14+14+12:]] # KATE modified - added BC options elif doBCtotal | doNOWHOLE: # some lines might not be the correct length assert len(line) == 751 fields = parse(line) # now unpack and process platform_data += [fields[: 8]] dummy_obs = [fields[8: 8+18]] # used to help counting the fields platform_obs += [fields[8+18: 8+18+14]] # the ???tbc fields dummy_obs = [fields[8+18+14: 8+18+14+14+14+14]] # ditto platform_meta += [fields[8+18+14+14+14+14: 8+18+14+14+14+14+12]] # 3rd element is PT platform_qc += [fields[8+18+14+14+14+14+12:]] elif doBChgt: # some lines might not be the correct length assert len(line) == 751 fields = parse(line) # now unpack and process platform_data += [fields[: 8]] dummy_obs = [fields[8: 8+18+14]] # used to help counting the fields platform_obs += [fields[8+18+14: 8+18+14+14]] # the ???tbc fields dummy_obs = [fields[8+18+14+14: 8+18+14+14+14+14]] # ditto platform_meta += [fields[8+18+14+14+14+14: 8+18+14+14+14+14+12]] # 3rd element is PT platform_qc += [fields[8+18+14+14+14+14+12:]] elif doBCscn: # some lines might not be the correct length assert len(line) == 751 fields = parse(line) # now unpack and process platform_data += [fields[: 8]] dummy_obs = [fields[8: 8+18+14+14]] # used to help counting the fields platform_obs += [fields[8+18+14+14: 8+18+14+14+14]] # the ???tbc fields dummy_obs = [fields[8+18+14+14+14: 8+18+14+14+14+14]] # ditto platform_meta += [fields[8+18+14+14+14+14: 8+18+14+14+14+14+12]] # 3rd element is PT platform_qc += [fields[8+18+14+14+14+14+12:]] # end else: # some lines might not be the correct length assert len(line) == 410 fields = parse(line) # now unpack and process platform_data += [fields[: 8]] platform_obs += [fields[8: 8+17]] # KATE modified - this seems to be wrong platform_meta += [fields[8+17: 8+17+30]] # 4th element is PT platform_qc += [fields[8+17+30:]] #platform_meta += [fields[8+17: 8+17+20]] #platform_qc += [fields[8+17+20:]] # end except AssertionError: print("skipping line in {} - malformed data".format(filename)) print(line) except OSError: print("file {} missing".format(filename)) sys.exit() # convert to arrays platform_qc = np.array(platform_qc) platform_obs = np.array(platform_obs) platform_meta = np.array(platform_meta) platform_data = np.array(platform_data) # KATE modified - copied out as no longer needed for I300 run - already removed PT = 14 in make_and_full_qc.py # SHOULD HAVE BEEN platform_meta[:,3] anyway!!! so we have accidentally removed any SIDs of 14 - there are some!!! # # filter PT=14 # PT = np.array([int(x) for x in platform_meta[:,2]]) # # goods, = np.where(PT != 14) # # should no longer be needed but retained for completeness # end # KATE modified - if ShipOnly is set then pull out only ship data if ShipOnly: # filter PT=0:5 only # If its a BC run then PT is element 2 (3rd) but if its QC only then PT is element 3 (4th) if doBC | doBCtotal | doBChgt | doBCscn | doNOWHOLE: PT = np.array([int(x) for x in platform_meta[:,2]]) else: PT = np.array([int(x) for x in platform_meta[:,3]]) goods, = np.where(PT <= 5) print("Pulling out SHIPS only ",len(goods)) return platform_data[goods], \ platform_obs[goods].astype(int), \ platform_meta[goods], \ platform_qc[goods].astype(int) # read_qc_data else: return platform_data, \ platform_obs.astype(int), \ platform_meta, \ platform_qc.astype(int) # read_qc_data # end # KATE modified - copmmented out because above loops make this redundant # return platform_data[goods], \ # platform_obs[goods].astype(int), \ # platform_meta[goods], \ # platform_qc[goods].astype(int) # read_qc_data # end #***************************************************** # UNC NEW for doBCtotal only def read_unc_data(filename, location, fieldwidths, doUSLR = False, doUSCN = False, doUHGT = False, doUR = False, doUM = False, doUC = False, doUTOT = False, ShipOnly = False): """ Read in the uncertainty data and return Expects fixed field format :param str filename: filename to read :param str location: location of file :param str fieldwidths: fixed field widths to use # UNC NEW :param bool doUSLR: work on BC and solar adj uncertainty with correlation :param bool doUSCN: work on BC and instrument adj uncertainty with correlation :param bool doUHGT: work on BC and height adj uncertainty with correlation :param bool doUR: work on BC and rounding uncertainty with no correlation :param bool doUM: work on BC and measurement uncertainty with no correlation :param bool doUC: work on BC and climatological uncertainty with no correlation :param bool doUTOT: work on BC and total uncertainty with no correlation :param bool ShipOnly: select only ship platform (0:5) data :returns: data - np.array of string data """ fmtstring = ''.join('%ds' % f for f in fieldwidths) parse = struct.Struct(fmtstring).unpack_from platform_meta = [] uncSLR_data = [] uncSCN_data = [] uncHGT_data = [] uncR_data = [] uncM_data = [] uncC_data = [] uncTOT_data = [] with open(os.path.join(location, filename), 'r') as infile: for line in infile: try: # some lines might not be the correct length assert len(line) == 1055 fields = parse(line) # now unpack and process dummy_obs = [fields[: 8+14]] # skip over these ones uncTOT_data += [fields[8+14 : 8+14+14]] uncSLR_data += [fields[8+14+14 : 8+14+14+14]] uncSCN_data += [fields[8+14+14+14 : 8+14+14+14+14]] uncHGT_data += [fields[8+14+14+14+14 : 8+14+14+14+14+14]] uncM_data += [fields[8+14+14+14+14+14 : 8+14+14+14+14+14+14]] uncR_data += [fields[8+14+14+14+14+14+14 : 8+14+14+14+14+14+14+14]] uncC_data += [fields[8+14+14+14+14+14+14+14 : 8+14+14+14+14+14+14+14+14]] platform_meta += [fields[8+14+14+14+14+14+14+14+14 : 8+14+14+14+14+14+14+14+14+3]] # there are more elements but we do not need them except AssertionError: print("skipping line in {} - malformed data".format(filename)) print(line) except OSError: print("file {} missing".format(filename)) sys.exit() # convert to arrays platform_meta = np.array(platform_meta) uncSLR_data = np.array(uncSLR_data) uncSCN_data = np.array(uncSCN_data) uncHGT_data = np.array(uncHGT_data) uncR_data = np.array(uncR_data) uncM_data = np.array(uncM_data) uncC_data = np.array(uncC_data) uncTOT_data = np.array(uncTOT_data) # KATE modified - if ShipOnly is set then pull out only ship data if ShipOnly: # filter PT=0:5 only # If its a BC (ext or unc) run then PT is element 2 (3rd) but if its QC only then PT is element 3 (4th) PT = np.array([int(x) for x in platform_meta[:,2]]) goods, =
np.where(PT <= 5)
numpy.where
class DelaunayTriangulation: def __init__(self, convex_covering_space): self.__convex_covering_space = convex_covering_space self.__coordinates_to_points = None self.__coordinates_number = 0 self.__points_to_coordinates = None self.__points = None self.__convex_hull = None def add_points(self, points, restart=False): import numpy as np coordinates, c2p, p2c = self.__convex_covering_space.coordinates(points) self.__points = self.__convex_covering_space.extend(self.__points, points) if self.__convex_hull is None: from scipy.spatial import ConvexHull if self.__convex_covering_space.infinity is not None: coordinates = np.vstack((self.__convex_covering_space.infinity, coordinates)) self.__coordinates_to_points = np.hstack(([0], c2p + 1)) - 1 self.__points_to_coordinates = p2c + 1 else: self.__coordinates_to_points = c2p self.__points_to_coordinates = p2c self.__convex_hull = ConvexHull(coordinates, incremental=True) else: self.__coordinates_to_points = np.hstack((self.__coordinates_to_points, c2p + self.__points_number)) self.__points_to_coordinates =
np.hstack((self.__points_to_coordinates, p2c + self.__coordinates_number))
numpy.hstack
from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import range from builtins import object import scipy.interpolate import pdb import scipy.stats.mstats as mstats import numpy as np class Cl_class(object): def __init__(self, block, config): # Spectra to use self.shear = config['shear'] self.intrinsic_alignments = ( config['intrinsic_alignments'], config['GI'], config['II']) self.position = config['position'] self.ggl = config['ggl'] self.magnification = config['magnification'] self.cmb_kappa = config['cmb_kappa'] self.kappa_shear = config['kappa_shear'] self.kappa_pos = config['kappa_pos'] self.noise = config['noise'] self.bias = config['bias'][0] self.m_per_bin = config['bias'][1] shear_cat = config['shear_cat'] pos_cat = config['pos_cat'] self.dobinning = config['binning'] self.window = config['window'] # Relevant parameters for the noise if self.noise: self.sigma_gamma = config['shape_dispersion'] self.ngal_shear, self.ngal_pos = config['ngal'] # And the configuration of the theory spectra self.Nzbin_shear = int(block.get_int(shear_cat, 'nzbin', default=0)) self.Nzbin_pos = int(block.get_int(shear_cat, 'nzbin', default=0)) self.Nzbin_cmb = 1. if self.shear: self.zbin_edges_shear = [block[shear_cat, 'edge_%d' % i] for i in range(1, self.Nzbin_shear + 1)] if self.intrinsic_alignments[0]: gg_section = 'shear_cl_gg' else: gg_section = 'shear_cl' self.l_shear = block[gg_section, 'ell'] self.Nl_shear = len(self.l_shear) if self.dobinning: self.Nlbin_shear = int(config['nlbin_shear']) else: self.Nlbin_shear = self.Nl_shear if self.position: self.zbin_edges_pos = [block[pos_cat, 'edge_%d' % i] for i in range(1, self.Nzbin_pos + 1)] self.l_pos = block['matter_cl', 'ell'] self.Nl_pos = len(self.l_pos) if self.dobinning: self.Nlbin_pos = int(config['nlbin_pos']) else: self.Nlbin_pos = self.Nl_pos if self.ggl: self.l_ggl = block['matter_cl', 'ell'] self.Nl_ggl = len(self.l_ggl) if self.dobinning: self.Nlbin_ggl = int(config['nlbin_ggl']) else: self.Nlbin_ggl = self.Nl_ggl if self.cmb_kappa: self.l_kk = block['cmb_kappa_cl', 'ell'] self.Nl_kk = len(self.l_pos) if self.dobinning: self.Nlbin_kk = int(config['nlbin_kk']) else: self.Nlbin_kk = self.Nl_kk if self.kappa_shear: self.l_ke = block['cmb_kappa_shear_cl', 'ell'] self.Nl_ke = len(self.l_pos) if self.dobinning: self.Nlbin_ke = int(config['nlbin_ke']) else: self.Nlbin_ke = self.Nl_ke if self.kappa_pos: self.l_kn = block['cmb_kappa_matter_cl', 'ell'] self.Nl_kn = len(self.l_kn) if self.dobinning: self.Nlbin_kn = int(config['nlbin_kn']) else: self.Nlbin_kn = self.Nl_kn if self.bias: self.multiplicative_bias = [block[shear_cat, "m%d" % i] for i in range(1, self.Nzbin_shear + 1)] # Finally get the desired binning self.get_l_bins(config) def load_and_generate_observable_cls(self, block, names): # Set up somewhere to put the observable spectra if self.shear: self.C_ee = np.zeros( (self.Nzbin_shear, self.Nzbin_shear, self.Nl_shear)) self.C_ee_binned = np.zeros( (self.Nzbin_shear, self.Nzbin_shear, self.Nlbin_shear)) if self.position: self.C_nn = np.zeros((self.Nzbin_pos, self.Nzbin_pos, self.Nl_pos)) self.C_nn_binned = np.zeros( (self.Nzbin_pos, self.Nzbin_pos, self.Nlbin_pos)) if self.ggl: self.C_ne = np.zeros( (self.Nzbin_pos, self.Nzbin_shear, self.Nl_pos)) self.C_ne_binned = np.zeros( (self.Nzbin_pos, self.Nzbin_shear, self.Nlbin_ggl)) # Then cycle through all the redshift bin combinations if self.shear: for i in range(1, self.Nzbin_shear + 1): for j in range(1, self.Nzbin_shear + 1): bin = "bin_%d_%d" % (i, j) bin_tr = "bin_%d_%d" % (j, i) # The C_GG,II,mm,gg spectra are symmetric # This is just bookkeeping to account for the fact we only have half of them if (j < i): a = bin else: a = bin_tr # GG if self.intrinsic_alignments[0]: self.C_ee[i - 1][j - 1] += block.get_double_array_1d("shear_cl_gg", a) if self.intrinsic_alignments[1]: # GI self.C_ee[i - 1][j - 1] += block.get_double_array_1d("shear_cl_gi", bin) # IG self.C_ee[i - 1][j - 1] += block.get_double_array_1d("shear_cl_gi", bin_tr) if self.intrinsic_alignments[2]: # II self.C_ee[i - 1][j - 1] += block.get_double_array_1d("shear_cl_ii", a) else: self.C_ee[i - 1][j - 1] += block.get_double_array_1d("shear_cl", a) block["galaxy_shape_cl_unbinned", "ell"] = block.get_double_array_1d( "shear_cl_gg", "ell") if self.position: for i in range(1, self.Nzbin_pos + 1): for j in range(1, self.Nzbin_pos + 1): bin = "bin_%d_%d" % (i, j) bin_tr = "bin_%d_%d" % (j, i) # The C_GG,II,mm,gg spectra are symmetric # This is just bookkeeping to account for the fact we only have half of them if (j < i): a = bin else: a = bin_tr # gg self.C_nn[i - 1][j - 1] += block.get_double_array_1d('matter_cl', a) if self.magnification: # mg self.C_nn[i - 1][j - 1] += block.get_double_array_1d( "galaxy_magnification_cl", bin) self.C_nn[i - 1][j - 1] += block.get_double_array_1d( "galaxy_magnification_cl", bin_tr) # gm self.C_nn[i - 1][j - 1] += block.get_double_array_1d( "magnification_magnification_cl", a) # mm block["galaxy_position_cl_unbinned", "ell"] = block.get_double_array_1d("matter_cl", "ell") if self.ggl: block["galaxy_position_shape_cross_cl_unbinned", "ell"] = block.get_double_array_1d("matter_cl", "ell") for i in range(1, self.Nzbin_pos + 1): for j in range(1, self.Nzbin_shear + 1): bin = "bin_%d_%d" % (i, j) bin_tr = "bin_%d_%d" % (j, i) # The C_GG,II,mm,gg spectra are symmetric # This is just bookkeeping to account for the fact we only have half of them if (j < i): a = bin else: a = bin_tr if self.ggl: # gG self.C_ne[i - 1][j - 1] += block.get_double_array_1d("ggl_cl", bin) if self.intrinsic_alignments[0]: # gI self.C_ne[i - 1][j - 1] += block.get_double_array_1d("gal_IA_cross_cl", bin) if self.magnification: self.C_ne[i - 1][j - 1] += block.get_double_array_1d( "magnification_intrinsic_cl", bin) # mI if self.magnification: # mG self.C_ne[i - 1][j - 1] += block.get_double_array_1d( "magnification_shear_cl", bin) if not self.noise: # Finally resample the spectra in the survey angular frequency bins if self.shear: self.C_ee_binned[i - 1][j - 1] = get_binned_cl(self.C_ee[i - 1][j - 1], self.l_shear, self.lbin_edges_shear, self.dobinning, self.window) if self.bias: self.apply_measurement_bias(i, j, 'shear') block["galaxy_shape_cl_unbinned", a] = self.C_ee[i - 1][j - 1] if self.position: self.C_nn_binned[i - 1][j - 1] = get_binned_cl(self.C_nn[i - 1][j - 1], self.l_pos, self.lbin_edges_pos, self.dobinning, self.window) block["galaxy_position_cl_UNBINNED", a] = self.C_nn[i - 1][j - 1] if self.ggl: self.C_ne_binned[i - 1][j - 1] = get_binned_cl(self.C_ne[i - 1][j - 1], self.l_ggl, self.lbin_edges_pos, self.dobinning, self.window) if self.bias: self.apply_measurement_bias(i, j, 'ggl') block["galaxy_position_shape_cross_cl_unbinned", a] = self.C_ne[i - 1][j - 1] if self.noise: # Add shot noise if required self.add_noise(block) # If noise was added earlier, the binning is done here rather than # immediately on loading if self.shear: for i in range(1, self.Nzbin_shear + 1): for j in range(1, self.Nzbin_shear + 1): self.C_ee_binned[i - 1][j - 1] = get_binned_cl(self.C_ee[i - 1][j - 1], self.l_shear, self.lbin_edges_shear, self.dobinning, self.window) if self.bias: self.apply_measurement_bias(i, j, 'shear') block["galaxy_shape_cl_unbinned", "bin_%d_%d" % (i, j)] = self.C_ee[i - 1][j - 1] if self.position: for i in range(1, self.Nzbin_pos + 1): for j in range(1, self.Nzbin_pos + 1): self.C_nn_binned[i - 1][j - 1] = get_binned_cl(self.C_nn[i - 1][j - 1], self.l_pos, self.lbin_edges_pos, self.dobinning, self.window) block["galaxy_position_cl_UNBINNED", "bin_%d_%d" % (i, j)] = self.C_nn[i - 1][j - 1] print(a) if self.ggl: for i in range(1, self.Nzbin_pos + 1): for j in range(1, self.Nzbin_shear + 1): self.C_ne_binned[i - 1][j - 1] = get_binned_cl(self.C_ne[i - 1][j - 1], self.l_ggl, self.lbin_edges_pos, self.dobinning, self.window) if self.bias: self.apply_measurement_bias(i, j, 'ggl') block["galaxy_position_shape_cross_cl_unbinned", "bin_%d_%d" % (i, j)] = self.C_ne[i - 1][j - 1] def apply_measurement_bias(self, i, j, mode=None): if not self.m_per_bin: m0 = self.multiplicative_bias[0] # Compute scaling parameter for this pair of redshift bins if self.m_per_bin: mi = self.multiplicative_bias[i - 1] mj = self.multiplicative_bias[j - 1] else: mi, mj = m0, m0 # Apply scaling if mode == 'shear': self.C_ee_binned[i - 1][j - 1] *= (1 + mi) * (1 + mj) if mode == 'ggl': self.C_ne_binned[i - 1][j - 1] *= (1 + mj) def add_noise(self, block): n_binned_shear = get_binned_number_densities( self.Nzbin_shear, self.ngal_shear) n_binned_pos = get_binned_number_densities( self.Nzbin_pos, self.ngal_pos) # Create noise matrices with the same shape as the Cls # These are diagonal in the x,z plane (fixed l) and constant along the y axis (constant redshift) N_ee_0 = np.identity(self.Nzbin_shear) * \ self.sigma_gamma**2 / (2. * n_binned_shear) N_nn_0 = np.identity(self.Nzbin_pos) * 1. / n_binned_pos N_shot_ee = [] N_shot_nn = [] if self.shear: for i in range(len(self.C_ee[0][0])): N_shot_ee += [N_ee_0] N_shot_ee = np.swapaxes(N_shot_ee, 0, 2) N_shot_ee = np.swapaxes(N_shot_ee, 0, 1) if self.position: for i in range(len(self.C_nn[0][0])): N_shot_nn += [N_nn_0] N_shot_nn = np.swapaxes(N_shot_nn, 0, 2) N_shot_nn = np.swapaxes(N_shot_nn, 0, 1) # Then add the relevant noise to the Cl matrices if self.shear: self.C_ee += N_shot_ee if self.position: self.C_nn += N_shot_nn def get_l_bins(self, config): if self.dobinning: # Define some l bins for these galaxy samples lmin, lmax = config['lmin_shear'], config['lmax_shear'] if self.shear: self.lbin_edges_shear = np.logspace( np.log10(lmin), np.log10(lmax), self.Nlbin_shear + 1) self.l_bins_shear = np.zeros_like(self.lbin_edges_shear[:-1]) if self.window == 'tophat': self.l_bins_shear = np.exp( (np.log(self.lbin_edges_shear[1:] * self.lbin_edges_shear[:-1])) / 2.0) elif self.window == 'tophat-arithmetic': self.l_bins_shear = ( self.lbin_edges_shear[1:] + self.lbin_edges_shear[:-1]) / 2.0 elif self.window == 'delta': # Just take the mid point of each bin and sample the Cls there for i in range(len(self.lbin_edges_shear) - 1): lmin0 = self.lbin_edges_shear[i] lmax0 = self.lbin_edges_shear[i + 1] sel = (self.l_shear > lmin0) & (self.l_shear < lmax0) l_in_window = self.l_shear[sel] self.l_bins_shear[i] = l_in_window[len( l_in_window) / 2] if self.position: lmin, lmax = config['lmin_pos'], config['lmax_pos'] self.lbin_edges_pos = np.logspace( np.log10(lmin), np.log10(lmax), self.Nlbin_pos + 1) self.l_bins_pos = np.zeros_like(self.lbin_edges_pos[:-1]) if self.window == 'tophat': self.l_bins_pos = np.exp( (np.log(self.lbin_edges_pos[1:] * self.lbin_edges_pos[:-1])) / 2.0) elif self.window == 'tophat-arithmetic': self.l_bins_pos = ( self.lbin_edges_pos[1:] + self.lbin_edges_pos[:-1]) / 2.0 elif self.window == 'delta': for i in range(len(self.lbin_edges_pos) - 1): lmin0 = self.lbin_edges_pos[i] lmax0 = self.lbin_edges_pos[i + 1] sel = (self.l_pos > lmin0) & (self.l_pos < lmax0) l_in_window = self.l_pos[sel] self.l_bins_pos[i] = l_in_window[len(l_in_window) / 2] if self.position and self.shear: lmin, lmax = config['lmin_ggl'], config['lmax_ggl'] self.lbin_edges_ggl = np.logspace( np.log10(lmin), np.log10(lmax), self.Nlbin_ggl + 1) self.l_bins_ggl = np.zeros_like(self.lbin_edges_ggl[:-1]) lmin, lmax = config['lmin_ggl'], config['lmax_ggl'] self.lbin_edges_ggl = np.logspace( np.log10(lmin), np.log10(lmax), self.Nlbin_ggl + 1) if self.window == 'tophat': self.l_bins_ggl = np.exp( (np.log(self.lbin_edges_ggl[1:] * self.lbin_edges_ggl[:-1])) / 2.0) elif self.window == 'tophat-arithmetic': self.l_bins_ggl = ( self.lbin_edges_ggl[1:] + self.lbin_edges_ggl[:-1]) / 2.0 elif self.window == 'delta': for i in range(len(self.lbin_edges_ggl) - 1): lmin0 = self.lbin_edges_ggl[i] lmax0 = self.lbin_edges_ggl[i + 1] sel = (self.l_ggl > lmin0) & (self.l_ggl < lmax0) l_in_window = self.l_ggl[sel] self.l_bins_ggl[i] = l_in_window[len(l_in_window) / 2] if self.cmb_kappa: lmin, lmax = config['lmin_cmb_kappa'], config['lmax_cmb_kappa'] self.lbin_edges_kk = np.linspace(lmin, lmax, self.Nlbin_kk + 1) self.l_bins_kk = np.zeros_like(self.lbin_edges_kk[:-1]) if self.window == 'tophat': self.l_bins_kk = np.exp( (np.log(self.lbin_edges_kk[1:] * self.lbin_edges_kk[:-1])) / 2.0) elif self.window == 'tophat-arithmetic': self.l_bins_kk = ( self.lbin_edges_kk[1:] + self.lbin_edges_kk[:-1]) / 2.0 elif self.window == 'delta': for i in range(len(self.lbin_edges_kk) - 1): lmin0 = self.lbin_edges_kk[i] lmax0 = self.lbin_edges_kk[i + 1] sel = (self.l_kk > lmin0) & (self.l_kk < lmax0) l_in_window = self.l_kk[sel] self.l_bins_kk[i] = l_in_window[len(l_in_window) / 2] if self.kappa_shear: lmin, lmax = config['lmin_kappa_shear'], config['lmax_kappa_shear'] self.lbin_edges_ke = np.linspace(lmin, lmax, self.Nlbin_ke + 1) self.l_bins_ke = np.zeros_like(self.lbin_edges_ke[:-1]) if self.window == 'tophat': self.l_bins_ke = np.exp( (
np.log(self.lbin_edges_ke[1:] * self.lbin_edges_ke[:-1])
numpy.log
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import contextlib import numpy as np from decorator_helper import prog_scope import inspect from six.moves import filter import paddle import paddle.fluid as fluid from paddle.fluid.layers.device import get_places import paddle.fluid.nets as nets from paddle.fluid.framework import Program, program_guard, default_main_program from paddle.fluid.param_attr import ParamAttr from paddle.fluid import core from paddle.fluid.initializer import Constant import paddle.fluid.layers as layers from test_imperative_base import new_program_scope from paddle.fluid.dygraph import nn from paddle.fluid.dygraph import base from paddle.fluid.dygraph import to_variable class LayerTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.seed = 111 @classmethod def tearDownClass(cls): pass def _get_place(self, force_to_use_cpu=False): # this option for ops that only have cpu kernel if force_to_use_cpu: return core.CPUPlace() else: if core.is_compiled_with_cuda(): return core.CUDAPlace(0) return core.CPUPlace() @contextlib.contextmanager def static_graph(self): with new_program_scope(): fluid.default_startup_program().random_seed = self.seed fluid.default_main_program().random_seed = self.seed yield def get_static_graph_result(self, feed, fetch_list, with_lod=False, force_to_use_cpu=False): exe = fluid.Executor(self._get_place(force_to_use_cpu)) exe.run(fluid.default_startup_program()) return exe.run(fluid.default_main_program(), feed=feed, fetch_list=fetch_list, return_numpy=(not with_lod)) @contextlib.contextmanager def dynamic_graph(self, force_to_use_cpu=False): with fluid.dygraph.guard( self._get_place(force_to_use_cpu=force_to_use_cpu)): fluid.default_startup_program().random_seed = self.seed fluid.default_main_program().random_seed = self.seed yield class TestLayer(LayerTest): def test_custom_layer_with_kwargs(self): class CustomLayer(fluid.Layer): def __init__(self, input_size, linear1_size=4): super(CustomLayer, self).__init__() self.linear1 = nn.Linear( input_size, linear1_size, bias_attr=False) self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False) def forward(self, x, do_linear2=False): ret = self.linear1(x) if do_linear2: ret = self.linear2(ret) return ret with self.dynamic_graph(): inp = np.ones([3, 3], dtype='float32') x = base.to_variable(inp) custom = CustomLayer(input_size=3, linear1_size=2) ret = custom(x, do_linear2=False) self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2])) ret = custom(x, do_linear2=True) self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1])) def test_linear(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): t = layers.data( name='data', shape=[3, 32, 32], dtype='float32', append_batch_size=False) linear = nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)) ret = linear(t) static_ret = self.get_static_graph_result( feed={'data': inp}, fetch_list=[ret])[0] with self.dynamic_graph(): t = base.to_variable(inp) linear = nn.Linear( 32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)) dy_ret = linear(t) dy_ret_value = dy_ret.numpy() self.assertTrue(np.array_equal(static_ret, dy_ret_value)) def test_layer_norm(self): inp =
np.ones([3, 32, 32], dtype='float32')
numpy.ones
"""Interactive phaseogram.""" import warnings import copy import argparse from stingray.pulse.pulsar import fold_events, pulse_phase, get_TOA from stingray.utils import assign_value_if_none from stingray.events import EventList import numpy as np from scipy.signal import savgol_filter from scipy import optimize from astropy.stats import poisson_conf_interval from astropy import log from .io import load_events, filter_energy try: from tqdm import tqdm as show_progress except ImportError: def show_progress(a): return a try: import pint.toa as toa # import pint HAS_PINT = True except ImportError: warnings.warn( "PINT is not installed. " "Some pulsar functionality will not be available" ) HAS_PINT = False from .base import deorbit_events def _load_and_prepare_TOAs(mjds, errs_us=None, ephem="DE405"): errs_us = assign_value_if_none(errs_us, np.zeros_like(mjds)) toalist = [None] * len(mjds) for i, m in enumerate(mjds): toalist[i] = toa.TOA( m, error=errs_us[i], obs="Barycenter", scale="tdb" ) toalist = toa.TOAs(toalist=toalist) if "tdb" not in toalist.table.colnames: toalist.compute_TDBs() if "ssb_obs_pos" not in toalist.table.colnames: toalist.compute_posvels(ephem, False) return toalist def create_template_from_profile_sins( phase, profile, profile_err, imagefile="template.png", norm=1 ): """ Parameters ---------- phase: :class:`np.array` profile: :class:`np.array` profile_err: :class:`np.array` Phase, pulse profile, and error bars imagefile: str norm: float or :class:`np.array` Returns ------- template: :class:`np.array` The calculated template additional_phase: float Examples -------- >>> phase = np.arange(0.0, 1, 0.001) >>> profile = np.cos(2 * np.pi * phase) >>> profile_err = profile * 0 >>> template, additional_phase = create_template_from_profile_sins( ... phase, profile, profile_err) ... >>> np.allclose(template, profile, atol=0.01) True """ import matplotlib.pyplot as plt prof = np.concatenate((profile, profile, profile)) proferr = np.concatenate((profile_err, profile_err, profile_err)) fit_pars_save, _, _ = fit_profile_with_sinusoids( prof, proferr, nperiods=3, baseline=True, debug=False ) template = std_fold_fit_func(fit_pars_save, phase) fig = plt.figure() plt.plot(phase, profile, drawstyle="steps-mid") plt.plot(phase, template, drawstyle="steps-mid") plt.savefig(imagefile) plt.close(fig) # start template from highest bin! template *= norm template_fine = std_fold_fit_func(fit_pars_save, np.arange(0, 1, 0.001)) additional_phase = np.argmax(template_fine) / len(template_fine) return template, additional_phase def create_template_from_profile( phase, profile, profile_err, imagefile="template.png", norm=1 ): """ Parameters ---------- phase: :class:`np.array` profile: :class:`np.array` profile_err: :class:`np.array` Phase, pulse profile, and error bars imagefile: str norm: float or :class:`np.array` Returns ------- template: :class:`np.array` The calculated template additional_phase: float Examples -------- >>> phase = np.arange(0.0, 1, 0.01) >>> profile = np.cos(2 * np.pi * phase) >>> profile_err = profile * 0 >>> template, additional_phase = create_template_from_profile( ... phase, profile, profile_err) ... >>> np.allclose(template, profile, atol=0.001) True """ from scipy.interpolate import splrep, splev import matplotlib.pyplot as plt ph = np.concatenate((phase - 1, phase, phase + 1)) prof = np.concatenate((profile, profile, profile)) proferr = np.concatenate((profile_err, profile_err, profile_err)) weights = 1 / proferr if np.all(proferr != 0) else None # template = savgol_filter(profile, 5, 3, mode='wrap') spl = splrep(ph, prof, w=weights, s=0) phases_fine = np.arange(0, 1, 0.001) template_fine = splev(phases_fine, spl) template = splev(phase, spl) fig = plt.figure() plt.plot(phase, profile, drawstyle="steps-mid") plt.plot(phase, template, drawstyle="steps-mid") plt.savefig(imagefile) plt.close(fig) additional_phase = np.argmax(template_fine) / len(template_fine) return template, additional_phase def get_TOAs_from_events( events, folding_length, *frequency_derivatives, **kwargs ): """Get TOAs of pulsation. Parameters ---------- events : array-like event arrival times folding_length : float length of sub-intervals to fold *frequency_derivatives : floats pulse frequency, first derivative, second derivative, etc. Other parameters ---------------- pepoch : float, default None Epoch of timing solution, in the same units as ev_times. If none, the first event time is used. mjdref : float, default None Reference MJD template : array-like, default None The pulse template nbin : int, default 16 The number of bins in the profile (overridden by the dimension of the template) timfile : str, default 'out.tim' file to save the TOAs to (if PINT is installed) gti: [[g0_0, g0_1], [g1_0, g1_1], ...] Good time intervals. Defaults to None quick: bool If True, use a quicker fitting algorithms for TOAs. Defaults to False position: `astropy.SkyCoord` object Position of the object Returns ------- toas : array-like list of times of arrival. If ``mjdref`` is specified, they are expressed as MJDs, otherwise in MET toa_err : array-like errorbars on TOAs, in the same units as TOAs. """ template = kwargs["template"] if "template" in kwargs else None mjdref = kwargs["mjdref"] if "mjdref" in kwargs else None nbin = kwargs["nbin"] if "nbin" in kwargs else 16 pepoch = kwargs["pepoch"] if "pepoch" in kwargs else None timfile = kwargs["timfile"] if "timfile" in kwargs else "out.tim" gti = kwargs["gti"] if "gti" in kwargs else None label = kwargs["label"] if "label" in kwargs else None quick = kwargs["quick"] if "quick" in kwargs else False pepoch = assign_value_if_none(pepoch, events[0]) gti = np.asarray(assign_value_if_none(gti, [[events[0], events[-1]]])) # run exposure correction only if there are less than 1000 pulsations # in the interval length = gti.max() - gti.min() expocorr = folding_length < (1000 / frequency_derivatives[0]) if template is not None: nbin = len(template) additional_phase = np.argmax(template) / nbin else: phase, profile, profile_err = fold_events( copy.deepcopy(events), *frequency_derivatives, ref_time=pepoch, gtis=copy.deepcopy(gti), expocorr=expocorr, nbin=nbin, ) template, additional_phase = create_template_from_profile( phase, profile, profile_err, imagefile=timfile.replace(".tim", "") + ".png", norm=folding_length / length, ) starts = np.arange(gti[0, 0], gti[-1, 1], folding_length) toas = [] toa_errs = [] for start in show_progress(starts): stop = start + folding_length good = (events >= start) & (events < stop) events_tofold = events[good] if len(events_tofold) < nbin: continue gtis_tofold = copy.deepcopy( gti[(gti[:, 0] < stop) & (gti[:, 1] > start)] ) gtis_tofold[0, 0] = start gtis_tofold[-1, 1] = stop local_f = frequency_derivatives[0] for i_f, f in enumerate(frequency_derivatives[1:]): local_f += ( 1 / np.math.factorial(i_f + 1) * (start - pepoch) ** (i_f + 1) * f ) fder = copy.deepcopy(list(frequency_derivatives)) fder[0] = local_f phase, profile, profile_err = fold_events( events_tofold, *fder, ref_time=start, gtis=gtis_tofold, expocorr=expocorr, nbin=nbin, ) # BAD!BAD!BAD! # [[Pay attention to time reference here. # We are folding wrt pepoch, and calculating TOAs wrt start]] toa, toaerr = get_TOA( profile, 1 / frequency_derivatives[0], start, template=template, additional_phase=additional_phase, quick=quick, debug=True, ) toas.append(toa) toa_errs.append(toaerr) toas, toa_errs = np.array(toas), np.array(toa_errs) if mjdref is not None: toas = toas / 86400 + mjdref toa_errs = toa_errs * 1e6 if HAS_PINT: label = assign_value_if_none(label, "hendrics") toa_list = _load_and_prepare_TOAs(toas, errs_us=toa_errs) # workaround until PR #368 is accepted in pint toa_list.table["clkcorr"] = 0 toa_list.write_TOA_file(timfile, name=label, format="Tempo2") log.info("TOA(MJD) TOAerr(us)") else: log.info("TOA(MET) TOAerr(us)") for t, e in zip(toas, toa_errs): log.info(f"{t}, {e}") return toas, toa_errs def _check_odd(n): return n // 2 * 2 + 1 def dbl_cos_fit_func(p, x): # the frequency is fixed """ A double sinus (fundamental + 1st harmonic) used as a fit function """ startidx = 0 base = 0 if len(p) % 2 != 0: base = p[0] startidx = 1 first_harm = p[startidx] * np.cos( 2 * np.pi * x + 2 * np.pi * p[startidx + 1] ) second_harm = p[startidx + 2] * np.cos( 4.0 * np.pi * x + 4 * np.pi * p[startidx + 3] ) return base + first_harm + second_harm def std_fold_fit_func(p, x): """Chooses the fit function used in the fit.""" return dbl_cos_fit_func(p, x) def std_residuals(p, x, y): """The residual function used in the fit.""" return std_fold_fit_func(p, x) - y def adjust_amp_phase(pars): """Give the phases in the interval between 0 and 1. The calculation is based on the amplitude and phase given as input pars[0] is the initial amplitude; pars[1] is the initial phase If amplitude is negative, it makes it positive and changes the phase accordingly Examples -------- >>> np.allclose(adjust_amp_phase([-0.5, 0.2]), [0.5, 0.7]) True >>> np.allclose(adjust_amp_phase([0.5, -1.2]), [0.5, 0.8]) True >>> np.allclose(adjust_amp_phase([0.5, 1.2]), [0.5, 0.2]) True """ if pars[0] < 0: pars[0] = -pars[0] pars[1] += 0.5 pars[1] = pars[1] - np.floor(pars[1]) return pars def fit_profile_with_sinusoids( profile, profile_err, debug=False, nperiods=1, baseline=False ): """ Fit a folded profile with the std_fold_fit_func. Tries a number of different initial values for the fit, and returns the result of the best chi^2 fit Parameters ---------- profile : array of floats The folded profile profile_err : array of floats the error on the folded profile elements Other parameters ---------------- debug : bool, optional print debug info nperiods : int, optional number of periods in the folded profile. Default 1. Returns ------- fit_pars : array-like the best-fit parameters success : bool whether the fit succeeded or not chisq : float the best chi^2 """ x = np.arange(0, len(profile) * nperiods, nperiods) / float(len(profile)) guess_pars = [ max(profile) - np.mean(profile), x[np.argmax(profile[: len(profile) // nperiods])], 0, 0.25, ] startidx = 0 if baseline: guess_pars = [np.mean(profile)] + guess_pars if debug: log.debug(guess_pars) startidx = 1 chisq_save = 1e32 fit_pars_save = guess_pars success_save = -1 if debug: import matplotlib.pyplot as plt fig = plt.figure("Debug profile") plt.title("Debug profile") plt.errorbar(x, profile, drawstyle="steps-mid") plt.plot(x, std_fold_fit_func(guess_pars, x), "r--") for phase in np.arange(0.0, 1.0, 0.1): guess_pars[3 + startidx] = phase if debug: log.debug(guess_pars) plt.plot(x, std_fold_fit_func(guess_pars, x), "r--") fit_pars, success = optimize.leastsq( std_residuals, guess_pars[:], args=(x, profile) ) if debug: plt.plot(x, std_fold_fit_func(fit_pars, x), "g--") fit_pars[startidx : startidx + 2] = adjust_amp_phase( fit_pars[startidx : startidx + 2] ) fit_pars[startidx + 2 : startidx + 4] = adjust_amp_phase( fit_pars[startidx + 2 : startidx + 4] ) chisq = np.sum( (profile - std_fold_fit_func(fit_pars, x)) ** 2 / profile_err ** 2 ) / (len(profile) - (startidx + 4)) if debug: plt.plot(x, std_fold_fit_func(fit_pars, x), "b--") if chisq < chisq_save: chisq_save = chisq fit_pars_save = fit_pars[:] success_save = success if debug: plt.savefig("debug_fit_profile.png") plt.close(fig) return fit_pars_save, success_save, chisq_save def fit_profile( profile, profile_err, debug=False, nperiods=1, phaseref="default", baseline=False, ): return fit_profile_with_sinusoids( profile, profile_err, debug=debug, nperiods=nperiods, baseline=baseline ) def run_folding( file, freq, fdot=0, fddot=0, nbin=16, nebin=16, tref=None, test=False, emin=None, emax=None, norm="to1", smooth_window=None, deorbit_par=None, pepoch=None, **opts, ): from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt file_label = "" ev = load_events(file) if deorbit_par is not None: ev = deorbit_events(ev, deorbit_par) plot_energy = True ev, elabel = filter_energy(ev, emin, emax) times, energy = ev.time, ev.energy if emin is None: emin = np.min(energy) if emax is None: emax = np.max(energy) if elabel == "": plot_energy = False if tref is not None and pepoch is not None: raise ValueError("Only specify one between tref and pepoch") elif pepoch is not None: tref = (pepoch - ev.mjdref) * 86400 elif tref is None: tref = times[0] phases = pulse_phase(times - tref, freq, fdot, fddot, to_1=True) binx = np.linspace(0, 1, nbin + 1) if plot_energy: biny = np.percentile(energy, np.linspace(0, 100, nebin + 1)) biny[0] = emin biny[-1] = emax profile, _ = np.histogram(phases, bins=binx) if smooth_window is None: smooth_window = np.min([len(profile), 10]) smooth_window = _check_odd(smooth_window) smoothed_profile = savgol_filter( profile, window_length=smooth_window, polyorder=3, mode="wrap" ) profile = np.concatenate((profile, profile)) smooth = np.concatenate((smoothed_profile, smoothed_profile)) if plot_energy: histen, _ = np.histogram(energy, bins=biny) hist2d, _, _ = np.histogram2d( phases.astype(np.float64), energy, bins=(binx, biny) ) binx = np.concatenate((binx[:-1], binx + 1)) meanbins = (binx[:-1] + binx[1:]) / 2 if plot_energy: hist2d = np.vstack((hist2d, hist2d)) hist2d_save = np.copy(hist2d) X, Y = np.meshgrid(binx, biny) if norm == "ratios": hist2d /= smooth[:, np.newaxis] hist2d *= histen[np.newaxis, :] file_label = "_ratios" else: hist2d /= histen[np.newaxis, :] factor = np.max(hist2d, axis=0)[np.newaxis, :] hist2d /= factor file_label = "_to1" plt.figure(figsize=(8, 8)) if plot_energy: gs = GridSpec(2, 2, height_ratios=(1.5, 3)) ax0 = plt.subplot(gs[0, 0]) ax1 = plt.subplot(gs[1, 0], sharex=ax0) ax2 = plt.subplot(gs[1, 1], sharex=ax0) ax3 = plt.subplot(gs[0, 1]) else: ax0 = plt.subplot() # Plot pulse profile max = np.max(smooth) min = np.min(smooth) ax0.plot(meanbins, profile, drawstyle="steps-mid", color="white", zorder=2) ax0.plot( meanbins, smooth, drawstyle="steps-mid", label="Smooth profile " "(P.F. = {:.1f}%)".format(100 * (max - min) / max), color="k", zorder=3, ) err_low, err_high = poisson_conf_interval( smooth, interval="frequentist-confidence", sigma=3 ) try: ax0.fill_between( meanbins, err_low, err_high, color="grey", zorder=1, alpha=0.5, label="3-sigma confidence", step="mid", ) except AttributeError: # MPL < 2 ax0.fill_between( meanbins, err_low, err_high, color="grey", zorder=1, alpha=0.5, label="3-sigma confidence", ) ax0.axhline(max, lw=1, color="k") ax0.axhline(min, lw=1, color="k") mean = np.mean(profile) ax0.fill_between( meanbins, mean - np.sqrt(mean), mean +
np.sqrt(mean)
numpy.sqrt
__all__=['trainig_loop','ResNIHCM'] import math import pandas as pd import os import pickle import datetime import numpy as np import matplotlib.pyplot as plt import seaborn as sns import torch import torch.optim as optim import pyro import pyro.distributions as dist from pyro.infer import SVI, TraceMeanField_ELBO import torch import torch.optim as optim import torch.nn as nn from torch.optim import Adam from torch.distributions import constraints from torch.utils.data import Dataset, DataLoader import pyro from pyro.optim import MultiStepLR, ExponentialLR import pyro import pyro.distributions as dist from pyro.infer import SVI, Trace_ELBO,TraceMeanField_ELBO def trainig_loop(n_epochs, optimizer, model, loss_fn, train_loader,cuda=False,priors=None,prior_network=False,new_data=False,missing_data=False): if cuda: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device=="cpu": print("Cuda is not available. CPU is used.") else: device="cpu" model=model.to(device) svi = SVI(model.model, model.guide, optimizer, loss=loss_fn) loss_list=[] for epoch in range(1, n_epochs + 1): loss_train = 0.0 for ix, (y_net, t_out,i_heat,i_heat_on,i_heat_off,i_cool,i_cool_on,i_cool_off,i_aux,i_aux_on,i_aux_off,i_heat_df) in enumerate(train_loader): y_net = y_net.to(device=device) # <1> t_out = t_out.to(device=device) # <1> i_heat = i_heat.to(device=device) # <1> i_heat_on = i_heat_on.to(device=device) # <1> i_heat_off = i_heat_off.to(device=device) # <1> i_cool = i_cool.to(device=device) # <1> i_cool_on = i_cool_on.to(device=device) # <1> i_cool_off = i_cool_off.to(device=device) # <1> i_aux = i_aux.to(device=device) # <1> i_aux_on = i_aux_on.to(device=device) # <1> i_aux_off = i_aux_off.to(device=device) # <1> i_heat_df =i_heat_df.to(device=device) if priors is None: loss=svi.step(y_net=y_net, t_out=t_out,i_heat=i_heat,i_heat_on=i_heat_on,i_heat_off=i_heat_off,i_cool=i_cool,i_cool_on=i_cool_on,i_cool_off=i_cool_off,i_aux=i_aux,i_aux_on=i_aux_on,i_aux_off=i_aux_off,i_heat_df=i_heat_df,priors=None) else: # no model update. Just in-prior computation (actually, it doesn't exist) raise ValueError("Training is not in any case. check priors, new_data, prior_network params") loss_train += loss loss_list.append(loss_train / len(train_loader)) if epoch == 1 or epoch % 5 == 0: print('{} Epoch {}, Training loss {}'.format( datetime.datetime.now(), epoch, loss_train / len(train_loader))) if (epoch==1 or epoch%10==0) and (type(optimizer)==pyro.optim.lr_scheduler.PyroLRScheduler) : optimizer.step() #print(f'learning rate {next(iter(svi.optim.optim_objs.values())).get_last_lr()[0]}') return loss_list class ResNIHCM(nn.Module): def __init__(self): super().__init__() # define dimensions # Use ELU see Murphy p.397 self.elu=nn.ELU() self.relu=nn.ReLU() self.softmax=nn.Softmax(dim=1) self.tanh=nn.Tanh() self.softplus=nn.Softplus() def calculate_concentration(self,mu,sigma): concentration_alpha=((1-mu)/(sigma**2)-1/mu)*(mu**2) concentration_beta=concentration_alpha*(1/mu-1) return concentration_alpha, concentration_beta def model(self, y_net, t_out, i_heat,i_heat_on,i_heat_off, i_cool,i_cool_on,i_cool_off, i_aux,i_aux_on,i_aux_off,i_heat_df, priors=None): # it is hard to generalize the process. # we may have matrix, # initial network self.batch_sz=t_out.shape[0] device=t_out.device if priors is None: add_noise=0 # no noise addition for priors noise_scale=0.01 noise_mean=0 priors={ "mu_misc":np.array([-3.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_misc~logN(-3,2.5) [0.0004,0.05,6.783] "sigma_misc":np.array([1.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_beta0_heat":np.array([-3.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta0~N(-2,1.0) [-4.0~0.0] "sigma_beta0_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # exp(beta0) [0.018~1] "mu_beta1_heat":np.array([-4.])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta1~logN(-1.5,0.8) [0.04~1.0] "sigma_beta1_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "sigma_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_heat~logN(-1.2,0.6) [0.093,0.30,1.0] "mu_heat_on":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_heat_on~Beta(mu_heat_on=0.5,sigma_heat_on=1/12) # 0~1 flat "sigma_heat_on":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_heat_off":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_heat_off~Beta(mu_heat_on=0.5,sigma_heat_on=1/12) # 0~1 flat "sigma_heat_off":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_beta0_cool":np.array([-2.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta0~N(-2,1.0) [-4.0~0.0] "sigma_beta0_cool":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # exp(beta0) [0.018~1] "mu_beta1_cool":np.array([-4.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta1~logN(-1.5,0.8) [0.04~1.0] "sigma_beta1_cool":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "sigma_cool":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_cool~logN(-1.2,0.6) [0.093,0.30,1.0] "mu_cool_on":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_cool_on~Beta(mu_cool_on=0.5,sigma_cool_on=1/12) # 0~1 flat "sigma_cool_on":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_cool_off":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_cool_off~Beta(mu_cool_on=0.5,sigma_cool_on=1/12) # 0~1 flat "sigma_cool_off":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_aux":np.array([-3.])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_aux~logN(-0.4,0.4) [0.3,0.67,1.43] "sigma_aux":np.array([1.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_heat_df":np.array([-4.])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_aux~logN(-0.4,0.4) [0.3,0.67,1.43] "sigma_heat_df":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_aux_on":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_aux_on~Beta(mu_aux_on=0.5,sigma_aux_on=1/12) # 0~1 flat "sigma_aux_on":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_aux_off":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_aux_off~Beta(mu_aux_on=0.5,sigma_aux_on=1/12) # 0~1 flat "sigma_aux_off":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "mu_phi_df":np.array([-1/3])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # phi~N(-1/3,1/6) give [-2/3,-1/3,0] which is [-10,0,10] in real scale # "sigma_phi_df":np.array([1/6])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "mu_psi":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # psi~Beta(mu_psi=0.5,sigma_psi=1/12) # 0~1 flat # "sigma_psi":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "mu_sigma_net":np.array([-4.])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "sigma_sigma_net":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise # } mu_misc=torch.tensor(priors['mu_misc'],dtype=torch.float32).to(device) sigma_misc=torch.tensor(priors['sigma_misc'],dtype=torch.float32).to(device) mu_beta0_heat=torch.tensor(priors['mu_beta0_heat'],dtype=torch.float32).to(device) sigma_beta0_heat=torch.tensor(priors['sigma_beta0_heat'],dtype=torch.float32).to(device) mu_beta1_heat=torch.tensor(priors['mu_beta1_heat'],dtype=torch.float32).to(device) sigma_beta1_heat=torch.tensor(priors['sigma_beta1_heat'],dtype=torch.float32).to(device) sigma_heat=torch.tensor(priors['sigma_heat'],dtype=torch.float32).to(device) mu_heat_on=torch.tensor(priors['mu_heat_on'],dtype=torch.float32).to(device) sigma_heat_on=torch.tensor(priors['sigma_heat_on'],dtype=torch.float32).to(device) mu_heat_off=torch.tensor(priors['mu_heat_off'],dtype=torch.float32).to(device) sigma_heat_off=torch.tensor(priors['sigma_heat_off'],dtype=torch.float32).to(device) mu_beta0_cool=torch.tensor(priors['mu_beta0_cool'],dtype=torch.float32).to(device) sigma_beta0_cool=torch.tensor(priors['sigma_beta0_cool'],dtype=torch.float32).to(device) mu_beta1_cool=torch.tensor(priors['mu_beta1_cool'],dtype=torch.float32).to(device) sigma_beta1_cool=torch.tensor(priors['sigma_beta1_cool'],dtype=torch.float32).to(device) sigma_cool=torch.tensor(priors['sigma_cool'],dtype=torch.float32).to(device) mu_cool_on=torch.tensor(priors['mu_cool_on'],dtype=torch.float32).to(device) sigma_cool_on=torch.tensor(priors['sigma_cool_on'],dtype=torch.float32).to(device) mu_cool_off=torch.tensor(priors['mu_cool_off'],dtype=torch.float32).to(device) sigma_cool_off=torch.tensor(priors['sigma_cool_off'],dtype=torch.float32).to(device) mu_aux=torch.tensor(priors['mu_aux'],dtype=torch.float32).to(device) sigma_aux=torch.tensor(priors['sigma_aux'],dtype=torch.float32).to(device) mu_aux_on=torch.tensor(priors['mu_aux_on'],dtype=torch.float32).to(device) sigma_aux_on=torch.tensor(priors['sigma_aux_on'],dtype=torch.float32).to(device) mu_aux_off=torch.tensor(priors['mu_aux_off'],dtype=torch.float32).to(device) sigma_aux_off=torch.tensor(priors['sigma_aux_off'],dtype=torch.float32).to(device) mu_heat_df=torch.tensor(priors['mu_heat_df'],dtype=torch.float32).to(device) sigma_heat_df=torch.tensor(priors['sigma_heat_df'],dtype=torch.float32).to(device) #mu_phi_df=torch.tensor(priors['mu_phi_df'],dtype=torch.float32).to(device) #sigma_phi_df=torch.tensor(priors['sigma_phi_df'],dtype=torch.float32).to(device) #mu_psi=torch.tensor(priors['mu_psi'],dtype=torch.float32).to(device) #sigma_psi=torch.tensor(priors['sigma_psi'],dtype=torch.float32).to(device) mu_sigma_net=torch.tensor(priors['mu_sigma_net'],dtype=torch.float32).to(device) sigma_sigma_net=torch.tensor(priors['sigma_sigma_net'],dtype=torch.float32).to(device) E_misc=self.softplus(pyro.sample("E_misc",dist.Normal(mu_misc,sigma_misc).to_event(1))) # here mu_heat is not real scale. E_heat~LogNormal(mu_heat,sigma_heat) beta0_heat=pyro.sample("beta0_heat",dist.Normal(mu_beta0_heat,sigma_beta0_heat).to_event(1)) beta1_heat=self.softplus(pyro.sample("beta1_heat",dist.Normal(mu_beta1_heat,sigma_beta1_heat).to_event(1))) mu_heat=pyro.deterministic("mu_heat",beta0_heat+beta1_heat*t_out) E_heat=self.softplus(pyro.sample("E_heat",dist.Normal(mu_heat,sigma_heat).to_event(1))) #print(f"E_heat shape is {E_heat.shape}") beta0_cool=pyro.sample("beta0_cool",dist.Normal(mu_beta0_cool,sigma_beta0_cool).to_event(1)) beta1_cool=self.softplus(pyro.sample("beta1_cool",dist.Normal(mu_beta1_cool,sigma_beta1_cool).to_event(1))) mu_cool=pyro.deterministic("mu_cool",beta0_cool+beta1_cool*t_out) E_cool=self.softplus(pyro.sample("E_cool",dist.Normal(mu_cool,sigma_cool).to_event(1))) E_aux=self.softplus(pyro.sample("E_aux",dist.Normal(mu_aux,sigma_aux).to_event(1))) # phi_df=pyro.sample("phi_df",dist.Normal(mu_phi_df,sigma_phi_df).to_event(1)) # mu_psi_alpha,mu_psi_beta=self.calculate_concentration(mu=mu_psi,sigma=sigma_psi) # psi=pyro.sample("psi",dist.Beta(concentration1=mu_psi_alpha ,concentration0=mu_psi_beta).to_event(1)) eta_heat=i_heat.clone() mu_heat_on_alpha,mu_heat_on_beta=self.calculate_concentration(mu=mu_heat_on,sigma=sigma_heat_on) mu_heat_off_alpha,mu_heat_off_beta=self.calculate_concentration(mu=mu_heat_off,sigma=sigma_heat_off) # print(f'mu_heat_on_alpha is {mu_heat_on_alpha}') # print(f'mu_heat_on_beta is {mu_heat_on_beta}') eta_heat_on=pyro.sample("eta_heat_on",dist.Beta(concentration1=mu_heat_on_alpha ,concentration0=mu_heat_on_beta).to_event(1)) eta_heat_off=pyro.sample("eta_heat_off",dist.Beta(concentration1=mu_heat_off_alpha ,concentration0=mu_heat_off_beta).to_event(1)) eta_heat[i_heat_on==1]=eta_heat_on#[i_heat_on==1] eta_heat[i_heat_off==1]=eta_heat_off#[i_heat_off==1] eta_cool=i_cool.clone() mu_cool_on_alpha,mu_cool_on_beta=self.calculate_concentration(mu=mu_cool_on,sigma=sigma_cool_on) mu_cool_off_alpha,mu_cool_off_beta=self.calculate_concentration(mu=mu_cool_off,sigma=sigma_cool_off) eta_cool_on=pyro.sample("eta_cool_on",dist.Beta(concentration1=mu_cool_on_alpha ,concentration0=mu_cool_on_beta).to_event(1)) eta_cool_off=pyro.sample("eta_cool_off",dist.Beta(concentration1=mu_cool_off_alpha ,concentration0=mu_cool_off_beta).to_event(1)) eta_cool[i_cool_on==1]=eta_cool_on#[i_cool_on==1] eta_cool[i_cool_off==1]=eta_cool_off#[i_cool_off==1] eta_aux=i_aux.clone() mu_aux_on_alpha,mu_aux_on_beta=self.calculate_concentration(mu=mu_aux_on,sigma=sigma_aux_on) mu_aux_off_alpha,mu_aux_off_beta=self.calculate_concentration(mu=mu_aux_off,sigma=sigma_aux_off) eta_aux_on=pyro.sample("eta_aux_on",dist.Beta(concentration1=mu_aux_on_alpha ,concentration0=mu_aux_on_beta).to_event(1)) eta_aux_off=pyro.sample("eta_aux_off",dist.Beta(concentration1=mu_aux_off_alpha ,concentration0=mu_aux_off_beta).to_event(1)) eta_aux[i_aux_on==1]=eta_aux_on#[i_aux_on==1] eta_aux[i_aux_off==1]=eta_aux_off#[i_aux_off==1] E_heat_df=self.softplus(pyro.sample("E_heat_df",dist.Normal(mu_heat_df,sigma_heat_df).to_event(1))) #i_df=torch.zeros_like(i_heat).to(device) # https://pytorch.org/docs/stable/distributions.html#torch.distributions.beta.Beta.concentration1 # concentration1 (float or Tensor) – 1st concentration parameter of the distribution (often referred to as alpha) # concentration0 (float or Tensor) – 2nd concentration parameter of the distribution (often referred to as beta) #with pyro.plate("Emisc", size=t_out.shape[0]): #i_df_on=pyro.sample("i_df_on",dist.Binomial(total_count=1,probs=psi)) #i_df=torch.where((i_heat==torch.tensor(1,dtype=torch.float32))&(t_out<phi_df),i_df_on,i_df) y_nan=torch.any(torch.cat([torch.isnan(i_heat)[:,None], torch.isnan(i_cool)[:,None], torch.isnan(i_aux)[:,None], torch.isnan(t_out)[:,None], torch.isnan(i_heat_df)[:,None], torch.isnan(y_net)[:,None] ],dim=1),axis=1) #print(f'y_nan is {y_nan}') # print(f'eta_heat is {eta_heat}') # print(f'i_heat is {i_heat}') mu_net_=eta_heat*i_heat*E_heat+eta_cool*i_cool*E_cool+(eta_aux*i_aux)*E_aux+(i_heat_df)*E_heat_df+E_misc mu_net=pyro.deterministic("mu_net",mu_net_[~y_nan]) sigma_net = self.softplus(pyro.sample("sigma_t_unit", dist.Normal(mu_sigma_net,sigma_sigma_net).to_event(1))) #print(f"sigma_net is {sigma_net}") y_net_=y_net.flatten()[~y_nan] with pyro.plate("data", size=mu_net.shape[0]): obs_net=pyro.sample("obs_net", dist.Normal(mu_net, sigma_net).to_event(1), obs=y_net_.flatten()) # .to_event(1) return mu_net,priors def guide(self, y_net, t_out, i_heat,i_heat_on,i_heat_off, i_cool,i_cool_on,i_cool_off, i_aux,i_aux_on,i_aux_off,i_heat_df, priors=None): self.batch_sz=t_out.shape[0] device=t_out.device if priors is None: # add noise for priors add_noise=1 noise_scale=0.001 noise_mean=0 priors={ "mu_misc":np.array([-3.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_misc~logN(-3,2.5) [0.0004,0.05,6.783] "sigma_misc":np.array([1.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_beta0_heat":np.array([-3.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta0~N(-2,1.0) [-4.0~0.0] "sigma_beta0_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # exp(beta0) [0.018~1] "mu_beta1_heat":np.array([-4.])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta1~logN(-1.5,0.8) [0.04~1.0] "sigma_beta1_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "sigma_heat":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # E_heat~logN(-1.2,0.6) [0.093,0.30,1.0] "mu_heat_on":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_heat_on~Beta(mu_heat_on=0.5,sigma_heat_on=1/12) # 0~1 flat "sigma_heat_on":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_heat_off":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # eta_heat_off~Beta(mu_heat_on=0.5,sigma_heat_on=1/12) # 0~1 flat "sigma_heat_off":np.sqrt(np.array([1/12]))+np.random.normal(noise_mean,noise_scale,1)*add_noise, "mu_beta0_cool":np.array([-2.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta0~N(-2,1.0) [-4.0~0.0] "sigma_beta0_cool":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # exp(beta0) [0.018~1] "mu_beta1_cool":np.array([-4.0])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # beta1~logN(-1.5,0.8) [0.04~1.0] "sigma_beta1_cool":np.array([0.5])+np.random.normal(noise_mean,noise_scale,1)*add_noise, # "sigma_cool":np.array([0.5])+
np.random.normal(noise_mean,noise_scale,1)
numpy.random.normal
from __future__ import division import numpy as np import scipy.stats.kde as kde def calc_min_interval(x, alpha): """Internal method to determine the minimum interval of a given width Assumes that x is sorted numpy array. """ n = len(x) cred_mass = 1.0-alpha interval_idx_inc = int(np.floor(cred_mass*n)) n_intervals = n - interval_idx_inc interval_width = x[interval_idx_inc:] - x[:n_intervals] if len(interval_width) == 0: raise ValueError('Too few elements for interval calculation') min_idx = np.argmin(interval_width) hdi_min = x[min_idx] hdi_max = x[min_idx+interval_idx_inc] return hdi_min, hdi_max def hdi(x, alpha=0.05): """Calculate highest posterior density (HPD) of array for given alpha. The HPD is the minimum width Bayesian credible interval (BCI). :Arguments: x : Numpy array An array containing MCMC samples alpha : float Desired probability of type I error (defaults to 0.05) """ # Make a copy of trace x = x.copy() # For multivariate node if x.ndim > 1: # Transpose first, then sort tx = np.transpose(x, list(range(x.ndim))[1:]+[0]) dims =
np.shape(tx)
numpy.shape
from time import process_time import numpy as np from numpy.testing import assert_equal, assert_allclose import pytest from skan.csr import Skeleton, summarize from skan._testdata import ( tinycycle, tinyline, skeleton0, skeleton1, skeleton2, skeleton3d, topograph1d, skeleton4, junction_first ) def test_tiny_cycle(): skeleton = Skeleton(tinycycle, junction_mode='centroid') assert skeleton.paths.shape == (1, 5) def test_skeleton1_topo(): skeleton = Skeleton(skeleton1, junction_mode='centroid') assert skeleton.paths.shape == (4, 21) paths_list = skeleton.paths_list() reference_paths = [[8, 6, 1, 2, 3, 4, 5, 7, 11, 10, 13], [8, 9, 13], [8, 12, 14], [13, 15, 16, 17]] d0 = 1 + np.sqrt(2) reference_distances = [5 * d0, d0, d0, 1 + d0] for path in reference_paths: assert path in paths_list or path[::-1] in paths_list assert_allclose( sorted(skeleton.path_lengths()), sorted(reference_distances) ) def test_skeleton1_float(): image = np.zeros(skeleton1.shape, dtype=float) image[skeleton1] = 1 + np.random.random(np.sum(skeleton1)) skeleton = Skeleton(image, junction_mode='centroid') path, data = skeleton.path_with_data(0) assert 1.0 < np.mean(data) < 2.0 def test_skeleton_coordinates(): skeleton = Skeleton(skeleton1, junction_mode='centroid') last_path_coordinates = skeleton.path_coordinates(3) assert_allclose(last_path_coordinates, [[3, 3], [4, 4], [4, 5], [4, 6]]) def test_path_length_caching(): skeleton = Skeleton(skeleton3d, junction_mode='centroid') t0 = process_time() distances = skeleton.path_lengths() t1 = process_time() distances2 = skeleton.path_lengths() t2 = process_time() assert t2 - t1 < t1 - t0 assert np.all((distances > 0.99 + np.sqrt(2)) & (distances < 5.01 + 5 * np.sqrt(2))) def test_tip_junction_edges(): skeleton = Skeleton(skeleton4, junction_mode='centroid') reference_paths = [[1, 2], [2, 4, 5], [2, 7]] paths_list = skeleton.paths_list() for path in reference_paths: assert path in paths_list or path[::-1] in paths_list def test_path_stdev(): image = np.zeros(skeleton1.shape, dtype=float) image[skeleton1] = 1 + np.random.random(np.sum(skeleton1)) skeleton = Skeleton(image, junction_mode='centroid') # longest_path should be 0, but could change. longest_path = np.argmax(skeleton.path_lengths()) dev = skeleton.path_stdev()[longest_path] assert 0.09 < dev < 0.44 # chance is < 1/10K that this will fail # second check: first principles. skeleton2 = Skeleton(image**2, junction_mode='centroid') # (Var = StDev**2 = E(X**2) - (E(X))**2) assert_allclose( skeleton.path_stdev()**2, skeleton2.path_means() - skeleton.path_means()**2 ) def test_junction_first(): """Ensure no self-edges exist in multi-pixel junctions. Before commit 64047622, the skeleton class would include self-edges within junctions in its paths list, but only when the junction was visited before any of its adjacent branches. This turns out to be tricky to achieve but not impossible in 2D. """ assert [1, 1] not in Skeleton( junction_first, junction_mode='centroid' ).paths_list() def test_skeleton_summarize(): image = np.zeros(skeleton2.shape, dtype=float) image[skeleton2] = 1 + np.random.random(np.sum(skeleton2)) skeleton = Skeleton(image, junction_mode='centroid') summary = summarize(skeleton) assert set(summary['skeleton-id']) == {1, 2} assert (
np.all(summary['mean-pixel-value'] < 2)
numpy.all
import pandas as pd import numpy as np import imp from chefboost.commons import functions, evaluate from chefboost.training import Preprocess, Training from chefboost import Chefboost as cb from tqdm import tqdm import gc def findPrediction(row): epoch = row['Epoch'] row = row.drop(labels=['Epoch']) columns = row.shape[0] params = [] for j in range(0, columns-1): params.append(row[j]) moduleName = "outputs/rules/rules%s" % (epoch-1) fp, pathname, description = imp.find_module(moduleName) myrules = imp.load_module(moduleName, fp, pathname, description) #prediction = int(myrules.findDecision(params)) prediction = myrules.findDecision(params) return prediction def regressor(df, config, header, dataset_features, validation_df = None, process_id = None): models = [] #we will update decisions in every epoch, this will be used to restore base_actuals = df.Decision.values algorithm = config['algorithm'] enableRandomForest = config['enableRandomForest'] num_of_trees = config['num_of_trees'] enableMultitasking = config['enableMultitasking'] enableGBM = config['enableGBM'] epochs = config['epochs'] learning_rate = config['learning_rate'] enableAdaboost = config['enableAdaboost'] #------------------------------ boosted_from = 0; boosted_to = 0 #------------------------------ base_df = df.copy() #gbm will manipulate actuals. store its raw version. target_values = base_df['Decision'].values num_of_instances = target_values.shape[0] root = 1 file = "outputs/rules/rules0.py"; json_file = "outputs/rules/rules0.json" functions.createFile(file, header) functions.createFile(json_file, "[\n") Training.buildDecisionTree(df,root,file, config, dataset_features , parent_level = 0, leaf_id = 0, parents = 'root') #generate rules0 #functions.storeRule(json_file," {}]") df = base_df.copy() base_df['Boosted_Prediction'] = 0 #------------------------------ best_epoch_idx = 0; best_epoch_loss = 1000000 pbar = tqdm(range(1, epochs+1), desc='Boosting') #for index in range(1,epochs+1): #for index in tqdm(range(1,epochs+1), desc='Boosting'): for index in pbar: #print("epoch ",index," - ",end='') loss = 0 #run data(i-1) and rules(i-1), save data1 #dynamic import moduleName = "outputs/rules/rules%s" % (index-1) fp, pathname, description = imp.find_module(moduleName) myrules = imp.load_module(moduleName, fp, pathname, description) #rules0 models.append(myrules) new_data_set = "outputs/data/data%s.csv" % (index) f = open(new_data_set, "w") #put header in the following file columns = df.shape[1] mae = 0 #---------------------------------------- df['Epoch'] = index df['Prediction'] = df.apply(findPrediction, axis=1) base_df['Boosted_Prediction'] += df['Prediction'] loss = (base_df['Boosted_Prediction'] - base_df['Decision']).pow(2).sum() current_loss = loss / num_of_instances #mse if index == 1: boosted_from = current_loss * 1 elif index == epochs: boosted_to = current_loss * 1 if current_loss < best_epoch_loss: best_epoch_loss = current_loss * 1 best_epoch_idx = index * 1 df['Decision'] = int(learning_rate)*(df['Decision'] - df['Prediction']) df = df.drop(columns = ['Epoch', 'Prediction']) #--------------------------------- df.to_csv(new_data_set, index=False) #data(i) created #--------------------------------- file = "outputs/rules/rules"+str(index)+".py" json_file = "outputs/rules/rules"+str(index)+".json" functions.createFile(file, header) functions.createFile(json_file, "[\n") current_df = df.copy() Training.buildDecisionTree(df,root,file, config, dataset_features , parent_level = 0, leaf_id = 0, parents = 'root', main_process_id = process_id) #functions.storeRule(json_file," {}]") df = current_df.copy() #numeric features require this restoration to apply findDecision function #rules(i) created loss = loss / num_of_instances #print("epoch ",index," - loss: ",loss) #print("loss: ",loss) pbar.set_description("Epoch %d. Loss: %d. Process: " % (index, loss)) gc.collect() #--------------------------------- print("The best epoch is ", best_epoch_idx," with ", best_epoch_loss," loss value") models = models[0:best_epoch_idx] config["epochs"] = best_epoch_idx print("MSE of ",num_of_instances," instances are boosted from ",boosted_from," to ",best_epoch_loss," in ",epochs," epochs") return models def classifier(df, config, header, dataset_features, validation_df = None, process_id = None): models = [] print("gradient boosting for classification") epochs = config['epochs'] enableParallelism = config['enableParallelism'] temp_df = df.copy() original_dataset = df.copy() worksheet = df.copy() classes = df['Decision'].unique() boosted_predictions = np.zeros([df.shape[0], len(classes)]) pbar = tqdm(range(0, epochs), desc='Boosting') #store actual set, we will use this to calculate loss actual_set = pd.DataFrame(np.zeros([df.shape[0], len(classes)]), columns=classes) for i in range(0, len(classes)): current_class = classes[i] actual_set[current_class] = np.where(df['Decision'] == current_class, 1, 0) actual_set = actual_set.values #transform it to numpy array best_accuracy_idx = 0; best_accuracy_value = 0 accuracies = [] #for epoch in range(0, epochs): for epoch in pbar: for i in range(0, len(classes)): current_class = classes[i] if epoch == 0: temp_df['Decision'] = np.where(df['Decision'] == current_class, 1, 0) worksheet['Y_'+str(i)] = temp_df['Decision'] else: temp_df['Decision'] = worksheet['Y-P_'+str(i)] predictions = [] #change data type for decision column temp_df[['Decision']].astype('int64') root = 1 file_base = "outputs/rules/rules-for-"+current_class+"-round-"+str(epoch) file = file_base+".py" functions.createFile(file, header) if enableParallelism == True: json_file = file_base+".json" functions.createFile(json_file, "[\n") Training.buildDecisionTree(temp_df, root, file, config, dataset_features , parent_level = 0, leaf_id = 0, parents = 'root', main_process_id = process_id) #decision rules created #---------------------------- #dynamic import moduleName = "outputs/rules/rules-for-"+current_class+"-round-"+str(epoch) fp, pathname, description = imp.find_module(moduleName) myrules = imp.load_module(moduleName, fp, pathname, description) #rules0 models.append(myrules) num_of_columns = df.shape[1] for row, instance in df.iterrows(): features = [] for j in range(0, num_of_columns-1): #iterate on features features.append(instance[j]) actual = temp_df.loc[row]['Decision'] prediction = myrules.findDecision(features) predictions.append(prediction) #---------------------------- if epoch == 0: worksheet['F_'+str(i)] = 0 else: worksheet['F_'+str(i)] = pd.Series(predictions).values boosted_predictions[:,i] = boosted_predictions[:,i] + worksheet['F_'+str(i)].values.astype(np.float32) #print(boosted_predictions[0:5,:]) worksheet['P_'+str(i)] = 0 #---------------------------- temp_df = df.copy() #restoration for row, instance in worksheet.iterrows(): f_scores = [] for i in range(0, len(classes)): f_scores.append(instance['F_'+str(i)]) probabilities = functions.softmax(f_scores) for j in range(0, len(probabilities)): instance['P_'+str(j)] = probabilities[j] worksheet.loc[row] = instance for i in range(0, len(classes)): worksheet['Y-P_'+str(i)] = worksheet['Y_'+str(i)] - worksheet['P_'+str(i)] prediction_set = np.zeros([df.shape[0], len(classes)]) for i in range(0, boosted_predictions.shape[0]): predicted_index =
np.argmax(boosted_predictions[i])
numpy.argmax
import numpy as np from statsmodels.genmod.bayes_mixed_glm import (BinomialBayesMixedGLM, PoissonBayesMixedGLM) import pandas as pd from scipy import sparse from numpy.testing import assert_allclose, assert_equal from scipy.optimize import approx_fprime def gen_simple_logit(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[1, -1]) + np.dot(exog_vc, vc) pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(nc, dtype=np.int) return y, exog_fe, exog_vc, ident def gen_simple_poisson(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[0.1, -0.1]) + np.dot(exog_vc, vc) r = np.exp(lp) y = np.random.poisson(r) ident = np.zeros(nc, dtype=np.int) return y, exog_fe, exog_vc, ident def gen_crossed_logit(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.eye(nc), np.ones((cs, 1))) b = np.kron(np.ones((cs, 1)), np.eye(nc)) exog_vc = np.concatenate((a, b), axis=1) exog_fe = np.random.normal(size=(nc * cs, 1)) vc = s1 * np.random.normal(size=2 * nc) vc[nc:] *= s2 / s1 lp = np.dot(exog_fe, np.r_[-0.5]) + np.dot(exog_vc, vc) pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 return y, exog_fe, exog_vc, ident def gen_crossed_poisson(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.eye(nc), np.ones((cs, 1))) b = np.kron(np.ones((cs, 1)), np.eye(nc)) exog_vc = np.concatenate((a, b), axis=1) exog_fe = np.random.normal(size=(nc * cs, 1)) vc = s1 * np.random.normal(size=2 * nc) vc[nc:] *= s2 / s1 lp = np.dot(exog_fe, np.r_[-0.5]) + np.dot(exog_vc, vc) r = np.exp(lp) y = np.random.poisson(r) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 return y, exog_fe, exog_vc, ident def gen_crossed_logit_pandas(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.arange(nc), np.ones(cs)) b = np.kron(np.ones(cs), np.arange(nc)) fe = np.ones(nc * cs) vc = np.zeros(nc * cs) for i in np.unique(a): ii = np.flatnonzero(a == i) vc[ii] += s1 * np.random.normal() for i in np.unique(b): ii = np.flatnonzero(b == i) vc[ii] += s2 * np.random.normal() lp = -0.5 * fe + vc pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 df = pd.DataFrame({"fe": fe, "a": a, "b": b, "y": y}) return df def test_simple_logit_map(): y, exog_fe, exog_vc, ident = gen_simple_logit(10, 10, 2) exog_vc = sparse.csr_matrix(exog_vc) glmm = BinomialBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-3) # Test the predict method for linear in False, True: for exog in None, exog_fe: pr1 = rslt.predict(linear=linear, exog=exog) pr2 = glmm.predict(rslt.params, linear=linear, exog=exog) assert_allclose(pr1, pr2) if not linear: assert_equal(pr1.min() >= 0, True) assert_equal(pr1.max() <= 1, True) def test_simple_poisson_map(): y, exog_fe, exog_vc, ident = gen_simple_poisson(10, 10, 0.2) exog_vc = sparse.csr_matrix(exog_vc) glmm1 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt1 = glmm1.fit_map() assert_allclose( glmm1.logposterior_grad(rslt1.params), np.zeros_like(rslt1.params), atol=1e-3) # This should give the same answer as above glmm2 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt2 = glmm2.fit_map() assert_allclose(rslt1.params, rslt2.params, atol=1e-4) # Test the predict method for linear in False, True: for exog in None, exog_fe: pr1 = rslt1.predict(linear=linear, exog=exog) pr2 = rslt2.predict(linear=linear, exog=exog) pr3 = glmm1.predict(rslt1.params, linear=linear, exog=exog) pr4 = glmm2.predict(rslt2.params, linear=linear, exog=exog) assert_allclose(pr1, pr2, rtol=1e-5) assert_allclose(pr2, pr3, rtol=1e-5) assert_allclose(pr3, pr4, rtol=1e-5) if not linear: assert_equal(pr1.min() >= 0, True) assert_equal(pr2.min() >= 0, True) assert_equal(pr3.min() >= 0, True) # Check dimensions and PSD status of cov_params for rslt in rslt1, rslt2: cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_crossed_logit_map(): y, exog_fe, exog_vc, ident = gen_crossed_logit(10, 10, 1, 2) exog_vc = sparse.csr_matrix(exog_vc) glmm = BinomialBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-4) # Check dimensions and PSD status of cov_params cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_crossed_poisson_map(): y, exog_fe, exog_vc, ident = gen_crossed_poisson(10, 10, 1, 1) exog_vc = sparse.csr_matrix(exog_vc) glmm = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-4) # Check dimensions and PSD status of cov_params cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_logit_map_crossed_formula(): data = gen_crossed_logit_pandas(10, 10, 1, 0.5) fml = "y ~ fe" fml_vc = {"a": "0 + C(a)", "b": "0 + C(b)"} glmm = BinomialBayesMixedGLM.from_formula(fml, fml_vc, data, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params),
np.zeros_like(rslt.params)
numpy.zeros_like
import os import shutil import numpy as np import tensorflow as tf from scipy.stats import gamma from matplotlib import pyplot as plt from neural_inverse_cdf_utils import InvertibleNeuralNetworkLayer, train, result_plot class GammaCDF(object): def __init__(self, theta_max=15, base_dir=os.getcwd()): # define theta range self.theta_min = 0 self.theta_max = theta_max # log directory self.log_dir = os.path.join(base_dir, 'InverseCDF', 'Gamma', 'logdir') if os.path.exists(self.log_dir): shutil.rmtree(self.log_dir) # checkpoint directory self.mdl_dir = os.path.join(base_dir, 'InverseCDF', 'Gamma', 'checkpoint', 'gamma') if os.path.exists(self.mdl_dir): shutil.rmtree(self.mdl_dir) def sample_training_points(self, thetas_per_batch, samples_per_theta): # sample thetas thetas = np.random.random(thetas_per_batch) * 2 * self.theta_max - self.theta_max thetas[thetas < 0] = np.exp(thetas[thetas < 0]) # loop over theta samples z = [] u = [] theta = [] for i in range(len(thetas)): # sample z z.append(np.random.gamma(shape=thetas[i], size=samples_per_theta)) # compute target u u.append(gamma.cdf(x=z[-1], a=thetas[i])) # up-sample theta theta.append(thetas[i] * np.ones(samples_per_theta)) # convert to arrays z = np.concatenate(z) u = np.concatenate(u) theta = np.concatenate(theta) return z, u, theta def sample_test_points(self, theta, num_points=100): # compute target theta quantile theta = theta * np.ones(num_points) # compute evaluation points # z = np.linspace(0, self.z_max, num_points) z = np.random.gamma(shape=theta, size=num_points) z = np.sort(z) # compute target u = gamma.cdf(z, theta) return z, u, theta @staticmethod def u_clamp(u): # return clamped value--THIS CLAMP MUST BE INVERTIBLE! return tf.nn.sigmoid(u) @staticmethod def z_clamp(z): # return clamped value--THIS CLAMP MUST BE INVERTIBLE! return tf.nn.elu(z) + 1 class NeuralInverseCDF(object): """ Neural CDF Forward: F(z; theta) --> u Neural CDF Reverse: F_inv(u; theta) --> z """ def __init__(self, target, fwd_direction='cdf', trainable=True): # save target object self.target = target # check and save learning direction assert fwd_direction == 'cdf' or fwd_direction == 'inv_cdf' self.fwd_direction = fwd_direction # configure dimensions self.inn_dim = 2 self.inn_layers = 8 # declare the Invertible Neural Network Blocks self.inn = [] for i in range(self.inn_layers): self.inn.append(InvertibleNeuralNetworkLayer(self.inn_dim, 'inn{:d}'.format(i+1), trainable=trainable)) # training placeholders self.z_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='z') self.u_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='u') self.theta_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='theta') # training outputs (None by default--will be overwritten by self.loss(*)) self.u_hat = None self.z_hat = None # configure training self.thetas_per_batch = 100 self.samples_per_theta = 100 self.learning_rate = 5e-4 self.num_epochs = 1000 self.optimizer = tf.train.AdamOptimizer(self.learning_rate) def _forward_eval(self, x, theta): # run the forward direction for i in range(self.inn_layers): x = self.inn[i].forward_evaluation(x, theta) return x def _inverse_eval(self, x, theta): # run the inverse direction for i in range(self.inn_layers): x = self.inn[self.inn_layers - 1 - i].inverse_evaluation(x, theta) return x def _load_feed_dict(self, z, u, theta): # expand dimensions if needed if len(np.shape(z)) < 2: z = np.expand_dims(z, axis=-1) if len(np.shape(u)) < 2: u = np.expand_dims(u, axis=-1) if len(np.shape(theta)) < 2: theta = np.expand_dims(theta, axis=-1) # initialize feed dictionary feed_dict = dict() # load dictionary feed_dict.update({self.z_ph: z, self.u_ph: u, self.theta_ph: theta}) return feed_dict def loss(self): # build the forward model (double input to achieve even dimensions) if self.fwd_direction == 'cdf': x_fwd = self._forward_eval(tf.concat((self.z_ph, self.z_ph), axis=1), self.theta_ph) else: x_fwd = self._forward_eval(tf.concat((self.u_ph, self.u_ph), axis=1), self.theta_ph) # apply forward model clamps and build backward model if self.fwd_direction == 'cdf': self.u_hat = self.target.u_clamp(x_fwd) self.z_hat = self._inverse_eval(x_fwd, self.theta_ph) else: self.z_hat = self.target.z_clamp(x_fwd) self.u_hat = self._inverse_eval(x_fwd, self.theta_ph) # compute both losses u_loss = tf.reduce_mean(tf.abs(self.u_ph - self.u_hat)) z_loss = tf.reduce_mean(tf.abs(self.z_ph - self.z_hat)) # if cdf direction, loss is w.r.t. u if self.fwd_direction == 'cdf': loss = u_loss # otherwise it is w.r.t. z else: loss = z_loss return loss, u_loss, z_loss def load_feed_dict_train(self): # sample training points z, u, theta = self.target.sample_training_points(self.thetas_per_batch, self.samples_per_theta) return self._load_feed_dict(z, u, theta) def sample_operation(self, u, theta): # expand dimensions if needed if len(u.get_shape().as_list()) < 2: u = tf.expand_dims(u, axis=-1) if len(theta.get_shape().as_list()) < 2: theta = tf.expand_dims(theta, axis=-1) # cdf is the forward direction if self.fwd_direction == 'cdf': # run the inverse direction (double input to achieve even dimensions) z = self._inverse_eval(tf.concat((u, u), axis=1), theta) # inverse cdf is the forward direction else: # run the forward direction (double input to achieve even dimensions) z = self._forward_eval(tf.concat((u, u), axis=1), theta) # apply the z clamp and take the mean of the two dimensions return tf.reduce_mean(self.target.z_clamp(z), axis=-1) def restore(self, sess, var_list=None): # variable list not provide if var_list is None: # restore all checkpoint variables tf_saver = tf.train.Saver() tf_saver.restore(sess, self.target.mdl_dir) # variable list provided else: # restore all checkpoint variables tf_saver = tf.train.Saver(var_list=var_list) tf_saver.restore(sess, self.target.mdl_dir) if __name__ == '__main__': # set random seeds
np.random.seed(123)
numpy.random.seed
import numpy as np class MCTSNode: """ Code for this algorithm inspired by the tutorial given on: https://ai-boson.github.io/mcts/ (Link also listed as a reference in our written report.) """ def __init__(self, state, player_number, origin, parent=None, parent_action=None): self.state = state self.want_to_win = origin self.player_number = player_number self.parent = parent self.parent_action = parent_action self.children = [] self.actions = self.state.get_legal_actions() self.wins = 0 self.losses = 0 self.num_sims = 0 def expand(self): action = self.actions.pop() next_state = self.state.move_MTCS(self.player_number, action) player = 0 if self.player_number == 1: player = 2 else: player = 1 child = MCTSNode( next_state, player, self.want_to_win, parent=self, parent_action=action ) self.children.append(child) return child def rollout(self): while not self.state.is_game_over(): possible_moves = self.state.get_legal_actions() action = self.choose_move(possible_moves) self.state = self.state.move_MTCS(self.player_number, action) return self.state.game_result(self.player_number) def backpropagate(self, result): self.num_sims += 1.0 if result == 1: self.wins += 1 elif result == -1: self.losses += 1 if self.parent: self.parent.backpropagate(result) def UCT(self, N, c, good): UCT = good * (self.wins - self.losses / self.num_sims) + c * np.sqrt( (2 * np.log(N) / self.num_sims) ) return UCT def best_child(self, c=1.4): good = 1 if self.player_number == self.want_to_win else -1 # multiply weights by -1 if it isn't the player we want to win weights = [child.UCT(self.num_sims, c, good) for child in self.children] return self.children[
np.argmax(weights)
numpy.argmax
import numpy as np from scipy.spatial.distance import correlation as _correlation np.seterr(divide='ignore', invalid='ignore') def minkowski(x1, x2, power): """Minkowski Distance Metric Parameters ---------- x1: numpy.ndarray Vector one x2: numpy.ndarray Vector two power: int L_{power} norm order Returns ------- distance: float Minkowski distance between `x1` and `x2` """ return np.linalg.norm(x1 - x2, power) def cosine(x1, x2): """Cosine Distance Metric Parameters ---------- x1: numpy.ndarray Vector one x2: numpy.ndarray Vector two Returns ------- distance: float Cosine distance between `x1` and `x2` """ return np.dot(x1.T, x2) / (np.linalg.norm(x1, 2) *
np.linalg.norm(x2, 2)
numpy.linalg.norm
import numpy as np class PyHMC(): def __init__(self, log_prob, grad_log_prob, invmetric_diag=None): self.log_prob, self.grad_log_prob = log_prob, grad_log_prob self.V = lambda x : self.log_prob(x)*-1. #self.V_g = lambda x : self.grad_log_prob(x)*-1. self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 if invmetric_diag is None: self.invmetric_diag = 1. else: self.invmetric_diag = invmetric_diag self.metricstd = self.invmetric_diag**-0.5 self.KE = lambda p: 0.5*(p**2 * self.invmetric_diag).sum() self.KE_g = lambda p: p * self.invmetric_diag def V_g(self, x): self.Vgcount += 1 return self.grad_log_prob(x)*-1. def unit_norm_KE(self, p): return 0.5 * (p**2).sum() def unit_norm_KE_g(self, p): return p def H(self, q,p): self.Hcount += 1 return self.V(q) + self.KE(p) def leapfrog(self, q, p, N, step_size): self.leapcount += 1 q0, p0 = q, p try: p = p - 0.5*step_size * self.V_g(q) for i in range(N-1): q = q + step_size * self.KE_g(p) p = p - step_size * self.V_g(q) q = q + step_size * self.KE_g(p) p = p - 0.5*step_size * self.V_g(q) return q, p except Exception as e: print(e) return q0, p0 def metropolis(self, qp0, qp1): q0, p0 = qp0 q1, p1 = qp1 H0 = self.H(q0, p0) H1 = self.H(q1, p1) prob = np.exp(H0 - H1) #prob = min(1., np.exp(H0 - H1)) if np.isnan(prob) or np.isinf(prob) or (q0-q1).sum()==0: return q0, p0, 2., [H0, H1] elif np.random.uniform(0., 1., size=1) > min(1., prob): return q0, p0, 0., [H0, H1] else: return q1, p1, 1., [H0, H1] def hmc_step(self, q, N, step_size): self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 p = np.random.normal(size=q.size).reshape(q.shape) * self.metricstd q1, p1 = self.leapfrog(q, p, N, step_size) q, p, accepted, prob = self.metropolis([q, p], [q1, p1]) return q, p, accepted, prob, [self.Hcount, self.Vgcount, self.leapcount] ## class PyHMC_2step(): def __init__(self, log_prob, grad_log_prob, KE=None, KE_g=None): self.log_prob, self.grad_log_prob = log_prob, grad_log_prob self.V = lambda x : self.log_prob(x)*-1. self.V_g = lambda x : self.grad_log_prob(x)*-1. if KE is None or KE_g is None: self.KE = self.unit_norm_KE self.KE_g = self.unit_norm_KE_g else: self.KE, self.KE_g = KE, KE_g def unit_norm_KE(self, p): return 0.5 * (p**2).sum() def unit_norm_KE_g(self, p): return p def H(self, q,p): return self.V(q) + self.KE(p) def leapfrog(self, q, p, N, step_size): q0, p0 = q, p try: p = p - 0.5*step_size * self.V_g(q) for i in range(N-1): q = q + step_size * self.KE_g(p) p = p - step_size * self.V_g(q) q = q + step_size * self.KE_g(p) p = p - 0.5*step_size * self.V_g(q) return q, p except Exception as e: print(e) return q0, p0 def hmc_step(self, q, N, step_size, two_factor): p = np.random.normal(size=q.size).reshape(q.shape) q1, p1 = self.leapfrog(q, p, N, step_size) accepted = False H0 = self.H(q, p) H1 = self.H(q1, p1) prob1 = np.exp(H0 - H1) if np.isnan(prob1) or np.isinf(prob1) or (q-q1).sum()==0: prob1 = 0. ##since prob1 = 1. if q == q1 accepted = False elif np.random.uniform(0., 1., size=1) > min(1., prob1): accepted = False else: accepted = True # if accepted: return q1, p1, 1., [H0, H1, H0, H1] else: N2 = int(N*two_factor) s2 = step_size/two_factor q2, p2 = self.leapfrog(q, p, N2, s2) H2 = self.H(q2, p2) prob2 = np.exp(H0 - H2) if np.isnan(prob2) or np.isinf(prob2) or (q-q2).sum()==0: return q, p, -1., [H0, H1, H2, H1] accepted = False else: q21, p21 = self.leapfrog(q2, -p2, N, step_size) H21 = self.H(q21, p21) prob21 = np.exp(H2 - H21) #if np.isnan(prob1): prob1 = 0. #if np.isnan(prob21) or np.isinf(prob21): if prob1 == 1: import sys print("prob1 should not be 1") #sys.exit() prob = prob2 * (1.-prob21)/(1.-prob1) if np.isnan(prob) : return q, p, -1, [H0, H1, H2, H21] elif np.random.uniform(size=1) > min(1., prob): return q, p, 0., [H0, H1, H2, H21] else: return q2, p2, 2., [H0, H1, H2, H21] class PyHMC_multistep_tries(): def __init__(self, log_prob, grad_log_prob, invmetric_diag=None): self.log_prob, self.grad_log_prob = log_prob, grad_log_prob self.V = lambda x : self.log_prob(x)*-1. #self.V_g = lambda x : self.grad_log_prob(x)*-1. self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 if invmetric_diag is None: self.invmetric_diag = 1. else: self.invmetric_diag = invmetric_diag self.metricstd = self.invmetric_diag**-0.5 self.KE = lambda p: 0.5*(p**2 * self.invmetric_diag).sum() self.KE_g = lambda p: p * self.invmetric_diag def V_g(self, x): self.Vgcount += 1 return self.grad_log_prob(x)*-1. def unit_norm_KE(self, p): return 0.5 * (p**2).sum() def unit_norm_KE_g(self, p): return p def H(self, q, p): self.Hcount +=1 return self.V(q) + self.KE(p) def leapfrog(self, q, p, N, step_size): self.leapcount += 1 q0, p0 = q, p try: p = p - 0.5*step_size * self.V_g(q) for i in range(N-1): q = q + step_size * self.KE_g(p) p = p - step_size * self.V_g(q) q = q + step_size * self.KE_g(p) p = p - 0.5*step_size * self.V_g(q) return q, p except Exception as e: #print(e) return q0, p0 def get_num(self, m, q, p, N, ss, fsub): avec = np.zeros(m) ptries = np.ones(m) H0 = self.H(q, p) for j in range(m): fac = fsub**(j) qj, pj = self.leapfrog(q, p, int(N*fac), ss/fac) Hj = self.H(qj, pj) pfac = np.exp(H0 - Hj) if np.isnan(pfac) or np.isinf(pfac): ptries[j] = 1 else: ptries[j] = 1 - min(1. , pfac) if (q - qj).sum()==0: pfac = 0. if j: den = np.prod(1-avec[:j]) * np.prod(ptries[:j]) num = self.get_num(j, qj, -pj, N, ss, fsub) prob = pfac*num/den else: prob = pfac if np.isnan(prob) or np.isinf(prob): return 0. #np.nan else: avec[j] = min(1., prob) if np.prod(1-avec): pass else: return np.prod(1-avec) return np.prod(1-avec) * np.prod(ptries) def multi_step(self, m, q0, N, ss, fsub): self.leapcount, self.Vgcount, self.Hcount = 0, 0, 0 p0 = np.random.normal(size=q0.size).reshape(q0.shape) * self.metricstd avec = np.zeros(m) ptries = np.ones(m) H0 = self.H(q0, p0) q1, p1 = self.leapfrog(q0, p0, N, ss) H1 = self.H(q1, p1) pfac = np.exp(H0 - H1) prob = pfac if np.isnan(prob) or np.isinf(prob) or (q0 - q1).sum()==0: prob = 0. prob = min(1., prob) avec[0] = prob if np.isnan(pfac) or np.isinf(pfac): ptries[0] = 1 else: ptries[0] = 1 - min(1. , pfac) acc = np.random.uniform() if acc <= avec[0]: return q1, p1, 0, avec, [self.Hcount, self.Vgcount, self.leapcount], ptries else: for j in range(1, m): if
np.random.uniform()
numpy.random.uniform
from functools import partial from itertools import product import numpy as np import pandas as pd import pytest from numpy.testing import assert_array_almost_equal as aaae from estimagic.differentiation.derivatives import first_derivative from estimagic.parameters.parameter_conversion import get_derivative_conversion_function from estimagic.parameters.parameter_conversion import get_reparametrize_functions from estimagic.parameters.process_constraints import process_constraints from estimagic.parameters.reparametrize import _multiply_from_left from estimagic.parameters.reparametrize import _multiply_from_right from estimagic.parameters.reparametrize import post_replace from estimagic.parameters.reparametrize import post_replace_jacobian from estimagic.parameters.reparametrize import pre_replace from estimagic.parameters.reparametrize import pre_replace_jacobian from estimagic.parameters.reparametrize import reparametrize_from_internal from estimagic.parameters.reparametrize import reparametrize_to_internal to_test = list( product( [ "basic_probability", "uncorrelated_covariance", "basic_covariance", "basic_fixed", "basic_increasing", "basic_equality", "query_equality", "basic_sdcorr", "normalized_covariance", ], [0, 1, 2], ) ) def reduce_params(params, constraints): all_locs = [] for constr in constraints: if "query" in constr: all_locs = ["i", "j1", "j2"] elif isinstance(constr["loc"], tuple): all_locs.append(constr["loc"][0]) elif isinstance(constr["loc"], list): all_locs.append(constr["loc"][0][0]) else: all_locs.append(constr["loc"]) all_locs = sorted(set(all_locs)) return params.loc[all_locs].copy() @pytest.mark.parametrize("case, number", to_test) def test_reparametrize_to_internal(example_params, all_constraints, case, number): constraints = all_constraints[case] params = reduce_params(example_params, constraints) params["value"] = params[f"value{number}"] keep = params[f"internal_value{number}"].notnull() expected_internal_values = params[f"internal_value{number}"][keep] expected_internal_lower = params["internal_lower"] expected_internal_upper = params["internal_upper"] to_internal, _ = get_reparametrize_functions( params=params, constraints=constraints, scaling_factor=None, scaling_offset=None, ) _, pp = process_constraints(constraints, params) calculated_internal_values_np = to_internal(pp["value"].to_numpy()) calculated_internal_values_pd = to_internal(pp) calculated_internal_lower = pp["_internal_lower"] calculated_internal_upper = pp["_internal_upper"] aaae(calculated_internal_values_np, calculated_internal_values_pd) aaae(calculated_internal_values_np, expected_internal_values) aaae(calculated_internal_lower, expected_internal_lower) aaae(calculated_internal_upper, expected_internal_upper) @pytest.mark.parametrize("case, number", to_test) def test_reparametrize_from_internal(example_params, all_constraints, case, number): constraints = all_constraints[case] params = reduce_params(example_params, constraints) params["value"] = params[f"value{number}"] keep = params[f"internal_value{number}"].notnull() _, from_internal = get_reparametrize_functions( params=params, constraints=constraints, scaling_factor=None, scaling_offset=None, ) internal_p = params[f"internal_value{number}"][keep].to_numpy() calculated_external_value = from_internal(internal_p) expected_external_value = params["value"].to_numpy() aaae(calculated_external_value, expected_external_value) def test_scaling_cancels_itself(): params = pd.DataFrame() params["value"] = np.arange(10) + 10 params["lower_bound"] = np.arange(10) params["upper_bound"] = 25 to_internal, from_internal = get_reparametrize_functions( params=params, constraints=[], scaling_factor=np.arange(10) + 1, scaling_offset=np.ones(10), ) internal = to_internal(params["value"].to_numpy()) external = from_internal(internal) aaae(external, params["value"].to_numpy()) @pytest.mark.parametrize("case, number", to_test) def test_reparametrize_from_internal_jacobian( example_params, all_constraints, case, number ): constraints = all_constraints[case] params = reduce_params(example_params, constraints) params["value"] = params[f"value{number}"] _, pp = process_constraints(constraints, params) n_free = int(pp._internal_free.sum()) scaling_factor = np.ones(n_free) * 2 # np.arange(n_free) + 1 scaling_offset = np.arange(n_free) - 1 params_to_internal, params_from_internal = get_reparametrize_functions( params=params, constraints=constraints, scaling_factor=scaling_factor, scaling_offset=scaling_offset, ) internal_p = params_to_internal(params["value"].to_numpy()) numerical_jacobian = first_derivative(params_from_internal, internal_p) derivative_to_internal = get_derivative_conversion_function( params=params, constraints=constraints, scaling_factor=scaling_factor, scaling_offset=scaling_offset, ) # calling convert_external_derivative with identity matrix as external derivative # is just a trick to get out the jacobian of reparametrize_from_internal jacobian = derivative_to_internal( external_derivative=np.eye(len(params)), internal_values=internal_p, ) aaae(jacobian, numerical_jacobian["derivative"]) @pytest.mark.parametrize("case, number", to_test) def test_pre_replace_jacobian(example_params, all_constraints, case, number): constraints = all_constraints[case] params = reduce_params(example_params, constraints) params["value"] = params[f"value{number}"] keep = params[f"internal_value{number}"].notnull() pc, pp = process_constraints(constraints, params) internal_p = params[f"internal_value{number}"][keep].to_numpy() fixed_val = pp["_internal_fixed_value"].to_numpy() pre_repl = pp["_pre_replacements"].to_numpy() func = partial( pre_replace, **{"fixed_values": fixed_val, "pre_replacements": pre_repl} ) numerical_deriv = first_derivative(func, internal_p)["derivative"] numerical_deriv[np.isnan(numerical_deriv)] = 0 deriv = pre_replace_jacobian(pre_repl, len(internal_p)) aaae(deriv, numerical_deriv) @pytest.mark.parametrize("case, number", to_test) def test_post_replace_jacobian(example_params, all_constraints, case, number): constraints = all_constraints[case] params = reduce_params(example_params, constraints) params["value"] = params[f"value{number}"] keep = params[f"internal_value{number}"].notnull() pc, pp = process_constraints(constraints, params) internal_p = params[f"internal_value{number}"][keep].to_numpy() fixed_val = pp["_internal_fixed_value"].to_numpy() pre_repl = pp["_pre_replacements"].to_numpy() post_repl = pp["_post_replacements"].to_numpy() external = pre_replace(internal_p, fixed_val, pre_repl) external[np.isnan(external)] = 0 # if not set to zero the numerical differentiation # fails due to potential np.nan. func = partial(post_replace, **{"post_replacements": post_repl}) numerical_deriv = first_derivative(func, external) deriv = post_replace_jacobian(post_repl)
aaae(deriv, numerical_deriv["derivative"])
numpy.testing.assert_array_almost_equal
# -*- coding: utf-8 -*- """ Created on Mon May 18 03:59:43 2020 All the functions are directly taken from https://github.com/sebp/scikit-survival """ import numbers import warnings import numpy from scipy.linalg import solve from sklearn.base import BaseEstimator from sklearn.exceptions import ConvergenceWarning from sklearn.utils.validation import check_array, check_is_fitted from sklearn.utils import check_consistent_length from utilities import check_arrays_survival, prepare_data3 class StepFunction(object): """Callable step function. .. math:: f(z) = a * y_i + b, x_i \\leq z < x_{i + 1} Parameters ---------- x : ndarray, shape = [n_points,] Values on the x axis in ascending order. y : ndarray, shape = [n_points,] Corresponding values on the y axis. a : float, optional Constant to multiply """ def __init__(self, x, y, a=1., b=0.): check_consistent_length(x, y) self.x = x self.y = y self.a = a self.b = b def __call__(self, x): if not numpy.isfinite(x): raise ValueError("x must be finite") if x < self.x[0] or x > self.x[-1]: raise ValueError( "x must be within [%f; %f], but was %f" % (self.x[0], self.x[-1], x)) i = numpy.searchsorted(self.x, x, side='left') if self.x[i] != x: i -= 1 return self.a * self.y[i] + self.b def __repr__(self): return "StepFunction(x=%r, y=%r)" % (self.x, self.y) def _compute_counts(event, time, order=None): """Count right censored and uncensored samples at each unique time point. Parameters ---------- event : array Boolean event indicator. time : array Survival time or time of censoring. order : array or None Indices to order time in ascending order. If None, order will be computed. Returns ------- times : array Unique time points. n_events : array Number of events at each time point. n_at_risk : array Number of samples that are censored or have an event at each time point. """ n_samples = event.shape[0] if order is None: order = numpy.argsort(time, kind="mergesort") uniq_times = numpy.empty(n_samples, dtype=time.dtype) uniq_events = numpy.empty(n_samples, dtype=numpy.int_) uniq_counts = numpy.empty(n_samples, dtype=numpy.int_) i = 0 prev_val = time[order[0]] j = 0 while True: count_event = 0 count = 0 while i < n_samples and prev_val == time[order[i]]: if event[order[i]]: count_event += 1 count += 1 i += 1 uniq_times[j] = prev_val uniq_events[j] = count_event uniq_counts[j] = count j += 1 if i == n_samples: break prev_val = time[order[i]] times =
numpy.resize(uniq_times, j)
numpy.resize
import matplotlib # from astropy.timeseries import LombScargle import matplotlib.gridspec as gridspec import importlib from hydroDL import kPath, utils from hydroDL.app import waterQuality from hydroDL.master import basins from hydroDL.data import usgs, gageII, gridMET, ntn from hydroDL.master import slurm from hydroDL.post import axplot, figplot import numpy as np import matplotlib.pyplot as plt import os import pandas as pd import json import scipy dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) code = '00300' siteNoLst = dictSite[code] nSite = len(siteNoLst) dataName = 'rbWN5' # load all sequence dictLSTMLst = list() # LSTM label = 'QTFP_C' dictLSTM = dict() trainSet = '{}-B10'.format('comb') outName = '{}-{}-{}-{}'.format(dataName, 'comb', label, trainSet) for k, siteNo in enumerate(siteNoLst): print('\t site {}/{}'.format(k, len(siteNoLst)), end='\r') df = basins.loadSeq(outName, siteNo) dictLSTM[siteNo] = df # WRTDS dictWRTDS = dict() dirWRTDS = os.path.join(kPath.dirWQ, 'modelStat', 'Linear-W', 'B10Q', 'output') for k, siteNo in enumerate(siteNoLst): print('\t site {}/{}'.format(k, len(siteNoLst)), end='\r') saveFile = os.path.join(dirWRTDS, siteNo) df = pd.read_csv(saveFile, index_col=None).set_index('date') # df = utils.time.datePdf(df) dictWRTDS[siteNo] = df # Observation dictObs = dict() for k, siteNo in enumerate(siteNoLst): print('\t site {}/{}'.format(k, len(siteNoLst)), end='\r') df = waterQuality.readSiteTS(siteNo, varLst=[code], freq='W') dictObs[siteNo] = df # code = '00010' # # calculate correlation tt = np.datetime64('2010-01-01') ind1 = np.where(df.index.values < tt)[0] ind2 =
np.where(df.index.values >= tt)
numpy.where
from design_bench.disk_resource import DiskResource import numpy as np import abc def default_uniform_distribution(ranks): """Accepts the rank of a set of designs as input and returns an un-normalized uniform probability distribution Arguments: ranks: np.ndarray a numpy array representing the rank order of a set of designs given by their y values in a model-based optimization dataset Returns: probabilities: np.ndarray an un-normalized probability distribution that is passed to np.random.choice to subsample a model-based optimization dataset """ return np.ones(ranks.shape, dtype=np.float32) def default_linear_distribution(ranks): """Accepts the rank of a set of designs as input and returns an un-normalized linear probability distribution Arguments: ranks: np.ndarray a numpy array representing the rank order of a set of designs given by their y values in a model-based optimization dataset Returns: probabilities: np.ndarray an un-normalized probability distribution that is passed to np.random.choice to subsample a model-based optimization dataset """ ranks = ranks.astype(np.float32) ranks = ranks / ranks.max() return 1.0 - ranks def default_quadratic_distribution(ranks): """Accepts the rank of a set of designs as input and returns an un-normalized quadratic probability distribution Arguments: ranks: np.ndarray a numpy array representing the rank order of a set of designs given by their y values in a model-based optimization dataset Returns: probabilities: np.ndarray an un-normalized probability distribution that is passed to np.random.choice to subsample a model-based optimization dataset """ ranks = ranks.astype(np.float32) ranks = ranks / ranks.max() return (1.0 - ranks)**2 def default_circular_distribution(ranks): """Accepts the rank of a set of designs as input and returns an un-normalized circular probability distribution Arguments: ranks: np.ndarray a numpy array representing the rank order of a set of designs given by their y values in a model-based optimization dataset Returns: probabilities: np.ndarray an un-normalized probability distribution that is passed to np.random.choice to subsample a model-based optimization dataset """ ranks = ranks.astype(np.float32) ranks = ranks / ranks.max() return 1.0 - np.sqrt(1.0 - (ranks - 1.0)**2) def default_exponential_distribution(ranks, c=3.0): """Accepts the rank of a set of designs as input and returns an un-normalized exponential probability distribution Arguments: ranks: np.ndarray a numpy array representing the rank order of a set of designs given by their y values in a model-based optimization dataset Returns: probabilities: np.ndarray an un-normalized probability distribution that is passed to np.random.choice to subsample a model-based optimization dataset """ ranks = ranks.astype(np.float32) ranks = ranks / ranks.max() return np.exp(-c * ranks) class DatasetBuilder(abc.ABC): """An abstract base class that defines a common set of functions and attributes for a model-based optimization dataset, where the goal is to find a design 'x' that maximizes a prediction 'y': max_x { y = f(x) } Public Attributes: name: str An attribute that specifies the name of a model-based optimization dataset, which might be used when labelling plots in a diagram of performance in a research paper using design-bench x_name: str An attribute that specifies the name of designs in a model-based optimization dataset, which might be used when labelling plots in a visualization of performance in a research paper y_name: str An attribute that specifies the name of predictions in a model-based optimization dataset, which might be used when labelling plots in a visualization of performance in a research paper x: np.ndarray the design values 'x' for a model-based optimization problem represented as a numpy array of arbitrary type input_shape: Tuple[int] the shape of a single design values 'x', represented as a list of integers similar to calling np.ndarray.shape input_size: int the total number of components in the design values 'x', represented as a single integer, the product of its shape entries input_dtype: np.dtype the data type of the design values 'x', which is typically either floating point or integer (np.float32 or np.int32) y: np.ndarray the prediction values 'y' for a model-based optimization problem represented by a scalar floating point value per 'x' output_shape: Tuple[int] the shape of a single prediction value 'y', represented as a list of integers similar to calling np.ndarray.shape output_size: int the total number of components in the prediction values 'y', represented as a single integer, the product of its shape entries output_dtype: np.dtype the data type of the prediction values 'y', which is typically a type of floating point (np.float32 or np.float16) dataset_size: int the total number of paired design values 'x' and prediction values 'y' in the dataset, represented as a single integer dataset_distribution: Callable[np.ndarray, np.ndarray] the target distribution of the model-based optimization dataset marginal p(y) used for controlling the sampling distribution dataset_max_percentile: float the percentile between 0 and 100 of prediction values 'y' above which are hidden from access by members outside the class dataset_min_percentile: float the percentile between 0 and 100 of prediction values 'y' below which are hidden from access by members outside the class dataset_max_output: float the specific cutoff threshold for prediction values 'y' above which are hidden from access by members outside the class dataset_min_output: float the specific cutoff threshold for prediction values 'y' below which are hidden from access by members outside the class internal_batch_size: int the integer number of samples per batch that is used internally when processing the dataset and generating samples freeze_statistics: bool a boolean indicator that when set to true prevents methods from changing the normalization and sub sampling statistics is_normalized_x: bool a boolean indicator that specifies whether the design values in the dataset are being normalized x_mean: np.ndarray a numpy array that is automatically calculated to be the mean of visible design values in the dataset x_standard_dev: np.ndarray a numpy array that is automatically calculated to be the standard deviation of visible design values in the dataset is_normalized_y: bool a boolean indicator that specifies whether the prediction values in the dataset are being normalized y_mean: np.ndarray a numpy array that is automatically calculated to be the mean of visible prediction values in the dataset y_standard_dev: np.ndarray a numpy array that is automatically calculated to be the standard deviation of visible prediction values in the dataset Public Methods: iterate_batches(batch_size: int, return_x: bool, return_y: bool, drop_remainder: bool) -> Iterable[Tuple[np.ndarray, np.ndarray]]: Returns an object that supports iterations, which yields tuples of design values 'x' and prediction values 'y' from a model-based optimization data set for training a model iterate_samples(return_x: bool, return_y: bool): -> Iterable[Tuple[np.ndarray, np.ndarray]]: Returns an object that supports iterations, which yields tuples of design values 'x' and prediction values 'y' from a model-based optimization data set for training a model subsample(max_samples: int, distribution: Callable[np.ndarray, np.ndarray], max_percentile: float, min_percentile: float): a function that exposes a subsampled version of a much larger model-based optimization dataset containing design values 'x' whose prediction values 'y' are skewed relabel(relabel_function: Callable[[np.ndarray, np.ndarray], np.ndarray]): a function that accepts a function that maps from a dataset of design values 'x' and prediction values y to a new set of prediction values 'y' and relabels the model-based optimization dataset clone(subset: set, shard_size: int, to_disk: bool, disk_target: str, is_absolute: bool): Generate a cloned copy of a model-based optimization dataset using the provided name and shard generation settings; useful when relabelling a dataset buffer from the dis split(fraction: float, subset: set, shard_size: int, to_disk: bool, disk_target: str, is_absolute: bool): split a model-based optimization data set into a training set and a validation set allocating 'fraction' of the data set to the validation set and the rest to the training set normalize_x(new_x: np.ndarray) -> np.ndarray: a helper function that accepts floating point design values 'x' as input and standardizes them so that they have zero empirical mean and unit empirical variance denormalize_x(new_x: np.ndarray) -> np.ndarray: a helper function that accepts floating point design values 'x' as input and undoes standardization so that they have their original empirical mean and variance normalize_y(new_x: np.ndarray) -> np.ndarray: a helper function that accepts floating point prediction values 'y' as input and standardizes them so that they have zero empirical mean and unit empirical variance denormalize_y(new_x: np.ndarray) -> np.ndarray: a helper function that accepts floating point prediction values 'y' as input and undoes standardization so that they have their original empirical mean and variance map_normalize_x(): a destructive function that standardizes the design values 'x' in the class dataset in-place so that they have zero empirical mean and unit variance map_denormalize_x(): a destructive function that undoes standardization of the design values 'x' in the class dataset in-place which are expected to have zero empirical mean and unit variance map_normalize_y(): a destructive function that standardizes the prediction values 'y' in the class dataset in-place so that they have zero empirical mean and unit variance map_denormalize_y(): a destructive function that undoes standardization of the prediction values 'y' in the class dataset in-place which are expected to have zero empirical mean and unit variance """ @property @abc.abstractmethod def name(self): """Attribute that specifies the name of a model-based optimization dataset, which might be used when labelling plots in a diagram of performance in a research paper using design-bench """ raise NotImplementedError @property @abc.abstractmethod def x_name(self): """Attribute that specifies the name of designs in a model-based optimization dataset, which might be used when labelling plots in a visualization of performance in a research paper """ raise NotImplementedError @property @abc.abstractmethod def y_name(self): """Attribute that specifies the name of predictions in a model-based optimization dataset, which might be used when labelling plots in a visualization of performance in a research paper """ raise NotImplementedError @property @abc.abstractmethod def subclass_kwargs(self): """Generate a dictionary containing class initialization keyword arguments that are specific to sub classes; for example, may contain the number of classes in a discrete dataset """ raise NotImplementedError @property @abc.abstractmethod def subclass(self): """Specifies the primary subclass of an instance of DatasetBuilder that can be instantiated on its own using self.rebuild_dataset and typically either DiscreteDataset or ContinuousDataset """ raise NotImplementedError def __init__(self, x_shards, y_shards, internal_batch_size=32, is_normalized_x=False, is_normalized_y=False, max_samples=None, distribution=None, max_percentile=100.0, min_percentile=0.0): """Initialize a model-based optimization dataset and prepare that dataset by loading that dataset from disk and modifying its distribution of designs and predictions Arguments: x_shards: Union[ np.ndarray, RemoteResource, Iterable[np.ndarray], Iterable[RemoteResource]] a single shard or a list of shards representing the design values in a model-based optimization dataset; shards are loaded lazily if RemoteResource otherwise loaded in memory immediately y_shards: Union[ np.ndarray, RemoteResource, Iterable[np.ndarray], Iterable[RemoteResource]] a single shard or a list of shards representing prediction values in a model-based optimization dataset; shards are loaded lazily if RemoteResource otherwise loaded in memory immediately internal_batch_size: int the number of samples per batch to use when computing normalization statistics of the data set and while relabeling the prediction values of the data set is_normalized_x: bool a boolean indicator that specifies whether the designs in the dataset are being normalized is_normalized_y: bool a boolean indicator that specifies whether the predictions in the dataset are being normalized max_samples: int the maximum number of samples to include in the visible dataset; if more than this number of samples would be present, samples are randomly removed from the visible dataset distribution: Callable[np.ndarray, np.ndarray] a function that accepts an array of the ranks of designs as input and returns the probability to sample each according to a distribution---for example, a geometric distribution max_percentile: float the percentile between 0 and 100 of prediction values 'y' above which are hidden from access by members outside the class min_percentile: float the percentile between 0 and 100 of prediction values 'y' below which are hidden from access by members outside the class """ # save the provided dataset shards to be loaded into batches self.x_shards = (x_shards,) if \ isinstance(x_shards, np.ndarray) or \ isinstance(x_shards, DiskResource) else x_shards self.y_shards = (y_shards,) if \ isinstance(y_shards, np.ndarray) or \ isinstance(y_shards, DiskResource) else y_shards # download the remote resources if they are given self.num_shards = 0 for x_shard, y_shard in zip(self.x_shards, self.y_shards): self.num_shards += 1 if isinstance(x_shard, DiskResource) \ and not x_shard.is_downloaded: x_shard.download() if isinstance(y_shard, DiskResource) \ and not y_shard.is_downloaded: y_shard.download() # update variables that describe the data set self.dataset_min_percentile = 0.0 self.dataset_max_percentile = 100.0 self.dataset_min_output = np.NINF self.dataset_max_output = np.PINF self.dataset_distribution = None # initialize the normalization state to False self.internal_batch_size = internal_batch_size self.is_normalized_x = False self.is_normalized_y = False # special flag that control when the dataset is mutable self.freeze_statistics = False self._disable_transform = False self._disable_subsample = False # initialize statistics for data set normalization self.x_mean = None self.y_mean = None self.x_standard_dev = None self.y_standard_dev = None # assign variables that describe the design values 'x' self._disable_transform = True self._disable_subsample = True for x in self.iterate_samples(return_y=False): self.input_shape = x.shape self.input_size = int(np.prod(x.shape)) self.input_dtype = x.dtype break # only sample a single design from the data set # assign variables that describe the prediction values 'y' self.output_shape = [1] self.output_size = 1 self.output_dtype = np.float32 # check the output format and count the number of samples self.dataset_size = 0 for i, y in enumerate(self.iterate_samples(return_x=False)): self.dataset_size += 1 # assume the data set is large if i == 0 and len(y.shape) != 1 or y.shape[0] != 1: raise ValueError(f"predictions must have shape [N, 1]") # initialize a default set of visible designs self._disable_transform = False self._disable_subsample = False self.dataset_visible_mask = np.full( [self.dataset_size], True, dtype=np.bool) # handle requests to normalize and subsample the dataset if is_normalized_x: self.map_normalize_x() if is_normalized_y: self.map_normalize_y() self.subsample(max_samples=max_samples, distribution=distribution, min_percentile=min_percentile, max_percentile=max_percentile) def get_num_shards(self): """A helper function that returns the number of shards in a model-based optimization data set, which is useful when the data set is too large to be loaded inot memory all at once Returns: num_shards: int an integer representing the number of shards in a model-based optimization data set that can be loaded """ return self.num_shards def get_shard_x(self, shard_id): """A helper function used for retrieving the data associated with a particular shard specified by shard_id containing design values in a model-based optimization data set Arguments: shard_id: int an integer representing the particular identifier of the shard to be loaded from a model-based optimization data set Returns: shard_data: np.ndarray a numpy array that represents the data encoded in the shard specified by the integer identifier shard_id """ # check the shard id is in bounds if 0 < shard_id >= self.get_num_shards(): raise ValueError(f"shard id={shard_id} out of bounds") # if that shard entry is a numpy array if isinstance(self.x_shards[shard_id], np.ndarray): return self.x_shards[shard_id] # if that shard entry is stored on the disk elif isinstance(self.x_shards[shard_id], DiskResource): return np.load(self.x_shards[shard_id].disk_target) def get_shard_y(self, shard_id): """A helper function used for retrieving the data associated with a particular shard specified by shard_id containing prediction values in a model-based optimization data set Arguments: shard_id: int an integer representing the particular identifier of the shard to be loaded from a model-based optimization data set Returns: shard_data: np.ndarray a numpy array that represents the data encoded in the shard specified by the integer identifier shard_id """ # check the shard id is in bounds if 0 < shard_id >= self.get_num_shards(): raise ValueError(f"shard id={shard_id} out of bounds") # if that shard entry is a numpy array if isinstance(self.y_shards[shard_id], np.ndarray): return self.y_shards[shard_id] # if that shard entry is stored on the disk elif isinstance(self.y_shards[shard_id], DiskResource): return np.load(self.y_shards[shard_id].disk_target) def set_shard_x(self, shard_id, shard_data, to_disk=None, disk_target=None, is_absolute=None): """A helper function used for assigning the data associated with a particular shard specified by shard_id containing design values in a model-based optimization data set Arguments: shard_id: int an integer representing the particular identifier of the shard to be loaded from a model-based optimization data set shard_data: np.ndarray a numpy array that represents the data to be encoded in the shard specified by the integer identifier shard_id to_disk: boolean a boolean that indicates whether to store the data set in memory as numpy arrays or to the disk disk_target: str a string that determines the name and sub folder of the saved data set if to_disk is set to be true is_absolute: boolean a boolean that indicates whether the disk_target path is taken relative to the benchmark data folder """ # check that all arguments are set when saving to disk if to_disk is not None and to_disk and \ (disk_target is None or is_absolute is None): raise ValueError("must specify location when saving to disk") # check the shard id is in bounds if 0 < shard_id >= self.get_num_shards(): raise ValueError(f"shard id={shard_id} out of bounds") # store shard in memory as a numpy array if (to_disk is not None and not to_disk) or \ (to_disk is None and isinstance( self.x_shards[shard_id], np.ndarray)): self.x_shards[shard_id] = shard_data # write shard to a new resource file given by "disk_target" if to_disk is not None and to_disk: disk_target = f"{disk_target}-x-{shard_id}.npy" self.x_shards[shard_id] = DiskResource(disk_target, is_absolute=is_absolute) # possibly write shard to an existing file on disk if isinstance(self.x_shards[shard_id], DiskResource): np.save(self.x_shards[shard_id].disk_target, shard_data) def set_shard_y(self, shard_id, shard_data, to_disk=None, disk_target=None, is_absolute=None): """A helper function used for assigning the data associated with a particular shard specified by shard_id containing prediction values in a model-based optimization data set Arguments: shard_id: int an integer representing the particular identifier of the shard to be loaded from a model-based optimization data set shard_data: np.ndarray a numpy array that represents the data to be encoded in the shard specified by the integer identifier shard_id to_disk: boolean a boolean that indicates whether to store the data set in memory as numpy arrays or to the disk disk_target: str a string that determines the name and sub folder of the saved data set if to_disk is set to be true is_absolute: boolean a boolean that indicates whether the disk_target path is taken relative to the benchmark data folder """ # check that all arguments are set when saving to disk if to_disk is not None and to_disk and \ (disk_target is None or is_absolute is None): raise ValueError("must specify location when saving to disk") # check the shard id is in bounds if 0 < shard_id >= self.get_num_shards(): raise ValueError(f"shard id={shard_id} out of bounds") # store shard in memory as a numpy array if (to_disk is not None and not to_disk) or \ (to_disk is None and isinstance( self.y_shards[shard_id], np.ndarray)): self.y_shards[shard_id] = shard_data # write shard to a new resource file given by "disk_target" if to_disk is not None and to_disk: disk_target = f"{disk_target}-y-{shard_id}.npy" self.y_shards[shard_id] = DiskResource(disk_target, is_absolute=is_absolute) # possibly write shard to an existing file on disk if isinstance(self.y_shards[shard_id], DiskResource): np.save(self.y_shards[shard_id].disk_target, shard_data) def batch_transform(self, x_batch, y_batch, return_x=True, return_y=True): """Apply a transformation to batches of samples from a model-based optimization data set, including sub sampling and normalization and potentially other used defined transformations Arguments: x_batch: np.ndarray a numpy array representing a batch of design values sampled from a model-based optimization data set y_batch: np.ndarray a numpy array representing a batch of prediction values sampled from a model-based optimization data set return_x: bool a boolean indicator that specifies whether the generator yields design values at every iteration; note that at least one of return_x and return_y must be set to True return_y: bool a boolean indicator that specifies whether the generator yields prediction values at every iteration; note that at least one of return_x and return_y must be set to True Returns: x_batch: np.ndarray a numpy array representing a batch of design values sampled from a model-based optimization data set y_batch: np.ndarray a numpy array representing a batch of prediction values sampled from a model-based optimization data set """ # normalize the design values in the batch if self.is_normalized_x and return_x: x_batch = self.normalize_x(x_batch) # normalize the prediction values in the batch if self.is_normalized_y and return_y: y_batch = self.normalize_y(y_batch) # return processed batches of designs an predictions return (x_batch if return_x else None, y_batch if return_y else None) def iterate_batches(self, batch_size, return_x=True, return_y=True, drop_remainder=False): """Returns an object that supports iterations, which yields tuples of design values 'x' and prediction values 'y' from a model-based optimization data set for training a model Arguments: batch_size: int a positive integer that specifies the batch size of samples taken from a model-based optimization data set; batches with batch_size elements are yielded return_x: bool a boolean indicator that specifies whether the generator yields design values at every iteration; note that at least one of return_x and return_y must be set to True return_y: bool a boolean indicator that specifies whether the generator yields prediction values at every iteration; note that at least one of return_x and return_y must be set to True drop_remainder: bool a boolean indicator representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch. Returns: generator: Iterator a python iterable that yields samples from a model-based optimization data set and returns once finished """ # check whether the generator arguments are valid if batch_size < 1 or (not return_x and not return_y): raise ValueError("invalid arguments passed to batch generator") # track a list of incomplete batches between shards y_batch_size = 0 x_batch = [] if return_x else None y_batch = [] if return_y else None # iterate through every registered shard sample_id = 0 for shard_id in range(self.get_num_shards()): x_shard_data = self.get_shard_x(shard_id) if return_x else None y_shard_data = self.get_shard_y(shard_id) # loop once per batch contained in the shard shard_position = 0 while shard_position < y_shard_data.shape[0]: # how many samples will be attempted to read target_size = batch_size - y_batch_size # slice out a component of the current shard x_sliced = x_shard_data[shard_position:( shard_position + target_size)] if return_x else None y_sliced = y_shard_data[shard_position:( shard_position + target_size)] # store the batch_size of samples read samples_read = y_sliced.shape[0] # take a subset of the sliced arrays using a pre-defined # transformation that sub-samples if not self._disable_subsample: # compute which samples are exposed in the dataset indices = np.where(self.dataset_visible_mask[ sample_id:sample_id + y_sliced.shape[0]])[0] # sub sample the design and prediction values x_sliced = x_sliced[indices] if return_x else None y_sliced = y_sliced[indices] if return_y else None # take a subset of the sliced arrays using a pre-defined # transformation that normalizes if not self._disable_transform: # apply a transformation to the dataset x_sliced, y_sliced = self.batch_transform( x_sliced, y_sliced, return_x=return_x, return_y=return_y) # update the read position in the shard tensor shard_position += target_size sample_id += samples_read # update the current batch to be yielded y_batch_size += (y_sliced if return_y else x_sliced).shape[0] x_batch.append(x_sliced) if return_x else None y_batch.append(y_sliced) if return_y else None # yield the current batch when enough samples are loaded if y_batch_size >= batch_size \ or (shard_position >= y_shard_data.shape[0] and shard_id + 1 == self.get_num_shards() and not drop_remainder): try: # determine which tensors to yield if return_x and return_y: yield np.concatenate(x_batch, axis=0), \ np.concatenate(y_batch, axis=0) elif return_x: yield np.concatenate(x_batch, axis=0) elif return_y: yield np.concatenate(y_batch, axis=0) # reset the buffer for incomplete batches y_batch_size = 0 x_batch = [] if return_x else None y_batch = [] if return_y else None except GeneratorExit: # handle cleanup when break is called return def iterate_samples(self, return_x=True, return_y=True): """Returns an object that supports iterations, which yields tuples of design values 'x' and prediction values 'y' from a model-based optimization data set for training a model Arguments: return_x: bool a boolean indicator that specifies whether the generator yields design values at every iteration; note that at least one of return_x and return_y must be set to True return_y: bool a boolean indicator that specifies whether the generator yields prediction values at every iteration; note that at least one of return_x and return_y must be set to True Returns: generator: Iterator a python iterable that yields samples from a model-based optimization data set and returns once finished """ # generator that only returns single samples for batch in self.iterate_batches( self.internal_batch_size, return_x=return_x, return_y=return_y): # yield a tuple if both x and y are returned if return_x and return_y: for i in range(batch[0].shape[0]): yield batch[0][i], batch[1][i] # yield a tuple if only x and y or returned elif return_x or return_y: for i in range(batch.shape[0]): yield batch[i] def __iter__(self): """Returns an object that supports iterations, which yields tuples of design values 'x' and prediction values 'y' from a model-based optimization data set for training a model Returns: generator: Iterator a python iterable that yields samples from a model-based optimization data set and returns once finished """ # generator that returns batches of designs and predictions for x_batch, y_batch in \ self.iterate_batches(self.internal_batch_size): yield x_batch, y_batch def update_x_statistics(self): """A helpful function that calculates the mean and standard deviation of the designs and predictions in a model-based optimization dataset either iteratively or all at once using numpy """ # check that statistics are not frozen for this dataset if self.freeze_statistics: raise ValueError("cannot update dataset when it is frozen") # make sure the statistics are calculated from original samples original_is_normalized_x = self.is_normalized_x self.is_normalized_x = False # iterate through the entire dataset a first time samples = x_mean = 0 for x_batch in self.iterate_batches( self.internal_batch_size, return_y=False): # calculate how many samples are actually in the current batch batch_size = np.array(x_batch.shape[0], dtype=np.float32) # update the running mean using dynamic programming x_mean = x_mean * (samples / (samples + batch_size)) + \ np.sum(x_batch, axis=0, keepdims=True) / (samples + batch_size) # update the number of samples used in the calculation samples += batch_size # iterate through the entire dataset a second time samples = x_variance = 0 for x_batch in self.iterate_batches( self.internal_batch_size, return_y=False): # calculate how many samples are actually in the current batch batch_size = np.array(x_batch.shape[0], dtype=np.float32) # update the running variance using dynamic programming x_variance = x_variance * (samples / (samples + batch_size)) + \ np.sum(np.square(x_batch - x_mean), axis=0, keepdims=True) / (samples + batch_size) # update the number of samples used in the calculation samples += batch_size # expose the calculated mean and standard deviation self.x_mean = x_mean self.x_standard_dev = np.sqrt(x_variance) # remove zero standard deviations to prevent singularities self.x_standard_dev = np.where( self.x_standard_dev == 0.0, 1.0, self.x_standard_dev) # reset the normalized state to what it originally was self.is_normalized_x = original_is_normalized_x def update_y_statistics(self): """A helpful function that calculates the mean and standard deviation of the designs and predictions in a model-based optimization dataset either iteratively or all at once using numpy """ # check that statistics are not frozen for this dataset if self.freeze_statistics: raise ValueError("cannot update dataset when it is frozen") # make sure the statistics are calculated from original samples original_is_normalized_y = self.is_normalized_y self.is_normalized_y = False # iterate through the entire dataset a first time samples = y_mean = 0 for y_batch in self.iterate_batches( self.internal_batch_size, return_x=False): # calculate how many samples are actually in the current batch batch_size = np.array(y_batch.shape[0], dtype=np.float32) # update the running mean using dynamic programming y_mean = y_mean * (samples / (samples + batch_size)) + \ np.sum(y_batch, axis=0, keepdims=True) / (samples + batch_size) # update the number of samples used in the calculation samples += batch_size # iterate through the entire dataset a second time samples = y_variance = 0 for y_batch in self.iterate_batches( self.internal_batch_size, return_x=False): # calculate how many samples are actually in the current batch batch_size = np.array(y_batch.shape[0], dtype=np.float32) # update the running variance using dynamic programming y_variance = y_variance * (samples / (samples + batch_size)) + \ np.sum(np.square(y_batch - y_mean), axis=0, keepdims=True) / (samples + batch_size) # update the number of samples used in the calculation samples += batch_size # expose the calculated mean and standard deviation self.y_mean = y_mean self.y_standard_dev = np.sqrt(y_variance) # remove zero standard deviations to prevent singularities self.y_standard_dev = np.where( self.y_standard_dev == 0.0, 1.0, self.y_standard_dev) # reset the normalized state to what it originally was self.is_normalized_y = original_is_normalized_y def subsample(self, max_samples=None, distribution=None, max_percentile=100.0, min_percentile=0.0): """a function that exposes a subsampled version of a much larger model-based optimization dataset containing design values 'x' whose prediction values 'y' are skewed Arguments: max_samples: int the maximum number of samples to include in the visible dataset; if more than this number of samples would be present, samples are randomly removed from the visible dataset distribution: Callable[np.ndarray, np.ndarray] a function that accepts an array of the ranks of designs as input and returns the probability to sample each according to a distribution---for example, a geometric distribution max_percentile: float the percentile between 0 and 100 of prediction values 'y' above which are hidden from access by members outside the class min_percentile: float the percentile between 0 and 100 of prediction values 'y' below which are hidden from access by members outside the class """ # check that statistics are not frozen for this dataset if self.freeze_statistics: raise ValueError("cannot update dataset when it is frozen") # return an error is the arguments are invalid if max_samples is not None and max_samples <= 0: raise ValueError("dataset cannot be made empty") # return an error is the arguments are invalid if min_percentile > max_percentile: raise ValueError("invalid arguments provided") # convert the original prediction generator to a numpy tensor self._disable_subsample = True self._disable_transform = True y = np.concatenate(list(self.iterate_batches( self.internal_batch_size, return_x=False)), axis=0) self._disable_subsample = False self._disable_transform = False # calculate the min threshold for predictions in the dataset min_output = np.percentile(y[:, 0], min_percentile) \ if min_percentile > 0.0 else np.NINF self.dataset_min_percentile = min_percentile self.dataset_min_output = min_output # calculate the max threshold for predictions in the dataset max_output = np.percentile(y[:, 0], max_percentile) \ if max_percentile < 100.0 else np.PINF self.dataset_max_percentile = max_percentile self.dataset_max_output = max_output # calculate indices of samples that are within range indices = np.arange(y.shape[0])[np.where( np.logical_and(y <= max_output, y >= min_output))[0]] max_samples = indices.size \ if max_samples is None else min(indices.size, max_samples) # replace default distributions with their implementations if distribution in {None, "uniform"}: distribution = default_uniform_distribution elif distribution == "linear": distribution = default_linear_distribution elif distribution == "quadratic": distribution = default_quadratic_distribution elif distribution == "exponential": distribution = default_exponential_distribution elif distribution == "circular": distribution = default_circular_distribution # calculate the probability to subsample individual designs probs = distribution(y[indices, 0].argsort().argsort()) probs = np.asarray(probs, dtype=np.float32) probs = np.broadcast_to(probs, (indices.size,)) indices = indices[np.random.choice( indices.size, max_samples, replace=False, p=probs / probs.sum())] # binary mask that determines which samples are visible visible_mask = np.full([y.shape[0]], False, dtype=np.bool) visible_mask[indices] = True self.dataset_visible_mask = visible_mask self.dataset_size = indices.size self.dataset_distribution = distribution # update normalization statistics for design values if self.is_normalized_x: self.update_x_statistics() # update normalization statistics for prediction values if self.is_normalized_y: self.update_y_statistics() @property def x(self) -> np.ndarray: """A helpful function for loading the design values from disk in case the dataset is set to load all at once rather than lazily and is overridden with a numpy array once loaded Returns: x: np.ndarray processed design values 'x' for a model-based optimization problem represented as a numpy array of arbitrary type """ return np.concatenate([x for x in self.iterate_batches( self.internal_batch_size, return_y=False)], axis=0) @property def y(self) -> np.ndarray: """A helpful function for loading prediction values from disk in case the dataset is set to load all at once rather than lazily and is overridden with a numpy array once loaded Returns: y: np.ndarray processed prediction values 'y' for a model-based optimization problem represented as a numpy array of arbitrary type """ return np.concatenate([y for y in self.iterate_batches( self.internal_batch_size, return_x=False)], axis=0) def relabel(self, relabel_function, to_disk=None, disk_target=None, is_absolute=None): """a function that accepts a function that maps from a dataset of design values 'x' and prediction values y to a new set of prediction values 'y' and relabels a model-based optimization dataset Arguments: relabel_function: Callable[[np.ndarray, np.ndarray], np.ndarray] a function capable of mapping from a numpy array of design values 'x' and prediction values 'y' to new predictions 'y' using batching to prevent memory overflow to_disk: boolean a boolean that indicates whether to store the data set in memory as numpy arrays or to the disk disk_target: str a string that determines the name and sub folder of the saved data set if to_disk is set to be true is_absolute: boolean a boolean that indicates whether the disk_target path is taken relative to the benchmark data folder """ # check that statistics are not frozen for this dataset if self.freeze_statistics: raise ValueError("cannot update dataset when it is frozen") # check that all arguments are set when saving to disk if to_disk is not None and to_disk and \ (disk_target is None or is_absolute is None): raise ValueError("must specify location when saving to disk") # prevent the data set for being sub-sampled or normalized self._disable_subsample = True examples = self.y.shape[0] examples_processed = 0 # track a list of incomplete batches between shards y_shard = [] y_shard_size = 0 # calculate the appropriate size of the first shard shard_id = 0 shard = self.get_shard_y(shard_id) shard_size = shard.shape[0] # relabel the prediction values of the internal data set for x_batch, y_batch in \ self.iterate_batches(self.internal_batch_size): # calculate the new prediction values to be stored as shards y_batch = relabel_function(x_batch, y_batch) read_position = 0 # remove potential normalization on the predictions if self.is_normalized_y: y_batch = self.denormalize_y(y_batch) # loop once per batch contained in the shard while read_position < y_batch.shape[0]: # calculate the intended number of samples to serialize target_size = shard_size - y_shard_size # slice out a component of the current shard y_slice = y_batch[read_position:read_position + target_size] samples_read = y_slice.shape[0] # increment the read position in the prediction tensor # and update the number of shards and examples processed read_position += target_size examples_processed += samples_read # update the current shard to be serialized y_shard.append(y_slice) y_shard_size += samples_read # yield the current batch when enough samples are loaded if y_shard_size >= shard_size \ or examples_processed >= examples: # serialize the value of the new shard data self.set_shard_y(shard_id, np.concatenate(y_shard, axis=0), to_disk=to_disk, disk_target=disk_target, is_absolute=is_absolute) # reset the buffer for incomplete batches y_shard = [] y_shard_size = 0 # calculate the appropriate size for the next shard if not examples_processed >= examples: shard_id += 1 shard = self.get_shard_y(shard_id) shard_size = shard.shape[0] # re-sample the data set and recalculate statistics self._disable_subsample = False self.subsample(max_samples=self.dataset_size, distribution=self.dataset_distribution, max_percentile=self.dataset_max_percentile, min_percentile=self.dataset_min_percentile) def rebuild_dataset(self, x_shards, y_shards, visible_mask): """Initialize a model-based optimization dataset and prepare that dataset by loading that dataset from disk and modifying its distribution of designs and predictions Arguments: x_shards: Union[ np.ndarray, RemoteResource, Iterable[np.ndarray], Iterable[RemoteResource]] a single shard or a list of shards representing the design values in a model-based optimization dataset; shards are loaded lazily if RemoteResource otherwise loaded in memory immediately y_shards: Union[ np.ndarray, RemoteResource, Iterable[np.ndarray], Iterable[RemoteResource]] a single shard or a list of shards representing prediction values in a model-based optimization dataset; shards are loaded lazily if RemoteResource otherwise loaded in memory immediately visible_mask: np.ndarray a numpy array of shape [dataset_size] containing boolean entries specifying which samples are visible in the provided Iterable Returns: dataset: DatasetBuilder an instance of a data set builder subclass containing a copy of all statistics associated with this dataset """ # new dataset that shares statistics with this one kwargs = dict(internal_batch_size=self.internal_batch_size) kwargs.update(self.subclass_kwargs) dataset = self.subclass(x_shards, y_shards, **kwargs) # carry over the names of the parent dataset.name = self.name dataset.x_name = self.x_name dataset.y_name = self.y_name # carry over the normalize statistics of the parent dataset.is_normalized_x = self.is_normalized_x dataset.x_mean = self.x_mean dataset.x_standard_dev = self.x_standard_dev # carry over the normalize statistics of the parent dataset.is_normalized_y = self.is_normalized_y dataset.y_mean = self.y_mean dataset.y_standard_dev = self.y_standard_dev # carry over the sub sampling statistics of the parent dataset.dataset_min_percentile = self.dataset_min_percentile dataset.dataset_max_percentile = self.dataset_max_percentile dataset.dataset_min_output = self.dataset_min_output dataset.dataset_max_output = self.dataset_max_output dataset.dataset_distribution = self.dataset_distribution # calculate indices of samples that are visible dataset.dataset_visible_mask = visible_mask dataset.dataset_size = dataset.y.shape[0] return dataset def clone(self, subset=None, shard_size=5000, to_disk=False, disk_target="dataset", is_absolute=True): """Generate a cloned copy of a model-based optimization dataset using the provided name and shard generation settings; useful when relabelling a dataset buffer from the disk Arguments: subset: set a python set of integers representing the ids of the samples to be included in the generated shards shard_size: int an integer representing the number of samples from a model-based optimization data set to save per shard to_disk: boolean a boolean that indicates whether to store the split data set in memory as numpy arrays or to the disk disk_target: str a string that determines the name and sub folder of the saved data set if to_disk is set to be true is_absolute: boolean a boolean that indicates whether the disk_target path is taken relative to the benchmark data folder Returns: dataset: DatasetBuilder an instance of a data set builder subclass containing a copy of all data originally associated with this dataset """ # check if the subset is empty if subset is not None and len(subset) == 0: raise ValueError("cannot pass an empty subset") # disable transformations and check the size of the data set self._disable_subsample = True self._disable_transform = True visible_mask = [] # create lists to store shards and numpy arrays partial_shard_x, partial_shard_y = [], [] x_shards, y_shards = [], [] # iterate once through the entire data set for sample_id, (x, y) in enumerate(self.iterate_samples()): # add the sampled x and y to the dataset if subset is None or sample_id in subset: partial_shard_x.append(x) partial_shard_y.append(y) # record whether this sample was already visible visible_mask.append(self.dataset_visible_mask[sample_id]) # if the validation shard is large enough then write it if (sample_id + 1 == self.dataset_visible_mask.size and len(partial_shard_x) > 0) or \ len(partial_shard_x) >= shard_size: # stack the sampled x and y values into a shard shard_x = np.stack(partial_shard_x, axis=0) shard_y = np.stack(partial_shard_y, axis=0) if to_disk: # write the design values shard first to a new file x_resource = DiskResource( f"{disk_target}-x-{len(x_shards)}.npy", is_absolute=is_absolute, download_method=None, download_target=None)
np.save(x_resource.disk_target, shard_x)
numpy.save
import numpy as np import matplotlib.pyplot as plt from math import sqrt from scipy import stats from scipy.stats import kurtosis, skew def pdf(costh, P_mu): # define our probability density function return 0.5 * (1.0 - 1.0 / 3.0 * P_mu * costh) def inv_cdf_pos(r, P_mu): # inverse of the cumulative density function # since we have positive and negative solutions for x(r), we have to consider both return 3./P_mu*(1.+np.sqrt(1.+2./3.*P_mu*(P_mu/6.+1.-2.*r))) def inv_cdf_neg(r, P_mu): return 3./P_mu*(1.-np.sqrt(1.+2./3.*P_mu*(P_mu/6.+1.-2.*r))) def inv_trans(N_measurements, P_mu): r =
np.random.uniform(0.0, 1.0, size=N_measurements)
numpy.random.uniform
import numpy as np import unittest from numpy.testing import * from src.tabular.policies import TabularQPolicy, Qdict2array from src.tabular.TD import QLearning from src.envs.dummy_envs import * class TestQLearning(unittest.TestCase): def setUp(self): self.env = ChainEnv(6) self.env_multi = GridEnv(n=3, multi_discrete_action=True, goal_reward=1) self.model = QLearning(TabularQPolicy, self.env) self.model_multi = QLearning(TabularQPolicy, self.env_multi) def test_Q_learning(self): self.model.learn(2000) targetQ = np.array([[.95, .96], [.95, .97], [.96, .98], [.97, .99], [.98, 1.0], [0.0, 0.0]]) assert_array_almost_equal(targetQ, Qdict2array(self.model.get_parameters()['Q'])) def test_predict(self): # Check that predicts does not use softmax but greedy policy by default self.model.learn(2000) targetQ = np.array([[.95, .96], [.95, .97], [.96, .98], [.97, .99], [.98, 1.0], [0.0, 0.0]]) for i in range(100): assert_equal(self.model.predict(0)[0], 1) def test_Q_learning_multi(self): """ Test Q learning with multi-discrete action and state space. """ self.model_multi.learn(8000) targetQ = np.array([[.97, .97, .96, .96], [.98, .98, .96, .97], [.98, .99, .97, .98], [.98, .98, .97, .96], [.99, .99, .97, .97], [.99, 1.0, .98, .98], [.99, .98, .98, .97], [1.0, .99, .98, .98], [0.0, 0.0, 0.0, 0.0]]) assert_array_almost_equal(targetQ, Qdict2array(self.model_multi.get_parameters()['Q']), decimal=4) class TestTabularQPolicy(unittest.TestCase): def setUp(self): self.env = GridEnv(n=3, multi_discrete_action=True, goal_reward=1) self.policy = TabularQPolicy(self.env.observation_space, self.env.action_space) def test(self): # Update the Q values s = [(0, 0), (0, 0)] a = [(0, 1), (0, 0)] vals = [1, 2] self.policy.update_Q(s, a, vals) # Check the probability distribution and the sampling are right denominator = 2 * np.exp(0) + np.exp(1) + np.exp(2) target = [
np.exp(2)
numpy.exp
from __future__ import absolute_import from __future__ import division import base64 import sys import numpy as np from scipy.ndimage import binary_dilation, binary_erosion, convolve import unittest import pytest import centrosome.filter as F from six.moves import range """Perform line-integration per-column of the image""" VERTICAL = "vertical" """Perform line-integration per-row of the image""" HORIZONTAL = "horizontal" """Perform line-integration along diagonals from top left to bottom right""" DIAGONAL = "diagonal" """Perform line-integration along diagonals from top right to bottom left""" ANTI_DIAGONAL = "anti-diagonal" class TestStretch(unittest.TestCase): def test_00_00_empty(self): result = F.stretch(np.zeros((0,))) self.assertEqual(len(result), 0) def test_00_01_empty_plus_mask(self): result = F.stretch(np.zeros((0,)), np.zeros((0,), bool)) self.assertEqual(len(result), 0) def test_00_02_zeros(self): result = F.stretch(np.zeros((10, 10))) self.assertTrue(np.all(result == 0)) def test_00_03_zeros_plus_mask(self): result = F.stretch(np.zeros((10, 10)), np.ones((10, 10), bool)) self.assertTrue(np.all(result == 0)) def test_00_04_half(self): result = F.stretch(np.ones((10, 10)) * 0.5) self.assertTrue(np.all(result == 0.5)) def test_00_05_half_plus_mask(self): result = F.stretch(np.ones((10, 10)) * 0.5, np.ones((10, 10), bool)) self.assertTrue(np.all(result == 0.5)) def test_01_01_rescale(self): np.random.seed(0) image = np.random.uniform(-2, 2, size=(10, 10)) image[0, 0] = -2 image[9, 9] = 2 expected = (image + 2.0) / 4.0 result = F.stretch(image) self.assertTrue(np.all(result == expected)) def test_01_02_rescale_plus_mask(self): np.random.seed(0) image = np.random.uniform(-2, 2, size=(10, 10)) mask = np.zeros((10, 10), bool) mask[1:9, 1:9] = True image[0, 0] = -4 image[9, 9] = 4 image[1, 1] = -2 image[8, 8] = 2 expected = (image[1:9, 1:9] + 2.0) / 4.0 result = F.stretch(image, mask) self.assertTrue(np.all(result[1:9, 1:9] == expected)) class TestMedianFilter(unittest.TestCase): def test_00_00_zeros(self): """The median filter on an array of all zeros should be zero""" result = F.median_filter(np.zeros((10, 10)), np.ones((10, 10), bool), 3) self.assertTrue(np.all(result == 0)) def test_00_01_all_masked(self): """Test a completely masked image Regression test of IMG-1029""" result = F.median_filter(np.zeros((10, 10)), np.zeros((10, 10), bool), 3) self.assertTrue(np.all(result == 0)) def test_00_02_all_but_one_masked(self): mask = np.zeros((10, 10), bool) mask[5, 5] = True result = F.median_filter(np.zeros((10, 10)), mask, 3) def test_01_01_mask(self): """The median filter, masking a single value""" img = np.zeros((10, 10)) img[5, 5] = 1 mask = np.ones((10, 10), bool) mask[5, 5] = False result = F.median_filter(img, mask, 3) self.assertTrue(np.all(result[mask] == 0)) def test_02_01_median(self): """A median filter larger than the image = median of image""" np.random.seed(0) img = np.random.uniform(size=(9, 9)) result = F.median_filter(img, np.ones((9, 9), bool), 20) self.assertEqual(result[0, 0], np.median(img)) self.assertTrue(np.all(result == np.median(img))) def test_02_02_median_bigger(self): """Use an image of more than 255 values to test approximation""" np.random.seed(0) img = np.random.uniform(size=(20, 20)) result = F.median_filter(img, np.ones((20, 20), bool), 40) sorted = np.ravel(img) sorted.sort() min_acceptable = sorted[198] max_acceptable = sorted[202] self.assertTrue(np.all(result >= min_acceptable)) self.assertTrue(np.all(result <= max_acceptable)) def test_03_01_shape(self): """Make sure the median filter is the expected octagonal shape""" radius = 5 a_2 = int(radius / 2.414213) i, j = np.mgrid[-10:11, -10:11] octagon = np.ones((21, 21), bool) # # constrain the octagon mask to be the points that are on # the correct side of the 8 edges # octagon[i < -radius] = False octagon[i > radius] = False octagon[j < -radius] = False octagon[j > radius] = False octagon[i + j < -radius - a_2] = False octagon[j - i > radius + a_2] = False octagon[i + j > radius + a_2] = False octagon[i - j > radius + a_2] = False np.random.seed(0) img = np.random.uniform(size=(21, 21)) result = F.median_filter(img, np.ones((21, 21), bool), radius) sorted = img[octagon] sorted.sort() min_acceptable = sorted[len(sorted) // 2 - 1] max_acceptable = sorted[len(sorted) // 2 + 1] self.assertTrue(result[10, 10] >= min_acceptable) self.assertTrue(result[10, 10] <= max_acceptable) def test_04_01_half_masked(self): """Make sure that the median filter can handle large masked areas.""" img = np.ones((20, 20)) mask = np.ones((20, 20), bool) mask[10:, :] = False img[~mask] = 2 img[1, 1] = 0 # to prevent short circuit for uniform data. result = F.median_filter(img, mask, 5) # in partial coverage areas, the result should be only from the masked pixels self.assertTrue(np.all(result[:14, :] == 1)) # in zero coverage areas, the result should be the lowest valud in the valid area self.assertTrue(np.all(result[15:, :] == np.min(img[mask]))) @pytest.mark.skipif(sys.version_info > (3, 0), reason="requires Python 2.7") class TestBilateralFilter(unittest.TestCase): def test_00_00_zeros(self): """Test the bilateral filter of an array of all zeros""" result = F.bilateral_filter( np.zeros((10, 10)), np.ones((10, 10), bool), 5.0, 0.1 ) self.assertTrue(np.all(result == 0)) def test_00_01_all_masked(self): """Test the bilateral filter of a completely masked array""" np.random.seed(0) image = np.random.uniform(size=(10, 10)) result = F.bilateral_filter(image, np.zeros((10, 10), bool), 5.0, 0.1) self.assertTrue(np.all(result == image)) class TestLaplacianOfGaussian(unittest.TestCase): def test_00_00_zeros(self): result = F.laplacian_of_gaussian(np.zeros((10, 10)), None, 9, 3) self.assertTrue(np.all(result == 0)) def test_00_01_zeros_mask(self): result = F.laplacian_of_gaussian( np.zeros((10, 10)), np.zeros((10, 10), bool), 9, 3 ) self.assertTrue(np.all(result == 0)) def test_01_01_ring(self): """The LoG should have its lowest value in the center of the ring""" i, j = np.mgrid[-20:21, -20:21].astype(float) # A ring of radius 3, more or less image = (np.abs(i ** 2 + j ** 2 - 3) < 2).astype(float) result = F.laplacian_of_gaussian(image, None, 9, 3) self.assertTrue( (np.argmin(result) % 41, int(np.argmin(result) / 41)) == (20, 20) ) class TestCanny(unittest.TestCase): def test_00_00_zeros(self): """Test that the Canny filter finds no points for a blank field""" result = F.canny(np.zeros((20, 20)),
np.ones((20, 20), bool)
numpy.ones
import os # nowa: autoimport import shutil from math import floor, log2 from subprocess import DEVNULL, Popen from typing import Tuple import essentia.standard as esst import fastdtw as fdtw import librosa import numpy as np import pretty_midi import scipy from dtw import dtw from .. import cdist, utils from .dlnco.DLNCO import dlnco def check_executables(): """ Just check that `fluidsynth` is available in the path and raise a RuntimeError if not """ if shutil.which('fluidsynth') is None: raise RuntimeError( "Please, install fluidsynth command and make it available in your PATH environment variable" ) def download_soundfont(): """ Just download MuseScore 3 soundfont to `./soundfont.sf2` """ sf2_path = "soundfont.sf2" if not os.path.exists(sf2_path): import urllib.request # noqa: autoimport url = "https://ftp.osuosl.org/pub/musescore/soundfont/MuseScore_General/MuseScore_General.sf2" print("downloading...") urllib.request.urlretrieve(url, sf2_path) # hack to let fastdtw accept float32 def _my_prep_inputs(x, y, dist): return x, y def fdtw_dist(sample1, sample2): """ This functions computes the eculidean distance on the first `12` featres and cosine distance on the remaining. Then it sums the two distances and returns """ return cdist.euclidean(sample1[:12], sample2[:12]) + cdist.cosine( sample1[12:], sample2[12:]) def multiple_audio_alignment(audio1, sr1, audio2, sr2, hopsize, n_fft=4096, merge_dlnco=True, fastdtw=False): """ Aligns two audio files and returns a list of lists containing the map between the audio frames. Parameters ---------- audio1 : np.array Numpy array representing the signal. sr1 : int Sampling rate of **audio1** audio2 : np.array Numpy array representing the signal. sr2 : int Sampling rate of **audio2** hopsize : int The hopsize for the FFT. Consider to use something like `n_fft/4` n_fft : int The window size. Consider to use something like `4*hopsize` merge_dlnco : bool Unknown Returns ------- numpy.ndarray A 2d array, mapping frames from :attr: `audio1` to frames in :attr: `audio2`. `[[frame in audio 1, frame in audio 2]]` """ # chroma and DLNCO features # output shape is (features, frames) # transposed -> (frames, features) audio1_chroma = librosa.feature.chroma_stft(y=audio1, sr=sr1, tuning=0, norm=2, hop_length=hopsize, n_fft=n_fft).T audio1_dlnco = dlnco(audio1, sr1, n_fft, hopsize).T audio2_chroma = librosa.feature.chroma_stft(y=audio2, sr=sr2, tuning=0, norm=2, hop_length=hopsize, n_fft=n_fft).T audio2_dlnco = dlnco(audio2, sr2, n_fft, hopsize).T L = min(audio1_dlnco.shape[0], audio2_dlnco.shape[0]) if not fastdtw: dlnco_mat = scipy.spatial.distance.cdist(audio1_dlnco[:L, :], audio2_dlnco[:L, :], 'euclidean') chroma_mat = scipy.spatial.distance.cdist(audio1_chroma[:L, :], audio2_chroma[:L, :], 'cosine') # print("Starting DTW") res = dtw(dlnco_mat + chroma_mat) wp = np.stack([res.index1, res.index2], axis=1) return wp else: # shape of features is still (frames, features) features1 = np.concatenate([audio1_chroma, audio1_dlnco], axis=1) features2 = np.concatenate([audio2_chroma, audio2_dlnco], axis=1) fdtw._fastdtw.__prep_inputs = _my_prep_inputs _D, path = fdtw.fastdtw(features1.astype(np.float32), features2.astype(np.float32), dist=fdtw_dist, radius=98) return
np.asarray(path)
numpy.asarray
import numpy as np import scipy import scipy.stats import scipy.sparse from sklearn.decomposition import PCA,TruncatedSVD from sklearn.neighbors import NearestNeighbors import time import os import json from datetime import datetime import matplotlib.pyplot as plt import scanpy as sc import pandas as pd ########## LOADING DATA def load_genes(filename, delimiter='\t', column=0, skip_rows=0): ''' Load gene list from a file Arguments - filename : str Name of file containing gene names - delimiter : str, optional (default: "\t") Column delimiter - column : int, optional (default: 0) Column containing gene names - skip_rows : int, optional (default: 0) Number of rows to skip at beginning of file Returns - gene_list : list, length n_genes List of gene names ''' gene_list = [] with open(filename) as f: for iL,l in enumerate(f): if iL >= skip_rows: gene_list.append(l.strip('\n').split(delimiter)[column]) return gene_list def make_genes_unique(orig_gene_list): ''' Make gene names unique by adding "__1", "__2", etc. to end of duplicate gene names Arguments - orig_gene_list : list, length n_genes List of gene names possibly containing duplicates Returns - gene_list : list, length n_genes List of unique gene names ''' gene_list = [] gene_dict = {} for gene in orig_gene_list: if gene in gene_dict: gene_dict[gene] += 1 gene_list.append(gene + '__' + str(gene_dict[gene])) if gene_dict[gene] == 2: i = gene_list.index(gene) gene_list[i] = gene + '__1' else: gene_dict[gene] = 1 gene_list.append(gene) return gene_list def load_pickle(filename): '''Load data from pickle file Attempts to load pickle file using pickle library, falling back on pandas read_pickle if there are version issues. Arguments - filename : str Pickle file name Returns - dat : object Object loaded from filename ''' try: import pickle dat = pickle.load(open(filename, 'rb')) except: import pandas as pd dat = pd.read_pickle(filename) return dat ### loading counts def file_opener(filename): '''Open file and return a file object, automatically decompressing zip and gzip Arguments - filename : str Name of input file Returns - outData : file object (Decompressed) file data ''' if filename.endswith('.gz'): fileData = open(filename, 'rb') import gzip outData = gzip.GzipFile(fileobj = fileData, mode = 'rb') elif filename.endswith('.zip'): fileData = open(filename, 'rb') import zipfile zipData = zipfile.ZipFile(fileData, 'r') fnClean = filename.strip('/').split('/')[-1][:-4] outData = zipData.open(fnClean) else: outData = open(filename, 'r') return outData def load_mtx(file_data): ''' Load mtx file as scipy.sparse.csc_matrix Arguments - file_data : str or file object Name of input file or a file object Returns - scipy.sparse.csc_matrix ''' return scipy.io.mmread(file_data).tocsc() def load_npz(file_data): ''' Load scipy.sparse npz file as scipy.sparse.csc_matrix Arguments - file_data : str or file object Name of input file or a file object Returns - scipy.sparse.csc_matrix ''' return scipy.sparse.load_npz(file_data).tocsc() def load_npy(file_data): ''' Load npy file, converting to scipy.sparse.csc_matrix Arguments - file_data : str or file object Name of input file or a file object Returns - scipy.sparse.csc_matrix ''' return scipy.sparse.csc_matrix(np.load(file_data)) def load_text(file_data, delim='\t', start_column=None, start_row=None, print_row_interval=None): '''Load text file as scipy.sparse.csc_matrix If start_column is not specificied, attempts to automatically identify the counts matrix (all numeric columns). ''' X_data = [] X_row = [] X_col = [] ncol = None for row_ix, dat in enumerate(file_data): if print_row_interval is not None: if (row_ix+1) % print_row_interval == 0: print('Row {}'.format(row_ix+1)) if type(dat) == bytes: dat = dat.decode('utf-8') dat = dat.strip('\n').split(delim) if start_row is None: current_col = 0 found_float = False while not found_float and current_col < len(dat): try: tmp = float(dat[current_col]) try: rowdat = np.array(list(map(float, dat[current_col:]))) ncol = len(rowdat) col_ix = np.nonzero(rowdat)[0] found_float = True start_row = row_ix start_column = current_col X_col.extend(col_ix) X_row.extend([row_ix - start_row] * len(col_ix)) X_data.extend(rowdat[col_ix]) except: current_col += 1 except: current_col += 1 elif row_ix >= start_row: rowdat = np.array(list(map(float, dat[start_column:]))) if ncol is None: ncol = len(rowdat) else: if len(rowdat) != ncol: return 'ERROR: Rows have different numbers of numeric columns.' col_ix = np.nonzero(rowdat)[0] X_col.extend(col_ix) X_row.extend([row_ix - start_row] * len(col_ix)) X_data.extend(rowdat[col_ix]) if start_row is None: return 'ERROR: no numeric values found' nrow = row_ix - start_row + 1 E = scipy.sparse.coo_matrix((X_data, (X_row, X_col)), dtype=float, shape=(nrow, ncol)).tocsc() return E def load_text2(file_data, delim='\t', start_column=0, start_row=0, row_indices=None, column_indices=None, print_row_interval=None): '''Load text file as scipy.sparse.csc_matrix Can load a user-specified subset of rows and/or columns ''' X_data = [] X_row = [] X_col = [] ncol = None nrow = 0 for row_ix, dat in enumerate(file_data): if print_row_interval is not None: if (row_ix+1) % print_row_interval == 0: print('Row {}'.format(row_ix+1)) if type(dat) == bytes: dat = dat.decode('utf-8') dat = dat.strip('\n').split(delim) if row_ix >= start_row: read_row = True if row_indices is not None: if (row_ix - start_row) not in row_indices: read_row = False if read_row: rowdat = dat[start_column:] if ncol is None: ncol = len(rowdat) else: if len(rowdat) != ncol: return 'ERROR: Rows have different numbers of numeric columns.' if column_indices is None: column_indices = np.arange(ncol) rowdat = np.array(list(map(float, rowdat)))[column_indices] col_ix = np.nonzero(rowdat)[0] X_col.extend(col_ix) X_row.extend([nrow] * len(col_ix)) X_data.extend(rowdat[col_ix]) nrow += 1 ncol = len(column_indices) print(nrow,ncol) E = scipy.sparse.coo_matrix((X_data, (X_row, X_col)), dtype=float, shape=(nrow, ncol)).tocsc() return E def load_annotated_text(file_data, delim='\t', read_row_labels=False, read_column_labels=False, transpose=False, chunk_size=2000): '''Load text file as scipy.sparse.csc_matrix, returning column and/or row labels if desired. Loads rows in chunks to ease memory demands. ''' X_data = [] X_row = [] X_col = [] ncol = None nrow = 0 row_labels = [] column_labels = [] E_chunks = [] for row_ix, dat in enumerate(file_data): if type(dat) == bytes: dat = dat.decode('utf-8') dat = dat.strip('\n').split(delim) if read_column_labels and row_ix == 0: if read_column_labels: column_labels = dat[1:] else: column_labels = dat else: if read_row_labels: row_labels.append(dat[0]) rowdat = dat[1:] else: rowdat = dat[0:] if ncol is None: ncol = len(rowdat) else: if len(rowdat) != ncol: return 'ERROR: Line {} has {} columns. Previous line(s) had {}'.format(row_ix, len(rowdat), ncol) rowdat = np.array(list(map(float, rowdat))) col_ix = np.nonzero(rowdat)[0] X_col.extend(col_ix) X_row.extend([nrow] * len(col_ix)) X_data.extend(rowdat[col_ix]) nrow += 1 if chunk_size is not None: if nrow % chunk_size == 0: E_chunks.append(scipy.sparse.coo_matrix((X_data, (X_row, X_col)), dtype=float, shape=(nrow, ncol))) X_data = [] X_row = [] X_col = [] nrow = 0 if nrow > 0: E_chunks.append(scipy.sparse.coo_matrix((X_data, (X_row, X_col)), dtype=float, shape=(nrow, ncol))) E = scipy.sparse.vstack(E_chunks) if transpose: E = E.T return E.tocsc(), np.array(row_labels), np.array(column_labels) def load_cellranger_h5_v2(filename, genome): import h5py import scipy.sparse as ssp f = h5py.File(filename, 'r') barcodes = np.array(f.get(genome).get('barcodes')).astype(str) gene_names = np.array(f.get(genome).get('gene_names')).astype(str) data = np.array(f.get(genome).get('data')) indices = np.array(f.get(genome).get('indices')) indptr = np.array(f.get(genome).get('indptr')) shape = np.array(f.get(genome).get('shape')) # Make sparse expression matrix E = ssp.csc_matrix((data, indices, indptr), shape=shape).T.tocsc() f.close() return E, barcodes, gene_names def load_cellranger_h5_v3(filename): import h5py import scipy.sparse as ssp f = h5py.File(filename, 'r') barcodes = np.array(f.get('matrix').get('barcodes')).astype(str) gene_names = np.array(f.get('matrix').get('features').get('name')).astype(str) data = np.array(f.get('matrix').get('data')) indices = np.array(f.get('matrix').get('indices')) indptr = np.array(f.get('matrix').get('indptr')) shape = np.array(f.get('matrix').get('shape')) # Make sparse expression matrix E = ssp.csc_matrix((data, indices, indptr), shape=shape).T.tocsc() f.close() return E, barcodes, gene_names ########## USEFUL SPARSE FUNCTIONS def sparse_var(E, axis=0): ''' calculate variance across the specified axis of a sparse matrix''' mean_gene = E.mean(axis=axis).A.squeeze() tmp = E.copy() tmp.data **= 2 return tmp.mean(axis=axis).A.squeeze() - mean_gene ** 2 def sparse_rowwise_multiply(E, a): ''' multiply each row of sparse matrix by a scalar ''' nrow = E.shape[0] w = scipy.sparse.lil_matrix((nrow, nrow)) w.setdiag(a) return w * E def mean_center(E, column_means=None): ''' mean-center columns of a sparse matrix ''' if column_means is None: column_means = E.mean(axis=0) return E - column_means def normalize_variance(E, column_stdevs=None): ''' variance-normalize columns of a sparse matrix ''' if column_stdevs is None: column_stdevs = np.sqrt(sparse_var(E, axis=0)) return sparse_rowwise_multiply(E.T, 1 / column_stdevs).T def sparse_zscore(E, gene_mean=None, gene_stdev=None): ''' z-score normalize each column of a sparse matrix ''' if gene_mean is None: gene_mean = E.mean(0) if gene_stdev is None: gene_stdev = np.sqrt(sparse_var(E)) return sparse_rowwise_multiply((E - gene_mean).T, 1/gene_stdev).T ########## CELL FILTERING def filter_dict(d, filt): ''' filter 1-D and 2-D entries in a dictionary ''' for k,v in d.items(): if k != 'meta': if len(v.shape) == 1: d[k] = v[filt] else: d[k] = v[filt,:] return d ########## GENE FILTERING def runningquantile(x, y, p, nBins): ''' calculate the quantile of y in bins of x ''' ind = np.argsort(x) x = x[ind] y = y[ind] dx = (x[-1] - x[0]) / nBins xOut = np.linspace(x[0]+dx/2, x[-1]-dx/2, nBins) yOut = np.zeros(xOut.shape) for i in range(len(xOut)): ind = np.nonzero((x >= xOut[i]-dx/2) & (x < xOut[i]+dx/2))[0] if len(ind) > 0: yOut[i] = np.percentile(y[ind], p) else: if i > 0: yOut[i] = yOut[i-1] else: yOut[i] = np.nan return xOut, yOut def get_vscores(E, min_mean=0, nBins=50, fit_percentile=0.1, error_wt=1): ''' Calculate v-score (above-Poisson noise statistic) for genes in the input sparse counts matrix Return v-scores and other stats ''' ncell = E.shape[0] mu_gene = E.mean(axis=0).A.squeeze() gene_ix = np.nonzero(mu_gene > min_mean)[0] mu_gene = mu_gene[gene_ix] tmp = E[:,gene_ix] tmp.data **= 2 var_gene = tmp.mean(axis=0).A.squeeze() - mu_gene ** 2 del tmp FF_gene = var_gene / mu_gene data_x = np.log(mu_gene) data_y = np.log(FF_gene / mu_gene) x, y = runningquantile(data_x, data_y, fit_percentile, nBins) x = x[~np.isnan(y)] y = y[~np.isnan(y)] gLog = lambda input: np.log(input[1] * np.exp(-input[0]) + input[2]) h,b = np.histogram(np.log(FF_gene[mu_gene>0]), bins=200) b = b[:-1] + np.diff(b)/2 max_ix = np.argmax(h) c = np.max((np.exp(b[max_ix]), 1)) errFun = lambda b2: np.sum(abs(gLog([x,c,b2])-y) ** error_wt) b0 = 0.1 b = scipy.optimize.fmin(func = errFun, x0=[b0], disp=False) a = c / (1+b) - 1 v_scores = FF_gene / ((1+a)*(1+b) + b * mu_gene); CV_eff = np.sqrt((1+a)*(1+b) - 1); CV_input = np.sqrt(b); return v_scores, CV_eff, CV_input, gene_ix, mu_gene, FF_gene, a, b def filter_genes(E, base_ix = [], min_vscore_pctl = 85, min_counts = 3, min_cells = 3, show_vscore_plot = False, sample_name = ''): ''' Filter genes by expression level and variability Return list of filtered gene indices ''' if len(base_ix) == 0: base_ix =
np.arange(E.shape[0])
numpy.arange
import logging mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import unittest import pygsti import numpy as np from scipy import polyfit from ..testutils import compare_files, regenerate_references from .basecase import AlgorithmsBase class TestCoreMethods(AlgorithmsBase): def test_LGST(self): ds = self.ds print("GG0 = ",self.model.default_gauge_group) mdl_lgst = pygsti.run_lgst(ds, self.fiducials, self.fiducials, self.model, svd_truncate_to=4, verbosity=0) mdl_lgst_verb = self.runSilent(pygsti.run_lgst, ds, self.fiducials, self.fiducials, self.model, svd_truncate_to=4, verbosity=10) self.assertAlmostEqual(mdl_lgst.frobeniusdist(mdl_lgst_verb),0) print("GG = ",mdl_lgst.default_gauge_group) mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst, self.model, {'spam':1.0, 'gates': 1.0}, check_jac=True) mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP") # RUN BELOW LINES TO SEED SAVED GATESET FILES if regenerate_references(): pygsti.io.write_model(mdl_lgst, compare_files + "/lgst.model", "Saved LGST Model before gauge optimization") pygsti.io.write_model(mdl_lgst_go, compare_files + "/lgst_go.model", "Saved LGST Model after gauge optimization") pygsti.io.write_model(mdl_clgst, compare_files + "/clgst.model", "Saved LGST Model after G.O. and CPTP contraction") mdl_lgst_compare = pygsti.io.load_model(compare_files + "/lgst.model") mdl_lgst_go_compare = pygsti.io.load_model(compare_files + "/lgst_go.model") mdl_clgst_compare = pygsti.io.load_model(compare_files + "/clgst.model") self.assertAlmostEqual( mdl_lgst.frobeniusdist(mdl_lgst_compare), 0, places=5) self.assertAlmostEqual( mdl_lgst_go.frobeniusdist(mdl_lgst_go_compare), 0, places=5) self.assertAlmostEqual( mdl_clgst.frobeniusdist(mdl_clgst_compare), 0, places=5) def test_LGST_no_sample_error(self): #change rep-count type so dataset can hold fractional counts for sampleError = 'none' oldType = pygsti.data.dataset.Repcount_type pygsti.data.dataset.Repcount_type = np.float64 ds = pygsti.data.simulate_data(self.datagen_gateset, self.lgstStrings, num_samples=10000, sample_error='none') pygsti.data.dataset.Repcount_type = oldType mdl_lgst = pygsti.run_lgst(ds, self.fiducials, self.fiducials, self.model, svd_truncate_to=4, verbosity=0) print("DATAGEN:") print(self.datagen_gateset) print("\nLGST RAW:") print(mdl_lgst) mdl_lgst = pygsti.gaugeopt_to_target(mdl_lgst, self.datagen_gateset, {'spam':1.0, 'gates': 1.0}, check_jac=False) print("\nAfter gauge opt:") print(mdl_lgst) print(mdl_lgst.strdiff(self.datagen_gateset)) self.assertAlmostEqual( mdl_lgst.frobeniusdist(self.datagen_gateset), 0, places=4) def test_LGST_1overSqrtN_dependence(self): my_datagen_gateset = self.model.depolarize(op_noise=0.05, spam_noise=0) # !!don't depolarize spam or 1/sqrt(N) dependence saturates!! nSamplesList = np.array([ 16, 128, 1024, 8192 ]) diffs = [] for nSamples in nSamplesList: ds = pygsti.data.simulate_data(my_datagen_gateset, self.lgstStrings, nSamples, sample_error='binomial', seed=100) mdl_lgst = pygsti.run_lgst(ds, self.fiducials, self.fiducials, self.model, svd_truncate_to=4, verbosity=0) mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst, my_datagen_gateset, {'spam':1.0, 'gate': 1.0}, check_jac=True) diffs.append( my_datagen_gateset.frobeniusdist(mdl_lgst_go) ) diffs = np.array(diffs, 'd') a, b = polyfit(
np.log10(nSamplesList)
numpy.log10
#!/usr/bin/env python # coding: utf-8 # In[ ]: import os import argparse import numpy as np import random import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable, grad from tensorboardX import SummaryWriter from QualityMetrics import Indicators from MakeHist import MakeHist from matplotlib import pyplot as plt import importlib ## ## Command line parameters ## ## parser = argparse.ArgumentParser(description='Train the selected model') parser.add_argument('--run',type=int,help='Number of the run') parser.add_argument('--model_ver',type=str,help='Version of the model. Must be the name of the module containing the desired model.') parser.add_argument('--eta',type=float,default=0.12,help='Weight of the sum between the losses of the two discriminators (Only relevant for GANConv1Dv1WIa.py model).') parser.add_argument('--alpha',type=float,default=300,help='Alpha parameter for pre-processing.') parser.add_argument('--grad_norm_reg',type=bool,default=False,help='If gradient-norm regularization is applied.') parser.add_argument('--gamma',type=float,default=0.01,help='Rate for gradient-norm regularization.') parser.add_argument('--n_epochs',type=int,default=140,help='Number of epochs for training.') parser.add_argument('--batch_size',type=int,default=20,help='Batch size.') parser.add_argument('--lr_g',type=float,default=0.0001,help='Learning rate for the generator.') parser.add_argument('--lr_d',type=float,default=0.00001,help='Learning rate for the discriminator.') parser.add_argument('--n_critic',type=int,default=3,help='Number of discriminator steps per generator step.') parser.add_argument('--n_parts',type=int,default=5,help='Split the Universe in n_parts') opt = parser.parse_args() model_ver = opt.model_ver run = opt.run # Directory for saving TensorBoard files, numpy arrays contaning the results of the attacks and the weights of trained models. saving_dir = './Logs/'+model_ver # Instantiate Tensorboar SummaryWriter writer = SummaryWriter(saving_dir+'/Tensorboard/exp'+str(run)) ## ## Creating Random list of clients ## ## # First 'step' elements of the list will be selected as training data n_parts = opt.n_parts data_dir = "./DataSets" dir_list = os.listdir(data_dir) random.shuffle(dir_list) step = int(len(dir_list)/n_parts) # Saving the training set suffle list_directory = saving_dir+'/npdata/dirlist' if not os.path.exists(list_directory): os.makedirs(list_directory) np.save(list_directory+'/List'+str(run)+'.npy',dir_list) # Arranging clients into subsets. The first subset will be the training set. subset_list = [] universe = np.empty(shape=[0,336], dtype='float32') for i in range(0,len(dir_list),step): np_aux = np.empty(shape=[0,336], dtype='float32') if ((len(dir_list)-i)>=step): for j in range(step): aux = np.load(data_dir+'/'+dir_list[i+j]) np_aux = np.append(np_aux,aux,axis=0) universe = np.append(universe,aux,axis=0) subset_list.append(np_aux) # Saving alpha and maximum for transformation and inverse # Maximum taken over the universe alpha = opt.alpha train_aux = np.arcsinh(universe*alpha)/alpha save_max = np.reshape(train_aux,-1).max() ## ## Set-up ## ## # Checking for cuda if torch.cuda.is_available(): cuda = True else: cuda = False # Loss Function loss = nn.BCEWithLogitsLoss() #Note that this lost function integrates the softmax activation function for numerical stability. # Instantiating generator and discriminator models module_arch = importlib.__import__(model_ver) generator = module_arch.GeneratorConv1D() if model_ver == 'GANConv1Dv1WIa': discriminator = module_arch.DiscriminatorSignal() discriminator_I = module_arch.DiscriminatorIndicators() else: discriminator = module_arch.DiscriminatorConv1D() if cuda: generator.cuda() discriminator.cuda() loss.cuda() if model_ver == 'GANConv1Dv1WIa': discriminator_I.cuda() Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # Defining pre-processing transformation and inverse transformation # Works with numpy arrays!!! def transformation(array,alpha,save_max): array = np.arcsinh(array*alpha)/alpha array = (array*2.0)/save_max - 1.0 array = array[:,np.newaxis,:] return array # Works with pytorch tensors!!! def inverse_trans(arrtensor,alpha,save_max): arrtensor = (arrtensor+1.0)*save_max/2.0 return torch.sinh(arrtensor*alpha)/alpha # Optimizer optimizer_G = torch.optim.Adam(generator.parameters(),lr=opt.lr_g) optimizer_D = torch.optim.Adam(discriminator.parameters(),lr=opt.lr_d) if model_ver =='GANConv1Dv1WIa': optimizer_D_I = torch.optim.Adam(discriminator_I.parameters(),lr=opt.lr_d) # Loading training set training_set = subset_list[0] class TimeSeriesLCL(Dataset): def __init__(self, npy_array,alpha,save_max): self.x_train = npy_array self.x_train = np.arcsinh(self.x_train*alpha)/alpha self.x_train = (self.x_train*2.0)/save_max - 1.0 self.x_train = self.x_train[:,np.newaxis,:] def __len__(self): return self.x_train.shape[0] def __getitem__(self, idx): example = self.x_train[idx,] return example x_train = TimeSeriesLCL(training_set,alpha,save_max) # Some parameters for training if model_ver == 'GANConv1Dv0': latent_space_dim = 25 else: latent_space_dim = 42 eta = opt.eta gamma = opt.gamma n_epochs = opt.n_epochs batch_size = opt.batch_size steps_generator = opt.n_critic steps_discriminator = 1 dataloader = DataLoader(x_train,batch_size=batch_size,shuffle=True) generated_samples = [] real_examples = [] ## ## Training ## ## for epoch in range(n_epochs): for i, example_batch in enumerate(dataloader): # Ground truths for the discriminator valid = Variable(Tensor(example_batch.shape[0], 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(example_batch.shape[0], 1).fill_(0.0), requires_grad=False) # Configuring input example_batch = example_batch.type(Tensor) real_examples.append(torch.squeeze(example_batch)) # Generating samples z = Tensor(np.random.normal(size=[example_batch.shape[0],latent_space_dim])) generated_sample = generator(z) generated_samples.append(torch.squeeze(generated_sample.detach())) if model_ver =='GANConv1Dv1WIa': # Train generator if i%steps_generator == 0: optimizer_G.zero_grad() g_loss_S = loss(discriminator(generated_sample),valid) g_loss_I = loss(discriminator_I(generated_sample),valid) basic_g_loss = (1.0-eta)*g_loss_S + eta*g_loss_I basic_g_loss.backward() optimizer_G.step() # Train Discriminator if i%steps_discriminator == 0: optimizer_D.zero_grad() real_loss = loss(discriminator(example_batch),valid) fake_loss = loss(discriminator(generated_sample.detach()),fake) if opt.grad_norm_reg: basic_d_loss = (real_loss + fake_loss)/2.0 d_grad = grad(basic_d_loss,discriminator.parameters(),create_graph=True) dn2 = torch.sqrt(sum([grd.norm()**2 for grd in d_grad])) final_d_loss = basic_d_loss - gamma*dn2 else: final_d_loss = (real_loss + fake_loss)/2.0 final_d_loss.backward() optimizer_D.step() optimizer_D_I.zero_grad() real_loss_I = loss(discriminator_I(example_batch),valid) fake_loss_I = loss(discriminator_I(generated_sample.detach()),fake) d_loss_I = (real_loss_I + fake_loss_I)/2.0 d_loss_I.backward() optimizer_D_I.step() else: # Train generator if i%steps_generator == 0: optimizer_G.zero_grad() basic_g_loss = loss(discriminator(generated_sample),valid) basic_g_loss.backward() optimizer_G.step() # Train Discriminator if i%steps_discriminator == 0: optimizer_D.zero_grad() real_loss = loss(discriminator(example_batch),valid) fake_loss = loss(discriminator(generated_sample.detach()),fake) if opt.grad_norm_reg: basic_d_loss = (real_loss + fake_loss)/2.0 d_grad = grad(basic_d_loss,discriminator.parameters(),create_graph=True) dn2 = torch.sqrt(sum([grd.norm()**2 for grd in d_grad])) final_d_loss = basic_d_loss - gamma*dn2 else: final_d_loss = (real_loss + fake_loss)/2.0 final_d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch+1, n_epochs, i+1, len(dataloader), final_d_loss.item(), basic_g_loss.item()) ) # Saving the loss for the Generator and Discriminator writer.add_scalar('Generator loss', basic_g_loss.item(), 1+i+(epoch*len(dataloader))) writer.add_scalar('Discriminator loss', final_d_loss.item(),1+i+(epoch*len(dataloader))) # Plotting artificially generated samples, empirical distributions of the indicators and saving plots to tensorboard. if (((i+1)*batch_size) % 800) == 0: generated_samples = torch.cat(generated_samples) generated_samples = inverse_trans(generated_samples,alpha,save_max) indicators_gen = Indicators(generated_samples) indicators_gen = Tensor.cpu(indicators_gen) indicators_gen = indicators_gen.data.numpy() real_examples = torch.cat(real_examples) real_examples = inverse_trans(real_examples,alpha,save_max) indicators_real = Indicators(real_examples) indicators_real = Tensor.cpu(indicators_real) indicators_real = indicators_real.data.numpy() g_sample = generated_samples[0,:] g_sample = Tensor.cpu(g_sample) g_sample = g_sample.data.numpy() g_sample_fig = plt.figure(0) plt.plot(g_sample) plt.title('Generated Sample') plt.ylabel('Energy (KWh)') plt.xlabel('Time (half hour)') writer.add_figure('Generated Sample', g_sample_fig,1+i+(epoch*len(dataloader))) List_Hist_r, List_Hist_f, List_Hist_x, List_EMD, Avg_Ind_Index = MakeHist(indicators_real,indicators_gen) mean_Hist = plt.figure(0) plt.plot(List_Hist_x[0],List_Hist_r[0]) plt.plot(List_Hist_x[0],List_Hist_f[0]) plt.legend(['Real','Fake']) plt.title('Empirical distribution of the mean.') plt.xlabel('Mean') writer.add_scalar('EMD of the mean', List_EMD[0],1+i+(epoch*len(dataloader))) writer.add_figure('Histogram of the mean', mean_Hist,1+i+(epoch*len(dataloader))) skewness_Hist = plt.figure(1) plt.plot(List_Hist_x[1],List_Hist_r[1]) plt.plot(List_Hist_x[1],List_Hist_f[1]) plt.legend(['Real','Fake']) plt.title('Empirical distribution of the skewness.') plt.xlabel('Skewness') writer.add_scalar('EMD of the skewness', List_EMD[1],1+i+(epoch*len(dataloader))) writer.add_figure('Histogram of the skewness', skewness_Hist,1+i+(epoch*len(dataloader))) CV_Hist = plt.figure(2) plt.plot(List_Hist_x[2],List_Hist_r[2]) plt.plot(List_Hist_x[2],List_Hist_f[2]) plt.legend(['Real','Fake']) plt.title('Empirical distribution of the CV.') plt.xlabel('Coefficient of variation') writer.add_scalar('EMD of the CV', List_EMD[2],1+i+(epoch*len(dataloader))) writer.add_figure('Histogram of the CV', CV_Hist,1+i+(epoch*len(dataloader))) kurtosis_Hist = plt.figure(3) plt.plot(List_Hist_x[3],List_Hist_r[3]) plt.plot(List_Hist_x[3],List_Hist_f[3]) plt.legend(['Real','Fake']) plt.title('Empirical distribution of the kurtosis.') plt.xlabel('Kurtosis') writer.add_scalar('EMD of the kurtosis', List_EMD[3],1+i+(epoch*len(dataloader))) writer.add_figure('Histogram of the kurtosis', kurtosis_Hist,1+i+(epoch*len(dataloader))) maxmean_Hist = plt.figure(4) plt.plot(List_Hist_x[4],List_Hist_r[4]) plt.plot(List_Hist_x[4],List_Hist_f[4]) plt.legend(['Real','Fake']) plt.title('Empirical distribution of the max-mean ratio.') plt.xlabel('Max-mean ratio') writer.add_scalar('EMD of the max-mean ratio', List_EMD[4],1+i+(epoch*len(dataloader))) writer.add_figure('Histogram of the max-mean ratio', maxmean_Hist,1+i+(epoch*len(dataloader))) writer.add_scalar('Average Indicator Index', Avg_Ind_Index,1+i+(epoch*len(dataloader))) generated_samples = [] real_examples = [] # Saving the model mod_directory = saving_dir+'/Trained' if not os.path.exists(mod_directory): os.makedirs(mod_directory) torch.save(generator.state_dict(), mod_directory+'/GEN_run'+str(run)+'.pth') torch.save(discriminator.state_dict(), mod_directory+'/DIS_run'+str(run)+'.pth') print('Model Saved') ## ## Gradient Norm Attack ## ## batch_size = 1 # batch size for the attack generator.eval() discriminator.eval() # The attack itself norms_per_subset = [] scores_per_subset = [] for i in range(n_parts): norm = [] scores = [] for j in range(step): examples = np.load(data_dir+'/'+dir_list[(i*step)+j]) examples = transformation(examples,alpha,save_max) client_norm = np.empty([0]) client_score = np.empty([0]) for k in range(0,examples.shape[0],batch_size): # Configuring Input example_batch = Tensor(examples[k:k+batch_size,:]) # Ground truth for the discriminator valid = Variable(Tensor(example_batch.size(0), 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(example_batch.size(0), 1).fill_(0.0), requires_grad=False) # Generating fake samples z = Tensor(np.random.normal(size=[example_batch.size(0),latent_space_dim])) generated = generator(z) # Taking the gradient of the discriminator valid_loss = loss(discriminator(example_batch),valid) fake_loss = loss(discriminator(generated.detach()),fake) total_loss = (valid_loss + fake_loss)/2.0 discriminator.zero_grad() # total_loss.backward(retain_graph=True) # Saving discriminator score for sample score = discriminator(example_batch) score = Tensor.cpu(score) score = score.data.numpy() client_score = np.append(client_score, score) # Calculating the norm d_grad = grad(total_loss,discriminator.parameters(),create_graph=True) dn2 = torch.sqrt(sum([grd.norm()**2 for grd in d_grad])) dn2 = dn2.detach() dn2 = Tensor.cpu(dn2) dn2 = dn2.data.numpy() client_norm = np.append(client_norm,dn2) # Saving the norm for a client scores.append(client_score) norm.append(client_norm) # Loop through clients norms_per_subset.append(norm) scores_per_subset.append(scores) # Loop through subsets norms_directory = saving_dir+'/npdata/Norms' if not os.path.exists(norms_directory): os.makedirs(norms_directory) np.save(norms_directory+'/SSNorm'+str(run)+'.npy',norms_per_subset) scores_directory = saving_dir+'/npdata/Scores' if not os.path.exists(scores_directory): os.makedirs(scores_directory) np.save(scores_directory+'/SSScore'+str(run)+'.npy',scores_per_subset) ## ## Classification ## ## # Using the Norm mean_norms_per_client = [] mean_norms_per_subset = [] std_norms_per_client = [] std_norms_per_subset = [] # Going through norms for all samples. # Saving per client and per subset mean and std. for i in range(len(norms_per_subset)): norms_per_client = norms_per_subset[i] mean_norm_client_for_subset = [] std_norm_client_for_subset = [] all_norms_subset = np.empty([0]) for j in range(step): client_norms = norms_per_client[j] all_norms_subset = np.append(all_norms_subset,client_norms) mean_client_norm = np.mean(client_norms) std_client_norm = np.std(client_norms) mean_norm_client_for_subset.append(mean_client_norm) std_norm_client_for_subset.append(std_client_norm) mean_norms_per_client.append(mean_norm_client_for_subset) mean_norms_per_subset.append(np.mean(mean_norm_client_for_subset)) std_norms_per_client.append(std_norm_client_for_subset) std_norms_per_subset.append(np.std(all_norms_subset)) # Classifying Subset Based subset_ranking_mean = np.argsort(mean_norms_per_subset) subset_ranking_std = np.argsort(std_norms_per_subset) ranksSS_mean_directory = saving_dir+'/npdata/RankMeanPSS/' if not os.path.exists(ranksSS_mean_directory): os.makedirs(ranksSS_mean_directory) np.save(ranksSS_mean_directory+'RankpSubset'+str(run)+'.npy',subset_ranking_mean) ranksSS_std_directory = saving_dir+'/npdata/RankStdPSS/' if not os.path.exists(ranksSS_std_directory): os.makedirs(ranksSS_std_directory) np.save(ranksSS_std_directory+'RankpSubset'+str(run)+'.npy',subset_ranking_std) # Classifying Client Based mean_arb_client_ranking = [] std_arb_client_ranking = [] for j in range(100): rand_select_norms = [] rand_select_norms_std = [] for i in range(len(mean_norms_per_client)): selected_client = np.random.choice(step) norm_of_client = mean_norms_per_client[i][selected_client] std_of_client = std_norms_per_client[i][selected_client] rand_select_norms.append(norm_of_client) rand_select_norms_std.append(std_of_client) aux = np.argsort(rand_select_norms) aux_1 = np.argsort(rand_select_norms_std) mean_arb_client_ranking.append(aux) std_arb_client_ranking.append(aux_1) ranksC_mean_directory = saving_dir+'/npdata/RankMeanPC' if not os.path.exists(ranksC_mean_directory): os.makedirs(ranksC_mean_directory) np.save(ranksC_mean_directory+'/RankpClient'+str(run)+'.npy',mean_arb_client_ranking) ranksC_std_directory = saving_dir+'/npdata/RankStdPC' if not os.path.exists(ranksC_std_directory): os.makedirs(ranksC_std_directory) np.save(ranksC_std_directory+'/RankpClient'+str(run)+'.npy',std_arb_client_ranking) # Using the scores mean_score_per_client = [] mean_score_per_subset = [] for i in range(len(scores_per_subset)): scores_per_client = scores_per_subset[i] mean_scores_client_for_subset = [] for j in range(step): client_scores = scores_per_client[j] mean_client_score = np.mean(client_scores) mean_scores_client_for_subset.append(mean_client_score) mean_score_per_client.append(mean_scores_client_for_subset) mean_score_per_subset.append(np.mean(mean_scores_client_for_subset)) # Classifying Subset Based subset_ranking_score = np.argsort(mean_score_per_subset) ranksSS_score_directory = saving_dir+'/npdata/RankMeanScorePSS/' if not os.path.exists(ranksSS_score_directory): os.makedirs(ranksSS_score_directory) np.save(ranksSS_score_directory+'RankpSubset'+str(run)+'.npy',subset_ranking_score) # Classifying Client Based score_arb_client_ranking = [] for j in range(100): rand_select_scores = [] for i in range(len(mean_score_per_client)): selected_client = np.random.choice(step) score_of_client = mean_score_per_client[i][selected_client] rand_select_scores.append(score_of_client) aux = np.argsort(rand_select_scores) score_arb_client_ranking.append(aux) ranksC_score_directory = saving_dir+'/npdata/RankMeanScorePC' if not os.path.exists(ranksC_score_directory): os.makedirs(ranksC_score_directory) np.save(ranksC_score_directory+'/RankpClient'+str(run)+'.npy',score_arb_client_ranking) # Using the Indicators AII_list = [] for i in range(n_parts): examples = np.empty([0,336]) generated_list = [] for j in range(step): aux =
np.load(data_dir+'/'+dir_list[(i*step)+j])
numpy.load
import numpy as np import functools import sys import pytest from numpy.lib.shape_base import ( apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit, vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis, put_along_axis ) from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, assert_warns ) IS_64BIT = sys.maxsize > 2**32 def _add_keepdims(func): """ hack in keepdims behavior into a function taking an axis """ @functools.wraps(func) def wrapped(a, axis, **kwargs): res = func(a, axis=axis, **kwargs) if axis is None: axis = 0 # res is now a scalar, so we can insert this anywhere return np.expand_dims(res, axis=axis) return wrapped class TestTakeAlongAxis(object): def test_argequivalent(self): """ Test it translates from arg<func> to <func> """ from numpy.random import rand a = rand(3, 4, 5) funcs = [ (np.sort, np.argsort, dict()), (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()), (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()), (np.partition, np.argpartition, dict(kth=2)), ] for func, argfunc, kwargs in funcs: for axis in list(range(a.ndim)) + [None]: a_func = func(a, axis=axis, **kwargs) ai_func = argfunc(a, axis=axis, **kwargs) assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) def test_invalid(self): """ Test it errors when indices has too few dimensions """ a = np.ones((10, 10)) ai = np.ones((10, 2), dtype=np.intp) # sanity check take_along_axis(a, ai, axis=1) # not enough indices assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) # bool arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) # float arrays not allowed assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) # invalid axis assert_raises(np.AxisError, take_along_axis, a, ai, axis=10) def test_empty(self): """ Test everything is ok with empty results, even with inserted dims """ a = np.ones((3, 4, 5)) ai = np.ones((3, 0, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, ai.shape) def test_broadcast(self): """ Test that non-indexing dimensions are broadcast in both directions """ a = np.ones((3, 4, 1)) ai = np.ones((1, 2, 5), dtype=np.intp) actual = take_along_axis(a, ai, axis=1) assert_equal(actual.shape, (3, 2, 5)) class TestPutAlongAxis(object): def test_replace_max(self): a_base = np.array([[10, 30, 20], [60, 40, 50]]) for axis in list(range(a_base.ndim)) + [None]: # we mutate this in the loop a = a_base.copy() # replace the max with a small value i_max = _add_keepdims(np.argmax)(a, axis=axis) put_along_axis(a, i_max, -99, axis=axis) # find the new minimum, which should max i_min = _add_keepdims(np.argmin)(a, axis=axis) assert_equal(i_min, i_max) def test_broadcast(self): """ Test that non-indexing dimensions are broadcast in both directions """ a = np.ones((3, 4, 1)) ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4 put_along_axis(a, ai, 20, axis=1) assert_equal(take_along_axis(a, ai, axis=1), 20) class TestApplyAlongAxis(object): def test_simple(self): a = np.ones((20, 10), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_simple101(self): a = np.ones((10, 101), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_3d(self): a = np.arange(27).reshape((3, 3, 3)) assert_array_equal(apply_along_axis(np.sum, 0, a), [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) def test_preserve_subclass(self): def double(row): return row * 2 class MyNDArray(np.ndarray): pass m = np.array([[0, 1], [2, 3]]).view(MyNDArray) expected = np.array([[0, 2], [4, 6]]).view(MyNDArray) result = apply_along_axis(double, 0, m) assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) result = apply_along_axis(double, 1, m) assert_(isinstance(result, MyNDArray)) assert_array_equal(result, expected) def test_subclass(self): class MinimalSubclass(np.ndarray): data = 1 def minimal_function(array): return array.data a = np.zeros((6, 3)).view(MinimalSubclass) assert_array_equal( apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1]) ) def test_scalar_array(self, cls=np.ndarray): a = np.ones((6, 3)).view(cls) res = apply_along_axis(np.sum, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) def test_0d_array(self, cls=np.ndarray): def sum_to_0d(x): """ Sum x, returning a 0d array of the same class """ assert_equal(x.ndim, 1) return np.squeeze(np.sum(x, keepdims=True)) a = np.ones((6, 3)).view(cls) res = apply_along_axis(sum_to_0d, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) res =
apply_along_axis(sum_to_0d, 1, a)
numpy.lib.shape_base.apply_along_axis
from flask import Flask, render_template, request from werkzeug.utils import secure_filename import os import time os.chdir('C:\\ITWILL\\Flask_part\\Lookus') os.getcwd() check = False app = Flask(__name__) import tensorflow as tf from sklearn.cluster import KMeans import pandas as pd import numpy as np from numpy import dot from numpy.linalg import norm import matplotlib.pyplot as plt import argparse import cv2 from keras.preprocessing import image import os from PIL import Image import keras import cv2 from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator result_idx = [] def cos_sim(A, B): return dot(A, B)/(norm(A)*
norm(B)
numpy.linalg.norm
"""Processing functions for dannce.""" import numpy as np import imageio import os import PIL from six.moves import cPickle from typing import Dict, Text import pickle from tqdm import tqdm from copy import deepcopy import scipy.io as sio from scipy.ndimage.filters import maximum_filter from skimage import measure from skimage.color import rgb2gray from skimage.transform import downscale_local_mean as dsm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection from dannce.engine.data import serve_data_DANNCE, io from dannce.config import make_paths_safe, make_none_safe _DEFAULT_VIDDIR = "videos" _DEFAULT_VIDDIR_SIL = "videos_sil" _DEFAULT_COMSTRING = "COM" _DEFAULT_COMFILENAME = "com3d.mat" _DEFAULT_SEG_MODEL = 'weights/maskrcnn.pth' """ VIDEO """ def initialize_vids(params, datadict, e, vids, pathonly=True, vidkey="viddir"): """ Initializes video path dictionaries for a training session. This is different than a predict session because it operates over a single animal ("experiment") at a time """ for i in range(len(params["experiment"][e]["camnames"])): # Rather than opening all vids, only open what is needed based on the # maximum frame ID for this experiment and Camera flist = [] for key in datadict.keys(): if int(key.split("_")[0]) == e: flist.append( datadict[key]["frames"][params["experiment"][e]["camnames"][i]] ) flist = max(flist) # For COM prediction, we don't prepend experiment IDs # So detect this case and act accordingly. basecam = params["experiment"][e]["camnames"][i] if "_" in basecam: basecam = basecam.split("_")[1] if params["vid_dir_flag"]: addl = "" else: addl = os.listdir( os.path.join( params["experiment"][e][vidkey], basecam, ) )[0] r = generate_readers( params["experiment"][e][vidkey], os.path.join(basecam, addl), maxopt=flist, # Large enough to encompass all videos in directory. extension=params["experiment"][e]["extension"], pathonly=pathonly, ) if "_" in params["experiment"][e]["camnames"][i]: vids[params["experiment"][e]["camnames"][i]] = {} for key in r: vids[params["experiment"][e]["camnames"][i]][str(e) + "_" + key] = r[ key ] else: vids[params["experiment"][e]["camnames"][i]] = r return vids def initialize_all_vids(params, datadict, exps, pathonly=True, vidkey="viddir"): vids = {} for e in exps: vids = initialize_vids(params, datadict, e, vids, pathonly, vidkey) return vids def generate_readers( viddir, camname, minopt=0, maxopt=300000, pathonly=False, extension=".mp4" ): """Open all mp4 objects with imageio, and return them in a dictionary.""" out = {} mp4files = [ os.path.join(camname, f) for f in os.listdir(os.path.join(viddir, camname)) if extension in f and int(f.rsplit(extension)[0]) <= maxopt and int(f.rsplit(extension)[0]) >= minopt ] # This is a trick (that should work) for getting rid of # awkward sub-directory folder names when they are being used mp4files_scrub = [ os.path.join( os.path.normpath(f).split(os.sep)[0], os.path.normpath(f).split(os.sep)[-1] ) for f in mp4files ] pixelformat = "yuv420p" input_params = [] output_params = [] for i in range(len(mp4files)): if pathonly: out[mp4files_scrub[i]] = os.path.join(viddir, mp4files[i]) else: print( "NOTE: Ignoring {} files numbered above {}".format(extensions, maxopt) ) out[mp4files_scrub[i]] = imageio.get_reader( os.path.join(viddir, mp4files[i]), pixelformat=pixelformat, input_params=input_params, output_params=output_params, ) return out """ LOAD EXP INFO """ def grab_predict_label3d_file(defaultdir=""): """ Finds the paths to the training experiment yaml files. """ def_ep = os.path.join(".", defaultdir) label3d_files = os.listdir(def_ep) label3d_files = [ os.path.join(def_ep, f) for f in label3d_files if "dannce.mat" in f ] label3d_files.sort() if len(label3d_files) == 0: raise Exception("Did not find any *dannce.mat file in {}".format(def_ep)) print("Using the following *dannce.mat files: {}".format(label3d_files[0])) return label3d_files[0] def load_expdict(params, e, expdict, _DEFAULT_VIDDIR, _DEFAULT_VIDDIR_SIL, logger): """ Load in camnames and video directories and label3d files for a single experiment during training. """ _DEFAULT_NPY_DIR = "npy_volumes" exp = params.copy() exp = make_paths_safe(exp) exp["label3d_file"] = expdict["label3d_file"] exp["base_exp_folder"] = os.path.dirname(exp["label3d_file"]) if "viddir" not in expdict: # if the videos are not at the _DEFAULT_VIDDIR, then it must # be specified in the io.yaml experiment portion exp["viddir"] = os.path.join(exp["base_exp_folder"], _DEFAULT_VIDDIR) else: exp["viddir"] = expdict["viddir"] logger.info("Experiment {} using videos in {}".format(e, exp["viddir"])) if params["use_silhouette"]: exp["viddir_sil"] = os.path.join(exp["base_exp_folder"], _DEFAULT_VIDDIR_SIL) if "viddir_sil" not in expdict else expdict["viddir_sil"] logger.info("Experiment {} also using masked videos in {}".format(e, exp["viddir_sil"])) l3d_camnames = io.load_camnames(expdict["label3d_file"]) if "camnames" in expdict: exp["camnames"] = expdict["camnames"] elif l3d_camnames is not None: exp["camnames"] = l3d_camnames logger.info("Experiment {} using camnames: {}".format(e, exp["camnames"])) # Use the camnames to find the chunks for each video chunks = {} for name in exp["camnames"]: if exp["vid_dir_flag"]: camdir = os.path.join(exp["viddir"], name) else: camdir = os.path.join(exp["viddir"], name) intermediate_folder = os.listdir(camdir) camdir = os.path.join(camdir, intermediate_folder[0]) video_files = os.listdir(camdir) video_files = [f for f in video_files if ".mp4" in f] video_files = sorted(video_files, key=lambda x: int(x.split(".")[0])) chunks[str(e) + "_" + name] = np.sort( [int(x.split(".")[0]) for x in video_files] ) exp["chunks"] = chunks logger.info(chunks) # For npy volume training if params["use_npy"]: exp["npy_vol_dir"] = os.path.join(exp["base_exp_folder"], _DEFAULT_NPY_DIR) return exp def load_all_exps(params, logger): samples = [] # training sample identifiers datadict, datadict_3d, com3d_dict = {}, {}, {} # labels cameras, camnames = {}, {} # camera total_chunks = {} # video chunks temporal_chunks = {} # for temporal training for e, expdict in enumerate(params["exp"]): # load basic exp info exp = load_expdict(params, e, expdict, _DEFAULT_VIDDIR, _DEFAULT_VIDDIR_SIL, logger) # load corresponding 2D & 3D labels, COMs ( exp, samples_, datadict_, datadict_3d_, cameras_, com3d_dict_, temporal_chunks_ ) = do_COM_load(exp, expdict, e, params) logger.info("Using {} samples total.".format(len(samples_))) ( samples, datadict, datadict_3d, com3d_dict, temporal_chunks ) = serve_data_DANNCE.add_experiment( e, samples, datadict, datadict_3d, com3d_dict, samples_, datadict_, datadict_3d_, com3d_dict_, temporal_chunks, temporal_chunks_ ) cameras[e] = cameras_ camnames[e] = exp["camnames"] logger.info("Using the following cameras: {}".format(camnames[e])) params["experiment"][e] = exp for name, chunk in exp["chunks"].items(): total_chunks[name] = chunk samples = np.array(samples) return samples, datadict, datadict_3d, com3d_dict, cameras, camnames, total_chunks, temporal_chunks def do_COM_load(exp: Dict, expdict: Dict, e, params: Dict, training=True): """Load and process COMs. Args: exp (Dict): Parameters dictionary for experiment expdict (Dict): Experiment specific overrides (e.g. com_file, vid_dir) e (TYPE): Description params (Dict): Parameters dictionary. training (bool, optional): If true, load COM for training frames. Returns: TYPE: Description exp, samples_, datadict_, datadict_3d_, cameras_, com3d_dict_ Raises: Exception: Exception when invalid com file format. """ ( samples_, datadict_, datadict_3d_, cameras_, temporal_chunks ) = serve_data_DANNCE.prepare_data( exp, prediction=not training, predict_labeled_only=params["predict_labeled_only"], valid=(e in params["valid_exp"]) if params["valid_exp"] is not None else False, support=(e in params["support_exp"]) if params["support_exp"] is not None else False, ) # If there is "clean" data (full marker set), can take the # 3D COM from the labels if exp["com_fromlabels"] and training: print("For experiment {}, calculating 3D COM from labels".format(e)) com3d_dict_ = deepcopy(datadict_3d_) for key in com3d_dict_.keys(): com3d_dict_[key] = np.nanmean(datadict_3d_[key], axis=1, keepdims=True) elif "com_file" in expdict and expdict["com_file"] is not None: exp["com_file"] = expdict["com_file"] if ".mat" in exp["com_file"]: c3dfile = sio.loadmat(exp["com_file"]) com3d_dict_ = check_COM_load(c3dfile, "com", params["medfilt_window"]) elif ".pickle" in exp["com_file"]: datadict_, com3d_dict_ = serve_data_DANNCE.prepare_COM( exp["com_file"], datadict_, comthresh=params["comthresh"], weighted=params["weighted"], camera_mats=cameras_, method=params["com_method"], ) if params["medfilt_window"] is not None: raise Exception( "Sorry, median filtering a com pickle is not yet supported. Please use a com3d.mat or *dannce.mat file instead" ) else: raise Exception("Not a valid com file format") else: # Then load COM from the label3d file exp["com_file"] = expdict["label3d_file"] c3dfile = io.load_com(exp["com_file"]) com3d_dict_ = check_COM_load(c3dfile, "com3d", params["medfilt_window"]) print("Experiment {} using com3d: {}".format(e, exp["com_file"])) if params["medfilt_window"] is not None: print( "Median filtering COM trace with window size {}".format( params["medfilt_window"] ) ) # Remove any 3D COMs that are beyond the confines off the 3D arena do_cthresh = True if exp["cthresh"] is not None else False pre = len(samples_) samples_ = serve_data_DANNCE.remove_samples_com( samples_, com3d_dict_, rmc=do_cthresh, cthresh=exp["cthresh"], ) msg = "Removed {} samples from the dataset because they either had COM positions over cthresh, or did not have matching sampleIDs in the COM file" print(msg.format(pre - len(samples_))) return exp, samples_, datadict_, datadict_3d_, cameras_, com3d_dict_, temporal_chunks def check_COM_load(c3dfile: Dict, kkey: Text, win_size: int): """Check that the COM file is of the appropriate format, and filter it. Args: c3dfile (Dict): Loaded com3d dictionary. kkey (Text): Key to use for extracting com. wsize (int): Window size. Returns: Dict: Dictionary containing com data. """ c3d = c3dfile[kkey] # do a median filter on the COM traces if indicated if win_size is not None: if win_size % 2 == 0: win_size += 1 print("medfilt_window was not odd, changing to: {}".format(win_size)) from scipy.signal import medfilt c3d = medfilt(c3d, (win_size, 1)) c3dsi = np.squeeze(c3dfile["sampleID"]) com3d_dict = {s: c3d[i] for (i, s) in enumerate(c3dsi)} return com3d_dict def trim_COM_pickle(fpath, start_sample, end_sample, opath=None): """Trim dictionary entries to the range [start_sample, end_sample]. spath is the output path for saving the trimmed COM dictionary, if desired """ with open(fpath, "rb") as f: save_data = cPickle.load(f) sd = {} for key in save_data: if key >= start_sample and key <= end_sample: sd[key] = save_data[key] with open(opath, "wb") as f: cPickle.dump(sd, f) return sd """ DATA SPLITS """ def make_data_splits(samples, params, results_dir, num_experiments, temporal_chunks=None): """ Make train/validation splits from list of samples, or load in a specific list of sampleIDs if desired. """ # TODO: Switch to .mat from .pickle so that these lists are easier to read # and change. partition = {} if params["use_temporal"]: if params["load_valid"] is None: assert temporal_chunks != None, "If use temporal, do partitioning over chunks." v = params["num_validation_per_exp"] # fix random seeds if params["data_split_seed"] is not None: np.random.seed(params["data_split_seed"]) valid_chunks, train_chunks = [], [] if params["valid_exp"] is not None and v > 0: for e in range(num_experiments): if e in params["valid_exp"]: v = params["num_validation_per_exp"] if v > len(temporal_chunks[e]): v = len(temporal_chunks[e]) print("Setting all {} samples in experiment {} for validation purpose.".format(v, e)) valid_chunk_idx = sorted(np.random.choice(len(temporal_chunks[e]), v, replace=False)) valid_chunks += list(np.array(temporal_chunks[e])[valid_chunk_idx]) train_chunks += list(np.delete(temporal_chunks[e], valid_chunk_idx, 0)) else: train_chunks += temporal_chunks[e] elif v > 0: for e in range(num_experiments): valid_chunk_idx = sorted(np.random.choice(len(temporal_chunks[e]), v, replace=False)) valid_chunks += list(np.array(temporal_chunks[e])[valid_chunk_idx]) train_chunks += list(np.delete(temporal_chunks[e], valid_chunk_idx, 0)) elif params["valid_exp"] is not None: raise Exception("Need to set num_validation_per_exp in using valid_exp") else: for e in range(num_experiments): train_chunks += list(temporal_chunks[e]) train_expts = np.arange(num_experiments) print("TRAIN EXPTS: {}".format(train_expts)) if isinstance(params["training_fraction"], float): assert (params["training_fraction"] < 1.0) & (params["training_fraction"] > 0) # load in the training samples labeled_train_samples = np.load('train_samples/baseline.pickle', allow_pickle=True) #labeled_train_chunks = [labeled_train_samples[i:i+params["temporal_chunk_size"]] for i in range(0, len(labeled_train_samples), params["temporal_chunk_size"])] n_chunks = len(labeled_train_samples) # do the selection from labeled_train_idx = sorted(np.random.choice(n_chunks, int(n_chunks*params["training_fraction"]), replace=False)) idxes_to_be_removed = list(set(range(n_chunks)) - set(labeled_train_idx)) train_samples_to_be_removed = [labeled_train_samples[i] for i in idxes_to_be_removed] new_train_chunks = [] for chunk in train_chunks: if chunk[2] not in train_samples_to_be_removed: new_train_chunks.append(chunk) train_chunks = new_train_chunks train_sampleIDs = list(np.concatenate(train_chunks)) try: valid_sampleIDs = list(np.concatenate(valid_chunks)) except: valid_sampleIDs = [] partition["train_sampleIDs"], partition["valid_sampleIDs"] = train_sampleIDs, valid_sampleIDs else: # Load validation samples from elsewhere with open(os.path.join(params["load_valid"], "val_samples.pickle"), "rb") as f: partition["valid_sampleIDs"] = cPickle.load(f) partition["train_sampleIDs"] = [f for f in samples if f not in partition["valid_sampleIDs"]] chunk_size = len(temporal_chunks[0][0]) partition["train_chunks"] = [np.arange(i, i+chunk_size) for i in range(0, len(partition["train_sampleIDs"]), chunk_size)] partition["valid_chunks"] = [np.arange(i, i+chunk_size) for i in range(0, len(partition["valid_sampleIDs"]), chunk_size)] # breakpoint() # Save train/val inds with open(os.path.join(results_dir, "val_samples.pickle"), "wb") as f: cPickle.dump(partition["valid_sampleIDs"], f) with open(os.path.join(results_dir, "train_samples.pickle"), "wb") as f: cPickle.dump(partition["train_sampleIDs"], f) return partition if params["load_valid"] is None: # Set random seed if included in params if params["data_split_seed"] is not None: np.random.seed(params["data_split_seed"]) all_inds = np.arange(len(samples)) # extract random inds from each set for validation v = params["num_validation_per_exp"] valid_inds = [] if params["valid_exp"] is not None and v > 0: all_valid_inds = [] for e in params["valid_exp"]: tinds = [ i for i in range(len(samples)) if int(samples[i].split("_")[0]) == e ] all_valid_inds = all_valid_inds + tinds # enable full validation experiments # by specifying params["num_validation_per_exp"] > number of samples v = params["num_validation_per_exp"] if v > len(tinds): v = len(tinds) print("Setting all {} samples in experiment {} for validation purpose.".format(v, e)) valid_inds = valid_inds + list( np.random.choice(tinds, (v,), replace=False) ) valid_inds = list(np.sort(valid_inds)) train_inds = list(set(all_inds) - set(all_valid_inds)) # [i for i in all_inds if i not in all_valid_inds] if isinstance(params["training_fraction"], float): assert (params["training_fraction"] < 1.0) & (params["training_fraction"] > 0) n_samples = len(train_inds) train_inds_idx = sorted(np.random.choice(n_samples, int(n_samples*params["training_fraction"]), replace=False)) train_inds = [train_inds[i] for i in train_inds_idx] elif v > 0: # if 0, do not perform validation for e in range(num_experiments): tinds = [ i for i in range(len(samples)) if int(samples[i].split("_")[0]) == e ] valid_inds = valid_inds + list( np.random.choice(tinds, (v,), replace=False) ) valid_inds = list(np.sort(valid_inds)) train_inds = [i for i in all_inds if i not in valid_inds] elif params["valid_exp"] is not None: raise Exception("Need to set num_validation_per_exp in using valid_exp") else: train_inds = all_inds assert (set(valid_inds) & set(train_inds)) == set() train_samples = samples[train_inds] train_inds = [] if params["valid_exp"] is not None: train_expts = [f for f in range(num_experiments) if f not in params["valid_exp"]] else: train_expts = np.arange(num_experiments) print("TRAIN EXPTS: {}".format(train_expts)) if params["num_train_per_exp"] is not None: # Then sample randomly without replacement from training sampleIDs for e in train_expts: tinds = [ i for i in range(len(train_samples)) if int(train_samples[i].split("_")[0]) == e ] print(e) print(len(tinds)) train_inds = train_inds + list( np.random.choice( tinds, (params["num_train_per_exp"],), replace=False ) ) train_inds = list(np.sort(train_inds)) else: train_inds = np.arange(len(train_samples)) partition["valid_sampleIDs"] = samples[valid_inds] partition["train_sampleIDs"] = train_samples[train_inds] # Save train/val inds with open(os.path.join(results_dir, "val_samples.pickle"), "wb") as f: cPickle.dump(partition["valid_sampleIDs"], f) with open(os.path.join(results_dir, "train_samples.pickle"), "wb") as f: cPickle.dump(partition["train_sampleIDs"], f) else: # Load validation samples from elsewhere with open( os.path.join(params["load_valid"], "val_samples.pickle"), "rb", ) as f: partition["valid_sampleIDs"] = cPickle.load(f) partition["train_sampleIDs"] = [ f for f in samples if f not in partition["valid_sampleIDs"] ] # Reset any seeding so that future batch shuffling, etc. are not tied to this seed if params["data_split_seed"] is not None: np.random.seed() return partition def resplit_social(partition): # the partition needs to be aligned for both animals # for now, manually put exps as consecutive pairs, # i.e. [exp1_instance0, exp1_instance1, exp2_instance0, exp2_instance1, ...] new_partition = {"train_sampleIDs": [], "valid_sampleIDs": []} pairs = {"train_pairs": [], "valid_pairs": []} all_sampleIDs = np.concatenate((partition["train_sampleIDs"], partition["valid_sampleIDs"])) for samp in partition["train_sampleIDs"]: exp_id = int(samp.split("_")[0]) if exp_id % 2 == 0: paired = samp.replace(f"{exp_id}_", f"{exp_id+1}_") new_partition["train_sampleIDs"].append(samp) new_partition["train_sampleIDs"].append(paired) pairs["train_pairs"].append([samp, paired]) new_partition["train_sampleIDs"] = np.array(sorted(new_partition["train_sampleIDs"])) new_partition["valid_sampleIDs"] = np.array(sorted(list(set(all_sampleIDs) - set(new_partition["train_sampleIDs"])))) for samp in new_partition["valid_sampleIDs"]: exp_id = int(samp.split("_")[0]) if exp_id % 2 == 0: paired = samp.replace(f"{exp_id}_", f"{exp_id+1}_") pairs["valid_pairs"].append([samp, paired]) return new_partition, pairs def align_social_data(X, X_grid, y, aux, n_animals=2): X = X.reshape((n_animals, -1, *X.shape[1:])) X_grid = X_grid.reshape((n_animals, -1, *X_grid.shape[1:])) y = y.reshape((n_animals, -1, *y.shape[1:])) if aux is not None: aux = aux.reshape((n_animals, -1, *aux.shape[1:])) X = np.transpose(X, (1, 0, 2, 3, 4, 5)) X_grid = np.transpose(X_grid, (1, 0, 2, 3)) y = np.transpose(y, (1, 0, 2, 3)) if aux is not None: aux = np.transpose(aux, (1, 0, 2, 3, 4, 5)) return X, X_grid, y, aux def remove_samples_npy(npydir, samples, params): """ Remove any samples from sample list if they do not have corresponding volumes in the image or grid directories """ # image_volumes # grid_volumes samps = [] for e in npydir.keys(): imvol = os.path.join(npydir[e], "image_volumes") gridvol = os.path.join(npydir[e], "grid_volumes") ims = os.listdir(imvol) grids = os.listdir(gridvol) npysamps = [ "0_" + f.split("_")[1] + ".npy" for f in samples if int(f.split("_")[0]) == e ] goodsamps = list(set(npysamps) & set(ims) & set(grids)) samps = samps + [ str(e) + "_" + f.split("_")[1].split(".")[0] for f in goodsamps ] sampdiff = len(npysamps) - len(goodsamps) # import pdb; pdb.set_trace() print( "Removed {} samples from {} because corresponding image or grid files could not be found".format( sampdiff, params["experiment"][e]["label3d_file"] ) ) return np.array(samps) """ PRELOAD DATA INTO MEMORY """ def load_volumes_into_mem(params, logger, partition, n_cams, generator, train=True, silhouette=False, social=False): n_samples = len(partition["train_sampleIDs"]) if train else len(partition["valid_sampleIDs"]) message = "Loading training data into memory" if train else "Loading validation data into memory" gridsize = tuple([params["nvox"]] * 3) # initialize vars if silhouette: X = np.empty((n_samples, *gridsize, 1), dtype="float32") else: X = np.empty((n_samples, *gridsize, params["chan_num"]*n_cams), dtype="float32") logger.info(message) X_grid, y = None, None if params["expval"]: if not silhouette: y = np.empty((n_samples, 3, params["n_channels_out"]), dtype="float32") X_grid = np.empty((n_samples, params["nvox"] ** 3, 3), dtype="float32") else: y = np.empty((n_samples, *gridsize, params["n_channels_out"]), dtype="float32") # load data from generator if social: X = np.reshape(X, (2, -1, *X.shape[1:])) if X_grid is not None: X_grid = np.reshape(X_grid, (2, -1, *X_grid.shape[1:])) if y is not None: y = np.reshape(y, (2, -1, *y.shape[1:])) for i in tqdm(range(n_samples//2)): rr = generator.__getitem__(i) for j in range(2): vol = rr[0][0][j] if not silhouette: X[j, i] = vol X_grid[j, i], y[j, i] = rr[0][1][j], rr[1][0][j] else: X[j, i] = extract_3d_sil(vol) X = np.reshape(X, (-1, *X.shape[2:])) if X_grid is not None: X_grid = np.reshape(X_grid, (-1, *X_grid.shape[2:])) if y is not None: y = np.reshape(y, (-1, *y.shape[2:])) else: for i in tqdm(range(n_samples)): rr = generator.__getitem__(i) if params["expval"]: vol = rr[0][0][0] if not silhouette: X[i] = vol X_grid[i], y[i] = rr[0][1], rr[1][0] else: X[i] = extract_3d_sil(vol) else: X[i], y[i] = rr[0], rr[1] if silhouette: logger.info("Now loading binary silhouettes") return None, None, X return X, X_grid, y """ DEBUG, VIS """ def write_debug( params: Dict, ims_train: np.ndarray, ims_valid: np.ndarray, y_train: np.ndarray, model, trainData: bool = True, ): """Factoring re-used debug output code. Args: params (Dict): Parameters dictionary ims_train (np.ndarray): Training images ims_valid (np.ndarray): Validation images y_train (np.ndarray): Training targets model (Model): Model trainData (bool, optional): If True use training data for debug. Defaults to True. """ def plot_out(imo, lo, imn): plot_markers_2d(norm_im(imo), lo, newfig=False) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) imname = imn plt.savefig(os.path.join(debugdir, imname), bbox_inches="tight", pad_inches=0) if params["debug"] and not params["multi_mode"]: if trainData: outdir = "debug_im_out" ims_out = ims_train label_out = y_train else: outdir = "debug_im_out_valid" ims_out = ims_valid label_out = model.predict(ims_valid, batch_size=1) # Plot all training images and save # create new directory for images if necessary debugdir = os.path.join(params["com_train_dir"], outdir) print("Saving debug images to: " + debugdir) if not os.path.exists(debugdir): os.makedirs(debugdir) plt.figure() for i in range(ims_out.shape[0]): plt.cla() if params["mirror"]: for j in range(label_out.shape[-1]): plt.cla() plot_out( ims_out[i], label_out[i, :, :, j : j + 1], str(i) + "_cam_" + str(j) + ".png", ) else: plot_out(ims_out[i], label_out[i], str(i) + ".png") elif params["debug"] and params["multi_mode"]: print("Note: Cannot output debug information in COM multi-mode") def save_volumes_into_npy(params, npy_generator, missing_npydir, samples, logger, silhouette=False): logger.info("Generating missing npy files ...") for i, samp in enumerate(npy_generator.list_IDs): fname = "0_{}.npy".format(samp.split("_")[1]) rr = npy_generator.__getitem__(i) print(i, end="\r") if params["social_training"]: for j in range(npy_generator.n_instances): exp = int(samp.split("_")[0]) + j save_root = missing_npydir[exp] if not silhouette: X = rr[0][0][j].astype("uint8") X_grid, y = rr[0][1][j], rr[1][0][j] np.save(os.path.join(save_root, "image_volumes", fname), X) np.save(os.path.join(save_root, "grid_volumes", fname), X_grid) np.save(os.path.join(save_root, "targets", fname), y) if params["downscale_occluded_view"]: np.save(os.path.join(save_root, "occlusion_scores", fname), rr[0][2][j]) else: sil = extract_3d_sil(rr[0][0][j].astype("uint8")) np.save(os.path.join(save_root, "visual_hulls", fname), sil) else: exp = int(samp.split("_")[0]) save_root = missing_npydir[exp] X, X_grid, y = rr[0][0][0].astype("uint8"), rr[0][1][0], rr[1][0] if not silhouette: np.save(os.path.join(save_root, "image_volumes", fname), X) np.save(os.path.join(save_root, "grid_volumes", fname), X_grid) np.save(os.path.join(save_root, "targets", fname), y) else: sil = extract_3d_sil(X) np.save(os.path.join(save_root, "visual_hulls", fname), sil) # samples = remove_samples_npy(npydir, samples, params) logger.info("{} samples ready for npy training.".format(len(samples))) def save_volumes_into_tif(params, tifdir, X, sampleIDs, n_cams, logger): if not os.path.exists(tifdir): os.makedirs(tifdir) logger.info("Dump training volumes to {}".format(tifdir)) for i in range(X.shape[0]): for j in range(n_cams): im = X[ i, :, :, :, j * params["chan_num"] : (j + 1) * params["chan_num"], ] im = norm_im(im) * 255 im = im.astype("uint8") of = os.path.join( tifdir, sampleIDs[i] + "_cam" + str(j) + ".tif", ) imageio.mimwrite(of, np.transpose(im, [2, 0, 1, 3])) def save_visual_hull(aux, sampleIDs, savedir='./visual_hull'): if not os.path.exists(savedir): os.makedirs(savedir) for i in range(aux.shape[0]): intersection = np.squeeze(aux[i].astype(np.float32)) # apply marching cubes algorithm verts, faces, normals, values = measure.marching_cubes(intersection, 0.0) # print('Number of vertices: ', verts.shape[0]) # save predictions fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') # Fancy indexing: `verts[faces]` to generate a collection of triangles mesh = Poly3DCollection(verts[faces]) mesh.set_edgecolor('k') ax.add_collection3d(mesh) min_limit, max_limit = np.min(verts), np.max(verts) ax.set_xlim(min_limit, max_limit) ax.set_ylim(min_limit, max_limit) ax.set_zlim(min_limit, max_limit) of = os.path.join(savedir, sampleIDs[i]) fig.savefig(of) plt.close(fig) def save_train_volumes(params, tifdir, generator, n_cams): if not os.path.exists(tifdir): os.makedirs(tifdir) for i in range(len(generator)): X = generator.__getitem__(i)[0][0].permute(1, 2, 3, 0).numpy() for j in range(n_cams): im = X[...,j * params["chan_num"] : (j + 1) * params["chan_num"]] im = norm_im(im) * 255 im = im.astype("uint8") of = os.path.join(tifdir,f"{i}_cam{j}.tif") imageio.mimwrite(of, np.transpose(im, [2, 0, 1, 3])) def write_npy(uri, gen): """ Creates a new image folder and grid folder at the uri and uses the generator to generate samples and save them as npy files """ imdir = os.path.join(uri, "image_volumes") if not os.path.exists(imdir): os.makedirs(imdir) griddir = os.path.join(uri, "grid_volumes") if not os.path.exists(griddir): os.makedirs(griddir) # Make sure rotation and shuffle are turned off gen.channel_combo = None gen.shuffle = False gen.rotation = False gen.expval = True # Turn normalization off so that we can save as uint8 gen.norm_im = False bs = gen.batch_size for i in range(len(gen)): if i % 1000 == 0: print(i) # Generate batch bch = gen.__getitem__(i) # loop over all examples in batch and save volume for j in range(bs): # get the frame name / unique ID fname = gen.list_IDs[i * bs + j] # and save print(fname) np.save(os.path.join(imdir, fname + ".npy"), bch[0][0][j].astype("uint8")) np.save(os.path.join(griddir, fname + ".npy"), bch[0][1][j]) def write_sil_npy(uri, gen): """ Creates a new image folder and grid folder at the uri and uses the generator to generate samples and save them as npy files """ imdir = os.path.join(uri, "visual_hulls") if not os.path.exists(imdir): os.makedirs(imdir) # Make sure rotation and shuffle are turned off gen.channel_combo = None gen.shuffle = False gen.rotation = False gen.expval = True # Turn normalization off so that we can save as uint8 gen.norm_im = False bs = gen.batch_size for i in range(len(gen)): if i % 1000 == 0: print(i) # Generate batch bch = gen.__getitem__(i) # loop over all examples in batch and save volume for j in range(bs): # get the frame name / unique ID fname = gen.list_IDs[i * bs + j] # and save print(fname) # extract visual hull sil = np.squeeze(extract_3d_sil(bch[0][0][j], 18)) np.save(os.path.join(imdir, fname + ".npy"), sil) """ SAVE TRAIN """ def rename_weights(traindir, kkey, mon): """ At the end of DANNCe or COM training, rename the best weights file with the epoch # and value of the monitored quantity """ # First load in the training.csv r = np.genfromtxt(os.path.join(traindir, "training.csv"), delimiter=",", names=True) e = r["epoch"] q = r[mon] minq = np.min(q) if e.size == 1: beste = e else: beste = e[np.argmin(q)] newname = "weights." + str(int(beste)) + "-" + "{:.5f}".format(minq) + ".hdf5" os.rename(os.path.join(traindir, kkey), os.path.join(traindir, newname)) def save_params_pickle(params): """ save copy of params as pickle for reproducibility. """ handle = open(os.path.join(params["dannce_train_dir"], "params.pickle"), "wb") pickle.dump(params, handle) return True def prepare_save_metadata(params): """ To save metadata, i.e. the prediction param values associated with COM or DANNCE output, we need to convert loss and metrics and net into names, and remove the 'experiment' field """ # Need to convert None to string but still want to conserve the metadat structure # format, so we don't want to convert the whole dict to a string meta = params.copy() # if "experiment" in meta: # del meta["experiment"] # if "loss" in meta: # try: # meta["loss"] = [loss.__name__ for loss in meta["loss"]] # except: # meta["loss"] = meta["loss"].__name__ # if "net" in meta: # meta["net"] = meta["net"].__name__ # if "metric" in meta: # meta["metric"] = [ # f.__name__ if not isinstance(f, str) else f for f in meta["metric"] # ] meta = make_none_safe(meta.copy()) return meta def save_COM_dannce_mat(params, com3d, sampleID): """ Instead of saving 3D COM to com3d.mat, save it into the dannce.mat file, which streamlines subsequent dannce access. """ com = {} com["com3d"] = com3d com["sampleID"] = sampleID com["metadata"] = prepare_save_metadata(params) # Open dannce.mat file, add com and re-save print("Saving COM predictions to " + params["label3d_file"]) rr = sio.loadmat(params["label3d_file"]) # For safety, save old file to temp and delete it at the end sio.savemat(params["label3d_file"] + ".temp", rr) rr["com"] = com sio.savemat(params["label3d_file"], rr) os.remove(params["label3d_file"] + ".temp") def save_COM_checkpoint( save_data, results_dir, datadict_, cameras, params, file_name="com3d" ): """ Saves COM pickle and matfiles """ # Save undistorted 2D COMs and their 3D triangulations f = open(os.path.join(results_dir, file_name + ".pickle"), "wb") cPickle.dump(save_data, f) f.close() # We need to remove the eID in front of all the keys in datadict # for prepare_COM to run properly datadict_save = {} for key in datadict_: datadict_save[int(float(key.split("_")[-1]))] = datadict_[key] if params["n_instances"] > 1: if params["n_channels_out"] > 1: linking_method = "multi_channel" else: linking_method = "euclidean" _, com3d_dict = serve_data_DANNCE.prepare_COM_multi_instance( os.path.join(results_dir, file_name + ".pickle"), datadict_save, comthresh=0, weighted=False, camera_mats=cameras, linking_method=linking_method, ) else: prepare_func = serve_data_DANNCE.prepare_COM _, com3d_dict = serve_data_DANNCE.prepare_COM( os.path.join(results_dir, file_name + ".pickle"), datadict_save, comthresh=0, weighted=False, camera_mats=cameras, method="median", ) cfilename = os.path.join(results_dir, file_name + ".mat") print("Saving 3D COM to {}".format(cfilename)) samples_keys = list(com3d_dict.keys()) if params["n_instances"] > 1: c3d = np.zeros((len(samples_keys), 3, params["n_instances"])) else: c3d = np.zeros((len(samples_keys), 3)) for i in range(len(samples_keys)): c3d[i] = com3d_dict[samples_keys[i]] sio.savemat( cfilename, { "sampleID": samples_keys, "com": c3d, "metadata": prepare_save_metadata(params), }, ) # Also save a copy into the label3d file # save_COM_dannce_mat(params, c3d, samples_keys) def write_com_file(params, samples_, com3d_dict_): cfilename = os.path.join(params["dannce_predict_dir"], "com3d_used.mat") print("Saving 3D COM to {}".format(cfilename)) c3d = np.zeros((len(samples_), 3)) for i in range(len(samples_)): c3d[i] = com3d_dict_[samples_[i]] sio.savemat(cfilename, {"sampleID": samples_, "com": c3d}) def savedata_expval( fname, params, write=True, data=None, num_markers=20, tcoord=True, pmax=False ): """Save the expected values.""" if data is None: f = open(fname, "rb") data = cPickle.load(f) f.close() d_coords = np.zeros((len(list(data.keys())), 3, num_markers)) t_coords = np.zeros((len(list(data.keys())), 3, num_markers)) sID = np.zeros((len(list(data.keys())),)) p_max = np.zeros((len(list(data.keys())), num_markers)) for (i, key) in enumerate(data.keys()): d_coords[i] = data[key]["pred_coord"] if tcoord: t_coords[i] = np.reshape(data[key]["true_coord_nogrid"], (3, num_markers)) if pmax: p_max[i] = data[key]["pred_max"] sID[i] = data[key]["sampleID"] sdict = { "pred": d_coords, "data": t_coords, "p_max": p_max, "sampleID": sID, #"metadata": #prepare_save_metadata(params), } if write and data is None: sio.savemat( fname.split(".pickle")[0] + ".mat", sdict, ) elif write and data is not None: sio.savemat(fname, sdict) return d_coords, t_coords, p_max, sID def savedata_tomat( fname, params, vmin, vmax, nvox, write=True, data=None, num_markers=20, tcoord=True, tcoord_scale=True, addCOM=None, ): """Save pickled data to a mat file. From a save_data structure saved to a *.pickle file, save a matfile with useful variables for easier manipulation in matlab. Also return pred_out_world and other variables for plotting within jupyter """ if data is None: f = open(fname, "rb") data = cPickle.load(f) f.close() d_coords = np.zeros((list(data.keys())[-1] + 1, 3, num_markers)) t_coords = np.zeros((list(data.keys())[-1] + 1, 3, num_markers)) p_max = np.zeros((list(data.keys())[-1] + 1, num_markers)) log_p_max = np.zeros((list(data.keys())[-1] + 1, num_markers)) sID = np.zeros((list(data.keys())[-1] + 1,)) for (i, key) in enumerate(data.keys()): d_coords[i] = data[key]["pred_coord"] if tcoord: t_coords[i] = np.reshape(data[key]["true_coord_nogrid"], (3, num_markers)) p_max[i] = data[key]["pred_max"] log_p_max[i] = data[key]["logmax"] sID[i] = data[key]["sampleID"] vsize = (vmax - vmin) / nvox # First, need to move coordinates over to centers of voxels pred_out_world = vmin + d_coords * vsize + vsize / 2 if tcoord and tcoord_scale: t_coords = vmin + t_coords * vsize + vsize / 2 if addCOM is not None: # We use the passed comdict to add back in the com, this is useful # if one wnats to bootstrap on these values for COMnet or otherwise for i in range(len(sID)): pred_out_world[i] = pred_out_world[i] + addCOM[int(sID)][:, np.newaxis] sdict = { "pred": pred_out_world, "data": t_coords, "p_max": p_max, "sampleID": sID, "log_pmax": log_p_max, "metadata": prepare_save_metadata(params), } if write and data is None: sio.savemat( fname.split(".pickle")[0] + ".mat", sdict, ) elif write and data is not None: sio.savemat( fname, sdict, ) return pred_out_world, t_coords, p_max, log_p_max, sID """ IMAGE OPS (should be moved to ops) """ def __initAvgMax(t, g, o, params): """ Helper function for creating 3D targets """ gridsize = tuple([params["nvox"]] * 3) g = np.reshape( g, (-1, *gridsize, 3), ) for i in range(o.shape[0]): for j in range(o.shape[-1]): o[i, ..., j] = np.exp( -( (g[i, ..., 1] - t[i, 1, j]) ** 2 + (g[i, ..., 0] - t[i, 0, j]) ** 2 + (g[i, ..., 2] - t[i, 2, j]) ** 2 ) / (2 * params["sigma"] ** 2) ) return o def initAvgMax(y_train, y_valid, Xtg, Xvg, params): """ Converts 3D coordinate targets into 3D volumes, for AVG+MAX training """ gridsize = tuple([params["nvox"]] * 3) y_train_aux = np.zeros( ( y_train.shape[0], *gridsize, params["new_n_channels_out"], ), dtype="float32", ) y_valid_aux = np.zeros( ( y_valid.shape[0], *gridsize, params["new_n_channels_out"], ), dtype="float32", ) return ( __initAvgMax(y_train, Xtg, y_train_aux, params), __initAvgMax(y_valid, Xvg, y_valid_aux, params), ) def batch_rgb2gray(imstack): """Convert to gray image-wise. batch dimension is first. """ grayim = np.zeros((imstack.shape[0], imstack.shape[1], imstack.shape[2]), "float32") for i in range(grayim.shape[0]): grayim[i] = rgb2gray(imstack[i].astype("uint8")) return grayim def return_tile(imstack, fac=2): """Crop a larger image into smaller tiles without any overlap.""" height = imstack.shape[1] // fac width = imstack.shape[2] // fac out = np.zeros( (imstack.shape[0] * fac * fac, height, width, imstack.shape[3]), "float32" ) cnt = 0 for i in range(imstack.shape[0]): for j in np.arange(0, imstack.shape[1], height): for k in np.arange(0, imstack.shape[2], width): out[cnt, :, :, :] = imstack[i, j : j + height, k : k + width, :] cnt = cnt + 1 return out def tile2im(imstack, fac=2): """Reconstruct lagrer image from tiled data.""" height = imstack.shape[1] width = imstack.shape[2] out = np.zeros( (imstack.shape[0] // (fac * fac), height * fac, width * fac, imstack.shape[3]), "float32", ) cnt = 0 for i in range(out.shape[0]): for j in np.arange(0, out.shape[1], height): for k in np.arange(0, out.shape[2], width): out[i, j : j + height, k : k + width, :] = imstack[cnt] cnt += 1 return out def downsample_batch(imstack, fac=2, method="PIL"): """Downsample each image in a batch.""" if method == "PIL": out = np.zeros( ( imstack.shape[0], imstack.shape[1] // fac, imstack.shape[2] // fac, imstack.shape[3], ), "float32", ) if out.shape[-1] == 3: # this is just an RGB image, so no need to loop over channels with PIL for i in range(imstack.shape[0]): out[i] = np.array( PIL.Image.fromarray(imstack[i].astype("uint8")).resize( (out.shape[2], out.shape[1]), resample=PIL.Image.LANCZOS ) ) else: for i in range(imstack.shape[0]): for j in range(imstack.shape[3]): out[i, :, :, j] = np.array( PIL.Image.fromarray(imstack[i, :, :, j]).resize( (out.shape[2], out.shape[1]), resample=PIL.Image.LANCZOS ) ) elif method == "dsm": out = np.zeros( ( imstack.shape[0], imstack.shape[1] // fac, imstack.shape[2] // fac, imstack.shape[3], ), "float32", ) for i in range(imstack.shape[0]): for j in range(imstack.shape[3]): out[i, :, :, j] = dsm(imstack[i, :, :, j], (fac, fac)) elif method == "nn": out = imstack[:, ::fac, ::fac] elif fac > 1: raise Exception("Downfac > 1. Not a valid downsampling method") return out def batch_maximum(imstack): """Find the location of the maximum for each image in a batch.""" maxpos =
np.zeros((imstack.shape[0], 2))
numpy.zeros
from scipy.io import wavfile from scipy.special import expn from scipy.fftpack import ifft import numpy as np def logMMSE(inputFilePath, outputFilePath): """ % Implements the logMMSE algorithm [1]. Parameters ---------- inputFilePath : string or open file handle Input wav file. outputFilePath: string or open file handle Output wav file. References ---------- .. [1] <NAME>. and <NAME>. (1985). Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust., Speech, Signal Process., ASSP-23(2), 443-445. """ [sample_rate, sample_data] = wavfile.read(inputFilePath, True) # Frame size in samples len = np.int(np.floor(20 * sample_rate * 0.001)) if len % 2 == 1: len += 1 # window overlap in percent of frame size perc = 50 len1 = np.floor(len * perc * 0.01) len2 = len - len1 win = np.hanning(len) win = win * len2 / sum(win) # Noise magnitude calculations - assuming that the first 6 frames is noise / silence nFFT = len << 2 noise_mean = np.zeros([nFFT, 1]) dtype = 2 << 14 j = 0 for i in range(1, 7): s1 = j s2 = j + np.int(len) batch = sample_data[s1: s2] / dtype X = win * batch foo = np.fft.fft(X, np.int(nFFT)) noise_mean += np.abs(foo.reshape(foo.shape[0], 1)) j += len noise_mu = np.square(noise_mean / 6) # Allocate memory and initialize various variables x_old = np.zeros([np.int(len1), 1]); Nframes = np.floor(sample_data.shape[0] / len2) - np.floor(len / len2) xfinal = np.zeros([np.int(Nframes * len2), 1]); # Start Processing k = 0 aa = 0.98 mu = 0.98 eta = 0.15 ksi_min = 10 ** (-25 * 0.1) for n in range(0, np.int(Nframes)): s1 = k s2 = k + np.int(len) batch = sample_data[s1: s2] / dtype insign = win * batch spec = np.fft.fft(insign, nFFT) # Compute the magnitude sig = abs(spec) sig2 = sig ** 2 # Limit post SNR to avoid overflows gammak = np.divide(sig2.reshape(sig2.shape[0], 1), noise_mu.reshape(noise_mu.shape[0], 1)) gammak[gammak > 40] = 40 foo = gammak - 1 foo[foo < 0] = 0 if 0 == n: ksi = aa + (1 - aa) * foo else: # a priori SNR ksi = aa * Xk_prev / noise_mu + (1 - aa) * foo # limit ksi to - 25 db ksi[ksi < ksi_min] = ksi_min log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi) vad_decision = sum(log_sigma_k) / len # noise only frame found if vad_decision < eta: noise_mu = mu * noise_mu + (1 - mu) * sig2.reshape([sig2.shape[0], 1]) # == = end of vad == = # Log - MMSE estimator A = ksi / (1 + ksi) vk = A * gammak ei_vk = 0.5 * expn(1, vk) hw = A * np.exp(ei_vk) sig = sig.reshape([sig.shape[0], 1]) * hw Xk_prev = sig ** 2 xi_w = ifft(hw * spec.reshape([spec.shape[0], 1]), nFFT, 0) xi_w = np.real(xi_w) xfinal[k: k + np.int(len2)] = x_old + xi_w[0: np.int(len1)] x_old = xi_w[np.int(len1): np.int(len)] k = k +
np.int(len2)
numpy.int
import numpy as np import scipy.stats class ImproperCovarianceError(Exception): """ Exception to be thrown when a Gaussian is created with a covariance matrix that isn't strictly positive definite. """ def __str__(self): return 'Covariance matrix is not strictly positive definite' class Gaussian: """ Implements a gaussian pdf. Focus is on efficient multiplication, division and sampling. """ def __init__(self, m=None, P=None, U=None, S=None, Pm=None): """ Initialize a gaussian pdf given a valid combination of its parameters. Valid combinations are: m-P, m-U, m-S, Pm-P, Pm-U, Pm-S :param m: mean :param P: precision :param U: upper triangular precision factor such that U'U = P :param S: covariance :param Pm: precision times mean such that P*m = Pm """ try: if m is not None: m = np.asarray(m) self.m = m self.n_dims = m.size if P is not None: P = np.asarray(P) L = np.linalg.cholesky(P) self.P = P self.C = np.linalg.inv(L) self.S = np.dot(self.C.T, self.C) self.Pm = np.dot(P, m) self.logdetP = 2.0 * np.sum(np.log(np.diagonal(L))) elif U is not None: U = np.asarray(U) self.P =
np.dot(U.T, U)
numpy.dot
from __future__ import print_function, division, absolute_import import matplotlib matplotlib.use('Agg') import os import numpy as np from odin import preprocessing as pp from odin import fuel as F, visual as V from odin.utils import (ctext, get_logpath, get_module_from_path, get_script_path, Progbar, mpi, catch_warnings_ignore) from helpers import (ALL_FILES, ALL_NOISE, ALL_DATASET, IS_DEBUGGING, PATH_ACOUSTIC_FEATURES, FEATURE_RECIPE, AUGMENTATION_NAME, Config, EXP_DIR, NCPU, validate_features_dataset) if AUGMENTATION_NAME == 'None': raise ValueError("`-aug` option was not provided, choose: 'rirs' or 'musan'") np.random.seed(Config.SUPER_SEED) # percentage of data will be used for augmentation PERCENTAGE_AUGMENTATION = 0.8 # =========================================================================== # Constant # =========================================================================== AUGMENTATION_DATASET = [ 'swb', 'sre04', 'sre05', 'sre06', 'sre08', 'sre10'] AUGMENTATION_DATASET = [i for i in AUGMENTATION_DATASET if i in ALL_DATASET] print("Augmenting following dataset: %s" % ctext(', '.join(AUGMENTATION_DATASET), 'yellow')) # ====== get the duration ====== # path = os.path.join(PATH_ACOUSTIC_FEATURES, FEATURE_RECIPE) assert os.path.exists(path), \ "Acoustic feature must be extracted first, and stored at path: %s" % path ds = F.Dataset(path, read_only=True) all_duration = dict(ds['duration'].items()) ds.close() # ====== select a new file list ====== # AUG_FILES = [] missing_duration = [] for row in ALL_FILES: if row[4] not in AUGMENTATION_DATASET: continue if row[2] not in all_duration: missing_duration.append(row) continue dur = all_duration[row[2]] AUG_FILES.append([i for i in row] + [dur]) print("#Files missing duration:", ctext(len(missing_duration), 'cyan')) assert len(AUG_FILES), "Cannot find any files for augmentation" AUG_FILES = np.array(AUG_FILES) org_shape = AUG_FILES.shape # select half of the files np.random.shuffle(AUG_FILES);
np.random.shuffle(AUG_FILES)
numpy.random.shuffle
'''MIT License Copyright (c) 2022 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' class HERTZ: """Calculation of contact stresses, power loss and \ film thickness along path of contact""" def __init__(self, GMAT, GLUB, GEO, GPATH, GFS, POSAE): import numpy as np # tile speeds self.vg3D = np.tile(GFS.vg, (len(GPATH.bpos), 1)).T self.vr13D = np.tile(GFS.vr1, (len(GPATH.bpos), 1)).T self.vr23D = np.tile(GFS.vr2, (len(GPATH.bpos), 1)).T self.vr3D = np.tile(GFS.vr, (len(GPATH.bpos), 1)).T # HERTZ =============================================================== # effective Young modulus self.Eeq = 1/((1 - GMAT.v1**2)/GMAT.E1 + (1 - GMAT.v2**2)/GMAT.E2) # equivalent radius self.R13D = np.tile(GPATH.R1, (len(GPATH.bpos), 1)).T self.R23D = np.tile(GPATH.R2, (len(GPATH.bpos), 1)).T self.Req = 1/((1/self.R13D) + (1/self.R23D))/
np.cos(GEO.betab)
numpy.cos
import numpy as np import cv2 import matplotlib.pyplot as plt import copy import math from tqdm import * import argparse import os import glob def normalizePoints(pts): #calculate the mean of x and y coordinates - Compute the centroid of all corresponding points in a single image pts_mean = np.mean(pts, axis=0) x_bar = pts_mean[0] y_bar = pts_mean[1] #Recenter by subtracting the mean from original points x_tilda, y_tilda = pts[:,0] - x_bar, pts[:, 1] - y_bar #scale term s and s': average distances of the centered points from the origin in both the left and right images s = (2/np.mean(x_tilda**2 + y_tilda**2))**(0.5) #construct transformation matrix T_S = np.diag([s,s,1]) T_T = np.array([[1, 0, -x_bar],[0, 1, -y_bar],[0, 0, 1]]) T = np.dot(T_S, T_T) x = np.column_stack((pts, np.ones(len(pts)))) x_norm = (T.dot(x.T)).T return x_norm, T def getFundamentalMatrix(src, dst): col = 9 # need minimum of 8 points to compute F Matrix if src.shape[0] > 7: #do normalization src_norm, T1 = normalizePoints(src) dst_norm, T2 = normalizePoints(dst) A = np.zeros((len(src_norm),9)) for i in range(len(src_norm)): x1, y1 = src_norm[i][0], src_norm[i][1] x2, y2 = dst_norm[i][0], dst_norm[i][1] A[i] = np.array([x1*x2, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1]) #calculate SVD of A U, S, VT = np.linalg.svd(A, full_matrices=True) #F = VT.T[:, -1] #F = F.reshape(3,3) F = VT[-1,:] F = F.reshape(3,3) #the calculated F matrix can be of rank 3, but to find epipolar lines, the rank should be 2. #thus, U_, S_, VT_ = np.linalg.svd(F) # make diagonal matrix and set last element to 0 S_ = np.diag(S_) S_[2,2] = 0 #recompute F F = np.dot(U_, np.dot(S_, VT_)) #un-normalize F = np.dot(T2.T, np.dot(F, T1)) return F else: return None def calculateError(x1, x2, F): # make x1 and x2 3*3 x1_ = np.array([x1[0], x1[1], 1]) x2_ = np.array([x2[0], x2[1], 1]) #calculate the error, the ideal case should be zero for the below product error = np.dot(x2_.T, np.dot(F, x1_)) return np.abs(error) # https://cmsc733.github.io/2019/proj/p3/ def processInliers(src_pts, dst_pts): max_error = 0.001 iterations = 1 final_idx = [] F_Matrix = None inliers = 0 rows = src_pts.shape[0] for i in range(2000): temp_idx = [] random_row = np.random.choice(rows, size=8) src = src_pts[random_row] dst = dst_pts[random_row] f_matrix = getFundamentalMatrix(src, dst) #now check the F matrix for all pairs for j in range(rows): error = calculateError(src_pts[j], dst_pts[j], f_matrix) if error < max_error: temp_idx.append(j) if len(temp_idx) > inliers: inliers = len(temp_idx) final_idx = temp_idx F_Matrix = f_matrix src_final = src_pts[final_idx] dst_final = dst_pts[final_idx] return F_Matrix, src_final, dst_final def getEssentialMatrix(F, K1, K2): E = K2.T.dot(F).dot(K1) #enforce rank 2 for singular matrix U,S,VT = np.linalg.svd(E) S = np.diag([1,1,0]) E = np.dot(U, np.dot(S, VT)) return E #https://cmsc733.github.io/2019/proj/p3/ def getCameraPose(E): U, S, VT = np.linalg.svd(E) W = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) R, T = [],[] R.append(np.dot(U, np.dot(W, VT))) R.append(np.dot(U, np.dot(W, VT))) R.append(np.dot(U, np.dot(W.T, VT))) R.append(np.dot(U, np.dot(W.T, VT))) T.append(U[:, 2]) T.append(-U[:, 2]) T.append(U[:, 2]) T.append(-U[:, 2]) # R should always be positive for i in range(len(R)): if (np.linalg.det(R[i]) < 0): R[i] = -R[i] T[i] = -T[i] return R, T def getCorrectPose(pts_3D, R1, T1, R2, T2): num_Z_positive = 0 zList = [] I = np.identity(3) for k in range (len(pts_3D)): num_Z_positive = 0 pts3D = pts_3D[k] #normalize pts3D = pts3D/pts3D[3, :] P_2 = np.dot(R2[k], np.hstack((I, -T2[k].reshape(3,1)))) P_2 = np.vstack((P_2, np.array([0,0,0,1]).reshape(1,4))) P_1 = np.dot(R1, np.hstack((I, -T1.reshape(3,1)))) P_1 = np.vstack((P_1, np.array([0,0,0,1]).reshape(1,4))) for i in range(pts3D.shape[1]): #calculate point for Right image X_2 = pts3D[:,i] X_2 = X_2.reshape(4,1) Xc_2 = np.dot(P_2, X_2) Xc_2 = Xc_2 / Xc_2[3] z_2 = Xc_2[2] #calcuate points for Left image X_1 = pts3D[:,i] X_1 = X_1.reshape(4,1) Xc_1 = np.dot(P_1, X_1) Xc_1 = Xc_1 / Xc_1[3] z_1 = Xc_1[2] if (z_1 > 0 and z_2 > 0): num_Z_positive += 1 #print(num_Z_positive) zList.append(num_Z_positive) # get the correct camera pose index - define threshold for points as half the number of points threshold = pts_3D[0].shape[1]//2 zArray = np.array(zList) index = np.where(zArray > threshold) return index def getEpipolarLines(src_final, dst_final, F, im1_epipolar, im2_epipolar, rectified=False): lines1, lines2 = [], [] for i in range(len(src_final)): #arrange the source and destination points in a 3*3 array to be multiplied with F x1 = np.array([src_final[i,0], src_final[i,1], 1]).reshape(3,1) x2 = np.array([dst_final[i,0], dst_final[i,1], 1]).reshape(3,1) #epipolar line 1 coefficients - left image line1 = np.dot(F.T, x2) lines1.append(line1) #epipolar line 2 coefficients - right image line2 = np.dot(F, x1) lines2.append(line2) if (not rectified): #get the x and y values - lines are not parallel to x axis x1_low = 0 x1_high = im1_epipolar.shape[1] - 1 y1_low = -(line1[2] + x1_low*line1[0])/line1[1] y1_high = -(line1[2] + x1_high*line1[0])/line1[1] x2_low = 0 x2_high = im2_epipolar.shape[1] - 1 y2_low = -(line2[2] + x2_low*line2[0])/line2[1] y2_high = -(line2[2] + x2_high*line2[0])/line2[1] else: # as the lines are parallel to the X axis, the slope tends to zero x1_low = 0 x1_high = im1_epipolar.shape[1] - 1 y1_low = -(line1[2]/line1[1]) y1_high = y1_low x2_low = 0 x2_high = im2_epipolar.shape[1] - 1 y2_low = -(line2[2]/line2[1]) y2_high = y2_low #print the points onto image cv2.circle(im1_epipolar, (int(src_final[i,0]), int(src_final[i,1])), 5, (0,0,255), 2) im1_epipolar = cv2.line(im1_epipolar, (int(x1_low), int(y1_low)), (int(x1_high), int(y1_high)), (0,255,0), 1) cv2.circle(im2_epipolar, (int(dst_final[i,0]), int(dst_final[i,1])), 5, (0,0,255), 2) im2_epipolar = cv2.line(im2_epipolar, (int(x2_low), int(y2_low)), (int(x2_high), int(y2_high)), (0,255,0), 1) combined = np.concatenate((im1_epipolar, im2_epipolar), axis=1) # temp = cv2.resize(combined, (1200,700)) # cv2.imshow('epilines', temp) # cv2.imwrite('Epilines_.png', combined) # cv2.waitKey(0) # cv2.destroyAllWindows() return lines1, lines2, combined def SSD(mat1, mat2): diff_sq = np.square(mat1 - mat2) ssd = np.sum(diff_sq) return ssd def SAD(mat1, mat2): return np.sum(abs(mat1 - mat1)) def calcuateDisparity(img1_rectified_reshaped, img2_rectified_reshaped): h, w = img1_rectified_reshaped.shape disparity = np.zeros((h, w), np.uint8) window_size = 11 half_window_size = math.floor((window_size)/2) search_distance = 200 for row in tqdm(range(half_window_size, h - half_window_size)): for col in range(half_window_size, w - half_window_size): patch1 = img1_rectified_reshaped[row - half_window_size: row + half_window_size, col - half_window_size : col + half_window_size] min_ssd = 10000 disp = 0 #scan along epiline till a particular length for distance in range(-search_distance, search_distance, 1): #bidirectional c_dash = col + distance # print(c_dash) if (c_dash < w - half_window_size) and (c_dash > half_window_size): patch2 = img2_rectified_reshaped[row - half_window_size: row + half_window_size, c_dash - half_window_size : c_dash + half_window_size] # if patch2.shape[1] < 4: # print(r, c, c_dash) ssd = SSD(patch1, patch2) if ssd < min_ssd: min_ssd = ssd disp = np.abs(distance) disparity[row, col] = disp return disparity def Stereo(args): dataset = args['set'] if (dataset == 1): K1 = np.array([[5299.313, 0, 1263.818], [0, 5299.313, 977.763], [0, 0, 1]]) K2 = np.array([[5299.313, 0, 1438.004], [0, 5299.313, 977.763], [0, 0, 1]]) baseline = 177.288 f = K1[0,0] elif (dataset == 2): K1 =
np.array([[4396.869, 0, 1353.072], [0, 4396.869, 989.702], [0, 0, 1]])
numpy.array
import os import pickle import numpy as np import rampwf as rw from sklearn.model_selection import train_test_split, ShuffleSplit problem_title = 'Optical network modelling' _NB_CHANNELS = 32 # C100 # We are splitting both train/test and train/valid using the campaign # indices. Training campaigns will be all subcascades, and they fully # go in the training set. Each train/valid split on the training set # is then using _cv_valid_rate of the training instances for training. # .They will not be part of the validation. # Test campaigns will be split: _test_rate of them will be in the test # set and (1 - _test_rate) in the training set. Of this latter, # _cv_valid_rate will be in each fold validation set, and # (1 - _cv_valid_rate) will be part of each fold training set. _train_campaigns = [1, 2] _test_campaigns = [3, 4] _test_rate = 0.8 _cv_valid_rate = 0.5 class EM99(rw.score_types.BaseScoreType): """99% error margin (EM99) score. Measures the required margin in terms of the ratio of the true and predicted values to cover 99% of all cases.""" is_lower_the_better = True minimum = 0.0 maximum = float('inf') def __init__(self, name='EM99', precision=2, quant=0.99, eps=1e-8): self.name = name self.precision = precision self.quant = quant self.eps = eps def __call__(self, y_true, y_pred): if (y_pred < 0).any(): return self.worst ratio_err = np.array( [(p + self.eps) / t for y_hat, y in zip(y_pred, y_true) for p, t in zip(y_hat, y) if t != 0]) # sorted absolute value of mw2dB ratio err score = np.percentile( np.abs(10 * np.log10(ratio_err)), 100 * self.quant) return score class MEM(rw.score_types.BaseScoreType): """Maximum error margin score. Measures the required margin in terms of the ratio of the true and predicted values to cover all cases. The same as EM100.""" is_lower_the_better = True minimum = 0.0 maximum = float('inf') def __init__(self, name='MEM', precision=2, eps=1e-8): self.name = name self.precision = precision self.eps = eps def __call__(self, y_true, y_pred): if (y_pred < 0).any(): return self.worst ratio_err = np.array( [(p + self.eps) / t for y_hat, y in zip(y_pred, y_true) for p, t in zip(y_hat, y) if t != 0]) # sorted absolute value of mw2dB ratio err score = np.max( np.abs(10 * np.log10(ratio_err))) return score class ONRMSE(rw.score_types.BaseScoreType): """Optical network root-mean-square error. Measures the RMSE between the true and predicted values of all on channels.""" is_lower_the_better = True minimum = 0.0 maximum = float('inf') def __init__(self, name='ONRMSE', precision=2): self.name = name self.precision = precision def __call__(self, y_true, y_pred): on_y_true = np.array([t for y in y_true for t in y if t != 0]) on_y_pred = np.array([p for y_hat, y in zip(y_pred, y_true) for p, t in zip(y_hat, y) if t != 0]) if (on_y_pred < 0).any(): return self.worst return np.sqrt(np.mean(np.square(on_y_true - on_y_pred))) workflow = rw.workflows.Regressor() Predictions = rw.prediction_types.make_regression(list(range(_NB_CHANNELS))) score_types = [ EM99(precision=3), ONRMSE(name='RMSE', precision=4), MEM(precision=2), ] def _read_data(path, campaign): data_path = os.path.join(path, 'data') with open(os.path.join(data_path, f'c{campaign}', 'X.pkl'), 'rb') as f: X = pickle.load(f) # add campaign index as last column to X X = np.array([np.append(x, campaign) for x in X]) with open(os.path.join(data_path, f'c{campaign}', 'y.pkl'), 'rb') as f: y = pickle.load(f) return X, y # Select full cascades from the data: only instances with maximum # number of modules def _full_cascade_mask(X): lengths = list(map(len, X[:, 0])) # first column is list of modules max_length = np.max(lengths) return lengths == max_length def _train_test_indices(X): # random_state must be fixed to avoid leakage return train_test_split( range(len(X)), test_size=_test_rate, random_state=51) # Load only full cascades from the test campaigns. is_test_int = 1 of loading # test, 0 if loading the portion of the test that goes in train. def _load_test(path, is_test_int): Xs = [] ys = [] for campaign in _test_campaigns: X, y = _read_data(path, campaign) mask = _full_cascade_mask(X) # only full cascades in test set test_is = _train_test_indices(X[mask])[is_test_int] Xs.append(X[mask][test_is]) ys.append(y[mask][test_is]) return np.concatenate(Xs), np.concatenate(ys) def get_train_data(path='.'): Xs = [] ys = [] for campaign in _train_campaigns: X, y = _read_data(path, campaign) Xs.append(X) ys.append(y) # adding (1 - _test_rate) of the test full cascades to the training data X_test_in_train, y_test_in_train = _load_test(path, is_test_int=0) Xs.append(X_test_in_train) ys.append(y_test_in_train) return
np.concatenate(Xs)
numpy.concatenate
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import settings import datetime import pygame import random import keras import time import os from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten, Input, concatenate from keras.models import Model, load_model, Sequential from keras.utils import plot_model from keras.optimizers import Adam from collections import deque from matplotlib import style from keras import backend class Game: _count = 0 def __init__(self, food_ammount=1, snake_len=3, width=30, height=30, free_moves=200, view_len=3, random_start=True, render=False): """""" self.render = render self.food_limit = food_ammount self.view_len = view_len self.area_len = self.view_len * 2 + 1 self.free_moves = free_moves self.initial_snake_len = snake_len self.random_start = random_start self.MOVE_PENALTY = settings.MOVE_PENALTY self.FOOD_REWARD = settings.FOOD_REWARD self.DEATH_PENALTY = settings.DEATH_PENALTY self.width, self.height = width, height self.box_size = 25 self.size = self.width * self.box_size, self.height * self.box_size self.score = 0 self.food_eaten = 0 self.direction = 0 self.moves_left = self.free_moves self.time = 0 self.done = False self.head = [0, 0] self.tail = deque([self.head] * self.initial_snake_len, maxlen=self.width * self.height + 1) self.snake_len = self.initial_snake_len self.Food = [] self.fill_food() self._reset() Game._count += 1 if render: pygame.init() width = int(width) height = int(height) self.screen = pygame.display.set_mode((self.box_size * width, self.box_size * height)) def __del__(self): Game._count -= 1 if Game._count < 1: pygame.quit() def _reset(self): self.score = 0 self.food_eaten = 0 self.direction = 0 self.moves_left = self.free_moves self.time = 0 self.done = False if self.random_start: self.head = [np.random.randint(1, self.width - 1), np.random.randint(1, self.height - 1)] else: self.head = [self.width // 2, self.height // 2] self.tail = deque([self.head] * self.initial_snake_len, maxlen=self.width * self.height + 1) self.snake_len = self.initial_snake_len self.Food = [] self.fill_food() def reset(self): self._reset() obs = self.observation() return obs def fill_food(self): while len(self.Food) < self.food_limit: self.place_food() def place_food(self): while True: valid_to_brake = True new_food_pos = [np.random.randint(0, self.width), np.random.randint(0, self.height)] if new_food_pos == self.head: # Repeat while with new food continue for tail in self.tail: if tail == new_food_pos: valid_to_brake = False break if valid_to_brake: break self.Food.append(new_food_pos) def observation(self): area = np.ones((self.area_len, self.area_len)) for arr_y in range(self.area_len): for arr_x in range(self.area_len): y = self.head[1] - (arr_y - self.view_len) x = self.head[0] - self.view_len + arr_x if x < 0 or y < 0 or x >= self.width or y >= self.height: area[arr_y, arr_x] = 2 continue skip_tail = False for food in self.Food: if [x, y] == food: area[arr_y, arr_x] = 0 skip_tail = True break if skip_tail: continue for tail in self.tail: if [x, y] == tail: area[arr_y, arr_x] = 2 area = (area / 2).ravel() food_relative_pos = (np.array(self.head) - np.array(self.Food[0])) / np.max(self.size) if settings.DUAL_INPUT: output = (area, food_relative_pos) else: output = np.concatenate([area, food_relative_pos]) return output def random_action(self): """ Return valid action in current situation""" new_direction = (self.direction + np.random.randint(-1, 2)) % 4 return new_direction def move_snake(self, new_direction): """ Move snake, and update environment Directions 0 Up 3 1 Left / Right 2 Down Parameters ---------- new_direction - int <0, 3> Returns ------- collision - boolean food_eaten - boolean action_valid - boolean """ # Check if action is valid if self.direction == 0 and new_direction == 2 or \ self.direction == 1 and new_direction == 3 or \ self.direction == 2 and new_direction == 0 or \ self.direction == 3 and new_direction == 1: action_valid = False else: action_valid = True if action_valid: new_direction = new_direction else: new_direction = self.direction new_x = self.head[0] + (1 if new_direction == 1 else -1 if new_direction == 3 else 0) new_y = self.head[1] + (1 if new_direction == 2 else -1 if new_direction == 0 else 0) new_pos = [new_x, new_y] if new_x >= self.width or new_x < 0 or new_y >= self.width or new_y < 0: collision = True else: collision = False if not collision: for tail in list(self.tail)[1:]: # First tail segment will move if new_pos == tail: collision = True break food_eaten = False if not collision: self.head = new_pos for f_index, food in enumerate(self.Food): if self.head == food: self.Food.pop(f_index) self.snake_len += 1 food_eaten = True break self.update_tail() self.direction = new_direction return collision, food_eaten, action_valid def update_tail(self): self.tail.append(self.head) while len(self.tail) > self.snake_len: # Head is separate self.tail.popleft() def step(self, action=None): """ Parameters ---------- action Returns ------- observation reward done """ self.moves_left -= 1 self.time += 1 if self.done: print("Game has been already ended!") done = True else: done = False collision, food, action_valid = self.move_snake(action) if collision: done = True elif self.moves_left < 1 and not food: done = True if not action_valid: reward = self.DEATH_PENALTY * 2 elif collision: reward = self.DEATH_PENALTY elif self.moves_left < 1: reward = self.MOVE_PENALTY * 2 elif food: reward = self.FOOD_REWARD else: reward = self.MOVE_PENALTY if food: self.moves_left = self.free_moves self.food_eaten += 1 if done: self.done = done self.fill_food() observation = self.observation() self.score += reward return observation, reward, done def draw(self, epoch=None): if self.done: head_color = (255, 0, 0) else: head_color = (130, 255, 255) self.screen.fill((25, 20, 30)) # self.screen.fill((40, 40, 45)) pygame.draw.rect(self.screen, (40, 60, 45), ( (self.head[0] - self.view_len) * self.box_size, (self.head[1] - self.view_len) * self.box_size, self.area_len * self.box_size, self.area_len * self.box_size)) for tail in self.tail: pygame.draw.rect(self.screen, (35, 120, 50), (tail[0] * self.box_size, tail[1] * self.box_size, self.box_size, self.box_size)) pygame.draw.rect(self.screen, head_color, (self.head[0] * self.box_size, self.head[1] * self.box_size, self.box_size, self.box_size)) for food in self.Food: pygame.draw.rect(self.screen, (0, 255, 0), (food[0] * self.box_size, food[1] * self.box_size, self.box_size, self.box_size)) self.display_score(epoch) pygame.display.update() def display_score(self, epoch): my_font = pygame.font.SysFont('Comic Sans MS', 30) text_surface = my_font.render('Score = ' + str(round(self.score, 1)), False, (255, 255, 255)) self.screen.blit(text_surface, (0, 0)) text_surface = my_font.render('Food-eaten = ' + str(self.food_eaten), False, (255, 255, 255)) self.screen.blit(text_surface, (0, 20)) text_surface = my_font.render('Moves left = ' + str(self.moves_left), False, (255, 255, 255)) self.screen.blit(text_surface, (0, 40)) if epoch: text_surface = my_font.render('Epoch = ' + str(epoch), False, (255, 255, 255)) self.screen.blit(text_surface, (0, 60)) class Agent: def __init__(self, input_shape, action_space, dual_input=False, min_batch_size=1000, max_batch_size=1000, learining_rate=0.0001, memory_size=10000): dt = datetime.datetime.timetuple(datetime.datetime.now()) self.runtime_name = f"{dt.tm_mon:>02}-{dt.tm_mday:>02}--" \ f"{dt.tm_hour:>02}-{dt.tm_min:>02}-{dt.tm_sec:>02}" self.min_batch_size = min_batch_size self.max_batch_size = max_batch_size self.input_shape = input_shape self.action_space = action_space self.learning_rate = learining_rate self.memory = deque(maxlen=memory_size) load_success = self.load_model() # Bind train command self._train = self._dual_train if settings.DUAL_INPUT else self._normal_train if load_success: print(f"Loading model: {MODEL_NAME}") else: print(f"New model: {MODEL_NAME}") if dual_input: self.model = self.create_dual_model() else: self.model = self.create_normal_model() self.model.compile(optimizer=Adam(lr=self.learning_rate), loss='mse', metrics=['accuracy']) backend.set_value(self.model.optimizer.lr, self.learning_rate) self.model.summary() def create_dual_model(self): input_area = Input(shape=(self.input_shape[0])) layer1a = Dense(64, activation='relu')(input_area) input_direction = Input(shape=(self.input_shape[1])) layer2a = Dense(32, activation='relu')(input_direction) merge_layer = concatenate([layer1a, layer2a], axis=-1) layer3 = Dense(64, activation='relu')(merge_layer) output = Dense(self.action_space, activation='linear')(layer3) model = Model(inputs=[input_area, input_direction], outputs=output) plot_model(model, f"{MODEL_NAME}/model.png") with open(f"{MODEL_NAME}/model_summary.txt", 'w') as file: model.summary(print_fn=lambda x: file.write(x + '\n')) return model def create_normal_model(self): model = Sequential() model.add(Dense(128, input_shape=self.input_shape, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(128, activation='relu')) model.add(Dense(self.action_space, activation='linear')) plot_model(model, f"{MODEL_NAME}/model.png") with open(f"{MODEL_NAME}/model_summary.txt", 'w') as file: model.summary(print_fn=lambda x: file.write(x + '\n')) return model def update_memory(self, state): self.memory.append(state) def save_model(self): while True: try: self.model.save(f"{MODEL_NAME}/model") return True except OSError: time.sleep(0.2) def load_model(self): if os.path.isfile(f"{MODEL_NAME}/model"): while True: try: self.model = load_model(f"{MODEL_NAME}/model") return True except OSError: time.sleep(0.2) else: return False def train(self): if len(self.memory) < self.min_batch_size: return None elif settings.TRAIN_ALL_SAMPLES: train_data = list(self.memory) elif len(self.memory) >= self.max_batch_size: train_data = random.sample(self.memory, self.max_batch_size) # print(f"Too much data, selecting from: {len(self.memory)} samples") else: train_data = list(self.memory) if settings.STEP_TRAINING or settings.TRAIN_ALL_SAMPLES: self.memory.clear() self._train(train_data) def _normal_train(self, train_data): Old_states = [] New_states = [] Rewards = [] Dones = [] Actions = [] for old_state, new_state, reward, action, done in train_data: Old_states.append(old_state) New_states.append(new_state) Actions.append(action) Rewards.append(reward) Dones.append(done) Old_states = np.array(Old_states) New_states = np.array(New_states) old_qs = self.model.predict(Old_states) new_qs = self.model.predict(New_states) for old_q, new_q, rew, act, done in zip(old_qs, new_qs, Rewards, Actions, Dones): if done: old_q[act] = rew else: future_best_val = np.max(new_q) old_q[act] = rew + DISCOUNT * future_best_val self.model.fit(Old_states, old_qs, verbose=0, shuffle=False, epochs=1) def _dual_train(self, train_data): Old_states = [] New_states = [] Rewards = [] Dones = [] Actions = [] for old_state, new_state, reward, action, done in train_data: Old_states.append(old_state) New_states.append(new_state) Actions.append(action) Rewards.append(reward) Dones.append(done) Old_states = np.array(Old_states) New_states = np.array(New_states) old_view_area = [] old_direction = [] new_view_area = [] new_direction = [] for _old_state, _new_state in zip(Old_states, New_states): old_view_area.append(_old_state[0]) old_direction.append(_old_state[1]) new_view_area.append(_new_state[0]) new_direction.append(_new_state[1]) old_qs = self.model.predict([old_view_area, old_direction]) new_qs = self.model.predict([new_view_area, new_direction]) for old_q, new_q, rew, act, done in zip(old_qs, new_qs, Rewards, Actions, Dones): if done: old_q[act] = rew else: future_best_val = np.max(new_q) old_q[act] = rew + DISCOUNT * future_best_val self.model.fit([old_view_area, old_direction], old_qs, verbose=0, shuffle=False, epochs=1) EPOCHS = settings.EPOCHS SIM_COUNT = settings.SIM_COUNT REPLAY_MEMORY_SIZE = settings.REPLAY_MEMORY_SIZE MIN_BATCH_SIZE = settings.MIN_BATCH_SIZE MAX_BATCH_SIZE = settings.MAX_BATCH_SIZE DISCOUNT = settings.DISCOUNT AGENT_LR = settings.AGENT_LR FREE_MOVE = settings.FREE_MOVE MODEL_NAME = settings.MODEL_NAME LOAD_MODEL = settings.LOAD_MODEL ALLOW_TRAIN = settings.ALLOW_TRAIN SAVE_PICS = settings.SAVE_PICS STATE_OFFSET = settings.STATE_OFFSET FIRST_EPS = settings.FIRST_EPS RAMP_EPS = settings.RAMP_EPS INITIAL_SMALL_EPS = settings.INITIAL_SMALL_EPS END_EPS = settings.END_EPS EPS_INTERVAL = settings.EPS_INTERVAL SHOW_EVERY = settings.SHOW_EVERY RENDER_DELAY = settings.RENDER_DELAY SHOW_LAST = settings.SHOW_LAST PLOT_ALL_QS = settings.PLOT_ALL_QS COMBINE_QS = settings.COMBINE_QS def training(): try: episode_offset = np.load(f"{MODEL_NAME}/last-episode-num.npy", allow_pickle=True) except FileNotFoundError: episode_offset = 0 eps_iter = iter(np.linspace(RAMP_EPS, END_EPS, EPS_INTERVAL)) time_start = time.time() emergency_break = False for episode in range(0, EPOCHS): try: if not settings.STEP_TRAINING and ALLOW_TRAIN: agent.train() if not (episode + episode_offset) % 100 and episode > 0: agent.save_model() np.save(f"{MODEL_NAME}/last-episode-num.npy", episode + episode_offset) Pred_sep.append(len(Predicts[0])) if not (episode + episode_offset) % SHOW_EVERY: render = True else: render = False if episode == EPOCHS - 1 or emergency_break: eps = 0 render = True if SHOW_LAST: input("Last agent is waiting...") elif episode == 0 or not ALLOW_TRAIN: eps = 0 render = True elif episode < EPS_INTERVAL / 4: eps = FIRST_EPS # elif episode < EPS_INTERVAL: # eps = 0.3 else: try: eps = next(eps_iter) except StopIteration: eps_iter = iter(
np.linspace(INITIAL_SMALL_EPS, END_EPS, EPS_INTERVAL)
numpy.linspace
# -*- coding: utf-8 -*- from io_utils.plot.plot_maps import cp_map, cp_scatter_map import numpy as np import pandas as pd import tempfile import os import io_utils.root_path as root_path from netCDF4 import Dataset from smecv_grid.grid import SMECV_Grid_v052 from io_utils.plot.colormaps import cm_sm import cartopy.crs as ccrs import shutil from tempfile import TemporaryDirectory def test_scatter_map(): with TemporaryDirectory() as out_dir: lons = np.linspace(-160, 160, 160) lats = np.linspace(90, -90, 160) values = np.random.rand(160) f, imax, im = cp_scatter_map(lons, lats, values) filename = 'plot_scatter.png' f.savefig(os.path.join(out_dir, filename)) print('Stored plot in {}') assert os.path.isfile(os.path.join(out_dir, filename)) def test_area_multiindex(): with TemporaryDirectory() as out_dir: lons =
np.linspace(-20, 20, 41)
numpy.linspace
# SPDX-FileCopyrightText: <NAME> Tecnologia # SPDX-License-Identifier: BSD-3-Clause import math import numpy as np from typing import List from dataclasses import dataclass, field from gym_ignition.rbd.idyntree import numpy from adherent.data_processing import utils from gym_ignition.rbd.conversions import Quaternion from gym_ignition.rbd.idyntree import kindyncomputations @dataclass class GlobalFrameFeatures: """Class for the global features associated to each retargeted frame.""" # Features computation ik_solutions: List dt_mean: float kindyn: kindyncomputations.KinDynComputations frontal_base_dir: List frontal_chest_dir: List # Features storage base_positions: List = field(default_factory=list) ground_base_directions: List = field(default_factory=list) ground_chest_directions: List = field(default_factory=list) facing_directions: List = field(default_factory=list) base_velocities: List = field(default_factory=list) base_angular_velocities: List = field(default_factory=list) s: List = field(default_factory=list) s_dot: List = field(default_factory=list) @staticmethod def build(ik_solutions: List, dt_mean: float, kindyn: kindyncomputations.KinDynComputations, frontal_base_dir: List, frontal_chest_dir: List) -> "GlobalFrameFeatures": """Build an empty GlobalFrameFeatures.""" return GlobalFrameFeatures(ik_solutions=ik_solutions, dt_mean=dt_mean, kindyn=kindyn, frontal_base_dir=frontal_base_dir, frontal_chest_dir=frontal_chest_dir) def reset_robot_configuration(self, joint_positions: List, base_position: List, base_quaternion: List) -> None: """Reset the robot configuration.""" world_H_base = numpy.FromNumPy.to_idyntree_transform( position=np.array(base_position), quaternion=np.array(base_quaternion)).asHomogeneousTransform().toNumPy() self.kindyn.set_robot_state(s=joint_positions, ds=np.zeros(len(joint_positions)), world_H_base=world_H_base) def compute_global_frame_features(self) -> None: """Extract global features associated to each retargeted frame""" # Debug print("Computing global frame features") # Subsampling (discard one ik solution over two) for frame_idx in range(0, len(self.ik_solutions), 2): ik_solution = self.ik_solutions[frame_idx] # Retrieve the base pose and the joint positions joint_positions = np.asarray(ik_solution["joint_positions"]) base_position = np.asarray(ik_solution["base_position"]) base_quaternion = np.asarray(ik_solution["base_quaternion"]) # Reset the robot configuration self.reset_robot_configuration(joint_positions=joint_positions, base_position=base_position, base_quaternion=base_quaternion) # Base position self.base_positions.append(base_position) # Ground base direction base_rotation = Quaternion.to_rotation(np.array(base_quaternion)) base_direction = base_rotation.dot(self.frontal_base_dir) # we are interested in the frontal base direction ground_base_direction = [base_direction[0], base_direction[1]] # project on the ground ground_base_direction = ground_base_direction / np.linalg.norm(ground_base_direction) # of unitary norm self.ground_base_directions.append(ground_base_direction) # Ground chest direction world_H_base = self.kindyn.get_world_base_transform() base_H_chest = self.kindyn.get_relative_transform(ref_frame_name="root_link", frame_name="chest") world_H_chest = world_H_base.dot(base_H_chest) chest_rotation = world_H_chest[0:3, 0:3] chest_direction = chest_rotation.dot(self.frontal_chest_dir) # we are interested in the frontal chest direction ground_chest_direction = [chest_direction[0], chest_direction[1]] # project on the ground ground_chest_direction = ground_chest_direction / np.linalg.norm(ground_chest_direction) # of unitary norm self.ground_chest_directions.append(ground_chest_direction) # Facing direction facing_direction = ground_base_direction + ground_chest_direction # mean of ground base and chest directions facing_direction = facing_direction / np.linalg.norm(facing_direction) # of unitary norm self.facing_directions.append(facing_direction) # Joint angles joint_angles = joint_positions self.s.append(joint_angles) # Do not compute velocities by differentiation for the first frame if frame_idx == 0: continue # Joint velocities by differentiation of joint angles joint_angles_prev = self.s[-2] joint_velocities = (joint_angles - joint_angles_prev) / self.dt_mean self.s_dot.append(joint_velocities) # Base velocities by differentiation of base positions base_position_prev = self.base_positions[-2] base_velocity = (base_position - base_position_prev) / self.dt_mean self.base_velocities.append(base_velocity) # Base angular velocities by differentiation of ground base directions ground_base_direction_prev = self.ground_base_directions[-2] cos_theta = np.dot(ground_base_direction_prev, ground_base_direction) # unitary norm vectors sin_theta = np.cross(ground_base_direction_prev, ground_base_direction) # unitary norm vectors theta = math.atan2(sin_theta, cos_theta) base_angular_velocity = theta / self.dt_mean self.base_angular_velocities.append(base_angular_velocity) @dataclass class GlobalWindowFeatures: """Class for the global features associated to a window of retargeted frames.""" # Features computation window_length_frames: int window_step: int window_indexes: List # Features storage desired_velocities: List = field(default_factory=list) base_positions: List = field(default_factory=list) facing_directions: List = field(default_factory=list) base_velocities: List = field(default_factory=list) @staticmethod def build(window_length_frames: int, window_step: int, window_indexes: List) -> "GlobalWindowFeatures": """Build an empty GlobalWindowFeatures.""" return GlobalWindowFeatures(window_length_frames=window_length_frames, window_step=window_step, window_indexes=window_indexes) def compute_global_window_features(self, global_frame_features: GlobalFrameFeatures) -> None: """Extract global features associated to a window of retargeted frames.""" # Debug print("Computing global window features") initial_frame = self.window_length_frames final_frame = len(global_frame_features.base_positions) - self.window_length_frames - self.window_step - 1 # For each window of retargeted frames for i in range(initial_frame, final_frame): # Initialize placeholders for the current window future_traj_length = 0 current_global_base_positions = [] current_global_facing_directions = [] current_global_base_velocities = [] for window_index in self.window_indexes: # Store the base positions, facing directions and base velocities in the current window current_global_base_positions.append(global_frame_features.base_positions[i + window_index]) current_global_facing_directions.append(global_frame_features.facing_directions[i + window_index]) current_global_base_velocities.append(global_frame_features.base_velocities[i + window_index]) # Compute the desired velocity as sum of distances between the base positions in the future trajectory if window_index == self.window_indexes[0]: base_position_prev = global_frame_features.base_positions[i + window_index] else: base_position = global_frame_features.base_positions[i + window_index] base_position_distance = np.linalg.norm(base_position - base_position_prev) future_traj_length += base_position_distance base_position_prev = base_position # Store global features for the current window self.desired_velocities.append(future_traj_length) self.base_positions.append(current_global_base_positions) self.facing_directions.append(current_global_facing_directions) self.base_velocities.append(current_global_base_velocities) @dataclass class LocalFrameFeatures: """Class for the local features associated to each retargeted frame.""" # Features storage base_x_velocities: List = field(default_factory=list) base_z_velocities: List = field(default_factory=list) base_angular_velocities: List = field(default_factory=list) @staticmethod def build() -> "LocalFrameFeatures": """Build an empty LocalFrameFeatures.""" return LocalFrameFeatures() def compute_local_frame_features(self, global_frame_features: GlobalFrameFeatures) -> None: """Extract local features associated to each retargeted frame""" # Debug print("Computing local frame features") # The definition of the base angular velocities is such that they coincide locally and globally self.base_angular_velocities = global_frame_features.base_angular_velocities for i in range(1, len(global_frame_features.base_positions)): # Retrieve the base position and orientation at the previous step i - 1 # along with the base velocity from step i-1 to step i prev_global_base_position = global_frame_features.base_positions[i - 1] prev_global_ground_base_direction = global_frame_features.ground_base_directions[i - 1] current_global_base_velocity = [global_frame_features.base_velocities[i - 1][0], global_frame_features.base_velocities[i - 1][1]] # Define the 2D local reference frame at step i-1 using the base position and orientation reference_base_pos =
np.asarray([prev_global_base_position[0], prev_global_base_position[1]])
numpy.asarray
import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data as data import src.utils as utils from typing import List, Tuple, Optional, Union from pathlib import Path from catalyst.core import Callback, CallbackOrder, State from catalyst.dl import SupervisedRunner from catalyst.utils import get_device from scipy.stats import cauchy from sklearn.metrics import average_precision_score, roc_auc_score from .base import NNModel, Matrix class FocalLoss(nn.Module): def __init__(self, alpha=1, gamma=2, logits=False, reduce=True): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.logits = logits self.reduce = reduce def forward(self, inputs, targets): if self.logits: BCE_loss = F.binary_cross_entropy_with_logits( inputs, targets, reduce=False) else: BCE_loss = F.binary_cross_entropy(inputs, targets, reduce=False) pt = torch.exp(-BCE_loss) F_loss = self.alpha * (1 - pt)**self.gamma * BCE_loss if self.reduce: return torch.mean(F_loss) else: return F_loss def get_criterion(criterion_params: dict): name = criterion_params["name"] params = {} if criterion_params.get( "params") is None else criterion_params["params"] if name == "FocalLoss": return FocalLoss(**params) else: return nn.__getattribute__(name)(**params) def get_optimizer(model, optimizer_params: dict): name = optimizer_params["name"] return optim.__getattribute__(name)(model.parameters(), **optimizer_params["params"]) def get_scheduler(optimizer, scheduler_params: dict): name = scheduler_params["name"] return lr_scheduler.__getattribute__(name)(optimizer, **scheduler_params["params"]) class TabularDataset(data.Dataset): def __init__(self, df: Matrix, target: Optional[Matrix]): self.values = df self.target = target def __len__(self): return len(self.values) def __getitem__(self, idx: int): x = self.values[idx].astype(np.float32) if self.target is not None: return x, self.target[idx] else: return x class FileDataset(data.Dataset): def __init__(self, df: Matrix, target: Optional[Matrix], file_dir: str, scale="normalize"): self.values = df self.target = target self.file_dir = Path(file_dir) self.scale = scale def __len__(self): return len(self.values) def __getitem__(self, idx: int): filename = self.values[idx][0] df = pd.read_csv(self.file_dir / filename, sep="\t", header=None) spectrum = df[1].values if self.scale == "normalize": spectrum = (spectrum - spectrum.mean()) / spectrum.std() else: spectrum = (spectrum - spectrum.min()) / ( spectrum.max() - spectrum.min()) spectrum = spectrum[:511].astype(np.float32) if self.target is not None: return spectrum, self.target[idx] else: return spectrum class RawFittingDataset(data.Dataset): def __init__(self, df: Matrix, target: Optional[Matrix], file_dir: str, fitting_file_dir: str, scale="normalize", crop=False, flip=False, noise=False, peak=False): self.values = df self.target = target self.file_dir = Path(file_dir) self.fitting_file_dir = Path(fitting_file_dir) self.scale = scale self.crop = crop self.flip = flip self.noise = noise self.peak = peak def __len__(self): return len(self.values) def __getitem__(self, idx: int): filename = self.values[idx][0] df = pd.read_csv(self.file_dir / filename, sep="\t", header=None) fitting = pd.read_csv( self.fitting_file_dir / filename, sep="\t", header=None) spectrum = df[1].values spectrum_fitting = fitting[1].values if self.noise: scale = np.random.randint(50, 200) noise = scale * np.random.normal(len(spectrum)) spectrum = spectrum + noise if self.peak: idxmax = fitting[0].values.argmax() sign = 1 if np.random.rand() > 0.5 else -1 peak_pos = fitting[0].values[idxmax] + np.random.randint( 50, 150) * sign scale = np.abs(np.random.normal() * 40) false_peak = cauchy.pdf(df[0].values, peak_pos, scale) ratio = df[1].max() / false_peak.max() false_peak = false_peak * ratio * min(np.random.rand(), 0.8) spectrum = spectrum + false_peak if self.crop: start = np.random.randint(0, 111) spectrum = spectrum[start:start + 400].astype(np.float32) spectrum_fitting = spectrum_fitting[start:start + 400].astype( np.float32) else: spectrum = spectrum[:511].astype(np.float32) spectrum_fitting = spectrum_fitting[:511].astype(np.float32) if self.scale == "normalize": spectrum = (spectrum - spectrum.mean()) / spectrum.std() spectrum_fitting = (spectrum_fitting - spectrum_fitting.mean() ) / spectrum_fitting.std() else: spectrum = (spectrum - spectrum.min()) / ( spectrum.max() - spectrum.min()) spectrum_fitting = ( spectrum_fitting - spectrum_fitting.min() / (spectrum_fitting.max() - spectrum_fitting.min())) if self.flip: if np.random.rand() > 0.5: spectrum = np.flip(spectrum).copy() spectrum_fitting = np.flip(spectrum_fitting).copy() x = np.asarray([spectrum, spectrum_fitting]).astype(np.float32) if self.target is not None: return x, self.target[idx] else: return x class FittingDataset(data.Dataset): def __init__(self, df: Matrix, target: Optional[Matrix], file_dir: str, scale="normalize", crop=False, flip=False, noise=False, peak=False): self.values = df self.target = target self.file_dir = Path(file_dir) self.scale = scale self.crop = crop self.flip = flip self.noise = noise self.peak = peak def __len__(self): return len(self.values) def __getitem__(self, idx: int): filename = self.values[idx][0] params2 = self.values[idx][1] df = pd.read_csv(self.file_dir / filename, sep="\t", header=None) spectrum = df[1].values if self.noise: scale = np.random.randint(50, 200) noise = scale * np.random.normal(len(spectrum)) spectrum = spectrum + noise if self.peak: sign = 1 if np.random.rand() > 0.5 else -1 peak_pos = params2 + np.random.randint(50, 150) * sign scale = np.abs(np.random.normal() * 40) false_peak = cauchy.pdf(df[0].values, peak_pos, scale) ratio = df[1].max() / false_peak.max() false_peak = false_peak * ratio * min(np.random.rand(), 0.8) spectrum = spectrum + false_peak if self.crop: start = np.random.randint(0, 111) spectrum = spectrum[start:start + 400].astype(np.float32) else: spectrum = spectrum[:511].astype(np.float32) if self.scale == "normalize": spectrum = (spectrum - spectrum.mean()) / spectrum.std() else: spectrum = (spectrum - spectrum.min()) / ( spectrum.max() - spectrum.min()) if self.flip: if np.random.rand() > 0.5: spectrum = np.flip(spectrum).copy() if self.target is not None: return spectrum, self.target[idx] else: return spectrum def get_loader(loader_params: dict, df: Matrix, target: Optional[Matrix]): dataset_type = loader_params.get("dataset_type") if dataset_type == "from_file": scale = "normalize" if loader_params.get( "scale") is None else "min_max" dataset = FileDataset(df, target, loader_params["file_dir"], scale) params = loader_params.copy() params.pop("dataset_type") params.pop("file_dir") if scale is not None: params.pop("scale") elif dataset_type == "with_fitting": scale = "normalize" if loader_params.get( "scale") is None else "min_max" crop = loader_params["crop"] flip = loader_params["flip"] noise = loader_params["noise"] peak = loader_params.get("peak") if peak is None: peak = False dataset = FittingDataset( # type: ignore df, target, loader_params["file_dir"], scale, crop=crop, flip=flip, noise=noise, peak=peak) params = loader_params.copy() params.pop("dataset_type") params.pop("file_dir") if scale is not None: params.pop("scale") params.pop("crop") params.pop("flip") params.pop("noise") if params.get("peak") is not None: params.pop("peak") elif dataset_type == "raw_and_fitting": scale = "normalize" if loader_params.get( "scale") is None else "min_max" crop = loader_params["crop"] flip = loader_params["flip"] noise = loader_params["noise"] dataset = RawFittingDataset( # type: ignore df, target, loader_params["file_dir"], loader_params["fitting_file_dir"], scale, crop=crop, flip=flip, noise=noise) params = loader_params.copy() params.pop("dataset_type") params.pop("file_dir") params.pop("fitting_file_dir") if scale is not None: params.pop("scale") params.pop("crop") params.pop("flip") params.pop("noise") else: dataset = TabularDataset(df, target) # type: ignore return data.DataLoader(dataset, **params) class Conv1dBNReLU(nn.Module): def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int): super(Conv1dBNReLU, self).__init__() self.seq = nn.Sequential( nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride), nn.BatchNorm1d(out_channels), nn.ReLU()) def forward(self, x): return self.seq(x) class SpatialAttention1d(nn.Module): def __init__(self, in_channels: int): super(SpatialAttention1d, self).__init__() self.squeeze = nn.Conv1d(in_channels, 1, kernel_size=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): z = self.squeeze(x) z = self.sigmoid(z) return x * z class GAB1d(nn.Module): def __init__(self, in_channels: int, reduction=4): super(GAB1d, self).__init__() self.global_avgpool = nn.AdaptiveMaxPool1d(1) self.conv1 = nn.Conv1d( in_channels, in_channels // reduction, kernel_size=1, stride=1) self.conv2 = nn.Conv1d( in_channels // reduction, in_channels, kernel_size=1, stride=1) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() def forward(self, x): z = self.global_avgpool(x) z = self.relu(self.conv1(z)) z = self.sigmoid(self.conv2(z)) return x * z class SCse1d(nn.Module): def __init__(self, in_channels: int): super(SCse1d, self).__init__() self.satt = SpatialAttention1d(in_channels) self.catt = GAB1d(in_channels) def forward(self, x): return self.satt(x) + self.catt(x) class CNN1D(nn.Module): def __init__(self, model_params: dict): super(CNN1D, self).__init__() modules = [] architecture = model_params['architecture'] for module in architecture: name = module["name"] params = {} if module.get("params") is None else module["params"] if module["type"] == "torch": modules.append(nn.__getattribute__(name)(**params)) else: modules.append(globals().get(name)(**params)) # type: ignore self.seq = nn.Sequential(*modules) def forward(self, x): batch_size = x.size(0) if x.ndim == 2: x = x.view(batch_size, 1, -1) return self.seq(x).view(batch_size) class mAPCallback(Callback): def __init__(self, prefix: str = "mAP"): super().__init__(CallbackOrder.Metric) self.prefix = prefix def on_loader_start(self, state: State): self.prediction: List[np.ndarray] = [] self.target: List[np.ndarray] = [] def on_batch_end(self, state: State): targ = state.input["targets"].detach().cpu().numpy() out = state.output["logits"].detach().cpu().numpy() self.prediction.append(out) self.target.append(targ) score = average_precision_score(targ, out) score = np.nan_to_num(score) state.batch_metrics[self.prefix] = score def on_loader__end(self, state: State): y_pred =
np.concatenate(self.prediction, axis=0)
numpy.concatenate
#!/usr/bin/python ## ## Here we consider the function PL(d) = PL(d0) + 10*n*log(d/d0) -> y = theta0 + theta1*(10*log(d/d0)) ## and we want to estimate the PL(d0) a constant and "n" ## import csv import numpy as np from numpy.linalg import pinv from numpy import dot import math from threading import Lock class RSSIKalmanFilter: def __init__(self, m, var, measurment_var, d0 = 1.0): self.m = np.transpose(m) self.P =
np.array([[var[0], 0],[0, var[1]]])
numpy.array
from torch.nn import Module from torch import nn import torch # import model.transformer_base import math from model import GCN import utils.util as util import numpy as np class MultiHeadAttModel(Module): def __init__(self, in_features=33, kernel_size=10, d_model=512, num_stage=2, dct_n=10, num_heads=1, parts=1): super(MultiHeadAttModel, self).__init__() self.heads = nn.ModuleList([AttHeadModel(in_features, kernel_size, d_model, num_stage, dct_n, parts) for _ in range(num_heads)]) self.linear = nn.Linear(num_heads * 20, 20) def forward(self, src, output_n=25, input_n=50, itera=1, dct_m=[]): return self.linear(torch.cat([h(src, output_n, input_n, itera, dct_m) for h in self.heads], dim=-1)) class AttHeadModel(Module): def __init__(self, in_features=33, kernel_size=10, d_model=512, num_stage=2, dct_n=10, parts=1): super(AttHeadModel, self).__init__() self.in_features = [in_features] if parts == 3: self.in_features = [15, 9, 9] if parts == 33: self.in_features = np.ones(parts) self.kernel_size = kernel_size self.d_model = d_model # self.seq_in = seq_in self.dct_n = dct_n self.parts = parts # ks = int((kernel_size + 1) / 2) assert kernel_size == 10 self.convQ = nn.ModuleList() self.convK = nn.ModuleList() for features in self.in_features: self.convQ.append(nn.Sequential(nn.Conv1d(in_channels=features, out_channels=d_model, kernel_size=6, bias=False), nn.ReLU(), nn.BatchNorm1d(d_model), nn.Conv1d(in_channels=d_model, out_channels=d_model, kernel_size=5, bias=False), nn.ReLU(), nn.BatchNorm1d(d_model))) self.convK.append(nn.Sequential(nn.Conv1d(in_channels=features, out_channels=d_model, kernel_size=6, bias=False), nn.ReLU(), nn.BatchNorm1d(d_model), nn.Conv1d(in_channels=d_model, out_channels=d_model, kernel_size=5, bias=False), nn.ReLU(), nn.BatchNorm1d(d_model))) def forward(self, src, output_n=25, input_n=50, itera=1, dct_m=[]): """ :param src: [batch_size,seq_len,feat_dim] :param output_n: :param input_n: :param frame_n: :param dct_n: :param itera: :return: """ dct_n = self.dct_n if dct_m == []: # Create DCT matrix and its inverse dct_m, idct_m = util.get_dct_matrix(self.kernel_size + output_n) dct_m = torch.from_numpy(dct_m).float() idct_m = torch.from_numpy(idct_m).float() if torch.cuda.is_available(): dct_m = dct_m.cuda() idct_m = idct_m.cuda() # Take only the input seq src = src[:, :input_n] # [bs,in_n,dim] src_tmp = src.clone() bs = src.shape[0] full_body = torch.unsqueeze(src_tmp, 0) if self.parts > 1: if self.parts == 3: right_arm_index = [6, 7, 8, 9, 10, 11, 12, 13, 14] left_arm_index = [15, 16, 17, 18, 19, 20, 21, 22, 23] torso_index = [0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31, 32] right_arm_src_tmp = src[:, :, right_arm_index] left_arm_src_tmp = src[:, :, left_arm_index] torso_src_tmp = src[:, :, torso_index] full_body = [torso_src_tmp, right_arm_src_tmp, left_arm_src_tmp] full_body_dct = torch.Tensor().cuda() for i, part in enumerate(full_body): src_tmp = part # Temporal variables for keys and query src_key_tmp = src_tmp.transpose(1, 2)[:, :, :(input_n - output_n)].clone() # [batch, dims, input_n-output_n] src_query_tmp = src_tmp.transpose(1, 2)[:, :, -self.kernel_size:].clone() # [batch, dims, kernel, bins] # Compute number of subsequences vn = input_n - self.kernel_size - output_n + 1 # Compute number of frames per subsequence vl = self.kernel_size + output_n idx = np.expand_dims(np.arange(vl), axis=0) + \ np.expand_dims(
np.arange(vn)
numpy.arange
import numpy as np from numpy.fft import fft, ifft norm = None # or "orhto" x_even = np.array([8, 9, 1, 3]) print("fft(x_even): ",
fft(x_even, norm=norm)
numpy.fft.fft
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2018-11-05 16:04:00 # @Last Modified by: <NAME> # @Last Modified time: 2018-11-08 16:38:20 import sys import cv2 # imread import torch import torch.nn as nn import numpy as np import scipy.io as scio import os import time from os.path import realpath, dirname, join from net import SiamRPNBIG from run_SiamRPN import SiamRPN_init, SiamRPN_track from utils import get_axis_aligned_bbox, cxy_wh_2_rect # load net net_file = join(realpath(dirname(__file__)), 'SiamRPNBIG.model') net = SiamRPNBIG() net.load_state_dict(torch.load(net_file)) net.eval().cuda() OTB100_path = '/home/song/srpn/dataset/otb100' result_path = '/home/song/srpn/result/' # warm up for i in range(10): net.temple(torch.autograd.Variable(torch.FloatTensor(1, 3, 127, 127)).cuda()) net(torch.autograd.Variable(torch.FloatTensor(1, 3, 255, 255)).cuda()) idx=0 names = [name for name in os.listdir('/home/song/srpn/dataset/otb100')] # human4 # skating2 """ for i, name in enumerate(names): print('idx == {:03d} name == {:10}'.format(i, name)) """ for ids, x in enumerate(os.walk(OTB100_path)): it1, it2, it3 = x #it1 **/img it2 [] it3 [img1, img2, ...] if it1.rfind('img')!=-1 and len(it3) > 50:#Python rfind() 返回字符串最后一次出现的位置(从右向左查询),如果没有匹配项则返回-1。 name = it1.split('/')[-2] imgpath=[] it3 = sorted(it3) for inames in it3: imgpath.append(os.path.join(it1, inames)) gtpath=os.path.join(OTB100_path, name, 'groundtruth_rect.txt') gt=(open(gtpath, 'r')).readline() if gt.find(',')!=-1: toks=map(float, gt.split(',')) else: toks=map(float, gt.split(' ')) # ground truth是左上角点和w,h # target_pos 目标中心点 # target_sz w,h cx=toks[0]+toks[2]*0.5 cy=toks[1]+toks[3]*0.5 w=toks[2] h=toks[3] target_pos, target_sz = np.array([cx, cy]),
np.array([w, h])
numpy.array
import numpy as np from scipy.stats import rankdata import itertools from PyEMD import EMD import nolds """Complete package for calculating any kind of multiscale entropy features """ """Coarse graining methods - Normal - Moving average (X) - Volatility series (X) - Moving average volatility series (X) - EMD- Coarse to fine series (X) --> undetermind scale --> put limitation on it - EMD - Fine to coarse series (X) --> undetermind scale --> put limitation on it - Composite coarse graining (X) Entropy measurement methods THe permutation methods mentioned are returned in the same way as mentioned above - Permutation entropy (X) - Modified permutation entropy (X) - Weighted permutation entropy (X) - Weighted modified PE (X) - Sample entropy (X) - Composite variation for above (X)""" def add_perm(perm): """Add extra permutations for modified PE case """ perm.append((1,1,0)) perm.append((0,1,1)) perm.append((1,0,1)) perm.append((0,1,0)) perm.append((0,0,0)) perm.append((0,0,1)) perm.append((1,0,0)) return perm def get_perms(m,mod_flag=0): """get all the permutation for entropy calculation """ perm = (list(itertools.permutations(range(m)))) #adding similar instances if mod_flag==1: perm=add_perm(perm) perm=np.array(perm) return np.array(perm) def get_1s_pe(x,m=3,lag=1,mod_flag=0,typ=''): """All the combinations of permutation entropy for a single scale """ mot_x, wt_x=make_mot_series(x,m,lag,mod_flag=0) n_p=len(get_perms(m,mod_flag)) dist=get_mot_dist(mot_x,n_p,wt_x,typ=typ) pe=perm_ent(dist) return np.array(pe) def make_mot_series(time_series,m=3,lag=1,mod_flag=0): """Creates a motif series and returns their with the motif distribution Input: - time_series - m: permutaiton degree, lag: permutation lag - mod_flag: flag to use modfied PE Output: - motif time series, - corrsponding weights """ time_series=np.array(time_series).squeeze() n=len(time_series) mot_x, wt_x, mod_mot_x=[], [], [] perms=get_perms(m,0) perms_mod=get_perms(m,1) for i in range(n - lag * (m - 1)): smp=time_series[i:i + lag * m:lag] wt=np.var(smp) #orginal dense ranking of data mot_array1 = np.array(rankdata(smp, method='dense')-1) val=np.where(np.all(perms==mot_array1,axis=1))[0] val_mod=val if val.shape[0]==0: mot_array = np.array(rankdata(smp, method='ordinal')-1) val=np.where(np.all(perms==mot_array,axis=1))[0] val_mod=np.where(np.all(perms_mod==mot_array1,axis=1))[0] mot_x.append(val[0]) mod_mot_x.append(val_mod[0]) wt_x.append(wt) if mod_flag==1: return np.array(mod_mot_x), np.array(wt_x) elif mod_flag==0: return np.array(mot_x), np.array(wt_x) def get_mot_dist(mot_x,n_p,wt_x,typ=''): """Create the distribution of motifs Input: - mot_x: Motif time series, - n_p: number of permutations, - wt_x: weight time series - typ: type of entropy, normal: '', or weighted: 'wt' Output: - motif distribution """ mot_dist = [0] * n_p for j in range(n_p): if typ=='wt': wts=wt_x[np.where(abs(mot_x-j)==0)] num_mots=np.ones(len(np.where(abs(mot_x-j)==0)[0])) mot_dist[j]=sum(np.multiply(num_mots,wts)) else: mot_dist[j] = len(np.where(abs(mot_x-j)==0)[0]) #removing non occring patterns as it breaks entropy if len(mot_x)==0: mot_dist=np.zeros(n_p)*np.nan return mot_dist def perm_ent(mot_dist,m=3): """Returns permutation entropy for the motif distribution given --> basic function for permutation entropy """ c=mot_dist c = [element for element in c if element != 0] p = np.divide(np.array(c), float(sum(c))) pe = -sum(p * np.log(p)) return pe#/np.log(factorial(m)) def get_mot_ent_dist(RRs,m,lag,typ='',mod_flag=0): """ #RR series for all the scales (list of lists) Returns four kind of motif distributions --> normal motif distribution ('' + 0) --> modified motif distribution ('' + 1) --> weighted motif distribution ('wt' + 0) --> weighted modified motif distribution ('wt' + 1) """ dist=[] for rr in RRs: mot_x , wt_x=make_mot_series(rr,m,lag,mod_flag = mod_flag) n_p=len(get_perms(m,mod_flag)) mot_dist=get_mot_dist(mot_x,n_p,wt_x,typ='') dist.append(mot_dist) #Contains motif distribution for all the different scales d_all=[dist] return d_all def ord_dist(mot_dist_x,mot_dist_y): """Returns ordinal distance between two motif distributions Not used anywhere in the code """ c_x=mot_dist_x c_y=mot_dist_y m=len(c_x) p_x=np.divide(np.array(c_x), float(sum(c_x))) p_y=np.divide(np.array(c_y), float(sum(c_y))) sq_diff=0 for j in range(m): sq_diff=sq_diff+(p_x[j] -p_y[j])**2 dm=np.sqrt(m/(m-1))*np.sqrt(sq_diff) return dm def get_com_mspe(distS,scale,mspe): """Calculate center of mass entropy using ordinal distances as weights NOT USED ANYWHERE IN THE CODE """ distS=np.array(distS) dm_mat=np.zeros((scale,scale)) for i in range(0,scale-1): for j in range(i,scale): dm=ord_dist(distS[i],distS[j]) dm_mat[i,j]=dm dm_mat[j,i]=dm com_wts=np.zeros(scale) for i in range(0,scale): com_wts[i]=np.sum(dm_mat[i,:])/(scale-1) com_mspe=np.sum(np.multiply(com_wts,mspe))/np.sum(com_wts) return com_mspe def calc_mspe(distS): """Calculates the scaled permutation entropy and thier oridnal avg and normal average""" """Takes an input which is a list of lists where distS[i] is motif dist with scale i """ mspe=[] scale=len(distS) for s in range(0,scale): distm=distS[s] pe=perm_ent(distm) mspe.append(pe) mspe=np.array(mspe) #com_mspe=get_com_mspe(distS,scale,mspe) mspe_fin=np.hstack((mspe)) return mspe_fin def scale_series(x,scale,cg_typ): """Get the different scales of the series based on specific scaling type Except: composite and emd scaling types Input: Time series (x), number of scales (scale), scale type (cg_type) """ x_scale=[] if cg_typ=='base': for i in range(0,len(x),scale): #not divided by scale if i+scale<=len(x): val=np.sum(x[i:i+scale])/len(x[i:i+scale]) x_scale.append(val) elif cg_typ=='mov_avg': wts = np.ones(scale) / scale val=np.convolve(x, wts, mode='valid') x_scale.append(val) elif cg_typ=='mom': for i in range(0,len(x),scale): #not divided by scale if i+scale<=len(x): val=np.std(x[i:i+scale]) x_scale.append(val) elif cg_typ=='mavg_mom': for i in range(0,len(x)): #not divided by scale if i+scale<=len(x): val=
np.std(x[i:i+scale])
numpy.std
import math import numpy as np import pytest from astropy.nddata import NDData, VarianceUncertainty # from astropy.stats import sigma_clip as sigma_clip_ast # from numpy.testing import assert_array_equal from ndcombine import combine_arrays # , sigma_clip # Test values: # - without outlier: mean=2.2, median=2.0, std=0.87, sum=22.0, len=10 # - with outlier: mean=11.09, median=2.0, std=28.13, sum=122.0, len=11 TEST_VALUES = [1, 2, 3, 2, 3, 2, 1, 4, 2, 2, 100] # def test_sigclip(): # """Compare sigma_clip with Astropy.""" # data = np.array(TEST_VALUES, dtype=np.float32) # mask1 = sigma_clip_ast(data).mask.astype(int) # mask2 = sigma_clip(data, lsigma=3, hsigma=3, max_iters=10) # assert_array_equal(mask1, mask2) # mask2 = sigma_clip(data, lsigma=3, hsigma=3, max_iters=0) # assert_array_equal(mask2, 0) # def test_sigclip_with_mask(): # data = np.array(TEST_VALUES, dtype=np.float32) # mask = np.zeros_like(data, dtype=np.uint16) # mask[7] = 1 # mask1 = sigma_clip_ast(np.ma.array(data, mask=mask)).mask.astype(int) # mask2 = sigma_clip(data, mask=mask, lsigma=3, hsigma=3, max_iters=10) # assert_array_equal(mask1, mask2) # def test_sigclip_with_var(): # data = np.array(TEST_VALUES, dtype=np.float32) # var = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1000], dtype=np.float32) # mask = sigma_clip(data, # variance=var, # lsigma=3, # hsigma=3, # max_iters=10, # use_variance=True) # assert_array_equal(mask, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) # var = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100_000], dtype=np.float32) # mask = sigma_clip(data, # variance=var, # lsigma=3, # hsigma=3, # max_iters=10, # use_variance=True) # assert_array_equal(mask, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # var = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100_000], dtype=np.float32) # mask = sigma_clip(data, # variance=var, # lsigma=3, # hsigma=3, # max_iters=10, # use_variance=False) # assert_array_equal(mask, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_array(dtype): data = np.array([TEST_VALUES], dtype=dtype).T out = combine_arrays(data, method='mean', clipping_method='sigclip') assert out.data.dtype == np.float64 assert out.mask is None assert out.uncertainty is None assert np.isclose(out.data[0], 2.2) assert out.meta['REJMAP'][0] == 1 out = combine_arrays(data, method='mean', clipping_method='sigclip', clipping_limits=(2, 2)) assert np.isclose(out.data[0], 2) assert out.meta['REJMAP'][0] == 2 out = combine_arrays(data, method='mean', clipping_method='sigclip', clipping_limits=(5, 5)) assert np.isclose(out.data[0], 11.09, atol=1e-2) assert out.meta['REJMAP'][0] == 0 out = combine_arrays(data, method='mean', clipping_method='sigclip', max_iters=0) assert np.isclose(out.data[0], 11.09, atol=1e-2) assert out.meta['REJMAP'][0] == 0 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_nddata(dtype): data = [NDData(data=np.array([val], dtype=dtype)) for val in TEST_VALUES] out = combine_arrays(data, method='mean', clipping_method='sigclip') assert out.data.dtype == np.float64 assert out.mask is None assert out.uncertainty is None assert np.isclose(out.data[0], 2.2) assert out.meta['REJMAP'][0] == 1 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_median(dtype): data = np.array([TEST_VALUES], dtype=dtype).T var = np.ones_like(data) out = combine_arrays(data, variance=var, method='median', clipping_method='sigclip') assert out.data.dtype == np.float64 assert out.mask is None assert np.isclose(out.data[0], 2.) assert np.isclose(out.uncertainty.array[0], 1 / 10 * math.pi / 2) # 10 valid values assert out.meta['REJMAP'][0] == 1 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_sum(dtype): data = np.array([TEST_VALUES], dtype=dtype).T var = np.ones_like(data) out = combine_arrays(data, variance=var, method='sum', clipping_method='sigclip') assert out.data.dtype == np.float64 assert out.mask is None assert np.isclose(out.data[0], 22) assert np.isclose(out.uncertainty.array[0], 10) # 10 valid values assert out.meta['REJMAP'][0] == 1 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_no_clipping(dtype): data = np.array([TEST_VALUES], dtype=dtype).T out = combine_arrays(data, method='mean', clipping_method='none') assert np.isclose(out.data[0], 11.09, atol=1e-2) assert out.meta['REJMAP'][0] == 0 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_array_with_mask(dtype): data = np.array([TEST_VALUES], dtype=dtype).T mask = np.array([[0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0]], dtype=bool).T out = combine_arrays(data, mask=mask, method='mean', clipping_method='sigclip') assert np.isclose(out.data[0], 2.) assert out.meta['REJMAP'][0] == 4 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_nddata_with_mask(dtype): mask_values = [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0] data = [ NDData(data=np.array([val], dtype=dtype), mask=np.array([mask], dtype=bool)) for val, mask in zip(TEST_VALUES, mask_values) ] out = combine_arrays(data, method='mean', clipping_method='sigclip') assert np.isclose(out.data[0], 2.) assert out.meta['REJMAP'][0] == 4 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_array_with_variance(dtype): data = np.array([TEST_VALUES], dtype=dtype).T var = np.ones_like(data) out = combine_arrays(data, variance=var, method='mean', clipping_method='sigclip') assert isinstance(out.uncertainty, VarianceUncertainty) assert np.isclose(out.data[0], 2.2) assert np.isclose(out.uncertainty.array[0], 1 / 10) # 10 valid values assert out.meta['REJMAP'][0] == 1 var = np.random.normal(size=data.shape) out = combine_arrays(data, variance=var, method='mean', clipping_method='sigclip') assert np.isclose(out.data[0], 2.2) assert np.isclose(out.uncertainty.array[0], np.mean(var[:10]) / 10) @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_nddata_with_variance(dtype): data = [ NDData(data=np.array([val], dtype=dtype), uncertainty=VarianceUncertainty(np.array([1], dtype=dtype))) for val in TEST_VALUES ] out = combine_arrays(data, method='mean', clipping_method='sigclip') assert isinstance(out.uncertainty, VarianceUncertainty) assert np.isclose(out.data[0], 2.2) assert np.isclose(out.uncertainty.array[0], 1 / 10) # 10 valid values assert out.meta['REJMAP'][0] == 1 @pytest.mark.parametrize('dtype', (np.float32, np.float64)) def test_combine_varclip(dtype): data = np.array([TEST_VALUES], dtype=dtype).T var = np.ones_like(data) var[-1] = 100 out = combine_arrays(data, variance=var, method='mean', clipping_method='varclip') assert isinstance(out.uncertainty, VarianceUncertainty) assert np.isclose(out.data[0], 2.2) assert np.isclose(out.uncertainty.array[0], 1 / 10) # 10 valid values assert out.meta['REJMAP'][0] == 1 var[-1] = 100_000 out = combine_arrays(data, variance=var, method='mean', clipping_method='varclip') assert isinstance(out.uncertainty, VarianceUncertainty) assert np.isclose(out.data[0], 11.09, atol=1e-2) assert np.isclose(out.uncertainty.array[0], (100000+10) / 11**2) assert out.meta['REJMAP'][0] == 0 def test_unknow_rejector(): data =
np.array([TEST_VALUES])
numpy.array
import dgl from mxnet import nd import numpy as np def bbox_improve(bbox): '''bbox encoding''' area = (bbox[:,2] - bbox[:,0]) * (bbox[:,3] - bbox[:,1]) return nd.concat(bbox, area.expand_dims(1)) def extract_edge_bbox(g): '''bbox encoding''' src, dst = g.edges(order='eid') n = g.number_of_edges() src_bbox = g.ndata['pred_bbox'][src.asnumpy()] dst_bbox = g.ndata['pred_bbox'][dst.asnumpy()] edge_bbox = nd.zeros((n, 4), ctx=g.ndata['pred_bbox'].context) edge_bbox[:,0] = nd.stack(src_bbox[:,0], dst_bbox[:,0]).min(axis=0) edge_bbox[:,1] = nd.stack(src_bbox[:,1], dst_bbox[:,1]).min(axis=0) edge_bbox[:,2] = nd.stack(src_bbox[:,2], dst_bbox[:,2]).max(axis=0) edge_bbox[:,3] = nd.stack(src_bbox[:,3], dst_bbox[:,3]).max(axis=0) return edge_bbox def build_graph_train(g_slice, gt_bbox, img, ids, scores, bbox, feat_ind, spatial_feat, iou_thresh=0.5, bbox_improvement=True, scores_top_k=50, overlap=False): '''given ground truth and predicted bboxes, assign the label to the predicted w.r.t iou_thresh''' # match and re-factor the graph img_size = img.shape[2:4] gt_bbox[:, :, 0] /= img_size[1] gt_bbox[:, :, 1] /= img_size[0] gt_bbox[:, :, 2] /= img_size[1] gt_bbox[:, :, 3] /= img_size[0] bbox[:, :, 0] /= img_size[1] bbox[:, :, 1] /= img_size[0] bbox[:, :, 2] /= img_size[1] bbox[:, :, 3] /= img_size[0] n_graph = len(g_slice) g_pred_batch = [] for gi in range(n_graph): g = g_slice[gi] ctx = g.ndata['bbox'].context inds = np.where(scores[gi, :, 0].asnumpy() > 0)[0].tolist() if len(inds) == 0: return None if len(inds) > scores_top_k: top_score_inds = scores[gi, inds, 0].asnumpy().argsort()[::-1][0:scores_top_k] inds =
np.array(inds)
numpy.array
import matplotlib.pyplot as pl; pl.ioff() import matplotlib.cm as cm from matplotlib.ticker import MaxNLocator import scipy.ndimage import numpy as np import re import copy __all__ = ['TrianglePlot_MCMC','marginalize_2d','marginalize_1d'] def TrianglePlot_MCMC(mcmcresult,plotmag=True,plotnuisance=False): """ Script to plot the usual triangle degeneracies. Inputs: mcmcresult: The result of running the LensModelMCMC routine. We can figure out everything we need from there. plotmag: Whether to show the dependence of magnification on the other parameters (it's derived, not a fit param). plotnuisance: Whether to additionally plot various nuisance parameters, like the absolute location of the lens or dataset amp scalings or phase shifts. Returns: f,axarr: A matplotlib.pyplot Figure object and array of Axes objects, which can then be manipulated elsewhere. The goal is to send something that looks pretty good, but this is useful for fine-tuning. """ # List of params we'll call "nuisance" nuisance = ['xL','yL','ampscale_dset','astromshift_x_dset','astromshift_y_dset'] allcols = list(mcmcresult['chains'].dtype.names) # Gets rid of mag for unlensed sources, which is always 1. allcols = [col for col in allcols if not ('mu' in col and np.allclose(mcmcresult['chains'][col],1.))] if not plotmag: allcols = [x for x in allcols if not 'mu' in x] if not plotnuisance: allcols = [x for x in allcols if not any([l in x for l in nuisance])] labelmap = {'xL':'$x_{L}$, arcsec','yL':'$y_{L}$, arcsec','ML':'$M_{L}$, $10^{11} M_\odot$',\ 'eL':'$e_{L}$','PAL':'$\\theta_{L}$, deg CCW from E','xoffS':'$\Delta x_{S}$, arcsec','yoffS':'$\Delta y_{S}$, arcsec',\ 'fluxS':'$F_{S}$, mJy','widthS':'$\sigma_{S}$, arcsec','majaxS':'$a_{S}$, arcsec',\ 'indexS':'$n_{S}$','axisratioS':'$b_{S}/a_{S}$','PAS':'$\phi_{S}$, deg CCW from E',\ 'shear':'$\gamma$','shearangle':'$\\theta_\gamma$', 'mu':'$\mu_{}$','ampscale_dset':'$A_{}$', 'astromshift_x_dset':'$\delta x_{}$, arcsec','astromshift_y_dset':'$\delta y_{}$, arcsec'} f,axarr = pl.subplots(len(allcols),len(allcols),figsize=(len(allcols)*3,len(allcols)*3)) axarr[0,-1].text(-0.8,0.9,'Chain parameters:',fontsize='xx-large',transform=axarr[0,-1].transAxes) it = 0. for row,yax in enumerate(allcols): for col,xax in enumerate(allcols): x,y = copy.deepcopy(mcmcresult['chains'][xax]), copy.deepcopy(mcmcresult['chains'][yax]) if 'ML' in xax: x /= 1e11 # to 1e11Msun from Msun if 'ML' in yax: y /= 1e11 if 'fluxS' in xax: x *= 1e3 # to mJy from Jy if 'fluxS' in yax: y *= 1e3 # Figure out the axis labels... if xax[-1].isdigit(): digit = re.search(r'\d+$',xax).group() xlab = (digit+'}$').join(labelmap[xax[:-len(digit)]].split('}$')) else: xlab = labelmap[xax] if yax[-1].isdigit(): digit = re.search(r'\d+$',yax).group() ylab = (digit+'}$').join(labelmap[yax[:-len(digit)]].split('}$')) else: ylab = labelmap[yax] # To counter outlying walkers stuck in regions of low likelihood, we use percentiles # instead of std(). xstd = np.ediff1d(np.percentile(x,[15.87,84.13]))[0]/2. ystd = np.ediff1d(np.percentile(y,[15.87,84.13]))[0]/2. xmin,xmax = np.median(x)-8*xstd, np.median(x)+8*xstd ymin,ymax = np.median(y)-8*ystd,
np.median(y)
numpy.median
import collections import itertools import logging import math import os import os.path as osp import gym import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.animation as manimation from matplotlib.colors import ListedColormap import pandas as pd import numpy as np import scipy.stats import seaborn as sns from pirl.envs import jungle_topology logger = logging.getLogger('analysis.common') THIS_DIR = osp.join(os.path.dirname(os.path.realpath(__file__))) def style(name): return osp.join(THIS_DIR, '{}.mplstyle'.format(name)) def nested_dicts_to_df(ds, idxs, transform): if len(idxs) == 2: ds = transform(ds) df = pd.DataFrame(ds) df.columns.name = idxs[0] df.index.name = idxs[1] else: ds = {k: nested_dicts_to_df(v, idxs[1:], transform) for k, v in ds.items()} ds = {k: v.stack() for k, v in ds.items()} df = pd.DataFrame(ds) df.columns.name = idxs[0] return df def extract_value(data): def unpack_mean_sd_tuple(d): res = {} for k, v in d.items(): if v is None: res[k] = {'mean': None, 'se': None} else: res[k] = {'mean': v[0], 'se': v[1]} return res idx = ['seed', 'eval', 'env', 'type'] ground_truth = nested_dicts_to_df(data['ground_truth'], idx, unpack_mean_sd_tuple) ground_truth = ground_truth.stack().unstack('eval') ground_truth = ground_truth.reorder_levels(['env', 'seed', 'type']) ground_truth.columns.name = None idxs = ['seed', 'eval', 'irl', 'env', 'n', 'm', 'type'] values = nested_dicts_to_df(data['values'], idxs, unpack_mean_sd_tuple) values = values.stack().unstack('irl') values.columns.name = 'irl' sorted_idx = ['env', 'n', 'm', 'eval', 'seed', 'type'] if not values.empty: values = values.reorder_levels(sorted_idx) idx = values.index else: idx = [(env, 0, 0, 'gt', seed, kind) for env, seed, kind in tuple(ground_truth.index)] idx = pd.MultiIndex.from_tuples(idx, names=sorted_idx) def get_gt(k): env, _, _, _, seed, kind = k return ground_truth.loc[(env, seed, kind), :] values_gt = pd.DataFrame(list(map(get_gt, idx)), index=idx) values = pd.concat([values, values_gt], axis=1) return values def load_value(experiment_dir, algo_pattern='(.*)', env_pattern='(.*)', algos=['.*'], dps=2): fname = osp.join(experiment_dir, 'results.pkl') data = pd.read_pickle(fname) value = extract_value(data) value.columns = value.columns.str.extract(algo_pattern, expand=False) envs = value.index.levels[0].str.extract(env_pattern, expand=False) value.index = value.index.set_levels(envs, level=0) matches = [] mask = pd.Series(False, index=value.columns) for p in algos: m = value.columns.str.match(p) matches += list(value.columns[m & (~mask)]) mask |= m value = value.loc[:, matches] value.columns = value.columns.str.split('_').str.join(' ') # so lines wrap value = value.round(dps) return value def _extract_means_ses(values, with_seed=True): nil_slices = (slice(None),) * (len(values.index.levels) - 1) means = values.loc[nil_slices + ('mean',), :].copy() means.index = means.index.droplevel('type') ses = values.loc[nil_slices + ('se',), :].copy() ses.index = ses.index.droplevel('type') return means, ses def _combine_means_ses(means, ses): means['type'] = 'mean' means = means.set_index('type', append=True) ses['type'] = 'se' ses = ses.set_index('type', append=True) return pd.concat([means, ses]) def aggregate_value(values, n=100): '''Aggregate mean and standard error across seeds. We assume the same number of samples n are used to calculate the mean and s.e. of each seed.''' means, ses = _extract_means_ses(values) # The mean is just the mean across seeds mean = means.stack().unstack('seed').mean(axis=1).unstack(-1) # Reconstruct mean-of-squares squares = (ses * ses * n) + (means * means) mean_square = squares.stack().unstack('seed').mean(axis=1).unstack(-1) # Back out standard error var = mean_square - (mean * mean) se = np.sqrt(var) / np.sqrt(n) return _combine_means_ses(mean, se) def plot_ci(values, dp=3): mean, se = _extract_means_ses(values) fstr = '{:.' + str(dp) + 'f}' return mean.applymap(lambda x: (fstr + ' +/- ').format(x)) + se.applymap(lambda x: fstr.format(1.96 * x)) def _gridworld_heatmap(reward, shape, walls=None, **kwargs): reward = reward.reshape(shape) kwargs.setdefault('fmt', '.0f') kwargs.setdefault('annot', True) kwargs.setdefault('annot_kws', {'fontsize': 'smaller'}) kwargs.setdefault('cmap', 'YlGnBu') sns.heatmap(reward, mask=walls, **kwargs) def _gridworld_heatmaps(reward, shape, env_name, get_axis, prefix=None, share_scale=True, **kwargs): env = gym.make(env_name) try: walls = env.unwrapped.walls except AttributeError: walls = None gt = env.unwrapped.reward ax = get_axis('gt') _gridworld_heatmap(gt, shape, walls, ax=ax, **kwargs) ax.set_title('Ground Truth') yield ax vmin = None vmax = None if share_scale: vmin = min([v.min() for v in reward.values()]) vmax = min([v.min() for v in reward.values()]) i = 0 for n, reward_by_m in reward.items(): for m, r in reward_by_m.items(): r = r[env_name] r = r - np.mean(r) + np.mean(gt) ax = get_axis(i) _gridworld_heatmap(r, shape, vmin=vmin, vmax=vmax, ax=ax) title = '{}/{}'.format(m, n) if prefix is not None: title = '{} ({})'.format(prefix, title) ax.set_title(title) yield ax i += 1 def gridworld_heatmap(reward, shape, num_cols=3, figsize=(11.6, 8.6), prefix=None, share_scale=False): envs = list(list(reward.values())[0].values())[0].keys() num_plots = sum([len(d) for d in reward.values()]) + 1 num_rows = math.ceil(num_plots / num_cols) for env_name in envs: fig, axs = plt.subplots(num_rows, num_cols, squeeze=False, figsize=figsize, sharex=True, sharey=True) axs = list(itertools.chain(*axs)) # flatten def get_ax(n): if n == 'gt': return axs[0] else: return axs[n + 1] fig.suptitle(env_name) it = _gridworld_heatmaps(reward, shape, env_name, get_ax, prefix=prefix, share_scale=share_scale) list(it) yield env_name, fig plt.close() def gridworld_heatmap_movie(out_dir, reward, shape, prefix=None, share_scale=False, fps=1, dpi=300): envs = list(list(reward.values())[0].values())[0].keys() get_ax = lambda n: fig.gca() os.makedirs(out_dir, exist_ok=True) for env_name in envs: logger.debug('Generating movie for %s', env_name) FFMpegWriter = manimation.writers['ffmpeg'] metadata = dict(title='Reward Heatmap', artist='matplotlib') writer = FFMpegWriter(fps=fps, metadata=metadata) fig = plt.figure() fname = osp.join(out_dir, env_name.replace('/', '_') + '.mp4') with writer.saving(fig, fname, dpi): it = _gridworld_heatmaps(reward, shape, env_name, get_ax, prefix=prefix, share_scale=share_scale) for i, _v in enumerate(it): writer.grab_frame() fig.clf() logger.debug('%s: written frame %d', fname, i) plt.close(fig) def gridworld_ground_truth(envs, shape): data = {} rmin = 1e10 rmax = -1e10 for nickname, env_name in envs.items(): env = gym.make(env_name) reward = env.unwrapped.reward walls = env.unwrapped.walls env.close() data[nickname] = (reward, walls) rmin = min(rmin,
np.min(reward)
numpy.min
#! /usr/bin/env python # -*- encoding: utf-8 -*- import numpy as np import matplotlib import matplotlib.pyplot as plt # import matplotlib.mlab as mlab 已弃用 import scipy.stats import random np.random.seed(0) # 6.2 深入理解伯努利分布 def pro_test1(): # 二项分布实现例程 # 同时抛掷5枚硬币,出现正面朝上的次数——试验10次 print(np.random.binomial(5, 0.5, 10)) # [3 3 3 3 2 3 2 4 4 2] # 同时抛掷5枚硬币,则5次同时为正面发生的概率——采样size=100000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 5) / 100000.) # 0.03123 # 同时抛掷5枚硬币,则4次同时为反面发生的概率——采样size=5000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 4) / 100000.) # 同时抛掷5枚硬币,则3次同时为反面发生的概率——采样size=5000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 3) / 100000.) # 同时抛掷5枚硬币,则2次同时为反面发生的概率——采样size=5000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 2) / 100000.) # 同时抛掷5枚硬币,则1次同时为反面发生的概率——采样size=5000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 1) / 100000.) # 同时抛掷5枚硬币,则0次同时为反面发生的概率——采样size=5000次
 print(sum(np.random.binomial(5, 0.5, size=100000) == 0) / 100000.) # 6.3 深入理解正态分布 def pro_test2(): # 单独绘制正态分布 直方图例程 import matplotlib.pyplot as plt plt.hist(np.random.normal(loc=-20, scale=10, size=10000), bins=50, density=True, color='g') print(np.random.normal(loc=-20, scale=10, size=10)) plt.hist(np.random.normal(loc=10, scale=10, size=10000), bins=50, density=True, color='b') plt.hist(np.random.normal(loc=0, scale=15, size=10000), bins=50, density=True, color='r') plt.show() def pro_test3(): # 标准正态分布转换实现 import matplotlib.pyplot as plt plt.hist(np.random.normal(loc=0, scale=1, size=10000) * 0.5 - 2, bins=50, density=True, color='g') plt.hist(np.random.normal(loc=0, scale=1, size=10000), bins=50, density=True, color='b') plt.hist(
np.random.normal(loc=0, scale=1, size=10000)
numpy.random.normal
# -*- coding: utf-8 -*- """ """ from typing import Union, Type, Tuple import ctypes import sys import numpy as np from cslug import CSlug, ptr, anchor, Header from rockhopper import RequestMeError NUMPY_REPR = False BIG_ENDIAN = sys.byteorder == "big" endians_header = Header(*anchor("src/endians.h", "src/endians.c"), includes=["<stdbool.h>", '"_endian_typedefs.h"']) slug = CSlug(anchor( "_slugs/ragged_array", "src/ragged_array.c", "src/ragged_array.h", "src/endians.c", ), headers=endians_header) # yapf: disable dtype_like = Union[np.dtype, Type[np.generic]] def prod(iterable): """Equivalent to :func:`math.prod` introduced in Python 3.8. """ out = 1 for i in iterable: out = out * i return out class RaggedArray(object): """A 2D array with rows of mixed lengths. A ragged array consists of three 1D arrays. * :attr:`flat` contains the flattened contents. i.e. each row joined end end without any delimiters or information describing the shape. * :attr:`starts` and :attr:`ends` determine the shape. Each integer value in these arrays is the start and stop of a :class:`slice` of :attr:`flat`. Each slice is a :class:`RaggedArray` row. A :class:`RaggedArray` is considered *packed* if the end of each row is the same as the start of the next row. """ flat: np.ndarray starts: np.ndarray ends: np.ndarray def __init__(self, flat, starts, ends=None, dtype=None, check=True): """The default way to construct a :class:`RaggedArray` is explicitly from a :attr:`flat` contents array and either row :attr:`starts` and :attr:`ends` arrays or, more commonly, a *bounds* array. Args: flat: The contents of the array with no structure. starts: The index of **flat** where each row starts. Or if **ends** is unspecified, the start of each row and the end of the previous row. ends: The index of **flat** where each row ends. dtype: The :class:`numpy.dtype` of the array. Usually this can be inferred from **flat** and is therefore not required to be set explicitly. To indicate that multiple scalars should be considered as one item, use a :class:`tuple` dtype. check: If true (default), verify that **starts** and **ends** are valid (via :meth:`check`). Please only disable this if you need to a construct a ragged array by first creating an uninitialised array to then populating it. Invalid arrays can lead to seg-faults. .. seealso:: Explicit construction is rarely the most convenient way to build a :class:`RaggedArray`. See :meth:`from_nested` to construct from lists of lists. Or :meth:`from_lengths` to construct from flat data and row lengths. Or :meth:`group_by` to specify the row number explicitly for each item. Examples: Assuming the setup code:: import numpy as np from rockhopper import RaggedArray flat = np.arange(10) :: >>> bounds = [0, 4, 7, 10] >>> RaggedArray(flat, bounds) RaggedArray.from_nested([ [0, 1, 2, 3], [4, 5, 6], [7, 8, 9], ]) The **bounds** need not start at the beginning and end and the end. Note however that the leading and trailing items in **flat** are not represented in the repr. :: >>> bounds = [2, 4, 4, 5, 9] >>> RaggedArray(flat, bounds) RaggedArray.from_nested([ [2, 3], [], [4], [5, 6, 7, 8], ]) To be able to have gaps between rows or overlapping rows set both **starts** and **ends**. :: >>> starts = [0, 3, 1] >>> ends = [6, 6, 5] >>> RaggedArray(flat, starts, ends) RaggedArray.from_nested([ [0, 1, 2, 3, 4, 5], # flat[0:6] [3, 4, 5], # flat[3:6] [1, 2, 3, 4], # flat[1:5] ]) This form is typically not very useful but is given more to explain how the :class:`RaggedArray` works internally. Copy-less slicing uses this form heavily. """ self.flat = np.asarray(flat, dtype=dtype, order="C") if len(self.flat) >= (1 << 31): # pragma: 64bit # Supporting large arrays would require promoting all ints in the C # code to int64_t. Given that it takes at least 2GB of memory to get # an array this big, I doubt that this would be useful but I could # be wrong... raise RequestMeError( "Flat lengths >= 2^31 are disabled at compile time to save " "memory at runtime.") if ends is None: bounds = np.asarray(starts, dtype=np.intc, order="C") self.starts = bounds[:-1] self.ends = bounds[1:] else: self.starts = np.asarray(starts, dtype=np.intc, order="C") self.ends = np.asarray(ends, dtype=np.intc, order="C") self._c_struct = slug.dll.RaggedArray( ptr(self.flat), self.itemsize, len(self), ptr(self.starts), ptr(self.ends), ) if check: self.check() def check(self): """Verify that this array has valid shape. Raises: ValueError: If :attr:`starts` and :attr:`ends` are not of the same length. ValueError: If any row has a negative length. (0 length rows are ok.) IndexError: If any row starts (:attr:`starts`) are negative. IndexError: If any row ends (:attr:`ends`) are out of bounds (>= len(flat)). """ if len(self.starts) != len(self.ends): raise ValueError(f"The lengths of starts ({len(self.starts)}) and " f"ends ({len(self.ends)}) do not match.") for index in _violates(self.starts > self.ends): raise ValueError(f"Row {index}, " f"starting at flat[{self.starts[index]}] " f"and ending at flat[{self.ends[index]}], " f"has a negative length " f"({self.ends[index] - self.starts[index]}).") for index in _violates(self.starts < 0): raise IndexError(f"Invalid value in `starts` attribute: " f"starts[{index}] = {self.starts[index]} < 0") for index in _violates(self.ends > len(self.flat)): raise IndexError(f"Invalid value in `ends` attribute: " f"ends[{index}] = {self.ends[index]} >= " f"len(flat) = {len(self.flat)}") @property def dtype(self): """The data type of the contents of this array. Returns: numpy.dtype: :py:`self.flat.dtype`. """ return self.flat.dtype @property def itemshape(self): """The shape of an individual element from :attr:`flat`. Returns: tuple: :py:`self.flat.shape[1:]`. Assuming :attr:`flat` is not empty, this is equivalent to :py:`self.flat[0].shape`. For a 2D ragged array, this is always simply :py:`()`. """ return self.flat.shape[1:] @property def itemsize(self): """The size in bytes of an individual element from :attr:`flat`. Returns: int: Size of one element. Assuming :attr:`flat` is not empty, this is equivalent to :py:`len(self.flat[0].tobytes()`. """ return prod(self.itemshape) * self.dtype.itemsize def astype(self, dtype): """Cast the contents to a given **dtype**. Analogous to :meth:`numpy.ndarray.astype`. Args: dtype (Union[numpy.dtype, Type[numpy.generic]]): Desired data type for the :attr:`flat` attribute. Returns: RaggedArray: A modified copy with :py:`copy.flat.dtype == dtype`. Only the :attr:`flat` property is cast - :attr:`starts` and :attr:`ends` remain unchanged. The :attr:`flat` attribute is a copy if :meth:`numpy.ndarray.astype` chooses to copy it. The :attr:`starts` and :attr:`ends` are never copied. >>> ragged = RaggedArray.from_nested([[1, 2], [3]], dtype=np.int32) >>> ragged.astype(np.int32).flat is ragged.flat False >>> ragged.astype(np.int16).starts is ragged.starts True """ return type(self)(self.flat.astype(dtype), self.starts, self.ends) def byteswap(self, inplace=False): """Swap endian. Analogous to :meth:`numpy.ndarray.byteswap`. Args: inplace: If true, modify this array. Otherwise create a new one. Returns: Either this array or a new ragged array with opposite byte order. The byteorder of the :attr:`starts` and :attr:`ends` arrays are not touched. """ if inplace: self.flat.byteswap(inplace=inplace) return self return type(self)(self.flat.byteswap(), self.starts, self.ends, self.dtype) @classmethod def from_lengths(cls, flat, lengths, dtype=None): bounds = np.empty(len(lengths) + 1, dtype=np.intc) bounds[0] = 0 np.cumsum(lengths, out=bounds[1:]) return cls(flat, bounds, dtype=dtype) @classmethod def from_nested(cls, nested, dtype=None): _nested = [np.asarray(i, dtype=dtype) for i in nested if len(i)] if _nested: flat = np.concatenate(_nested) else: flat = np.empty(0, dtype=dtype) lengths = [len(i) for i in nested] return cls.from_lengths(flat, lengths, dtype=dtype) def __getitem__(self, item) -> Union['RaggedArray', np.ndarray]: index = self.__index_item__(item) if isinstance(index, type(self)): return index return self.flat[index] def __setitem__(self, key, value): index = self.__index_item__(key) if isinstance(index, type(self)): raise RequestMeError self.flat[index] = value def __index_item__(self, item): """The brain behind __getitem__() and __setitem__(). To avoid having to write everything twice (for set and get item), this function returns :attr:`flat` indices which may then be used as ``return flat[indices]`` or ``flat[indices] = value``. Unfortunately, there are a lot of permutations of possible input types. Some of these permutations return another RaggedArray which should be returned directly by getitem and (once I've implemented vectorisation) wrote to directly by setitem. """ # 2D indexing i.e. ragged[rows, columns] if isinstance(item, tuple) and len(item) == 2: rows, columns = item if isinstance(columns, slice): if _null_slice(columns): # Case self[rows, :] should be simplified to ragged[rows] return self.__index_item__(rows) # Case self[rows, slice] return self.__index_item_number_slice__(rows, columns) # Case self[rows, numerical column numbers] return self.__index_item_any_number__(rows, columns) # 3+D indexing. if isinstance(item, tuple) and len(item) > 2: if self.itemshape: # Covert to self[2D index, *other indices]. indices = self.__index_item__(item[:2]) if isinstance(indices, type(self)): raise RequestMeError("Returning ragged arrays from >2D " "indices is not implemented.") return (indices, *item[2:]) raise IndexError( f"Too many indices for ragged array: maximum allowed is 2 but " f"{len(item)} were given.") # 1D indexing (ragged[rows]). if np.isscalar(item): # A single row number implies just a regular array output. return slice(self.starts[item], self.ends[item]) # Whereas any of slicing, bool masks, arrays of row numbers, ... # return another ragged array. return type(self)(self.flat, self.starts[item], self.ends[item]) def __index_item_any_number__(self, rows, columns): """Indices for self[rows, columns] where **columns** is numeric (not a slice or bool mask).""" rows_is_array_like = not (isinstance(rows, slice) or rows is None) if rows_is_array_like: rows = np.asarray(rows) assert rows.dtype != object columns = np.asarray(columns) assert columns.dtype != object starts = self.starts[rows] ends = self.ends[rows] if not rows_is_array_like: columns = columns[np.newaxis] while starts.ndim < columns.ndim: starts = starts[..., np.newaxis] ends = ends[..., np.newaxis] lengths = ends - starts out_of_bounds = (columns < -lengths) | (columns >= lengths) for index in _violates(out_of_bounds): rows = np.arange(len(self))[rows] while rows.ndim < columns.ndim: rows = rows[..., np.newaxis] rows, columns, lengths = np.broadcast_arrays(rows, columns, lengths) raise IndexError(f"Index {columns[index]} is out of bounds for row " f"{rows[index]} with size {lengths[index]}") columns = np.where(columns < 0, columns + lengths, columns) return starts + columns def __index_item_number_slice__(self, rows, columns: slice): """Indices for self[rows, columns] where **columns** is a slice.""" if columns.step not in (1, None): raise RequestMeError( "A stepped columns index ragged[x, ::step] is not implemented " "as it would require strided ragged arrays (which are also not " "implemented).") starts = self.starts[rows] ends = self.ends[rows] lengths = ends - starts if columns.start is None: new_starts = starts else: new_starts = starts + _wrap_negative(columns.start, lengths) new_starts.clip(starts, ends, out=new_starts) if columns.stop is None: new_ends = ends else: new_ends = starts + _wrap_negative(columns.stop, lengths) new_ends.clip(starts, ends, out=new_ends) new_ends.clip(new_starts, out=new_ends) return type(self)(self.flat, *np.broadcast_arrays(new_starts, new_ends)) def __len__(self): return len(self.starts) def __iter__(self): return (self[i] for i in range(len(self))) def _to_string(self, prefix, separator): """Convert to :class:`str`. A loose ragged equivalent of :func:`numpy.array2string()`. Args: prefix (str): How far to indent. See the **prefix** option for :func:`numpy.array2string()`. separator (str): The deliminator to be put between elements. Returns: str: Something stringy. """ # TODO: Maybe expand and make this method public. _str = lambda x: np.array2string(x, prefix=prefix, separator=separator) if len(self) > np.get_printoptions()['threshold']: # Very long arrays should be summarised as [a, b, c, ..., x, y, z]. edge_items = np.get_printoptions()["edgeitems"] rows = [_str(i) for i in self[:edge_items]] rows.append("...") rows += [_str(i) for i in self[-edge_items:]] else: rows = [_str(i) for i in self] # A downside of doing everything per row is that each row gets formatted # differently. NumPy don't expose any of their fancy dragon4 algorithm # functionality for choosing format options so I don't see any practical # way of changing this. return (separator.rstrip() + "\n" + " " * len(prefix)).join(rows) def __repr__(self): prefix = type(self).__name__ + ".from_nested(" # I might make this a proper option in future. if NUMPY_REPR: # pragma: no cover # Old school NumPy style formatting. return prefix + "[" + self._to_string(prefix + "[", ", ") + "])" # More trendy trailing comma formatting for `black` fanatics. return prefix + "[\n " + self._to_string(" ", ", ") + ",\n])" def __str__(self): return "[" + self._to_string(" ", " ") + "]" def repacked(self): length = (self.ends - self.starts).sum() flat = np.empty((length,) + self.flat.shape[1:], self.flat.dtype) bounds = np.empty(len(self.starts) + 1, np.intc) new = type(self)(flat, bounds[:-1], bounds[1:], self.dtype, check=False) slug.dll.repack(self._c_struct._ptr, new._c_struct._ptr) return new def dumps(self, ldtype=np.intc): """Serialise into a :class:`memoryview`. Args: ldtype (Union[numpy.dtype, Type[numpy.generic]]): Integer type for the row lengths. Returns: memoryview: A bytes-like binary blob. The binary format is an undelimited sequence of ``(len(row), row)`` pairs. A pure Python approximation would be:: b"".join((len(row).tobytes() + row.tobytes() for row in ragged_array)) The integer types of the row lengths can be controlled by the **ldtype** parameter. To change the type or byteorder of the data itself, cast to that type with :meth:`astype` then call this function. """ ldtype = np.dtype(ldtype) # --- Work out how many bytes the output will need. --- # The total length of the flat data. Note, `self.flat.size` would not be # a safe shortcut unless `self.repacked()` has been called 1st. length = (self.ends - self.starts).sum() * self.itemsize # And the lengths of the lengths... length += len(self) * ldtype.itemsize # Allocate `length` bytes to write to. `numpy.empty()` seems to be one # of the only ways to create a lump of memory in Python without wasting # time initialising it. out = np.empty(length, dtype=np.byte) failed_row = slug.dll.dump(self._c_struct._ptr, ptr(out), _2_power(ldtype), _big_endian(ldtype)) if failed_row != -1: raise OverflowError( f"Row {failed_row} with length {len(self[failed_row])} " f"is too long to write with an {ldtype.name} integer.") return out.data @classmethod def loads(cls, bin, dtype, rows=-1, ldtype=np.intc) -> Tuple['RaggedArray', int]: """Deserialize a ragged array. This is the reciprocal of :meth:`dumps`. Args: bin (bytes): Raw data to unpack. dtype (Union[numpy.dtype, Type[numpy.generic]]): Data type of the row contents in **bin**. rows (int): Number of rows to parse. Defaults to :py:`-1` for unknown. ldtype (Union[numpy.dtype, Type[numpy.generic]]): Integer type of the row lengths in **bin**. Returns: RaggedArray: The deserialised ragged array. int: The number of bytes from **bin** consumed. Raises: ValueError: If **bin** ends prematurely or in the middle of a row. This is indicative of either data corruption or, more likely, muddling of dtypes. """ dtype = np.dtype(dtype) ldtype = np.dtype(ldtype) # We need to know how many rows there will be in this new ragged array # before creating and populating it. if rows == -1: # If it's not already known then it has to be counted. rows = slug.dll.count_rows(ptr(bin), len(bin), _2_power(ldtype), _big_endian(ldtype), dtype.itemsize) if rows == -1: # `count_rows()` returns -1 on error. raise ValueError( "Raw `bin` data ended mid way through a row. Either this " "data is corrupt or the dtype(s) given are incorrect.") # Run again with known number of `rows`. return cls.loads(bin, dtype, rows, ldtype) free = len(bin) - rows * ldtype.itemsize items = free // dtype.itemsize if items < 0: raise ValueError( f"With `bin` of length {len(bin)}, {rows} rows of " f"{ldtype.itemsize} byte lengths leaves {free} bytes " f"for the flat data. Perhaps your data types are wrong?") self = cls(np.empty(items, dtype=dtype), np.empty(rows + 1, np.intc), check=False) bin_consumed = ctypes.c_size_t(0) _rows = slug.dll.load(self._c_struct._ptr, ptr(bin), len(bin), ctypes.byref(bin_consumed), rows, _2_power(ldtype), _big_endian(ldtype)) if _rows < rows: raise ValueError( f"Raw `bin` data ended too soon. " f"Only {_rows} out of the requested {rows} rows were read. " f"Either this data is corrupt or the dtype(s) given are " "incorrect.") return self, bin_consumed.value def _rectangular_slice(self, start, end): """Slice ``self`` but convert the output to a regular rectangular array. This requires that this array is packed, hence its being private. """ width = self.ends[start] - self.starts[start] if end >= len(self): flat = self.flat[self.starts[start]:] return flat.reshape((len(self) - start, width) + self.itemshape) flat = self.flat[self.starts[start]:self.starts[end]] return flat.reshape((end - start, width) + self.itemshape) def to_rectangular_arrays(self, reorder=False): """Convert to a :class:`list` of regular :class:`numpy.ndarray`\\ s. Args: reorder (bool): If true, pre-sort into order of ascending lengths to minimise divisions needed. Use if the row order is unimportant. Returns: Union[tuple, list]: list[numpy.ndarray]: If **reorder** is false. numpy.ndarray, list[numpy.ndarray]: If **reorder** is true. The first argument is the args (from :func:`numpy.argsort`) used to pre-sort. The :class:`RaggedArray` is divided into chunks of consecutive rows which have the same length. Each chunk is then converted to a plain 2D :class:`numpy.ndarray`. These 2D arrays are returned in a :class:`list`. :: >>> ragged_array([ ... [1, 2], ... [3, 4], ... [5, 6, 7], ... [8, 9, 10], ... ]).to_rectangular_arrays() [array([[1, 2], [3, 4]]), array([[ 5, 6, 7], [ 8, 9, 10]])] """ if reorder: args = np.argsort(self.ends - self.starts) return args, self[args].to_rectangular_arrays() # The empty case requires special handling or it hits index errors # further on. if len(self) == 0: return [] # This function uses slices on raw ``self.flat`` and thereby assumes # that consecutive rows are consecutive in ``self.flat``. To enforce # this case: self = self.repacked() lengths = self.ends - self.starts out = [] start = 0 # For every row number that isn't the same length as its next row: for end in np.nonzero(lengths[1:] != lengths[:-1])[0]: end += 1 # slice from the last slice end to this one. out.append(self._rectangular_slice(start, end)) start = end # The above catches everything before a change in row length but not the # final chunk after the last change. Add it. out.append(self._rectangular_slice(start, len(self))) return out def tolist(self): """Convert to a list of lists. This is analogous to :meth:`numpy.ndarray.tolist` and is the reciprocal of :meth:`from_nested`.""" return sum(map(np.ndarray.tolist, self.to_rectangular_arrays()), []) @classmethod def group_by(cls, data, ids, id_max=None, check_ids=True): """Group **data** by **ids**. Args: data (numpy.ndarray): Arbitrary values to be grouped. **data** can be of any dtype and be multidimensional. ids (numpy.ndarray): Integer array with the same dimensions as **data**. id_max (int): :py:`np.max(ids) + 1`. If already known, providing this value prevents it from being redundantly recalculated. check_ids (bool): If true, verify that each ID in **ids** is in bounds (:py:`0 <= ID < id_max`). Disable with caution - an uncaught out of bounds ID can lead to a seg-fault. Returns: RaggedArray: For each value in **data**, its corresponding ID in **ids** determines in which row the data value is placed. The order of data within rows is consistent with the order the appear in **data**. This method is similar to :meth:`pandas.DataFrame.groupby`. However, it will not uniquify and enumerate the property to group by. """ # Just run ``groups_by()`` but with only one ``datas``. return next(cls.groups_by(ids, data, id_max=id_max, check_ids=check_ids)) @classmethod def groups_by(cls, ids, *datas, id_max=None, check_ids=True): """Group each data from **datas** by **ids**. This function is equivalent to, but faster than, calling :meth:`group_by` multiple times with the same **ids**. """ # Type normalisation and sanity checks. ids = np.asarray(ids) datas = [np.asarray(i) for i in datas] if id_max is None: id_max = np.max(ids) + 1 elif check_ids and np.any(ids >= id_max): max = ids.argmax() raise IndexError(f"All ids must be < id_max but " f"ids[{max}] = {ids[max]} >= {id_max}.") if check_ids and np.any(ids < 0): min = ids.argmin() raise IndexError( f"All ids must be >= 0 but ids[{min}] = {ids[min]}.") counts, sub_ids = sub_enumerate(ids, id_max) # The ``counts`` determine the lengths of each row should. # From there we can work out the start and end point for each row. bounds = np.empty(id_max + 1, np.intc) counts.cumsum(out=bounds[1:]) bounds[0] = 0 # The ``sub_ids`` are the position along the row for each element. # Without ``sub_ids``, elements from the same group will all write to # the beginning of their row, and thus overwrite each other. unique_ids = bounds[ids] + sub_ids # ``unique_ids`` should contain exactly one of each element in # ``range(len(ids))``. for data in datas: flat = np.empty(data.shape, data.dtype, order="C") flat[unique_ids] = data yield cls(flat, bounds) # For pickle. def __getstate__(self): # Unfortunately this will lose the memory efficiency of letting starts # and ends overlap. # I'm choosing to version this pickle function so that, if I fix the # above, then I can avoid version mismatch chaos. from rockhopper import __version__ return 0, __version__, self.flat, self.starts, self.ends def __setstate__(self, state): pickle_version, rockhopper_version, *state = state if pickle_version > 0: import pickle raise pickle.UnpicklingError( "This ragged array was pickled with a newer version of " f"rockhopper ({rockhopper_version}) which wrote its pickles " f'differently. Running:\n pip install ' f'"rockhopper >= {rockhopper_version}"\nshould fix this.') self.__init__(*state) ragged_array = RaggedArray.from_nested def _2_power(dtype): """Convert an integer dtype to an enumerate used throughout the C code.""" # Functionally this is equivalent to ``int(math.log2(dtype.itemsize))``. itemsize = np.dtype(dtype).itemsize return next(i for i in range(8) if (1 << i) == itemsize) def _big_endian(dtype): """Is **dtype** big endian?""" byteorder = np.dtype(dtype).byteorder if byteorder == "<": return False if byteorder == ">": return True # `byteorder` can also be '=' for native (`sys.endian == "big"`) or "|" for # not applicable (for string types - which we shouldn't need anyway - or # single byte types). return BIG_ENDIAN def sub_enumerate(ids, id_max): """Wrapper of :c:`sub_enumerate()` from src/ragged_array.c Args: ids (numpy.ndarray): A group number for each element. id_max (int): A strict upper bound for the **ids**. Returns: counts (numpy.ndarray): :py:`counts[x] := ids.count(x)`. sub_ids (numpy.ndarray): :py:`sub_ids[i] := ids[:i].count(ids[i])`. Raises: IndexError: If either :py:`(0 <= ids).all() or :py`(ids < id_max).all()` are not satisfied. """ ids = np.ascontiguousarray(ids, dtype=np.intc) counts = np.zeros(int(id_max), np.intc) sub_ids = np.empty_like(ids) slug.dll.sub_enumerate(ptr(ids), ids.size, ptr(counts), ptr(sub_ids)) return counts, sub_ids def _violates(mask: np.ndarray): """Yield the index of the first true element, if any, of the boolean array **mask**. Otherwise don't yield at all.""" if np.any(mask): index = np.argmax(mask) yield np.unravel_index(index, mask.shape) if mask.ndim != 1 else index def _null_slice(s: slice): """Return true if a slice does nothing e.g. list[:]""" return s.start is s.step is s.stop is None def _wrap_negative(indices, lengths): """Add **lengths** to **indices** which are negative. Mimics Python's usual list[-1] => list[len(list) - 1] behaviour.""" return
np.where(indices < 0, indices + lengths, indices)
numpy.where
import numpy as np from holoviews.core.data import Dataset from holoviews.core.options import Cycle from holoviews.core.spaces import HoloMap from holoviews.core.util import LooseVersion from holoviews.element import Graph, Nodes, TriMesh, Chord, circular_layout from holoviews.util.transform import dim from matplotlib.collections import LineCollection, PolyCollection from .test_plot import TestMPLPlot, mpl_renderer class TestMplGraphPlot(TestMPLPlot): def setUp(self): super().setUp() N = 8 self.nodes = circular_layout(np.arange(N, dtype=np.int32)) self.source = np.arange(N, dtype=np.int32) self.target = np.zeros(N, dtype=np.int32) self.weights = np.random.rand(N) self.graph = Graph(((self.source, self.target),)) self.node_info = Dataset(['Output']+['Input']*(N-1), vdims=['Label']) self.node_info2 = Dataset(self.weights, vdims='Weight') self.graph2 = Graph(((self.source, self.target), self.node_info)) self.graph3 = Graph(((self.source, self.target), self.node_info2)) self.graph4 = Graph(((self.source, self.target, self.weights),), vdims='Weight') def test_plot_simple_graph(self): plot = mpl_renderer.get_plot(self.graph) nodes = plot.handles['nodes'] edges = plot.handles['edges'] self.assertEqual(np.asarray(nodes.get_offsets()), self.graph.nodes.array([0, 1])) self.assertEqual([p.vertices for p in edges.get_paths()], [p.array() for p in self.graph.edgepaths.split()]) def test_plot_graph_categorical_colored_nodes(self): g = self.graph2.opts(plot=dict(color_index='Label'), style=dict(cmap='Set1')) plot = mpl_renderer.get_plot(g) nodes = plot.handles['nodes'] facecolors = np.array([[0.89411765, 0.10196078, 0.10980392, 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.], [0.6 , 0.6 , 0.6 , 1.]]) self.assertEqual(nodes.get_facecolors(), facecolors) def test_plot_graph_numerically_colored_nodes(self): g = self.graph3.opts(plot=dict(color_index='Weight'), style=dict(cmap='viridis')) plot = mpl_renderer.get_plot(g) nodes = plot.handles['nodes'] self.assertEqual(np.asarray(nodes.get_array()), self.weights) self.assertEqual(nodes.get_clim(), (self.weights.min(), self.weights.max())) def test_plot_graph_categorical_colored_edges(self): g = self.graph3.opts(plot=dict(edge_color_index='start'), style=dict(edge_cmap=['#FFFFFF', '#000000'])) plot = mpl_renderer.get_plot(g) edges = plot.handles['edges'] colors = np.array([[1., 1., 1., 1.], [0., 0., 0., 1.], [1., 1., 1., 1.], [0., 0., 0., 1.], [1., 1., 1., 1.], [0., 0., 0., 1.], [1., 1., 1., 1.], [0., 0., 0., 1.]]) self.assertEqual(edges.get_colors(), colors) def test_plot_graph_numerically_colored_edges(self): g = self.graph4.opts(plot=dict(edge_color_index='Weight'), style=dict(edge_cmap=['#FFFFFF', '#000000'])) plot = mpl_renderer.get_plot(g) edges = plot.handles['edges'] self.assertEqual(np.asarray(edges.get_array()), self.weights) self.assertEqual(edges.get_clim(), (self.weights.min(), self.weights.max())) ########################### # Styling mapping # ########################### def test_graph_op_node_color(self): edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, '#000000'), (0, 1, 1, '#FF0000'), (1, 1, 2, '#00FF00')], vdims='color') graph = Graph((edges, nodes)).options(node_color='color') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_facecolors(), np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1]])) def test_graph_op_node_color_update(self): edges = [(0, 1), (0, 2)] def get_graph(i): c1, c2, c3 = {0: ('#00FF00', '#0000FF', '#FF0000'), 1: ('#FF0000', '#00FF00', '#0000FF')}[i] nodes = Nodes([(0, 0, 0, c1), (0, 1, 1, c2), (1, 1, 2, c3)], vdims='color') return Graph((edges, nodes)) graph = HoloMap({0: get_graph(0), 1: get_graph(1)}).options(node_color='color') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_facecolors(), np.array([[0, 1, 0, 1], [0, 0, 1, 1], [1, 0, 0, 1]])) plot.update((1,)) self.assertEqual(artist.get_facecolors(), np.array([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])) def test_graph_op_node_color_linear(self): edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, 0.5), (0, 1, 1, 1.5), (1, 1, 2, 2.5)], vdims='color') graph = Graph((edges, nodes)).options(node_color='color') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(np.asarray(artist.get_array()), np.array([0.5, 1.5, 2.5])) self.assertEqual(artist.get_clim(), (0.5, 2.5)) def test_graph_op_node_color_linear_update(self): edges = [(0, 1), (0, 2)] def get_graph(i): c1, c2, c3 = {0: (0.5, 1.5, 2.5), 1: (3, 2, 1)}[i] nodes = Nodes([(0, 0, 0, c1), (0, 1, 1, c2), (1, 1, 2, c3)], vdims='color') return Graph((edges, nodes)) graph = HoloMap({0: get_graph(0), 1: get_graph(1)}).options(node_color='color', framewise=True) plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(np.asarray(artist.get_array()), np.array([0.5, 1.5, 2.5])) self.assertEqual(artist.get_clim(), (0.5, 2.5)) plot.update((1,)) self.assertEqual(np.asarray(artist.get_array()), np.array([3, 2, 1])) self.assertEqual(artist.get_clim(), (1, 3)) def test_graph_op_node_color_categorical(self): edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, 'A'), (0, 1, 1, 'B'), (1, 1, 2, 'A')], vdims='color') graph = Graph((edges, nodes)).options(node_color='color') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(np.asarray(artist.get_array()), np.array([0, 1, 0])) def test_graph_op_node_size(self): edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, 2), (0, 1, 1, 4), (1, 1, 2, 6)], vdims='size') graph = Graph((edges, nodes)).options(node_size='size') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_sizes(), np.array([4, 16, 36])) def test_graph_op_node_size_update(self): edges = [(0, 1), (0, 2)] def get_graph(i): c1, c2, c3 = {0: (2, 4, 6), 1: (12, 3, 5)}[i] nodes = Nodes([(0, 0, 0, c1), (0, 1, 1, c2), (1, 1, 2, c3)], vdims='size') return Graph((edges, nodes)) graph = HoloMap({0: get_graph(0), 1: get_graph(1)}).options(node_size='size') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_sizes(), np.array([4, 16, 36])) plot.update((1,)) self.assertEqual(artist.get_sizes(), np.array([144, 9, 25])) def test_graph_op_node_linewidth(self): edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, 2), (0, 1, 1, 4), (1, 1, 2, 3.5)], vdims='line_width') graph = Graph((edges, nodes)).options(node_linewidth='line_width') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_linewidths(), [2, 4, 3.5]) def test_graph_op_node_linewidth_update(self): edges = [(0, 1), (0, 2)] def get_graph(i): c1, c2, c3 = {0: (2, 4, 6), 1: (12, 3, 5)}[i] nodes = Nodes([(0, 0, 0, c1), (0, 1, 1, c2), (1, 1, 2, c3)], vdims='line_width') return Graph((edges, nodes)) graph = HoloMap({0: get_graph(0), 1: get_graph(1)}).options(node_linewidth='line_width') plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_linewidths(), [2, 4, 6]) plot.update((1,)) self.assertEqual(artist.get_linewidths(), [12, 3, 5]) def test_graph_op_node_alpha(self): import matplotlib as mpl edges = [(0, 1), (0, 2)] nodes = Nodes([(0, 0, 0, 0.2), (0, 1, 1, 0.6), (1, 1, 2, 1)], vdims='alpha') graph = Graph((edges, nodes)).options(node_alpha='alpha') if LooseVersion(mpl.__version__) < LooseVersion("3.4.0"): # Python 3.6 only support up to matplotlib 3.3 with self.assertRaises(Exception): mpl_renderer.get_plot(graph) else: plot = mpl_renderer.get_plot(graph) artist = plot.handles['nodes'] self.assertEqual(artist.get_alpha(), np.array([0.2, 0.6, 1])) def test_graph_op_edge_color(self): edges = [(0, 1, 'red'), (0, 2, 'green'), (1, 3, 'blue')] graph = Graph(edges, vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(edges.get_edgecolors(), np.array([ [1. , 0. , 0. , 1. ], [0. , 0.50196078, 0. , 1. ], [0. , 0. , 1. , 1. ]] )) def test_graph_op_edge_color_update(self): graph = HoloMap({ 0: Graph([(0, 1, 'red'), (0, 2, 'green'), (1, 3, 'blue')], vdims='color'), 1: Graph([(0, 1, 'green'), (0, 2, 'blue'), (1, 3, 'red')], vdims='color')}).options(edge_color='color') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(edges.get_edgecolors(), np.array([ [1. , 0. , 0. , 1. ], [0. , 0.50196078, 0. , 1. ], [0. , 0. , 1. , 1. ]] )) plot.update((1,)) self.assertEqual(edges.get_edgecolors(), np.array([ [0. , 0.50196078, 0. , 1. ], [0. , 0. , 1. , 1. ], [1. , 0. , 0. , 1. ]] )) def test_graph_op_edge_color_linear(self): edges = [(0, 1, 2), (0, 2, 0.5), (1, 3, 3)] graph = Graph(edges, vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(np.asarray(edges.get_array()), np.array([2, 0.5, 3])) self.assertEqual(edges.get_clim(), (0.5, 3)) def test_graph_op_edge_color_linear_update(self): graph = HoloMap({ 0: Graph([(0, 1, 2), (0, 2, 0.5), (1, 3, 3)], vdims='color'), 1: Graph([(0, 1, 4.3), (0, 2, 1.4), (1, 3, 2.6)], vdims='color')}).options(edge_color='color', framewise=True) plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(np.asarray(edges.get_array()), np.array([2, 0.5, 3])) self.assertEqual(edges.get_clim(), (0.5, 3)) plot.update((1,)) self.assertEqual(np.asarray(edges.get_array()), np.array([4.3, 1.4, 2.6])) self.assertEqual(edges.get_clim(), (1.4, 4.3)) def test_graph_op_edge_color_categorical(self): edges = [(0, 1, 'C'), (0, 2, 'B'), (1, 3, 'A')] graph = Graph(edges, vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(np.asarray(edges.get_array()), np.array([0, 1, 2])) self.assertEqual(edges.get_clim(), (0, 2)) def test_graph_op_edge_alpha(self): edges = [(0, 1, 0.1), (0, 2, 0.5), (1, 3, 0.3)] graph = Graph(edges, vdims='alpha').options(edge_alpha='alpha') with self.assertRaises(Exception): mpl_renderer.get_plot(graph) def test_graph_op_edge_linewidth(self): edges = [(0, 1, 2), (0, 2, 10), (1, 3, 6)] graph = Graph(edges, vdims='line_width').options(edge_linewidth='line_width') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(edges.get_linewidths(), [2, 10, 6]) def test_graph_op_edge_line_width_update(self): graph = HoloMap({ 0: Graph([(0, 1, 2), (0, 2, 0.5), (1, 3, 3)], vdims='line_width'), 1: Graph([(0, 1, 4.3), (0, 2, 1.4), (1, 3, 2.6)], vdims='line_width')}).options(edge_linewidth='line_width') plot = mpl_renderer.get_plot(graph) edges = plot.handles['edges'] self.assertEqual(edges.get_linewidths(), [2, 0.5, 3]) plot.update((1,)) self.assertEqual(edges.get_linewidths(), [4.3, 1.4, 2.6]) class TestMplTriMeshPlot(TestMPLPlot): def setUp(self): super().setUp() self.nodes = [(0, 0, 0), (0.5, 1, 1), (1., 0, 2), (1.5, 1, 3)] self.simplices = [(0, 1, 2, 0), (1, 2, 3, 1)] self.trimesh = TriMesh((self.simplices, self.nodes)) self.trimesh_weighted = TriMesh((self.simplices, self.nodes), vdims='weight') def test_plot_simple_trimesh(self): plot = mpl_renderer.get_plot(self.trimesh) nodes = plot.handles['nodes'] edges = plot.handles['edges'] self.assertIsInstance(edges, LineCollection) self.assertEqual(np.asarray(nodes.get_offsets()), self.trimesh.nodes.array([0, 1])) self.assertEqual([p.vertices for p in edges.get_paths()], [p.array() for p in self.trimesh._split_edgepaths.split()]) def test_plot_simple_trimesh_filled(self): plot = mpl_renderer.get_plot(self.trimesh.opts(plot=dict(filled=True))) nodes = plot.handles['nodes'] edges = plot.handles['edges'] self.assertIsInstance(edges, PolyCollection) self.assertEqual(np.asarray(nodes.get_offsets()), self.trimesh.nodes.array([0, 1])) paths = self.trimesh._split_edgepaths.split(datatype='array') self.assertEqual([p.vertices[:4] for p in edges.get_paths()], paths) def test_plot_trimesh_colored_edges(self): opts = dict(plot=dict(edge_color_index='weight'), style=dict(edge_cmap='Greys')) plot = mpl_renderer.get_plot(self.trimesh_weighted.opts(**opts)) edges = plot.handles['edges'] colors = np.array([[ 1., 1., 1., 1.], [ 0., 0., 0., 1.]]) self.assertEqual(edges.get_edgecolors(), colors) def test_plot_trimesh_categorically_colored_edges(self): opts = dict(plot=dict(edge_color_index='node1'), style=dict(edge_color=Cycle('Set1'))) plot = mpl_renderer.get_plot(self.trimesh_weighted.opts(**opts)) edges = plot.handles['edges'] colors = np.array([[0.894118, 0.101961, 0.109804, 1.], [0.215686, 0.494118, 0.721569, 1.]]) self.assertEqual(edges.get_edgecolors(), colors) def test_plot_trimesh_categorically_colored_edges_filled(self): opts = dict(plot=dict(edge_color_index='node1', filled=True), style=dict(edge_color=Cycle('Set1'))) plot = mpl_renderer.get_plot(self.trimesh_weighted.opts(**opts)) edges = plot.handles['edges'] colors = np.array([[0.894118, 0.101961, 0.109804, 1.], [0.215686, 0.494118, 0.721569, 1.]]) self.assertEqual(edges.get_facecolors(), colors) ########################### # Styling mapping # ########################### def test_trimesh_op_node_color(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 'red'), (0, 0, 1, 'green'), (0, 1, 2, 'blue'), (1, 0, 3, 'black')] trimesh = TriMesh((edges, Nodes(nodes, vdims='color'))).options(node_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(artist.get_facecolors(), np.array([[1, 0, 0, 1], [0, 0.501961, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])) def test_trimesh_op_node_color_linear(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 2), (0, 0, 1, 1), (0, 1, 2, 3), (1, 0, 3, 4)] trimesh = TriMesh((edges, Nodes(nodes, vdims='color'))).options(node_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(np.asarray(artist.get_array()), np.array([2, 1, 3, 4])) self.assertEqual(artist.get_clim(), (1, 4)) def test_trimesh_op_node_color_categorical(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 'B'), (0, 0, 1, 'C'), (0, 1, 2, 'A'), (1, 0, 3, 'B')] trimesh = TriMesh((edges, Nodes(nodes, vdims='color'))).options(node_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(np.asarray(artist.get_array()), np.array([0, 1, 2, 0])) self.assertEqual(artist.get_clim(), (0, 2)) def test_trimesh_op_node_size(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 3), (0, 0, 1, 2), (0, 1, 2, 8), (1, 0, 3, 4)] trimesh = TriMesh((edges, Nodes(nodes, vdims='size'))).options(node_size='size') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(artist.get_sizes(), np.array([9, 4, 64, 16])) def test_trimesh_op_node_alpha(self): import matplotlib as mpl edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 0.2), (0, 0, 1, 0.6), (0, 1, 2, 1), (1, 0, 3, 0.3)] trimesh = TriMesh((edges, Nodes(nodes, vdims='alpha'))).options(node_alpha='alpha') if LooseVersion(mpl.__version__) < LooseVersion("3.4.0"): # Python 3.6 only support up to matplotlib 3.3 with self.assertRaises(Exception): mpl_renderer.get_plot(trimesh) else: plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(artist.get_alpha(), np.array([0.2, 0.6, 1, 0.3])) def test_trimesh_op_node_line_width(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 0.2), (0, 0, 1, 0.6), (0, 1, 2, 1), (1, 0, 3, 0.3)] trimesh = TriMesh((edges, Nodes(nodes, vdims='line_width'))).options(node_linewidth='line_width') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['nodes'] self.assertEqual(artist.get_linewidths(), [0.2, 0.6, 1, 0.3]) def test_trimesh_op_edge_color_linear_mean_node(self): edges = [(0, 1, 2), (1, 2, 3)] nodes = [(-1, -1, 0, 2), (0, 0, 1, 1), (0, 1, 2, 3), (1, 0, 3, 4)] trimesh = TriMesh((edges, Nodes(nodes, vdims='color'))).options(edge_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['edges'] self.assertEqual(np.asarray(artist.get_array()), np.array([2, 8/3.])) self.assertEqual(artist.get_clim(), (1, 4)) def test_trimesh_op_edge_color(self): edges = [(0, 1, 2, 'red'), (1, 2, 3, 'blue')] nodes = [(-1, -1, 0), (0, 0, 1), (0, 1, 2), (1, 0, 3)] trimesh = TriMesh((edges, nodes), vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['edges'] self.assertEqual(artist.get_edgecolors(), np.array([ [1, 0, 0, 1], [0, 0, 1, 1]])) def test_trimesh_op_edge_color_linear(self): edges = [(0, 1, 2, 2.4), (1, 2, 3, 3.6)] nodes = [(-1, -1, 0), (0, 0, 1), (0, 1, 2), (1, 0, 3)] trimesh = TriMesh((edges, nodes), vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['edges'] self.assertEqual(np.asarray(artist.get_array()), np.array([2.4, 3.6])) self.assertEqual(artist.get_clim(), (2.4, 3.6)) def test_trimesh_op_edge_color_categorical(self): edges = [(0, 1, 2, 'A'), (1, 2, 3, 'B')] nodes = [(-1, -1, 0), (0, 0, 1), (0, 1, 2), (1, 0, 3)] trimesh = TriMesh((edges, nodes), vdims='color').options(edge_color='color') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['edges'] self.assertEqual(np.asarray(artist.get_array()), np.array([0, 1])) self.assertEqual(artist.get_clim(), (0, 1)) def test_trimesh_op_edge_alpha(self): edges = [(0, 1, 2, 0.7), (1, 2, 3, 0.3)] nodes = [(-1, -1, 0), (0, 0, 1), (0, 1, 2), (1, 0, 3)] trimesh = TriMesh((edges, nodes), vdims='alpha').options(edge_alpha='alpha') with self.assertRaises(Exception): mpl_renderer.get_plot(trimesh) def test_trimesh_op_edge_line_width(self): edges = [(0, 1, 2, 7), (1, 2, 3, 3)] nodes = [(-1, -1, 0), (0, 0, 1), (0, 1, 2), (1, 0, 3)] trimesh = TriMesh((edges, nodes), vdims='line_width').options(edge_linewidth='line_width') plot = mpl_renderer.get_plot(trimesh) artist = plot.handles['edges'] self.assertEqual(artist.get_linewidths(), [7, 3]) class TestMplChordPlot(TestMPLPlot): def setUp(self): super().setUp() self.edges = [(0, 1, 1), (0, 2, 2), (1, 2, 3)] self.nodes = Dataset([(0, 'A'), (1, 'B'), (2, 'C')], 'index', 'Label') self.chord = Chord((self.edges, self.nodes)) def make_chord(self, i): edges = [(0, 1, 1+i), (0, 2, 2+i), (1, 2, 3+i)] nodes = Dataset([(0, 0+i), (1, 1+i), (2, 2+i)], 'index', 'Label') return Chord((edges, nodes), vdims='weight') def test_chord_nodes_label_text(self): g = self.chord.opts(plot=dict(label_index='Label')) plot = mpl_renderer.get_plot(g) labels = plot.handles['labels'] self.assertEqual([l.get_text() for l in labels], ['A', 'B', 'C']) def test_chord_nodes_labels_mapping(self): g = self.chord.opts(plot=dict(labels='Label')) plot = mpl_renderer.get_plot(g) labels = plot.handles['labels'] self.assertEqual([l.get_text() for l in labels], ['A', 'B', 'C']) def test_chord_nodes_categorically_colormapped(self): g = self.chord.opts(plot=dict(color_index='Label'), style=dict(cmap=['#FFFFFF', '#CCCCCC', '#000000'])) plot = mpl_renderer.get_plot(g) arcs = plot.handles['arcs'] nodes = plot.handles['nodes'] colors = np.array([[ 1., 1., 1., 1. ], [ 0.8, 0.8, 0.8, 1. ], [ 0., 0., 0., 1. ]]) self.assertEqual(arcs.get_colors(), colors) self.assertEqual(nodes.get_facecolors(), colors) def test_chord_node_color_style_mapping(self): g = self.chord.opts(style=dict(node_color='Label', cmap=['#FFFFFF', '#CCCCCC', '#000000'])) plot = mpl_renderer.get_plot(g) arcs = plot.handles['arcs'] nodes = plot.handles['nodes'] self.assertEqual(np.asarray(nodes.get_array()), np.array([0, 1, 2])) self.assertEqual(np.asarray(arcs.get_array()),
np.array([0, 1, 2])
numpy.array
# coding: utf-8 # In[ ]: '''Compute the posterior estimates of spectral index, S1.4GHz, and P1.4GHz as well as the posterior estimates of measured fluxes (S_i) using the Metropolis Hastings algorithm. We assume priors: Gaussian measurments fluxes, uniform spectral index, uniform S1.4, and uniform P1.4. Detection is defined as 5*sigma_rms. The detection mask can be defined to include nondetection measurements (a valid assumption for point sources). The posterior density is then: prior x Likelihood (with priors described above). The likelihood is an L2 on spectral index and S1.4 due to the Gaussian prior on observables. Likelihood = exp(-1/2 * Sum (S_obs - g(alpha_i,S1.4))**2 / (Cd_i + Ct_i)) where S_obs are the measured fluxes g(alpha_i,S1.4) gives model S_i Cd_i is the measurement variance S_i Ct_i is a systematic for g(...) taken to be (0.15*S_obs)**2 assuming z ~ 0.516 +- 0.002 we use the sampling of alpha and S14 to monte carlo compute the mean and variances of posterior S_i and P14 in lognormal as suggested by their posterior plots. We find that the posterior distributions for: alpha is Gaussian S1.4 is lognormal P1.4 is lognormal S_i is lognormal ''' import numpy as np import pylab as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection def g(alpha,S14,nu): '''Forward equation, evaluate model at given nu array''' out = S14*(nu/1400e6)**alpha return out def L(Sobs,alpha,S14,nu,CdCt): '''Likeihood for alpha and S14''' #only as nu_obs d = g(alpha,S14,nu) L2 = np.sum((Sobs - d)**2/CdCt) #L1 = np.sum(np.abs(Sobs - d)/np.sqrt(CdCt)) return np.exp(-L2/2.) def P(nu,z,alpha,S14): c = 3e8 h0 = 0.7 ch = 1.32151838 q0 = 0.5 D = ch*z*(1+z*(1-q0)/(np.sqrt(1+2*q0*z) + 1 + q0*z)) S = S14*(nu/1400e6) out = 4*np.pi*S*D**2 / (1+z)**(1+alpha) * 1e26 return out/1e24 def MHSolveSpectealIndex(nu,S,Cd,Ct,name,z,dz,nuModel=None,plot=False,plotDir=None): '''Assumes S in mJy''' if nuModel is None: nuModel = nu if plotDir is not None: import os try: os.makedirs(plotDir) except: pass N = int(1e6) alpha_ = np.zeros(N,dtype=np.double) S14_ = np.zeros(N,dtype=np.double) alpha_[0] = -0.8 S14_[0] = S[0]*(1400e6/nu[0])**-0.8 print("Working on source {}".format(name)) mask = detectionMask[idx,:] CdCt = Cd + Ct Li = L(S,alpha_[0],S14_[0],nu,CdCt) print("Initial L: {}".format(Li)) maxL = Li alphaMAP = alpha_[0] S14MAP = S14_[0] accepted = 0 binning = 50 i = 1 while accepted < binning*binning and i < N: #sample priors in uniform steps alpha_j = np.random.uniform(low=alpha_[i-1] - 0.5,high=alpha_[i-1] + 0.5) S14_j = 10**(np.random.uniform(low = np.log10(S14_[i-1]/100),high=np.log10(S14_[i-1]*100))) Lj = L(S,alpha_j,S14_j,nu,CdCt) if np.random.uniform() < Lj/Li: alpha_[i] = alpha_j S14_[i] = S14_j Li = Lj accepted += 1 else: alpha_[i] = alpha_[i-1] S14_[i] = S14_[i-1] if Lj > maxL: maxL = Lj alphaMAP = alpha_j S14MAP = S14_j i += 1 if accepted == binning**2: print("Converged in {} steps".format(i)) print("Acceptance: {}, rate : {}".format(accepted,float(accepted)/i)) else: print("Acceptance: {}, rate : {}".format(accepted,float(accepted)/i)) alpha_ = alpha_[:i] S14_ = S14_[:i] #integrate out uncertainty unsing MC integration logS_int = np.zeros([len(alpha_),len(nuModel)],dtype=np.double) logP14_int = np.zeros(len(alpha_),dtype=np.double) i = 0 while i < len(alpha_): logS_int[i,:] = np.log(g(alpha_[i],S14_[i],nuModel)) logP14_int[i] = np.log(P(1400e6,np.random.normal(loc=z,scale=dz),alpha_[i],S14_[i]/1e3)) i += 1 logS_mu = np.mean(logS_int,axis=0) logS_std = np.sqrt(np.mean(logS_int**2,axis=0) - logS_mu**2) logP14_mu = np.mean(logP14_int) logP14_std = np.sqrt(np.mean(logP14_int**2) - logP14_mu**2) S_post_mu = np.exp(logS_mu) S_post_up = np.exp(logS_mu + logS_std) - S_post_mu S_post_low = S_post_mu - np.exp(logS_mu - logS_std) P14_post_mu = np.exp(logP14_mu) P14_post_up =
np.exp(logP14_mu + logP14_std)
numpy.exp
""" [Adapted and refactored from Firedrake test suite by <NAME>] [Not working! Need to be update replacing deprecated C expressions] This demo program solves Helmholtz's equation - div D(u) grad u(x, y) + kappa u(x,y) = f(x, y) with D(u) = 1 + alpha * u**2 alpha = 0.1 kappa = 1 on the unit square with source f given by f(x, y) = -8*pi^2*alpha*cos(2*pi*x)*cos(2*pi*y)^3*sin(2*pi*x)^2 - 8*pi^2*alpha*cos(2*pi*x)^3*cos(2*pi*y)*sin(2*pi*y)^2 + 8*pi^2*(alpha*cos(2*pi*x)^2*cos(2*pi*y)^2 + 1) *cos(2*pi*x)*cos(2*pi*y) + kappa*cos(2*pi*x)*cos(2*pi*y) and the analytical solution u(x, y) = cos(x*2*pi)*cos(y*2*pi) """ from firedrake import * def create_mesh_and_function_space(numel_x, numel_y, degree=1, quadrilateral=False): # Create mesh and define function space mesh = UnitSquareMesh(numel_x, numel_y, quadrilateral=quadrilateral) V = FunctionSpace(mesh, "CG", degree) return mesh, V def helmholtz( V, kappa, alpha, parameters={}, source=Constant(0.0) ): # Define variational problem u = Function(V) v = TestFunction(V) f = Function(V) D = 1 + alpha * u * u f.project(source) a = (dot(grad(v), D * grad(u)) + kappa * v * u) * dx L = f * v * dx # Stiffness matrix assembling A = assemble(a, mat_type='aij') # Printing the stiffness matrix entries and plotting A_entries = A.M.values plt.spy(A_entries) plt.show() solve(a - L == 0, u, solver_parameters=parameters) return u def plot_result(u): try: import matplotlib.pyplot as plt from matplotlib import rc plt.rc('text', usetex=True) plt.rc('font', size=14) # Setting up the figure object plt.figure(dpi=300, figsize=(8, 6)) plot(u) plt.show() return True except Exception as exception: print(exception) return False def compute_errors(u, u_exact, space): f = Function(space) f.interpolate(u_exact) return sqrt(assemble(dot(u - f, u - f) * dx)) def run_convergence_test( u_exact, kappa, alpha, source, degree=1, exponent_min=4, exponent_max=8, quadrilateral=False, parameters={} ): import numpy as np from scipy.stats import linregress errors = np.array([]) mesh_size = np.array([]) for exponent in range(exponent_min, exponent_max): mesh, V = create_mesh_and_function_space(2.0 ** exponent, 2.0 ** exponent, degree=degree, quadrilateral=quadrilateral) u_h = helmholtz(V, kappa, alpha, source=source, parameters=parameters) mesh_size =
np.append(mesh_size, 2 ** exponent)
numpy.append
import chess import numpy as np import time import os import random class TrainingDataGenerator: """ Generates MLP/CNN input data from a dictionary of {FEN String:CP Score} """ def __init__(self, score_dict_file, num_classes=2, flatten=True, min_move_num=0, max_move_num=500): np.random.seed(42) if not str(score_dict_file).endswith('.npy'): score_dict_file += '.npy' self.score_dict = self.import_score_dict(score_dict_file) self.num_classes = num_classes self.flatten = flatten self.min_move_num = min_move_num self.max_move_num = max_move_num self.SquareSet = chess.SquareSet( chess.BB_A1 | chess.BB_A2 | chess.BB_A3 | chess.BB_A4 | chess.BB_A5 | chess.BB_A6 | chess.BB_A7 | chess.BB_A8 | chess.BB_B1 | chess.BB_B2 | chess.BB_B3 | chess.BB_B4 | chess.BB_B5 | chess.BB_B6 | chess.BB_B7 | chess.BB_B8 | chess.BB_C1 | chess.BB_C2 | chess.BB_C3 | chess.BB_C4 | chess.BB_C5 | chess.BB_C6 | chess.BB_C7 | chess.BB_C8 | chess.BB_D1 | chess.BB_D2 | chess.BB_D3 | chess.BB_D4 | chess.BB_D5 | chess.BB_D6 | chess.BB_D7 | chess.BB_D8 | chess.BB_E1 | chess.BB_E2 | chess.BB_E3 | chess.BB_E4 | chess.BB_E5 | chess.BB_E6 | chess.BB_E7 | chess.BB_E8 | chess.BB_F1 | chess.BB_F2 | chess.BB_F3 | chess.BB_F4 | chess.BB_F5 | chess.BB_F6 | chess.BB_F7 | chess.BB_F8 | chess.BB_G1 | chess.BB_G2 | chess.BB_G3 | chess.BB_G4 | chess.BB_G5 | chess.BB_G6 | chess.BB_G7 | chess.BB_G8 | chess.BB_H1 | chess.BB_H2 | chess.BB_H3 | chess.BB_H4 | chess.BB_H5 | chess.BB_H6 | chess.BB_H7 | chess.BB_H8 ) self.ImportantSquareSet = chess.SquareSet( chess.BB_D4 | chess.BB_D5 | chess.BB_C4 | chess.BB_C5 | chess.BB_E4 | chess.BB_E5 | chess.BB_F2 | chess.BB_F7 | chess.BB_H2 | chess.BB_H7 ) def import_score_dict(self, file): score_dict = {} # Attempt to load already processed boards if os.path.isfile(file): score_dict = np.load(file).item() else: print('No hash table found.') return score_dict def parse_FEN_dict(self, num_boards=-1): boards = [] scores = [] start = time.time() print('Generating training data for ' + str(len(self.score_dict)) + " boards.") items = list(self.score_dict.items()) random.shuffle(items) counter = 0 # MLP: if self.flatten: for FEN, score in items: if 0 < num_boards < counter: break board, parsed_score, turn = self.parse_FEN(FEN, score) if board is not None and parsed_score is not None and turn is not None: boards.append(board) if self.num_classes == 2: scores.append(parsed_score) else: scores.append(self.score_to_ternary(score)) counter += 1 # CNN: else: for FEN, score in items: if 0 < num_boards < counter: break board, parsed_score, turn = self.parse_FEN_3D(FEN, score) if board is not None and score is not None: boards.append(board) if self.num_classes == 2: scores.append(parsed_score) else: scores.append(self.score_to_ternary(score)) counter += 1 end = time.time() boards = np.asarray(boards) scores = np.asarray(scores) print('Elapsed time: ' + str(end - start)) return boards, scores # FEN to MLP input def parse_FEN(self, FEN, score): board = chess.Board(FEN) turn = board.turn if board.fullmove_number < self.min_move_num \ or board.fullmove_number > self.max_move_num: return None, None, None # Mirror board on blacks turn, and negate score # if not board.turn: # board = board.mirror() # score = score * -1 if score >= 0: binary_score = 1 else: binary_score = 0 w_pawn = np.asarray(board.pieces(chess.PAWN, chess.WHITE).tolist()).astype(int) w_rook = np.asarray(board.pieces(chess.ROOK, chess.WHITE).tolist()).astype(int) w_knight = np.asarray(board.pieces(chess.KNIGHT, chess.WHITE).tolist()).astype(int) w_bishop = np.asarray(board.pieces(chess.BISHOP, chess.WHITE).tolist()).astype(int) w_queen = np.asarray(board.pieces(chess.QUEEN, chess.WHITE).tolist()).astype(int) w_king = np.asarray(board.pieces(chess.KING, chess.WHITE).tolist()).astype(int) b_pawn = (np.asarray(board.pieces(chess.PAWN, chess.BLACK).tolist()) * -1).astype(int) b_rook = (np.asarray(board.pieces(chess.ROOK, chess.BLACK).tolist()) * -1).astype(int) b_knight = (np.asarray(board.pieces(chess.KNIGHT, chess.BLACK).tolist()) * -1).astype(int) b_bishop = (np.asarray(board.pieces(chess.BISHOP, chess.BLACK).tolist()) * -1).astype(int) b_queen = (np.asarray(board.pieces(chess.QUEEN, chess.BLACK).tolist()) * -1).astype(int) b_king = (np.asarray(board.pieces(chess.KING, chess.BLACK).tolist()) * -1).astype(int) # White/Black check, or no check if board.is_check() and board.turn is True: white_checked = 1 black_checked = 0 elif board.is_check() and board.turn is False: white_checked = 0 black_checked = 1 else: white_checked = 0 black_checked = 0 # [turn, white check, black check] bits turn_check_bits = np.asarray([turn, white_checked, black_checked], dtype=int) binary_board = np.concatenate((w_pawn, w_rook, w_knight, w_bishop, w_queen, w_king, b_pawn, b_rook, b_knight, b_bishop, b_queen, b_king, turn_check_bits)) return binary_board, binary_score, turn # FEN to CNN input def parse_FEN_3D(self, FEN, score): board = chess.Board(FEN) turn = board.turn if board.fullmove_number < self.min_move_num \ or board.fullmove_number > self.max_move_num: return None, None # Mirror board on blacks turn, and negate score # if not board.turn: # board = board.mirror() # score = score * -1 if score >= 0: score = 1 else: score = 0 w_pawn = np.reshape(board.pieces(chess.PAWN, chess.WHITE).tolist(), (-1, 8)).astype(int) w_rook = np.reshape(board.pieces(chess.ROOK, chess.WHITE).tolist(), (-1, 8)).astype(int) w_knight = np.reshape(board.pieces(chess.KNIGHT, chess.WHITE).tolist(), (-1, 8)).astype(int) w_bishop = np.reshape(board.pieces(chess.BISHOP, chess.WHITE).tolist(), (-1, 8)).astype(int) w_queen = np.reshape(board.pieces(chess.QUEEN, chess.WHITE).tolist(), (-1, 8)).astype(int) w_king = np.reshape(board.pieces(chess.KING, chess.WHITE).tolist(), (-1, 8)).astype(int) b_pawn = (np.reshape(board.pieces(chess.PAWN, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) b_rook = (np.reshape(board.pieces(chess.ROOK, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) b_knight = (np.reshape(board.pieces(chess.KNIGHT, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) b_bishop = (np.reshape(board.pieces(chess.BISHOP, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) b_queen = (np.reshape(board.pieces(chess.QUEEN, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) b_king = (np.reshape(board.pieces(chess.KING, chess.BLACK).tolist(), (-1, 8)) * -1).astype(int) checked_info = [] if board.turn is True: turn = [1] * 64 else: turn = [0] * 64 if board.is_check() and board.turn is True: checked_info = [-1] * 64 elif board.is_check() and board.turn is False: checked_info = [1] * 64 elif not board.is_check(): checked_info = [0] * 64 square_attackers = [] pinned_squares = [] important_attackers_features = [] for square in self.SquareSet: if board.is_attacked_by(chess.WHITE, square): square_attackers.append(1) elif board.is_attacked_by(chess.BLACK, square): square_attackers.append(-1) else: square_attackers.append(0) if board.is_pinned(chess.WHITE, square): pinned_squares.append(1) elif board.is_pinned(chess.BLACK, square): pinned_squares.append(-1) else: pinned_squares.append(0) for ImportantSquare in self.ImportantSquareSet: WhiteAttackers = board.attackers(chess.WHITE, ImportantSquare) BlackAttackers = board.attackers(chess.BLACK, ImportantSquare) if len(WhiteAttackers) > len(BlackAttackers): important_attackers_features = [1] * 64 elif len(WhiteAttackers) < len(BlackAttackers): important_attackers_features = [-1] * 64 else: important_attackers_features = [0] * 64 turn = np.asarray(turn) checked_info = np.asarray(checked_info) square_attackers = np.asarray(square_attackers) pinned_squares = np.asarray(pinned_squares) important_attackers_features = np.asarray(important_attackers_features) turn =
np.reshape(turn, (-1, 8))
numpy.reshape
# Author: <NAME> ############################################### # Quantum State ############################################### import numpy as np from numba import njit from const import U0, L, M, H, G import mathieu_functions as mf from scipy.integrate import odeint from scipy.interpolate import UnivariateSpline def energy(val: float): return (H ** 2 / (8 * M * L ** 2)) * val + U0 @njit def energy_numba(val: float): return (H ** 2 / (8 * M * L ** 2)) * val + U0 def energy_crit(vals: list): # for indx, val in enumerate(vals): # if energy(val) > 2 * U0: # n_crit = indx - 1 # break # return n_crit, energy(vals[n_crit]) n_crit = np.argmax(energy(vals) > 2 * U0) - 1 return n_crit, energy(vals[n_crit]) # Time evolution operator def time_opr(val: float, t: float): return np.exp(1j * energy(val) * t / H) # Gaussian coeficients that describe the eigen states distribution # for creating the state of the quantum pendulum def gauss_coeff(nbar: int, n: int, sigma: float): # return ((-1) ** np.random.randint(2)) * np.exp(-((n - nbar) ** 2) / (2 * sigma)) return np.exp(-((n - nbar) ** 2) / (2 * sigma ** 2)) @njit def gauss_coeff_numba(nbar: int, n: int, sigma: float): return np.exp(-((n - nbar) ** 2) / (2 * sigma ** 2)) # Normalization factor for the quantum state def norm(nbar: int, n_max: int, sigma: float): # summation = np.zeros(n_max) # for i in range(len(summation)): # summation[i] = gauss_coeff(nbar, i, sigma) # return 1 / np.sqrt(np.sum(summation ** 2)) summation = np.array([gauss_coeff(nbar, i, sigma) for i in range(n_max)]) return 1 / np.sqrt(np.sum(summation ** 2)) @njit def norm_numba(nbar: int, n_max: int, sigma: float): # sum = 0 # for i in range(n_max): # sum += gauss_coeff_numba(nbar, i, sigma) ** 2 # return 1 / np.sqrt(sum) summation = np.zeros(n_max) for i in range(n_max): summation[i] = gauss_coeff_numba(nbar, i, sigma) return 1 / np.sqrt(np.sum(summation ** 2)) # Eigen states selection function. def eigen_state(n: int, x: np.ndarray, vects: np.ndarray): norm_factor = 1 / np.sqrt(np.pi) # Select Ce or Se depending on n. if n % 2 == 0: # Select a_i vectors return mf.ce_even(int(n / 2), x, vects[0::2]) * norm_factor else: # Select b_i vetors return mf.se_even(int((n - 1) / 2), x, vects[1::2]) * norm_factor @njit def eigen_state_numba(n: int, x: list, vects: list): norm_factor = 1 / np.sqrt(np.pi) # Adjust n for ce & se, respectively if n % 2 == 0: # Select a_i vectors return mf.ce_even_numba(int(n / 2), x, vects[0::2]) * norm_factor else: # Select b_i vetors return mf.se_even_numba(int((n - 1) / 2), x, vects[1::2]) * norm_factor # Quantum state def state(nbar: int, sigma: float, x: np.ndarray, vects: np.ndarray): # n_max = len(vects) # summation = [gauss_coeff(nbar, i, sigma) * eigen_state(i, x, vects) for i in range(n_max)] # return norm(nbar, n_max, sigma) * np.sum(summation, axis=0) n_max = len(vects) summation = np.zeros((n_max, len(x))) for i in range(n_max): summation[i] = gauss_coeff(nbar, i, sigma) * eigen_state(i, x, vects) return norm(nbar, n_max, sigma) *
np.sum(summation, axis=0)
numpy.sum
""" PROJECT: POLARIZATION OF THE CMB BY FOREGROUNDS """ import numpy as np import itertools from math import atan2, pi, acos from matplotlib import pyplot as plt from matplotlib import ticker import cmfg from Parser import Parser from sys import argv import healpy as hp from scipy.spatial.transform import Rotation as R from sklearn.neighbors import NearestNeighbors import pickle import multiprocessing from joblib import Parallel, delayed import cmfg import tqdm import time start_time = time.time() # LOAD config if len(argv) > 1: config = Parser(argv[1]) else: config = Parser() X = cmfg.profile2d(config) X.load_centers() X.select_subsample_centers() # CMB MAP nside = int(config['cmb']['filedata_cmb_nside']) filedata = (f'{config.filenames.datadir_cmb}' f'{config.filenames.filedata_cmb_mapa}') T = hp.read_map(filedata, field=0, h=False, dtype=float) Q = hp.read_map(filedata, field=1, h=False, dtype=float) U = hp.read_map(filedata, field=2, h=False, dtype=float) mask = hp.read_map(filedata, field=4, h=False, dtype=float) # main computations def f(x, N, rmax, rmax_deg, xr, yr, idxs, G): """ Funcion que calcula la contribucion de un centro a los mapas de temperatura y polarización. """ center = x[1] neigh = NearestNeighbors(n_neighbors=3, radius=0.01) Zt = np.zeros((N,N)) Zq = np.zeros((N,N)) Zu = np.zeros((N,N)) Zqr = np.zeros((N,N)) Zur = np.zeros((N,N)) Msk = np.zeros((N,N), dtype=int) # compute rotation matrix phi = float(center.phi) theta = float(center.theta) pa = float(center.pa) vector = hp.ang2vec(theta, phi) rotate_pa = R.from_euler('zyz', [-phi, -theta, pa]) listpixs = hp.query_disc(nside, vector, rmax.value, inclusive=False, fact=4, nest=False) dists, thetas, tt, qq, uu, qr, mm = [], [], [], [], [], [], [] for ipix in listpixs: v = hp.pix2vec(nside, ipix) w = rotate_pa.apply(v) dist = hp.rotator.angdist(w, [0, 0, 1]) theta = atan2(w[1], w[0]) if theta < 0: theta = theta + 2*pi # check mask if mask[ipix]: dists.append(dist[0]) thetas.append(theta) tt.append(T[ipix]) qq.append(Q[ipix]) uu.append(U[ipix]) mm.append(mask[ipix]) thetas = np.array(thetas) dists = np.array(dists) tt = np.array(tt) qq = np.array(qq) uu = np.array(uu) mm = np.array(mm) # calcular el ángulo psi psi2 = 2*thetas qr = -qq*np.cos(psi2) - uu*np.sin(psi2) ur = qq*np.sin(psi2) - uu*np.cos(psi2) x = dists*np.cos(thetas)*180/pi y = dists*np.sin(thetas)*180/pi neigh.fit(np.column_stack([x, y])) for i, ix in zip(idxs, G): rr = np.linalg.norm(ix) if rr < rmax_deg.value: dist, ind = neigh.kneighbors([ix], 3, return_distance=True) dd = np.exp(-dist*25) dsts = dd.sum() if mm[ind].astype(int).sum()==3: val = np.dot(dd, tt[ind][0])/dsts Zt[i[0], i[1]] = Zt[i[0], i[1]] + val val = np.dot(dd, qq[ind][0])/dsts Zq[i[0], i[1]] = Zq[i[0], i[1]] + val val =
np.dot(dd, uu[ind][0])
numpy.dot