prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# The script is used to perform analysis of phtotluminescence spectra of nanoscale Si measured by # Perkin Elmer FL 8500 or 6500 using Spectrum FL Software # (https://www.perkinelmer.com/product/fl-8500-with-spectrum-fl-software-n4200030). # The measurement can be done with powder or liquid samples, with differnect filters to # get rid of excitation light in the emission spectra. The script combines the data measured in 3D mode, # i.e. emission spectra is measured for each excitation wavelength. Depending on the excitation wavelengths # and emission filters used the script combines the spectra into one graph. For example, consider the same # sample was first measured with excitation wavelegths from 300 to 400 nm and emission filter at 430 nm, and # then measured with excitation wavelegths from 400 to 500 nm with emission filter at 515 nm. Then the script # will combine those measurements into one and plot relevant graphs for the combined data. # Script works by setting sample id and the folder, where folders with measurements are located. # These folders must start with sample id followed by '_' character with additional measurement # description. The folder contain the filter wavelength in nm somewhere after the '_' character. # The folder may end with '_' followed by measurement index is case the measurement was repeated. # However there is no way to select the exact measurement repeat, and it is selection is determined # by the directory search function glob.glob(). import argparse import chardet import glob import os import re import matplotlib.pyplot as plt import numpy as np import pandas as pd import xlsxwriter from matplotlib import cm from matplotlib.ticker import LinearLocator def load_csv(meas_folder: str, encoding: str) -> pd.DataFrame: '''Loads the csv to pandas dataframe.''' csv_path = glob.glob(os.path.join(meas_folder, 'Administrator*'))[0] # get file encoding if encoding == '': with open(csv_path, 'rb') as raw: encoding = chardet.detect(raw.read()) encoding = encoding['encoding'] # open file and replace , with . with open(csv_path, 'r', encoding=encoding) as f: csv = f.read().replace(',', '.') with open(csv_path, 'w', encoding=encoding) as f: f.write(csv) # get dataframe meas_df = pd.read_csv(csv_path, sep=';', skiprows=1, encoding=encoding) meas_df.drop(meas_df.columns[len(meas_df.columns)-1], axis=1, inplace=True) meas_df.astype(float) return meas_df def get_sample_data(measure_dir: str, sample_id: str, emission_filters: list, excitation_wavelengths: list, encoding: str) -> list: '''Get sample data for sample with sample_id, excitation wavelengths and emission filters''' # get all folders with specified all_sample_paths = [x for x in glob.glob(os.path.join(measure_dir, sample_id + '*')) if os.path.isdir(x)] print(all_sample_paths) if not all_sample_paths: print('error: sample with specified id was not found: ' + sample_id) return # loop through emission filters and sample paths to # and select ine measurement for each filter and excitation range x_nm = [] sample_data = [] sample_excit_wls = [] if emission_filters: # if there are emission filters, select measurement for each folder for i, ef in enumerate(emission_filters): meas_path = '' for path in all_sample_paths: if str(ef) in path: meas_path = path if meas_path == '': # no measurement with such filter found print('error: no measurement for specified emission filter was found: ' + str(ef) + ' nm') return # load the sample data into dataframe print(f'info: using measurement {meas_path} for emission filter {ef} nm and range {excitation_wavelengths[i]}') meas_df = load_csv(meas_path, encoding) # select the first column which is wavelength in nm x_nm = meas_df.iloc[:, 0].to_numpy() # get excitation wavelengths from the column meas_excit_wls = np.array([float(x.strip(')').strip('INT(')) for x in list(meas_df.columns[1:])]) meas_data = meas_df.iloc[:,1:].to_numpy() excitation_filter_mask = ((meas_excit_wls >= excitation_wavelengths[i][0]) & (meas_excit_wls < excitation_wavelengths[i][1])) meas_data = meas_data[:, excitation_filter_mask] meas_excit_wls = meas_excit_wls[excitation_filter_mask] if len(sample_data) == 0: # sample data is empty make it not empty with meas data sample_data = meas_data sample_excit_wls = meas_excit_wls else: # sample data is not empty, so it can be joined with meas data sample_data = np.concatenate((sample_data, meas_data), axis=1) sample_excit_wls = np.concatenate((sample_excit_wls, meas_excit_wls)) else: # select the last one from the all_sample_paths meas_df = load_csv(all_sample_paths[:-1], encoding) x_nm = meas_df.iloc[:, 0].to_numpy() sample_excit_wls = np.array([float(x.strip(')').strip('(')) for x in list(meas_df.columns[1:])]) sample_data = meas_df.iloc[:,1:].to_numpy() return [x_nm, sample_excit_wls, sample_data] def analyze_sample(args: argparse.Namespace): '''Performs analysis of the sample spectrum: subtracts background if specified and gets values for the peak emission.''' x_nm, excit_wls, spectra = get_sample_data(args.measure_dir, args.sample_id, args.emission_filters, args.excitation_wavelengths, args.encoding) if args.bg_id: bg_x_nm, bg_excit_wls, bg_spectra = get_sample_data(args.measure_dir, args.bg_id, args.emission_filters, args.excitation_wavelengths, args.encoding) # manipulate the bg values for each excitation wavelengths # this is needed becuase background peak at ~830 nm is much larger # then when sample is in holder and thus gives negative values. bg_max_idx = np.argmax(bg_spectra, axis=0) bg_max =
np.amax(bg_spectra, axis=0)
numpy.amax
"""Logic for alerting the user on possibly problematic patterns in the data (e.g. high number of zeros , constant values, high correlations).""" from enum import Enum, auto, unique from typing import Any, Dict, List, Optional, Set, Union import numpy as np import pandas as pd from pandas_profiling.config import Settings from pandas_profiling.model.correlations import perform_check_correlation @unique class AlertType(Enum): """Alert types""" CONSTANT = auto() """This variable has a constant value.""" ZEROS = auto() """This variable contains zeros.""" HIGH_CORRELATION = auto() """This variable is highly correlated.""" HIGH_CARDINALITY = auto() """This variable has a high cardinality.""" UNSUPPORTED = auto() """This variable is unsupported.""" DUPLICATES = auto() """This variable contains duplicates.""" SKEWED = auto() """This variable is highly skewed.""" MISSING = auto() """This variable contains missing values.""" INFINITE = auto() """This variable contains infinite values.""" TYPE_DATE = auto() """This variable is likely a datetime, but treated as categorical.""" UNIQUE = auto() """This variable has unique values.""" CONSTANT_LENGTH = auto() """This variable has a constant length""" REJECTED = auto() """Variables are rejected if we do not want to consider them for further analysis.""" UNIFORM = auto() """The variable is uniformly distributed""" EMPTY = auto() """The DataFrame is empty""" class Alert: """An alert object (type, values, column).""" _anchor_id: Optional[str] = None def __init__( self, alert_type: AlertType, values: Optional[Dict] = None, column_name: Union[str, None] = None, fields: Optional[Set] = None, ): if values is None: values = {} if fields is None: fields = set() self.fields = fields self.alert_type = alert_type self.values = values self.column_name = column_name @property def anchor_id(self) -> Optional[str]: if self._anchor_id is None: self._anchor_id = str(hash(self.column_name)) return self._anchor_id def fmt(self) -> str: # TODO: render in template name = self.alert_type.name.replace("_", " ") if name == "HIGH CORRELATION": num = len(self.values["fields"]) title = ", ".join(self.values["fields"]) name = f'<abbr title="This variable has a high correlation with {num} fields: {title}">HIGH CORRELATION</abbr>' return name def __repr__(self): alert_type = self.alert_type.name column = self.column_name return f"[{alert_type}] alert on column {column}" def check_table_alerts(table: dict) -> List[Alert]: """Checks the overall dataset for alerts. Args: table: Overall dataset statistics. Returns: A list of alerts. """ alerts = [] if alert_value(table.get("n_duplicates", np.nan)): alerts.append( Alert( alert_type=AlertType.DUPLICATES, values=table, fields={"n_duplicates"}, ) ) if table["n"] == 0: alerts.append( Alert( alert_type=AlertType.EMPTY, values=table, fields={"n"}, ) ) return alerts def numeric_alerts(config: Settings, summary: dict) -> List[Alert]: alerts = [] # Skewness if skewness_alert(summary["skewness"], config.vars.num.skewness_threshold): alerts.append( Alert( alert_type=AlertType.SKEWED, fields={"skewness"}, ) ) # Infinite values if alert_value(summary["p_infinite"]): alerts.append( Alert( alert_type=AlertType.INFINITE, fields={"p_infinite", "n_infinite"}, ) ) # Zeros if alert_value(summary["p_zeros"]): alerts.append( Alert( alert_type=AlertType.ZEROS, fields={"n_zeros", "p_zeros"}, ) ) if ( "chi_squared" in summary and summary["chi_squared"]["pvalue"] > config.vars.num.chi_squared_threshold ): alerts.append(Alert(alert_type=AlertType.UNIFORM)) return alerts def categorical_alerts(config: Settings, summary: dict) -> List[Alert]: alerts = [] # High cardinality if summary.get("n_distinct", np.nan) > config.vars.cat.cardinality_threshold: alerts.append( Alert( alert_type=AlertType.HIGH_CARDINALITY, fields={"n_distinct"}, ) ) if ( "chi_squared" in summary and summary["chi_squared"]["pvalue"] > config.vars.cat.chi_squared_threshold ): alerts.append(Alert(alert_type=AlertType.UNIFORM)) if summary.get("date_warning"): alerts.append(Alert(alert_type=AlertType.TYPE_DATE)) # Constant length if "composition" in summary and summary["min_length"] == summary["max_length"]: alerts.append( Alert( alert_type=AlertType.CONSTANT_LENGTH, fields={"composition_min_length", "composition_max_length"}, ) ) return alerts def generic_alerts(summary: dict) -> List[Alert]: alerts = [] # Missing if alert_value(summary["p_missing"]): alerts.append( Alert( alert_type=AlertType.MISSING, fields={"p_missing", "n_missing"}, ) ) return alerts def supported_alerts(summary: dict) -> List[Alert]: alerts = [] if summary.get("n_distinct", np.nan) == summary["n"]: alerts.append( Alert( alert_type=AlertType.UNIQUE, fields={"n_distinct", "p_distinct", "n_unique", "p_unique"}, ) ) if summary.get("n_distinct", np.nan) == 1: summary["mode"] = summary["value_counts_without_nan"].index[0] alerts.append( Alert( alert_type=AlertType.CONSTANT, fields={"n_distinct"}, ) ) alerts.append( Alert( alert_type=AlertType.REJECTED, fields=set(), ) ) return alerts def unsupported_alerts(summary: Dict[str, Any]) -> List[Alert]: alerts = [ Alert( alert_type=AlertType.UNSUPPORTED, fields=set(), ), Alert( alert_type=AlertType.REJECTED, fields=set(), ), ] return alerts def check_variable_alerts(config: Settings, col: str, description: dict) -> List[Alert]: """Checks individual variables for alerts. Args: col: The column name that is checked. description: The series description. Returns: A list of alerts. """ alerts = [] alerts += generic_alerts(description) if description["type"] == "Unsupported": alerts += unsupported_alerts(description) else: alerts += supported_alerts(description) if description["type"] == "Categorical": alerts += categorical_alerts(config, description) if description["type"] == "Numeric": alerts += numeric_alerts(config, description) for idx in range(len(alerts)): alerts[idx].column_name = col alerts[idx].values = description return alerts def check_correlation_alerts(config: Settings, correlations: dict) -> List[Alert]: alerts = [] for corr, matrix in correlations.items(): if config.correlations[corr].warn_high_correlations: threshold = config.correlations[corr].threshold correlated_mapping = perform_check_correlation(matrix, threshold) if len(correlated_mapping) > 0: for k, v in correlated_mapping.items(): alerts.append( Alert( column_name=k, alert_type=AlertType.HIGH_CORRELATION, values={"corr": corr, "fields": v}, ) ) return alerts def get_alerts( config: Settings, table_stats: dict, series_description: dict, correlations: dict ) -> List[Alert]: alerts = check_table_alerts(table_stats) for col, description in series_description.items(): alerts += check_variable_alerts(config, col, description) alerts += check_correlation_alerts(config, correlations) alerts.sort(key=lambda alert: str(alert.alert_type)) return alerts def alert_value(value: float) -> bool: return not
np.isnan(value)
numpy.isnan
''' Differentially private Bayesian learning on distributed data <NAME> 2016-17 Modified from the original code: Differentially private Bayesian linear regression <NAME> 2016-2017 University of Helsinki Department of Computer Science Helsinki Institute of Information Technology HIIT GDSC/drug sensitivity data Various functions and data processing steps used in the tests. ''' import sys, os, copy import numpy as np from scipy.stats import spearmanr import warnings # NOTE on normalisation in distributed setting: # assume centered data (so remove column means) # row-wise L2-normalization is ok, since doesn't depend on other rows # Centers and L2-normalises x-data (removes columnwise mean, normalises rows to norm 1) def xnormalise(x): n = x.shape[0] d = x.shape[1] if n == 0: return x else: z = x-np.dot(np.ones((n,1),dtype=np.float),np.nanmean(x,0).reshape(1,d)) return np.divide(z,np.dot(np.sqrt(np.nansum(np.power(z,2.0),1)).reshape(n,1),np.ones((1,d),dtype=np.float))) # Centers y-data (removes columnwise mean, except for columns where all samples have / all but one sample has missing drug response(s)) def ynormalise(y): n = y.shape[0] d = y.shape[1] if n == 0: return y else: with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) m = np.nanmean(y,0) ind = np.where(np.sum(~np.isnan(y),0)<=1)[0] m[ind] = 0.0 # don't center samples of size <= 1 return y-np.dot(np.ones((n,1),dtype=np.float),m.reshape(1,d)) # Clip data def clip(x,y,B_x,B_y): C = np.multiply(np.sign(x),np.minimum(np.abs(x),B_x)) with np.errstate(invalid='ignore'): D = np.multiply(np.sign(y),np.minimum(np.abs(y),B_y)) return C,D # Selects drug based on drugid, removes cell lines with missing drug response def ignoreNaN(xx,yy,drugid): ind = np.where(np.isnan(yy[:,drugid])) y = np.delete(yy[:,drugid],ind,axis=0) x = np.delete(xx,ind,axis=0) return x,y # Non-private sufficient statistics def nxx(x): return np.dot(x.T,x) def nxy(x,y): return np.dot(x.T,y) def nyy(y): return np.dot(y.T,y) # Precision measure: Spearman's rank correlation coefficient def precision(y_pred,y_real): r = spearmanr(y_pred,y_real)[0] if np.isnan(r): return 0.0 else: return r # Prediction errors (MAE, MSE) helper script def pred_errors(pred, y, method): if method == 'mae': return np.mean(np.absolute(pred-y)) elif method =='mse': return np.mean((pred-y)**2) # Choose optimal w_x,w_y for clipping thresholds def omega(n,d,eps,delta, method='corr',ln=20): # Precision parameters (correspond to the means of the gamma hyperpriors) l = 1.0 l0 = 1.0 l1 = ln l2 = ln st = np.arange(0.1,2.1,0.1) lenC1 = len(st) lenC2 = lenC1 err = np.zeros((lenC1,lenC2),dtype=np.float64) for i in range(l1): # Create synthetic data x = np.random.normal(0.0,1.0,(n,d)) x = xnormalise(x) sx = np.std(x,ddof=1) b = np.random.normal(0.0,1.0/
np.sqrt(l0)
numpy.sqrt
""" acr_sess_analys.py This script runs analyses across sessions using a Session object with data generated by the Allen Institute OpenScope experiments for the Credit Assignment Project. Authors: <NAME> Date: October, 2019 Note: this code uses python 3.7. """ import logging import warnings import numpy as np import scipy.stats as scist from util import file_util, gen_util, logger_util, math_util, rand_util from sess_util import sess_gen_util, sess_ntuple_util, sess_str_util from extra_analysis import quant_analys, signif_grps from extra_plot_fcts import acr_sess_analysis_plots as acr_sess_plots logger = logging.getLogger(__name__) MIN_N = 2 # minimum number of values outside CIs ############################################# def set_multcomp(permpar, sessions=None, n_linpla=4, n_sess=1, factor=1, CIs=True): """ set_multcomp(permpar) Returns permpar updated with the number of comparisons computed from the sessions, if permpar.multcomp is True. Required args: - permpar (PermPar) : named tuple containing permutation parameters Optional args: - sessions (list): nested list of Session objects (linpla x mouse x sess) used to infer n_linpla and n_sess, if provided default: None - n_linpla (int) : number of lines/planes, used if sessions is None default: 4 - n_sess (int) : number of sessions, used if sessions is None default: 1 - factor (int) : additional factor by which to multiply the number of comparisons default: 1 - CIs (bool) : whether confidence interval comparisons are included default: True Returns: - permpar (PermPar): updated permutation parameter named tuple """ if permpar.multcomp: if sessions is not None: n_linpla = (len(sessions)) n_sess = [len(m_sess) for lp_sess in sessions for m_sess in lp_sess] if len(list(set(n_sess))) != 1: raise RuntimeError("There should be the same number of " "sessions for each mouse.") n_sess = n_sess[0] n_comps = 0 # sessions compared to their CIs if CIs: n_comps += n_sess # session pair comparisons k = 2 if n_sess >= k: fact = np.math.factorial n_comps += fact(n_sess) / (fact(k) * fact(n_sess - k)) # for each line/plane, and multiplied by specified factor n_comps *= n_linpla # interplane comparisons (approximate if missing planes) n_comps += n_sess * (n_linpla // 2) # multiplied by specified factor n_comps *= factor permpar = sess_ntuple_util.get_modif_ntuple( permpar, "multcomp", int(n_comps) ) return permpar ############################################# def split_by_linpla(sessions, rem_empty=False): """ split_by_linpla(sessions) Returns nested list of sessions organized by line/plane. Required args: - sessions (list): nested list of Session objects (mouse x sess) Optional args: - rem_empty (bool): if True, lines/planes with no sessions are omitted default: False Returns: - linpla_sess (list) : nested list of Session objects (linpla x mouse x sess) (None for missing sessions) - linpla_order (list): line x plane order """ lines = ["L2/3", "L5"] planes = ["dendrites", "soma"] linpla_order = [f"{lin} {pla[:4]}" for pla in planes for lin in lines] linpla_strip = [s.replace("/", "") for s in linpla_order] linpla_sess = [[] for _ in range(len(linpla_order))] # linpla x mice x sess for mouse_sess in sessions: line = list(set([sess.line for sess in mouse_sess if sess is not None])) if len(line) != 1: raise RuntimeError("Error - why multiple lines? (or None?)") else: line = line[0][:3].strip("-") plas = [sess.plane for sess in mouse_sess if sess is not None] pla_vals = list(set(plas)) for pla in pla_vals: sesses = [] for sess in mouse_sess: if sess is None or sess.plane != pla: sesses.append(None) else: sesses.append(sess) if list(set(sesses)) != [None]: # only add if it"s not all None idx = linpla_strip.index(f"{line} {pla}") linpla_sess[idx].append(sesses) # check for empty lists in any lin/pla if rem_empty: rem_idx = [] for l, sessions in enumerate(linpla_sess): if len(sessions) == 0: rem_idx.append(l) linpla_order = gen_util.remove_idx(linpla_order, rem_idx) linpla_sess = gen_util.remove_idx(linpla_sess, rem_idx) return linpla_sess, linpla_order ############################################# def comp_vals_acr_planes(linpla_ord, vals, n_perms=None, normal=True, stats="mean"): """ comp_vals_acr_planes(linpla_ord, vals) Returns p values for comparisons across planes within lines. Required args: - linpla_ord (list): ordered list of planes/lines - vals (list) : values, structured as planes/lines x session Optional args: - n_perms (int): number of permutations to do if doing a permutation test. If None, a different test is used default: None - stats (str) : stats to use for permutation test default: "mean" - normal (bool): whether data is expected to be normal or not (determines whether a t-test or Mann Whitney test will be done. Ignored if n_perms is not None.) default: True Returns: - p_vals (2D array): p values, structured as planes/lines x session """ lines = ["L2/3", "L5"] n_sess = len(vals[0]) p_vals = np.full([len(lines), n_sess], np.nan) for li, line in enumerate(lines): idx = [i for i in range(len(linpla_ord)) if line in linpla_ord[i]] # do comparison if len(idx) == 2: for s in range(n_sess): # check for nans or None data = [vals[i][s] for i in idx] skip = False for d in data: if d is None or len(d) == 0: skip = True if skip: continue if n_perms is not None: p_vals[li, s] = rand_util.get_op_p_val( data, n_perms, stats=stats, op="diff") elif normal: p_vals[li, s] = scist.ttest_ind( data[0], data[1], axis=None)[1] else: p_vals[li, s] = scist.mannwhitneyu(data[0], data[1])[1] return p_vals ############################################# def get_n_comps(all_p_vals, n_sess, lin_p_vals=None): """ get_n_comps(all_p_vals, n_sess) Returns number of comparisons done for all lines and planes, as well as the theoretical max number of comparisons each dataset is included in. Required args: - all_p_vals (list): list of p-values, structured as line/plane x comparison - n_sess (int) : number of sessions in each line/plane (incl. None) Optional args: - lin_p_vals (list): list of p-values, structured as line x comparison Returns: - tot_n_comps (int) : total number of comparisons for all lines and planes - max_comps_per (int): maximum number of comparisons for each dataset (theoretical - based on number of sessions) """ theor_tot = np.sum(range(n_sess)[1:]) if theor_tot != len(all_p_vals[0]): raise RuntimeError("Theoretical number of comparisons within " f"layer/planes is expected to be {theor_tot}, but is " f"{len(all_p_vals[0])}.") p_vals = [p for all_ps in all_p_vals for p in all_ps] if lin_p_vals is not None: p_vals = p_vals + [p for all_ps in lin_p_vals for p in all_ps] tot_n_comps = np.count_nonzero(~np.isnan(p_vals)) # max number of comparisons each dataset is involved in max_comps_per = n_sess - 1 + (lin_p_vals is not None) return tot_n_comps, max_comps_per ############################################# def data_from_refs(sess, refs, analyspar, stimpar, datatype="roi", integ=False, baseline=0.0, base_pre=None, ch_fl=None, ref_type="segs"): """ data_from_refs(sess, segs, analyspar, stimpar) Returns data for the session. Required args: - sess (Session) : Session object - refs (list) : segments or twop frames - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - integ (bool) : if True, sequence data is integrated default: False - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - base_pre (num) : pre value based on which to calculate baseline. If None, stimpar.pre is used. default: None - ch_fl (list) : flanks in sec [pre sec, post sec] around frames to check for removal if out of bounds default: None - ref_type (str) : type of reference provided ("segs", "twop_frs", "stim_frs") default: "segs" Returns: - data_arr (1-3D array): data array structured as [x ROIs] x seq [x frames] """ if analyspar.rem_bad: nanpol = None else: nanpol = "omit" args = {"rem_bad": analyspar.rem_bad, "scale" : analyspar.scale} if ref_type not in ["segs", "twop_frs", "stim_frs"]: gen_util.accepted_values_error( "ref_type", ref_type, ["segs", "twop_frs", "stim_frs"] ) # retrieve stimulus type if stimpar.stimtype == "both": # use either if ref_type not in ["twop_frs", "stim_frs"]: raise ValueError("If stimpar.stimtype is 'both', must provide " "'twop_frs' or 'stim_frs' as ref_type.") for stimtype in ["gabors", "visflow"]: if hasattr(sess, stimtype): stim = sess.get_stim(stimtype) break else: stim = sess.get_stim(stimpar.stimtype) use_ch_fl = ch_fl if baseline: if use_ch_fl is None: use_ch_fl = [0, 0] if base_pre is None: base_pre = stimpar.pre base_pre, base_post = quant_analys.define_transition_baseline( stimpar.stimtype, stimpar.gabfr, baseline, base_pre, stimpar.post) # expand flank checking as needed use_ch_fl = [np.max([p, b]) for p, b in zip(use_ch_fl, [base_pre, base_post])] if datatype == "roi": if ref_type == "segs": fr_ns = stim.get_fr_by_seg( refs, start=True, stop=True, ch_fl=use_ch_fl, fr_type="twop" )[f"start_frame_twop"] elif ref_type == "twop_frs": if ch_fl is not None: fr_ns = stim.sess.check_flanks(refs, ch_fl, fr_type="twop") else: raise ValueError("If 'datatype' is 'roi', must provide either " "'segs' or 'twop_frs' as ref_type.") if stim.sess.only_tracked_rois != analyspar.tracked: raise RuntimeError( "stim.sess.only_tracked_rois should match analyspar.tracked." ) fct = stim.get_roi_data col = "roi_traces" args["fluor"] = analyspar.fluor elif datatype == "run": # array: 1 x sequences if ref_type == "segs": fr_ns = stim.get_fr_by_seg( refs, start=True, stop=True, ch_fl=use_ch_fl, fr_type="stim" )[f"start_frame_stim"] elif ref_type == "stim_frs": if ch_fl is not None: fr_ns = stim.sess.check_flanks(refs, ch_fl, fr_type="stim") else: raise ValueError("If 'datatype' is 'run', must provide either " "'segs' or 'stim_frs' as ref_type.") fct = stim.get_run_data col = "run_velocity" else: gen_util.accepted_values_error("datatype", datatype, ["run", "roi"]) if len(fr_ns) == 0: raise RuntimeError("No frames found given flank requirements.") data_arr = gen_util.reshape_df_data( fct(fr_ns, stimpar.pre, stimpar.post, **args)[col], squeeze_cols=True) if baseline: base_data = gen_util.reshape_df_data( fct(fr_ns, base_pre, base_post, **args), squeeze_cols=True) end_shape = list(base_data.shape)[:-1] + [1] # (ROI x) sequences x frames base_data = math_util.mean_med( base_data, stats=analyspar.stats, axis=-1, nanpol=nanpol) data_arr = data_arr - base_data.reshape(end_shape) if integ: data_arr = math_util.integ( data_arr, 1. / sess.twop_fps, axis=-1, nanpol=nanpol) return data_arr ############################################# def get_stim_onset_offset_frames(sess, stimpar, lock="stim_onset", frametype="twop_frs"): """ get_stim_onset_offset_frames(sess, stimpar) Returns segment numbers for each stimulus, as well as the pre/post stimulus timing information Required args: - sess (Session) : Session object - stimpar (StimPar): named tuple containing stimulus parameters Optional args: - lock (str) : how to lock the stimulus (onset or offset) default: "stim_onset" - frametype (str): type of frames to return Returns: - stim (Stim) : stimulus object - frames (1D array): start frames """ if stimpar.stimtype not in "both": raise NotImplementedError("Implemented for both stimulus types.") stim = None for stimtype in ["gabors", "visflow"]: # use any stimulus to retrieve data if hasattr(sess, stimtype): stim = sess.get_stim(stimtype) break fr_type = frametype.replace("_frs", "") if lock == "stim_onset": frames = sess.grayscr.get_stop_fr(fr_type=fr_type)[ f"stop_frame_{fr_type}"][:-1] elif lock == "stim_offset": frames = sess.grayscr.get_start_fr(fr_type=fr_type)[ f"start_frame_{fr_type}"][1:] return stim, frames ############################################# def get_common_oris(stimpar, split="by_exp"): """ get_common_oris(stimpar) Returns Gabor orientations for common orientations, and checks parameters. Required args: - stimpar (StimPar): named tuple containing stimulus parameters Optional args: - split (str): how to split data: "by_exp" (all exp, all unexp) default: "by_exp" Returns: - gab_oris (list): Gabor orientations common to U frames """ if split != "by_exp": raise NotImplementedError("'common_oris' only implemented " "with 'split' set to 'by_exp'.") if stimpar.stimtype != "gabors": raise ValueError( "Index analysis with common orientations can only be run on Gabors." ) gab_oris = sess_gen_util.gab_oris_common_U(stimpar.gab_ori) return gab_oris ############################################# def get_seg_info(sess, stimpar, split="by_exp", prog_pos=0, common_oris=False): """ get_seg_info(sess, stimpar) Returns segment information for a specific split type. Required args: - sess (Session) : Session object - stimpar (StimPar): named tuple containing stimulus parameters Optional args: - split (str) : how to split data, either "by_exp": all exp vs all unexp, or "unexp_lock": unexp, vs preceeding exp, or "exp_lock": exp, vs preceeding unexp "prog_unexp": unexp, vs preceeding exp, but not locked (e.g., U, vs prev D) (i.e., pre not necessarily equal to post) "prog_exp": exp, vs preceeding unexp, but not locked (e.g., D, vs prev U) (i.e., pre not necessarily equal to post) default: "by_exp" - prog_pos (int) : unexpected or expected position to retrieve if split is "prog_unexp" or "prog_exp" default: 0 - common_oris (bool): if True, only Gabor stimulus orientations shared by D and U frames are included ("by_exp" split only) default: False Returns: - segs (list) : segment array for each split - pre_posts (list): [pre, post] values for each split """ locks = ["exp_lock", "unexp_lock"] progs = ["prog_exp", "prog_unexp"] split_values = (["by_exp"] + locks + progs) if split not in split_values: if split in ["stim_onset", "stim_offset"]: raise NotImplementedError( "Cannot retrieve segments for stim_onset/stim_offset." ) else: gen_util.accepted_values_error("split", split, split_values) stim = sess.get_stim(stimpar.stimtype) # check parameters if split in locks and stimpar.pre != stimpar.post: raise ValueError("stimpar.pre must equal stimpar.post for " "locked analyses.") if common_oris: gab_ori = get_common_oris(stimpar, split) else: gab_ori = stimpar.gab_ori # identify info for retrieving segments if split == "by_exp": gab_oris = [gab_ori, gab_ori] if stimpar.stimtype == "gabors": # if single Gabor orientation value, adjust by shifting orientation for unexp if stimpar.gabfr in [3, 4] and isinstance(gab_ori, int): gab_oris[1] = sess_gen_util.get_unexp_gab_ori(gab_ori) # check if unexpected component is included if (stimpar.gabfr * 0.3 + stimpar.post) < 0.9: raise RuntimeError(f"{stimpar.post}s after gaborframe " f"{stimpar.gabfr} is too short to include unexpected period.") segs = [stim.get_segs_by_criteria( gabfr=stimpar.gabfr, gabk=stimpar.gabk, gab_ori=gab_oris[unexp], visflow_dir=stimpar.visflow_dir, visflow_size=stimpar.visflow_size, unexp=unexp, by="seg") for unexp in [0, 1]] pre_posts = [[stimpar.pre, stimpar.post]] * 2 else: if split in locks: remconsec = True gabfr = "any" elif split in progs: remconsec = False gabfr = stimpar.gabfr unexp = 1 if ("unexp" in split) else 0 segs = stim.get_segs_by_criteria(gabfr=gabfr, gabk=stimpar.gabk, gab_ori=stimpar.gab_ori, visflow_dir=stimpar.visflow_dir, visflow_size=stimpar.visflow_size, unexp=unexp, by="seg", remconsec=remconsec) if split in locks: # shift to correct gabor frame if (stimpar.stimtype == "gabors" and stimpar.gabfr not in ["any", "all"]): segs = [seg + stimpar.gabfr for seg in segs] segs = [segs] * 2 pre_posts = [[stimpar.pre, 0], [0, stimpar.post]] elif split in progs: if not int(prog_pos) == float(prog_pos): raise ValueError("prog_pos must be of type int.") prog_pos = int(prog_pos) # get the shift values for the main and previous segments base_shift = 4 if stimpar.stimtype == "gabors" else 1 if stimpar.stimtype == "gabors" and gabfr in ["any", "all"]: raise NotImplementedError("Setting 'stimpar.gabfr' to " "'any' or 'all' has not been sufficiently tested for " "'prog' split values.") main_seg_shift = base_shift * prog_pos # get the main segment numbers start_segs, n_consec = gen_util.consec(segs, smallest=True) if prog_pos == 0: main_segs = np.asarray(start_segs) else: keep_segs_idx = np.where(np.asarray(n_consec) > prog_pos)[0] main_segs = np.asarray(start_segs)[keep_segs_idx] + \ main_seg_shift prev_seg_shift = base_shift * (1 + prog_pos) main_segs = np.asarray( list(filter(lambda i : i >= prev_seg_shift, main_segs)) ).reshape(-1) if len(main_segs) == 0: raise RuntimeError("No segments meet the criteria for " f"'prog_pos' = {prog_pos}.") # [prev_segs, main_segs] segs = [main_segs - prev_seg_shift, main_segs] pre_posts = [[stimpar.pre, stimpar.post]] * 2 return segs, pre_posts ############################################# def split_data_by_sess(sess, analyspar, stimpar, datatype="roi", split="by_exp", integ=False, baseline=0.0, prog_pos=0, common_oris=False): """ split_data_by_sess(sess, analyspar, stimpar) Returns data for the session, split as requested. Required args: - sess (Session) : Session object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - split (str) : how to split data, either "by_exp": all exp vs all unexp, or "unexp_lock": unexp, vs preceeding exp, or "exp_lock": exp, vs preceeding unexp "prog_unexp": unexp, vs preceeding exp, but not locked (e.g., U, vs prev D) (i.e., pre not necessarily equal to post) "prog_exp": exp, vs preceeding unexp, but not locked (e.g., D, vs prev U) (i.e., pre not necessarily equal to post) "stim_onset": grayscreen vs stimulus onset "stim_offset": stimulus offset vs grayscreen default: "by_exp" - integ (bool) : if True, sequence data is integrated default: False - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - prog_pos (int) : unexpected or expected position to retrieve if split is "prog_unexp" or "prog_exp" default: 0 - common_oris (bool) : if True, only Gabor stimulus orientations common to D and U frames are included ("by_exp" split only) default: False Returns: - data_arr (list): list of data arrays structured as split1, 2 [x ROIs] x seq [x frames] split1, 2 ordered in time, i.e. if split in ["by_exp", "unexp_lock", "prog_unexp"]: split1, 2: exp, unexp elif split in ["exp_lock", "prog_exp"]: split1, 2: unexp, exp elif split is "stim_onset": split1, 2: grayscr, stim elif split is "stim_offset: split1, 2: stim, grayscr """ locks = ["exp_lock", "unexp_lock"] progs = ["prog_exp", "prog_unexp"] stim_on_offset = ["stim_onset", "stim_offset"] if split in (["by_exp"] + locks + progs): stim = sess.get_stim(stimpar.stimtype) refs, pre_posts = get_seg_info( sess, stimpar, split=split, prog_pos=prog_pos, common_oris=common_oris ) ref_type = "segs" elif split in stim_on_offset: pre_posts = [[stimpar.pre, 0], [0, stimpar.post]] ref_type = "twop_frs" if datatype == "roi" else "stim_frs" stim, frames = get_stim_onset_offset_frames( sess, stimpar, lock=split, frametype=ref_type ) refs = [frames, frames] if split in progs: prev_seg_shift = np.unique(refs[1] - refs[0]) if len(prev_seg_shift) != 1: raise RuntimeError( "Expected both sets of segs to be equally spaced." ) prev_seg_shift = prev_seg_shift[0] data_arr = [] for s, (subrefs, [pre, post]) in enumerate(zip(refs, pre_posts)): ch_fl = None base_pre = None # check flanks and baseline pre adjusted as pre and post are split up! if split in (locks + stim_on_offset): base_pre = stimpar.pre ch_fl = [stimpar.pre, stimpar.post] elif split in progs: base_pre = stimpar.pre sec_between = prev_seg_shift * stim.seg_len_s if stimpar.stimtype == "gabors": n_grayscr_segs = (3 - stimpar.gabfr + prev_seg_shift) // 4 sec_between += n_grayscr_segs * stim.seg_len_s if s == 0: # for prev segs ch_fl = [stimpar.pre, stimpar.post + sec_between] elif s == 1: # for main segs ch_fl = [stimpar.pre + sec_between, stimpar.post] stimpar_use = sess_ntuple_util.get_modif_ntuple( stimpar, ["pre", "post"], [pre, post]) data_arr.append(data_from_refs( sess, subrefs, analyspar, stimpar_use, datatype, integ=integ, baseline=baseline, base_pre=base_pre, ch_fl=ch_fl, ref_type=ref_type)) # very few stim onset/offset sequences, so best to retain all axis = -1 if integ else -2 if ((split in stim_on_offset) and (data_arr[s].shape[axis] != len(subrefs))): raise RuntimeError("Not all sequences could be retained for " f"{split} with stimpar.pre={stimpar.pre} and " f"stimpar.post={stimpar.post}.") return data_arr ############################################# def dir_data_by_sess(sess, analyspar, stimpar, datatype="roi", integ=False, baseline=0.0, unexp="any", remconsec=False): """ dir_data_by_sess(sess, analyspar, stimpar) Returns data for the session, split by direction. Required args: - sess (Session) : Session object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - integ (bool) : if True, sequence data is integrated default: False - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - unexp (str or int) : unexpected value, e.g. "any", 0, 1 default: "any" - remconsec (bool) : if True, consecutive segments are removed default: False Returns: - data_arr (list): list of data arrays structured as nasal, temp [x ROIs] x seq [x frames] """ if stimpar.stimtype != "visflow": raise ValueError("Cannot get direction data for Gabors.") if not remconsec and not (baseline is None or baseline == 0): raise NotImplementedError("Baseline not implemented for " "Visflow direction without 'remconsec'.") stim = sess.get_stim(stimpar.stimtype) data_arr = [] for direc in ["nasal", "temp"]: stimpar_sp = sess_ntuple_util.get_modif_ntuple( stimpar, "visflow_dir", direc) segs = stim.get_segs_by_criteria( gabfr=stimpar_sp.gabfr, gabk=stimpar_sp.gabk, gab_ori=stimpar_sp.gab_ori, visflow_dir=stimpar_sp.visflow_dir, visflow_size=stimpar_sp.visflow_size, remconsec=remconsec, unexp=unexp, by="seg") data_arr.append(data_from_refs( sess, segs, analyspar, stimpar, datatype, integ=integ, baseline=baseline, base_pre=stimpar.pre)) return data_arr ############################################# def split_diff_by_sess(sess, analyspar, stimpar, n_perms=1000, datatype="roi", split="by_exp", baseline=0.0): """ split_diff_by_sess(sess, analyspar, stimpar) Returns session statistics for difference between sequence splits as well as random values obtained from permutations. Required args: - sess (Session) : Session object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - n_perms (int) : number of permutations for CI estimation. If None, random data is not calculated. default: 1000 - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - split (str) : how to split data, either "by_exp": all exp vs all unexp, or "unexp_lock": unexp, vs preceeding exp, or "exp_lock": exp, vs preceeding unexp "prog_unexp": unexp, vs preceeding exp, but not locked (e.g., U, vs prev D) (i.e., pre not necessarily equal to post) "prog_exp": exp, vs preceeding unexp, but not locked (e.g., D, vs prev U) (i.e., pre not necessarily equal to post) "stim_onset": grayscreen vs stimulus onset "stim_offset": stimulus offset vs grayscreen default: "by_exp" - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 Returns: - diff_st (1D array) : session statistics for difference between split2 and split1 sequence areas (me, err) - all_rand (1D array): random value obtained for each permutation (None, if n_perms is None) - data_arr (list) : list of data arrays, structured as split1, 2 [x ROIs] x seq split1, 2 ordered in time, i.e. if split in ["by_exp", "unexp_lock", "prog_unexp"]: split1, 2: exp, unexp elif split in ["exp_lock", "prog_exp"]: split1, 2: unexp, exp elif split is "stim_onset": split1, 2: grayscr, stim elif split is "stim_offset: split1, 2: stim, grayscr """ nanpol = "omit" if analyspar.rem_bad: nanpol = None data_arr = split_data_by_sess(sess, analyspar, stimpar, datatype=datatype, split=split, integ=True, baseline=baseline) # take mean/median across sequences mean_meds = [math_util.mean_med(data, stats=analyspar.stats, axis=-1, nanpol=nanpol) for data in data_arr] last_dim = np.sum([sub.shape[-1] for sub in data_arr]) if datatype != "roi": mean_meds = np.asarray(mean_meds).reshape(2, 1) targ = (1, last_dim) else: targ = (-1, last_dim) diff_st = math_util.get_stats(mean_meds[1] - mean_meds[0], stats=analyspar.stats, error=analyspar.error, nanpol=nanpol) # get CI div = data_arr[0].shape[-1] # length of exp all_rand = None if n_perms is not None: all_rand = math_util.mean_med(rand_util.permute_diff_ratio( np.concatenate(data_arr, axis=-1).reshape(targ), div=div, n_perms=n_perms, stats=analyspar.stats, nanpol=nanpol, op="diff"), stats=analyspar.stats, axis=0, nanpol=nanpol) return diff_st, all_rand, data_arr ############################################# def prog_by_sess(sess, analyspar, stimpar, datatype="roi", unexp="prog_unexp", position=0, baseline=0): """ prog_by_sess(sess, analyspar, stimpar) Returns differences between unexpected sequences and preceeding expected sequences across a session, as well as the average for the session. Required args: - sess (Session) : Session object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - n_perms (int) : number of permutations for CI estimation default: 1000 - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - unexp (str) : how to split unexpected vs exp data, either "prog_unexp": unexp, vs preceeding exp, but not locked (e.g., prog U, vs prev D) (i.e., pre not necessarily equal to post) "prog_exp": exp, vs preceeding unexp, but not locked (e.g., D, vs prev U) (i.e., pre not necessarily equal to post) default: "prog_unexp" - position (int) : unexpected or expected position to retrieve default: 0 - baseline (bool or num): if not False, number of second to use for baseline default: 0 Returns: - data_arr (2 or 3D array): array of data for unexpected sequences and the preceeding expected sequence (exp, unexp), or v.v. if unexp is "prog_exp", structured as (exp, unexp) [x ROIs] x seq """ if unexp not in ["prog_unexp", "prog_exp"]: gen_util.accepted_values_error( "unexp", unexp, ["prog_unexp", "prog_exp"] ) data_arr = split_data_by_sess(sess, analyspar, stimpar, datatype=datatype, split=unexp, integ=True, baseline=baseline, prog_pos=position) data_arr = np.asarray(data_arr) return data_arr ############################################# def stim_idx_by_sess(sess, analyspar, stimpar, n_perms=1000, datatype="roi", feature="by_exp", position=0, op="d-prime", baseline=0.0, common_oris=False, seed=None, run_random=True): """ stim_idx_by_sess(sess, analyspar, stimpar) Returns session item (ROIs or 1 for running) indices for difference between sequences split by the specified feature, as well as their percentiles based on random permutations for each item. Required args: - sess (Session) : Session object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - n_perms (int) : number of permutations for CI estimation default: 1000 - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - feature (str) : how to split stimuli, e.g., "by_exp": all exp vs all unexp, or "prog_unexp": first unexp, vs prec. exp, or "prog_exp": first exp, vs prec. unexp, or "dir": left v right direction default: "by_exp" - position (int) : unexpected or expected position to retrieve if feature is "prog_unexp" or "prog_exp" default: 0 - op (str) : operation to use in measuring indices ("diff", "rel_diff", "d-prime") default: "d-prime" - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - common_oris (bool) : if True, only Gabor stimulus orientations common to D and U frames are included ("by_exp" feature only) default: False - seed (int) : seed value to use. (-1 treated as None) default: None - run_random (bool) : if True, randomization is run and results are returns (item_percs, all_rand) default: True Returns: - item_idxs (1D array) : item (ROIs or 1 for running) indices for the session if run_random: - item_percs (1D array): item (ROIs or 1 for running) index percentiles for the session, based on each item's random permutations - all_rand (2D array) : item (ROIs or 1 for running) indices calculated through randomized permutation, structured as item x n_perms """ seed = rand_util.seed_all(seed, "cpu", log_seed=False) nanpol = "omit" if analyspar.rem_bad: nanpol = None if "dir" in feature: if feature == "dir_exp": unexp = 0 elif feature == "dir_unexp": unexp = 1 elif feature == "dir": unexp = "any" else: raise ValueError("If 'dir' in 'feature', must be " "among 'dir_exp', 'dir_unexp' or 'dir'.") if common_oris: raise ValueError("'common_oris' only applies to Gabor analyses.") data_arr = dir_data_by_sess(sess, analyspar, stimpar, datatype=datatype, integ=True, baseline=baseline, unexp=unexp, remconsec=False) else: data_arr = split_data_by_sess(sess, analyspar, stimpar, datatype=datatype, split=feature, integ=True, baseline=baseline, prog_pos=position, common_oris=common_oris) if op != "d-prime": # take statistic across sequences seq_mes = np.stack([math_util.mean_med( arr, stats=analyspar.stats, axis=-1, nanpol=nanpol) for arr in data_arr]) axis = None else: seq_mes = data_arr axis = -1 # take relative difference (index) item_idxs = math_util.calc_op(seq_mes, op=op, nanpol=nanpol, axis=axis) if run_random: last_dim = np.sum([sub.shape[-1] for sub in data_arr]) if datatype != "roi": item_idxs = np.asarray(item_idxs).reshape(-1) targ = (1, last_dim) else: targ = (-1, last_dim) # get CI div = data_arr[0].shape[-1] # length of exp # perms (items x perms) all_rand = rand_util.permute_diff_ratio( np.concatenate(data_arr, axis=-1).reshape(targ), div=div, n_perms=n_perms, stats=analyspar.stats, nanpol=nanpol, op=op) item_percs = np.empty(len(item_idxs)) for r, (item_idx, item_rand) in enumerate(zip(item_idxs, all_rand)): item_percs[r] = scist.percentileofscore( item_rand, item_idx, kind="mean") return item_idxs, item_percs, all_rand else: return item_idxs ############################################# def stim_idx_acr_sesses(sessions, analyspar, stimpar, n_perms=1000, datatype="roi", feature="by_exp", position=0, op="d-prime", baseline=0.0, common_oris=False, seed=None, parallel=False): """ stim_idx_acr_sesses(sessions, analyspar, stimpar) Returns item (ROIs or running) indices for difference between stimulus features (e.g., unexpected v expected, visual flow direction), as well as their percentiles based on random permutations for each item, grouped across mice for the session number. Required args: - sessions (list) : Session objects for each mouse - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - n_perms (int) : number of permutations for CI estimation default: 1000 - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - feature (str) : how to split stimuli, e.g., "by_exp": all exp vs all unexp, or "prog_unexp": first unexp, vs prec. exp, or "prog_exp": first exp, vs prec. unexp, or "dir_exp": left v right direction (exp.), "dir_unexp": left v right direction (unexp.), "dir": left v right direction default: "by_exp" - position (int) : unexpected or expected position to retrieve if unexp is "prog_unexp" or "prog_exp" default: 0 - op (str) : operation to use in measuring indices ("diff", "rel_diff", "d-prime") default: "d-prime" - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - common_oris (bool) : if True, only Gabor stimulus orientations common to D and U frames are included ("by_exp" feature only) default: False - seed (int) : seed value to use. (-1 treated as None) default: None - parallel (bool) : if True, sessions are analysed in parallel (not implemented) default: False Returns: - all_item_idxs (list) : item (ROIs or running) indices grouped across all sessions - all_item_percs (list): item (ROIs or running) index percentiles, based on each item's random permutations, grouped across all sessions - all_rand_idxs (list) : for each session number, random item (ROIs or running) indices, based on each item's random permutations, grouped across all sessions and items (items * n_perms) """ all_item_idxs, all_item_percs, all_rand_idxs = [], [], [] for sess in sessions: if sess is None: continue try: item_idxs, item_percs, rand_idxs = stim_idx_by_sess( sess, analyspar, stimpar, n_perms, datatype, feature, position, op, baseline, common_oris, seed) except Exception as e: if "dir" in feature and "No segments" in str(e): continue else: raise e all_item_idxs.extend(item_idxs.tolist()) all_item_percs.extend(item_percs.tolist()) all_rand_idxs.extend(rand_idxs.tolist()) return all_item_idxs, all_item_percs, all_rand_idxs ############################################# def stim_idx_by_sesses(sessions, analyspar, stimpar, n_perms=1000, p_val=0.05, datatype="roi", feature="by_exp", op="d-prime", position=0, baseline=0.0, common_oris=False, seed=None, parallel=False): """ stim_idx_by_sesses(sessions, analyspar, stimpar) Returns item (ROIs or running) indices for difference between stimulus features (e.g., unexpected v expected, visual flow direction), as well as their percentiles based on random permutations for each item, grouped across mice for each session number. Required args: - sessions (list) : nested list of Session objects (mouse x sess) - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters Optional args: - n_perms (int) : number of permutations for CI estimation default: 1000 - p_val (float) : p-value (used to decide number of bins) default: 0.05 - datatype (str) : type of data (e.g., "roi", "run") default: "roi" - feature (str) : how to split stimuli, e.g., "by_exp": all exp vs all unexp, or "prog_unexp": first unexp, vs prec. exp, or "prog_exp": first exp, vs prece. unexp, or "dir_exp": left v right direction (exp.), "dir_unexp": left v right direction (unexp.), "dir": left v right direction default: "by_exp" - op (str) : operation to use in measuring indices ("diff", "rel_diff", "d-prime") default: "d-prime" - position (int) : unexpected or expected position to retrieve if unexp is "prog_unexp" or "prog_exp" default: 0 - baseline (bool or num): if not False, number of second to use for baseline default: 0.0 - common_oris (bool) : if True, only Gabor stimulus orientations common to D and U frames are included ("by_exp" feature only) default: False - seed (int) : seed value to use. (-1 treated as None) default: None - parallel (bool) : if True, sessions are analysed in parallel default: False Returns: - all_item_idxs (list) : for each session number, item (ROIs or running) index bin counts grouped across mice - all_item_percs (list): for each session number, item (ROIs or running) index percentile bin counts, based on each item's random permutations, grouped across mice - all_rand_idxs (list) : for each session number, binned random item (ROIs or running) index bin counts, based on each item's random permutations, grouped across mice, structured as session (item * n_perms) - all_perc_pos (list) : for each session number, percent ROIs with positive indices, grouped across mice, - sess_edges (list) : for each session number, bin edges used for indices, session x [min, max] - sess_info (list) : nested list of dictionaries for each session number containing information from each mouse, with None for missing sessions ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes ["nrois"] (list) : number of ROIs in session """ if len(sessions) == 0: raise ValueError("At least one session must be passed.") n_sess = list(set([len(m_sess) for m_sess in sessions])) if len(n_sess) != 1: raise RuntimeError("There should be the same number of sessions for " "each mouse.") sessions_zipped = zip(*sessions) n_bins = 4 / p_val if n_bins != int(n_bins): raise NotImplementedError(f"Analysis not well adapted to binning " f"with p-value of {p_val}.") else: n_bins = int(n_bins) all_item_idxs, all_item_percs, all_rand_idxs, all_poses = [], [], [], [] sess_edges = [] sess_info = [] for sesses in sessions_zipped: sesses = list(sesses) all_items, all_percs, all_rand = stim_idx_acr_sesses( sesses, analyspar, stimpar, n_perms, datatype, feature, position, op, baseline, common_oris, seed, parallel) sess_info.append(sess_gen_util.get_sess_info( sesses, analyspar.fluor, add_none=True, incl_roi=(datatype=="roi"), rem_bad=analyspar.rem_bad)) if len(all_rand) == 0: use_bounds = [-0.5, 0.5] bin_edges = np.linspace(*use_bounds, n_bins + 1) all_item_idxs.append( np.histogram(all_items, bins=bin_edges)[0].tolist()) all_rand_idxs.append( (np.histogram(all_rand, bins=bin_edges)[0]).tolist()) sess_edges.append([np.min(bin_edges), np.max(bin_edges)]) all_item_percs.append( np.histogram( all_percs, bins=n_bins, range=[0, 100])[0].tolist()) all_poses.append(np.nan) continue # get edges for histogram all_rand = np.concatenate(all_rand, axis=0) div = len(all_rand)/float(len(all_items)) if op in ["diff", "d-prime"]: use_bounds = [np.min(all_rand), np.max(all_rand)] elif op == "rel_diff": # use extrema or outlier bounds, whichever are tighter rand_outlier_bounds = math_util.outlier_bounds( all_rand, fences="outer") use_bounds = [fct([o, fct(all_rand)]) for o, fct in zip(rand_outlier_bounds, [np.max, np.min])] # ensure that real data is fully included use_bounds = [fct([fct(all_items), r]) for r, fct in zip(use_bounds, [np.min, np.max])] n_out = np.sum(all_rand < use_bounds[0]) + \ np.sum(all_rand > use_bounds[1]) if n_out > 0: logger.warning(f"{n_out}/{len(all_rand)} random values lie " "outside histogram bin bounds (outliers).") bin_edges = np.linspace(*use_bounds, n_bins + 1) perc_pos = (len(np.where(np.asarray(all_items) > 0)[0]) * 100 / len(all_items)) all_item_idxs.append( np.histogram(all_items, bins=bin_edges)[0].tolist()) all_rand_idxs.append( (np.histogram(all_rand, bins=bin_edges)[0]/div).tolist()) all_item_percs.append( np.histogram(all_percs, bins=n_bins, range=[0, 100])[0].tolist()) all_poses.append(perc_pos) sess_edges.append([np.min(bin_edges), np.max(bin_edges)]) return [all_item_idxs, all_item_percs, all_rand_idxs, all_poses, sess_edges, sess_info] ############################################# def get_grped_roi_stats(all_roi_vals, analyspar, permpar): """ get_grped_roi_stats(all_roi_vals, analyspar, permpar) Returns difference between sequence data for each split, with ROIs grouped across mice. Required args: - all_roi_vals (list) : sequence areas, split across groups (e.g., exp, unexp) values for each session, structured as session x mice x splits x ROI x seqs - analyspar (AnalysPar): named tuple containing analysis parameters - permpar (PermPar) : named tuple containing permutation parameters Returns: - all_diff_st (list) : difference stats (split2 - split1) across ROIs (grouped across mice), structured as session x stats - CI_vals (list) : CIs values across ROIs, structured as session x perc (med, lo, high) - sign_sess (list) : significant session indices, optionally structured by tail - all_diffs (list) : differences, structured as session x ROI - p_vals_grped (list): p values for each comparison, organized by session pairs (where the second session is cycled in the inner loop, e.g., 0-1, 0-2, 1-2, including empty groups) - p_vals_sess (list) : p values for each session """ # integrate multiple comparisons into p-value if permpar.multcomp: permpar = sess_ntuple_util.get_modif_ntuple( permpar, ["multcomp", "p_val"], [False, permpar.p_val / permpar.multcomp] ) # join ROIs across mice percs = [50.0] + math_util.get_percentiles( CI = (1.0 - permpar.p_val), tails=permpar.tails )[0] st_len = 2 + (analyspar.stats == "median" and analyspar.error == "std") nanpol = "omit" if analyspar.rem_bad: nanpol = None n_sess = len(all_roi_vals) all_diff_st = np.empty([n_sess, st_len]) * np.nan all_rand = np.empty([n_sess, permpar.n_perms]) * np.nan all_diffs = [] for s, sess_roi_vals in enumerate(all_roi_vals): # mice x splits x ROIs x seqs sess_mean_meds = [] sess_rands = [] for mouse_vals in sess_roi_vals: # for each mouse sess_mean_meds.append([math_util.mean_med(split_vals, axis=-1, stats=analyspar.stats) for split_vals in mouse_vals]) # get CI div = mouse_vals[0].shape[-1] # length of exp # perms sess_rands.append(rand_util.permute_diff_ratio(
np.concatenate(mouse_vals, axis=1)
numpy.concatenate
from pioneer.common import linalg from enum import Enum import cv2 import numpy as np class Pos(Enum): LEFT = 0 CENTER = 1 RIGHT = 2 class CylindricalProjection(): ''' cylindrical projection for 3 cameras args: intrinsic_calibrations: list of the 3 intrinsic cameras calibration distortion_coef: list of the 3 distorsion cameras coef extrinsic_calibrations: list of the 3 extrinsics 4x4 matrix, the middle is equal to identity config: configuration dict radius: cylinder radius (meter) FOV_h: total horizontal cylinder FOV (rad) FOV_v: total vertical cylinder FOV (rad) image_h : horizontal cylinder (pixel) image_v : vertical cylinder (pixel) fusion_overlap_ratio : overlap ratio between take in account for image merging or fusion (0.0 to 1.0) ''' def __init__(self , intrinsic_calibrations = None , distortion_coef = None , extrinsic_calibrations = None , config={'radius':50.0, 'FOV_h':np.deg2rad(210), 'FOV_v':np.deg2rad(67.5), 'image_h':2000, 'image_v':int(2000*0.25), 'fusion_overlap_ratio': 0.25} ): self.__assert_intrinsic_calibrations(intrinsic_calibrations) self.__assert_distortion_coefficients(distortion_coef) self.__assert_extrinsic_calibrations(extrinsic_calibrations) self.radius = config.get('radius', 50.0) self.FOV_width = config.get('FOV_h', np.deg2rad(210)) self.FOV_height = config.get('FOV_v',
np.deg2rad(67.5)
numpy.deg2rad
import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm def plot_levels(func, xrange=None, yrange=None, levels=None): """ Plotting the contour lines of the function. Example: -------- >> oracle = oracles.QuadraticOracle(np.array([[1.0, 2.0], [2.0, 5.0]]), np.zeros(2)) >> plot_levels(oracle.func) """ if xrange is None: xrange = [-6, 6] if yrange is None: yrange = [-5, 5] if levels is None: levels = [0, 0.25, 1, 4, 9, 16, 25] x =
np.linspace(xrange[0], xrange[1], 100)
numpy.linspace
import numpy as np from sklearn.datasets import load_digits from copy import deepcopy def H(h_triplets: dict, x, y) -> bool: """ return True if belongs to class 1 return False if not belongs to class 1 """ global M global one global minus_one res = [] for i in range(M): sum = 0 for ind, trip in enumerate(h_triplets.values()): alpha = trip[2] sum += alpha * trip[5][i] res.append(sum > 0) good_guess = 0 for ind, guess in enumerate(res): if guess and y[ind] == one: # correct guess, it is class 1 good_guess += 1 elif not guess and y[ind] == minus_one: # correct guess, it is class -1 good_guess += 1 score = good_guess / M return score def adaboost10(h: dict, x, y): global M global N global one global minus_one eps_vec = np.zeros((N, 1)) W = np.full((M, 1), 1 / M) T = 10 best_h = {} wrongs = {} while len(best_h.keys()) != T: inp_guess = {} for ind, triplet in enumerate(h.values()): inp_guess[ind] = [] wrong_ind = [] bigger_than = (triplet[0] == '>') thres = triplet[1] for index, num in enumerate(x[:, ind]): # on collumn ind, attr: n{ind} if (bigger_than and num > thres) or (not bigger_than and num < thres): # predict that is class 1 inp_guess[ind].append(1) if y[index] != one: wrong_ind.append(index) # Wrong input index else: # predict that is class -1 inp_guess[ind].append(-1) if y[index] != minus_one: wrong_ind.append(index) tmp_eps = 0 for i in wrong_ind: tmp_eps += W[i] eps_vec[ind] = tmp_eps wrongs[ind] = wrong_ind # updating h and alpha min_eps = min(eps_vec) # minimal epsilon in time: t if min_eps == 0: print('100% success, pick 2 different digits') return min_h = np.argmin(eps_vec) # best h in time: t cur_alpha = float(0.5 *
np.log((1 - min_eps) / min_eps)
numpy.log
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2019 by ShabaniPy Authors, see AUTHORS for more details. # # Distributed under the terms of the MIT license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Model functions used to describe SQUID oscillations. """ from math import pi import numpy as np from scipy.constants import h, e from scipy.interpolate import interp1d def compute_squid_current( phase, cpr1, parameters1, cpr2, parameters2, positive=True, aux_res=101, inductance=0.0, compute_phase=False, ): """Compute the SQUID current from 2 CPRs. Parameters ---------- phase : np.ndarray Phase at which to compute the SQUID current flow (1D array at most). cpr1 : callable Function used to compute the current in the first junction. The callable should take the phase as first argument. parameters1 : tuple Parameters to use to compute the current in the first junction. cpr2 : callable Function used to compute the current in the second junction. The callable should take the phase as first argument. parameters1 : tuple Parameters to use to compute the current in the second junction. positive : bool, optional Should the computed current be positive or negative aux_res : int, optional Number of points to use when optimizing the phase to get the maximum current. inductance : float, optional Inductance of the loop in H compute_phase : bool, optional Computethe phase at which the squid current is maximal instead of the current. """ phi1, *p1 = parameters1 phi2, *p2 = parameters2 if inductance == 0.0: aux = np.tile(
np.linspace(0, 2 * np.pi, aux_res)
numpy.linspace
#!/usr/bin/env python3 """ Created on Tue Apr 24 15:48:52 2020 @author: <NAME> """ from os.path import splitext import numpy as np # import spatialmath as sp from spatialmath import SE3 from spatialmath.base.argcheck import getvector, verifymatrix from spatialmath.base import tr2rpy, r2q from ropy.robot.ELink import ELink from ropy.backend.PyPlot.functions import \ _plot, _teach, _fellipse, _vellipse, _plot_ellipse, \ _plot2, _teach2 from ropy.backend import xacro from ropy.backend import URDF class ETS(object): """ The Elementary Transform Sequence (ETS). A superclass which represents the kinematics of a serial-link manipulator :param et_list: List of elementary transforms which represent the robot kinematics :type et_list: ET list :param name: Name of the robot :type name: str, optional :param manufacturer: Manufacturer of the robot :type manufacturer: str, optional :param base: Location of the base is the world frame :type base: SE3, optional :param tool: Offset of the flange of the robot to the end-effector :type tool: SE3, optional :param gravity: The gravity vector :type n: ndarray(3) :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> """ def __init__( self, elinks, name='noname', base_link=None, ee_link=None, manufacturer='', base=None, tool=None, gravity=np.array([0, 0, 9.81])): super(ETS, self).__init__() if base is None: self.base = SE3() else: self.base = base self.tool = SE3() self.gravity = gravity # Verify elinks if not isinstance(elinks, list): raise TypeError('The links must be stored in a list.') self._ets = [] self._n = 0 self._M = 0 self._q_idx = [] # Set up a dictionary for looking up links by name for link in elinks: if isinstance(link, ELink): self._M += 1 else: raise TypeError("Input can be only ELink") # Set up references between links, a bi-directional linked list # Also find the top of the tree self.root = [] self.end = [] for link in elinks: for li in link.parent: li._child.append(link) if len(link.parent) == 0: self.root.append(link) # Find the bottom of the tree for link in elinks: if len(link.child) == 0: self.end.append(link) # If the base link is not defined, use the root of the tree if base_link is None: self._base_link = self.root[0] # Needs to be private attrib else: self._base_link = base_link # Needs to be private attrib # If the ee link is not defined, use the bottom of the tree if ee_link is None: self._ee_link = self.end[-1] else: self._ee_link = ee_link def add_links(link, lst, q_idx): if link.jtype == link.VARIABLE: q_idx.append(len(lst)) lst.append(link) # Figure out the order of links with resepect to joint variables self.bfs_link( lambda link: add_links(link, self._ets, self._q_idx)) self._n = len(self._q_idx) self._reset_fk_path() self.name = name self.manuf = manufacturer # Current joint angles of the robot self.q = np.zeros(self.n) self.qd = np.zeros(self.n) self.qdd = np.zeros(self.n) self.control_type = 'v' def _reset_fk_path(self): # Pre-calculate the forward kinematics path self._fkpath = self.dfs_path(self.base_link, self.ee_link) def bfs_link(self, func): queue = self.root for li in queue: func(li) def vis_children(link): for li in link.child: if li not in queue: queue.append(li) func(li) while len(queue) > 0: link = queue.pop(0) vis_children(link) def dfs_path(self, l1, l2): path = [] visited = [l1] def vis_children(link): visited.append(link) for li in link.child: if li not in visited: if li == l2 or vis_children(li): path.append(li) return True vis_children(l1) path.append(l1) path.reverse() return path def to_dict(self): ob = { 'links': [], 'name': self.name, 'n': self.n, 'M': self.M, 'q_idx': self.q_idx } self.allfkine() for link in self.ets: li = { 'axis': [], 'eta': [], 'q_idx': link.q_idx, 'geometry': [], 't': link._fk.t.tolist(), 'q': r2q(link._fk.R).tolist() } for et in link.ets: li['axis'].append(et.axis) li['eta'].append(et.eta) for gi in link.geometry: g_fk = link._fk * gi.base if gi.scale is not None: scale = gi.scale.tolist() else: scale = [1, 1, 1] li['geometry'].append({ 'filename': gi.filename, 'scale': scale, 't': g_fk.t.tolist(), 'q': r2q(g_fk.R).tolist() }) ob['links'].append(li) return ob def fk_dict(self): ob = { 'links': [] } self.allfkine() # print(Tall) for link in self.ets: li = { 't': link._fk.t.tolist(), 'q': r2q(link._fk.R).tolist() } ob['links'].append(li) return ob # @classmethod # def urdf_to_ets(cls, file_path): # name, ext = splitext(file_path) # if ext == '.xacro': # urdf_string = xacro.main(file_path) # urdf = URDF.loadstr(urdf_string, file_path) # return ETS( # urdf.elinks, # name=urdf.name # ) @staticmethod def urdf_to_ets_args(file_path): name, ext = splitext(file_path) if ext == '.xacro': urdf_string = xacro.main(file_path) urdf = URDF.loadstr(urdf_string, file_path) return urdf.elinks, urdf.name # @classmethod # def dh_to_ets(cls, robot): # """ # Converts a robot modelled with standard or modified DH parameters to an # ETS representation # :param robot: The robot model to be converted # :type robot: SerialLink # :return: List of returned :class:`bluepy.btle.Characteristic` objects # :rtype: ets class # """ # ets = [] # q_idx = [] # M = 0 # for j in range(robot.n): # L = robot.links[j] # # Method for modified DH parameters # if robot.mdh: # # Append Tx(a) # if L.a != 0: # ets.append(ET.Ttx(L.a)) # M += 1 # # Append Rx(alpha) # if L.alpha != 0: # ets.append(ET.TRx(L.alpha)) # M += 1 # if L.is_revolute: # # Append Tz(d) # if L.d != 0: # ets.append(ET.Ttz(L.d)) # M += 1 # # Append Rz(q) # ets.append(ET.TRz(joint=j+1)) # q_idx.append(M) # M += 1 # else: # # Append Tz(q) # ets.append(ET.Ttz(joint=j+1)) # q_idx.append(M) # M += 1 # # Append Rz(theta) # if L.theta != 0: # ets.append(ET.TRz(L.alpha)) # M += 1 # return cls( # ets, # q_idx, # robot.name, # robot.manuf, # robot.base, # robot.tool) @property def qlim(self): v = np.zeros((2, self.n)) j = 0 for i in range(self.M): if self.ets[i].jtype == self.ets[i].VARIABLE: v[:, j] = self.ets[i].qlim j += 1 return v @property def base_link(self): return self._base_link @property def ee_link(self): return self._ee_link @property def q(self): return self._q @property def qd(self): return self._qd @property def qdd(self): return self._qdd @property def control_type(self): return self._control_type @property def ets(self): return self._ets @property def name(self): return self._name @property def manuf(self): return self._manuf @property def base(self): return self._base @property def tool(self): return self._tool @property def n(self): return self._n @property def M(self): return self._M @property def q_idx(self): return self._q_idx @property def gravity(self): return self._gravity @name.setter def name(self, name_new): self._name = name_new @manuf.setter def manuf(self, manuf_new): self._manuf = manuf_new @gravity.setter def gravity(self, gravity_new): self._gravity = getvector(gravity_new, 3, 'col') @q.setter def q(self, q_new): q_new = getvector(q_new, self.n) self._q = q_new @qd.setter def qd(self, qd_new): self._qd = getvector(qd_new, self.n) @qdd.setter def qdd(self, qdd_new): self._qdd = getvector(qdd_new, self.n) @control_type.setter def control_type(self, cn): if cn == 'p' or cn == 'v' or cn == 'a': self._control_type = cn else: raise ValueError( 'Control type must be one of \'p\', \'v\', or \'a\'') @base.setter def base(self, T): if not isinstance(T, SE3): T = SE3(T) self._base = T @tool.setter def tool(self, T): if not isinstance(T, SE3): # pragma nocover T = SE3(T) self._tool = T @base_link.setter def base_link(self, link): if isinstance(link, ELink): self._base_link = link else: self._base_link = self.ets[link] self._reset_fk_path() @ee_link.setter def ee_link(self, link): if isinstance(link, ELink): self._ee_link = link else: self._ee_link = self.ets[link] self._reset_fk_path() def fkine(self, q=None): ''' Evaluates the forward kinematics of a robot based on its ETS and joint angles q. T = fkine(q) evaluates forward kinematics for the robot at joint configuration q. T = fkine() as above except uses the stored q value of the robot object. Trajectory operation: Calculates fkine for each point on a trajectory of joints q where q is (nxm) and the returning SE3 in (m) :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return: The transformation matrix representing the pose of the end-effector :rtype: SE3 :notes: - The robot's base or tool transform, if present, are incorporated into the result. :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> ''' trajn = 1 if q is None: q = self.q try: q = getvector(q, self.n, 'col') except ValueError: trajn = q.shape[1] verifymatrix(q, (self.n, trajn)) for i in range(trajn): j = 0 tr = self.base for link in self._fkpath: if link.jtype == link.VARIABLE: T = link.A(q[j, i]) j += 1 else: T = link.A() tr = tr * T tr = tr * self.tool if i == 0: t = SE3(tr) else: t.append(tr) return t def allfkine(self, q=None): ''' Tall = allfkine(q) evaluates fkine for each joint within a robot and returns a trajecotry of poses. Tall = allfkine() as above except uses the stored q value of the robot object. :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return T: Homogeneous transformation trajectory :rtype T: SE3 list :notes: - The robot's base transform, if present, are incorporated into the result. :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> ''' if q is None: q = np.copy(self.q) else: q = getvector(q, self.n) # t = self.base # Tall = SE3() j = 0 if self.ets[0].jtype == self.ets[0].VARIABLE: self.ets[0]._fk = self.base * self.ets[0].A(q[j]) j += 1 else: self.ets[0]._fk = self.base * self.ets[0].A() for i in range(1, self.M): if self.ets[i].jtype == self.ets[i].VARIABLE: t = self.ets[i].A(q[j]) j += 1 else: t = self.ets[i].A() self.ets[i]._fk = self.ets[i].parent[0]._fk * t def jacob0(self, q=None): """ J0 = jacob0(q) is the manipulator Jacobian matrix which maps joint velocity to end-effector spatial velocity. v = J0*qd in the base frame. J0 = jacob0() as above except uses the stored q value of the robot object. :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return J: The manipulator Jacobian in ee frame :rtype: float ndarray(6,n) :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> """ if q is None: q = np.copy(self.q) else: q = getvector(q, self.n) T = (self.base.inv() * self.fkine(q)).A U = np.eye(4) j = 0 J = np.zeros((6, self.n)) for link in self._fkpath: for k in range(link.M): if k != link.q_idx: U = U @ link.ets[k].T().A else: if link.ets[k]._axis == 'Rz': U = U @ link.ets[k].T(q[j]).A Tu = np.linalg.inv(U) @ T n = U[:3, 0] o = U[:3, 1] a = U[:3, 2] y = Tu[1, 3] x = Tu[0, 3] J[:3, j] = (o * x) - (n * y) J[3:, j] = a j += 1 if link.ets[k]._axis == 'Ry': U = U @ link.ets[k].T(q[j]).A Tu = np.linalg.inv(U) @ T n = U[:3, 0] o = U[:3, 1] a = U[:3, 2] z = Tu[2, 3] x = Tu[0, 3] J[:3, j] = (n * z) - (a * x) J[3:, j] = o j += 1 if link.ets[k]._axis == 'Rx': U = U @ link.ets[k].T(q[j]).A Tu =
np.linalg.inv(U)
numpy.linalg.inv
#! encoding = utf-8 """ Fit time domain FID signal """ import numpy as np from scipy.signal import butter, sosfiltfilt import lmfit from lib import calc_delta_g_coeff, sig2vol from v1d_theory import run_v1d_theory as run_sim_snr def load_fid(filename, t1=256, t2=256 + 4096): """ Load FID from file :arguments filename: str data file t1: int rect window starting time t2: int rect window end time :returns vol: np1darray FID voltage (mV) """ raw = np.loadtxt(filename, skiprows=1, dtype='int64') with open(filename, 'r') as f: hd_array = f.readline().strip().split('|') total_avg = int(hd_array[6]) # the raw data is accumulative, take the average of it vol = sig2vol(raw / total_avg) # remove baseline drift using the last 100 points shift = np.average(vol[-100:]) vol -= shift return vol[t1:t2] def f2min_tds_simple(lmpar, x, y): """ Fitting function directly for time domain data, simple form """ v = lmpar.valuesdict() t01 = v['t01'] t02 = v['t02'] s1 = v['s1'] s2 = v['s2'] a0 = v['a0'] b0 = v['b0'] base = v['base'] phir1 = v['phi1'] / 180 * np.pi # phase in radian phir2 = v['phi2'] / 180 * np.pi # phase in radian f1 = v['f1'] f2 = v['f2'] # f_exp = s * np.exp(- a0 * (x + t0)**2 - b0 * (x + t0)) f_exp = np.exp(- a0 * x ** 2 - b0 * x) f_sin = s1 * np.sin(2 * np.pi * f1 * x + phir1) \ + s2 *
np.sin(2 * np.pi * f2 * x + phir2)
numpy.sin
# coding: utf-8 # In[1]: import torch import pandas as pd import numpy as np import sys import os mutation = sys.argv[1] seed = int(sys.argv[2]) use_mean = sys.argv[3] == 'True' net_arch = map(int, sys.argv[4].split(',')) if len(sys.argv) == 5 else [] def get_data(mutation, seed, mean): np.random.seed(seed) SEQ_PATH = '/data/lisa/data/AML-MILA/sequences.npy' SAMPLES_PATH = '/data/lisa/data/AML-MILA/samples.txt' LABELS_PATH = '/data/lisa/data/AML-MILA/patients.20170523.txt' samples = open(SAMPLES_PATH, 'r').read().split('|') labels = pd.read_csv(LABELS_PATH, sep='\t', index_col=0).T labels = np.array([int(labels.loc[sample][mutation]) for sample in samples]) data = np.log(np.load(SEQ_PATH) + 1) idx = np.random.permutation(len(data)) size_train, size_valid = int(len(idx) * 0.6), int(len(idx) * 0.2) train_idx, valid_idx = idx[:size_train], idx[size_train:size_train+size_valid] if mean: train_data = torch.FloatTensor(data[train_idx].mean(axis=1)) train_label = torch.FloatTensor(labels[train_idx]) else: train_data = torch.FloatTensor(data[train_idx].reshape(-1, data.shape[2])) train_label = torch.FloatTensor(np.repeat(labels[train_idx], 100)) valid_data = torch.FloatTensor(data[valid_idx].reshape(-1, data.shape[2])) valid_label = torch.FloatTensor(np.repeat(labels[valid_idx], 100)) return (train_data, train_label), (valid_data, valid_label) train_loader, valid_loader = get_data(mutation, seed, use_mean) # In[9]: def shuffle_data(data): idx = np.random.permutation(len(data[0])) train = np.copy(data[0])[idx] label =
np.copy(data[1])
numpy.copy
import numpy as np from funcGeneral import max2,argmax2, max3,argmax3, deriv1,deriv1_step2,enhance,argmin3 from scipy import interpolate import matplotlib.pyplot as plt ### PEAK DETECTION ### def peakListAll(dProject,keys): for key in keys: key1=str('dPeak'+key) dProject[key1]=fPeakList(dProject['dData'][key],False,False) return dProject def fPeakList(dataIn,isDel=False,isAdd=False,repType=None): ## RepTpes: "Cubic", "Poly2" peakX,peakY=peakDetection(dataIn) if peakX[0]<3: peakX=np.delete(peakX,0) peakY=np.delete(peakY,0) if peakX[-1]>len(dataIn)-4: peakX=np.delete(peakX,-1) peakY=np.delete(peakY,-1) dPeakList=DPeakList() dPeakList['NPeak']=len(peakX) dPeakList['pos']=peakX dPeakList['amp']=peakY dPeakList['score']=np.ones(dPeakList['NPeak']) dPeakList['averW'],dPeakList['stdW'],dPeakList['minW'],dPeakList['maxW']=findAverPeakW(peakX,rate=0.33,minR=0.4,maxR=1.8) if isDel: dPeakList=delPeaks(dPeakList, dataIn) if isAdd: dPeakList=addPeaks(dPeakList, dataIn) if repType!=None: dPeakList['X']=[] dPeakList['Y']=[] for i in range(dPeakList['NPeak']): if repType=="Cubic": newX,newY,newPos,newAmp=fitSplineToPeak(dataIn,dPeakList['pos'][i],wid=3) elif repType=="Poly2": newX,newY,newPos,newAmp=fitPolyToPeak(dataIn,dPeakList['pos'][i],wid=3) elif repType=="Amp": newX,newY,newPos,newAmp=peakX[i],peakY[i],dPeakList['pos'][i],peakY[i] dPeakList['pos'][i]=newPos dPeakList['amp'][i]=newAmp dPeakList['X'].append(newX) dPeakList['Y'].append(newY) return dPeakList def DPeakList(): dPeakList={} dPeakList['NPeak']=0 dPeakList['pos']=np.array([],dtype='i4') dPeakList['amp']=np.array([],dtype='f4') dPeakList['wid']=np.array([],dtype='f4') dPeakList['area']=np.array([],dtype='f4') dPeakList['averW']=np.array([],dtype='f4') dPeakList['stdW']=np.array([],dtype='f4') dPeakList['minW']=np.array([],dtype='f4') dPeakList['maxW']=np.array([],dtype='f4') return dPeakList def peakDetection(dataIn,isY=True): if len(dataIn)<3: peakX=np.array([]) return peakX derivData=deriv1(dataIn) peakX=findPeakX(derivData,dataIn) if isY: peakY=findPeakY(dataIn,peakX) return peakX, peakY else: return peakX def peakDetection_v3(dataIn,isY=True): if len(dataIn)<3: peakX=np.array([]) return peakX derivData1=deriv1(dataIn) derivData2=deriv1_step2(dataIn) av_deriv=np.add(derivData1,derivData2)/2 peakX=findPeakX_v5(av_deriv,dataIn) if isY: peakY=findPeakY(dataIn,peakX) return peakX, peakY else: return peakX def troughDetection(dataIn,isY=True): if len(dataIn)<3: peakX=np.array([]) return peakX derivData=deriv1(dataIn) peakX=findtroughX(derivData,dataIn) if isY: peakY=findPeakY(dataIn,peakX) return peakX, peakY else: return peakX def peakDetection_v2(dataIn,isY=True): if len(dataIn)<2: peakX=np.array([]) return peakX derivData=deriv1(dataIn) peakX=findPeakX(derivData,dataIn) peakX=findPeakX(derivData,dataIn) #peakX=findPeakX_v3(dataIn) if isY: peakY=findPeakY(dataIn,peakX) return peakX, peakY else: return peakX def findPeakX(derivData,dataIn): peakX=np.array([],dtype='i4') NData=len(derivData) i=0 while i<NData-1: if np.sign(derivData[i]) > np.sign(derivData[i+1]): peak=argmax3(dataIn[i-1],dataIn[i],dataIn[i+1]) peak=i-1+peak i=i+1 if peak>2: peakX=np.append(peakX,peak) i+=1 return peakX def findPeakX_v5(derivData,dataIn): peakX=np.array([],dtype='i4') NData=len(derivData) i=0 window_size=10 window_number=NData/window_size for j in range(window_number): derivData_w=derivData[j*(window_size):((j+1)*window_size)] dataIn_w=dataIn[j*(window_size):((j+1)*window_size)] #print len(derivData_w) mean_ddw=np.mean(derivData_w) derivData_w=derivData_w-mean_ddw #plt.plot(np.arange(window_size),derivData_w) #plt.plot(np.arange(window_size),dataIn_w) #plt.show() for i in range(window_size-1): if np.sign(derivData_w[i]) > np.sign(derivData_w[i+1]): peak=argmax3(dataIn_w[i-1],dataIn_w[i],dataIn_w[i+1]) peak=i-1+peak+j*window_size if peak>2 and peak<NData-1: peakX=np.append(peakX,peak) #print peakX return peakX def findtroughX(derivData,dataIn): peakX=np.array([],dtype='i4') NData=len(derivData) i=0 while i<NData-1: if np.sign(derivData[i]) < np.sign(derivData[i+1]): peak=argmin3(dataIn[i-1],dataIn[i],dataIn[i+1]) peak=i-1+peak i=i+1 peakX=np.append(peakX,peak) i+=1 return peakX def findPeakX_v2(derivData,dataIn): peakX=np.array([],dtype='i4') NData=len(derivData) i=0 while i<NData-2: diff = derivData[i]-derivData[i+2] if np.sign(derivData[i])>np.sign(derivData[i+1]) and diff>1: diff=derivData[i]-derivData[i+1] peak=argmax3(dataIn[i-1],dataIn[i],dataIn[i+1]) peak=i-1+peak i=i+1 peakX=np.append(peakX,peak) i+=1 return peakX def findPeakX_v3(dataIn): peakX=np.array([],dtype='i4') NData=len(dataIn) i=2 while i<NData-2: peak_ind=np.argmax(dataIn[i-2:i+2]) peak=np.max(dataIn[i-2:i+2]) trough=np.min(dataIn[i-2:i+2]) mag=peak-trough if peak_ind == 2 and mag>2: peak_ind=i-1+peak_ind i=i+1 peakX=np.append(peakX,peak_ind) i+=1 return peakX def findPeakX_v4(derivData,dataIn): peakX=np.array([],dtype='i4') NData=len(derivData) i=0 while i<NData-1: if np.sign(derivData[i]) > np.sign(derivData[i+1]): peak=argmax3(dataIn[i-1],dataIn[i],dataIn[i+1]) peak=i-1+peak i=i+1 if peak>2 and peak<(len(dataIn)-2): peakX=np.append(peakX,peak) i+=1 return peakX def findPeakY(dataIn,peakX): NPeak=len(peakX) peakY=np.zeros(NPeak,dtype='f4') for i in range(NPeak): peakY[i]= dataIn[peakX[i]] return peakY def delPeaks(dPeakList, dataIn): newPeakX=np.array([dPeakList['pos'][0]],dtype='i4') i=1 while i<len(dPeakList['pos'])-2: fark0=dPeakList['pos'][i+1]-dPeakList['pos'][i] if fark0<dPeakList['minW']: fark1=dPeakList['pos'][i+2]-dPeakList['pos'][i+1] fark2=dPeakList['pos'][i]-dPeakList['pos'][i-1] if fark1>fark2: newPeakX=np.append(newPeakX,dPeakList['pos'][i+1]) else: newPeakX=np.append(newPeakX,dPeakList['pos'][i]) i+=1 else: newPeakX=np.append(newPeakX,dPeakList['pos'][i]) i+=1 newPeakX=np.append(newPeakX,dPeakList['pos'][-2]) newPeakX=np.append(newPeakX,dPeakList['pos'][-1]) dPeakList['NPeak']=len(newPeakX) newPeakY=np.zeros(dPeakList['NPeak']) for i in range(dPeakList['NPeak']): newPeakY[i]=dataIn[newPeakX[i]] dPeakList['amp']=newPeakY dPeakList['pos']=newPeakX dPeakList['score']=np.ones(dPeakList['NPeak']) return dPeakList def addPeaks(dPeakList,dataIn): newPeakX=np.array([dPeakList['pos'][0]],dtype='i4') newScore=np.array([1],dtype='i4') i=1 while i<len(dPeakList['pos']): firstP=newPeakX[-1] secondP=dPeakList['pos'][i] fark=secondP-firstP if fark>dPeakList['maxW']: s=int(firstP+dPeakList['minW']) e=int(s+dPeakList['averW']) partData=enhance(dataIn[s:e]) partX=peakDetection(partData,False) if len(partX)>0: newPeakX=np.append(newPeakX,int(partX[0]+s)) else: m=int(firstP+dPeakList['averW']) argM=m-1+argmax3(dataIn[m-1],dataIn[m],dataIn[m+1]) newPeakX=np.append(newPeakX,argM) newScore=np.append(newScore,0) elif fark>1.2*dPeakList['averW']: s=int(firstP+dPeakList['minW']) e=int(secondP-dPeakList['minW']+1) partData=enhance(dataIn[s:e]) partX=peakDetection(partData,False) if len(partX)>0: newPeakX=np.append(newPeakX,(partX[0]+s)) newScore=np.append(newScore,0) newPeakX=np.append(newPeakX,secondP) newScore=np.append(newScore,1) i+=1 else: newPeakX=np.append(newPeakX,secondP) newScore=np.append(newScore,1) i+=1 dPeakList['NPeak']=len(newPeakX) dPeakList['pos']=np.array(newPeakX,dtype='i4') dPeakList['amp']=dataIn[newPeakX] dPeakList['score']=np.array(newScore,dtype='i4') return dPeakList def findAverPeakW(peakX,rate=0.33,minR=0.4,maxR=1.5): NPeak=len(peakX) diffW=peakX[1:]-peakX[:-1] diffW=np.sort(diffW) s=int(NPeak*rate) e=int(NPeak*(1-rate)) averW=np.average(diffW[s:e]) stdW = np.std(diffW[s:e]) minW=averW*minR maxW=averW*maxR return averW,stdW,minW,maxW def fitSplineToPeak(dataIn,peakPos,wid=3): s=int(peakPos-wid) e=int(peakPos+wid+1) X=np.arange(s,e) Y=dataIn[s:e] fittedFunc= interpolate.splrep(X,Y,s=0) newWid=wid*5 newX=np.linspace(s,e-1,newWid) newY=interpolate.splev(newX,fittedFunc,der=0) argMax=np.argmax(newY) newAmp=newY[argMax] newPos=newX[argMax] s=newPos-wid e=newPos+wid+1 newX=np.linspace(s,e-1,newWid) newY=interpolate.splev(newX,fittedFunc,der=0) return newX,newY,newPos,newAmp def fitPolyToPeak(dataIn,peakPos,wid=3): s=int(peakPos-wid) e=int(peakPos+wid+1) X=np.arange(s,e) Y=dataIn[s:e] fittedFunc= np.poly1d(np.polyfit(X,Y,2)) newWid=wid*5 newX=np.linspace(s,e-1,newWid) newY=fittedFunc(newX)#,fittedFunc,der=) argMax=np.argmax(newY) newAmp=newY[argMax] newPos=newX[argMax] s=newPos-wid e=newPos+wid+1 newX=np.linspace(s,e-1,newWid) newY=fittedFunc(newX)#,fittedFunc,der=) #newY=interpolate.splev(newX,fittedFunc,der=0) return newX,newY,newPos,newAmp def noBand(n,m): band=np.zeros([2,n],dtype='i4') for i in range(n): band[0,i] = 0 band[1,i] = m return band def SakoeChibaBand(n,m,r): band=np.zeros([2,n],dtype='i4') mnf=float(m)/float(n) for i in range(n): band[0,i]=np.ceil(mnf*i-r) # int(np.max(np.array([ceil(i * mnf - r), 0.0 ]))); band[1,i]=np.floor(mnf*i+r) #int(np.min(np.array([ceil(i * mnf - r), 0.0 ]))); if band[0,i]<0: band[0,i]=0 if band[1,i]>m: band[1,i]=m return band ## SIMILARITY FUNCTIONS # Similarity between two numbers, a and b def simAandB(a,b): a=float(a) b=float(b) sim=1.0-(np.abs(a-b)/(2*max2(np.abs(a),np.abs(b)))) sim=sim*2.0-1.0 return sim # Mean similarity between two time series, a1,a2,...,aN, and b1,...,bN def simMean(A,B): if len(A)!=len(B): return False sum=0 for i in range(len(A)): sum+=simAandB(A[i],B[i]) sim=sum/len(A) return sim def simMeanDeriv(A,B): A0=deriv1(A) B0=deriv1(B) sim=simMean(A0,B0) return sim # The root mean square similarity def simRootMean(A,B): if len(A)!=len(B): return False sum=0 for i in range(len(A)): sum+=(simAandB(A[i],B[i]))**2 sim=np.sqrt(sum/len(A)) return sim def simCorr(A,B): if len(A)!=len(B): return 0 sim=np.corrcoef(A,B)[0,1] return sim def simPeakCorr(A,B,i,j,D=0.02): corr=simCorr(A,B) posSim=np.exp(np.abs(i-j)*D) sim=corr/posSim return sim def simCosAngle(A,B): top = np.dot(A, B) bot = np.sqrt(np.sum(A**2)*np.sum(B**2)) #mass_spect1_sum*mass_spect2_sum) if bot > 0: sim = top/bot else: sim = 0 sim=sim*2-1 return sim def posSim(t1,t2,D=0.03): posSim0=np.exp(-np.abs(t1-t2)*D) posSim0=posSim0*2-1 return posSim0 #a=10 #b=np.arange(5,150) #for i in b: # print a,i,posSim(a,i) def simPosAmp(a0,a1,t0,t1,kA=0.1,kT=0.9): simPos=posSim(t0,t1) simAmp=simAandB(a0,a1) sim=simPos*kT+simAmp*kA sim=sim*2-1 return sim def timeTol(t1,t2,D=0.05): rtime = np.exp(-np.abs(t1-t2)*D) return rtime simFuncs=['Amplitude','Mean','Derivative','Correlation','Cosine','Gaussian','Position'] def DPeakAlignParams(): dParams={} dParams['method']='Global' dParams['simFunc']='Amplitude' dParams['peakRep']=None dParams['gap']=-0.20 dParams['timeT']=0.00 dParams['band']=0.20 dParams['minScore']=0.0 dParams['seqType']='pos' # 'pos', 'index' dParams['isBackTrace']=True dParams['repType']=None return dParams def obtainCostM(dPeakList0,dPeakList1,bandM,dParams): n=dPeakList0['NPeak'] m=dPeakList1['NPeak'] costM=np.array(np.ones([n,m])*(-9999), dtype='f4') if dParams['simFunc']=='Amplitude': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simAandB(dPeakList0['amp'][i],dPeakList1['amp'][j]) elif dParams['simFunc']=='Position': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=posSim(dPeakList0['pos'][i],dPeakList1['pos'][j]) elif dParams['simFunc']=='Mean': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simMean(dPeakList0['Y'][i],dPeakList1['Y'][j]) elif dParams['simFunc']=='Derivative': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simMeanDeriv(dPeakList0['Y'][i],dPeakList1['Y'][j]) elif dParams['simFunc']=='Correlation': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simCorr(dPeakList0['Y'][i],dPeakList1['Y'][j]) elif dParams['simFunc']=='Gaussian': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simCorr(dPeakList0['Y'][i],dPeakList1['Y'][j]) elif dParams['simFunc']=='Cosine': for i in range(n): for j in np.arange(bandM[0,i],bandM[1,i]): costM[i,j]=simCosAngle(dPeakList0['Y'][i],dPeakList1['Y'][j]) # # Apply time tolerace # if dParams['method']=='Global' and dParams['timeT']>0: # for i in range(n): # for j in np.arange(bandM[0,i],bandM[1,i]): # costM[i,j]=costM[i,j]*timeTol(dPeakList0['pos'][i],dPeakList1['pos'][j],dParams['timeT']) # return costM def peakScoringGlobal(dPeakList0,dPeakList1,costM,bandM, gap=-1.0, minScr=0.5): l1, l2 = dPeakList0['NPeak'], dPeakList1['NPeak'] scormat = np.zeros( (l1+1,l2+1), dtype='f4') arrow = np.zeros( [l1+1,l2+1], int) arrow[0,:] = 2 # np.ones(NSeq+1) arrow[:,0] = 1 #np.ones(NSeq+1) scormat[0,:] = np.arange(l2+1)* gap scormat[:,0] = np.arange(l1+1)* gap # arrow[0] = np.ones(l2+1) for i in range( 1,l1+1 ): for j in range(bandM[0,i-1]+1,bandM[1,i-1]+1,1): # for j in range( 1, l2+1 ): s0= scormat[i-1,j-1]+ costM[i-1,j-1] s1= scormat[i-1,j] + gap s2= scormat[i,j-1] + gap scormat[i,j] = max3(s0,s1,s2) arrow[i,j] = argmax3(s0,s1,s2) if costM[i-1,j-1]<minScr: scormat[i,j] = max2(s1,s2) arrow[i,j] = 1+argmax2(s1,s2) return scormat, arrow def peakBacktraceGlobal(seq0,seq1,scormat,arrow,costM,minScr=0.5): NPeak0=len(seq0) NPeak1=len(seq1) st0, st1 = [],[] v,h = arrow.shape v-=1 h-=1 ok = 1 while ok: if arrow[v,h] == 0: st0.append(seq0[v-1])# += seq1[v-1] st1.append(seq1[h-1])# += seq2[h-1] v -= 1 h -= 1 elif arrow[v,h] == 1: st0.append(seq0[v-1]) #+= seq1[v-1] st1.append(-1) v -= 1 elif arrow[v,h] == 2: st0.append(-1) st1.append(seq1[h-1]) h -= 1 if v==0 and h==0: ok = 0 # reverse the strings st0.reverse() st1.reverse() return st0, st1 def peakScoringLocal(dPeakList0,dPeakList1,costM, gap=-1.0, minScr=0.0): l1, l2 = dPeakList0['NPeak'], dPeakList1['NPeak'] scormat = np.zeros( (l1+1,l2+1), dtype='f4') arrow = np.ones( (l1+1,l2+1), int) # create first row and first column arrow[0,:] = 1 # np.ones(NSeq+1) arrow[:,0] = 2 #np.ones(NSeq+1) for i in range( 1,l1+1 ): for j in range(1,l2+1): # for j in range( 1, l2+1 ): s0= scormat[i-1,j-1]+ costM[i-1,j-1] s1= scormat[i-1,j] + gap s2= scormat[i,j-1] + gap if costM[i-1,j-1]>minScr: scormat[i,j],arrow[i,j] = maxArg4(s0,s1,s2,0) else: scormat[i,j] = max3(s1,s2,0) arrow[i,j] = 1+argmax3(s1,s2,0) return scormat, arrow def peakBackTraceLocal(seq0,seq1,scormat,arrow): NPeak0=len(seq0) NPeak1=len(seq1) st0, st1 = [],[] ok = 1 v,h = divmod(scormat.argmax(), NPeak1+1) while ok: if arrow[v,h] == 0: st0.append(seq0[v-1])# += seq1[v-1] st1.append(seq1[h-1])# += seq2[h-1] v -= 1 h -= 1 elif arrow[v,h] == 1: st0.append(seq0[v-1]) #+= seq1[v-1] st1.append(-1) v -= 1 elif arrow[v,h] == 2: st0.append(-1) st1.append(seq1[h-1]) h -= 1 if (v==0 and h==0) or scormat[v,h]==0: ok = 0 # reverse the strings st0.reverse() st1.reverse() return st0, st1 def peakScoreM(peakXA, peakXB,costM, G=0.1): l1, l2 = len( peakXA), len(peakXB) scormat = np.zeros([l1+1,l2+1]) arrow = np.zeros([l1+1,l2+1], int ) # create first row and first column scormat[0] = np.arange(l2+1)* G scormat[:,0] = np.arange( l1+1)* G arrow[0] = np.ones(l2+1) # fill in the matrix for i in range(1,l1+1): for j in range(1,l2+1): f = np.zeros(3, float ) f[0] = scormat[i-1,j] + G f[1] = scormat[i,j-1] + G f[2] = scormat[i-1,j-1] + costM[i-1,j-1] #subvals[i] scormat[i,j] = np.max(f) arrow[i,j] = np.argmax(f) return scormat, arrow def myPeakAlignment(dPeakList0,dPeakList1,dParams): if dParams['method']=='Global': bandM=SakoeChibaBand(dPeakList0["NPeak"],dPeakList1["NPeak"],dPeakList0["NPeak"]*dParams['band']) if dParams['method']=='Local': bandM=noBand(dPeakList0["NPeak"],dPeakList1["NPeak"]) costM=obtainCostM(dPeakList0,dPeakList1,bandM,dParams) if dParams['method']=='Global': scormat, arrow=peakScoringGlobal(dPeakList0,dPeakList1,costM,bandM, gap=dParams['gap'],minScr=dParams['minScore']) if dParams['isBackTrace']==False: return scormat[-1,-1] if dParams['method']=='Local': scormat, arrow=peakScoringLocal(dPeakList0,dPeakList1,costM, gap=dParams['gap'],minScr=dParams['minScore']) seq0=dPeakList0['pos'] seq1=dPeakList1['pos'] if dParams['seqType']=='index': seq0=np.arange(dPeakList0['NPeak'],dtype='i4') seq1=
np.arange(dPeakList1['NPeak'],dtype='i4')
numpy.arange
# Generally useful functions. Uses cgs units unless specified otherwise. import math import sys import numpy as np from scipy.interpolate import interp1d ### physical constants Lsun = 3.839e33 # solar luminosity in erg/s G = 6.674e-8 # gravitational constant in cm**3 g**-1 s**-2 Msun = 1.989e33 # mass of the sun in grams Rsun = 6.9551e10 # solar radius in cm sigma = 5.6704e-5 # Stefan-Boltzmann constant in erg*cm**-2*s**-1*K**-4 c = 2.99792458e10 # speed of light in cm/s h = 6.62606885e-27 # planck's constant in erg*s k = 1.3806504e-16 # Boltzmann constant in erg/K D10 = 3.085678e+19 # ten parsecs in cm Tsun = (Lsun / (4*math.pi*sigma*Rsun**2))**(0.25) # temperature of the sun in Kelvins Zsun = 0.01886 # from Anders and Grevesse, 1989, Geochimica et Cosmochimica Acta, Volume 53, Issue 1, p. 197-214 (used by http://kurucz.harvard.edu/grids/gridm01/) # Zsun = 0.017 # from <NAME>., & <NAME>., 1998, Space Sci. Rev., 85, 161 (used by Castelli and Kurucz 2004) Zsun_mist = 0.0142 # bulk solar metallicity from Asplund et al, Annu. Rev. Astron. Astrophys. 2009. 47:481–522 (used by MIST) # printf() function from O'Reilly's Python Cookbook def printf(format, *args): sys.stdout.write(format % args) # inputs: starting and ending time in seconds # output: a string with the time in hours, minutes and seconds def timef(atime): hours, rem = divmod(atime, 3600) minutes, seconds = divmod(rem, 60) res = "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds) return res # distance from modulus def dist(mod): return D10 * 10**(mod / 5) # Keplerian limit on the angular velocity, # for fixed mass in solar masses and equatorial radius in solar radii def OmegaK(M, Req): return np.sqrt(G * M * Msun / (Req * Rsun)**3) ## Conversions between dimensionless omegas in the context of a Roche model; ## see appendix in arXiv:1505.03997 # Omega / Omega_Keplerian as a function of Omega / Omega_critical def omega(otilde): def om(ot): chi = np.arcsin(ot) om = np.sqrt((6./ot) * np.sin(chi/3) - 2) return om lst = hasattr(otilde, "__iter__") # is the input list-like (iterable)? if lst: omega = np.empty_like(otilde) m = (otilde == 0) omega[m] = 0 omega[~m] = om(otilde[~m]) else: if otilde == 0: omega = 0 else: omega = om(otilde) return omega # Omega / Omega_critical as a function of Omega / Omega_Keplerian def otilde(omega): otilde = omega * np.sqrt(27./8) * (1 + omega**2 / 2)**(-3./2) return otilde # surface area in squared solar radii # from luminosity in solar luminosities and effective temperature in Kelvin def area(L, Teff): return L * Lsun / (sigma * Teff**4 * Rsun**2) # pseudo effective temperature in Kelvin # from luminosity in solar luminosities and equatorial radius in solar radii def tau(L, Req): return ( L * Lsun / (4 * np.pi * sigma * (Req * Rsun)**2) )**(1./4) # luminosity in solar luminosities # from pseudo effective temperature in Kelvin and equatorial radius in solar radii def L(tau, Req): return 4 * np.pi * (Req * Rsun)**2 * sigma * tau**4 / Lsun # log pseudo effective gravity def gamma(M, Req): return np.log10( G * M * Msun / (Req * Rsun)**2 ) # mass in solar masses def M(gamma, Req): return 10**gamma * (Req * Rsun)**2 / (G * Msun) # convert between absolute metallicity Z and logarithmic relative metallicity [M/H], # as well as between these variables for different solar metallicities def logZp(Z): return np.log10(Z / Zsun) def Z_from_logZp(logZ): return Zsun * 10**logZ def logZm(Z): return np.log10(Z / Zsun_mist) def logZm_from_logZp(logZ): return logZ + np.log10(Zsun) - np.log10(Zsun_mist) def logZp_from_logZm(logZ): return logZ - np.log10(Zsun) + np.log10(Zsun_mist) # v sin i from mass def vsini1(M, R, omega, inc): return omega * np.sqrt(G * M * Msun / (R * Rsun)) *
np.sin(inc)
numpy.sin
import matplotlib.pyplot as plt import numpy as np fig1 = plt.figure(); fig2 = plt.figure(); fig3 = plt.figure(); fig4 = plt.figure(); fig5 = plt.figure(); ax1 = fig1.add_subplot(111) ax2 = fig2.add_subplot(111) ax3 = fig3.add_subplot(111) ax4 = fig4.add_subplot(111) ax5 = fig5.add_subplot(111) dom1 = np.arange(-20,20.1,0.1) dom2 =
np.arange(0.1,100,0.1)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Wed Jan 15 08:53:50 2020 @author: AliHaidar This package allows using PSO for optimizing Machine Learning algorithms parameters. Four algorithms were initiated in the first study: MLP, SVM, XGBoost, GBDT The class contains various static classes, to allow running seperate functions alone. In some cases, i was forced to follow the hardest way since I didnt want to modify any part of the package that supports pso (pwswarms) """ import random import numpy as np import time import itertools as it import lightgbm as lgb import xgboost as xgb from sklearn.svm import SVC,SVR #keras MLP from keras.models import Sequential from keras.callbacks import ModelCheckpoint,EarlyStopping,TensorBoard,ReduceLROnPlateau from keras.layers import Dense import pyswarms as ps# Import PySwarms from sklearn.metrics import mean_squared_error,accuracy_score,auc,roc_curve class pspso: """ This class searches for algorithm parameters by using the Particle Swarm Optimization (PSO) algorithm. """ best_paricle_cost_ann =None best_model_ann=None best_history_ann=None best_particle_position_ann=None verbose=0 early_stopping=20 defaultparams= None #contains the default parameters of the algorithm that were not selected for optimization, or cant be selected for optimization parameters=None #contains the list of the parameters selected for optimization paramdetails= None #contains the dictionary given as input rounding=None # contains a list that determines to what extent the parameter will be loadad e.g. learning rate selected is 0.342 will be loaded to 0.34 if rounding value is 2 (two integers after the decimal point) def __init__(self, estimator='xgboost', params=None, task="regression",score= 'rmse'): """Construct an istance of the class pspso. Inputs ------ estimator: a variable that can be 'xgboost', 'gbdt','mlp', or 'svm'. Default 'xgboost' The name of the estimators whose parameters to be optimized. params: a dictionary that determines the parameters to be optimized task: a variable (regression, binary classification, or binary classification -r) determines the type of the application score: the fitness evaluation score while selecting the hyper-parameters. """ self.estimator = estimator # this variable is used to save the estimator, can be: xgboost, gbdt, mlp, or svm (cnn + catboost are not supported yet) self.task=task # can be 'regression' or 'classification' self.score=score # score: can be 'rmse' for regression 'acc' or 'auc' for binary classification. Multi-class classification (not supported yet) self.cost=None self.pos=None self.model=None self.duration=None self.rmse=None self.optimizer=None pspso.parameters,pspso.defaultparams,self.x_min,self.x_max,pspso.rounding,self.bounds, self.dimensions,pspso.paramdetails=pspso.read_parameters(params,self.estimator,self.task) @staticmethod def get_default_search_space(estimator,task): """Create a dictionary of default parameters if the user didnt provide parameters. Inputs estimator: string value A string value that determines the estimator: 'mlp','xgboost','svm', or 'gbdt' task: string value A string value that determines the task under consideration: 'regression' or 'binary classification' Returns params: Dictionary A dictionary that contains default parameters to be used. """ if estimator == 'xgboost': if task == 'binary classification': params = {"learning_rate": [0.1,0.3,2], "max_depth": [1,10,0], "n_estimators": [2,70,0], "subsample": [0.7,1,2]} else: params = {"objective": ["reg:linear","reg:tweedie","reg:gamma"], "learning_rate": [0.1,0.3,2], "max_depth": [1,10,0], "n_estimators": [2,70,0], "subsample": [0.7,1,2]} elif estimator == 'gbdt': if task == 'binary classification': params = {"learning_rate": [0.1,0.3,2], "max_depth": [1,10,0], "n_estimators": [2,70,0], "subsample": [0.7,1,2]} else: params = {"objective": ["tweedie","regression"], "learning_rate": [0.1,0.3,2], "max_depth": [1,10,0], "n_estimators": [2,70,0], "subsample": [0.7,1,2]} elif estimator == 'svm': params = {"kernel": ["linear", "rbf", "poly"] , "gamma": [0.1,10,1], "C": [0.1,10,1], "degree": [0,6,0]} elif estimator == 'mlp': params = {"optimizer": ["RMSprop", "adam", "sgd",'adamax','nadam','adadelta'] , "learning_rate": [0.1,0.3,2], "neurons": [1,40,0], "hiddenactivation": ['relu','sigmoid','tanh'], "activation":['relu','sigmoid','tanh']} return params @staticmethod def get_default_params(estimator, task): """Set the default parameters of the estimator. This function assigns the default parameters for the user. Each algorithm has a set of parameters. To allow the user to search for some parameters instead of the supported parameters, this function is used to assign a default value for each parameter. In addition, it gets other parameters for each algorithm. For e.g, it returns the number of epochs, batch_size, and loss for the mlp. Inputs estimator: string value A string value that determines the estimator: 'mlp','xgboost','svm', or 'gbdt' task: string value A string value that determines the task under consideration: 'regression' or 'binary classification' Returns defaultparams: Dictionary A dictionary that contains default parameters to be used. """ defaultparams= {} if estimator == 'xgboost': defaultparams.update({'learning_rate':0.01,'max_depth':6,'n_estimators':40,'subsample':0.99}) if task =='binary classification': # default activation defaultparams.update({'objective':'binary:logistic','eval_metric':["aucpr","auc"]}) elif task =='regression': defaultparams.update({'objective':'reg:tweedie','eval_metric':["rmse"]}) elif estimator == 'gbdt': if task =='regression': defaultparams['objective'] = 'tweedie' eval_metric ='rmse' elif task =='binary classification': defaultparams['objective'] = 'binary' eval_metric =['auc'] defaultparams.update({'learning_rate':0.01,'max_depth':6,'n_estimators':40,'subsample':0.99, 'boosting_type':'gbdt','eval_metric':eval_metric}) elif estimator == 'mlp': #steps_per_epoch=4000 // batch_size defaultparams.update({'batch_size':12,'epochs':50,'shuffle':True, 'neurons':13,'hiddenactivation':'sigmoid', 'activation':'sigmoid','learning_rate':0.01, 'mode':'auto'})#batchsize, epochs, and shuffling default values. if task =='binary classification': # set the optimizer based on the task defaultparams.update({'optimizer':'adam','metrics':['binary_accuracy'],'loss':'binary_crossentropy'}) elif task=='regression': defaultparams.update({'optimizer':'RMSprop','metrics':['mse'],'loss':'mse'}) elif estimator == 'svm': defaultparams.update({'kernel':'rbf','C':5,'gamma':5}) return defaultparams @staticmethod def read_parameters(params=None,estimator=None, task=None): """Read the parameters provided by the user. Inputs params: dictionary of key,values added by the user This dictionary determines the parameters and ranges of parameters the user wants to selection values from. estimator: string value A string value that determines the estimator: 'mlp','xgboost','svm', or 'gbdt' task: string value A string value that determines the task under consideration: 'regression' or 'binary classification' Returns parameters The parameters selected by the user defaultparams Default parameters x_min: list The lower bounds of the parameters search space x_max: list The upper bounds of the parameters search space rounding: list The rounding value in each dimension of the search space bounds: dict A dictionary of the lower and upper bounds dimensions: integer Dimensions of the search space params: Dict Dict given by the author """ if params == None: params=pspso.get_default_search_space(estimator,task) x_min,x_max,rounding,parameters=[],[],[],[] for key in params: if all(isinstance(item, str) for item in params[key]): of=params[key] x_min.append(0) x_max.append(len(of)-1) parameters.append(key) rounding.append(0) else: thelist=params[key] x_min.append(thelist[0]) x_max.append(thelist[1]) parameters.append(key) rounding.append(thelist[2]) bounds = (np.asarray(x_min), np.asarray(x_max)) dimensions=len(x_min) defaultparams=pspso.get_default_params(estimator, task) return parameters,defaultparams, x_min,x_max,rounding,bounds, dimensions,params @staticmethod def decode_parameters(particle): """Decodes the parameters of a list into a meaningful set of parameters. To decode a particle, we need the following global variables:parameters, defaultparameters, paramdetails, and rounding. """ decodeddict={} # read each value in the particle for d in range(0,len(particle)): #get the key of the particle key=pspso.parameters[d]# expected to save parameter name, like objective, neurons, learning_rate, etc. #get the value of the particle particlevalueatd=particle[d] # if it is a numerical variable, i want to round it # if it is a categorical variable, i want to check its meaning # to do that, i can check the first value in the list if all(isinstance(item, str) for item in pspso.paramdetails[key]): #this means all the values are string, round the particlevalueatd and get the value index=int(round(particlevalueatd)) decodeddict[key] = pspso.paramdetails[key][index] else: #get the rounding for the parameter decodeddict[key] =round(particlevalueatd,pspso.rounding[pspso.parameters.index(key)]) if pspso.rounding[pspso.parameters.index(key)] == 0: decodeddict[key]=int(decodeddict[key])#neurons, max_depth, estimators should be integers return decodeddict @staticmethod def forward_prop_gbdt(particle,task,score,X_train,Y_train,X_val,Y_val): #print(pspso.decode_parameters(particle)) """Train the GBDT after decoding the parameters in variable particle. The particle is decoded into parameters of the gbdt. Then, The gbdt is trained and the score is sent back to the fitness function. Inputs particle: list of values (n dimensions) A particle in the swarm task: regression, binary classification the task to be conducted score: rmse (regression), auc (binary classification), acc (binary classification) the type of evaluation X_train: numpy.ndarray of shape (m, n) Training dataset Y_train: numpy.ndarray of shape (m,1) Training target X_val: numpy.ndarray of shape (x, y) Validation dataset Y_val: numpy.ndarray of shape (x,1) Validation target Returns variable, model the score of the trained algorithm over the validation dataset, trained model """ model=None eval_set = [(X_val, np.squeeze(Y_val))]#eval set is the same in regression and classification try: decodedparams = pspso.decode_parameters(particle) modelparameters = {**pspso.defaultparams,**decodedparams} eval_metric=modelparameters['eval_metric'] del modelparameters['eval_metric'] if task !='binary classification': model = lgb.LGBMRegressor(**modelparameters) else : # if it is a binary classification task, will use XGBClassifier, note the different decoder since we have objective as fixed this time. model = lgb.LGBMClassifier(**modelparameters) model.fit(X_train,np.squeeze(Y_train), early_stopping_rounds=pspso.early_stopping, eval_set=eval_set, eval_metric=eval_metric, verbose=pspso.verbose ) return pspso.predict(model,'gbdt',task, score,X_val,np.squeeze(Y_val)),model except Exception as e: print('An exception occured in GBDT training.') print(e) return None,None @staticmethod def forward_prop_xgboost(particle,task,score,X_train,Y_train,X_val,Y_val): """Train the XGBoost after decoding the parameters in variable particle. The particle is decoded into parameters of the XGBoost. This function is similar to forward_prop_gbdt The gbdt is trained and the score is sent back to the fitness function. Inputs particle: list of values (n dimensions) A particle in the swarm task: regression, binary classification the task to be conducted score: rmse (regression), auc (binary classification), acc (binary classification) the type of evaluation X_train: numpy.ndarray of shape (m, n) Training dataset Y_train: numpy.ndarray of shape (m,1) Training target X_val: numpy.ndarray of shape (x, y) Validation dataset Y_val: numpy.ndarray of shape (x,1) Validation target Returns variable, model the score of the trained algorithm over the validation dataset, trained model """ model=None eval_set = [(X_val, Y_val)]#eval set is the same in regression and classification try: decodedparams = pspso.decode_parameters(particle) modelparameters = {**pspso.defaultparams,**decodedparams} if task !='binary classification': model = xgb.XGBRegressor(**modelparameters) else : # if it is a binary classification task, will use XGBClassifier, note the different decoder since we have objective as fixed this time. model = xgb.XGBClassifier(**modelparameters) model.fit(X_train,Y_train,early_stopping_rounds=pspso.early_stopping,eval_set=eval_set,verbose=pspso.verbose ) return pspso.predict(model,'xgboost',task, score,X_val,Y_val),model except Exception as e: print('An exception occured in XGBoost training.') print(e) return None,None @staticmethod def forward_prop_svm(particle,task,score,X_train,Y_train,X_val,Y_val): """Train the SVM after decoding the parameters in variable particle. """ try: decodedparams = pspso.decode_parameters(particle) modelparameters = { **pspso.defaultparams,**decodedparams} if task == 'regression': # if it is a regression task, use SVR if modelparameters['kernel']!='poly': # the fourth parameter is only usable with kernel being polynomial : 'poly' model = SVR(kernel=modelparameters['kernel'], C=modelparameters['C'],gamma=modelparameters['gamma']).fit(X_train, np.squeeze(Y_train)) else: model = SVR(kernel=modelparameters['kernel'], C=modelparameters['C'],gamma=modelparameters['gamma'],degree=modelparameters['degree']).fit(X_train, np.squeeze(Y_train)) elif task == 'binary classification': # if it is a binary classification task, use SVC if modelparameters['kernel']!='poly': model = SVC(kernel=modelparameters['kernel'], C=modelparameters['C'],gamma=modelparameters['gamma'],probability=True).fit(X_train, np.squeeze(Y_train)) else: model = SVC(kernel=modelparameters['kernel'], C=modelparameters['C'],gamma=modelparameters['gamma'],degree=modelparameters['degree'],probability=True).fit(X_train, np.squeeze(Y_train)) return pspso.predict(model,'svm',task, score,X_val,Y_val),model except Exception as e: print(e) print('An exception occured in SVM training.') return None,None @staticmethod def forward_prop_mlp(particle,task,score,X_train,Y_train,X_val,Y_val): """Train the MLP after the decoding the parameters in variable particle. """ try: decodedparams = pspso.decode_parameters(particle) modelparameters = {**pspso.defaultparams,**decodedparams} model=Sequential() model.add(Dense(int(modelparameters['neurons']), input_dim=X_train.shape[1], activation=modelparameters['hiddenactivation']))#particle,task='regression',score='rmse',X_train,Y_train,X_val,Y_val model.add(Dense(1, activation=modelparameters['activation']))#kernel_initializer='lecun_uniform',bias_initializer='zeros' model.compile(loss=modelparameters['loss'], optimizer=modelparameters['optimizer'], metrics=modelparameters['metrics']) model.optimizer.learning_rate=modelparameters['learning_rate'] #checkpoint=ModelCheckpoint('mlp.h5',monitor='val_loss',verbose=pspso.verbose,save_best_only=True,mode=mode) es = EarlyStopping(monitor='val_loss', mode=modelparameters['mode'], verbose=pspso.verbose,patience=pspso.early_stopping) #callbacks_list=[checkpoint,es] callbacks_list=[es] history=model.fit(X_train, Y_train, batch_size=modelparameters['batch_size'], epochs=modelparameters['epochs'], shuffle=modelparameters['shuffle'], validation_data=(X_val,Y_val), callbacks=callbacks_list, verbose=pspso.verbose) #model.load_weights('mlp.h5') #model.compile(loss=loss, optimizer=modelparameters['optimizer'], metrics=metrics) return pspso.predict(model,'mlp',task, score,X_val,Y_val),model,history except Exception as e: print("An exception occured in MLP training.") print(e) return None,None @staticmethod def f(q,estimator,task,score,X_train,Y_train,X_val,Y_val): """Higher-level method to do forward_prop in the whole swarm. Inputs x: numpy.ndarray of shape (n_particles, dimensions) The swarm that will perform the search Returns numpy.ndarray of shape (n_particles, ) The computed loss for each particle """ n_particles = q.shape[0] if estimator=='xgboost': e = [pspso.forward_prop_xgboost(q[i],task,score,X_train,Y_train,X_val,Y_val) for i in range(n_particles)]# forward_prop varies based on each classifier j=[e[i][0] for i in range(n_particles)] elif estimator == 'gbdt': e = [pspso.forward_prop_gbdt(q[i],task,score,X_train,Y_train,X_val,Y_val) for i in range(n_particles)] j=[e[i][0] for i in range(n_particles)] elif estimator == 'svm': e = [pspso.forward_prop_svm(q[i],task,score,X_train,Y_train,X_val,Y_val) for i in range(n_particles)] j=[e[i][0] for i in range(n_particles)] elif estimator == 'mlp': # as mentioned in paper, the mlp should be treated differently e = [pspso.forward_prop_mlp(q[i],task,score,X_train,Y_train,X_val,Y_val) for i in range(n_particles)] j=[e[i][0] for i in range(n_particles)] if pspso.best_particle_position_ann is not None: #if a position has been already assigned to this global variable, then it implies that this is not the first iteration. #if the same particle is found as the global best, check if it has better solution and swap, otherwise, keep the previous one and update the particle best for i in range(n_particles): # if it is the same particle as the global best if pspso.decode_parameters(q[i]) == pspso.decode_parameters(pspso.best_particle_position_ann): #if error is higher than global best error if j[i]>pspso.best_paricle_cost_ann:#same parameters, lower accuracy because of initial weights j[i]=pspso.best_paricle_cost_ann #assign the global best accuracy #check if there is a better solution in the swarm. if min(j) <=pspso.best_paricle_cost_ann: min_loss_index= j.index(min(j)) # get the index of the minimum value pspso.best_paricle_cost_ann=min(j) pspso.best_model_ann=e[min_loss_index][1] #get the best model at index 1 pspso.best_history_ann = e[min_loss_index][2]# get the history which is at index 2 pspso.best_particle_position_ann=q[min_loss_index]#get the best particle position from the list of particles else: # this case is for the first iteration where no position,cost,model, or history are assigned yet min_loss_index= j.index(min(j)) # get the index of the minimum value pspso.best_paricle_cost_ann=min(j) # set the best cost to best_particle_cost_ann pspso.best_model_ann=e[min_loss_index][1] #set the best model to best_model_ann pspso.best_history_ann=e[min_loss_index][2] # set the best history in best_history_ann pspso.best_particle_position_ann=q[min_loss_index]#set the best position to best_particle_position_ann #return the score of each particle in the population. return np.array(j) @staticmethod def rebuildmodel(estimator,pos,task,score,X_train,Y_train,X_val,Y_val): """Used to rebuild the model after selecting the parameters. """ if estimator=='xgboost': met,model=pspso.forward_prop_xgboost(pos,task,score,X_train,Y_train,X_val,Y_val) elif estimator == 'gbdt': met,model=pspso.forward_prop_gbdt(pos,task,score,X_train,Y_train,X_val,Y_val) elif estimator == 'svm': met,model=pspso.forward_prop_svm(pos,task,score,X_train,Y_train,X_val,Y_val) elif estimator == 'mlp' :# again, if the case is mlp,1dcnn, or 2dcnn we will load the best solution found in global variables of the class return pspso.best_paricle_cost_ann,pspso.best_model_ann return met,model def fitpspso(self, X_train=None, Y_train=None, X_val=None,Y_val=None,psotype='global',number_of_particles=5, number_of_iterations=10, options = {'c1': 1.49618, 'c2': 1.49618, 'w': 0.7298}): """Select the algorithm parameters based on PSO. Inputs X_train: numpy.ndarray of shape (a,b) Contains the training input features, a is the number of samples, b is the number of features Y_train: numpy.ndarray of shape (a,1) Contains the training target, a is the number of samples X_train: numpy.ndarray of shape (c,b) Contains the validation input features, c is the number of samples, b is the number of features Y_train: numpy.ndarray of shape (c,1) Contains the training target, c is the number of samples number_of_particles: integer number of particles in the PSO search space. number_of_iterations: integer number of iterations. options: dictionary A key,value dict of PSO parameters c1,c2, and w Returns pos: list The encoded parameters of the best solution cost: float The score of the best solution duration: float The time taken to conduct random search. model: The best model generated via random search combinations: list of lists The combinations examined during random search results: list The score of each combination in combinations list """ print("Running PSO Search .....") self.selectiontype= "PSO" # selection type self.number_of_particles=number_of_particles # the number of particles of the PSO self.number_of_iterations=number_of_iterations # the number of iterations in the pso self.psotype=psotype self.options=options # parameters of the PSO self.number_of_attempts=self.number_of_iterations *self.number_of_particles # max number of attempts to find a solution self.totalnbofcombinations= len(self.calculatecombinations()) pspso.best_paricle_cost_ann =None pspso.best_model_ann=None pspso.best_history_ann=None pspso.best_particle_position_ann=None kwargs = {"estimator":self.estimator, "task":self.task, "score":self.score, "X_train" : X_train, "Y_train" : Y_train, "X_val" : X_val,"Y_val":Y_val} if psotype =='global': self.optimizer = ps.single.GlobalBestPSO(n_particles=self.number_of_particles, dimensions=self.dimensions, options=self.options,bounds=self.bounds) elif psotype =='local': self.optimizer = ps.single.LocalBestPSO(n_particles=self.number_of_particles, dimensions=self.dimensions, options=self.options,bounds=self.bounds) start=time.time() #Perform optimization by using the optimize class self.cost, self.pos = self.optimizer.optimize(pspso.f, iters=self.number_of_iterations,**kwargs) end=time.time() self.duration=end-start self.met,self.model=pspso.rebuildmodel(self.estimator,self.pos,self.task,self.score,X_train,Y_train,X_val,Y_val) if self.estimator =='mlp' :# if the estimator is mlp, assign history variable self.history=pspso.best_history_ann self.miniopt=self.save_optimizer_details() return self.pos,self.cost,self.duration,self.model,self.optimizer def fitpsgrid(self,X_train=None, Y_train=None, X_val=None,Y_val=None ): """ Select the algorithm parameters based on Grid search. Grid search was implemented to match the training process with pspso and for comparison purposes. I have to traverse each value between x_min, x_max. Create a list seperating rounding value. """ print("Running Grid Search .....") self.selectiontype= "Grid" self.results=[] self.model=None self.pos=None self.cost=None self.combinations=self.calculatecombinations() self.totalnbofcombinations=len(self.combinations) self.number_of_attempts=self.totalnbofcombinations start=time.time() for comb in self.combinations:#for each value, run the function associated with the estimator #run the combination if self.estimator=='xgboost': met,mo=pspso.forward_prop_xgboost(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'gbdt': met,mo=pspso.forward_prop_gbdt(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'svm': met,mo=pspso.forward_prop_svm(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'mlp' : met,mo,hist=pspso.forward_prop_mlp(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) self.results.append(met)#record results if self.cost == None: #starting self.cost=met self.pos=comb self.model= mo else: if met <self.cost: #everything is treated as a minimization problem self.cost=met self.pos=comb self.model=mo if self.estimator =='mlp': self.history =hist end=time.time() self.duration=end-start return self.pos,self.cost,self.duration,self.model,self.combinations,self.results #return pos, cost, duration, model, combinations, results def fitpsrandom(self,X_train=None, Y_train=None, X_val=None,Y_val=None,number_of_attempts=20 ): """Select the algorithm parameters based on radnom search. With Random search, the process is done for number of times specified by a parameter in the function. Inputs X_train: numpy.ndarray of shape (a,b) Contains the training input features, a is the number of samples, b is the number of features Y_train: numpy.ndarray of shape (a,1) Contains the training target, a is the number of samples X_train: numpy.ndarray of shape (c,b) Contains the validation input features, c is the number of samples, b is the number of features Y_train: numpy.ndarray of shape (c,1) Contains the training target, c is the number of samples number_of_attempts: integer The number of times random search to be tried. Returns pos: list The encoded parameters of the best solution cost: float The score of the best solution duration: float The time taken to conduct random search. model: The best model generated via random search combinations: list of lists The combinations examined during random search results: list The score of each combination in combinations list """ print("Running Random Search .....") self.number_of_attempts=number_of_attempts self.selectiontype= "Random" self.combinations=self.calculatecombinations() self.totalnbofcombinations=len(self.combinations)#check the number of combinations we have start=time.time() self.results=[] self.model=None self.pos=None self.cost=None for z in list(range(0,number_of_attempts)): #generate a random number between zero and totalnbofcombinations-1 a=random.randint(0,self.totalnbofcombinations-1) comb=self.combinations[a] #run the combination if self.estimator=='xgboost': met,mo=pspso.forward_prop_xgboost(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'gbdt': met,mo=pspso.forward_prop_gbdt(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'svm': met,mo=pspso.forward_prop_svm(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) elif self.estimator == 'mlp' : met,mo,hist=pspso.forward_prop_mlp(comb,self.task,self.score,X_train,Y_train,X_val,Y_val) self.results.append(met) if self.cost == None: #starting self.cost=met self.pos=comb self.model= mo else: if met <self.cost: #everything is treated as a minimization problem self.cost=met self.pos=comb self.model=mo if self.estimator =='mlp': self.history =hist end=time.time() self.duration=end-start return self.pos,self.cost,self.duration,self.model,self.combinations,self.results def print_results(self): """Print the results found in the pspso instance. Expected to print general details like estimator, task, selection type, number of attempts examined, total number of combinations, position of the best solution, score of the best solution, parameters, details about the pso algorithm. """ print("Estimator: " + self.estimator) print("Task: "+ self.task) print("Selection type: "+ str(self.selectiontype)) print("Number of attempts:" + str(self.number_of_attempts)) print("Total number of combinations: " + str(self.totalnbofcombinations)) print("Parameters:") print(pspso.decode_parameters(self.pos)) print("Global best position: " + str(self.pos)) print("Global best cost: " +str(round(self.cost,4))) print("Time taken to find the set of parameters: "+ str(self.duration)) if self.selectiontype == "PSO": print("Number of particles: " +str(self.number_of_particles)) print("Number of iterations: "+ str(self.number_of_iterations)) def calculatecombinations(self): """A function that will generate all the possible combinations in the search space. Used mainly with grid search Returns combinations: list A list that contains all the possible combinations. """ index=0 thedict={} #I have to traverse each value between x_min, x_max. Create a list seperating rounding value. for i,j in zip(self.x_min,self.x_max): a=np.arange(i, j+0.000001, 10**(-1*self.rounding[index])) a=
np.round(a,self.rounding[index])
numpy.round
# Copyright (c) 2020 by Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. # Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. import copy import inspect import numpy as np from pandapipes.idx_branch import FROM_NODE, TO_NODE, FROM_NODE_T, TO_NODE_T, VINIT, branch_cols, \ ACTIVE as ACTIVE_BR from pandapipes.idx_node import NODE_TYPE, P, PINIT, NODE_TYPE_T, T, node_cols, \ ACTIVE as ACTIVE_ND, TABLE_IDX as TABLE_IDX_ND, ELEMENT_IDX as ELEMENT_IDX_ND from pandapipes.properties.fluids import get_fluid from scipy.sparse import coo_matrix, csgraph try: import pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) default_options = {"friction_model": "nikuradse", "converged": False, "tol_p": 1e-4, "tol_v": 1e-4, "tol_T": 1e-3, "tol_res": 1e-3, "iter": 10, "error_flag": False, "alpha": 1, "nonlinear_method": "constant", "p_scale": 1, "mode": "hydraulics", "ambient_temperature": 293, "check_connectivity": True, "only_update_hydraulic_matrix": False, "reuse_internal_data": False, "quit_on_inconsistency_connectivity": False} def get_net_option(net, option_name): """ Returns the requested option of the given net. Raises a UserWarning if the option was not found. :param net: pandapipesNet for which option is requested :type net: pandapipesNet :param option_name: Name of requested option :type option_name: str :return: option - The value of the option """ try: return net["_options"][option_name] except KeyError: raise UserWarning("The option %s is not stored in the pandapipes net." % option_name) def get_net_options(net, *option_names): """ Returns several requested options of the given net. Raises a UserWarning if any of the options was not found. :param net: pandapipesNet for which option is requested :type net: pandapipesNet :param option_names: Names of requested options (as args) :type option_names: str :return: option - Tuple with values of the options """ return (get_net_option(net, option) for option in list(option_names)) def set_net_option(net, option_name, option_value): """ Auxiliary function to set the value of a specific option (options are saved in a dict). :param net: pandapipesNet for which option shall be set :type net: pandapipesNet :param option_name: Name under which the option shall be saved :type option_name: str :param option_value: Value that shall be set for the given option :return: No output """ net["_options"][option_name] = option_value def warn_high_index(element_name, element_length, max_element_index): if (element_length > 100 and max_element_index > 1000 * element_length) \ or (element_length <= 100 and max_element_index > 50000): logger.warning("High index in %s table!!!" % element_name) def add_table_lookup(table_lookup, table_name, table_number): """ Auxiliary function to add a lookup between table name in the pandapipes net and table number in the internal structure (pit). :param table_lookup: The lookup dictionary from table names to internal number (n2t) and vice \ versa (t2n) :type table_lookup: dict :param table_name: Name of the table that shall be mapped to number :type table_name: str :param table_number: Number under which the table is saved in the pit :type table_number: int :return: No output """ table_lookup["n2t"][table_number] = table_name table_lookup["t2n"][table_name] = table_number def get_table_number(table_lookup, table_name): """ Auxiliary function to retrieve the internal pit number for a given pandapipes net table name from the table lookup. :param table_lookup: The lookup dictionary from table names to internal number (n2t) and vice \ versa (t2n) :type table_lookup: dict :param table_name: Name of the table for which the internal number shall be retrieved :type table_name: str :return: table_number - Internal number of the given table name within the pit :rtype: int """ if table_name not in table_lookup["t2n"]: return None return table_lookup["t2n"][table_name] def get_table_name(table_lookup, table_number): """ Auxiliary function to retrieve the pandapipes net table name for a given internal pit number from the table lookup. :param table_lookup: The lookup dictionary from table names to internal number (n2t) and vice \ versa (t2n) :type table_lookup: dict :param table_number: Internal number of the table for which the name shall be retrieved :type table_number: int :return: table_name - pandapipes net table name for the internal pit number :rtype: str """ if table_number not in table_lookup["n2t"]: return None return table_lookup["n2t"][table_number] def get_lookup(net, pit_type="node", lookup_type="index"): """ Returns internal lookups which are mostly defined in the function `create_lookups`. :param net: The pandapipes net for which the lookup is requested :type net: pandapipesNet :param pit_type: Identifier which of the two pits ("branch" or "node") the lookup belongs to :type pit_type: str :param lookup_type: Name of the lookup type :type lookup_type: str :return: lookup - A lookup (mostly a dict with mappings from pandapipesNet to internal structure) :rtype: dict, np.array, .... """ pit_type = pit_type.lower() lookup_type = lookup_type.lower() all_lookup_types = ["index", "table", "from_to", "active", "length", "from_to_active", "index_active"] if lookup_type not in all_lookup_types: type_names = "', '".join(all_lookup_types) logger.error("No lookup type '%s' exists. Please choose one of '%s'." % (lookup_type, type_names)) return None if pit_type not in ["node", "branch"]: logger.error("No pit type '%s' exists. Please choose one of 'node' and 'branch'." % pit_type) return None return net["_lookups"]["%s_%s" % (pit_type, lookup_type)] def set_user_pf_options(net, reset=False, **kwargs): """ This function sets the "user_pf_options" dictionary for net. These options overrule net._internal_options once they are added to net. These options are used in configuration of load flow calculation. At the same time, user-defined arguments for `pandapipes.pipeflow()` always have a higher priority. To remove user_pf_options, set "reset = True" and provide no additional arguments. :param net: pandapipes network for which to create user options :type net: pandapipesNet :param reset: Specifies whether the user_pf_options is removed before setting new options :type reset: bool, default False :param kwargs: pipeflow options that shall be set, e. g. tol_v = 1e-7 :return: No output """ if reset or 'user_pf_options' not in net.keys(): net['user_pf_options'] = dict() additional_kwargs = set(kwargs.keys()) - set(default_options.keys()) - {"fluid", "hyd_flag"} if len(additional_kwargs) > 0: logger.info('parameters %s are not in the list of standard options' % list(additional_kwargs)) net.user_pf_options.update(kwargs) def init_options(net, local_parameters): """ Initializes physical and mathematical constants included in pandapipes. In addition, options for the nonlinear and time-dependent solver are also set. Those are the options that can be set and their default values: - **iter** (int): 10 - If the simulation is terminated after a certain amount of iterations,\ this is the number of iterations. - **tol_p** (float): 1e-4 - The relative tolerance for the pressure. A result is accepted \ if the relative error is smaller than this factor. - **tol_v** (float): 1e-4 - The relative tolerance for the velocity. A result is accepted \ if the relative error is smaller than this factor. - **tol_T** (float): 1e-4 - The relative tolerance for the temperature. A result is \ accepted if the relative error is smaller than this factor. - **tol_res** (float): 1e-3 - The relative tolerance for the residual. A result is accepted\ if the relative error is smaller than this factor. - **ambient_temperature** (float): 293.0 - The assumed ambient temperature for the\ calculation of the barometric formula - **friction_model** (str): "nikuradse" - The friction model that shall be used to identify\ the value for lambda (can be "nikuradse" or "colebrook") - **alpha** (float): 1 - The step width for the Newton iterations. If the Newton steps \ shall be damped, **alpha** can be reduced. See also the **nonlinear_method** \ parameter. - **nonlinear_method** (str): "constant" - The option of how the damping factor **alpha** \ is determined in each iteration. It can be "constant" (i.e. **alpha** is always the\ same in each iteration) or "automatic", in which case **alpha** is adapted \ automatically with respect to the convergence behaviour. - **gas_impl** (str): "pandapipes" - Implementation of the gas model. It can be set to\ "pandapipes" with calculations according to "Handbuch der Gasversorgungstechnik"\ or to "STANET" with calculations according to the STANET reference. - **heat_transfer** (bool): False - Flag to determine if the heat transfer shall be\ calculated. - **only_update_hydraulic_matrix** (bool): False - If True, the system matrix is not \ created in every iteration, but only the data is updated according to a lookup that\ is identified in the first iteration. This speeds up calculation, but has not yet\ been tested extensively. - **check_connectivity** (bool): True - If True, a connectivity check is performed at the\ beginning of the pipeflow and parts of the net that are not connected to external\ grids are set inactive. - **quit_on_inconsistency_connectivity** (bool): False - If True, inconsistencies in the\ connectivity check raise an error, otherwise they are handled. Inconsistencies mean\ that out of service nodes are connected to in service branches. If that is the case\ and the flag is set to False, the connected nodes are activated. :param net: The pandapipesNet for which the options are initialized :type net: pandapipesNet :param local_parameters: Dictionary with local parameters that were passed to the pipeflow call. :type local_parameters: dict :return: No output :Example: >>> init_options(net) """ from pandapipes.pipeflow import pipeflow # the base layer of the options consists of the default options net["_options"] = copy.deepcopy(default_options) excluded_params = {"net", "interactive_plotting", "t_start", "sol_vec", "kwargs"} # the base layer is overwritten and extended by options given by the default parameters of the # pipeflow function definition args_pf = inspect.getfullargspec(pipeflow) pf_func_options = dict(zip(args_pf.args[-len(args_pf.defaults):], args_pf.defaults)) pf_func_options = {k: pf_func_options[k] for k in set(pf_func_options.keys()) - excluded_params} net["_options"].update(pf_func_options) # the third layer is the user defined pipeflow options if "user_pf_options" in net and len(net.user_pf_options) > 0: net["_options"].update(net.user_pf_options) # the last layer is the layer of passeed parameters by the user, it is defined as the local # existing parameters during the pipeflow call which diverges from the default parameters of the # function definition in the second layer params = dict() for k, v in local_parameters.items(): if k in excluded_params or (k in pf_func_options and pf_func_options[k] == v): continue params[k] = v params.update(local_parameters["kwargs"]) net["_options"].update(params) net["_options"]["fluid"] = get_fluid(net).name if not net["_options"]["only_update_hydraulic_matrix"]: net["_options"]["reuse_internal_data"] = False def create_internal_results(net): """ Initializes a dictionary that shall contain some internal results later. :param net: pandapipes net to which internal result dict will be added :type net: pandapipesNet :return: No output """ net["_internal_results"] = dict() def write_internal_results(net, **kwargs): """ Adds specified values to the internal result dictionary of the given pandapipes net. If internal results are not yet defined for the net, they are created as well. :param net: pandapipes net for which to update internal result dict :type net: pandapipesNet :param kwargs: Additional keyword arguments with the internal result values :return: No output """ if "_internal_results" not in net: create_internal_results(net) net["_internal_results"].update(kwargs) def initialize_pit(net, node_name, NodeComponent, NodeElementComponent, BranchComponent, BranchWInternalsComponent): """ Initializes and fills the internal structure which is called pit (pandapipes internal tables). The structure is a dictionary which should contain one array for all nodes and one array for all branches of the net (c.f. also `create_empty_pit`). :param net: The pandapipes network for which to create and fill the internal structure :type net: pandapipesNet :return: (node_pit, branch_pit) - The two internal structure arrays :rtype: tuple(np.array) """ pit = create_empty_pit(net) for comp in net['component_list']: if issubclass(comp, NodeComponent) | \ issubclass(comp, BranchWInternalsComponent) | \ issubclass(comp, NodeElementComponent): comp.create_pit_node_entries(net, pit["node"], node_name) if issubclass(comp, BranchComponent): comp.create_pit_branch_entries(net, pit["branch"], node_name) return pit["node"], pit["branch"] def create_empty_pit(net): """ Creates an empty internal structure which is called pit (pandapipes internal tables). The\ structure is a dictionary which should contain one array for all nodes and one array for all\ branches of the net. It is very often referred to within the pipeflow. So the structure in\ general looks like this: >>> net["_pit"] = {"node": np.array((no_nodes, col_nodes), dtype=np.float64), "branch": np.array((no_branches, col_branches), dtype=np.float64)} :param net: The pandapipes net to which to add the empty structure :type net: pandapipesNet :return: pit - The dict of arrays with the internal node / branch structure :rtype: dict """ node_length = get_lookup(net, "node", "length") branch_length = get_lookup(net, "branch", "length") # init empty pit pit = {"node": np.empty((node_length, node_cols), dtype=np.float64), "branch": np.empty((branch_length, branch_cols), dtype=np.float64)} net["_pit"] = pit return pit def extract_all_results(net, node_name): """ Extract results from branch pit and node pit and write them to the different tables of the net, as defined by the component models. :param net: pandapipes net for which to extract results into net.res_xy :type net: pandapipesNet :return: No output """ for comp in net['component_list']: comp.extract_results(net, net["_options"], node_name) def create_lookups(net, NodeComponent, BranchComponent, BranchWInternalsComponent): """ Create all lookups necessary for the pipeflow of the given net. The lookups are usually: - node_from_to: The start and end indices of all node component tables within the pit - branch_from_to: The start and end indices of all branch component tables within the pit - node_table: Dictionary to determine indices for node component tables (e.g. {"junction": 0}).\ Can be arbitrary and strongly depends on the component order given by\ `get_component_list`. - branch_table: Dictionary to determine indices for branch component tables (e.g.\ {"pipe": 0, "valve": 1}). Can be arbitrary and strongly depends on the\ component order given by `get_component_list`. - node_index: Lookup from component index (e.g. junction 2) to pit index (e.g. 0) for nodes. - branch_index: Lookup from component index (e.g. pipe 1) to pit index (e.g. 5) for branches. - internal_nodes_lookup: Lookup for internal nodes of branch components that makes result\ extraction a lot easier. :param net: The pandapipes network for which to create the lookups :type net: pandapipesNet :return: No output """ node_ft_lookups, node_idx_lookups, node_from, node_table_nr = dict(), dict(), 0, 0 branch_ft_lookups, branch_idx_lookups, branch_from, branch_table_nr = dict(), dict(), 0, 0 branch_table_lookups = {"t2n": dict(), "n2t": dict()} node_table_lookups = {"t2n": dict(), "n2t": dict()} internal_nodes_lookup = dict() for comp in net['component_list']: if issubclass(comp, BranchComponent): branch_from, branch_table_nr = comp.create_branch_lookups( net, branch_ft_lookups, branch_table_lookups, branch_idx_lookups, branch_table_nr, branch_from) if issubclass(comp, NodeComponent) | issubclass(comp, BranchWInternalsComponent): node_from, node_table_nr = comp.create_node_lookups( net, node_ft_lookups, node_table_lookups, node_idx_lookups, node_from, node_table_nr, internal_nodes_lookup) net["_lookups"] = {"node_from_to": node_ft_lookups, "branch_from_to": branch_ft_lookups, "node_table": node_table_lookups, "branch_table": branch_table_lookups, "node_index": node_idx_lookups, "branch_index": branch_idx_lookups, "node_length": node_from, "branch_length": branch_from, "internal_nodes_lookup": internal_nodes_lookup} def check_connectivity(net, branch_pit, node_pit, check_heat): """ Perform a connectivity check which means that network nodes are identified that don't have any connection to an external grid component. Quick overview over the steps of this function: - Build a sparse matrix graph (scipy.sparse.csr_matrix) from all branches that are in_service\ (nodes of this graph are taken from FROM_NODE and TO_NODE column in pit). - Add a node that represents all external grids and connect all nodes that are connected to\ external grids to that node. - Perform a breadth first order search to identify all nodes that are reachable from the \ added external grid node. - Create masks for exisiting nodes and branches to show if they are reachable from an \ external grid. - Compare the reachable nodes with the initial in_service nodes.\n - If nodes are reachable that were set out of service by the user, they are either set \ in_service or an error is raised. The behavior depends on the pipeflow option \ **quit_on_inconsistency_connectivity**. - If nodes are not reachable that were set in_service by the user, they will be set out of\ service automatically (this is the desired functionality of the connectivity check). :param net: The pandapipesNet for which to perform the check :type net: pandapipesNet :param branch_pit: Internal array with branch entries :type branch_pit: np.array :param node_pit: Internal array with node entries :type node_pit: np.array :param check_heat: Flag which determines whether to also check for connectivity to heat \ external grids :type check_heat: bool :return: (nodes_connected_hyd, branches_connected) - Lookups of np.arrays stating which of the internal nodes and branches are reachable from any of the hyd_slacks (np mask). :rtype: tuple(np.array) """ active_branch_lookup = branch_pit[:, ACTIVE_BR].astype(np.bool) active_node_lookup = node_pit[:, ACTIVE_ND].astype(np.bool) from_nodes = branch_pit[:, FROM_NODE].astype(np.int32) to_nodes = branch_pit[:, TO_NODE].astype(np.int32) hyd_slacks = np.where(node_pit[:, NODE_TYPE] == P & node_pit[:, ACTIVE_ND].astype(np.bool))[0] nodes_connected, branches_connected = perform_connectivity_search( net, node_pit, hyd_slacks, from_nodes, to_nodes, active_node_lookup, active_branch_lookup, mode="hydraulics") if not check_heat: return nodes_connected, branches_connected heat_slacks = np.where((node_pit[:, NODE_TYPE_T] == T) & nodes_connected)[0] if len(heat_slacks) == len(hyd_slacks) and np.all(heat_slacks == hyd_slacks): return nodes_connected, branches_connected nodes_connected, branches_connected = perform_connectivity_search( net, node_pit, heat_slacks, from_nodes, to_nodes, nodes_connected, branches_connected, mode="heat transfer") return nodes_connected, branches_connected def perform_connectivity_search(net, node_pit, slack_nodes, from_nodes, to_nodes, active_node_lookup, active_branch_lookup, mode="hydraulics"): len_nodes = len(node_pit) nobranch = np.sum(active_branch_lookup) active_from_nodes = from_nodes[active_branch_lookup] active_to_nodes = to_nodes[active_branch_lookup] # we create a "virtual" node that is connected to all slack nodes and start the connectivity # search at this node fn_matrix = np.concatenate([active_from_nodes, slack_nodes]) tn_matrix = np.concatenate([active_to_nodes, np.full(len(slack_nodes), len_nodes, dtype=np.int32)]) adj_matrix = coo_matrix((np.ones(nobranch + len(slack_nodes)), (fn_matrix, tn_matrix)), shape=(len_nodes + 1, len_nodes + 1)) # check which nodes are reachable from the virtual heat slack node reachable_nodes = csgraph.breadth_first_order(adj_matrix, len_nodes, False, False) # throw out the virtual heat slack node reachable_nodes = reachable_nodes[reachable_nodes != len_nodes] nodes_connected = np.zeros(len(active_node_lookup), dtype=np.bool) nodes_connected[reachable_nodes] = True if not np.all(nodes_connected[active_from_nodes] == nodes_connected[active_to_nodes]): raise ValueError( "An error occured in the %s connectivity check. Please contact the pandapipes development" \ " team!" % mode) branches_connected = active_branch_lookup & nodes_connected[from_nodes] oos_nodes = np.where(~nodes_connected & active_node_lookup)[0] is_nodes = np.where(nodes_connected & ~active_node_lookup)[0] if len(oos_nodes) > 0: msg = "\n".join("In table %s: %s" % (tbl, nds) for tbl, nds in get_table_index_list(net, node_pit, oos_nodes)) logger.info("Setting the following nodes out of service for %s calculation in connectivity" " check:\n%s" % (mode, msg)) if len(is_nodes) > 0: node_type_message = "\n".join("In table %s: %s" % (tbl, nds) for tbl, nds in get_table_index_list(net, node_pit, is_nodes)) if get_net_option(net, "quit_on_inconsistency_connectivity"): raise UserWarning( "The following nodes are connected to in_service branches in the %s calculation " "although being out of service, which leads to an inconsistency in the connectivity" " check!\n%s" % (mode, node_type_message)) logger.info("Setting the following nodes back in service for %s calculation in connectivity" " check as they are connected to in_service branches:\n%s" % (mode, node_type_message)) return nodes_connected, branches_connected def get_table_index_list(net, pit_array, pit_indices, pit_type="node"): """ Auxiliary function to get a list of tables and the table indices that belong to a number of pit indices. :param net: pandapipes net for which the list is requested :type net: pandapipesNet :param pit_array: Internal structure from which to derive the tables and table indices :type pit_array: np.array :param pit_indices: Indices for which the table name and index list are requested :type pit_indices: list, np.array, .... :param pit_type: Type of the pit ("node" or "branch") :type pit_type: str, default "node" :return: List of table names and table indices belonging to the pit indices """ int_pit = pit_array[pit_indices, :] tables = np.unique(int_pit[:, TABLE_IDX_ND]) table_lookup = get_lookup(net, pit_type, "table") return [(get_table_name(table_lookup, tbl), list(int_pit[int_pit[:, TABLE_IDX_ND] == tbl, ELEMENT_IDX_ND].astype(np.int32))) for tbl in tables] def reduce_pit(net, node_pit, branch_pit, nodes_connected, branches_connected): """ Create an internal ("active") pit with all nodes and branches that are actually in_service. This is also done for different lookups (e.g. the from_to indices for this pit and the node index lookup). A specialty that needs to be considered is that from_nodes and to_nodes change to new indices. :param net: The pandapipesNet for which the pit shall be reduced :type net: pandapipesNet :param node_pit: The internal structure node array :type node_pit: np.array :param branch_pit: The internal structure branch array :type branch_pit: np.array :param nodes_connected: A mask array stating which nodes are actually connected to the rest of\ the net :type nodes_connected: np.array :param branches_connected: A mask array stating which branches are actually connected to the \ rest of the net :type branches_connected: np.array :return: No output """ active_pit = dict() els = dict() reduced_node_lookup = None if np.alltrue(nodes_connected): net["_lookups"]["node_from_to_active"] = copy.deepcopy(get_lookup(net, "node", "from_to")) net["_lookups"]["node_index_active"] = copy.deepcopy(get_lookup(net, "node", "index")) active_pit["node"] = np.copy(node_pit) else: active_pit["node"] = np.copy(node_pit[nodes_connected, :]) reduced_node_lookup = np.cumsum(nodes_connected) - 1 node_idx_lookup = get_lookup(net, "node", "index") net["_lookups"]["node_index_active"] = { tbl: reduced_node_lookup[idx_lookup[idx_lookup != -1]] for tbl, idx_lookup in node_idx_lookup.items()} els["node"] = nodes_connected if np.alltrue(branches_connected): net["_lookups"]["branch_from_to_active"] = copy.deepcopy(get_lookup(net, "branch", "from_to")) active_pit["branch"] = np.copy(branch_pit) net["_lookups"]["branch_index_active"] = copy.deepcopy(get_lookup(net, "branch", "index")) else: active_pit["branch"] = np.copy(branch_pit[branches_connected, :]) if reduced_node_lookup is not None: active_pit["branch"][:, FROM_NODE] = reduced_node_lookup[ branch_pit[branches_connected, FROM_NODE].astype(np.int32)] active_pit["branch"][:, TO_NODE] = reduced_node_lookup[ branch_pit[branches_connected, TO_NODE].astype(np.int32)] branch_idx_lookup = get_lookup(net, "branch", "index") if len(branch_idx_lookup): reduced_branch_lookup = np.cumsum(branches_connected) - 1 net["_lookups"]["branch_index_active"] = { tbl: reduced_branch_lookup[idx_lookup[idx_lookup != -1]] for tbl, idx_lookup in branch_idx_lookup.items()} else: net["_lookups"]["branch_index_active"] = dict() els["branch"] = branches_connected net["_active_pit"] = active_pit net["_lookups"]["node_active"] = nodes_connected net["_lookups"]["branch_active"] = branches_connected for el, connected_els in els.items(): ft_lookup = get_lookup(net, el, "from_to") aux_lookup = {table: (ft[0], ft[1], np.sum(connected_els[ft[0]: ft[1]])) for table, ft in ft_lookup.items() if ft is not None} from_to_active_lookup = copy.deepcopy(ft_lookup) count = 0 for table, (f_old, t_old, len_new) in sorted(aux_lookup.items(), key=lambda x: x[1][0]): from_to_active_lookup[table] = (count, count + len_new) count += len_new net["_lookups"]["%s_from_to_active" % el] = from_to_active_lookup def extract_results_active_pit(net, node_pit, branch_pit, nodes_connected, branches_connected): """ Extract the pipeflow results from the internal pit structure ("_active_pit") to the general pit structure. :param net: The pandapipes net that the internal structure belongs to :type net: pandapipesNet :param node_pit: The internal structure node array :type node_pit: np.array :param branch_pit: The internal structure branch array :type branch_pit: np.array :param nodes_connected: A mask array stating which nodes are actually connected to the rest of\ the net :type nodes_connected: np.array :param branches_connected: A mask array stating which branches are actually connected to the \ rest of the net :type branches_connected: np.array :return: No output """ if not np.alltrue(nodes_connected): node_pit[~nodes_connected, PINIT] = np.NaN node_pit[nodes_connected, :] = net["_active_pit"]["node"] else: net["_pit"]["node"] = np.copy(net["_active_pit"]["node"]) if not
np.alltrue(branches_connected)
numpy.alltrue
import os import sys import tqdm import random import operator import tarfile import zipfile import logging import argparse import fontconfig import numpy as np from pathlib import Path import six.moves.urllib as urllib import skvideo.io import skvideo.datasets from distutils.version import StrictVersion from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image as PILImage from PIL import ImageDraw, ImageFont from fonts.otf import font_files from IPython.display import display, Image import tensorflow as tf from object_detection.utils import ops as utils_ops from utils import label_map_util logging.basicConfig() logging.getLogger().setLevel(logging.INFO) system_fonts = fontconfig.query(family='ubuntu', lang='en') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def load_graph(model_path): try: detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path.as_posix(), 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') logging.info('Done loading frozen graph from {}'.format(model_path)) return detection_graph except Exception as err: logging.error('Error loading frozen graph from {}'.format(model_path)) return None def build_model(default_graph, session): tensor_list = ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks'] tensor_dict = {} with default_graph.as_default(): with session.as_default(): # Get handles to input and output tensors ops = default_graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} for key in tensor_list: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = default_graph.get_tensor_by_name(tensor_name) image_tensor = default_graph.get_tensor_by_name('image_tensor:0') return tensor_dict, image_tensor def load_label_map(label_map_file): map_loader = label_map_util.create_category_index_from_labelmap return map_loader(label_map_file.as_posix(), use_display_name=True) def fetch_images(source_images, ext='.jpg'): if source_images.is_file(): with source_images.open() as pfile: test_images = pfile.readlines() test_images = [t.strip() for t in test_images] elif source_images.is_dir(): test_images = [img for img in source_images.iterdir() if img.suffix == ext] else: logger.error('Neither an image list' ' or a directory {}'.format(source_images)) return None return test_images def fetch_frames(vid_path): try: vidgen = skvideo.io.vreader(vid_path.as_posix()) return vidgen except Exception as err: logging.error('Error parsing video {}, {}'.format(vid_path, err)) return None def run_inference(sess, output_dict, image_tensor, image): with sess.as_default(): output_dict = sess.run(output_dict, feed_dict={image_tensor: np.expand_dims(image, 0)}) output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.uint8) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict def draw_detections(source_img, bboxes, scores, labels, label_map, threshold=0.5): source_img = source_img.convert("RGBA") draw = ImageDraw.Draw(source_img) width, height = source_img.size for bbox, score, label in zip(bboxes, scores, labels): if score < threshold: continue ymin = int(bbox[0] * height) ymax = int(bbox[2] * height) xmin = int(bbox[1] * width) xmax = int(bbox[3] * width) rect_width = int(min(32, 0.1 * (xmax - xmin))) font_size = int(min(32, 0.5 * (xmax - xmin))) draw.rectangle(((xmin, ymin), (xmax, ymax)), fill=None, outline='red', width=rect_width) object_string = '{} : {:.2f} %'.format(label_map[label]['name'], score) draw.text((xmin, ymax), object_string, font=ImageFont.truetype(system_fonts[0].file, font_size)) source_img = source_img.convert("RGB") return source_img def run_detection(video_path, images_path, model_path, labels_file, destination, im_size, threshold): is_video = video_path is not None is_image = images_path is not None assert operator.xor(is_video, is_image), \ "Señor! Either provide images or video but not both" if video_path: writer = skvideo.io.FFmpegWriter(destination.as_posix()) image_gen = fetch_frames(video_path) if images_path: image_gen = fetch_images(images_path) graph = load_graph(model_path) session = tf.Session(graph=graph) output_tensors, input_tensor = build_model(graph, session) labels_map = load_label_map(labels_file) for image in tqdm.tqdm(image_gen): if is_image: pil_image = PILImage.open(image) pil_image.thumbnail(im_size, PILImage.ANTIALIAS) np_image = np.array(pil_image).astype(np.uint8) if is_video: pil_image = PILImage.fromarray(image) pil_image.thumbnail(im_size, PILImage.ANTIALIAS) np_image = np.array(pip_image).astype(np.uint8) preds = run_inference(session, output_tensors, input_tensor, np_image) pil_image = draw_detections(pil_image, preds['detection_boxes'], preds['detection_scores'], preds['detection_classes'], labels_map, threshold=threshold) if is_video: writer.writeFrame(
np.array(pil_image)
numpy.array
from __future__ import print_function, division from astropy.io import fits import numpy as np import matplotlib.pyplot as plt import copy import os import collections import string import matplotlib # Tommy's code import jwst_targloc as jtl # other code import coords_transform as ct import least_squares_iterate as lsi # Header __author__ = "<NAME>" __version__ = "1.0" """ This script has Target Acquisition functions that are auxiliary to the TA functions in the jwst_targloc.py script. * Functions are ordered alphabetically. ** Functions specific to test if the averaging of centroids in pixel space, sky, or individually returns the best results are located at the end of this file. """ # FUNCTIONS AUXILIARY TO JWST CENTROID ALGORITHM def bg_correction(img, bg_method=None, bg_value=None, bg_frac=None, verbose=True, debug=False): """ Subtract a background value from every pixel in the image, based on the background method (None, Fixed, or Fraction): - If None, the image is used as-is. - If Fixed, the given background level (bg_value) is the value to be subtracted from each pixel in the image. - If Fraction, the given background level is the fraction (e.g. if bg_fraction = 0.5, the background is set to the median pixel value in the image; if bg_fraction = 0.4, 40% of the pixels have data values less than background, while 60% have data values larger than background, and implicitly, the top 20% of the data values are assumed to contain significant counts from astronomical sources, cosmic rays, or hot pixels. See code). Args: img -- Image bg_method -- Either None value or string: "fixed" or "frac" bg_value -- Float, fixed value to subtract from each pixel (this has to be set if bg_method = "fixed") bg_frac -- Float, fractional value to subtract from image (this has to be set if bg_method = "frac") Returns: img_bgcorr -- The group of 3 background subtracted images Example usage: >> img_bgcorr = bg_correction(master_img, bg_method='frac', bg_value=0.4) """ # Make sure to return the image as is if None is selected if bg_method is None: return img elif "fix" in bg_method: # Check that bg_value is defined if bg_value is None: print ("(bg_correction): ERROR - Background_method set to 'fixed': bg_value needs to be a float number, got None.") exit() master_img_bgcorr = img - bg_value return master_img_bgcorr elif "frac" in bg_method: # Check that bg_value is defined if bg_frac is None: print ("(bg_correction): ERROR - Background_method set to 'fractional': bg_frac needs to be a float number, got None.") exit() # Find the pixel value (bg) that represents that fraction of the population img_original = copy.deepcopy(img) sorted_img = np.sort(np.ravel(img)) # flatten the image and sort it xsize = np.shape(img)[1] ysize = np.shape(img)[0] idx_bg = int(np.floor(bg_frac * xsize * ysize)) # If at the edge, correct if idx_bg == np.shape(sorted_img)[0]: idx_bg -= 1 bg = sorted_img[idx_bg] img_bgcorr = img_original - bg # Debugging messages if debug: print("(bg_correction): xsize = {}, ysize= {}".format(xsize, ysize)) print("(bg_correction): sorted_img = {}".format(sorted_img)) print("(bg_correction): idx_bg = {}".format(idx_bg)) print("(bg_correction): bg = {}".format(bg)) return img_bgcorr def centroid2fulldetector(cb_centroid_list, true_center, detector, perform_avgcorr=True): """ Transform centroid coordinates into full detector coordinates. Args: cb_centroid_list -- List, centroid window based centroid determined by TA algorithm in terms of 32 by 32 pixels for centroid window sizes 3, 5, and 7 true_center -- List, actual (true) position of star in terms of full detector detector -- integer, either 491 or 492 perform_avgcorr -- True or False, perform average Pierre's correction on measurements Returns: cb_centroid_list_fulldetector -- List of centroid locations determined with the TA algorithm in terms of full detector. List is for positions determined with 3, 5, and 7 centroid window sizes. loleftcoords -- List, Coordinates of the lower left corner of the 32x32 pixel box true_center32x32 -- List, true center given in coordinates of 32x32 pix differences_true_TA -- List, difference of true-observed positions """ # Get the lower left corner coordinates in terms of full detector. We subtract 16.0 because indexing # from centroid function starts with 1 corrected_x = true_center[0] corrected_y = true_center[1] loleft_x = np.floor(corrected_x) - 16.0 loleft_y = np.floor(corrected_y) - 16.0 loleftcoords = [loleft_x, loleft_y] # get center in terms of 32x32 cutout true_center32x32 = [corrected_x-loleft_x, corrected_y-loleft_y] # Add lower left corner to centroid location to get it in terms of full detector cb_centroid_list_fulldetector = [] for centroid_location in cb_centroid_list: centroid_fulldetector_x = centroid_location[0] + loleft_x centroid_fulldetector_y = centroid_location[1] + loleft_y centroid_fulldetector = [centroid_fulldetector_x, centroid_fulldetector_y] cb_centroid_list_fulldetector.append(centroid_fulldetector) corr_cb_centroid_list = cb_centroid_list_fulldetector # Correct true centers for average value given by Pier if perform_avgcorr: corr_cb_centroid_list = do_Piers_correction(detector, corr_cb_centroid_list) # Determine difference between center locations differences_true_TA = [] d3_x = true_center[0] - corr_cb_centroid_list[0][0] d3_y = true_center[1] - corr_cb_centroid_list[0][1] d3 = [d3_x, d3_y] if len(corr_cb_centroid_list) != 1: # make sure this function works even for one centroid window d5_x = true_center[0] - corr_cb_centroid_list[1][0] d5_y = true_center[1] - corr_cb_centroid_list[1][1] d7_x = true_center[0] - corr_cb_centroid_list[2][0] d7_y = true_center[1] - corr_cb_centroid_list[2][1] d5 = [d5_x, d5_y] d7 = [d7_x, d7_y] diffs = [d3, d5, d7] else: diffs = d3 differences_true_TA.append(diffs) return corr_cb_centroid_list, loleftcoords, true_center32x32, differences_true_TA def compare2ref(case, bench_stars, benchV2, benchV3, stars, V2in, V3in): """ This function obtains the differences of the input arrays with the reference or benchmark data. Args: case -- string, for example 'Scene2_rapid_real_bgFrac' bench_stars -- numpy array of the star numbers being used benchV2 -- numpy array of the benchmark V2s benchV3 -- numpy array of the benchmark V3s stars -- list of the star numbers being studied V2in -- numpy array of measured V2s V3in -- numpy array of measured V3s Returns: 4 lists: diffV2, diffV3, bench_V2_list, bench_V3_list diffV2 = benchmark V2 - measured V2 diffV3 = benchmark V3 - measured V3 bench_V2_list = benchmark V2 converted in same units as input bench_V3_list = benchmark V3 converted in same units as input """ # calculate the differences with respect to the benchmark data if len(stars) == len(bench_stars): # for the fixed and None background case diffV2 = benchV2 - V2in diffV3 = benchV3 - V3in bench_V2_list = benchV2.tolist() bench_V3_list = benchV3.tolist() else: # for the fractional background case bench_V2_list, bench_V3_list = [], [] diffV2, diffV3 = [], [] for i, s in enumerate(stars): if s in bench_stars: j = bench_stars.tolist().index(s) dsV2 = benchV2[j] - V2in[i] dsV3 = benchV3[j] - V3in[i] diffV2.append(dsV2) diffV3.append(dsV3) bench_V2_list.append(benchV2[j]) bench_V3_list.append(benchV3[j]) diffV2 = np.array(diffV2) diffV3 = np.array(diffV3) return diffV2, diffV3, bench_V2_list, bench_V3_list def convert2MSAcenter(xin, yin, xtin, ytin, arcsec): """ This function is a python translation of Tonys IDL equivalent function. It converts the measured coordinates of each star into the frame relative to the center of the MSA. Args: xin: numpy array of the measured V2s yin: numpy array of the measured V2s xtin: numpy array of true V2s ytin: numpy array of true V3s Returns: 4 numpy arrays: x, y, xt, yt - Corrected arrays """ # Center coordinates of NIRSpec V2, V3 x0_XAN = 376.769 # V2 in arcsec y0_YAN = -428.453 # V3 in arcsec # measured V2 V3 in degrees if arcsec: x0 = x0_XAN # conversion of V2 to XAN in degrees y0_YANd = y0_YAN # intermediate conversion: V3 arcsec to V3 degrees=-0.119015 y0 = -y0_YANd -468.0 # convert V3 degrees to YAN=+0.249015 else: x0 = x0_XAN/3600. # conversion of V2 to XAN in degrees y0_YANd = y0_YAN/3600. # intermediate conversion: V3 arcsec to V3 degrees=-0.119015 y0 = -y0_YANd -0.13 # convert V3 degrees to YAN=+0.249015 # convert inputs to MSA center x = xin - x0 y = yin - y0 xt = xtin - x0 yt = ytin - y0 return x, y, xt, yt def display_centroids(detector, st, case, psf, corr_true_center_centroid, corr_cb_centroid_list, show_disp, vlims=None, savefile=False, fig_name=None, redos=False, display_master_img=False): """ This function displays de the centroids for the 32x32 pixel cutout images, showing the true position as wel as the measured centroids. Args: detector -- integer, either 491 or 492 st -- integer, star number case -- string, for example 'Scene2_rapid_real_bgFrac' psf -- numpy array of shape (3, 32, 32) -- cutout of 3 ramped images corr_true_center_centroid -- list of x and y true pixel positions corr_cb_centroid_list -- list of 3 lists, x and y pixel positions for centroiding window 3, 5, and 7 show_disp -- True or False, show the 32x32 image with true center and measured positions vlims -- tuple, example: (10.0, 50.0) savefile -- True or False, save or not the image as a .jpg fig_name -- string, name for the figure redos -- True or False, use or not the directories with _redo display_master_img -- True or False, show the initial image (before background subtraction) Returns: Nothing. """ if isinstance(st, int): fig_title = "star_"+str(st)+"_"+case else: fig_title = st if vlims is None: vlims = (10, 50) if display_master_img is not False: # Display original image. _, ax = plt.subplots(figsize=(8, 8)) ax.set_title(fig_title+"_original") ax.autoscale(enable=False, axis='both') ax.imshow(display_master_img, cmap='gray', interpolation='nearest') ax.set_ylim(0.0, np.shape(display_master_img)[0]) ax.set_xlim(0.0, np.shape(display_master_img)[1]) ax.imshow(display_master_img, cmap='gray', interpolation='nearest', vmin=vlims[0], vmax=vlims[1]) # Add plot of measured centroids font = {'family' : 'normal', 'weight' : 'normal', 'size' : 12} matplotlib.rc('font', **font) fig, ax = plt.subplots(figsize=(12, 12)) ax.set_title(fig_title) ax.autoscale(enable=False, axis='both') ax.imshow(psf, cmap='gray', interpolation='nearest') ax.set_ylim(-1.0, np.shape(psf)[0]) ax.set_xlim(-1.0, np.shape(psf)[1]) ax.set_ylabel("Pixel y-position") ax.set_xlabel("Pixel x-position") # the -1.0 in all the measurements and true positions is to bring back numbers to python index ax.plot(corr_cb_centroid_list[0][0]-1.0, corr_cb_centroid_list[0][1]-1.0, marker='^', ms=19, mec='cyan', mfc='blue', ls='', label='CentroidWin=3') plt.vlines(15.0, 0.0, 31.5, colors='y', linestyles='dashed') plt.hlines(15.0, 0.0, 31.5, colors='y', linestyles='dashed') if len(corr_cb_centroid_list) != 1: ax.plot(corr_cb_centroid_list[1][0]-1.0, corr_cb_centroid_list[1][1]-1.0, marker='o', ms=17, mec='black', mfc='green', ls='', label='CentroidWin=5') ax.plot(corr_cb_centroid_list[2][0]-1.0, corr_cb_centroid_list[2][1]-1.0, marker='*', ms=19, mec='black', mfc='red', ls='', label='CentroidWin=7') if corr_true_center_centroid != [0.0, 0.0]: # plot only is center is defined ax.plot(corr_true_center_centroid[0]-1.0, corr_true_center_centroid[1]-1.0, marker='o', ms=12, mec='black', mfc='yellow', ls='', label='True Centroid') # Shrink current axis by 10% box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) ax.legend(loc='upper right', bbox_to_anchor=(1.26, 1.0), prop={"size":"small"}) # put legend out of the plot box ax.imshow(psf, cmap='gray', interpolation='nearest', vmin=vlims[0], vmax=vlims[1]) if show_disp: plt.show() else: plt.close('all') if savefile: if fig_name is None: # define the path for the simulated data path4fig = "../PFforMaria/detector_"+str(detector)+"_centroid_figs" if "scene1" in fig_title: if "slow" in fig_title: if "real" in fig_title: in_dir = "Scene1_slow_real" else: in_dir = "Scene1_slow_nonoise" elif "rapid" in fig_title: if "real" in fig_title: in_dir = "Scene1_rapid_real" else: in_dir = "Scene1_rapid_nonoise" if "scene2" in fig_title: if "slow" in fig_title: if "real" in fig_title: in_dir = "Scene2_slow_real" else: in_dir = "Scene2_slow_nonoise" elif "rapid" in fig_title: if "real" in fig_title: in_dir = "Scene2_rapid_real" else: in_dir = "Scene2_rapid_nonoise" fig_name = path4fig+in_dir+"/"+fig_title+".jpg" if redos: fig_name = path4fig+"_redo/"+in_dir+"_redo/"+fig_title+"_redo.jpg" # if the name is defined then use it fig.savefig(fig_name) print ("Figure ", fig_name, " was saved!") def display_ns_psf(image, vlim=(), fsize=(8, 8), interp='nearest', title='', cmap='gray', extent=None, savefile=None, cb=False): """ Custom display a PSF generated with WEBBPSF or similar tool. A quick tool for displaying NIRSpec images in native size (2048x2048) with additional options for display. Args: image -- A 2D image to display vlim -- The image range (in terms of image counts) to display. Defaults to empty (), displaying full spectrum. fsize -- Figure image size (in cm?) interp -- Interpolation type. Defaults to 'nearest'. title -- Title for plot. Defaults to ''. cmap -- Color map for plot. Defaults to 'gray'. cb -- Color bar toggle. Defaults to 'False'. savefile -- Figure save toggle. Defaults to 'None'. A filename (with directory structure) can be entered to save to given filename. Returns: Nothing. """ # Display PSF (oversampled and detector levels) fig, ax = plt.subplots(figsize=fsize) ax.set_title(title) ax.set_aspect('equal') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim(0.0, np.shape(image)[0]) if vlim == (): vlim = (image.min(), image.max()) if extent is not None: cax = ax.imshow(image, cmap=cmap, interpolation=interp, vmin=vlim[0], \ extent=extent-.5, vmax=vlim[1]) else: cax = ax.imshow(image, cmap=cmap, interpolation=interp, vmin=vlim[0], vmax=vlim[1]) if cb: fig.colorbar(cax, ax=ax, shrink=0.8) # See plots when not in Notebook environment plt.show() if savefile is not None: fig.savefig(savefile) def do_Piers_correction(detector, cb_centroid_list): """ This function performs the average correction found by Pierre in each of the x and y measured centroids. Args: detector -- integer, either 491 or 492 cb_centroid_list -- list of 3 lists (measured centroids for centroid window sizes 3, 5, and 7) Returns: List of 3 lists corresponding to corrected centroids for centroid window sizes 3, 5, and 7 """ xy3, xy5, xy7 = cb_centroid_list xy3corr = Pier_correction(detector, xy3) xy5corr = Pier_correction(detector, xy5) xy7corr = Pier_correction(detector, xy7) corr_cb_centroid_list = [xy3corr, xy5corr, xy7corr] return corr_cb_centroid_list def find_centroid(fits_file, bg_corr_info, recursive_centroids_info, display_centroids_info, x_centroids, y_centroids, fits_names, output_file_path, centroids_info, verbose=True): """ This function reads the image, finds the centroid, and displays the result. It returns the centroid values. Args: fits_file -- name of the fits file being studied bg_corr_info -- list of the information concerning background subtraction recursive_centroids_info -- list of information for running centroid algorithm display_centroids_info -- list of information to show and display the centroids x_centroids -- list of centroids for centroid window sizes of 3, 5, and 7 for x position y_centroids -- list of centroids for centroid window sizes of 3, 5, and 7 for y position fits_names -- list to the append the studied files (so that it ends up being the same length as the list of the measured centroids -- in case of fractional background) output_file_path -- path for the output file centroids_info -- list of the information concerning the true centroids, the output in full detector coordinates, and the on-screen measured centroids Returns: x_centroids = list of 3 lists corresponding to pixel x-positions for centroid window sizes 3, 5, and 7 y_centroids = list of 3 lists corresponding to pixel y-positions for centroid window sizes 3, 5, and 7 """ # unfold information backgnd_subtraction_method, background_method, bg_value, bg_frac, debug = bg_corr_info xwidth_list, ywidth_list, centroid_win_size, max_iter, threshold, determine_moments, display_master_img, vlim = recursive_centroids_info true_center, output_full_detector, show_centroids, perform_avgcorr = centroids_info case, show_disp, save_centroid_disp = display_centroids_info x_centroids3, y_centroids3 = x_centroids[0], y_centroids[0] x_centroids5, y_centroids5 = x_centroids[1], y_centroids[1] x_centroids7, y_centroids7 = x_centroids[2], y_centroids[2] # get detector and name of base name of each fits file ff = os.path.basename(fits_file) ff1 = string.split(ff, sep="_") detector = ff1[2] #fits_trial = ff1[1] #fits_base = ff1[0] # Read FITS image #img = fits.open(fits_file) #img.info() #input() #hdr = fits.getheader(fits_file, 0) #print("** HEADER:", hdr) master_img = fits.getdata(fits_file, 0) if verbose: print ('Master image shape: ', np.shape(master_img)) # Obtain the combined FITS image that combines all frames into one image AND # check if all image is zeros, take the image that still has a max value psf = readimage(master_img, backgnd_subtraction_method, bg_method=background_method, bg_value=bg_value, bg_frac=bg_frac, debug=debug) cb_centroid_list_in32x32pix = run_recursive_centroids(psf, bg_frac, xwidth_list, ywidth_list, centroid_win_size, max_iter, threshold, determine_moments, verbose, debug) cb_centroid_list, loleftcoords, true_center32x32, differences_true_TA = centroid2fulldetector(cb_centroid_list_in32x32pix, true_center, detector, perform_avgcorr) if not output_full_detector: cb_centroid_list = cb_centroid_list_in32x32pix if show_centroids: print ('***** Measured centroids:') print (' cb_centroid_list = ', cb_centroid_list) #print (' True center = ', true_center) x_centroids3.append(cb_centroid_list[0][0]) y_centroids3.append(cb_centroid_list[0][1]) if len(xwidth_list) != 1: x_centroids5.append(cb_centroid_list[1][0]) y_centroids5.append(cb_centroid_list[1][1]) x_centroids7.append(cb_centroid_list[2][0]) y_centroids7.append(cb_centroid_list[2][1]) x_centroids = [x_centroids3, x_centroids5, x_centroids7] y_centroids = [y_centroids3, y_centroids5, y_centroids7] # Show the display with the measured and true positions ff = string.replace(ff, ".fits", "") fits_names.append(ff) fig_name = os.path.join(output_file_path, ff+".jpg") # Display the combined FITS image that combines all frames into one image m_img = display_master_img if display_master_img: m_img = readimage(master_img, backgnd_subtraction_method=None, bg_method=None, bg_value=None, bg_frac=None, debug=False) if true_center == [0.0, 0.0]: true_center32x32 = [0.0, 0.0] display_centroids(detector, ff, case, psf, true_center32x32, cb_centroid_list_in32x32pix, show_disp, vlim, savefile=save_centroid_disp, fig_name=fig_name, display_master_img=m_img) return x_centroids, y_centroids def find_std(arr): """ This function determines the standard deviation of the given array. Args: arr = numpy array for which the standard deviation and means are to be determined Returns: std = standard deviation of the given array mean = mean value of the given array Usage: import TA_functions as taf std, mean = taf.find_std(y_positions) """ N = float(len(arr)) mean = sum(arr) / N diff2meansq_list = [] for a in arr: diff = a - mean diffsq = diff * diff diff2meansq_list.append(diffsq) std = (1.0 / N * sum(diff2meansq_list)) ** 0.5 #print ('sigma = ', std, ' mean = ', mean) return std, mean def get_frac_stdevs(frac_data): """ This function obtains the standard deviation and means for centroid winows 3, 5, and 7 in the case of running a fractional background study. Args: frac_data: list of numpy arrays (corresponding to each fractional value) Returns: standard deviations and means """ sig3, mean3 = [], [] sig5, mean5 = [], [] sig7, mean7 = [], [] for f in frac_data: s3, m3 = find_std(f[1]) s5, m5 = find_std(f[3]) s7, m7 = find_std(f[5]) sig3.append(s3) sig5.append(s5) sig7.append(s7) mean3.append(m3) mean5.append(m5) mean7.append(m7) return sig3, mean3, sig5, mean5, sig7, mean7 def get_mindiff(d1, d2, d3): """ This function determines the minimum difference from centroid window sizes 3, 5, and 7, and counts the number of repetitions. Args: d1: list of differences of measured values with respect to true for centroid window size 3 d2: list of differences of measured values with respect to true for centroid window size 5 d3: list of differences of measured values with respect to true for centroid window size 7 Returns: min_diff = the minimum difference centroid window counter = a dictionary that has the centroid window sizes and their repetitions in order of most repeated to least, example: {{7: 13}, {5: 8}, {3: 2}} """ min_diff = [] for i, _ in enumerate(d1): diffs_list = [d1[i], d2[i], d3[i]] md = min(diffs_list) if md == d1[i]: m_diff = 3 elif md == d2[i]: m_diff = 5 elif md == d3[i]: m_diff = 7 min_diff.append(m_diff) counter=collections.Counter(min_diff) return min_diff, counter def get_raw_star_directory(path4starfiles, scene, shutters, noise, redo=True): """ This function returns a list of the directories (positions 1 and 2) to be studied. Possible paths to Scenes 1 and 2 directories in directory sim_scenes: path_scene1_rapid = "Scene_1_AB23/NRSRAPID_TA_real_Sim_2017222173523/postage_redo10" path_scene1_rapid_shifted = "Scene_1_AB23/NRSRAPID_TA_real_Sim_2017222173639/postage_redo_shifted" Args: path4starfiles -- string, path to get to the files scene -- integer, either 1 or 2 shutters -- string, shutter velocity: 'rapid' or 'slow' noise -- string, noise level: 'nonoise' or 'real' redo -- True or False, go to (or not) to the directories that have a _redo at the end Returns: dir2test_list = A list of strings with the paths to position files 1 and 2 """ """ ### This section will be commented out since the case has been narrowed down to NRSRAPID real for the ne TA scipts. # define shutter velocity to be used shutter_vel = "NRS" # for slow case if shutters == "rapid": shutter_vel = "NRSRAPID" # define noise level noise_level = " no_noise" if noise == "real": noise_level = "" """ # define directory path for scenario 1 position1 = path4starfiles+"Scene_"+repr(scene)+"_AB23/NRSRAPID_TA_real_Sim_2017222173523/postage_redo10" position2 = path4starfiles+"Scene_"+repr(scene)+"_AB23/NRSRAPID_TA_real_Sim_2017222173639/postage_redo10_shifted" if scene == 2: print("Scene 2 is not being used for this exercise. Exiting.") exit() """ ### This section will be commented out since the case has been narrowed down to NRSRAPID real for the ne TA scipts. position1 = path4starfiles+"Scene_"+repr(scene)+"_AB1823/NIRSpec_TA_Sim_AB1823 first "+shutter_vel+noise_level+"/postage" position2 = path4starfiles+"Scene_"+repr(scene)+"_AB1823/NIRSpec_TA_Sim_AB1823 shifted "+shutter_vel+noise_level+"/postage" if redo: position1 += "_redo" position2 += "_redo" """ dir2test_list = [position1, position2] return dir2test_list def Pier_correction(detector, XandYarr): """ This function corrects the measured centroids for the average values. Args: Pier_corr -- Perform average correction suggested by Pier: True or False Returns: cb_centroid_list -- List, values corrected for Pier's values """ # Corrections for offsets in positions (see section 2.5 of Technical Notes in Documentation directory) offset_491 = (-0.086, -0.077) offset_492 = (0.086, 0.077) corrected_x = XandYarr[0] corrected_y = XandYarr[1] if detector == 491: corrected_x = XandYarr[0] + offset_491[0] corrected_y = XandYarr[1] + offset_491[1] elif detector == 492: corrected_x = XandYarr[0] + offset_492[0] corrected_y = XandYarr[1] + offset_492[1] corr_XandYarr = [corrected_x, corrected_y] return corr_XandYarr def plot_offsets(plot_title, offsets, sigmas, means, bench_star, destination, plot_type='.jpg', save_plot=False, show_plot=False, xlims=None, ylims=None, Nsigma=None): """ This function plots the x and y-offsets in pixel space. Args: plot_title -- string, plot title offsets -- numpy array of 6 columns corresponding to x and y of centroid windows 3, 5, and 7 sigmas -- list, standard deviations in the y-direction for centroid windows 3, 5, and 7 means -- list, means in the y-direction for centroid windows 3, 5, and 7 bench_star -- list, star numbers being analyzed destination -- string, path to save the figure plot_type -- string, type of image to be saved (jpg has best resolution) save_plot -- True or False, save the plot in given destination show_plot -- True or False, display the plot on screen xlims -- list, min and max x-axis values for plot ylims -- list, min and max y-axis values for plot Nsigma -- float or integer, number of sigmas to reject Returns: Statement that plot has been saved or nothing. """ fig1 = plt.figure(1, figsize=(12, 10)) ax1 = fig1.add_subplot(111) plt.title(plot_title) plt.xlabel('Residual offset in X [pixels]') plt.ylabel('Residual offset in Y [pixels]') plt.plot(offsets[0], offsets[1], 'b^', ms=8, alpha=0.7, label='Centroid window=3') plt.plot(offsets[2], offsets[3], 'go', ms=8, alpha=0.7, label='Centroid window=5') plt.plot(offsets[4], offsets[5], 'r*', ms=10, alpha=0.7, label='Centroid window=7') if xlims is None: xmin, xmax = ax1.get_xlim() else: xmin, xmax = xlims[0], xlims[1] plt.xlim(xmin, xmax) plt.hlines(0.0, xmin, xmax*2, colors='k', linestyles='dashed') if ylims is None: ymin, ymax = ax1.get_ylim() else: ymin, ymax = ylims[0], ylims[1] plt.ylim(ymin, ymax) plt.vlines(0.0, ymin, ymax*2, colors='k', linestyles='dashed') # Shrink current axis by 10% box = ax1.get_position() ax1.set_position([box.x0, box.y0, box.width * 0.85, box.height]) ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # put legend out of the plot box sigx3, sigx5, sigx7, sigy3, sigy5, sigy7 = sigmas meanx3, meanx5, meanx7, meany3, meany5, meany7 = means textinfig3x = r'x$\sigma3$ = %0.2f x$\mu3$ = %0.2f' % (sigx3, meanx3) textinfig5x = r'x$\sigma5$ = %0.2f x$\mu5$ = %0.2f' % (sigx5, meanx5) textinfig7x = r'x$\sigma7$ = %0.2f x$\mu7$ = %0.2f' % (sigx7, meanx7) textinfig3y = r'y$\sigma3$ = %0.2f y$\mu3$ = %0.2f' % (sigy3, meany3) textinfig5y = r'y$\sigma5$ = %0.2f y$\mu5$ = %0.2f' % (sigy5, meany5) textinfig7y = r'y$\sigma7$ = %0.2f y$\mu7$ = %0.2f' % (sigy7, meany7) ax1.annotate(textinfig3x, xy=(1.02, 0.35), xycoords='axes fraction' ) ax1.annotate(textinfig5x, xy=(1.02, 0.32), xycoords='axes fraction' ) ax1.annotate(textinfig7x, xy=(1.02, 0.29), xycoords='axes fraction' ) ax1.annotate(textinfig3y, xy=(1.02, 0.24), xycoords='axes fraction' ) ax1.annotate(textinfig5y, xy=(1.02, 0.21), xycoords='axes fraction' ) ax1.annotate(textinfig7y, xy=(1.02, 0.18), xycoords='axes fraction' ) y_reject = [-1.0, 1.0] x_reject = [-1.0, 1.0] if Nsigma is not None: # perform sigma-clipping y_reject = [-Nsigma, Nsigma] x_reject = [-Nsigma, Nsigma] for si,xi,yi in zip(bench_star, offsets[0], offsets[1]): if yi>=y_reject[1] or yi<=y_reject[0] or xi>=x_reject[1] or xi<=x_reject[0]: si = int(si) subxcoord = 5 subycoord = 0 side = 'left' plt.annotate('{}'.format(si), xy=(xi,yi), xytext=(subxcoord, subycoord), ha=side, textcoords='offset points') if save_plot: fig1.savefig(destination) print ("\n Plot saved: ", destination) if show_plot: plt.show() else: plt.close('all') def plot_offsets_frac(plot_title, frac_bgs, frac_data, sigmas, means, bench_star, destination, save_plot=False, show_plot=False, xlims=None, ylims=None): """ This function plots the x and y-offsets in pixel space for fractional background case. Args: plot_title -- string, plot title frac_bgs -- list, fractional backgrounds to be plotted frac_data -- list of lists, each containing x and y of centroid windows 3, 5, and 7 sigmas -- list, standard deviations in the y-direction for centroid windows 3, 5, and 7 means -- list, means in the y-direction for centroid windows 3, 5, and 7 bench_star -- list, star numbers being analyzed destination -- string, path to save the figure save_plot -- True or False, save the plot in given destination show_plot -- True or False, display the plot on screen xlims -- list, min and max x-axis values for plot ylims -- list, min and max y-axis values for plot Returns: Statement that plot has been saved or nothing. """ # unfold variables frac00, frac01, frac02, frac03, frac04, frac05, frac06, frac07, frac08, frac09, frac10 = frac_data sig3, sig5, sig7 = sigmas mean3, mean5, mean7 = means # crate the plot for centroid window 3 fig2 = plt.figure(1, figsize=(12, 10)) fig2.subplots_adjust(hspace=0.30) ax1 = fig2.add_subplot(311) ax1.set_title(plot_title) ax1.set_xlabel('Offset in X: Centroid window=3') ax1.set_ylabel('Offset in Y: Centroid window=3') ax1.plot(frac00[0], frac00[1], 'bo', ms=6, alpha=0.7, label='bg_frac=0.0') ax1.plot(frac01[0], frac01[1], 'g^', ms=8, alpha=0.7, label='bg_frac=0.1') ax1.plot(frac02[0], frac02[1], 'mo', ms=8, alpha=0.7, label='bg_frac=0.2') ax1.plot(frac03[0], frac03[1], 'r*', ms=10, alpha=0.7, label='bg_frac=0.3') ax1.plot(frac04[0], frac04[1], 'ks', ms=6, alpha=0.7, label='bg_frac=0.4') ax1.plot(frac05[0], frac05[1], 'y<', ms=8, alpha=0.7, label='bg_frac=0.5') ax1.plot(frac06[0], frac06[1], 'c>', ms=8, alpha=0.7, label='bg_frac=0.6') ax1.plot(frac07[0], frac07[1], 'b+', ms=10, alpha=0.7, label='bg_frac=0.7') ax1.plot(frac08[0], frac08[1], 'rd', ms=8, alpha=0.7, label='bg_frac=0.8') ax1.plot(frac09[0], frac09[1], 'm*', ms=5, alpha=0.7, label='bg_frac=0.9') ax1.plot(frac10[0], frac10[1], 'kx', ms=5, alpha=0.7, label='bg_frac=1.0') if xlims is None: xmin, xmax = ax1.get_xlim() else: xmin, xmax = xlims[0], xlims[1] plt.hlines(0.0, xmin, xmax, colors='k', linestyles='dashed') if ylims is None: ymin, ymax = ax1.get_ylim() else: ymin, ymax = ylims[0], ylims[1] plt.vlines(0.0, ymin, ymax, colors='k', linestyles='dashed') plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) for si,xi,yi in zip(bench_star, frac00[0], frac00[1]): if yi>=1.0 or yi<=-1.0 or xi>=1.0 or xi<=-1.0: si = int(si) subxcoord = 5 subycoord = 0 side = 'left' plt.annotate('{}'.format(si), xy=(xi,yi), xytext=(subxcoord, subycoord), ha=side, textcoords='offset points') # Shrink current axis by 10% box = ax1.get_position() ax1.set_position([box.x0, box.y0, box.width * 0.9, box.height]) ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # put legend out of the plot box # crate the plot for centroid window 5 ax2 = fig2.add_subplot(312) ax2.set_xlabel('Offset in X: Centroid window=5') ax2.set_ylabel('Offset in Y: Centroid window=5') ax2.plot(frac00[2], frac00[3], 'bo', ms=6, alpha=0.7, label='bg_frac=0.0') ax2.plot(frac01[2], frac01[3], 'g^', ms=8, alpha=0.7, label='bg_frac=0.1') ax2.plot(frac02[2], frac02[3], 'mo', ms=8, alpha=0.7, label='bg_frac=0.2') ax2.plot(frac03[2], frac03[3], 'r*', ms=10, alpha=0.7, label='bg_frac=0.3') ax2.plot(frac04[2], frac04[3], 'ks', ms=6, alpha=0.7, label='bg_frac=0.4') ax2.plot(frac05[2], frac05[3], 'y<', ms=8, alpha=0.7, label='bg_frac=0.5') ax2.plot(frac06[2], frac06[3], 'c>', ms=8, alpha=0.7, label='bg_frac=0.6') ax2.plot(frac07[2], frac07[3], 'b+', ms=10, alpha=0.7, label='bg_frac=0.7') ax2.plot(frac08[2], frac08[3], 'rd', ms=8, alpha=0.7, label='bg_frac=0.8') ax2.plot(frac09[2], frac09[3], 'm*', ms=5, alpha=0.7, label='bg_frac=0.9') ax2.plot(frac10[2], frac10[3], 'kx', ms=5, alpha=0.7, label='bg_frac=1.0') plt.hlines(0.0, xmin, xmax, colors='k', linestyles='dashed') plt.vlines(0.0, ymin, ymax, colors='k', linestyles='dashed') plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) textinfig = r'BG y$\sigma$3 y$\sigma$5 y$\sigma$7' ax2.annotate(textinfig, xy=(1.02, 0.90), xycoords='axes fraction' ) sigx = 1.02 sigy = 0.9 for fbg, s3, s5, s7 in zip(frac_bgs, sig3, sig5, sig7): line = ('{:<7} {:<6.2f} {:<6.2f} {:<6.2f}'.format(fbg, s3, s5, s7)) sigy -= 0.08 ax2.annotate(line, xy=(sigx, sigy), xycoords='axes fraction' ) for si,xi,yi in zip(bench_star, frac00[0], frac00[1]): if yi>=1.0 or yi<=-1.0 or xi>=1.0 or xi<=-1.0: si = int(si) subxcoord = 5 subycoord = 0 side = 'left' plt.annotate('{}'.format(si), xy=(xi,yi), xytext=(subxcoord, subycoord), ha=side, textcoords='offset points') # Shrink current axis by 10% box = ax2.get_position() ax2.set_position([box.x0, box.y0, box.width * 0.9, box.height]) # crate the plot for centroid window 7 ax3 = fig2.add_subplot(313) ax3.set_xlabel('Offset in X: Centroid window=7') ax3.set_ylabel('Offset in Y: Centroid window=7') ax3.plot(frac00[4], frac00[5], 'bo', ms=6, alpha=0.7, label='bg_frac=0.0') ax3.plot(frac01[4], frac01[5], 'g^', ms=8, alpha=0.7, label='bg_frac=0.1') ax3.plot(frac02[4], frac02[5], 'mo', ms=8, alpha=0.7, label='bg_frac=0.2') ax3.plot(frac03[4], frac03[5], 'r*', ms=10, alpha=0.7, label='bg_frac=0.3') ax3.plot(frac04[4], frac04[5], 'ks', ms=6, alpha=0.7, label='bg_frac=0.4') ax3.plot(frac05[4], frac05[5], 'y<', ms=8, alpha=0.7, label='bg_frac=0.5') ax3.plot(frac06[4], frac06[5], 'c>', ms=8, alpha=0.7, label='bg_frac=0.6') ax3.plot(frac07[4], frac07[5], 'b+', ms=10, alpha=0.7, label='bg_frac=0.7') ax3.plot(frac08[4], frac08[5], 'rd', ms=8, alpha=0.7, label='bg_frac=0.8') ax3.plot(frac09[4], frac09[5], 'm*', ms=5, alpha=0.7, label='bg_frac=0.9') ax3.plot(frac10[4], frac10[5], 'kx', ms=5, alpha=0.7, label='bg_frac=1.0') plt.hlines(0.0, xmin, xmax, colors='k', linestyles='dashed') plt.vlines(0.0, ymin, ymax, colors='k', linestyles='dashed') plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) for si,xi,yi in zip(bench_star, frac00[0], frac00[1]): if yi>=1.0 or yi<=-1.0 or xi>=1.0 or xi<=-1.0: si = int(si) subxcoord = 5 subycoord = 0 side = 'left' plt.annotate('{}'.format(si), xy=(xi,yi), xytext=(subxcoord, subycoord), ha=side, textcoords='offset points') # Shrink current axis by 10% textinfig = r'BG y$\mu$3 y$\mu$5 y$\mu$7' ax3.annotate(textinfig, xy=(1.02, 0.90), xycoords='axes fraction' ) sigx = 1.02 sigy = 0.9 for fbg, m3, m5, m7 in zip(frac_bgs, mean3, mean5, mean7): line = ('{:<7} {:<6.2f} {:<6.2f} {:<6.2f}'.format(fbg, m3, m5, m7)) sigy -= 0.08 ax3.annotate(line, xy=(sigx, sigy), xycoords='axes fraction' ) box = ax3.get_position() ax3.set_position([box.x0, box.y0, box.width * 0.9, box.height]) if save_plot: fig2.savefig(destination) print ("\n Plot saved: ", destination) if show_plot: plt.show() else: plt.close('all') def plot_zoomin(plot_title, offsets_list, bench_star, destination, plot_type='.jpg', save_plot=False, show_plot=False, xlims=[-1., 1.], ylims=[-1., 1.], Nsigma=None): """ This function plots a zoom-in region of the offsets, keeping only 'good' stars. Args: bench_star -- list, star numbers being analyzed offsets_list -- list 6 columns corresponding to x and y of centroid windows 3, 5, and 7 plot_title -- string, plot title destination -- string, path to save the figure plot_type -- string, type of image to be saved (jpg has best resolution) save_plot -- True or False, save the plot in given destination show_plot -- True or False, display the plot on screen xlims -- list, min and max x-axis values for plot ylims -- list, min and max y-axis values for plot Returns: Statement that plot has been saved or nothing. """ # Copy all stars and offsets in order to remove 'bad' stars if Nsigma is not None: Nsigma_results = Nsigma_rejection(Nsigma, np.array(offsets_list[0]), np.array(offsets_list[1]), max_iterations=10) sigx3, meanx3, sigy3, meany3, x_new3, y_new3, _, _, _ = Nsigma_results Nsigma_results = Nsigma_rejection(Nsigma, np.array(offsets_list[2]), np.array(offsets_list[3]), max_iterations=10) sigx5, meanx5, sigy5, meany5, x_new5, y_new5, _, _, _ = Nsigma_results Nsigma_results = Nsigma_rejection(Nsigma, np.array(offsets_list[4]), np.array(offsets_list[5]), max_iterations=10) sigx7, meanx7, sigy7, meany7, x_new7, y_new7, _, _, _ = Nsigma_results good_offsets = [x_new3, y_new3, x_new5, y_new5, x_new7, y_new7] good_stars_only = [] for i, xi in enumerate(offsets_list[0]): if xi in x_new3: good_stars_only.append(bench_star[i]) #xlims, ylims = [-0.15, 0.15], [-0.15, 0.15] Nsigma = sigy3*Nsigma else: good_stars_only = copy.deepcopy(bench_star) good_offsets_list = copy.deepcopy(offsets_list) for i, s in enumerate(bench_star): if offsets_list[0][i]>=1.1 or offsets_list[0][i]<=-1.1 or offsets_list[1][i]>=1.1 or offsets_list[1][i]<=-1.1: idx2remove = good_stars_only.index(s) # items must be removed from all columns at the same time to avoid removing wrong item good_stars_only.pop(idx2remove) good_offsets_list[0].pop(idx2remove) good_offsets_list[1].pop(idx2remove) good_offsets_list[2].pop(idx2remove) good_offsets_list[3].pop(idx2remove) good_offsets_list[4].pop(idx2remove) good_offsets_list[5].pop(idx2remove) good_offsets = np.array(good_offsets_list) sigx3, meanx3 = find_std(good_offsets[0]) sigx5, meanx5 = find_std(good_offsets[2]) sigx7, meanx7 = find_std(good_offsets[4]) sigy3, meany3 = find_std(good_offsets[1]) sigy5, meany5 = find_std(good_offsets[3]) sigy7, meany7 = find_std(good_offsets[5]) sigmas = [sigx3, sigx5, sigx7, sigy3, sigy5, sigy7] means = [meanx3, meanx5, meanx7, meany3, meany5, meany7] plot_title = plot_title+'_zoomin' plot_offsets(plot_title, good_offsets, sigmas, means, good_stars_only, destination, plot_type='.jpg', save_plot=save_plot, show_plot=show_plot, xlims=xlims, ylims=ylims, Nsigma=Nsigma) def plot_zoomin_frac(plot_title, frac_bgs, frac_data, bench_star, destination, save_plot=False, show_plot=False, xlims=[-1., 1.], ylims=[-1., 1.]): """ This function plots zoom-in of the x and y-offsets in pixel space for fractional background case. Args: plot_title -- string, plot title frac_bgs -- list, fractional backgrounds to be plotted frac_data -- list of lists, each containing x and y of centroid windows 3, 5, and 7 bench_star -- list, star numbers being analyzed destination -- string, path to save the figure save_plot -- True or False, save the plot in given destination show_plot -- True or False, display the plot on screen xlims -- list, min and max x-axis values for plot ylims -- list, min and max y-axis values for plot Returns: Statement that plot has been saved or nothing. """ frac00, frac01, frac02, frac03, frac04, frac05, frac06, frac07, frac08, frac09, frac10 = frac_data frac00 = frac00.tolist() frac01 = frac01.tolist() frac02 = frac02.tolist() frac03 = frac03.tolist() frac04 = frac04.tolist() frac05 = frac05.tolist() frac06 = frac06.tolist() frac07 = frac07.tolist() frac08 = frac08.tolist() frac09 = frac09.tolist() frac10 = frac10.tolist() frac_data = [frac00, frac01, frac02, frac03, frac04, frac05, frac06, frac07, frac08, frac09, frac10] # Copy all stars and offsets in order to remove 'bad' stars good_stars_only = copy.deepcopy(bench_star.tolist()) idx2remove_list = [] for i, s in enumerate(bench_star): if frac03[0][i]>=1.1 or frac03[0][i]<=-1.1 or frac03[1][i]>=1.1 or frac03[1][i]<=-1.1: idx2remove = good_stars_only.index(s) good_stars_only.pop(idx2remove) idx2remove_list.append(idx2remove) for idx in idx2remove_list: for j, _ in enumerate(frac_data): frac_data[j][0].pop(idx) frac_data[j][1].pop(idx) frac_data[j][2].pop(idx) frac_data[j][3].pop(idx) frac_data[j][4].pop(idx) frac_data[j][5].pop(idx) sig3, mean3, sig5, mean5, sig7, mean7 = get_frac_stdevs(frac_data) sigmas = [sig3, sig5, sig7] means = [mean3, mean5, mean7] plot_title = plot_title+'_zoomin' frac_bgs = ['0.0', '0.1', '0.2', '0.3', '0.4', '0.5' ,'0.6' ,'0.7', '0.8', '0.9', '1.0'] plot_offsets_frac(plot_title, frac_bgs, frac_data, sigmas, means, bench_star, destination, save_plot=save_plot, show_plot=show_plot, xlims=xlims, ylims=ylims) def print_file_lines(output_file, save_text_file, xwidth_list, ff, background2use, i, x_centroids, y_centroids, verbose=True): """ This function prints the info on screen AND in a text file. It expects that the output file already exists (it appends information to it). Columns are fits file name, background value used and method (None, fixed, or fractional), x and y coordinates for centroid window sizes of 3, 5, and 7 pixels. Eight columns in total. Args: output_file -- name of the output file = string save_text_file -- do you want to save the file = True or False xwidth_list -- list of x width size = list can have 1 to 3 elements ff -- name of the fits file the info corresponds to = string background2use -- value of the background to use for the background method = float i -- the index of line to append to the file = integer x_centroids -- list of the x measured centroids for centroid window sizes 3, 5, and 7 y_centroids -- list of the y measured centroids for centroid window sizes 3, 5, and 7 Returns: Nothing. """ x_centroids3, y_centroids3 = x_centroids[0], y_centroids[0] x_centroids5, y_centroids5 = x_centroids[1], y_centroids[1] x_centroids7, y_centroids7 = x_centroids[2], y_centroids[2] if len(xwidth_list)==1: line1 = "{:<40} {:>4} {:>16} {:>16}".format( ff, background2use, x_centroids3[i], y_centroids3[i]) else: line1 = "{:<40} {:>4} {:>16} {:>14} {:>18} {:>14} {:>18} {:>14}".format( ff, background2use, x_centroids3[i], y_centroids3[i], x_centroids5[i], y_centroids5[i], x_centroids7[i], y_centroids7[i]) if verbose: print (line1) if save_text_file: f = open(output_file, "a") f.write(line1+"\n") def Nsigma_rejection(N, x, y, max_iterations=10, verbose=True): """ This function will reject any residuals that are not within N*sigma in EITHER coordinate. Args: - x and y must be the numpy arrays of the differences with respect to true values: True-Measured - N is the factor (integer or float) by which sigma will be multiplied - max_iterations is the maximum integer allowed iterations Returns: - sigma_x = the standard deviation of the new array x - mean_x = the mean of the new array x - sigma_y = the standard deviation of the new array y - mean_y = the mean of the new array y - x_new = the new array x (with rejections) - y_new = the new array y (with rejections) - niter = the number of iterations to reach a convergence (no more rejections) Usage: import TA_functions as taf Nsigma_results = taf.Nsigma_rejection(N, x, y, max_iterations=10) sigma_x, mean_x, sigma_y, mean_y, x_new, y_new, niter, lines2print, rejected_elements_idx = Nsigma_results """ N = float(N) or_sigma_x, or_mean_x = find_std(x) or_sigma_y, or_mean_y = find_std(y) x_new = copy.deepcopy(x) y_new = copy.deepcopy(y) original_diffs = copy.deepcopy(x) for nit in range(max_iterations): # Determine the standard deviation for each array sigma_x, mean_x = find_std(x_new) sigma_y, mean_y = find_std(y_new) thres_x = N*sigma_x thres_y = N*sigma_y xdiff =
np.abs(x_new - mean_x)
numpy.abs
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np # TODO: not sure if we want to expose these as part of the public Gammapy API # For now keeping as-is, but hiding from the docs by uncommenting here. # 'Gauss2DPDF', # 'MultiGauss2D', # 'gaussian_sum_moments', __all__ = [ ] __doctest_requires__ = {('gaussian_sum_moments'): ['uncertainties']} class Gauss2DPDF(object): """2D symmetric Gaussian PDF. Reference: http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bivariate_case Parameters ---------- sigma : float Gaussian width. """ def __init__(self, sigma=1): self.sigma = np.asarray(sigma, np.float64) @property def _sigma2(self): """Sigma squared (float)""" return self.sigma * self.sigma @property def amplitude(self): """PDF amplitude at the center (float)""" return self.__call(0, 0) def __call__(self, x, y=0): """dp / (dx dy) at position (x, y) Parameters ---------- x : `~numpy.ndarray` x coordinate y : `~numpy.ndarray`, optional y coordinate Returns ------- dpdxdy : `~numpy.ndarray` dp / (dx dy) """ x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) theta2 = x * x + y * y amplitude = 1 / (2 * np.pi * self._sigma2) exponent = -0.5 * theta2 / self._sigma2 return amplitude * np.exp(exponent) def dpdtheta2(self, theta2): """dp / dtheta2 at position theta2 = theta ^ 2 Parameters ---------- theta2 : `~numpy.ndarray` Offset squared Returns ------- dpdtheta2 : `~numpy.ndarray` dp / dtheta2 """ theta2 = np.asarray(theta2, dtype=np.float64) amplitude = 1 / (2 * self._sigma2) exponent = -0.5 * theta2 / self._sigma2 return amplitude * np.exp(exponent) def containment_fraction(self, theta): """Containment fraction. Parameters ---------- theta : `~numpy.ndarray` Offset Returns ------- containment_fraction : `~numpy.ndarray` Containment fraction """ theta = np.asarray(theta, dtype=np.float64) return 1 - np.exp(-0.5 * theta ** 2 / self._sigma2) def containment_radius(self, containment_fraction): """Containment angle for a given containment fraction. Parameters ---------- containment_fraction : `~numpy.ndarray` Containment fraction Returns ------- containment_radius : `~numpy.ndarray` Containment radius """ containment_fraction = np.asarray(containment_fraction, dtype=np.float64) return self.sigma * np.sqrt(-2 * np.log(1 - containment_fraction)) def gauss_convolve(self, sigma): """Convolve with another Gaussian 2D PDF. Parameters ---------- sigma : `~numpy.ndarray` or float Gaussian width of the new Gaussian 2D PDF to covolve with. Returns ------- gauss_convolve : `~gammapy.image.models.Gauss2DPDF` Convolution of both Gaussians. """ sigma = np.asarray(sigma, dtype=np.float64) new_sigma = np.sqrt(self._sigma2 + sigma ** 2) return Gauss2DPDF(new_sigma) class MultiGauss2D(object): """Sum of multiple 2D Gaussians. Parameters ---------- sigmas : `~numpy.ndarray` widths of the Gaussians to add norms : `~numpy.ndarray`, optional normalizations of the Gaussians to add Notes ----- * This sum is no longer a PDF, it is not normalized to 1. * The "norm" of each component represents the 2D integral, not the amplitude at the origin. """ def __init__(self, sigmas, norms=None): # If no norms are given, you have a PDF. sigmas = np.asarray(sigmas, dtype=np.float64) self.components = [Gauss2DPDF(sigma) for sigma in sigmas] if norms is None: self.norms = np.ones(len(self.components)) else: self.norms = np.asarray(norms, dtype=np.float64) def __call__(self, x, y=0): """dp / (dx dy) at position (x, y) Parameters ---------- x : `~numpy.ndarray` x coordinate y : `~numpy.ndarray`, optional y coordinate Returns ------- total : `~numpy.ndarray` dp / (dx dy) """ x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) total = np.zeros_like(x) for norm, component in zip(self.norms, self.components): total += norm * component(x, y) return total @property def n_components(self): """Number of components (int)""" return len(self.components) @property def sigmas(self): """Array of Gaussian widths (`~numpy.ndarray`)""" return np.array([_.sigma for _ in self.components]) @property def integral(self): """Integral as sum of norms (`~numpy.ndarray`)""" return np.nansum(self.norms) @property def amplitude(self): """Amplitude at the center (float)""" return self.__call__(0, 0) @property def max_sigma(self): """Largest Gaussian width (float)""" return self.sigmas.max() @property def eff_sigma(self): r"""Effective Gaussian width for single-Gauss approximation (float) Notes ----- The effective Gaussian width is given by: .. math:: \sigma_\mathrm{eff} = \sqrt{\sum_i N_i \sigma_i^2} where ``N`` is normalization and ``sigma`` is width. """ sigma2s = np.array([component._sigma2 for component in self.components]) return np.sqrt(
np.sum(self.norms * sigma2s)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Mar 16 11:57:09 2019 @author: smrak """ from pyGnss import pyGnss, scintillation from pyGnss import gnssUtils as gu from datetime import datetime, timedelta import georinex as gr import numpy as np import subprocess from glob import glob from dateutil import parser import yaml import os import h5py from argparse import ArgumentParser import matplotlib.pyplot as plt from matplotlib import dates import warnings import platform warnings.simplefilter('ignore', np.RankWarning) if platform.system() == 'Linux': separator = '/' else: separator = '\\' def getIntervals(y, maxgap=3, maxjump=2): r =
np.arange(y.size)
numpy.arange
import numpy as np import matplotlib.pyplot as plt import h5py import matplotlib as mpl import os import sys from glob import glob from datetime import datetime plt.close('all') mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['font.size'] = 12 mpl.rcParams['axes.linewidth'] = 2 mpl.rcParams['xtick.major.width'] = 2 mpl.rcParams['ytick.major.width'] = 2 if sys.platform == 'linux': datapath = '/mnt/llmStorage203/Danny/freqent/spinOsc/190709/' savepath = '/media/daniel/storage11/Dropbox/LLM_Danny/freqent/spinOsc/' elif sys.platform == 'darwin': datapath = '/Volumes/Storage/Danny/freqent/spinOsc/190709/' savepath = '/Users/Danny/Dropbox/LLM_Danny/freqent/spinOsc/' alphas = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ndims = [2, 3, 4] nsim = 64 s_array = np.zeros((len(ndims), len(alphas), nsim)) for file in glob(os.path.join(datapath, '*.hdf5')): with h5py.File(file, 'r') as d: dim = d['params']['ndim'][()] alpha = d['params']['alpha'][()] s_array[ndims.index(dim), alphas.index(alpha)] = d['data']['s'][:] fig2, ax2 = plt.subplots(figsize=(5, 5)) # ax2.errorbar(alphas, np.mean(s_array[0], axis=1), yerr=np.std(s_array[0], axis=1), # fmt='ko', capsize=5, lw=2, label='data') ax2.plot(alphas, np.mean(s_array[0], axis=1), 'ko', label=r'$\dot{S}_{spectral}$') ax2.fill_between(alphas, np.mean(s_array[0], axis=1) + np.std(s_array[0], axis=1), np.mean(s_array[0], axis=1) - np.std(s_array[0], axis=1), color='k', alpha=0.5) # ax2.plot(alphas, s_array[0], 'k.') ax2.plot(np.arange(0, 10, 0.01), 2 * np.arange(0, 10, 0.01)**2, 'r-', lw=2, label=r'$\dot{S}_{thry} = 2 \alpha^2$') ax2.tick_params(which='both', direction='in') ax2.set(xlabel=r'$\alpha$', ylabel=r'$\dot{S}$', title='2 dimensions', ylim=[-14, 260]) ax2.set_aspect(np.diff(ax2.set_xlim())[0] / np.diff(ax2.set_ylim())[0]) ax2.legend() plt.tight_layout() fig2.savefig(os.path.join(savepath, datetime.now().strftime('%y%m%d') + '_eprPlot_2dim.pdf'), format='pdf') fig3, ax3 = plt.subplots(figsize=(5, 5)) # ax3.errorbar(alphas, np.mean(s_array[1], axis=1), yerr=np.std(s_array[1], axis=1), # fmt='k^', capsize=5, lw=2, label='data') ax3.plot(alphas, np.mean(s_array[1], axis=1), 'k^', label=r'$\dot{S}_{spectral}$') ax3.fill_between(alphas, np.mean(s_array[1], axis=1) +
np.std(s_array[1], axis=1)
numpy.std
# Required imports import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import pylab import scipy import random import datetime import re import time from math import sqrt import matplotlib.dates as mdates from matplotlib.dates import date2num, num2date get_ipython().run_line_magic('matplotlib', 'inline') from sklearn import preprocessing pd.set_option('display.max_columns', None) # to view all columns from scipy.optimize import curve_fit from supersmoother import SuperSmoother from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.gaussian_process.kernels import Matern, WhiteKernel from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge, Lasso, RidgeCV, LassoCV from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error import scipy.stats as stats import warnings warnings.filterwarnings("ignore") from pyproj import Proj, Transformer from ipyleaflet import (Map, basemaps, WidgetControl, GeoJSON, LayersControl, Icon, Marker,FullScreenControl, CircleMarker, Popup, AwesomeIcon) from ipywidgets import HTML plt.rcParams["font.family"] = "Times New Roman" class functions: def __init__(self, data): self.setData(data) self.__jointData = [None, 0] # DATA VALIDATION def __isValid_Data(self, data): if(str(type(data)).lower().find('dataframe') == -1): return (False, 'Make sure the data is a pandas DataFrame.\n') if(not self.__hasColumns_Data(data)): return (False, 'Make sure that ALL of the columns specified in the REQUIREMENTS are present.\n') else: return (True, None) def __isValid_Construction_Data(self, data): if(str(type(data)).lower().find('dataframe') == -1): return (False, 'Make sure the data is a pandas DataFrame.\n') if(not self.__hasColumns_Construction_Data(data)): return (False, 'Make sure that ALL of the columns specified in the REQUIREMENTS are present.\n') else: return (True, None) # COLUMN VALIDATION def __hasColumns_Data(self, data): find = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] cols = list(data.columns) cols = [x.upper() for x in cols] hasCols = all(item in cols for item in find) return hasCols def __hasColumns_Construction_Data(self, data): find = ['STATION_ID', 'AQUIFER', 'WELL_USE', 'LATITUDE', 'LONGITUDE', 'GROUND_ELEVATION', 'TOTAL_DEPTH'] cols = list(data.columns) cols = [x.upper() for x in cols] hasCols = all(item in cols for item in find) return hasCols # SETTING DATA def setData(self, data, verbose=True): validation = self.__isValid_Data(data) if(validation[0]): # Make all columns all caps cols_upper = [x.upper() for x in list(data.columns)] data.columns = cols_upper self.data = data if(verbose): print('Successfully imported the data!\n') self.__set_units() else: print('ERROR: {}'.format(validation[1])) return self.REQUIREMENTS_DATA() def setConstructionData(self, construction_data, verbose=True): validation = self.__isValid_Construction_Data(construction_data) if(validation[0]): # Make all columns all caps cols_upper = [x.upper() for x in list(construction_data.columns)] construction_data.columns = cols_upper self.construction_data = construction_data.set_index(['STATION_ID']) if(verbose): print('Successfully imported the construction data!\n') else: print('ERROR: {}'.format(validation[1])) return self.REQUIREMENTS_CONSTRUCTION_DATA() def jointData_is_set(self, lag): if(str(type(self.__jointData[0])).lower().find('dataframe') == -1): return False else: if(self.__jointData[1]==lag): return True else: return False def set_jointData(self, data, lag): self.__jointData[0] = data self.__jointData[1] = lag # GETTING DATA def getData(self): return self.data def get_Construction_Data(self): return self.construction_data # MESSAGES FOR INVALID DATA def REQUIREMENTS_DATA(self): print('PYLENM DATA REQUIREMENTS:\nThe imported data needs to meet ALL of the following conditions to have a successful import:') print(' 1) Data should be a pandas dataframe.') print(" 2) Data must have these column names: \n ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS']") def REQUIREMENTS_CONSTRUCTION_DATA(self): print('PYLENM CONSTRUCTION REQUIREMENTS:\nThe imported construction data needs to meet ALL of the following conditions to have a successful import:') print(' 1) Data should be a pandas dataframe.') print(" 2) Data must have these column names: \n ['station_id', 'aquifer', 'well_use', 'latitude', 'longitude', 'ground_elevation', 'total_depth']") # Helper function for plot_correlation # Sorts analytes in a specific order: 'TRITIUM', 'URANIUM-238','IODINE-129','SPECIFIC CONDUCTANCE', 'PH', 'DEPTH_TO_WATER' def __custom_analyte_sort(self, analytes): my_order = 'TURISPDABCEFGHJKLMNOQVWXYZ-_abcdefghijklmnopqrstuvwxyz135790 2468' return sorted(analytes, key=lambda word: [my_order.index(c) for c in word]) def __plotUpperHalf(self, *args, **kwargs): corr_r = args[0].corr(args[1], 'pearson') corr_text = f"{corr_r:2.2f}" ax = plt.gca() ax.set_axis_off() marker_size = abs(corr_r) * 10000 ax.scatter([.5], [.5], marker_size, [corr_r], alpha=0.6, cmap="coolwarm", vmin=-1, vmax=1, transform=ax.transAxes) font_size = abs(corr_r) * 40 + 5 ax.annotate(corr_text, [.5, .48,], xycoords="axes fraction", # [.5, .48,] ha='center', va='center', fontsize=font_size, fontweight='bold') # Description: # Removes all columns except 'COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'. # If the user specifies additional columns in addition to the ones listed above, those columns will be kept. # The function returns a dataframe and has an optional parameter to be able to save the dataframe to a csv file. # Parameters: # data (dataframe): data to simplify # inplace (bool): save data to current working dataset # columns (list of strings): list of any additional columns on top of ['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'] to be kept in the dataframe. # save_csv (bool): flag to determine whether or not to save the dataframe to a csv file. # file_name (string): name of the csv file you want to save # save_dir (string): name of the directory you want to save the csv file to def simplify_data(self, data=None, inplace=False, columns=None, save_csv=False, file_name= 'data_simplified', save_dir='data/'): if(str(type(data)).lower().find('dataframe') == -1): data = self.data else: data = data if(columns==None): sel_cols = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] else: hasColumns = all(item in list(data.columns) for item in columns) if(hasColumns): sel_cols = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] + columns else: print('ERROR: specified column(s) do not exist in the data') return None data = data[sel_cols] data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) data = data.sort_values(by="COLLECTION_DATE") dup = data[data.duplicated(['COLLECTION_DATE', 'STATION_ID','ANALYTE_NAME', 'RESULT'])] data = data.drop(dup.index) data = data.reset_index().drop('index', axis=1) if(save_csv): if not os.path.exists(save_dir): os.makedirs(save_dir) data.to_csv(save_dir + file_name + '.csv') print('Successfully saved "' + file_name +'.csv" in ' + save_dir) if(inplace): self.setData(data, verbose=False) return data # Description: # Returns the Maximum Concentration Limit value for the specified analyte. # Example: 'TRITIUM' returns 1.3 # Parameters: # analyte_name (string): name of the analyte to be processed def get_MCL(self, analyte_name): mcl_dictionary = {'TRITIUM': 1.3, 'URANIUM-238': 1.31, 'NITRATE-NITRITE AS NITROGEN': 1, 'TECHNETIUM-99': 2.95, 'IODINE-129': 0, 'STRONTIUM-90': 0.9 } return mcl_dictionary[analyte_name] def __set_units(self): analytes = list(np.unique(self.data[['ANALYTE_NAME']])) mask1 = ~self.data[['ANALYTE_NAME','RESULT_UNITS']].duplicated() res = self.data[['ANALYTE_NAME','RESULT_UNITS']][mask1] mask2 = ~self.data[['ANALYTE_NAME']].duplicated() res = res[mask2] unit_dictionary = pd.Series(res.RESULT_UNITS.values,index=res.ANALYTE_NAME).to_dict() self.unit_dictionary = unit_dictionary # Description: # Returns the unit of the analyte you specify. # Example: 'DEPTH_TO_WATER' returns 'ft' # Parameters: # analyte_name (string): name of the analyte to be processed def get_unit(self, analyte_name): return self.unit_dictionary[analyte_name] # Description: # Filters construction data based on one column. You only specify ONE column to filter by, but can selected MANY values for the entry. # Parameters: # data (dataframe): dataframe to filter # col (string): column to filter. Example: col='STATION_ID' # equals (list of strings): values to filter col by. Examples: equals=['FAI001A', 'FAI001B'] def filter_by_column(self, data=None, col=None, equals=[]): if(data is None): return 'ERROR: DataFrame was not provided to this function.' else: if(str(type(data)).lower().find('dataframe') == -1): return 'ERROR: Data provided is not a pandas DataFrame.' else: data = data # DATA VALIDATION if(col==None): return 'ERROR: Specify a column name to filter by.' data_cols = list(data.columns) if((col in data_cols)==False): # Make sure column name exists return 'Error: Column name "{}" does not exist'.format(col) if(equals==[]): return 'ERROR: Specify a value that "{}" should equal to'.format(col) data_val = list(data[col]) for value in equals: if((value in data_val)==False): return 'ERROR: No value equal to "{}" in "{}".'.format(value, col) # QUERY final_data = pd.DataFrame() for value in equals: current_data = data[data[col]==value] final_data = pd.concat([final_data, current_data]) return final_data # Description: # Returns a list of the well names filtered by the unit(s) specified. # Parameters: # units (list of strings): Letter of the well to be filtered (e.g. [‘A’] or [‘A’, ‘D’]) def filter_wells(self, units): data = self.data if(units==None): units= ['A', 'B', 'C', 'D'] def getUnits(): wells = list(np.unique(data.STATION_ID)) wells = pd.DataFrame(wells, columns=['STATION_ID']) for index, row in wells.iterrows(): mo = re.match('.+([0-9])[^0-9]*$', row.STATION_ID) last_index = mo.start(1) wells.at[index, 'unit'] = row.STATION_ID[last_index+1:] u = wells.unit.iloc[index] if(len(u)==0): # if has no letter, use D wells.at[index, 'unit'] = 'D' if(len(u)>1): # if has more than 1 letter, remove the extra letter if(u.find('R')>0): wells.at[index, 'unit'] = u[:-1] else: wells.at[index, 'unit'] = u[1:] u = wells.unit.iloc[index] if(u=='A' or u=='B' or u=='C' or u=='D'): pass else: wells.at[index, 'unit'] = 'D' return wells df = getUnits() res = df.loc[df.unit.isin(units)] return list(res.STATION_ID) # Description: # Removes outliers from a dataframe based on the z_scores and returns the new dataframe. # Parameters: # data (dataframe): data for the outliers to removed from # z_threshold (float): z_score threshold to eliminate. def remove_outliers(self, data, z_threshold=4): z = np.abs(stats.zscore(data)) row_loc = np.unique(np.where(z > z_threshold)[0]) data = data.drop(data.index[row_loc]) return data # Description: # Returns a csv file saved to save_dir with details pertaining to the specified analyte. # Details include the well names, the date ranges and the number of unique samples. # Parameters: # analyte_name (string): name of the analyte to be processed # save_dir (string): name of the directory you want to save the csv file to def get_analyte_details(self, analyte_name, filter=False, col=None, equals=[], save_to_file = False, save_dir='analyte_details'): data = self.data data = data[data.ANALYTE_NAME == analyte_name].reset_index().drop('index', axis=1) data = data[~data.RESULT.isna()] data = data.drop(['ANALYTE_NAME', 'RESULT', 'RESULT_UNITS'], axis=1) data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] info = [] wells = np.unique(data.STATION_ID.values) for well in wells: current = data[data.STATION_ID == well] startDate = current.COLLECTION_DATE.min().date() endDate = current.COLLECTION_DATE.max().date() numSamples = current.duplicated().value_counts()[0] info.append({'Well Name': well, 'Start Date': startDate, 'End Date': endDate, 'Date Range (days)': endDate-startDate , 'Unique samples': numSamples}) details = pd.DataFrame(info) details.index = details['Well Name'] details = details.drop('Well Name', axis=1) details = details.sort_values(by=['Start Date', 'End Date']) details['Date Range (days)'] = (details['Date Range (days)']/ np.timedelta64(1, 'D')).astype(int) if(save_to_file): if not os.path.exists(save_dir): os.makedirs(save_dir) details.to_csv(save_dir + '/' + analyte_name + '_details.csv') return details # Description: # Returns a dataframe with a summary of the data for certain analytes. # Summary includes the date ranges and the number of unique samples and other statistics for the analyte results. # Parameters: # analytes (list of strings): list of analyte names to be processed. If left empty, a list of all the analytes in the data will be used. # sort_by (string): {‘date’, ‘samples’, ‘wells’} sorts the data by either the dates by entering: ‘date’, the samples by entering: ‘samples’, or by unique well locations by entering ‘wells’. # ascending (bool): flag to sort in ascending order. def get_data_summary(self, analytes=None, sort_by='date', ascending=False, filter=False, col=None, equals=[]): data = self.data if(analytes == None): analytes = data.ANALYTE_NAME.unique() data = data.loc[data.ANALYTE_NAME.isin(analytes)].drop(['RESULT_UNITS'], axis=1) data = data[~data.duplicated()] # remove duplicates data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) data = data[~data.RESULT.isna()] if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] info = [] for analyte_name in analytes: query = data[data.ANALYTE_NAME == analyte_name] startDate = min(query.COLLECTION_DATE) endDate = max(query.COLLECTION_DATE) numSamples = query.shape[0] wellCount = len(query.STATION_ID.unique()) stats = query.RESULT.describe().drop('count', axis=0) stats = pd.DataFrame(stats).T stats_col = [x for x in stats.columns] result = {'Analyte Name': analyte_name, 'Start Date': startDate, 'End Date': endDate, 'Date Range (days)':endDate-startDate, '# unique wells': wellCount,'# samples': numSamples, 'Unit': self.get_unit(analyte_name) } for num in range(len(stats_col)): result[stats_col[num]] = stats.iloc[0][num] info.append(result) details = pd.DataFrame(info) details.index = details['Analyte Name'] details = details.drop('Analyte Name', axis=1) if(sort_by.lower() == 'date'): details = details.sort_values(by=['Start Date', 'End Date', 'Date Range (days)'], ascending=ascending) elif(sort_by.lower() == 'samples'): details = details.sort_values(by=['# samples'], ascending=ascending) elif(sort_by.lower() == 'wells'): details = details.sort_values(by=['# unique wells'], ascending=ascending) return details # Description: # Displays the analyte names available at given well locations. # Parameters: # well_name (string): name of the well. If left empty, all wells are returned. # filter (bool): flag to indicate filtering # col (string): column to filter results # equals (list of strings): value to match column name. Multiple values are accepted. def get_well_analytes(self, well_name=None, filter=False, col=None, equals=[]): data = self.data bb = "\033[1m" be = "\033[0m" if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] if(well_name==None): wells = list(data.STATION_ID.unique()) else: wells = [well_name] for well in wells: print("{}{}{}".format(bb,str(well), be)) analytes = sorted(list(data[data.STATION_ID==well].ANALYTE_NAME.unique())) print(str(analytes) +'\n') # Description: # Filters data by passing the data and specifying the well_name and analyte_name # Parameters: # well_name (string): name of the well to be processed # analyte_name (string): name of the analyte to be processed def query_data(self, well_name, analyte_name): data = self.data query = data[data.STATION_ID == well_name] query = query[query.ANALYTE_NAME == analyte_name] if(query.shape[0] == 0): return 0 else: return query # Description: # Plot concentrations over time of a specified well and analyte with a smoothed curve on interpolated data points. # Parameters: # well_name (string): name of the well to be processed # analyte_name (string): name of the analyte to be processed # log_transform (bool): choose whether or not the data should be transformed to log base 10 values # alpha (int): value between 0 and 10 for line smoothing # year_interval (int): plot by how many years to appear in the axis e.g.(1 = every year, 5 = every 5 years, ...) # plot_inline (bool): choose whether or not to show plot inline # save_dir (string): name of the directory you want to save the plot to def plot_data(self, well_name, analyte_name, log_transform=True, alpha=0, plot_inline=True, year_interval=2, x_label='Years', y_label='', save_dir='plot_data', filter=False, col=None, equals=[]): # Gets appropriate data (well_name and analyte_name) query = self.query_data(well_name, analyte_name) query = self.simplify_data(data=query) if(type(query)==int and query == 0): return 'No results found for {} and {}'.format(well_name, analyte_name) else: if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(query.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' query = query[query['STATION_ID'].isin(intersect_wells)] x_data = query.COLLECTION_DATE x_data = pd.to_datetime(x_data) y_data = query.RESULT if(log_transform): y_data = np.log10(y_data) # Remove any NaN as a result of the log transformation nans = ~np.isnan(y_data) x_data = x_data[nans] y_data = y_data[nans] x_RR = x_data.astype(int).to_numpy() # Remove any duplicate dates unique = ~pd.Series(x_data).duplicated() x_data = x_data[unique] y_data = y_data[unique] unique = ~pd.Series(y_data).duplicated() x_data = x_data[unique] y_data = y_data[unique] x_RR = x_data.astype(int).to_numpy() nu = x_data.shape[0] result = None while result is None: if(nu < 5): return 'ERROR: Could not plot {}, {}'.format(well_name, analyte_name) break nu = nu - 1 x_data = x_data[:nu] x_RR = x_RR[:nu] y_data = y_data[:nu] try: # fit the supersmoother model model = SuperSmoother(alpha=alpha) model.fit(x_RR, y_data) y_pred = model.predict(x_RR) r = model.cv_residuals() out = abs(r) > 2.2*np.std(r) out_x = x_data[out] out_y = y_data[out] plt.figure(figsize=(8,8)) ax = plt.axes() years = mdates.YearLocator(year_interval) # every year months = mdates.MonthLocator() # every month yearsFmt = mdates.DateFormatter('%Y') for label in ax.get_xticklabels(): label.set_rotation(30) label.set_horizontalalignment('center') ax = plt.gca() ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.autoscale_view() unit = query.RESULT_UNITS.values[0] ax.set_title(well_name + ' - ' + analyte_name, fontweight='bold') ttl = ax.title ttl.set_position([.5, 1.05]) if(y_label==''): if(log_transform): ax.set_ylabel('log-Concentration (' + unit + ')') else: ax.set_ylabel('Concentration (' + unit + ')') else: ax.set_ylabel(y_label) ax.set_xlabel(x_label) small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) ax.plot(x_data, y_data, ls='', marker='o', ms=5, color='black', alpha=1) ax.plot(x_data, y_pred, ls='-', marker='', ms=5, color='black', alpha=0.5, label="Super Smoother") ax.plot(out_x , out_y, ls='', marker='o', ms=5, color='red', alpha=1, label="Outliers") ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left', borderaxespad=0.) props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.05, 0.85, 'Samples: {}'.format(nu), transform=ax.transAxes, fontsize=small_fontSize, fontweight='bold', verticalalignment='top', bbox=props) if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig(save_dir + '/' + well_name + '-' + analyte_name +'.png', bbox_inches="tight") if(plot_inline): plt.show() plt.clf() plt.cla() plt.close() result = 1 except: pass # Description: # Plot concentrations over time for every well and analyte with a smoothed curve on interpolated data points. # Parameters: # log_transform (bool): choose whether or not the data should be transformed to log base 10 values # alpha (int): value between 0 and 10 for line smoothing # year_interval (int): plot by how many years to appear in the axis e.g.(1 = every year, 5 = every 5 years, ...) # plot_inline (bool): choose whether or not to show plot inline # save_dir (string): name of the directory you want to save the plot to def plot_all_data(self, log_transform=True, alpha=0, year_interval=2, plot_inline=True, save_dir='plot_data'): analytes = ['TRITIUM','URANIUM-238','IODINE-129','SPECIFIC CONDUCTANCE', 'PH', 'DEPTH_TO_WATER'] wells = np.array(data.STATION_ID.values) wells = np.unique(wells) success = 0 errors = 0 for well in wells: for analyte in analytes: plot = self.plot_data(well, analyte, log_transform=log_transform, alpha=alpha, year_interval=year_interval, plot_inline=plot_inline, save_dir=save_dir) if 'ERROR:' in str(plot): errors = errors + 1 else: success = success + 1 print("Success: ", success) print("Errors: ", errors) # Description: # Plots a heatmap of the correlations of the important analytes over time for a specified well. # Parameters: # well_name (string): name of the well to be processed # show_symmetry (bool): choose whether or not the heatmap should show the same information twice over the diagonal # color (bool): choose whether or not the plot should be in color or in greyscale # save_dir (string): name of the directory you want to save the plot to def plot_correlation_heatmap(self, well_name, show_symmetry=True, color=True, save_dir='plot_correlation_heatmap'): data = self.data query = data[data.STATION_ID == well_name] a = list(np.unique(query.ANALYTE_NAME.values)) b = ['TRITIUM','IODINE-129','SPECIFIC CONDUCTANCE', 'PH','URANIUM-238', 'DEPTH_TO_WATER'] analytes = self.__custom_analyte_sort(list(set(a) and set(b))) query = query.loc[query.ANALYTE_NAME.isin(analytes)] analytes = self.__custom_analyte_sort(np.unique(query.ANALYTE_NAME.values)) x = query[['COLLECTION_DATE', 'ANALYTE_NAME']] unique = ~x.duplicated() query = query[unique] piv = query.reset_index().pivot(index='COLLECTION_DATE',columns='ANALYTE_NAME', values='RESULT') piv = piv[analytes] totalSamples = piv.shape[0] piv = piv.dropna() samples = piv.shape[0] if(samples < 5): return 'ERROR: {} does not have enough samples to plot.'.format(well_name) else: scaler = StandardScaler() pivScaled = scaler.fit_transform(piv) pivScaled = pd.DataFrame(pivScaled, columns=piv.columns) pivScaled.index = piv.index corr_matrix = pivScaled.corr() if(show_symmetry): mask = None else: mask = np.triu(corr_matrix) if(color): cmap = 'RdBu' else: cmap = 'binary' fig, ax = plt.subplots(figsize=(8,6)) ax.set_title(well_name + '_correlation', fontweight='bold') ttl = ax.title ttl.set_position([.5, 1.05]) props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.3, 1.05, 'Start date: {}\nEnd date: {}\n\nSamples: {} of {}'.format(piv.index[0], piv.index[-1], samples, totalSamples), transform=ax.transAxes, fontsize=15, fontweight='bold', verticalalignment='bottom', bbox=props) ax = sns.heatmap(corr_matrix, ax=ax, mask=mask, vmin=-1, vmax=1, xticklabels=corr_matrix.columns, yticklabels=corr_matrix.columns, cmap=cmap, annot=True, linewidths=1, cbar_kws={'orientation': 'vertical'}) if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_dir + '/' + well_name + '_correlation.png', bbox_inches="tight") # Description: # Plots a heatmap of the correlations of the important analytes over time for each well in the dataset. # Parameters: # show_symmetry (bool): choose whether or not the heatmap should show the same information twice over the diagonal # color (bool): choose whether or not the plot should be in color or in greyscale # save_dir (string): name of the directory you want to save the plot to def plot_all_correlation_heatmap(self, show_symmetry=True, color=True, save_dir='plot_correlation_heatmap'): data = self.data wells =
np.array(data.STATION_ID.values)
numpy.array
#!/usr/bin/env python import os, sys, re, copy import numpy as np try: import indigo except: pass import aqml.cheminfo as co import aqml.cheminfo.graph as cg import networkx as nx import aqml.cheminfo.molecule.geometry as cmg from aqml.cheminfo.molecule.elements import Elements #__all__ = [ 'rawmol_indigo' ] T,F = True,False class Graph(object): def __init__(self, g): g1 = (g > 0).astype(np.int) np.fill_diagonal(g1, 0) self.g1 = g1 self.nb = g1.sum()/2 # num of bonds (i.e., edges) self.bonds = [ list(edge) for edge in \ np.array( list( np.where(np.triu(g)>0) ) ).T ] self.gnx = nx.from_numpy_matrix(g1) @property def is_connected(self): if not hasattr(self, '_ic'): self._ic = nx.is_connected(self.gnx) return self._ic def get_pls(self): """ calc shortest path lengths """ _na = g.shape[0] # number_of_nodes pls = -1 * np.ones((_na, _na)) np.fill_diagonal(pls,[0]*_na) for i in range(_na): for j in range(i+1,_na): if nx.has_path(self.gnx,i,j): pls[i,j]=pls[j,i]=nx.shortest_path_length(self.gnx,i,j) return pls @property def pls(self): if not hasattr(self, '_pls'): self._pls = self.get_pls() return self._pls def get_shortest_path(self, i, j): return list( nx.shortest_path(self.gnx, i, j) ) def get_paths(self, i, j): """ return shortest paths connecting tow nodes i & j """ paths = [] for p in nx.all_shortest_paths(self.gnx, source=i, target=j): paths += list(p) return paths class RawMol(Graph): def __init__(self, obj, ivdw=False, scale=1.0, iprt=F): """ initialize a molecule""" if isinstance(obj,(tuple,list)): zs, coords = obj else: sa = obj.__str__() if ('atoms' in sa) or ('molecule' in sa): zs, coords = obj.zs, obj.coords else: raise Exception('#ERROR: input obj not supported') self.obj = obj self.iprt = iprt self.scale = scale self._coords = np.array(coords) self._zs = np.array(zs, np.int) self.symbols = [ co.chemical_symbols[zi] for zi in zs ] self._na = len(zs) self._ias = np.arange(self._na) self.pt = Elements( list(zs) ) self.cns0 = np.array([ co.cnsr[zi] for zi in self._zs ], dtype=int) self.connect() #if (not self.is_connected) or ivdw: # self.connect_vdw_inter(scale=scale) def connect(self): """ establish connectivity between atoms from geometry __ONLY__ """ ps = self._coords rs = self.pt.rcs rmax = rs.max() ds = np.sqrt((np.square(ps[:,np.newaxis]-ps).sum(axis=2))) self.ds = ds ds2 = ds * ds rs1, rs2 = np.meshgrid(rs,rs) ds2r = (rs1 + rs2 + 0.45)**2 # step 1) get a preliminary connectivity table g g0 = np.logical_and( ds2 > 0.16, ds2 <= ds2r ) self.g0 = np.array(g0,np.int) g = g0.astype(np.int) cns = g.sum(axis=0) #print('cns=',cns) # step 2) refine the g maxnbs = self.pt.maxnbs for ia in range(self._na): zi = self._zs[ia] if zi == 1: if g[ia].sum() > 1: jas = self._ias[g[ia]>0] if 1 in self._zs[jas]: ja = jas[ self._zs[jas]==1 ] else: # remove the longer bond ds2i = ds2[ia,jas] maxd = ds2i.max() ja = jas[ds2i==maxd] g[ia,ja] = 0 g[ja,ia] = 0 cns = g.sum(axis=0) else: if cns[ia] == 1: continue while 1: gg = cmg.GraphGeometry(self.obj, g) mbs3 = gg.get_angles([ia], 'degree') angs = mbs3.values() #print('angs=', angs) angmin = 180.0 if len(angs) == 0 else np.min([ min(angs_i) for angs_i in angs ]) # for "C1=C2CN=C1NC2", min(angs) can reach 46.0 degree #print( 'angmin=',angmin, angs) if (cns[ia] > maxnbs[ia] or angmin < 45): # 50.0): #some bond exceeds max valence #now remove the bond with max bond length jas = self._ias[g[ia]>0] dsj = ds[ia,jas] ja = jas[dsj==np.max(dsj)][0] g[ia,ja] = g[ja,ia] = 0 cns = g.sum(axis=0) #print ' * ia,ja = ', ia,ja #print ia, zi, cns[ia],maxnbs[ia], np.concatenate(angs).min() #assert cns[ia] <= maxnbs[ia], '#ERROR: still more valence than allowed' else: break self.g = g #gnx = nx.from_numpy_matrix(g) #self.gnx = gnx #self.is_connected = nx.is_connected(gnx) Graph.__init__(self, g) @property def nscu(self): if not hasattr(self, '_nscu'): self._nscu = self.get_nscu() return self._nscu def get_nscu(self): cns = self.g.sum(axis=0) zs = self._zs scus = {} ias2 = self._ias[ np.logical_and(cns==2, zs==6) ] # now ...=C=C=... g1 = self.g[ias2][:,ias2] clqs = [] if len(g1)>0: raise Exception('Todo: cannot distinguish between -C#C-C#C- and >C=C=C=C< ...') cns1 = g1.sum(axis=0) for cq in cg.Graph(g1).find_cliques(): ias_end = ias2[cns1==1] ias_others = ias2[cns1>1] for ie in ias_end: jas = [] vis1 = set() # visited nodes ias1 = self._ias[ np.logical_and(cns==1, zs>1) ] for ia1 in ias1: if ia1 in vis1: continue z1 = zs[ia1] jas = self._ias[self.g[ia1]>0] if z1 in [8,16,34,52]: assert len(jas)==1 ja = jas[0] nnbr1 = self.g[ja,ias1].sum() #nbrsj = self._ias[self.g[ja]>0] if nnbr1 == 1: t = [ co.chemical_symbols[zi] for zi in [zs[ia1],zs[ja]] ] seti = [ia1,ja] scu = '{s[0]}={s[1]}'.format(s=t) elif nnbr1 == 2: nbrsj = ias1[ self.g[ja,ias1]>0 ] seti = [ja, nbrsj[0], nbrsj[1]] zsj = zs[nbrsj]; zsj.sort() zsi = [zsj[0], zs[ja], zsj[1]] t = [ co.chemical_symbols[zi] for zi in zsi ] scu = '{s[0]}={s[1]}={s[2]}'.format(s=t) else: raise Exception('Todo... Possibly ClO4 group?') elif z1 in [6,]: # -[N+]#[C-] assert len(jas)==1 seti = [ia1, jas[0]] scu = '[{}+]#[C-]'.format( co.chemical_symbols[zs[jas[0]]] ) elif z1 in [1,9,17,35,53]: seti = [ia1] scu = co.chemical_symbols[z1] else: raise Exception('#ERROR: what the hell happend?') vis1.update(seti) ## now update counts if scu not in scus: scus[scu] = [ set(seti) ] else: scus[scu].append( set(seti) ) iasr = np.setdiff1d(self._ias, list(vis1)) for ia in iasr: scu = '%s%d'%( co.chemical_symbols[zs[ia]], cns[ia] ) seti = [ia] if scu not in scus: scus[scu] = [set(seti)] else: scus[scu].append( set(seti) ) return scus def get_fragments(self): mols = [] if self.is_connected: mols = [ co.atoms(self._zs, self._coords) ] else: for sg in nx.connected_component_subgraphs(self.gnx): idx = list(sg.nodes()) mols.append( co.atoms(self._zs[idx], self._coords[idx]) ) return mols @property def fragments(self): if not hasattr(self, '_fragments'): self._fragments = self.get_fragments() return self._fragments def connect_vdw_inter(self): #,scale=1.0): """ add vdw bond between standalone submols in the system """ g2 =
np.zeros((self._na,self._na))
numpy.zeros
#!/usr/bin/env python3 try: import matplotlib matplotlib.verbose = True # matplotlib.use('Gtk3Agg') # matplotlib.use('QtAgg') # matplotlib.use('TkAgg') # matplotlib.use('Agg') import matplotlib.pyplot as plt # plt.switch_backend('Agg') # print(matplotlib.get_backend()) except: pass import os, sys, time, \ random, \ subprocess, glob, re, \ numpy as np, \ multiprocessing as mp, \ logging, \ collections, \ functools, signal, shutil from os import path as osp from IPython import embed from easydict import EasyDict as edict import cv2, cvbase as cvb, copy, pandas as pd, math import collections, h5py from sklearn.preprocessing import normalize from scipy.spatial.distance import cdist # import redis, networkx as nx, \ # yaml, subprocess, pprint, json, \ # csv, argparse, string, colorlog, \ # shutil, itertools,pathlib, # from IPython import embed # from tensorboardX import SummaryWriter glvars = {} root_path = osp.normpath( osp.join(osp.abspath(osp.dirname(__file__)), ) ) + '/' home_path = os.environ['HOME'] + '/' work_path = home_path + '/work/' share_path = '/data1/share/' share_path3 = '/home/share/' share_path2 = '/data2/share/' sys.path.insert(0, root_path) os.environ.setdefault('log', '1') os.environ.setdefault('pytorch', '1') os.environ.setdefault('tensorflow', '0') os.environ.setdefault('chainer', '0') # os.environ['MXNET_CPU_WORKER_NTHREADS'] = '3' # os.environ['MXNET_ENGINE_TYPE'] = 'ThreadedEnginePerDevice' timer = cvb.Timer() stream_handler = None def set_stream_logger(log_level=logging.INFO): # return None global stream_handler import colorlog sh = colorlog.StreamHandler() sh.setLevel(log_level) sh.setFormatter( colorlog.ColoredFormatter( ' %(asctime)s %(filename)s [line:%(lineno)d] %(log_color)s%(levelname)s%(reset)s %(message)s')) # if stream_handler is not None: # logging.root.removeHandler(stream_handler) logging.root.addHandler(sh) return sh file_hander = None def set_file_logger(work_dir=None, log_level=logging.INFO): # return None global file_hander work_dir = work_dir or root_path if not osp.exists(work_dir): os.system(f"mkdir -p '{work_dir}'") fh = logging.FileHandler(os.path.join(work_dir, 'log-ing')) fh.setLevel(log_level) fh.setFormatter( logging.Formatter('%(asctime)s %(filename)s [line:%(lineno)d] %(levelname)s %(message)s')) # if file_hander is not None: # logging.root.removeHandler(file_hander) logging.root.addHandler(fh) return fh if os.environ.get('log', '0') == '1': logging.root.setLevel(logging.INFO) stream_handler = set_stream_logger(logging.INFO) file_hander = set_file_logger(log_level=logging.INFO) if os.environ.get('chainer', "1") == "1": import chainer from chainer import cuda # xp = cuda.get_array_module( ) old_repr = chainer.Variable.__repr__ chainer.Variable.__str__ = lambda obj: (f'ch {tuple(obj.shape)} {obj.dtype} ' f'{old_repr(obj)} ' f'type: {obj.dtype} shape: {obj.shape} ch') chainer.Variable.__repr__ = chainer.Variable.__str__ logging.info(f'import chainer {timer.since_last_check()}') if os.environ.get('pytorch', "1") == "1": tic = time.time() # os.environ["MKL_NUM_THREADS"] = "4" # os.environ["OMP_NUM_THREADS"] = "4" os.environ["NCCL_DEBUG"] = "INFO" # os.environ["NCCL_DEBUG_SUBSYS"] = "ALL" import torch import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F old_repr = torch.Tensor.__repr__ torch.Tensor.__repr__ = lambda obj: (f'th {tuple(obj.shape)} {obj.type()} ' f'{old_repr(obj)} ' f'type: {obj.type()} shape: {obj.shape} th') if obj.is_contiguous() else ( f'{tuple(obj.shape)} {obj.type()} ' f'{old_repr(obj.contiguous())} ' f'type: {obj.type()} shape: {obj.shape}') logging.info(f'import pytorch {time.time() - tic}') def allow_growth(): import tensorflow as tf oldinit = tf.Session.__init__ def myinit(session_object, target='', graph=None, config=None): if config is None: config = tf.ConfigProto() config.gpu_options.allow_growth = True oldinit(session_object, target, graph, config) tf.Session.__init__ = myinit return oldinit if os.environ.get('tensorflow', '0') == '1': tic = time.time() import tensorflow as tf # import tensorflow.contrib oldinit = allow_growth() print('import tf', time.time() - tic) ''' %load_ext autoreload %autoreload 2 %matplotlib inline import matplotlib matplotlib.style.use('ggplot') from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" ''' # torch.set_default_tensor_type(torch.cuda.DoubleTensor) # ori_np_err = np.seterr(all='raise') # 1/100000=0 will be error ## ndarray will be pretty np.set_string_function(lambda arr: f'np {arr.shape} {arr.dtype} ' f'{arr.__str__()} ' f'dtype:{arr.dtype} shape:{arr.shape} np', repr=True) ## print(ndarray) will be pretty (and pycharm dbg) # np.set_string_function(lambda arr: f'np {arr.shape} {arr.dtype} \n' # f'{arr.__repr__()} \n' # f'dtype:{arr.dtype} shape:{arr.shape} np', repr=False) ## fail # old_np_repr = np.ndarray.__repr__ # np.ndarray.__repr__ = lambda arr: (f'{arr.shape} {arr.dtype} \n' # f'{old_np_repr(arr)} \n' # f'dtype:{arr.dtype} shape:{arr.shape}') logging.info('import lz') def simplify_conf(conf): conf2 = {k: v for k, v in conf.items() if not isinstance(v, (dict, np.ndarray))} logging.info(f'training conf is {conf2}') return conf2 def swa_bn_update(loader, model, device=0): logging.info('update bn ') def _check_bn_apply(module, flag): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): flag[0] = True def _check_bn(model): flag = [False] model.apply(lambda module: _check_bn_apply(module, flag)) return flag[0] def _reset_bn(module): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): module.running_mean = torch.zeros_like(module.running_mean) module.running_var = torch.ones_like(module.running_var) def _get_momenta(module, momenta): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): momenta[module] = module.momentum def _set_momenta(module, momenta): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): module.momentum = momenta[module] if not _check_bn(model): return was_training = model.training model.train() momenta = {} model.apply(_reset_bn) model.apply(lambda module: _get_momenta(module, momenta)) n = 0 for idx, input in enumerate(loader): if idx % 999==9: print(idx, len(loader)) if isinstance(input, (list, tuple)): input = input[0] if isinstance(input, (dict,)): input =input['imgs'] b = input.size(0) momentum = b / float(n + b) for module in momenta.keys(): module.momentum = momentum if device is not None: input = input.to(device) model(input) n += b model.apply(lambda module: _set_momenta(module, momenta)) model.train(was_training) def init_dev(n=(0,)): import os import logging if not isinstance(n, collections.Sequence): n = (n,) logging.info('use gpu {}'.format(n)) home = os.environ['HOME'] if isinstance(n, int) or n is None: n = (n,) devs = '' for n_ in n: devs += str(n_) + ',' devs = devs.strip(',') os.environ["CUDA_VISIBLE_DEVICES"] = devs set_env('PATH', home + '/local/cuda/bin') set_env('LD_LIBRARY_PATH', home + '/local/cuda/lib64:' + home + '/local/cuda/extras/CUPTI/lib64') def set_env(key, value): if key in os.environ: os.environ[key] = value + ':' + os.environ[key] else: os.environ[key] = value # todo occupy and release def occupy(dev=range(8)): import tensorflow as tf init_dev(dev) newinit = tf.Session.__init__ if 'oldinit' in locals(): tf.Session.__init__ = oldinit var = tf.constant(1) with tf.Session() as sess: sess.run([var]) while True: time.sleep(10) # tf.Session.__init__ = newinit # if something like Runtime Error : an illegal memory access was encountered occur # os.environ['CUDA_LAUNCH_BLOCKING'] = "1" ''' oldinit = Session.__init__ def myinit(session_object, target='', graph=None, config=None): if config is None: config = ConfigProto() config.gpu_options.allow_growth = True oldinit(session_object, target, graph, config) Session.__init__ = myinit ''' def allow_growth_conf(): import tensorflow as tf _sess_config = tf.ConfigProto(allow_soft_placement=True) _sess_config.gpu_options.allow_growth = True return _sess_config def allow_growth_sess(): import tensorflow as tf tf_graph = tf.get_default_graph() _sess_config = tf.ConfigProto(allow_soft_placement=True) _sess_config.gpu_options.allow_growth = True sess = tf.Session(config=_sess_config, graph=tf_graph) return sess def allow_growth_keras(): import keras keras.backend.set_session(allow_growth_sess()) def judgenan(x): return not not torch.isnan(x).any().item() or not not torch.isinf(x).any().item() def get_mem(): import psutil while True: try: mem = psutil.virtual_memory() break except: pass free = mem.free / 1024 ** 3 available = mem.available / 1024 ** 3 return available import gpustat ndevs = len(gpustat.GPUStatCollection.new_query().gpus) def get_gpu_mem(ind=0): gpus = gpustat.GPUStatCollection.new_query().gpus return gpus[ind].entry['memory.used'] / gpus[ind].entry['memory.total'] * 100 def get_utility(ind=0): import gpustat gpus = gpustat.GPUStatCollection.new_query().gpus return gpus[ind].entry['utilization.gpu'] def show_dev(): res = [] for ind in range(ndevs): mem = get_gpu_mem(ind) print(ind, mem) res.append(mem) return res def get_dev(n=1, ok=range(ndevs), mem_thresh=(0.1, 0.15), sleep=23.3): # 0.3: now occupy smaller than 0.3 if not isinstance(mem_thresh, collections.Sequence): mem_thresh = (mem_thresh,) def get_poss_dev(): mems = [get_gpu_mem(ind) for ind in ok] inds, mems = cosort(ok, mems, return_val=True) devs = [ind for ind, mem in zip(inds, mems) if mem < mem_thresh[0] * 100] return devs devs = get_poss_dev() logging.info('Auto select gpu') # gpustat.print_gpustat() show_dev() while len(devs) < n: devs = get_poss_dev() print('no enough device available') # gpustat.print_gpustat() show_dev() sleep = int(sleep) time.sleep(random.randint(max(0, sleep - 20), sleep + 20)) return devs[:n] def wrapped_partial(func, *args, **kwargs): partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func def cpu_priority(level=19): import psutil p = psutil.Process(os.getpid()) p.nice(level) def cloud_normpath(path): path = str(path) path = osp.normpath(path) path = path.replace('s3:/', 's3://') return path def mkdir_p(path, delete=True, verbose=True): path = str(path) if path == '': return if delete and osp.exists(path): rm(path) if not osp.exists(path): os.makedirs(path, exist_ok=True) path = cloud_normpath(path) if not osp.exists(path): os.makedirs(path, exist_ok=True) class Logger(object): def __init__(self, fpath=None, console=sys.stdout): self.console = console self.file = None if fpath is not None: mkdir_p(os.path.dirname(fpath), delete=False) # rm(fpath) self.file = open(fpath, 'a') def __del__(self): self.close() def __enter__(self): pass def __exit__(self, *args): self.close() def write(self, msg): self.console.write(msg) if self.file is not None: self.file.write(msg) def flush(self): self.console.flush() if self.file is not None: self.file.flush() os.fsync(self.file.fileno()) def close(self): self.console.close() if self.file is not None: self.file.close() def set_file_logger_prt(path=root_path): # todo path = str(path) + '/' # sys.stdout = Logger(path + 'log-prt') # sys.stderr = Logger(path + 'log-prt-err') if os.environ.get('log', '0') == '1': set_file_logger_prt() class Timer(object): def __init__(self, print_tmpl=None, start=True, ): self._is_running = False self.print_tmpl = print_tmpl if print_tmpl else '{:.3f}' if start: self.start() @property def is_running(self): """bool: indicate whether the timer is running""" return self._is_running def __enter__(self): self.start() return self def __exit__(self, type, value, traceback): print(self.print_tmpl.format(self.since_last_check())) self._is_running = False def start(self): """Start the timer.""" if not self._is_running: self._t_start = time.time() self._is_running = True self._t_last = time.time() def since_start(self, aux=''): """Total time since the timer is started. Returns(float): the time in seconds """ if not self._is_running: raise ValueError('timer is not running') self._t_last = time.time() logging.info(f'{aux} time {self.print_tmpl.format(self._t_last - self._t_start)}') return self._t_last - self._t_start def since_last_check(self, aux='', verbose=True): """Time since the last checking. Either :func:`since_start` or :func:`since_last_check` is a checking operation. Returns(float): the time in seconds """ if not self._is_running: raise ValueError('timer is not running') dur = time.time() - self._t_last self._t_last = time.time() if verbose: logging.info(f'{aux} time {self.print_tmpl.format(dur)}') return dur timer = Timer() def get_md5(url): if isinstance(url, str): url = url.encode('utf-8') import hashlib m = hashlib.md5() m.update(url) return m.hexdigest() def load_cfg(cfg_file): from importlib import import_module sys.path.append(osp.dirname(cfg_file)) module_name = osp.basename(cfg_file).rstrip('.py') cfg = import_module(module_name) return cfg # Based on an original idea by https://gist.github.com/nonZero/2907502 and heavily modified. class Uninterrupt(object): """ Use as: with Uninterrupt() as u: while not u.interrupted: # train """ def __init__(self, sigs=(signal.SIGINT,), verbose=False): self.sigs = sigs self.verbose = verbose self.interrupted = False self.orig_handlers = None def __enter__(self): if self.orig_handlers is not None: raise ValueError("Can only enter `Uninterrupt` once!") self.interrupted = False self.orig_handlers = [signal.getsignal(sig) for sig in self.sigs] def handler(signum, frame): self.release() self.interrupted = True if self.verbose: print("Interruption scheduled...", ) for sig in self.sigs: signal.signal(sig, handler) return self def __exit__(self, type_, value, tb): self.release() def release(self): if self.orig_handlers is not None: for sig, orig in zip(self.sigs, self.orig_handlers): signal.signal(sig, orig) self.orig_handlers = None def mail(content, to_mail=('<EMAIL>',)): import datetime, collections user_passes = json_load(home_path + 'Dropbox/mail.json') user_pass = user_passes[0] time_str = datetime.datetime.now().strftime('%m-%d %H:%M') import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText s = smtplib.SMTP(host=user_pass['host'], port=user_pass['port'], timeout=10) s.starttls() s.login(user_pass['username'], user_pass['password']) title = 'ps: ' + content.split('\r\n')[0] title = title[:20] content = time_str + '\r\n' + content if isinstance(to_mail, collections.Sequence): to_mail = ', '.join(to_mail) msg = MIMEMultipart('alternative') msg['Subject'] = title msg['From'] = user_pass['username'] msg['To'] = to_mail # msg['Cc'] = to_mail msg.attach(MIMEText(content, 'plain')) s.sendmail(msg['From'], msg['To'], msg.as_string()) s.quit() def df2md(df1): import tabulate return tabulate.tabulate(df1, headers="keys", tablefmt="pipe") def stat(arr): def stat_np(array): array = np.asarray(array) return dict(zip( ['min', 'mean', 'median', 'max', 'shape'], [np.min(array), np.mean(array), np.median(array), np.max(array), np.shape(array)] )) def stat_th(tensor): return dict(zip( ['min', 'mean', 'median', 'max', ], [torch.min(tensor).item(), torch.mean(tensor).item(), torch.median(tensor).item(), torch.max( tensor).item()] )) if type(arr).__module__ == 'torch': return stat_th(arr) else: return stat_np(arr) def sel_np(A): import json dtype = str(A.dtype) shape = A.shape A = A.ravel().tolist() sav = {'shape': shape, 'dtype': dtype, 'A': A} return json.dumps(sav) def desel_np(s): import json sav = json.loads(s) A = sav['A'] A = np.array(A, dtype=sav['dtype']).reshape(sav['shape']) return A def to_image(arr): from PIL import Image if type(arr).__module__ == 'PIL.Image': return arr if type(arr).__module__ == 'numpy': return Image.fromarray(arr) def to_numpy(tensor): import PIL if isinstance(tensor, torch.autograd.Variable): tensor = tensor.detach() if torch.is_tensor(tensor): if tensor.shape == (): tensor = tensor.item() tensor = np.asarray([tensor]) elif np.prod(tensor.shape) == 1: tensor = tensor.item() tensor = np.asarray([tensor]) else: tensor = tensor.cpu().numpy() tensor = np.asarray(tensor) if type(tensor).__module__ == 'PIL.Image': tensor = np.asarray(tensor) # elif type(tensor).__module__ != 'numpy': # raise ValueError("Cannot convert {} to numpy array" # .format(type(tensor))) return tensor def to_torch(ndarray): if ndarray is None: return None if isinstance(ndarray, collections.Sequence): return [to_torch(ndarray_) for ndarray_ in ndarray if ndarray_ is not None] # if isinstance(ndarray, torch.autograd.Variable): # ndarray = ndarray.data if type(ndarray).__module__ == 'numpy': return torch.from_numpy(ndarray) elif not torch.is_tensor(ndarray): raise ValueError("Cannot convert {} to torch tensor" .format(type(ndarray))) return ndarray def norm_np(tensor): min, max = tensor.min(), tensor.max() tensor += min tensor /= (max - min) tensor *= 255 return tensor def norm_th(tensor): min, max = tensor.min(), tensor.max() return tensor.add_(min).div_(max - min) def load_state_dict(model, state_dict, prefix='', de_prefix=''): own_state = model.state_dict() success = [] if prefix != '': state_dict = {prefix + name: param for name, param in state_dict.items()} elif de_prefix != '': state_dict = {name.replace(de_prefix, ''): param for name, param in state_dict.items()} for name, param in state_dict.items(): if name not in own_state: print('ignore key "{}" in his state_dict'.format(name)) continue if isinstance(param, nn.Parameter): param = param.clone() if own_state[name].size() == param.size(): own_state[name].copy_(param) # print('{} {} is ok '.format(name, param.size())) success.append(name) else: logging.error('dimension mismatch for param "{}", in the model are {}' ' and in the checkpoint are {}, ...'.format( name, own_state[name].size(), param.size())) missing = set(own_state.keys()) - set(success) if len(missing) > 0: print('missing keys in my state_dict: "{}"'.format(missing)) def grid_iter(*args): import itertools res = list(itertools.product(*args)) np.random.shuffle(res) for arg in res: if len(arg) == 1: yield arg[0] else: yield arg def cross_iter(*args): start = [t[0] for t in args] yield start for ind, arg in enumerate(args): if len(arg) > 1: bak = start[ind] for ar in arg[1:]: start[ind] = ar yield start start[ind] = bak def shuffle_iter(iter): iter = list(iter) np.random.shuffle(iter) for iter_ in iter: yield iter_ def optional_arg_decorator(fn): def wrapped_decorator(*args): if len(args) == 1 and callable(args[0]): return fn(args[0]) else: def real_decorator(decoratee): return fn(decoratee, *args) return real_decorator return wrapped_decorator def randomword(length=9, ): import random import string return ''.join(random.choice(string.ascii_letters + string.digits + '_') for _ in range(length)) def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate def cosort(ind, val, return_val=False): ind = np.asarray(ind) val = np.asarray(val) comb = zip(ind, val) comb_sorted = sorted(comb, key=lambda x: x[1]) if not return_val: return np.array([comb_[0] for comb_ in comb_sorted]) else: return np.array([comb_[0] for comb_ in comb_sorted]), np.array([comb_[1] for comb_ in comb_sorted]) @optional_arg_decorator def timeit(fn, info=''): def wrapped_fn(*arg, **kwargs): start = time.time() res = fn(*arg, **kwargs) diff = time.time() - start logging.info((info + 'takes time {}').format(diff)) return res return wrapped_fn class Database(object): def __init__(self, file, mode='a'): import h5py if mode == 'r': try: self.fid = h5py.File(file, mode) except OSError as inst: logging.error(f'{inst}') cp(file, file + f'.{randomword()}') self.fid = h5py.File(file, mode) else: self.fid = h5py.File(file, mode) # rm(file) # self.fid = h5py.File(file, 'w') # logging.error(f'{file} is delete and write !!') def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.fid.close() def __getitem__(self, keys): if isinstance(keys, (tuple, list)): return [self._get_single_item(k) for k in keys] return self._get_single_item(keys) def _get_single_item(self, key): return np.asarray(self.fid[key]) def __setitem__(self, key, value): value = np.asarray(value) if key in self.fid: if self.fid[key].shape == value.shape and \ self.fid[key].dtype == value.dtype: logging.debug('shape type same, old is updated, {} {} '.format(value, np.count_nonzero(value == -1)) ) self.fid[key][...] = value else: logging.debug('old shape {} new shape {} updated'.format( self.fid[key].shape, value.shape)) del self.fid[key] self.fid.create_dataset(key, data=value) else: self.fid.create_dataset(key, data=value) def __delitem__(self, key): del self.fid[key] def __len__(self): return len(self.fid) def __iter__(self): return iter(self.fid) def flush(self): self.fid.flush() def close(self): self.flush() self.fid.close() def keys(self): return self.fid.keys() def pickle_dump(data, file, **kwargs): import pickle, pathlib # python2 can read 2 kwargs.setdefault('protocol', pickle.HIGHEST_PROTOCOL) if isinstance(file, str) or isinstance(file, pathlib.Path): mkdir_p(osp.dirname(file), delete=False) print('pickle into', file) with open(file, 'wb') as f: pickle.dump(data, f, **kwargs) elif hasattr(file, 'write'): pickle.dump(data, file, **kwargs) else: raise TypeError("file must be str of file-object") def get_img_size(img='/data1/xinglu/prj/test.jpg', verbose=True): try: out, err = shell(f'convert "{img}" -print "(%w, %h)" ', verbose=verbose) out = eval(out) out = (out[1], out[0]) except: out = cv2.imread(img).shape[:2] return out def pickle_load(file, **kwargs): import pickle if isinstance(file, str): with open(file, 'rb') as f: data = pickle.load(f, **kwargs) elif hasattr(file, 'read'): data = pickle.load(file, **kwargs) return data def df_dump(df, path, name='df'): df.to_hdf(path, name, mode='w') def df_load(path, name='df'): import pandas as pd return pd.read_hdf(path, name) import struct cv_type_to_dtype = { 5: np.dtype('float32'), 7: np.dtype('float16') } dtype_to_cv_type = {v: k for k, v in cv_type_to_dtype.items()} def read_mat(f): """ Reads an OpenCV mat from the given file opened in binary mode """ rows, cols, stride, type_ = struct.unpack('iiii', f.read(4 * 4)) mat = np.fromstring(f.read(rows * stride), dtype=cv_type_to_dtype[type_]) return mat.reshape(rows, cols) def load_mat(filename): """ Reads a OpenCV Mat from the given filename """ return read_mat(open(filename, 'rb')) def write_mat(f, m): """Write mat m to file f""" import struct if len(m.shape) == 1: rows = m.shape[0] cols = 1 else: rows, cols = m.shape header = struct.pack('iiii', rows, cols, cols * 4, dtype_to_cv_type[m.dtype]) f.write(header) f.write(m.data) def save_mat(filename, m): """Saves mat m to the given filename""" return write_mat(open(filename, 'wb'), m) def yaml_load(file, **kwargs): from yaml import Loader import yaml kwargs.setdefault('Loader', Loader) if isinstance(file, str): with open(file, 'r') as f: obj = yaml.load(f, **kwargs) elif hasattr(file, 'read'): obj = yaml.load(file, **kwargs) else: raise TypeError('"file" must be a filename str or a file-object') return obj def yaml_dump(obj, file=None, **kwargs): import yaml from yaml import Dumper kwargs.setdefault('Dumper', Dumper) if file is None: return yaml.dump(obj, **kwargs) elif isinstance(file, str): with open(file, 'w') as f: yaml.dump(obj, f, **kwargs) elif hasattr(file, 'write'): yaml.dump(obj, file, **kwargs) else: raise TypeError('"file" must be a filename str or a file-object') # torch.nn.utils.clip_grad_value_(self.model.parameters(), 5) def clip_grad_value_(parameters, clip_value=5): r"""Clips gradient of an iterable of parameters at specified value. Gradients are modified in-place. Arguments: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized clip_value (float or int): maximum allowed value of the gradients. The gradients are clipped in the range :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` """ if isinstance(parameters, torch.Tensor): parameters = [parameters] clip_value = float(clip_value) for p in filter(lambda p: p.grad is not None, parameters): if torch.isnan(p.grad.data).any().item(): print('nan ', p.shape) if torch.isinf(p.grad.data).any().item(): print('nan ', p.shape) p.grad.data.clamp_(min=-clip_value, max=clip_value) def json_dump(obj, file, mode='a'): # write not append! # import codecs import json if isinstance(file, str): # with codecs.open(file, mode, encoding='utf-8') as fp: with open(file, 'w') as fp: json.dump(obj, fp, sort_keys=True, indent=4 # ensure_ascii=False ) elif hasattr(file, 'write'): json.dump(obj, file) def json_load(file): import json if isinstance(file, str): with open(file, 'r') as f: obj = json.load(f) elif hasattr(file, 'read'): obj = json.load(file) else: raise TypeError('"file" must be a filename str or a file-object') return obj def msgpack_dump(obj, file, **kwargs): file = str(file) import msgpack, msgpack_numpy as m kwargs.setdefault('allow_np', True) allow_np = kwargs.pop('allow_np') if allow_np: kwargs.setdefault('default', m.encode) kwargs.setdefault('use_bin_type', True) try: with open(file, 'wb') as fp: msgpack.pack(obj, fp, **kwargs) except Exception as e: logging.warning(f'{e}') logging.warning('cannot dump') obj = copy.deepcopy(obj) obj2 = to_json_format(obj) with open(file, 'wb') as fp: msgpack.pack(obj2, fp, **kwargs) logging.warning('dump succes') def msgpack_dumps(obj, **kwargs): import msgpack, msgpack_numpy as m kwargs.setdefault('allow_np', True) allow_np = kwargs.pop('allow_np') if allow_np: kwargs.setdefault('default', m.encode) kwargs.setdefault('use_bin_type', True) return msgpack.packb(obj, **kwargs) def msgpack_load(file, **kwargs): assert osp.exists(file) import msgpack, gc, msgpack_numpy as m gc.disable() kwargs.setdefault('allow_np', True) allow_np = kwargs.pop('allow_np') if allow_np: kwargs.setdefault('object_hook', m.decode) kwargs.setdefault('use_list', False) kwargs.setdefault('raw', False) with open(file, 'rb') as f: res = msgpack.unpack(f, **kwargs) gc.enable() return res def msgpack_loads(file, **kwargs): import msgpack, gc, msgpack_numpy as m gc.disable() kwargs.setdefault('use_list', False) kwargs.setdefault('raw', False) # todo support numpy obj = msgpack.unpackb(file, **kwargs) gc.enable() return obj def append_file(line, file=None): file = file or 'append.txt' with open(file, 'a') as f: f.writelines(line + '\n') def write_list(file, l, sort=False, delimiter=' ', fmt='%.18e'): l = np.array(l) if sort: l = np.sort(l, axis=0) np.savetxt(file, l, delimiter=delimiter, fmt=fmt) class AsyncDumper(mp.Process): def __init__(self): self.queue = mp.Queue() super(AsyncDumper, self).__init__() def run(self): while True: data, out_file = self.queue.get() if data is None: break pickle_dump(data, out_file) def dump(self, obj, filename): self.queue.put((obj, filename)) def aria(url, dir_, fn): return shell(f'aria2c -c -s16 -k1M -x16 "{url}" -o "{fn}" -d "{dir_}"', ) def hostname(): msg = shell('hostname')[0] return msg.strip('\n') def shell(cmd, block=True, return_msg=True, verbose=True, timeout=None): import os my_env = os.environ.copy() home = os.path.expanduser('~') my_env['PATH'] = home + "/anaconda3/bin/:" + my_env['PATH'] my_env['http_proxy'] = '' my_env['https_proxy'] = '' if verbose: logging.info('cmd is ' + cmd) if block: # subprocess.call(cmd.split()) task = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=my_env, preexec_fn=os.setsid ) if return_msg: msg = task.communicate(timeout) msg = [msg_.decode('utf-8') for msg_ in msg] if msg[0] != '' and verbose: logging.info('stdout {}'.format(msg[0])) if msg[1] != '' and verbose: logging.error(f'stderr {msg[1]}, cmd {cmd}') return msg else: return task else: logging.debug('Non-block!') task = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=my_env, preexec_fn=os.setsid ) return task def ln(path, to_path): if osp.exists(to_path): print('error! exist ' + to_path) path = osp.abspath(path) cmd = "ln -s " + path + " " + to_path # print(cmd) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return proc def tar(path, to_path=None): if not osp.exists(path): return if not osp.exists(to_path): mkdir_p(to_path) if os.path.exists(to_path) and not len(os.listdir(to_path)) == 0: rm(path) return if to_path is not None: cmd = "tar xf " + path + " -C " + to_path print(cmd) else: cmd = "tar xf " + path shell(cmd, block=True) if os.path.exists(path): rm(path) def rm(path, block=True, remove=False): path = osp.abspath(path) if not osp.exists(path): logging.info(f'no need rm {path}') stdout, _ = shell('which trash', verbose=False) if remove: return shell(f'rm -rf "{path}"', block=block) if 'trash' not in stdout: dst = glob.glob('{}.bak*'.format(path)) parsr = re.compile(r'{}.bak(\d+?)'.format(path)) used = [0, ] for d in dst: m = re.match(parsr, d) if not m: used.append(0) elif m.groups()[0] == '': used.append(0) else: used.append(int(m.groups()[0])) dst_path = '{}.bak{}'.format(path, max(used) + 1) cmd = 'mv {} {} '.format(path, dst_path) return shell(cmd, block=block) else: return shell(f'trash -r "{path}"', block=block) def show_img(path): from IPython.display import Image fig = Image(filename=path) return fig def plt_imshow(img, ax=None, keep_ori_size=False, inp_mode='rgb'): img = to_img(img) if inp_mode == 'bgr': img = img[..., ::-1] if ax is None: h, w, = img.shape[0], img.shape[1] inchh = h / 100 inchw = w / 100 if keep_ori_size: plt.figure(figsize=(inchw, inchh,)) else: plt.figure() plt.imshow(img) plt.axis('off') else: ax.imshow(img) ax.set_yticks([]) ax.set_xticks([]) ax.axis('off') def plt_imshow_board(img, ax=None, color=None): img = to_img(img) if ax is None: plt.figure() plt.imshow(img) plt.axis('off') else: ax.imshow(img) import matplotlib.patches as patches M, N = img.shape[0], img.shape[1] line = [(0, 0), (0, M), (N, M), (N, 0), ] path = patches.Polygon(line, facecolor='none', edgecolor=color, linewidth=5, closed=True, joinstyle='round') ax.add_patch(path) ax.axis('off') ax.set_yticks([]) ax.set_xticks([]) margin = 2 ax.set_xlim(-margin, N + margin) ax.set_ylim(M + margin, -margin) def plt_imshow_tensor(imgs, ncol=10, limit=None): import torchvision if isinstance(imgs, list): imgs = np.asarray(imgs) if imgs.shape[-1] == 3: imgs = np.transpose(imgs, (0, 3, 1, 2)) imgs_thumb = torchvision.utils.make_grid( to_torch(imgs), normalize=False, scale_each=True, nrow=ncol, ).numpy() imgs_thumb = to_img(imgs_thumb) maxlen = max(imgs_thumb.shape) if limit is not None: imgs_thumb = cvb.resize_keep_ar(imgs_thumb, limit, limit, ) # print(imgs_thumb.shape) plt_imshow(imgs_thumb, keep_ori_size=True) def plt2tensor(): import io from torchvision import transforms as trans from PIL import Image buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) roc_curve = Image.open(buf) roc_curve_tensor = trans.ToTensor()(roc_curve) return roc_curve_tensor def to_img(img, target_shape=None): from PIL import Image img = np.asarray(img) img = img.copy() shape = img.shape if len(shape) == 3 and shape[-1] == 4: img = img[..., :3] if len(shape) == 3 and shape[0] == 3: img = img.transpose(1, 2, 0) img = np.array(img, order='C') # if img.dtype == np.float32 or img.dtype == np.float64: img -= img.min() img = img / (img.max() + 1e-6) img *= 255 img = np.array(img, dtype=np.uint8) if len(shape) == 3 and shape[-1] == 1: img = img[..., 0] if target_shape: # img = np.uint8(Image.fromarray(img).resize(target_shape, Image.ANTIALIAS)) # 128,256 img = img.astype('float32') img = to_torch(img).unsqueeze(0).unsqueeze(0) img = F.interpolate(img, size=(256, 128), mode='bilinear', align_corners=True) img = img.squeeze(0).squeeze(0) img = to_numpy(img).astype('uint8') return img.copy() def plt_matshow(mat, figsize=(6, 6)): fig, ax = plt.subplots(figsize=figsize) ax.matshow(mat) ax.axis('off') # plt.figure(figsize=(6,6)) # plt.matshow(mat, fignum=1) # plt.axis('off') # plt.colorbar() def apply_colormap_on_image(org_im, activation, colormap_name='viridis', alpha=.4, thresh=30): """ Apply heatmap on image Args: org_img (PIL img): Original image activation_map (numpy arr): Activation map (grayscale) 0-255 colormap_name (str): Name of the colormap """ import matplotlib.cm as mpl_color_map from PIL import Image org_im = Image.fromarray(to_img(org_im)) # Get colormap color_map = mpl_color_map.get_cmap(colormap_name) no_trans_heatmap = color_map(activation) # Change alpha channel in colormap to make sure original image is displayed heatmap = copy.copy(no_trans_heatmap) heatmap[:, :, 3] = alpha heatmap[:, :, 3][activation < thresh] = 0 heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)) no_trans_heatmap = Image.fromarray((no_trans_heatmap * 255).astype(np.uint8)) # Apply heatmap on iamge heatmap_on_image = Image.new("RGBA", org_im.size) heatmap_on_image = Image.alpha_composite(heatmap_on_image, org_im.convert('RGBA')) heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap) no_trans_heatmap = to_img(no_trans_heatmap) heatmap_on_image = to_img(heatmap_on_image) return no_trans_heatmap, heatmap_on_image def show_pdf(path): from IPython.display import IFrame path = osp.relpath(path) return IFrame(path, width=600, height=300) def print_graph_info(): import tensorflow as tf graph = tf.get_default_graph() graph.get_tensor_by_name("Placeholder:0") layers = [op.name for op in graph.get_operations() if op.type == "Placeholder"] print([graph.get_tensor_by_name(layer + ":0") for layer in layers]) print([op.type for op in graph.get_operations()]) print([n.name for n in tf.get_default_graph().as_graph_def().node]) print([v.name for v in tf.global_variables()]) print(graph.get_operations()[20]) def chdir_to_root(fn): def wrapped_fn(*args, **kwargs): restore_path = os.getcwd() os.chdir(root_path) res = fn(*args, **kwargs) os.chdir(restore_path) return res return wrapped_fn def scp(src, dest, dry_run=False): cmd = ('scp -r ' + src + ' ' + dest) print(cmd) if dry_run: return return shell(cmd, block=False) def read_list(file, delimi=" "): if osp.exists(file): lines = np.genfromtxt(file, dtype='str', delimiter=delimi) return lines else: return [] def cp(from_path, to): dst_dir = osp.dirname(to) if not osp.exists(dst_dir): mkdir_p(dst_dir) shell('cp -r ' + from_path + ' ' + to) def mv(from_path, to): if isinstance(from_path, list): for from_ in from_path: mv(from_, to) elif isinstance(to, list): for to_ in to: mv(from_path, to_) else: shell(f'''mv "{from_path}" "{to}"''') def dict_concat(d_l): d1 = d_l[0].copy() for d in d_l[1:]: d1.update(d) return d1 def dict_update(to, from_dict, must_exist=True): to = to.copy() from_dict = from_dict.copy() to = edict(to) from_dict = edict(from_dict) for k, v in from_dict.items(): if k not in to: if not must_exist: logging.debug('ori dict do not have key {}'.format(k)) else: raise ValueError('ori dict do not have key {}'.format(k)) try: assert to[k] == v except Exception as inst: logging.debug( 'update ori key {} from {} to {}'.format(k, to.get(k, None), v)) to[k] = v return to def face_detect(path='/data1/xinglu/prj/test.jpg'): cmd = f''' curl -X POST "https://api-cn.faceplusplus.com/facepp/v3/detect" \ -F "api_key=<KEY>" \ -F "api_secret=<KEY>" \ -F "image_file=@{path}" \ -F "return_landmark=1" \ -F "return_attributes=gender,age,headpose,facequality" ''' out, err = shell(cmd) return out def clean_name(name): if isinstance(name, list): return [clean_name(n) for n in name] import re name = re.findall('([a-zA-Z0-9/-]+)(?::\d+)?', name)[0] name = re.findall('([a-zA-Z0-9/-]+)(?:_\d+)?', name)[0] return name class Struct(object): def __init__(self, entries): self.__dict__.update(entries) def __getitem__(self, item): return self.__dict__[item] def dict2obj(d): return Struct(d) def dict2str(others): name = '' for key, val in others.iteritems(): name += '_' + str(key) if isinstance(val, dict): name += '_' + dict2str(val) elif isinstance(val, list): for val_ in val: name += '-' + str(val_) else: name += '_' + str(val) return name def list2str(li, delimier=''): name = '' for name_ in li: name += (str(name_) + delimier) return name def rsync(from_, to): cmd = ('rsync -avzP ' + from_ + ' ' + to) print(cmd) return shell(cmd, block=False) def i_vis_graph(graph_def, max_const_size=32): """Visualize TensorFlow graph.""" import tensorflow as tf from IPython.display import display, HTML, SVG import os def strip_consts(graph_def, max_const_size=32): """Strip large constant values from graph_def.""" import tensorflow as tf strip_def = tf.GraphDef() for n0 in graph_def.node: n = strip_def.node.add() n.MergeFrom(n0) if n.op == 'Const': tensor = n.attr['value'].tensor size = len(tensor.tensor_content) if size > max_const_size: tensor.tensor_content = tf.compat.as_bytes( "<stripped %d bytes>" % size) return strip_def if hasattr(graph_def, 'as_graph_def'): graph_def = graph_def.as_graph_def() strip_def = strip_consts(graph_def, max_const_size=max_const_size) code = """ <script> function load() {{ document.getElementById("{id}").pbtxt = {data}; }} </script> <link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()> <div style="height:600px"> <tf-graph-basic id="{id}"></tf-graph-basic> </div> """.format(data=repr(str(strip_def)), id='graph' + str(np.random.rand())) iframe = """ <iframe seamless style="width:800px;height:620px;border:0" srcdoc="{}"></iframe> """.format(code.replace('"', '&quot;')) display(HTML(iframe)) def my_wget(fid, fname): shell('rm -rf /tmp/cookies.txt') task = shell( f"wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={fid}' -O- ", return_msg=False ) out, err = task.communicate() out = out.decode('utf-8') print(out) if len(re.findall(r'.*confirm=([0-9a-zA-Z_]+).*', out)) == 0: print('no confirm continue') return 100 confirm = re.findall(r'.*confirm=([0-9a-zA-Z_]+).*', out)[0] if task.poll() != 0: print(confirm) raise ValueError('fail') task = shell( f"wget -c --load-cookies /tmp/cookies.txt 'https://docs.google.com/uc?export=download&confirm={confirm}&id={fid}' -O {fname}", block=False) return task # caution: may be shallow! def to_json_format(obj, allow_np=True): import collections, torch if isinstance(obj, np.ndarray): if obj.dtype == object: return obj.tolist() else: if allow_np: return np.asarray(obj, order="C") else: return to_json_format(obj.tolist()) elif isinstance(obj, (list, tuple, collections.deque)): return [to_json_format(subobj, allow_np) for subobj in obj] elif isinstance(obj, dict): for key in obj.keys(): obj[key] = to_json_format(obj[key], allow_np) return obj elif isinstance(obj, (int, str, float)): return obj elif isinstance(obj, torch.Tensor): return obj.cpu().numpy() elif isinstance(obj, np.int64): return int(obj) elif isinstance(obj, np.float32): return float(obj) elif obj is None: return obj else: raise ValueError(f'unkown {type(obj)}') # return obj # todo imtate this # def default_collate(batch): # "Puts each data field into a tensor with outer dimension batch size" # if torch.is_tensor(batch[0]): # out = None # if _use_shared_memory: # # If we're in a background process, concatenate directly into a # # shared memory tensor to avoid an extra copy # # batch # numel = sum([x.numel() for x in batch]) # storage = batch[0].storage()._new_shared(numel) # out = batch[0].new(storage) # return torch.stack(batch, 0, out=out) # elif type(batch[0]).__module__ == 'numpy': # elem = batch[0] # if type(elem).__name__ == 'ndarray': # return torch.stack([torch.from_numpy(b) for b in batch], 0) # if elem.shape == (): # scalars # py_type = float if elem.dtype.name.startswith('float') else int # return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) # elif isinstance(batch[0], int): # return torch.LongTensor(batch) # elif isinstance(batch[0], float): # return torch.DoubleTensor(batch) # elif isinstance(batch[0], string_classes): # return batch # elif isinstance(batch[0], collections.Mapping): # return {key: default_collate([d[key] for d in batch]) for key in batch[0]} # elif isinstance(batch[0], collections.Sequence): # transposed = zip(*batch) # return [default_collate(samples) for samples in transposed] # # raise TypeError(("batch must contain tensors, numbers, dicts or lists; found {}" # .format(type(batch[0])))) def preprocess(img, landmark, **kwargs): from skimage import transform as trans if isinstance(img, str): img = cvb.read_img(img, **kwargs) assert img is not None img = img.copy() # image_size = [] # str_image_size = kwargs.get('image_size', '') # if len(str_image_size) > 0: # image_size = [int(x) for x in str_image_size.split(',')] # if len(image_size) == 1: # image_size = [image_size[0], image_size[0]] # assert len(image_size) == 2 # assert image_size[0] == 112 # assert image_size[0] == 112 or image_size[1] == 96 image_size = [112, 112] assert len(image_size) == 2 src = np.array([ [30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041]], dtype=np.float32) if image_size[1] == 112: src[:, 0] += 8.0 dst = landmark.astype(np.float32) dst = dst.reshape(-1, 2) # todo, this means dst mast be 5 row if dst.shape[0] == 3: src = src[[0, 1, 2], :] tform = trans.SimilarityTransform() tform.estimate(dst, src) M = tform.params[0:2, :] warped = cv2.warpAffine(img, M, (image_size[1], image_size[0]), borderValue=0.0) # tform3 = trans.ProjectiveTransform() # tform3.estimate(src, dst) # warped = trans.warp(img, tform3, output_shape=_shape) return warped def face_orientation(frame, landmarks): size = frame.shape # (height, width, color_channel) image_points = np.array([ (landmarks[4], landmarks[5]), # Nose tip # (landmarks[10], landmarks[11]), # Chin (landmarks[0], landmarks[1]), # Left eye left corner (landmarks[2], landmarks[3]), # Right eye right corne (landmarks[6], landmarks[7]), # Left Mouth corner (landmarks[8], landmarks[9]) # Right mouth corner ], dtype="double") model_points = np.array([ (0.0, 0.0, 0.0), # Nose tip # (0.0, -330.0, -65.0), # Chin (-165.0, 170.0, -135.0), # Left eye left corner (165.0, 170.0, -135.0), # Right eye right corne (-150.0, -150.0, -125.0), # Left Mouth corner (150.0, -150.0, -125.0) # Right mouth corner ]) # Camera internals center = (size[1] / 2, size[0] / 2) focal_length = center[0] / np.tan(60 / 2 * np.pi / 180) camera_matrix = np.array( [[focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1]], dtype="double" ) dist_coeffs = np.zeros((4, 1)) # Assuming no lens distortion (success, rotation_vector, translation_vector) = cv2.solvePnP( model_points, image_points, camera_matrix, dist_coeffs, # flags=cv2.SOLVEPNP_ITERATIVE ) axis = np.float32([[500, 0, 0], [0, 500, 0], [0, 0, 500]]) imgpts, jac = cv2.projectPoints(axis, rotation_vector, translation_vector, camera_matrix, dist_coeffs) modelpts, jac2 = cv2.projectPoints(model_points, rotation_vector, translation_vector, camera_matrix, dist_coeffs) rvec_matrix = cv2.Rodrigues(rotation_vector)[0] proj_matrix = np.hstack((rvec_matrix, translation_vector)) eulerAngles = cv2.decomposeProjectionMatrix(proj_matrix)[6] pitch, yaw, roll = [math.radians(_) for _ in eulerAngles] pitch = math.degrees(math.asin(math.sin(pitch))) roll = -math.degrees(math.asin(math.sin(roll))) yaw = math.degrees(math.asin(math.sin(yaw))) return imgpts, modelpts, (str(int(roll)), str(int(pitch)), str(int(yaw))), (landmarks[4], landmarks[5]) def cal_sim(yyfea, yy2fea): from scipy.spatial.distance import cdist dist = cdist(yyfea, yy2fea, metric='cosine') cossim = 1 - dist return cossim def get_normalized_pnt(nose, pnt): nose = np.asarray(nose).reshape(2, ) pnt = np.asarray(pnt).reshape(2, ) dir = pnt - nose norm = np.sqrt((dir ** 2).sum()) dir /= norm pnt = nose + dir * 50 return pnt # random_colors = [ tuple(np.random.random_integers(0, 255, size=3)) for i in range(19) ] random_colors = [(0, 255, 0), (255, 0, 0), (0, 0, 255), (171, 46, 62), (105, 246, 7), (19, 73, 138), (31, 210, 138), (35, 125, 76), (86, 6, 147), (249, 24, 45), (241, 214, 87), (102, 255, 173), (202, 146, 236), (163, 196, 242), (24, 48, 244), (187, 142, 60), (20, 146, 34), (226, 97, 210), (184, 40, 125), (208, 152, 12), (108, 158, 78), (91, 145, 136), ] def df_unique(df): def is_all_same(lst): lst = [lsti if not isinstance(lsti, np.ndarray) else lsti.tolist() for lsti in lst] res = [lsti == lst[0] for lsti in lst] try: return
np.asarray(res)
numpy.asarray
"""! @brief A dataset creation which is compatible with pytorch framework and much faster in loading time depending on the new version of loading only the appropriate files that might be needed @author <NAME> {<EMAIL>} @copyright University of illinois at Urbana Champaign """ import torch import argparse import os import sys import glob2 import numpy as np from sklearn.externals import joblib import scipy.io.wavfile as wavfile from torch.utils.data import Dataset, DataLoader from pprint import pprint root_dir = os.path.join( os.path.dirname(os.path.realpath(__file__)), '../../../') sys.path.insert(0, root_dir) import spatial_two_mics.utils.audio_mixture_constructor as \ mixture_creator import spatial_two_mics.config as config import spatial_two_mics.data_generator.dataset_storage as \ dataset_storage class PytorchMixtureDataset(Dataset): """ This is a general compatible class for pytorch datasets. @note Each instance of the dataset should be stored using joblib.dump() and this is the way that it would be returned. After some transformations. The path of all datasets should be defined inside config. All datasets should be formatted with appropriate subfolders of train / test and val and under them there should be all the available files. """ def __init__(self, dataset='timit', partition='train', n_samples=[512, 128, 256], n_sources=2, genders=['f', 'm'], n_fft=512, win_len=512, hop_length=128, mixture_duration=2.0, force_delays=[-1, 1], get_top=None, labels_mask='duet', **kwargs): self.dataset_params = { 'dataset': dataset, 'n_samples': n_samples, 'n_sources': n_sources, 'genders': genders, 'force_delays': force_delays } if labels_mask == 'duet' or labels_mask == 'ground_truth': self.selected_mask = labels_mask else: raise NotImplementedError("There is no available mask " "called: {}".format(labels_mask)) self.partition = partition dataset_name = dataset_storage.create_dataset_name( self.dataset_params) self.dataset_dirpath = os.path.join( config.DATASETS_DIR, dataset_name, partition) self.dataset_stats_path = self.dataset_dirpath + '_stats' if not os.path.isdir(self.dataset_dirpath): raise IOError("Dataset folder {} not found!".format( self.dataset_dirpath)) else: print("Loading files from {} ...".format( self.dataset_dirpath)) self.mixture_folders = glob2.glob(os.path.join( self.dataset_dirpath, '*')) if get_top is not None: self.mixture_folders = self.mixture_folders[:get_top] self.n_samples = len(self.mixture_folders) # preprocess -- store all absolute spectra values for faster # loading during run time self.store_directly_abs_spectra() def __len__(self): return self.n_samples def __getitem__(self, idx): """! Depending on the selected partition it returns accordingly the following objects: if self.partition == 'train': (abs_tfs, selected_mask) else if partition == 'test' or 'val' (abs_tfs, selected_mask, wavs_list, real_tfs, imag_tfs)""" mix_folder = self.mixture_folders[idx] try: abs_tfs = joblib.load(os.path.join(mix_folder, 'abs_tfs')) except: raise IOError("Failed to load data from path: {} " "for absolute spectra.".format(mix_folder)) try: if self.selected_mask == 'duet': mask = joblib.load(os.path.join(mix_folder, 'soft_labeled_mask')) else: mask = joblib.load(os.path.join(mix_folder, 'ground_truth_mask')) except: raise IOError("Failed to load data from path: {} " "for tf label masks".format(mix_folder)) if self.partition == 'train': return abs_tfs, mask try: real_p = os.path.join(mix_folder, 'real_tfs') imag_p = os.path.join(mix_folder, 'imag_tfs') wavs_p= os.path.join(mix_folder, 'wavs') real_tfs = joblib.load(real_p) imag_tfs = joblib.load(imag_p) wavs_list = joblib.load(wavs_p) wavs_list =
np.array(wavs_list)
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Oct 06 08:39:25 2016 @author: shilei Loader and checker for M3D-C1 RMP output files """ import numpy as np from scipy.io.netcdf import netcdf_file from scipy.interpolate import interp1d, RectBivariateSpline, UnivariateSpline from scipy.integrate import odeint import matplotlib.pyplot as plt from sdp.math.smooth import smooth class RmpLoader(object): """Loader for M3D-C1 RMP output files Initialization **************** __init__(self, filename, mode=r'full', scale=1, debug=False) Initialize the loader filename should contain the full path to the netcdf file generated by M3DC1. :param string filename: full or relative path to the netcdf file generated by M3DC1 :param string mode: loading mode. mode='full' will automatically read all the desired data in the file, and is the default mode. mode='eq_only' reads only the equilibrium, no RMP variables. mode='least' only initialize the object, nothing will be read. :param float scale: scale factor for RMP perturbations. Optional, default to be 1. :param bool debug: If True, alpha_mn will also be calculated by loaded dB_mn, and additional interpolators will be created. All debug quantities are hided with preceding '_' in front of the names. Optional, default to be True. Attributes ********** Equilibrium attributes: npsi: grid number in psi mpol: grid number in theta Example ******* """ def __init__(self, filename, mode=r'full', scale=1, debug=False, boundary_inner=0, boundary_outer=0): """Initialize the loader filename should contain the full path to the netcdf file generated by M3DC1. :param string filename: full or relative path to the netcdf file generated by M3DC1 :param string mode: loading mode. mode='full' will automatically read all the desired data in the file, and is the default mode. mode='eq_only' reads only the equilibrium, no RMP variables. mode='least' only initialize the object, nothing will be read. :param float scale: scale factor for RMP perturbations. Optional, default to be 1. :param bool debug: If True, alpha_mn will also be calculated by loaded dB_mn, and additional interpolators will be created. All debug quantities are hided with preceding '_' in front of the names. Optional, default to be False. :param float boundary_inner: Artificial linear decay boundary inner location in the unit of normalized psi_p :param float boundary_outer: Artificial linear decay boundary outer location in the unit of normalized psi_p """ # check validity of the input parameters # inner boundary must be on the right of the outer boundary assert boundary_inner >= boundary_outer self.filename = filename self.scale = scale self._debug = debug self._boundary_inner = boundary_inner self._boundary_outer = boundary_outer if mode == 'least': return else: self.load_equilibrium(self.filename) if mode == 'full': self.load_rmp(self.filename) self._apply_boundary_decay() self.generate_interpolators() def load_equilibrium(self, filename): """load the equilibrium data from M3DC1 output netcdf file :param string filename: full or relative path to the netcdf file generated by M3DC1 """ m3d_raw = netcdf_file(filename, 'r') # npsi is the number of grid points in psi # mpol is the number of grid points in theta self.npsi = m3d_raw.dimensions['npsi'] self.mpol = m3d_raw.dimensions['mpol'] # 1D quantities are function of psi only # we have # poloidal flux, axis value zero, always increase, in weber self.poloidal_flux = np.copy(m3d_raw.variables['flux_pol'].data) # poloidal flux, in weber/radian self.psi_p = np.copy(m3d_raw.variables['psi'].data) self.psi_p -= self.psi_p[0] if (self.psi_p[-1] < 0): self.isign = -1 else: self.isign = 1 # psi_abs is the flipped psi_p so it's increasing. # WARNING: SPECIAL CARE IS NEEDED WHEN CALCULATING MAGNETIC FIELD LINE self.psi_abs = self.psi_p*self.isign # normalized psi, normalized to psi_wall self.psi_n = np.copy(m3d_raw.variables['psi_norm'].data) # uniform theta is generated, including the end point at theta=2pi self.theta = np.linspace(0, 2*np.pi, self.mpol+1) # toroidal current enclosed in a flux surface self.I = np.copy(m3d_raw.variables['current'].data) self.I *= 2e-7 # R B_phi is also a flux function self.F = np.copy(m3d_raw.variables['F'].data) # equilibrium electron density self.ne = np.copy(m3d_raw.variables['ne'].data) # safety factor self.q = np.copy(m3d_raw.variables['q'].data) # total pressure self.p = np.copy(m3d_raw.variables['p'].data) # electron pressure self.pe = np.copy(m3d_raw.variables['pe'].data) # 2D quantities will depend on theta, we'll add one end point at # theta=2pi, and assign periodic value there # R in (R, PHI, Z) coordinates self.R = np.empty((self.npsi, self.mpol+1)) self.R[:, :-1] = m3d_raw.variables['rpath'][:,:] self.R[:, -1] = self.R[:, 0] # Z in (R, PHI, Z) self.Z = np.empty((self.npsi, self.mpol+1)) self.Z[:, :-1] = m3d_raw.variables['zpath'][:,:] self.Z[:, -1] = self.Z[:, 0] # poloidal magnetic field self.B_p = np.empty((self.npsi, self.mpol+1)) self.B_p[:, :-1] = m3d_raw.variables['Bp'][:,:] self.B_p[:, -1] = self.B_p[:, 0] # Jacobian self.Jacobian = np.empty((self.npsi, self.mpol+1)) self.Jacobian[:, :-1] = m3d_raw.variables['jacobian'][:,:] self.Jacobian[:, -1] = self.Jacobian[:, 0] m3d_raw.close() def load_rmp(self, filename): """load the resonant magnetic perturbations :param string filename: full or relative path to the netcdf file generated by M3DC1 """ #todo coordinates convention needs to be sorted out m3d_raw = netcdf_file(filename, 'r') # mode numbers in m self.m = np.copy(m3d_raw.variables['m'].data) # mode number in n self.n = m3d_raw.ntor # In our convention, alpha is a complex number, and the resonant form # has cos and sin part on real and imaginary parts respectively self.alpha_m = np.copy(m3d_raw.variables['alpha_real'].data) + \ 1j*np.copy(m3d_raw.variables['alpha_imag'].data) # Convert the unit of alpha_m to be consistent with SI units # Note that the B_mn quantities are in Gauss while the equilibrium # B field quantities are in Tesla and meter self.alpha_m *= 1e-4 # rescale the perturbation to desired level self.alpha_m *= self.scale # dB_m is the perpendicular component of perturbed magnetic field # Fourier decomposition in theta self.dB_m = np.copy(m3d_raw.variables['bmn_real'].data) + \ 1j* np.copy(m3d_raw.variables['bmn_imag'].data) # dB_m is in Gauss, we need to convert it into Tesla self.dB_m *= 1e-4 self.dB_m *= self.scale self.A = np.copy(m3d_raw.variables['area'].data) m3d_raw.close() # check if the mode number is inversed, if so, change it back to # increasing order if self.m[0]>self.m[-1]: self.m = np.fft.ifftshift(self.m[::-1]) self.alpha_m = np.fft.ifftshift(self.alpha_m[:, ::-1], axes=-1) self.dB_m = np.fft.ifftshift(self.dB_m[:,::-1], axes=-1) else: self.m = np.fft.ifftshift(self.m) self.alpha_m = np.fft.ifftshift(self.alpha_m[:, :], axes=-1) self.dB_m = np.fft.ifftshift(self.dB_m[:,:], axes=-1) # for alpha and dalpha_dtheta values in real space, we add the # theta=2pi end point, and assign periodic values self.alpha = np.empty((self.npsi, self.mpol+1), dtype=np.complex) self.dalpha_dtheta = np.empty((self.npsi, self.mpol+1), dtype=np.complex) self.dB = np.empty((self.npsi, self.mpol+1), dtype=np.complex) # Then, the real space alpha can be obtained by FFT. Check Nate's note # on the normalization convention, as well as scipy's FFT # documentation. self.alpha[:, :-1] = np.fft.fft(self.alpha_m, axis=-1) self.alpha[:, -1] = self.alpha[:, 0] # The derivatives respect to theta can also be calculated by FFT self.dalpha_dtheta[:, :-1] = np.fft.fft(-1j*self.m*self.alpha_m, axis=-1) self.dalpha_dtheta[:, -1] = self.dalpha_dtheta[:, 0] # Smooth the derivative for 2 passes of 121 # smooth(self.dalpha_dtheta, periodic=1, passes=2) # delta_B is also calculated by FFT self.dB[:, :-1] = np.fft.fft(self.dB_m, axis=-1) self.dB[:, -1] = self.dB[:, 0] if self._debug: # calculate alpha_m from dB_m and get alpha self._calc_alpha_m() self._alpha_c = np.empty((self.npsi, self.mpol+1), dtype=np.complex) self._dalpha_dtheta_c = np.empty((self.npsi, self.mpol+1), dtype=np.complex) self._alpha_c[:,:-1] = np.fft.fft(self._alpha_mc, axis=-1) self._alpha_c[:,-1] = self._alpha_c[:,0] self._dalpha_dtheta_c[:, :-1] = np.fft.fft(-1j*self.m*\ self._alpha_mc, axis=-1) self._dalpha_dtheta_c[:, -1] = self._dalpha_dtheta_c[:, 0] @property def _linear_boundary(self): """evaluate linear boundary function on the loaded psi_n locations The function is symmetric. In the center, (inner, 1-inner), it's 1; outer part, (0, outer) & (1-outer, 1), it's 0; and linearly connected between 0 and 1 in the transition regions, (outer, inner) & (1-inner, 1-outer) It can be evaluated as the multiplication of two 1-side step-like functions, each of which is a linear function whose value is bounded within (0,1). :param array(float) psi_n: evaluation locations in normalized psi_p unit """ boundary_width = self._boundary_inner - self._boundary_outer f_left = np.ones_like(self.psi_n) if boundary_width>0: f_left = (self.psi_n-self._boundary_outer)/boundary_width f_left[self.psi_n < self._boundary_outer] = 0 f_left[self.psi_n > self._boundary_inner] = 1 f_right = np.ones_like(self.psi_n) if boundary_width>0: f_right = (1-self.psi_n-self._boundary_outer)/boundary_width f_right[self.psi_n > 1-self._boundary_outer] = 0 f_right[self.psi_n < 1-self._boundary_inner] = 1 return f_left*f_right def _apply_boundary_decay(self): """Linear decay boundary is applied to alpha and dalpha_dtheta values""" _boundary = self._linear_boundary self.alpha = self.alpha * _boundary[:,np.newaxis] self.dalpha_dtheta = self.dalpha_dtheta * _boundary[:,np.newaxis] def _calc_alpha_m(self): """ Calculate alpha_mn based on the load in B_mn, F, I, A, and a given n. """ res = self.m*self.F[:, np.newaxis]+self.n*self.I[:, np.newaxis] self._alpha_mc = 1j*self.A[:, np.newaxis]*self.dB_m/ ((2*np.pi)**2*res) def rescale(self, scale=1): """Rescale the perturbations""" ratio = scale/self.scale self.scale = scale self.alpha *= ratio self.alpha_m *= ratio self.dalpha_dtheta *= ratio self.dB_m *= ratio if self._debug: self._alpha_mc *= ratio self._alpha_c *= ratio self._dalpha_dtheta_c *= ratio self.generate_interpolators() def generate_interpolators(self): """ Create the interpolators for the loaded quantities """ # 1-D quantities are directly interpolated on psi self.q_interp = UnivariateSpline(self.psi_abs, self.q) self.I_interp = UnivariateSpline(self.psi_abs, self.I) self.F_interp = UnivariateSpline(self.psi_abs, self.F) # 2-D quantities are interpolated on psi-theta plane # the periodicity along theta in the values is guaranteed self.R_interp = RectBivariateSpline(self.psi_abs, self.theta, self.R) self.Z_interp = RectBivariateSpline(self.psi_abs, self.theta, self.Z) self.Bp_interp = RectBivariateSpline(self.psi_abs,self.theta,self.B_p) self.alpha_re_interp = RectBivariateSpline(self.psi_abs, self.theta, np.real(self.alpha)) self.alpha_im_interp = RectBivariateSpline(self.psi_abs, self.theta, np.imag(self.alpha)) self.dadt_re_interp = RectBivariateSpline(self.psi_abs,self.theta, np.real(self.dalpha_dtheta)) self.dadt_im_interp = RectBivariateSpline(self.psi_abs,self.theta, np.imag(self.dalpha_dtheta)) if self._debug: self._alpha_c_re_interp = RectBivariateSpline(self.psi_abs, self.theta, np.real(self._alpha_c)) self._alpha_c_im_interp = RectBivariateSpline(self.psi_abs, self.theta, np.imag(self._alpha_c)) self._dadt_c_re_interp = RectBivariateSpline(self.psi_abs, self.theta, np.real(self._dalpha_dtheta_c)) self._dadt_c_im_interp = RectBivariateSpline(self.psi_abs, self.theta, np.imag(self._dalpha_dtheta_c)) def choose_harmonics(self, m='all'): """Calculate and return an alpha that only uses a chosen set of poloidal harmonics. :param m: the chosen poloidal harmonics, default to be 'all' :type m: array of int, or 'all' """ if m=='all': self.m_chosen = np.copy(self.m) self.alpha[:, :-1] = np.fft.fft(self.alpha_m, axis=-1) self.alpha[:, -1] = self.alpha[:,0] # The derivatives respect to theta can also be calculated by FFT self.dalpha_dtheta[:, :-1] = np.fft.fft(-1j*self.m*self.alpha_m, axis=-1) self.dalpha_dtheta[:, -1] = self.dalpha_dtheta[:, 0] self._apply_boundary_decay() self.generate_interpolators() else: self.m_chosen = np.array([m]).flatten() # pick the chosen m numbers using a logical mask chosen_mask = np.zeros_like(self.m) for m_i in self.m_chosen: chosen_mask = np.logical_or(chosen_mask,
np.abs(self.m)
numpy.abs
import logging import numpy as np from scipy.special import expit from scipy.stats import zscore logger = logging.getLogger('pyglmnet') def set_log_level(verbose): """Convenience function for setting the log level. Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. """ if isinstance(verbose, bool): if verbose is True: verbose = 'INFO' else: verbose = 'WARNING' if isinstance(verbose, str): verbose = verbose.upper() logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO, WARNING=logging.WARNING, ERROR=logging.ERROR, CRITICAL=logging.CRITICAL) if verbose not in logging_types: raise ValueError('verbose must be of a valid type') verbose = logging_types[verbose] logger.setLevel(verbose) # output log to console handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter(" %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def softmax(w): """ Softmax function of given array of number w """ w = np.array(w) maxes = np.amax(w, axis=1) maxes = maxes.reshape(maxes.shape[0], 1) e = np.exp(w - maxes) dist = e / np.sum(e, axis=1, keepdims=True) return dist class GLM: """Generalized Linear Model (GLM) This is class implements elastic-net regularized generalized linear models. The core algorithm is defined in the ariticle Parameters ---------- distr: str, distribution family in this following 'poisson' or 'normal' or 'binomial' or 'multinomial' default: 'poisson' alpha: float, the weighting between L1 and L2 norm in penalty term loss function i.e. P(beta) = 0.5*(1-alpha)*|beta|_2^2 + alpha*|beta|_1 default: 0.5 reg_lambda: array or list, array of regularized parameters of penalty term i.e. (1/2*N) sum(y - beta*X) + lambda*P where lambda is number in reg_lambda list default: np.logspace(np.log(0.5), np.log(0.01), 10, base=np.exp(1)) learning_rate: float, learning rate for gradient descent, default: 1e-4 max_iter: int, maximum iteration for the model, default: 100 threshold: float, threshold for convergence. Optimization loop will stop below setting threshold, default: 1e-3 verbose: boolean, if True it will print output while iterating Reference --------- Friedman, <NAME> (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent, J Statistical Software. https://core.ac.uk/download/files/153/6287975.pdf """ def __init__(self, distr='poisson', alpha=0.05, reg_lambda=np.logspace(np.log(0.5), np.log(0.01), 10, base=np.exp(1)), learning_rate=1e-4, max_iter=100, verbose=False): self.distr = distr self.alpha = alpha self.reg_lambda = reg_lambda self.learning_rate = learning_rate self.max_iter = max_iter self.fit_params = None self.threshold = 1e-3 set_log_level(verbose) def qu(self, z): """The non-linearity.""" eps = np.spacing(1) qu = dict(poisson=np.log(1 + eps + np.exp(z)), normal=z, binomial=expit(z), multinomial=softmax(z)) return qu[self.distr] def lmb(self, beta0, beta, X): """Conditional intensity function.""" z = beta0 +
np.dot(X, beta)
numpy.dot
import numpy as np from .._shared._geometry import polygon_clip from ._draw import (_coords_inside_image, _line, _line_aa, _polygon, _ellipse_perimeter, _circle_perimeter, _circle_perimeter_aa, _bezier_curve) def _ellipse_in_shape(shape, center, radii, rotation=0.): """Generate coordinates of points within ellipse bounded by shape. Parameters ---------- shape : iterable of ints Shape of the input image. Must be length 2. center : iterable of floats (row, column) position of center inside the given shape. radii : iterable of floats Size of two half axes (for row and column) rotation : float, optional Rotation of the ellipse defined by the above, in radians in range (-PI, PI), in contra clockwise direction, with respect to the column-axis. Returns ------- rows : iterable of ints Row coordinates representing values within the ellipse. cols : iterable of ints Corresponding column coordinates representing values within the ellipse. """ r_lim, c_lim = np.ogrid[0:float(shape[0]), 0:float(shape[1])] r_org, c_org = center r_rad, c_rad = radii rotation %= np.pi sin_alpha, cos_alpha = np.sin(rotation), np.cos(rotation) r, c = (r_lim - r_org), (c_lim - c_org) distances = ((r * cos_alpha + c * sin_alpha) / r_rad) ** 2 \ + ((r * sin_alpha - c * cos_alpha) / c_rad) ** 2 return np.nonzero(distances < 1) def ellipse(r, c, r_radius, c_radius, shape=None, rotation=0.): """Generate coordinates of pixels within ellipse. Parameters ---------- r, c : double Centre coordinate of ellipse. r_radius, c_radius : double Minor and major semi-axes. ``(r/r_radius)**2 + (c/c_radius)**2 = 1``. shape : tuple, optional Image shape which is used to determine the maximum extent of output pixel coordinates. This is useful for ellipses which exceed the image size. By default the full extent of the ellipse are used. rotation : float, optional (default 0.) Set the ellipse rotation (rotation) in range (-PI, PI) in contra clock wise direction, so PI/2 degree means swap ellipse axis Returns ------- rr, cc : ndarray of int Pixel coordinates of ellipse. May be used to directly index into an array, e.g. ``img[rr, cc] = 1``. Examples -------- >>> from skimage.draw import ellipse >>> img = np.zeros((10, 12), dtype=np.uint8) >>> rr, cc = ellipse(5, 6, 3, 5, rotation=np.deg2rad(30)) >>> img[rr, cc] = 1 >>> img array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) Notes ----- The ellipse equation:: ((x * cos(alpha) + y * sin(alpha)) / x_radius) ** 2 + ((x * sin(alpha) - y * cos(alpha)) / y_radius) ** 2 = 1 Note that the positions of `ellipse` without specified `shape` can have also, negative values, as this is correct on the plane. On the other hand using these ellipse positions for an image afterwards may lead to appearing on the other side of image, because ``image[-1, -1] = image[end-1, end-1]`` >>> rr, cc = ellipse(1, 2, 3, 6) >>> img = np.zeros((6, 12), dtype=np.uint8) >>> img[rr, cc] = 1 >>> img array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1]], dtype=uint8) """ center = np.array([r, c]) radii = np.array([r_radius, c_radius]) # allow just rotation with in range +/- 180 degree rotation %= np.pi # compute rotated radii by given rotation r_radius_rot = abs(r_radius * np.cos(rotation)) \ + c_radius * np.sin(rotation) c_radius_rot = r_radius * np.sin(rotation) \ + abs(c_radius * np.cos(rotation)) # The upper_left and lower_right corners of the smallest rectangle # containing the ellipse. radii_rot = np.array([r_radius_rot, c_radius_rot]) upper_left =
np.ceil(center - radii_rot)
numpy.ceil
# # plate localization # # for sunny days #import tensorflow as tf import cv2 import imutils import numpy as np from imutils import paths #import RDetectPlates as detplt from imutils import perspective import matplotlib.pyplot as plt #import RLpPreprocess as prpr # # trying different images by addressing different paths # path = '/path to image data/' imgs = sorted(list(paths.list_images(path)), reverse=True) rnd = np.random.randint(0, len(imgs)-1, 1)[0] #rnd = 39 # testing the detector: det_1 = 'fh' det_2 = 'cmp' # convexhull extractıon: mergıng closed contours # the measure for evaluatıng closedness of the contours> def find_if_close(cnt1,cnt2): row1,row2 = cnt1.shape[0],cnt2.shape[0] for i in range(row1): for j in range(row2): dist = np.linalg.norm(cnt1[i]-cnt2[j]) if abs(dist) < 25: return True elif i==row1-1 and j==row2-1: return False # convexhull drawıng system def convexhull(contours): LENGTH = len(contours) status = np.zeros((LENGTH,1)) for i,cnt1 in enumerate(contours): x = i if i != LENGTH-1: for j,cnt2 in enumerate(contours[i+1:]): x = x+1 dist = find_if_close(cnt1,cnt2) if dist == True: val = min(status[i],status[x]) status[x] = status[i] = val else: if status[x]==status[i]: status[x] = i+1 unified = [] maximum = int(status.max())+1 for i in range(maximum): pos = np.where(status==i)[0] if pos.size != 0: cont = np.vstack(contours[i] for i in pos) hull = cv2.convexHull(cont) unified.append(hull) return unified run = True # the goal of this part is to find plate!! while(run): run = False # for first path #imgOrg = cv2.imread(path) #imgOrg = np.asarray(img) # for second path imgOrg = cv2.imread(imgs[rnd]) # imgs[rnd] #prpr.preprocess(img) #s_x, s_y, ch = img.shape #intface = paths.list_images(path) # list() #imgOrg = sorted(intface, reverse=True) plt.imshow(imgOrg) plt.close() try: gimg = cv2.cvtColor(imgOrg, cv2.COLOR_BGR2GRAY) except: print('there is an error in making img gray') #plt.imshow(gimg) #plt.close() # # working on Fatihs # this part should be checked once again # detector = 'fh' if detector == det_1: retRegions = [] # this will be the return value retCoords = [] # this will be the return value # # defining kernels # # Vertical Kernels vertKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 5)) pKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) # # Horizontal Kernels bKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 1)) b2Kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 2)) smallKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 3)) HKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 3)) rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 4)) # the rectangle kernel superKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 3)) # 27,3 check 29 also # # poss_plate = [] # det_plate = [] # bigpics = [] # # poss_plate.append(gray) # to_end = False # max_lim = 10 # tolerance = 100 # # # for i in range(max_lim): # # convert the image to grayscale, and apply the blackhat operation # img_gray = cv2.cvtColor(self.imgOriginal, cv2.COLOR_BGR2GRAY) # # step one # # gradX = np.absolute(cv2.Sobel(img_gray, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)) # (minVal, maxVal) = (np.min(gradX), np.max(gradX)) # gradX = (255 * ((gradX - minVal) / (maxVal - minVal))).astype("uint8") # # # I used one name for readability and memory usage # # step two # gray = cv2.medianBlur(cv2.blur(cv2.GaussianBlur(gradX, (15, 15), 10), (15, 15)), 15) # gray = cv2.erode(gray, superKernel, iterations=1) # gray = cv2.erode(gray, rectKernel, iterations=3) # gray = cv2.dilate(gray, rectKernel, iterations=2) # gray = cv2.GaussianBlur(gray, (5, 5), 10) # mx_v = np.amax(gray) # _, gray = cv2.threshold(gray, 0.3 * mx_v, mx_v, cv2.THRESH_BINARY) # gray = cv2.dilate(gray, smallKernel, iterations=10) # # _, cnts, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # # # # for cnt in cnts: # # # RecPnt = np.int0(cv2.boxPoints(cv2.minAreaRect(cnt))) # bigpics.append(RecPnt) # bigpics = [] # this will be the return value #retCoords = [] # this will be the return value # initialize the rectangular and square kernels to be applied to the image, # then initialize the list of license plate regions rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 5)) squareKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 5)) # convert the image to grayscale, and apply the blackhat operation #img_gray = cv2.cvtColor(self.imgOriginal, cv2.COLOR_BGR2GRAY) blackhat = cv2.morphologyEx(gimg, cv2.MORPH_BLACKHAT, rectKernel) # find regions in the image that are light light = cv2.morphologyEx(gimg, cv2.MORPH_CLOSE, rectKernel) light = cv2.threshold(light, 0, 255, cv2.THRESH_BINARY)[1] # compute the Scharr gradient representation of the blackhat image and scale the # resulting image into the range [0, 255] gradX = cv2.Sobel(blackhat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1) gradX = np.absolute(gradX) (minVal, maxVal) = (np.min(gradX),
np.max(gradX)
numpy.max
import numpy as np import pytest from amodem import dsp from amodem import recv from amodem import detect from amodem import equalizer from amodem import sampling from amodem import config from amodem import common config = config.fastest() def test_detect(): P = sum(equalizer.prefix) t = np.arange(P * config.Nsym) * config.Ts x = np.cos(2 * np.pi * config.Fc * t) detector = detect.Detector(config, pylab=common.Dummy()) samples, amp, freq_err = detector.run(x) assert abs(1 - amp) < 1e-12 assert abs(freq_err) < 1e-12 x = np.cos(2 * np.pi * (2*config.Fc) * t) with pytest.raises(ValueError): detector.run(x) with pytest.raises(ValueError): detector.max_offset = 0 detector.run(x) def test_prefix(): omega = 2 * np.pi * config.Fc / config.Fs symbol = np.cos(omega * np.arange(config.Nsym)) signal = np.concatenate([c * symbol for c in equalizer.prefix]) def symbols_stream(signal): sampler = sampling.Sampler(signal) return dsp.Demux(sampler=sampler, omegas=[omega], Nsym=config.Nsym) r = recv.Receiver(config, pylab=common.Dummy()) r._prefix(symbols_stream(signal)) with pytest.raises(ValueError): silence = 0 * signal r._prefix(symbols_stream(silence)) def test_find_start(): sym = np.cos(2 * np.pi * config.Fc * np.arange(config.Nsym) * config.Ts) detector = detect.Detector(config, pylab=common.Dummy()) length = 200 prefix = postfix = np.tile(0 * sym, 50) carrier =
np.tile(sym, length)
numpy.tile
""" Utilities to preprocess and visualize 2D MRI liver data: Multiecho and IDEAL Useful for training segmentation and classification models """ import itertools import os import json import nibabel as nib import matplotlib.pyplot as plt import numpy as np import pandas as pd import random import scipy.ndimage.morphology import scipy.spatial.distance as distance import skimage import sklearn import sklearn.metrics from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from scipy.stats import rankdata from absl import logging def histogram_equalize(img): img_cdf, bin_centers = skimage.exposure.cumulative_distribution(img, nbins=1024) return np.interp(img, bin_centers, img_cdf) def load_image(image_path, equalize=True, return_nifti=False): if os.path.exists(image_path): image_nii = nib.load(image_path) image_data = image_nii.get_fdata() image_slice = image_data[:, :, 0, :] if equalize: image_slice = histogram_equalize(image_slice) else: logging.warn("{} does not exist".format(image_path)) image_slice, image_nii = None, None if return_nifti: return image_slice, image_nii else: return image_slice def load_mask(mask_path): """ Load mask nifti file from mask_path. Data should be [H, W, D=1, C] Use dilation-fill-erode to remove holes / concavities from annotation artifacts. returns a [H, W] shaped mask Reduces away the channel dimension with a max. """ if os.path.exists(mask_path): mask_nii = nib.load(mask_path) mask_data = np.max(mask_nii.get_fdata()[:, :, 0, :], axis=-1) mask_data = scipy.ndimage.binary_dilation(mask_data, iterations=2) mask_data = scipy.ndimage.morphology.binary_fill_holes(mask_data.astype(np.int)).astype(np.float64) mask_data = scipy.ndimage.morphology.binary_erosion(mask_data, iterations=2) mask_slice = np.stack([1 - mask_data[:, :, ], mask_data[:, :, ]], axis=2) else: logging.warn("{} does not exist".format(mask_path)) mask_slice = None return mask_slice def preprocess_magnitude_phase(magnitude_raw, phase_raw, magnitude_mult, phase_mult, name=None): if magnitude_raw is None: return None if phase_raw is None: return None magnitude = magnitude_mult * magnitude_raw mM = magnitude.max() if mM > 10.: logging.warn("({}) final magnitude has large max magnitude: {}".format(name, mM)) if mM < .1: logging.warn("({}) final magnitude has small max magnitude: {}".format(name, mM)) phase = phase_mult * phase_raw pM, pm = phase.max(), phase.min() if not np.isclose(pM - pm, np.pi * 2, rtol=1e-02, atol=1e-02): logging.warn("processed phase has support not close to 2pi: {}, {}".format(pm, pM)) phase_sin = np.sin(phase) phase_cos = np.cos(phase) try: magnt_psin_pcos = np.concatenate([magnitude, phase_sin, phase_cos], axis=-1) except ValueError: logging.error("({}) failed to concat magnitude, phase_sin, phase_cos. {} {} {}".format( name, repr(magnitude.shape), repr(phase_sin.shape), repr(phase_cos.shape))) return None return magnt_psin_pcos def plot_mask_image(image_slice, mask_slice): """ visual diagnostics combining an image with its liver mask """ if (image_slice is not None) and (mask_slice is not None): fig, axes = plt.subplots(1, 4) plt.axis('off') both = np.concatenate([image_slice, mask_slice], axis=2) axes[0].imshow(both[:, :, [3, 5, 7]], origin="lower") axes[1].imshow(both[:, :, [3, 11, 7]], origin="lower") axes[2].imshow(both[:, :, [0, 11, 9]], origin="lower") axes[3].imshow(both[:, :, [4, 11, 6]], origin="lower") return image_slice, mask_slice def image_sanity_fail(image, shape, description): """ Sanity check on images: training and testing; shape needs to match. description affects the logging, on failure. """ if image is None: logging.error("{} : image is None".format(description)) return True elif image.shape != shape: logging.error("{} : shape is {}, (expecting {})".format( description, repr(image.shape), repr(shape))) return True else: return False def mask_sanity_fail(mask, shape, description): """ Sanity check on training masks; shape needs to match. description affects the logging, on failure. """ if mask is None: logging.warn("{} : mask is None".format(description)) return True if mask.shape != shape: logging.warn("{} : shape is {}, (expecting {})".format( description, repr(mask.shape), repr(shape))) return True mm = mask[..., 1].mean() if mm > .5 or mm < .02: # mostly should be .07 to .12 logging.warn("{} : foreground mean {}".format(description, mm)) return True def np_rescale(_x, axis): M = np.max(_x, axis=axis, keepdims=True) m = np.min(_x, axis=axis, keepdims=True) d = M - m + 1e-5 return (_x - m) / d def rankdata_each(x_hwc): h, w, c = x_hwc.shape z_hwc = np.stack([np_rescale(rankdata(x_hwc[..., _].flatten()), axis=0) for _ in range(c)], axis=1).reshape(list(x_hwc.shape)) return z_hwc def _pca_rank_scale_rgb_tiles(z_img, npc=7, triples=((0, 1, 2), (0, 3, 4), (0, 5, 6), None)): """ z_img is of shape nhwc. nhw dimensions are flattened and the result is fit by a pca. triples specified """ pca = PCA(n_components=npc) z = z_img.reshape([-1, z_img.shape[-1]]) z = StandardScaler().fit_transform(z) pixel_pca_components = pca.fit_transform(z) pixel_pca_df = pd.DataFrame(data=pixel_pca_components, columns=['pc{}'.format(_) for _ in range(npc)]) pixel_pca_arr = pixel_pca_df.to_numpy() tiles = [] for t in triples: if t is None: # top 3 principal components, without percentile-normalization arr = np_rescale(pixel_pca_arr[:, :3], axis=1).reshape(list(z_img.shape)[:-1] + [3, ]) else: assert len(t) == 3 arr = np.stack([np_rescale(rankdata(pixel_pca_arr[:, _]), axis=0) for _ in t], axis=1).reshape(list(z_img.shape)[:-1] + [3, ]) tiles.append(arr) return tiles def visualize_head(r, c, vis_dict, image_name, indices=None, titles=None, suptitle=None): """ Creates a figure of r by c subplots. The images are selected from vis_dict. The images to plot are keyed by a list of indices. titles are keyed in the same nmanner as vis_dict. Save the resulting figure as image_name. """ if indices is None: indices = range(min(r * c, len(vis_dict))) plt.figure(figsize=(16, 16)) for j, i in enumerate(indices): plt.subplot(r, c, j + 1) plt.axis('off') if titles is not None: plt.title(titles[i]) plt.imshow(vis_dict[i]) plt.axis('off') if suptitle is not None: plt.suptitle(suptitle) parent_dir, _ = os.path.split(image_name) if not os.path.exists(parent_dir): os.makedirs(parent_dir) plt.savefig(image_name) plt.close() def get_srnp(gt, pred): tn, fp, fn, tp = sklearn.metrics.confusion_matrix(gt, pred).ravel() return {'specificity': tn / (tn + fp), 'recall': tp / (tp + fn), 'negativepv': tn / (tn + fn), 'precision': tp / (tp + fp)} def evaluate_srnpdj(gt, pred, K=25): """ Parameters: gt: np.array([N, ...]) ground truth array of binary labels (integers) pred: np.array([, ...]) same shape as ground truth Returns: srnpdj_N6: np.array(shape=[N, 6]) for each paired item in (gt, pred), reteurn 5 evaluation numberse: specificity, recall, npv, ppv (prcision), dice-sim, jaccard. idx_low_metric_dict: dict(str: [int]) dictionary of indices with lowest specificities, recall, npv, ppv, and dicesim """ dicesim = [] jaccard = [] specificity = [] recall = [] negativepv = [] precision = [] for _y_true, _y_pred in zip(gt, pred): _y_true, _y_pred = _y_true.flatten(), _y_pred.flatten() srnp = get_srnp(_y_true, _y_pred) specificity.append(srnp['specificity']) recall.append(srnp['recall']) negativepv.append(srnp['negativepv']) precision.append(srnp['precision']) dicesim.append(1. - distance.dice(_y_true, _y_pred)) jaccard.append(sklearn.metrics.jaccard_score(_y_true, _y_pred)) specificity = np.array(specificity) recall = np.array(recall) negativepv = np.array(negativepv) precision = np.array(precision) dicesim = np.array(dicesim) jaccard = np.array(jaccard) logging.info("dicesim shape: {}".format(repr(dicesim.shape))) lowest_specificity = specificity.argsort()[:K] lowest_recall = recall.argsort()[:K] lowest_npv = negativepv.argsort()[:K] lowest_ppv = precision.argsort()[:K] lowest_dicesim = dicesim.argsort()[:K] lowest_jaccard = jaccard.argsort()[:K] srnpdj_N6 = np.stack([specificity, recall, negativepv, precision, dicesim, jaccard], axis=1) idx_low_metric_dict = { 'specificity': lowest_specificity, 'recall': lowest_recall, 'npv': lowest_npv, 'ppv': lowest_ppv, 'dicesim': lowest_dicesim, 'jaccard': lowest_jaccard, } return srnpdj_N6, idx_low_metric_dict def visualize_predictions(x_img, gt, pred, names, prefix, img_dir, r=None, c=5, rot90=0): """ Creates several figure of r by c subplots. The images are saved into img_dir. rot90 is an integer indicating the number of right angle ccw rotations to do. 4 means do nothing. prefix is used in the file names of images saved to disk. x_img is a bunch of multi channel raw images. We use rankorder and pca to visualize the pixels. gt and pred are ground truth and prediction masks. We visualize them overlayed on one of the input channels. We compute the ids of x_img with the lowest specificity, recall, npv, ppv, and dice. We plot the worst cases for each. Returns: srnpdj_N6: np.array(shape=[N, 6]) for each paired item in (gt, pred), reteurn 5 evaluation numberse: specificity, recall, npv, ppv (prcision), dice-sim, jaccard. """ if r is None: r = min(5, int(len(gt) / c)) K = r * c srnpdj_N6, idx_low_metric_dict = evaluate_srnpdj(gt, pred, K=K) blue_cidx = 0 # pick any channel blue = np_rescale(x_img[:, :, :, blue_cidx:blue_cidx + 1], axis=None) red, green = gt, pred logging.info("rgb: {} {} {}".format(red.shape, green.shape, blue.shape)) rgb = np.concatenate([red, green, blue], axis=3) vis_idx = set(itertools.chain(*idx_low_metric_dict.values())) vis_idx = vis_idx.union(range(r * c)) visuals_dict = dict() # compute only the images that score badly on some metric for i in vis_idx: tiles = _pca_rank_scale_rgb_tiles(x_img[i, :, :, :], triples=((0, 1, 2), (0, 0, 0), None)) tiles_A = np.concatenate([tiles[0], tiles[1]], axis=0) tiles_B = np.concatenate([rgb[i], tiles[2]], axis=0) tiles_AB = np.concatenate([tiles_A, tiles_B], axis=1) tiles_AB = np.rot90(tiles_AB, k=rot90) visuals_dict[i] = tiles_AB visualize_head(r, c, visuals_dict, os.path.join(img_dir, 'sseg', '{}_sseg.png'.format(prefix)), indices=range(r * c), titles=names, suptitle='{}_{}'.format(prefix, 'samples')) for metric_name, low_idx in idx_low_metric_dict.items(): visualize_head(r, c, visuals_dict, os.path.join(img_dir, 'low_{}'.format(metric_name), '{}_low_{}.png'.format(prefix, metric_name)), indices=low_idx, titles=names, suptitle='{}_low_{}'.format(prefix, metric_name)) low_metric_ids = {k: [names[_] for _ in v] for k, v in idx_low_metric_dict.items()} with open(os.path.join(img_dir, '{}_low_metric_ids.json'.format(prefix)), 'w') as json_file: json.dump(low_metric_ids, json_file, indent=4) plt.figure(figsize=(16, 16)) for i in range(4 * 5): tiles = _pca_rank_scale_rgb_tiles(x_img[i, :, :, :], triples=((0, 1, 2), (0, 3, 4), (0, 0, 0), None)) tiles_A = np.concatenate([tiles[0], tiles[1]], axis=0) tiles_B = np.concatenate([tiles[2], tiles[3]], axis=0) tiles_AB = np.concatenate([tiles_A, tiles_B], axis=1) tiles_AB = np.rot90(tiles_AB, k=rot90) plt.subplot(4, 5, i + 1) plt.axis('off') plt.title(names[i]) plt.imshow(tiles_AB[:, :, :]) plt.savefig(os.path.join(img_dir, '{}_visual.png'.format(prefix))) plt.close() return srnpdj_N6 def make_thresh_conservative(_x, _t, q=75): # q = 75: keep 1 quarter of the mask. # takes in probabilities _x and float threshold _t. returns _t2, a more stringent threshold. _flat = _x.flatten() _idx = _flat >= _t _t2 = np.percentile(_flat[_idx], q) return _t2 # Use for scalar regression models class ImageMaskNiftiReader(object): def __init__(self, magnitude_path_dict, phase_path_dict, mask_path_dict): self.magnitude_path_dict = magnitude_path_dict self.phase_path_dict = phase_path_dict self.mask_path_dict = mask_path_dict def get_combined_image_mask(self, subject_id): magnitude_path = self.magnitude_path_dict[subject_id] phase_path = self.phase_path_dict[subject_id] mask_path = self.mask_path_dict[subject_id] loaded_magnitude, magnitude_nifti = load_image(magnitude_path, equalize=False, return_nifti=True) loaded_phase = load_image(phase_path, equalize=False) loaded_magn_sin_cos = preprocess_magnitude_phase(loaded_magnitude, loaded_phase, magnitude_mult=1 / 200., phase_mult=np.pi / 4096., name=subject_id) loaded_mask = load_mask(mask_path) return combine_image_mask(loaded_magn_sin_cos, loaded_mask, method="concat") def combine_image_mask(image, mask, method="concat"): if method == 'concat': return np.concatenate([image, mask], axis=-1) elif method == 'fg_only': raise NotImplementedError() elif method == 'bg_fg': bg, fg = np.split(mask, 2, axis=-1) bg_im = bg * image fg_im = fg * image return np.concatenate([bg_im, fg_im], axis=-1) else: raise ValueError("unknown combine_image_mask method: {}".format(method)) def yield_supervision(ids, im_mask_reader, float_df, isna_df=None, batch_size=4, rand_rot_deg=0, rand_translate=0, skip_all_na=True, shuffle=True, num_loops=None, skip_partial_batch=True, HWC_check=(256, 232, 20), yield_format=None): if num_loops is None: loop_iter = iter(int, 1) # infinite loop else: loop_iter = range(num_loops) for _loop in loop_iter: im_mask_list, float_list, isna_list, batch_ids = [], [], [], [] idx = list(range(len(ids))) if shuffle: random.shuffle(idx) for _i in idx: curr_id = ids[_i] try: curr_float = float_df.loc[curr_id].values if isna_df is not None: curr_isna = isna_df.loc[curr_id].values else: curr_isna = ~np.isfinite(curr_float) if np.all(curr_isna) and skip_all_na: # this entry does not have any valid supervision # logging.info('skipping {} -- all supervision na'.format(curr_id)) continue else: curr_float[curr_isna] = 0. im_mask = im_mask_reader.get_combined_image_mask(curr_id) if im_mask.shape != HWC_check: logging.warn('invalid im_mask shape for id={} (is {}. expected {})-- skipping item and continuing in generator'.format( curr_id, repr(im_mask.shape), repr(HWC_check))) continue # simple data augmentation if rand_rot_deg: deg = np.random.uniform(-rand_rot_deg, rand_rot_deg) im_mask = scipy.ndimage.rotate(im_mask, deg, reshape=False) if rand_translate: padded = np.pad(im_mask, ((rand_translate, rand_translate), (rand_translate, rand_translate), (0, 0)), mode='constant') sh = np.random.randint(0, rand_translate * 2) sw = np.random.randint(0, rand_translate * 2) eh = sh + im_mask.shape[0] ew = sw + im_mask.shape[1] im_mask = padded[sh:eh, sw:ew, :] except (FileNotFoundError, ValueError, KeyError) as e: logging.warn(repr(e)) logging.warn('unable to read data for id={} -- skipping item and continuing in generator'.format(curr_id)) continue im_mask_list.append(im_mask) float_list.append(curr_float) isna_list.append(curr_isna) batch_ids.append(curr_id) if len(im_mask_list) == batch_size: try: batch_im_mask =
np.stack(im_mask_list, axis=0)
numpy.stack
# Created by <NAME> # All right reserved # Department of Computer Science # the University of Warwick # <EMAIL> import itertools as it import math import random import sys from concurrent import futures from copy import deepcopy from os import remove from os.path import abspath import category_encoders as ce import dill import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import torch import torch.nn as nn import torch.optim as optim from matplotlib.widgets import Slider from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import OneHotEncoder from torch.autograd import Variable from torch.distributions import Categorical from torch.multiprocessing import Pool from dbestclient.ml.integral import approx_count, prepare_reg_density_data from dbestclient.ml.embedding import columns2sentences,WordEmbedding # https://www.katnoria.com/mdn/ # https://github.com/sagelywizard/pytorch-mdn """A module for a mixture density network layer For more info on MDNs, see _Mixture Desity Networks_ by Bishop, 1994. """ class MDN(nn.Module): """A mixture density network layer The input maps to the parameters of a MoG probability distribution, where each Gaussian has O dimensions and diagonal covariance. Arguments: in_features (int): the number of dimensions in the input out_features (int): the number of dimensions in the output num_gaussians (int): the number of Gaussians per output dimensions Input: minibatch (BxD): B is the batch size and D is the number of input dimensions. Output: (pi, sigma, mu) (BxG, BxGxO, BxGxO): B is the batch size, G is the number of Gaussians, and O is the number of dimensions for each Gaussian. Pi is a multinomial distribution of the Gaussians. Sigma is the standard deviation of each Gaussian. Mu is the mean of each Gaussian. """ def __init__(self, in_features, out_features, num_gaussians, device): super(MDN, self).__init__() self.in_features = in_features self.out_features = out_features self.num_gaussians = num_gaussians self.pi = nn.Sequential( nn.Linear(in_features, num_gaussians), nn.Softmax(dim=1) ) self.sigma = nn.Linear(in_features, out_features * num_gaussians) self.mu = nn.Linear(in_features, out_features * num_gaussians) self.pi = self.pi.to(device) self.mu = self.mu.to(device) self.sigma = self.sigma.to(device) def forward(self, minibatch): pi = self.pi(minibatch) sigma = torch.exp(self.sigma(minibatch)) sigma = sigma.view(-1, self.num_gaussians, self.out_features) mu = self.mu(minibatch) mu = mu.view(-1, self.num_gaussians, self.out_features) return pi, sigma, mu # ONEOVERSQRT2PI = 1.0 / math.sqrt(2 * math.pi) def gaussian_probability(sigma, mu, data): """Returns the probability of `data` given MoG parameters `sigma` and `mu`. Arguments: sigma (BxGxO): The standard deviation of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. mu (BxGxO): The means of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. data (BxI): A batch of data. B is the batch size and I is the number of input dimensions. Returns: probabilities (BxG): The probability of each point in the probability of the distribution in the corresponding sigma/mu index. """ data = data.unsqueeze(1).expand_as(sigma) ret = 1.0 / math.sqrt(2 * math.pi) * torch.exp(-0.5 * ((data - mu) / sigma) ** 2) / sigma return torch.prod(ret, 2) def mdn_loss(pi, sigma, mu, target, device): """Calculates the error, given the MoG parameters and the target The loss is the negative log likelihood of the data given the MoG parameters. """ prob = pi * gaussian_probability(sigma, mu, target) nll = -torch.log(torch.sum(prob, dim=1)).to(device) return torch.mean(nll) def sample(pi, sigma, mu): """Draw samples from a MoG. """ categorical = Categorical(pi) pis = list(categorical.sample().data) sample = Variable(sigma.data.new(sigma.size(0), sigma.size(2)).normal_()) for i, idx in enumerate(pis): sample[i] = sample[i].mul(sigma[i, idx]).add(mu[i, idx]) return sample def gaussion_predict(weights: list, mus: list, sigmas: list, xs: list, n_jobs=1): if n_jobs == 1: result = np.array([np.multiply(stats.norm(mus, sigmas).pdf(x), weights).sum(axis=1).tolist() for x in xs]).transpose() else: with Pool(processes=n_jobs) as pool: instances = [] results = [] for x in xs: i = pool.apply_async( gaussion_predict, (weights, mus, sigmas, [x], 1)) instances.append(i) for i in instances: result = i.get() # print("partial result", result) results.append(result) result = np.concatenate(results, axis=1) # with futures.ThreadPoolExecutor() as executor: # for x in xs: # future = executor.submit( # gaussion_predict, weights, mus, sigmas, [x], 1) # results.append(future.result()) # result = np.concatenate(results, axis=1) return result def gm(weights: list, mus: list, vars: list, x: list, b_plot=False, n_division=100): """ given a list of points, calculate the gaussian mixture probability Args: weights (list): weights mus (list): the centroids of gaussions. vars (list): the variances. x (list): the targeting points. b_plot (bool, optional): whether return the value for plotting. Defaults to False. n_division (int, optional): number of division, if b_plot=True. Defaults to 100. Returns: float: the pdf of a gaussian mixture. """ if not b_plot: result = [stats.norm(mu_i, vars_i).pdf( x)*weights_i for mu_i, vars_i, weights_i in zip(mus, vars, weights)] result = sum(result) # result = 0 # for index in range(len(weights)): # result += stats.norm(mus[index], vars[index] # ).pdf(x) * weights[index] # print(result) return result else: xs = np.linspace(-1, 1, n_division) # ys = [gm(weights, mus, vars, xi, b_plot=False) for xi in xs] ys = gm(weights, mus, vars, xs, b_plot=False) return xs, ys # plt.plot(xs, ys) # plt.show() def normalize(x_point: float, mean: float, width: float) -> float: """normalize the data point Args: x (float): the data point mean (float): the mean value width (float): the width Returns: float: the normalized value """ return (x_point - mean) / width * 2 def denormalize(x_point: float, mean: float, width: float) -> float: """de-normalize the data point Args: x (float): the data point mean (float): the mean value width (float): the width Returns: float: the de-normalized value """ return 0.5 * width * x_point + mean def de_serialize(file: str): """de-serialize the model from a file. Args: file (str): the file path. Returns: Callable: the model. """ with open(file, 'rb') as f: return dill.load(f) class GenericMdn: def __init__(self, config): self.meanx = None self.widthx = None self.config = config def fit(self, runtime_config): raise NotImplementedError("Method fit() is not implemented.") def fit_grid_search(self, runtime_config): raise NotImplementedError( "Method fit_grid_search() is not implemented.") def predict(self, runtime_config): raise NotImplementedError("Method predict() is not implemented.") def normalize(self, xs: np.array): """normalize the data Args: x (list): the data points to be normalized. mean (float): the mean value of x. width (float): the range of x. Returns: list: the normalized data. """ return (xs - self.meanx) / self.widthx * 2 def denormalize(self, xs): """de-normalize the data Args: x (list): the data points to be de-normalized. mean (float): the mean value of x. width (float): the range of x. Returns: list: the de-normalized data. """ return 0.5 * self.widthx * xs + self.meanx class RegMdnGroupBy(): """ This class implements the regression using mixture density network for group by queries. """ def __init__(self, config, b_store_training_data=False, b_normalize_data=True): if b_store_training_data: self.x_points = None # query range self.y_points = None # aggregate value self.z_points = None # group by balue self.sample_x = None # used in the score() function self.sample_g = None self.sample_average_y = None self.b_store_training_data = b_store_training_data self.meanx = None self.widthx = None self.meany = None self.widthy = None self.model = None self.last_xs = None self.last_pi = None self.last_mu = None self.last_sigma = None self.config = config self.b_normalize_data = b_normalize_data self.enc = None def fit(self, z_group: list, x_points: list, y_points: list, runtime_config, lr: float = 0.001, n_workers=0): """fit the MDN regression model. Args: z_group (list): group by values x_points (list): x points y_points (list): y points n_epoch (int, optional): number of epochs for training. Defaults to 100. n_gaussians (int, optional): the number of gaussions. Defaults to 5. n_hidden_layer (int, optional): the number of hidden layers. Defaults to 1. n_mdn_layer_node (int, optional): the node number in the hidden layer. Defaults to 10. lr (float, optional): the learning rate of the MDN network for training. Defaults to 0.001. Raises: ValueError: The hidden layer should be 1 or 2. Returns: RegMdnGroupBy: The regression model. """ n_epoch = self.config.config["n_epoch"] n_gaussians = self.config.config["n_gaussians_reg"] n_hidden_layer = self.config.config["n_hidden_layer"] n_mdn_layer_node = self.config.config["n_mdn_layer_node_reg"] b_grid_search = self.config.config["b_grid_search"] encoder = self.config.config["encoder"] device = runtime_config["device"] if not b_grid_search: if encoder == "onehot": self.enc = OneHotEncoder(handle_unknown='ignore') zs_encoded = z_group zs_encoded = self.enc.fit_transform(zs_encoded).toarray() elif encoder == "binary": # print(z_group) # prepare column names for binary encoding columns = list(range(len(z_group[0]))) self.enc = ce.BinaryEncoder(cols=columns) zs_encoded = self.enc.fit_transform(z_group).to_numpy() elif encoder == "embedding": sentences = columns2sentences(z_group, x_points, y_points) self.enc = WordEmbedding() self.enc.fit(sentences, gbs=["gb"],dim=self.config.config["n_embedding_dim"]) gbs_data = z_group.reshape(1,-1)[0] zs_encoded = self.enc.predicts(gbs_data) # raise TypeError("embedding is not supported yet.") if self.b_normalize_data: self.meanx = (np.max(x_points) + np.min(x_points)) / 2 self.widthx = np.max(x_points) - np.min(x_points) self.meany = (np.max(y_points) + np.min(y_points)) / 2 self.widthy = np.max(y_points) - np.min(y_points) x_points = np.array([normalize(i, self.meanx, self.widthx) for i in x_points]) y_points = np.array([normalize(i, self.meany, self.widthy) for i in y_points]) if self.b_store_training_data: self.x_points = x_points self.y_points = y_points self.z_points = z_group else: # delete the previous stored data in grid search, to save space. self.x_points = None self.y_points = None self.z_points = None if encoder in ["onehot", "binary", "embedding"]: xs_encoded = x_points[:, np.newaxis] xzs_encoded = np.concatenate( [xs_encoded, zs_encoded], axis=1).tolist() tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs_encoded]) else: xzs = [[x_point, z_point] for x_point, z_point in zip(x_points, z_group)] tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs]) # transform to torch tensors y_points = y_points[:, np.newaxis] tensor_ys = torch.stack([torch.Tensor(i) for i in y_points]) # move variables to cuda tensor_xzs = tensor_xzs.to(device) tensor_ys = tensor_ys.to(device) my_dataset = torch.utils.data.TensorDataset( tensor_xzs, tensor_ys) # create your dataloader my_dataloader = torch.utils.data.DataLoader( my_dataset, batch_size=self.config.config["batch_size"], shuffle=True, num_workers=n_workers) if encoder == "onehot": input_dim = sum([len(i) for i in self.enc.categories_]) + 1 elif encoder == "binary": input_dim = len(self.enc.base_n_encoder.feature_names) + 1 elif encoder == "embedding": input_dim = self.enc.dim + 1 else: raise ValueError("Encoding should be binary or onehot") # initialize the model if n_hidden_layer == 1: self.model = nn.Sequential( nn.Linear(input_dim, n_mdn_layer_node), nn.Tanh(), nn.Dropout(0.1), MDN(n_mdn_layer_node, 1, n_gaussians, device) ) elif n_hidden_layer == 2: self.model = nn.Sequential( nn.Linear(input_dim, n_mdn_layer_node), nn.Tanh(), nn.Linear(n_mdn_layer_node, n_mdn_layer_node), nn.Tanh(), nn.Dropout(0.1), MDN(n_mdn_layer_node, 1, n_gaussians, device) ) else: raise ValueError( "The hidden layer should be 1 or 2, but you provided "+str(n_hidden_layer)) self.model = self.model.to(device) optimizer = optim.Adam(self.model.parameters(), lr=lr) decay_rate = 0.96 my_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer=optimizer, gamma=decay_rate) for epoch in range(n_epoch): if runtime_config["v"]: if epoch % 1 == 0: print("< Epoch {}".format(epoch)) # train the model for minibatch, labels in my_dataloader: minibatch.to(device) labels.to(device) self.model.zero_grad() pi, sigma, mu = self.model(minibatch) loss = mdn_loss(pi, sigma, mu, labels, device) loss.backward() optimizer.step() my_lr_scheduler.step() self.model.eval() print("Finish regression training.") return self else: return self.fit_grid_search(z_group, x_points, y_points, runtime_config) def fit_grid_search(self, z_group: list, x_points: list, y_points: list, runtime_config): """use grid search to tune the hyper parameters. Args: z_group (list): group by values x_points (list): independent values y_points (list): dependent values Returns: RegMdnGroupBy: the fitted model """ param_grid = {'epoch': [5], 'lr': [0.001], 'node': [ 5, 10, 20], 'hidden': [1, 2], 'gaussian_reg': [3, 5]} # param_grid = {'epoch': [5], 'lr': [0.001], 'node': [ # 5], 'hidden': [1], 'gaussian': [3]} errors = [] combinations = it.product(*(param_grid[Name] for Name in param_grid)) combinations = list(combinations) combs = [] for combination in combinations: idx = 0 comb = {} # print(combination) for key in param_grid: comb[key] = combination[idx] idx += 1 combs.append(comb) self.b_store_training_data = True for para in combs: print("Grid search for parameter set :", para) config = self.config.copy() config.config["n_gaussians_reg"] = para['gaussian_reg'] # config.config["n_gaussians_density"] = para['gaussian_density'] config.config["n_epoch"] = para['epoch'] config.config["n_hidden_layer"] = para['hidden'] config.config["n_mdn_layer_node_reg"] = para['node'] config.config["b_grid_search"] = False instance = RegMdnGroupBy(config, b_store_training_data=True).fit(z_group, x_points, y_points, runtime_config, lr=para['lr']) errors.append(instance.score(runtime_config)) print("errors for grid search ", errors) index = errors.index(min(errors)) para = combs[index] print("Finding the best configuration for the network", para) self.b_store_training_data = False # release space self.x_points = None self.y_points = None self.z_points = None self.sample_x = None self.sample_g = None self.sample_average_y = None config = self.config.copy() config.config["n_gaussians_reg"] = para['gaussian_reg'] # config.config["n_gaussians_density"] = para['gaussian_density'] # config.config["n_epoch"] = para['epoch'] config.config["n_hidden_layer"] = para['hidden'] config.config["n_mdn_layer_node_reg"] = para['node'] config.config["b_grid_search"] = False instance = RegMdnGroupBy(config).fit(z_group, x_points, y_points, runtime_config, lr=para['lr']) print("-"*80) return instance def predict(self, z_group: list, x_points: list, runtime_config, b_plot=False) -> list: """provide predictions for given groups and points. Args: z_group (list): the group by values x_points (list): the corresponding x points b_plot (bool, optional): to plot the data or not.. Defaults to False. Raises: Exception: [description] Returns: list: the predictions. """ # torch.set_num_threads(4) # check input data type, and convert to np.array if type(z_group) is list: z_group = np.array(z_group) if type(x_points) is list: x_points = np.array(x_points) encoder = self.config.config["encoder"] device = runtime_config["device"] if encoder == 'no': convert2float = True if convert2float: try: zs_float = [] for item in z_group: if item[0] == "": zs_float.append([0.0]) else: zs_float.append([(float)(item[0])]) z_group = zs_float except: raise Exception if self.b_normalize_data: x_points = normalize(x_points, self.meanx, self.widthx) if encoder == "onehot": # zs_encoded = z_group # [:, np.newaxis] zs_encoded = self.enc.transform(z_group).toarray() x_points = x_points[:, np.newaxis] xzs_encoded = np.concatenate( [x_points, zs_encoded], axis=1).tolist() tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs_encoded]) elif encoder == "binary": zs_encoded = self.enc.transform(z_group).to_numpy() x_points = x_points[:, np.newaxis] xzs_encoded = np.concatenate( [x_points, zs_encoded], axis=1).tolist() tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs_encoded]) elif encoder == "embedding": zs_transformed = z_group.reshape(1,-1)[0] zs_encoded = self.enc.predicts(zs_transformed) x_points = x_points[:, np.newaxis] xzs_encoded = np.concatenate( [x_points, zs_encoded], axis=1).tolist() tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs_encoded]) else: xzs = [[x_point, z_point] for x_point, z_point in zip(x_points, z_group)] tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs]) tensor_xzs = tensor_xzs.to(device) self.model = self.model.to(device) pis, sigmas, mus = self.model(tensor_xzs) if not b_plot: pis = pis.cpu().detach().numpy() # [0] # sigmas = sigmas.detach().numpy().reshape(len(sigmas), -1)[0] mus = mus.cpu().detach().numpy().reshape(len(z_group), -1) # [0] predictions = np.sum(np.multiply(pis, mus), axis=1) if self.b_normalize_data: predictions = [denormalize(pred, self.meany, self.widthy) for pred in predictions] return predictions else: samples = sample(pis, sigmas, mus).data.numpy().reshape(-1) if self.b_normalize_data: samples = [denormalize(pred, self.meany, self.widthy) for pred in samples] # plt.scatter(z_group, x_points, samples) # plt.show() # return samples fig = plt.figure() ax = fig.add_subplot(111, projection='3d') if len(self.x_points) > 2000: idx = np.random.randint(0, len(self.x_points), 2000) if self.b_normalize_data: x_samples = [denormalize(i, self.meanx, self.widthx) for i in self.x_points[idx]] y_samples = [denormalize(i, self.meany, self.widthy) for i in self.y_points[idx]] ax.scatter(x_samples, self.z_points[idx], y_samples) else: ax.scatter(self.x_points, self.z_points, self.y_points) if self.b_normalize_data: x_points = denormalize(x_points, self.meanx, self.widthx) if len(samples) > 2000: idx = np.random.randint(0, len(x_points), 2000) ax.scatter(np.array(x_points)[idx], np.array( z_group)[idx], np.array(samples)[idx]) else: ax.scatter(x_points, z_group, samples) ax.set_xlabel('query range attribute') ax.set_ylabel('group by attribute') ax.set_zlabel('aggregate attribute') plt.show() return samples def score(self, runtime_config) -> float: """ evaluate the error for this model. currenltly, it is the sum of all absolute errors, for a random sample of points. Raises: ValueError: b_store_training_data must be set to True to enable the score() function. Returns: float: the absolute error """ gs = ["g1", "g2", "g3", "g4", "g5"] if not self.b_store_training_data: raise ValueError( "b_store_training_data must be set to True to enable the score() function.") else: # groups = self.enc.categories_[0] if self.sample_x is None: # process group by values data = {gs[i]: [row[i] for row in self.z_points] for i in range(len(self.z_points[0]))} # append x y values data['x'] = denormalize(self.x_points, self.meanx, self.widthx) data['y'] = denormalize(self.y_points, self.meany, self.widthy) df = pd.DataFrame(data) columns = list(df.columns.values) columns.remove("y") # df = pd.DataFrame( # {'g': self.z_points, 'x': denormalize(self.x_points, self.meanx, self.widthx), 'y': denormalize(self.y_points, self.meany, self.widthy)}) # mean_y = df.groupby(['g', 'x'])['y'].mean() # .reset_index() mean_y = df.groupby(columns)['y'].mean() # .reset_index() # print(df) # raise Exception # make the same index here df = df.set_index(columns) # df = df.set_index(['g', 'x']) df['mean_y'] = mean_y # print(df) df = df.reset_index() # to take the hierarchical index off again df = df.sample( n=min(1000, len(self.x_points)), random_state=1, replace=False) self.sample_x = df["x"].values # for g in columns[:-1]: # self.sample_g = df["g"].values self.sample_g = df[columns[:-1]].values # raise Exception self.sample_average_y = df["mean_y"].values predictions = self.predict( self.sample_g, self.sample_x, runtime_config) errors = [abs(pred-tru) for pred, tru in zip(predictions, self.sample_average_y)] errors = sum(sorted(errors)[10:-10]) return errors class RegMdn(): """ This class implements the regression using mixture density network. """ # , n_mdn_layer_node=20, b_one_hot=True def __init__(self, config, dim_input, b_store_training_data=False): if b_store_training_data: self.xs = None # query range self.ys = None # aggregate value self.zs = None # group by balue self.b_store_training_data = b_store_training_data self.meanx = None self.widthx = None self.meany = None self.widthy = None self.meanz = None self.widthz = None self.model = None self.is_normalized = False self.dim_input = dim_input self.is_training_data_denormalized = False self.last_xs = None self.last_pi = None self.last_mu = None self.last_sigma = None self.enc = None self.config = config # num_epoch=400, num_gaussians=5 def fit(self, xs, ys, runtime_config, b_show_plot=False, b_normalize=True): """ fit a regression y= R(x)""" if len(xs.shape) != 2: raise Exception("xs should be 2-d, but got unexpected shape.") if self.dim_input == 1: return self.fit2d(xs, ys, runtime_config, b_show_reg_plot=b_show_plot, b_normalize=b_normalize, ) elif self.dim_input == 2: return self.fit3d(xs[:, 0], xs[:, 1], ys, runtime_config, b_show_plot=b_show_plot, b_normalize=b_normalize, ) else: print("dimension mismatch") sys.exit(0) def predict(self, xs, runtime_config, b_show_plot=False): """ make predictions""" if self.dim_input == 1: return self.predict2d(xs, runtime_config, b_show_plot=b_show_plot) elif self.dim_input == 2: return self.predict3d(xs[:, 0], xs[:, 1], runtime_config, b_show_plot=b_show_plot) else: print("dimension mismatch") sys.exit(0) def fit3d(self, xs, zs, ys, runtime_config, b_show_plot=False, b_normalize=True, n_workers=0): """ fit a regression y = R(x,z) Args: xs ([float]): query range attribute zs ([float]): group by attribute ys ([float]): aggregate attribute b_show_plot (bool, optional): whether to show the plot. Defaults to True. """ b_one_hot = True device = runtime_config["device"] n_mdn_layer_node = self.config.config["n_mdn_layer_node"] num_gaussians = self.config.config["n_gaussions"] num_epoch = self.config.config["n_epoch"] if b_one_hot: self.enc = OneHotEncoder(handle_unknown='ignore') zs_onehot = zs[:, np.newaxis] zs_onehot = self.enc.fit_transform(zs_onehot).toarray() if b_normalize: self.meanx = (np.max(xs) + np.min(xs)) / 2 self.widthx = np.max(xs) - np.min(xs) self.meany = (np.max(ys) + np.min(ys)) / 2 self.widthy = np.max(ys) - np.min(ys) # self.meanz = np.mean(zs) # self.widthz = np.max(zs)-np.min(zs) # s= [(i-meanx)/1 for i in x] xs = np.array([self.normalize(i, self.meanx, self.widthx) for i in xs]) ys = np.array([self.normalize(i, self.meany, self.widthy) for i in ys]) # zs = np.array([self.normalize(i, self.meanz, self.widthz) # for i in zs]) self.is_normalized = True if self.b_store_training_data: self.xs = xs self.ys = ys self.zs = zs if b_show_plot: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xs, zs, ys) ax.set_xlabel('query range attribute') ax.set_ylabel('group by attribute') ax.set_zlabel('aggregate attribute') plt.show() if b_one_hot: xs_onehot = xs[:, np.newaxis] xzs_onehot = np.concatenate( [xs_onehot, zs_onehot], axis=1).tolist() tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs_onehot]) # transform to torch tensors else: xzs = [[xs[i], zs[i]] for i in range(len(xs))] tensor_xzs = torch.stack([torch.Tensor(i) for i in xzs]) # transform to torch tensors ys = ys[:, np.newaxis] tensor_ys = torch.stack([torch.Tensor(i) for i in ys]) # move variables to cuda tensor_xzs = tensor_xzs.to(device) tensor_ys = tensor_ys.to(device) my_dataset = torch.utils.data.TensorDataset( tensor_xzs, tensor_ys) # create your datset # , num_workers=8) # create your dataloader my_dataloader = torch.utils.data.DataLoader( my_dataset, batch_size=self.config.config["batch_size"], shuffle=False, num_workers=n_workers) input_dim = len(self.enc.categories_[0]) + 1 # initialize the model self.model = nn.Sequential( nn.Linear(input_dim, n_mdn_layer_node), # self.dim_input nn.Tanh(), nn.Dropout(0.01), MDN(n_mdn_layer_node, 1, num_gaussians, device) ) self.model = self.model.to(device) optimizer = optim.Adam(self.model.parameters()) for epoch in range(num_epoch): if epoch % 100 == 0: print("< Epoch {}".format(epoch)) # train the model for minibatch, labels in my_dataloader: minibatch.to(device) labels.to(device) self.model.zero_grad() pi, sigma, mu = self.model(minibatch) loss = mdn_loss(pi, sigma, mu, labels, device) loss.backward() optimizer.step() return self def fit3d_grid_search(self, xs: list, zs: list, ys: list, runtime_config, b_normalize=True): """ fit the regression, using grid search to find the optimal parameters. Args: xs (list): x points. zs (list): group by attributes ys (list): y values. b_normalize (bool, optional): whether the values should be normalized for training. Defaults to True. Returns: RegMdn: the model. """ param_grid = {'epoch': [5], 'lr': [0.001, 0.0001], 'node': [ 5, 10, 20], 'hidden': [1, 2], 'gaussian': [2, 4]} # param_grid = {'epoch': [2], 'lr': [0.001], 'node': [4, 12], 'hidden': [1, 2], 'gaussian': [10]} errors = [] combinations = it.product(*(param_grid[Name] for Name in param_grid)) combinations = list(combinations) combs = [] for combination in combinations: idx = 0 comb = {} for key in param_grid: comb[key] = combination[idx] idx += 1 combs.append(comb) self.b_store_training_data = True # for para in combs: # print("Grid search for parameter set :", para) # instance = self.fit(zs, xs, b_normalize=b_normalize, num_gaussians=para['gaussian'], num_epoch=para['epoch'], # n_mdn_layer_node=para['node'], lr=para['lr'], hidden=para['hidden'], b_grid_search=False) # errors.append(instance.score()) # index = errors.index(min(errors)) # para = combs[index] # print("Finding the best configuration for the network", para) # self.b_store_training_data = False # instance = self.fit(zs, xs, b_normalize=True, num_gaussians=para['gaussian'], num_epoch=20, # n_mdn_layer_node=para['node'], lr=para['lr'], hidden=para['hidden'], b_grid_search=False) # return instance def fit2d(self, xs, ys, runtime_config, b_show_reg_plot=False, b_normalize=True, b_show_density_plot=False, n_workers=0): """ fit a regression y = R(x) Args: xs([float]): query range attribute ys([float]): aggregate attribute b_show_plot(bool, optional): whether to show the plot. Defaults to True. """ n_mdn_layer_node = self.config.config["n_mdn_layer_node"] num_epoch = self.config.config["n_epoch"] if b_normalize: self.meanx = (np.max(xs) + np.min(xs)) / 2 self.widthx = np.max(xs) - np.min(xs) self.meany = (np.max(ys) + np.min(ys)) / 2 self.widthy =
np.max(ys)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Author: <NAME> """ Boundary ======== To do: * Define boundary conditions for hipims model ----------- """ # Created on Tue Mar 31 16:05:27 2020 import warnings import numpy as np import pandas as pd import matplotlib.patches as mplP from . import spatial_analysis as sp #%% boundary class definition class Boundary(object): """ Class for boundary conditions Attributes: num_of_bound: number of boundaries type: a list of string 'open', 'rigid', 'fall' 'open': timeseries of boundary depth/discharge/velocity can be given for this type. If no given timeseries data, water will flow out flatly 'rigid': no outlet 'fall': water flow out like a fall, a fix zero water depth and velocities will be given extent: (2-col numpy array) poly points to define the extent of a IO boundary. If extent is not given, then the boundary is the domain outline hSources: a two-col numpy array. The 1st col is time(s). The 2nd col is water depth(m) hUSources: a two-col numpy array. The 1st col is time(s). The 2nd col is discharge(m3/s) or a three-col numpy array, the 2nd col and the 3rd col are velocities(m/s) in x and y direction, respectively. h_code: 3-element int to define the type of depth boundary hU_code: 3-element int to define th type of velocity boundary description: (str) description of a boundary """ def __init__(self, boundary_list=None, outline_boundary='fall'): """Initialise the object Args: boundary_list: (list of dicts), each dict contain keys (polyPoints, type, h, hU) to define a IO boundary's position, type, and Input-Output (IO) sources timeseries. Keys including: 1.polyPoints is a numpy array giving X(1st col) and Y(2nd col) coordinates of points to define the position of a boundary. A bound without polyPoints is regarded as the outline_boundary. 2.type: string, type of the boundary 'open': timeseries of boundary depth/discharge/velocity can be given for this type. If no given timeseries data, water will flow out flatly 'rigid': water cannot flow in or out 'fall': water flow out like a fall, a fix zero water depth and velocities will be given 3.h: a two-col numpy array. The 1st col is time(s). The 2nd col is water depth(m) 4.hU: a two-col numpy array. The 1st col is time(s). The 2nd col is discharge(m3/s) or a three-col numpy array, the 2nd col and the 3rd col are velocities(m/s) in x and y direction, respectively. outline_boundary: (str) 'open'|'rigid', default outline boundary is open and both h and hU are set as zero if h or hU is given, then the boundary type is set as 'open' in function _setup_boundary_data_table """ data_table = _setup_boundary_data_table(boundary_list, outline_boundary) data_table = _get_boundary_code(data_table) num_of_bound = data_table.shape[0] self.data_table = data_table self.num_of_bound = num_of_bound self.h_sources = data_table['hSources'] self.hU_sources = data_table['hUSources'] self.boundary_list = boundary_list self.outline_boundary = outline_boundary self.cell_subs = None self.cell_id = None def print_summary(self): """Print the summary information """ print('Number of boundaries: '+str(self.num_of_bound)) for n in range(self.num_of_bound): if self.cell_subs is not None: num_cells = self.cell_subs[n][0].size description = self.data_table.description[n] \ + ', number of cells: '+str(num_cells) print(str(n)+'. '+description) def get_summary(self): """ Get summary information strings """ summary_dict = {} summary_dict['Number of boundaries'] = str(self.num_of_bound) summary_str = [] for n in np.arange(self.num_of_bound): if self.cell_subs is not None: num_cells = self.cell_subs[n][0].size description = self.data_table.description[n] \ + ', number of cells: '+str(num_cells) summary_str.append(str(n)+'. '+description) summary_dict['Boundary details'] = summary_str return summary_dict def _fetch_boundary_cells(self, valid_subs, outline_subs, dem_header): """ To get the subsripts and id of boundary cells on the domain grid valid_subs, outline_subs, dem_header are from hipims object _valid_cell_subs, _outline_cell_subs cell_subs: (tuple)subscripts of outline boundary cells cell_id: (numpy vector)valid id of outline boundary cells """ # to get outline cell id based on _outline_cell_subs vector_id = np.arange(valid_subs[0].size) nrows = dem_header['nrows'] ncols = dem_header['ncols'] cellsize = dem_header['cellsize'] xllcorner = dem_header['xllcorner'] yllcorner = dem_header['yllcorner'] grid_cell_id = np.zeros((nrows, ncols)) grid_cell_id[valid_subs] = vector_id outline_id = grid_cell_id[outline_subs] outline_id = outline_id.astype('int64') # to get boundary cells based on the spatial extent of each boundary bound_cell_x = xllcorner+(outline_subs[1]+0.5)*cellsize bound_cell_y = yllcorner+(nrows-outline_subs[0]-0.5) *cellsize n = 1 # sequence number of boundaries data_table = self.data_table cell_subs = [] cell_id = [] for n in range(data_table.shape[0]): if data_table.extent[n] is None: #outline boundary dem_extent = sp.header2extent(dem_header) polyPoints = sp.extent2shape_points(dem_extent) elif len(data_table.extent[n]) == 2: xyv = data_table.extent[n] polyPoints = sp.extent2shape_points([np.min(xyv[:, 0]), np.max(xyv[:, 0]),
np.min(xyv[:, 1])
numpy.min
import cv2 import numpy as np import torch from simplecv.data._th_preprocess import _th_resize_to_range from simplecv.data._th_preprocess import _th_mean_std_normalize from simplecv.data._np_preprocess import _np_resize_to_range from simplecv.data._np_preprocess import _np_mean_std_normalize from simplecv.data._np_preprocess import _np_random_crop from simplecv.data._np_preprocess import _np_im_random_scale from simplecv.data._np_preprocess import _np_im_scale from simplecv.data._np_preprocess import sliding_window from simplecv.data._th_preprocess import _th_divisible_pad as th_divisible_pad def random_crop(image, crop_size): if isinstance(image, np.ndarray): return _np_random_crop(image, crop_size) else: raise ValueError('The type {} is not support'.format(type(image))) def divisible_pad(image_list, size_divisor=128, to_tensor=True): """ Args: image_list: a list of images with shape [channel, height, width] size_divisor: int to_tensor: whether to convert to tensor Returns: blob: 4-D ndarray of shape [batch, channel, divisible_max_height, divisible_max_height] """ max_shape = np.array([im.shape for im in image_list]).max(axis=0) max_shape[1] = int(
np.ceil(max_shape[1] / size_divisor)
numpy.ceil
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> import copy from functools import reduce import numpy import scipy.linalg from pyscf import lib from pyscf.gto import mole from pyscf.lib import logger from pyscf.scf import hf from pyscf import __config__ LINEAR_DEP_THRESHOLD = getattr(__config__, 'scf_addons_remove_linear_dep_threshold', 1e-8) CHOLESKY_THRESHOLD = getattr(__config__, 'scf_addons_cholesky_threshold', 1e-10) LINEAR_DEP_TRIGGER = getattr(__config__, 'scf_addons_remove_linear_dep_trigger', 1e-10) def frac_occ_(mf, tol=1e-3): ''' Addons for SCF methods to assign fractional occupancy for degenerated occpupied HOMOs. Examples:: >>> mf = gto.M(atom='O 0 0 0; O 0 0 1', verbose=4).RHF() >>> mf = scf.addons.frac_occ(mf) >>> mf.run() ''' from pyscf.scf import uhf, rohf old_get_occ = mf.get_occ mol = mf.mol def guess_occ(mo_energy, nocc): sorted_idx = numpy.argsort(mo_energy) homo = mo_energy[sorted_idx[nocc-1]] lumo = mo_energy[sorted_idx[nocc]] frac_occ_lst = abs(mo_energy - homo) < tol integer_occ_lst = (mo_energy <= homo) & (~frac_occ_lst) mo_occ = numpy.zeros_like(mo_energy) mo_occ[integer_occ_lst] = 1 degen = numpy.count_nonzero(frac_occ_lst) frac = nocc - numpy.count_nonzero(integer_occ_lst) mo_occ[frac_occ_lst] = float(frac) / degen return mo_occ, numpy.where(frac_occ_lst)[0], homo, lumo get_grad = None if isinstance(mf, uhf.UHF): def get_occ(mo_energy, mo_coeff=None): nocca, noccb = mol.nelec mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy[0], nocca) mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy[1], noccb) if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol: mo_occ = numpy.array([mo_occa, mo_occb]) logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ' '%6g for beta orbitals %s', mo_occa[frac_lsta[0]], frac_lsta, mo_occb[frac_lstb[0]], frac_lstb) logger.info(mf, ' alpha HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.info(mf, ' beta HOMO = %.12g LUMO = %.12g', homob, lumob) logger.debug(mf, ' alpha mo_energy = %s', mo_energy[0]) logger.debug(mf, ' beta mo_energy = %s', mo_energy[1]) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ elif isinstance(mf, rohf.ROHF): def get_occ(mo_energy, mo_coeff=None): nocca, noccb = mol.nelec mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy, nocca) mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy, noccb) if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol: mo_occ = mo_occa + mo_occb logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ' '%6g for beta orbitals %s', mo_occa[frac_lsta[0]], frac_lsta, mo_occb[frac_lstb[0]], frac_lstb) logger.info(mf, ' HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.debug(mf, ' mo_energy = %s', mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ def get_grad(mo_coeff, mo_occ, fock): occidxa = mo_occ > 0 occidxb = mo_occ > 1 viridxa = ~occidxa viridxb = ~occidxb uniq_var_a = viridxa.reshape(-1,1) & occidxa uniq_var_b = viridxb.reshape(-1,1) & occidxb if getattr(fock, 'focka', None) is not None: focka = fock.focka fockb = fock.fockb elif getattr(fock, 'ndim', None) == 3: focka, fockb = fock else: focka = fockb = fock focka = reduce(numpy.dot, (mo_coeff.T.conj(), focka, mo_coeff)) fockb = reduce(numpy.dot, (mo_coeff.T.conj(), fockb, mo_coeff)) g = numpy.zeros_like(focka) g[uniq_var_a] = focka[uniq_var_a] g[uniq_var_b] += fockb[uniq_var_b] return g[uniq_var_a | uniq_var_b] else: # RHF def get_occ(mo_energy, mo_coeff=None): nocc = (mol.nelectron+1) // 2 # n_docc + n_socc mo_occ, frac_lst, homo, lumo = guess_occ(mo_energy, nocc) n_docc = mol.nelectron // 2 n_socc = nocc - n_docc if abs(homo - lumo) < tol or n_socc: mo_occ *= 2 degen = len(frac_lst) mo_occ[frac_lst] -= float(n_socc) / degen logger.warn(mf, 'fraction occ = %6g for orbitals %s', mo_occ[frac_lst[0]], frac_lst) logger.info(mf, 'HOMO = %.12g LUMO = %.12g', homo, lumo) logger.debug(mf, ' mo_energy = %s', mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ mf.get_occ = get_occ if get_grad is not None: mf.get_grad = get_grad return mf frac_occ = frac_occ_ def dynamic_occ_(mf, tol=1e-3): assert(isinstance(mf, hf.RHF)) old_get_occ = mf.get_occ def get_occ(mo_energy, mo_coeff=None): mol = mf.mol nocc = mol.nelectron // 2 sort_mo_energy = numpy.sort(mo_energy) lumo = sort_mo_energy[nocc] if abs(sort_mo_energy[nocc-1] - lumo) < tol: mo_occ = numpy.zeros_like(mo_energy) mo_occ[mo_energy<lumo] = 2 lst = abs(mo_energy - lumo) < tol mo_occ[lst] = 0 logger.warn(mf, 'set charge = %d', mol.charge+int(lst.sum())*2) logger.info(mf, 'HOMO = %.12g LUMO = %.12g', sort_mo_energy[nocc-1], sort_mo_energy[nocc]) logger.debug(mf, ' mo_energy = %s', sort_mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ mf.get_occ = get_occ return mf dynamic_occ = dynamic_occ_ def dynamic_level_shift_(mf, factor=1.): '''Dynamically change the level shift in each SCF cycle. The level shift value is set to (HF energy change * factor) ''' old_get_fock = mf.get_fock last_e = [None] def get_fock(h1e, s1e, vhf, dm, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None): if cycle >= 0 or diis is not None: ehf =(numpy.einsum('ij,ji', h1e, dm) + numpy.einsum('ij,ji', vhf, dm) * .5) if last_e[0] is not None: level_shift_factor = abs(ehf-last_e[0]) * factor logger.info(mf, 'Set level shift to %g', level_shift_factor) last_e[0] = ehf return old_get_fock(h1e, s1e, vhf, dm, cycle, diis, diis_start_cycle, level_shift_factor, damp_factor) mf.get_fock = get_fock return mf dynamic_level_shift = dynamic_level_shift_ def float_occ_(mf): ''' For UHF, allowing the Sz value being changed during SCF iteration. Determine occupation of alpha and beta electrons based on energy spectrum ''' from pyscf.scf import uhf assert(isinstance(mf, uhf.UHF)) def get_occ(mo_energy, mo_coeff=None): mol = mf.mol ee = numpy.sort(numpy.hstack(mo_energy)) n_a = numpy.count_nonzero(mo_energy[0]<(ee[mol.nelectron-1]+1e-3)) n_b = mol.nelectron - n_a if mf.nelec is None: nelec = mf.mol.nelec else: nelec = mf.nelec if n_a != nelec[0]: logger.info(mf, 'change num. alpha/beta electrons ' ' %d / %d -> %d / %d', nelec[0], nelec[1], n_a, n_b) mf.nelec = (n_a, n_b) return uhf.UHF.get_occ(mf, mo_energy, mo_coeff) mf.get_occ = get_occ return mf dynamic_sz_ = float_occ = float_occ_ def follow_state_(mf, occorb=None): occstat = [occorb] old_get_occ = mf.get_occ def get_occ(mo_energy, mo_coeff=None): if occstat[0] is None: mo_occ = old_get_occ(mo_energy, mo_coeff) else: mo_occ = numpy.zeros_like(mo_energy) s = reduce(numpy.dot, (occstat[0].T, mf.get_ovlp(), mo_coeff)) nocc = mf.mol.nelectron // 2 #choose a subset of mo_coeff, which maximizes <old|now> idx = numpy.argsort(numpy.einsum('ij,ij->j', s, s)) mo_occ[idx[-nocc:]] = 2 logger.debug(mf, ' mo_occ = %s', mo_occ) logger.debug(mf, ' mo_energy = %s', mo_energy) occstat[0] = mo_coeff[:,mo_occ>0] return mo_occ mf.get_occ = get_occ return mf follow_state = follow_state_ def mom_occ_(mf, occorb, setocc): '''Use maximum overlap method to determine occupation number for each orbital in every iteration. It can be applied to unrestricted HF/KS and restricted open-shell HF/KS.''' from pyscf.scf import uhf, rohf if isinstance(mf, uhf.UHF): coef_occ_a = occorb[0][:, setocc[0]>0] coef_occ_b = occorb[1][:, setocc[1]>0] elif isinstance(mf, rohf.ROHF): if mf.mol.spin != (numpy.sum(setocc[0]) - numpy.sum(setocc[1])): raise ValueError('Wrong occupation setting for restricted open-shell calculation.') coef_occ_a = occorb[:, setocc[0]>0] coef_occ_b = occorb[:, setocc[1]>0] else: raise RuntimeError('Cannot support this class of instance %s' % mf) log = logger.Logger(mf.stdout, mf.verbose) def get_occ(mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if isinstance(mf, rohf.ROHF): mo_coeff = numpy.array([mo_coeff, mo_coeff]) mo_occ = numpy.zeros_like(setocc) nocc_a = int(numpy.sum(setocc[0])) nocc_b = int(numpy.sum(setocc[1])) s_a = reduce(numpy.dot, (coef_occ_a.T, mf.get_ovlp(), mo_coeff[0])) s_b = reduce(numpy.dot, (coef_occ_b.T, mf.get_ovlp(), mo_coeff[1])) #choose a subset of mo_coeff, which maximizes <old|now> idx_a = numpy.argsort(numpy.einsum('ij,ij->j', s_a, s_a))[::-1] idx_b = numpy.argsort(numpy.einsum('ij,ij->j', s_b, s_b))[::-1] mo_occ[0][idx_a[:nocc_a]] = 1. mo_occ[1][idx_b[:nocc_b]] = 1. log.debug(' New alpha occ pattern: %s', mo_occ[0]) log.debug(' New beta occ pattern: %s', mo_occ[1]) if isinstance(mf.mo_energy, numpy.ndarray) and mf.mo_energy.ndim == 1: log.debug1(' Current mo_energy(sorted) = %s', mo_energy) else: log.debug1(' Current alpha mo_energy(sorted) = %s', mo_energy[0]) log.debug1(' Current beta mo_energy(sorted) = %s', mo_energy[1]) if (int(numpy.sum(mo_occ[0])) != nocc_a): log.error('mom alpha electron occupation numbers do not match: %d, %d', nocc_a, int(numpy.sum(mo_occ[0]))) if (int(
numpy.sum(mo_occ[1])
numpy.sum
import os, sys cmd_folder = "../../../vis" if cmd_folder not in sys.path: sys.path.insert(0, cmd_folder) from get_boxlib import ReadBoxLib, get_files import numpy as np from scipy.special import jv, hankel2 import pylab as plt import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable import pickle from scipy.optimize import fmin def check(): plt.rc("font", family="serif") plt.rc("font", size=8) plt.rc("mathtext", fontset="cm") # matplotlib.rc('text', usetex = True) params= {'text.latex.preamble' : [r'\usepackage{amsmath}']} plt.rcParams.update(params) gs = gridspec.GridSpec(nrows=3, ncols=3) #, width_ratios=[0.35, 1], wspace=0.05, bottom=0.14, top=0.97, left=0.1, right=0.85) #============================================================================== # Simulation results #============================================================================== # get a list of all the files in this directory files = get_files('.', include=['plt'], exclude=["temp"], get_all=True) f = files[-1] fig = plt.figure(figsize=(8,5)) data = ReadBoxLib(f) time = data.time data = ReadBoxLib(f, max_level=-1, limits=[[-5,-5],[8,5]]) # --- xn, rho_e = data.get("rho-electron1", grid="node") xn, rho_i = data.get("rho-ion1", grid="node") xn, m_e = data.get("mass-electron1", grid="node") xn, m_i = data.get("mass-ion1", grid="node") xn, q_e = data.get("charge-electron1", grid="node") xn, q_i = data.get("charge-ion1", grid="node") nd_e1 = rho_e/m_e nd_i1 = rho_i/m_i cd1 = (q_e*rho_e/m_e + q_i*rho_i/m_i) # --- xn, rho_e = data.get("rho-electron2", grid="node") xn, rho_i = data.get("rho-ion2", grid="node") xn, m_e = data.get("mass-electron2", grid="node") xn, m_i = data.get("mass-ion2", grid="node") xn, q_e = data.get("charge-electron2", grid="node") xn, q_i = data.get("charge-ion2", grid="node") nd_e2 = rho_e/m_e nd_i2 = rho_i/m_i cd2 = (q_e*rho_e/m_e + q_i*rho_i/m_i) # --- xn, Bx = data.get("x_B-field1", grid="node") xn, By = data.get("y_B-field1", grid="node") xn, Bz = data.get("z_B-field1", grid="node") B1 = np.sqrt(Bx**2 + By**2 + Bz**2) xn, Dx = data.get("x_D-field1", grid="node") xn, Dy = data.get("y_D-field1", grid="node") xn, Dz = data.get("z_D-field1", grid="node") D1 = np.sqrt(Dx**2 + Dy**2 + Dz**2) # --- xn, Bx = data.get("x_B-field2", grid="node") xn, By = data.get("y_B-field2", grid="node") xn, Bz = data.get("z_B-field2", grid="node") B2 = np.sqrt(Bx**2 + By**2 + Bz**2) xn, Dx = data.get("x_D-field2", grid="node") xn, Dy = data.get("y_D-field2", grid="node") xn, Dz = data.get("z_D-field2", grid="node") D2 = np.sqrt(Dx**2 + Dy**2 + Dz**2) # --- xc, vf_fluid = data.get("vfrac-ion1") xc, vf_field = data.get("vfrac-field1") data.close() yn, xn = np.meshgrid(xn[1], xn[0]) yc, xc = np.meshgrid(xc[1], xc[0]) plot = [ {"data":[cd1,cd2], "label":r"$\varrho_c$", "loc":[0,0], "eb":vf_fluid, "cmap":"bwr"}, {"data":[B1, B2], "label":r"$\left|\mathbf{B}\right|$", "loc":[1,0], "eb":vf_field, "cmap":"viridis"}, {"data":[D1,D2], "label":r"$\left|\mathbf{D}\right|$", "loc":[2,0], "eb":vf_field, "cmap":"viridis"}, {"data":[nd_e1,nd_e2], "label":r"$n_e$", "loc":[0,1], "eb":vf_fluid, "cmap":"viridis"}, {"data":[nd_i1,nd_i2], "label":r"$n_i$", "loc":[1,1], "eb":vf_fluid, "cmap":"viridis"}, ] axes = [] for p in plot: ax = fig.add_subplot(gs[p["loc"][0], p["loc"][1]]); axes.append(ax) ni, nj = xc.shape plot_data = np.hstack((p["data"][0][:,0:int(nj/2)], p["data"][1][:,int(nj/2)::])) color = "w" if p["cmap"] == "bwr": big = np.max(
np.abs(plot_data)
numpy.abs
import numpy as np from price_simulator.src.utils.storage import Storage def test_set_up(): storage = Storage() storage.set_up(3, 1000, 10) assert storage.update_steps == 100 assert len(storage.running_rewards) == 3 assert len(storage.running_rewards) == 3 assert len(storage.running_rewards) == 3 storage = Storage() storage.set_up(3, 10, 20) assert storage.update_steps == 1 def test_incremental_update(): avg = np.array([0]) for cnt in range(100): cnt += 1 avg = Storage().incremental_update(np.array([10, 20]), avg, cnt) assert np.all(avg == np.array([10, 20])) def test_observe(): n_periods = 100 desired_length = 10 n_agents = 2 storage = Storage() storage.set_up(n_agents, n_periods, desired_length) for _ in range(n_periods): storage.observe(np.array([10, 20]), np.array([30, 40]), np.array([50, 0])) assert storage.average_rewards.shape == (desired_length, n_agents) assert storage.average_actions.shape == (desired_length, n_agents) assert storage.average_quantities.shape == (desired_length, n_agents) assert np.all(storage.average_rewards == np.repeat(np.array([[10, 20]]), repeats=desired_length, axis=0)) assert np.all(storage.average_actions == np.repeat(np.array([[30, 40]]), repeats=desired_length, axis=0)) assert np.all(storage.average_quantities == np.repeat(
np.array([[50, 0]])
numpy.array
import numpy as np import pybullet as p from PhysicalEngine.utils import stability_func, macro_const, utils import pickle import os from multiprocessing import Pool const = macro_const.Const() def adjust_parameter_threshold(param, stab, targ_stab = 0.5, rate = 0.03): """ """ param_update = param + (stab - targ_stab)*rate param_diff= param - param_update return param_update, param_diff def find_stability_parameters(box_configs, param_init=0.08, targ_stab=0.50, iteration=500, stab_tol=0.02, isshow=False): """ Accomplish function to iteratively find the best position displacement parameter for specific stability of a configuration. We iteratively examined stability of a specific parameter with enough iteration times, then optimized the parameter using a gradient descent method. ------------------------------- box_configs[string]: pickle files recorded positions of boxes. param_init[float]: initialized displacement parameter. targ_stab[float]: target stability of the configuration. iteration[int]: simulation iteration time for evaluating stability of each parameter. stab_tol[float]: stability tolerance. The parameter will be convergent when its difference to the target stability smaller than stab_tol. Return: -------------- stab_all[float]: Stabilities correspond to each parameter across the whole optimization progress. param_all[float]: Parameters iteratively across the whole optimization progress. """ # Link Physical Agent if not isshow: AgentID = p.connect(p.DIRECT) else: AgentID = p.connect(p.GUI, options='--width=512 --height=768 --background_color_red=0 --background_color_green=0 --background_color_blue=0') # Load Plane floorID = stability_func.create_floor(color=const.BLACK, friction=1, client=AgentID) # Do not render images during building p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.configureDebugVisualizer(p.COV_ENABLE_TINY_RENDERER, 0) p.configureDebugVisualizer(p.COV_ENABLE_SHADOWS, 0) # Load box box_size = [[0.4, 0.4, 3*0.4], [0.4, 3*0.4, 0.4], [3*0.4, 0.4, 0.4]] # Load boxes # Initialize box positions with open(box_configs, 'rb') as f: params = pickle.load(f) pos_list = np.array(params['pos_list']) box_list = np.array(params['box_list']) boxIDs = [] for i in range(len(params['box_list'])): boxIDs.append(stability_func.create_box( pos_list[i,:], box_size[box_list[i]], mass=0.2, friction=1)) box_pos_ori_all = [] box_ori_ori_all = [] for i, boxID in enumerate(boxIDs): pos_ori, ori_ori = p.getBasePositionAndOrientation(boxID) box_pos_ori_all.append(pos_ori) box_ori_ori_all.append(ori_ori) stab_all = [] param_all = [] param = 1.0*param_init stab = 1.0 while True: # Adjust iteration, larger error, less iterations if round(np.abs(stab-targ_stab),2) >= 0.10: rate = 0.10 elif round(np.abs(stab-targ_stab),2) >= 0.07: rate = 0.05 elif round(np.abs(stab-targ_stab),2) >= 0.03: rate = 0.03 elif round(np.abs(stab-targ_stab),2) > stab_tol: rate = 0.01 else: break print('Iteration time {}'.format(iteration)) actual_list = [] # Rendering if isshow: p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1) for ite in range(iteration): # First Prepare initial stimulus for i, boxID in enumerate(boxIDs): p.resetBasePositionAndOrientation(boxID, box_pos_ori_all[i], box_ori_ori_all[i]) # Adjust Config box_pos_adj, box_ori_adj = stability_func.adjust_confg_position_fixdistance(boxIDs, param) for i, boxID in enumerate(boxIDs): p.resetBasePositionAndOrientation(boxID, box_pos_adj[i], box_ori_adj[i]) # Provide gravity p.setGravity(0,0,-9.8) p.setTimeStep(const.TIME_STEP) for i in range(500): p.stepSimulation() p.setGravity(0,0,0) box_pos_fin_all = [] for i, boxID in enumerate(boxIDs): box_pos_fin, _ = p.getBasePositionAndOrientation(boxID) box_pos_fin_all.append(box_pos_fin) isstable = stability_func.examine_stability(box_pos_adj, box_pos_fin_all, tol=1e-3) if True in isstable: # print(' Actual: Fall') actual_list.append(False) else: # print(' Actual: Stable') actual_list.append(True) actual_list = np.array(actual_list) stab = sum(actual_list)/len(actual_list) # Adjust parameter param, _ = adjust_parameter_threshold(param, stab, targ_stab=targ_stab, rate=rate) print('Target Stability{}; Stability: {}; Updated Parameters: {}'.format(targ_stab, stab, param)) # An unstable initialized configuration could cause parameters smaller than 0. # -1 means invalid value if param < 0: stab_all.append(-1) param_all.append(-1) break else: stab_all.append(stab) param_all.append(param) stab_all = np.array(stab_all) param_all =
np.array(param_all)
numpy.array
import os import csv import cv2 import copy import random import numpy as np from sklearn.utils import shuffle from sklearn.model_selection import train_test_split STEERING_CORRECTION_LEFT = 0.2 STEERING_CORRECTION_RIGHT = 0.2 USE_SIDE_CAMERAS = True FLIP_IMAGES = False ## Customize data structure class SteeringData: def __init__(self, image_path, steer, flipped_flag): self.image_path = image_path self.steer = steer self.flipped_flag = flipped_flag self.shadow_flag = 0 self.bright_flag = 0 self.blur_flag = 0 ## Reading data from csv file # saving it as the customized data structure # The flipped_flag and the label of each flipped image should be saved # if we use flipped images. def csv_read(csv_path): print("Reading data from csv file...") data = [] with open(csv_path) as csv_file: reader = csv.reader(csv_file) for line in reader: center_image_path = line[0] if os.path.isfile(center_image_path): center_steer = float(line[3]) # the flipped_flag is zero data.append(SteeringData(center_image_path, center_steer, 0)) if FLIP_IMAGES: # set the flipped_flag to one to for flipping image when generating data data.append(SteeringData(center_image_path, -center_steer,1)) if USE_SIDE_CAMERAS: left_image_path = line[1] if os.path.isfile(left_image_path): left_steer = center_steer + STEERING_CORRECTION_LEFT data.append(SteeringData(left_image_path, left_steer, 0)) if FLIP_IMAGES: data.append(SteeringData(left_image_path, -left_steer, 1)) right_image_path = line[2] if os.path.isfile(right_image_path): right_steer = center_steer - STEERING_CORRECTION_RIGHT data.append(SteeringData(right_image_path, right_steer, 0)) if FLIP_IMAGES: data.append(SteeringData(right_image_path, -right_steer, 1)) print("Reading is done.") return shuffle(data) ## Spliting data to training data and validation data def load_data_sets(csv_path, split=0.2): data = csv_read(csv_path) train, valid = train_test_split(data, test_size=split) return train, valid ## Getting bin counts of a data set def get_bin_counts(x): steers = [item.steer for item in x] bin_count = 25 max_bin = np.max(steers) min_bin = np.min(steers) spread = max_bin - min_bin bin_size = spread / bin_count bins = [min_bin + i*bin_size for i in range(bin_count)] bins.append(max_bin + 0.1) hist, bin_edges = np.histogram(steers, bins) # desired_count_per_bin = int(np.mean(bin_counts)) * 2 desired_per_bin = int(np.mean(hist)*1) return bin_edges, hist, desired_per_bin # This method takes the dataset supplied by x # and adds images. # Existing images in the dataset are copied # and augmented by a random blur, random # shadows, and/or random brightness changes. def augment_dataset(x, fix_dist): bin_edges, hist, desired_per_bin = get_bin_counts(x) copy_times = np.float32((desired_per_bin-hist)/hist) copy_times_accum = np.zeros_like(copy_times) augmented = [] for i in range(len(x)): data = x[i] index = np.digitize(data.steer, bin_edges) -1 copy_times_accum[index] += copy_times[index] copy_times_integer = np.int32(copy_times_accum[index]) copy_times_accum[index] -= copy_times_integer for j in range(copy_times_integer): new_data = copy.deepcopy(data) new_data.shadow_flag = int(np.random.uniform(0,1) + 0.5) new_data.blur_flag = int(np.random.uniform(0,1) + 0.5) new_data.bright_flag = int(np.random.uniform(0,1) + 0.5) augmented.append(new_data) if (fix_dist): return fix_distribution(x + augmented, bin_edges, hist, desired_per_bin) else: return x + augmented ## def fix_distribution(training_set, bin_edges, hist, desired_per_bin): # ensure we don't divide by zero non_zero_hist = np.array(hist) non_zero_hist[non_zero_hist==0] = desired_per_bin keep_percentage = np.float32(desired_per_bin/non_zero_hist) def should_keep(item): prob_to_keep = keep_percentage[np.digitize(item.steer, bin_edges)-1] random_prob = np.random.uniform(0,1) return (random_prob <= prob_to_keep) trimmed_training_set = [item for item in training_set if should_keep(item)] return trimmed_training_set ## images are loaded in BGR colorspace by OpenCV with the shape of # (160, 320, 3). (H, W, C) # But drive.py loads image in RGB. # Thus the training image will convert to RGB to ensure the consistency of colorspace ## Crop 50 pixels off the top of the image, # and 20 pixels off the bottom. # Then resize to original size since the test image saved by drive.py is (320,160,3) def preprocess_image(img): rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #cropped = bgr[50:140, :] # height, width #resized = cv2.resize(cropped, (128,128)) #resized = cv2.resize(cropped, (320,160)) # width, height return rgb ## def random_blur(image): # Generate a random odd number for our # kernel size between 3 and 9 kernel_size = (np.random.randint(1, 5) * 2) + 1 # Blur and return return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) ## def random_shadow(image): height, width = image.shape[:2] number_of_shadows = np.random.randint(1, 6) list_of_shadows = [] # define every shadow by randomly determine # the number and positions of a polygon's vertices for i in range(number_of_shadows): shadow_vertices = [] number_of_vertices = np.random.randint(3,26) for j in range(number_of_vertices): position_x = width * np.random.uniform() position_y = height * np.random.uniform() shadow_vertices.append((position_x,position_y)) list_of_shadows.append(np.array([shadow_vertices], dtype=np.int32)) # create a mask with the same dimensions as the original image mask = np.zeros((height,width)) # fill all the shadow polygon for shadow in list_of_shadows: cv2.fillPoly(mask, shadow, 255) hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) v_channel = hsv[:,:,2] # randomly choose a drakness of the shadows # lower numbers result in darker shadows random_darkness = np.random.randint(45, 75) /100.0 v_channel[mask==255] = v_channel[mask==255]*random_darkness bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return bgr ## def random_brightness(image): image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) v_channel = image_hsv[:,:,2] # get a random number to represent the change in brightness # note that all the v channel values should add a same number ''' int8: -128~127, int16: -32768~32767, uint8: 0~255 differnt types of data can not operate with each other ''' brightness_change = np.random.randint(0,100,dtype=np.uint8) # apple brightness change # be sure that v_channel value will not less 0 or great 255 while adding or substracting ! if (np.random.uniform(0,1) > 0.5): v_channel[v_channel>(255-brightness_change)] = 255 v_channel[v_channel<=(255-brightness_change)] += brightness_change else: v_channel[v_channel<(brightness_change)] = 0 v_channel[v_channel>=(brightness_change)] -= brightness_change # using v[v >= make_positive] + brightness_change can avoid this problem! # put the changed v channel back to hsv and covert to rgb # this line can be deleted becase that v_channel is the reference of image_hsv[] image_hsv[:,:,2] = v_channel return cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR) ## Reading data from local files ## process images by their flags def get_generator(images, batch_size): while True: # grap a random sample of size "batch_size" # from the "images" array batch = np.random.choice(a=images, size=batch_size) X = [] y = [] for index in range(len(batch)): # instance a custom class image_data = batch[index] image_path = image_data.image_path if os.path.isfile(image_path): # Read the image, apply data augmentation # and add to the batch image = cv2.imread(image_path) steer = image_data.steer if image is not None: if image_data.flipped_flag == 1: image = cv2.flip(image, 1) if image_data.blur_flag == 1: image = random_blur(image) if image_data.bright_flag == 1: image = random_brightness(image) if image_data.shadow_flag == 1: image = random_shadow(image) # covert to RGB image = preprocess_image(image) X.append(image) y.append(steer) # covert to numpy arrays X = np.array(X) y =
np.array(y)
numpy.array
# This model is developed for Oxford Martin School Transboundary Resource Management # Jordan River Basin Project Energy Model # First created by <NAME>, 3/5/2020, Istanbul #libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import time #keeps the simulation time start_time = time.time() #reads inputs such as hourly consumption, and renewable (solar and wind) generation for 1MW installed capacity df2 = pd.read_csv("data/EnergyModel_Inputs2.csv", sep = ",") hours = np.array(list(range(1,len(df2)+1))) demand = np.array(df2.loc[:, 'Hourly Consumption']) generated_solar = np.array(df2.loc[:, 'Generated Solar']) generated_wind = np.array(df2.loc[:, 'Generated Wind']) water_rel_demand = np.zeros(len(df2)) # if there will be time series for that it can be replaced. Currently none num_hours = len(hours) #installed capacities base_load_capacity = 4800.0 naturalgas_capacity = 12000.0 diesel_capacity = 0.0 solar_capacity = 9500.0 wind_capacity = 21.0 #coeffs fac_reserve = 0.2 base_load_fac = 0.5 energy_loss_grid = 0.0 energy_loss_storage = 0.0 max_ramp_rate = 1000.0 #MWh grid_connection = 1000.0 #MW storage_capacity = 5000.0 #MWh #production capacities depending on the installed capacity base_load = np.ones(len(df2)) * base_load_capacity * base_load_fac naturalgas = np.ones(len(df2)) * naturalgas_capacity diesel = np.ones(len(df2)) * diesel_capacity generated_solar = generated_solar * solar_capacity generated_wind = generated_wind * wind_capacity #derived series generated_renewable = np.zeros(num_hours) used_baseload = np.zeros(num_hours) used_wind = np.zeros(num_hours) used_solar = np.zeros(num_hours) used_renewable = np.zeros(num_hours) used_naturalgas =
np.zeros(num_hours)
numpy.zeros
import legacy_code.simple_siamese.hyperparameters as hp import numpy as np def sigmoid(z): return 1. / (1. + np.exp(-z)) def binary_cross_entropy(h, y): return -y * np.log(h) + (1 - y) * np.log(1 - h) def activation(prev, weights, bias): prev_copy = np.r_[np.ones(prev.shape[1])[np.newaxis], prev] weights_copy = np.c_[bias, weights] return sigmoid(np.matmul(weights_copy, prev_copy)) def numpy_feedforward(x_1, x_2, twin_weights, joined_weights, twin_bias, joined_bias): # activation value matrices of the two twin networks and the joined network a_1 = np.ndarray(hp.TWIN_L, dtype=np.matrix) a_2 = np.ndarray(hp.TWIN_L, dtype=np.matrix) a_d = np.ndarray(hp.JOINED_L, dtype=np.matrix) # transposing horizontal input vectors (or matrices) into feature vectors if len(x_1.shape) == 1: a_1[0] = x_1[np.newaxis].T a_2[0] = x_2[np.newaxis].T else: a_1[0] = x_1.T a_2[0] = x_2.T # forward propagation of twins for i in range(1, hp.TWIN_L): a_1[i] = activation(a_1[i - 1], twin_weights[i - 1], twin_bias[i - 1]) a_2[i] = activation(a_2[i - 1], twin_weights[i - 1], twin_bias[i - 1]) # element wise squared diffrence of two twin network becomes the joined input a_d[0] = np.square(a_1[hp.TWIN_L - 1] - a_2[hp.TWIN_L - 1]) # forward propagation of the joined network for i in range(1, hp.JOINED_L): a_d[i] = activation(a_d[i - 1], joined_weights[i - 1], joined_bias[i - 1]) return a_1, a_2, a_d def regularize(weights, bias, gradients, layers): for n in range(1, layers): regularization_offset = hp.REG_CONST \ * np.concatenate((bias[n - 1], weights[n - 1]), axis=1) gradients[n - 1] += regularization_offset gradients[n - 1][0] -= regularization_offset[0] def cost_derivatives(x_1, x_2, y, twin_weights, twin_bias, joined_weights, joined_bias): # zero initializes cost and gradients modelcost = np.float(0) twin1_transformations_derivatives = np.ndarray(hp.TWIN_L - 1, dtype=np.ndarray) twin2_transformations_derivatives = np.ndarray(hp.TWIN_L - 1, dtype=np.ndarray) twin_weights_gradients = np.ndarray(hp.TWIN_L - 1, dtype=np.matrix) joined_transformations_derivatives = np.ndarray(hp.JOINED_L - 1, dtype=np.ndarray) joined_weights_gradients = np.ndarray(hp.JOINED_L - 1, dtype=np.matrix) for i in range(1, hp.TWIN_L): twin_weights_gradients[i - 1] = np.matrix( np.zeros((hp.TWIN_NET[i], hp.TWIN_NET[i-1] + 1))) for i in range(1, hp.JOINED_L): joined_weights_gradients[i - 1] = np.matrix( np.zeros((hp.JOINED_NET[i], hp.JOINED_NET[i - 1] + 1))) # sum up the derivatives of cost for each sample for i in range(0, hp.SAMPLE_SIZE): (a_1, a_2, a_d) = numpy_feedforward(x_1[i], x_2[i], twin_weights, joined_weights, twin_bias, joined_bias) modelcost += binary_cross_entropy(a_d[hp.JOINED_L - 1], y[i]) # backpropagate through joined network joined_transformations_derivatives[hp.JOINED_L - 2] = \ a_d[hp.JOINED_L - 1] - y[i] for n in reversed(range(0, hp.JOINED_L - 2)): # n is the n + 1 layer in the network next_layer_transforms_gradients = joined_transformations_derivatives[n + 1] next_layer_weights = joined_weights[n + 1] this_layer_activations_gradients = a_d[n + 1] * (1 - a_d[n + 1]) joined_transformations_derivatives[n] = \ np.matmul(next_layer_weights.T, next_layer_transforms_gradients) \ * this_layer_activations_gradients joined_input_derivatives = np.matmul(joined_weights[0].T, \ joined_transformations_derivatives[0]) # backpropagate through twin networks outlayer = hp.TWIN_L - 1 a_1_out = a_1[outlayer] a_2_out = a_2[outlayer] twin1_transformations_derivatives[hp.TWIN_L - 2] = \ 2 * (a_1_out - a_2_out) * a_1_out * (1 - a_1_out) \ * joined_input_derivatives twin2_transformations_derivatives[hp.TWIN_L - 2] = \ 2 * (a_1_out - a_2_out) * a_2_out * (1 - a_2_out) \ * joined_input_derivatives for n in reversed(range(0, hp.TWIN_L - 2)): twin1_transformations_derivatives[n] = \ np.matmul(twin_weights[n + 1].T, twin1_transformations_derivatives[n + 1]) \ * (a_1[n + 1] * (1 - a_1[n + 1])) twin2_transformations_derivatives[n] = \ np.matmul(twin_weights[n + 1].T, twin2_transformations_derivatives[n + 1]) \ * (a_2[n + 1] * (1 - a_2[n + 1])) # calculate gradients of weights in relation to their transformations for n in range(1, hp.JOINED_L): ad_concat_1 = np.r_[np.ones(a_d[n - 1].shape[1])[np.newaxis], a_d[n - 1]] joined_weights_gradients[n - 1] += \ np.matmul(joined_transformations_derivatives[n - 1], ad_concat_1.T) for n in range(1, hp.TWIN_L): a1_concat_1 = np.r_[np.ones(a_1[n - 1].shape[1])[np.newaxis], a_1[n - 1]] a2_concat_1 = np.r_[np.ones(a_2[n - 1].shape[1])[np.newaxis], a_2[n - 1]] twin_weights_gradients[n - 1] += \ np.add(
np.matmul(twin1_transformations_derivatives[n - 1], a1_concat_1.T)
numpy.matmul
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== """Base class for defining preprocessing, as well as two concrete examples.""" from abc import ABCMeta, abstractmethod from collections import deque import numpy as np from PIL import Image class Preprocessing(object): """Base class for defining preprocessing. All subclass constructors will take input_shape as the first argument. """ __metaclass__ = ABCMeta def __init__(self, input_shape): """Constructor for base Preprocessing class.""" self._input_shape = input_shape @abstractmethod def output_shape(self): """Return shape of preprocessed observation.""" pass @abstractmethod def reset(self): """Reset preprocessing pipeline for new episode.""" pass @abstractmethod def preprocess(self, observation): """Return preprocessed observation.""" pass class AtariPreprocessing(Preprocessing): """Preprocess screen images from Atari 2600 games. The image is represented by an array of shape (210, 160, 3). See https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf for more details. """ def __init__(self, input_shape, history_len=4): super(AtariPreprocessing, self).__init__(input_shape) self.__history_len = history_len self.__processed_image_seq = deque(maxlen=history_len) self.reset() def output_shape(self): """Return shape of preprocessed Atari images.""" return (self.__history_len, 84, 84) def reset(self): """Reset preprocessing pipeline for new episode.""" self.__previous_raw_image =
np.zeros(self._input_shape, dtype=np.uint8)
numpy.zeros
import numpy as np import numba import time def add(x, y, z): for i in numba.prange(x.shape[0]): z[i] = np.sin(x[i]) + np.cos(y[i]) N = 1000000 x = np.random.rand(N) y = np.random.rand(N) z1 =
np.empty(N)
numpy.empty
import logging import numpy as np import scipy.sparse as sps from scipy.linalg import qr logger = logging.getLogger(__name__) def pca_y(x, k, num_iters=2): """ PCA using QR factorization. See: An algorithm for the principal component analysis of large data sets. Halko, Martinsson, Shkolnisky, Tygert , SIAM 2011. :param x: Data matrix :param k: Number of estimated Principal Components. :param num_iters: Number of dot product applications. :return: (left Singular Vectors, Singular Values, right Singular Vectors) """ m, n = x.shape def operator(mat): return x.dot(mat) def operator_transpose(mat): return np.conj(x.T).dot(mat) flag = False if m < n: flag = True operator_transpose, operator = operator, operator_transpose m, n = n, m ones = np.ones((n, k + 2)) if x.dtype == np.dtype("complex"): h = operator( (2 * np.random.random((k + 2, n)).T - ones) + 1j * (2 * np.random.random((k + 2, n)).T - ones) ) else: h = operator(2 * np.random.random((k + 2, n)).T - ones) f = [h] for _ in range(num_iters): h = operator_transpose(h) h = operator(h) f.append(h) f = np.concatenate(f, axis=1) # f has e-16 error, q has e-13 q, _, _ = qr(f, mode="economic", pivoting=True) b = np.conj(operator_transpose(q)).T u, s, v = np.linalg.svd(b, full_matrices=False) # not sure how to fix the signs but it seems like I dont need to # TODO use fix_svd, here and matlab # u, v = fix_svd(u, v) v = v.conj() u = np.dot(q, u) u = u[:, :k] v = v[:k] s = s[:k] if flag: u, v = v.T, u.T return u, s, v def bispec_operator_1(freqs): max_freq = np.max(freqs) count = 0 for i in range(2, max_freq): for j in range(1, min(i, max_freq - i + 1)): k = i + j id1 = np.where(freqs == i)[0] id2 = np.where(freqs == j)[0] id3 = np.where(freqs == k)[0] nd1 = len(id1) nd2 = len(id2) nd3 = len(id3) count += nd1 * nd2 * nd3 full_list =
np.zeros((count, 3), dtype="int")
numpy.zeros
""" Module for extracting values of raster sampledata at location given by a vector dataset. """ import numpy as np import geopandas as gpd import os from pathlib import Path import numpy as np import pandas as pd import rasterio from tqdm import tqdm from ..raster.gdalutils import rasterize from ..raster.rasterprocessing import create_distance_to_raster_border from ..vector import calc_distance_to_border def extract(src_vector: str, burn_attribute: str, src_raster: list, dst_names: list, dst_dir: str, dist2pb: bool = False, dist2rb: bool = False, src_raster_template: str = None, gdal_dtype: int = 4, n_jobs: int = 1) -> int: """Extract pixel values of a list of single-band raster files overlaying with a vector dataset. This function does not return the extracted values but stores them in the ``dst_dir`` directory. The extracted values of each raster will be stored as a separate *NumPy* binary file as well as the values of the ``burn_attribute``. Additionally, the folder will contain one or more intermediate GeoTIFF files, e.g, the rasterized ``burn_attribute`` and, if selected, the ``dist2pb`` and/or ``dist2rp`` layer. Note that also the pixel coordinates will be extracted and stored as ``aux_coord_y`` and ``aux_coord_x``. Therefore these names should be avoided in ``dst_names``. The function ``add_vector_data_attributes_to_extracted`` can be used to add other attributes from ``src_vector`` to the store of extracted values such that they can be loaded easily together with the other data. With ``load_extracted`` the data can then be loaded conveniently. If a file with a given name already exists the raster will be skipped. Arguments: src_vector {str} -- Filename of the vector dataset. Currently, it must have the same CRS as the raster. burn_attribute {str} -- Name of the attribute column in the ``src_vector`` dataset to be stored with the extracted data. This should usually be a unique ID for the features (points, lines, polygons) in the vector dataset. Note that this attribute should not contain zeros since this value is internally used for pixels that should not be extracted, or, in other words, that to not overlap with the vector data. src_raster {list} -- List of file paths of the single-band raster files from which to extract the pixel values from. dst_names {list} -- List corresponding to ``src_raster`` names used to store and later identify the extracted to. dst_dir {str} -- Directory to store the data to. Keyword Arguments: dist2pb {bool} -- Create an additional auxiliary layer containing the distance to the closest polygon border for each extracted pixels. Defaults to ``False``. dist2rb {bool} -- Create an additional auxiliary layer containing the distance to the closest raster border for each extracted pixels. Defaults to ``False``. src_raster_template {str} -- A template raster to be used for rasterizing the vectorfile. Usually the first element of ``src_raster``. (default: {None}) gdal_dtype {int} -- Numeric GDAL data type, defaults to 4 which is UInt32. See https://github.com/mapbox/rasterio/blob/master/rasterio/dtypes.py for useful look-up tables. n_jobs {int} -- Number of parallel processors to be use for extraction. -1 uses all processors. Defaults to 1. Returns: [int] -- If successful the function returns 0 as an exit code and 1 otherwise. """ if src_raster_template is None: src_raster_template = src_raster[0] path_rasterized = os.path.join(dst_dir, f"burn_attribute_rasterized_{burn_attribute}.tif") paths_extracted_aux = {ele: os.path.join(dst_dir, f"{ele}.npy") \ for ele in [f"aux_vector_{burn_attribute}", "aux_coord_x", "aux_coord_y"]} if dist2pb: path_dist2pb = os.path.join(dst_dir, f"aux_vector_dist2pb.tif") paths_extracted_aux["aux_vector_dist2pb"] = os.path.join(dst_dir, f"aux_vector_dist2pb.npy") if dist2rb: path_dist2rb = os.path.join(dst_dir, f"aux_raster_dist2rb.tif") paths_extracted_aux["aux_raster_dist2rb"] = os.path.join(dst_dir, f"aux_raster_dist2rb.npy") paths_extracted_raster = {} for path, name in zip(src_raster, dst_names): dst = f"{os.path.join(dst_dir, name)}.npy" if not os.path.exists(dst): paths_extracted_raster[path] = dst if not os.path.exists(dst_dir): os.makedirs(dst_dir) # if it does not already exist, here we first create the rasterized data if not os.path.exists(path_rasterized): if src_raster_template is None: src_raster_template = src_raster[0] # print("Rasterizing vector attribute.") rasterize(src_vector=src_vector, burn_attribute=burn_attribute, src_raster_template=src_raster_template, dst_rasterized=path_rasterized, gdal_dtype=gdal_dtype) # if any of the destination files do not exist we need the locations of the pixels to be # extracted in form of a numpy array bool (mask_arr) that fits the rasters from which we will # extract below if not (all([os.path.exists(path) for path in paths_extracted_aux.values()]) and \ all([os.path.exists(path) for path in paths_extracted_raster.values()])): # print("Creating mask array for pixels to be extracted.") mask_arr = _get_mask_array(path_rasterized, paths_extracted_aux, burn_attribute) else: return 0 # create the pixel coordinates if they do not exist if not all([os.path.exists(paths_extracted_aux["aux_coord_x"]), os.path.exists(paths_extracted_aux["aux_coord_y"])]): _create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr) if dist2pb and not os.path.exists(paths_extracted_aux["aux_vector_dist2pb"]): calc_distance_to_border(polygons=src_vector, template_raster=path_rasterized, dst_raster=path_dist2pb, overwrite=True, keep_interim_files=False) _extract_and_save_one_layer(path_dist2pb, paths_extracted_aux["aux_vector_dist2pb"], mask_arr) if dist2rb and not os.path.exists(paths_extracted_aux["aux_raster_dist2rb"]): create_distance_to_raster_border(src_raster = Path(path_rasterized), dst_raster = Path(path_dist2rb), maxdist=None, # None means we calculate distances for all pixels overwrite=True) _extract_and_save_one_layer(path_dist2rb, paths_extracted_aux["aux_raster_dist2rb"], mask_arr) # lets extract the raster values in case of sequential processing # or remove existing raster layers to prepare parallel processing if n_jobs == 1: for path_src, path_dst in tqdm(paths_extracted_raster.items(), total=len(paths_extracted_raster)): _extract_and_save_one_layer(path_src, path_dst, mask_arr) else: import multiprocessing as mp if n_jobs == -1: n_jobs = mp.cpu_count() pool = mp.Pool(processes=n_jobs) _ = [pool.apply_async(_extract_and_save_one_layer, args=(src, dst, mask_arr)) for \ src, dst in paths_extracted_raster.items()] pool.close() pool.join() return 0 def _get_mask_array(path_rasterized, paths_extracted_aux, burn_attribute): with rasterio.open(path_rasterized) as src: fids_arr = src.read() mask_arr = fids_arr > 0 if not os.path.exists(paths_extracted_aux[f"aux_vector_{burn_attribute}"]): fids = fids_arr[mask_arr] del fids_arr np.save(paths_extracted_aux[f"aux_vector_{burn_attribute}"], fids) del fids return mask_arr def _create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr): src = rasterio.open(path_rasterized) coords = {"x": rasterio.transform.xy(src.meta["transform"], rows=[0] * src.meta["width"], cols=np.arange(src.meta["width"]), offset='center')[0], "y": rasterio.transform.xy(src.meta["transform"], rows=np.arange(src.meta["height"]), cols=[0] * src.meta["height"], offset='center')[1]} coords_2d_array_x, coords_2d_array_y = np.meshgrid(coords["x"], coords["y"]) del coords np.save(paths_extracted_aux["aux_coord_x"], np.expand_dims(coords_2d_array_x, axis=0)[mask_arr]) del coords_2d_array_x np.save(paths_extracted_aux["aux_coord_y"], np.expand_dims(coords_2d_array_y, axis=0)[mask_arr]) del coords_2d_array_y def _extract_and_save_one_layer(path_src, path_dst, mask_arr): with rasterio.open(path_src) as src: raster_vals = src.read()[mask_arr]
np.save(path_dst, raster_vals)
numpy.save
#!/usr/bin/env python # coding: utf-8 import pymesh from IPython.core.debugger import set_trace from scipy.spatial import cKDTree import time import os import numpy as np import os import matplotlib.pyplot as plt import glob from Bio.PDB import * import copy import scipy.sparse as spio import sys # import the right version of open3d from masif.geometry.open3d_import import PointCloud, read_point_cloud, \ Vector3dVector, Feature, registration_ransac_based_on_feature_matching, \ TransformationEstimationPointToPoint, CorrespondenceCheckerBasedOnEdgeLength, \ CorrespondenceCheckerBasedOnDistance, CorrespondenceCheckerBasedOnNormal, \ RANSACConvergenceCriteria # Local imports from masif.default_config.masif_opts import masif_opts from masif.masif_ppi_search.alignment_utils_masif_search import get_patch_geo, multidock, \ subsample_patch_coords, compute_nn_score, get_target_vix from masif.masif_ppi_search.transformation_training_data.score_nn import ScoreNN """ Hard-coded configuration, change accordingly!" Target name - hard coded and tested with PD-L1 (PDB id: 4ZQK). You can change you your own target and test. In general this will work well with targets where MaSIF-site labels the site well and where there is a high amount of shape complementarity """ target_name = "4ZQK_A" target_ppi_pair_id = "4ZQK_A_B" """ Descriptor cutoff: This is the key parameter for the speed of the method. The lower the value, the faster the method, but also the higher the number of false negatives. Values ABOVE this cutoff are discareded. Recommended values: 1.7-2.2. """ DESC_DIST_CUTOFF=1.7 """ Iface cutoff: Patches are also filtered by their MaSIF-site score. Patches whose center point has a value BELOW this score are discarded. The higher the value faster the method, but also the higher the number of false negatives. Recommended values: 0.8 """ IFACE_CUTOFF=0.8 def blockPrint(): sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") def enablePrint(): sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ nn_model = ScoreNN() start_time = time.time() """ pdl1_benchmark.py: Scan a large database of proteins for binders of PD-L1. The ground truth is PD-L1 in the bound state (chain A of PDB id: 4ZQK) <NAME> and <NAME> - LPDI STI EPFL 2019 Released under an Apache License 2.0 """ masif_root = os.environ["masif_root"] top_dir = os.path.join(masif_root, "data/masif_pdl1_benchmark/") surf_dir = os.path.join(top_dir, masif_opts["ply_chain_dir"]) iface_dir = os.path.join( top_dir, masif_opts["site"]["out_pred_dir"] ) ply_iface_dir = os.path.join( top_dir, masif_opts["site"]["out_surf_dir"] ) desc_dir = os.path.join(masif_opts["ppi_search"]["desc_dir"]) pdb_dir = os.path.join(top_dir, masif_opts["pdb_chain_dir"]) precomp_dir = os.path.join( top_dir, masif_opts["site"]["masif_precomputation_dir"] ) # Go through every 9A patch in top_dir -- get the one with the highest iface mean 12A around it. target_ply_fn = os.path.join(ply_iface_dir, target_name + ".ply") mesh = pymesh.load_mesh(target_ply_fn) iface = mesh.get_attribute("vertex_iface") target_coord = subsample_patch_coords(target_ppi_pair_id, "p1", precomp_dir) target_vix = get_target_vix(target_coord, iface) target_pcd = read_point_cloud(target_ply_fn) target_desc = np.load(os.path.join(desc_dir, target_ppi_pair_id, "p1_desc_flipped.npy")) # Get the geodesic patch and descriptor patch for the target. target_patch, target_patch_descs = get_patch_geo( target_pcd, target_coord, target_vix, target_desc, flip=True, outward_shift=0.25 ) out_patch = open("target.vert", "w+") for point in target_patch.points: out_patch.write("{}, {}, {}\n".format(point[0], point[1], point[2])) out_patch.close() # Match descriptors that have a descriptor distance less than K def match_descriptors( in_desc_dir, in_iface_dir, pids, target_desc, desc_dist_cutoff=2.2, iface_cutoff=0.8 ): all_matched_names = [] all_matched_vix = [] all_matched_desc_dist = [] count_proteins = 0 for ppi_pair_id in os.listdir(in_desc_dir): if ".npy" in ppi_pair_id or ".txt" in ppi_pair_id: continue mydescdir = os.path.join(in_desc_dir, ppi_pair_id) for pid in pids: try: fields = ppi_pair_id.split("_") if pid == "p1": pdb_chain_id = fields[0] + "_" + fields[1] elif pid == "p2": pdb_chain_id = fields[0] + "_" + fields[2] iface = np.load(in_iface_dir + "/pred_" + pdb_chain_id + ".npy")[0] descs = np.load(mydescdir + "/" + pid + "_desc_straight.npy") except: continue print(pdb_chain_id) name = (ppi_pair_id, pid) count_proteins += 1 diff = np.sqrt(np.sum(np.square(descs - target_desc), axis=1)) true_iface = np.where(iface > iface_cutoff)[0] near_points = np.where(diff < desc_dist_cutoff)[0] selected = np.intersect1d(true_iface, near_points) if len(selected > 0): all_matched_names.append([name] * len(selected)) all_matched_vix.append(selected) all_matched_desc_dist.append(diff[selected]) print("Matched {}".format(ppi_pair_id)) print("Scores: {} {}".format(iface[selected], diff[selected])) print("Iterated over {} proteins.".format(count_proteins)) return all_matched_names, all_matched_vix, all_matched_desc_dist, count_proteins def align_and_save( out_filename_base, patch, transformation, source_structure, ): structure_atoms = [atom for atom in source_structure.get_atoms()] structure_coords = [x.get_coord() for x in structure_atoms] structure_coord_pcd = PointCloud() structure_coord_pcd.points = Vector3dVector(structure_coords) structure_coord_pcd.transform(transformation) for ix, v in enumerate(structure_coord_pcd.points): structure_atoms[ix].set_coord(v) io = PDBIO() io.set_structure(source_structure) io.save(out_filename_base + ".pdb") # Save patch out_patch = open(out_filename_base + ".vert", "w+") for point in patch.points: out_patch.write("{}, {}, {}\n".format(point[0], point[1], point[2])) out_patch.close() return 0 ## Load the structures of the target target_pdb_id = "4ZQK" target_chain = "A" target_pdb_dir = pdb_dir parser = PDBParser() target_struct = parser.get_structure( "{}_{}".format(target_pdb_id, target_chain), os.path.join(target_pdb_dir, "{}_{}.pdb".format(target_pdb_id, target_chain)), ) # Make a ckdtree with the target. target_ckdtree = cKDTree(target_patch.points) desc_scores = [] desc_pos = [] inlier_scores = [] inlier_pos = [] (matched_names, matched_vix, matched_desc_dist, count_proteins) = match_descriptors( desc_dir, iface_dir, ["p1", "p2"], target_desc[target_vix], desc_dist_cutoff=DESC_DIST_CUTOFF, iface_cutoff=IFACE_CUTOFF ) matched_names = np.concatenate(matched_names, axis=0) matched_vix = np.concatenate(matched_vix, axis=0) matched_desc_dist =
np.concatenate(matched_desc_dist, axis=0)
numpy.concatenate
import h5py import numpy as np import constants as ct import shape as sh import potential as pt from scipy.optimize import least_squares, minimize from scipy.spatial import cKDTree from astropy.cosmology import FlatLambdaCDM # Dictionary of file output names fname = { "L205n2500TNG": "TNG300_L1", "L205n1250TNG": "TNG300_L2", "L205n625TNG": "TNG300_L3", "L205n2500TNG_DM": "TNG300DM_L1", "L205n1250TNG_DM": "TNG300DM_L2", "L205n625TNG_DM": "TNG300DM_L3", "L75n1820TNG": "TNG100_L1", "L75n910TNG": "TNG100_L2", "L75n455TNG": "TNG100_L3", "L75n1820TNG_DM": "TNG100DM_L1", "L75n910TNG_DM": "TNG100DM_L2", "L75n455TNG_DM": "TNG100DM_L3", } # Dictionary of gravitational softening values used -- [DM or STAR, GAS / h] # NOTE: I have converted the GAS values to NO h values, the values were not # consistent in the TNG tables (for some reason!) # NOTE: Values here are in kpc soften = { "L205n2500TNG": [0.15, 0.369], "L205n1250TNG": [2.95, 0.738], "L205n625TNG": [5.90, 1.476], "L75n1820TNG": [0.74, 0.185], "L75n910TNG": [0.15, 0.369], "L75n455TNG": [2.95, 0.738], } """ This class stores computes which simulation is associated with a given halo, stores it and then compute various quantities. There are a couple of external routines, but most is consolidated here Takes the volume class as input, which has read a snapshot """ class halo: def __init__(self, volume, Nbins=25): """ Take cosmology from the volume class instance Arguments: -volume : An instance of the entire_snapshot_read class -Nbins : Number of bins in the radial profile [INTEGER] """ # Boxsize, cosmology, simulation to cgs unit conversions self.boxsize = volume.BoxSize self.axp = volume.axp self.hubp = volume.hub self.redshift = volume.redshift self.OmegaB = volume.omega_b self.OmegaM = volume.omega_m self.OmegaL = volume.omega_l self.Ulength = volume.Ulength self.Umass = volume.Umass self.Uvelc = volume.Uvelc # Set tags for output self.path = volume.path self.simtag = self.path.split("/")[-2] self.fname = fname[self.simtag] self.snap = volume.snap # Create radial bins self.Nbins = Nbins self.set_up_radial_profile() return def halo_data_store(self, mpi, subfind_table, volume, Extent=5.0, R200scale=False): """ Find all particles within given sphere for every halo of interest then send particles to desired task and store Arguments: -mpi : An instance of the mpi class -subfind_table : An instance of the build_table class -volume : An instance of the entire_snapshot_read class -Extent : Halocentric radial extent to extract particles to [FLOAT] -R200scale : BOOLEAN, if TRUE rescale the extent by halo's R200 value """ if not mpi.Rank: print(" > Distributing particles", flush=True) # Set Extent of cut sphere self.Extent = Extent self.halo_data = {} self.Nhalos = len(subfind_table.tags) dims = np.array([self.boxsize, self.boxsize, self.boxsize]) # Loop over haloes of interest Ntask_per_node = int(np.rint(mpi.NProcs / mpi.NNodes)) offset = 0 for j in range(0, self.Nhalos, 1): # Scale extraction range if R200scale: Extent = self.Extent * subfind_table.R200[j] else: Extent = self.Extent * ct.Mpc_cm # Select task to send particle data to destination = (j % mpi.NNodes) * Ntask_per_node + (offset % Ntask_per_node) if destination >= mpi.NProcs: destination -= mpi.NProcs if j > 0 and j % mpi.NNodes == mpi.NNodes - 1: offset += 1 if not mpi.Rank: print(" -{0:04d} {1:03d}".format(j, destination), flush=True) if destination == mpi.Rank: htag = subfind_table.tags[j] self.halo_data[htag] = {} # Find contributing cells/particles -- centering on halo vkey = sorted(volume.__dict__.keys()) if "pos" in vkey: Grad = volume.pos - subfind_table.CoP[j] Grad = np.where(Grad > 0.5 * dims, Grad - dims, Grad) Grad = np.where(Grad < -0.5 * dims, Grad + dims, Grad) Grad = np.sqrt((Grad ** 2.0).sum(axis=-1)) gdx = np.where(Grad <= Extent)[0] del Grad if "DMpos" in vkey: DMrad = volume.DMpos - subfind_table.CoP[j] DMrad = np.where(DMrad > 0.5 * dims, DMrad - dims, DMrad) DMrad = np.where(DMrad < -0.5 * dims, DMrad + dims, DMrad) DMrad = np.sqrt((DMrad ** 2.0).sum(axis=-1)) ddx =
np.where(DMrad <= Extent)
numpy.where
import numpy as np import pandas as pd import matplotlib.pyplot as plt class Planet(): """ The class called Planet is initialised with constants appropriate for the given target planet, including the atmospheric density profile and other constants """ def __init__(self, atmos_func='exponential', atmos_filename='./armageddon/resources/' + 'AltitudeDensityTable.csv', Cd=1., Ch=0.1, Q=1e7, Cl=1e-3, alpha=0.3, Rp=6371e3, g=9.81, H=8000., rho0=1.2): """ Set up the initial parameters and constants for the target planet Parameters ---------- atmos_func : string, optional Function which computes atmospheric density, rho, at altitude, z. Default is the exponential function rho = rho0 exp(-z/H). Options are 'exponential', 'tabular' and 'constant' atmos_filename : string, optional Name of the filename to use with the tabular atmos_func option Cd : float, optional The drag coefficient Ch : float, optional The heat transfer coefficient Q : float, optional The heat of ablation (J/kg) Cl : float, optional Lift coefficient alpha : float, optional Dispersion coefficient Rp : float, optional Planet radius (m) rho0 : float, optional Air density at zero altitude (kg/m^3) g : float, optional Surface gravity (m/s^2) H : float, optional Atmospheric scale height (m) """ # Input constants self.Cd = Cd self.Ch = Ch self.Q = Q self.Cl = Cl self.alpha = alpha self.Rp = Rp self.g = g self.H = H self.rho0 = rho0 self.atmos_filename = atmos_filename self.tabular_dict = {} try: # set function to define atmoshperic density if atmos_func == 'exponential': # rhoa will change as z change self.rhoa = lambda z: self.rho0 *
np.exp(-z / self.H)
numpy.exp
from unittest import TestCase from tempfile import TemporaryDirectory from pathlib import Path from giant.camera_models import PinholeModel, OwenModel, BrownModel, OpenCVModel, save, load import numpy as np import giant.rotations as at import lxml.etree as etree class TestPinholeModel(TestCase): def setUp(self): self.Class = PinholeModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters=['focal_length', 'px']) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 0, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) def test_estimation_parameters(self): model = self.Class() model.estimation_parameters = 'kx' self.assertEqual(model.estimation_parameters, ['kx']) model.estimate_multiple_misalignments = False model.estimation_parameters = ['px', 'py', 'Multiple misalignments'] self.assertEqual(model.estimation_parameters, ['px', 'py', 'multiple misalignments']) self.assertTrue(model.estimate_multiple_misalignments) def test_kx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_ky(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 3, 0]])) self.assertEqual(model.ky, 3) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_px(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 20], [0, 3, 0]])) self.assertEqual(model.px, 20) model.px = 100 self.assertEqual(model.px, 100) self.assertEqual(model.intrinsic_matrix[0, 2], 100) def test_py(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 0, 10]])) self.assertEqual(model.py, 10) model.py = 100 self.assertEqual(model.py, 100) self.assertEqual(model.intrinsic_matrix[1, 2], 100) def test_a1(self): model = self.Class(temperature_coefficients=np.array([10, 0, 0])) self.assertEqual(model.a1, 10) model.a1 = 100 self.assertEqual(model.a1, 100) self.assertEqual(model.temperature_coefficients[0], 100) def test_a2(self): model = self.Class(temperature_coefficients=np.array([0, 10, 0])) self.assertEqual(model.a2, 10) model.a2 = 100 self.assertEqual(model.a2, 100) self.assertEqual(model.temperature_coefficients[1], 100) def test_a3(self): model = self.Class(temperature_coefficients=np.array([0, 0, 10])) self.assertEqual(model.a3, 10) model.a3 = 100 self.assertEqual(model.a3, 100) self.assertEqual(model.temperature_coefficients[2], 100) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, px=100, py=-5) np.testing.assert_array_almost_equal(model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal(model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_get_temperature_scale(self): model = self.Class(temperature_coefficients=[1, 2, 3.]) self.assertEqual(model.get_temperature_scale(1), 7) np.testing.assert_array_equal(model.get_temperature_scale([1, 2]), [7, 35]) np.testing.assert_array_equal(model.get_temperature_scale([-1, 2.]), [-1, 35]) def test_apply_distortion(self): inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class() for inp in inputs: gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, inp) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=1, a2=2, a3=3) with self.subTest(misalignment=None): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: gnom, _, pix = model.get_projections(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: gnom, _, pix = model.get_projections(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point gnom, _, pix = model.get_projections(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) gnom, _, pix = model.get_projections(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=-1e-3, a2=1e-6, a3=-7e-8) with self.subTest(misalignment=None): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: pix = model.project_onto_image(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: pix = model.project_onto_image(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pix = model.project_onto_image(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point pix = model.project_onto_image(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) pix = model.project_onto_image(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dmisalignment(self): def num_deriv(loc, dtheta, delta=1e-10) -> np.ndarray: mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [delta, 0, 0]).squeeze() point_pert_x_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, delta, 0]).squeeze() point_pert_y_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, 0, delta]).squeeze() point_pert_z_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [delta, 0, 0]).squeeze() point_pert_x_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, delta, 0]).squeeze() point_pert_y_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, 0, delta]).squeeze() point_pert_z_b = mis_pert @ loc return np.array([(point_pert_x_f - point_pert_x_b) / (2 * delta), (point_pert_y_f - point_pert_y_b) / (2 * delta), (point_pert_z_f - point_pert_z_b) / (2 * delta)]).T inputs = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [np.sqrt(3), np.sqrt(3), np.sqrt(3)], [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-np.sqrt(3), -np.sqrt(3), -np.sqrt(3)], [1, 0, 100], [0, 0.5, 1]] misalignment = [[1e-8, 0, 0], [0, 1e-8, 0], [0, 0, 1e-8], [1e-9, 1e-9, 1e-9], [-1e-8, 0, 0], [0, -1e-8, 0], [0, 0, -1e-8], [-1e-9, -1e-9, -1e-9], [1e-9, 2.3e-9, -0.5e-9]] for mis in misalignment: with self.subTest(misalignment=mis): for inp in inputs: num = num_deriv(inp, mis) # noinspection PyTypeChecker ana = self.Class._compute_dcamera_point_dmisalignment(inp) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-4) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test__compute_dgnomic_dfocal_length(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta gnom_pert_f = model_pert.get_projections(loc)[0] model_pert = cmodel.copy() model_pert.focal_length -= delta gnom_pert_b = model_pert.get_projections(loc)[0] # noinspection PyTypeChecker return np.asarray((gnom_pert_f - gnom_pert_b) / (2 * delta)) intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dfocal_length(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-5) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dtemperature_coeffs(self): def num_deriv(loc, cmodel, delta=1e-6, temperature=0) -> np.ndarray: loc = np.array(loc) model_pert = cmodel.copy() model_pert.a1 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a1 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_a1_f - pix_pert_a1_b) / (2 * delta), (pix_pert_a2_f - pix_pert_a2_b) / (2 * delta), (pix_pert_a3_f - pix_pert_a3_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, -10.5, 10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_dtemperature_coeffs(inp, temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2)]).T # TODO: investigate why this fails with slightly larger misalignments and temperature coefficients model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-4, "a2": 2e-7, "a3": 3e-8, "misalignment": [[2e-15, -1.2e-14, 5e-16], [-1e-14, 2e-14, -1e-15]]} inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[10], [-22], [1200.23]]] temperatures = [0, -1, 1, -10.5, 10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for inp in inputs: for temp in temperatures: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-2, atol=1e-10) num = num_deriv(inp, model, delta=1, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-2) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-5, "a2": 1e-6, "a3": 1e-7, "misalignment": [[0, 0, 1e-15], [0, 2e-15, 0], [3e-15, 0, 0]]} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1000]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-2, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-2, atol=1e-10) def test_remove_jacobian_columns(self): jac = np.arange(30).reshape(1, -1) model = self.Class() for est_param, vals in model.element_dict.items(): model.estimation_parameters = [est_param] expected = jac[0, vals] np.testing.assert_array_equal(model._remove_jacobian_columns(jac), [expected]) def test_apply_update(self): model_param = {"focal_length": 0, "kx": 0, "ky": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 0, "misalignment": [[0, 0, 0], [0, 0, 0]]} model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) update_vec = np.arange(14) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[8:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): gnomic = [[1, 0], [0, 1], [-1, 0], [0, -1], [0.5, 0], [0, 0.5], [-0.5, 0], [0, -0.5], [0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5], [[1, 0, 0.5], [0, 1.5, -0.5]]] model = self.Class(kx=2000, ky=-3000.2, px=1025, py=937.567, a1=1e-3, a2=2e-6, a3=-5.5e-8) temperatures = [0, 1, -1, 10.5, -10.5] for gnoms in gnomic: for temp in temperatures: with self.subTest(gnoms=gnoms, temp=temp): dis_gnoms = np.asarray(model.apply_distortion(gnoms)).astype(float) dis_gnoms *= model.get_temperature_scale(temp) pixels = ((model.intrinsic_matrix[:, :2] @ dis_gnoms).T + model.intrinsic_matrix[:, 2]).T gnoms_solved = model.pixels_to_gnomic(pixels, temperature=temp) np.testing.assert_allclose(gnoms_solved, gnoms) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-5, 'a3': 2e-5} pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class(**intrins_param) temperatures = [0, 1, -1, 10.5, -10.5] for gnom in pinhole: gnom = np.asarray(gnom).astype(float) for temp in temperatures: with self.subTest(gnom=gnom, temp=temp): mm_dist = model.apply_distortion(np.array(gnom)) temp_scale = model.get_temperature_scale(temp) mm_dist *= temp_scale pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnom *= temp_scale pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnom).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': -1e-10, 'a3': 2e-4, 'misalignment': [[1e-10, 2e-13, -3e-12], [4e-8, -5.3e-9, 9e-15]]} camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**intrins_param) # TODO: consider adjusting so this isn't needed model.estimate_multiple_misalignments = True for vec in camera_vecs: for image in [0, 1]: for temp in temperatures: with self.subTest(vec=vec, image=image, temp=temp): pixel_loc = model.project_onto_image(vec, image=image, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=image, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 0, 3], [0, 5, 6]]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments']) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 0, 13], [0, 15, 16]]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment']) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(model2.field_of_view, modeltest.field_of_view) self.assertEqual(model2.use_a_priori, modeltest.use_a_priori) self.assertEqual(model2.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model2.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model2.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model2.estimation_parameters, modeltest.estimation_parameters) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(model1.field_of_view, modeltest.field_of_view) self.assertEqual(model1.use_a_priori, modeltest.use_a_priori) self.assertEqual(model1.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model1.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model1.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model1.estimation_parameters, modeltest.estimation_parameters) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095) rows, cols, dist = model.distortion_map((2000, 250), step=10) # noinspection PyTypeChecker np.testing.assert_allclose(dist, 0, atol=1e-10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) def test_undistort_image(self): # not sure how best to do this test... pass def test_copy(self): model = self.Class() model_copy = model.copy() model.kx = 1000 model.ky = 999 model.px = 100 model.py = -20 model.a1 = 5 model.a2 = 6 model.a3 = 7 model._focal_length = 11231 model.field_of_view = 1231231 model.use_a_priori = True model.estimation_parameters = ['a1', 'kx', 'ky'] model.estimate_multiple_misalignments = True model.misalignment = [1231241, 123124, .12] self.assertNotEqual(model.kx, model_copy.kx) self.assertNotEqual(model.ky, model_copy.ky) self.assertNotEqual(model.px, model_copy.px) self.assertNotEqual(model.py, model_copy.py) self.assertNotEqual(model.a1, model_copy.a1) self.assertNotEqual(model.a2, model_copy.a2) self.assertNotEqual(model.a3, model_copy.a3) self.assertNotEqual(model.focal_length, model_copy.focal_length) self.assertNotEqual(model.field_of_view, model_copy.field_of_view) self.assertNotEqual(model.use_a_priori, model_copy.use_a_priori) self.assertNotEqual(model.estimate_multiple_misalignments, model_copy.estimate_multiple_misalignments) self.assertNotEqual(model.estimation_parameters, model_copy.estimation_parameters) self.assertTrue((model.misalignment != model_copy.misalignment).all()) def test_to_from_elem(self): element = etree.Element(self.Class.__name__) model = self.Class(focal_length=20, field_of_view=5, use_a_priori=True, misalignment=[1, 2, 3], kx=2, ky=200, px=50, py=300, a1=37, a2=1, a3=-1230, estimation_parameters=['a1', 'multiple misalignments'], n_rows=20, n_cols=30) model_copy = model.copy() with self.subTest(misalignment=True): element = model.to_elem(element, misalignment=True) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) self.assertEqual(model, model_new) with self.subTest(misalignment=False): element = model.to_elem(element, misalignment=False) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) model.estimation_parameters[-1] = 'single misalignment' model.estimate_multiple_misalignments = False model.misalignment = np.zeros(3) self.assertEqual(model, model_new) class TestOwenModel(TestPinholeModel): def setUp(self): self.Class = OwenModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 7)) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, kyx=90, estimation_parameters=['focal_length', 'px'], n_rows=500, n_cols=600, e1=1, radial2=2, pinwheel2=3, e4=4, tangential_x=6, e5=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [90, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, [2, 4, 5, 6, 1, 3]) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_kyx(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [3, 0, 0]])) self.assertEqual(model.kyx, 3) model.kyx = 100 self.assertEqual(model.kyx, 100) self.assertEqual(model.intrinsic_matrix[1, 0], 100) def test_e1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.e1, 1) model.e1 = 100 self.assertEqual(model.e1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_e2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.e2, 1) model.e2 = 100 self.assertEqual(model.e2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_e3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.e3, 1) model.e3 = 100 self.assertEqual(model.e3, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_e4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.e4, 1) model.e4 = 100 self.assertEqual(model.e4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_e5(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.e5, 1) model.e5 = 100 self.assertEqual(model.e5, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_e6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.e6, 1) model.e6 = 100 self.assertEqual(model.e6, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_pinwheel1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.pinwheel1, 1) model.pinwheel1 = 100 self.assertEqual(model.pinwheel1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_pinwheel2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.pinwheel2, 1) model.pinwheel2 = 100 self.assertEqual(model.pinwheel2, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_tangential_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.tangential_y, 1) model.tangential_y = 100 self.assertEqual(model.tangential_y, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tangential_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.tangential_x, 1) model.tangential_x = 100 self.assertEqual(model.tangential_x, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_apply_distortion(self): dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [0.5, 0], [(1.5 + 1.5 ** 3), 0], [-1.5 + 1.5 ** 3, 0], [[(1.5 + 1.5 ** 3)], [0]], [[(1.5 + 1.5 ** 3), 0.5], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [2.5, 2.5]], [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 2.5], [0, 0.5], [0, 1.5 + 1.5 ** 3], [0, -1.5 + 1.5 ** 3], [[0], [1.5 + 1.5 ** 3]], [[0, 0], [1.5 + 1.5 ** 3, 0.5]], [2.5, 2.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 3], [-1.5, -1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[-1.5 ** 3], [1.5]], [[-1.5 ** 3, 1.5], [1.5, -1]], [1 - np.sqrt(2) * 1.5, 1 + np.sqrt(2) * 1.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 5], [-1.5, -1.5 ** 5], [[1.5], [1.5 ** 5]], [[1.5, -1], [1.5 ** 5, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 5, 1.5], [1.5 ** 5, -1.5], [[-1.5 ** 5], [1.5]], [[-1.5 ** 5, 1.5], [1.5, -1]], [1 - 2 * np.sqrt(2) * 1.5, 1 + 2 * np.sqrt(2) * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23e-8, a1=1e-1, a2=1e-6, a3=-3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, a1=1, a2=2, a3=-3) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-6) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistortion_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) - loc_pert return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}, {"e1": -1.5, "e2": -1.5, "e3": -1.5, "e4": -1.5, "e5": -1.5, "e6": -1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistortion_dgnomic(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 1.5, "a2": 0, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 1.5, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5, "a1": 1.5, "a2": 1.5, "a3": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_kyx_f - pix_pert_kyx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.radial2 += delta loc_pert_r2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 += delta loc_pert_r4_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y += delta loc_pert_ty_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x += delta loc_pert_tx_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial2 -= delta loc_pert_r2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 -= delta loc_pert_r4_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y -= delta loc_pert_ty_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x -= delta loc_pert_tx_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_r2_f - loc_pert_r2_b) / (2 * delta), (loc_pert_r4_f - loc_pert_r4_b) / (2 * delta), (loc_pert_ty_f - loc_pert_ty_b) / (2 * delta), (loc_pert_tx_f - loc_pert_tx_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_m = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_m pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_m pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_m pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_m pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_m pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_m pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_m * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_m * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_m * 2)]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [[0.1, 0, 1], [0, 0.1, 1], [0.1, 0.1, 1], [-0.1, 0, 1], [0, -0.1, 1], [-0.1, -0.1, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temps: for inp in inputs: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1e-3, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-3, atol=1e-10) num = num_deriv(inp, model, delta=1e-3, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-3) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5, [1, -10, 10]] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-3, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test_apply_update(self): model_param = {"focal_length": 0, "radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0, "kx": 0, "ky": 0, "kxy": 0, "kyx": 0, "px": 0, "misalignment": [[0, 0, 0], [0, 0, 0]], "a1": 0, "a2": 0, "a3": 0} model = self.Class(**model_param, estimation_parameters=['intrinsic', "temperature dependence", 'multiple misalignments']) update_vec = np.arange(22) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[16:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-7, 'a3': 1e-8} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T mm_undist = model.pixels_to_gnomic(pix_dist, temperature=temp) np.testing.assert_allclose(mm_undist, gnoms, atol=1e-13) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-3, "a2": 1e-4, "a3": 1e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): gnoms = np.array(gnoms).astype(np.float64) mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnoms *= model.get_temperature_scale(temp) pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnoms).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-6, "a2": 1e-7, "a3": -3e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}, {"misalignment": np.array([1e-11, 2e-12, -1e-10])}, {"misalignment": np.array([[1e-11, 2e-12, -1e-10], [-1e-13, 1e-11, 2e-12]]), "estimation_parameters": "multiple misalignments"}] camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for vec in camera_vecs: with self.subTest(**dist, temp=temp, vec=vec): pixel_loc = model.project_onto_image(vec, image=-1, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=-1, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments'], a1=0, a2=3, a3=5) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 12, 13], [14, 15, 16]]), distortion_coefficients=np.array([11, 12, 13, 14, 15, 16]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment'], a1=-100, a2=-200, a3=-300) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(modeltest, model2) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(modeltest, model1) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, kxy=20, kyx=-30.4, px=100, py=-5) np.testing.assert_array_almost_equal( model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal( model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5, kxy=0.5, kyx=-8, radial2=1e-5, radial4=1e-5, pinwheel2=1e-7, pinwheel1=-1e-12, tangential_x=1e-6, tangential_y=2e-12) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix, atol=1e-10) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095, kxy=10, kyx=-5, e1=1e-6, e2=1e-12, e3=-4e-10, e5=6e-7, e6=-1e-5, e4=1e-7, a1=1e-6, a2=-1e-7, a3=4e-12) rows, cols, dist = model.distortion_map((2000, 250), step=10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) distl = model.distort_pixels(np.vstack([cs.flatten(), rs.flatten()])) np.testing.assert_array_equal(distl - np.vstack([cs.flatten(), rs.flatten()]), dist) class TestBrownModel(TestPinholeModel): def setUp(self): self.Class = BrownModel # Not supported for this model test__compute_dgnomic_dfocal_length = None def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) model = self.Class(kx=1, fy=2, px=4, py=5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, estimation_parameters=['kx', 'px'], n_rows=500, n_cols=600, radial2=1, radial4=2, k3=3, p1=4, tiptilt_x=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['kx', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) def test_fx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_fy(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 1, 0]])) self.assertEqual(model.ky, 1) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_alpha(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.alpha, 1) model.alpha = 100 self.assertEqual(model.alpha, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_k1(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.k1, 1) model.k1 = 100 self.assertEqual(model.k1, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_k2(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.k2, 1) model.k2 = 100 self.assertEqual(model.k2, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_k3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.k3, 1) model.k3 = 100 self.assertEqual(model.k3, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_p1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.p1, 1) model.p1 = 100 self.assertEqual(model.p1, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_p2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.p2, 1) model.p2 = 100 self.assertEqual(model.p2, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_radial6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.radial6, 1) model.radial6 = 100 self.assertEqual(model.radial6, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tiptilt_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.tiptilt_y, 1) model.tiptilt_y = 100 self.assertEqual(model.tiptilt_y, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_tiptilt_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.tiptilt_x, 1) model.tiptilt_x = 100 self.assertEqual(model.tiptilt_x, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_apply_distortion(self): dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 8), 0], [-(1.5 + 1.5 ** 8), 0], [[(1.5 + 1.5 ** 8)], [0]], [[(1.5 + 1.5 ** 8), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 8)], [0, -(1.5 + 1.5 ** 8)], [[0], [(1.5 + 1.5 ** 8)]], [[0, 0], [(1.5 + 1.5 ** 8), -2.5]], [1 + 8 * 1.5, 1 + 8 * 1.5]], [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 3 * 1.5], [0, -1 + 3 * 1.5], [0, 1.5 + 3 * 1.5 ** 3], [0, -1.5 + 3 * 1.5 ** 3], [[0], [1.5 + 3 * 1.5 ** 3]], [[0, 0], [1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5]], [1 + 2 * 1.5, 1 + 4 * 1.5]], [[0, 0], [1 + 3 * 1.5, 0], [-1 + 3 * 1.5, 0], [1.5 + 3 * 1.5 ** 3, 0], [-1.5 + 3 * 1.5 ** 3, 0], [[1.5 + 3 * 1.5 ** 3], [0]], [[1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1 + 2 * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1e-1, a2=-1e-6, a3=3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true)
np.testing.assert_array_almost_equal(pix, pix_true)
numpy.testing.assert_array_almost_equal
import numpy as np import math import cv2 from scipy.spatial.transform import Rotation # Calculate transformation matrices and average them def getTransformations(n_id, tvec_m, tvec_n, rvec_m, rvec_n, tvec_orig_m, tvec_orig_n, rvec_orig_m, rvec_orig_n, dRot_m, dRot_n, allow_use, ALLOW_LIMIT, tvec_max_n, tvec_min_n): if allow_use < ALLOW_LIMIT: tvec_m = np.transpose(tvec_m) # tvec of 'm' marker tvec_n = np.transpose(tvec_n) # tvec of 'n' marker tvec_orig_m = np.transpose(tvec_orig_m) # origin of 'm' in global coordinates tvec_orig_n = np.transpose(tvec_orig_n) # origin to be of 'n' in global coordinates dtvec = tvec_m - tvec_n # vector from 'm' to 'n' marker in the camera's coordinate system # get the markers' rotation matrices respectively R_m = cv2.Rodrigues(rvec_m)[0] R_n = cv2.Rodrigues(rvec_n)[0] # for filtering out min and max values tvec_temp = tvec_orig_m + dRot_m.dot(-R_m.T.dot(dtvec)) if np.linalg.norm(tvec_temp) > np.linalg.norm(tvec_max_n): tvec_max_n = tvec_temp if
np.linalg.norm(tvec_temp)
numpy.linalg.norm
from torch.nn.utils.prune import L1Unstructured, RandomUnstructured from copy import deepcopy import numpy as np import torch from collections import OrderedDict from torch.nn.utils.prune import RandomStructured, LnStructured, identity def init_for_pruning(smodel, to_be_pruned: [str], last_layer_index=-1): # don't prune the output layer for layer in list(smodel.children())[:last_layer_index]: for pname in to_be_pruned: identity(layer, pname) def calculate_mask_sparsity(model): ''' returns a tuple (ms for the whole model, [ms by layers])''' params_l, remain_l = [], [] for layer in model.children(): mask = layer.mask n_params = mask.shape[0] * mask.shape[1] params_l.append(n_params) remain_l.append(np.sum(mask.numpy())) ms = np.sum(remain_l) / np.sum(params_l) ms_l = np.array(remain_l) / np.array(params_l) return ms, ms_l def infer_one_shot_prs(sparse_models): return list(sparse_models['lenet'].keys()) # pruning with pytorch # PRE-DEFINED SPARSITY def prune_with_predefined_sparsity(model, density, random_mask=True, prune_all_layers=False, unstructured=True): amount = 1-density last_layer_index = len(list(model.children())) if prune_all_layers else -1 masks = pruning_masks(model, unstructured=unstructured, amount=amount, random_mask=random_mask, style='nodes', last_layer_index=last_layer_index) init_for_pruning(model, ['weight'], last_layer_index=last_layer_index) for j, layer in enumerate(list(model.children())[:last_layer_index]): del layer._buffers['weight_mask'] layer.register_buffer('weight_mask', masks[j]) return model def pruning_masks(dmodel, unstructured: bool, amount: float, random_mask=False, n_norm=1, style='nodes', last_layer_index=-1): ''' get pruning masks for weights (not biases) in structured manner, the same amount on every hidden layer (i.e. the output layer is excluded!) returns mask to be applied ''' masks = [] # decide the pruning method 1) unstructured/structured and 2) random/magnitude if unstructured: pruning_method = RandomUnstructured( amount=amount) if random_mask else L1Unstructured(amount=amount) else: # structured pruning, should we prune nodes or channels? dim = 0 if style == 'channels': dim = -1 pruning_method = RandomStructured(amount=amount, dim=dim) if random_mask else LnStructured( amount=amount, n=n_norm, dim=dim) for layer in list(dmodel.children())[:last_layer_index]: trained_weight = getattr(layer, 'weight') masks.append(pruning_method.compute_mask( trained_weight, torch.ones_like(trained_weight))) return masks def prune_models(models_org, models_trained, unstructured: bool, amount: float, random_mask: bool, random_init: bool, prune_all_layers: bool): ''' models is list of dense models for one architecture ''' sms = [] for i, model in enumerate(models_trained): # create the sparse model sparse_m = deepcopy(models_org[i]) last_layer_index = len(list(sparse_m.children()) ) if prune_all_layers else -1 # get the pruning masks dmodel = deepcopy(model) masks = pruning_masks(dmodel, unstructured=unstructured, amount=amount, random_mask=random_mask, style='nodes', last_layer_index=last_layer_index) init_for_pruning(sparse_m, ['weight'], last_layer_index=last_layer_index) for j, layer in enumerate(list(sparse_m.children())[:last_layer_index]): del layer._buffers['weight_mask'] layer.register_buffer('weight_mask', masks[j]) # if random init, re-initialize the params if random_init: sparse_m.init_params() sms.append(sparse_m) return sms # PRUNE NETWORKS def create_random_init_models(dense_models_org, dense_models, one_shot_pruning_rates, layer_wise_pruning, prune_weights, n_models, input_features, output_dim, random_init=True, random_mask=True, names=['lenet', 'deepfc'], prune_all_layers=False): random_init_models = OrderedDict() for name in names: rim = OrderedDict() for pr in one_shot_pruning_rates: print(f'{name}: pr {pr}', end='\r') rim_pr = prune_models(models_org=dense_models_org[name], models_trained=dense_models[name], unstructured=prune_weights, amount=1-pr, random_mask=random_mask, random_init=random_init, prune_all_layers=prune_all_layers) rim[pr] = rim_pr random_init_models[name] = rim print("", end='\r') return random_init_models def create_winning_tickets(dense_models_org, dense_models_trained, prune_weights, one_shot_pruning_rates, layer_wise_pruning, n_models, input_features, output_dim, names=[ 'lenet', 'deepfc'], prune_all_layers=False): original_init_models = OrderedDict() for name in names: oim = OrderedDict() for pr in one_shot_pruning_rates: oim_pr = prune_models(dense_models_org[name], dense_models_trained[name], unstructured=prune_weights, amount=1-pr, random_mask=False, random_init=False, prune_all_layers=prune_all_layers) oim[pr] = oim_pr original_init_models[name] = oim return original_init_models # OLD NODE WISE PRUNING def get_pruned_dim(pruning_rate, original_dim, round=False): r = 0.5 if round else 0 dim = int(r + pruning_rate * original_dim) return dim if dim > 0 else 1 def get_dim(pruning_rate, layer): return get_pruned_dim(pruning_rate, layer.out_features) def original_weights_for_pruned_lenet(original_weights, pruned_nodes_idx): l1 = original_weights[0][pruned_nodes_idx[0], :] l2 = original_weights[1][pruned_nodes_idx[1], :][:, pruned_nodes_idx[0]] out = original_weights[2][:, pruned_nodes_idx[1]] return [l1, l2, out] def apply_node_wise_pruning_to_weights(original_weights, pruned_nodes_idx): pruned = [] n_layers = len(original_weights) for n, w in enumerate(original_weights): if n == 0: # input layer pruned.append(w[pruned_nodes_idx[n], :]) elif n == n_layers - 1: # output layer pruned.append(w[:, pruned_nodes_idx[n-1]]) else: # hidden layers pruned.append(w[pruned_nodes_idx[n], :][:, pruned_nodes_idx[n-1]]) return pruned def prune_nodes_large_final(trained_weights, pruning_rate: float): ''' trained weights is a list of numpy arrays pruning rate e [0,1] ''' target_dims = [int(trained_weights[n].shape[0] * (1-pruning_rate)) for n in range(len(trained_weights))] pruned_nodes_idx = [] # don't prune the output layer for i, w in enumerate(trained_weights[:-1]): w_mean = np.mean(
np.abs(w)
numpy.abs
import numpy as np from scipy import stats as sps class TSBandit: """ Implements a Thompson-Sampling Multiarmed Bandit algorithm for the item recommendation problem See (insert link) for details """ def __init__(self, M, l): """ Creates a new instance of the TS Bandit for item recommendation problem Inits Beta params [a, b] to uniformly sampled in [0, 1] :param M: number of actions :param l: return this number of recommendations """ self.l = l self.M = M self.params = np.ones(shape=(self.M, 2)) def predict(self): """ Get the next prediction from the bandit :return: an np array with action probabilities, an np array of selected actions """ pr = sps.beta.rvs(a=self.params[:,0], b=self.params[:,1]) rec = np.argsort(-pr)[:self.l] return pr, rec def update(self, actions, response): """ Updates the bandit with responses to previously given actions :param actions: actions for which updates are :param response: the rewards for the actions :return: an updated params """ self.params[actions] +=
np.vstack([response, 1 - response])
numpy.vstack
## @ingroupMethods-Noise-Fidelity_One-Noise_Tools # generate_microphone_points.py # # Created: Sep 2021, <NAME> # ---------------------------------------------------------------------- # Imports # --------------------------------------------------------------------- import numpy as np # ---------------------------------------------------------------------- # Compute Microphone Points # --------------------------------------------------------------------- ## @ingroupMethods-Noise-Fidelity_One-Noise_Tools def generate_ground_microphone_points(min_x,max_x,min_y,max_y,N_x,N_y): """This computes the absolute microphone/observer locations on level ground. Assumptions: None Source: N/A Inputs: min_x - minimum x coordinate of noise evaluation plane [meters] max_x - maximum x coordinate of noise evaluation plane [meters] min_y - minimum y coordinate of noise evaluation plane [meters] max_x - maximim y coordinate of noise evaluation plane [meters] N_x - number of microphones on x-axis N_y - number of microphones on y-axis Outputs: gm_mic_locations - cartesian coordiates of all microphones defined [meters] Properties Used: N/A """ num_gm = N_x*N_y gm_mic_locations = np.zeros((num_gm,3)) x_coords_0 = np.repeat(np.linspace(min_x,max_x,N_x)[:,np.newaxis],N_y, axis = 1) y_coords_0 = np.repeat(np.linspace(min_y,max_y,N_y)[:,np.newaxis],N_x, axis = 1).T z_coords_0 = np.zeros_like(x_coords_0) gm_mic_locations[:,0] = x_coords_0.reshape(num_gm) gm_mic_locations[:,1] = y_coords_0.reshape(num_gm) gm_mic_locations[:,2] = z_coords_0.reshape(num_gm) return gm_mic_locations ## @ingroupMethods-Noise-Fidelity_One-Noise_Tools def generate_building_microphone_points(building_locations,building_dimensions,N_x,N_y,N_z): """This computes the absolute microphone/observer locations on the surface of rectilinear buildinsg. Assumptions: Microhpone locations are uniformly distributed on the surface Source: N/A Inputs: building_locations - cartesian coordinates of the base of buildings [meters] building_dimensions - dimensions of buildings [length,width,height] [meters] building_microphone_resolution - resolution of microphone array [unitless] N_x - discretization of points in x dimension on building surface [meters] N_y - discretization of points in y dimension on building surface [meters] N_z - discretization of points in z dimension on building surface [meters] Outputs: building_mic_locations - cartesian coordiates of all microphones defined on buildings [meters] Properties Used: N/A """ building_locations = np.array(building_locations) building_dimensions = np.array(building_dimensions) N_b = len(building_locations) num_mics_on_xz_surface = N_x*N_z num_mics_on_yz_surface = N_y*N_z num_mics_on_xy_surface = N_x*N_y num_mics_per_building = 2*(num_mics_on_xz_surface +num_mics_on_yz_surface) + num_mics_on_xy_surface b_mic_locations = np.empty((N_b,num_mics_per_building,3)) x0 = building_locations[:,0] y0 = building_locations[:,1] z0 = building_locations[:,2] l = building_dimensions[:,0] w = building_dimensions[:,1] h = building_dimensions[:,2] # surface 1 (front) x_coords_1 = np.repeat(np.repeat(np.atleast_2d(x0-l/2).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) Y_1 = np.repeat(np.repeat(np.atleast_2d(y0).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) YW_1 = np.repeat(np.repeat(np.atleast_2d(w/2).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) non_dim_y_1 = np.repeat(np.repeat(np.linspace(-1,1,N_y)[:,np.newaxis],N_z, axis = 1)[np.newaxis,:,:],N_b, axis = 0) y_coords_1 = non_dim_y_1*YW_1 + Y_1 Z_1 = np.repeat(np.repeat(np.atleast_2d(h).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) non_dim_z_1 = np.repeat(np.repeat(np.linspace(0,1,N_z)[:,np.newaxis],N_y, axis = 1).T[np.newaxis,:,:],N_b, axis = 0) z_coords_1 = non_dim_z_1*Z_1 start_idx_1 = 0 end_idx_1 = num_mics_on_yz_surface b_mic_locations[:,start_idx_1:end_idx_1 ,0] = x_coords_1.reshape(N_b,N_y*N_z) b_mic_locations[:,start_idx_1:end_idx_1 ,1] = y_coords_1.reshape(N_b,N_y*N_z) b_mic_locations[:,start_idx_1:end_idx_1 ,2] = z_coords_1.reshape(N_b,N_y*N_z) # surface 2 (right) X_2 = np.repeat(np.repeat(np.atleast_2d(x0).T,N_x,axis = 1)[:,:,np.newaxis],N_z,axis = 2) XW_2 = np.repeat(np.repeat(np.atleast_2d(l/2).T,N_x,axis = 1)[:,:,np.newaxis],N_z,axis = 2) non_dim_x_2 = np.repeat(np.repeat(np.linspace(-1,1,N_x)[:,np.newaxis],N_z, axis = 1)[np.newaxis,:,:],N_b, axis = 0) x_coords_2 = non_dim_x_2*XW_2 + X_2 y_coords_2 = np.repeat(np.repeat(np.atleast_2d(y0+w/2).T,N_x,axis = 1)[:,:,np.newaxis],N_z,axis = 2) Z_2 = np.repeat(np.repeat(np.atleast_2d(h).T,N_x,axis = 1)[:,:,np.newaxis],N_z,axis = 2) non_dim_z_2 = np.repeat(np.repeat(np.linspace(0,1,N_z)[:,np.newaxis],N_x, axis = 1).T[np.newaxis,:,:],N_b, axis = 0) z_coords_2 = non_dim_z_2*Z_2 start_idx_2 = end_idx_1 end_idx_2 = start_idx_2 + num_mics_on_xz_surface b_mic_locations[:,start_idx_2:end_idx_2 ,0] = x_coords_2.reshape(N_b,N_y*N_z) b_mic_locations[:,start_idx_2:end_idx_2 ,1] = y_coords_2.reshape(N_b,N_y*N_z) b_mic_locations[:,start_idx_2:end_idx_2 ,2] = z_coords_2.reshape(N_b,N_y*N_z) # surface 3 (back) x_coords_3 = np.repeat(np.repeat(np.atleast_2d(x0+l/2).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) Y_3 = np.repeat(np.repeat(np.atleast_2d(y0).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) YW_3 = np.repeat(np.repeat(np.atleast_2d(w/2).T,N_y,axis = 1)[:,:,np.newaxis],N_z,axis = 2) non_dim_y_3 = np.repeat(np.repeat(np.linspace(-1,1,N_y)[:,np.newaxis],N_z, axis = 1)[np.newaxis,:,:],N_b, axis = 0) y_coords_3 = non_dim_y_3*YW_3 + Y_3 Z_3 = np.repeat(np.repeat(
np.atleast_2d(h)
numpy.atleast_2d
# standard modules import ast import datetime import os import logging import sys # 3rd party modules import numpy import matplotlib.dates as mdt import xlrd # PFP modules import constants as c import qcio import qcts import qcutils logger = logging.getLogger("pfp_log") # GapFillParseControlFile parses the L4 control file def GapFillParseControlFile(cf, ds, series, ds_alt): # find the section containing the series section = qcutils.get_cfsection(cf, series=series, mode="quiet") # return empty handed if the series is not in a section if len(section) == 0: return if "GapFillFromAlternate" in cf[section][series].keys(): # create the alternate dictionary in ds gfalternate_createdict(cf, ds, series, ds_alt) if "GapFillUsingSOLO" in cf[section][series].keys(): # create the SOLO dictionary in ds gfSOLO_createdict(cf, ds, series) if "GapFillUsingMDS" in cf[section][series].keys(): # create the MDS dictionary in ds gfMDS_createdict(cf, ds, series) if "GapFillFromClimatology" in cf[section][series].keys(): # create the climatology dictionary in the data structure gfClimatology_createdict(cf, ds, series) if "MergeSeries" in cf[section][series].keys(): # create the merge series dictionary in the data structure gfMergeSeries_createdict(cf, ds, series) def gfalternate_createdict(cf, ds, series, ds_alt): """ Purpose: Creates a dictionary in ds to hold information about the alternate data used to gap fill the tower data. Usage: Side effects: Author: PRI Date: August 2014 """ # get the section of the control file containing the series section = qcutils.get_cfsection(cf, series=series, mode="quiet") # return without doing anything if the series isn't in a control file section if len(section)==0: logger.error("GapFillFromAlternate: Series %s not found in control file, skipping ...", series) return # create the alternate directory in the data structure if "alternate" not in dir(ds): ds.alternate = {} # name of alternate output series in ds output_list = cf[section][series]["GapFillFromAlternate"].keys() # loop over the outputs listed in the control file for output in output_list: # create the dictionary keys for this output ds.alternate[output] = {} ds.alternate[output]["label_tower"] = series # source name ds.alternate[output]["source"] = cf[section][series]["GapFillFromAlternate"][output]["source"] # site name ds.alternate[output]["site_name"] = ds.globalattributes["site_name"] # alternate data file name # first, look in the [Files] section for a generic file name file_list = cf["Files"].keys() lower_file_list = [item.lower() for item in file_list] if ds.alternate[output]["source"].lower() in lower_file_list: # found a generic file name i = lower_file_list.index(ds.alternate[output]["source"].lower()) ds.alternate[output]["file_name"] = cf["Files"][file_list[i]] else: # no generic file name found, look for a file name in the variable section ds.alternate[output]["file_name"] = cf[section][series]["GapFillFromAlternate"][output]["file_name"] # if the file has not already been read, do it now if ds.alternate[output]["file_name"] not in ds_alt: ds_alternate = qcio.nc_read_series(ds.alternate[output]["file_name"],fixtimestepmethod="round") gfalternate_matchstartendtimes(ds,ds_alternate) ds_alt[ds.alternate[output]["file_name"]] = ds_alternate # get the type of fit ds.alternate[output]["fit_type"] = "OLS" if "fit" in cf[section][series]["GapFillFromAlternate"][output]: if cf[section][series]["GapFillFromAlternate"][output]["fit"].lower() in ["ols","ols_thru0","mrev","replace","rma","odr"]: ds.alternate[output]["fit_type"] = cf[section][series]["GapFillFromAlternate"][output]["fit"] else: logger.info("gfAlternate: unrecognised fit option for series %s, used OLS", output) # correct for lag? if "lag" in cf[section][series]["GapFillFromAlternate"][output]: if cf[section][series]["GapFillFromAlternate"][output]["lag"].lower() in ["no","false"]: ds.alternate[output]["lag"] = "no" elif cf[section][series]["GapFillFromAlternate"][output]["lag"].lower() in ["yes","true"]: ds.alternate[output]["lag"] = "yes" else: logger.info("gfAlternate: unrecognised lag option for series %s", output) else: ds.alternate[output]["lag"] = "yes" # choose specific alternate variable? if "usevars" in cf[section][series]["GapFillFromAlternate"][output]: ds.alternate[output]["usevars"] = ast.literal_eval(cf[section][series]["GapFillFromAlternate"][output]["usevars"]) # alternate data variable name if different from name used in control file if "alternate_name" in cf[section][series]["GapFillFromAlternate"][output]: ds.alternate[output]["alternate_name"] = cf[section][series]["GapFillFromAlternate"][output]["alternate_name"] else: ds.alternate[output]["alternate_name"] = series # results of best fit for plotting later on ds.alternate[output]["results"] = {"startdate":[],"enddate":[],"No. points":[],"No. filled":[], "r":[],"Bias":[],"RMSE":[],"Frac Bias":[],"NMSE":[], "Avg (Tower)":[],"Avg (Alt)":[], "Var (Tower)":[],"Var (Alt)":[],"Var ratio":[]} # create an empty series in ds if the alternate output series doesn't exist yet if output not in ds.series.keys(): data,flag,attr = qcutils.MakeEmptySeries(ds,output) qcutils.CreateSeries(ds,output,data,flag,attr) qcutils.CreateSeries(ds,series+"_composite",data,flag,attr) def gfalternate_matchstartendtimes(ds,ds_alternate): """ Purpose: Match the start and end times of the alternate and tower data. The logic is as follows: - if there is no overlap between the alternate and tower data then dummy series with missing data are created for the alternate data for the period of the tower data - if the alternate and tower data overlap then truncate or pad (with missing values) the alternate data series so that the periods of the tower data and alternate data match. Usage: gfalternate_matchstartendtimes(ds,ds_alternate) where ds is the data structure containing the tower data ds_alternate is the data structure containing the alternate data Author: PRI Date: July 2015 """ # check the time steps are the same ts_tower = int(ds.globalattributes["time_step"]) ts_alternate = int(ds_alternate.globalattributes["time_step"]) if ts_tower!=ts_alternate: msg = " GapFillFromAlternate: time step for tower and alternate data are different, returning ..." logger.error(msg) ds.returncodes["GapFillFromAlternate"] = "error" return # get the start and end times of the tower and the alternate data and see if they overlap ldt_alternate = ds_alternate.series["DateTime"]["Data"] start_alternate = ldt_alternate[0] ldt_tower = ds.series["DateTime"]["Data"] end_tower = ldt_tower[-1] # since the datetime is monotonically increasing we need only check the start datetime overlap = start_alternate<=end_tower # do the alternate and tower data overlap? if overlap: # index of alternate datetimes that are also in tower datetimes #alternate_index = qcutils.FindIndicesOfBInA(ldt_tower,ldt_alternate) #alternate_index = [qcutils.find_nearest_value(ldt_tower, dt) for dt in ldt_alternate] # index of tower datetimes that are also in alternate datetimes #tower_index = qcutils.FindIndicesOfBInA(ldt_alternate,ldt_tower) #tower_index = [qcutils.find_nearest_value(ldt_alternate, dt) for dt in ldt_tower] tower_index, alternate_index = qcutils.FindMatchingIndices(ldt_tower, ldt_alternate) # check that the indices point to the same times ldta = [ldt_alternate[i] for i in alternate_index] ldtt = [ldt_tower[i] for i in tower_index] if ldta!=ldtt: # and exit with a helpful message if they dont logger.error(" Something went badly wrong and I'm giving up") sys.exit() # get a list of alternate series alternate_series_list = [item for item in ds_alternate.series.keys() if "_QCFlag" not in item] # number of records in truncated or padded alternate data nRecs_tower = len(ldt_tower) # force the alternate dattime to be the tower date time ds_alternate.series["DateTime"] = ds.series["DateTime"] # loop over the alternate series and truncate or pad as required # truncation or padding is handled by the indices for series in alternate_series_list: if series in ["DateTime","DateTime_UTC"]: continue # get the alternate data data,flag,attr = qcutils.GetSeriesasMA(ds_alternate,series) # create an array of missing data of the required length data_overlap = numpy.full(nRecs_tower,c.missing_value,dtype=numpy.float64) flag_overlap = numpy.ones(nRecs_tower,dtype=numpy.int32) # replace missing data with alternate data where times match data_overlap[tower_index] = data[alternate_index] flag_overlap[tower_index] = flag[alternate_index] # write the truncated or padded series back into the alternate data structure qcutils.CreateSeries(ds_alternate,series,data_overlap,flag_overlap,attr) # update the number of records in the file ds_alternate.globalattributes["nc_nrecs"] = nRecs_tower else: # there is no overlap between the alternate and tower data, create dummy series nRecs = len(ldt_tower) ds_alternate.globalattributes["nc_nrecs"] = nRecs ds_alternate.series["DateTime"] = ds.series["DateTime"] alternate_series_list = [item for item in ds_alternate.series.keys() if "_QCFlag" not in item] for series in alternate_series_list: if series in ["DateTime","DateTime_UTC"]: continue _, _, attr = qcutils.GetSeriesasMA(ds_alternate, series) data = numpy.full(nRecs, c.missing_value, dtype=numpy.float64) flag = numpy.ones(nRecs, dtype=numpy.int32) qcutils.CreateSeries(ds_alternate, series, data, flag, attr) ds.returncodes["GapFillFromAlternate"] = "normal" def gfClimatology_createdict(cf, ds, series): """ Creates a dictionary in ds to hold information about the climatological data used to gap fill the tower data.""" # get the section of the control file containing the series section = qcutils.get_cfsection(cf, series=series,mode="quiet") # return without doing anything if the series isn't in a control file section if len(section) == 0: logger.error("GapFillFromClimatology: Series %s not found in control file, skipping ...", series) return # create the climatology directory in the data structure if "climatology" not in dir(ds): ds.climatology = {} # name of alternate output series in ds output_list = cf[section][series]["GapFillFromClimatology"].keys() # loop over the outputs listed in the control file for output in output_list: # create the dictionary keys for this output ds.climatology[output] = {} ds.climatology[output]["label_tower"] = series # site name ds.climatology[output]["site_name"] = ds.globalattributes["site_name"] # Climatology file name file_list = cf["Files"].keys() lower_file_list = [item.lower() for item in file_list] # first, look in the [Files] section for a generic file name if "climatology" in lower_file_list: # found a generic file name i = lower_file_list.index("climatology") ds.climatology[output]["file_name"] = cf["Files"][file_list[i]] else: # no generic file name found, look for a file name in the variable section ds.climatology[output]["file_name"] = cf[section][series]["GapFillFromClimatology"][output]["file_name"] # climatology variable name if different from name used in control file if "climatology_name" in cf[section][series]["GapFillFromClimatology"][output]: ds.climatology[output]["climatology_name"] = cf[section][series]["GapFillFromClimatology"][output]["climatology_name"] else: ds.climatology[output]["climatology_name"] = series # climatology gap filling method if "method" not in cf[section][series]["GapFillFromClimatology"][output].keys(): # default if "method" missing is "interpolated_daily" ds.climatology[output]["method"] = "interpolated_daily" else: ds.climatology[output]["method"] = cf[section][series]["GapFillFromClimatology"][output]["method"] # create an empty series in ds if the climatology output series doesn't exist yet if output not in ds.series.keys(): data, flag, attr = qcutils.MakeEmptySeries(ds, output) qcutils.CreateSeries(ds, output, data, flag, attr) def gfMDS_createdict(cf, ds, series): """ Purpose: Create an information dictionary for MDS gap filling from the contents of the control file. Usage: info["MDS"] = gfMDS_createdict(cf) Author: PRI Date: May 2018 """ # get the section of the control file containing the series section = qcutils.get_cfsection(cf, series=series, mode="quiet") # return without doing anything if the series isn't in a control file section if len(section)==0: logger.error("GapFillUsingMDS: Series %s not found in control file, skipping ...", series) return # create the MDS attribute (a dictionary) in ds, this will hold all MDS settings if "mds" not in dir(ds): ds.mds = {} # name of MDS output series in ds output_list = cf[section][series]["GapFillUsingMDS"].keys() # loop over the outputs listed in the control file for output in output_list: # create the dictionary keys for this series ds.mds[output] = {} # get the target if "target" in cf[section][series]["GapFillUsingMDS"][output]: ds.mds[output]["target"] = cf[section][series]["GapFillUsingMDS"][output]["target"] else: ds.mds[output]["target"] = series # site name ds.mds[output]["site_name"] = ds.globalattributes["site_name"] # list of SOLO settings if "mds_settings" in cf[section][series]["GapFillUsingMDS"][output]: mdss_list = ast.literal_eval(cf[section][series]["GapFillUsingMDS"][output]["mds_settings"]) # list of drivers ds.mds[output]["drivers"] = ast.literal_eval(cf[section][series]["GapFillUsingMDS"][output]["drivers"]) # list of tolerances ds.mds[output]["tolerances"] = ast.literal_eval(cf[section][series]["GapFillUsingMDS"][output]["tolerances"]) # get the ustar filter option opt = qcutils.get_keyvaluefromcf(cf, [section, series, "GapFillUsingMDS", output], "turbulence_filter", default="") ds.mds[output]["turbulence_filter"] = opt # get the day/night filter option opt = qcutils.get_keyvaluefromcf(cf, [section, series, "GapFillUsingMDS", output], "daynight_filter", default="") ds.mds[output]["daynight_filter"] = opt # check that all requested targets and drivers have a mapping to # a FluxNet label, remove if they don't fluxnet_label_map = {"Fc":"NEE", "Fe":"LE", "Fh":"H", "Fsd":"SW_IN", "Ta":"TA", "VPD":"VPD"} for mds_label in ds.mds: ds.mds[mds_label]["mds_label"] = mds_label pfp_target = ds.mds[mds_label]["target"] if pfp_target not in fluxnet_label_map: msg = " Target ("+pfp_target+") not supported for MDS gap filling" logger.warning(msg) del ds.mds[mds_label] else: ds.mds[mds_label]["target_mds"] = fluxnet_label_map[pfp_target] pfp_drivers = ds.mds[mds_label]["drivers"] for pfp_driver in pfp_drivers: if pfp_driver not in fluxnet_label_map: msg = "Driver ("+pfp_driver+") not supported for MDS gap filling" logger.warning(msg) ds.mds[mds_label]["drivers"].remove(pfp_driver) else: if "drivers_mds" not in ds.mds[mds_label]: ds.mds[mds_label]["drivers_mds"] = [] ds.mds[mds_label]["drivers_mds"].append(fluxnet_label_map[pfp_driver]) if len(ds.mds[mds_label]["drivers"]) == 0: del ds.mds[mds_label] return def gfMergeSeries_createdict(cf,ds,series): """ Creates a dictionary in ds to hold information about the merging of gap filled and tower data.""" merge_prereq_list = ["Fsd","Fsu","Fld","Flu","Ts","Sws"] # get the section of the control file containing the series section = qcutils.get_cfsection(cf,series=series,mode="quiet") # create the merge directory in the data structure if "merge" not in dir(ds): ds.merge = {} # check to see if this series is in the "merge first" list # series in the "merge first" list get merged first so they can be used with existing tower # data to re-calculate Fg, Fn and Fa merge_order = "standard" if series in merge_prereq_list: merge_order = "prerequisite" if merge_order not in ds.merge.keys(): ds.merge[merge_order] = {} # create the dictionary keys for this series ds.merge[merge_order][series] = {} # output series name ds.merge[merge_order][series]["output"] = series # site name ds.merge[merge_order][series]["source"] = ast.literal_eval(cf[section][series]["MergeSeries"]["Source"]) # create an empty series in ds if the output series doesn't exist yet if ds.merge[merge_order][series]["output"] not in ds.series.keys(): data,flag,attr = qcutils.MakeEmptySeries(ds,ds.merge[merge_order][series]["output"]) qcutils.CreateSeries(ds,ds.merge[merge_order][series]["output"],data,flag,attr) def gfSOLO_createdict(cf,ds,series): """ Creates a dictionary in ds to hold information about the SOLO data used to gap fill the tower data.""" # get the section of the control file containing the series section = qcutils.get_cfsection(cf,series=series,mode="quiet") # return without doing anything if the series isn't in a control file section if len(section)==0: logger.error("GapFillUsingSOLO: Series %s not found in control file, skipping ...", series) return # create the solo directory in the data structure if "solo" not in dir(ds): ds.solo = {} # name of SOLO output series in ds output_list = cf[section][series]["GapFillUsingSOLO"].keys() # loop over the outputs listed in the control file for output in output_list: # create the dictionary keys for this series ds.solo[output] = {} # get the target if "target" in cf[section][series]["GapFillUsingSOLO"][output]: ds.solo[output]["label_tower"] = cf[section][series]["GapFillUsingSOLO"][output]["target"] else: ds.solo[output]["label_tower"] = series # site name ds.solo[output]["site_name"] = ds.globalattributes["site_name"] # list of SOLO settings if "solo_settings" in cf[section][series]["GapFillUsingSOLO"][output]: ss_list = ast.literal_eval(cf[section][series]["GapFillUsingSOLO"][output]["solo_settings"]) ds.solo[output]["solo_settings"] = {} ds.solo[output]["solo_settings"]["nodes_target"] = int(ss_list[0]) ds.solo[output]["solo_settings"]["training"] = int(ss_list[1]) ds.solo[output]["solo_settings"]["factor"] = int(ss_list[2]) ds.solo[output]["solo_settings"]["learningrate"] = float(ss_list[3]) ds.solo[output]["solo_settings"]["iterations"] = int(ss_list[4]) # list of drivers ds.solo[output]["drivers"] = ast.literal_eval(cf[section][series]["GapFillUsingSOLO"][output]["drivers"]) # apply ustar filter opt = qcutils.get_keyvaluefromcf(cf,[section,series,"GapFillUsingSOLO",output], "turbulence_filter",default="") ds.solo[output]["turbulence_filter"] = opt opt = qcutils.get_keyvaluefromcf(cf,[section,series,"GapFillUsingSOLO",output], "daynight_filter",default="") ds.solo[output]["daynight_filter"] = opt # results of best fit for plotting later on ds.solo[output]["results"] = {"startdate":[],"enddate":[],"No. points":[],"r":[], "Bias":[],"RMSE":[],"Frac Bias":[],"NMSE":[], "Avg (obs)":[],"Avg (SOLO)":[], "Var (obs)":[],"Var (SOLO)":[],"Var ratio":[], "m_ols":[],"b_ols":[]} # create an empty series in ds if the SOLO output series doesn't exist yet if output not in ds.series.keys(): data,flag,attr = qcutils.MakeEmptySeries(ds,output) qcutils.CreateSeries(ds,output,data,flag,attr) # functions for GapFillUsingMDS: not implemented yet def GapFillFluxUsingMDS(cf, ds, series=""): section = qcutils.get_cfsection(cf, series=series, mode="quiet") if len(section)==0: return if "GapFillFluxUsingMDS" in cf[section][series].keys(): logger.info(" GapFillFluxUsingMDS: not implemented yet") return # functions for GapFillFromClimatology def GapFillFromClimatology(ds): ''' Gap fill missing data using data from the climatology spreadsheet produced by the climatology.py script. ''' if "climatology" not in dir(ds): return # tell the user what we are going to do msg = " Reading climatology file and creating climatology series" logger.info(msg) # loop over the series to be gap filled using climatology cli_xlbooks = {} for output in ds.climatology.keys(): # check to see if there are any gaps in "series" #index = numpy.where(abs(ds.series[label]['Data']-float(c.missing_value))<c.eps)[0] #if len(index)==0: continue # no gaps found in "series" cli_filename = ds.climatology[output]["file_name"] if not os.path.exists(cli_filename): logger.error(" GapFillFromClimatology: Climatology file %s doesn't exist", cli_filename) continue if cli_filename not in cli_xlbooks: cli_xlbooks[cli_filename] = xlrd.open_workbook(cli_filename) # local pointers to the series name and climatology method label = ds.climatology[output]["label_tower"] method = ds.climatology[output]["method"] # do the gap filling # choose the gap filling method if method=="monthly": gfClimatology_monthly(ds,label,output,cli_xlbooks) elif method=="interpolated daily": gfClimatology_interpolateddaily(ds,label,output,cli_xlbooks) else: logger.error(" GapFillFromClimatology: unrecognised method option for %s", label) continue if 'GapFillFromClimatology' not in ds.globalattributes['Functions']: ds.globalattributes['Functions'] = ds.globalattributes['Functions']+', GapFillFromClimatology' # remove the "climatology" attribute from ds #del ds.climatology def gfClimatology_interpolateddaily(ds,series,output,xlbooks): """ Gap fill using data interpolated over a 2D array where the days are the rows and the time of day is the columns. """ # gap fill from interpolated 30 minute data xlfilename = ds.climatology[output]["file_name"] sheet_name = series+'i(day)' if sheet_name not in xlbooks[xlfilename].sheet_names(): msg = " gfClimatology: sheet "+sheet_name+" not found, skipping ..." logger.warning(msg) return ldt = ds.series["DateTime"]["Data"] thissheet = xlbooks[xlfilename].sheet_by_name(sheet_name) datemode = xlbooks[xlfilename].datemode basedate = datetime.datetime(1899, 12, 30) nts = thissheet.ncols - 1 ndays = thissheet.nrows - 2 # read the time stamp values from the climatology worksheet tsteps = thissheet.row_values(1,start_colx=1,end_colx=nts+1) # read the data from the climatology workbook val1d = numpy.ma.zeros(ndays*nts,dtype=numpy.float64) # initialise an array for the datetime of the climatological values cdt = [None]*nts*ndays # loop over the rows (days) of data for xlRow in range(ndays): # get the Excel datetime value xldatenumber = int(thissheet.cell_value(xlRow+2,0)) # convert this to a Python Datetime xldatetime = basedate+datetime.timedelta(days=xldatenumber+1462*datemode) # fill the climatology datetime array cdt[xlRow*nts:(xlRow+1)*nts] = [xldatetime+datetime.timedelta(hours=hh) for hh in tsteps] # fill the climatological value array val1d[xlRow*nts:(xlRow+1)*nts] = thissheet.row_values(xlRow+2,start_colx=1,end_colx=nts+1) # get the data to be filled with climatological values data,flag,attr = qcutils.GetSeriesasMA(ds,series) # get an index of missing values idx = numpy.where(numpy.ma.getmaskarray(data)==True)[0] #idx = numpy.ma.where(numpy.ma.getmaskarray(data)==True)[0] # there must be a better way to do this ... # simply using the index (idx) to set a slice of the data array to the gap filled values in val1d # does not seem to work (mask stays true on replaced values in data), the work around is to # step through the indices, find the time of the missing value in data, find the same time in the # gap filled values val1d and set the missing element of data to this element of val1d # actually ... # this may not be the fastest but it may be the most robust because it matches dates of missing data # to dates in the climatology file for ii in idx: try: jj = qcutils.find_nearest_value(cdt, ldt[ii]) data[ii] = val1d[jj] flag[ii] = numpy.int32(40) except ValueError: data[ii] = numpy.float64(c.missing_value) flag[ii] = numpy.int32(41) # put the gap filled data back into the data structure qcutils.CreateSeries(ds,output,data,flag,attr) def gfClimatology_monthly(ds,series,output,xlbook): """ Gap fill using monthly climatology.""" thissheet = xlbook.sheet_by_name(series) val1d = numpy.zeros_like(ds.series[series]['Data']) values = numpy.zeros([48,12]) for month in range(1,13): xlCol = (month-1)*5 + 2 values[:,month-1] = thissheet.col_values(xlCol)[2:50] for i in range(len(ds.series[series]['Data'])): h = numpy.int(2*ds.series['Hdh']['Data'][i]) m = numpy.int(ds.series['Month']['Data'][i]) val1d[i] = values[h,m-1] index = numpy.where(abs(ds.series[output]['Data']-c.missing_value)<c.eps)[0] ds.series[output]['Data'][index] = val1d[index] ds.series[output]['Flag'][index] = numpy.int32(40) # functions for GapFillUsingInterpolation def GapFillUsingInterpolation(cf,ds): """ Purpose: Gap fill variables in the data structure using interpolation. All variables in the [Variables], [Drivers] and [Fluxes] section are processed. Usage: qcgf.GapFillUsingInterpolation(cf,ds) where cf is a control file object ds is a data structure Author: PRI Date: September 2016 """ label_list = qcutils.get_label_list_from_cf(cf) maxlen = int(qcutils.get_keyvaluefromcf(cf,["Options"],"MaxGapInterpolate",default=2)) if maxlen==0: msg = " Gap fill by interpolation disabled in control file" logger.info(msg) return for label in label_list: section = qcutils.get_cfsection(cf, series=label) if "MaxGapInterpolate" in cf[section][label]: maxlen = int(qcutils.get_keyvaluefromcf(cf,[section,label],"MaxGapInterpolate",default=2)) if maxlen==0: msg = " Gap fill by interpolation disabled for "+label logger.info(msg) continue qcts.InterpolateOverMissing(ds,series=label,maxlen=2) # miscellaneous L4 routines def gf_getdiurnalstats(DecHour,Data,ts): nInts = 24*int((60/ts)+0.5) Num =
numpy.ma.zeros(nInts,dtype=int)
numpy.ma.zeros
import numpy as np from scipy.ndimage.filters import gaussian_filter from scipy.ndimage.morphology import binary_erosion, distance_transform_edt from scipy.ndimage import find_objects import random from random import uniform, random, randint, getrandbits from scipy import interpolate import copy from scipy.ndimage.filters import generic_filter try: import edt except Exception: pass try: import dataset_iterator.helpers as dih except: dih=None from .helpers import ensure_multiplicity def batch_wise_fun(fun): #return lambda batch : np.stack([fun(batch[i]) for i in range(batch.shape[0])], 0) def func(batch): for b in range(batch.shape[0]): batch[b] = fun(batch[b]) return batch return func def apply_and_stack_channel(*funcs): return lambda batch : np.concatenate([fun(batch) for fun in funcs], -1) def identity(batch): return batch def level_set(label_img, max_distance=None, dtype=np.float32): if not np.any(label_img): # empty image baseline = np.ones_like(label_img, dtype=dtype) if max_distance is not None: return baseline * max_distance # base line = max possible distance value else: return baseline * max(label_img.shape) inside = distance_transform_edt(label_img).astype(dtype, copy=False) # edm inside outside = distance_transform_edt(np.where(label_img, False, True)).astype(dtype, copy=False) if max_distance is not None: inside[inside<-max_distance] = -max_distance outside[outside>max_distance] = max_distance return outside - inside def unet_weight_map(batch, wo=10, sigma=5, max_background_ratio=0, set_contours_to_zero=False, dtype=np.float32): """Implementation of Unet weight map as in <NAME>., <NAME>., & <NAME>. (2015, October). U-net: Convolutional networks for biomedical image segmentation. Parameters ---------- batch : type ND array of shape (batch, Y, X, nchan) of labeld images if nchan>1 function is applied separately on each channel wo : float cf Unet paper sigma : float cf Unet paper max_background_ratio : bool limits the ratio (background volume / foreground volume). useful when foreground is rare, in which case the weight of forground will be: max_background_ratio / (1 + max_background_ratio) if 0, not limit set_contours_to_zero : bool if true, weight of object contours is set to zero dtype : numpy.dtype weight map data type Returns ------- type numpy nd array of same shape as batch """ if batch.shape[-1]>1: wms = [unet_weight_map(batch[...,i:i+1], wo, sigma, max_background_ratio, True, dtype) for i in range(batch.shape[-1])] return np.concatenate(wms, axis=-1) else: s2 = sigma * sigma * 2 wm = weight_map_mask_class_balance(batch, max_background_ratio, True, dtype) if wo>0 or set_contours_to_zero: for i in range(batch.shape[0]): im = batch[i] labels = np.unique(im) labels = labels[labels!=0] if labels.shape[0]>1 and wo>0: edms=[distance_transform_edt(np.invert(im==l)) for l in labels] edm = np.concatenate(edms, axis=-1) edm = np.partition(edm, 1)[...,:2] # get the 2 min values edm = np.sum(edm, axis=-1, keepdims=True) bckg_wm = 1 + wo * np.exp(- edm * edm / s2) bckg_subset = im==0 wm[i][bckg_subset] = bckg_wm[bckg_subset] if labels.shape[0]>0 and set_contours_to_zero: contours = get_contour_mask(im[...,0], fun=_get_contours_binary_2d) wm[i,...,0][contours] = 0 return wm def weight_map_mask_class_balance(batch, max_background_ratio=0, set_background_to_one=False, dtype=np.float32): wm = np.ones(shape = batch.shape, dtype=dtype) if max_background_ratio<0: return wm n_nonzeros = np.count_nonzero(batch) if n_nonzeros!=0: n_tot = np.prod(batch.shape) p_back = (n_tot - n_nonzeros) / n_tot background_ratio = (n_tot - n_nonzeros) / n_nonzeros if max_background_ratio>0 and background_ratio>max_background_ratio: p_back = max_background_ratio / (1 + max_background_ratio) if set_background_to_one: wm[batch!=0] = p_back / (1 - p_back) else: wm[batch!=0] = p_back wm[batch==0] = 1-p_back return wm def multilabel_edt(label_img, closed_end=True): ''' multilabel edt requires edt package. along y-axis (1st axis) : out-of-bound is considered as foreground of upper and lower ends if closed_end=False else only for lower end ''' y_up = 1 if closed_end else 0 if len(label_img.shape)==3: squeeze = True label_img = np.squeeze(label_img, -1) else: squeeze=False label_img = edt.edt(np.pad(label_img, pad_width=((y_up, 0),(1, 1)), mode='constant', constant_values=0), black_border=False)[y_up:,1:-1] if squeeze: label_img = np.expand_dims(label_img, -1) return label_img def binarize(img, dtype=np.float32): return np.where(img, dtype(1), dtype(0)) def binary_erode_labelwise(label_img): ''' in-place erosion of square 8-connectivity, label by label, with border value = 1 ''' # todo: set structure as argument, but adapt region dilatation to this parameter regDilSize = 1 regions = find_objects(label_img) shape = label_img.shape for val, region in enumerate(regions, start=1): if region is not None: # extend region in order to avoid border effect when set border_value = 1 region = list(region) for i, s in enumerate(region): region[i] = slice(max(0, s.start-regDilSize), min(s.stop+regDilSize, shape[i]), None) region = tuple(region) subregion = label_img[region] eroded = binary_erosion(subregion == val, border_value = 1) subregion[(subregion == val) *np.logical_not(eroded)] = 0 # erase eroded region only within object def _get_contours_2d(element): v = element[4] if v==0: return False else: for vv in element: if vv!=v: return True return False def _get_contours_binary_2d(element): if element[4]==0: return False else: for vv in element: if vv==0: return True return False def _get_touching_contours(element): v = element[4] if v==0: return False else: for vv in element: if vv!=v and vv!=0: return True return False def get_contour_mask(labeled_image, output=None, fun=_get_contours_2d): shape = labeled_image.shape if len(shape)==3: assert shape[2] == 1, "only valid for 2D images" output = np.zeros(shape=shape, dtype=np.bool_) get_contour_mask(labeled_image[...,0], output[...,0], fun) return output elif len(shape)>3: raise ValueError("only valid for 2D images") if output is None: output =
np.zeros(shape=labeled_image.shape, dtype=np.bool_)
numpy.zeros
import gym import numpy as np import time import highway_env import torch from torch.utils.data import Dataset # from scripts.utils import record_videos, show_videos envs = { 0: "myenv-c1-v0", # 直线 1: "myenv-c2-v0", # 中度弯曲 2: "myenv-c3-v0", # 大量弯曲 } N = 50 # 1保持 0减速 2加速 lon # -1左 0保持 1右 latral """ | 0 1 2 -1 | 0 | 1 | """ labels_index = np.arange(9).reshape(3, 3) def anchor_selector(): """ 选不同的卯 :return: """ # 选择不同的道路 env_lucky = envs[np.random.choice(np.arange(3))] # print("env is {}".format(env_lucky)) env = gym.make(env_lucky) # env = record_videos(env) # 选择不同的初始状态 lanes_count = env.config["lanes_count"] lane_id = np.random.choice(np.arange(lanes_count)) # print("v lane id is {}".format(lane_id)) if lane_id == 0: target_lane_id = np.random.choice([0, 1]) elif lane_id == lanes_count - 1: target_lane_id = np.random.choice([lanes_count - 1, lanes_count - 2]) else: target_lane_id = np.random.choice([lane_id - 1, lane_id, lane_id + 1]) # print("target lane id is {}".format(target_lane_id)) lon_operation = np.random.choice([0, 1, 2]) # 1保持 0减速 2加速 # print("1保持 0减速 2加速 - is {}".format(lon_operation)) v_lane_id = ("a", "b", lane_id) target_lane_id2 = ("a", "b", target_lane_id) v_target_s = (lon_operation - 1) * 5 + env.vehicle.speed v_target_s = np.clip(0, 30, v_target_s) positon_x = np.random.choice(np.arange(0, env.road.network.get_lane(v_lane_id).length, 5)) positon_y = np.random.choice(np.arange(-2, 2.1, 0.5)) heading = np.random.choice( env.road.network.get_lane(v_lane_id).heading_at(positon_x) + np.arange(-np.pi / 12, np.pi / 12, 10)) speed = np.random.choice(np.arange(0, 25, 2)) position = env.road.network.get_lane(v_lane_id).position(positon_x, positon_y) inital_state = [position, heading, speed] env.config["v_lane_id"] = v_lane_id env.config["v_target_id"] = target_lane_id2 env.config["v_x"] = positon_x env.config["v_y"] = positon_y env.config["v_h"] = heading env.config["v_s"] = speed env.config["v_target_s"] = v_target_s env.reset() p = env.vehicle.position i_h = env.vehicle.heading i_s = env.vehicle.speed temp = [p[0], p[1], i_h, i_s] x_road, y_road = env.vehicle.target_lane_position(p) # temp = temp.extend(x_road) # temp = temp.extend(y_road) action_his_omega = [] action_his_accel = [] action = 1 x_his, y_his, h_his, s_his = [], [], [], [] for _ in range(N): if env.vehicle.on_road is False: print("出去了") break env.step(action) action_his_omega.append(env.vehicle.action["steering"]) action_his_accel.append(env.vehicle.action["acceleration"]) x_his.append(env.vehicle.position[0]) y_his.append(env.vehicle.position[1]) h_his.append(env.vehicle.heading) s_his.append(env.vehicle.speed) # env.render() # time.sleep(0.1) env.close() # temp = temp.extend(action_his_omega) # temp = temp.extend(action_his_accel) tt = temp + x_road + y_road + action_his_omega + action_his_accel # pp = np.vstack(( # np.array(x_his), # np.array(y_his), # np.array(h_his), # np.array(s_his), # )) pp = x_his + y_his + h_his + s_his lane_change = target_lane_id - lane_id label = labels_index[lane_change + 1, lon_operation] # s0 = np.array(temp) s0 = temp # ss = np.vstack(( # np.array(x_road), # np.array(y_road), # )) ss = x_road + y_road # aa = np.vstack(( # np.array(action_his_omega), # np.array(action_his_accel) # )) aa = action_his_omega + action_his_accel return s0, ss, aa, tt, pp, label def generator(num_data): datas = [] labels = [] s0_b = [] ss_b = [] aa_b = [] pp_b = [] for i in range(num_data): print("第 {} 个样本".format(i + 1)) s0, ss, aa, tt, pp, label = anchor_selector() datas.append(tt) labels.append(label) s0_b.append(s0) ss_b.append(ss) aa_b.append(aa) pp_b.append(pp) d = np.array(datas) l = np.array(labels) s0_b = np.array(s0_b) ss_b = np.array(ss_b) aa_b = np.array(aa_b) pp_b = np.array(pp_b) np.save("data.npy", d) np.save("label.npy", l)
np.save("s0_b.npy", s0_b)
numpy.save
import collections import numpy as np from matplotlib import pyplot as plt class GCSPlaneLocation(object): def __init__(self, longitude, latitude): self.longitude = np.array(longitude) self.latitude = np.array(latitude) @property def shape(self): if list(np.shape(self.longitude)) == list(np.shape(self.latitude)): return np.shape(self.longitude) raise ValueError('Unmatched shape.') class GCSLocation(GCSPlaneLocation): def __init__(self, longitude, latitude, altitude): super(GCSLocation, self).__init__(longitude, latitude) self.altitude = np.array(altitude) class Airspace(collections.namedtuple('Airspace', ('centre', 'radius'))): def generate_airline(self, distance, angle, height, reverse=False): phy = np.arccos(distance / self.radius) location_1 = GCSLocation( self.centre.longitude + distance * np.cos(angle - phy), self.centre.latitude + distance * np.sin(angle - phy), height) location_2 = GCSLocation( self.centre.longitude + distance * np.cos(angle + phy), self.centre.latitude + distance * np.sin(angle + phy), height) if reverse: return location_2, location_1 return location_1, location_2 def random_airlines(self, num): airlines = [] while len(airlines) <= num: r0 = np.random.normal(0.5, 0.3) # if 0 < r0 < 1: r0 = r0 * self.radius theta0 = np.random.uniform(0., 2 * np.pi) phy0 = (np.random.normal(theta0 + 0.5 * np.pi, 0.1)) a = 1 b = 2 * r0 * np.cos(theta0 - phy0) c = r0 ** 2 - self.radius ** 2 delta = b ** 2 - 4. * a * c t1 = (- b + np.sqrt(delta)) / (2. * a) t2 = (- b - np.sqrt(delta)) / (2. * a) boundaries = GCSPlaneLocation( [self.centre.longitude + r0 * np.cos(theta0) + t1 * np.cos(phy0), self.centre.longitude + r0 * np.cos(theta0) + t2 * np.cos(phy0)], [self.centre.latitude + r0 * np.sin(theta0) + t1 * np.sin(phy0), self.centre.latitude + r0 *
np.sin(theta0)
numpy.sin
import logging import subprocess import sys import numpy as np import os import scipy.integrate from scipy.special import erf from scipy.interpolate import UnivariateSpline from scipy.sparse import csr_matrix from scipy.sparse.csgraph import maximum_bipartite_matching from copy import deepcopy import matplotlib as mpl from matplotlib.ticker import MaxNLocator from matplotlib.ticker import NullFormatter import matplotlib.pyplot as plt from plotbin import sauron_colormap as pb_sauron_colormap from plotbin import display_pixels # from loess.loess_2d import loess_2d from dynamite import kinematics from dynamite import weight_solvers from dynamite import physical_system as physys class ReorderLOSVDError(Exception): pass class Plotter(): """Class to hold plotting routines Class containing methods for plotting results. Each plotting method saves a plot in the `outplot/plots` directory, and returns a `matplotlib` `figure` object. Parameters ---------- config : a ``dyn.config_reader.Configuration`` object """ def __init__(self, config=None): self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') if config is None: text = f'{__class__.__name__} needs configuration object, ' \ 'None provided.' self.logger.error(text) raise ValueError(text) self.config = config self.system = config.system self.settings = config.settings self.all_models = config.all_models self.input_directory = config.settings.io_settings['input_directory'] self.plotdir = config.settings.io_settings['plot_directory'] self.modeldir = config.settings.io_settings['model_directory'] pb_sauron_colormap.register_sauron_colormap() def make_chi2_vs_model_id_plot(self, which_chi2=None, figtype=None): """ Generates a (kin)chi2 vs. model id plot Parameters ---------- which_chi2 : STR, optional Determines whether chi2 or kinchi2 is used. If None, the setting in the configuration file's parameter settings is used. Must be None, 'chi2', or 'kinchi2'. The default is None. figtype : STR, optional Determines the file extension to use when saving the figure. If None, the default setting is used ('.png'). Raises ------ ValueError If which_chi2 is not one of None, 'chi2', or 'kinchi2'. Returns ------- fig : matplotlib.pyplot.figure Figure instance. """ if figtype is None: figtype = '.png' if which_chi2 is None: which_chi2 = self.settings.parameter_space_settings['which_chi2'] if which_chi2 not in ('chi2', 'kinchi2'): text = 'which_chi2 needs to be chi2 or kinchi2, ' \ f'but it is {which_chi2}' self.logger.error(text) raise ValueError(text) n_models = len(self.all_models.table) fig = plt.figure() plt.plot([i for i in range(n_models)], self.all_models.table[which_chi2], 'rx') plt.gca().set_title(f'{which_chi2} vs. model id') plt.xlabel('model id') plt.ylabel(which_chi2) fig.gca().xaxis.set_major_locator(MaxNLocator(integer=True)) self.logger.info(f'{which_chi2} vs. model id plot created ' f'({n_models} models).') figname = self.plotdir + which_chi2 + '_progress_plot' + figtype fig.savefig(figname) self.logger.info(f'Plot {figname} saved in {self.plotdir}') return fig def make_chi2_plot(self, which_chi2=None, n_excl=0, figtype=None): """ Generates a chisquare plot The models generated are shown on a grid of parameter space. The best-fit model is marked with a black cross. The coloured circles represent models within 3 sigma confidence level (light colours and larger circles indicate smaller values of the chisquare). The small black dots indicate the models outside this confidence region. Parameters ---------- which_chi2 : STR, optional Determines whether chi2 or kinchi2 is used. If None, the setting in the configuration file's parameter settings is used. Must be None, 'chi2', or 'kinchi2'. The default is None. nexcl : integer, optional Determines how many models (in the initial burn-in phase of the fit) to exclude from the plot. Must be an integer number. Default is 0 (all models are shown). Use this with caution! figtype : STR, optional Determines the file extension to use when saving the figure. If None, the default setting is used ('.png'). Raises ------ ValueError If which_chi2 is not one of None, 'chi2', or 'kinchi2'. Returns ------- fig : matplotlib.pyplot.figure Figure instance. """ if figtype is None: figtype = '.png' if which_chi2 is None: which_chi2 = self.settings.parameter_space_settings['which_chi2'] if which_chi2 not in ('chi2', 'kinchi2'): text = 'which_chi2 needs to be chi2 or kinchi2, ' \ f'but it is {which_chi2}' self.logger.error(text) raise ValueError(text) self.logger.info(f'Making chi2 plot scaled according to {which_chi2}') pars = self.config.parspace val = deepcopy(self.all_models.table) # exclude the first 50, 100 (specified by the user) # models in case the values were really off there # (or alternatively based on too big Delta chi2) val = val[n_excl:] #only use models that are finished val=val[val['all_done']==True] # add black hole scaling scale_factor = np.zeros(len(val)) for i in range(len(val)): chi2val = val[which_chi2][i] model_id=np.where(self.all_models.table[which_chi2]==chi2val)[0][0] scale_factor[i] = \ self.all_models.get_model_velocity_scaling_factor( \ model_id=model_id) dh = self.system.get_all_dark_non_plummer_components() dh = dh[0] # take the first as there should only be one of these if type(dh) is physys.NFW: val[f'c-{dh.name}'] = val[f'c-{dh.name}'] val[f'f-{dh.name}'] = val[f'f-{dh.name}'] elif type(dh) is physys.NFW_m200_c: pass elif type(dh) is physys.Hernquist: val[f'rhoc-{dh.name}']= val[f'rhoc-{dh.name}']*scale_factor**2 elif type(dh) is physys.TriaxialCoredLogPotential: val[f'Vc-{dh.name}'] = val[f'Vc-{dh.name}']*scale_factor elif type(dh) is physys.GeneralisedNFW: val[f'Mvir-{dh.name}'] = val[f'Mvir-{dh.name}']*scale_factor**2 else: text = f'unknown dark halo type component' self.logger.error(text) raise ValueError(text) # get the plummer component i.e. black hole bh = self.system.get_component_from_class(physys.Plummer) val[f'm-{bh.name}'] = np.log10(val[f'm-{bh.name}']*scale_factor**2) #get number and names of parameters that are not fixed nofix_sel=[] nofix_name=[] nofix_latex=[] nofix_islog=[] for i in np.arange(len(pars)): if pars[i].fixed==False: pars[i].name nofix_sel.append(i) if pars[i].name == 'ml': nofix_name.insert(0, 'ml') nofix_latex.insert(0, pars[i].LaTeX) nofix_islog.insert(0, pars[i].logarithmic) else: nofix_name.append(pars[i].name) nofix_latex.append(pars[i].LaTeX) nofix_islog.append(pars[i].logarithmic) nnofix=len(nofix_sel) nf=len(val) ## 1 sigma confidence level chlim = np.sqrt(self.config.get_2n_obs()) chi2pmin=np.min(val[which_chi2]) chi2t = val[which_chi2] - chi2pmin val.add_column(chi2t, name='chi2t') val.sort(['chi2t']) #start of the plotting figname = self.plotdir + which_chi2 + '_plot' + figtype colormap_orig = mpl.cm.viridis colormap = mpl.cm.get_cmap('viridis_r') fig = plt.figure(figsize=(10, 10)) for i in range(0, nnofix - 1): for j in range(nnofix-1, i, -1): xtit = '' ytit = '' if i==0 : ytit = nofix_latex[j] xtit = nofix_latex[i] pltnum = (nnofix-1-j) * (nnofix-1) + i+1 ax = plt.subplot(nnofix-1, nnofix-1, pltnum) plt.plot(val[nofix_name[i]],val[nofix_name[j]], 'D', color='black', markersize=2) for k in range(nf - 1, -1, -1): if val['chi2t'][k]/chlim<=3: #only significant chi2 values color = colormap(val['chi2t'][k]/chlim) # * 240) #colours the significant chi2 markersize = 10-3*(val['chi2t'][k]/(chlim)) #smaller chi2 become bigger :) plt.plot((val[nofix_name[i]])[k], (val[nofix_name[j]])[k], 'o', markersize=markersize, color=color) if val['chi2t'][k]==0: plt.plot((val[nofix_name[i]])[k], (val[nofix_name[j]])[k], 'x', markersize=10, color='k') if nofix_islog[i]: ax.set_xscale('log') if nofix_islog[j]: ax.set_yscale('log') if j==i+1: ax.set_xlabel(xtit, fontsize=12) ax.set_xmargin(0.5) nbins = len(ax.get_xticklabels()) ax.xaxis.set_major_locator(MaxNLocator(nbins=nbins, prune='lower')) else: ax.set_xticks([]) if i==0: ax.set_ylabel(ytit, fontsize=12) else: ax.yaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_minor_formatter(NullFormatter()) plt.subplots_adjust(hspace=0) plt.subplots_adjust(wspace=0) axcb = fig.add_axes([0.75, 0.07, 0.2, 0.02]) cb = mpl.colorbar.ColorbarBase(axcb, cmap=plt.get_cmap('viridis_r'), norm=mpl.colors.Normalize(vmin=0., vmax=3), orientation='horizontal') plt.subplots_adjust(top=0.99, right=0.99, bottom=0.07, left=0.1) fig.savefig(figname) self.logger.info(f'Plot {figname} saved in {self.plotdir}') return fig def make_contour_plot(self): # first version written by sabine, will add in the weekend # pass def plot_kinematic_maps(self, model=None, kin_set=0, cbar_lims='default', figtype=None, **kwargs): """ Generates a kinematic map of a model with v, sigma, h3, h4... Maps of the surface brightness, mean line-of-sight velocity, velocity dispersion, and higher order Gauss–Hermite moments are shown. The first row are data, the second row the best-fit model, and the third row the residuals. Parameters ---------- model : model, optional Determines which model is used for the plot. If model = None, the model corresponding to the minimum chisquare (so far) is used; the setting in the configuration file's parameter settings is used to determine which chisquare to consider. The default is None. kin_set : integer or 'all' Determines which kinematic set to use for the plot. The value of this parameter should be the index of the data set (e.g. kin_set=0 , kin_set=1). The default is kin_set=0. If kin_set='all', several kinematic maps are produced, one for each kinematic dataset. A list of (fig,kin_set_name) is returned where fig are figure objects and kin_set_name are the names of the kinematics sets. cbar_lims : STR Determines which set of values is used to determine the limiting values defining the colorbar used in the plots. Accepted values: 'model', 'data', 'combined', 'default'. The default is 'data' for GaussHermite kinematics, and [0,3] for BayesLOSVD kinematics where reduced chi2 values are plotted. figtype : STR, optional Determines the file extension to use when saving the figure. If None, the default setting is used ('.png'). Raises ------ ValueError If kin_set is not smaller than the number of kinematic sets. ValueError If cbar_lims is not one of 'model', 'data', or 'combined'. Returns ------- list or `matplotlib.pyplot.figure` if kin_set == 'all', returns `(matplotlib.pyplot.figure, string)`, i.e. Figure instances along with kinemtics name or figure instance else, returns a `matplotlib.pyplot.figure` """ # Taken from schw_kin.py. if figtype is None: figtype = '.png' stars = \ self.system.get_component_from_class(physys.TriaxialVisibleComponent) n_kin = len(stars.kinematic_data) ######################################### if kin_set == 'all': self.logger.info(f'Plotting kinematic maps for {n_kin} kin_sets.') figures = [] for i in range(n_kin): fig = self.plot_kinematic_maps(model=model, kin_set=i, cbar_lims=cbar_lims) figures.append((fig, stars.kinematic_data[i].name)) return figures # returns a list of (fig,kin_name) tuples ######################################### if kin_set >= n_kin: text = f'kin_set must be < {n_kin}, but it is {kin_set}' self.logger.error(text) raise ValueError(text) kin_name = stars.kinematic_data[kin_set].name self.logger.info(f'Plotting kinematic maps for kin_set no {kin_set}: ' f'{kin_name}') if model is None: which_chi2 = self.settings.parameter_space_settings['which_chi2'] models_done = np.where(self.all_models.table['all_done']) min_chi2 = min(m[which_chi2] for m in self.all_models.table[models_done]) t = self.all_models.table.copy(copy_data=True) # deep copy! t.add_index(which_chi2) model_id = t.loc_indices[min_chi2] model = self.all_models.get_model_from_row(model_id) kin_type = type(stars.kinematic_data[kin_set]) ws_type = self.settings.weight_solver_settings['type'] if kin_type is kinematics.GaussHermite: if ws_type == 'LegacyWeightSolver': if cbar_lims=='default': cbar_lims = 'data' fig = self._plot_kinematic_maps_gaussherm( model, kin_set, cbar_lims=cbar_lims, **kwargs) else: self.logger.info(f'Gauss Hermite kinematic maps can only be ' 'plot if LegacyWeightSolver is used') fig = plt.figure(figsize=(27, 12)) elif kin_type is kinematics.BayesLOSVD: if cbar_lims=='default': cbar_lims = [0,3] fig = self._plot_kinematic_maps_bayeslosvd( model, kin_set, cbar_lims=cbar_lims, **kwargs) figname = self.plotdir + f'kinematic_map_{kin_name}' + figtype fig.savefig(figname, dpi=300) return fig def _plot_kinematic_maps_bayeslosvd(self, model, kin_set, cmap=None, cbar_lims=[0,3], color_dat='0.3', color_mod='C2'): """Short summary. Parameters ---------- model : type Description of parameter `model`. kin_set : type Description of parameter `kin_set`. cmap : type Description of parameter `cmap`. cbar_lims : type Description of parameter `cbar_lims`. color_dat : type Description of parameter `color_dat`. color_mod : type Description of parameter `color_mod`. Returns ------- type Description of returned object. """ # get the data stars = \ self.system.get_component_from_class(physys.TriaxialVisibleComponent) kin_set = stars.kinematic_data[kin_set] # helper function to decide which losvds to plot def dissimilar_subset_greedy_search(distance_matrix, target_size): """Greedy algorithm to find dissimilar subsets Args: distance_matrix (array): 2D matrix of pairwise distances. target_size (int): Desired size of subset. Returns: tuple: (list of index values of subset in distance_matrix, minimum pairwise distance in this subset) """ n = distance_matrix.shape[0] idx = np.unravel_index(np.argmax(distance_matrix), distance_matrix.shape) idx = list(idx) tmp = distance_matrix[idx][:,idx] for n0 in range(3, target_size+1): iii = list(range(n)) for idx0 in idx: iii.remove(idx0) ttt = [] for i in iii: idx_tmp = idx + [i] tmp = distance_matrix[idx_tmp][:,idx_tmp] ttt += [np.min(tmp[np.triu_indices(n0, k=1)])] idx += [iii[np.argmax(ttt)]] tmp = distance_matrix[idx][:,idx] min_pairwise_dist = np.min(tmp[np.triu_indices(target_size, k=1)]) return idx, min_pairwise_dist # helper function to get positions of a regular 3x3 grid on the map def get_coords_of_regular_3by3_grid(): # get range of x and y values minx = np.min(kin_set.data['xbin']) maxx = np.max(kin_set.data['xbin']) x = np.array([minx, maxx]) miny = np.min(kin_set.data['ybin']) maxy = np.max(kin_set.data['ybin']) y = np.array([miny, maxy]) x, y = kin_set.convert_to_plot_coords(x, y) # get 3 evenly spaced coords in x and y # taking every other element from 7 points i.e - 0 1 0 1 0 1 0 xgrid = np.linspace(*x, 7)[1::2] ygrid = np.linspace(*y, 7)[1::2] xgrid = np.sort(xgrid) # sort left to right ygrid = np.sort(ygrid)[::-1] # sort top to bottom xgrid, ygrid = np.meshgrid(xgrid, ygrid, indexing='xy') xgrid, ygrid = np.ravel(xgrid), np.ravel(ygrid) return xgrid, ygrid # helper function to map positions of chosen LOSVDs to regular 3x3 grid def find_min_dist_matching_of_bipartite_graph(dist, n_iter_binary_search=15): # dist = distance matrix between 2 sets of points (a1, a2, ..., aN) # and (b1, b2, ..., bN). We want to find a 1-1 matching between a's # and b's so that distances between matched pairs are not too big. # The decision problem version of this optimization problem is to # find the smallest distance threshold t such that the bipartite # graph G has a matching, where G has nodes connected iff they are # within distance t. This function finds this threshold using a # binary search. def has_complete_matching(threshold): G = csr_matrix(dist<threshold) matching = maximum_bipartite_matching(G, perm_type='columns') return -1 not in matching lo, hi = np.min(dist), np.max(dist) test = (has_complete_matching(lo), has_complete_matching(hi)) if test==(False,True): pass else: raise ReorderLOSVDError('Error Reordering LOSVDs') for i in range(n_iter_binary_search): med = np.mean([lo, hi]) med_has_matching = has_complete_matching(med) if med_has_matching: lo = lo hi = med else: lo = med hi = hi if has_complete_matching(lo): threshold = lo elif has_complete_matching(hi): threshold = hi else: raise ReorderLOSVDError('Error Reordering LOSVDs') return threshold # helper function to reorder the plotted LOSVDs into a sensible order def reorder_losvds(idx_to_plot): x = kin_set.data['xbin'][idx_to_plot] y = kin_set.data['ybin'][idx_to_plot] x, y = kin_set.convert_to_plot_coords(x, y) xg, yg = get_coords_of_regular_3by3_grid() # get distance between plot positions and regular grid dist = (x[:,np.newaxis] - xg[np.newaxis,:])**2 dist += (y[:,np.newaxis] - yg[np.newaxis,:])**2 dist = dist**0.5 threshold = find_min_dist_matching_of_bipartite_graph(dist) graph = csr_matrix(dist<threshold) idx_reorder = maximum_bipartite_matching(graph, perm_type='columns') idx_to_plot = np.array(idx_to_plot)[idx_reorder] return idx_to_plot # get the model LOSVDs orblib = model.get_orblib() weight_solver = model.get_weights(orblib) orblib.read_losvd_histograms() losvd_orblib = kin_set.transform_orblib_to_observables( orblib.losvd_histograms[0], None) losvd_model = np.einsum('ijk,i->jk', losvd_orblib, model.weights) # normalise LOSVDs to same scale at data, i.e. summing to 1 losvd_model = (losvd_model.T/np.sum(losvd_model, 1)).T # get chi2's chi2_per_losvd_bin = losvd_model - kin_set.data['losvd'] chi2_per_losvd_bin = chi2_per_losvd_bin/kin_set.data['dlosvd'] chi2_per_losvd_bin = chi2_per_losvd_bin**2. chi2_per_apertur = np.sum(chi2_per_losvd_bin, 1) reduced_chi2_per_apertur = chi2_per_apertur/kin_set.data.meta['nvbins'] # pick a subset of 9 LOSVDs to plot which are not similar to one another dist = 1.*kin_set.data['losvd'] dist = dist[:,np.newaxis,:] - dist[np.newaxis,:,:] dist = np.sum(dist**2., 2)**0.5 idx_to_plot, _ = dissimilar_subset_greedy_search(dist, 9) # reorder losvds so they increase like "reading direction" i.e. from # left to right, then from top to bottom try: idx_to_plot = reorder_losvds(idx_to_plot) except ReorderLOSVDError: txt = 'Failed to reorder LOSVDs in a sensible way. ' txt += 'Using an arbitary order instead.' self.logger.info(txt) pass # setup the figure fig = plt.figure(figsize=(7.5, 3.5)) gs = fig.add_gridspec(ncols=2, nrows=1, top=0.9) # add axis for chi map ax_chi2 = fig.add_subplot(gs[1]) ax_chi2.minorticks_off() ax_chi2.tick_params(length=3) ax_chi2.set_xlabel('x [arcsec]') ax_chi2.set_ylabel('y [arcsec]') pos = ax_chi2.get_position() dx = 0.04 pos = [pos.x0+dx, pos.y0, pos.width-dx, pos.height] ax_chi2.set_position(pos) # add axes for losvds gs2 = gs[0].subgridspec(3, 3, hspace=0, wspace=0) ax_losvds = [] for i in range(3): for j in range(3): ax = fig.add_subplot(gs2[i,j]) ax_losvds += [ax] if i<2: ax.set_xticks([]) else: ax.set_xlabel('$v_\mathrm{LOS}$ [km/s]') ax.set_yticks([]) # get cmap vmin, vmax = cbar_lims if cmap is None: if (vmin<1) and (1<vmax): cmap = self.shiftedColorMap( plt.cm.RdYlBu_r, start=0, midpoint=(1.-vmin)/(vmax-vmin), stop=1.0) else: cmap = plt.cm.RdYlBu_r # plot the chi2 map map_plotter = kin_set.get_map_plotter() plt.sca(ax_chi2) map_plotter(reduced_chi2_per_apertur, label='$\chi^2_r$', colorbar=True, vmin=vmin, vmax=vmax, cmap=cmap) mean_chi2r = np.mean(reduced_chi2_per_apertur) ax_chi2.set_title(f'$\chi^2_r={mean_chi2r:.2f}$') # plot locations of LOSVDs x = kin_set.data['xbin'][idx_to_plot] y = kin_set.data['ybin'][idx_to_plot] x, y = kin_set.convert_to_plot_coords(x, y) ax_chi2.plot(x, y, 'o', ms=15, c='none', mec='0.2') for i, (x0,y0) in enumerate(zip(x,y)): ax_chi2.text(x0, y0, f'{i+1}', ha='center', va='center') # plot LOSVDs varr = kin_set.data.meta['vcent'] for i, (idx0, ax0) in enumerate(zip(idx_to_plot, ax_losvds)): col = (reduced_chi2_per_apertur[idx0]-vmin)/(vmax-vmin) col = cmap(col) ax0.text(0.05, 0.95, f'{i+1}', transform=ax0.transAxes, ha='left', va='top', bbox = dict(boxstyle=f"circle", fc=col, alpha=0.5) ) dat_line, = ax0.plot(varr, kin_set.data['losvd'][idx0], ls=':', color=color_dat) dat_band = ax0.fill_between( varr, kin_set.data['losvd'][idx0]-kin_set.data['dlosvd'][idx0], kin_set.data['losvd'][idx0]+kin_set.data['dlosvd'][idx0], alpha=0.2, color=color_dat, ) mod_line, = ax0.plot(varr, losvd_model[idx0], '-', color=color_mod) ylim = ax0.get_ylim() ax0.set_ylim(0, ylim[1]) # add legend() pos = ax_losvds[1].get_position() x0 = pos.x0+pos.width/2. fig.legend([(dat_line, dat_band), mod_line], ['data', 'model'], bbox_to_anchor=[x0, 0.95], loc='center', ncol=2) return fig def _plot_kinematic_maps_gaussherm(self, model, kin_set, cbar_lims='data'): stars = \ self.system.get_component_from_class(physys.TriaxialVisibleComponent) kinem_fname = model.directory + 'nn_kinem.out' body_kinem = np.genfromtxt(kinem_fname, skip_header=1) first_bin = sum(k.n_apertures for k in stars.kinematic_data[:kin_set]) n_bins = stars.kinematic_data[kin_set].n_apertures body_kinem = body_kinem[first_bin:first_bin+n_bins] self.logger.debug(f'kin_set={kin_set}, plotting bins ' f'{first_bin} through {first_bin+n_bins-1}') # if kin_set==0: # n_bins=stars.kinematic_data[0].n_apertures # body_kinem=body_kinem[0:n_bins,:] # self.logger.info(f'first_bin=0, last_bin={n_bins}') # elif kin_set==1: # n_bins1=stars.kinematic_data[0].n_apertures # n_bins2=stars.kinematic_data[1].n_apertures # body_kinem=body_kinem[n_bins1:n_bins1+n_bins2,:] # self.logger.info(f'first_bin={n_bins1}, last_bin={n_bins1+n_bins2}') # else: # text = f'kin_set must be 0 or 1, not {kin_set}' # self.logger.error(text) # raise ValueError(text) if self.settings.weight_solver_settings['number_GH'] == 2: id_num, flux, fluxm, velm, vel, dvel, sigm, sig, dsig = body_kinem.T #to not need to change the plotting routine below, higher moments are set to 0 h3m, h3, dh3, h4m, h4, dh4 = vel*0, vel*0, vel*0+0.4, vel*0, vel*0, vel*0+0.4 if self.settings.weight_solver_settings['number_GH'] == 4: id_num, flux, fluxm, velm, vel, dvel, sigm, sig, dsig, h3m, h3, dh3, h4m, h4, dh4 = body_kinem.T if self.settings.weight_solver_settings['number_GH'] == 6: id_num, flux, fluxm, velm, vel, dvel, sigm, sig, dsig, h3m, h3, dh3, h4m, h4, dh4, h5m, h5, dh5, h6m, h6, dh6 = body_kinem.T #still ToDO: Add the kinematic map plots for h5 and h6 text = '`cbar_lims` must be one of `model`, `data` or `combined`' if not cbar_lims in ['model', 'data', 'combined']: self.logger.error(text) raise AssertionError(text) if cbar_lims=='model': vmax = np.max(np.abs(velm)) smax, smin = np.max(sigm), np.min(sigm) h3max, h3min = 0.15, -0.15 h4max, h4min = 0.15, -0.15 elif cbar_lims=='data': vmax = np.max(np.abs(vel)) smax, smin = np.max(sig), np.min(sig) h3max, h3min = 0.15, -0.15 h4max, h4min = 0.15, -0.15 if h4max == h4min: h4max, h4min = np.max(h4m), np.min(h4m) elif cbar_lims=='combined': tmp = np.hstack((velm, vel)) vmax = np.max(np.abs(tmp)) tmp = np.hstack((sigm, sig)) smax, smin = np.max(tmp), np.min(tmp) tmp = np.hstack((h3m, h3)) h3max, h3min = np.max(tmp), np.min(tmp) tmp = np.hstack((h4m, h4)) h4max, h4min = np.max(tmp), np.min(tmp) else: self.logger.error('unknown choice of `cbar_lims`') # Read aperture.dat # The angle that is saved in this file is measured counter clock-wise # from the galaxy major axis to the X-axis of the input data. aperture_fname = stars.kinematic_data[kin_set].aperturefile aperture_fname = self.input_directory + aperture_fname lines = [line.rstrip('\n').split() for line in open(aperture_fname)] minx = np.float(lines[1][0]) miny = np.float(lines[1][1]) sx = np.float(lines[2][0]) sy = np.float(lines[2][1]) sy = sy + miny angle_deg = np.float(lines[3][0]) nx = np.int(lines[4][0]) ny = np.int(lines[4][1]) dx = sx / nx self.logger.debug(f"Pixel grid dimension is dx={dx},nx={nx},ny={ny}") grid = np.zeros((nx, ny), dtype=int) xr = np.arange(nx, dtype=float) * dx + minx + 0.5 * dx yc = np.arange(ny, dtype=float) * dx + miny + 0.5 * dx xi = np.outer(xr, (yc * 0 + 1)) xt = xi.T.flatten() yi = np.outer((xr * 0 + 1), yc) yt = yi.T.flatten() self.logger.debug(f'PA: {angle_deg}') xi = xt yi = yt # read bins.dat bin_fname = stars.kinematic_data[kin_set].binfile bin_fname = self.input_directory + bin_fname lines_bins = [line.rstrip('\n').split() for line in open(bin_fname)] i = 0 str_head = [] i_var = [] grid = [] while i < len(lines_bins): for x in lines_bins[i]: if i == 0: str_head.append(str(x)) if i == 1: i_var.append(np.int(x)) if i > 1: grid.append(np.int(x)) i += 1 str_head = str(str_head[0]) i_var = int(i_var[0]) grid = np.ravel(np.array(grid)) # bins start counting at 1 in fortran and at 0 in idl: grid = grid - 1 # Only select the pixels that have a bin associated with them. s = np.ravel(np.where((grid >= 0))) fhist, fbinedge = np.histogram(grid[s], bins=len(flux)) flux = flux / fhist fluxm = fluxm / fhist ### plot settings minf = min(np.array(list(map(np.log10, flux[grid[s]] / max(flux))))) maxf = max(np.array(list(map(np.log10, flux[grid[s]] / max(flux))))) minfm = min(np.array(list(map(np.log10, fluxm[grid[s]] / max(fluxm))))) maxfm = max(np.array(list(map(np.log10, fluxm[grid[s]] / max(fluxm))))) # The galaxy has NOT already rotated with PA to make major axis aligned with x fig = plt.figure(figsize=(27, 12)) plt.subplots_adjust(hspace=0.7, wspace=0.01, left=0.01, bottom=0.05, top=0.99, right=0.99) sauron_colormap = plt.get_cmap('sauron') sauron_r_colormap = plt.get_cmap('sauron_r') #colormapname = plt.get_cmap('cmr.ember') kw_display_pixels = dict(pixelsize=dx, angle=angle_deg, colorbar=True, nticks=7, cmap='sauron') #cmap='cmr.ember') x, y = xi[s], yi[s] ### PLOT THE REAL DATA ax1 = plt.subplot(3, 5, 1) c = np.array(list(map(np.log10, flux[grid[s]] / max(flux)))) display_pixels.display_pixels(x, y, c, vmin=minf, vmax=maxf, **kw_display_pixels) ax1.set_title('surface brightness (log)',fontsize=20, pad=20) ax2 = plt.subplot(3, 5, 2) display_pixels.display_pixels(x, y, vel[grid[s]], vmin=-1.0 * vmax, vmax=vmax, **kw_display_pixels) ax2.set_title('velocity',fontsize=20, pad=20) ax3 = plt.subplot(3, 5, 3) display_pixels.display_pixels(x, y, sig[grid[s]], vmin=smin, vmax=smax, **kw_display_pixels) ax3.set_title('velocity dispersion',fontsize=20, pad=20) ax4 = plt.subplot(3, 5, 4) display_pixels.display_pixels(x, y, h3[grid[s]], vmin=h3min, vmax=h3max, **kw_display_pixels) ax4.set_title(r'$h_{3}$ moment',fontsize=20, pad=20) ax5 = plt.subplot(3, 5, 5) display_pixels.display_pixels(x, y, h4[grid[s]], vmin=h4min, vmax=h4max, **kw_display_pixels) ax5.set_title(r'$h_{4}$ moment',fontsize=20, pad=20) ### PLOT THE MODEL DATA plt.subplot(3, 5, 6) c = np.array(list(map(np.log10, fluxm[grid[s]] / max(fluxm)))) display_pixels.display_pixels(x, y, c, vmin=minfm, vmax=maxfm, **kw_display_pixels) plt.subplot(3, 5, 7) display_pixels.display_pixels(x, y, velm[grid[s]], vmin=-1.0 * vmax, vmax=vmax, **kw_display_pixels) plt.subplot(3, 5, 8) display_pixels.display_pixels(x, y, sigm[grid[s]], vmin=smin, vmax=smax, **kw_display_pixels) plt.subplot(3, 5, 9) display_pixels.display_pixels(x, y, h3m[grid[s]], vmin=h3min, vmax=h3max, **kw_display_pixels) plt.subplot(3, 5, 10) display_pixels.display_pixels(x, y, h4m[grid[s]], vmin=h4min, vmax=h4max, **kw_display_pixels) kw_display_pixels = dict(pixelsize=dx, angle=angle_deg, colorbar=True, nticks=7, cmap='bwr') ### PLOT THE ERROR NORMALISED RESIDUALS plt.subplot(3, 5, 11) c = (fluxm[grid[s]] - flux[grid[s]]) / flux[grid[s]] display_pixels.display_pixels(x, y, c, vmin=-0.05, vmax=0.05, **kw_display_pixels) plt.subplot(3, 5, 12) c = (velm[grid[s]] - vel[grid[s]]) / dvel[grid[s]] display_pixels.display_pixels(x, y, c, vmin=-10, vmax=10, **kw_display_pixels) plt.subplot(3, 5, 13) c = (sigm[grid[s]] - sig[grid[s]]) / dsig[grid[s]] display_pixels.display_pixels(x, y, c, vmin=-10, vmax=10, **kw_display_pixels) plt.subplot(3, 5, 14) c = (h3m[grid[s]] - h3[grid[s]]) / dh3[grid[s]] display_pixels.display_pixels(x, y, c, vmin=-10, vmax=10, **kw_display_pixels) plt.subplot(3, 5, 15) c = (h4m[grid[s]] - h4[grid[s]]) / dh4[grid[s]] display_pixels.display_pixels(x, y, c, vmin=-10, vmax=10, **kw_display_pixels) fig.subplots_adjust(left=0.04, wspace=0.3, hspace=0.01, right=0.97) kwtext = dict(size=20, ha='center', va='center', rotation=90.) fig.text(0.015, 0.83, 'data', **kwtext) fig.text(0.015, 0.53, 'model', **kwtext) fig.text(0.015, 0.2, 'residual', **kwtext) return fig ############################################################################# ######## Routines from schw_mass.py, necessary for mass_plot ################ ############################################################################# def intg2_trimge_intrmass(self, phi, theta, Fxyparm): rr = Fxyparm[4,0] den_pot_pc = Fxyparm[0,:] sig_pot_pc = Fxyparm[1,:] q_pot = Fxyparm[2,:] p_pot = Fxyparm[3,:] sth = np.sin(theta) cth =
np.cos(theta)
numpy.cos
import copy from math import atan2, cos, hypot, radians, sin import numpy class Vector(object): """ Vector data for a :class:`FlowSolution`, also the base for :class:`GridCoordinates`. In Cartesian coordinates, array indexing order is x,y,z; so an 'i-face' is a y,z surface. In cylindrical coordinates, array indexing order is z,r,t; so an 'i-face' is an r,t surface. """ def __init__(self): self.x = None self.y = None self.z = None self.r = None self.t = None self._ghosts = (0, 0, 0, 0, 0, 0) def _get_ghosts(self): return self._ghosts def _set_ghosts(self, ghosts): if len(ghosts) < 2*len(self.shape): raise ValueError('ghosts must be a %d-element array' % (2*len(self.shape))) for i in ghosts: if i < 0: raise ValueError('All ghost values must be >= 0') self._ghosts = ghosts ghosts = property(_get_ghosts, _set_ghosts, doc='Number of ghost/rind planes for each index direction.') @property def shape(self): """ Data index limits, not including 'ghost/rind' planes. """ ijk = self.real_shape if len(ijk) < 1: return () ghosts = self._ghosts imax = ijk[0] - (ghosts[0] + ghosts[1]) if len(ijk) < 2: return (imax,) jmax = ijk[1] - (ghosts[2] + ghosts[3]) if len(ijk) < 3: return (imax, jmax) kmax = ijk[2] - (ghosts[4] + ghosts[5]) return (imax, jmax, kmax) @property def real_shape(self): """ Data index limits, including any 'ghost/rind' planes. """ for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: return arr.shape return () def is_equivalent(self, other, name, logger, tolerance=0.): """ Test if self and `other` are equivalent. other: :class:`Vector` The vector to check against. name: string Name of this vector, used for reporting differences. logger: :class:`Logger` or None Used to log debug messages that will indicate what if anything is not equivalent. tolerance: float The maximum relative difference in array values to be considered equivalent. """ if not isinstance(other, Vector): logger.debug('other is not a Vector object.') return False for component in ('x', 'y', 'z', 'r', 't'): if not self._check_equivalent(other, name, component, logger, tolerance): return False if other.ghosts != self.ghosts: logger.debug('ghost cell counts are not equal: %s vs. %s.', other.ghosts, self.ghosts) return False return True def _check_equivalent(self, other, name, component, logger, tolerance): """ Check equivalence to a component array. """ arr = getattr(self, component) other_arr = getattr(other, component) if arr is None: if other_arr is not None: logger.debug("%s has no %s component but 'other' does.", name, component.upper()) return False else: if tolerance > 0.: if not numpy.allclose(other_arr, arr, tolerance, tolerance): logger.debug("%s %s values are not 'close'.", name, component.upper()) return False else: try: if (other_arr != arr).any(): logger.debug('%s %s values are not equal.', name, component.upper()) return False except Exception as exc: logger.debug('%s %s: %r vs. %r: %s', name, component.upper(), other_arr, arr, exc) logger.debug('!=: %r', other_arr != arr) return False return True def extract(self, imin, imax, jmin=None, jmax=None, kmin=None, kmax=None, ghosts=None): """ Construct a new :class:`Vector` from data extracted from the specified region. imin, imax, jmin, jmax, kmin, kmax: int Specifies the region to extract. Negative values are relative to the size in that dimension, so -1 refers to the last element. For 2D zones omit kmin and kmax. For 1D zones omit jmin, jmax, kmin, and kmax. ghosts: int[] Numer of ghost/rind planes for the new zone. If ``None`` the existing specification is used. """ ghosts = ghosts or self._ghosts i = len(self.shape) if i == 3: if kmin is None or kmax is None or jmin is None or jmax is None: raise ValueError('3D extract requires jmin, jmax, kmin, and kmax') return self._extract_3d(imin, imax, jmin, jmax, kmin, kmax, ghosts) elif i == 2: if kmin is not None or kmax is not None: raise ValueError('2D extract undefined for kmin or kmax') if jmin is None or jmax is None: raise ValueError('2D extract requires jmin and jmax') return self._extract_2d(imin, imax, jmin, jmax, ghosts) elif i == 1: if kmin is not None or kmax is not None: raise ValueError('1D extract undefined for jmin, jmax, kmin, or kmax') return self._extract_1d(imin, imax, ghosts) else: raise RuntimeError('Vector is empty!') def _extract_3d(self, imin, imax, jmin, jmax, kmin, kmax, new_ghosts): """ 3D (index space) extraction. """ ghosts = self._ghosts # Support end-relative indexing and adjust for existing ghost planes. vec_imax, vec_jmax, vec_kmax = self.shape if imin < 0: imin += vec_imax imin += ghosts[0] if imax < 0: imax += vec_imax imax += ghosts[0] if jmin < 0: jmin += vec_jmax jmin += ghosts[2] if jmax < 0: jmax += vec_jmax jmax += ghosts[2] if kmin < 0: kmin += vec_kmax kmin += ghosts[4] if kmax < 0: kmax += vec_kmax kmax += ghosts[4] # Adjust for new ghost/rind planes. imin -= new_ghosts[0] imax += new_ghosts[1] jmin -= new_ghosts[2] jmax += new_ghosts[3] kmin -= new_ghosts[4] kmax += new_ghosts[5] # Check limits. if imin < 0 or imax > vec_imax+ghosts[1] or \ jmin < 0 or jmax > vec_jmax+ghosts[3] or \ kmin < 0 or kmax > vec_kmax+ghosts[5]: region = (imin, imax, jmin, jmax, kmin, kmax) original = (0, vec_imax+ghosts[1], 0, vec_jmax+ghosts[3], 0, vec_kmax+ghosts[5]) raise ValueError('Extraction region %s exceeds original %s' % (region, original)) # Extract. vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: setattr(vec, component, arr[imin:imax+1, jmin:jmax+1, kmin:kmax+1]) return vec def _extract_2d(self, imin, imax, jmin, jmax, new_ghosts): """ 2D (index space) extraction. """ ghosts = self._ghosts # Support end-relative indexing and adjust for existing ghost planes. vec_imax, vec_jmax = self.shape if imin < 0: imin += vec_imax imin += ghosts[0] if imax < 0: imax += vec_imax imax += ghosts[0] if jmin < 0: jmin += vec_jmax jmin += ghosts[2] if jmax < 0: jmax += vec_jmax jmax += ghosts[2] # Check limits. if imin < 0 or imax > vec_imax+ghosts[1] or \ jmin < 0 or jmax > vec_jmax+ghosts[3]: region = (imin, imax, jmin, jmax) original = (0, vec_imax+ghosts[1], 0, vec_jmax+ghosts[3]) raise ValueError('Extraction region %s exceeds original %s' % (region, original)) # Extract. vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: setattr(vec, component, arr[imin:imax+1, jmin:jmax+1]) return vec def _extract_1d(self, imin, imax, new_ghosts): """ 1D (index space) extraction. """ ghosts = self._ghosts # Support end-relative indexing and adjust for existing ghost planes. vec_imax, = self.shape if imin < 0: imin += vec_imax imin += ghosts[0] if imax < 0: imax += vec_imax imax += ghosts[0] # Check limits. if imin < 0 or imax > vec_imax+ghosts[1]: region = (imin, imax) original = (0, vec_imax+ghosts[1]) raise ValueError('Extraction region %s exceeds original %s' % (region, original)) # Extract. vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: setattr(vec, component, arr[imin:imax+1]) return vec def extend(self, axis, delta, npoints): """ Construct a new :class:`Vector` by replication. axis: 'i', 'j', or 'k' Index axis to extend. delta: float. Direction. A negative value adds points before the current zero-index of `axis`. npoints: int > 0 Number of points to add in `axis` dimension. """ if not delta: raise ValueError('delta must be non-zero') if npoints < 1: raise ValueError('npoints must be >= 1') i = len(self.shape) if i == 3: if axis not in ('i', 'j', 'k'): raise ValueError('axis must be i, j, or k') return self._extend_3d(axis, delta, npoints) elif i == 2: if axis not in ('i', 'j'): raise ValueError('axis must be i or j') return self._extend_2d(axis, delta, npoints) elif i == 1: if axis != 'i': raise ValueError('axis must be i') return self._extend_1d(delta, npoints) else: raise RuntimeError('Vector is empty!') def _extend_3d(self, axis, delta, npoints): """ 3D (index space) extension. """ imax, jmax, kmax = self.real_shape if axis == 'i': new_shape = (imax + npoints, jmax, kmax) indx = imax if delta > 0 else npoints elif axis == 'j': new_shape = (imax, jmax + npoints, kmax) indx = jmax if delta > 0 else npoints else: new_shape = (imax, jmax, kmax + npoints) indx = kmax if delta > 0 else npoints vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: new_arr = numpy.zeros(new_shape) if axis == 'i': if delta > 0: new_arr[0:indx, :, :] = arr for i in range(npoints): new_arr[indx+i, :, :] = arr[-1, :, :] else: new_arr[indx:, :, :] = arr for i in range(npoints): new_arr[i, :, :] = arr[0, :, :] elif axis == 'j': if delta > 0: new_arr[:, 0:indx, :] = arr for j in range(npoints): new_arr[:, indx+j, :] = arr[:, -1, :] else: new_arr[:, indx:, :] = arr for j in range(npoints): new_arr[:, j, :] = arr[:, 0, :] else: if delta > 0: new_arr[:, :, 0:indx] = arr for k in range(npoints): new_arr[:, :, indx+k] = arr[:, :, -1] else: new_arr[:, :, indx:] = arr for k in range(npoints): new_arr[:, :, k] = arr[:, :, 0] setattr(vec, component, new_arr) vec.ghosts = copy.copy(self._ghosts) return vec def _extend_2d(self, axis, delta, npoints): """ 2D (index space) extension. """ imax, jmax = self.real_shape if axis == 'i': new_shape = (imax + npoints, jmax) indx = imax if delta > 0 else npoints else: new_shape = (imax, jmax + npoints) indx = jmax if delta > 0 else npoints vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: new_arr = numpy.zeros(new_shape) if axis == 'i': if delta > 0: new_arr[0:indx, :] = arr for i in range(npoints): new_arr[indx+i, :] = arr[-1, :] else: new_arr[indx:, :] = arr for i in range(npoints): new_arr[i, :] = arr[0, :] else: if delta > 0: new_arr[:, 0:indx] = arr for j in range(npoints): new_arr[:, indx+j] = arr[:, -1] else: new_arr[:, indx:] = arr for j in range(npoints): new_arr[:, j] = arr[:, 0] setattr(vec, component, new_arr) vec.ghosts = copy.copy(self._ghosts) return vec def _extend_1d(self, delta, npoints): """ 1D (index space) extension. """ imax, = self.real_shape new_shape = (imax + npoints,) indx = imax if delta > 0 else npoints vec = Vector() for component in ('x', 'y', 'z', 'r', 't'): arr = getattr(self, component) if arr is not None: new_arr = numpy.zeros(new_shape) if delta > 0: new_arr[0:indx] = arr for i in range(npoints): new_arr[indx+i] = arr[-1] else: new_arr[indx:] = arr for i in range(npoints): new_arr[i] = arr[0] setattr(vec, component, new_arr) vec.ghosts = copy.copy(self._ghosts) return vec def flip_z(self): """ Convert to other-handed coordinate system. """ if self.z is None: raise AttributeError('flip_z: no Z component') self.z *= -1. def make_cartesian(self, grid, axis='z'): """ Convert to Cartesian coordinate system. grid: :class:`GridCoordinates` Must be in cylindrical form. axis: string Specifies which is the cylinder axis ('z' or 'x'). """ if grid.shape != self.shape: raise NotImplementedError('make_cartesian: grid shape mismatch' ' not supported') gt_flat = grid.t.flat r_flat = self.r.flat t_flat = self.t.flat if axis == 'z' or self.z is None: self.x = self.r.copy() self.y = self.r.copy() x_flat = self.x.flat y_flat = self.y.flat for i in range(self.r.size): gt = gt_flat[i] sine = sin(gt) cosine = cos(gt) r = r_flat[i] t = t_flat[i] x_flat[i] = r*cosine - t*sine y_flat[i] = r*sine + t*cosine self.r = None self.t = None elif axis == 'x': self.x = self.z self.y = self.r.copy() self.z = self.r.copy() y_flat = self.y.flat z_flat = self.z.flat for i in range(self.r.size): gt = gt_flat[i] sine = sin(gt) cosine = cos(gt) r = r_flat[i] t = t_flat[i] y_flat[i] = r*cosine - t*sine z_flat[i] = r*sine + t*cosine self.r = None self.t = None else: raise ValueError("axis must be 'z' or 'x'") def make_cylindrical(self, grid, axis='z'): """ Convert to cylindrical coordinate system. grid: :class:`GridCoordinates` Must be in cylindrical form. axis: string Specifies which is the cylinder axis ('z' or 'x'). """ if grid.shape != self.shape: raise NotImplementedError('make_cylindrical: grid shape mismatch' ' not supported') gt_flat = grid.t.flat self.r = self.x.copy() self.t = self.x.copy() r_flat = self.r.flat t_flat = self.t.flat if axis == 'z' or self.z is None: x_flat = self.x.flat y_flat = self.y.flat for i in range(self.x.size): gt = gt_flat[i] x = x_flat[i] y = y_flat[i] magnitude = hypot(x, y) rel_theta = atan2(y, x) - gt r_flat[i] = magnitude * cos(rel_theta) t_flat[i] = magnitude * sin(rel_theta) self.x = None self.y = None elif axis == 'x': y_flat = self.y.flat z_flat = self.z.flat for i in range(self.y.size): gt = gt_flat[i] y = y_flat[i] z = z_flat[i] magnitude = hypot(y, z) rel_theta = atan2(z, y) - gt r_flat[i] = magnitude * cos(rel_theta) t_flat[i] = magnitude * sin(rel_theta) self.z = self.x self.x = None self.y = None else: raise ValueError("axis must be 'z' or 'x'") def rotate_about_x(self, deg): """ Rotate about the X axis. deg: float (degrees) Amount of rotation. """ if self.y is None: raise AttributeError('rotate_about_x: no Y component') if self.z is None: raise AttributeError('rotate_about_x: no Z component') sine = sin(radians(deg)) cosine = cos(radians(deg)) y_new = self.y*cosine - self.z*sine self.z = self.z*cosine + self.y*sine self.y = y_new def rotate_about_y(self, deg): """ Rotate about the Y axis. deg: float (degrees) Amount of rotation. """ if self.x is None: raise AttributeError('rotate_about_y: no X component') if self.z is None: raise AttributeError('rotate_about_y: no Z component') sine = sin(radians(deg)) cosine = cos(radians(deg)) x_new = self.x*cosine - self.z*sine self.z = self.z*cosine + self.x*sine self.x = x_new def rotate_about_z(self, deg): """ Rotate about the Z axis. deg: float (degrees) Amount of rotation. """ if self.x is None: raise AttributeError('rotate_about_z: no X component') if self.y is None: raise AttributeError('rotate_about_z: no Y component') sine = sin(radians(deg)) cosine = cos(radians(deg)) x_new = self.x*cosine - self.y*sine self.y = self.y*cosine + self.x*sine self.x = x_new def promote(self): """ Promote from N-dimensional to N+1 dimensional index space. """ shape = self.real_shape if len(shape) > 2: raise RuntimeError('Vector is 3D') elif len(shape) > 1: imax, jmax = shape if self.x is not None: # x,y -> x,y,z new_arr = numpy.zeros((imax, jmax, 1)) new_arr[:, :, 0] = self.x[:, :] self.x = new_arr new_arr = numpy.zeros((imax, jmax, 1)) new_arr[:, :, 0] = self.y[:, :] self.y = new_arr if self.z is not None: new_arr = numpy.zeros((1, imax, jmax)) new_arr[:, :, 0] = self.z[:, :] self.z = new_arr else: self.z = numpy.zeros((imax, jmax, 1)) else: # r,t -> z,r,t (note index order change!) new_arr = numpy.zeros((1, imax, jmax)) new_arr[0, :, :] = self.r[:, :] self.r = new_arr new_arr = numpy.zeros((1, imax, jmax)) new_arr[0, :, :] = self.t[:, :] self.t = new_arr if self.z is not None: new_arr = numpy.zeros((1, imax, jmax)) new_arr[0, :, :] = self.z[:, :] self.z = new_arr else: self.z = numpy.zeros((1, imax, jmax)) elif len(shape) > 0: imax = shape[0] if self.x is not None: # x -> x,y[,z] new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.x[:] self.x = new_arr if self.y is not None: new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.y[:] self.y = new_arr if self.z is not None: new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.z[:] self.z = new_arr else: self.y = numpy.zeros((imax, 1)) else: # r,t -> r,t[,z] new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.r[:] self.r = new_arr new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.t[:] self.t = new_arr if self.z is not None: new_arr = numpy.zeros((imax, 1)) new_arr[:, 0] = self.z[:] self.z = new_arr else: raise RuntimeError('Vector is empty!') def demote(self): """ Demote from N-dimensional to N-1 dimensional index space. """ shape = self.real_shape ghosts = self._ghosts if len(shape) > 2: imax, jmax, kmax = shape imx = imax - (ghosts[0] + ghosts[1]) jmx = jmax - (ghosts[2] + ghosts[3]) kmx = kmax - (ghosts[4] + ghosts[5]) if imx == 1: if self.x is not None: new_arr =
numpy.zeros((jmax, kmax))
numpy.zeros
########################################################################## # QN-S3VM BFGS optimizer for semi-supervised support vector machines. # # This implementation provides both a L-BFGS optimization scheme # for semi-supvised support vector machines. Details can be found in: # # <NAME>, <NAME>, <NAME>, <NAME>, Sparse quasi- # Newton optimization for semi-supervised support vector ma- # chines, in: Proc. of the 1st Int. Conf. on Pattern Recognition # Applications and Methods, 2012, pp. 45-54. # # Version: 0.1 (September, 2012) # # Bugs: Please send any bugs to "f DOT gieseke AT uni-oldenburg.de" # # # Copyright (C) 2012 <NAME>, <NAME>, <NAME>, <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # INSTALLATION and DEPENDENCIES # # The module should work out of the box, given Python and Numpy (http://numpy.scipy.org/) # and Scipy (http://scipy.org/) installed correctly. # # We have tested the code on Ubuntu 12.04 (32 Bit) with Python 2.7.3, Numpy 1.6.1, # and Scipy 0.9.0. Installing these packages on a Ubuntu- or Debian-based systems # can be done via "sudo apt-get install python python-numpy python-scipy". # # # RUNNING THE EXAMPLES # # For a description of the data sets, see the paper mentioned above and the references # therein. Running the command "python qns3vm.py" should yield an output similar to: # # Sparse text data set instance # Number of labeled patterns: 48 # Number of unlabeled patterns: 924 # Number of test patterns: 974 # Time needed to compute the model: 0.775886058807 seconds # Classification error of QN-S3VM: 0.0667351129363 # # Dense gaussian data set instance # Number of labeled patterns: 25 # Number of unlabeled patterns: 225 # Number of test patterns: 250 # Time needed to compute the model: 0.464584112167 seconds # Classification error of QN-S3VM: 0.012 # # Dense moons data set instance # Number of labeled patterns: 5 # Number of unlabeled patterns: 495 # Number of test patterns: 500 # Time needed to compute the model: 0.69714307785 seconds # Classification error of QN-S3VM: 0.0 ########################################################################## import array as arr import math import copy as cp import logging import numpy as np from numpy import multiply, zeros, float64, array, newaxis, ndarray, ones import operator from time import time import sys from scipy import optimize import scipy.sparse.csc as csc from scipy import sparse import scipy import warnings from ipdb import set_trace warnings.simplefilter('error') __author__ = '<NAME>, <NAME>, <NAME>, <NAME>' __version__ = '0.1' class QN_S3VM: """ L-BFGS optimizer for semi-supervised support vector machines (S3VM). """ def __init__(self, X_l, L_l, X_u, random_generator=None, ** kw): """ Initializes the model. Detects automatically if dense or sparse data is provided. Keyword arguments: X_l -- patterns of labeled part of the data L_l -- labels of labeled part of the data X_u -- patterns of unlabeled part of the data random_generator -- particular instance of a random_generator (default None) kw -- additional parameters for the optimizer lam -- regularization parameter lambda (default 1, must be a float > 0) lamU -- cost parameter that determines influence of unlabeled patterns (default 1, must be float > 0) sigma -- kernel width for RBF kernel (default 1.0, must be a float > 0) kernel_type -- "Linear" or "RBF" (default "Linear") numR -- implementation of subset of regressors. If None is provided, all patterns are used (no approximation). Must fulfill 0 <= numR <= len(X_l) + len(X_u) (default None) estimate_r -- desired ratio for positive and negative assigments for unlabeled patterns (-1.0 <= estimate_r <= 1.0). If estimate_r=None, then L_l is used to estimate this ratio (in case len(L_l) >= minimum_labeled_patterns_for_estimate_r. Otherwise use estimate_r = 0.0 (default None) minimum_labeled_patterns_for_estimate_r -- see above (default 0) BFGS_m -- BFGS parameter (default 50) BFGS_maxfun -- BFGS parameter, maximum number of function calls (default 500) BFGS_factr -- BFGS parameter (default 1E12) BFGS_pgtol -- BFGS parameter (default 1.0000000000000001e-05) """ self.__model = None # Initiate model for sparse data if isinstance(X_l, csc.csc_matrix): self.__data_type = "sparse" self.__model = QN_S3VM_Sparse( X_l, L_l, X_u, random_generator, ** kw) # Initiate model for dense data elif (isinstance(X_l[0], list)) or (isinstance(X_l[0], ndarray)): self.__data_type = "dense" self.__model = QN_S3VM_Dense( X_l, L_l, X_u, random_generator, ** kw) # Data format unknown if self.__model is None: logging.info("Data format for patterns is unknown.") sys.exit(0) def train(self): """ Training phase. Returns: The computed partition for the unlabeled patterns. """ return self.__model.train() def getPredictions(self, X, real_valued=False): """ Computes the predicted labels for a given set of patterns Keyword arguments: X -- The set of patterns real_valued -- If True, then the real prediction values are returned Returns: The predictions for the list X of patterns. """ return self.__model.getPredictions(X, real_valued=False) def predict(self, x): """ Predicts a label (-1 or +1) for the pattern Keyword arguments: x -- The pattern Returns: The prediction for x. """ return self.__model.predict(x) def predictValue(self, x): """ Computes f(x) for a given pattern (see Representer Theorem) Keyword arguments: x -- The pattern Returns: The (real) prediction value for x. """ return self.__model.predictValue(x) def getNeededFunctionCalls(self): """ Returns the number of function calls needed during the optimization process. """ return self.__model.getNeededFunctionCalls() def mygetPreds(self, X, real_valued=False): return self.__model.mygetPreds(X, real_valued) ########################################################################## ########################################################################## class QN_S3VM_Dense: """ BFGS optimizer for semi-supervised support vector machines (S3VM). Dense Data """ parameters = { 'lam': 1, 'lamU': 1, 'sigma': 1, 'kernel_type': "Linear", 'numR': None, 'estimate_r': None, 'minimum_labeled_patterns_for_estimate_r': 0, 'BFGS_m': 50, 'BFGS_maxfun': 500, 'BFGS_factr': 1E12, 'BFGS_pgtol': 1.0000000000000001e-05, 'BFGS_verbose': -1, 'surrogate_s': 3.0, 'surrogate_gamma': 20.0, 'breakpoint_for_exp': 500 } def __init__(self, X_l, L_l, X_u, random_generator, ** kw): """ Intializes the S3VM optimizer. """ self.__random_generator = random_generator self.__X_l, self.__X_u, self.__L_l = X_l, X_u, L_l assert len(X_l) == len(L_l) self.__X = cp.deepcopy(self.__X_l) self.__X.extend(cp.deepcopy(self.__X_u)) self.__size_l, self.__size_u, self.__size_n = len( X_l), len(X_u), len(X_l) + len(X_u) self.__matrices_initialized = False self.__setParameters(** kw) self.__kw = kw def train(self): """ Training phase. Returns: The computed partition for the unlabeled patterns. """ indi_opt = self.__optimize() self.__recomputeModel(indi_opt) predictions = self.__getTrainingPredictions(self.__X) return predictions def mygetPreds(self, X, real_valued=False): KNR = self.__kernel.computeKernelMatrix(X, self.__Xreg) KNU_bar = self.__kernel.computeKernelMatrix( X, self.__X_u_subset, symmetric=False) KNU_bar_horizontal_sum = ( 1.0 / len(self.__X_u_subset)) * KNU_bar.sum(axis=1) KNR = KNR - KNU_bar_horizontal_sum[newaxis].T - \ self.__KU_barR_vertical_sum[newaxis] + self.__KU_barU_bar_sum preds = KNR @ self.__c[0:self.__dim - 1, :] + \ self.__c[self.__dim - 1, :] return preds def getPredictions(self, X, real_valued=False): """ Computes the predicted labels for a given set of patterns Keyword arguments: X -- The set of patterns real_valued -- If True, then the real prediction values are returned Returns: The predictions for the list X of patterns. """ KNR = self.__kernel.computeKernelMatrix(X, self.__Xreg) KNU_bar = self.__kernel.computeKernelMatrix( X, self.__X_u_subset, symmetric=False) KNU_bar_horizontal_sum = ( 1.0 / len(self.__X_u_subset)) * KNU_bar.sum(axis=1) KNR = KNR - KNU_bar_horizontal_sum[newaxis].T - \ self.__KU_barR_vertical_sum[newaxis] + self.__KU_barU_bar_sum preds = KNR @ self.__c[0:self.__dim - 1, :] + \ self.__c[self.__dim - 1, :] if real_valued == True: return preds.flatten(order='C').tolist() else: return np.sign(np.sign(preds) + 0.1).flatten(order='C').tolist() def predict(self, x): """ Predicts a label for the pattern Keyword arguments: x -- The pattern Returns: The prediction for x. """ return self.getPredictions([x], real_valued=False)[0] def predictValue(self, x): """ Computes f(x) for a given pattern (see Representer Theorem) Keyword arguments: x -- The pattern Returns: The (real) prediction value for x. """ return self.getPredictions([x], real_valued=True)[0] def getNeededFunctionCalls(self): """ Returns the number of function calls needed during the optimization process. """ return self.__needed_function_calls def __setParameters(self, ** kw): for attr, val in list(kw.items()): self.parameters[attr] = val self.__lam = float(self.parameters['lam']) assert self.__lam > 0 self.__lamU = float(self.parameters['lamU']) assert self.__lamU > 0 self.__lam_Uvec = [float( self.__lamU) * i for i in [ 0, 0.000001, 0.0001, 0.01, 0.1, 0.5, 1]] self.__sigma = float(self.parameters['sigma']) assert self.__sigma > 0 self.__kernel_type = str(self.parameters['kernel_type']) if self.parameters['numR'] is not None: self.__numR = int(self.parameters['numR']) assert (self.__numR <= len(self.__X)) and (self.__numR > 0) else: self.__numR = len(self.__X) self.__regressors_indices = sorted( self.__random_generator.sample( list( range( 0, len( self.__X))), self.__numR)) self.__dim = self.__numR + 1 # add bias term b self.__minimum_labeled_patterns_for_estimate_r = float( self.parameters['minimum_labeled_patterns_for_estimate_r']) # If reliable estimate is available or can be estimated, use it, otherwise # assume classes to be balanced (i.e., estimate_r=0.0) if self.parameters['estimate_r'] is not None: self.__estimate_r = float(self.parameters['estimate_r']) elif len(self.__L_l) >= self.__minimum_labeled_patterns_for_estimate_r: self.__estimate_r = (1.0 / len(self.__L_l)) * np.sum(self.__L_l) else: self.__estimate_r = 0.0 self.__BFGS_m = int(self.parameters['BFGS_m']) self.__BFGS_maxfun = int(self.parameters['BFGS_maxfun']) self.__BFGS_factr = float(self.parameters['BFGS_factr']) # This is a hack for 64 bit systems (Linux). The machine precision # is different for the BFGS optimizer (Fortran code) and we fix this # by: is_64bits = sys.maxsize > 2**32 if is_64bits: logging.debug("64-bit system detected, modifying BFGS_factr!") self.__BFGS_factr = 0.000488288 * self.__BFGS_factr self.__BFGS_pgtol = float(self.parameters['BFGS_pgtol']) self.__BFGS_verbose = int(self.parameters['BFGS_verbose']) self.__surrogate_gamma = float(self.parameters['surrogate_gamma']) self.__s = float(self.parameters['surrogate_s']) self.__breakpoint_for_exp = float( self.parameters['breakpoint_for_exp']) self.__b = self.__estimate_r # size of unlabeled patterns to estimate mean (used for balancing # constraint) self.__max_unlabeled_subset_size = 1000 def __optimize(self): logging.debug("Starting optimization with BFGS ...") self.__needed_function_calls = 0 self.__initializeMatrices() # starting point c_current = zeros(self.__dim, float64) c_current[self.__dim - 1] = self.__b # Annealing sequence. for i in range(len(self.__lam_Uvec)): self.__lamU = self.__lam_Uvec[i] # crop one dimension (in case the offset b is fixed) c_current = c_current[:self.__dim - 1] c_current = self.__localSearch(c_current) # reappend it if needed c_current = np.append(c_current, self.__b) f_opt = self.__getFitness(c_current) return c_current, f_opt def __localSearch(self, start): c_opt, f_opt, d = optimize.fmin_l_bfgs_b(self.__getFitness, start, m=self.__BFGS_m, fprime=self.__getFitness_Prime, maxfun=self.__BFGS_maxfun, factr=self.__BFGS_factr, pgtol=self.__BFGS_pgtol, iprint=self.__BFGS_verbose) self.__needed_function_calls += int(d['funcalls']) return c_opt def __initializeMatrices(self): if self.__matrices_initialized == False: logging.debug("Initializing matrices...") # Initialize labels x = arr.array('i') for l in self.__L_l: x.append(l) self.__YL = array(x, dtype=float64) self.__YL = self.__YL.transpose() # Initialize kernel matrices if (self.__kernel_type == "Linear"): self.__kernel = LinearKernel() elif (self.__kernel_type == "RBF"): self.__kernel = RBFKernel(self.__sigma) self.__Xreg = ( array( self.__X)[ self.__regressors_indices, :].tolist()) self.__KLR = self.__kernel.computeKernelMatrix( self.__X_l, self.__Xreg, symmetric=False) self.__KUR = self.__kernel.computeKernelMatrix( self.__X_u, self.__Xreg, symmetric=False) #self.__KNR = cp.deepcopy(bmat([[self.__KLR], [self.__KUR]])) self.__KNR = cp.deepcopy(np.vstack((self.__KLR, self.__KUR))) self.__KRR = self.__KNR[self.__regressors_indices, :] # Center patterns in feature space (with respect to approximated # mean of unlabeled patterns in the feature space) subset_unlabled_indices = sorted( self.__random_generator.sample( list( range( 0, len( self.__X_u))), min( self.__max_unlabeled_subset_size, len( self.__X_u)))) self.__X_u_subset = ( array( self.__X_u)[ subset_unlabled_indices, :].tolist()) self.__KNU_bar = self.__kernel.computeKernelMatrix( self.__X, self.__X_u_subset, symmetric=False) self.__KNU_bar_horizontal_sum = ( 1.0 / len(self.__X_u_subset)) * self.__KNU_bar.sum(axis=1) self.__KU_barR = self.__kernel.computeKernelMatrix( self.__X_u_subset, self.__Xreg, symmetric=False) self.__KU_barR_vertical_sum = ( 1.0 / len(self.__X_u_subset)) * self.__KU_barR.sum(axis=0) self.__KU_barU_bar = self.__kernel.computeKernelMatrix( self.__X_u_subset, self.__X_u_subset, symmetric=False) self.__KU_barU_bar_sum = ( 1.0 / (len(self.__X_u_subset)))**2 * self.__KU_barU_bar.sum() self.__KNR = self.__KNR - self.__KNU_bar_horizontal_sum - \ self.__KU_barR_vertical_sum + self.__KU_barU_bar_sum self.__KRR = self.__KNR[self.__regressors_indices, :] self.__KLR = self.__KNR[list(range(0, len(self.__X_l))), :] self.__KUR = self.__KNR[list( range(len(self.__X_l), len(self.__X))), :] self.__matrices_initialized = True def __getFitness(self, c): # Check whether the function is called from the bfgs solver # (that does not optimize the offset b) or not if len(c) == self.__dim - 1: c = np.append(c, self.__b) c = array(c)[newaxis] b = c[:, self.__dim - 1].T c_new = c[:, 0:self.__dim - 1].T preds_labeled = self.__surrogate_gamma * \ (1.0 - multiply(self.__YL, self.__KLR @ c_new + b)) preds_unlabeled = self.__KUR @ c_new + b # This vector has a "one" for each "numerically instable" entry; # "zeros" for "good ones". preds_labeled_conflict_indicator = np.sign( np.sign(preds_labeled / self.__breakpoint_for_exp - 1.0) + 1.0) # This vector has a one for each good entry and zero otherwise preds_labeled_good_indicator = (-1) * \ (preds_labeled_conflict_indicator - 1.0) preds_labeled_for_conflicts = multiply( preds_labeled_conflict_indicator, preds_labeled) preds_labeled = multiply(preds_labeled, preds_labeled_good_indicator) # Compute values for good entries preds_labeled_log_exp = np.log(1.0 + np.exp(preds_labeled)) # Compute values for instable entries preds_labeled_log_exp = multiply( preds_labeled_good_indicator, preds_labeled_log_exp) # Replace critical values with values preds_labeled_final = preds_labeled_log_exp + preds_labeled_for_conflicts term1 = (1.0 / (self.__surrogate_gamma * self.__size_l)) * \ np.sum(preds_labeled_final) preds_unlabeled_squared = multiply(preds_unlabeled, preds_unlabeled) term2 = (float(self.__lamU) / float(self.__size_u)) * \ np.sum(np.exp(-self.__s * preds_unlabeled_squared)) term3 = self.__lam * (c_new.T @ self.__KRR @ c_new) return (term1 + term2 + term3)[0, 0] def __getFitness_Prime(self, c): # Check whether the function is called from the bfgs solver # (that does not optimize the offset b) or not if len(c) == self.__dim - 1: c = np.append(c, self.__b) c = array(c)[newaxis] b = c[:, self.__dim - 1].T c_new = c[:, 0:self.__dim - 1].T preds_labeled = self.__surrogate_gamma * \ (1.0 - multiply(self.__YL, self.__KLR @ c_new + b)) preds_unlabeled = (self.__KUR @ c_new + b) # This vector has a "one" for each "numerically instable" entry; # "zeros" for "good ones". preds_labeled_conflict_indicator = np.sign( np.sign(preds_labeled / self.__breakpoint_for_exp - 1.0) + 1.0) # This vector has a one for each good entry and zero otherwise preds_labeled_good_indicator = (-1) * \ (preds_labeled_conflict_indicator - 1.0) preds_labeled =
multiply(preds_labeled, preds_labeled_good_indicator)
numpy.multiply
import math import cv2 import numpy as np #-----------------------------# # 计算原始输入图像 # 每一次缩放的比例 #-----------------------------# def calculateScales(img): pr_scale = 1.0 h,w,_ = img.shape #--------------------------------------------# # 将最大的图像大小进行一个固定 # 如果图像的短边大于500,则将短边固定为500 # 如果图像的长边小于500,则将长边固定为500 #--------------------------------------------# if min(w,h)>500: pr_scale = 500.0/min(h,w) w = int(w*pr_scale) h = int(h*pr_scale) elif max(w,h)<500: pr_scale = 500.0/max(h,w) w = int(w*pr_scale) h = int(h*pr_scale) #------------------------------------------------# # 建立图像金字塔的scales,防止图像的宽高小于12 #------------------------------------------------# scales = [] factor = 0.709 factor_count = 0 minl = min(h,w) while minl >= 12: scales.append(pr_scale*pow(factor, factor_count)) minl *= factor factor_count += 1 return scales #-----------------------------# # 将长方形调整为正方形 #-----------------------------# def rect2square(rectangles): w = rectangles[:,2] - rectangles[:,0] h = rectangles[:,3] - rectangles[:,1] l =
np.maximum(w,h)
numpy.maximum
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ------------------------------------------------------------ % File: template_2_printable.py % Description: % Author: J.G.Aguado % Email: <EMAIL> % Date of creation: 8/19/2021 ------------------------------------------------------------ """ import datetime import numpy as np import math import cairo import yaml def frame(config, spice): surface = cairo.ImageSurface(cairo.FORMAT_RGB24, config['general']['size'][0], config['general']['size'][1]) pad = 2 grad = config['general']['color grad'] r, g, b = spice['color'] r0, g0, b0 = r + grad, g + grad, b + grad r1, g1, b1 = r - grad, g - grad, b - grad ctx = cairo.Context(surface) ctx.scale(1, 1) ctx.set_source_rgb(0, 0, 0) ctx.rectangle(0, 0, config['general']['size'][0], config['general']['size'][1]) ctx.fill() ctx.rectangle(pad, pad, config['general']['size'][0]-2*pad, config['general']['size'][1]-2*pad) pattern = cairo.LinearGradient(0, 0, 0, config['general']['size'][1]) pattern.add_color_stop_rgb(0, r0 / 255, g0 / 255, b0 / 255) pattern.add_color_stop_rgb(1, r1 / 255, g1 / 255, b1 / 255) ctx.set_source(pattern) ctx.fill() roundrect(ctx, config['general']['pad'], config['general']['pad'], config['general']['size'][0] - 2 * config['general']['pad'], config['general']['size'][1] - 2 * config['general']['pad'], config['general']['radius']) return ctx, surface def roundrect(ctx, x, y, width, height, rad=10, thickness=2, color=[255,255,255]): r,g,b = [x/255 for x in color] ctx.arc(x + rad, y + rad, rad, math.pi, 3 * math.pi / 2) ctx.arc(x + width - rad, y + rad, rad, 3 * math.pi / 2, 0) ctx.arc(x + width - rad, y + height - rad, rad, 0, math.pi / 2) ctx.arc(x + rad, y + height - rad, rad, math.pi / 2, math.pi) ctx.close_path() ctx.set_source_rgb(r, g, b); ctx.fill_preserve(); ctx.set_source_rgba(r, g, b); ctx.set_line_width(thickness); ctx.stroke(); def draw_image(ctx, image, xc, yc, width, height, angle=None): ctx.save() image_surface = cairo.ImageSurface.create_from_png(image) w = image_surface.get_width() h = image_surface.get_height() scale_xy = min(width/w, height/h) w = scale_xy * w h = scale_xy * h """ Best rotation """ width_rot = [] height_rot = [] comb = [] for theta in np.arange(0,91): theta = theta*math.pi/180 width = w * abs(np.cos(theta)) + h * abs(np.sin(theta)) height = w * abs(np.sin(theta)) + h * abs(np.cos(theta)) width_rot.append(width) height_rot.append(height) comb.append(abs(1-abs(width/ height))) comb = np.array(comb) if angle is None: angle = np.argmin(comb) print(angle) """ Computations """ angle = angle * math.pi / 180 alpha = math.atan((h/2)/ (w/2)) r = math.hypot(w/2, h/2) x, y = xc - r*np.cos(alpha), yc - r*np.sin(alpha) beta = alpha + angle xc1 = x + r * np.cos(beta) yc1 = y + r * np.sin(beta) x1, y1 = x + xc -xc1, y + yc - yc1 # ****** Aux plotting lines ****** # ctx.move_to(0, 0) # ctx.line_to(xc, yc) # ctx.set_source_rgb(1, 0, 0) # ctx.stroke() # # ctx.move_to(0, 0) # ctx.line_to(x, y) # ctx.set_source_rgb(0, 1, 0) # ctx.stroke() # # ctx.move_to(x, y) # ctx.line_to(xc1, yc1) # ctx.set_source_rgb(0, 0, 1) # ctx.stroke() # # ctx.move_to(xc1, yc1) # ctx.line_to(x1, y1) # ctx.set_source_rgb(1, 0, 1) # ctx.stroke() """ Translate """ ctx.translate(x1,y1) """ Rotate """ ctx.rotate(angle) """ Scale & write """ ctx.scale(scale_xy, scale_xy) ctx.set_source_surface(image_surface, 0, 0) ctx.paint() ctx.restore() return def names(ctx, config, spice): ctx.set_source_rgb(0, 0, 0) ctx.set_font_size(config['text']['size']) ctx.select_font_face(config['text']['type'], cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) xc, yc, w, h = config['text']['x'], config['text']['y'],\ config['text']['width'], config['text']['height'] for string, ii in zip([spice['es'], spice['en'], spice['de']], [-1, 0, 1]): text_props = ctx.text_extents(string) ts = w/text_props.width if ts < 1: size = config['text']['size'] - ((1-ts)*config['text']['scale']) elif ts > 1: size = config['text']['size'] + 2 ctx.set_font_size(size) text_props = ctx.text_extents(string) nx = -text_props.width/2 ny = text_props.height/2 x = xc + nx y = yc + ii* h/3 + ny ctx.move_to(x, y) ctx.show_text(string) def main(path, simulation=True): with open(path, 'rt', encoding='utf8') as yaml_file: config = yaml.load(yaml_file) """ Individual labels generator """ labels = [] for spice_type in config['spices']: for spice in config['spices'][spice_type]['items']: ctx, surface = frame(config, config['spices'][spice_type]) draw_image(ctx, spice['img'], config['image']['x'], config['image']['y'], config['image']['width'], config['image']['height']) names(ctx, config, spice) output = '.\labels\\' + spice['es'] + '_label.png' surface.write_to_png(output) labels.append(output) """ Gropu by 24 labels """ pad = 25 w, h = 2480, 3508 width, height = w-2*pad, h-2*pad a4 = cairo.ImageSurface(cairo.FORMAT_RGB24,w, h) ctx = cairo.Context(a4) ctx.scale(1, 1) ctx.set_source_rgb(1, 1, 1) ctx.rectangle(0, 0, w, h) ctx.fill() idx = 0 for column in np.arange(pad, width, width/3): for row in
np.arange(pad, height, height/8)
numpy.arange
# -*- coding: utf-8 -*- # Wrapper for easy use of SciKit learn models from libs.base import * import numpy as np import pickle ## OK, this could just work, but its not tested ## And, we should use some kind of *args to pass multiple arguments... class SKLModel: def __init__(self, value = {}, skClass="linear_model", skMethod="SGDRegressor"): if (value == {}): skClass = "linear_model" skM = self._skimport("sklearn."+skClass) self.Model = getattr(skM, "SGDRegressor")() else: self.Model = pickle.loads(value["picklestr"]) def get_dict(self): """ Return a dictionary with key:"picklestring" and \ value:pickle.dumps(model) Used to store the model as a pickle object in database. """ s = pickle.dumps(self.Model) return {"picklestr":s} def update(self, X=np.array([[]]), y=np.array([])): """ Update the linear model. :param np.array X: Multi dimensional array (matrix) with n rows of p features. :param np.array y: Array with n targets n can be 1 for incremental updates (default) """ self.Model.partial_fit(X,y) def predict(self, X=
np.array([[]])
numpy.array
# -*- encoding: utf-8 -*- from __future__ import division, print_function, absolute_import import logging import pandas as pd import numpy as np import numpy.testing as nptest import pytest from pydse.arma import ARMA, ARMAError from pydse import arma from pydse import data __author__ = "<NAME>" __copyright__ = "Blue Yonder" __license__ = "new BSD" logging.basicConfig(level=logging.WARN) def test_arma_construction(): AR = ([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3], [3, 2, 2]) MA = ([1, .2, 0, .1, 0, 0, 1, .3], [2, 2, 2]) X = ([1, 2, 3, 4, 5, 6], [1, 2, 3]) # Check construction ARMA(A=AR, B=MA) ARMA(A=AR) ARMA(A=AR, B=MA, C=X) MA = ([1, 0.2, 0, .1], [2, 2, 1]) X = ([1, 2, 3, 4, 5, 6], [2, 1, 3]) with pytest.raises(ARMAError): ARMA(A=AR, B=MA) ARMA(A=AR, C=X) AR = ([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3], [3, 2, 2]) MA = ([1, 2, 0, .1, 0, 0, 1, .3], [2, 2, 2]) TREND = [1, 2] ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2], [3, 4]] ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2], [3, 4], [4, 5]] ARMA(A=AR, B=MA, TREND=TREND) TREND = [1, 2, 3] # give a (3,) array while expecting a (2,) array as p = 2 with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND) TREND = [[1, 2, 3], [1, 2, 3], [1, 2, 3]] # give a (3, 3) array while expect a (X, 2) array as p = 2 with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND) TREND = [[[1, 2, 3], [1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3], [1, 2, 3]]] # give a (3, 3, 3) array while expect a 2-d matrix with pytest.raises(ARMAError): ARMA(A=AR, B=MA, TREND=TREND) def test_simulate_arma(): AR = (np.array([1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3]),
np.array([3, 2, 2])
numpy.array
import argparse import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import GroupShuffleSplit, StratifiedShuffleSplit from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from data import load_wiki_data, load_legal_data, load_glove from model import Model def shuffleSplit(ss, X, y, groups): #encompass both group and stratified shuffle splitting if groups is not None: return ss.split(X, y, groups) else: return ss.split(X, y) parser = argparse.ArgumentParser() parser.add_argument("-d", "--dataset", help="Use 'legal' (default) or 'wiki' dataset", choices=['legal', 'wiki'], default='legal') parser.add_argument("--baseline", help="Use baseline classifier", action="store_true") parser.add_argument("-s", "--splits", help="Number of cross-validations", type=int, default=1) parser.add_argument("-t", "--test_size", help="Proportion of test split", type=float, default=0.2) parser.add_argument("-g", "--glove_size", help="GloVe embedding size", type=int, choices=[50, 100, 200, 300], default=50) parser.add_argument("-n", "--hidden_size", help="RNN hidden weights size", type=int, default=8) parser.add_argument("-l", "--lr", help="RNN learning rate", type=float, default=0.01) parser.add_argument("-r", "--dropout", help="RNN dropout rate", type=float, default=0.1) parser.add_argument("-c", "--cell_type", help="RNN cell type; 'g' for GRU (default) or 'l' for LSTM", choices=['g', 'l'], default='g') parser.add_argument("-b", "--batch_size", help="Training batch size", type=int, default=512) parser.add_argument("-e", "--epochs", help="Training epochs", type=int, default=2) parser.add_argument("-o", "--random_seed", help="Global random seed (cross-validation split, batch shuffling and Tensorflow initializations and operations)", type=int, default=None) parser.add_argument("-v", "--visualize", help="Visualize output as HTML; use 's' for 0.1%% samples or 'e' for all errors", choices=[None, 's', 'e'], default=None) args = parser.parse_args() if args.dataset == 'wiki': #train_set, dev_set, test_set = load_wiki_data() X, y, groups = load_wiki_data(mode='cv') ss = GroupShuffleSplit(n_splits=args.splits, test_size=args.test_size, random_state=args.random_seed) elif args.dataset == 'legal': #train_set, dev_set, test_set = load_legal_data() X, y = load_legal_data(mode='cv') groups = None ss = StratifiedShuffleSplit(n_splits=args.splits, test_size=args.test_size, random_state=args.random_seed) if args.random_seed is not None:
np.random.seed(args.random_seed)
numpy.random.seed
import os, sys sys.path.insert(0, './') import random import numpy as np from skimage.util import random_noise from PIL import Image, ImageFilter import cv2 from data.dataloader import Dataset from data.dataloader import DataLoader import copy from tools import crash_on_ipy ''' this is superresolution data loader with choice lr_img from triple(1M, 2M, 4M) and the hr_img is screen records with usm preocession ''' class TrainDataset(Dataset): def __init__(self, tmp1, tmp2, scale=2, crop_size=128, cfg=None): super(TrainDataset, self).__init__() self.crop_size = crop_size self.scale = scale self.cfg = cfg hr_path_file = '/workspace/nas_mengdongwei/dataset/lol/my_lol_frames_usm_ps_4k/train_crop_paths.txt' lr_1M_path_file = '/workspace/nas_mengdongwei/dataset/lol/my_lol_frames_1080_1M/crop_1M_frames_paths.txt' lr_2M_path_file = '/workspace/nas_mengdongwei/dataset/lol/my_lol_frames_1080_2M/crop_2M_frames_paths.txt' lr_4M_path_file = '/workspace/nas_mengdongwei/dataset/lol/my_lol_frames_1080_4M/crop_4M_frames_paths.txt' self.hr_paths = [x.strip() for x in open(hr_path_file, 'r').readlines()] self.lr_1M_paths = [x.strip() for x in open(lr_1M_path_file, 'r').readlines()] self.lr_2M_paths = [x.strip() for x in open(lr_2M_path_file, 'r').readlines()] self.lr_4M_paths = [x.strip() for x in open(lr_4M_path_file, 'r').readlines()] assert(len(self.hr_paths) == len(self.lr_1M_paths)) assert(len(self.hr_paths) == len(self.lr_2M_paths)) assert(len(self.hr_paths) == len(self.lr_4M_paths)) self.hr_paths.sort() self.lr_1M_paths.sort() self.lr_2M_paths.sort() self.lr_4M_paths.sort() self.num_sample = len(self.hr_paths) def _read_pair_img(self, index): if random.random() > 0.7: lr_img = Image.open(self.lr_4M_paths[index]) elif random.random() > 0.1: lr_img = Image.open(self.lr_2M_paths[index]) else: lr_img = Image.open(self.lr_1M_paths[index]) if index <= 43308: lr_img = lr_img.resize((240, 240)) hr_img = Image.open(self.hr_paths[index]) return hr_img, lr_img def _lr_add_noise(self, lr): if random.random() > 0.7: lr_mode = lr.mode lr_np = np.array(lr) if self.cfg.dataset.add_gaussian_noise: if random.random() > 0.5: lr_np = random_noise(lr_np, mode='gaussian', clip=True) else: lr_np = random_noise(lr_np, mode='poisson', clip=True) if self.cfg.dataset.add_sp_noise: lr_np = random_noise(lr_np, mode='s&p', clip=True) lr_np = lr_np * 255 lr_np = lr_np.astype(np.uint8) lr = Image.fromarray(lr_np) if random.random() > 1: lr_np = np.array(lr) lr_np = jpeg_compress(lr_np) lr_np = lr_np.astype(np.uint8) lr = Image.fromarray(lr_np) return lr def __getitem__(self, index): while(True): try: index = random.randint(43309, self.num_sample) hr, lr = self._read_pair_img(index) #lr = self._lr_add_noise(lr) lr = lr.convert('YCbCr').split()[0] lr = np.expand_dims(np.array(lr), -1) hr = hr.convert('YCbCr').split()[0] hr = np.expand_dims(np.array(hr), -1) hr, lr = random_crop(hr, lr, size=self.crop_size, scale=self.scale) hr, lr = random_flip_and_rotate(hr, lr) cubic = cv2.resize(lr, (hr.shape[1], hr.shape[0]), interpolation=cv2.INTER_LINEAR) cubic =
np.expand_dims(cubic, -1)
numpy.expand_dims
import numpy as np import cv2 import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras import backend as K @tf.custom_gradient def guidedRelu(x): def grad(dy): return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy return tf.nn.relu(x), grad # Reference: https://github.com/eclique/keras-gradcam with adaption to tensorflow 2.0 class GuidedBackprop: def __init__(self,model, layerName=None): self.model = model self.layerName = layerName if self.layerName == None: self.layerName = self.find_target_layer() self.gbModel = self.build_guided_model() def find_target_layer(self): for layer in reversed(self.model.layers): if len(layer.output_shape) == 4: return layer.name raise ValueError("Could not find 4D layer. Cannot apply Guided Backpropagation") def build_guided_model(self): gbModel = Model( inputs = [self.model.inputs], outputs = [self.model.get_layer(self.layerName).output] ) layer_dict = [layer for layer in gbModel.layers[1:] if hasattr(layer,"activation")] for layer in layer_dict: if layer.activation == tf.keras.activations.relu: layer.activation = guidedRelu return gbModel def guided_backprop(self, images, upsample_size): """Guided Backpropagation method for visualizing input saliency.""" with tf.GradientTape() as tape: inputs = tf.cast(images, tf.float32) tape.watch(inputs) outputs = self.gbModel(inputs) grads = tape.gradient(outputs, inputs)[0] saliency = cv2.resize(np.asarray(grads), upsample_size) return saliency def deprocess_image(x): """Same normalization as in: https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py """ # normalize tensor: center on 0., ensure std is 0.25 x = x.copy() x -= x.mean() x /= (x.std() + K.epsilon()) x *= 0.25 # clip to [0, 1] x += 0.5 x = np.clip(x, 0, 1) # convert to RGB array x *= 255 if K.image_data_format() == 'channels_first': x = x.transpose((1, 2, 0)) x =
np.clip(x, 0, 255)
numpy.clip
import pickle import numpy as np import matplotlib.pyplot as plt def plot_graphs(x, y, title, xlabel, ylabel, legend_labels, savefile): plt.figure() n = len(x) for i in range(n): plt.plot(x[i], y[i], label=legend_labels[i]) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend() plt.savefig(savefile + ".png") def mnist_tuning(num_users, direction, lrs, model="mlp"): dataset = "mnist" epochs = 100 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] for lr in lrs: experiments = [] file_name = '../save/{}-{}/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, dataset, model, epochs, num_users, frac, iid, local_bs, "sgd", lr, direction, topk, topk_d, 1) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) all_experiments.append(np.mean(np.array(experiments)[:, 3], axis=0)) filename = '{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}]' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sgd", direction, topk, topk_d, 1) savefile = '../save/plots/tuning/{}/'.format(dataset) + filename plot_graphs([list(range(epochs))] * len(lrs), all_experiments, "Tuning Learning Rate", "Epoch", "Accuracy", lrs, savefile) def mnist_sparse_tuning(num_users, direction, lrs, model="mlp"): dataset = "mnist" epochs = 100 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] for lr in lrs: filename = '{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", lr, direction, topk, topk_d, 1) experiments = [] filepath = '../save/{}-{}/'.format(dataset, model) + filename with open(filepath, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) all_experiments.append(np.mean(np.array(experiments)[:, 3], axis=0)) filename = '{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}]' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", direction, topk, topk_d, 1) savefile = '../save/plots/tuning/{}/'.format(dataset) + filename plot_graphs([list(range(epochs))] * len(lrs), all_experiments, "", "Epoch", "Accuracy", lrs, savefile) def mnist_comparison(num_users, lrs, model="mlp"): dataset = "mnist" epochs = 100 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] experiments = [] file_name = '../save/{}-{}/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", lrs[0], 0, topk, topk_d, 1) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) all_experiments.append(np.mean(np.array(experiments)[:, 3], axis=0)) experiments = [] file_name = '../save/{}-{}/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", lrs[1], 1, topk, topk_d, 1) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) all_experiments.append(np.mean(np.array(experiments)[:, 3], axis=0)) experiments = [] file_name = '../save/{}-{}/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, dataset, model, epochs, num_users, frac, iid, local_bs, "sgd", lrs[2], 1, topk, topk_d, 1) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) all_experiments.append(np.mean(np.array(experiments)[:, 3], axis=0)) filename = model + "_"+ str(num_users) + "_comparison" savefile = '../save/plots/tuning/{}/'.format(dataset) + filename plot_graphs([list(range(epochs))] * len(lrs), all_experiments, "Number of Workers: " + str(num_users), "Epoch", "Accuracy", ["unidirectional (lr = {})".format(lrs[0]), "bidirectional (lr = {})".format(lrs[1]), "sgd (lr = {})".format(lrs[2])], savefile) def plot_xi_values(): dataset = "mnist" model = "mlp" epochs = 100 num_users = 20 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] experiments = [] for number in [1]: file_name = '../save/mnist-final-v1/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", 0.08, 1, topk, topk_d, number) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) xi_values = np.mean(np.array(experiments)[:, 4], axis=0) print(xi_values) all_experiments.append(xi_values) print(np.max(xi_values)) print(np.mean(xi_values)) # print(np.mean(experiments)) experiments = [] for number in [1]: file_name = '../save/mnist-final-v1/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", 0.05, 0, topk, topk_d, number) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) xi_values = np.mean(np.array(experiments)[:, 4], axis=0) all_experiments.append(xi_values) print(np.max(xi_values)) print(np.mean(xi_values)) batches = len(all_experiments[0]) plot_graphs([list(range(batches))] * 2, all_experiments, "", "Batch", r"$\xi$", ["bidirectional", "unidirectional"], "xi_comparison_20") def plot_xi_values_lhs(): dataset = "mnist" model = "mlp" epochs = 30 num_users = 50 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] experiments = [] for number in [1]: file_name = '../save/mnist-final-v1/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", 0.09, 1, topk, topk_d, number) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) xi_values = np.mean(np.array(experiments)[:, 9], axis=0) print(xi_values) all_experiments.append(xi_values) print(np.max(xi_values)) print(np.mean(xi_values)) print(np.min(xi_values)) # print(np.mean(experiments)) experiments = [] for number in [1]: file_name = '../save/mnist-final-v1/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", 0.08, 0, topk, topk_d, number) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) xi_values = np.mean(np.array(experiments)[:, 9], axis=0) all_experiments.append(xi_values) print(np.max(xi_values)) print(np.mean(xi_values)) print(np.min(xi_values)) batches = len(all_experiments[0]) plot_graphs([list(range(batches))] * 2, all_experiments, "", "Batch", "Magnitude", ["bidirectional", "unidirectional"], "xi_comparison_20") def plot_xi_values_rhs(): dataset = "mnist" model = "mlp" epochs = 30 num_users = 10 frac = "1.0" iid = 1 local_bs = 10 topk = 0.001 topk_d = 0.001 all_experiments = [] experiments = [] for number in [1]: file_name = '../save/mnist-final-v1/{}_{}_EPOCH[{}]_USERS[{}]_C[{}]_iid[{}]_B[{}]_OPT[{}]_LR[{}]_DIR[{}]_TOPK[{}]_TOPKD[{}]_NUM[{}].pkl' \ .format(dataset, model, epochs, num_users, frac, iid, local_bs, "sparsetopk", 0.05, 1, topk, topk_d, number) with open(file_name, 'rb') as pickle_file: experiments.append(pickle.load(pickle_file)) xi_values = np.mean(np.array(experiments)[:, 10], axis=0) print(xi_values) all_experiments.append(xi_values) print(np.max(xi_values)) print(np.mean(xi_values)) print(
np.min(xi_values)
numpy.min
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """evaluate example""" import sys import os import time import numpy as np from scipy.special import softmax from lenet5_net import LeNet5 from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore import nn from mindspore.nn import Cell from mindspore.ops.operations import TensorAdd from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks import FastGradientSignMethod from mindarmour.attacks import GeneticAttack from mindarmour.attacks.black.black_model import BlackModel from mindarmour.defenses import NaturalAdversarialDefense from mindarmour.evaluations import BlackDefenseEvaluate from mindarmour.evaluations import DefenseEvaluate from mindarmour.utils.logger import LogUtil from mindarmour.detectors.black.similarity_detector import SimilarityDetector sys.path.append("..") from data_processing import generate_mnist_dataset context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") LOGGER = LogUtil.get_instance() TAG = 'Defense_Evaluate_Example' def get_detector(train_images): encoder = Model(EncoderNet(encode_dim=256)) detector = SimilarityDetector(max_k_neighbor=50, trans_model=encoder) detector.fit(inputs=train_images) return detector class EncoderNet(Cell): """ Similarity encoder for input data """ def __init__(self, encode_dim): super(EncoderNet, self).__init__() self._encode_dim = encode_dim self.add = TensorAdd() def construct(self, inputs): """ construct the neural network Args: inputs (Tensor): input data to neural network. Returns: Tensor, output of neural network. """ return self.add(inputs, inputs) def get_encode_dim(self): """ Get the dimension of encoded inputs Returns: int, dimension of encoded inputs. """ return self._encode_dim class ModelToBeAttacked(BlackModel): """ model to be attack """ def __init__(self, network, defense=False, train_images=None): super(ModelToBeAttacked, self).__init__() self._network = network self._queries = [] self._defense = defense self._detector = None self._detected_res = [] if self._defense: self._detector = get_detector(train_images) def predict(self, inputs): """ predict function """ query_num = inputs.shape[0] results = [] if self._detector: for i in range(query_num): query = np.expand_dims(inputs[i].astype(np.float32), axis=0) result = self._network(Tensor(query)).asnumpy() det_num = len(self._detector.get_detected_queries()) self._detector.detect([query]) new_det_num = len(self._detector.get_detected_queries()) # If attack query detected, return random predict result if new_det_num > det_num: results.append(result + np.random.rand(*result.shape)) self._detected_res.append(True) else: results.append(result) self._detected_res.append(False) results = np.concatenate(results) else: results = self._network(Tensor(inputs.astype(np.float32))).asnumpy() return results def get_detected_result(self): return self._detected_res def test_black_defense(): # load trained network current_dir = os.path.dirname(os.path.abspath(__file__)) ckpt_name = os.path.abspath(os.path.join( current_dir, './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt')) # ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' wb_net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(wb_net, load_dict) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds_test = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False) inputs = [] labels = [] for data in ds_test.create_tuple_iterator(): inputs.append(data[0].astype(np.float32)) labels.append(data[1]) inputs = np.concatenate(inputs).astype(np.float32) labels = np.concatenate(labels).astype(np.float32) labels_sparse = np.argmax(labels, axis=1) target_label = np.random.randint(0, 10, size=labels_sparse.shape[0]) for idx in range(labels_sparse.shape[0]): while target_label[idx] == labels_sparse[idx]: target_label[idx] = np.random.randint(0, 10) target_label = np.eye(10)[target_label].astype(np.float32) attacked_size = 50 benign_size = 500 attacked_sample = inputs[:attacked_size] attacked_true_label = labels[:attacked_size] benign_sample = inputs[attacked_size:attacked_size + benign_size] wb_model = ModelToBeAttacked(wb_net) # gen white-box adversarial examples of test data wb_attack = FastGradientSignMethod(wb_net, eps=0.3) wb_adv_sample = wb_attack.generate(attacked_sample, attacked_true_label) wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1) accuracy_test = np.mean( np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1), np.argmax(attacked_true_label, axis=1))) LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s", accuracy_test) accuracy_adv = np.mean(np.equal(np.argmax(wb_raw_preds, axis=1), np.argmax(attacked_true_label, axis=1))) LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s", accuracy_adv) # improve the robustness of model with white-box adversarial examples loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False) opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09) nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt, bounds=(0.0, 1.0), eps=0.3) wb_net.set_train(False) nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10) wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy() wb_def_preds = softmax(wb_def_preds, axis=1) accuracy_def = np.mean(np.equal(np.argmax(wb_def_preds, axis=1), np.argmax(attacked_true_label, axis=1))) LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def) # calculate defense evaluation metrics for defense against white-box attack wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds, np.argmax(attacked_true_label, axis=1)) LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack') LOGGER.info(TAG, 'classification accuracy variance (CAV) is : {:.2f}'.format( wb_def_evaluate.cav())) LOGGER.info(TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format( wb_def_evaluate.crr())) LOGGER.info(TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format( wb_def_evaluate.csr())) LOGGER.info(TAG, 'classification confidence variance (CCV) is : {:.2f}'.format( wb_def_evaluate.ccv())) LOGGER.info(TAG, 'classification output stability is : {:.2f}'.format( wb_def_evaluate.cos())) # calculate defense evaluation metrics for defense against black-box attack LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack') bb_raw_preds = [] bb_def_preds = [] raw_query_counts = [] raw_query_time = [] def_query_counts = [] def_query_time = [] def_detection_counts = [] # gen black-box adversarial examples of test data bb_net = LeNet5() load_param_into_net(bb_net, load_dict) bb_model = ModelToBeAttacked(bb_net, defense=False) attack_rm = GeneticAttack(model=bb_model, pop_size=6, mutation_rate=0.05, per_bounds=0.1, step_size=0.25, temp=0.1, sparse=False) attack_target_label = target_label[:attacked_size] true_label = labels_sparse[:attacked_size + benign_size] # evaluate robustness of original model # gen black-box adversarial examples of test data for idx in range(attacked_size): raw_st = time.time() raw_sl, raw_a, raw_qc = attack_rm.generate( np.expand_dims(attacked_sample[idx], axis=0), np.expand_dims(attack_target_label[idx], axis=0)) raw_t = time.time() - raw_st bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1)) raw_query_counts.extend(raw_qc) raw_query_time.append(raw_t) for idx in range(benign_size): raw_st = time.time() bb_raw_pred = softmax( bb_model.predict(
np.expand_dims(benign_sample[idx], axis=0)
numpy.expand_dims
import unittest from numpy import alltrue, arange, array, ravel, transpose, zeros, inf, isinf from numpy.testing import assert_equal, assert_ from chaco.api import DataRange2D, GridDataSource, PointDataSource class DataRange2DTestCase(unittest.TestCase): def test_empty_range(self): r = DataRange2D() assert_ary_(r.low, array([-inf, -inf])) assert_ary_(r.high, array([inf, inf])) self.assertTrue(r.low_setting == ('auto', 'auto')) self.assertTrue(r.high_setting == ('auto', 'auto')) r.low = array([5.0, 5.0]) r.high = array([10.0, 10.0]) assert_ary_(r.low_setting, array([5.0, 5.0])) assert_ary_(r.high_setting, array([10.0, 10.0])) assert_ary_(r.low, array([5.0, 5.0])) assert_ary_(r.high, array([10.0, 10.0])) return def test_single_source(self): r = DataRange2D() x = arange(10.) y = arange(0., 100., 10.) ds = PointDataSource(transpose(array([x, y])), sort_order="none") r.add(ds) assert_ary_(r.low, array([0., 0.])) assert_ary_(r.high, array([9.0, 90.0])) r.low = [3.0, 30.0] r.high = [6.0, 60.0] assert_ary_(r.low_setting, array([3.0, 30.0])) assert_ary_(r.high_setting, array([6.0, 60.0])) assert_ary_(r.low, array([3.0, 30.0])) assert_ary_(r.high, array([6.0, 60.0])) r.refresh() assert_ary_(r.low_setting, array([3.0, 30.0])) assert_ary_(r.high_setting, array([6.0, 60.0])) assert_ary_(r.low, array([3.0, 30.0])) assert_ary_(r.high, array([6.0, 60.0])) r.low = ('auto', 'auto') self.assertTrue(r.low_setting == ('auto', 'auto')) assert_ary_(r.low, array([0.0, 0.0])) return def test_constant_values(self): r = DataRange2D() ds = PointDataSource(array([[5.0, 5.0]]), sort_order="none") r.add(ds) # A constant value > 1.0, by default, gets a range that brackets # it to the nearest power of ten above and below assert_ary_(r.low, array([1.0, 1.0])) assert_ary_(r.high, array([10.0, 10.0])) r.remove(ds) ds = PointDataSource(array([[31.4, 9.7]])) r.add(ds) assert_ary_(r.low, array([10.0, 1.0])) assert_ary_(r.high, array([100.0, 10.0])) r.remove(ds) ds = PointDataSource(array([[0.125, 0.125]])) r.add(ds) assert_ary_(r.low, array([0.0, 0.0])) assert_ary_(r.high, array([0.25, 0.25])) r.remove(ds) ds = PointDataSource(array([[-0.125, -0.125]])) r.add(ds) assert_ary_(r.low, array([-0.25, -0.25])) assert_ary_(r.high, array([0.0, 0.0])) return def test_multi_source(self): x = arange(10.) y = arange(0., 100., 10.) foo = transpose(array([x, y])) bar = transpose(array([y, x])) ds1 = PointDataSource(foo) ds2 = PointDataSource(bar) r = DataRange2D(ds1, ds2) assert_ary_(r.low, [0.0, 0.0]) assert_ary_(r.high, [90., 90.]) return def test_grid_source(self): test_xd1 = array([1, 2, 3]) test_yd1 = array([1.5, 0.5, -0.5, -1.5]) test_sort_order1 = ('ascending', 'descending') test_xd2 = array([0, 50, 100]) test_yd2 = array([0.5, 0.75, 1]) ds1 = GridDataSource( xdata=test_xd1, ydata=test_yd1, sort_order=test_sort_order1) ds2 = GridDataSource(xdata=test_xd2, ydata=test_yd2) r = DataRange2D() r.add(ds1) assert_ary_(r.low, array([1, -1.5])) assert_ary_(r.high, array([3, 1.5])) r.add(ds2) assert_ary_(r.low,
array([0.0, -1.5])
numpy.array
import numpy as np from .boxes import RectengularBox from .velocities import create_velocities class RandomBeadsBox(RectengularBox): def __init__(self, n_atoms, sidelength, mode='mc', mc_r_min=1.0): """ Parameters ---------- n_atoms sidelength mode : str, optional mode can be ('mc', 'plain') 'mc' uses Monte-Carlo moves to place the atoms. 'plain' just place them randomly """ super().__init__(n_atoms, a=sidelength, b=sidelength, c=sidelength) if mode == 'mc': self.place_atoms_via_montecarlo(self.positions, self.box, r_min=mc_r_min) else: self.place_atoms_random(self.positions, self.box) def place_atoms_random(self, positions, box): print("place atoms randomly in the box") # Handle box box_vectors =
np.linalg.norm(box, axis=1)
numpy.linalg.norm
# """ Python tools for creating the MIRI MRS 1d extraction reference files (extract1d and apcor). This is the ASDF variant Author: <NAME> (<EMAIL>) REVISION HISTORY: 12-Feb-2020 First written (D. Law) 27-Sep-2020 Add in extract1d file as well (D. Law) 29-Oct-2020 Convert to asdf output (D. Law) 04-Dec-2020 Change schema names (D. Law) """ import asdf from asdf import AsdfFile from astropy.io import fits from astropy.time import Time import datetime import os as os import numpy as np import pdb import matplotlib as mpl from matplotlib import pyplot as plt import miri3d.cubepar.make_cubepar as mc from jwst import datamodels from jwst.datamodels import Extract1dIFUModel from jwst.datamodels import MirMrsApcorrModel from jwst.datamodels import util import miricoord.mrs.makesiaf.makesiaf_mrs as mksiaf ############################# def make_all(): make_x1dpar() make_apcorrpar() ############################# def make_x1dpar(): # Set the output data directory data_dir=os.path.expandvars('$MIRI3D_DATA_DIR') outdir=os.path.join(data_dir,'x1d/temp/') # Set the output filename including an MJD stamp now=Time.now() now.format='fits' mjd=int(now.mjd) filename='miri-extract1d-'+str(mjd)+'.asdf' outfile=os.path.join(outdir,filename) plotname = 'miri-extract1d-'+str(mjd)+'.png' outplot = os.path.join(outdir,plotname) thisfile=__file__ _,thisfile=os.path.split(thisfile) # CDP input directory cdp_dir=os.path.expandvars('$MIRIBOX') cdp_dir=os.path.join(cdp_dir,'CDP/CDP-7/MRS_APERCORR/') # Make the reference file dictionary ff=make_x1d_fromdict(now,cdp_dir,outplot) # Add history info ff.add_history_entry('1D Extraction defaults') ff.add_history_entry('DOCUMENT: TBD') ff.add_history_entry('SOFTWARE: https://github.com/STScI-MIRI/miri3d/tree/master/miri3d/x1d/make_x1d.py') ff.add_history_entry('DATA USED: CDP-7') # Write out the file ff.write_to(outfile,all_array_storage='inline') print('Wrote file ',outfile) # now validate this with the schema. If it does not validate an error is returned # working on how to return true or something that says "YES IT WORKDED" af = asdf.open(outfile, custom_schema="http://stsci.edu/schemas/jwst_datamodel/extract1difu.schema") af.validate() ############################# # This routine is just kept around for reference; it's what we'd # do if we were not using the data model to create the file def make_x1d_fromdict(now,cdp_dir,outplot): meta={} meta['telescope']='JWST' meta['pedigree']='GROUND' meta['description']='Default MIRI MRS Extract1d parameters' meta['date']=now.value meta['reftype']='EXTRACT1D' meta['exposure']={ 'type': 'MIR_MRS' } meta['useafter']='2000-01-01T00:00:00' meta['version']=int(now.mjd) meta['author']='<NAME>' meta['origin']='STSCI' meta['model_type']='Extract1dIFUModel' meta['history']='1D Extraction defaults' meta['history']+=' DOCUMENT: TBD' meta['history']+=' SOFTWARE: https://github.com/STScI-MIRI/miri3d/tree/master/miri3d/x1d/make_x1d.py' meta['history']+=' DATA USED: CDP-7' meta['history']+=' Updated 4/26/21 to decrease background annulus size' meta['instrument']={ 'name': 'MIRI' } meta['region_type']='target' meta['subtract_background']=True meta['method']='subpixel' meta['subpixels']=10 print('Figuring out wavelength ranges') wmin1A,_=mc.waveminmax('1A') _,wmax4C=mc.waveminmax('4C') print('Building tables') # Set up placeholder vectors waves=np.arange(wmin1A,wmax4C,0.01,dtype='float32') nwave=len(waves) radius=np.ones(nwave,dtype='float32') inbkg=np.zeros(nwave,dtype='float32') outbkg=np.zeros(nwave,dtype='float32') axratio=np.ones(nwave,dtype='float32') axangle=np.zeros(nwave,dtype='float32') # Populate real values # Read in the CDP files files=['MIRI_FM_MIRIFUSHORT_1SHORT_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFUSHORT_1MEDIUM_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFUSHORT_1LONG_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFUSHORT_2SHORT_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFUSHORT_2MEDIUM_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFUSHORT_2LONG_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_3SHORT_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_3MEDIUM_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_3LONG_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_4SHORT_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_4MEDIUM_APERCORR_07.00.00.fits', 'MIRI_FM_MIRIFULONG_4LONG_APERCORR_07.00.00.fits'] inwave=[] inap=[] for file in files: fullfile = os.path.join(cdp_dir, file) hdu=fits.open(fullfile) data=hdu[1].data inwave.append(data['wavelength']) inap.append(data['a_aperture']) # Compile into big vectors # Simple polynomial fit to the aperture thefit=np.polyfit(np.array(inwave).ravel(),np.array(inap).ravel(),1) poly=np.poly1d(thefit) radius=poly(waves) # Background annulus # Note that Ch1 can be much more generous than Ch4; FWHM increases # by a factor of 5 from Ch1 to Ch4 but FOV only by a factor of 2. # We also should not apply any sudden steps in the annulus size # between channels, otherwise that will manifest as a step in the required # aperture correction between channels, and we're assuming that it can be # smooth with wavelength so everything interpolates from the same table. # Therefore, we'll make annuli that shrink linearly (relative to FWHM) # with wavelength in1,in2 = np.min(radius)*2.5, np.max(radius)*1.02 out1,out2 = np.min(radius)*3.0, np.max(radius)*1.5 inbkg=np.float32(np.interp(waves,np.array([np.min(waves),np.max(waves)]), np.array([in1,in2]))) outbkg=np.float32(np.interp(waves,np.array([
np.min(waves)
numpy.min
# -*- coding: utf-8 -*- import random,os import config import subprocess from random import shuffle #import numpy as np # import pandas as pd import time import ReadFile import WriteFileAll import time,os,sys import string import glob import math import numpy as np def q30_m(f,sample): cov_data=ReadFile.main(f,0,'\t') # cov_data=random.choices(cov_data, k=1000) include=0 L=[] fastq="" LQ=[] for k in range (len(cov_data)): if k%4 == 1: fastq=cov_data[k][0] if k%4 == 3: q=list(cov_data[k][0]) q30_ratio=qscore(q) LQ.append(q30_ratio) if k > 100000: break q30_mean=np.quantile(
np.array(LQ)
numpy.array
from .myqt import QT import pyqtgraph as pg import numpy as np import pandas as pd from .base import WidgetBase import time from spikeinterface.toolkit.postprocessing.unit_localization import possible_localization_methods class MyViewBox(pg.ViewBox): doubleclicked = QT.pyqtSignal(float, float) def mouseDoubleClickEvent(self, ev): pos = self.mapToView(ev.pos()) x, y = pos.x(), pos.y() self.doubleclicked.emit(x, y) ev.accept() def raiseContextMenu(self, ev): #for some reasons enableMenu=False is not taken (bug ????) pass class ProbeView(WidgetBase): _params = [ #~ {'name': 'colormap', 'type': 'list', 'value': 'inferno', 'values': ['inferno', 'summer', 'viridis', 'jet'] }, {'name': 'show_channel_id', 'type': 'bool', 'value': True}, {'name': 'radius', 'type': 'float', 'value': 40.}, {'name': 'change_channel_visibility', 'type': 'bool', 'value': True}, {'name': 'change_unit_visibility', 'type': 'bool', 'value': True}, {'name': 'method_localize_unit', 'type': 'list', 'values': possible_localization_methods}, ] _need_compute = True def __init__(self, controller=None, parent=None): WidgetBase.__init__(self, parent=parent, controller=controller) self.layout = QT.QVBoxLayout() self.setLayout(self.layout) self.graphicsview = pg.GraphicsView() self.layout.addWidget(self.graphicsview) self.initialize_plot() def initialize_plot(self): self.viewBox = MyViewBox() #~ self.viewBox.doubleclicked.connect(self.open_settings) self.viewBox.doubleclicked.connect(self.on_pick_unit) #~ self.viewBox.disableAutoRange() #~ self.plot = pg.PlotItem(viewBox=self.viewBox) #~ self.graphicsview.setCentralItem(self.plot) #~ self.plot.hideButtons() self.plot = pg.PlotItem(viewBox=self.viewBox) self.plot.getViewBox().disableAutoRange() self.graphicsview.setCentralItem(self.plot) self.plot.getViewBox().setAspectLocked(lock=True, ratio=1) self.plot.hideButtons() #~ self.plot.showAxis('left', False) #~ self.plot.showAxis('bottom', False) # probe probe = self.controller.get_probe() contact_vertices = probe.get_contact_vertices() planar_contour = probe.probe_planar_contour self.contact_positions = probe.contact_positions # small hack to connect to the first point contact_vertices = [np.concatenate([e, e[:1, :]], axis=0) for e in contact_vertices] vertices = np.concatenate(contact_vertices) connect = np.ones(vertices.shape[0], dtype='bool') pos = 0 for e in contact_vertices[:-1]: pos += e .shape[0] connect[pos-1] = False self.contacts = pg.PlotCurveItem(vertices[:, 0], vertices[:, 1], pen='#7FFF00', fill='#7F7F0C', connect=connect) self.plot.addItem(self.contacts) if planar_contour is not None: self.contour = pg.PlotCurveItem(planar_contour[:, 0], planar_contour[:, 1], pen='#7FFF00') self.plot.addItem(self.contour) # ROI self.channel_labels = [] for i, channel_id in enumerate(self.controller.channel_ids): #TODO label channels label = pg.TextItem(f'{channel_id}', color='#FFFFFF', anchor=(0.5, 0.5), border=None)#, fill=pg.mkColor((128,128,128, 180))) label.setPos(self.contact_positions[i, 0], self.contact_positions[i, 1]) self.plot.addItem(label) self.channel_labels.append(label) radius = self.params['radius'] x, y = self.contact_positions.mean(axis=0) self.roi = pg.CircleROI([x - radius, y - radius], [radius * 2, radius * 2], pen='#7F7F0C') #pen=(4,9), self.plot.addItem(self.roi) self.roi.sigRegionChanged.connect(self.on_roi_change) # units #~ self.unit_positions unit_positions = self.controller.unit_positions brush = [self.controller.qcolors[u] for u in self.controller.unit_ids] self.scatter = pg.ScatterPlotItem(pos=unit_positions, pxMode=False, size=10, brush=brush) self.plot.addItem(self.scatter) # range xlim0 = np.min(self.contact_positions[:, 0]) - 20 xlim1 = np.max(self.contact_positions[:, 0]) + 20 ylim0 = np.min(self.contact_positions[:, 1]) - 20 ylim1 = np.max(self.contact_positions[:, 1]) + 20 self.plot.setXRange(xlim0, xlim1) self.plot.setYRange(ylim0, ylim1) def _refresh(self): r = self.roi.state['size'][0] / 2 x = self.roi.state['pos'].x() + r y = self.roi.state['pos'].y() + r radius = self.params['radius'] self.roi.setSize(radius * 2) self.roi.setPos(x - radius, y-radius) if self.params['show_channel_id']: for label in self.channel_labels: label.show() else: for label in self.channel_labels: label.hide() def on_roi_change(self, emit_signals=True): r = self.roi.state['size'][0] / 2 x = self.roi.state['pos'].x() + r y = self.roi.state['pos'].y() + r self.params.blockSignals(True) self.params['radius'] = r self.params.blockSignals(False) if emit_signals: self.roi.blockSignals(True) if self.params['change_channel_visibility']: #~ t0 = time.perf_counter() dist = np.sqrt(np.sum((self.contact_positions - np.array([[x, y]]))**2, axis=1)) visible_channel_inds, = np.nonzero(dist < r) order = np.argsort(dist[visible_channel_inds]) visible_channel_inds = visible_channel_inds[order] self.controller.set_channel_visibility(visible_channel_inds) self.channel_visibility_changed.emit() #~ t1 = time.perf_counter() #~ print(' probe view change_channel_visibility', t1-t0) if self.params['change_unit_visibility']: #~ t0 = time.perf_counter() dist = np.sqrt(np.sum((self.controller.unit_positions - np.array([[x, y]]))**2, axis=1)) for unit_index, unit_id in enumerate(self.controller.unit_ids): self.controller.unit_visible_dict[unit_id] = (dist[unit_index] < r) #~ t1 = time.perf_counter() #~ print(' probe view part1 change_unit_visibility', t1-t0) self.controller.update_visible_spikes() self.unit_visibility_changed.emit() #~ t2 = time.perf_counter() #~ print(' probe view part2 change_unit_visibility', t2-t0) self.roi.blockSignals(False) def on_unit_visibility_changed(self): # this change the ROI and so change also channel_visibility visible_mask = list(self.controller.unit_visible_dict.values()) n = np.sum(visible_mask) if n == 1: unit_index = np.nonzero(visible_mask)[0][0] x, y = self.controller.unit_positions[unit_index, :] radius = self.params['radius'] self.roi.blockSignals(True) self.roi.setPos(x - radius, y - radius) self.roi.blockSignals(False) self.on_roi_change(emit_signals=False) def on_channel_visibility_changed(self): pass def on_pick_unit(self, x, y): unit_positions = self.controller.unit_positions pos =
np.array([x, y])
numpy.array
# Copyright (C) 2013 <NAME> # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np from phonopy.structure.cells import get_reduced_bases search_space = np.array([ [0, 0, 0], [0, 0, 1], [0, 1, -1], [0, 1, 0], [0, 1, 1], [1, -1, -1], [1, -1, 0], [1, -1, 1], [1, 0, -1], [1, 0, 0], [1, 0, 1], [1, 1, -1], [1, 1, 0], [1, 1, 1], [-1, -1, -1], [-1, -1, 0], [-1, -1, 1], [-1, 0, -1], [-1, 0, 0], [-1, 0, 1], [-1, 1, -1], [-1, 1, 0], [-1, 1, 1], [0, -1, -1], [0, -1, 0], [0, -1, 1], [0, 0, -1]], dtype='intc') def get_qpoints_in_Brillouin_zone(primitive_vectors, qpoints): bz = BrillouinZone(primitive_vectors) bz.run(qpoints) return bz.get_shortest_qpoints() class BrillouinZone(object): def __init__(self, primitive_vectors): self._primitive_vectors = primitive_vectors # column vectors self._tolerance = min(np.sum(primitive_vectors ** 2, axis=0)) * 0.01 self._reduced_bases = get_reduced_bases(primitive_vectors.T) self._tmat = np.dot(np.linalg.inv(self._primitive_vectors), self._reduced_bases) self._tmat_inv = np.linalg.inv(self._tmat) self._shortest_qpoints = None def run(self, qpoints): reduced_qpoints = np.dot(qpoints, self._tmat_inv.T) self._shortest_qpoints = [] for q in reduced_qpoints: distances = np.array([(np.dot(self._reduced_bases, q + g) ** 2).sum() for g in search_space], dtype='double') min_dist = min(distances) shortest_indices = [i for i, d in enumerate(distances - min_dist) if abs(d) < self._tolerance] self._shortest_qpoints.append( np.dot(search_space[shortest_indices] + q, self._tmat.T)) def get_shortest_qpoints(self): return self._shortest_qpoints if __name__ == '__main__': from phonopy.interface.vasp import read_vasp from phonopy.structure.symmetry import Symmetry, get_lattice_vector_equivalence from phonopy.structure.spglib import get_ir_reciprocal_mesh, relocate_BZ_grid_address import sys cell = read_vasp(sys.argv[1]) symmetry = Symmetry(cell) mesh = [4, 4, 4] is_shift =
np.array([0, 0, 0], dtype='intc')
numpy.array
# this part copy from Yufeng Shen's Code: #https://github.com/Yufeng-shen/nfHEDMtools/blob/master/Simulation.py import numpy as np from fractions import Fraction from math import floor from hexomap import utility # from matplotlib import path class Detector: def __init__(self): self.Norm = np.array([0, 0, 1]) self.CoordOrigin = np.array([0., 0., 0.]) self.Jvector = np.array([1, 0, 0]) self.Kvector = np.array([0, -1, 0]) self.PixelJ = 0.00148 self.PixelK = 0.00148 self.NPixelJ = 2048 self.NPixelK = 2048 def Move(self, J, K, trans, tilt): self.CoordOrigin -= J * self.Jvector * self.PixelJ + K * self.Kvector * self.PixelK self.CoordOrigin = tilt.dot(self.CoordOrigin) + trans self.Norm = tilt.dot(self.Norm) self.Jvector = tilt.dot(self.Jvector) self.Kvector = tilt.dot(self.Kvector) def IntersectionIdx(self, ScatterSrc, TwoTheta, eta, bIdx=True): #print('eta:{0}'.format(eta)) #self.Print() dist = self.Norm.dot(self.CoordOrigin - ScatterSrc) scatterdir = np.array([np.cos(TwoTheta), np.sin(TwoTheta) * np.sin(eta), np.sin(TwoTheta) * np.cos(eta)]) InterPos = dist / (self.Norm.dot(scatterdir)) * scatterdir + ScatterSrc J = (self.Jvector.dot(InterPos - self.CoordOrigin) / self.PixelJ) K = (self.Kvector.dot(InterPos - self.CoordOrigin) / self.PixelK) if 0 <= int(J) < self.NPixelJ and 0 <= int(K) < self.NPixelK: if bIdx == True: return int(J), int(K) else: return J, K else: return -1 def BackProj(self, HitPos, omega, TwoTheta, eta): """ HitPos: ndarray (3,) The position of hitted point on lab coord, unit in mm """ scatterdir = np.array([np.cos(TwoTheta), np.sin(TwoTheta) * np.sin(eta), np.sin(TwoTheta) * np.cos(eta)]) t = HitPos[2] / (np.sin(TwoTheta) * np.cos(eta)) x = HitPos[0] - t * np.cos(TwoTheta) y = HitPos[1] - t * np.sin(TwoTheta) * np.sin(eta) truex = np.cos(omega) * x + np.sin(omega) * y truey = -np.sin(omega) * x + np.cos(omega) * y return np.array([truex, truey]) def Idx2LabCord(self, J, K): return J * self.PixelJ * self.Jvector + K * self.PixelK * self.Kvector + self.CoordOrigin def Reset(self): self.__init__() def Print(self): print("Norm: ", self.Norm) print("CoordOrigin: ", self.CoordOrigin) print("J vector: ", self.Jvector) print("K vector: ", self.Kvector) class CrystalStr: def __init__(self, material='new'): self.name = material self.AtomPos = [] self.AtomZs = [] self.symtype = None if material == 'gold': self.symtype = 'Cubic' self.PrimA = 4.08 * np.array([1, 0, 0]) self.PrimB = 4.08 * np.array([0, 1, 0]) self.PrimC = 4.08 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 79) self.addAtom([0, 0.5, 0.5], 79) self.addAtom([0.5, 0, 0.5], 79) self.addAtom([0.5, 0.5, 0], 79) elif material == 'copper': self.symtype = 'Cubic' self.PrimA = 3.61 * np.array([1, 0, 0]) self.PrimB = 3.61 * np.array([0, 1, 0]) self.PrimC = 3.61 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0, 0.5, 0.5], 29) self.addAtom([0.5, 0, 0.5], 29) self.addAtom([0.5, 0.5, 0], 29) elif material == 'copperBCC': self.symtype = 'Cubic' self.PrimA = 2.947 * np.array([1, 0, 0]) self.PrimB = 2.947 * np.array([0, 1, 0]) self.PrimC = 2.947 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0.5, 0.5, 0.5], 29) elif material == 'copperFCC': self.symtype = 'Cubic' self.PrimA = 3.692 * np.array([1, 0, 0]) self.PrimB = 3.692 * np.array([0, 1, 0]) self.PrimC = 3.692 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 29) self.addAtom([0, 0.5, 0.5], 29) self.addAtom([0.5, 0, 0.5], 29) self.addAtom([0.5, 0.5, 0], 29) elif material == 'stainless_steel': self.symtype = 'Cubic' self.PrimA = 3.59 * np.array([1, 0, 0]) self.PrimB = 3.59 * np.array([0, 1, 0]) self.PrimC = 3.59 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0, 0.5, 0.5], 26) self.addAtom([0.5, 0, 0.5], 26) self.addAtom([0.5, 0.5, 0], 26) elif material == 'iron_bcc': # bcc lattice self.symtype = 'Cubic' self.PrimA = 2.856 * np.array([1, 0, 0]) self.PrimB = 2.856 * np.array([0, 1, 0]) self.PrimC = 2.856 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0.5, 0.5, 0.5], 26) elif material == 'iron_fcc': self.symtype = 'Cubic' self.PrimA = 2.856 * np.array([1, 0, 0]) self.PrimB = 2.856 * np.array([0, 1, 0]) self.PrimC = 2.856 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0, 0.5, 0.5], 26) self.addAtom([0.5, 0, 0.5], 26) self.addAtom([0.5, 0.5, 0], 26) elif material == 'SrTiO3': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 22) self.addAtom([0.5, 0.5, 0.5], 38) self.addAtom([0.5, 0, 0], 8) self.addAtom([0, 0.5, 0], 8) self.addAtom([0, 0, 0.5], 8) elif material == 'SrTiO3_v1': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 8) self.addAtom([0, 0.5, 0.5], 8) self.addAtom([0.5, 0, 0.5], 8) elif material == 'SrTiO3_v2': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) #self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 8) self.addAtom([0, 0.5, 0.5], 8) self.addAtom([0.5, 0, 0.5], 8) elif material == 'SrTiO3_v3': self.symtype = 'Cubic' self.PrimA = 3.9053 * np.array([1, 0, 0]) self.PrimB = 3.9053 * np.array([0, 1, 0]) self.PrimC = 3.9053 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 38) #self.addAtom([0.5, 0.5, 0.5], 22) self.addAtom([0.5, 0.5, 0], 38) self.addAtom([0, 0.5, 0.5], 38) self.addAtom([0.5, 0, 0.5], 38) elif material == 'Ti7': self.symtype = 'Hexagonal' self.PrimA = 2.92539 * np.array([1, 0, 0]) self.PrimB = 2.92539 * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = 4.67399 * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 22) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 22) elif material == 'WE43': # not tested, use Mg to approximate self.symtype = 'Hexagonal' a = 3.2094 c = 5.2107 self.PrimA = a * np.array([1, 0, 0]) self.PrimB = a * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = c * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 12) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 12) elif material == 'Ti64_alpha': self.symtype = 'Hexagonal' self.PrimA = 2.930 * np.array([1, 0, 0]) self.PrimB = 2.930 * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.PrimC = 4.677 * np.array([0, 0, 1]) self.addAtom([1 / 3.0, 2 / 3.0, 1 / 4.0], 22) self.addAtom([2 / 3.0, 1 / 3.0, 3 / 4.0], 22) elif material == 'Ti64_beta': # bcc lattice self.symtype = 'Cubic' self.PrimA = 3.224 * np.array([1, 0, 0]) self.PrimB = 3.224 * np.array([0, 1, 0]) self.PrimC = 3.224 * np.array([0, 0, 1]) self.addAtom([0, 0, 0], 26) self.addAtom([0.5, 0.5, 0.5], 26) elif material == 'UO2': # bcc lattice self.symtype = 'Cubic' self.PrimA = 5.471 * np.array([1, 0, 0]) self.PrimB = 5.471 * np.array([0, 1, 0]) self.PrimC = 5.471 *
np.array([0, 0, 1])
numpy.array
import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def get_dataset_from_folder(folder): imgs = [] labels = [] for root, dirs, files in os.walk(folder): for file in files: print(file) if file[-4:] == ".png": labels.append(int(file.split("_")[0])) img = plt.imread(os.path.join(folder,file)) img = np.sum(img, axis=2) img = img / np.max(img) print(np.max(img)) imgs.append(img) return np.reshape(np.array(imgs), [len(imgs),28,28,1]), np.array(labels) mnist = tf.keras.datasets.mnist real_imgs, real_labels = get_dataset_from_folder("train_images") (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 train_images =
np.reshape(train_images, [train_images.shape[0], 28, 28, 1])
numpy.reshape
""" Block Coordinate Descent (BCD) for signal decomposition Author: <NAME> """ import numpy as np from time import time from osd.utilities import calc_obj, progress def run_bcd(data, components, num_iter=50, use_ix=None, X_init=None, stopping_tolerance=1e-6, verbose=True): if use_ix is None: use_ix = np.ones_like(data, dtype=bool) y = data if len(data.shape) == 1: T = len(data) p = 1 else: T, p = data.shape K = len(components) rho = 2 / T / p if X_init is None: if p == 1: X = np.zeros((K, T)) else: X =
np.zeros((K, T, p))
numpy.zeros
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ * http://nghiaho.com/?page_id=846 NB Opposite Sign Convention to GLM -------------------------------------- * http://planning.cs.uiuc.edu/node102.html * http://planning.cs.uiuc.edu/node103.html | r11 r12 r13 | | r21 r22 r23 | | r31 r32 r33 | Rz (yaw) conterclockwise "alpha" cosZ -sinZ 0 sinZ cosZ 0 0 0 1 Ry (pitch) counterclockwise "beta" cosY 0 sinY 0 1 0 -sinY 0 cosY Rx (roll) counterclockwise "gamma" 1 0 0 0 cosX -sinX 0 sinX cosX yawPitchRoll Rz Ry Rx Rzyx = Rz(alpha).Ry(beta).Rx(gamma) ^^^^^^ roll first First roll Rx, then pitch Ry then finally yaw Rz 11: cosZ cosY 12: cosZ sinY sinX - sinZ cosX 13: cosZ sinY cosX + sinZ sinX 21: sinZ cosY 22: sinZ sinY sinX + cosZ cosX 23: sinZ sinY cosX - cosZ sinX 31: -sinY 32: cosY sinX 33: cosY cosX r32/r33 = cosY sinX / cosY cosX = tanX r32^2 + r33^2 = cosY^2 sinX^2 + cosY^2 cosX^2 = cosY^2 -r31/sqrt(r32^2 + r33^2) = sinY / cosY = tanY r21/r11 = tanZ r11^2 + r21^2 = cosZ^2 cosY^2 + sinZ^2 cosY^2 = cosY^2 "cosb"^2 -r31/sqrt(r11^2 + r21^2) = sinY / cosY = tanY cosY->0 => sinY=>1 ... DONT FOLLOW THE LEAP TO sinZ = 0, cosZ = 1 -r23/r22 = -(sinZ sinY cosX - cosZ sinX) / (sinZ sinY sinX + cosZ cosX ) how is this meant to yield tanY ??? ... perhaps a mal-assumption made here that sinY->0 ??? cosZ sinX / cosZ cosX -> tanX (if sinY->0, BUT IT DOESNT ???) * https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles1.pdf * ~/opticks_refs/Extracting_Euler_Angles.pdf """ import numpy as np def GetAngles(m): """ 51 G4ThreeVector G4GDMLWriteDefine::GetAngles(const G4RotationMatrix& mtx) 52 { 53 G4double x,y,z; 54 G4RotationMatrix mat = mtx; 55 mat.rectify(); // Rectify matrix from possible roundoff errors 56 57 // Direction of rotation given by left-hand rule; clockwise rotation 58 59 static const G4double kMatrixPrecision = 10E-10; 60 const G4double cosb = std::sqrt(mtx.xx()*mtx.xx()+mtx.yx()*mtx.yx()); .. r11^2 + r21^2 61 62 if (cosb > kMatrixPrecision) 63 { 64 x = std::atan2(mtx.zy(),mtx.zz()); .. r32 r33 65 y = std::atan2(-mtx.zx(),cosb); .. -r31 66 z = std::atan2(mtx.yx(),mtx.xx()); .. r21 r11 67 } 68 else 69 { 70 x = std::atan2(-mtx.yz(),mtx.yy()); .. -r23 r22 71 y = std::atan2(-mtx.zx(),cosb); .. huh division by smth very small... unhealthy .. -r31 sqrt(r11^2 + r21^2) 72 z = 0.0; 73 } 74 75 return G4ThreeVector(x,y,z); 76 } """ pass def extractEulerAnglesXYZ(M, unit=np.pi/180., dtype=np.float32): """ https://github.com/jzrake/glm/commit/d3313421c664db5bd1b672d39ba3faec0d430117 https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl https://gamedev.stackexchange.com/questions/50963/how-to-extract-euler-angles-from-transformation-matrix ~/opticks_refs/Extracting_Euler_Angles.pdf :: template<typename T> GLM_FUNC_DECL void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { float T1 = glm::atan2<T, defaultp>(M[2][1], M[2][2]); float C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); float T2 = glm::atan2<T, defaultp>(-M[2][0], C2); float S1 = glm::sin(T1); float C1 = glm::cos(T1); float T3 = glm::atan2<T, defaultp>(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; } """ T1 = np.arctan2(M[2][1], M[2][2]); C2 = np.sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); T2 = np.arctan2(-M[2][0], C2); S1 = np.sin(T1); C1 = np.cos(T1); T3 = np.arctan2(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; return np.array([t1/unit,t2/unit,t3/unit], dtype=dtype) def yawPitchRoll(yaw, pitch, roll, dtype=np.float32): """ yaw: Z https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl :: template<typename T> GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll ( T const & yaw, T const & pitch, T const & roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); mat<4, 4, T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast<T>(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast<T>(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } """ tmp_ch = np.cos(yaw); tmp_sh = np.sin(yaw); tmp_cp = np.cos(pitch); tmp_sp = np.sin(pitch); tmp_cb = np.cos(roll); tmp_sb = np.sin(roll); Result = np.eye(4, dtype=dtype) Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = 0; Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = 0; Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = 0; Result[3][0] = 0; Result[3][1] = 0; Result[3][2] = 0; Result[3][3] = 1; return Result; def eulerAngleX(angleX, dtype=np.float32): """ * opposite sign to *roll* of http://planning.cs.uiuc.edu/node102.html /usr/local/opticks/externals/glm/glm-0.9.6.3/glm/gtx/euler_angles.inl:: 35 template <typename T> 36 GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleX 37 ( 38 T const & angleX 39 ) 40 { 41 T cosX = glm::cos(angleX); 42 T sinX = glm::sin(angleX); 43 44 return tmat4x4<T, defaultp>( 45 T(1), T(0), T(0), T(0), 46 T(0), cosX, sinX, T(0), 47 T(0),-sinX, cosX, T(0), 48 T(0), T(0), T(0), T(1)); 49 } 50 """ m = np.eye(4, dtype=dtype) cosX = np.cos(angleX); sinX = np.sin(angleX); m[0] = [1., 0., 0., 0.] m[1] = [0., cosX, sinX, 0.] m[2] = [0., -sinX, cosX, 0.] m[3] = [0., 0., 0., 1.] return m def eulerAngleY(angleY, dtype=np.float32): """ * opposite sign to *pitch* of http://planning.cs.uiuc.edu/node102.html /usr/local/opticks/externals/glm/glm-0.9.6.3/glm/gtx/euler_angles.inl :: 51 template <typename T> 52 GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> eulerAngleY 53 ( 54 T const & angleY 55 ) 56 { 57 T cosY = glm::cos(angleY); 58 T sinY = glm::sin(angleY); 59 60 return tmat4x4<T, defaultp>( 61 cosY, T(0), -sinY, T(0), 62 T(0), T(1), T(0), T(0), 63 sinY, T(0), cosY, T(0), 64 T(0), T(0), T(0), T(1)); 65 } """ m =
np.eye(4, dtype=dtype)
numpy.eye
import numpy as np import pandas as pd from anndata import AnnData import igraph import matplotlib.pyplot as plt from scipy import sparse from typing import Union, Optional from scanpy.plotting._utils import savefig_or_show from ..tools.utils import getpath from .trajectory import trajectory as plot_trajectory from .utils import setup_axes from ..tools.graph_operations import subset_tree from .. import settings import scanpy as sc def modules( adata: AnnData, root_milestone, milestones, color: str = "milestones", show_traj: bool = False, layer: Optional[str] = None, smooth: bool = False, show: Optional[bool] = None, save: Union[str, bool, None] = None, **kwargs, ): """\ Plot the mean expression of the early and late modules. Parameters ---------- adata Annotated data matrix. root_milestone tip defining progenitor branch. milestones tips defining the progenies branches. color color the cells with variable from adata.obs. show_traj show trajectory on the early module plot. layer layer to use to compute mean of module. show show the plot. save save the plot. kwargs arguments to pass to :func:`scFates.pl.trajectory` if `show_traj=True`, else to :func:`scanpy.pl.embedding` Returns ------- If `show==False` a tuple of :class:`~matplotlib.axes.Axes` """ plt.rcParams["axes.grid"] = False X_early, X_late = get_modules(adata, root_milestone, milestones, layer) cells = X_early.index verb = settings.verbosity settings.verbosity = 1 nmil = len(adata.uns["graph"]["milestones"]) if nmil > 4: adata_c = subset_tree(adata, root_milestone, milestones, copy=True) adata_c.obsm["X_early"] = X_early.loc[adata_c.obs_names].values adata_c.obsm["X_late"] = X_late.loc[adata_c.obs_names].values else: adata_c = AnnData( X_early.values, obs=adata.obs, uns=adata.uns, obsm={"X_early": X_early.values, "X_late": X_late.values}, obsp=adata.obsp, ) settings.verbosity = verb if smooth: adata_c.obsm["X_early"] = adata_c.obsp["connectivities"].dot( adata_c.obsm["X_early"] ) adata_c.obsm["X_late"] = adata_c.obsp["connectivities"].dot( adata_c.obsm["X_late"] ) axs, _, _, _ = setup_axes(panels=[0, 1]) color = "old_milestones" if ((color == "milestones") & (nmil > 4)) else color if show_traj: plot_trajectory( adata_c, basis="early", root_milestone=root_milestone, milestones=milestones, color_cells=color, show=False, title="", legend_loc="none", ax=axs[0], **kwargs, ) else: sc.pl.embedding( adata_c[cells], basis="early", color=color, legend_loc="none", title="", show=False, ax=axs[0], **kwargs, ) sc.pl.embedding( adata_c[cells], basis="late", color=color, legend_loc="none", show=False, title="", ax=axs[1], **kwargs, ) axs[0].set_xlabel("early " + milestones[0]) axs[0].set_ylabel("early " + milestones[1]) axs[1].set_xlabel("late " + milestones[0]) axs[1].set_ylabel("late " + milestones[1]) savefig_or_show("modules", show=show, save=save) def get_modules(adata, root_milestone, milestones, layer): graph = adata.uns["graph"] dct = graph["milestones"] leaves = list(map(lambda leave: dct[leave], milestones)) root = dct[root_milestone] name = root_milestone + "->" + "<>".join(milestones) stats = adata.uns[name]["fork"] if "milestones_colors" not in adata.uns or len(adata.uns["milestones_colors"]) == 1: from . import palette_tools palette_tools._set_default_colors_for_categorical_obs(adata, "milestones") mlsc = adata.uns["milestones_colors"].copy() mls = adata.obs.milestones.cat.categories.tolist() dct = dict(zip(mls, mlsc)) df = adata.obs.copy(deep=True) edges = graph["pp_seg"][["from", "to"]].astype(str).apply(tuple, axis=1).values img = igraph.Graph() img.add_vertices( np.unique(graph["pp_seg"][["from", "to"]].values.flatten().astype(str)) ) img.add_edges(edges) cells = np.unique( np.concatenate( [ getpath( img, root, adata.uns["graph"]["tips"], leaves[0], graph, df ).index, getpath( img, root, adata.uns["graph"]["tips"], leaves[1], graph, df ).index, ] ) ) if layer is None: if sparse.issparse(adata.X): X = pd.DataFrame( np.array(adata[cells, stats.index].X.A), index=cells, columns=stats.index, ) else: X = pd.DataFrame( np.array(adata[cells, stats.index].X), index=cells, columns=stats.index, ) else: if sparse.issparse(adata.layers[layer]): X = pd.DataFrame(
np.array(adata[cells, stats.index].layers[layer].A)
numpy.array
import time import sys import math import random import george import numpy as np import os #acq function from trimtuner.acquisition_functions.constrained_entropy_search import Constrained_EntropySearch from trimtuner.acquisition_functions.marginalization import MarginalizationGPMCMC, MarginalizationDT from robo.acquisition_functions.ei import * #heuristics to filter from trimtuner.maximizers.random_sampling import RandomSampling from trimtuner.maximizers.cea import CEA #from trimtuner.maximizers.direct import Direct #from trimtuner.maximizers.cmaes import CMAES #models from trimtuner.models.trimtuner_dt import EnsembleDTs from trimtuner.models.trimtuner_gp import EnsembleGPs from robo.priors.env_priors import EnvPrior #bootstrapping from trimtuner.trimtuner.initial_sampling import initial_sampling_trimtuner #incumbent estimation from trimtuner.trimtuner.incumbent_estimation import incumbent_estimation_cea, incumbent_estimation def transform(s, s_min, s_max): s_transform = (np.log2(s) - np.log2(s_min)) / (np.log2(s_max) - np.log2(s_min)) return s_transform def retransform(s_transform, s_min, s_max): s = np.rint(2 ** (s_transform * (np.log2(s_max) - np.log2(s_min)) + np.log2(s_min))) return int(s) class Logs(): #class to print log files def __init__(self, seed, initSamples, model, heuristic): dir = os.path.abspath(os.getcwd()) path = dir + "/runLogs" self.initSamples = initSamples self.seed = seed if not os.path.isdir(path): try: os.mkdir(path) #create runLogs folder except OSError: print("Creation of the directory %s failed" % path) else: print("Successfully created the directory %s " % path) filename_orig = path + "/trimtuner_logs_seed" + str(seed) + "_initSamples" + str(initSamples) + "_model_" + model + "_heuristic_" + heuristic filename = filename_orig + ".txt" counter = 1 while os.path.isfile(filename): filename = filename_orig + "_" + str(counter) + ".txt" counter += 1 if counter >= 10000: print("ERROR createing the log files!!! Check folder " + path) sys.stdout.flush() sys.exit(0) #filename += ".txt" self.file_logs = open(filename, "w") self.file_logs.write("runID;initSamples;explorationNumber;incumbent;incTime;incAcc;incCost;configTested;Time;Acc;Cost;Overhead;CumulativeCost;\n") def printLogs(self, it, inc, incTime, incAcc, incCost, conf, confTime, confAcc, confCost, overhead, CumulativeCost): strWrite = str(self.seed) + ";" + str(self.initSamples) + ";" + str(it) + ";" + str(inc) + ";" + str(incTime) + ";" + str(incAcc) + ";" + str(incCost) + ";" + str(conf) + ";" + str(confTime) + ";" + str(confAcc) + ";" + str(confCost) + ";" + str(overhead) + ";" + str(CumulativeCost) + "\n" self.file_logs.write(strWrite) def close(self): self.file_logs.close() ################################################################################## # TrimTuner: # Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling # ################################################################################## def trimtuner(objective_function, all_configs, constraints, seed, filterHeuristic, model, lower, upper, s_min, s_max, n_init=30, num_iterations=100, subsets=[60, 10, 4, 2]): # internal paramaters burnin=100 chain_length=100 n_hypers=12 #percentage of unexplored configs to test in the acquisition function per = 0.1 np.random.seed(seed) rng = np.random.RandomState(np.random.randint(0, 10000)) #assert n_init * len( assert n_init <= num_iterations, "Number of initial points (n_init) has to be smaller than the number of iterations" assert lower.shape[0] == upper.shape[0], "Dimension miss match between upper and lower bound" assert model == "gp" or model == "dt", "ERROR: wrong model techniques. Chose 'gp' for Gaussian Processes or 'dt' for an ensemble decision tress" assert filterHeuristic == "cea" or filterHeuristic == "random" or filterHeuristic == "nofilter", "ERROR: wrong filtering heuristic. Chose 'cea', 'random', or 'nofilter'!" costCumulative = 0 n_dims = lower.shape[0] # Bookkeeping logs logs = Logs(seed, n_init, model, filterHeuristic) unexplored_Set = all_configs # list with all possible configurations training_Set = [] # traning set X = [] y = [] c = [] if model == "dt": #ensemble of descision trees number_trees = 10 model_objective = EnsembleDTs(number_trees, seed) model_cost = EnsembleDTs(number_trees, seed) elif model == "gp": #Gaussian Processes #kernels functions based on FABOLAS # Define model for the objective function cov_amp = 1 # Covariance amplitude kernel = cov_amp for d in range(n_dims): kernel *= george.kernels.Matern52Kernel(np.ones([1])*0.01, ndim=n_dims+1, axes=d) # Kernel for the environmental variable # We use (1-s)**2 as basis function for the Bayesian linear kernel env_kernel = george.kernels.BayesianLinearRegressionKernel(log_a=0.1,log_b=0.1,ndim=n_dims + 1,axes=n_dims) kernel *= env_kernel # Take 3 times more samples than we have hyperparameters if n_hypers < 2 * len(kernel): n_hypers = 3 * len(kernel) if n_hypers % 2 == 1: n_hypers += 1 prior = EnvPrior(len(kernel)+1, n_ls=n_dims, n_lr=2, rng=rng) quadratic_bf = lambda x: (1 - x) ** 2 linear_bf = lambda x: x #model for accuracy model_objective = EnsembleGPs(kernel, prior=prior, burnin_steps=burnin, chain_length=chain_length, n_hypers=n_hypers, normalize_output=False, basis_func=quadratic_bf, lower=lower, upper=upper, rng=rng) # Define model for the cost function cost_cov_amp = 1 cost_kernel = cost_cov_amp for d in range(n_dims): cost_kernel *= george.kernels.Matern52Kernel(np.ones([1])*0.01, ndim=n_dims+1, axes=d) cost_env_kernel = george.kernels.BayesianLinearRegressionKernel(log_a=0.1,log_b=0.1,ndim=n_dims+1,axes=n_dims) cost_kernel *= cost_env_kernel cost_prior = EnvPrior(len(cost_kernel)+1, n_ls=n_dims, n_lr=2, rng=rng) #model for cost model_cost = EnsembleGPs(cost_kernel, prior=cost_prior, burnin_steps=burnin, chain_length=chain_length, n_hypers=n_hypers, basis_func=linear_bf, normalize_output=False, lower=lower, upper=upper, rng=rng) # Extend input space by task variable extend_lower = np.append(lower, 0) extend_upper =
np.append(upper, 1)
numpy.append
import numpy as np from r_support import matrix, logger def get_num_batches(n, batch_size): return int(np.ceil(n * 1.0 / batch_size)) def get_sgd_batch(x, y, i, batch_size, shuffled_idxs=None): s = i * batch_size e = min(x.shape[0], (i + 1) * batch_size) if shuffled_idxs is None: idxs = np.arange(s, e) else: idxs = shuffled_idxs[np.arange(s, e)] return matrix(x[idxs, :], ncol=x.shape[1]), y[idxs] def avg_loss_check(losses, epoch, n=20, eps=1e-6): if epoch < n + 1: return False avg1 = np.mean(losses[(epoch-1-n):(epoch-1)]) avg2 = np.mean(losses[(epoch-n):(epoch)]) if np.abs(avg1 - avg2) < eps: return True return False def debug_log_sgd_losses(sgd_type, losses, epoch, n=20): if False: # disable logging -- should be used in PRODUCTION return elif True: # minimal info logger.debug("[%s] epochs: %d; avg last %d losses:%f" % (sgd_type, epoch, n, np.mean(losses[(epoch-min(n, epoch)):(epoch)]))) else: # maximum info logger.debug("[%s] epochs: %d; avg last %d losses:%f\n%s\n%s" % (sgd_type, epoch, n, np.mean(losses[(epoch-min(n, epoch)):(epoch)]), str(list(losses[0:min(n, epoch)])), str(list(losses[(epoch-min(n, epoch)):(epoch)])))) def sgd(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: shuffle = False # no need to shuffle since all instances will be used up in one batch if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) if xi.shape[0] == 0: raise ValueError("Batch size of 0") g = grad(w, xi, yi) w -= learning_rate * g losses[i] = f(w, xi, yi) if False: g_norm = g.dot(g) if np.isnan(g_norm) or np.isinf(g_norm): logger.debug("|grad|=%f, i=%d/%d, epoch:%d" % (g.dot(g), i+1, n_batches, epoch)) logger.debug("|w0|=%f" % w0.dot(w0)) raise ArithmeticError("grad is nan/inf in sgd") loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm np.copyto(w_best, w) loss_best = loss epoch += 1 if loss < eps: break debug_log_sgd_losses("sgd", epoch_losses, epoch, n=20) # logger.debug("epochs: %d" % epoch) # logger.debug("net losses:") # logger.debug("epoch losses:\n%s" % str(epoch_losses[0:epoch])) # logger.debug("best loss: %f" % loss_best) return w_best def sgdRMSProp(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, delta=1e-6, ro=0.9, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) r = np.zeros(len(w0), dtype=w0.dtype) # gradient accumulation variable epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: # no need to shuffle since all instances will be used up in one batch shuffle = False if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None prev_loss = np.inf while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) g = grad(w, xi, yi) r[:] = ro * r + (1 - ro) * np.multiply(g, g) dw_scale = (learning_rate / (np.sqrt(delta + r))) dw = np.multiply(dw_scale, g) w[:] = w - dw losses[i] = f(w, xi, yi) loss =
np.mean(losses)
numpy.mean
import csv import json import cv2 from scipy import ndimage import numpy as np from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from scipy.misc import imresize import pydot ###### Load Udacity data ############### data_path ='/opt/carnd_p3/data/' samples = [] with open(data_path+'driving_log.csv') as csvfile: reader = csv.reader(csvfile) next(reader, None) # skip the headers for line in reader: samples.append(line) #### split train and validation samples shuffle(samples) train_samples, validation_samples = train_test_split(samples, test_size=0.2) ### Resize Image for fast training ### img_height = 70 img_width = 224 def resize_img(img): crop_img = img[53:153,:,:] resized_img=imresize(crop_img, (img_height, img_width), interp='bilinear') return resized_img ### Image Augmentation ########### def augment_image(img): # random translate vertically cols = img.shape[1] rows = img.shape[0] transY = np.random.randint(-10,10,1) M = np.float32([[1,0,0],[0,1,transY]]) img = cv2.warpAffine(img,M,(cols,rows)) image = cv2.cvtColor(img,cv2.COLOR_RGB2YUV) # random brightness random_bright = 1+np.random.uniform(-0.3,0.3) image[:,:,0] = image[:,:,0]*random_bright image[:,:,0][image[:,:,0]>255] = 255 # random shadow mid =np.random.randint(0,rows) shadow_factor = np.random.uniform(0.7, 0.9) if np.random.randint(2)==0: image[:,0:mid,0] = image[:,0:mid,0]*shadow_factor else: image[:,mid:,0] = image[:,mid:,0]*shadow_factor image = cv2.cvtColor(image,cv2.COLOR_YUV2RGB) return image # create adjusted steering measurements for the side camera images correction = 0.25 # this is a parameter to tune ### Python generator function def generator(samples, batch_size=64, valid_flag=False): num_samples = len(samples) while 1: # Loop forever so the generator never terminates shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images = [] angles = [] for batch_sample in batch_samples: center_image = ndimage.imread(data_path+'IMG/'+batch_sample[0].split('/')[-1]) center_image = resize_img(center_image) if not valid_flag: center_image = augment_image(center_image) center_angle = float(batch_sample[3]) # Append center image to the dataset images.append(center_image) angles.append(center_angle) # Append flipped center image to the dataset only if the steering angle>0.3 if abs(center_angle)>0.3: images.append(np.fliplr(center_image)) angles.append(-center_angle) # Append left image to the dataset left_image = ndimage.imread(data_path+'IMG/'+batch_sample[1].split('/')[-1]) left_image = resize_img(left_image) if not valid_flag: left_image = augment_image(left_image) left_angle=center_angle+correction images.append(left_image) angles.append(left_angle) # Append flipped left image to the dataset only if the steering angle>0.3 if abs(left_angle)>0.3: images.append(np.fliplr(left_image)) angles.append(-left_angle) # Append right image to the dataset right_image = ndimage.imread(data_path+'IMG/'+batch_sample[2].split('/')[-1]) right_image = resize_img(right_image) if not valid_flag: right_image = augment_image(right_image) right_angle=center_angle-correction images.append(right_image) angles.append(right_angle) # Append flipped right image to the dataset only if the steering angle>0.3 if abs(right_angle)>0.3: images.append(np.fliplr(right_image)) angles.append(-right_angle) # trim image to only see section with road X_train =
np.array(images)
numpy.array
import numpy as np from .qoperator import asOperator class QuantumStateError(Exception): pass class QuantumState: """base class""" _state = None _is_ensemble = None _is_pure = None @property def N(self): return len(self._state) @property def is_ensemble(self): return self._is_ensemble @property def is_pure(self): return self._is_pure def as_vector(self): return self._state.flatten() def __repr__(self): return str(self._state) @property def probabilities(self): raise NotImplementedError @property def fidelity(self): raise NotImplementedError class StateVector(QuantumState): """vector dynamics -- quantum state as normalized vector""" def __init__(self, vector): self._state = vector self._is_pure = True self._is_ensemble = False def asDensityMatrix(self): """ensemble description""" return DensityMatrix(np.outer(self.coeffs, self.coeffs.conj())) @property def coeffs(self): return self._state @property def probabilities(self): return np.power(np.abs(self.coeffs), 2) @property def fidelity(self): return np.sum(self.probabilities) return np.linalg.norm(self._state) @property def is_normalized(self): return np.isclose(self.fidelity, 1) def ev(self, operator): op = asOperator(operator) if not op.N == self.N: raise QuantumStateError return np.vdot(state, np.dot(operator, state)) class DensityMatrix(QuantumState): """matrix dynamics -- quantum state as statistical ensemble""" def __init__(self, matrix): if not np.isclose(matrix.trace(), 1): raise QuantumStateError('No statistical probability conservation') if not np.linalg.norm(matrix) <= 1: if not is_idempotent(matrix): raise QuantumStateError('Neither pure nor mixed state') self._state = matrix self._is_pure = np.isclose(self.fidelity, 1) self._is_ensemble = True @property def entropy(self): """shannon entropy""" w, v =
np.linalg.eigh(self._state)
numpy.linalg.eigh
#! /usr/env/python """ Python implementation of ModelGrid, a base class used to create and manage grids for 2D numerical models. Do NOT add new documentation here. Grid documentation is now built in a semi- automated fashion. To modify the text seen on the web, edit the files `docs/text_for_[gridfile].py.txt`. """ import numpy import numpy as np import warnings from time import time import six from six.moves import range from landlab.testing.decorators import track_this_method from landlab.utils import count_repeated_values from landlab.core.utils import argsort_points_by_x_then_y from landlab.utils.decorators import make_return_array_immutable, deprecated from landlab.field import ModelDataFields, ModelDataFieldsMixIn from landlab.field.scalar_data_fields import FieldError from . import grid_funcs as gfuncs from ..core.utils import as_id_array from ..core.utils import add_module_functions_to_class from .decorators import (override_array_setitem_and_reset, return_id_array, return_readonly_id_array) from ..utils.decorators import cache_result_in_object from ..layers.eventlayers import EventLayersMixIn from .nodestatus import (CORE_NODE, FIXED_VALUE_BOUNDARY, FIXED_GRADIENT_BOUNDARY, LOOPED_BOUNDARY, CLOSED_BOUNDARY) from .linkstatus import ACTIVE_LINK, FIXED_LINK, INACTIVE_LINK from .linkstatus import set_status_at_link #: Indicates an index is, in some way, *bad*. BAD_INDEX_VALUE = -1 # DEJH thinks the user should be able to override this value if they want # Map names grid elements to the ModelGrid attribute that contains the count # of that element in the grid. _ARRAY_LENGTH_ATTRIBUTES = { 'node': 'number_of_nodes', 'patch': 'number_of_patches', 'link': 'number_of_links', 'corner': 'number_of_corners', 'face': 'number_of_faces', 'cell': 'number_of_cells', 'active_link': 'number_of_active_links', 'active_face': 'number_of_active_faces', 'core_node': 'number_of_core_nodes', 'core_cell': 'number_of_core_cells', } # Fields whose sizes can not change. _SIZED_FIELDS = {'node', 'link', 'patch', 'corner', 'face', 'cell', } def _sort_points_into_quadrants(x, y, nodes): """Divide x, y points into quadrants. Divide points with locations given in the *x*, and *y* arrays into north, south, east, and west quadrants. Returns nodes contained in quadrants (west, east, north, south). Parameters ---------- x : array_like X-coordinates of points. y : array_like Y-coordinates of points. nodes : array_like Nodes associated with points. Returns ------- tuple of array_like Tuple of nodes in each coordinate. Nodes are grouped as (*east*, *north*, *west*, *south*). Examples -------- >>> import numpy as np >>> from landlab.grid.base import _sort_points_into_quadrants >>> x = np.array([0, 1, 0, -1]) >>> y = np.array([1, 0, -1, 0]) >>> nodes = np.array([1, 2, 3, 4]) >>> _sort_points_into_quadrants(x, y, nodes) (array([2]), array([1]), array([4]), array([3])) """ above_x_axis = y > 0 right_of_y_axis = x > 0 closer_to_y_axis = numpy.abs(y) >= numpy.abs(x) north_nodes = nodes[above_x_axis & closer_to_y_axis] south_nodes = nodes[(~ above_x_axis) & closer_to_y_axis] east_nodes = nodes[right_of_y_axis & (~ closer_to_y_axis)] west_nodes = nodes[(~ right_of_y_axis) & (~ closer_to_y_axis)] return (east_nodes, north_nodes, west_nodes, south_nodes) def _default_axis_names(n_dims): """Name of each axis. Parameters ---------- n_dims : int Number of spatial dimensions. Returns ------- tuple of str Name of each axis. Examples -------- >>> from landlab.grid.base import _default_axis_names >>> _default_axis_names(1) ('x',) >>> _default_axis_names(2) ('y', 'x') >>> _default_axis_names(3) ('z', 'y', 'x') """ _DEFAULT_NAMES = ('z', 'y', 'x') return _DEFAULT_NAMES[- n_dims:] def _default_axis_units(n_dims): """Unit names for each axis. Parameters ---------- n_dims : int Number of spatial dimensions. Returns ------- tuple of str Units of each axis. Examples -------- >>> from landlab.grid.base import _default_axis_units >>> _default_axis_units(1) ('-',) >>> _default_axis_units(2) ('-', '-') >>> _default_axis_units(3) ('-', '-', '-') """ return ('-', ) * n_dims def find_true_vector_from_link_vector_pair(L1, L2, b1x, b1y, b2x, b2y): r"""Separate a pair of links with vector values into x and y components. The concept here is that a pair of adjacent links attached to a node are projections of a 'true' but unknown vector. This function finds and returns the x and y components of this true vector. The trivial case is the situation in which the two links are orthogonal and aligned with the grid axes, in which case the vectors of these two links *are* the x and y components. Parameters ---------- L1, L2 : float Values (magnitudes) associated with the two links b1x, b1y, b2x, b2y : float Unit vectors of the two links Returns ------- ax, ay : float x and y components of the 'true' vector Notes ----- The function does an inverse vector projection. Suppose we have a given 'true' vector :math:`a`, and we want to project it onto two other lines with unit vectors (b1x,b1y) and (b2x,b2y). In the context of Landlab, the 'true' vector is some unknown vector quantity, which might for example represent the local water flow velocity. The lines represent two adjacent links in the grid. Let :math:`\mathbf{a}` be the true vector, :math:`\mathbf{B}` be a different vector with unit vector :math:`\mathbf{b}`, and :math:`L` be the scalar projection of *a* onto *B*. Then, ..math:: L = \mathbf{a} \dot \mathbf{b} = a_x b_x + a_y b_y, where :math:`(a_x,a_y)` are the components of **a** and :math:`(b_x,b_y)` are the components of the unit vector **b**. In this case, we know *b* (the link unit vector), and we want to know the *x* and *y* components of **a**. The problem is that we have one equation and two unknowns (:math:`a_x` and :math:`a_y`). But we can solve this if we have *two* vectors, both of which are projections of **a**. Using the subscripts 1 and 2 to denote the two vectors, we can obtain equations for both :math:`a_x` and :math:`a_y`: ..math:: a_x = L_1 / b_{1x} - a_y b_{1y} / b_{1x} a_y = L_2 / b_{2y} - a_x b_{2x} / b_{2y} Substituting the second into the first, ..math:: a_x = [L_1/b_{1x}-L_2 b_{1y}/(b_{1x} b_{2y})] / [1-b_{1y} b_{2x}/(b_{1x} b_{2y})] Hence, we find the original vector :math:`(a_x,a_y)` from two links with unit vectors :math:`(b_{1x},b_{1y})` and :math:`(b_{2x},b_{2y})` and associated values :math:`L_1` and :math:`L_2`. Note that the above equations require that :math:`b_{1x}>0` and :math:`b_{2y}>0`. If this isn't the case, we invert the order of the two links, which requires :math:`b_{2x}>0` and :math:`b_{1y}>0`. If none of these conditions is met, then we have a degenerate case. Examples -------- The following example represents the active links in a 7-node hexagonal grid, with just one core node. The 'true' vector has a magnitude of 5 units and an orientation of 30 degrees, pointing up and to the right (i.e., the postive-x and postive-y quadrant), so that its vector components are 4 (x) and 3 (y) (in other words, it is a 3-4-5 triangle). The values assigned to L below are the projection of that true vector onto the six link vectors. The algorithm should recover the correct vector component values of 4 and 3. The FOR loop examines each pair of links in turn. >>> import numpy as np >>> from landlab.grid.base import find_true_vector_from_link_vector_pair >>> bx = np.array([0.5, -0.5, -1., -0.5, 1., 0.5]) >>> by = np.array([0.866, 0.866, 0., -0.866, 0., -0.866]) >>> L = np.array([4.6, 0.6, -4., -4.6, 4., -0.6]) >>> for i in range(5): ... ax, ay = find_true_vector_from_link_vector_pair( ... L[i], L[i+1], bx[i], by[i], bx[i+1], by[i+1]) ... round(ax,1), round(ay,1) (4.0, 3.0) (4.0, 3.0) (4.0, 3.0) (4.0, 3.0) (4.0, 3.0) """ assert ((b1x != 0 and b2y != 0) or (b2x != 0 and b1y != 0)), \ 'Improper unit vectors' if b1x != 0. and b2y != 0.: ax = (L1 / b1x - L2 * (b1y / (b1x * b2y))) / \ (1. - (b1y * b2x) / (b1x * b2y)) ay = L2 / b2y - ax * (b2x / b2y) elif b2x != 0. and b1y != 0.: ax = (L2 / b2x - L1 * (b2y / (b2x * b1y))) / \ (1. - (b2y * b1x) / (b2x * b1y)) ay = L1 / b1y - ax * (b1x / b1y) return ax, ay class ModelGrid(ModelDataFieldsMixIn, EventLayersMixIn): """Base class for 2D structured or unstructured grids for numerical models. The idea is to have at least two inherited classes, RasterModelGrid and DelaunayModelGrid, that can create and manage grids. To this might be added a GenericModelGrid, which would be an unstructured polygonal grid that doesn't necessarily obey or understand the Delaunay triangulation, but rather simply accepts an input grid from the user. Also a :class:`~.HexModelGrid` for hexagonal. Attributes ---------- at_node : dict-like Values at nodes. at_cell : dict-like Values at cells. at_link : dict-like Values at links. at_face : dict-like Values at faces. at_grid: dict-like Global values Other Parameters ---------------- axis_name : tuple, optional Name of axes axis_units : tuple, optional Units of coordinates """ BC_NODE_IS_CORE = CORE_NODE BC_NODE_IS_FIXED_VALUE = FIXED_VALUE_BOUNDARY BC_NODE_IS_FIXED_GRADIENT = FIXED_GRADIENT_BOUNDARY BC_NODE_IS_LOOPED = LOOPED_BOUNDARY BC_NODE_IS_CLOSED = CLOSED_BOUNDARY BC_LINK_IS_ACTIVE = ACTIVE_LINK BC_LINK_IS_FIXED = FIXED_LINK BC_LINK_IS_INACTIVE = INACTIVE_LINK # Debugging flags (if True, activates some output statements) _DEBUG_VERBOSE = False _DEBUG_TRACK_METHODS = False at_node = {} # : Values defined at nodes at_link = {} # : Values defined at links at_patch = {} # : Values defined at patches at_corner = {} # : Values defined at corners at_face = {} # : Values defined at faces at_cell = {} # : Values defined at cells def __init__(self, **kwds): super(ModelGrid, self).__init__() self.axis_name = kwds.get('axis_name', _default_axis_names(self.ndim)) self.axis_units = kwds.get( 'axis_units', _default_axis_units(self.ndim)) self._link_length = None self._all_node_distances_map = None self._all_node_azimuths_map = None self.bc_set_code = 0 # Sort links according to the x and y coordinates of their midpoints. # Assumes 1) node_at_link_tail and node_at_link_head have been # created, and 2) so have node_x and node_y. # self._sort_links_by_midpoint() for loc in _SIZED_FIELDS: size = self.number_of_elements(loc) ModelDataFields.new_field_location(self, loc, size=size) ModelDataFields.new_field_location(self, 'grid', size=1) # for loc in _UNSIZED_FIELDS: # ModelDataFields.new_field_location(self, loc, size=None) ModelDataFields.set_default_group(self, 'node') def _create_neighbor_list(self, **kwds): """Create list of neighbor node IDs. Creates a list of IDs of neighbor nodes for each node, as a 2D array. Only record neighbor nodes that are on the other end of an *active* link. Nodes attached to *inactive* links or neighbor nodes that would be outside of the grid are given an ID of :const:`~landlab.grid.base.BAD_INDEX_VALUE`. Neighbors are ordered as [*right*, *top*, *left*, *bottom*]. """ self._active_neighbor_nodes = self.adjacent_nodes_at_node.copy() self._active_neighbor_nodes[ self.active_link_dirs_at_node == 0] = BAD_INDEX_VALUE self.neighbor_list_created = True return self._active_neighbor_nodes @classmethod def from_file(cls, file_like): params = load_params(file_like) return cls.from_dict(params) @classmethod def from_dict(cls, params): raise NotImplementedError('from_dict') def _initialize(self): raise NotImplementedError('_initialize') @property def ndim(self): """Number of spatial dimensions of the grid. LLCATS: GINF """ return 2 def _setup_nodes(self): """Set up the node id array.""" self._nodes = np.arange(self.number_of_nodes, dtype=int) return self._nodes @property @make_return_array_immutable def nodes(self): """Get node ids for the grid. Examples -------- >>> from landlab import RadialModelGrid >>> mg = RadialModelGrid(num_shells=1) >>> mg.nodes array([0, 1, 2, 3, 4, 5, 6]) LLCATS: NINF """ try: return self._nodes except AttributeError: return self._setup_nodes() @property @override_array_setitem_and_reset('reset_status_at_node') def status_at_node(self): """Get array of the boundary status for each node. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab import FIXED_GRADIENT_BOUNDARY, FIXED_LINK >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.status_at_node.reshape((4, 5)) array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]], dtype=uint8) >>> np.any(mg.status_at_link == FIXED_LINK) False >>> mg.status_at_node[mg.nodes_at_left_edge] = FIXED_GRADIENT_BOUNDARY >>> mg.status_at_node.reshape((4, 5)) array([[2, 1, 1, 1, 1], [2, 0, 0, 0, 1], [2, 0, 0, 0, 1], [2, 1, 1, 1, 1]], dtype=uint8) >>> np.any(mg.status_at_link == FIXED_LINK) # links auto-update True LLCATS: NINF BC """ return self._node_status @status_at_node.setter def status_at_node(self, new_status): """Set the array of node boundary statuses.""" self._node_status[:] = new_status[:] self.reset_status_at_node() @property @deprecated(use='adjacent_nodes_at_node', version=1.2) @make_return_array_immutable def neighbors_at_node(self): """Get neighboring nodes. Examples -------- >>> from landlab import RasterModelGrid, BAD_INDEX_VALUE >>> grid = RasterModelGrid((4, 3)) >>> neighbors = grid.adjacent_nodes_at_node.copy() >>> neighbors[neighbors == BAD_INDEX_VALUE] = -1 >>> neighbors # doctest: +NORMALIZE_WHITESPACE array([[ 1, 3, -1, -1], [ 2, 4, 0, -1], [-1, 5, 1, -1], [ 4, 6, -1, 0], [ 5, 7, 3, 1], [-1, 8, 4, 2], [ 7, 9, -1, 3], [ 8, 10, 6, 4], [-1, 11, 7, 5], [10, -1, -1, 6], [11, -1, 9, 7], [-1, -1, 10, 8]]) LLCATS: NINF CONN """ return self.adjacent_nodes_at_node @property @cache_result_in_object() @make_return_array_immutable def adjacent_nodes_at_node(self): """Get adjacent nodes. Examples -------- >>> from landlab import HexModelGrid >>> grid = HexModelGrid(3, 3) >>> grid.adjacent_nodes_at_node array([[ 1, 4, 3, -1, -1, -1], [ 2, 5, 4, 0, -1, -1], [ 6, 5, 1, -1, -1, -1], [ 4, 7, 0, -1, -1, -1], [ 5, 8, 7, 3, 0, 1], [ 6, 9, 8, 4, 1, 2], [ 9, 5, 2, -1, -1, -1], [ 8, 3, 4, -1, -1, -1], [ 9, 7, 4, 5, -1, -1], [ 8, 5, 6, -1, -1, -1]]) LLCATS: NINF CONN """ node_is_at_tail = np.choose(self.link_dirs_at_node + 1, np.array((1, -1, 0), dtype=np.int8)) out = self.nodes_at_link[self.links_at_node, node_is_at_tail] out[node_is_at_tail == -1] = -1 return out @property @cache_result_in_object() @return_readonly_id_array def active_adjacent_nodes_at_node(self): """Adjacent nodes for each grid node. For each grid node, get the adjacent nodes ordered counterclockwise starting from the positive x axis. Examples -------- >>> from landlab import RasterModelGrid, HexModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.active_adjacent_nodes_at_node[(-1, 6, 2), ] array([[-1, -1, -1, -1], [ 7, 11, 5, 1], [-1, 7, -1, -1]]) Setting a node to closed causes all links touching it to be inactive. >>> grid.status_at_node[6] = grid.BC_NODE_IS_CLOSED >>> grid.active_adjacent_nodes_at_node[(-1, 6, 2), ] array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 7, -1, -1]]) >>> grid.active_adjacent_nodes_at_node[7] array([ 8, 12, -1, 2]) >>> grid.active_adjacent_nodes_at_node[2] array([-1, 7, -1, -1]) >>> grid = HexModelGrid(3, 2) >>> grid.status_at_node[0] = grid.BC_NODE_IS_CLOSED >>> grid.active_adjacent_nodes_at_node array([[-1, -1, -1, -1, -1, -1], [-1, 3, -1, -1, -1, -1], [ 3, -1, -1, -1, -1, -1], [ 4, 6, 5, 2, -1, 1], [-1, 3, -1, -1, -1, -1], [-1, -1, 3, -1, -1, -1], [-1, 3, -1, -1, -1, -1]]) LLCATS: NINF CONN BC """ return np.choose( self.status_at_link[self.links_at_node] == ACTIVE_LINK, (-1, self.adjacent_nodes_at_node)) @property @deprecated(use='active_adjacent_nodes_at_node', version=1.2) @cache_result_in_object() @return_readonly_id_array def active_neighbors_at_node(self): """Get list of neighbor node IDs. Return lists of neighbor nodes, where the neighbor is connected by an active link. For each node, the list gives neighbor ids as [right, top, left, bottom]. Nodes at the end of inactive links or nodes in missing positions get BAD_INDEX_VALUE. Examples -------- >>> from landlab import RasterModelGrid, HexModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.active_adjacent_nodes_at_node[(-1, 6, 2), ] array([[-1, -1, -1, -1], [ 7, 11, 5, 1], [-1, 7, -1, -1]]) Setting a node to closed causes all links touching it to be inactive. >>> grid.status_at_node[6] = grid.BC_NODE_IS_CLOSED >>> grid.active_adjacent_nodes_at_node[(-1, 6, 2), ] array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 7, -1, -1]]) >>> grid.active_adjacent_nodes_at_node[7] array([ 8, 12, -1, 2]) >>> grid.active_adjacent_nodes_at_node[2] array([-1, 7, -1, -1]) >>> grid = HexModelGrid(3, 2) >>> grid.status_at_node[0] = grid.BC_NODE_IS_CLOSED >>> grid.active_adjacent_nodes_at_node array([[-1, -1, -1, -1, -1, -1], [-1, 3, -1, -1, -1, -1], [ 3, -1, -1, -1, -1, -1], [ 4, 6, 5, 2, -1, 1], [-1, 3, -1, -1, -1, -1], [-1, -1, 3, -1, -1, -1], [-1, 3, -1, -1, -1, -1]]) LLCATS: NINF CONN BC """ return self.active_adjacent_nodes_at_node @property @make_return_array_immutable def links_at_node(self): """Get links of nodes. Returns ------- (NODES, LINKS) ndarray of int Link for the nodes of a grid. The shape of the matrix will be number of nodes rows by max number of links per node. Order is anticlockwise from east. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 3)) >>> grid.links_at_node # doctest: +NORMALIZE_WHITESPACE array([[ 0, 2, -1, -1], [ 1, 3, 0, -1], [-1, 4, 1, -1], [ 5, 7, -1, 2], [ 6, 8, 5, 3], [-1, 9, 6, 4], [10, 12, -1, 7], [11, 13, 10, 8], [-1, 14, 11, 9], [15, -1, -1, 12], [16, -1, 15, 13], [-1, -1, 16, 14]]) >>> grid.links_at_node[4] array([6, 8, 5, 3]) >>> grid.links_at_node[(4, 7), :] array([[ 6, 8, 5, 3], [11, 13, 10, 8]]) LLCATS: NINF LINF CONN """ return self._links_at_node @property @make_return_array_immutable def link_dirs_at_node(self): """Link directions at each node: 1=incoming, -1=outgoing, 0=none. Returns ------- (NODES, LINKS) ndarray of int Link directions relative to the nodes of a grid. The shape of the matrix will be number of nodes rows by max number of links per node. A zero indicates no link at this position. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 3)) >>> grid.link_dirs_at_node # doctest: +NORMALIZE_WHITESPACE array([[-1, -1, 0, 0], [-1, -1, 1, 0], [ 0, -1, 1, 0], [-1, -1, 0, 1], [-1, -1, 1, 1], [ 0, -1, 1, 1], [-1, -1, 0, 1], [-1, -1, 1, 1], [ 0, -1, 1, 1], [-1, 0, 0, 1], [-1, 0, 1, 1], [ 0, 0, 1, 1]], dtype=int8) >>> grid.link_dirs_at_node[4] array([-1, -1, 1, 1], dtype=int8) >>> grid.link_dirs_at_node[(4, 7), :] array([[-1, -1, 1, 1], [-1, -1, 1, 1]], dtype=int8) LLCATS: NINF LINF CONN """ return self._link_dirs_at_node @property @make_return_array_immutable @cache_result_in_object() def active_link_dirs_at_node(self): """ Link flux directions at each node: 1=incoming flux, -1=outgoing flux, 0=no flux. Note that inactive links receive zero, but active and fixed links are both reported normally. Returns ------- (NODES, LINKS) ndarray of int Link directions relative to the nodes of a grid. The shape of the matrix will be number of nodes rows by max number of links per node. A zero indicates no link at this position. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> grid = RasterModelGrid((4, 3)) >>> grid.status_at_node[grid.nodes_at_left_edge] = CLOSED_BOUNDARY >>> grid.active_link_dirs_at_node # doctest: +NORMALIZE_WHITESPACE array([[ 0, 0, 0, 0], [ 0, -1, 0, 0], [ 0, 0, 0, 0], [ 0, 0, 0, 0], [-1, -1, 0, 1], [ 0, 0, 1, 0], [ 0, 0, 0, 0], [-1, -1, 0, 1], [ 0, 0, 1, 0], [ 0, 0, 0, 0], [ 0, 0, 0, 1], [ 0, 0, 0, 0]], dtype=int8) LLCATS: NINF LINF CONN """ return np.choose(self.link_status_at_node == ACTIVE_LINK, (0, self.link_dirs_at_node)) @property @make_return_array_immutable @cache_result_in_object() def link_status_at_node(self): return self.status_at_link[self.links_at_node] @property def node_at_cell(self): """Node ID associated with grid cells. Examples -------- >>> from landlab import RasterModelGrid, BAD_INDEX_VALUE >>> grid = RasterModelGrid((4, 5)) >>> grid.node_at_cell # doctest: +NORMALIZE_WHITESPACE array([ 6, 7, 8, 11, 12, 13]) LLCATS: NINF CINF CONN """ return self._node_at_cell @property def cell_at_node(self): """Node ID associated with grid cells. Examples -------- >>> from landlab import RasterModelGrid, BAD_INDEX_VALUE >>> grid = RasterModelGrid((4, 5)) >>> ids = grid.cell_at_node >>> ids[ids == BAD_INDEX_VALUE] = -1 >>> ids # doctest: +NORMALIZE_WHITESPACE array([-1, -1, -1, -1, -1, -1, 0, 1, 2, -1, -1, 3, 4, 5, -1, -1, -1, -1, -1, -1]) LLCATS: CINF NINF CONN """ return self._cell_at_node @property @return_readonly_id_array @cache_result_in_object() def core_nodes(self): """Get array of core nodes. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.core_nodes array([ 6, 7, 8, 11, 12, 13]) LLCATS: NINF BC """ return numpy.where(self.status_at_node == CORE_NODE)[0] @property @return_readonly_id_array def boundary_nodes(self): """Get array of boundary nodes. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.boundary_nodes array([ 0, 1, 2, 3, 4, 5, 9, 10, 14, 15, 16, 17, 18, 19]) LLCATS: NINF BC """ try: return self._boundary_nodes except: (boundary_node_ids, ) = numpy.where(self._node_status != CORE_NODE) return boundary_node_ids @property @return_readonly_id_array def open_boundary_nodes(self): """Get array of open boundary nodes. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> for edge in (mg.nodes_at_left_edge, mg.nodes_at_right_edge, ... mg.nodes_at_bottom_edge): ... mg.status_at_node[edge] = CLOSED_BOUNDARY >>> mg.open_boundary_nodes array([16, 17, 18]) LLCATS: NINF BC """ (open_boundary_node_ids, ) = numpy.where( (self._node_status != CLOSED_BOUNDARY) & (self._node_status != CORE_NODE)) return open_boundary_node_ids @property @return_readonly_id_array def closed_boundary_nodes(self): """Get array of closed boundary nodes. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.status_at_node[mg.nodes_at_top_edge] = CLOSED_BOUNDARY >>> mg.closed_boundary_nodes array([15, 16, 17, 18, 19]) LLCATS: NINF BC """ (closed_boundary_node_ids, ) = numpy.where( self._node_status == CLOSED_BOUNDARY) return closed_boundary_node_ids @property @return_readonly_id_array def fixed_gradient_boundary_nodes(self): """Get array of fixed gradient boundary nodes. Examples -------- >>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.status_at_node[mg.nodes_at_top_edge] = FIXED_GRADIENT_BOUNDARY >>> mg.fixed_gradient_boundary_nodes array([15, 16, 17, 18, 19]) LLCATS: NINF BC """ (fixed_gradient_boundary_node_ids, ) = numpy.where( self._node_status == FIXED_GRADIENT_BOUNDARY) return fixed_gradient_boundary_node_ids @property @return_readonly_id_array def fixed_gradient_boundary_node_fixed_link(self): """ An array of the fixed_links connected to fixed gradient boundary nodes. Note that on a raster, some nodes (notably the corners) can be FIXED_GRADIENT_BOUNDARY, but not have a true FIXED_LINK neighboring link. In such cases, the link returned will be a closed link joining the corner node to a neighboring FIXED_GRADIENT_BOUNDARY node (see example). An AssertionError will be raised if for some reason a FIXED_GRADIENT_BOUNDARY node exists which has neither a FIXED_GRADIENT_BOUNDARY neighbor, or a FIXED_LINK. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab import FIXED_GRADIENT_BOUNDARY >>> grid = RasterModelGrid((3, 4)) >>> leftedge = grid.nodes_at_left_edge >>> grid.status_at_node[leftedge] = FIXED_GRADIENT_BOUNDARY >>> grid.fixed_gradient_boundary_nodes array([0, 4, 8]) >>> grid.fixed_gradient_boundary_node_fixed_link array([ 3, 7, 10]) """ try: return self._fixed_gradient_boundary_node_links except AttributeError: self._create_fixed_gradient_boundary_node_links() return self._fixed_gradient_boundary_node_links @property @return_readonly_id_array def fixed_gradient_boundary_node_anchor_node(self): """ Returns the node at the other end of the fixed link for a fixed gradient boundary node. Degenerate FIXED_GRADIENT_BOUNDARY nodes (e.g., corners) are handled as in :func:`fixed_gradient_boundary_node_fixed_link`, by pointing to a neighboring FIXED_GRADIENT_BOUNDARY node. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab import FIXED_GRADIENT_BOUNDARY >>> grid = RasterModelGrid((3, 4)) >>> leftedge = grid.nodes_at_left_edge >>> grid.status_at_node[leftedge] = FIXED_GRADIENT_BOUNDARY >>> grid.fixed_gradient_boundary_nodes array([0, 4, 8]) >>> grid.fixed_gradient_boundary_node_fixed_link array([ 3, 7, 10]) >>> grid.fixed_gradient_boundary_node_anchor_node array([4, 5, 4]) """ try: return self._fixed_gradient_boundary_node_anchor_node except AttributeError: self._create_fixed_gradient_boundary_node_anchor_node() return self._fixed_gradient_boundary_node_anchor_node def _create_fixed_gradient_boundary_node_links(self): """ Builds a data structure to hold the fixed_links which control the values of any FIXED_GRADIENT_BOUNDARY nodes in the grid. An AssertionError will be raised if for some reason a FIXED_GRADIENT_BOUNDARY node exists which has neither a FIXED_GRADIENT_BOUNDARY neighbor, or a FIXED_LINK. """ self._fixed_grad_links_created = True self._fixed_gradient_boundary_node_links = np.empty_like( self.fixed_gradient_boundary_nodes, dtype=int) fix_nodes = self.fixed_gradient_boundary_nodes neighbor_links = self.links_at_node[fix_nodes] # -1s boundary_exists = self.link_dirs_at_node[fix_nodes] # next line retains -1 indexes link_stat_badind = self.status_at_link[neighbor_links] == FIXED_LINK true_connection = np.logical_and(link_stat_badind, boundary_exists) true_fix_nodes = true_connection.sum(axis=1).astype(bool) self._fixed_gradient_boundary_node_links[true_fix_nodes] = ( neighbor_links[true_connection]) # resolve any corner nodes neighbor_nodes = self.adjacent_nodes_at_node[fix_nodes] # BAD_INDEX_VALUEs neighbor_nodes[neighbor_nodes == BAD_INDEX_VALUE] = -1 fixed_grad_neighbor = np.logical_and((self.status_at_node[ neighbor_nodes] == FIXED_GRADIENT_BOUNDARY), boundary_exists) # ^True when FIXED_GRADIENT_BOUNDARY for real # winnow it down to only one possibility for fixed_grad neighbor: which_neighbor = np.argmax(fixed_grad_neighbor, axis=1) indexing_range = np.arange(fixed_grad_neighbor.shape[0]) a_link_to_fixed_grad = neighbor_links[indexing_range, which_neighbor] corners = np.logical_not(true_fix_nodes) assert np.all( fixed_grad_neighbor[indexing_range, which_neighbor][corners]) self._fixed_gradient_boundary_node_links[ corners] = a_link_to_fixed_grad[corners] def _create_fixed_gradient_boundary_node_anchor_node(self): """ Builds a data structure to hold the nodes which anchor the values of any FIXED_GRADIENT_BOUNDARY nodes in the grid, i.e., those at the other ends of the FIXED_LINKS. An AssertionError will be raised if for some reason a FIXED_GRADIENT_BOUNDARY node exists which has neither a FIXED_GRADIENT_BOUNDARY neighbor, or a FIXED_LINK. """ self._fixed_grad_links_created = True fix_grad_nodes = self.fixed_gradient_boundary_nodes self._fixed_gradient_boundary_node_anchor_node = np.empty_like( fix_grad_nodes) heads_and_tails = np.empty((fix_grad_nodes.size, 2)) which_one = np.empty_like(heads_and_tails, dtype=bool) heads_and_tails[:, 0] = self.node_at_link_head[ self.fixed_gradient_boundary_node_fixed_link] heads_and_tails[:, 1] = self.node_at_link_tail[ self.fixed_gradient_boundary_node_fixed_link] which_one[:, 0] = heads_and_tails[:, 0] == fix_grad_nodes which_one[:, 1] = heads_and_tails[:, 1] == fix_grad_nodes assert np.all(which_one.sum(axis=1) == 1) self._fixed_gradient_boundary_node_anchor_node = heads_and_tails[ np.logical_not(which_one)] @property @return_readonly_id_array @cache_result_in_object() def fixed_value_boundary_nodes(self): """Get array of fixed value boundary nodes. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5), 1.) Initially all the perimeter nodes are fixed value boundary. >>> grid.fixed_value_boundary_nodes array([ 0, 1, 2, 3, 4, 5, 9, 10, 14, 15, 16, 17, 18, 19]) Set left, right, and bottom edges to closed. >>> for edge in (grid.nodes_at_left_edge, grid.nodes_at_right_edge, ... grid.nodes_at_bottom_edge): ... grid.status_at_node[edge] = grid.BC_NODE_IS_CLOSED Now nodes on just the top edge are fixed. >>> grid.fixed_value_boundary_nodes array([16, 17, 18]) LLCATS: NINF BC """ return numpy.where(self._node_status == FIXED_VALUE_BOUNDARY)[0] @property @return_readonly_id_array @cache_result_in_object() def active_faces(self): """Get array of active faces. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.active_faces array([0, 1, 2, 3, 4, 5, 6]) >>> from landlab import CLOSED_BOUNDARY >>> grid.status_at_node[6] = CLOSED_BOUNDARY >>> grid.active_faces array([0, 2, 5]) LLCATS: FINF BC """ return self.face_at_link[self.active_links] @property @return_readonly_id_array @cache_result_in_object() def active_links(self): """Get array of active links. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.active_links array([ 4, 5, 7, 8, 9, 11, 12]) LLCATS: LINF BC """ return np.where(self.status_at_link == ACTIVE_LINK)[0] @property @return_readonly_id_array @cache_result_in_object() def fixed_links(self): """Get array of fixed links. Examples -------- >>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY >>> grid = RasterModelGrid((3, 4)) >>> grid.status_at_node # doctest: +NORMALIZE_WHITESPACE array([1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], dtype=uint8) >>> grid.fixed_links.size 0 >>> grid.status_at_node[:4] = FIXED_GRADIENT_BOUNDARY >>> grid.status_at_node # doctest: +NORMALIZE_WHITESPACE array([2, 2, 2, 2, 1, 0, 0, 1, 1, 1, 1, 1], dtype=uint8) >>> grid.fixed_links array([4, 5]) LLCATS: LINF BC """ return np.where(self.status_at_link == FIXED_LINK)[0] @property @cache_result_in_object() @return_readonly_id_array def node_at_core_cell(self): """Get array of nodes associated with core cells. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5), 1.) Initially each cell's node is core. >>> grid.node_at_core_cell array([ 6, 7, 8, 11, 12, 13]) Setting a node to closed causes means its cell is also "closed". >>> grid.status_at_node[8] = grid.BC_NODE_IS_CLOSED >>> grid.node_at_core_cell array([ 6, 7, 11, 12, 13]) LLCATS: NINF CINF BC CONN """ return numpy.where(self.status_at_node == CORE_NODE)[0] @property @make_return_array_immutable @cache_result_in_object() def core_cells(self): """Get array of core cells. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5), 1.) Initially all of the cells are "core". >>> grid.core_cells array([0, 1, 2, 3, 4, 5]) Setting a node to closed causes its cell to no longer be core. >>> grid.status_at_node[8] = grid.BC_NODE_IS_CLOSED >>> grid.core_cells array([0, 1, 3, 4, 5]) LLCATS: CINF BC """ return self.cell_at_node[self.core_nodes] @property def nodes_at_link(self): """Get array of the nodes at each link. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 4), 1.) >>> mg.nodes_at_link # doctest: +NORMALIZE_WHITESPACE array([[ 0, 1], [ 1, 2], [ 2, 3], [ 0, 4], [ 1, 5], [ 2, 6], [ 3, 7], [ 4, 5], [ 5, 6], [ 6, 7], [ 4, 8], [ 5, 9], [ 6, 10], [ 7, 11], [ 8, 9], [ 9, 10], [10, 11]]) LLCATS: NINF LINF CONN """ return self._nodes_at_link @property def node_at_link_head(self): """Get array of the node at each link head (*to-node*). Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.node_at_link_head[:5] array([1, 2, 3, 4, 5]) LLCATS: NINF LINF CONN """ return self._nodes_at_link[:, 1] @property def node_at_link_tail(self): """Get array of the node at each link tail (*from-node*). Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.node_at_link_tail[:5] array([0, 1, 2, 3, 0]) LLCATS: NINF LINF CONN """ return self._nodes_at_link[:, 0] @property def face_at_link(self): """Get array of faces associated with links. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, BAD_INDEX_VALUE >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.face_at_link[5:7] array([0, 1]) >>> np.all(mg.face_at_link[:5]==BAD_INDEX_VALUE) True LLCATS: FINF LINF CONN """ try: return self._face_at_link except AttributeError: return self._create_face_at_link() @property def link_at_face(self): """Get array of links associated with faces. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.link_at_face[0:3] array([5, 6, 7]) LLCATS: LINF FINF CONN """ try: return self._link_at_face except AttributeError: return self._create_link_at_face() @property def number_of_nodes(self): """Total number of nodes. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_nodes 20 LLCATS: NINF """ return len(self._cell_at_node) @property def number_of_corners(self): """Total number of corners. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_corners 12 LLCATS: CNINF """ return self.number_of_patches @property def number_of_cells(self): """Total number of cells. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_cells 6 LLCATS: CINF """ return len(self._node_at_cell) @property def number_of_links(self): """Total number of links. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.number_of_links 17 LLCATS: LINF """ return len(self.nodes_at_link) @property def number_of_faces(self): """Total number of faces. Returns ------- int Total number of faces in the grid. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.number_of_faces 7 LLCATS: FINF """ return len(self.link_at_face) @property def number_of_active_faces(self): """Total number of active faces. Returns ------- int Total number of active faces in the grid. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> grid.number_of_active_faces 7 The number of active faces is updated when a node status changes. >>> from landlab import CLOSED_BOUNDARY >>> grid.status_at_node[6] = CLOSED_BOUNDARY >>> grid.number_of_active_faces 3 LLCATS: FINF BC """ return self.active_faces.size @property def number_of_core_nodes(self): """Number of core nodes. The number of core nodes on the grid (i.e., excluding all boundary nodes). Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_core_nodes 6 >>> grid.status_at_node[7] = CLOSED_BOUNDARY >>> grid.number_of_core_nodes 5 LLCATS: NINF BC """ return self.core_nodes.size @property def number_of_core_cells(self): """Number of core cells. A core cell excludes all boundary cells. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> grid = RasterModelGrid((4, 5)) >>> grid.number_of_core_cells 6 >>> grid.status_at_node[7] = CLOSED_BOUNDARY >>> grid.number_of_core_cells 5 LLCATS: CINF BC """ return self.core_cells.size @property def number_of_active_links(self): """Number of active links. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.number_of_active_links 17 >>> for edge in (mg.nodes_at_left_edge, mg.nodes_at_right_edge, ... mg.nodes_at_bottom_edge): ... mg.status_at_node[edge] = CLOSED_BOUNDARY >>> mg.number_of_active_links 10 LLCATS: LINF BC """ return self.active_links.size @property def number_of_fixed_links(self): """Number of fixed links. Examples -------- >>> from landlab import RasterModelGrid, FIXED_GRADIENT_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.number_of_fixed_links 0 >>> mg.status_at_node[mg.nodes_at_top_edge] = FIXED_GRADIENT_BOUNDARY >>> mg.number_of_fixed_links 3 LLCATS: LINF BC """ return self.fixed_links.size def number_of_elements(self, name): """Number of instances of an element. Get the number of instances of a grid element in a grid. Parameters ---------- name : {'node', 'cell', 'link', 'face', 'core_node', 'core_cell', 'active_link', 'active_face'} Name of the grid element. Returns ------- int Number of elements in the grid. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.number_of_elements('node') 20 >>> mg.number_of_elements('core_cell') 6 >>> mg.number_of_elements('link') 31 >>> mg.number_of_elements('active_link') 17 >>> mg.status_at_node[8] = CLOSED_BOUNDARY >>> mg.number_of_elements('link') 31 >>> mg.number_of_elements('active_link') 13 LLCATS: GINF """ try: return getattr(self, _ARRAY_LENGTH_ATTRIBUTES[name]) except KeyError: raise TypeError( '{name}: element name not understood'.format(name=name)) @property @make_return_array_immutable def node_x(self): """Get array of the x-coordinates of nodes. See also -------- x_of_node Exquivalent method. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.node_x.reshape((4, 5)) array([[ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.]]) LLCATS: NINF MEAS """ return self._xy_of_node[:, 0] @property @make_return_array_immutable def node_y(self): """Get array of the y-coordinates of nodes. See also -------- y_of_node Exquivalent method. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.node_y.reshape((4, 5)) array([[ 0., 0., 0., 0., 0.], [ 2., 2., 2., 2., 2.], [ 4., 4., 4., 4., 4.], [ 6., 6., 6., 6., 6.]]) LLCATS: NINF MEAS """ return self._xy_of_node[:, 1] @property @make_return_array_immutable def xy_of_node(self): """Get array of the x- and y-coordinates of nodes. See also -------- x_of_node, y_of_node Exquivalent methods for just x and y coordinates. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4), (2., 3.)) >>> grid.xy_of_node # doctest: +NORMALIZE_WHITESPACE array([[ 0., 0.], [ 3., 0.], [ 6., 0.], [ 9., 0.], [ 0., 2.], [ 3., 2.], [ 6., 2.], [ 9., 2.], [ 0., 4.], [ 3., 4.], [ 6., 4.], [ 9., 4.]]) >>> np.all(grid.xy_of_node[:, 0] == grid.x_of_node) True >>> np.all(grid.xy_of_node[:, 1] == grid.y_of_node) True LLCATS: NINF MEAS """ return self._xy_of_node @property @make_return_array_immutable def x_of_node(self): """Get array of the x-coordinates of nodes. See also -------- node_x Exquivalent method. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.x_of_node.reshape((4, 5)) array([[ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.], [ 0., 3., 6., 9., 12.]]) LLCATS: NINF MEAS """ return self._xy_of_node[:, 0] @property @make_return_array_immutable def y_of_node(self): """Get array of the y-coordinates of nodes. See also -------- node_y Exquivalent method. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.y_of_node.reshape((4, 5)) array([[ 0., 0., 0., 0., 0.], [ 2., 2., 2., 2., 2.], [ 4., 4., 4., 4., 4.], [ 6., 6., 6., 6., 6.]]) LLCATS: NINF MEAS """ return self._xy_of_node[:, 1] @property @make_return_array_immutable def x_of_cell(self): """Get array of the x-coordinates of nodes at cells. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.x_of_cell.reshape((2, 3)) array([[ 3., 6., 9.], [ 3., 6., 9.]]) LLCATS: CINF MEAS """ return self.x_of_node[self.node_at_cell] @property @make_return_array_immutable def y_of_cell(self): """Get array of the y-coordinates of nodes at cells. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.y_of_cell.reshape((2, 3)) array([[ 2., 2., 2.], [ 4., 4., 4.]]) LLCATS: CINF MEAS """ return self.y_of_node[self.node_at_cell] @property @cache_result_in_object() @make_return_array_immutable def x_of_link(self): """Get array of the x-coordinates of link midpoints. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.x_of_link # doctest: +NORMALIZE_WHITESPACE array([ 1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. , 1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. , 1.5, 4.5, 7.5, 10.5, 0. , 3. , 6. , 9. , 12. , 1.5, 4.5, 7.5, 10.5]) LLCATS: LINF MEAS """ return np.mean(self.x_of_node[self.nodes_at_link], axis=1) @property @cache_result_in_object() @make_return_array_immutable def y_of_link(self): """Get array of the y-coordinates of link midpoints. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.y_of_link # doctest: +NORMALIZE_WHITESPACE array([ 0., 0., 0., 0., 1., 1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3., 3., 4., 4., 4., 4., 5., 5., 5., 5., 5., 6., 6., 6., 6.]) LLCATS: LINF MEAS """ return np.mean(self.y_of_node[self.nodes_at_link], axis=1) @property @cache_result_in_object() @make_return_array_immutable def x_of_face(self): """Get array of the x-coordinates of face midpoints. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.x_of_face # doctest: +NORMALIZE_WHITESPACE array([ 3. , 6. , 9. , 1.5, 4.5, 7.5, 10.5, 3. , 6. , 9. , 1.5, 4.5, 7.5, 10.5, 3. , 6. , 9. ]) LLCATS: FINF MEAS """ return self.x_of_link[self.link_at_face] @property @cache_result_in_object() @make_return_array_immutable def y_of_face(self): """Get array of the y-coordinates of face midpoints. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.y_of_face # doctest: +NORMALIZE_WHITESPACE array([ 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 4., 4., 4., 4., 5., 5., 5.]) LLCATS: FINF MEAS """ return self.y_of_link[self.link_at_face] @make_return_array_immutable def node_axis_coordinates(self, axis=0): """Get the coordinates of nodes along a particular axis. Return node coordinates from a given *axis* (defaulting to 0). Axis numbering is the same as that for numpy arrays. That is, the zeroth axis is along the rows, and the first along the columns. Parameters ---------- axis : int, optional Coordinate axis. Returns ------- ndarray Coordinates of nodes for a given axis. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.node_axis_coordinates(0) # doctest: +NORMALIZE_WHITESPACE array([ 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 3., 3., 3., 3., 3.]) >>> grid.node_axis_coordinates(1) # doctest: +NORMALIZE_WHITESPACE array([ 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4.]) LLCATS: GINF NINF MEAS """ AXES = ('node_y', 'node_x') try: return getattr(self, AXES[axis]) except IndexError: raise ValueError("'axis' entry is out of bounds") @property def axis_units(self): """Get units for each axis. Returns ------- tuple of str The units (as a string) for each of a grid's coordinates. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((4, 5), (2., 3.)) >>> mg.axis_units ('-', '-') >>> mg.axis_units = ('km', 'km') >>> mg.axis_units ('km', 'km') LLCATS: GINF """ return self._axis_units @axis_units.setter def axis_units(self, new_units): """Set the units for each coordinate axis.""" if len(new_units) != self.ndim: raise ValueError('length of units does not match grid dimension') self._axis_units = tuple(new_units) @property def axis_name(self): """Get the name of each coordinate axis. Returns ------- tuple of str The names of each axis. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.axis_name ('y', 'x') >>> grid.axis_name = ('lon', 'lat') >>> grid.axis_name ('lon', 'lat') LLCATS: GINF """ return self._axis_name @axis_name.setter def axis_name(self, new_names): """Set the names of a grid's coordinate axes. Raises ------ ValueError If the number of dimension do not match. Examples -------- >>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((4, 5)) >>> grid.axis_name = ('lon', 'lat') >>> grid.axis_name ('lon', 'lat') """ if len(new_names) != self.ndim: raise ValueError('length of names does not match grid dimension') self._axis_name = tuple(new_names) @property @make_return_array_immutable @cache_result_in_object() def status_at_link(self): """Get array of the status of all links. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab import CLOSED_BOUNDARY, FIXED_GRADIENT_BOUNDARY >>> mg = RasterModelGrid((4, 5), 1.) >>> mg.status_at_node[mg.nodes_at_left_edge] = CLOSED_BOUNDARY >>> mg.status_at_node[mg.nodes_at_right_edge] = FIXED_GRADIENT_BOUNDARY >>> mg.status_at_link # doctest: +NORMALIZE_WHITESPACE array([4, 4, 4, 4, 4, 0, 0, 0, 4, 4, 0, 0, 2, 4, 0, 0, 0, 4, 4, 0, 0, 2, 4, 0, 0, 0, 4, 4, 4, 4, 4], dtype=uint8) LLCATS: BC LINF """ return set_status_at_link(self.status_at_node[self.nodes_at_link]) @property @return_readonly_id_array def link_at_face(self): """Get links associated with faces. Returns an array of the link IDs for the links that intersect faces. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 4)) >>> mg.link_at_face array([ 4, 5, 7, 8, 9, 11, 12]) LLCATS: LINF FINF MEAS """ try: return self._link_at_face except AttributeError: return self._create_link_at_face() def _create_number_of_links_at_node(self): """Find and record how many links are attached to each node. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 4)) >>> mg.number_of_links_at_node array([2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 3, 2]) """ self._number_of_links_at_node = np.zeros(self.number_of_nodes, dtype=np.int) node_at_link_tail = self.node_at_link_tail node_at_link_head = self.node_at_link_head for ln in range(self.number_of_links): self._number_of_links_at_node[node_at_link_tail[ln]] += 1 self._number_of_links_at_node[node_at_link_head[ln]] += 1 @property def number_of_links_at_node(self): """Number of links connected to each node. Examples -------- >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((3, 4)) >>> mg.number_of_links_at_node array([2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 3, 2]) LLCATS: LINF NINF CONN """ try: return self._number_of_links_at_node except AttributeError: self._create_number_of_links_at_node() return self._number_of_links_at_node def _create_links_and_link_dirs_at_node(self): """Make arrays with links and link directions at each node. Examples -------- >>> from landlab import HexModelGrid >>> hg = HexModelGrid(3, 3) >>> hg.links_at_node array([[ 0, 3, 2, -1, -1, -1], [ 1, 5, 4, 0, -1, -1], [ 7, 6, 1, -1, -1, -1], [ 8, 11, 2, -1, -1, -1], [ 9, 13, 12, 8, 3, 4], [10, 15, 14, 9, 5, 6], [16, 10, 7, -1, -1, -1], [17, 11, 12, -1, -1, -1], [18, 17, 13, 14, -1, -1], [18, 15, 16, -1, -1, -1]]) >>> hg.link_dirs_at_node array([[-1, -1, -1, 0, 0, 0], [-1, -1, -1, 1, 0, 0], [-1, -1, 1, 0, 0, 0], [-1, -1, 1, 0, 0, 0], [-1, -1, -1, 1, 1, 1], [-1, -1, -1, 1, 1, 1], [-1, 1, 1, 0, 0, 0], [-1, 1, 1, 0, 0, 0], [-1, 1, 1, 1, 0, 0], [ 1, 1, 1, 0, 0, 0]], dtype=int8) """ # Find maximum number of links per node nlpn = self.number_of_links_at_node # ^this fn should become member and property max_num_links = np.amax(nlpn) nlpn[:] = 0 # we'll zero it out, then rebuild it # Create arrays for link-at-node information self._links_at_node = - np.ones((self.number_of_nodes, max_num_links), dtype=int) self._link_dirs_at_node = np.zeros((self.number_of_nodes, max_num_links), dtype=np.int8) # Sweep over all links node_at_link_tail = self.node_at_link_tail node_at_link_head = self.node_at_link_head for lk in range(self.number_of_links): # Find the IDs of the tail and head nodes t = node_at_link_tail[lk] h = node_at_link_head[lk] # Add this link to the list for this node, set the direction # (outgoing, indicated by -1), and increment the number found so # far self._links_at_node[t][nlpn[t]] = lk self._links_at_node[h][nlpn[h]] = lk self._link_dirs_at_node[t][nlpn[t]] = -1 self._link_dirs_at_node[h][nlpn[h]] = 1 nlpn[t] += 1 nlpn[h] += 1 # Sort the links at each node by angle, counter-clockwise from +x self._sort_links_at_node_by_angle() @property @make_return_array_immutable def angle_of_link(self): """Find and return the angle of a link about the node at the link tail. Examples -------- >>> from landlab import HexModelGrid >>> mg = HexModelGrid(3, 2) >>> mg.angle_of_link / np.pi * 3. # 60 degree segments array([ 0., 2., 1., 2., 1., 0., 0., 1., 2., 1., 2., 0.]) LLCATS: LINF MEAS """ try: if not self._angle_of_link_created: self._create_angle_of_link() except AttributeError: self._create_angle_of_link() return self._angle_of_link_bothends[-1] @property @make_return_array_immutable def angle_of_link_about_head(self): """Find and return the angle of a link about the node at the link head. Because links have direction, their angle can be specified as an angle about either the node at the link head, or the node at the link tail. The default behaviour of `angle_of_link` is to return the angle about the link tail, but this method gives the angle about the link head. Examples -------- >>> from landlab import HexModelGrid >>> mg = HexModelGrid(3, 2) >>> mg.angle_of_link_about_head[:3] / np.pi * 3. # 60 deg segments array([ 3., 5., 4.]) LLCATS: LINF MEAS """ try: if not self._angle_of_link_created: self._create_angle_of_link() except AttributeError: self._create_angle_of_link() return self._angle_of_link_bothends[1] def _create_angle_of_link(self): """ Build a dict with keys (-1, 1) that contains the angles of the links about both the link heads (1) and link tails (-1). Notes ----- dx and dy are the x and y differences between the link endpoints. Multiplying this by dirs orients these offsets correctly (i.e., the correct node is the origin). The call to arctan2 calculates the angle in radians. Angles in the lower two quadrants will be negative and clockwise from the positive x axis. We want them counter-clockwise, which is what the last couple of lines before the return statement do. LLCATS: LINF MEAS """ self._angle_of_link_bothends = {} for dirs in (-1, 1): dx = -dirs * (self.node_x[self.node_at_link_head] - self.node_x[self.node_at_link_tail]) dy = -dirs * (self.node_y[self.node_at_link_head] - self.node_y[self.node_at_link_tail]) ang = np.arctan2(dy, dx) (lower_two_quads, ) = np.where(ang < 0.0) ang[lower_two_quads] = (2 * np.pi) + ang[lower_two_quads] (no_link, ) = np.where(dirs == 0) ang[no_link] = 2*np.pi self._angle_of_link_bothends[dirs] = ang.copy() self._angle_of_link_created = True def _sort_links_at_node_by_angle(self): """Sort the links_at_node and link_dirs_at_node arrays by angle. """ ang = self.angle_of_link[self.links_at_node] linkhead_at_node = self.link_dirs_at_node == 1 ang[linkhead_at_node] = self.angle_of_link_about_head[ self.links_at_node[linkhead_at_node]] ang[self.link_dirs_at_node == 0] = 100. argsorted = np.argsort(ang, axis=1) indices = np.indices(ang.shape)[0] * ang.shape[1] + argsorted self._links_at_node.flat = self._links_at_node.flat[indices.flatten()] self._link_dirs_at_node.flat = self._link_dirs_at_node.flat[ indices.flatten()] def resolve_values_on_links(self, link_values, out=None): """Resolve the xy-components of links. Resolves values provided defined on links into the x and y directions. Returns values_along_x, values_along_y LLCATS: LINF """ return gfuncs.resolve_values_on_links(self, link_values, out=out) @deprecated(use='no replacement', version=1.0) def resolve_values_on_active_links(self, link_values, out=None): """Resolve the xy-components of active links. Resolves values provided defined on active links into the x and y directions. Returns values_along_x, values_along_y LLCATS: LINF """ return gfuncs.resolve_values_on_active_links(self, link_values, out=out) def link_at_node_is_upwind(self, values, out=None): """ Return a boolean the same shape as :func:`links_at_node` which flags links which are upwind of the node as True. link_at_node_is_upwind iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links bringing flux into the node. It then return a boolean array the same shape as links_at_node flagging these links. e.g., for a raster, the returned array will be shape (nnodes, 4). Parameters ---------- values : str or array Name of variable field defined at links, or array of values at links. out : ndarray, optional Buffer to place mapped values into or `None` to create a new array. Must be correct shape and boolean dtype. Returns ------- ndarray Boolean of which links are upwind at nodes. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((3, 4)) >>> rmg.at_link['grad'] = np.array([-1., -2., -1., ... -2., -3., -4., -5., ... -1., -2., -1., ... -1., -2., -3., -4., ... -1., -2., -1.]) >>> rmg.link_at_node_is_upwind('grad') array([[False, False, False, False], [False, False, True, False], [False, False, True, False], [False, False, True, False], [False, False, False, True], [False, False, True, True], [False, False, True, True], [False, False, True, True], [False, False, False, True], [False, False, True, True], [False, False, True, True], [False, False, True, True]], dtype=bool) LLCATS: LINF NINF CONN """ if out is None: out = np.empty_like(self.links_at_node, dtype=bool) else: assert out.shape is self.links_at_node.shape assert out.dtype is bool if type(values) is str: vals = self.at_link[values] else: assert len(values) == self.number_of_links vals = values values_at_links = vals[self.links_at_node] * self.link_dirs_at_node # this procedure makes incoming links NEGATIVE np.less(values_at_links, 0., out=out) return out def link_at_node_is_downwind(self, values, out=None): """ Return a boolean the same shape as :func:`links_at_node` which flags links which are downwind of the node as True. link_at_node_is_downwind iterates across the grid and identifies the link values at each link connected to a node. It then uses the link_dirs_at_node data structure to identify links carrying flux out of the node. It then return a boolean array the same shape as links_at_node flagging these links. e.g., for a raster, the returned array will be shape (nnodes, 4). Parameters ---------- values : str or array Name of variable field defined at links, or array of values at links. out : ndarray, optional Buffer to place mapped values into or `None` to create a new array. Must be correct shape and boolean dtype. Returns ------- ndarray Boolean of which links are downwind at nodes. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((3, 4)) >>> rmg.at_link['grad'] = np.array([-1., -2., -1., ... -2., -3., -4., -5., ... -1., -2., -1., ... -1., -2., -3., -4., ... -1., -2., -1.]) >>> rmg.link_at_node_is_downwind('grad') array([[ True, True, False, False], [ True, True, False, False], [ True, True, False, False], [False, True, False, False], [ True, True, False, False], [ True, True, False, False], [ True, True, False, False], [False, True, False, False], [ True, False, False, False], [ True, False, False, False], [ True, False, False, False], [False, False, False, False]], dtype=bool) LLCATS: LINF NINF CONN """ if out is None: out = np.empty_like(self.links_at_node, dtype=bool) else: assert out.shape is self.links_at_node.shape assert out.dtype is bool if type(values) is str: vals = self.at_link[values] else: assert len(values) == self.number_of_links vals = values values_at_links = vals[self.links_at_node] * self.link_dirs_at_node # this procedure makes incoming links NEGATIVE np.greater(values_at_links, 0., out=out) return out def upwind_links_at_node(self, values, bad_index=-1): """ Return an (nnodes, X) shape array of link IDs of which links are upwind of each node, according to *values* (field or array). X is the maximum upwind links at any node. Nodes with fewer upwind links than this have additional slots filled with *bad_index*. Links are ordered anticlockwise from east. Parameters ---------- values : str or array Name of variable field defined at links, or array of values at links. bad_index : int Index to place in array indicating no link. Returns ------- ndarray Array of upwind link IDs Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((3, 4)) >>> rmg.at_link['grad'] = np.array([-1., -2., -1., ... -2., -3., -4., -5., ... -1., -2., -1., ... -1., -2., -3., -4., ... -1., -2., -1.]) >>> rmg.upwind_links_at_node('grad', bad_index=-1) array([[-1, -1], [ 0, -1], [ 1, -1], [ 2, -1], [ 3, -1], [ 7, 4], [ 8, 5], [ 9, 6], [10, -1], [14, 11], [15, 12], [16, 13]]) LLCATS: LINF NINF CONN """ if type(values) is str: vals = self.at_link[values] else: assert len(values) == self.number_of_links vals = values values_at_links = vals[self.links_at_node] * self.link_dirs_at_node # this procedure makes incoming links NEGATIVE unordered_IDs = np.where(values_at_links < 0., self.links_at_node, bad_index) bad_IDs = unordered_IDs == bad_index nnodes = self.number_of_nodes flat_sorter = (
np.argsort(bad_IDs, axis=1)
numpy.argsort
import multiprocessing as mp import os import warnings from random import shuffle from rdkit.Chem import MACCSkeys import numpy as np import pandas as pd from rdkit.Chem import MolFromSmiles,AllChem from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect from rdkit import DataStructs from sklearn.ensemble import RandomForestClassifier import joblib from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score, cohen_kappa_score from sklearn.metrics import confusion_matrix, silhouette_score, average_precision_score import datetime import argparse import pandas as pd import itertools import numpy as np import pickle warnings.filterwarnings("ignore") basePath=os.getcwd() dictionary0 = { 'n_estimators':[10,50,100,300,700,1000], 'criterion':['gini','entropy'], 'max_features':['sqrt','log2'] } hyperParams0 = pd.DataFrame(list(itertools.product(*dictionary0.values())), columns=dictionary0.keys()) hyperParams0.index=np.arange(len(hyperParams0.index.values)) parser = argparse.ArgumentParser() parser.add_argument("-cl_file", help="cl per target", type=str, default=basePath+'/test_data/cl/') parser.add_argument("-pertarget_file", help="smi per target", type=str, default=basePath+'/test_data/pertargetdata/') parser.add_argument("-datasetNames", help="Dataset Name",type=str, default="ecfp6fcfp6MACCS") parser.add_argument("-saveBasePath", help="saveBasePath", type=str, default=basePath+'/res_test_data/') parser.add_argument("-ofolds", help="Outer Folds", nargs='+', type=int, default=[0, 1, 2]) parser.add_argument("-ifolds", help="Inner Folds", nargs='+', type=int, default=[0, 1, 2]) parser.add_argument("-pStart", help="Parameter Start Index", type=int, default=0) parser.add_argument("-pEnd", help="Parameter End Index", type=int, default=24) args = parser.parse_args() cl_file = args.cl_file pertarget_file = args.pertarget_file datasetNames = args.datasetNames saveBasePath = args.saveBasePath compOuterFolds = args.ofolds compInnerFolds = args.ifolds paramStart = args.pStart paramEnd = args.pEnd compParams = list(range(paramStart, paramEnd)) print() def bestSettingsSimple(perfFiles, nrParams): aucFold=[] for outind in range(0,3): for foldInd in range(0, 2): aucParam=[] for paramNr in range(0, nrParams): #try: saveFile=open(perfFiles[outind][foldInd][paramNr], "rb") aucRun=pickle.load(saveFile) saveFile.close() #except: # pass if(len(aucRun)>0): aucParam.append(aucRun[-1]) aucParam=np.array(aucParam) if(len(aucParam)>0): aucFold.append(aucParam) aucFold=np.array(aucFold) aucMean=np.nanmean(aucFold, axis=0) paramInd=np.nanmean(aucMean, axis=1).argmax() return (paramInd, aucMean, aucFold) def ClusterCV(csv_file): tar_id = csv_file.split('.')[0] file_name =pertarget_file + csv_file clusterSampleFilename = os.path.join(cl_file, 'cl' + tar_id + ".info") chembl_data = file_reader(file_name) target_name = chembl_data.iloc[0,0] labels = chembl_data.active_label features = batchECFP(chembl_data.canonical_smiles) clusterTab = pd.read_csv(clusterSampleFilename, header=None, index_col=False, sep=",") df = clusterTab.values folds = df[:, 0] return folds, features, labels, target_name def batchECFP(smiles, radius=3, nBits=2048): smiles = np.array(smiles) n = len(smiles) fingerprints_0 = np.zeros((n, nBits), dtype=int) fingerprints_1 =
np.zeros((n, nBits), dtype=int)
numpy.zeros
import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.path as mpath from matplotlib.patheffects import Stroke import shapely.geometry as sgeom import matplotlib.patches as mpatches import os import pandas as pd import numpy as np import gdal, osr import cartopy.crs as ccrs import cartopy.feature as cfeature from scipy.spatial import ConvexHull from pyddem.vector_tools import SRTMGL1_naming_to_latlon, latlon_to_SRTMGL1_naming import pyddem.vector_tools as ot from pybob.image_tools import create_mask_from_shapefile from pybob.GeoImg import GeoImg from cartopy.io.shapereader import Reader from cartopy.feature import ShapelyFeature from glob import glob mpl.use('Agg') plt.rcParams.update({'font.size': 5}) plt.rcParams.update({'lines.linewidth':0.35}) plt.rcParams.update({'axes.linewidth':0.35}) plt.rcParams.update({'lines.markersize':2.5}) plt.rcParams.update({'axes.labelpad':1.5}) # shp_buff = '/home/atom/data/inventory_products/RGI/00_rgi60/rgi60_buff_diss.shp' shp_buff = '/data/icesat/travail_en_cours/romain/figures/rgi60_buff_diss.shp' # in_csv='/home/atom/ongoing/work_worldwide/vol/final/dh_world_tiles_1deg.csv' in_csv = '/data/icesat/travail_en_cours/romain/results/vol_final/dh_world_tiles_1deg.csv' fig_width_inch = 3.1 fig = plt.figure(figsize=(2*fig_width_inch, 2.35 * fig_width_inch / 1.9716)) print('Plotting: '+in_csv) df=pd.read_csv(in_csv) df=df[df.category=='all'] # out_png = '/home/atom/ongoing/work_worldwide/figures/revised/ED_Figure_6.png' # out_png = '/data/icesat/travail_en_cours/romain/figures/ED_Figure_6.png' df_tmp = df[df.period=='2000-01-01_2005-01-01'] tiles = [latlon_to_SRTMGL1_naming(df_tmp.tile_latmin.values[i],df_tmp.tile_lonmin.values[i]) for i in range(len(df_tmp))] areas = df_tmp.area.tolist() # areas = [area/1000000 for area in areas] #FOR EXAMPLE: CHANGING HERE TO VALID OBS + COLORBAR dhs_1 = df[df.period=='2000-01-01_2005-01-01'].valid_obs.tolist() dhs_2 = df[df.period=='2005-01-01_2010-01-01'].valid_obs.tolist() dhs_3 = df[df.period=='2010-01-01_2015-01-01'].valid_obs.tolist() dhs_4 = df[df.period=='2015-01-01_2020-01-01'].valid_obs.tolist() errs_1 = df[df.period=='2000-01-01_2005-01-01'].err_dhdt.tolist() errs_2 = df[df.period=='2005-01-01_2010-01-01'].err_dhdt.tolist() errs_3 = df[df.period=='2010-01-01_2015-01-01'].err_dhdt.tolist() errs_4 = df[df.period=='2015-01-01_2020-01-01'].err_dhdt.tolist() areas = [area/1000000 for _, area in sorted(zip(tiles,areas))] dhs_1 = [dh for _, dh in sorted(zip(tiles,dhs_1))] dhs_2 = [dh for _, dh in sorted(zip(tiles,dhs_2))] dhs_3 = [dh for _, dh in sorted(zip(tiles,dhs_3))] dhs_4 = [dh for _, dh in sorted(zip(tiles,dhs_4))] errs_1 = [err for _, err in sorted(zip(tiles,errs_1))] errs_2 = [err for _, err in sorted(zip(tiles,errs_2))] errs_3 = [err for _, err in sorted(zip(tiles,errs_3))] errs_4 = [err for _, err in sorted(zip(tiles,errs_4))] tiles = sorted(tiles) group_by_spec = False def latlon_to_2x2_tile_naming(lat, lon): lon_sw = np.floor(lon / 2) * 2 lat_sw = np.floor(lat/2) * 2 if lat_sw >= 0: str_lat = 'N' else: str_lat = 'S' if lon_sw >= 0: str_lon = 'E' else: str_lon = 'W' tile_name_tdx = str_lat + str(int(abs(lat_sw))).zfill(2) + str_lon + str(int(abs(lon_sw))).zfill(3) return tile_name_tdx def latlon_to_spec_tile_naming(lat,lon): if np.abs(lat)>=74: lon_sw=
np.floor((lon-0.5)/2)
numpy.floor
import numpy as _numpy import cupy as _cupy from cupy_backends.cuda.libs import cublas as _cublas from cupy_backends.cuda.libs import cusolver as _cusolver from cupy.cuda import device as _device def gesv(a, b): """Solve a linear matrix equation using cusolverDn<t>getr[fs](). Computes the solution to a system of linear equation ``ax = b``. Args: a (cupy.ndarray): The matrix with dimension ``(M, M)``. b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``. Returns: cupy.ndarray: The matrix with dimension ``(M)`` or ``(M, K)``. Note: ``a`` and ``b`` will be overwritten. """ if a.ndim != 2: raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim)) if b.ndim not in (1, 2): raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim)) if a.shape[0] != a.shape[1]: raise ValueError('a must be a square matrix.') if a.shape[0] != b.shape[0]: raise ValueError('shape mismatch (a: {}, b: {}).'. format(a.shape, b.shape)) if a.dtype != b.dtype: raise TypeError('dtype mismatch (a: {}, b: {})'. format(a.dtype, b.dtype)) dtype = a.dtype if dtype == 'f': t = 's' elif dtype == 'd': t = 'd' elif dtype == 'F': t = 'c' elif dtype == 'D': t = 'z' else: raise TypeError('unsupported dtype (actual:{})'.format(a.dtype)) helper = getattr(_cusolver, t + 'getrf_bufferSize') getrf = getattr(_cusolver, t + 'getrf') getrs = getattr(_cusolver, t + 'getrs') n = b.shape[0] nrhs = b.shape[1] if b.ndim == 2 else 1 if a._f_contiguous: trans = _cublas.CUBLAS_OP_N elif a._c_contiguous: trans = _cublas.CUBLAS_OP_T else: raise ValueError('a must be F-contiguous or C-contiguous.') if not b._f_contiguous: raise ValueError('b must be F-contiguous.') handle = _device.get_cusolver_handle() dipiv = _cupy.empty(n, dtype=_numpy.int32) dinfo = _cupy.empty(1, dtype=_numpy.int32) lwork = helper(handle, n, n, a.data.ptr, n) dwork = _cupy.empty(lwork, dtype=a.dtype) # LU factrization (A = L * U) getrf(handle, n, n, a.data.ptr, n, dwork.data.ptr, dipiv.data.ptr, dinfo.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( getrf, dinfo) # Solves Ax = b getrs(handle, trans, n, nrhs, a.data.ptr, n, dipiv.data.ptr, b.data.ptr, n, dinfo.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( getrs, dinfo) def gels(a, b): """Solves over/well/under-determined linear systems. Computes least-square solution to equation ``ax = b` by QR factorization using cusolverDn<t>geqrf(). Args: a (cupy.ndarray): The matrix with dimension ``(M, N)``. b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``. Returns: cupy.ndarray: The matrix with dimension ``(N)`` or ``(N, K)``. """ if a.ndim != 2: raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim)) if b.ndim == 1: nrhs = 1 elif b.ndim == 2: nrhs = b.shape[1] else: raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim)) if a.shape[0] != b.shape[0]: raise ValueError('shape mismatch (a: {}, b: {}).'. format(a.shape, b.shape)) if a.dtype != b.dtype: raise ValueError('dtype mismatch (a: {}, b: {}).'. format(a.dtype, b.dtype)) dtype = a.dtype if dtype == 'f': t = 's' elif dtype == 'd': t = 'd' elif dtype == 'F': t = 'c' elif dtype == 'D': t = 'z' else: raise ValueError('unsupported dtype (actual: {})'.format(dtype)) geqrf_helper = getattr(_cusolver, t + 'geqrf_bufferSize') geqrf = getattr(_cusolver, t + 'geqrf') trsm = getattr(_cublas, t + 'trsm') if t in 'sd': ormqr_helper = getattr(_cusolver, t + 'ormqr_bufferSize') ormqr = getattr(_cusolver, t + 'ormqr') else: ormqr_helper = getattr(_cusolver, t + 'unmqr_bufferSize') ormqr = getattr(_cusolver, t + 'unmqr') no_trans = _cublas.CUBLAS_OP_N if dtype.char in 'fd': trans = _cublas.CUBLAS_OP_T else: trans = _cublas.CUBLAS_OP_C m, n = a.shape mn_min = min(m, n) dev_info = _cupy.empty(1, dtype=_numpy.int32) tau = _cupy.empty(mn_min, dtype=dtype) cusolver_handle = _device.get_cusolver_handle() cublas_handle = _device.get_cublas_handle() one = _numpy.array(1.0, dtype=dtype) if m >= n: # over/well-determined systems a = a.copy(order='F') b = b.copy(order='F') # geqrf (QR decomposition, A = Q * R) ws_size = geqrf_helper(cusolver_handle, m, n, a.data.ptr, m) workspace = _cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, m, n, a.data.ptr, m, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # ormqr (Computes Q^T * B) ws_size = ormqr_helper( cusolver_handle, _cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m) workspace = _cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, _cublas.CUBLAS_SIDE_LEFT, trans, m, nrhs, mn_min, a.data.ptr, m, tau.data.ptr, b.data.ptr, m, workspace.data.ptr, ws_size, dev_info.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) # trsm (Solves R * X = (Q^T * B)) trsm(cublas_handle, _cublas.CUBLAS_SIDE_LEFT, _cublas.CUBLAS_FILL_MODE_UPPER, no_trans, _cublas.CUBLAS_DIAG_NON_UNIT, mn_min, nrhs, one.ctypes.data, a.data.ptr, m, b.data.ptr, m) return b[:n] else: # under-determined systems a = a.conj().T.copy(order='F') bb = b out_shape = (n,) if b.ndim == 1 else (n, nrhs) b = _cupy.zeros(out_shape, dtype=dtype, order='F') b[:m] = bb # geqrf (QR decomposition, A^T = Q * R) ws_size = geqrf_helper(cusolver_handle, n, m, a.data.ptr, n) workspace = _cupy.empty(ws_size, dtype=dtype) geqrf(cusolver_handle, n, m, a.data.ptr, n, tau.data.ptr, workspace.data.ptr, ws_size, dev_info.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( geqrf, dev_info) # trsm (Solves R^T * Z = B) trsm(cublas_handle, _cublas.CUBLAS_SIDE_LEFT, _cublas.CUBLAS_FILL_MODE_UPPER, trans, _cublas.CUBLAS_DIAG_NON_UNIT, m, nrhs, one.ctypes.data, a.data.ptr, n, b.data.ptr, n) # ormqr (Computes Q * Z) ws_size = ormqr_helper( cusolver_handle, _cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n) workspace = _cupy.empty(ws_size, dtype=dtype) ormqr(cusolver_handle, _cublas.CUBLAS_SIDE_LEFT, no_trans, n, nrhs, mn_min, a.data.ptr, n, tau.data.ptr, b.data.ptr, n, workspace.data.ptr, ws_size, dev_info.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( ormqr, dev_info) return b def _batched_posv(a, b): if not _cupy.cusolver.check_availability('potrsBatched'): raise RuntimeError('potrsBatched is not available') dtype = _numpy.promote_types(a.dtype, b.dtype) dtype = _numpy.promote_types(dtype, 'f') if dtype == 'f': potrfBatched = _cusolver.spotrfBatched potrsBatched = _cusolver.spotrsBatched elif dtype == 'd': potrfBatched = _cusolver.dpotrfBatched potrsBatched = _cusolver.dpotrsBatched elif dtype == 'F': potrfBatched = _cusolver.cpotrfBatched potrsBatched = _cusolver.cpotrsBatched elif dtype == 'D': potrfBatched = _cusolver.zpotrfBatched potrsBatched = _cusolver.zpotrsBatched else: msg = ('dtype must be float32, float64, complex64 or complex128' ' (actual: {})'.format(a.dtype)) raise ValueError(msg) a = a.astype(dtype, order='C', copy=True) ap = _cupy._core._mat_ptrs(a) lda, n = a.shape[-2:] batch_size = int(
_numpy.prod(a.shape[:-2])
numpy.prod
# # Created by: <NAME>, September 2002 # import sys import subprocess import time from functools import reduce from numpy.testing import (assert_equal, assert_array_almost_equal, assert_, assert_allclose, assert_almost_equal, assert_array_equal) import pytest from pytest import raises as assert_raises import numpy as np from numpy import (eye, ones, zeros, zeros_like, triu, tril, tril_indices, triu_indices) from numpy.random import rand, randint, seed from scipy.linalg import (_flapack as flapack, lapack, inv, svd, cholesky, solve, ldl, norm, block_diag, qr, eigh) from scipy.linalg.lapack import _compute_lwork from scipy.stats import ortho_group, unitary_group import scipy.sparse as sps try: from scipy.linalg import _clapack as clapack except ImportError: clapack = None from scipy.linalg.lapack import get_lapack_funcs from scipy.linalg.blas import get_blas_funcs REAL_DTYPES = [np.float32, np.float64] COMPLEX_DTYPES = [np.complex64, np.complex128] DTYPES = REAL_DTYPES + COMPLEX_DTYPES def generate_random_dtype_array(shape, dtype): # generates a random matrix of desired data type of shape if dtype in COMPLEX_DTYPES: return (np.random.rand(*shape) + np.random.rand(*shape)*1.0j).astype(dtype) return np.random.rand(*shape).astype(dtype) def test_lapack_documented(): """Test that all entries are in the doc.""" if lapack.__doc__ is None: # just in case there is a python -OO pytest.skip('lapack.__doc__ is None') names = set(lapack.__doc__.split()) ignore_list = set([ 'absolute_import', 'clapack', 'division', 'find_best_lapack_type', 'flapack', 'print_function', 'HAS_ILP64', ]) missing = list() for name in dir(lapack): if (not name.startswith('_') and name not in ignore_list and name not in names): missing.append(name) assert missing == [], 'Name(s) missing from lapack.__doc__ or ignore_list' class TestFlapackSimple(object): def test_gebal(self): a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] a1 = [[1, 0, 0, 3e-4], [4, 0, 0, 2e-3], [7, 1, 0, 0], [0, 1, 0, 0]] for p in 'sdzc': f = getattr(flapack, p+'gebal', None) if f is None: continue ba, lo, hi, pivscale, info = f(a) assert_(not info, repr(info)) assert_array_almost_equal(ba, a) assert_equal((lo, hi), (0, len(a[0])-1)) assert_array_almost_equal(pivscale, np.ones(len(a))) ba, lo, hi, pivscale, info = f(a1, permute=1, scale=1) assert_(not info, repr(info)) # print(a1) # print(ba, lo, hi, pivscale) def test_gehrd(self): a = [[-149, -50, -154], [537, 180, 546], [-27, -9, -25]] for p in 'd': f = getattr(flapack, p+'gehrd', None) if f is None: continue ht, tau, info = f(a) assert_(not info, repr(info)) def test_trsyl(self): a = np.array([[1, 2], [0, 4]]) b = np.array([[5, 6], [0, 8]]) c = np.array([[9, 10], [11, 12]]) trans = 'T' # Test single and double implementations, including most # of the options for dtype in 'fdFD': a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype) trsyl, = get_lapack_funcs(('trsyl',), (a1,)) if dtype.isupper(): # is complex dtype a1[0] += 1j trans = 'C' x, scale, info = trsyl(a1, b1, c1) assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1), scale * c1) x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans) assert_array_almost_equal( np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T), scale * c1, decimal=4) x, scale, info = trsyl(a1, b1, c1, isgn=-1) assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1), scale * c1, decimal=4) def test_lange(self): a = np.array([ [-149, -50, -154], [537, 180, 546], [-27, -9, -25]]) for dtype in 'fdFD': for norm_str in 'Mm1OoIiFfEe': a1 = a.astype(dtype) if dtype.isupper(): # is complex dtype a1[0, 0] += 1j lange, = get_lapack_funcs(('lange',), (a1,)) value = lange(norm_str, a1) if norm_str in 'FfEe': if dtype in 'Ff': decimal = 3 else: decimal = 7 ref = np.sqrt(np.sum(np.square(np.abs(a1)))) assert_almost_equal(value, ref, decimal) else: if norm_str in 'Mm': ref = np.max(np.abs(a1)) elif norm_str in '1Oo': ref = np.max(np.sum(np.abs(a1), axis=0)) elif norm_str in 'Ii': ref = np.max(np.sum(np.abs(a1), axis=1)) assert_equal(value, ref) class TestLapack(object): def test_flapack(self): if hasattr(flapack, 'empty_module'): # flapack module is empty pass def test_clapack(self): if hasattr(clapack, 'empty_module'): # clapack module is empty pass class TestLeastSquaresSolvers(object): def test_gels(self): seed(1234) # Test fat/tall matrix argument handling - gh-issue #8329 for ind, dtype in enumerate(DTYPES): m = 10 n = 20 nrhs = 1 a1 = rand(m, n).astype(dtype) b1 = rand(n).astype(dtype) gls, glslw = get_lapack_funcs(('gels', 'gels_lwork'), dtype=dtype) # Request of sizes lwork = _compute_lwork(glslw, m, n, nrhs) _, _, info = gls(a1, b1, lwork=lwork) assert_(info >= 0) _, _, info = gls(a1, b1, trans='TTCC'[ind], lwork=lwork) assert_(info >= 0) for dtype in REAL_DTYPES: a1 = np.array([[1.0, 2.0], [4.0, 5.0], [7.0, 8.0]], dtype=dtype) b1 = np.array([16.0, 17.0, 20.0], dtype=dtype) gels, gels_lwork, geqrf = get_lapack_funcs( ('gels', 'gels_lwork', 'geqrf'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes lwork = _compute_lwork(gels_lwork, m, n, nrhs) lqr, x, info = gels(a1, b1, lwork=lwork) assert_allclose(x[:-1], np.array([-14.333333333333323, 14.999999999999991], dtype=dtype), rtol=25*np.finfo(dtype).eps) lqr_truth, _, _, _ = geqrf(a1) assert_array_equal(lqr, lqr_truth) for dtype in COMPLEX_DTYPES: a1 = np.array([[1.0+4.0j, 2.0], [4.0+0.5j, 5.0-3.0j], [7.0-2.0j, 8.0+0.7j]], dtype=dtype) b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype) gels, gels_lwork, geqrf = get_lapack_funcs( ('gels', 'gels_lwork', 'geqrf'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes lwork = _compute_lwork(gels_lwork, m, n, nrhs) lqr, x, info = gels(a1, b1, lwork=lwork) assert_allclose(x[:-1], np.array([1.161753632288328-1.901075709391912j, 1.735882340522193+1.521240901196909j], dtype=dtype), rtol=25*np.finfo(dtype).eps) lqr_truth, _, _, _ = geqrf(a1) assert_array_equal(lqr, lqr_truth) def test_gelsd(self): for dtype in REAL_DTYPES: a1 = np.array([[1.0, 2.0], [4.0, 5.0], [7.0, 8.0]], dtype=dtype) b1 = np.array([16.0, 17.0, 20.0], dtype=dtype) gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, iwork, info = gelsd_lwork(m, n, nrhs, -1) lwork = int(np.real(work)) iwork_size = iwork x, s, rank, info = gelsd(a1, b1, lwork, iwork_size, -1, False, False) assert_allclose(x[:-1], np.array([-14.333333333333323, 14.999999999999991], dtype=dtype), rtol=25*np.finfo(dtype).eps) assert_allclose(s, np.array([12.596017180511966, 0.583396253199685], dtype=dtype), rtol=25*np.finfo(dtype).eps) for dtype in COMPLEX_DTYPES: a1 = np.array([[1.0+4.0j, 2.0], [4.0+0.5j, 5.0-3.0j], [7.0-2.0j, 8.0+0.7j]], dtype=dtype) b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype) gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, rwork, iwork, info = gelsd_lwork(m, n, nrhs, -1) lwork = int(np.real(work)) rwork_size = int(rwork) iwork_size = iwork x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size, -1, False, False) assert_allclose(x[:-1], np.array([1.161753632288328-1.901075709391912j, 1.735882340522193+1.521240901196909j], dtype=dtype), rtol=25*np.finfo(dtype).eps) assert_allclose(s, np.array([13.035514762572043, 4.337666985231382], dtype=dtype), rtol=25*np.finfo(dtype).eps) def test_gelss(self): for dtype in REAL_DTYPES: a1 = np.array([[1.0, 2.0], [4.0, 5.0], [7.0, 8.0]], dtype=dtype) b1 = np.array([16.0, 17.0, 20.0], dtype=dtype) gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, info = gelss_lwork(m, n, nrhs, -1) lwork = int(np.real(work)) v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False) assert_allclose(x[:-1], np.array([-14.333333333333323, 14.999999999999991], dtype=dtype), rtol=25*np.finfo(dtype).eps) assert_allclose(s, np.array([12.596017180511966, 0.583396253199685], dtype=dtype), rtol=25*np.finfo(dtype).eps) for dtype in COMPLEX_DTYPES: a1 = np.array([[1.0+4.0j, 2.0], [4.0+0.5j, 5.0-3.0j], [7.0-2.0j, 8.0+0.7j]], dtype=dtype) b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype) gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, info = gelss_lwork(m, n, nrhs, -1) lwork = int(np.real(work)) v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False) assert_allclose(x[:-1], np.array([1.161753632288328-1.901075709391912j, 1.735882340522193+1.521240901196909j], dtype=dtype), rtol=25*np.finfo(dtype).eps) assert_allclose(s, np.array([13.035514762572043, 4.337666985231382], dtype=dtype), rtol=25*np.finfo(dtype).eps) def test_gelsy(self): for dtype in REAL_DTYPES: a1 = np.array([[1.0, 2.0], [4.0, 5.0], [7.0, 8.0]], dtype=dtype) b1 = np.array([16.0, 17.0, 20.0], dtype=dtype) gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps) lwork = int(np.real(work)) jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps, lwork, False, False) assert_allclose(x[:-1], np.array([-14.333333333333323, 14.999999999999991], dtype=dtype), rtol=25*np.finfo(dtype).eps) for dtype in COMPLEX_DTYPES: a1 = np.array([[1.0+4.0j, 2.0], [4.0+0.5j, 5.0-3.0j], [7.0-2.0j, 8.0+0.7j]], dtype=dtype) b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype) gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'), (a1, b1)) m, n = a1.shape if len(b1.shape) == 2: nrhs = b1.shape[1] else: nrhs = 1 # Request of sizes work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps) lwork = int(np.real(work)) jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps, lwork, False, False) assert_allclose(x[:-1], np.array([1.161753632288328-1.901075709391912j, 1.735882340522193+1.521240901196909j], dtype=dtype), rtol=25*np.finfo(dtype).eps) @pytest.mark.parametrize('dtype', DTYPES) @pytest.mark.parametrize('shape', [(3, 4), (5, 2), (2**18, 2**18)]) def test_geqrf_lwork(dtype, shape): geqrf_lwork = get_lapack_funcs(('geqrf_lwork'), dtype=dtype) m, n = shape lwork, info = geqrf_lwork(m=m, n=n) assert_equal(info, 0) class TestRegression(object): def test_ticket_1645(self): # Check that RQ routines have correct lwork for dtype in DTYPES: a = np.zeros((300, 2), dtype=dtype) gerqf, = get_lapack_funcs(['gerqf'], [a]) assert_raises(Exception, gerqf, a, lwork=2) rq, tau, work, info = gerqf(a) if dtype in REAL_DTYPES: orgrq, = get_lapack_funcs(['orgrq'], [a]) assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1) orgrq(rq[-2:], tau, lwork=2) elif dtype in COMPLEX_DTYPES: ungrq, = get_lapack_funcs(['ungrq'], [a]) assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1) ungrq(rq[-2:], tau, lwork=2) class TestDpotr(object): def test_gh_2691(self): # 'lower' argument of dportf/dpotri for lower in [True, False]: for clean in [True, False]: np.random.seed(42) x = np.random.normal(size=(3, 3)) a = x.dot(x.T) dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, )) c, info = dpotrf(a, lower, clean=clean) dpt = dpotri(c, lower)[0] if lower: assert_allclose(np.tril(dpt), np.tril(inv(a))) else: assert_allclose(np.triu(dpt), np.triu(inv(a))) class TestDlasd4(object): def test_sing_val_update(self): sigmas = np.array([4., 3., 2., 0]) m_vec = np.array([3.12, 5.7, -4.8, -2.2]) M = np.hstack((np.vstack((np.diag(sigmas[0:-1]), np.zeros((1, len(m_vec) - 1)))), m_vec[:, np.newaxis])) SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False, check_finite=False) it_len = len(sigmas) sgm = np.concatenate((sigmas[::-1], [sigmas[0] + it_len*norm(m_vec)])) mvc = np.concatenate((m_vec[::-1], (0,))) lasd4 = get_lapack_funcs('lasd4', (sigmas,)) roots = [] for i in range(0, it_len): res = lasd4(i, sgm, mvc) roots.append(res[1]) assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \ the singular value %i" % i) roots = np.array(roots)[::-1] assert_((not np.any(np.isnan(roots)), "There are NaN roots")) assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps, rtol=100*np.finfo(np.float64).eps) class TestTbtrs(object): @pytest.mark.parametrize('dtype', DTYPES) def test_nag_example_f07vef_f07vsf(self, dtype): """Test real (f07vef) and complex (f07vsf) examples from NAG Examples available from: * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vef.html * https://www.nag.com/numeric/fl/nagdoc_latest/html/f07/f07vsf.html """ if dtype in REAL_DTYPES: ab = np.array([[-4.16, 4.78, 6.32, 0.16], [-2.25, 5.86, -4.82, 0]], dtype=dtype) b = np.array([[-16.64, -4.16], [-13.78, -16.59], [13.10, -4.94], [-14.14, -9.96]], dtype=dtype) x_out = np.array([[4, 1], [-1, -3], [3, 2], [2, -2]], dtype=dtype) elif dtype in COMPLEX_DTYPES: ab = np.array([[-1.94+4.43j, 4.12-4.27j, 0.43-2.66j, 0.44+0.1j], [-3.39+3.44j, -1.84+5.52j, 1.74 - 0.04j, 0], [1.62+3.68j, -2.77-1.93j, 0, 0]], dtype=dtype) b = np.array([[-8.86 - 3.88j, -24.09 - 5.27j], [-15.57 - 23.41j, -57.97 + 8.14j], [-7.63 + 22.78j, 19.09 - 29.51j], [-14.74 - 2.40j, 19.17 + 21.33j]], dtype=dtype) x_out = np.array([[2j, 1 + 5j], [1 - 3j, -7 - 2j], [-4.001887 - 4.988417j, 3.026830 + 4.003182j], [1.996158 - 1.045105j, -6.103357 - 8.986653j]], dtype=dtype) else: raise ValueError(f"Datatype {dtype} not understood.") tbtrs = get_lapack_funcs(('tbtrs'), dtype=dtype) x, info = tbtrs(ab=ab, b=b, uplo='L') assert_equal(info, 0) assert_allclose(x, x_out, rtol=0, atol=1e-5) @pytest.mark.parametrize('dtype,trans', [(dtype, trans) for dtype in DTYPES for trans in ['N', 'T', 'C'] if not (trans == 'C' and dtype in REAL_DTYPES)]) @pytest.mark.parametrize('uplo', ['U', 'L']) @pytest.mark.parametrize('diag', ['N', 'U']) def test_random_matrices(self, dtype, trans, uplo, diag): seed(1724) # n, nrhs, kd are used to specify A and b. # A is of shape n x n with kd super/sub-diagonals # b is of shape n x nrhs matrix n, nrhs, kd = 4, 3, 2 tbtrs = get_lapack_funcs('tbtrs', dtype=dtype) is_upper = (uplo == 'U') ku = kd * is_upper kl = kd - ku # Construct the diagonal and kd super/sub diagonals of A with # the corresponding offsets. band_offsets = range(ku, -kl - 1, -1) band_widths = [n - abs(x) for x in band_offsets] bands = [generate_random_dtype_array((width,), dtype) for width in band_widths] if diag == 'U': # A must be unit triangular bands[ku] = np.ones(n, dtype=dtype) # Construct the diagonal banded matrix A from the bands and offsets. a = sps.diags(bands, band_offsets, format='dia') # Convert A into banded storage form ab = np.zeros((kd + 1, n), dtype) for row, k in enumerate(band_offsets): ab[row, max(k, 0):min(n+k, n)] = a.diagonal(k) # The RHS values. b = generate_random_dtype_array((n, nrhs), dtype) x, info = tbtrs(ab=ab, b=b, uplo=uplo, trans=trans, diag=diag) assert_equal(info, 0) if trans == 'N': assert_allclose(a @ x, b, rtol=5e-5) elif trans == 'T': assert_allclose(a.T @ x, b, rtol=5e-5) elif trans == 'C': assert_allclose(a.H @ x, b, rtol=5e-5) else: raise ValueError('Invalid trans argument') @pytest.mark.parametrize('uplo,trans,diag', [['U', 'N', 'Invalid'], ['U', 'Invalid', 'N'], ['Invalid', 'N', 'N']]) def test_invalid_argument_raises_exception(self, uplo, trans, diag): """Test if invalid values of uplo, trans and diag raise exceptions""" # Argument checks occur independently of used datatype. # This mean we must not parameterize all available datatypes. tbtrs = get_lapack_funcs('tbtrs', dtype=np.float64) ab = rand(4, 2) b = rand(2, 4) assert_raises(Exception, tbtrs, ab, b, uplo, trans, diag) def test_zero_element_in_diagonal(self): """Test if a matrix with a zero diagonal element is singular If the i-th diagonal of A is zero, ?tbtrs should return `i` in `info` indicating the provided matrix is singular. Note that ?tbtrs requires the matrix A to be stored in banded form. In this form the diagonal corresponds to the last row.""" ab = np.ones((3, 4), dtype=float) b = np.ones(4, dtype=float) tbtrs = get_lapack_funcs('tbtrs', dtype=float) ab[-1, 3] = 0 _, info = tbtrs(ab=ab, b=b, uplo='U') assert_equal(info, 4) @pytest.mark.parametrize('ldab,n,ldb,nrhs', [ (5, 5, 0, 5), (5, 5, 3, 5) ]) def test_invalid_matrix_shapes(self, ldab, n, ldb, nrhs): """Test ?tbtrs fails correctly if shapes are invalid.""" ab = np.ones((ldab, n), dtype=float) b = np.ones((ldb, nrhs), dtype=float) tbtrs = get_lapack_funcs('tbtrs', dtype=float) assert_raises(Exception, tbtrs, ab, b) def test_lartg(): for dtype in 'fdFD': lartg = get_lapack_funcs('lartg', dtype=dtype) f = np.array(3, dtype) g = np.array(4, dtype) if np.iscomplexobj(g): g *= 1j cs, sn, r = lartg(f, g) assert_allclose(cs, 3.0/5.0) assert_allclose(r, 5.0) if np.iscomplexobj(g): assert_allclose(sn, -4.0j/5.0) assert_(type(r) == complex) assert_(type(cs) == float) else: assert_allclose(sn, 4.0/5.0) def test_rot(): # srot, drot from blas and crot and zrot from lapack. for dtype in 'fdFD': c = 0.6 s = 0.8 u = np.full(4, 3, dtype) v = np.full(4, 4, dtype) atol = 10**-(np.finfo(dtype).precision-1) if dtype in 'fd': rot = get_blas_funcs('rot', dtype=dtype) f = 4 else: rot = get_lapack_funcs('rot', dtype=dtype) s *= -1j v *= 1j f = 4j assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5], [0, 0, 0, 0]], atol=atol) assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3], [0, 0, f, f]], atol=atol) assert_allclose(rot(u, v, c, s, offx=2, offy=2), [[3, 3, 5, 5], [f, f, 0, 0]], atol=atol) assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2), [[5, 3, 5, 3], [f, f, 0, 0]], atol=atol) assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2), [[3, 3, 5, 5], [0, f, 0, f]], atol=atol) assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1), [[3, 3, 5, 3], [f, f, 0, f]], atol=atol) assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2), [[5, 3, 5, 3], [0, f, 0, f]], atol=atol) a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1) assert_(a is u) assert_(b is v) assert_allclose(a, [5, 5, 5, 5], atol=atol) assert_allclose(b, [0, 0, 0, 0], atol=atol) def test_larfg_larf(): np.random.seed(1234) a0 = np.random.random((4, 4)) a0 = a0.T.dot(a0) a0j = np.random.random((4, 4)) + 1j*np.random.random((4, 4)) a0j = a0j.T.conj().dot(a0j) # our test here will be to do one step of reducing a hermetian matrix to # tridiagonal form using householder transforms. for dtype in 'fdFD': larfg, larf = get_lapack_funcs(['larfg', 'larf'], dtype=dtype) if dtype in 'FD': a = a0j.copy() else: a = a0.copy() # generate a householder transform to clear a[2:,0] alpha, x, tau = larfg(a.shape[0]-1, a[1, 0], a[2:, 0]) # create expected output expected = np.zeros_like(a[:, 0]) expected[0] = a[0, 0] expected[1] = alpha # assemble householder vector v = np.zeros_like(a[1:, 0]) v[0] = 1.0 v[1:] = x # apply transform from the left a[1:, :] = larf(v, tau.conjugate(), a[1:, :], np.zeros(a.shape[1])) # apply transform from the right a[:, 1:] = larf(v, tau, a[:, 1:], np.zeros(a.shape[0]), side='R') assert_allclose(a[:, 0], expected, atol=1e-5) assert_allclose(a[0, :], expected, atol=1e-5) @pytest.mark.xslow def test_sgesdd_lwork_bug_workaround(): # Test that SGESDD lwork is sufficiently large for LAPACK. # # This checks that workaround around an apparent LAPACK bug # actually works. cf. gh-5401 # # xslow: requires 1GB+ of memory p = subprocess.Popen([sys.executable, '-c', 'import numpy as np; ' 'from scipy.linalg import svd; ' 'a = np.zeros([9537, 9537], dtype=np.float32); ' 'svd(a)'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # Check if it an error occurred within 5 sec; the computation can # take substantially longer, and we will not wait for it to finish for j in range(50): time.sleep(0.1) if p.poll() is not None: returncode = p.returncode break else: # Didn't exit in time -- probably entered computation. The # error is raised before entering computation, so things are # probably OK. returncode = 0 p.terminate() assert_equal(returncode, 0, "Code apparently failed: " + p.stdout.read().decode()) class TestSytrd(object): @pytest.mark.parametrize('dtype', REAL_DTYPES) def test_sytrd_with_zero_dim_array(self, dtype): # Assert that a 0x0 matrix raises an error A = np.zeros((0, 0), dtype=dtype) sytrd = get_lapack_funcs('sytrd', (A,)) assert_raises(ValueError, sytrd, A) @pytest.mark.parametrize('dtype', REAL_DTYPES) @pytest.mark.parametrize('n', (1, 3)) def test_sytrd(self, dtype, n): A = np.zeros((n, n), dtype=dtype) sytrd, sytrd_lwork = \ get_lapack_funcs(('sytrd', 'sytrd_lwork'), (A,)) # some upper triangular array A[np.triu_indices_from(A)] = \ np.arange(1, n*(n+1)//2+1, dtype=dtype) # query lwork lwork, info = sytrd_lwork(n) assert_equal(info, 0) # check lower=1 behavior (shouldn't do much since the matrix is # upper triangular) data, d, e, tau, info = sytrd(A, lower=1, lwork=lwork) assert_equal(info, 0) assert_allclose(data, A, atol=5*np.finfo(dtype).eps, rtol=1.0) assert_allclose(d, np.diag(A)) assert_allclose(e, 0.0) assert_allclose(tau, 0.0) # and now for the proper test (lower=0 is the default) data, d, e, tau, info = sytrd(A, lwork=lwork) assert_equal(info, 0) # assert Q^T*A*Q = tridiag(e, d, e) # build tridiagonal matrix T = np.zeros_like(A, dtype=dtype) k = np.arange(A.shape[0]) T[k, k] = d k2 = np.arange(A.shape[0]-1) T[k2+1, k2] = e T[k2, k2+1] = e # build Q Q = np.eye(n, n, dtype=dtype) for i in range(n-1): v = np.zeros(n, dtype=dtype) v[:i] = data[:i, i+1] v[i] = 1.0 H = np.eye(n, n, dtype=dtype) - tau[i] * np.outer(v, v) Q = np.dot(H, Q) # Make matrix fully symmetric i_lower = np.tril_indices(n, -1) A[i_lower] = A.T[i_lower] QTAQ = np.dot(Q.T, np.dot(A, Q)) # disable rtol here since some values in QTAQ and T are very close # to 0. assert_allclose(QTAQ, T, atol=5*np.finfo(dtype).eps, rtol=1.0) class TestHetrd(object): @pytest.mark.parametrize('complex_dtype', COMPLEX_DTYPES) def test_hetrd_with_zero_dim_array(self, complex_dtype): # Assert that a 0x0 matrix raises an error A = np.zeros((0, 0), dtype=complex_dtype) hetrd = get_lapack_funcs('hetrd', (A,)) assert_raises(ValueError, hetrd, A) @pytest.mark.parametrize('real_dtype,complex_dtype', zip(REAL_DTYPES, COMPLEX_DTYPES)) @pytest.mark.parametrize('n', (1, 3)) def test_hetrd(self, n, real_dtype, complex_dtype): A = np.zeros((n, n), dtype=complex_dtype) hetrd, hetrd_lwork = \ get_lapack_funcs(('hetrd', 'hetrd_lwork'), (A,)) # some upper triangular array A[np.triu_indices_from(A)] = ( np.arange(1, n*(n+1)//2+1, dtype=real_dtype) + 1j * np.arange(1, n*(n+1)//2+1, dtype=real_dtype) ) np.fill_diagonal(A, np.real(np.diag(A))) # test query lwork for x in [0, 1]: _, info = hetrd_lwork(n, lower=x) assert_equal(info, 0) # lwork returns complex which segfaults hetrd call (gh-10388) # use the safe and recommended option lwork = _compute_lwork(hetrd_lwork, n) # check lower=1 behavior (shouldn't do much since the matrix is # upper triangular) data, d, e, tau, info = hetrd(A, lower=1, lwork=lwork) assert_equal(info, 0) assert_allclose(data, A, atol=5*np.finfo(real_dtype).eps, rtol=1.0) assert_allclose(d, np.real(
np.diag(A)
numpy.diag
import numpy as np import os from PySide import QtGui, QtCore import sharppy.sharptab as tab import sharppy.databases.inset_data as inset_data from sharppy.sharptab.constants import * import platform ## routine written by <NAME> and <NAME> ## <EMAIL> and <EMAIL> __all__ = ['backgroundSTP', 'plotSTP'] class backgroundSTP(QtGui.QFrame): ''' Draw the background frame and lines for the STP plot frame ''' def __init__(self): super(backgroundSTP, self).__init__() self.initUI() def initUI(self): ## window configuration settings, ## sich as padding, width, height, and ## min/max plot axes self.setStyleSheet("QFrame {" " background-color: rgb(0, 0, 0);" " border-width: 1px;" " border-style: solid;" " border-color: #3399CC;}") self.lpad = 0.; self.rpad = 0. self.tpad = 15.; self.bpad = 15. self.wid = self.size().width() - self.rpad self.hgt = self.size().height() - self.bpad self.tlx = self.rpad; self.tly = self.tpad self.brx = self.wid; self.bry = self.hgt self.stpmax = 11.; self.stpmin = 0. fsize1 =
np.floor(.08 * self.hgt)
numpy.floor
import matplotlib from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle from pmdarima import auto_arima from scipy.signal import filtfilt from scipy.stats import gaussian_kde from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import confusion_matrix import sys from tbats import TBATS def feature_distributions(data, features, value_col, ncols = 3, highlighting = None, edge_values = None, xmin = None, xmax = None, n_bins = 100, n_grid = 500, min_group_size = 100, max_group_spike = 1.2, log_y = True, w_scale = 5, h_scale = 5, pad = 0.4, w_pad = 2.0, h_pad = 2.0, anchor_legend = None): """ Plot continuous feature distributions as split by secondary category. If there are enough sample of a type in the group of secondary category, the KDE will be plotted. Otherwise, the histogram will be plotted. Options to add categorical highlights binning the continuous value (not recommended if plotting histograms) and/or marked edge labels. Arguments: data (pandas dataframe): pandas dataframe features (list of strings): list of columns in date to plot (each as separate axis), split based on values in column value_col (string): column name for continuous variable against which to plot xmin (float): minimum value to plot xmax (float): maximum value to plot n_bins (int): number of bins for histogram n_grid (int): resolution of KDE highlighting (list of tuples: (float, float, color, string)): lower bound, upper bound, color, and label for highlighted ranges of continuous variable edge_values (list of tuples: (float, color, string)): x-location, color, and label for a vertical line marking a specific value of the continuous variable n_cols (int): number of columns for figure min_group_size (int): number of samples for a given group in order to plot as KDE max_group_spike (float): if KDE is unreasonably spiked (i.e. no distribution), plot histogram instead log_y (bool): set y-scale to be logarithmic w_scale (float): aspect ratio of axes h_scale (float): aspect ratio of axes pad (float): padding of subplots w_pad (float): padding of subplots h_pad(float): padding of subplots anchor_legend (tuple of floats): x,y coordinates to pin legend to axis Returns: fig, ax: figure and axis handles """ nrows = int(np.ceil(len(features)/float(ncols))) fig, ax = plt.subplots(nrows = nrows, ncols = ncols, sharey = False, sharex = False, figsize = (w_scale*ncols,h_scale*nrows)) ax= ax.reshape(-1) fig.tight_layout(pad=pad, w_pad=w_pad, h_pad=h_pad) for iax, f in enumerate(features): feature_data = data[[f, value_col]].dropna(subset = [value_col]) if xmin is None: xmin = feature_data[value_col].min() if xmax is None: xmax = feature_data[value_col].max() kde_x = np.linspace(xmin,xmax,n_grid) bin_width = (xmax-xmin)/n_bins bins_x = np.arange(xmin-bin_width,xmax+bin_width, bin_width)+bin_width/2. grouped_feature = feature_data.groupby(f) for n, g in grouped_feature: g = g[value_col] if len(g.unique())>1: kde_y = gaussian_kde(g)(kde_x) if (np.max(kde_y) < max_group_spike)&(g.size > min_group_size): ax[iax].plot(kde_x, kde_y, label = '%s: %d' %(n, g.size)) else: g.plot.hist(ax = ax[iax], bins = bins_x, align = 'mid', alpha = 0.25, density=True, label = '%s: %d' %(n, g.size)) else: g.plot.hist(ax = ax[iax], bins = bins_x, align = 'mid', alpha = 0.25, density=True, label = '%s: %d' %(n, g.size)) ax[iax].set_xlabel(value_col) if log_y: ax[iax].set_yscale('log') ax[iax].set_ylabel('log PDF') else: ax[iax].set_ylabel('PDF') if highlighting is not None: for lb, rb, c, label in highlighting: ax[iax].axvspan(lb, rb, alpha=0.25, color=c, label = label) if edge_values is not None: for v, c, label in edge_values: ax[iax].axvline(x=v, color=c, linewidth = 3., linestyle = '--', label = label) ax[iax].legend(title = f) if anchor_legend is not None: ax[iax].legend(bbox_to_anchor= anchor_legend) return fig, ax def jointplot(x, y, c = 'k', cmap = 'gray_r', xmin = None, xmax = None, xdelta = None, ymin = None, ymax = None, ydelta = None, logscale = False, gridsize = 50, bins = None, alpha = 0.2, joint_xlabel = None, joint_ylabel = None, marginal_xlabel = None, marginal_ylabel = None, fig_axes = None, joint_type = 'hex', scatter_label = '', highlighting = None, edge_values = None, anchor_legend = None): """ Joint plot continuous feature distributions. Option to plot as hexbinned or scatter joint distribution Option to add categorical highlights binning the continuous value (not recommended if plotting histograms) and/or marked edge labels. Arguments: x (pandas series, floats): x-axis continuous values y (pandas series, floats): y-axis continuous values c (color identifier): c_map (colormap identifier): alpha (float): transparency of plots xmin (float): minimum value to plot on x axis xmax (float): maximum value to plot on x axis xdelta (float): padding around xmin/xmax values for easier viewing ymin (float): minimum value to plot on y axis ymax (float): maximum value to plot on y axis ydelta (float): padding around xmin/xmax values for easier viewing bins (int): number of bins for histogram gridsize (int): resolution of hexbin highlighting (list of tuples: (float, float, color, string)): lower bound, upper bound, color, and label for highlighted ranges of continuous variable edge_values (list of tuples: (float, color, string)): x-location, color, and label for a vertical line marking a specific value of the continuous variable logscale (bool): set scales to be logarithmic anchor_legend (tuple of floats): x,y coordinates to pin legend to axis joint_xlabel (string): label for x axis of joint plot joint_ylabel (string): label for x axis of joint plot marginal_xlabel (string): label for y axis of vertical marginal plot marginal_ylabel (string): label for y axis of horizontal marginal plot fig_axes (tuple): tuple of returned values from this function; for plotting twice in same figure joint_type (string): 'hex' or 'scatter' scatter_label (string): legend value for scatter plot (if plotting twice in same figure) Returns: fig, ax_joint, ax_marg_x, ax_marg_y : handles to figure and each of the three subplot axes """ if fig_axes == None: fig = plt.figure() gs = GridSpec(4,4) ax_joint = fig.add_subplot(gs[1:4,0:3]) ax_marg_x = fig.add_subplot(gs[0,0:3]) ax_marg_y = fig.add_subplot(gs[1:4,3]) else: fig,ax_joint,ax_marg_x,ax_marg_y = fig_axes if joint_type == 'hex': ax_joint.hexbin(x,y, cmap = cmap, bins= 'log', gridsize = gridsize ) elif joint_type == 'scatter': ax_joint.scatter(x,y, color = c, alpha= alpha, label = scatter_label) if xmin is None: xmin = min(x) if xmax is None: xmax = max(x) if ymin is None: ymin = min(y) if ymax is None: ymax = max(y) if bins: ax_marg_x.hist(x, density = False, color = c, alpha = alpha, bins = bins[0], align = 'mid') ax_marg_y.hist(y, density = False, color = c, alpha = alpha, bins = bins[1], align = 'mid', orientation="horizontal") else: ax_marg_x.hist(x, density = False, color = c, alpha = alpha, range = (xmin, xmax), align = 'mid') ax_marg_y.hist(y, density = False, color = c, alpha = alpha, range = (ymin, ymax), align = 'mid', orientation="horizontal") if logscale: ax_joint.set_xscale('log') ax_joint.set_yscale('log') ax_marg_x.set_xscale('log') ax_marg_x.set_yscale('log') ax_marg_y.set_xscale('log') ax_marg_y.set_yscale('log') else: if xdelta is None: xdelta = (xmax - xmin)/100. if ydelta is None: ydelta = (ymax - ymin)/100. ax_joint.axis([xmin-xdelta, xmax+xdelta, ymin-ydelta, ymax+ydelta]) ax_marg_x.set_xlim([xmin-xdelta, xmax+xdelta]) ax_marg_y.set_ylim([ymin-ydelta, ymax+ydelta]) # Turn off tick labels on marginals plt.setp(ax_marg_x.get_xticklabels(), visible=False) plt.setp(ax_marg_y.get_yticklabels(), visible=False) # Set labels on joint if joint_xlabel is None: try: joint_xlabel = x.name except: joint_xlabel = '' if joint_ylabel is None: try: joint_ylabel = y.name except: joint_ylabel = '' ax_joint.set_xlabel(joint_xlabel) ax_joint.set_ylabel(joint_ylabel) # Set labels on marginals if marginal_xlabel is None: marginal_xlabel = 'Count' if marginal_ylabel is None: marginal_ylabel = 'Count' ax_marg_y.set_xlabel(marginal_xlabel) ax_marg_x.set_ylabel(marginal_ylabel ) if highlighting is not None: for lb, rb, c, label in highlighting: ax_joint.axvspan(lb, rb, alpha=0.25, color=c, label = label) if edge_values is not None: for v, c, label in edge_values: ax_joint.axvline(x=v, color=c, linewidth = 3., linestyle = '--', label = label) if anchor_legend is not None: ax_joint.legend(bbox_to_anchor= anchor_legend) return fig, ax_joint, ax_marg_x, ax_marg_y # Adapted from https://matplotlib.org/gallery/images_contours_and_fields/image_annotated_heatmap.html def heatmap(data, row_labels, col_labels, row_title = '', col_title = '', ax=None, cbar_kw={}, cbarlabel="", vmin=None, vmax=None, x_tick_rotation = 0, **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Arguments: data : A 2D numpy array of shape (N,M) row_labels : A list or array of length N with the labels for the rows col_labels : A list or array of length M with the labels for the columns Optional arguments: ax : A matplotlib.axes.Axes instance to which the heatmap is plotted. If not provided, use current axes or create a new one. cbar_kw : A dictionary with arguments to :meth:`matplotlib.Figure.colorbar`. cbarlabel : The label for the colorbar vmin : lower bound for colormap vmax : upper bound for colormap x_tick_rotation : angle for x axis labels Returns: im, cbar : handles to image and colorbar All other arguments are directly passed on to the imshow call. """ if not ax: ax = plt.gca() if not vmin: vmin = np.amin(data) if not vmax: vmax = np.amax(data) # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=x_tick_rotation, ha="right", rotation_mode="anchor") # Turn spines off and create white grid. for _, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(
np.arange(data.shape[0]+1)
numpy.arange
import cv2 import numpy as np import sys def convert_color_space_BGR_to_RGB(img_BGR): #print(img_BGR) B = img_BGR[:,:,0]/255 G = img_BGR[:,:,1]/255 R = img_BGR[:,:,2]/255 img_RGB = np.stack([R, G, B], axis=2) #print(img_RGB) return img_RGB def convert_color_space_RGB_to_BGR(img_RGB): R = source[:,:,0]*255 G = source[:,:,1]*255 B = source[:,:,2]*255 img_BGR = np.stack([B, G, R], axis=2) return img_BGR def convert_color_space_RGB_to_Lab(img_RGB): ''' convert image color space RGB to Lab ''' #print(img_RGB) R = img_RGB[:,:,0] G = img_RGB[:,:,1] B = img_RGB[:,:,2] L = 0.3811*R + 0.5783*G + 0.0402*B M = 0.1967*R + 0.7244*G + 0.0782*B S = 0.0241*R + 0.1288*G + 0.8444*B L = np.log10(L) M = np.log10(M) S = np.log10(S) new_l = 1.0 / np.sqrt(3)*L + 1.0 / np.sqrt(3)*M + 1.0 / np.sqrt(3)*S new_alpha = 1.0 / np.sqrt(6)*L + 1.0 / np.sqrt(6)*M - 2 / np.sqrt(6)*S new_beta = 1.0 / np.sqrt(2)*L - 1.0 / np.sqrt(2)*M + 0 *S img_Lab = np.stack([new_l, new_alpha, new_beta], axis=2) #print(img_Lab) return img_Lab def convert_color_space_Lab_to_BGR(img_Lab): ''' convert image color space Lab to RGB ''' l_result = img_Lab[:,:,0] alpha_result = img_Lab[:,:,1] beta_result = img_Lab[:,:,2] L = np.sqrt(3.0) / 3.0 * l_result + np.sqrt(6) / 6.0 * alpha_result + np.sqrt(2) / 2.0 * beta_result M = np.sqrt(3.0) / 3.0 * l_result +
np.sqrt(6)
numpy.sqrt
#TfIdfVectorizer (tf_batch_onlybigrams_skip0) import onnx from onnx import helper from onnx import numpy_helper from onnx import AttributeProto, TensorProto, GraphProto import numpy as np from Compare_output import compare # Create the inputs (ValueInfoProto) x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 6]) # Create one output (ValueInfoProto) y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 7]) ngram_counts =
np.array([0, 4])
numpy.array
from __future__ import division, print_function, absolute_import import numpy as np from numpy import sqrt, pi, cos, sin, log, exp, sinh, mod from numpy.linalg import norm from phidl.device_layout import Device from phidl.device_layout import _parse_layer from phidl.geometry import turn import gdspy def _arc(radius = 10, width = 0.5, theta = 45, start_angle = 0, angle_resolution = 2.5, layer = 0): """ Creates an arc of arclength ``theta`` starting at angle ``start_angle`` """ inner_radius = radius-width/2 outer_radius = radius+width/2 angle1 = (start_angle)*pi/180 angle2 = (start_angle + theta)*pi/180 t = np.linspace(angle1, angle2, int(np.ceil(abs(theta)/angle_resolution))) inner_points_x = (inner_radius*cos(t)).tolist() inner_points_y = (inner_radius*sin(t)).tolist() outer_points_x = (outer_radius*cos(t)).tolist() outer_points_y = (outer_radius*sin(t)).tolist() xpts = inner_points_x + outer_points_x[::-1] ypts = inner_points_y + outer_points_y[::-1] D = Device('arc') D.add_polygon(points = (xpts,ypts), layer = layer) D.add_port(name = 1, midpoint = (radius*cos(angle1), radius*sin(angle1)), width = width, orientation = start_angle - 90 + 180*(theta<0)) D.add_port(name = 2, midpoint = (radius*cos(angle2), radius*sin(angle2)), width = width, orientation = start_angle + theta + 90 - 180*(theta<0)) D.info['length'] = (abs(theta)*pi/180)*radius return D def _gradual_bend( radius = 20, width = 1.0, angular_coverage=15, num_steps=10, angle_resolution=0.1, start_angle=0, direction='ccw', layer=0, ): """ creates a 90-degree bent waveguide the bending radius is gradually increased until it reaches the minimum value of the radius at the "angular coverage" angle. it essentially creates a smooth transition to a bent waveguide mode. user can control number of steps provided. direction determined by start angle and cw or ccw switch ############ with the default 10 "num_steps" and 15 degree coverage, effective radius is about 1.5*radius. """ angular_coverage=np.deg2rad(angular_coverage) D = Device() #determines the increment in radius through its inverse from 0 to 1/r inc_rad =(radius**-1)/(num_steps) angle_step = angular_coverage/num_steps #construct a series of sub-arcs with equal angles but gradually decreasing bend radius arcs = [] for x in range(num_steps): A = _arc(radius=1/((x+1)*inc_rad),width=width,theta=np.rad2deg(angle_step),start_angle=x*np.rad2deg(angle_step),angle_resolution=angle_resolution,layer=layer) a = D.add_ref(A) arcs.append(a) if x>0: a.connect(port=1,destination=prevPort) prevPort=a.ports[2] D.add_port(name=1,port=arcs[0].ports[1]) #now connect a regular bend for the normal curved portion B = _arc(radius=radius,width=width,theta=45-np.rad2deg(angular_coverage),start_angle=angular_coverage,angle_resolution=angle_resolution,layer=layer) b = D.add_ref(B) b.connect(port=1,destination=prevPort) prevPort=b.ports[2] D.add_port(name=2,port=prevPort) #now create the overall structure Total = Device() #clone the half-curve into two objects and connect for a 90 deg bend. D1 = Total.add_ref(D) D2 = Total.add_ref(D) D2.mirror(p1=[0,0],p2=[1,1]) D2.connect(port=2,destination=D1.ports[2]) Total.xmin=0 Total.ymin=0 #orient to default settings... Total.mirror(p1=[0,0],p2=[1,1]) Total.mirror(p1=[0,0],p2=[1,0]) #orient to user-provided settings if direction == 'cw': Total.mirror(p1=[0,0],p2=[1,0]) Total.rotate(angle=start_angle,center=Total.center) Total.center=[0,0] Total.add_port(name=1,port=D1.ports[1]) Total.add_port(name=2,port=D2.ports[1]) return Total def route_basic(port1, port2, path_type = 'sine', width_type = 'straight', width1 = None, width2 = None, num_path_pts = 99, layer = 0): # Assuming they're both Ports for now point_a = np.array(port1.midpoint) if width1 is None: width1 = port1.width point_b = np.array(port2.midpoint) if width2 is None: width2 = port2.width if round(abs(mod(port1.orientation - port2.orientation,360)),3) != 180: raise ValueError('[DEVICE] route() error: Ports do not face each other (orientations must be 180 apart)') orientation = port1.orientation separation = point_b - point_a # Vector drawn from A to B distance = norm(separation) # Magnitude of vector from A to B rotation = np.arctan2(separation[1],separation[0])*180/pi # Rotation of vector from A to B angle = rotation - orientation # If looking out along the normal of ``a``, the angle you would have to look to see ``b`` forward_distance = distance*cos(angle*pi/180) lateral_distance = distance*
sin(angle*pi/180)
numpy.sin
import argparse import numpy as np from PIL import Image import homomorphic def main(): parser = argparse.ArgumentParser(description="Homomorphic filtering demo.") parser.add_argument( '--alpha', metavar='float', type=float, help="Variable alpha. Default is 0.75", default=0.75) parser.add_argument( '--beta', metavar='float', type=float, help="Variable beta. Default is 1.25", default=1.25) parser.add_argument( '--filter', metavar='str', type=str, help="Filter to use. Either 'butterworth' or 'gaussian'. Default is 'butterworth'", default='butterworth') parser.add_argument( '--cutoff-freq', metavar='float', type=float, help="Cutoff frequency. Default is 30", default=30) parser.add_argument( '--order', metavar='float', type=float, help="Filter order, only used butterworth filter. Default is 2", default=2) parser.add_argument('imgpath', metavar='imgpath', type=str, help="Input image file") args = parser.parse_args() img = Image.open(args.imgpath) if img.mode == 'RGB': img = img.convert('L') img =
np.asarray(img, dtype=np.uint8)
numpy.asarray
""" Convolutional Neural Network. Build and train a convolutional neural network with TensorFlow. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: <NAME> Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import division, print_function, absolute_import import tensorflow as tf import numpy as np import gzip import imageio import os import matplotlib.pyplot as plt import scipy.misc import time IMAGE_SIZE = 128 NUM_CHANNELS = 1 # Training Parameters lr_vgg = 0.00001 lr_vgg_fc = 0.0001 lr_2_mid = 0.00005 lr_2_end = 0.00001 lr_3_mid = 0.00005 lr_3_end = 0.00001 #0.0002 # tf Graph input trainSetName = tf.placeholder(tf.string, shape=[None]) slfTestSetName = tf.placeholder(tf.string, shape=[None]) evalSetName = tf.placeholder(tf.string, shape=[None]) Drop_rate = tf.placeholder(tf.float32) # dropout (keep probability) Is_training = tf.placeholder(tf.bool) def _parser(proto): # Conver tfrecord to tensors _features = tf.parse_single_example( proto, features = { 'image': tf.FixedLenFeature((),tf.string), 'mask': tf.FixedLenFeature((),tf.string), 'gt': tf.FixedLenFeature((),tf.string) }) _image = tf.decode_raw(_features['image'], tf.float32) _image = tf.reshape(_image, [IMAGE_SIZE,IMAGE_SIZE,3]) _mask = tf.decode_raw(_features['mask'], tf.float32) _mask = tf.reshape(_mask, [IMAGE_SIZE,IMAGE_SIZE]) _gt = tf.decode_raw(_features['gt'], tf.float32) _gt = tf.reshape(_gt, [IMAGE_SIZE,IMAGE_SIZE,3]) return _image, _mask, _gt def _parser_eval(proto): # Conver tfrecord to tensors _features = tf.parse_single_example( proto, features = { 'image': tf.FixedLenFeature((),tf.string), 'mask': tf.FixedLenFeature((),tf.string) }) _image = tf.decode_raw(_features['image'], tf.float32) _image = tf.reshape(_image, [IMAGE_SIZE,IMAGE_SIZE,3]) _mask = tf.decode_raw(_features['mask'], tf.float32) _mask = tf.reshape(_mask, [IMAGE_SIZE,IMAGE_SIZE]) return _image, _mask def caldotprod(prediction, mask, groundtruth): # normalize prediction _prediction = ((prediction / 255.0) - 0.5) * 2. _pred_norm = tf.sqrt(tf.reduce_sum(tf.multiply(_prediction, _prediction), axis=3, keep_dims=True)) _pred_normalized = tf.div(_prediction, tf.tile(_pred_norm, [1,1,1,3])) # normalize groundtruth _groundtruth = ((groundtruth / 255.0) - 0.5) * 2. _gt_norm = tf.sqrt(tf.reduce_sum(tf.multiply(_groundtruth, _groundtruth), axis=3, keep_dims=True)) _gt_normalized = tf.div(_groundtruth, tf.tile(_gt_norm, [1,1,1,3])) # calculate dot product = cos(theta) _dotprod = tf.reduce_sum(tf.multiply(_pred_normalized, _gt_normalized), axis=3) # mask object _mask = tf.not_equal(mask, tf.zeros_like(mask)) _dotprod = tf.boolean_mask(_dotprod, _mask) # fix nan by setting to -1 _dotprod = tf.where(tf.is_nan(_dotprod), tf.zeros_like(_dotprod)-1, _dotprod) # clip to -1,+1 _dotprod = tf.clip_by_value(_dotprod, -1., 1.) return _dotprod, prediction, mask, groundtruth # prediction 0-255, groundtruth 0-255 def calcloss(_prediction, _mask, _groundtruth): _dotprod, _, _, _ = caldotprod(_prediction, _mask, _groundtruth) # calculate angles _ang = tf.acos(_dotprod) loss = -tf.reduce_mean(_dotprod) # loss = tf.reduce_mean(_ang) return loss # vgg/conv1_1_W -- vgg origin # vgg/conv1_1/kernel:0 -- var def getVggStoredName(var): # get name stored in vgg origin if 'kernel' in var.op.name: return var.op.name.replace('/kernel','_W') elif 'bias' in var.op.name: return var.op.name.replace('/bias','_b') else: print("Error: No kernel or bias") def scalePrediction(_pred_single): if np.max(_pred_single) > 255.0: _pred_single = _pred_single - 255.0/2.0 _pred_single = _pred_single / np.max(_pred_single) * (255.0/2.0) _pred_single = _pred_single + 255.0/2.0 min_pos = np.unravel_index(np.argmin(_pred_single),_pred_single.shape) _pred_single[min_pos[0], min_pos[1], min_pos[2]] = 0; _pred_single = np.clip(_pred_single, 0., 255.) else: max_pos = np.unravel_index(np.argmax(_pred_single),_pred_single.shape) _pred_single[max_pos[0], max_pos[1], max_pos[2]] = 255.0; _pred_single = np.clip(_pred_single, 0., 255.) return _pred_single # Create the neural network def conv_net(img, mask, dropout, is_training, reuse): # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] img = tf.reshape(img, shape=[-1, IMAGE_SIZE, IMAGE_SIZE, 3], name='inputTensor') mask = tf.reshape(mask, shape=[-1, IMAGE_SIZE, IMAGE_SIZE, 1], name='inputMask') with tf.variable_scope('vgg', reuse = reuse): # Convolution Layer with 64 filters and a kernel size of 3 conv1_1 = tf.layers.conv2d(inputs = img, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv1_1') conv1_2 = tf.layers.conv2d(inputs = conv1_1, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv1_2') # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 pool1 = tf.layers.max_pooling2d(conv1_2, 2, 2) # Convolution Layer with 32 filters and a kernel size of 3 conv2_1 = tf.layers.conv2d(inputs = pool1, filters=128, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv2_1') conv2_2 = tf.layers.conv2d(inputs = conv2_1, filters=128, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv2_2') # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 pool2 = tf.layers.max_pooling2d(conv2_2, 2, 2) # Convolution Layer with 256 filters and a kernel size of 3 conv3_1 = tf.layers.conv2d(inputs = pool2, filters=256, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv3_1') conv3_2 = tf.layers.conv2d(inputs = conv3_1, filters=256, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv3_2') conv3_3 = tf.layers.conv2d(inputs = conv3_2, filters=256, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv3_3') # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 pool3 = tf.layers.max_pooling2d(conv3_3, 2, 2) # Convolution Layer with 512 filters and a kernel size of 3 conv4_1 = tf.layers.conv2d(inputs = pool3, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv4_1') conv4_2 = tf.layers.conv2d(inputs = conv4_1, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv4_2') conv4_3 = tf.layers.conv2d(inputs = conv4_2, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv4_3') # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 pool4 = tf.layers.max_pooling2d(conv4_3, 2, 2) # Convolution Layer with 512 filters and a kernel size of 3 conv5_1 = tf.layers.conv2d(inputs = pool4, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv5_1') conv5_2 = tf.layers.conv2d(inputs = conv5_1, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv5_2') conv5_3 = tf.layers.conv2d(inputs = conv5_2, filters=512, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv5_3') # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 pool5 = tf.layers.max_pooling2d(conv5_3, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer fc1 = tf.contrib.layers.flatten(pool5) # Fully connected layer (in tf contrib folder for now) fc1 = tf.layers.dense(fc1, 4096, name='fc1') # Apply Dropout (if is_training is False, dropout is not applied) fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # drop = 0.5 fc1 = tf.nn.relu(fc1) # Fully connected layer (in tf contrib folder for now) fc2 = tf.layers.dense(fc1, 8*8*64, name='fc2') fc2 = tf.reshape(fc2, [-1, 8, 8, 64]) fc2 = tf.nn.relu(fc2) # Upsample vgg_out = tf.image.resize_nearest_neighbor(fc2, size=(32, 32)) with tf.variable_scope('scale2', reuse = reuse): conv2_img = tf.layers.conv2d(inputs = img, filters=96, kernel_size=5, activation=tf.nn.relu, padding='same', name='conv2_img') # Max Pooling (down-sampling) with strides of 4 and kernel size of 4 pool2_img = tf.layers.max_pooling2d(conv2_img, 4, 4) conv2_mask = tf.layers.conv2d(inputs = mask, filters=48, kernel_size=5, activation=tf.nn.relu, padding='same', name='conv2_mask') # Max Pooling (down-sampling) with strides of 4 and kernel size of 4 pool2_mask = tf.layers.max_pooling2d(conv2_mask, 4, 4) # Stack conv2img with vgg_out, aixs = channel padding_pool2_img = tf.constant([[0, 0,], [0, 0], [0, 0], [0, 48+64]]) pool2_img = tf.pad(pool2_img, padding_pool2_img, "CONSTANT") padding_pool2_mask = tf.constant([[0, 0,], [0, 0], [0, 0], [96, 64]]) pool2_mask = tf.pad(pool2_mask, padding_pool2_mask, "CONSTANT") padding_vgg_out = tf.constant([[0, 0,], [0, 0], [0, 0], [96+48, 0]]) vgg_out = tf.pad(vgg_out, padding_vgg_out, "CONSTANT") stack2 = pool2_img + pool2_mask + vgg_out # Convolution Layer with 96+64 filters and a kernel size of 5 conv1 = tf.layers.conv2d(inputs = stack2, filters=96+48+64, kernel_size=5, activation=tf.nn.relu, padding='same', name='conv1') # Convolution Layer with 64 filters and a kernel size of 3 conv2 = tf.layers.conv2d(inputs = conv1, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv2') # Convolution Layer with 64 filters and a kernel size of 3 conv3 = tf.layers.conv2d(inputs = conv2, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv3') # Convolution Layer with 64 filters and a kernel size of 3 conv4 = tf.layers.conv2d(inputs = conv3, filters=64, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv4') # Convolution Layer with 3 filters and a kernel size of 3 conv5 = tf.layers.conv2d(inputs = conv4, filters=3, kernel_size=3, activation=tf.nn.relu, padding='same', name='conv5') # Upsample scale2_out = tf.image.resize_nearest_neighbor(conv5, size=(128, 128)) with tf.variable_scope('scale3', reuse = reuse): conv3_img = tf.layers.conv2d(inputs = img, filters=96, kernel_size=9, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_end), padding='same', name='conv3_img') conv3_mask = tf.layers.conv2d(inputs = mask, filters=48, kernel_size=9, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_end), padding='same', name='conv3_mask') padding_conv3_img = tf.constant([[0, 0,], [0, 0], [0, 0], [0, 48+3]]) conv3_img = tf.pad(conv3_img, padding_conv3_img, "CONSTANT") padding_conv3_mask = tf.constant([[0, 0,], [0, 0], [0, 0], [96, 3]]) conv3_mask = tf.pad(conv3_mask, padding_conv3_mask, "CONSTANT") padding_scale2_out = tf.constant([[0, 0,], [0, 0], [0, 0], [96+48, 0]]) scale2_out_padded = tf.pad(scale2_out, padding_scale2_out, "CONSTANT") stack3 = conv3_img + conv3_mask + scale2_out_padded # Convolution Layer with 96+48+3 filters and a kernel size of 9 conv1 = tf.layers.conv2d(inputs = stack3, filters=96+48+3, kernel_size=9, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_end), padding='same', name='conv1') # Convolution Layer with 64 filters and a kernel size of 5 conv2 = tf.layers.conv2d(inputs = conv1, filters=64, kernel_size=5, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_mid), padding='same', name='conv2') # Convolution Layer with 64 filters and a kernel size of 5 conv3 = tf.layers.conv2d(inputs = conv2, filters=64, kernel_size=5, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_mid), padding='same', name='conv3') # Convolution Layer with 3 filters and a kernel size of 5 conv4 = tf.layers.conv2d(inputs = conv3, filters=3, kernel_size=5, activation=tf.nn.relu, kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.0005/lr_3_end), padding='same', name='conv4') out = conv4 return out # # # ############################# DATASET ############################# # # # num_train_set = 18000 num_self_test_set = 20000-num_train_set test_batch_size = 20 num_eval_set = 2000 batch_size = 18 trainingSetFiles = ['./trainTFRecords/' + str(I) +'.tfrecords' for I in range(0,num_train_set)] slfTestSetFiles = ['./trainTFRecords/' + str(I) +'.tfrecords' for I in range(num_train_set,20000)] evalSetFiles = ['./testTFRecords/' + str(I) +'.tfrecords' for I in range(0,2000)] # construct dataset # training set trainSet = tf.data.TFRecordDataset(trainSetName).map(_parser).shuffle(buffer_size=3600).repeat().batch(batch_size) it_train = trainSet.make_initializable_iterator() # self-testing set selftestSet = tf.data.TFRecordDataset(slfTestSetName).map(_parser).repeat().batch(test_batch_size) it_selftest = selftestSet.make_initializable_iterator() # test set (to upload) evalSet = tf.data.TFRecordDataset(evalSetName).map(_parser_eval).batch(test_batch_size) it_eval = evalSet.make_initializable_iterator() # # # ############################## BATCH ############################## # # # # get training/testing data # N*128*128*3-(0,1), N*128*128-(0/1), N*128*128*3-(-1,1) imageIn, maskIn, gtIn = it_train.get_next() imageIn_slftest, maskIn_slftest, gtIn_slftest = it_selftest.get_next() imageIn_eval, maskIn_eval = it_eval.get_next() # # # ########################### PRED & LOSS ########################### # # # # Construct model prediction = conv_net(imageIn, maskIn, Drop_rate, is_training=True, reuse=False) loss_op = calcloss(prediction, maskIn, gtIn) # Construct test graph prediction_slftest = conv_net(imageIn_slftest, maskIn_slftest, dropout=0.0, is_training=False, reuse=True) loss_test_dotprod_op = caldotprod(prediction_slftest, maskIn_slftest, gtIn_slftest) # Construct eval graph prediction_eval = conv_net(imageIn_eval, maskIn_eval, dropout=0.0, is_training=False, reuse=True) # # # ############################# VAR MAN ############################# # # # # Manage vars # Vgg var vggConvVar_dict = {getVggStoredName(val):val for val in tf.global_variables() if 'vgg/conv' in val.op.name} vggConvVar_list = list(vggConvVar_dict.values()) # scale2Var vggFC_scale2Var_list = [var for var in tf.global_variables() if var not in vggConvVar_list and 'scale3' not in var.op.name] vggFCVar_list = [var for var in tf.global_variables() if 'vgg/fc' in var.op.name] scale2EndVar_list = [var for var in tf.global_variables() if 'scale2/conv1' in var.op.name or \ 'scale2/conv5' in var.op.name or \ '2_img' in var.op.name or \ '2_mask' in var.op.name] scale2MidVar_list = [var for var in tf.global_variables() if 'scale2' in var.op.name and var not in scale2EndVar_list] # scale3Var scale3Var_list = [var for var in tf.global_variables() if 'scale3' in var.op.name] scale3EndVar_list = [var for var in scale3Var_list if 'conv1' in var.op.name or \ 'conv4' in var.op.name or \ 'img' in var.op.name or \ 'mask' in var.op.name] scale3MidVar_list = [var for var in scale3Var_list if var not in scale3EndVar_list] # Savers vggConvRestorer = tf.train.Saver(vggConvVar_dict) scale2Restorer = tf.train.Saver(vggFC_scale2Var_list) scale3Restorer = tf.train.Saver(scale3Var_list) # for key, val in vggConvVar_dict.items(): # print(key, val) # print("\n\n") # for t in vggFC_scale2Var_list: # print(t.op.name, t.shape) # print("\n\n") # for t in vggFCVar_list: # print(t.op.name, t.shape) # print("\n\n") # for t in scale2MidVar_list: # print(t.op.name, t.shape) # print("\n\n") # for t in scale2EndVar_list: # print(t.op.name, t.shape) # print("\n\n") # for t in scale3Var_list: # print(t.op.name, t.shape) # print("\n\n") # for t in scale3MidVar_list: # print(t.op.name, t.shape) # print("\n\n") # for t in scale3EndVar_list: # print(t.op.name, t.shape) # print("\n\n") # exit(0) # # # ########################### TRAIN & LOSS ########################### # # # num_epochs = 3 display_step = 10 test_step = num_train_set/batch_size # 1 per epoch # Generate train op # vgg opt_vgg = tf.train.AdamOptimizer(learning_rate=lr_vgg) # part 2 opt_vgg_fc = tf.train.AdamOptimizer(learning_rate=lr_vgg_fc) opt_2mid = tf.train.AdamOptimizer(learning_rate=lr_2_mid) opt_2end = tf.train.AdamOptimizer(learning_rate=lr_2_end) # part 3 opt_3mid = tf.train.AdamOptimizer(learning_rate=lr_3_mid) opt_3end = tf.train.AdamOptimizer(learning_rate=lr_3_end) grads = tf.gradients(loss_op, vggConvVar_list + vggFCVar_list + scale2MidVar_list + scale2EndVar_list + scale3MidVar_list + scale3EndVar_list ) # part 2 # grads_vggFC = grads[0:4] # grads_s2mid = grads[4:10] # grads_s2end = grads[10:18] # vgg+2 # grads_vggConv = grads[0:26] # grads_vggFC = grads[26:30] # grads_s2mid = grads[30:36] # grads_s2end = grads[36:44] # part 3 # grads_s3mid = grads[0:4] # grads_s3end = grads[4:12] # alll grads_vggConv = grads[0:26] grads_vggFC = grads[26:30] grads_s2mid = grads[30:36] grads_s2end = grads[36:44] grads_s3mid = grads[44:48] grads_s3end = grads[48:56] train_vggConv = opt_vgg.apply_gradients(zip(grads_vggConv, vggConvVar_list)) train_vggFC = opt_vgg_fc.apply_gradients(zip(grads_vggFC, vggFCVar_list)) train_2mid = opt_2mid.apply_gradients(zip(grads_s2mid, scale2MidVar_list)) train_2end = opt_2end.apply_gradients(zip(grads_s2end, scale2EndVar_list)) train_3mid = opt_3mid.apply_gradients(zip(grads_s3mid, scale3MidVar_list)) train_3end = opt_3end.apply_gradients(zip(grads_s3end, scale3EndVar_list)) train_op = tf.group( train_vggConv, train_vggFC, train_2mid, train_2end, train_3mid, train_3end ) # Initialize the variables (i.e. assign their default value) init_val = tf.global_variables_initializer() # Start training with tf.Session() as sess: writer = tf.summary.FileWriter("./graph", sess.graph) # Run the initializer sess.run(tf.group(init_val, it_train.initializer, it_selftest.initializer, it_eval.initializer), \ feed_dict={ trainSetName: trainingSetFiles, slfTestSetName: slfTestSetFiles, evalSetName: evalSetFiles } ) vggConvRestorer.restore(sess, "./savedModel/vgg_new.ckpt") scale2Restorer.restore(sess, "./savedModel/scale2_difflr.ckpt") scale3Restorer.restore(sess, "./savedModel/scale3.ckpt") # Run step = 1 epoch = 1 tic = time.time() loss_cum = 0 loss_selftest_prev = 1 while True: # for i in range(0,10): try: # Run optimization op (backprop) loss, _ = sess.run([loss_op, train_op], feed_dict={Drop_rate: 0.5}) loss_cum = loss_cum + loss # Display training loss if step % display_step == 0 or step == 1: print("Epoch " + str(epoch) + ", " + \ "Step " + str(step) + ", Mini batch Loss= " + "{:.4f}".format(loss)) # Display self-test loss if step % test_step == 0: dotprod_selftest_cum = [] for test_batch_i in range(0, int(num_self_test_set/test_batch_size)): dotprod_part, pred_selftest, mask_selftest, gt_selftest = sess.run(loss_test_dotprod_op) dotprod_selftest = np.array(dotprod_part) dotprod_selftest_cum =
np.concatenate((dotprod_selftest_cum,dotprod_selftest),axis=0)
numpy.concatenate
# Copyright 2019 The TensorNetwork Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensornetwork as tn import pytest import numpy as np from tensornetwork.block_sparse import (U1Charge, BlockSparseTensor, Index, BaseCharge) from tensornetwork.block_sparse.charge import charge_equal from tensornetwork.block_sparse.utils import _find_diagonal_sparse_blocks def get_random(shape, num_charges, dtype=np.float64): R = len(shape) charges = [ BaseCharge( np.random.randint(-5, 5, (shape[n], num_charges)), charge_types=[U1Charge] * num_charges) for n in range(R) ] flows = list(np.full(R, fill_value=False, dtype=np.bool)) indices = [Index(charges[n], flows[n]) for n in range(R)] return BlockSparseTensor.random(indices=indices, dtype=dtype) def get_square_matrix(shape, num_charges, dtype=np.float64): charge = BaseCharge( np.random.randint(-5, 5, (shape, num_charges)), charge_types=[U1Charge] * num_charges) flows = [True, False] indices = [Index(charge, flows[n]) for n in range(2)] return BlockSparseTensor.random(indices=indices, dtype=dtype) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_split_node_full_svd_names(num_charges): np.random.seed(10) a = tn.Node( get_random((10, 10), num_charges=num_charges), backend='symmetric') e1 = a[0] e2 = a[1] left, s, right, _, = tn.split_node_full_svd( a, [e1], [e2], left_name='left', middle_name='center', right_name='right', left_edge_name='left_edge', right_edge_name='right_edge') assert left.name == 'left' assert s.name == 'center' assert right.name == 'right' assert left.edges[-1].name == 'left_edge' assert s[0].name == 'left_edge' assert s[1].name == 'right_edge' assert right.edges[0].name == 'right_edge' @pytest.mark.parametrize("num_charges", [1, 2]) def test_split_node_rq_names(num_charges): np.random.seed(10) a = tn.Node( get_random((5, 5, 5, 5, 5), num_charges=num_charges), backend='symmetric') left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_rq( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' @pytest.mark.parametrize("num_charges", [1, 2]) def test_split_node_qr_names(num_charges): np.random.seed(10) a = tn.Node( get_random((5, 5, 5, 5, 5), num_charges=num_charges), backend='symmetric') left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_qr( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' @pytest.mark.parametrize("num_charges", [1, 2]) def test_split_node_names(num_charges): np.random.seed(10) a = tn.Node( get_random((5, 5, 5, 5, 5), num_charges=num_charges), backend='symmetric') left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right, _ = tn.split_node( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_split_node_rq_unitarity(dtype, num_charges): np.random.seed(10) a = tn.Node( get_square_matrix(50, num_charges, dtype=dtype), backend='symmetric') r, q = tn.split_node_rq(a, [a[0]], [a[1]]) r[1] | q[0] qbar = tn.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q blocks, _, shapes = _find_diagonal_sparse_blocks(u1.tensor.flat_charges, u1.tensor.flat_flows, len(u1.tensor._order[0])) for n, block in enumerate(blocks): np.testing.assert_almost_equal( np.reshape(u1.tensor.data[block], shapes[:, n]), np.eye(N=shapes[0, n], M=shapes[1, n])) blocks, _, shapes = _find_diagonal_sparse_blocks(u2.tensor.flat_charges, u2.tensor.flat_flows, len(u2.tensor._order[0])) for n, block in enumerate(blocks): np.testing.assert_almost_equal( np.reshape(u2.tensor.data[block], shapes[:, n]), np.eye(N=shapes[0, n], M=shapes[1, n])) @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_split_node_rq(dtype, num_charges): np.random.seed(10) a = tn.Node( get_random((6, 7, 8, 9, 10), num_charges, dtype=dtype), backend='symmetric') left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_rq(a, left_edges, right_edges) tn.check_correct([left, right]) result = tn.contract(left[3]) np.testing.assert_allclose(result.tensor.data, a.tensor.data) assert np.all([ charge_equal(result.tensor._charges[n], a.tensor._charges[n]) for n in range(len(a.tensor._charges)) ]) @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_split_node_qr_unitarity(dtype, num_charges): np.random.seed(10) a = tn.Node( get_square_matrix(50, num_charges, dtype=dtype), backend='symmetric') q, r = tn.split_node_qr(a, [a[0]], [a[1]]) r[0] | q[1] qbar = tn.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q blocks, _, shapes = _find_diagonal_sparse_blocks(u1.tensor.flat_charges, u1.tensor.flat_flows, len(u1.tensor._order[0])) for n, block in enumerate(blocks): np.testing.assert_almost_equal( np.reshape(u1.tensor.data[block], shapes[:, n]), np.eye(N=shapes[0, n], M=shapes[1, n])) blocks, _, shapes = _find_diagonal_sparse_blocks(u2.tensor.flat_charges, u2.tensor.flat_flows, len(u2.tensor._order[0])) for n, block in enumerate(blocks): np.testing.assert_almost_equal( np.reshape(u2.tensor.data[block], shapes[:, n]), np.eye(N=shapes[0, n], M=shapes[1, n])) @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_split_node_qr(dtype, num_charges): np.random.seed(10) a = tn.Node( get_random((6, 7, 8, 9, 10), num_charges=num_charges, dtype=dtype), backend='symmetric') left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_qr(a, left_edges, right_edges) tn.check_correct([left, right]) result = tn.contract(left[3]) np.testing.assert_allclose(result.tensor.data, a.tensor.data) assert np.all([ charge_equal(result.tensor._charges[n], a.tensor._charges[n]) for n in range(len(a.tensor._charges)) ]) @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_conj(dtype, num_charges): np.random.seed(10) a = tn.Node( get_random((6, 7, 8, 9, 10), num_charges=num_charges, dtype=dtype), backend='symmetric') abar = tn.conj(a) np.testing.assert_allclose(abar.tensor.data, a.backend.conj(a.tensor.data)) assert np.all([ charge_equal(abar.tensor._charges[n], a.tensor._charges[n]) for n in range(len(a.tensor._charges)) ]) @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_transpose(dtype, num_charges): np.random.seed(10) a = tn.Node( get_random((6, 7, 8, 9, 10), num_charges=num_charges, dtype=dtype), backend='symmetric') order = [a[n] for n in reversed(range(5))] transpa = tn.transpose(a, [4, 3, 2, 1, 0]) a.reorder_edges(order) np.testing.assert_allclose(a.tensor.data, transpa.tensor.data) def test_switch_backend(): np.random.seed(10) a = tn.Node(np.random.rand(3, 3, 3), name="A", backend="numpy") b = tn.Node(np.random.rand(3, 3, 3), name="B", backend="numpy") c = tn.Node(np.random.rand(3, 3, 3), name="C", backend="numpy") nodes = [a, b, c] with pytest.raises(ValueError): tn.switch_backend(nodes, 'symmetric') @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) @pytest.mark.parametrize("num_charges", [1, 2, 3]) def test_contract_trace_edges(dtype, num_charges):
np.random.seed(10)
numpy.random.seed
# -*- coding: utf-8 -*- """ Defines the unit tests for the :mod:`colour.models.cie_ucs` module. """ import numpy as np import unittest from itertools import permutations from colour.models import (XYZ_to_UCS, UCS_to_XYZ, UCS_to_uv, uv_to_UCS, UCS_uv_to_xy, xy_to_UCS_uv) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestXYZ_to_UCS', 'TestUCS_to_XYZ', 'TestUCS_to_uv', 'Testuv_to_UCS', 'TestUCS_uv_to_xy', 'TestXy_to_UCS_uv' ] class TestXYZ_to_UCS(unittest.TestCase): """ Defines :func:`colour.models.cie_ucs.XYZ_to_UCS` definition unit tests methods. """ def test_XYZ_to_UCS(self): """ Tests :func:`colour.models.cie_ucs.XYZ_to_UCS` definition. """ np.testing.assert_almost_equal( XYZ_to_UCS(np.array([0.20654008, 0.12197225, 0.05136952])), np.array([0.13769339, 0.12197225, 0.10537310]), decimal=7) np.testing.assert_almost_equal( XYZ_to_UCS(np.array([0.14222010, 0.23042768, 0.10495772])), np.array([0.09481340, 0.23042768, 0.32701033]), decimal=7) np.testing.assert_almost_equal( XYZ_to_UCS(np.array([0.07818780, 0.06157201, 0.28099326])), np.array([0.05212520, 0.06157201, 0.19376075]), decimal=7) def test_n_dimensional_XYZ_to_UCS(self): """ Tests :func:`colour.models.cie_ucs.XYZ_to_UCS` definition n-dimensional support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) UCS = XYZ_to_UCS(XYZ) UCS = np.tile(UCS, (6, 1)) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal(XYZ_to_UCS(XYZ), UCS, decimal=7) UCS = np.reshape(UCS, (2, 3, 3)) XYZ = np.reshape(XYZ, (2, 3, 3)) np.testing.assert_almost_equal(XYZ_to_UCS(XYZ), UCS, decimal=7) def test_domain_range_scale_XYZ_to_UCS(self): """ Tests :func:`colour.models.cie_ucs.XYZ_to_UCS` definition domain and range scale support. """ XYZ = np.array([0.0704953400, 0.1008000000, 0.0955831300]) UCS = XYZ_to_UCS(XYZ) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( XYZ_to_UCS(XYZ * factor), UCS * factor, decimal=7) @ignore_numpy_errors def test_nan_XYZ_to_UCS(self): """ Tests :func:`colour.models.cie_ucs.XYZ_to_UCS` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: XYZ = np.array(case) XYZ_to_UCS(XYZ) class TestUCS_to_XYZ(unittest.TestCase): """ Defines :func:`colour.models.cie_ucs.UCS_to_XYZ` definition unit tests methods. """ def test_UCS_to_XYZ(self): """ Tests :func:`colour.models.cie_ucs.UCS_to_XYZ` definition. """ np.testing.assert_almost_equal( UCS_to_XYZ(np.array([0.13769339, 0.12197225, 0.10537310])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( UCS_to_XYZ(np.array([0.09481340, 0.23042768, 0.32701033])), np.array([0.14222010, 0.23042768, 0.10495772]), decimal=7) np.testing.assert_almost_equal( UCS_to_XYZ(np.array([0.05212520, 0.06157201, 0.19376075])), np.array([0.07818780, 0.06157201, 0.28099326]), decimal=7) def test_n_dimensional_UCS_to_XYZ(self): """ Tests :func:`colour.models.cie_ucs.UCS_to_XYZ` definition n-dimensional support. """ UCS = np.array([0.13769339, 0.12197225, 0.10537310]) XYZ = UCS_to_XYZ(UCS) UCS = np.tile(UCS, (6, 1)) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal(UCS_to_XYZ(UCS), XYZ, decimal=7) UCS = np.reshape(UCS, (2, 3, 3)) XYZ =
np.reshape(XYZ, (2, 3, 3))
numpy.reshape
import numpy as np import tensorflow as tf from pysc2.lib.actions import FunctionCall, FUNCTIONS from rl.agents.runner import BaseRunner from rl.common.pre_processing import Preprocessor from rl.common.pre_processing import is_spatial_action, stack_ndarray_dicts from rl.common.util import mask_unused_argument_samples, flatten_first_dims, flatten_first_dims_dict class PPORunner(): def __init__(self, agent, envs, summary_writer, args): """ Args: agent: A2CAgent instance. envs: SubprocVecEnv instance. summary_writer: summary writer to log episode scores. args: { train: whether to train the agent. n_steps: number of agent steps for collecting rollouts. discount: future reward discount. } """ self.agent = agent self.envs = envs self.summary_writer = summary_writer self.train = args.train self.n_steps = args.steps_per_batch self.discount = args.discount self.noptepochs = 4 # TODO: get from args. self.nminibatches = 4 self.preproc = Preprocessor() self.last_obs = self.preproc.preprocess_obs(self.envs.reset()) self.old_log_probs = np.zeros((self.n_steps*self.envs.n_envs), dtype=np.float32) print('\n### PPO Runner #######') print(f'# agent = {self.agent}') print(f'# train = {self.train}') print(f'# n_steps = {self.n_steps}') print(f'# discount = {self.discount}') print(f'# noptepochs = {self.noptepochs}') print(f'# nminibatches = {self.nminibatches}') print('######################\n') # TODO: we probably need to save this state during checkpoing self.states = agent.initial_state self.episode_counter = 1 self.max_score = 0.0 self.cumulative_score = 0.0 def run_batch(self, train_summary=False): """Collect trajectories for a single batch and train (if self.train). Args: train_summary: return a Summary of the training step (losses, etc.). Returns: result: None (if not self.train) or the return value of agent.train. """ nbatch = self.envs.n_envs*self.n_steps assert nbatch % self.nminibatches == 0 nbatch_train = nbatch // self.nminibatches last_obs = self.last_obs shapes = (self.n_steps, self.envs.n_envs) values = np.zeros(shapes, dtype=np.float32) rewards = np.zeros(shapes, dtype=np.float32) dones = np.zeros(shapes, dtype=np.float32) all_actions, all_obs = [], [] mb_states = self.states # save the initial states at the beginning of each mb for later training. for n in range(self.n_steps): actions, values[n,:], states = self.agent.step(last_obs, self.states) # TODO: would be better if we could get the logprobs here instead of having to calls get_log_probs later. actions = mask_unused_argument_samples(actions) all_obs.append(last_obs) all_actions.append(actions) pysc2_actions = actions_to_pysc2(actions, size=last_obs['screen'].shape[1:3]) obs_raw = self.envs.step(pysc2_actions) last_obs = self.preproc.preprocess_obs(obs_raw) rewards[n,:], dones[n,:] = zip(*[(t.reward,t.last()) for t in obs_raw]) self.states = states for t in obs_raw: if t.last(): self.cumulative_score += self._summarize_episode(t) next_values = self.agent.get_value(last_obs, states) returns, advs = compute_returns_and_advs(rewards, dones, values, next_values, self.discount) actions = stack_and_flatten_actions(all_actions) obs = flatten_first_dims_dict(stack_ndarray_dicts(all_obs)) returns = flatten_first_dims(returns) advs = flatten_first_dims(advs) values = flatten_first_dims(values) self.last_obs = last_obs if self.train: mbloss = [] old_log_probs = self.agent.get_log_probs(obs, self.states, actions) if self.states is None: # print('train') inds =
np.arange(nbatch)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 12:13:33 2018 @author: <NAME> (<EMAIL> / <EMAIL>) """ #Python dependencies from __future__ import division import pandas as pd import numpy as np from scipy.constants import codata from pylab import * from scipy.optimize import curve_fit import mpmath as mp from lmfit import minimize, Minimizer, Parameters, Parameter, report_fit #from scipy.optimize import leastsq pd.options.mode.chained_assignment = None #Plotting import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator, FormatStrFormatter import seaborn as sns import matplotlib.ticker as mtick mpl.rc('mathtext', fontset='stixsans', default='regular') mpl.rcParams.update({'axes.labelsize':22}) mpl.rc('xtick', labelsize=16) mpl.rc('ytick', labelsize=16) mpl.rc('legend',fontsize=14) from scipy.constants import codata F = codata.physical_constants['Faraday constant'][0] Rg = codata.physical_constants['molar gas constant'][0] ### Importing PyEIS add-ons from .PyEIS_Data_extraction import * from .PyEIS_Lin_KK import * from .PyEIS_Advanced_tools import * ### Frequency generator ## # def freq_gen(f_start, f_stop, pts_decade=7): ''' Frequency Generator with logspaced freqencies Inputs ---------- f_start = frequency start [Hz] f_stop = frequency stop [Hz] pts_decade = Points/decade, default 7 [-] Output ---------- [0] = frequency range [Hz] [1] = Angular frequency range [1/s] ''' f_decades = np.log10(f_start) - np.log10(f_stop) f_range = np.logspace(np.log10(f_start), np.log10(f_stop), num=np.around(pts_decade*f_decades).astype(int), endpoint=True) w_range = 2 * np.pi * f_range return f_range, w_range ### Simulation Element Functions ## # def elem_L(w, L): ''' Simulation Function: -L- Returns the impedance of an inductor <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Inductance [ohm * s] ''' return 1j*w*L def elem_C(w,C): ''' Simulation Function: -C- Inputs ---------- w = Angular frequency [1/s] C = Capacitance [F] ''' return 1/(C*(w*1j)) def elem_Q(w,Q,n): ''' Simulation Function: -Q- Inputs ---------- w = Angular frequency [1/s] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return 1/(Q*(w*1j)**n) ### Simulation Curciuts Functions ## # def cir_RsC(w, Rs, C): ''' Simulation Function: -Rs-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] C = Capacitance [F] ''' return Rs + 1/(C*(w*1j)) def cir_RsQ(w, Rs, Q, n): ''' Simulation Function: -Rs-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return Rs + 1/(Q*(w*1j)**n) def cir_RQ(w, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return (R/(1+R*Q*(w*1j)**n)) def cir_RsRQ(w, Rs='none', R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RC(w, C='none', R='none', fs='none'): ''' Simulation Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] C = Capacitance [F] fs = Summit frequency of RC circuit [Hz] ''' return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RsRQRQ(w, Rs, R='none', Q='none', n='none', fs='none', R2='none', Q2='none', n2='none', fs2='none'): ''' Simulation Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase element exponent [-] fs = Summit frequency of RQ circuit [Hz] R2 = Resistance [Ohm] Q2 = Constant phase element [s^n/ohm] n2 = Constant phase element exponent [-] fs2 = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if R2 == 'none': R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif Q2 == 'none': Q2 = (1/(R2*(2*np.pi*fs2)**n2)) elif n2 == 'none': n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_RsRQQ(w, Rs, Q, n, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = Summit frequency of RQ circuit [Hz] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w,Q,n) def cir_RsRQC(w, Rs, C, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = summit frequency of RQ circuit [Hz] C = Constant phase element of series Q [s^n/ohm] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C) def cir_RsRCC(w, Rs, R1, C1, C): ''' Simulation Function: -Rs-RC-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] C = Capacitance of series C [s^n/ohm] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ(w, Rs, R1, C1, Q, n): ''' Simulation Function: -Rs-RC-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) def Randles_coeff(w, n_electron, A, E='none', E0='none', D_red='none', D_ox='none', C_red='none', C_ox='none', Rg=Rg, F=F, T=298.15): ''' Returns the Randles coefficient sigma [ohm/s^1/2]. Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function of the electrode potential following Nernst equation. Here C_red and D_red == 'none' Ref.: - <NAME>., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications" - <NAME>., ISBN: 0-471-04372-9, <NAME>. R. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley. <NAME> (<EMAIL> // <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Bulk concetration of oxidized specie [mol/cm3] C_red = Bulk concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = formal potential [V] if reduced specie is absent == 'none' Returns ---------- Randles coefficient [ohm/s^1/2] ''' if C_red != 'none' and D_red != 'none': sigma = ((Rg*T) / ((n_electron**2) * A * (F**2) * (2**(1/2)))) * ((1/(D_ox**(1/2) * C_ox)) + (1/(D_red**(1/2) * C_red))) elif C_red == 'none' and D_red == 'none' and E!='none' and E0!= 'none': f = F/(Rg*T) x = (n_electron*f*(E-E0))/2 func_cosh2 = (np.cosh(2*x)+1)/2 sigma = ((4*Rg*T) / ((n_electron**2) * A * (F**2) * C_ox * ((2*D_ox)**(1/2)) )) * func_cosh2 else: print('define E and E0') Z_Aw = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Z_Aw def cir_Randles(w, n_electron, D_red, D_ox, C_red, C_ox, Rs, Rct, n, E, A, Q='none', fs='none', E0=0, F=F, Rg=Rg, T=298.15): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with full complity of the warbug constant NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Concetration of oxidized specie [mol/cm3] C_red = Concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = Formal potential [V] if reduced specie is absent == 'none' Rs = Series resistance [ohm] Rct = charge-transfer resistance [ohm] Q = Constant phase element used to model the double-layer capacitance [F] n = expononent of the CPE [-] Returns ---------- The real and imaginary impedance of a Randles circuit [ohm] ''' Z_Rct = Rct Z_Q = elem_Q(w,Q,n) Z_w = Randles_coeff(w, n_electron=n_electron, E=E, E0=E0, D_red=D_red, D_ox=D_ox, C_red=C_red, C_ox=C_ox, A=A, T=T, Rg=Rg, F=F) return Rs + 1/(1/Z_Q + 1/(Z_Rct+Z_w)) def cir_Randles_simplified(w, Rs, R, n, sigma, Q='none', fs='none'): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with a simplified NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) # Polymer electrolytes def cir_C_RC_C(w, Ce, Cb='none', Rb='none', fsb='none'): ''' Simulation Function: -C-(RC)-C- This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution to the otherwise resistive electrolyte Ref: - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Ce = Interfacial capacitance [F] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = summit frequency of bulk (RC) circuit [Hz] ''' Z_C = elem_C(w,C=Ce) Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb) return Z_C + Z_RC def cir_Q_RQ_Q(w, Qe, ne, Qb='none', Rb='none', fsb='none', nb='none'): ''' Simulation Function: -Q-(RQ)-Q- Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Qe = Interfacial capacitance modeled with a CPE [F] ne = Interfacial constant phase element exponent [-] Rb = Bulk/series resistance [Ohm] Qb = Bulk capacitance modeled with a CPE [s^n/ohm] nb = Bulk constant phase element exponent [-] fsb = summit frequency of bulk (RQ) circuit [Hz] ''' Z_Q = elem_Q(w,Q=Qe,n=ne) Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb) return Z_Q + Z_RQ def tanh(x): ''' As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh ''' return (1-np.exp(-2*x))/(1+np.exp(-2*x)) def cir_RCRCZD(w, L, D_s, u1, u2, Cb='none', Rb='none', fsb='none', Ce='none', Re='none', fse='none'): ''' Simulation Function: -RC_b-RC_e-Z_D This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-, and the diffusional impedance from the dissolved salt. Refs.: - <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)" - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Thickness of electrode [cm] D_s = Diffusion coefficient of dissolved salt [cm2/s] u1 = Mobility of the ion reacting at the electrode interface u2 = Mobility of other ion Re = Interfacial resistance [Ohm] Ce = Interfacial capacitance [F] fse = Summit frequency of the interfacial (RC) circuit [Hz] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = Summit frequency of the bulk (RC) circuit [Hz] ''' Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb) Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse) alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(x=alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ(w, Rs, L, Ri, Q='none', n='none'): ''' Simulation Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = exponent for the interfacial capacitance [-] ''' Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_TLsQ def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1='none'): ''' Simulation Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = Exponent for the interfacial capacitance [-] Output ----------- Impdance of Rs-(RQ)1-TLsQ ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs(w, Rs, L, Ri, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R = Interfacial Charge transfer resistance [ohm*cm] fs = Summit frequency of interfacial RQ circuit [Hz] n = Exponent for interfacial RQ circuit [-] Q = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-TLs(RQ) ''' Phi = cir_RQ(w, R, Q, n, fs) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1='none', Q2='none'): ''' Simulation Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R2 = Interfacial Charge transfer resistance [ohm*cm] fs2 = Summit frequency of interfacial RQ circuit [Hz] n2 = Exponent for interfacial RQ circuit [-] Q2 = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-(RQ)1-TLs(RQ)2 ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs ### Support function def sinh(x): ''' As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh() ''' return (1 - np.exp(-2*x))/(2*np.exp(-x)) def coth(x): ''' As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth() ''' return (1 + np.exp(-2*x))/(1 - np.exp(-2*x)) ### def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri): ''' Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1='none'): ''' Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q='none'): ''' Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = Interfacial charge transfer resistance [ohm * cm] fs = Summit frequency for the interfacial RQ element [Hz] n = Exponenet for interfacial RQ element [-] Q = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = Electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = Thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1='none', Q2='none'): ''' Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] R2 = interfacial charge transfer resistance [ohm * cm] fs2 = Summit frequency for the interfacial RQ element [Hz] n2 = exponenet for interfacial RQ element [-] Q2 = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL # Transmission lines with solid-state transport def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri): ''' Simulation Function: -R-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = particle charge transfer resistance [ohm*cm^2] Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output -------------- Impedance of Rs-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w,Q=Q,n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid(w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1='none'): ''' Simulation Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2] fs1 = max frequency peak of the interfacial RQ element[Hz] n1 = exponenet for interfacial RQ element R2 = particle charge transfer resistance [ohm*cm^2] Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n2 = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output ------------------ Impedance of R-RQ-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ + Z_TL ### Fitting Circuit Functions ## # def elem_C_fit(params, w): ''' Fit Function: -C- ''' C = params['C'] return 1/(C*(w*1j)) def elem_Q_fit(params, w): ''' Fit Function: -Q- Constant Phase Element for Fitting ''' Q = params['Q'] n = params['n'] return 1/(Q*(w*1j)**n) def cir_RsC_fit(params, w): ''' Fit Function: -Rs-C- ''' Rs = params['Rs'] C = params['C'] return Rs + 1/(C*(w*1j)) def cir_RsQ_fit(params, w): ''' Fit Function: -Rs-Q- ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] return Rs + 1/(Q*(w*1j)**n) def cir_RC_fit(params, w): ''' Fit Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1 ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['C'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("C") == -1: #elif Q == 'none': R = params['R'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['C'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['C'] return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RQ_fit(params, w): ''' Fit Function: -RQ- Return the impedance of an RQ circuit: Z(w) = R / (1+ R*Q * (2w)^n) See Explanation of equations under cir_RQ() The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none' <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] return R/(1+R*Q*(w*1j)**n) def cir_RsRQ_fit(params, w): ''' Fit Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RsRQRQ_fit(params, w): ''' Fit Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("'R2'") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'Q2'") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'n2'") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("'fs2'") == -1: #elif fs == 'none': R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_Randles_simplified_Fit(params, w): ''' Fit Function: Randles simplified -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit. See more under cir_Randles_simplified() NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> || <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] sigma = params['sigma'] Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) def cir_RsRQQ_fit(params, w): ''' Fit Function: -Rs-RQ-Q- See cir_RsRQQ() for details ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] Z_Q = 1/(Q*(w*1j)**n) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_Q def cir_RsRQC_fit(params, w): ''' Fit Function: -Rs-RQ-C- See cir_RsRQC() for details ''' Rs = params['Rs'] C = params['C'] Z_C = 1/(C*(w*1j)) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_C def cir_RsRCC_fit(params, w): ''' Fit Function: -Rs-RC-C- See cir_RsRCC() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] C = params['C'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ_fit(params, w): ''' Fit Function: -Rs-RC-Q- See cir_RsRCQ() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] Q = params['Q'] n = params['n'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) # Polymer electrolytes def cir_C_RC_C_fit(params, w): ''' Fit Function: -C-(RC)-C- See cir_C_RC_C() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Ce = params['Ce'] Z_C = 1/(Ce*(w*1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RC = (Rb/(1+Rb*Cb*(w*1j))) return Z_C + Z_RC def cir_Q_RQ_Q_Fit(params, w): ''' Fit Function: -Q-(RQ)-Q- See cir_Q_RQ_Q() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Qe = params['Qe'] ne = params['ne'] Z_Q = 1/(Qe*(w*1j)**ne) # Bulk impedance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Qb = params['Qb'] nb = params['nb'] fsb = params['fsb'] Rb = (1/(Qb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("Qb") == -1: #elif Q == 'none': Rb = params['Rb'] nb = params['nb'] fsb = params['fsb'] Qb = (1/(Rb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("nb") == -1: #elif n == 'none': Rb = params['Rb'] Qb = params['Qb'] fsb = params['fsb'] nb = np.log(Qb*Rb)/np.log(1/(2*np.pi*fsb)) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] nb = params['nb'] Qb = params['Qb'] Z_RQ = Rb/(1+Rb*Qb*(w*1j)**nb) return Z_Q + Z_RQ def cir_RCRCZD_fit(params, w): ''' Fit Function: -RC_b-RC_e-Z_D See cir_RCRCZD() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impendace if str(params.keys())[10:].find("Re") == -1: #if R == 'none': Ce = params['Ce'] fse = params['fse'] Re = (1/(Ce*(2*np.pi*fse))) if str(params.keys())[10:].find("Ce") == -1: #elif Q == 'none': Re = params['Rb'] fse = params['fsb'] Ce = (1/(Re*(2*np.pi*fse))) if str(params.keys())[10:].find("fse") == -1: #elif fs == 'none': Re = params['Re'] Ce = params['Ce'] Z_RCe = (Re/(1+Re*Ce*(w*1j))) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RCb = (Rb/(1+Rb*Cb*(w*1j))) # Mass transport impendance L = params['L'] D_s = params['D_s'] u1 = params['u1'] u2 = params['u2'] alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ_fit(params, w): ''' Fit Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsTLsQ() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # # Z_TLsQ = Lam * X1 * coth_mp Z_TLsQ = Lam * X1 * coth(x) return Rs + Z_TLsQ def cir_RsRQTLsQ_Fit(params, w): ''' Fit Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsRQTLsQ <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) See mor under cir_RsTLs() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = R/(1+R*Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ) See more under cir_RsRQTLs() <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) if str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs def cir_RsTLQ_fit(params, w): ''' Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ_fit(params, w): ''' Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_Fit(params, w): ''' Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel See cir_RsTL() for details <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = (R/(1+R*Q*(w*1j)**n)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_fit(params, w): ''' Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity including both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # # # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) elif str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) elif str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j) # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_1Dsolid_fit(params, w): ''' Fit Function: -R-TL(Q(RW))- Transmission line w/ full complexity See cir_RsTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R = params['R'] Q = params['Q'] n = params['n'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w=w, Q=Q, n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid_fit(params, w): ''' Fit Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion See cir_RsRQTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL ### Least-Squares error function def leastsq_errorfunc(params, w, re, im, circuit, weight_func): ''' Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over until the total sum of errors is minimized. During the minimization the fit is weighed, and currently three different weigh options are avaliable: - modulus - unity - proportional Modulus is generially recommended as random errors and a bias can exist in the experimental data. <NAME> (<EMAIL> || <EMAIL>) Inputs ------------ - params: parameters needed for CNLS - re: real impedance - im: Imaginary impedance - circuit: The avaliable circuits are shown below, and this this parameter needs it as a string. - C - Q - R-C - R-Q - RC - RQ - R-RQ - R-RQ-RQ - R-RQ-Q - R-(Q(RW)) - R-(Q(RM)) - R-RC-C - R-RC-Q - R-RQ-Q - R-RQ-C - RC-RC-ZD - R-TLsQ - R-RQ-TLsQ - R-TLs - R-RQ-TLs - R-TLQ - R-RQ-TLQ - R-TL - R-RQ-TL - R-TL1Dsolid (reactive interface with 1D solid-state diffusion) - R-RQ-TL1Dsolid - weight_func Weight function - modulus - unity - proportional ''' if circuit == 'C': re_fit = elem_C_fit(params, w).real im_fit = -elem_C_fit(params, w).imag elif circuit == 'Q': re_fit = elem_Q_fit(params, w).real im_fit = -elem_Q_fit(params, w).imag elif circuit == 'R-C': re_fit = cir_RsC_fit(params, w).real im_fit = -cir_RsC_fit(params, w).imag elif circuit == 'R-Q': re_fit = cir_RsQ_fit(params, w).real im_fit = -cir_RsQ_fit(params, w).imag elif circuit == 'RC': re_fit = cir_RC_fit(params, w).real im_fit = -cir_RC_fit(params, w).imag elif circuit == 'RQ': re_fit = cir_RQ_fit(params, w).real im_fit = -cir_RQ_fit(params, w).imag elif circuit == 'R-RQ': re_fit = cir_RsRQ_fit(params, w).real im_fit = -cir_RsRQ_fit(params, w).imag elif circuit == 'R-RQ-RQ': re_fit = cir_RsRQRQ_fit(params, w).real im_fit = -cir_RsRQRQ_fit(params, w).imag elif circuit == 'R-RC-C': re_fit = cir_RsRCC_fit(params, w).real im_fit = -cir_RsRCC_fit(params, w).imag elif circuit == 'R-RC-Q': re_fit = cir_RsRCQ_fit(params, w).real im_fit = -cir_RsRCQ_fit(params, w).imag elif circuit == 'R-RQ-Q': re_fit = cir_RsRQQ_fit(params, w).real im_fit = -cir_RsRQQ_fit(params, w).imag elif circuit == 'R-RQ-C': re_fit = cir_RsRQC_fit(params, w).real im_fit = -cir_RsRQC_fit(params, w).imag elif circuit == 'R-(Q(RW))': re_fit = cir_Randles_simplified_Fit(params, w).real im_fit = -cir_Randles_simplified_Fit(params, w).imag elif circuit == 'R-(Q(RM))': re_fit = cir_Randles_uelectrode_fit(params, w).real im_fit = -cir_Randles_uelectrode_fit(params, w).imag elif circuit == 'C-RC-C': re_fit = cir_C_RC_C_fit(params, w).real im_fit = -cir_C_RC_C_fit(params, w).imag elif circuit == 'Q-RQ-Q': re_fit = cir_Q_RQ_Q_Fit(params, w).real im_fit = -cir_Q_RQ_Q_Fit(params, w).imag elif circuit == 'RC-RC-ZD': re_fit = cir_RCRCZD_fit(params, w).real im_fit = -cir_RCRCZD_fit(params, w).imag elif circuit == 'R-TLsQ': re_fit = cir_RsTLsQ_fit(params, w).real im_fit = -cir_RsTLsQ_fit(params, w).imag elif circuit == 'R-RQ-TLsQ': re_fit = cir_RsRQTLsQ_Fit(params, w).real im_fit = -cir_RsRQTLsQ_Fit(params, w).imag elif circuit == 'R-TLs': re_fit = cir_RsTLs_Fit(params, w).real im_fit = -cir_RsTLs_Fit(params, w).imag elif circuit == 'R-RQ-TLs': re_fit = cir_RsRQTLs_Fit(params, w).real im_fit = -cir_RsRQTLs_Fit(params, w).imag elif circuit == 'R-TLQ': re_fit = cir_RsTLQ_fit(params, w).real im_fit = -cir_RsTLQ_fit(params, w).imag elif circuit == 'R-RQ-TLQ': re_fit = cir_RsRQTLQ_fit(params, w).real im_fit = -cir_RsRQTLQ_fit(params, w).imag elif circuit == 'R-TL': re_fit = cir_RsTL_Fit(params, w).real im_fit = -cir_RsTL_Fit(params, w).imag elif circuit == 'R-RQ-TL': re_fit = cir_RsRQTL_fit(params, w).real im_fit = -cir_RsRQTL_fit(params, w).imag elif circuit == 'R-TL1Dsolid': re_fit = cir_RsTL_1Dsolid_fit(params, w).real im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag elif circuit == 'R-RQ-TL1Dsolid': re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag else: print('Circuit is not defined in leastsq_errorfunc()') error = [(re-re_fit)**2, (im-im_fit)**2] #sum of squares #Different Weighing options, see Lasia if weight_func == 'modulus': weight = [1/((re_fit**2 + im_fit**2)**(1/2)), 1/((re_fit**2 + im_fit**2)**(1/2))] elif weight_func == 'proportional': weight = [1/(re_fit**2), 1/(im_fit**2)] elif weight_func == 'unity': unity_1s = [] for k in range(len(re)): unity_1s.append(1) #makes an array of [1]'s, so that the weighing is == 1 * sum of squres. weight = [unity_1s, unity_1s] else: print('weight not defined in leastsq_errorfunc()') S = np.array(weight) * error #weighted sum of squares return S ### Fitting Class class EIS_exp: ''' This class is used to plot and/or analyze experimental impedance data. The class has three major functions: - EIS_plot() - Lin_KK() - EIS_fit() - EIS_plot() is used to plot experimental data with or without fit - Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set. - EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit <NAME> (<EMAIL> || <EMAIL>) Inputs ----------- - path: path of datafile(s) as a string - data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2'] - cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers. Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6] - mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none'] ''' def __init__(self, path, data, cycle='off', mask=['none','none']): self.df_raw0 = [] self.cycleno = [] for j in range(len(data)): if data[j].find(".mpt") != -1: #file is a .mpt file self.df_raw0.append(extract_mpt(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".DTA") != -1: #file is a .dta file self.df_raw0.append(extract_dta(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".z") != -1: #file is a .z file self.df_raw0.append(extract_solar(path=path, EIS_name=data[j])) #reads all datafiles else: print('Data file(s) could not be identified') self.cycleno.append(self.df_raw0[j].cycle_number) if np.min(self.cycleno[j]) <= np.max(self.cycleno[j-1]): if j > 0: #corrects cycle_number except for the first data file self.df_raw0[j].update({'cycle_number': self.cycleno[j]+np.max(self.cycleno[j-1])}) #corrects cycle number # else: # print('__init__ Error (#1)') #currently need to append a cycle_number coloumn to gamry files # adds individual dataframes into one if len(self.df_raw0) == 1: self.df_raw = self.df_raw0[0] elif len(self.df_raw0) == 2: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0) elif len(self.df_raw0) == 3: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0) elif len(self.df_raw0) == 4: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]], axis=0) elif len(self.df_raw0) == 5: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4]], axis=0) elif len(self.df_raw0) == 6: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5]], axis=0) elif len(self.df_raw0) == 7: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6]], axis=0) elif len(self.df_raw0) == 8: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7]], axis=0) elif len(self.df_raw0) == 9: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8]], axis=0) elif len(self.df_raw0) == 10: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9]], axis=0) elif len(self.df_raw0) == 11: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10]], axis=0) elif len(self.df_raw0) == 12: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], axis=0) elif len(self.df_raw0) == 13: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], self.df_raw0[12]], axis=0) elif len(self.df_raw0) == 14: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], axis=0) elif len(self.df_raw0) == 15: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], self.df_raw0[14], axis=0) else: print("Too many data files || 15 allowed") self.df_raw = self.df_raw.assign(w = 2*np.pi*self.df_raw.f) #creats a new coloumn with the angular frequency #Masking data to each cycle self.df_pre = [] self.df_limited = [] self.df_limited2 = [] self.df = [] if mask == ['none','none'] and cycle == 'off': for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_raw[self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i]]) elif mask == ['none','none'] and cycle != 'off': for i in range(len(cycle)): self.df.append(self.df_raw[self.df_raw.cycle_number == cycle[i]]) #extracting dataframe for each cycle elif mask[0] != 'none' and mask[1] == 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_pre.cycle_number.unique())): #Appending data based on cycle number self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] != 'none' and mask[1] == 'none' and cycle != 'off': # or [i for i, e in enumerate(mask) if e == 'none'] == [0] self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited2.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle == 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(self.df_raw.cycle_number.unique())): self.df.append(self.df_limited[self.df_limited2.cycle_number == self.df_raw.cycle_number.unique()[i]]) else: print('__init__ error (#2)') def Lin_KK(self, num_RC='auto', legend='on', plot='residuals', bode='off', nyq_xlim='none', nyq_ylim='none', weight_func='Boukamp', savefig='none'): ''' Plots the Linear Kramers-Kronig (KK) Validity Test The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits to the data. A data quality analysis can hereby be made on the basis of the relative residuals Ref.: - Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 - Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894 The function performs the KK analysis and as default the relative residuals in each subplot Note, that weigh_func should be equal to 'Boukamp'. <NAME> (<EMAIL> || <EMAIL>) Optional Inputs ----------------- - num_RC: - 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 that ensures no under- or over-fitting occurs - can be hardwired by inserting any number (RC-elements/decade) - plot: - 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked - 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description - nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value - legend: - 'on' = displays cycle number - 'potential' = displays average potential which the spectra was measured at - 'off' = off bode = Plots Bode Plot - options: 'on' = re, im vs. log(freq) 'log' = log(re, im) vs. log(freq) 're' = re vs. log(freq) 'log_re' = log(re) vs. log(freq) 'im' = im vs. log(freq) 'log_im' = log(im) vs. log(freq) ''' if num_RC == 'auto': print('cycle || No. RC-elements || u') self.decade = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] self.number_RC = [] self.number_RC_sort = [] self.KK_u = [] self.KK_Rgreater = [] self.KK_Rminor = [] M = 2 for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC.append(M) self.number_RC_sort.append(M) #needed for self.KK_R self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC_sort.insert(0,0) #needed for self.KK_R for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC_sort)[i]):int(np.cumsum(self.number_RC_sort)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rgreater.append(np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0) ) self.KK_Rminor.append(np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) for i in range(len(self.df)): while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88: self.number_RC_sort0 = [] self.KK_R_lim = [] self.number_RC[i] = self.number_RC[i] + 1 self.number_RC_sort0.append(self.number_RC) self.number_RC_sort = np.insert(self.number_RC_sort0, 0,0) self.Rparam[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0] #Creates intial guesses for R's self.t_const[i] = KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i])) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit[i] = minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) ) #maxfev=99 self.R_names[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1] #creates R names self.KK_R0 = np.delete(np.array(self.KK_R0), np.s_[0:len(self.KK_R0)]) self.KK_R0 = [] for q in range(len(self.df)): for j in range(len(self.R_names[q])): self.KK_R0.append(self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value) self.KK_R_lim = np.cumsum(self.number_RC_sort) #used for KK_R[i] self.KK_R[i] = self.KK_R0[self.KK_R_lim[i]:self.KK_R_lim[i+1]] #assigns resistances from each spectra to their respective df self.KK_Rgreater[i] = np.where(np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0) self.KK_Rminor[i] = np.where(np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0) self.KK_u[i] = 1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i]))) else: print('['+str(i+1)+']'+' '+str(self.number_RC[i]),' '+str(np.round(self.KK_u[i],2))) elif num_RC != 'auto': #hardwired number of RC-elements/decade print('cycle || u') self.decade = [] self.number_RC0 = [] self.number_RC = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC0.append(np.round(num_RC * self.decade[i])) self.number_RC.append(np.round(num_RC * self.decade[i])) #Creats the the number of -(RC)- circuits self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC0[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC0.insert(0,0) # print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] self.KK_Rgreater = [] self.KK_Rminor = [] self.KK_u = [] for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC0)[i]):int(np.cumsum(self.number_RC0)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rx = np.array(self.KK_R) self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0) ) self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) #currently gives incorrect values print('['+str(i+1)+']'+' '+str(np.round(self.KK_u[i],2))) else: print('num_RC incorrectly defined') self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] for i in range(len(self.df)): if int(self.number_RC[i]) == 2: self.KK_circuit_fit.append(KK_RC2(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 3: self.KK_circuit_fit.append(KK_RC3(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 4: self.KK_circuit_fit.append(KK_RC4(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 5: self.KK_circuit_fit.append(KK_RC5(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 6: self.KK_circuit_fit.append(KK_RC6(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 7: self.KK_circuit_fit.append(KK_RC7(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 8: self.KK_circuit_fit.append(KK_RC8(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 9: self.KK_circuit_fit.append(KK_RC9(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 10: self.KK_circuit_fit.append(KK_RC10(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 11: self.KK_circuit_fit.append(KK_RC11(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 12: self.KK_circuit_fit.append(KK_RC12(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 13: self.KK_circuit_fit.append(KK_RC13(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 14: self.KK_circuit_fit.append(KK_RC14(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 15: self.KK_circuit_fit.append(KK_RC15(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 16: self.KK_circuit_fit.append(KK_RC16(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 17: self.KK_circuit_fit.append(KK_RC17(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 18: self.KK_circuit_fit.append(KK_RC18(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 19: self.KK_circuit_fit.append(KK_RC19(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 20: self.KK_circuit_fit.append(KK_RC20(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 21: self.KK_circuit_fit.append(KK_RC21(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 22: self.KK_circuit_fit.append(KK_RC22(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 23: self.KK_circuit_fit.append(KK_RC23(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 24: self.KK_circuit_fit.append(KK_RC24(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 25: self.KK_circuit_fit.append(KK_RC25(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 26: self.KK_circuit_fit.append(KK_RC26(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 27: self.KK_circuit_fit.append(KK_RC27(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 28: self.KK_circuit_fit.append(KK_RC28(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 29: self.KK_circuit_fit.append(KK_RC29(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 30: self.KK_circuit_fit.append(KK_RC30(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 31: self.KK_circuit_fit.append(KK_RC31(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 32: self.KK_circuit_fit.append(KK_RC32(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 33: self.KK_circuit_fit.append(KK_RC33(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 34: self.KK_circuit_fit.append(KK_RC34(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 35: self.KK_circuit_fit.append(KK_RC35(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 36: self.KK_circuit_fit.append(KK_RC36(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 37: self.KK_circuit_fit.append(KK_RC37(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 38: self.KK_circuit_fit.append(KK_RC38(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 39: self.KK_circuit_fit.append(KK_RC39(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 40: self.KK_circuit_fit.append(KK_RC40(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 41: self.KK_circuit_fit.append(KK_RC41(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 42: self.KK_circuit_fit.append(KK_RC42(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 43: self.KK_circuit_fit.append(KK_RC43(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 44: self.KK_circuit_fit.append(KK_RC44(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 45: self.KK_circuit_fit.append(KK_RC45(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 46: self.KK_circuit_fit.append(KK_RC46(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 47: self.KK_circuit_fit.append(KK_RC47(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 48: self.KK_circuit_fit.append(KK_RC48(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 49: self.KK_circuit_fit.append(KK_RC49(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 50: self.KK_circuit_fit.append(KK_RC50(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 51: self.KK_circuit_fit.append(KK_RC51(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 52: self.KK_circuit_fit.append(KK_RC52(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 53: self.KK_circuit_fit.append(KK_RC53(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 54: self.KK_circuit_fit.append(KK_RC54(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 55: self.KK_circuit_fit.append(KK_RC55(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 56: self.KK_circuit_fit.append(KK_RC56(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 57: self.KK_circuit_fit.append(KK_RC57(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 58: self.KK_circuit_fit.append(KK_RC58(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 59: self.KK_circuit_fit.append(KK_RC59(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 60: self.KK_circuit_fit.append(KK_RC60(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 61: self.KK_circuit_fit.append(KK_RC61(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 62: self.KK_circuit_fit.append(KK_RC62(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 63: self.KK_circuit_fit.append(KK_RC63(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 64: self.KK_circuit_fit.append(KK_RC64(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 65: self.KK_circuit_fit.append(KK_RC65(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 66: self.KK_circuit_fit.append(KK_RC66(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 67: self.KK_circuit_fit.append(KK_RC67(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 68: self.KK_circuit_fit.append(KK_RC68(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 69: self.KK_circuit_fit.append(KK_RC69(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 70: self.KK_circuit_fit.append(KK_RC70(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 71: self.KK_circuit_fit.append(KK_RC71(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 72: self.KK_circuit_fit.append(KK_RC72(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 73: self.KK_circuit_fit.append(KK_RC73(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 74: self.KK_circuit_fit.append(KK_RC74(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 75: self.KK_circuit_fit.append(KK_RC75(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 76: self.KK_circuit_fit.append(KK_RC76(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 77: self.KK_circuit_fit.append(KK_RC77(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 78: self.KK_circuit_fit.append(KK_RC78(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 79: self.KK_circuit_fit.append(KK_RC79(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 80: self.KK_circuit_fit.append(KK_RC80(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) else: print('RC simulation circuit not defined') print(' Number of RC = ', self.number_RC) self.KK_rr_re.append(residual_real(re=self.df[i].re, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the real part self.KK_rr_im.append(residual_imag(im=self.df[i].im, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the imag part ### Plotting Linear_kk results ## # ### Label functions self.label_re_1 = [] self.label_im_1 = [] self.label_cycleno = [] if legend == 'on': for i in range(len(self.df)): self.label_re_1.append("Z' (#"+str(i+1)+")") self.label_im_1.append("Z'' (#"+str(i+1)+")") self.label_cycleno.append('#'+str(i+1)) elif legend == 'potential': for i in range(len(self.df)): self.label_re_1.append("Z' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_im_1.append("Z'' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_cycleno.append(str(np.round(np.average(self.df[i].E_avg), 2))+' V') if plot == 'w_data': fig = figure(figsize=(6, 8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95) ax = fig.add_subplot(311, aspect='equal') ax1 = fig.add_subplot(312) ax2 = fig.add_subplot(313) colors = sns.color_palette("colorblind", n_colors=len(self.df)) colors_real = sns.color_palette("Blues", n_colors=len(self.df)+2) colors_imag = sns.color_palette("Oranges", n_colors=len(self.df)+2) ### Nyquist Plot for i in range(len(self.df)): ax.plot(self.df[i].re, self.df[i].im, marker='o', ms=4, lw=2, color=colors[i], ls='-', alpha=.7, label=self.label_cycleno[i]) ### Bode Plot if bode == 'on': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z', -Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 're': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_re': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("-Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(-Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z', -Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ### Kramers-Kronig Relative Residuals for i in range(len(self.df)): ax2.plot(np.log10(self.df[i].f), self.KK_rr_re[i]*100, color=colors_real[i+1], marker='D', ls='--', ms=6, alpha=.7, label=self.label_re_1[i]) ax2.plot(np.log10(self.df[i].f), self.KK_rr_im[i]*100, color=colors_imag[i+1], marker='s', ls='--', ms=6, alpha=.7, label=self.label_im_1[i]) ax2.set_xlabel("log(f) [Hz]") ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_re_min)*100*1.5, np.max(np.abs(self.KK_rr_re_min))*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_re_max)*100*.9], color='k', fontweight='bold') elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_im_min)*100*1.5, np.max(self.KK_rr_im_max)*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_im_max)*100*.9], color='k', fontweight='bold') ### Figure specifics if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.set_xlabel("Z' [$\Omega$]") ax.set_ylabel("-Z'' [$\Omega$]") if nyq_xlim != 'none': ax.set_xlim(nyq_xlim[0], nyq_xlim[1]) if nyq_ylim != 'none': ax.set_ylim(nyq_ylim[0], nyq_ylim[1]) #Save Figure if savefig != 'none': fig.savefig(savefig) ### Illustrating residuals only elif plot == 'residuals': colors = sns.color_palette("colorblind", n_colors=9) colors_real = sns.color_palette("Blues", n_colors=9) colors_imag = sns.color_palette("Oranges", n_colors=9) ### 1 Cycle if len(self.df) == 1: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax = fig.add_subplot(231) ax.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax.set_xlabel("log(f) [Hz]") ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = np.min(self.KK_rr_im) self.KK_rr_im_max = np.max(self.KK_rr_im) self.KK_rr_re_min = np.min(self.KK_rr_re) self.KK_rr_re_max = np.max(self.KK_rr_re) if self.KK_rr_re_max > self.KK_rr_im_max: self.KK_ymax = self.KK_rr_re_max else: self.KK_ymax = self.KK_rr_im_max if self.KK_rr_re_min < self.KK_rr_im_min: self.KK_ymin = self.KK_rr_re_min else: self.KK_ymin = self.KK_rr_im_min if np.abs(self.KK_ymin) > self.KK_ymax: ax.set_ylim(self.KK_ymin*100*1.5, np.abs(self.KK_ymin)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin) < self.KK_ymax: ax.set_ylim(np.negative(self.KK_ymax)*100*1.5, np.abs(self.KK_ymax)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 2 Cycles elif len(self.df) == 2: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) #cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 3 Cycles elif len(self.df) == 3: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 4 Cycles elif len(self.df) == 4: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 5 Cycles elif len(self.df) == 5: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 6 Cycles elif len(self.df) == 6: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax6 = fig.add_subplot(236) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_xlabel("log(f) [Hz]") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim(self.KK_ymin[5]*100*1.5, np.abs(self.KK_ymin[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim(np.negative(self.KK_ymax[5])*100*1.5, np.abs(self.KK_ymax[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK, ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), self.KK_ymax[5]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 7 Cycles elif len(self.df) == 7: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) # Cycle 7 ax7.plot(np.log10(self.df[6].f), self.KK_rr_re[6]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax7.plot(np.log10(self.df[6].f), self.KK_rr_im[6]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax7.set_xlabel("log(f) [Hz]") ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax7.legend(loc='best', fontsize=10, frameon=False) ax7.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim(self.KK_ymin[5]*100*1.5, np.abs(self.KK_ymin[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim(np.negative(self.KK_ymax[5])*100*1.5, np.abs(self.KK_ymax[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK, ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), self.KK_ymax[5]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[6]) > self.KK_ymax[6]: ax7.set_ylim(self.KK_ymin[6]*100*1.5, np.abs(self.KK_ymin[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[6]) < self.KK_ymax[6]: ax7.set_ylim(np.negative(self.KK_ymax[6])*100*1.5, np.abs(self.KK_ymax[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymax[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK, ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), self.KK_ymax[6]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 8 Cycles elif len(self.df) == 8: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) ax8 = fig.add_subplot(338) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) # Cycle 7 ax7.plot(np.log10(self.df[6].f), self.KK_rr_re[6]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax7.plot(np.log10(self.df[6].f), self.KK_rr_im[6]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax7.set_xlabel("log(f) [Hz]") ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax7.legend(loc='best', fontsize=10, frameon=False) ax7.axhline(0, ls='--', c='k', alpha=.5) # Cycle 8 ax8.plot(np.log10(self.df[7].f), self.KK_rr_re[7]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax8.plot(np.log10(self.df[7].f), self.KK_rr_im[7]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax8.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax8.legend(loc='best', fontsize=10, frameon=False) ax8.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim(self.KK_ymin[5]*100*1.5, np.abs(self.KK_ymin[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim(np.negative(self.KK_ymax[5])*100*1.5, np.abs(self.KK_ymax[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK, ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), self.KK_ymax[5]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[6]) > self.KK_ymax[6]: ax7.set_ylim(self.KK_ymin[6]*100*1.5, np.abs(self.KK_ymin[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[6]) < self.KK_ymax[6]: ax7.set_ylim(np.negative(self.KK_ymax[6])*100*1.5, np.abs(self.KK_ymax[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymax[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK, ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), self.KK_ymax[6]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[7]) > self.KK_ymax[7]: ax8.set_ylim(self.KK_ymin[7]*100*1.5, np.abs(self.KK_ymin[7])*100*1.5) if legend == 'on': ax8.annotate('Lin-KK, #8', xy=[np.min(np.log10(self.df[7].f)), np.abs(self.KK_ymin[7])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax8.annotate('Lin-KK ('+str(np.round(
np.average(self.df[7].E_avg)
numpy.average