prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import pytest import numpy as np import os from openvino.inference_engine import TensorDesc, Blob, IECore from conftest import image_path, create_encoder import ngraph as ng path_to_image = image_path() def test_init_with_tensor_desc(): tensor_desc = TensorDesc("FP32", [1, 3, 127, 127], "NHWC") blob = Blob(tensor_desc) assert isinstance(blob.buffer, np.ndarray) assert blob.tensor_desc == tensor_desc @pytest.mark.parametrize("shape, layout", [ ([1, 3, 127, 127], "NCHW"), ([], "SCALAR"), ]) def test_init_with_numpy(shape, layout): tensor_desc = TensorDesc("FP32", shape, layout) array = np.ones(shape=shape, dtype=np.float32) blob = Blob(tensor_desc, array) assert isinstance(blob.buffer, np.ndarray) assert np.shares_memory(blob.buffer, array) assert blob.tensor_desc == tensor_desc def test_get_tensor_desc(): tensor_desc = TensorDesc("FP32", [1, 127, 127, 3], "NHWC") blob = Blob(tensor_desc) assert blob.tensor_desc == tensor_desc def test_get_buffer(): tensor_desc = TensorDesc("FP32", [1, 3, 127, 127], "NCHW") array = np.ones(shape=(1, 3, 127, 127), dtype=np.float32) blob = Blob(tensor_desc, array) assert np.array_equal(blob.buffer, array) @pytest.mark.parametrize("precision, numpy_precision", [ ("FP32", np.float32), ("FP64", np.float64), ("FP16", np.float16), ("I8", np.int8), ("U8", np.uint8), ("I32", np.int32), ("I16", np.int16), ("U16", np.uint16), ("I64", np.int64), ("BOOL", np.uint8), ("BIN", np.int8), ("BF16", np.float16), ]) def test_write_to_buffer(precision, numpy_precision): tensor_desc = TensorDesc(precision, [1, 3, 127, 127], "NCHW") array = np.zeros(shape=(1, 3, 127, 127), dtype=numpy_precision) blob = Blob(tensor_desc, array) ones_arr = np.ones(shape=(1, 3, 127, 127), dtype=numpy_precision) blob.buffer[:] = ones_arr assert
np.array_equal(blob.buffer, ones_arr)
numpy.array_equal
import os import gym import gym from gym import wrappers, logger import gym_panda from gym_panda.wrapper_env.wrapper import * # import gym_circle_move import numpy as np import matplotlib.pyplot as plt from stable_baselines import DDPG,PPO2,TRPO from stable_baselines.common.policies import MlpPolicy from stable_baselines import results_plotter from stable_baselines.bench import Monitor from stable_baselines.results_plotter import load_results, ts2xy #from stable_baselines.common.noise import AdaptiveParamNoiseSpec from stable_baselines.common.callbacks import BaseCallback from stable_baselines.ddpg.policies import MlpPolicy as ddpg_MlpPolicy from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec from datetime import datetime class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). :param check_freq: (int) :param log_dir: (str) Path to the folder where the model will be saved. It must contains the file created by the ``Monitor`` wrapper. :param verbose: (int) """ def __init__(self, check_freq: int, log_dir: str, verbose=1): super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, 'best_model') self.latest_path = os.path.join(log_dir, 'latest_model') self.best_mean_reward = -np.inf self.reward = [] def _init_callback(self) -> None: # Create folder if needed if self.save_path is not None: os.makedirs(self.save_path, exist_ok=True) if self.latest_path is not None: os.makedirs(self.latest_path, exist_ok=True) def _on_step(self) -> bool: # print("h------------------------------------------------------g") if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward = np.mean(y[-100:]) if self.verbose > 0: print("Num timesteps: {}".format(self.num_timesteps)) print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward, mean_reward)) # New best model, you could save the agent here if mean_reward > self.best_mean_reward: self.best_mean_reward = mean_reward # Example for saving best model if self.verbose > 0: print("Saving new best model to {}".format(self.save_path)) self.model.save(self.save_path) if self.n_calls % 1e4 == 0: self.model.save(self.latest_path) return True if __name__ == "__main__": # make env env_name = "feasibilitypanda-v0" #env_name = "disabledpanda-v0" env = gym.make(env_name) #pdb.set_trace() #env = SkipStepsWrapperVAE(env) #env = infeasibleWrapper(env) # Create log dir #log_dir = "/iliad/u/yilunhao/logs/models/sb-trpo-joint-target-diffdynamics-{}/".format(datetime.now().strftime("%Y-%m-%d")) log_dir = "../logs/models/sb-trpo-joint-target-diffdynamics-{}/".format(datetime.now().strftime("%Y-%m-%d")) tensorboard_dir = "../logs/logs" os.makedirs(tensorboard_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True) env = Monitor(env, log_dir) env.reset() # print(env.n) n_actions = env.action_space.shape[-1] param_noise = AdaptiveParamNoiseSpec(initial_stddev=0.01, desired_action_stddev=0.01) action_noise = OrnsteinUhlenbeckActionNoise(mean=
np.zeros(n_actions)
numpy.zeros
from abc import abstractmethod, ABC from typing import Optional, Tuple, Any, cast, Union, Sequence import PIL import gym import numpy as np from torchvision import transforms from allenact.base_abstractions.misc import EnvType from allenact.base_abstractions.sensor import Sensor from allenact.base_abstractions.task import SubTaskType from allenact.utils.misc_utils import prepare_locals_for_super from allenact.utils.tensor_utils import ScaleBothSides class VisionSensor(Sensor[EnvType, SubTaskType]): def __init__( self, mean: Optional[np.ndarray] = None, stdev: Optional[np.ndarray] = None, height: Optional[int] = None, width: Optional[int] = None, uuid: str = "vision", output_shape: Optional[Tuple[int, ...]] = None, output_channels: Optional[int] = None, unnormalized_infimum: float = -np.inf, unnormalized_supremum: float = np.inf, scale_first: bool = True, **kwargs: Any ): """Initializer. # Parameters mean : The images will be normalized with the given mean stdev : The images will be normalized with the given standard deviations. height : If it's a non-negative integer and `width` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. width : If it's a non-negative integer and `height` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. uuid : The universally unique identifier for the sensor. output_shape : Optional observation space shape (alternative to `output_channels`). output_channels : Optional observation space number of channels (alternative to `output_shape`). unnormalized_infimum : Lower limit(s) for the observation space range. unnormalized_supremum : Upper limit(s) for the observation space range. scale_first : Whether to scale image before normalization (if needed). kwargs : Extra kwargs. Currently unused. """ self._norm_means = mean self._norm_sds = stdev assert (self._norm_means is None) == (self._norm_sds is None), ( "In VisionSensor's config, " "either both mean/stdev must be None or neither." ) self._should_normalize = self._norm_means is not None self._height = height self._width = width assert (self._width is None) == (self._height is None), ( "In VisionSensor's config, " "either both height/width must be None or neither." ) self._scale_first = scale_first self.scaler: Optional[ScaleBothSides] = None if self._width is not None: self.scaler = ScaleBothSides( width=cast(int, self._width), height=cast(int, self._height) ) self.to_pil = transforms.ToPILImage() # assumes mode="RGB" for 3 channels self._observation_space = self._make_observation_space( output_shape=output_shape, output_channels=output_channels, unnormalized_infimum=unnormalized_infimum, unnormalized_supremum=unnormalized_supremum, ) assert int(PIL.__version__.split(".")[0]) != 7, ( "We found that Pillow version >=7.* has broken scaling," " please downgrade to version 6.2.1 or upgrade to >=8.0.0" ) observation_space = self._get_observation_space() super().__init__(**prepare_locals_for_super(locals())) def _make_observation_space( self, output_shape: Optional[Tuple[int, ...]], output_channels: Optional[int], unnormalized_infimum: float, unnormalized_supremum: float, ) -> gym.spaces.Box: assert output_shape is None or output_channels is None, ( "In VisionSensor's config, " "only one of output_shape and output_channels can be not None." ) shape: Optional[Tuple[int, ...]] = None if output_shape is not None: shape = output_shape elif self._height is not None and output_channels is not None: shape = ( cast(int, self._height), cast(int, self._width), cast(int, output_channels), ) if not self._should_normalize or shape is None or len(shape) == 1: return gym.spaces.Box( low=np.float32(unnormalized_infimum), high=np.float32(unnormalized_supremum), shape=shape, ) else: out_shape = shape[:-1] + (1,) low = np.tile( (unnormalized_infimum - cast(np.ndarray, self._norm_means)) / cast(np.ndarray, self._norm_sds), out_shape, ) high = np.tile( (unnormalized_supremum - cast(np.ndarray, self._norm_means)) / cast(np.ndarray, self._norm_sds), out_shape, ) return gym.spaces.Box(low=np.float32(low), high=np.float32(high)) def _get_observation_space(self): return self._observation_space @property def height(self) -> Optional[int]: """Height that input image will be rescale to have. # Returns The height as a non-negative integer or `None` if no rescaling is done. """ return self._height @property def width(self) -> Optional[int]: """Width that input image will be rescale to have. # Returns The width as a non-negative integer or `None` if no rescaling is done. """ return self._width @abstractmethod def frame_from_env(self, env: EnvType, task: Optional[SubTaskType]) -> np.ndarray: raise NotImplementedError def get_observation( self, env: EnvType, task: Optional[SubTaskType], *args: Any, **kwargs: Any ) -> Any: im = self.frame_from_env(env=env, task=task) assert ( im.dtype == np.float32 and (len(im.shape) == 2 or im.shape[-1] == 1) ) or (im.shape[-1] == 3 and im.dtype == np.uint8), ( "Input frame must either have 3 channels and be of" " type np.uint8 or have one channel and be of type np.float32" ) if self._scale_first: if self.scaler is not None and im.shape[:2] != (self._height, self._width): im = np.array(self.scaler(self.to_pil(im)), dtype=im.dtype) # hwc assert im.dtype in [np.uint8, np.float32] if im.dtype == np.uint8: im = im.astype(np.float32) / 255.0 if self._should_normalize: im -= self._norm_means im /= self._norm_sds if not self._scale_first: if self.scaler is not None and im.shape[:2] != (self._height, self._width): im = np.array(self.scaler(self.to_pil(im)), dtype=np.float32) # hwc return im class RGBSensor(VisionSensor[EnvType, SubTaskType], ABC): def __init__( self, use_resnet_normalization: bool = False, mean: Optional[Union[np.ndarray, Sequence[float]]] = (0.485, 0.456, 0.406), stdev: Optional[Union[np.ndarray, Sequence[float]]] = (0.229, 0.224, 0.225), height: Optional[int] = None, width: Optional[int] = None, uuid: str = "rgb", output_shape: Optional[Tuple[int, ...]] = None, output_channels: int = 3, unnormalized_infimum: float = 0.0, unnormalized_supremum: float = 1.0, scale_first: bool = True, **kwargs: Any ): """Initializer. # Parameters use_resnet_normalization : Whether to apply image normalization with the given `mean` and `stdev`. mean : The images will be normalized with the given mean if `use_resnet_normalization` is True (default `[0.485, 0.456, 0.406]`, i.e. the standard resnet normalization mean). stdev : The images will be normalized with the given standard deviation if `use_resnet_normalization` is True (default `[0.229, 0.224, 0.225]`, i.e. the standard resnet normalization standard deviation). height: If it's a non-negative integer and `width` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. width: If it's a non-negative integer and `height` is also non-negative integer, the image returned from the environment will be rescaled to have `height` rows and `width` columns using bilinear sampling. uuid: The universally unique identifier for the sensor. output_shape: Optional observation space shape (alternative to `output_channels`). output_channels: Optional observation space number of channels (alternative to `output_shape`). unnormalized_infimum: Lower limit(s) for the observation space range. unnormalized_supremum: Upper limit(s) for the observation space range. scale_first: Whether to scale image before normalization (if needed). kwargs : Extra kwargs. Currently unused. """ if not use_resnet_normalization: mean, stdev = None, None if isinstance(mean, tuple): mean = np.array(mean, dtype=np.float32).reshape(1, 1, len(mean)) if isinstance(stdev, tuple): stdev =
np.array(stdev, dtype=np.float32)
numpy.array
from math import ceil from moviepy.editor import VideoFileClip, concatenate_videoclips from moviepy.video.fx.all import speedx from moviepy.audio.fx.all import volumex import numpy as np class Clip: def __init__(self, clip_path): self.clip = VideoFileClip(clip_path) self.audio = Audio(self.clip.audio) def get_duration(self): return self.clip.duration def jumpcut(self, magnitude_threshold_ratio, duration_threshold_in_seconds, failure_tolerance_ratio, space_on_edges, silence_part_speed, min_loud_part_duration): intervals_to_cut = self.audio.get_intervals_to_cut(magnitude_threshold_ratio, duration_threshold_in_seconds, failure_tolerance_ratio, space_on_edges) jumpcutted_clips = [] previous_stop = 0 for start, stop in intervals_to_cut: clip_before = self.clip.subclip(previous_stop, start) if clip_before.duration > min_loud_part_duration: jumpcutted_clips.append(clip_before) if silence_part_speed is not None: silence_clip = self.clip.subclip(start, stop) silence_clip = speedx(silence_clip, silence_part_speed).without_audio() jumpcutted_clips.append(silence_clip) previous_stop = stop last_clip = self.clip.subclip(stop, self.clip.duration) jumpcutted_clips.append(last_clip) return concatenate_videoclips(jumpcutted_clips), intervals_to_cut class Audio: def __init__(self, audio): self.audio = audio self.fps = audio.fps self.signal = self.audio.to_soundarray() if len(self.signal.shape) == 1: self.signal = self.signal.reshape(-1, 1) def get_intervals_to_cut(self, magnitude_threshold_ratio, duration_threshold_in_seconds, failure_tolerance_ratio, space_on_edges): min_magnitude = min(abs(np.min(self.signal)),
np.max(self.signal)
numpy.max
""" Make sure the isochronal likelihood function looks the same as stardate with isochrones only """ import emcee import numpy as np from stardate.lhf import lnprob, lnlike import stardate as sd import time from isochrones import SingleStarModel, get_ichrone bands = ["B", "V", "J", "H", "K", "BP", "RP"] mist = get_ichrone("mist", bands=bands) def iso_lnprob(params, *args): linparams = params*1 linparams[3] = np.exp(linparams[3]) mod, iso_params = args like, prior = mod.lnlike(linparams), mod.lnprior(linparams) prob = like + prior if not np.isfinite(prob): prob = -np.inf return prob def test_iso_lnlike(): iso_params = {"teff": (5770, 10), "feh": (0, .01), "logg": (4.44, .1), "parallax": (1, 1)} mod = SingleStarModel(mist, **iso_params) # StarModel isochrones obj params = [354, np.log10(4.56*1e9), 0., 1000, 0.] lnparams = [354, np.log10(4.56*1e9), 0., np.log(1000), 0.] lnpr = mod.lnprior(params) # lnparams = [350, 9, 0., 6, 0.] args1 = [mod, iso_params] # Calculate the lnprob above iso_lp = iso_lnprob(lnparams, *args1) start = time.time() for i in range(100): iso_lp = iso_lnprob(lnparams, *args1) end = time.time() # Calculate the stardate lnprob args2 = [mod, None, None, True, False, True, "praesepe"] start = time.time() for i in range(100): lp = lnprob(lnparams, *args2)[0] end = time.time() # print("time = ", end - start) ll = lnlike(lnparams, *args2) lnprior = lp - ll assert iso_lp == lp assert np.isclose(iso_lp - lnpr, ll) assert lnpr == lnprior # THIS TEST np.random.seed(42) nwalkers, ndim, nsteps = 50, 5, 100 p0 = [np.random.randn(ndim)*1e-4 + lnparams for j in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, iso_lnprob, args=args1); start = time.time() sampler.run_mcmc(p0, nsteps); end = time.time() samples = np.reshape(sampler.chain, (nwalkers*nsteps, ndim)) test_median =
np.median(samples[:, 1])
numpy.median
"""Pollinator service model for InVEST.""" import itertools import collections import re import os import logging import hashlib import inspect from osgeo import gdal from osgeo import ogr import pygeoprocessing import numpy import taskgraph from . import utils from . import validation from . import MODEL_METADATA LOGGER = logging.getLogger(__name__) ARGS_SPEC = { "model_name": MODEL_METADATA["pollination"].model_title, "pyname": MODEL_METADATA["pollination"].pyname, "userguide_html": MODEL_METADATA["pollination"].userguide, "args": { "workspace_dir": validation.WORKSPACE_SPEC, "results_suffix": validation.SUFFIX_SPEC, "n_workers": validation.N_WORKERS_SPEC, "landcover_raster_path": { "type": "raster", "required": True, "validation_options": { "projected": True, }, "about": ( "This is the landcover map that's used to map biophysical " "properties about habitat and floral resources of landcover " "types to a spatial layout."), "name": "Land Cover Map" }, "guild_table_path": { "validation_options": { "required_fields": ["species", "alpha", "relative_abundance"], }, "type": "csv", "required": True, "about": ( "A table indicating the bee species to analyze in this model " "run. Table headers must include:<br/>* 'species': a bee " "species whose column string names will be referred to in " "other tables and the model will output analyses per species." "<br/> * any number of columns matching " "_NESTING_SUITABILITY_PATTERN with values in the range " "[0.0, 1.0] indicating the suitability of the given species " "to nest in a particular substrate.<br/>* any number of " "_FORAGING_ACTIVITY_PATTERN columns with values in the range " "[0.0, 1.0] indicating the relative level of foraging " "activity for that species during a particular season." "<br/>* 'alpha': the sigma average flight distance of that " "bee species in meters.<br/>* 'relative_abundance': a weight " "indicating the relative abundance of the particular species " "with respect to the sum of all relative abundance weights " "in the table."), "name": "Guild Table" }, "landcover_biophysical_table_path": { "validation_options": { "required_fields": ["lucode"], }, "type": "csv", "required": True, "about": ( "A CSV table mapping landcover codes in the landcover raster " "to indexes of nesting availability for each nesting " "substrate referenced in guilds table as well as indexes of " "abundance of floral resources on that landcover type per " "season in the bee activity columns of the guild table." "<br/>All indexes are in the range [0.0, 1.0].<br/>Columns " "in the table must be at least<br/>* 'lucode': representing " "all the unique landcover codes in the raster st " "`args['landcover_path']`<br/>* For every nesting matching " "_NESTING_SUITABILITY_PATTERN in the guild stable, a column " "matching the pattern in `_LANDCOVER_NESTING_INDEX_HEADER`." "<br/>* For every season matching _FORAGING_ACTIVITY_PATTERN " "in the guilds table, a column matching the pattern in " "`_LANDCOVER_FLORAL_RESOURCES_INDEX_HEADER`."), "name": "Land Cover Biophysical Table" }, "farm_vector_path": { "validation_options": { "required_fields": ["crop_type", "half_sat", "season", "p_dep", "p_managed"], }, "type": "vector", "required": False, "about": ( "This is a layer of polygons representing farm sites to be " "analyzed. The vector must have at least the following " "fields:<br/><br/>* season (string): season in which the " "farm needs pollination.<br/>* half_sat (float): a real in " "the range [0.0, 1.0] representing the proportion of wild " "pollinators to achieve a 50% yield of that crop.<br/>* " "p_wild_dep (float): a number in the range [0.0, 1.0] " "representing the proportion of yield dependent on " "pollinators.<br/>* p_managed (float): proportion of " "pollinators that come from non-native/managed hives.<br/>" "* f_[season] (float): any number of fields that match this " "pattern such that `season` also matches the season headers " "in the biophysical and guild table. Any areas that overlap " "the landcover map will replace seasonal floral resources " "with this value. Ranges from 0..1.<br/>* n_[substrate] " "(float): any number of fields that match this pattern such " "that `substrate` also matches the nesting substrate headers " "in the biophysical and guild table. Any areas that " "overlap the landcover map will replace nesting substrate " "suitability with this value. Ranges from 0..1."), "name": "Farm Vector" } } } _INDEX_NODATA = -1.0 # These patterns are expected in the biophysical table _NESTING_SUBSTRATE_PATTERN = 'nesting_([^_]+)_availability_index' _FLORAL_RESOURCES_AVAILABLE_PATTERN = 'floral_resources_([^_]+)_index' _EXPECTED_BIOPHYSICAL_HEADERS = [ 'lucode', _NESTING_SUBSTRATE_PATTERN, _FLORAL_RESOURCES_AVAILABLE_PATTERN] # These are patterns expected in the guilds table _NESTING_SUITABILITY_PATTERN = 'nesting_suitability_([^_]+)_index' # replace with season _FORAGING_ACTIVITY_PATTERN = 'foraging_activity_%s_index' _FORAGING_ACTIVITY_RE_PATTERN = _FORAGING_ACTIVITY_PATTERN % '([^_]+)' _RELATIVE_SPECIES_ABUNDANCE_FIELD = 'relative_abundance' _ALPHA_HEADER = 'alpha' _EXPECTED_GUILD_HEADERS = [ 'species', _NESTING_SUITABILITY_PATTERN, _FORAGING_ACTIVITY_RE_PATTERN, _ALPHA_HEADER, _RELATIVE_SPECIES_ABUNDANCE_FIELD] _NESTING_SUBSTRATE_INDEX_FILEPATTERN = 'nesting_substrate_index_%s%s.tif' # this is used if there is a farm polygon present _FARM_NESTING_SUBSTRATE_INDEX_FILEPATTERN = ( 'farm_nesting_substrate_index_%s%s.tif') # replaced by (species, file_suffix) _HABITAT_NESTING_INDEX_FILE_PATTERN = 'habitat_nesting_index_%s%s.tif' # replaced by (season, file_suffix) _RELATIVE_FLORAL_ABUNDANCE_INDEX_FILE_PATTERN = ( 'relative_floral_abundance_index_%s%s.tif') # this is used if there's a farm polygon present _FARM_RELATIVE_FLORAL_ABUNDANCE_INDEX_FILE_PATTERN = ( 'farm_relative_floral_abundance_index_%s%s.tif') # used as an intermediate step for floral resources calculation # replace (species, file_suffix) _LOCAL_FORAGING_EFFECTIVENESS_FILE_PATTERN = ( 'local_foraging_effectiveness_%s%s.tif') # for intermediate output of floral resources replace (species, file_suffix) _FLORAL_RESOURCES_INDEX_FILE_PATTERN = ( 'floral_resources_%s%s.tif') # pollinator supply raster replace (species, file_suffix) _POLLINATOR_SUPPLY_FILE_PATTERN = 'pollinator_supply_%s%s.tif' # name of reprojected farm vector replace (file_suffix) _PROJECTED_FARM_VECTOR_FILE_PATTERN = 'reprojected_farm_vector%s.shp' # used to store the 2D decay kernel for a given distance replace # (alpha, file suffix) _KERNEL_FILE_PATTERN = 'kernel_%f%s.tif' # PA(x,s,j) replace (species, season, file_suffix) _POLLINATOR_ABUNDANCE_FILE_PATTERN = 'pollinator_abundance_%s_%s%s.tif' # PAT(x,j) total pollinator abundance per season replace (season, file_suffix) _TOTAL_POLLINATOR_ABUNDANCE_FILE_PATTERN = ( 'total_pollinator_abundance_%s%s.tif') # used for RA(l(x),j)*fa(s,j) replace (species, season, file_suffix) _FORAGED_FLOWERS_INDEX_FILE_PATTERN = ( 'foraged_flowers_index_%s_%s%s.tif') # used for convolving PS over alpha s replace (species, file_suffix) _CONVOLVE_PS_FILE_PATH = 'convolve_ps_%s%s.tif' # half saturation raster replace (season, file_suffix) _HALF_SATURATION_FILE_PATTERN = 'half_saturation_%s%s.tif' # blank raster as a basis to rasterize on replace (file_suffix) _BLANK_RASTER_FILE_PATTERN = 'blank_raster%s.tif' # raster to hold seasonal farm pollinator replace (season, file_suffix) _FARM_POLLINATOR_SEASON_FILE_PATTERN = 'farm_pollinator_%s%s.tif' # total farm pollinators replace (file_suffix) _FARM_POLLINATOR_FILE_PATTERN = 'farm_pollinators%s.tif' # managed pollinator indexes replace (file_suffix) _MANAGED_POLLINATOR_FILE_PATTERN = 'managed_pollinators%s.tif' # total pollinator raster replace (file_suffix) _TOTAL_POLLINATOR_YIELD_FILE_PATTERN = 'total_pollinator_yield%s.tif' # wild pollinator raster replace (file_suffix) _WILD_POLLINATOR_YIELD_FILE_PATTERN = 'wild_pollinator_yield%s.tif' # final aggregate farm shapefile file pattern replace (file_suffix) _FARM_VECTOR_RESULT_FILE_PATTERN = 'farm_results%s.shp' # output field on target shapefile if farms are enabled _TOTAL_FARM_YIELD_FIELD_ID = 'y_tot' # output field for wild pollinators on farms if farms are enabled _WILD_POLLINATOR_FARM_YIELD_FIELD_ID = 'y_wild' # output field for proportion of wild pollinators over the pollinator # dependent part of the yield _POLLINATOR_PROPORTION_FARM_YIELD_FIELD_ID = 'pdep_y_w' # output field for pollinator abundance on farm for the season of pollination _POLLINATOR_ABUNDANCE_FARM_FIELD_ID = 'p_abund' # expected pattern for seasonal floral resources in input shapefile (season) _FARM_FLORAL_RESOURCES_HEADER_PATTERN = 'fr_%s' # regular expression version of _FARM_FLORAL_RESOURCES_PATTERN _FARM_FLORAL_RESOURCES_PATTERN = ( _FARM_FLORAL_RESOURCES_HEADER_PATTERN % '([^_]+)') # expected pattern for nesting substrate in input shapfile (substrate) _FARM_NESTING_SUBSTRATE_HEADER_PATTERN = 'n_%s' # regular expression version of _FARM_NESTING_SUBSTRATE_HEADER_PATTERN _FARM_NESTING_SUBSTRATE_RE_PATTERN = ( _FARM_NESTING_SUBSTRATE_HEADER_PATTERN % '([^_]+)') _HALF_SATURATION_FARM_HEADER = 'half_sat' _CROP_POLLINATOR_DEPENDENCE_FIELD = 'p_dep' _MANAGED_POLLINATORS_FIELD = 'p_managed' _FARM_SEASON_FIELD = 'season' _EXPECTED_FARM_HEADERS = [ _FARM_SEASON_FIELD, 'crop_type', _HALF_SATURATION_FARM_HEADER, _MANAGED_POLLINATORS_FIELD, _FARM_FLORAL_RESOURCES_PATTERN, _FARM_NESTING_SUBSTRATE_RE_PATTERN, _CROP_POLLINATOR_DEPENDENCE_FIELD] def execute(args): """Pollination. Args: args['workspace_dir'] (string): a path to the output workspace folder. Will overwrite any files that exist if the path already exists. args['results_suffix'] (string): string appended to each output file path. args['landcover_raster_path'] (string): file path to a landcover raster. args['guild_table_path'] (string): file path to a table indicating the bee species to analyze in this model run. Table headers must include: * 'species': a bee species whose column string names will be referred to in other tables and the model will output analyses per species. * one or more columns matching _NESTING_SUITABILITY_PATTERN with values in the range [0.0, 1.0] indicating the suitability of the given species to nest in a particular substrate. * one or more columns matching _FORAGING_ACTIVITY_RE_PATTERN with values in the range [0.0, 1.0] indicating the relative level of foraging activity for that species during a particular season. * _ALPHA_HEADER the sigma average flight distance of that bee species in meters. * 'relative_abundance': a weight indicating the relative abundance of the particular species with respect to the sum of all relative abundance weights in the table. args['landcover_biophysical_table_path'] (string): path to a table mapping landcover codes in `args['landcover_path']` to indexes of nesting availability for each nesting substrate referenced in guilds table as well as indexes of abundance of floral resources on that landcover type per season in the bee activity columns of the guild table. All indexes are in the range [0.0, 1.0]. Columns in the table must be at least * 'lucode': representing all the unique landcover codes in the raster ast `args['landcover_path']` * For every nesting matching _NESTING_SUITABILITY_PATTERN in the guild stable, a column matching the pattern in `_LANDCOVER_NESTING_INDEX_HEADER`. * For every season matching _FORAGING_ACTIVITY_RE_PATTERN in the guilds table, a column matching the pattern in `_LANDCOVER_FLORAL_RESOURCES_INDEX_HEADER`. args['farm_vector_path'] (string): (optional) path to a single layer polygon shapefile representing farms. If present will trigger the farm yield component of the model. The layer must have at least the following fields: * season (string): season in which the farm needs pollination * crop_type (string): a text field to identify the crop type for summary statistics. * half_sat (float): a real in the range [0.0, 1.0] representing the proportion of wild pollinators to achieve a 50% yield of that crop. * p_dep (float): a number in the range [0.0, 1.0] representing the proportion of yield dependent on pollinators. * p_managed (float): proportion of pollinators that come from non-native/managed hives. * fr_[season] (float): one or more fields that match this pattern such that `season` also matches the season headers in the biophysical and guild table. Any areas that overlap the landcover map will replace seasonal floral resources with this value. Ranges from 0..1. * n_[substrate] (float): One or more fields that match this pattern such that `substrate` also matches the nesting substrate headers in the biophysical and guild table. Any areas that overlap the landcover map will replace nesting substrate suitability with this value. Ranges from 0..1. args['n_workers'] (int): (optional) The number of worker processes to use for processing this model. If omitted, computation will take place in the current process. Returns: None """ # create initial working directories and determine file suffixes intermediate_output_dir = os.path.join( args['workspace_dir'], 'intermediate_outputs') work_token_dir = os.path.join( intermediate_output_dir, '_taskgraph_working_dir') output_dir = os.path.join(args['workspace_dir']) utils.make_directories( [output_dir, intermediate_output_dir]) file_suffix = utils.make_suffix_string(args, 'results_suffix') if 'farm_vector_path' in args and args['farm_vector_path'] != '': # we set the vector path to be the projected vector that we'll create # later farm_vector_path = os.path.join( intermediate_output_dir, _PROJECTED_FARM_VECTOR_FILE_PATTERN % file_suffix) else: farm_vector_path = None # parse out the scenario variables from a complicated set of two tables # and possibly a farm polygon. This function will also raise an exception # if any of the inputs are malformed. scenario_variables = _parse_scenario_variables(args) landcover_raster_info = pygeoprocessing.get_raster_info( args['landcover_raster_path']) try: n_workers = int(args['n_workers']) except (KeyError, ValueError, TypeError): # KeyError when n_workers is not present in args # ValueError when n_workers is an empty string. # TypeError when n_workers is None. n_workers = -1 # Synchronous mode. task_graph = taskgraph.TaskGraph(work_token_dir, n_workers) if farm_vector_path is not None: # ensure farm vector is in the same projection as the landcover map reproject_farm_task = task_graph.add_task( task_name='reproject_farm_task', func=pygeoprocessing.reproject_vector, args=( args['farm_vector_path'], landcover_raster_info['projection_wkt'], farm_vector_path), target_path_list=[farm_vector_path]) # calculate nesting_substrate_index[substrate] substrate maps # N(x, n) = ln(l(x), n) scenario_variables['nesting_substrate_index_path'] = {} landcover_substrate_index_tasks = {} reclass_error_details = { 'raster_name': 'LULC', 'column_name': 'lucode', 'table_name': 'Biophysical'} for substrate in scenario_variables['substrate_list']: nesting_substrate_index_path = os.path.join( intermediate_output_dir, _NESTING_SUBSTRATE_INDEX_FILEPATTERN % (substrate, file_suffix)) scenario_variables['nesting_substrate_index_path'][substrate] = ( nesting_substrate_index_path) landcover_substrate_index_tasks[substrate] = task_graph.add_task( task_name='reclassify_to_substrate_%s' % substrate, func=utils.reclassify_raster, args=( (args['landcover_raster_path'], 1), scenario_variables['landcover_substrate_index'][substrate], nesting_substrate_index_path, gdal.GDT_Float32, _INDEX_NODATA, reclass_error_details), target_path_list=[nesting_substrate_index_path]) # calculate farm_nesting_substrate_index[substrate] substrate maps # dependent on farm substrate rasterized over N(x, n) if farm_vector_path is not None: scenario_variables['farm_nesting_substrate_index_path'] = ( collections.defaultdict(dict)) farm_substrate_rasterize_task_list = [] for substrate in scenario_variables['substrate_list']: farm_substrate_id = ( _FARM_NESTING_SUBSTRATE_HEADER_PATTERN % substrate) farm_nesting_substrate_index_path = os.path.join( intermediate_output_dir, _FARM_NESTING_SUBSTRATE_INDEX_FILEPATTERN % ( substrate, file_suffix)) scenario_variables['farm_nesting_substrate_index_path'][ substrate] = farm_nesting_substrate_index_path farm_substrate_rasterize_task_list.append( task_graph.add_task( task_name='rasterize_nesting_substrate_%s' % substrate, func=_rasterize_vector_onto_base, args=( scenario_variables['nesting_substrate_index_path'][ substrate], farm_vector_path, farm_substrate_id, farm_nesting_substrate_index_path), target_path_list=[farm_nesting_substrate_index_path], dependent_task_list=[ landcover_substrate_index_tasks[substrate], reproject_farm_task])) habitat_nesting_tasks = {} scenario_variables['habitat_nesting_index_path'] = {} for species in scenario_variables['species_list']: # calculate habitat_nesting_index[species] HN(x, s) = max_n(N(x, n) ns(s,n)) if farm_vector_path is not None: dependent_task_list = farm_substrate_rasterize_task_list substrate_path_map = scenario_variables[ 'farm_nesting_substrate_index_path'] else: dependent_task_list = landcover_substrate_index_tasks.values() substrate_path_map = scenario_variables[ 'nesting_substrate_index_path'] scenario_variables['habitat_nesting_index_path'][species] = ( os.path.join( intermediate_output_dir, _HABITAT_NESTING_INDEX_FILE_PATTERN % (species, file_suffix))) calculate_habitat_nesting_index_op = _CalculateHabitatNestingIndex( substrate_path_map, scenario_variables['species_substrate_index'][species], scenario_variables['habitat_nesting_index_path'][species]) habitat_nesting_tasks[species] = task_graph.add_task( task_name='calculate_habitat_nesting_%s' % species, func=calculate_habitat_nesting_index_op, dependent_task_list=dependent_task_list, target_path_list=[ scenario_variables['habitat_nesting_index_path'][species]]) scenario_variables['relative_floral_abundance_index_path'] = {} relative_floral_abudance_task_map = {} reclass_error_details = { 'raster_name': 'LULC', 'column_name': 'lucode', 'table_name': 'Biophysical'} for season in scenario_variables['season_list']: # calculate relative_floral_abundance_index[season] per season # RA(l(x), j) relative_floral_abundance_index_path = os.path.join( intermediate_output_dir, _RELATIVE_FLORAL_ABUNDANCE_INDEX_FILE_PATTERN % ( season, file_suffix)) relative_floral_abudance_task = task_graph.add_task( task_name='reclassify_to_floral_abundance_%s' % season, func=utils.reclassify_raster, args=( (args['landcover_raster_path'], 1), scenario_variables['landcover_floral_resources'][season], relative_floral_abundance_index_path, gdal.GDT_Float32, _INDEX_NODATA, reclass_error_details), target_path_list=[relative_floral_abundance_index_path]) # if there's a farm, rasterize floral resources over the top if farm_vector_path is not None: farm_relative_floral_abundance_index_path = os.path.join( intermediate_output_dir, _FARM_RELATIVE_FLORAL_ABUNDANCE_INDEX_FILE_PATTERN % ( season, file_suffix)) # this is the shapefile header for the farm seasonal floral # resources farm_floral_resources_id = ( _FARM_FLORAL_RESOURCES_HEADER_PATTERN % season) # override the relative floral task because we'll need this one relative_floral_abudance_task = task_graph.add_task( task_name='relative_floral_abudance_task_%s' % season, func=_rasterize_vector_onto_base, args=( relative_floral_abundance_index_path, farm_vector_path, farm_floral_resources_id, farm_relative_floral_abundance_index_path), target_path_list=[ farm_relative_floral_abundance_index_path], dependent_task_list=[ relative_floral_abudance_task, reproject_farm_task]) # override the relative floral abundance index path since we'll # need the farm one relative_floral_abundance_index_path = ( farm_relative_floral_abundance_index_path) scenario_variables['relative_floral_abundance_index_path'][season] = ( relative_floral_abundance_index_path) relative_floral_abudance_task_map[season] = ( relative_floral_abudance_task) scenario_variables['foraged_flowers_index_path'] = {} foraged_flowers_index_task_map = {} for species in scenario_variables['species_list']: for season in scenario_variables['season_list']: # calculate foraged_flowers_species_season = RA(l(x),j)*fa(s,j) foraged_flowers_index_path = os.path.join( intermediate_output_dir, _FORAGED_FLOWERS_INDEX_FILE_PATTERN % ( species, season, file_suffix)) relative_abundance_path = ( scenario_variables['relative_floral_abundance_index_path'][ season]) mult_by_scalar_op = _MultByScalar( scenario_variables['species_foraging_activity'][ (species, season)]) foraged_flowers_index_task_map[(species, season)] = ( task_graph.add_task( task_name='calculate_foraged_flowers_%s_%s' % ( species, season), func=pygeoprocessing.raster_calculator, args=( [(relative_abundance_path, 1)], mult_by_scalar_op, foraged_flowers_index_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[ relative_floral_abudance_task_map[season]], target_path_list=[foraged_flowers_index_path])) scenario_variables['foraged_flowers_index_path'][ (species, season)] = foraged_flowers_index_path pollinator_abundance_path_map = {} pollinator_abundance_task_map = {} floral_resources_index_path_map = {} floral_resources_index_task_map = {} for species in scenario_variables['species_list']: # calculate foraging_effectiveness[species] # FE(x, s) = sum_j [RA(l(x), j) * fa(s, j)] foraged_flowers_path_band_list = [ (scenario_variables['foraged_flowers_index_path'][ (species, season)], 1) for season in scenario_variables['season_list']] local_foraging_effectiveness_path = os.path.join( intermediate_output_dir, _LOCAL_FORAGING_EFFECTIVENESS_FILE_PATTERN % ( species, file_suffix)) local_foraging_effectiveness_task = task_graph.add_task( task_name='local_foraging_effectiveness_%s' % species, func=pygeoprocessing.raster_calculator, args=( foraged_flowers_path_band_list, _SumRasters(), local_foraging_effectiveness_path, gdal.GDT_Float32, _INDEX_NODATA), target_path_list=[ local_foraging_effectiveness_path], dependent_task_list=[ foraged_flowers_index_task_map[(species, season)] for season in scenario_variables['season_list']]) landcover_pixel_size_tuple = landcover_raster_info['pixel_size'] try: landcover_mean_pixel_size = utils.mean_pixel_size_and_area( landcover_pixel_size_tuple)[0] except ValueError: landcover_mean_pixel_size = numpy.min(numpy.absolute( landcover_pixel_size_tuple)) LOGGER.debug( 'Land Cover Raster has unequal x, y pixel sizes: %s. Using' '%s as the mean pixel size.' % ( landcover_pixel_size_tuple, landcover_mean_pixel_size)) # create a convolution kernel for the species flight range alpha = ( scenario_variables['alpha_value'][species] / landcover_mean_pixel_size) kernel_path = os.path.join( intermediate_output_dir, _KERNEL_FILE_PATTERN % ( alpha, file_suffix)) alpha_kernel_raster_task = task_graph.add_task( task_name='decay_kernel_raster_%s' % alpha, func=utils.exponential_decay_kernel_raster, args=(alpha, kernel_path), target_path_list=[kernel_path]) # convolve FE with alpha_s floral_resources_index_path = os.path.join( intermediate_output_dir, _FLORAL_RESOURCES_INDEX_FILE_PATTERN % ( species, file_suffix)) floral_resources_index_path_map[species] = floral_resources_index_path floral_resources_task = task_graph.add_task( task_name='convolve_%s' % species, func=pygeoprocessing.convolve_2d, args=( (local_foraging_effectiveness_path, 1), (kernel_path, 1), floral_resources_index_path), kwargs={ 'ignore_nodata_and_edges': True, 'mask_nodata': True, 'normalize_kernel': False, }, dependent_task_list=[ alpha_kernel_raster_task, local_foraging_effectiveness_task], target_path_list=[floral_resources_index_path]) floral_resources_index_task_map[species] = floral_resources_task # calculate # pollinator_supply_index[species] PS(x,s) = FR(x,s) * HN(x,s) * sa(s) pollinator_supply_index_path = os.path.join( output_dir, _POLLINATOR_SUPPLY_FILE_PATTERN % ( species, file_suffix)) ps_index_op = _PollinatorSupplyIndexOp( scenario_variables['species_abundance'][species]) pollinator_supply_task = task_graph.add_task( task_name='calculate_pollinator_supply_%s' % species, func=pygeoprocessing.raster_calculator, args=( [(scenario_variables['habitat_nesting_index_path'][species], 1), (floral_resources_index_path, 1)], ps_index_op, pollinator_supply_index_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[ floral_resources_task, habitat_nesting_tasks[species]], target_path_list=[pollinator_supply_index_path]) # calc convolved_PS PS over alpha_s convolve_ps_path = os.path.join( intermediate_output_dir, _CONVOLVE_PS_FILE_PATH % ( species, file_suffix)) convolve_ps_task = task_graph.add_task( task_name='convolve_ps_%s' % species, func=pygeoprocessing.convolve_2d, args=( (pollinator_supply_index_path, 1), (kernel_path, 1), convolve_ps_path), kwargs={ 'ignore_nodata_and_edges': True, 'mask_nodata': True, 'normalize_kernel': False, }, dependent_task_list=[ alpha_kernel_raster_task, pollinator_supply_task], target_path_list=[convolve_ps_path]) for season in scenario_variables['season_list']: # calculate pollinator activity as # PA(x,s,j)=RA(l(x),j)fa(s,j) convolve(ps, alpha_s) foraged_flowers_index_path = ( scenario_variables['foraged_flowers_index_path'][ (species, season)]) pollinator_abundance_path = os.path.join( output_dir, _POLLINATOR_ABUNDANCE_FILE_PATTERN % ( species, season, file_suffix)) pollinator_abundance_task_map[(species, season)] = ( task_graph.add_task( task_name='calculate_poll_abudance_%s' % species, func=pygeoprocessing.raster_calculator, args=( [(foraged_flowers_index_path, 1), (floral_resources_index_path_map[species], 1), (convolve_ps_path, 1)], _PollinatorSupplyOp(), pollinator_abundance_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[ foraged_flowers_index_task_map[(species, season)], floral_resources_index_task_map[species], convolve_ps_task], target_path_list=[pollinator_abundance_path])) pollinator_abundance_path_map[(species, season)] = ( pollinator_abundance_path) # calculate total abundance of all pollinators for each season total_pollinator_abundance_task = {} for season in scenario_variables['season_list']: # total_pollinator_abundance_index[season] PAT(x,j)=sum_s PA(x,s,j) total_pollinator_abundance_index_path = os.path.join( output_dir, _TOTAL_POLLINATOR_ABUNDANCE_FILE_PATTERN % ( season, file_suffix)) pollinator_abundance_season_path_band_list = [ (pollinator_abundance_path_map[(species, season)], 1) for species in scenario_variables['species_list']] total_pollinator_abundance_task[season] = task_graph.add_task( task_name='calculate_poll_abudnce_%s_%s' % (species, season), func=pygeoprocessing.raster_calculator, args=( pollinator_abundance_season_path_band_list, _SumRasters(), total_pollinator_abundance_index_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[ pollinator_abundance_task_map[(species, season)] for species in scenario_variables['species_list']], target_path_list=[total_pollinator_abundance_index_path]) # next step is farm vector calculation, if no farms then okay to quit if farm_vector_path is None: task_graph.close() task_graph.join() return # blank raster used for rasterizing all the farm parameters/fields later blank_raster_path = os.path.join( intermediate_output_dir, _BLANK_RASTER_FILE_PATTERN % file_suffix) blank_raster_task = task_graph.add_task( task_name='create_blank_raster', func=pygeoprocessing.new_raster_from_base, args=( args['landcover_raster_path'], blank_raster_path, gdal.GDT_Float32, [_INDEX_NODATA]), kwargs={'fill_value_list': [_INDEX_NODATA]}, target_path_list=[blank_raster_path]) farm_pollinator_season_path_list = [] farm_pollinator_season_task_list = [] for season in scenario_variables['season_list']: half_saturation_raster_path = os.path.join( intermediate_output_dir, _HALF_SATURATION_FILE_PATTERN % ( season, file_suffix)) half_saturation_task = task_graph.add_task( task_name='half_saturation_rasterize_%s' % season, func=_rasterize_vector_onto_base, args=( blank_raster_path, farm_vector_path, _HALF_SATURATION_FARM_HEADER, half_saturation_raster_path), kwargs={'filter_string': "%s='%s'" % (_FARM_SEASON_FIELD, season)}, dependent_task_list=[blank_raster_task], target_path_list=[half_saturation_raster_path]) # calc on farm pollinator abundance i.e. FP_season farm_pollinator_season_path = os.path.join( intermediate_output_dir, _FARM_POLLINATOR_SEASON_FILE_PATTERN % ( season, file_suffix)) farm_pollinator_season_task_list.append(task_graph.add_task( task_name='farm_pollinator_%s' % season, func=pygeoprocessing.raster_calculator, args=( [(half_saturation_raster_path, 1), (total_pollinator_abundance_index_path, 1)], _OnFarmPollinatorAbundance(), farm_pollinator_season_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[ half_saturation_task, total_pollinator_abundance_task[season]], target_path_list=[farm_pollinator_season_path])) farm_pollinator_season_path_list.append(farm_pollinator_season_path) # sum farm pollinators farm_pollinator_path = os.path.join( output_dir, _FARM_POLLINATOR_FILE_PATTERN % file_suffix) farm_pollinator_task = task_graph.add_task( task_name='sum_farm_pollinators', func=pygeoprocessing.raster_calculator, args=( [(path, 1) for path in farm_pollinator_season_path_list], _SumRasters(), farm_pollinator_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=farm_pollinator_season_task_list, target_path_list=[farm_pollinator_path]) # rasterize managed pollinators managed_pollinator_path = os.path.join( intermediate_output_dir, _MANAGED_POLLINATOR_FILE_PATTERN % file_suffix) managed_pollinator_task = task_graph.add_task( task_name='rasterize_managed_pollinators', func=_rasterize_vector_onto_base, args=( blank_raster_path, farm_vector_path, _MANAGED_POLLINATORS_FIELD, managed_pollinator_path), dependent_task_list=[reproject_farm_task, blank_raster_task], target_path_list=[managed_pollinator_path]) # calculate PYT total_pollinator_yield_path = os.path.join( output_dir, _TOTAL_POLLINATOR_YIELD_FILE_PATTERN % file_suffix) pyt_task = task_graph.add_task( task_name='calculate_total_pollinators', func=pygeoprocessing.raster_calculator, args=( [(managed_pollinator_path, 1), (farm_pollinator_path, 1)], _PYTOp(), total_pollinator_yield_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[farm_pollinator_task, managed_pollinator_task], target_path_list=[total_pollinator_yield_path]) # calculate PYW wild_pollinator_yield_path = os.path.join( output_dir, _WILD_POLLINATOR_YIELD_FILE_PATTERN % file_suffix) wild_pollinator_task = task_graph.add_task( task_name='calcualte_wild_pollinators', func=pygeoprocessing.raster_calculator, args=( [(managed_pollinator_path, 1), (total_pollinator_yield_path, 1)], _PYWOp(), wild_pollinator_yield_path, gdal.GDT_Float32, _INDEX_NODATA), dependent_task_list=[pyt_task, managed_pollinator_task], target_path_list=[wild_pollinator_yield_path]) # aggregate yields across farms target_farm_result_path = os.path.join( output_dir, _FARM_VECTOR_RESULT_FILE_PATTERN % file_suffix) if os.path.exists(target_farm_result_path): os.remove(target_farm_result_path) reproject_farm_task.join() _create_farm_result_vector( farm_vector_path, target_farm_result_path) # aggregate wild pollinator yield over farm wild_pollinator_task.join() wild_pollinator_yield_aggregate = pygeoprocessing.zonal_statistics( (wild_pollinator_yield_path, 1), target_farm_result_path) # aggregate yield over a farm pyt_task.join() total_farm_results = pygeoprocessing.zonal_statistics( (total_pollinator_yield_path, 1), target_farm_result_path) # aggregate the pollinator abundance results over the farms pollinator_abundance_results = {} for season in scenario_variables['season_list']: total_pollinator_abundance_index_path = os.path.join( output_dir, _TOTAL_POLLINATOR_ABUNDANCE_FILE_PATTERN % ( season, file_suffix)) total_pollinator_abundance_task[season].join() pollinator_abundance_results[season] = ( pygeoprocessing.zonal_statistics( (total_pollinator_abundance_index_path, 1), target_farm_result_path)) target_farm_vector = gdal.OpenEx(target_farm_result_path, 1) target_farm_layer = target_farm_vector.GetLayer() # aggregate results per farm for farm_feature in target_farm_layer: nu = float(farm_feature.GetField(_CROP_POLLINATOR_DEPENDENCE_FIELD)) fid = farm_feature.GetFID() if total_farm_results[fid]['count'] > 0: # total pollinator farm yield is 1-*nu(1-tot_pollination_coverage) # this is YT from the user's guide (y_tot) farm_feature.SetField( _TOTAL_FARM_YIELD_FIELD_ID, 1 - nu * ( 1 - total_farm_results[fid]['sum'] / float(total_farm_results[fid]['count']))) # this is PYW ('pdep_y_w') farm_feature.SetField( _POLLINATOR_PROPORTION_FARM_YIELD_FIELD_ID, (wild_pollinator_yield_aggregate[fid]['sum'] / float(wild_pollinator_yield_aggregate[fid]['count']))) # this is YW ('y_wild') farm_feature.SetField( _WILD_POLLINATOR_FARM_YIELD_FIELD_ID, nu * (wild_pollinator_yield_aggregate[fid]['sum'] / float(wild_pollinator_yield_aggregate[fid]['count']))) # this is PAT ('p_abund') farm_season = farm_feature.GetField(_FARM_SEASON_FIELD) farm_feature.SetField( _POLLINATOR_ABUNDANCE_FARM_FIELD_ID, pollinator_abundance_results[farm_season][fid]['sum'] / float(pollinator_abundance_results[farm_season][fid]['count'])) target_farm_layer.SetFeature(farm_feature) target_farm_layer.SyncToDisk() target_farm_layer = None target_farm_vector = None task_graph.close() task_graph.join() def _rasterize_vector_onto_base( base_raster_path, base_vector_path, attribute_id, target_raster_path, filter_string=None): """Rasterize attribute from vector onto a copy of base. Args: base_raster_path (string): path to a base raster file attribute_id (string): id in `base_vector_path` to rasterize. target_raster_path (string): a copy of `base_raster_path` with `base_vector_path[attribute_id]` rasterized on top. filter_string (string): filtering string to select from farm layer Returns: None. """ base_raster = gdal.OpenEx(base_raster_path, gdal.OF_RASTER) raster_driver = gdal.GetDriverByName('GTiff') target_raster = raster_driver.CreateCopy(target_raster_path, base_raster) base_raster = None vector = gdal.OpenEx(base_vector_path) layer = vector.GetLayer() if filter_string is not None: layer.SetAttributeFilter(str(filter_string)) gdal.RasterizeLayer( target_raster, [1], layer, options=['ATTRIBUTE=%s' % attribute_id]) target_raster.FlushCache() target_raster = None layer = None vector = None def _create_farm_result_vector( base_vector_path, target_vector_path): """Create a copy of `base_vector_path` and add FID field to it. Args: base_vector_path (string): path to vector to copy target_vector_path (string): path to target vector that is a copy of the base, except for the new `fid_field_id` field that has unique integer IDs for each feature. This path must not already exist. It also has new entries for all the result fields: _TOTAL_FARM_YIELD_FIELD_ID _WILD_POLLINATOR_FARM_YIELD_FIELD_ID Returns: None. """ base_vector = gdal.OpenEx(base_vector_path, gdal.OF_VECTOR) driver = gdal.GetDriverByName('ESRI Shapefile') target_vector = driver.CreateCopy( target_vector_path, base_vector) target_layer = target_vector.GetLayer() farm_pollinator_abundance_defn = ogr.FieldDefn( _POLLINATOR_ABUNDANCE_FARM_FIELD_ID, ogr.OFTReal) farm_pollinator_abundance_defn.SetWidth(25) farm_pollinator_abundance_defn.SetPrecision(11) target_layer.CreateField(farm_pollinator_abundance_defn) total_farm_yield_field_defn = ogr.FieldDefn( _TOTAL_FARM_YIELD_FIELD_ID, ogr.OFTReal) total_farm_yield_field_defn.SetWidth(25) total_farm_yield_field_defn.SetPrecision(11) target_layer.CreateField(total_farm_yield_field_defn) pol_proportion_farm_yield_field_defn = ogr.FieldDefn( _POLLINATOR_PROPORTION_FARM_YIELD_FIELD_ID, ogr.OFTReal) pol_proportion_farm_yield_field_defn.SetWidth(25) pol_proportion_farm_yield_field_defn.SetPrecision(11) target_layer.CreateField(pol_proportion_farm_yield_field_defn) wild_pol_farm_yield_field_defn = ogr.FieldDefn( _WILD_POLLINATOR_FARM_YIELD_FIELD_ID, ogr.OFTReal) wild_pol_farm_yield_field_defn.SetWidth(25) wild_pol_farm_yield_field_defn.SetPrecision(11) target_layer.CreateField(wild_pol_farm_yield_field_defn) target_layer = None target_vector.FlushCache() target_vector = None def _parse_scenario_variables(args): """Parse out scenario variables from input parameters. This function parses through the guild table, biophysical table, and farm polygons (if available) to generate Parameter: args (dict): this is the args dictionary passed in to the `execute` function, requires a 'guild_table_path', and 'landcover_biophysical_table_path' key and optional 'farm_vector_path' key. Returns: A dictionary with the keys: * season_list (list of string) * substrate_list (list of string) * species_list (list of string) * alpha_value[species] (float) * landcover_substrate_index[substrate][landcover] (float) * landcover_floral_resources[season][landcover] (float) * species_abundance[species] (string->float) * species_foraging_activity[(species, season)] (string->float) * species_substrate_index[(species, substrate)] (tuple->float) * foraging_activity_index[(species, season)] (tuple->float) """ guild_table_path = args['guild_table_path'] landcover_biophysical_table_path = args['landcover_biophysical_table_path'] if 'farm_vector_path' in args and args['farm_vector_path'] != '': farm_vector_path = args['farm_vector_path'] else: farm_vector_path = None guild_table = utils.build_lookup_from_csv( guild_table_path, 'species', to_lower=True) LOGGER.info('Checking to make sure guild table has all expected headers') guild_headers = list(guild_table.values())[0].keys() for header in _EXPECTED_GUILD_HEADERS: matches = re.findall(header, " ".join(guild_headers)) if len(matches) == 0: raise ValueError( "Expected a header in guild table that matched the pattern " "'%s' but was unable to find one. Here are all the headers " "from %s: %s" % ( header, guild_table_path, guild_headers)) landcover_biophysical_table = utils.build_lookup_from_csv( landcover_biophysical_table_path, 'lucode', to_lower=True) biophysical_table_headers = ( list(landcover_biophysical_table.values())[0].keys()) for header in _EXPECTED_BIOPHYSICAL_HEADERS: matches = re.findall(header, " ".join(biophysical_table_headers)) if len(matches) == 0: raise ValueError( "Expected a header in biophysical table that matched the " "pattern '%s' but was unable to find one. Here are all the " "headers from %s: %s" % ( header, landcover_biophysical_table_path, biophysical_table_headers)) # this dict to dict will map seasons to guild/biophysical headers # ex season_to_header['spring']['guilds'] season_to_header = collections.defaultdict(dict) # this dict to dict will map substrate types to guild/biophysical headers # ex substrate_to_header['cavity']['biophysical'] substrate_to_header = collections.defaultdict(dict) for header in guild_headers: match = re.match(_FORAGING_ACTIVITY_RE_PATTERN, header) if match: season = match.group(1) season_to_header[season]['guild'] = match.group() match = re.match(_NESTING_SUITABILITY_PATTERN, header) if match: substrate = match.group(1) substrate_to_header[substrate]['guild'] = match.group() farm_vector = None if farm_vector_path is not None: LOGGER.info('Checking that farm polygon has expected headers') farm_vector = gdal.OpenEx(farm_vector_path) farm_layer = farm_vector.GetLayer() if farm_layer.GetGeomType() not in [ ogr.wkbPolygon, ogr.wkbMultiPolygon]: farm_layer = None farm_vector = None raise ValueError("Farm layer not a polygon type") farm_layer_defn = farm_layer.GetLayerDefn() farm_headers = [ farm_layer_defn.GetFieldDefn(i).GetName() for i in range(farm_layer_defn.GetFieldCount())] for header in _EXPECTED_FARM_HEADERS: matches = re.findall(header, " ".join(farm_headers)) if not matches: raise ValueError( "Missing an expected headers '%s'from %s.\n" "Got these headers instead %s" % ( header, farm_vector_path, farm_headers)) for header in farm_headers: match = re.match(_FARM_FLORAL_RESOURCES_PATTERN, header) if match: season = match.group(1) season_to_header[season]['farm'] = match.group() match = re.match(_FARM_NESTING_SUBSTRATE_RE_PATTERN, header) if match: substrate = match.group(1) substrate_to_header[substrate]['farm'] = match.group() for header in biophysical_table_headers: match = re.match(_FLORAL_RESOURCES_AVAILABLE_PATTERN, header) if match: season = match.group(1) season_to_header[season]['biophysical'] = match.group() match = re.match(_NESTING_SUBSTRATE_PATTERN, header) if match: substrate = match.group(1) substrate_to_header[substrate]['biophysical'] = match.group() for table_type, lookup_table in itertools.chain( season_to_header.items(), substrate_to_header.items()): if len(lookup_table) != 3 and farm_vector is not None: raise ValueError( "Expected a biophysical, guild, and farm entry for '%s' but " "instead found only %s. Ensure there are corresponding " "entries of '%s' in both the guilds, biophysical " "table, and farm fields." % ( table_type, lookup_table, table_type)) elif len(lookup_table) != 2 and farm_vector is None: raise ValueError( "Expected a biophysical, and guild entry for '%s' but " "instead found only %s. Ensure there are corresponding " "entries of '%s' in both the guilds and biophysical " "table." % ( table_type, lookup_table, table_type)) if farm_vector_path is not None: farm_season_set = set() for farm_feature in farm_layer: farm_season_set.add(farm_feature.GetField(_FARM_SEASON_FIELD)) if len(farm_season_set.difference(season_to_header)) > 0: raise ValueError( "Found seasons in farm polygon that were not specified in the" "biophysical table: %s. Expected only these: %s" % ( farm_season_set.difference(season_to_header), season_to_header)) result = {} # * season_list (list of string) result['season_list'] = sorted(season_to_header) # * substrate_list (list of string) result['substrate_list'] = sorted(substrate_to_header) # * species_list (list of string) result['species_list'] = sorted(guild_table) result['alpha_value'] = dict() for species in result['species_list']: result['alpha_value'][species] = float( guild_table[species][_ALPHA_HEADER]) # * species_abundance[species] (string->float) total_relative_abundance = numpy.sum([ guild_table[species][_RELATIVE_SPECIES_ABUNDANCE_FIELD] for species in result['species_list']]) result['species_abundance'] = {} for species in result['species_list']: result['species_abundance'][species] = ( guild_table[species][_RELATIVE_SPECIES_ABUNDANCE_FIELD] / float(total_relative_abundance)) # map the relative foraging activity of a species during a certain season # (species, season) result['species_foraging_activity'] = dict() for species in result['species_list']: total_activity = numpy.sum([ guild_table[species][_FORAGING_ACTIVITY_PATTERN % season] for season in result['season_list']]) for season in result['season_list']: result['species_foraging_activity'][(species, season)] = ( guild_table[species][_FORAGING_ACTIVITY_PATTERN % season] / float(total_activity)) # * landcover_substrate_index[substrate][landcover] (float) result['landcover_substrate_index'] = collections.defaultdict(dict) for raw_landcover_id in landcover_biophysical_table: landcover_id = int(raw_landcover_id) for substrate in result['substrate_list']: substrate_biophysical_header = ( substrate_to_header[substrate]['biophysical']) result['landcover_substrate_index'][substrate][landcover_id] = ( landcover_biophysical_table[landcover_id][ substrate_biophysical_header]) # * landcover_floral_resources[season][landcover] (float) result['landcover_floral_resources'] = collections.defaultdict(dict) for raw_landcover_id in landcover_biophysical_table: landcover_id = int(raw_landcover_id) for season in result['season_list']: floral_rources_header = season_to_header[season]['biophysical'] result['landcover_floral_resources'][season][landcover_id] = ( landcover_biophysical_table[landcover_id][ floral_rources_header]) # * species_substrate_index[(species, substrate)] (tuple->float) result['species_substrate_index'] = collections.defaultdict(dict) for species in result['species_list']: for substrate in result['substrate_list']: substrate_guild_header = substrate_to_header[substrate]['guild'] result['species_substrate_index'][species][substrate] = ( guild_table[species][substrate_guild_header]) # * foraging_activity_index[(species, season)] (tuple->float) result['foraging_activity_index'] = {} for species in result['species_list']: for season in result['season_list']: key = (species, season) foraging_biophyiscal_header = season_to_header[season]['guild'] result['foraging_activity_index'][key] = ( guild_table[species][foraging_biophyiscal_header]) return result class _CalculateHabitatNestingIndex(object): """Closure for HN(x, s) = max_n(N(x, n) ns(s,n)) calculation.""" def __init__( self, substrate_path_map, species_substrate_index_map, target_habitat_nesting_index_path): """Define parameters necessary for HN(x,s) calculation. Args: substrate_path_map (dict): map substrate name to substrate index raster path. (N(x, n)) species_substrate_index_map (dict): map substrate name to scalar value of species substrate suitability. (ns(s,n)) target_habitat_nesting_index_path (string): path to target raster """ # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1(inspect.getsource( _CalculateHabitatNestingIndex.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = _CalculateHabitatNestingIndex.__name__ self.__name__ += str([ substrate_path_map, species_substrate_index_map, target_habitat_nesting_index_path]) self.substrate_path_list = [ substrate_path_map[substrate_id] for substrate_id in sorted(substrate_path_map)] self.species_substrate_suitability_index_array = numpy.array([ species_substrate_index_map[substrate_id] for substrate_id in sorted(substrate_path_map)]).reshape( (len(species_substrate_index_map), 1)) self.target_habitat_nesting_index_path = ( target_habitat_nesting_index_path) def __call__(self): """Calculate HN(x, s) = max_n(N(x, n) ns(s,n)).""" def max_op(*substrate_index_arrays): """Return the max of index_array[n] * ns[n].""" result = numpy.max( numpy.stack([x.flatten() for x in substrate_index_arrays]) * self.species_substrate_suitability_index_array, axis=0) result = result.reshape(substrate_index_arrays[0].shape) result[substrate_index_arrays[0] == _INDEX_NODATA] = _INDEX_NODATA return result pygeoprocessing.raster_calculator( [(x, 1) for x in self.substrate_path_list], max_op, self.target_habitat_nesting_index_path, gdal.GDT_Float32, _INDEX_NODATA) class _SumRasters(object): """Sum all rasters where nodata is 0 unless the entire stack is nodata.""" def __init__(self): # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1( inspect.getsource( _SumRasters.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = ( _SumRasters.__name__) def __call__(self, *array_list): """Calculate sum of array_list and account for nodata.""" valid_mask = numpy.zeros(array_list[0].shape, dtype=bool) result = numpy.empty_like(array_list[0]) result[:] = 0 for array in array_list: local_valid_mask = array != _INDEX_NODATA result[local_valid_mask] += array[local_valid_mask] valid_mask |= local_valid_mask result[~valid_mask] = _INDEX_NODATA return result class _PollinatorSupplyOp(object): """Calc PA=RA*fa/FR * convolve(PS).""" def __init__(self): # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1( inspect.getsource( _PollinatorSupplyOp.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = ( _PollinatorSupplyOp.__name__) def __call__( self, foraged_flowers_array, floral_resources_array, convolve_ps_array): """Calculating (RA*fa)/FR * convolve(PS).""" valid_mask = foraged_flowers_array != _INDEX_NODATA result = numpy.empty_like(foraged_flowers_array) result[:] = _INDEX_NODATA zero_mask = floral_resources_array == 0 result[zero_mask & valid_mask] = 0.0 result_mask = valid_mask & ~zero_mask result[result_mask] = ( foraged_flowers_array[result_mask] / floral_resources_array[result_mask] * convolve_ps_array[result_mask]) return result class _PollinatorSupplyIndexOp(object): """Calculate PS(x,s) = FR(x,s) * HN(x,s) * sa(s).""" def __init__(self, species_abundance): """Create a closure for species abundance to multiply later. Args: species_abundance (float): value to use in `__call__` when calculating pollinator abundance. Returns: None. """ self.species_abundance = species_abundance # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1( inspect.getsource( _PollinatorSupplyIndexOp.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = ( _PollinatorSupplyIndexOp.__name__) self.__name__ += str(species_abundance) def __call__( self, floral_resources_array, habitat_nesting_suitability_array): """Calculate f_r * h_n * self.species_abundance.""" result = numpy.empty_like(floral_resources_array) result[:] = _INDEX_NODATA valid_mask = floral_resources_array != _INDEX_NODATA result[valid_mask] = ( self.species_abundance * floral_resources_array[valid_mask] * habitat_nesting_suitability_array[valid_mask]) return result class _MultByScalar(object): """Calculate a raster * scalar. Mask through nodata.""" def __init__(self, scalar): """Create a closure for multiplying an array by a scalar. Args: scalar (float): value to use in `__call__` when multiplying by its parameter. Returns: None. """ self.scalar = scalar # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1( inspect.getsource( _MultByScalar.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = ( _MultByScalar.__name__) self.__name__ += str(scalar) def __call__(self, array): """Return array * self.scalar accounting for nodata.""" result = numpy.empty_like(array) result[:] = _INDEX_NODATA valid_mask = array != _INDEX_NODATA result[valid_mask] = array[valid_mask] * self.scalar return result class _OnFarmPollinatorAbundance(object): """Calculate FP(x) = (PAT * (1 - h)) / (h * (1 - 2*pat)+pat)).""" def __init__(self): # try to get the source code of __call__ so task graph will recompute # if the function has changed try: self.__name__ = hashlib.sha1( inspect.getsource( _OnFarmPollinatorAbundance.__call__ ).encode('utf-8')).hexdigest() except IOError: # default to the classname if it doesn't work self.__name__ = ( _OnFarmPollinatorAbundance.__name__) def __call__(self, h_array, pat_array): """Return (pad * (1 - h)) / (h * (1 - 2*pat)+pat)) tolerate nodata.""" result =
numpy.empty_like(h_array)
numpy.empty_like
#! /usr/bin/env python from __future__ import print_function if __name__ == '__main__': import matplotlib matplotlib.use('Agg') import os import sys import re from tempfile import * import colorsys import numpy as np from collections import Counter from astrom_common import * from astrom_intra import intrabrickshift from astrom_inter import findAffine from astrometry.util.file import * from astrometry.util.fits import * from astrometry.util.util import * from astrometry.util.miscutils import * #from astrometry.blind.plotstuff import * from astrometry.util.multiproc import multiproc def find_overlaps(outlines): ''' outlines: Outlines of the images in RA,Dec Returns: overlaps, areas overlaps: 2-d numpy array, overlaps[i,j] is the fraction of points in i that are also in j. areas: approximate area of each image, in square degrees ''' N = len(outlines) areas = np.zeros(N) overlaps = np.zeros((N,N)) for i,out in enumerate(outlines): areas[i] = polygon_area(out) outlines2 = [np.array(list(zip(*out))) for out in outlines] for i,out1 in enumerate(outlines): for j,out2 in enumerate(outlines): if j <= i: continue rr1,dd1 = out1 rr2,dd2 = out2 if min(rr1) > max(rr2) or min(rr2) > max(rr1): continue if min(dd1) > max(dd2) or min(dd2) > max(dd1): continue outA,outB = outlines2[i], outlines2[j] if not polygons_intersect(outA, outB): continue cp = clip_polygon(outA, outB) if len(cp) == 0: continue cp = np.array(cp) area = polygon_area((cp[:,0], cp[:,1])) overlaps[i,j] = area / areas[i] overlaps[j,i] = area / areas[j] return overlaps, areas def wavelength(f): ''' Maps a string "F110W" to wavelength in int nanometers: 1100 ''' fmap = { 110:1100, 160:1600 } # trim F...W if not ((f[0] in ['F','f']) and (f[-1] in ['w','W','N','n'])): print('WARNING: wavelength("%s"): expected F###W' % f) f = int(f[1:-1]) f = fmap.get(f, f) return f def argsort_filters(filters): # Reorder them by wavelength... nf = [] for f in filters: if f == 'ref': nf.append(0.) else: nf.append(wavelength(f)) I = np.argsort(nf) return I def filters_legend(lp, filters): #, **kwa): I = argsort_filters(filters) #plt.legend([lp[i] for i in I], [filters[i] for i in I], **kwa) return [lp[i] for i in I], [filters[i] for i in I] def _alfunc(args): (Ti, Tj, R, i, j) = args print('Matching', i, 'to', j) M = Match(Ti, Tj, R) if len(M.I) == 0: return None A = Alignment(Ti, Tj, R, cutrange=R, match=M) if A.shift() is None: return None return A def readfltgst(fltfn, gstfn, wcsexts): info = parse_flt_filename(fltfn) chip = info.get('chip') filt = info.get('filt') filt = filt.upper() name = info.get('name') hdr = read_header_as_dict(fltfn, 0) exptime = hdr['EXPTIME'] if chip: cname = '%s_%i' % (name,chip) else: cname = name wcs = None for ext in wcsexts: try: wcs = Tan(fltfn, ext) break except: print('Failed to read WCS header from extension', ext, 'of', fltfn) #import traceback #traceback.print_exc() print('Read WCS header from', fltfn) outline = getwcsoutline(wcs) try: T = fits_table(gstfn) print('Read gst file', gstfn, '->', len(T), 'stars') except: print('WARNING: failed to read FITS file', gstfn) import traceback traceback.print_exc() return None cols = T.get_columns() cols = [c.lower() for c in cols] #print 'Columns:', cols if 'mag1_acs' in cols: magnm = 'mag1_acs' elif 'mag1_uvis' in cols: magnm = 'mag1_uvis' elif 'mag1_ir' in cols: magnm = 'mag1_ir' elif 'mag1_wfpc2' in cols: magnm = 'mag1_wfpc2' else: assert(False) T.magnm = magnm T.mag = T.get(magnm) return T, outline, (chip, filt, name, cname, exptime) def readfltgsts(fltfns, gstfns, wcsexts, Nkeep, Nuniform): TT = [] outlines = [] chips = [] names = [] cnames = [] filts = [] exptimes = [] Nall = [] for fltfn,gstfn in zip(fltfns, gstfns): print('gst', gstfn) print('flt', fltfn) T, outline, meta = readfltgst(fltfn, gstfn, wcsexts) (chip, filt, name, cname, exptime) = meta if Nkeep and len(T) < Nkeep: print('WARNING: gst file', gstfn, 'contains "only"', len(T), 'stars') print('outline in RA,Dec:', outline) rr,dd = outline ra,dec =
np.mean(rr)
numpy.mean
import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt import matplotlib.axes from sklearn.decomposition import FastICA #, PCA from sklearn.cluster import AgglomerativeClustering from sklearn.utils import as_float_array , check_array from sklearn.utils.validation import FLOAT_DTYPES from sklearn import manifold import umap from tqdm.notebook import tqdm from joblib import Parallel, delayed import warnings from picard import picard from ._whitening import whitening """ Introduction ------------ Given an input matrix X (n_observations x n_variables) the ICA algorithm decomposes X into : X = S*A with S (n_observations x n_variables) and A (n_variables x n_variables) where the columns of S are independent. In practice, we are often interested in dimension reduction and we can thus set a reduced number of components such that : X ~ S*A with S (n_observations x n_components) and A (n_components x n_variables) where the columns of S are independent. In signal processing the problem of blind source separation can be solved by ICA with and input matrix X (observations = times of registration x variables = initial signals). # In gene expression study, we typically want to unravel independent biolgical sources. To do so, # we can apply ICA on a matrix X (observations = genes x variables = biological samples). Important note -------------- PLEASE NOTE THAT IN THE FOLLOWING THE MATRICES S AND A WILL BE GIVEN IN THEIR TRANSPOSED SHAPE SIMPLY BY CONVENTION. """ def _check_algorithm(algorithm , fun): all_algorithms = ['fastica_par' , 'fastica_def' , 'fastica_picard' , 'infomax' , 'infomax_ext' , 'infomax_orth'] if algorithm not in all_algorithms: raise ValueError("Stabilized ICA supports only algorithms in %s, got" " %s." % (all_algorithms, algorithm)) all_funs = ['exp' , 'cube' , 'logcosh' , 'tanh'] if (isinstance(fun , str)) and (fun not in all_funs): raise ValueError("Stabilized ICA supports only string functions in %s, got" " %s. Please see sklearn.FastICA or picard for alternatives (customed functions)" % (all_algorithms, algorithm)) if fun == 'tanh' and algorithm in ['fastica_par' , 'fastica_def']: warnings.warn(" 'tanh' is not available for sklearn.FastICA. By default, we assumed 'logcosh' was the desired function") fun = 'logcosh' if fun == 'logcosh' and algorithm in ['fastica_picard' , 'infomax' , 'infomax_ext' , 'infomax_orth']: warnings.warn("'logcosh' is not available for picard. By default, we assumed 'tanh' was the desired function") fun = 'tanh' if fun != 'tanh' and algorithm in ['fastica_picard' , 'infomax_ext'] : warnings.warn("Using a different density than `'tanh'` may lead to erratic behavior of the picard algorithm" "when extended=True (see picard package for more explanations)") if algorithm == 'fastica_par' : return 'fastica' , {'algorithm' : 'parallel', 'fun' : fun} elif algorithm == 'fastica_def' : return 'fastica' , {'algorithm' : 'deflation', 'fun' : fun} elif algorithm == 'fastica_picard': return 'picard' , {'ortho' : True , 'extended' : True , 'fun' : fun} elif algorithm == 'infomax': return 'picard' , {'ortho' : False , 'extended' : False , 'fun' : fun} elif algorithm == 'infomax_ext' : return 'picard' , {'ortho' : False , 'extended' : True , 'fun' : fun} elif algorithm == 'infomax_orth' : return 'picard' , {'ortho' : True , 'extended' : False , 'fun' : fun} def _ICA_decomposition(X , dict_params , method , max_iter): """ Apply FastICA or infomax (picard package) algorithm to the matrix X to solve the ICA problem. Parameters ---------- X : 2D array-like, shape (n_observations , n_components) Whitened matrix. dict_params : dict dictionary of keyword arguments for the functions FastICA or picard. See _check algorithm. method : str {'picard' , 'fastica'} python algorithm to solve the ICA problem. Either FastICA from scikit-learn or infomax and its extensions from picard package. See _check_algorithm. max_iter : int see https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html Returns ------- 2D array , shape (n_components , n_observations) components obtained from the ICA decomposition of X """ if method == 'picard' : _, _, S = picard(X.T , max_iter = max_iter , whiten = False , centering = False , **dict_params) else : ica = FastICA(max_iter = max_iter , whiten = False , **dict_params) S = ica.fit_transform(X).T return S def _centrotype(X , Sim , cluster_labels): """Compute the centrotype of the cluster of ICA components defined by cluster_labels centrotype : component of the cluster which is the most similar to the other components of the cluster Parameters ---------- X : 2D array, shape (n_components , n_observations) matrix of independent ICA components Sim : 2D array, shape (n_components , n_components) similarity matrix for ICA components (i.e rows of X) cluster_labels : list of integers indexes of the cluster of components (ex:[0 , 1 , 7] refers to the rows 0, 1 and 7 of X) Returns ------- 1D array, shape (n_observations) centrotype of the cluster of ICA components defined by cluster_labels """ temp = np.argmax(np.sum(Sim[np.ix_(cluster_labels , cluster_labels)] , axis=0)) return X[cluster_labels[temp] , :] def _stability_index(Sim , cluster_labels): """Compute the stability index for the cluster of ICA components defined by cluster_labels. Note : Please refer to https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-4112-9 (section "Method") for the exact formula of the stability index. Parameters ---------- Sim : 2D array, shape (n_components , n_components) similarity matrix for ICA components cluster_labels : list of integers indexes of the cluster of components (ex:[0 , 1 , 7] refers to the rows 0, 1 and 7 of X) Returns ------- Float between 0 and 1 stability index for the cluster of ICA components defined by cluster_labels """ temp = Sim[np.ix_(cluster_labels , cluster_labels)] ex_cluster = list(set(range(Sim.shape[1])) - set(cluster_labels)) #aics = average intra-cluster similarities aics = (1/len(cluster_labels)**2)*np.sum(temp) #aecs = average extra-cluster similarities aecs = (1/(len(ex_cluster)*len(cluster_labels)))*np.sum(Sim[np.ix_(cluster_labels , ex_cluster)]) return aics - aecs class StabilizedICA(object): """ Implement a stabilized version of the Independent Component Analysis algorithm Parameters ---------- n_components : int number of ICA components max_iter : int maximum number of iteration for the FastICA algorithm n_jobs : int number of jobs to run in parallel. -1 means using all processors. See the joblib package documentation for more explanations. Default is 1. verbose: int control the verbosity: the higher, the more messages. Default is 0. Attributes ---------- S_: 2D array, shape (n_components , n_observations) array of sources/metagenes, each line corresponds to a stabilized ICA component (i.e the centrotype of a cluster of components) A_: 2D array, shape (n_variables , n_components) pseudo-inverse of S_, each column corresponds to a metasample stability_indexes_ : 1D array, shape (n_components) stability indexes for the stabilized ICA components Notes ---------- n_runs is the number of time we repeat the ICA decompostion; see fit method """ def __init__(self , n_components , max_iter , n_jobs = 1 , verbose = 0): self.n_components = n_components self.max_iter = max_iter self.n_jobs = n_jobs self.verbose = verbose self.S_ = None self.A_ = None self.stability_indexes_ = None def fit(self, X , n_runs , fun = 'logcosh' , algorithm = 'fastica_par' , plot = False , normalize = True , reorientation = True , whiten = True , pca_solver = 'full' , chunked = False , chunk_size = None , zero_center = True): """1. Compute the ICA components of X n_runs times 2. Cluster all the components (N = self.n_components*n_runs) with agglomerative hierarchical clustering (average linkage) into self.n_components clusters 3. For each cluster compute its stability index and return its centrotype as the final ICA component Note : Please refer to ICASSO method for more details about the process (see https://www.cs.helsinki.fi/u/ahyvarin/papers/Himberg03.pdf) Parameters ---------- X : 2D array-like, shape (n_observations , n_variables) or (n_observations , n_components) if whiten is False. n_runs : int number of times we run the FastICA algorithm fun : str {'cube' , 'exp' , 'logcosh' , 'tanh'} or function, optional. If algorithm is in {'fastica_par' , 'fastica_def'}, it represents the functional form of the G function used in the approximation to neg-entropy. Could be either ‘logcosh’, ‘exp’, or ‘cube’. If algorithm is in {'fastica_picard' , 'infomax' , 'infomax_ext' , 'infomax_orth'}, it is associated with the choice of a density model for the sources. See supplementary explanations for more details. The default is 'logcosh'. algorithm : str {'fastica_par' , 'fastica_def' , 'fastica_picard' , 'infomax' , 'infomax_ext' , 'infomax_orth'}, optional. The algorithm applied for solving the ICA problem at each run. Please the supplementary explanations for more details. The default is 'fastica_par', i.e FastICA from sklearn with parallel implementation. plot : boolean, optional if True plot the stability indexes for each cluster in decreasing order. The default is False. normalize : boolean, optional if True normalize the rows of S_ (i.e the stabilized ICA components) to unit standard deviation. The default is True. reorientation : boolean,optional if True re-oriente the rows of S_ towards positive heavy tail. The default is True. whiten : boolean, optional if True the matrix X is whitened, i.e centered then projected in the space defined by its first self.n_components PCA components and reduced to unit variance along each of these axis. If False the input X matrix must be already whitened. The default is True. pca_solver : str {‘auto’, ‘full’, ‘arpack’, ‘randomized’ , 'lobpcg'}, optional solver for the different PCA methods. Please note that some solvers may not be compatible with some of the PCA methods. See _whitening.py for more details. The default is "full" (i.e SVD decomposition) chunked : boolean, optional Parameter for the whitening step, see _whitening.py for more details. The default is False. chunk_size : int, optional Parameter for the whitening step, see _whitening.py for more details. The default is None. zero_center : boolean, optional Parameter for the whitening step, see _whitening.py for more details. The default is True. Returns ------- None. Note ------ If whiten is False, we suppose that X results from a whitening pre-processing step. The columns must be centered, scaled to unit variance and uncorrelated. """ ## Initialisation n_observations , n_variables = X.shape Centrotypes = np.zeros((self.n_components , n_observations)) Index = np.zeros(self.n_components) method , dict_params = _check_algorithm(algorithm, fun) X = check_array(X , dtype=FLOAT_DTYPES , accept_sparse=True , copy=whiten) ## Pre-processing (whitening) if whiten : # pca = PCA(n_components = self.n_components , whiten=True , svd_solver = pca_solver) # X_w = pca.fit_transform(X) X_w = whitening(X , n_components = self.n_components , svd_solver = pca_solver , chunked = chunked , chunk_size = chunk_size , zero_center = zero_center) else : X_w = as_float_array(X, copy=False) ## Compute the self.n_components*n_runs ICA components and store into array Components parallel = Parallel(n_jobs=self.n_jobs, verbose=self.verbose) # We noticed some numerical instabilities with FastICA from sklearn. We deal with this with the following lines. if algorithm in ['fastica_par' , 'fastica_def'] : maxtrials = 10 for i in range(maxtrials): try: decomposition = parallel(delayed(_ICA_decomposition)(X_w , dict_params = dict_params , method = method, max_iter = self.max_iter) for _ in range(n_runs)) except ValueError: if i < maxtrials - 1: print("FastICA from sklearn did not converge due to numerical instabilities - Retrying...") continue else: print("Too many attempts : FastICA did not converge !") raise break else : decomposition = parallel(delayed(_ICA_decomposition)(X_w , dict_params = dict_params , method = method, max_iter = self.max_iter) for _ in range(n_runs)) self._Components = np.vstack(decomposition) ## Compute Similarity matrix between ICA components (Pearson correlation) self._Sim = np.abs(np.corrcoef(x=self._Components , rowvar=True)) ## Cluster the components with hierarchical clustering clustering = AgglomerativeClustering(n_clusters = self.n_components , affinity = "precomputed" ,linkage = 'average' ).fit(1 - self._Sim) self._clusters = clustering.labels_ ## For each cluster compute the stability index and the centrotype for i in range(self.n_components): cluster_labels = list(np.argwhere(clustering.labels_ == i ).flatten()) Centrotypes[i , :] = _centrotype(self._Components , self._Sim , cluster_labels) Index[i] = _stability_index(self._Sim , cluster_labels) ## Sort the centrotypes (i.e final components) by stability index indices = np.argsort(-1*Index) Centrotypes , Index = Centrotypes[indices , :] , Index[indices] # Re-oriente the stabilized ICA components towards positive heaviest tails if reorientation : self.S_ = (np.where(stats.skew(Centrotypes , axis = 1) >= 0 , 1 , -1).reshape(-1 , 1))*Centrotypes else : self.S_ = Centrotypes # Normalize the stabilized ICA components to unit variance if normalize : self.S_ = self.S_/(np.std(self.S_ , axis = 1).reshape(-1 ,1)) self.stability_indexes_ = Index self.A_ = (X.T).dot(np.linalg.pinv(self.S_)) #self.A_ = np.dot(X.T , np.linalg.pinv(self.S_)) if plot: plt.figure(figsize=(10 , 7)) plt.plot(range(1 , self.n_components + 1) , self.stability_indexes_ , linestyle='--', marker='o') plt.title("Stability of ICA components") plt.xlabel("ICA components") plt.ylabel("Stability index") return def projection(self , method = "mds" , ax = None): """Plot the ICA components computed during fit() (N = self.n_components*n_runs) in 2D. Approximate the original dissimilarities between components by Euclidean distance. Each cluster is represented with a different color. Note : We use the dissimilarity measure sqrt(1 - |rho_ij|) (rho the Pearson correlation) instead of 1 - |rho_ij| to reduce overlapping. Parameters ---------- method : string, optional name of the dimensionality reduction method (e.g "tsne" , "mds" or "umap") The default is "umap". ax : matplotlib.axes, optional The default is None. Returns ------- None. Note ------- Please note that multidimensional scaling (MDS) is more computationally demanding than t-SNE or UMAP. However it takes into account the global structures of the data set while the others don't. For t-SNE or UMAP one cannot really interpret the inter-cluster distances. For more details about the UMAP (Uniform Manifold Approximation and Projection), see https://pypi.org/project/umap-learn/ """ if ax is None : fig , ax = plt.subplots(figsize = (10 , 6)) elif not isinstance(ax , matplotlib.axes.Axes) : warnings.warn("ax should be a matplotlib.axes.Axes object. It was redefined by default.") fig , ax = plt.subplots(figsize = (10 , 6)) if method == "tsne": embedding = manifold.TSNE(n_components = 2 , metric = "precomputed") elif method == "mds" : embedding = manifold.MDS(n_components=2, dissimilarity= "precomputed" , n_jobs = -1) elif method == "umap" : embedding = umap.UMAP(n_components = 2 , metric = "precomputed" ) P = embedding.fit_transform(
np.sqrt(1 - self._Sim)
numpy.sqrt
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import openvino.opset8 as ov from openvino.impl import Shape, Type from tests.runtime import get_runtime from tests.test_ngraph.util import run_op_node @pytest.mark.parametrize( "ng_api_fn, numpy_fn, range_start, range_end", [ (ov.absolute, np.abs, -1, 1), (ov.abs, np.abs, -1, 1), (ov.acos, np.arccos, -1, 1), (ov.acosh, np.arccosh, 1, 2), (ov.asin, np.arcsin, -1, 1), (ov.asinh, np.arcsinh, -1, 1), (ov.atan, np.arctan, -100.0, 100.0), (ov.atanh, np.arctanh, 0.0, 1.0), (ov.ceiling, np.ceil, -100.0, 100.0), (ov.ceil, np.ceil, -100.0, 100.0), (ov.cos, np.cos, -100.0, 100.0), (ov.cosh, np.cosh, -100.0, 100.0), (ov.exp, np.exp, -100.0, 100.0), (ov.floor, np.floor, -100.0, 100.0), (ov.log, np.log, 0, 100.0), (ov.relu, lambda x: np.maximum(0, x), -100.0, 100.0), (ov.sign, np.sign, -100.0, 100.0), (ov.sin, np.sin, -100.0, 100.0), (ov.sinh, np.sinh, -100.0, 100.0), (ov.sqrt, np.sqrt, 0.0, 100.0), (ov.tan, np.tan, -1.0, 1.0), (ov.tanh, np.tanh, -100.0, 100.0), ], ) def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end): np.random.seed(133391) input_data = (range_start + np.random.rand(2, 3, 4) * (range_end - range_start)).astype(np.float32) expected = numpy_fn(input_data) result = run_op_node([input_data], ng_api_fn) assert np.allclose(result, expected, rtol=0.001) @pytest.mark.parametrize( "ng_api_fn, numpy_fn, input_data", [ pytest.param(ov.absolute, np.abs, np.float32(-3)), pytest.param(ov.abs, np.abs, np.float32(-3)), pytest.param(ov.acos, np.arccos, np.float32(-0.5)), pytest.param(ov.asin, np.arcsin, np.float32(-0.5)), pytest.param(ov.atan, np.arctan, np.float32(-0.5)), pytest.param(ov.ceiling, np.ceil, np.float32(1.5)), pytest.param(ov.ceil, np.ceil, np.float32(1.5)), pytest.param(ov.cos, np.cos, np.float32(np.pi / 4.0)), pytest.param(ov.cosh, np.cosh, np.float32(np.pi / 4.0)), pytest.param(ov.exp, np.exp, np.float32(1.5)), pytest.param(ov.floor, np.floor, np.float32(1.5)), pytest.param(ov.log, np.log, np.float32(1.5)), pytest.param(ov.relu, lambda x: np.maximum(0, x), np.float32(-0.125)), pytest.param(ov.sign, np.sign, np.float32(0.0)), pytest.param(ov.sin, np.sin, np.float32(np.pi / 4.0)), pytest.param(ov.sinh, np.sinh,
np.float32(0.0)
numpy.float32
from re import T import matplotlib.pyplot as plt import random import numpy as np import pandas as pd import concurrent import pandas as pd import seaborn as sns from sklearn import datasets from sklearn import manifold import sklearn import tqdm import glob from PIL import Image from typing import * from concurrent.futures import ProcessPoolExecutor from types import SimpleNamespace import os from pathlib import Path def ifnone(a, b): """ Return if None """ return b if a is None else a def listify(o): """ Convert to list """ if o is None: return [] if isinstance(o, list): return o if isinstance(o, str): return [o] if isinstance(o, Iterable): return list(o) return [o] def num_cpus() -> int: "Get number of cpus" try: return len(os.sched_getaffinity(0)) except AttributeError: return os.cpu_count() _default_cpus = max(16, num_cpus()) defaults = SimpleNamespace( cpus=_default_cpus, cmap="viridis", return_fig=False, silent=False ) def parallel(func, arr: Collection, max_workers: int = None, leave=False): # %t "Call `func` on every element of `arr` in parallel using `max_workers`." max_workers = ifnone(max_workers, defaults.cpus) if max_workers < 2: results = [ func(o, i) for i, o in tqdm.tqdm(enumerate(arr), total=len(arr), leave=leave) ] else: with ProcessPoolExecutor(max_workers=max_workers) as ex: futures = [ex.submit(func, o, i) for i, o in enumerate(arr)] results = [] for f in tqdm.tqdm( concurrent.futures.as_completed(futures), total=len(arr), leave=leave ): results.append(f.result()) if any([o is not None for o in results]): return results def get_label(fname, *args, **kwargs): return Path(fname).parent.name def run_clustering(mnist_tr, files,nclust): from sklearn.cluster import KMeans km = KMeans(n_clusters = nclust).fit_predict(mnist_tr) df = pd.DataFrame.from_dict({x:km[i] for i,x in enumerate(files)}.items()) df.to_csv("output_cluster.csv") return df def plot_unsupervised(mnist_tr, features, image_size): tx, ty = mnist_tr[:, 0], mnist_tr[:, 1] tx = (tx-np.min(tx)) / (np.max(tx) - np.min(tx)) ty = (ty-np.min(ty)) / (np.max(ty) -
np.min(ty)
numpy.min
from __future__ import print_function, division, absolute_import import time import multiprocessing import pickle from collections import defaultdict import warnings import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import numpy as np import six.moves as sm import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import imgaug as ia import imgaug.multicore as multicore import imgaug.random as iarandom from imgaug import augmenters as iaa from imgaug.testutils import reseed from imgaug.augmentables.batches import Batch, UnnormalizedBatch class TestPool(unittest.TestCase): def setUp(self): reseed() def test___init___seed_out_of_bounds(self): augseq = iaa.Noop() with self.assertRaises(AssertionError) as context: _ = multicore.Pool(augseq, seed=iarandom.SEED_MAX_VALUE + 100) assert "Expected `seed` to be" in str(context.exception) def test_property_pool(self): mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.close.return_value = None mock_Pool.join.return_value = None with mock.patch("multiprocessing.Pool", mock_Pool): augseq = iaa.Noop() pool_config = multicore.Pool( augseq, processes=1, maxtasksperchild=4, seed=123) with pool_config as pool: assert pool.processes == 1 assert pool._pool is None assert mock_Pool.call_count == 1 assert mock_Pool.close.call_count == 1 assert mock_Pool.join.call_count == 1 assert mock_Pool.call_args[0][0] == 1 # processes assert mock_Pool.call_args[1]["initargs"] == (augseq, 123) assert mock_Pool.call_args[1]["maxtasksperchild"] == 4 def test_processes(self): augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_cpu_count = mock.Mock() patch_pool = mock.patch("multiprocessing.Pool", mock_Pool) patch_cpu_count = mock.patch("multiprocessing.cpu_count", mock_cpu_count) with patch_pool, patch_cpu_count: # (cpu cores available, processes requested, processes started) combos = [ (1, 1, 1), (2, 1, 1), (3, 1, 1), (1, 2, 2), (3, 2, 2), (1, None, None), (2, None, None), (3, None, None), (1, -1, 1), (2, -1, 1), (3, -1, 2), (4, -2, 2) ] for cores_available, processes_req, expected in combos: with self.subTest(cpu_count_available=cores_available, processes_requested=processes_req): mock_cpu_count.return_value = cores_available with multicore.Pool(augseq, processes=processes_req) as _pool: pass if expected is None: assert mock_Pool.call_args[0][0] is None else: assert mock_Pool.call_args[0][0] == expected @mock.patch("multiprocessing.cpu_count") @mock.patch("multiprocessing.Pool") def test_cpu_count_does_not_exist(self, mock_pool, mock_cpu_count): def _side_effect(): raise NotImplementedError mock_cpu_count.side_effect = _side_effect augseq = iaa.Noop() with warnings.catch_warnings(record=True) as caught_warnings: warnings.simplefilter("always") with multicore.Pool(augseq, processes=-1): pass assert mock_cpu_count.call_count == 1 assert mock_pool.call_count == 1 # 'processes' arg to Pool was expected to be set to None as cpu_count # produced an error assert mock_pool.call_args_list[0][0][0] is None assert len(caught_warnings) == 1 assert ( "Could not find method multiprocessing.cpu_count(). " in str(caught_warnings[-1].message)) @classmethod def _test_map_batches_both(cls, call_async): for clazz in [Batch, UnnormalizedBatch]: augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.map.return_value = "X" mock_Pool.map_async.return_value = "X" with mock.patch("multiprocessing.Pool", mock_Pool): batches = [ clazz(images=[ia.quokka()]), clazz(images=[ia.quokka()+1]) ] with multicore.Pool(augseq, processes=1) as pool: if call_async: _ = pool.map_batches_async(batches) else: _ = pool.map_batches(batches) if call_async: to_check = mock_Pool.map_async else: to_check = mock_Pool.map assert to_check.call_count == 1 # args, arg 0 assert to_check.call_args[0][0] == multicore._Pool_starworker # args, arg 1 (batches with ids), tuple 0, # entry 0 in tuple (=> batch id) assert to_check.call_args[0][1][0][0] == 0 # args, arg 1 (batches with ids), tuple 0, # entry 1 in tuple (=> batch) assert np.array_equal( to_check.call_args[0][1][0][1].images_unaug, batches[0].images_unaug) # args, arg 1 (batches with ids), tuple 1, # entry 0 in tuple (=> batch id) assert to_check.call_args[0][1][1][0] == 1 # args, arg 1 (batches with ids), tuple 1, # entry 1 in tuple (=> batch) assert np.array_equal( to_check.call_args[0][1][1][1].images_unaug, batches[1].images_unaug) def test_map_batches(self): self._test_map_batches_both(call_async=False) def test_map_batches_async(self): self._test_map_batches_both(call_async=True) @classmethod def _test_imap_batches_both(cls, call_unordered): for clazz in [Batch, UnnormalizedBatch]: batches = [clazz(images=[ia.quokka()]), clazz(images=[ia.quokka()+1])] def _generate_batches(): for batch in batches: yield batch augseq = iaa.Noop() mock_Pool = mock.MagicMock() mock_Pool.return_value = mock_Pool mock_Pool.imap.return_value = batches mock_Pool.imap_unordered.return_value = batches with mock.patch("multiprocessing.Pool", mock_Pool): with multicore.Pool(augseq, processes=1) as pool: gen = _generate_batches() if call_unordered: _ = list(pool.imap_batches_unordered(gen)) else: _ = list(pool.imap_batches(gen)) if call_unordered: to_check = mock_Pool.imap_unordered else: to_check = mock_Pool.imap assert to_check.call_count == 1 assert to_check.call_args[0][0] == multicore._Pool_starworker # convert generator to list, make it subscriptable arg_batches = list(to_check.call_args[0][1]) # args, arg 1 (batches with ids), tuple 0, # entry 0 in tuple (=> batch id) assert arg_batches[0][0] == 0 # tuple 0, entry 1 in tuple (=> batch) assert np.array_equal( arg_batches[0][1].images_unaug, batches[0].images_unaug) # tuple 1, entry 0 in tuple (=> batch id) assert arg_batches[1][0] == 1 # tuple 1, entry 1 in tuple (=> batch) assert np.array_equal( arg_batches[1][1].images_unaug, batches[1].images_unaug) @classmethod def _test_imap_batches_both_output_buffer_size(cls, call_unordered, timeout=0.075): batches = [ ia.Batch(images=[np.full((1, 1), i, dtype=np.uint8)]) for i in range(8)] def _generate_batches(times): for batch in batches: yield batch times.append(time.time()) def callfunc(pool, gen, output_buffer_size): func = ( pool.imap_batches_unordered if call_unordered else pool.imap_batches ) for v in func(gen, output_buffer_size=output_buffer_size): yield v def contains_all_ids(inputs): arrs = np.uint8([batch.images_aug for batch in inputs]) ids_uq = np.unique(arrs) return ( len(ids_uq) == len(batches) and np.all(0 <= ids_uq) and np.all(ids_uq < len(batches)) ) augseq = iaa.Noop() with multicore.Pool(augseq, processes=1) as pool: # no output buffer limit, there should be no noteworthy lag # for any batch requested from _generate_batches() times = [] gen = callfunc(pool, _generate_batches(times), None) result = next(gen) time.sleep(timeout) result = [result] + list(gen) times = np.float64(times) times_diffs = times[1:] - times[0:-1] assert np.all(times_diffs < timeout) assert contains_all_ids(result) # with output buffer limit, but set to the number of batches, # i.e. should again not lead to any lag times = [] gen = callfunc(pool, _generate_batches(times), len(batches)) result = next(gen) time.sleep(timeout) result = [result] + list(gen) times = np.float64(times) times_diffs = times[1:] - times[0:-1] assert np.all(times_diffs < timeout) assert contains_all_ids(result) # With output buffer limit of #batches/2 (=4), followed by a # timeout after starting the loading process. This should quickly # load batches until the buffer is full, then wait until the # batches are requested from the buffer (i.e. after the timeout # ended) and then proceed to produce batches at the speed at which # they are requested. This should lead to a measureable lag between # batch 4 and 5 (matching the timeout). times = [] gen = callfunc(pool, _generate_batches(times), 4) result = next(gen) time.sleep(timeout) result = [result] + list(gen) times = np.float64(times) times_diffs = times[1:] - times[0:-1] # use -1 here because we have N-1 times for N batches as # diffs denote diffs between Nth and N+1th batch assert np.all(times_diffs[0:4-1] < timeout) assert np.all(times_diffs[4-1:4-1+1] >= timeout) assert np.all(times_diffs[4-1+1:] < timeout) assert contains_all_ids(result) def test_imap_batches(self): self._test_imap_batches_both(call_unordered=False) def test_imap_batches_unordered(self): self._test_imap_batches_both(call_unordered=True) def test_imap_batches_output_buffer_size(self): self._test_imap_batches_both_output_buffer_size(call_unordered=False) def test_imap_batches_unordered_output_buffer_size(self): self._test_imap_batches_both_output_buffer_size(call_unordered=True) @classmethod def _assert_each_augmentation_not_more_than_once(cls, batches_aug): sum_to_vecs = defaultdict(list) for batch in batches_aug: assert not np.array_equal(batch.images_aug[0], batch.images_aug[1]) vec = batch.images_aug.flatten() vecsum = int(np.sum(vec)) if vecsum in sum_to_vecs: for other_vec in sum_to_vecs[vecsum]: assert not np.array_equal(vec, other_vec) else: sum_to_vecs[vecsum].append(vec) def test_augmentations_with_seed_match(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) batch = ia.Batch(images=np.uint8([image, image])) batches = [batch.deepcopy() for _ in sm.xrange(60)] # seed=1 with multicore.Pool(augseq, processes=2, maxtasksperchild=30, seed=1) as pool: batches_aug1 = pool.map_batches(batches, chunksize=2) # seed=1 with multicore.Pool(augseq, processes=2, seed=1) as pool: batches_aug2 = pool.map_batches(batches, chunksize=1) # seed=2 with multicore.Pool(augseq, processes=2, seed=2) as pool: batches_aug3 = pool.map_batches(batches, chunksize=1) assert len(batches_aug1) == 60 assert len(batches_aug2) == 60 assert len(batches_aug3) == 60 for b1, b2, b3 in zip(batches_aug1, batches_aug2, batches_aug3): # images were augmented assert not np.array_equal(b1.images_unaug, b1.images_aug) assert not np.array_equal(b2.images_unaug, b2.images_aug) assert not np.array_equal(b3.images_unaug, b3.images_aug) # original images still the same assert np.array_equal(b1.images_unaug, batch.images_unaug) assert np.array_equal(b2.images_unaug, batch.images_unaug) assert np.array_equal(b3.images_unaug, batch.images_unaug) # augmentations for same seed are the same assert np.array_equal(b1.images_aug, b2.images_aug) # augmentations for different seeds are different assert not np.array_equal(b1.images_aug, b3.images_aug) # make sure that batches for the two pools with same seed did not # repeat within results (only between the results of the two pools) for batches_aug in [batches_aug1, batches_aug2, batches_aug3]: self._assert_each_augmentation_not_more_than_once(batches_aug) def test_augmentations_with_seed_match_for_images_and_keypoints(self): augseq = iaa.AddElementwise((0, 255)) image = np.zeros((10, 10, 1), dtype=np.uint8) # keypoints here will not be changed by augseq, but they will induce # deterministic mode to start in augment_batches() as each batch # contains images AND keypoints kps = ia.KeypointsOnImage([ia.Keypoint(x=2, y=0)], shape=(10, 10, 1)) batch = ia.Batch(images=np.uint8([image, image]), keypoints=[kps, kps]) batches = [batch.deepcopy() for _ in sm.xrange(60)] # seed=1 with multicore.Pool(augseq, processes=2, maxtasksperchild=30, seed=1) as pool: batches_aug1 = pool.map_batches(batches, chunksize=2) # seed=1 with multicore.Pool(augseq, processes=2, seed=1) as pool: batches_aug2 = pool.map_batches(batches, chunksize=1) # seed=2 with multicore.Pool(augseq, processes=2, seed=2) as pool: batches_aug3 = pool.map_batches(batches, chunksize=1) assert len(batches_aug1) == 60 assert len(batches_aug2) == 60 assert len(batches_aug3) == 60 for batches_aug in [batches_aug1, batches_aug2, batches_aug3]: for batch in batches_aug: for keypoints_aug in batch.keypoints_aug: assert keypoints_aug.keypoints[0].x == 2 assert keypoints_aug.keypoints[0].y == 0 for b1, b2, b3 in zip(batches_aug1, batches_aug2, batches_aug3): # images were augmented assert not np.array_equal(b1.images_unaug, b1.images_aug) assert not
np.array_equal(b2.images_unaug, b2.images_aug)
numpy.array_equal
import warnings from general.base import Struct import matplotlib.pylab as pl import numpy as np import scipy.stats as st from uq.gpc import GPC from uq.samples import Samples rv_list={ 'arcsine': Struct(name='arcsine', fun=st.arcsine, supp=
np.array([0, 1], dtype=np.float)
numpy.array
import numpy as np import os import matplotlib import tkinter as tk import tkinter.messagebox # Set the matplotlib backend to tk figures. # If imported, cannot plot to regular matplotlib figures! matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure from seas.signalanalysis import lag_n_autocorr, sort_noise, short_time_fourier_transform from seas.waveletAnalysis import waveletAnalysis from seas.hdf5manager import hdf5manager from seas.defaults import config from seas.ica import rebuild_eigenbrain from seas.domains import get_domain_map, domain_map, get_domain_edges def run_gui(components, rotate=0, savepath=None, default_assignment=None): ''' Create a tkinter GUI to select noise components from ica-decomposition components file. Returns toggle, a boolean array of either True or False. Components that have been determined to be noise are 'True', components to keep are 'False'. Optional toggle input is a boolean of starting values for noise_components. ''' print('\nStarting ICA Component Selection GUI\n-----------------------') print( 'If you experience problems with this GUI, check your tk version with the following terminal command:' ) print('\tpython -m tkinter') print( 'This will launch a GUI that tells you your tk version. Make sure it is >=8.6' ) print( "If installed using conda, use 'conda install -c anaconda tk' to update" ) if type(components) is str: f = hdf5manager(components) print('loading components...') components = f.load() load_hdf5 = True else: load_hdf5 = False if savepath is not None: f = hdf5manager(savepath) load_hdf5 = True assert type(components) is dict, 'Components were not in expected format' # load all components from dict eig_vec = components['eig_vec'] if 'thresholds' in components.keys(): thresholds = components['thresholds'] roimask = components['roimask'] shape = components['shape'] t, x, y = shape eigb_shape = (x, y) # Find number of components n_components = eig_vec.shape[1] print('number of components:', n_components) # start timecourses variable for storing rebuilt timecourses of PCs if 'timecourses' in components: print('timecourses found') timecourses = components['timecourses'] else: print('timecourses not found in components') print('Initializing empty timecourse vector') timecourses = components['timecourses'] # start noise_components variable for listing which components are noise if ('noise_components' in components) and ('cutoff' in components): noise_components = components['noise_components'] cutoff = components['cutoff'] else: print('calculating noise components...') noise_components, cutoff = sort_noise(timecourses) maxval = np.argmax(noise_components == 1) if 'lag1_full' in components: lag1 = components['lag1_full'] _, _, log_pdf = sort_noise(timecourses, lag1=lag1, return_logpdf=True) else: lag1 = lag_n_autocorr(timecourses, 1, verbose=False) _, _, log_pdf = sort_noise(timecourses, return_logpdf=True) # start toggle variable for checking which components shouldn't # be included if 'artifact_components' in components: toggle = components['artifact_components'] else: print('initializing artifact_components toggle') toggle = np.zeros((n_components,), dtype='uint8') if 'flipped' in components: flipped = components['flipped'] timecourses = timecourses * flipped[:, None] eig_vec = eig_vec * flipped if 'domain_ROIs' in components: domain_ROIs = components['domain_ROIs'] if rotate > 0: domain_ROIs = np.rot90(domain_ROIs, rotate) if 'region_assignment' in components: region_assignment = components['region_assignment'] else: print('initializing region_assignment vector') n_domains = int(np.nanmax(domain_ROIs) + 1) region_assignment = np.zeros((n_domains,)) if default_assignment is not None: try: region_assignment += default_assignment except: raise TypeError('Region Assignment was invalid {0}'.format( default_assignment)) else: region_assignment[:] = np.nan else: print('domain_ROIs not found') domain_ROIs = None # Load mask indexing for faster rebuilding of eigenbrains if roimask is not None: maskind = np.where(roimask.flat == 1) else: maskind = None region_cm = config['colormap']['domains'] component_cmap = config['colormap']['components'] corr_cmap = config['colormap']['correlation'] regions = config['regions'] # convert from defaults dict to sorted list of tuples keylist = [] valuelist = [] for key in regions: # print(key, regions[key]) keylist.append(key) valuelist.append(regions[key]) sortindex = [i[0] for i in sorted(enumerate(valuelist), key=lambda x: x[1])] regions = [] for i in sortindex: regions.append((keylist[i], valuelist[i])) # general font settings LARGE_FONT = ('Verdana', 12) togglesave = [True] # default on for easy click-to-save figures toggledebug = [False] # default off -- don't load ICA pixel properties def saveFigure(fig_handle): print('figure was pressed!') # callback for clicks on image. # Change color and toggle value if togglesave[0]: print('trying to save..') file_path = tk.filedialog.asksaveasfilename() print(file_path) if type(file_path) is str: # If path was provided # If there was no extension, add .png if os.path.splitext(file_path)[1] == '': file_path += '.png' if os.path.isfile(file_path): print('file already exists!') yn = tk.messagebox.askquestion( 'Overwriting File', 'The following file already exists, would you ' 'like to overwrite it?' + '\n' + file_path) if yn == 'yes': fig_handle.savefig(file_path) print('File saved to:', file_path) else: print('Not overwriting') else: print('file doesnt exist (yet)') fig_handle.savefig(file_path) print('File saved to:', file_path) else: print('No file selected') else: print('Saving functionality is turned off') # Create main application as tk.Tk class PCAgui(tk.Tk): #<- inherits from Tk class def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) # initialize the tk class tk.Tk.wm_title(self, 'Component Viewer') # every page initializes a container to hold its content container = tk.Frame(self) container.pack(side='top', fill='both', expand=True) # set page expansion properties container.grid_rowconfigure(0, weight=1) # row/columns expand equally container.grid_columnconfigure(0, weight=1) # Make the menu bar (top banner) menubar = tk.Menu(container) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_separator() filemenu.add_command(label='save', command=self.quit) filemenu.add_command(label='exit', command=lambda: self.cancelcallback(toggle)) menubar.add_cascade(label='file', menu=filemenu) def toggleFigSaving(): togglesave[0] = not togglesave[0] def toggleIcaDebug(): toggledebug[0] = not toggledebug[0] editmenu = tk.Menu(menubar, tearoff=0) editmenu.add_separator() editmenu.add_command(label='toggle figure saving', command=lambda: toggleFigSaving()) editmenu.add_command(label='toggle ica pixel debug', command=lambda: toggleIcaDebug()) menubar.add_cascade(label='edit', menu=editmenu) pagemenu = tk.Menu(menubar, tearoff=1) pagemenu.add_separator() pagemenu.add_command(label='view components', command=lambda: self.show_frame(PCpage)) pagemenu.add_command(label='PC information', command=lambda: self.show_frame(PCinfo)) pagemenu.add_command(label='Domain Correlations', command=lambda: self.show_frame(DomainROIs)) pagemenu.add_command(label='Domain Region Assignment', command=lambda: self.show_frame(DomainRegions)) pagemenu.add_command(label='Domain Autocorrelations', command=lambda: self.show_frame(PCautocorr)) menubar.add_cascade(label='view', menu=pagemenu) tk.Tk.config(self, menu=menubar) # Create container to hold for all pages for page switching self.frames = {} # List all pages here: for F in (PCpage, PCinfo, DomainROIs, DomainRegions, PCautocorr): frame = F(container, self) self.frames[F] = frame # set currently active frame to StartPage frame.grid(row=0, column=0, sticky='nsew') # Initialize default page default_page = PCpage self.show_frame(default_page) # Global event binding commands self.bind("<Escape>", lambda event: self.cancelcallback(toggle)) self.bind("s", lambda event: self.quit()) self.bind("<F1>", lambda event: self.show_frame(PCpage)) self.bind("<F2>", lambda event: self.show_frame(PCinfo)) self.bind("<F3>", lambda event: self.show_frame(DomainROIs)) self.bind("<F4>", lambda event: self.show_frame(DomainRegions)) self.bind("<F5>", lambda event: self.show_frame(PCautocorr)) # Use global focus to capture bindings, # send them to local callback manager self.bind("<Right>", lambda event: self.current_page.callback_manager(event)) self.bind("<Left>", lambda event: self.current_page.callback_manager(event)) self.bind("<Up>", lambda event: self.current_page.callback_manager(event)) self.bind("<Down>", lambda event: self.current_page.callback_manager(event)) # When window is closed, cancel and don't save results. self.protocol('WM_DELETE_WINDOW', lambda: self.cancelcallback(toggle)) # Methods for main app: def show_frame(self, cont): # selects frame, raises it frame = self.frames[cont] self.current_page = frame frame.tkraise() def cancelcallback(self, toggle): # quits the app, doesn't rebuild the movie print('Operation was cancelled.') toggle[0] = 100 self.quit() # Create each frame and components as individual classes: class PCpage(tk.Frame): # Page to view all principal component images, toggle via clicks def __init__(self, parent, controller): tk.Frame.__init__(self, parent) # parent is controller # Create frame for PCs, initialize PC indices self.nimages = 15 self.PCpage = 0 # initialize the title label = tk.Label(self, text='Select Components to Remove:', font=LARGE_FONT) # initialize navigation buttons navbuttons = tk.Frame(self) self.llbutton = tk.Button( navbuttons, text='<<< {0} PCs'.format(4 * self.nimages), command=lambda: self.changePCpage(self.PCpage - 4)) self.lbutton = tk.Button( navbuttons, text='<<< {0} PCs'.format(self.nimages), command=lambda: self.changePCpage(self.PCpage - 1)) self.homebutton = tk.Button(navbuttons, text='Home', command=lambda: self.changePCpage(0)) self.rbutton = tk.Button( navbuttons, text='{0} PCs >>>'.format(self.nimages), command=lambda: self.changePCpage(self.PCpage + 1)) self.rrbutton = tk.Button( navbuttons, text='{0} PCs >>>'.format(4 * self.nimages), command=lambda: self.changePCpage(self.PCpage + 4)) # Make frame for pc max value controller pccontrol = tk.Frame(self) upper_limit = tk.StringVar() upper_limit.set(str(maxval)) maxentry = tk.Entry(pccontrol, textvariable=upper_limit, width=5) entrylabel = tk.Label(pccontrol, text='Noise Floor:') # place the title label.grid(column=0, row=0) # place the navigation buttons and load panel self.llbutton.grid(column=0, row=0) self.lbutton.grid(column=1, row=0) self.homebutton.grid(column=2, row=0) self.rbutton.grid(column=3, row=0) self.rrbutton.grid(column=4, row=0) navbuttons.grid(column=0, row=2) # place max pc control panel entrylabel.grid(column=0, row=0) maxentry.grid(column=1, row=0) pccontrol.grid(column=0, row=3) self.loadPCpage() def callback_manager(self, event): if event.keysym == 'Right': if len(toggle) - self.nimages * (self.PCpage + 1) > 0: self.changePCpage(self.PCpage + 1) elif event.keysym == 'Left': if self.PCpage != 0: self.changePCpage(self.PCpage - 1) else: print('No callback defined for:', event.keysym) class PCframe(tk.Frame): # Create a frame to hold all eigenbrains def __init__(self, parent, indices): tk.Frame.__init__(self, parent) # variables to hold image buttons self.ncol = 5 self.PCplotframe = tk.Frame(self, borderwidth=2) self.imagebutton = [] # initialize and grid image buttons for i, n in enumerate(indices): frame = (tk.Frame(self.PCplotframe)) self.imagebutton.append(self.imButton(frame, n)) c = i % self.ncol r = i // self.ncol frame.grid(row=r, column=c) self.PCplotframe.grid(column=0, row=1) # grid main frame def update(self, parent, indices): # update each image button to contain indices given imagebutton = self.imagebutton #if there isn't a full set of indices, append None if len(indices) < len(imagebutton): print('Not enough indices to fill page') lendiff = len(imagebutton) - len(indices) indices.extend([None] * lendiff) # update each image with new PC index for i, buttonhandle in enumerate(imagebutton): buttonhandle.update(indices[i]) class imButton(tk.Frame): # Image button. When clicked, toggle[index] is switched. # Colormap is also switched to see status of PC def __init__(self, parent, pc_id): self.pc_id = pc_id f = Figure(figsize=(3, 3), dpi=100, frameon=False) self.ax = f.add_subplot(111) f.subplots_adjust(left=0.05, bottom=0.05, right=0.98, top=0.98) self.canvas = FigureCanvasTkAgg(f, parent) self.canvas.get_tk_widget().grid(row=1, column=1) self.canvas.mpl_connect( 'button_press_event', lambda event: self.on_key_press(event)) self.imgplot = self.ax.imshow(np.zeros((x, y))) self.ax.axis('off') self.update(pc_id) def update(self, pc_id): self.pc_id = pc_id self.ax.cla() self.ax.axis('off') if pc_id is None: # clear image im = np.empty((x, y)) im[:] = np.NAN self.imgplot = self.ax.imshow(im) self.canvas.draw() return () eigenbrain = rebuild_eigenbrain(eig_vec, pc_id, roimask, eigb_shape, maskind) if rotate > 0: eigenbrain = np.rot90(eigenbrain, rotate) mean = np.nanmean(eigenbrain) std = np.abs(np.nanstd(eigenbrain)) self.imgplot = self.ax.imshow(eigenbrain, cmap=corr_cmap, vmin=mean - 4 * std, vmax=mean + 4 * std) if toggle[pc_id] == 0: self.imgplot.set_cmap(component_cmap) else: self.imgplot.set_cmap('Greys') self.ax.annotate('Component {0}'.format(pc_id), color='grey', fontsize=10, xy=(1, 1)) self.canvas.draw() def on_key_press(self, event): # callback for clicks on image. # Change color and toggle value try: if toggle[self.pc_id] == 0: self.imgplot.set_cmap('Greys_r') toggle[self.pc_id] = 1 elif toggle[self.pc_id] == 1: self.imgplot.set_cmap(component_cmap) toggle[self.pc_id] = 0 self.canvas.draw() except: print('Index was out of range') def changePCpage(self, newpage): # callback for buttons to change page self.PCpage = newpage self.loadPCpage() def loadPCpage(self): # load a PC page based on self.PCpage # Reenable all buttons, disable any that shouldn't be allowed self.llbutton.config(state=['normal']) self.lbutton.config(state=['normal']) self.homebutton.config(state=['normal']) self.rbutton.config(state=['normal']) self.rrbutton.config(state=['normal']) if self.PCpage == 0: # if on start page, disable home, -n self.homebutton.config(state=['disabled']) self.lbutton.config(state=['disabled']) self.llbutton.config(state=['disabled']) elif self.PCpage < 4: self.llbutton.config(state=['disabled']) if len(toggle) - (self.nimages * (self.PCpage + 1)) <= 0: # if total images - next page's max <=0, disable + n self.rbutton.config(state=['disabled']) self.rrbutton.config(state=['disabled']) elif len(toggle) - self.nimages * self.PCpage \ - 4*self.nimages <= 0: self.rrbutton.config(state=['disabled']) # Refresh the PC Grid startPC = self.PCpage * self.nimages endPC = startPC + self.nimages if endPC > len(toggle): endPC = len(toggle) PCindices = list(range(startPC, endPC)) if hasattr(self, 'PCfigure'): self.PCfigure.update(self, PCindices) self.PCfigure.grid(column=0, row=1) else: self.PCfigure = self.PCframe(self, PCindices) self.PCfigure.grid(column=0, row=1) # grid PCfigure into StartPage class PCinfo(tk.Frame): # Page for viewing information about individual PCs def __init__(self, parent, controller): # Change the PC text box using the +/- keys. # This triggers updatePCvalue to run def updatePCval_button(delta): newval = int(self.selected_pc.get()) + delta self.selected_pc.set(newval) # Change the PC index using the text box def updatePCval(): newvalue = self.selected_pc.get() print('Changing PC index to: {0}'.format(newvalue)) if newvalue == '': # empty value print('Text box is blank. Not updating') else: try: # make sure entry is an int, inside range of PCs assert int(newvalue) < n_components - 1, ( 'Index exceeds range') assert int(newvalue) >= 0, 'Index below 0' self.pc_id[0] = int(newvalue) self.selected_pc.set(str(self.pc_id[0])) fig.updateFigures(self.pc_id[0]) except: print('Not changing upper PC cutoff.') self.selected_pc.set(str(self.pc_id[0])) # reset text box to previous value # Initialize PC info page tk.Frame.__init__(self, parent) label = tk.Label(self, text='Component Viewer:', font=LARGE_FONT) label.pack(pady=10, padx=10) # Two components to page: pcviewer = tk.Frame(self) # grid of figures about selected PC pc_toolbar = tk.Frame(pcviewer) # toolbar for selecting PC index # Make PC selection toolbar self.pc_id = [0] self.selected_pc = tk.StringVar() self.selected_pc.set(str(self.pc_id[0])) pc_entry = tk.Entry(pc_toolbar, textvariable=self.selected_pc, width=5) self.selected_pc.trace('w', lambda nm, idx, mode, var=0: updatePCval()) pc_entry_label = tk.Label(pc_toolbar, text='Component:') pm_toolbar = tk.Frame(pcviewer) inc = tk.Button(pm_toolbar, text='+', command=lambda: updatePCval_button(1)) dec = tk.Button(pm_toolbar, text='-', command=lambda: updatePCval_button(-1)) # grid pc selector frame pc_entry_label.grid(column=0, row=0) pc_entry.grid(column=1, row=0) inc.grid(column=0, row=0) dec.grid(column=1, row=0) # grid pcviewer frame pc_toolbar.pack() pm_toolbar.pack() pcviewer.pack() fig = self.PCfigures(self, self.pc_id) fig.pack() def callback_manager(self, event): if event.keysym == 'Right': newval = int(self.selected_pc.get()) + 1 self.selected_pc.set(newval) elif event.keysym == 'Left': newval = int(self.selected_pc.get()) - 1 self.selected_pc.set(newval) else: print('No callback defined for:', event.keysym) class PCfigures(tk.Frame): # Create class to hold and update all figures def __init__(self, parent, controller): # Create main frame, child of PCinfo page tk.Frame.__init__(self, parent) ncol = 2 # number of columns of figures self.figures = {} # List desired figures figlist = [ self.pcImage, self.timeCourse, self.fourierWaveletHistogram, self.waveletSpectrum ] for i, Fig in enumerate(figlist): # Not being used: self.fourierTimecourse # self.fourierHistogram figure = Fig(self) # initialize each figure c = i % ncol r = i // ncol figure.grid(row=r, column=c) # grid it self.figures[Fig] = figure # store each handle in self.figures # initialize figures for PC #0 self.updateFigures(0) def updateFigures(self, pc_id): # Update all figures in self.figures self.timecourse = timecourses[pc_id] eigenbrain = rebuild_eigenbrain(eig_vec, pc_id, roimask, eigb_shape, maskind) if rotate > 0: eigenbrain = np.rot90(eigenbrain, rotate) mean = np.nanmean(eigenbrain) std = np.abs(np.nanstd(eigenbrain)) eigenbrain[np.where(
np.isnan(eigenbrain)
numpy.isnan
"""This module implements Experiments, which add analysis to types of Measurements All experiments should have a background-subtracted ixdat ECMSMeasurement with calibrated current and potential, and a mdict containing ixdat MSCalResult objects which correctly calibrate the MS data of the meas. The StandardExperiment is a constant-potential OER (or composite thereof) with ICPMS-MS samples taken during the measurement. The sample is a labeled test sample or un-labeled control sample and the electrolyte is natural, so all m/z=34 and m/z=36 is excess lattice O. The StandardExperiment is only calibrated for O2, though at all three isotopes, and gets the calibration factor from the trend in the project's CalibrationSeries. """ from pathlib import Path import json import numpy as np from matplotlib import pyplot as plt from matplotlib import gridspec from ixdat.techniques.ec_ms import MSCalResult from .constants import ( EXPERIMENT_DIR, EXPERIMENT_ID_FILE, STANDARD_ALPHA, STANDARD_EXPERIMENT_TAGS, FARADAY_CONSTANT, ) from .tools import singleton_decorator, CounterWithFile from .measurement import Measurement from .calibration import CalibrationSeries from .calc import calc_current calibration_series = CalibrationSeries.load() def all_experiments(experiment_dir=EXPERIMENT_DIR): """returns an iterator that yields experiments in order of their id""" N_experiments = ExperimentCounter().last() for n in range(1, N_experiments): try: measurement = Experiment.open(n, experiment_dir=experiment_dir) except FileNotFoundError as e: print(f"itermeasurement skipping {n} due to error = \n{e}") else: yield measurement def all_standard_experiments(experiment_dir=EXPERIMENT_DIR): N_experiments = ExperimentCounter().last() for n in range(1, N_experiments): try: standard_experiment = StandardExperiment.open( n, experiment_dir=experiment_dir ) if standard_experiment.experiment_type.startswith("a"): # then it is an activity experiment raise TypeError("wrong type of experiment") except (FileNotFoundError, TypeError) as e: print(f"itermeasurement skipping {n} due to error = \n{e}") else: yield standard_experiment def all_activity_experiments(experiment_dir=EXPERIMENT_DIR): N_experiments = ExperimentCounter().last() for n in range(1, N_experiments): try: activity_experiment = ActExperiment.open(n, experiment_dir=experiment_dir) if not activity_experiment.experiment_type.startswith("a"): raise TypeError("wrong type of experiment.") except (FileNotFoundError, TypeError) as e: print(f"itermeasurement skipping {n} due to error = \n{e}") else: yield activity_experiment @singleton_decorator class ExperimentCounter(CounterWithFile): """Counts measurements. 'id' increments the counter. 'last()' retrieves last id""" _file = EXPERIMENT_ID_FILE def open_experiment(e_id, experiment_dir=EXPERIMENT_DIR): """Open as the appropriate type of Experiment based on the experiment_type field""" try: path_to_file = next( path for path in Path(experiment_dir).iterdir() if path.stem.startswith(f"e{e_id}") ) except StopIteration: raise FileNotFoundError(f"no standard experiment with id = e{e_id}") return Experiment.open(e_id) class Experiment: """Joins a pyOER measurement with extra metadata and methods for deriving results This is a base class for more complex experiments, with methods and saveable metadata (typically tspans) for subtracting background, plotting nicely, calibrating signals, determining electrolyte isotopic composition, etc. It also has a list of TOFs, which (separately) contain the metadata for deriving specific results. Inheriting classes will contain methods to """ def __init__( self, m_id, experiment_type=None, tspan_plot=None, F=None, alpha=None, cap=None, tspan_bg=None, tspan_bg_current=None, tspan_F=None, tspan_alpha=None, tspan_cap=None, V_DL=(1.22, 1.3), e_id=None, **kwargs, ): """Initiate an experiment Args: m_id (int): The measurement id experiment_type (str): Tag for the type of standard experiment. Options are - standard experiments (activity + exchange + dissolution): "y": "yes, purely systematic", # 30 minutes at one current density "s": "starts systematic", "k": "shortened systematic (<30 minutes)", "c": "composite systematic" # one sample multiple current densities - activity experiments (constant potential steps): tspan_plot (timespan): The timespan in which to make the experiment plot. If not given, the plot will use the measurement's tspan F (float): The O2 sensitivity in [C/mol]. By default the experiment will use the O2 sensitivity given by the CalibrationSeries represented in TREND.json in the calibration directory alhpa (float): The ^{16}O portion in the electrolyte. By default it takes the natural value of 99.80% cap (float): The capacitance- in [Farads], if known. tspan_bg (timespan): The timespan to consider the background tspan_F (timespan): The timespan from which O2 sensitivity (F) can be calculated from the measurement tspan_alpha (timespan): The timespan from which the isotopic composition of the electrolyte (alpha) can be calculated form the measurement F is to be calculated from the measurement tspan_cap (timespan): The timespan from which capacitance can be measured V_DL (list of float): The voltage range for capacitance calculation / [V] plot_specs (dict): Additional specs for the plot, e.g. axis limits ("ylims") e_id (int): The StandardExperiment's principle key """ self.m_id = m_id self.experiment_type = experiment_type self.measurement = Measurement.open(m_id) self._meas = None self.tspan_plot = tspan_plot self.tspan_bg = tspan_bg self.tspan_bg_current = tspan_bg_current self.tspan_F = tspan_F self.F_0 = F # for saving, so that if no F is given and the CalibrationSeries # is updated, the updated CalibrationSeries will determine F upon loading. self._F = None self._mdict = {} self.tspan_alpha = tspan_alpha self.alpha_0 = alpha # for saving, so that if no alpha is given and the # natural ratio is updated, this will determine alpha upon loading. self._alpha = None self._cap = cap self.tspan_cap = tspan_cap self.V_DL = V_DL self._cap = None self._icpms_points = None self.id = e_id or ExperimentCounter().id self.default_masses = ["M32", "M34", "M36"] self._tofs = None self.extra_stuff = kwargs def as_dict(self): return dict( m_id=self.m_id, experiment_type=self.experiment_type, tspan_plot=self.tspan_plot, tspan_bg=self.tspan_bg, tspan_bg_current=self.tspan_bg_current, tspan_F=self.tspan_F, tspan_cap=self.tspan_cap, tspan_alpha=self.tspan_alpha, F=self.F_0, alpha=self.alpha_0, e_id=self.id, ) def __repr__(self): return f"e{self.id} is from m{self.m_id} of {self.measurement.sample_name}" def save(self): self_as_dict = self.as_dict() file = EXPERIMENT_DIR / f"{self}.json" with open(file, "w") as f: json.dump(self_as_dict, f, indent=4) @classmethod def load(cls, file): """Load a standard experiment given the path to its json file.""" with open(file, "r") as f: self_as_dict = json.load(f) if "plot_specs" in self_as_dict and "ylims" in self_as_dict["plot_specs"]: # json turns integer keys to strings. This fixes. self_as_dict["plot_specs"]["ylims"] = { int(s): ylim for s, ylim in self_as_dict["plot_specs"]["ylims"].items() } experiment_class = cls if "experiment_type" in self_as_dict: if self_as_dict["experiment_type"].startswith("a"): experiment_class = ActExperiment elif self_as_dict["experiment_type"] in STANDARD_EXPERIMENT_TAGS: experiment_class = StandardExperiment return experiment_class(**self_as_dict) @classmethod def open(cls, e_id, experiment_dir=EXPERIMENT_DIR): try: path_to_file = next( path for path in Path(experiment_dir).iterdir() if path.stem.startswith(f"e{e_id}") ) except StopIteration: raise FileNotFoundError(f"no standard experiment with id = e{e_id}") return cls.load(path_to_file) @property def meas(self): """The ixdat measurement with the experimental data""" if not self._meas: meas = self.measurement.meas meas.calibrate( RE_vs_RHE=self.measurement.RE_vs_RHE, A_el=0.196, ) if self.measurement.R_Ohm: meas.correct_ohmic_drop(self.measurement.R_Ohm) if self.tspan_bg: meas.set_bg(self.tspan_bg) self._meas = meas return self._meas @property def beta(self): """Float: The m/z=34 to m/z=32 signal ratio from oxidation of the electrolyte""" return 2 * (1 - self.alpha) / self.alpha @property def gamma(self): """Float: The m/z=34 to m/z=36 signal ratio from oxidation of the electrolyte""" return 2 * self.alpha / (1 - self.alpha) @property def sample(self): return self.measurement.sample @property def sample_name(self): return self.measurement.sample_name @property def tofs(self): if not self._tofs: self.load_tofs() return self._tofs def load_tofs(self): from .tof import all_tofs self._tofs = [tof for tof in all_tofs() if tof.e_id == self.id] @property def mol_list(self): return [f"O2_{mass}" for mass in self.mass_list] @property def mass_list(self): if "18" in (self.measurement.isotope or ""): mass_list = ["M34", "M36"] elif "16" in (self.measurement.isotope or ""): mass_list = ["M32"] else: print(f"The electrolyte isotope for '{self}' is not known!") mass_list = ["M32", "M34", "M36"] return mass_list @property def tof_sets(self): from .tof import all_tof_sets return [t_set for t_set in all_tof_sets() if t_set.experiment.id == self.id] def calc_alpha(self, tspan=None): """Return fraction ^{16}O in the electrolyte based on tspan with steady OER""" tspan = tspan or self.tspan_alpha x_32, y_32 = self.meas.get_signal(mass="M32", tspan=tspan) x_34, y_34 = self.meas.get_signal(mass="M34", tspan=tspan) gamma = np.mean(y_34) / np.mean(y_32) alpha = 2 / (2 + gamma) return alpha @property def cap(self): """Capacitance in Farads""" if not self._cap: cap_cv = self.meas.cut(self.tspan_cap).as_cv() self._cap = cap_cv.get_capacitance(V_DL=self.V_DL) * self.meas.A_el # Farad/cm^2 * cm^2 return self._cap @property def ECSA(self): """Electrochemical surface area in [cm^2]""" return self.cap / self.sample.specific_capacitance # Farad / (Farad/cm^2) @property def n_sites(self): """Number of sites in [mol]""" return self.ECSA * self.sample.site_density # cm^2 * mol/cm^2 def populate_mdict(self): """Fill in self.mdict with the EC-MS.Molecules O2_M32, O2_M34, and O2_M36""" for mass in ["M32", "M34", "M36"]: m = MSCalResult(mol="O2", mass=mass, F=self.F) self._mdict[f"O2_{mass}"] = m @property def mdict(self): if not self._mdict: self.populate_mdict() return self._mdict @property def F(self): if not self._F: if self.tspan_F: F = 0 for mass in self.mass_list: try: x, y = self.meas.grab(mass, tspan=self.tspan_F) I = calc_current(self, tspan=self.tspan_F) F_M = np.mean(y) / (I / (4 * FARADAY_CONSTANT)) F += F_M except KeyError: continue elif self.F_0: F = self.F_0 else: F = calibration_series.F_of_tstamp(self.meas.tstamp) self._F = F return self._F @property def alpha(self): if not self._alpha: if self.tspan_alpha: alpha = self.calc_alpha() else: alpha = self.alpha_0 self._alpha = alpha or STANDARD_ALPHA return self._alpha def calc_flux(self, mol, tspan, remove_background=True, **kwargs): """Return the flux for a calibrated mol (a key to self.mdict)""" m = self.mdict[mol] return self.meas.grab_flux( m, tspan=tspan, remove_background=remove_background, **kwargs ) def get_tofs(self): """Return a list of TOFS from the experiment""" from .tof import all_tofs tofs = [] # icpms points for tof in all_tofs(): if tof.e_id == self.id: tofs += [tof] return tofs def calc_background_current(self): cap_cv = self.meas.cut(self.tspan_cap).as_cv() sweep_1 = cap_cv.select_sweep(vspan=self.V_DL) sweep_2 = cap_cv.select_sweep(vspan=[self.V_DL[-1], self.V_DL[0]]) I_1 = np.mean(sweep_1.grab("raw_current")[1]) * 1e-3 # [mA] -> [A] I_2 = np.mean(sweep_2.grab("raw_current")[1]) * 1e-3 # [mA] -> [A] I_bg = (I_1 + I_2) / 2 # the background current is the center of these two. return I_bg def correct_current(self): I_bg = self.calc_background_current() I_name = self.meas.I_name J_name = self.meas.J_name A_el = self.meas.A_el print(f"subtracting {I_bg * 1e3 / A_el} from '{J_name}'") self.meas.correct_data(I_name, self.meas[I_name].data - I_bg * 1e3) self.meas.correct_data(J_name, self.meas[J_name].data - I_bg * 1e3 / A_el) class StandardExperiment(Experiment): """This class describes the experiments from which 3x TOF measurements are derived These are EC-MS measurements of a labeled (or control) sample in non-labeled elcctroyte at constant current, which ICP-MS samples taken during or between measurements. The class wraps the corresponding measurement with extra functions. They are best represented as an EC-MS-ICPMS plot where the MS panel has left and rignt y-axes representing labeled and non-labeled O2, respectively. Such a plot is made with StandardExperment.plot_EC_MS_ICPMS """ def __init__( self, m_id, experiment_type=None, tspan_plot=None, F=None, alpha=None, tspan_bg=None, tspan_F=None, tspan_alpha=None, e_id=None, plot_specs=None, **kwargs, ): super().__init__( m_id=m_id, experiment_type=experiment_type, tspan_plot=tspan_plot, F=F, tspan_F=tspan_F, alpha=alpha, tspan_alpha=tspan_alpha, tspan_bg=tspan_bg, e_id=e_id, **kwargs, ) if not experiment_type in STANDARD_EXPERIMENT_TAGS: raise TypeError( f"Cannot make StandardExperiment of '{self.measurement}' " f"with experiment_type='{experiment_type}'" ) self.plot_specs = plot_specs self._icpms_points = None def as_dict(self): self_as_dict = super().as_dict() self_as_dict.update(plot_specs=self.plot_specs) return self_as_dict @property def icpms_points(self): """List of ICPMSPoint: The ICPMS samples from the experiment""" if not self._icpms_points: self._icpms_points = self.measurement.get_icpms_points() return self._icpms_points def get_dissolution_points(self): """Return the ICPMS sampling times (t_vec) and molar amounts (n_vec)""" icpms_points = self.icpms_points t_vec = np.array([icpms_point.sampling_time for icpms_point in icpms_points]) n_vec = np.array([icpms_point.amount for icpms_point in icpms_points]) return t_vec, n_vec def get_dissolution_rates(self): """Return the ICPMS sampling times (t_vec) and dissolution raties (n_dot_vec)""" t_points, n_points = self.get_dissolution_points() t_last = 0 t_vec = np.array([]) n_dot_vec = np.array([]) for ( t, n, ) in zip(t_points, n_points): if t == 0: continue if t == t_last: input(f"Waring! {self.measurement} has two ICPMS samples at t={t}.") continue t_vec =
np.append(t_vec, t)
numpy.append
""" Test for file IO """ import os import pytest import numpy as np import biorbd_casadi as biorbd from bioptim import OdeSolver from .utils import TestUtils @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.COLLOCATION, OdeSolver.IRK]) def test_muscle_activations_and_states_tracking(ode_solver): # Load muscle_activations_tracker from bioptim.examples.muscle_driven_ocp import muscle_activations_tracker as ocp_module bioptim_folder = os.path.dirname(ocp_module.__file__) # Define the problem model_path = bioptim_folder + "/models/arm26.bioMod" biorbd_model = biorbd.Model(model_path) final_time = 0.1 n_shooting = 5 use_residual_torque = True # Generate random data to fit np.random.seed(42) t, markers_ref, x_ref, muscle_activations_ref = ocp_module.generate_data( biorbd_model, final_time, n_shooting, use_residual_torque=use_residual_torque ) biorbd_model = biorbd.Model(model_path) # To allow for non free variable, the model must be reloaded ocp = ocp_module.prepare_ocp( biorbd_model, final_time, n_shooting, markers_ref, muscle_activations_ref, x_ref[: biorbd_model.nbQ(), :], use_residual_torque=use_residual_torque, kin_data_to_track="q", ode_solver=ode_solver(), ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) # Check constraints g = np.array(sol.constraints) if ode_solver == OdeSolver.COLLOCATION: np.testing.assert_equal(g.shape, (20 * 5, 1)) np.testing.assert_almost_equal(g, np.zeros((20 * 5, 1)), decimal=6) else: np.testing.assert_equal(g.shape, (20, 1)) np.testing.assert_almost_equal(g, np.zeros((20, 1)), decimal=6) # Check some of the results q, qdot, tau, mus = sol.states["q"], sol.states["qdot"], sol.controls["tau"], sol.controls["muscles"] if ode_solver == OdeSolver.IRK: np.testing.assert_almost_equal(f[0, 0], 3.624795808383824e-08) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.26294409e-05, -5.94685627e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10541975, -0.48577985])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00074118, -0.00036854])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21473881, 7.26398638])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-3.19231945e-08, 1.78181204e-06])) np.testing.assert_almost_equal(tau[:, -2], np.array([2.55285701e-06, -5.12710950e-06])) np.testing.assert_almost_equal( mus[:, 0], np.array([0.37451645, 0.95067812, 0.73199474, 0.59864193, 0.15601703, 0.15600089]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.4559321, 0.78521782, 0.19970124, 0.51419847, 0.59238012, 0.04656187]) ) elif ode_solver == OdeSolver.COLLOCATION: np.testing.assert_almost_equal(f[0, 0], 3.6846293820760475e-08) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.26294409e-05, -5.94685627e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10541975, -0.48577985])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00074233, -0.00037249])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21473503, 7.26397692])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-3.19231945e-08, 1.78181204e-06])) np.testing.assert_almost_equal(tau[:, -2], np.array([2.55285701e-06, -5.12710950e-06])) np.testing.assert_almost_equal( mus[:, 0], np.array([0.37451633, 0.95067815, 0.73199481, 0.5986417, 0.15601682, 0.15600081]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.4559318, 0.78521793, 0.19970129, 0.51419838, 0.59238004, 0.04656203]) ) elif ode_solver == OdeSolver.RK4: np.testing.assert_almost_equal(f[0, 0], 3.624795808383824e-08) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.24603457e-05, -5.56567245e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10542008, -0.48578046])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00071319, -0.00034956])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21476386, 7.26402641])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([7.86364319e-08, 1.43718933e-06])) np.testing.assert_almost_equal(tau[:, -2], np.array([2.33336715e-06, -4.52483197e-06])) np.testing.assert_almost_equal( mus[:, 0], np.array([0.3745183, 0.9506776, 0.7319939, 0.59864459, 0.15601947, 0.15600189]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.45594578, 0.78521284, 0.19969902, 0.51420259, 0.5923839, 0.04655438]) ) else: raise ValueError("Test not implemented") # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol, decimal_value=5) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.COLLOCATION, OdeSolver.IRK]) def test_muscle_activation_no_residual_torque_and_markers_tracking(ode_solver): # Load muscle_activations_tracker from bioptim.examples.muscle_driven_ocp import muscle_activations_tracker as ocp_module bioptim_folder = os.path.dirname(ocp_module.__file__) # Define the problem model_path = bioptim_folder + "/models/arm26.bioMod" biorbd_model = biorbd.Model(model_path) final_time = 0.1 n_shooting = 5 use_residual_torque = False # Generate random data to fit np.random.seed(42) t, markers_ref, x_ref, muscle_activations_ref = ocp_module.generate_data( biorbd_model, final_time, n_shooting, use_residual_torque=use_residual_torque ) biorbd_model = biorbd.Model(model_path) # To allow for non free variable, the model must be reloaded ocp = ocp_module.prepare_ocp( biorbd_model, final_time, n_shooting, markers_ref, muscle_activations_ref, x_ref[: biorbd_model.nbQ(), :], use_residual_torque=use_residual_torque, kin_data_to_track="q", ode_solver=ode_solver(), ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 3.634248634056222e-08) # Check constraints g = np.array(sol.constraints) if ode_solver == OdeSolver.COLLOCATION: np.testing.assert_equal(g.shape, (20 * 5, 1)) np.testing.assert_almost_equal(g, np.zeros((20 * 5, 1)), decimal=6) else: np.testing.assert_equal(g.shape, (20, 1)) np.testing.assert_almost_equal(g, np.zeros((20, 1)), decimal=6) # Check some of the results q, qdot, mus = sol.states["q"], sol.states["qdot"], sol.controls["muscles"] if ode_solver == OdeSolver.IRK: # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.26502327e-05, -5.98498658e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10541969, -0.48577983])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00074251, -0.00036937])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21474217, 7.26398954])) # initial and final controls np.testing.assert_almost_equal( mus[:, 0], np.array([0.37451604, 0.95067823, 0.73199494, 0.59864126, 0.15601641, 0.15600064]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.45593194, 0.78521787, 0.19970125, 0.51419844, 0.5923801, 0.04656193]) ) elif ode_solver == OdeSolver.COLLOCATION: # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.26434090e-05, -5.99992755e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10541971, -0.48577986])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00074381, -0.00037358])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21473839, 7.26398039])) # initial and final controls np.testing.assert_almost_equal( mus[:, 0], np.array([0.37451604, 0.95067823, 0.73199495, 0.59864125, 0.1560164, 0.15600064]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.45593167, 0.78521797, 0.1997013, 0.51419836, 0.59238002, 0.04656208]) ) elif ode_solver == OdeSolver.RK4: # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-1.24679103e-05, -5.63685028e-06])) np.testing.assert_almost_equal(q[:, -1], np.array([0.10542003, -0.48578047])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.00071458, -0.00035055])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-4.21476717, 7.26402945])) # initial and final controls np.testing.assert_almost_equal( mus[:, 0], np.array([0.3745179, 0.95067771, 0.7319941, 0.59864394, 0.15601888, 0.15600164]) ) np.testing.assert_almost_equal( mus[:, -2], np.array([0.45594564, 0.78521289, 0.19969903, 0.51420257, 0.59238388, 0.04655442]) ) else: raise ValueError("Test not ready") # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol, decimal_value=6) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.COLLOCATION, OdeSolver.IRK]) def test_muscle_excitation_with_torque_and_markers_tracking(ode_solver): # Load muscle_excitations_tracker from bioptim.examples.muscle_driven_ocp import muscle_excitations_tracker as ocp_module bioptim_folder = os.path.dirname(ocp_module.__file__) # Define the problem model_path = bioptim_folder + "/models/arm26.bioMod" biorbd_model = biorbd.Model(model_path) final_time = 0.1 n_shooting = 5 # Generate random data to fit np.random.seed(42) t, markers_ref, x_ref, muscle_excitations_ref = ocp_module.generate_data(biorbd_model, final_time, n_shooting) biorbd_model = biorbd.Model(model_path) # To allow for non free variable, the model must be reloaded ocp = ocp_module.prepare_ocp( biorbd_model, final_time, n_shooting, markers_ref, muscle_excitations_ref, x_ref[: biorbd_model.nbQ(), :].T, use_residual_torque=True, kin_data_to_track="markers", ode_solver=ode_solver(), ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) # Check constraints g = np.array(sol.constraints) if ode_solver == OdeSolver.COLLOCATION: np.testing.assert_equal(g.shape, (50 * 5, 1)) np.testing.assert_almost_equal(g, np.zeros((50 * 5, 1)), decimal=6) else: np.testing.assert_equal(g.shape, (50, 1)) np.testing.assert_almost_equal(g, np.zeros((50, 1)), decimal=6) # Check some of the results q, qdot, mus_states, tau, mus_controls = ( sol.states["q"], sol.states["qdot"], sol.states["muscles"], sol.controls["tau"], sol.controls["muscles"], ) if ode_solver == OdeSolver.IRK: np.testing.assert_almost_equal(f[0, 0], 3.9377280548492226e-05) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-0.00351782, 0.01702219])) np.testing.assert_almost_equal(q[:, -1], np.array([0.14352637, -0.72030433])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([1.02984019, -3.91364352])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-3.67284629, 3.62405443])) # initial and final muscle state np.testing.assert_almost_equal( mus_states[:, 0], np.array([0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864, 0.15599452]) ) np.testing.assert_almost_equal( mus_states[:, -1], np.array([0.51285729, 0.69943619, 0.40390569, 0.48032451, 0.53752346, 0.31437668]) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([5.42775569e-05, -3.45713249e-04])) np.testing.assert_almost_equal(tau[:, -2], np.array([-2.73167136e-05, -3.83494902e-05])) np.testing.assert_almost_equal( mus_controls[:, 0], np.array([0.37743387, 0.95055777, 0.73174428, 0.60093014, 0.15924303, 0.15866534]) ) np.testing.assert_almost_equal( mus_controls[:, -2], np.array([0.4560975, 0.78519158, 0.19973384, 0.51408083, 0.59227422, 0.04659415]) ) elif ode_solver == OdeSolver.COLLOCATION: np.testing.assert_almost_equal(f[0, 0], 3.9378422266498184e-05) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-0.00351729, 0.01701928])) np.testing.assert_almost_equal(q[:, -1], np.array([0.14352497, -0.72030059])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([1.02972633, -3.91317111])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-3.6728683, 3.62413508])) # initial and final muscle state np.testing.assert_almost_equal( mus_states[:, 0], np.array([0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864, 0.15599452]) ) np.testing.assert_almost_equal( mus_states[:, -1], np.array([0.51285285, 0.69943161, 0.40390586, 0.48032585, 0.53752527, 0.31437738]) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([5.42926592e-05, -3.45716906e-04])) np.testing.assert_almost_equal(tau[:, -2], np.array([-2.72776735e-05, -3.84479459e-05])) np.testing.assert_almost_equal( mus_controls[:, 0], np.array([0.37744597, 0.95044549, 0.73173082, 0.60092211, 0.15932209, 0.15869578]) ) np.testing.assert_almost_equal( mus_controls[:, -2], np.array([0.45609644, 0.78518702, 0.19973488, 0.51408246, 0.59227441, 0.04659677]) ) elif ode_solver == OdeSolver.RK4: np.testing.assert_almost_equal(f[0, 0], 3.9163147567423305e-05) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([-0.00352334, 0.01700853])) np.testing.assert_almost_equal(q[:, -1], np.array([0.14350606, -0.72027301])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([1.02920952, -3.91032827])) np.testing.assert_almost_equal(qdot[:, -1], np.array([-3.67351448, 3.62485659])) # initial and final muscle state np.testing.assert_almost_equal( mus_states[:, 0], np.array([0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864, 0.15599452]) ) np.testing.assert_almost_equal( mus_states[:, -1], np.array([0.51283945, 0.6994339, 0.40390624, 0.48031161, 0.53750849, 0.31441088]) ) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([5.44773721e-05, -3.45454293e-04])) np.testing.assert_almost_equal(tau[:, -2], np.array([-2.68029143e-05, -3.90467765e-05])) np.testing.assert_almost_equal( mus_controls[:, 0], np.array([0.37740553, 0.95056685, 0.73174651, 0.60092669, 0.15924254, 0.15856357]) ) np.testing.assert_almost_equal( mus_controls[:, -2], np.array([0.45609247, 0.7851955, 0.19973458, 0.51407787, 0.59227145, 0.04659596]) ) else: raise ValueError("Test not ready") # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.COLLOCATION, OdeSolver.IRK]) def test_muscle_excitation_no_residual_torque_and_markers_tracking(ode_solver): # Load muscle_excitations_tracker from bioptim.examples.muscle_driven_ocp import muscle_excitations_tracker as ocp_module bioptim_folder = os.path.dirname(ocp_module.__file__) # Define the problem model_path = bioptim_folder + "/models/arm26.bioMod" biorbd_model = biorbd.Model(model_path) final_time = 0.1 n_shooting = 5 # Generate random data to fit np.random.seed(42) t, markers_ref, x_ref, muscle_excitations_ref = ocp_module.generate_data(biorbd_model, final_time, n_shooting) biorbd_model = biorbd.Model(model_path) # To allow for non free variable, the model must be reloaded ocp = ocp_module.prepare_ocp( biorbd_model, final_time, n_shooting, markers_ref, muscle_excitations_ref, x_ref[: biorbd_model.nbQ(), :].T, use_residual_torque=False, kin_data_to_track="markers", ode_solver=ode_solver(), ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) # Check constraints g = np.array(sol.constraints) if ode_solver == OdeSolver.COLLOCATION: np.testing.assert_equal(g.shape, (50 * 5, 1)) np.testing.assert_almost_equal(g, np.zeros((50 * 5, 1)), decimal=6) else: np.testing.assert_equal(g.shape, (50, 1)) np.testing.assert_almost_equal(g, np.zeros((50, 1)), decimal=6) # Check some of the results q, qdot, mus_states, mus_controls = ( sol.states["q"], sol.states["qdot"], sol.states["muscles"], sol.controls["muscles"], ) if ode_solver == OdeSolver.IRK:
np.testing.assert_almost_equal(f[0, 0], 3.939617534835209e-05)
numpy.testing.assert_almost_equal
import os import pdb import time import torch import laspy import argparse import numpy as np from tqdm import tqdm from typing import Tuple, Union from pynvml import nvmlInit, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo def apply_offset(pc: np.ndarray, offset: np.ndarray, scale: float = 1.0, nodata_value: float = None) -> np.ndarray: """ Apply offset and scaling to the point cloud data. @param pc: [N, X] point cloud. (X >= 3, the fourth and later columns are non-coordinates). @param offset: [3] offset vector. @param scale: Float number for scaling. @param nodata_value: Float number for nodata value. return Point cloud w/ offset and scaling. """ pc = pc.copy() if nodata_value is None: pc[:, :3] -= offset.reshape(1, 3) pc[:, :3] /= scale else: nodata_value = float(nodata_value) pc[pc[:, 0] != nodata_value, :3] -= offset.reshape(1, 3) pc[pc[:, 0] != nodata_value, :3] /= scale return pc def pc_local_search(big_pc: torch.Tensor, ref_patch: torch.Tensor, nodata_value: float = -1.0) -> torch.Tensor: """ Point cloud local search based on XYZ boundaries. @param big_pc: [N, D] point cloud. (D >= 3, the fourth and later columns are non-coordinates). @param ref_patch: [K, 3] point cloud as reference. @param nodata_value: Float number for nodata value. return A subset of pertinent point clouds. """ if ref_patch.numel() == torch.sum(ref_patch == nodata_value).item(): selected_pc = torch.empty(0) else: xyz_max, _ = ref_patch[ref_patch[:, 1] != nodata_value].max(dim=0) # [3] xyz_min, _ = ref_patch[ref_patch[:, 1] != nodata_value].min(dim=0) # [3] flag = torch.logical_and(big_pc[:, :3] <= xyz_max, big_pc[:, :3] >= xyz_min).sum(dim=1) == 3 if torch.sum(flag).item() == 0: margin = max(20.0, np.sqrt(len(ref_patch) / 5.0)) flag = torch.logical_and(big_pc[:, :3] <= xyz_max + margin, big_pc[:, :3] >= xyz_min - margin).sum(dim=1) == 3 selected_pc = big_pc[flag] if len(selected_pc) == 0: selected_pc = torch.empty(0) return selected_pc def split_scene_coord(sc: np.ndarray, block_h: int, block_w: int) -> np.ndarray: """ Split the scene coordinate associated with image pixels. @param sc: [H, W, 3] scene coordinates. @param block_h: Block size in height direction. @param block_w: Block size in width direction. return an array of block-wise coordinates, [rows, cols, block_h, block_w, 3]. """ h, w = sc.shape[:2] assert h // block_h == h / block_h assert w // block_w == w / block_w sc_split_h_ls = np.vsplit(sc, np.arange(h)[::block_h][1:]) # vertical split in height direction sc_split = [[] for _ in range(len(sc_split_h_ls))] for row, sc_split_h in enumerate(sc_split_h_ls): sc_split_w = np.hsplit(sc_split_h, np.arange(w)[::block_w][1:]) # horizontal split in width direction sc_split[row] = sc_split_w return np.array(sc_split) def convert_to_tensor(data: np.ndarray, cuda=False, retain_tensor=False, float16=False) \ -> Tuple[bool, Union[None, torch.Tensor]]: """ Try making tensor from numpy array. """ if float16: data_tensor = torch.tensor(data).bfloat16() else: data_tensor = torch.tensor(data).float() flag_ok = torch.isnan(data_tensor).sum() == 0 and torch.isinf(data_tensor).sum() == 0 data_tensor = data_tensor if retain_tensor else torch.zeros(1) if flag_ok: data_tensor = data_tensor.cuda() if cuda else data_tensor return True, data_tensor else: del data_tensor return False, None def sc_query(sc: torch.Tensor, pc: torch.Tensor, nodata_value: float = -1.0) -> np.ndarray: """ Query the scene coords' semantic labels in the given point cloud. @param sc: [H, W, 3] scene coordinates. @param pc: [N, 4] point cloud w/ semantic labels. @param nodata_value: Float number for nodata value. @return [H, W] semantic label. """ h, w = sc.shape[:2] pc = pc.clone() sc = sc.reshape(-1, 3) # [K, 3] mask_nodata = sc[:, 0] == nodata_value sc_cdist = sc[torch.logical_not(mask_nodata)] # [K', 3] pc_cdist = pc[:, :3] # [N, 3] # torch cdist for distance computation, only p=2 is supported as of pytorch 1.9! # See issue: https://github.com/pytorch/pytorch/issues/49928 qeury2pc_dist = torch.cdist(sc_cdist, pc_cdist, p=2.0) # [K', N] # matrix multiplication, too much GPU memory, don't use. # qeury2pc_dist = torch.mm(sc_cdist, pc_cdist.transpose(1, 0)) # [K', N] # l1 distance, too much GPU memory, don't use. # qeury2pc_dist = (sc_cdist[:, None, :] - pc_cdist[None, :, :]).abs().sum(dim=-1) # [K', N] cloest_dist, idx_cloest_pt = qeury2pc_dist.min(dim=1) # [K'] + [K'] semantics_label = -torch.ones(h * w, 2).to(sc.device) # [H * W] semantics_label[torch.logical_not(mask_nodata), 0] = pc[idx_cloest_pt, -1].float() semantics_label[torch.logical_not(mask_nodata), 1] = cloest_dist.float() semantics_label = semantics_label.reshape(h, w, 2).cpu().numpy() return semantics_label def check_mem(sc_cdist_len: int, pc_cdist_len: int, secure_mem: bool) -> bool: """ check whether the cdist operation will out of memory :param sc_cdist_len: number of pixels in the split image patch :param pc_cdist_len: number of point in the query scene :param secure_mem: flag to use a more conservative and safer GPU memory checking policy :return: bool """ nvmlInit() h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) max_mem_gb = info.free / 1024 ** 3 max_mem_gb = max_mem_gb - 1.5 if secure_mem else max_mem_gb - 0.75 if secure_mem: flag_memory_okay = ((sc_cdist_len * pc_cdist_len) / 1e9) <= (max_mem_gb * 2.5 / 15) else: flag_memory_okay = ((sc_cdist_len * pc_cdist_len) / 1e9) <= (max_mem_gb * 3.25 / 15) return flag_memory_okay def find_opt_split(_sc: np.ndarray, _big_pc_label_tensor: torch.Tensor, block_h: int, block_w: int, secure_mem: bool = False, float16: bool = False) -> (int, int): """ find the optimal strategy to split the input image while fully utilise the GPU :param block_w: default split block width :param block_h: default split block height :param _sc: input image [480, 720, 3] :param _big_pc_label_tensor: entire point cloud w/ label :param secure_mem: flag to use a more conservative and safer GPU memory checking policy :param float16: flag to use float16 accuracy :return block_h, block_w: optimal split of the image in [block_h, block_w] """ sc_cdist_len, pc_cdist_len = block_h * block_w, _big_pc_label_tensor.shape[0] pattern_idx = 0 optional_list = [(240, 180), (120, 180), (120, 90), (60, 90), (60, 72), (60, 45), (48, 45), (48, 36), (24, 24), (24, 12), (12, 12), (6, 6), (1, 1)] selected_pc_ls = [] _sc_split = None while not check_mem(sc_cdist_len, pc_cdist_len, secure_mem): block_h, block_w = optional_list[pattern_idx] sc_cdist_len = block_h * block_w _sc_split = split_scene_coord(_sc, block_h, block_w) # [rows, cols, b_h, b_w, 3] flag_tensor, _sc_split = convert_to_tensor(_sc_split, cuda=True, retain_tensor=True, float16=float16) assert flag_tensor # selected_pc_len_max pc_cdist_len = 0 selected_pc_ls = [] for row in range(_sc_split.shape[0]): selected_pc_row_ls = [] for col in range(_sc_split.shape[1]): selected_pc = pc_local_search(_big_pc_label_tensor, _sc_split[row, col].reshape(-1, 3), nodata_value=-1) # [X, 4] pc_cdist_len = max(pc_cdist_len, selected_pc.shape[0]) selected_pc_row_ls.append(selected_pc) selected_pc_ls.append(selected_pc_row_ls) pattern_idx += 1 # release the GPU memory torch.cuda.empty_cache() return block_h, block_w, _sc_split, selected_pc_ls def all_path(dirname: str, filter_list: list) -> [list, list]: """ extract all the path of .npy file from the main dir :param filter_list: file format to extract :param dirname: main dir name :return: file name list with detailed path """ file_path_list = [] folder_path_list = [] for main_dir, subdir, file_name_list in os.walk(dirname): # # current main dir # print('main dir:', maindir) # # current sub dir # print('sub dir:', subdir) # # all file under current main dir # print('file name list:', file_name_list) for this_dir in subdir: folder_path_list.append(main_dir + '/' + this_dir) for filename in file_name_list: if 'poses' in os.path.splitext(filename)[0].split('_'): continue if os.path.splitext(filename)[1] in filter_list: path_detail = os.path.join(main_dir, '_'.join(filename.split('_')[:-1])) file_path_list.append(path_detail) file_path_list = np.unique(file_path_list).tolist() file_path_list.sort() folder_path_list = np.unique(folder_path_list).tolist() return file_path_list, folder_path_list def mkdir(output_path: str, folder_ls: list) -> None: """ create folder as the structure of input path :param output_path: :param folder_ls: :return: """ os.makedirs(output_path, exist_ok=True) for folder in folder_ls: output_folder = os.path.exists(os.path.join(output_path, folder)) if not output_folder: os.makedirs(os.path.join(output_path, folder)) def remove_extreme_points(sc: np.ndarray, threshold: float, nodata_value: float = -1.0): """ Pick the extremely remote points w.r.t. the median center. @param sc: [H, W, 3] scene coordinate. @param threshold: Threshold for the extremely remote points. @param nodata_value: Float number for nodata value. return: masked sc, number of outlier points """ sc_shape = sc.shape sc = sc.reshape(-1, 3) # [H*W, 3] mask_has_data = sc[:, 0] != nodata_value # [X] sc_valid = sc[mask_has_data] # [X, 3] center_median = np.median(sc_valid, axis=0) # [3] # make sure the thresholding is robust, we purge at most 1 % of the scene coordinates dist_to_center = np.linalg.norm(sc_valid - center_median, axis=1) # [X] dist_max_quantile = np.quantile(dist_to_center, 0.99, axis=0, interpolation='nearest') # scalar threshold_robust = np.max([dist_max_quantile, threshold]) # reset the possible outliers mask_outlier = dist_to_center > threshold_robust # [X] sc_valid[mask_outlier] = nodata_value sc[mask_has_data] = sc_valid # [H*W, 3] print("Actual threshold: {:.1f} m, number of points to remove: {:d} ({:.2f}%)".format( threshold_robust, np.sum(mask_outlier), np.sum(mask_outlier) / len(sc) * 100.0)) return sc.reshape(sc_shape) def main(): args = config_parser() print(args) downsample_rate = args.downsample_rate start_idx = args.start_idx end_idx = args.end_idx # set the input and output path las_file_path = os.path.abspath(args.las_path) input_path = os.path.abspath(args.input_path) output_path_semantics = os.path.abspath(args.output_path_semantics) output_path_distance = os.path.abspath(args.output_path_distance) file_ls, folder_ls = all_path(input_path, filter_list=['.npy']) # load raw las and turn into 3D point array _big_pc_label = [] las_ls = [las for las in os.listdir(las_file_path) if las.endswith('.las')] for idx, las_name in enumerate(las_ls): las = laspy.read(os.path.join(las_file_path, las_name)) las = np.stack([las.x, las.y, las.z, np.array(las.classification)], axis=1) _big_pc_label.extend(las) _big_pc_label = np.array(_big_pc_label) # [N, 4] _big_pc_label = np.ascontiguousarray(_big_pc_label) # [N, 4] # read point cloud with semantic label data from .npy file bound_xyz_min = _big_pc_label[:, :3].min(axis=0) # [3] bound_xyz_max = _big_pc_label[:, :3].max(axis=0) # [3] offset_center = (bound_xyz_max + bound_xyz_min) / 2 # [3] interval_xyz = bound_xyz_max - bound_xyz_min # [3] if args.float16: scale = np.array(interval_xyz / 1.e5, np.float64) # [3] else: scale = 1.0 # print('Offset origin XYZ: {}, {}, {}, scale: {}'.format(*offset_center, scale)) _big_pc_label = apply_offset(_big_pc_label, offset_center, scale, nodata_value=None) # [X, 4] flag_tensor, _big_pc_label_tensor = convert_to_tensor(_big_pc_label, cuda=True, retain_tensor=True, float16=args.float16) assert flag_tensor, "Cannot build tensor for the original data (w/ offset)!" # create output folder structure input_path_len = len(input_path.split('/')) folder_ls = ['/'.join(folder.split('/')[input_path_len:]) for folder in folder_ls] folder_ls =
np.unique(folder_ls)
numpy.unique
import numpy as np import free_energy_clustering.GMM as GMM import scipy.optimize as opt class LandscapeStacker(object): def __init__(self, data, list_of_validation_data, list_of_models, n_splits=1, convergence_tol=5e-3, n_iterations=1, model_weights=None): """ Class for weighting density estimators with EM, based on how well they describe the validation dataset. :param data: [n_samples x n_dimensions] :param list_of_estimators: :param n_splits: Number of folds in K-fold cross-validation :param convergence_tol: """ self.GMM_list_ = list_of_models self.val_data_list_ = list_of_validation_data self.data_ = data self.convergence_tol_ = convergence_tol self.n_models_ = int(len(list_of_models)/n_splits) self.n_splits_ = n_splits self.n_iterations_ = n_iterations self.n_components_list_ = [] # Initlialize weights if model_weights is None: if self.n_models_ > 0: self.model_weights_ = 1.0 / self.n_models_ * np.ones(self.n_models_) else: self.model_weights_ = model_weights self._sparisify_model() print('Model weights: ' + str(self.model_weights_)) print('GMM list: '+str(self.GMM_list_)) self._set_n_component_list() print('# Components in models: '+str(self.n_components_list_)) return def objective_function(self,W): # -log(likelihood) W /= W.sum() return -self.loglikelihood(self.val_data_list_, list_of_validation_data=True, weights=W) def fit(self): do_EM = True print('Training density model weights.') if do_EM: loglikelihood = -np.inf prev_loglikelihood = 0 while (np.abs(prev_loglikelihood - loglikelihood) > self.convergence_tol_): beta = self._expectation() self._maximization(beta) prev_loglikelihood = loglikelihood loglikelihood = self.loglikelihood(self.val_data_list_, list_of_validation_data=True) else: self.model_weights_ = opt.fmin_cg(self.objective_function, self.model_weights_) # Keep only models with nonzero weight self._sparisify_model() self._set_n_component_list() # Train each density model on the full dataset. print('Training each model on the full dataset.') for i_model in range(self.n_models_): n_components = self.GMM_list_[i_model].n_components_ print(' - Training model with '+str(n_components)+' components') best_loglikelihood = -np.inf for i_iter in range(self.n_iterations_): density_model = GMM.GaussianMixture(n_components=n_components, convergence_tol=self.convergence_tol_) density_model.fit(self.data_) loglikelihood = density_model.loglikelihood(self.data_) if loglikelihood > best_loglikelihood: best_loglikelihood = loglikelihood self.GMM_list_[i_model] = density_model self.n_components_list_ =
np.asarray(self.n_components_list_)
numpy.asarray
import sys sys.path.append("../") from Utils import Obj from sklearn.neighbors import NearestNeighbors from extension.arap.cuda.arap import Arap from extension.arap_closed.cuda.arap import ClosedArap as ArapSolveRhs from extension.grad_arap.cuda.arap import ArapGrad from extension.bending.cuda.arap import Bending import numpy as np import torch import header import os import time import trimesh def find_nearest(array, value): array = np.asarray(array) idx = np.mean(np.abs(array - np.expand_dims(value,0)),1).argmin() return idx hi_arap = Arap() hi_arap_solve_rhs = ArapSolveRhs() bending = Bending() from sklearn.neighbors import NearestNeighbors clf = NearestNeighbors(n_neighbors=1,p=1,n_jobs=15) ''' def norm_points(vertices,ref_verts): bmin = np.min(ref_verts,axis=0) bmax = np.max(ref_verts,axis=0) diagsq = np.sum(np.power(bmax-bmin,2)) ref_diag = np.sqrt(diagsq) bmin = np.min(vertices,axis=0) bmax = np.max(vertices,axis=0) diagsq = np.sum(np.power(bmax-bmin,2)) diag = np.sqrt(diagsq) s = np.eye(3) s *= (ref_diag/diag) vertices = np.dot(vertices,s) bmin = np.min(ref_verts,axis=0) bmax = np.max(ref_verts,axis=0) ref_bcenter = (bmin+bmax)/2.0 bmin = np.min(vertices,axis=0) bmax = np.max(vertices,axis=0) bcenter = (bmin+bmax)/2.0 #vertices = vertices + (ref_bcenter-bcenter) return vertices ''' def norm_points(vertices): bmin = np.min(vertices,axis=0) bmax = np.max(vertices,axis=0) diagsq = np.sum(np.power(bmax-bmin,2)) diag = np.sqrt(diagsq) s = np.eye(3) s *= (1.0/diag) vertices = np.dot(vertices,s) bmin = np.min(vertices,axis=0) bmax =
np.max(vertices,axis=0)
numpy.max
# -*- coding: utf-8 -*- """ Created on Tue May 25 13:51:19 2021 @author: sopmathieu This script is an example of how to use to package to study the sunspot numbers. """ import pickle import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.size'] = 14 import pkg_resources as pkg from uncertainty import errors as err ### load data (loaded automatically with package) data_path = pkg.resource_filename(pkg.Requirement.parse("uncertainty"), 'data') with open(data_path + '/data_21_1947', 'rb') as file: #subset of 21 stations #with open(data_path + '/data_1981', 'rb') as file: #all stations my_depickler = pickle.Unpickler(file) Ns = my_depickler.load() #number of spots Ng = my_depickler.load() #number of sunspot groups Nc = my_depickler.load() #Ns+10Ng station_names = my_depickler.load() #index of the stations time = my_depickler.load() #time (fraction of years) Ns_rescaled = err.rescaling(Ns, 8) #################################### ### Solar signal mus_Ns = err.median_transformed(Ns, period_rescaling=8) mus_Ng = err.median_transformed(Ng, period_rescaling=14) mus_Nc = err.median_transformed(Nc, period_rescaling=10) ### histograms plt.rcParams['figure.figsize'] = (10.0, 6.0) plt.figure(1) plt.hist(mus_Ns[~np.isnan(mus_Ns)], range=[0,150], bins='auto', density=True, facecolor='b') plt.title("Solar signal (Ns)") plt.text(60, 0.04, 'mean: ' '%4f' %np.nanmean(mus_Ns)) plt.text(60, 0.03, 'std: ' '%4f' %np.nanstd(mus_Ns)) plt.axis([0,150, 0, 0.08]) plt.grid(True) plt.show() plt.figure(2) plt.hist(mus_Ng[~np.isnan(mus_Ng)], range=[0,20], bins=20, density=True, facecolor='b') plt.title("Solar signal (Ng)") plt.text(15, 0.2, 'mean: ' '%4f' %np.nanmean(mus_Ng)) plt.text(15, 0.15, 'std: ' '%4f' %np.nanstd(mus_Ng)) plt.axis([0, 20, 0, 0.25]) plt.grid(True) plt.show() plt.figure(3) plt.hist(mus_Nc[~np.isnan(mus_Nc)], range=[0,300], bins='auto', density=True, facecolor='b') plt.title("Solat signal (Nc)") plt.text(150, 0.015, 'mean: ' '%4f' %np.nanmean(mus_Nc)) plt.text(150, 0.0125, 'std: ' '%4f' %np.nanstd(mus_Nc)) plt.axis([0, 300, 0, 0.03]) plt.grid(True) plt.show() #################################### ### Long-term error mu2_81 = err.long_term_error(Ns, period_rescaling=8, wdw=81) mu2_1 = err.long_term_error(Ns, period_rescaling=8, wdw=365) mu2_2 = err.long_term_error(Ns, period_rescaling=8, wdw=912) #stability criterion #mse_mu2, names = err.mse_criterion(mu2_1, station_names, ref=None) mse_mu2, names = err.mse_criterion(mu2_1, station_names, ref=1) start = np.where(time == 1960)[0][0] stop = np.where(time == 2010)[0][0] stat = 19 plt.plot(time[start:stop], mu2_81[start:stop, stat], ':', c='tab:green', label='$\hat \mu_2$ (81)') plt.plot(time[start:stop], mu2_1[start:stop, stat], '--', c='tab:red', label='$\hat \mu_2$ (1)') plt.plot(time[start:stop], mu2_2[start:stop, stat], lw=3, c='tab:blue', label='$\hat \mu_2$ (2)') plt.plot([time[start], time[stop]], [1, 1], 'k-', lw=2) plt.legend(loc='upper right') #f4.set_ylim([-10,20]); f4.set_xlim([time[start-20], time[stop+20]]) if stop-start < 4000: x_ticks = np.arange(np.round(time[start]), np.round(time[stop])+1, 1) else : x_ticks = np.arange(np.round(time[start]), np.round(time[stop])+1, 10) plt.xticks(x_ticks) plt.title("Long-term error for Ns in %s" %station_names[stat]) plt.ylabel('$\hat \mu_2$') plt.xlabel('year') plt.tick_params(axis='x', which='major') plt.show() #################################### ### Error at minima e3_Ns = err.error_at_minima(Ns, period_rescaling=8) e3_Ng = err.error_at_minima(Ng, period_rescaling=14) e3_Nc = err.error_at_minima(Nc, period_rescaling=10) ### histograms binning = int(6/(3.5*np.nanstd(e3_Ns)*len(e3_Ns)**(-1/3))) #Scott's rule plt.rcParams['figure.figsize'] = (10.0, 6.0) plt.figure(1) plt.hist(e3_Ns[~np.isnan(e3_Ns)], range=[0,5], bins=binning, density=True, facecolor='b') plt.title("Error at minima (Ns)") plt.text(2, 0.8, 'mean:' '%4f' %np.nanmean(e3_Ns)) plt.text(2, 0.6, 'std:' '%4f' %np.nanstd(e3_Ns)) plt.axis([0, 5, 0, 1]) plt.grid(True) plt.show() binning = int(6/(3.5*np.nanstd(e3_Ng)*len(e3_Ng)**(-1/3))) plt.figure(2) plt.hist(e3_Ng[~np.isnan(e3_Ng)], range=[0,5], bins=binning, density=True, facecolor='b') plt.title("Error at minima (Ng)") plt.text(2, 0.8, 'mean:' '%4f' %np.nanmean(e3_Ng)) plt.text(2, 0.6, 'std:' '%4f' %np.nanstd(e3_Ng)) plt.axis([0, 5, 0, 1]) plt.grid(True) plt.show() binning = int(6/(3.5*np.nanstd(e3_Nc)*len(e3_Nc)**(-1/3))) plt.figure(3) plt.hist(e3_Nc[~np.isnan(e3_Nc)], range=[0,30], bins=binning, density=True, facecolor='b') plt.title("Error at minima (Nc)") plt.text(10, 0.03, 'mean:' '%4f' %np.nanmean(e3_Nc)) plt.text(10, 0.02, 'std:' '%4f' %np.nanstd(e3_Nc)) plt.axis([0, 30, 0, 0.04]) plt.grid(True) plt.show() ################## ### Short-term error e1_Ns = err.short_term_error(Ns, period_rescaling=8) e1_Ng = err.short_term_error(Ng, period_rescaling=14) e1_Nc = err.short_term_error(Nc, period_rescaling=10) #stability criterion #mse_e1, names = err.mse_criterion(e1_Ns, station_names, ref=None) mse_e1, names = err.mse_criterion(e1_Ns, station_names, ref=1) ###histograms binning = int(6/0.0328) #Scott's rule for the binning plt.rcParams['figure.figsize'] = (10.0, 6.0) plt.figure(1) plt.hist(e1_Ns[~np.isnan(e1_Ns)], range=[0,5], bins=binning, density=True, facecolor='b') plt.title("Short-term error (Ns)") plt.text(2, 1, 'mean:' '%4f' %np.nanmean(e1_Ns)) plt.text(2, 0.6, 'std:' '%4f' %np.nanstd(e1_Ns)) plt.axis([0, 5, 0, 3.5]) plt.grid(True) plt.show() binning = int(6/0.0328) plt.figure(2) plt.hist(e1_Ng[~np.isnan(e1_Ng)], range=[0,5], bins=binning, density=True, facecolor='b') plt.title("Short-term error (Ng)") plt.text(2, 1, 'mean:' '%4f' %np.nanmean(e1_Ng)) plt.text(2, 0.6, 'std:' '%4f' %np.nanstd(e1_Ng)) plt.axis([0, 5, 0, 3.5]) plt.grid(True) plt.show() binning = int(6/0.0433) plt.figure(3) plt.hist(e1_Nc[~np.isnan(e1_Nc)], range=[0,5], bins=binning, density=True, facecolor='b') plt.title("Short-term error (Nc)") plt.text(2, 1, 'mean:' '%4f' %np.nanmean(e1_Nc)) plt.text(2, 0.6, 'std:' '%4f' %np.nanstd(e1_Nc)) plt.axis([0, 5, 0, 3.5]) plt.grid(True) plt.show() #==================================================================== #stability criterion combining short and long-term #==================================================================== ### Long-term error without levels mu2_81 = err.long_term_error(Ns, period_rescaling=8, wdw=81, level=True, wdw_level=4000) mu2_1 = err.long_term_error(Ns, period_rescaling=8, wdw=365, level=True, wdw_level=4000) mu2_2 = err.long_term_error(Ns, period_rescaling=8, wdw=912, level=True, wdw_level=4000) mse_add = err.mse_criterion(e1_Ns, station_names, ref=1)[0] + \ err.mse_criterion(mu2_1, station_names, ref=0)[0] ind_order = np.argsort(mse_add) names_add = [station_names[i] for i in ind_order] #should be the same if the errors were perfectly independent mse_comb, names_comb = err.mse_criterion(e1_Ns+mu2_1, station_names, ref=1) #==================================================================== #error bars #==================================================================== add, ref = err.error_add(Ns, period_rescaling=8) start = np.where(time == 2005)[0][0] stop = np.where(np.round(time,1) == 2005.5)[0][0] stat = 20 plt.stem(time[start:stop], ref[start:stop]+add[start:stop, stat], label='ref+errors', markerfmt='C0.', basefmt='C0-') plt.plot(time[start:stop], ref[start:stop], c='tab:purple', label='ref', lw=3) plt.legend(loc='upper right') if stop-start < 4000: x_ticks = np.arange(np.round(time[start],1), np.round(time[stop],1), 0.1) else : x_ticks = np.arange(np.round(time[start]), np.round(time[stop])+1, 5) plt.xticks(x_ticks) plt.title("Additive errors in %s" %station_names[stat]) plt.ylabel('$Y_i(t)$') plt.xlabel('year') plt.tick_params(axis='x', which='major') plt.show() plt.stem(time[start:stop], Ns[start:stop, stat], label='real values', markerfmt='C0.', basefmt='C0-') plt.plot(time[start:stop], ref[start:stop], c='tab:purple', label='ref', lw=3) plt.legend(loc='upper right') if stop-start < 4000: x_ticks = np.arange(np.round(time[start],1), np.round(time[stop],1), 0.1) else : x_ticks = np.arange(np.round(time[start]), np.round(time[stop])+1, 5) plt.xticks(x_ticks) plt.title("Additive errors in %s" %station_names[stat]) plt.ylabel('$Y_i(t)$') plt.xlabel('year') plt.tick_params(axis='x', which='major') plt.show() plt.stem(time[start:stop], add[start:stop, stat], label='errors', markerfmt='C0.', basefmt='C0-') plt.plot(time[start:stop], ref[start:stop], c='tab:purple', label='ref', lw=3) plt.legend(loc='upper right') if stop-start < 4000: x_ticks = np.arange(np.round(time[start],1), np.round(time[stop],1), 0.1) else : x_ticks = np.arange(np.round(time[start]), np.round(time[stop])+1, 5) plt.xticks(x_ticks) plt.title("Additive errors in %s" %station_names[stat]) plt.ylabel('$Y_i(t)$') plt.xlabel('year') plt.tick_params(axis='x', which='major') plt.show() ##################################### bars_m, bars_p, ref = err.error_bars(Ns, period_rescaling=8) stat = 20 start = np.where(time == 2000)[0][0] stop = np.where(np.round(time,1) == 2000.3)[0][0] y = ref[start:stop] bars = np.array((bars_m[start:stop,stat], bars_p[start:stop,stat])) plt.vlines(time[start:stop], y + bars[0,:], y + bars[1,:], lw=0.8) plt.scatter(time[start:stop], y + bars[0,:], marker='_', c='orange') plt.scatter(time[start:stop], y + bars[1,:], marker='_', c='orange') plt.plot(time[start:stop], y, c='tab:purple', label='ref', lw=3) if stop-start < 4000: x_ticks = np.arange(np.round(time[start],1),
np.round(time[stop],1)
numpy.round
import logging import numpy as np import pandas as pd from tqdm import tqdm logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def init_parameters(input_size, hidden_sizes, output_size, init_method='Xavier'): scales = [] layers = [input_size] + hidden_sizes if 'Xavier' in init_method: for i in range(1, len(layers) + 1): scales.append(np.sqrt(2. / layers[i - 1])) if 'Xavier' in init_method: first_layer_scale = scales[0] elif 'Random' in init_method: first_layer_scale = 0.01 else: first_layer_scale = 0.0 parameters = dict() parameters['W1'] = np.random.randn(hidden_sizes[0], input_size) * first_layer_scale parameters['b1'] = np.zeros((hidden_sizes[0], 1)) for l in range(len(hidden_sizes)): if len(hidden_sizes) - 1 == l: # last layer parameters['W' + str(l + 2)] = np.random.randn(output_size, hidden_sizes[l]) * scales[l + 1] parameters['b' + str(l + 2)] = np.zeros((output_size, 1)) else: parameters['W' + str(l + 2)] = np.random.randn(hidden_sizes[l + 1], hidden_sizes[l]) * scales[ l + 1] parameters['b' + str(l + 2)] = np.zeros((hidden_sizes[l + 1], 1)) return parameters def apply_non_linearity(Z, activation_func): if 'tanh' in activation_func: return tanh_forward(Z) elif 'relu' in activation_func: return relu_forward(Z) else: raise AssertionError def forward_propagation(X, parameters, activation_func): num_layers = int(len(parameters) / 2) cache = dict() cache['A0'] = X for l in range(1, num_layers): W = parameters['W' + str(l)] b = parameters['b' + str(l)] Z = linear_forward(cache['A' + str(l - 1)], W, b) cache['A' + str(l)] = apply_non_linearity(Z, activation_func) Z = linear_forward(Z, parameters['W' + str(num_layers)], parameters['b' + str(num_layers)]) cache['A' + str(num_layers)] = sigmoid_forward(Z) return cache def gradient_descent(parameters, derivatives, learning_rate): num_layers = int(len(parameters) / 2) for l in range(1, num_layers + 1): parameters['W' + str(l)] = parameters['W' + str(l)] - learning_rate * derivatives[ 'dW' + str(l)] parameters['b' + str(l)] = parameters['b' + str(l)] - learning_rate * derivatives[ 'db' + str(l)] return parameters def compute_l2_reg_backprop(parameters, lambda_reg, batch_size): l2_regs = {name: (lambda_reg / batch_size) * w for name, w in parameters.items() if 'W' in name} return l2_regs def backward_activation(Z, activation_func): if 'tanh' in activation_func: return tanh_backward(Z) elif 'relu' in activation_func: return relu_backward(Z) else: raise AssertionError def backward_propagation(X, parameters, cache, Y_true, activation_func, num_layers=3, lambda_reg=0.0): derivatives = dict() batch_size = Y_true.shape[1] if lambda_reg != 0.0: l2_regs = compute_l2_reg_backprop(parameters, lambda_reg, batch_size) else: l2_regs = {name: 0.0 for name, w in parameters.items() if 'W' in name} # sigmoid layer dZ_out = cache['A' + str(num_layers + 1)] - Y_true # 1 x m dW_out = 1. / batch_size * np.dot(dZ_out, cache['A' + str(num_layers)].T) + l2_regs[ 'W' + str(num_layers + 1)] # A1 h x m db_out = 1. / batch_size * np.sum(dZ_out, axis=1, keepdims=True) # (1,1) derivatives['dA' + str(num_layers + 1)] = dZ_out derivatives['dW' + str(num_layers + 1)] = dW_out derivatives['db' + str(num_layers + 1)] = db_out # relu layer for i in reversed(range(num_layers)): # derivatives['dA' + str(i + 1)] = np.dot(parameters['W' + str(i + 2)].T, derivatives['dA' + str(i + 2)]) * relu_backward(cache['A' + str(i + 1)]) (h x 1) x (1 x m) x (h x m) = (h x m) derivatives['dA' + str(i + 1)] = np.dot(parameters['W' + str(i + 2)].T, derivatives['dA' + str(i + 2)]) # derivatives['dA' + str(i + 1)] = derivatives['dA' + str(i + 1)] * tanh_backward(cache['A' + str(i + 1)]) derivatives['dA' + str(i + 1)] = derivatives['dA' + str(i + 1)] * backward_activation( cache['A' + str(i + 1)], activation_func) derivatives['dW' + str(i + 1)] = 1. / batch_size * np.dot(derivatives['dA' + str(i + 1)], cache['A' + str(i)].T) + l2_regs[ 'W' + str(i + 1)] # (h x m) x (m x n_x) derivatives['db' + str(i + 1)] = 1. / batch_size * np.sum(derivatives['dA' + str(i + 1)], axis=1, keepdims=True) # (h,1) return derivatives def linear_forward(X, W, b): return np.dot(W, X) + b def relu_forward(Z): return np.maximum(Z, 0) def relu_backward(Z): return 1. * (Z > 0) def tanh_forward(Z): return np.tanh(Z) def tanh_backward(Z): return 1 - np.power(np.tanh(Z), 2) def sigmoid_forward(Z): return 1 / (1 +
np.exp(-Z)
numpy.exp
from util import * from parameters import * import numpy as np # repeatable test runs, seed before importing tensorflow
np.random.seed(np_random_seed)
numpy.random.seed
#!/usr/bin/env python """Tests for `ramachandran` package.""" import unittest import numpy as np import pandas as pd from ramachandran.ramachandran import Ramachandran class TestRamachandran(unittest.TestCase): """Tests for `ramachandran` package.""" def setUp(self): """Set up test fixtures, if any.""" pass def tearDown(self): """Tear down test fixtures, if any.""" pass def test_001_vector_norm_dihedral(self): """Test something.""" P = np.array([1, -2, 0]) Q = np.array([3, 1, 4]) R = np.array([0, -1, 2]) S = np.array([0, 22, 2]) x = Ramachandran.vector_norm(self, P, Q, R) y = Ramachandran.vector_norm(self, Q, R, S) z = Ramachandran.dihedral(self, x, y) # test calculation of vector normal to the plane containing the points P, Q & R PQ = np.array([Q[0]-P[0], Q[1]-P[1], Q[2]-P[2]]) PR = np.array([R[0]-P[0],R[1]-P[1], R[2]-P[2]]) normal_1 = np.array([PQ[1]*PR[2]-PQ[2]*PR[1], PQ[2]*PR[0]-PQ[0]*PR[2], PQ[0]*PR[1]-PQ[1]*PR[0]]) # test calculation of vector normal to the plane containing the points Q, R & S QR = np.array([R[0]-Q[0], R[1]-Q[1], R[2]-Q[2]]) QS = np.array([S[0]-Q[0],S[1]-Q[1], S[2]-Q[2]]) normal_2 = np.array([QR[1]*QS[2]-QR[2]*QS[1], QR[2]*QS[0]-QR[0]*QS[2], QR[0]*QS[1]-QR[1]*QS[0]]) # claculate the dihedral angle between the two planes by calculating the angle between the two normal vectors cos_test_numerator = np.absolute((normal_1[0]*normal_2[0]) + (normal_1[1]*normal_2[1]) + (normal_1[2]*normal_2[2])) cos_test_denominator =
np.sqrt(normal_1[0]**2 + normal_1[1]**2 + normal_1[2]**2)
numpy.sqrt
import os import argparse import cv2 import os.path as osp import numpy as np from tqdm import tqdm from pycocotools.coco import COCO def scoring(item): return item['score'] parser = argparse.ArgumentParser(description='Failure Cases Analysis') parser.add_argument('-i', '--img-dir', action='store', dest='img_dir', help='image directory') parser.add_argument('-b', '--bbox-dir', action='store', dest='bbox_dir', help='bounding box directory') parser.add_argument('-s', '--save-dir', action='store', dest='save_dir', help='save directory') parser.add_argument('-n', '--num', action='store', dest='num_of_skus', help='number of SKUs in an image') args = parser.parse_args() img_dir = args.img_dir bbox_dir = args.bbox_dir save_dir = args.save_dir num_of_skus = int(args.num_of_skus) # For example: # img_dir = '../testing_images' # bbox_dir = '../sku-box-test-101-200-v1' # save_dir = '../1_Products' if not osp.exists(save_dir): os.mkdir(save_dir) if not osp.exists(osp.join(save_dir, 'None_Detections')): os.mkdir(osp.join(save_dir, 'None_Detections')) if not osp.exists(osp.join(save_dir, '{}_Product_fix'.format(str(num_of_skus)))): os.mkdir(osp.join(save_dir, '{}_Product_fix'.format(str(num_of_skus)))) # load annotations anno_path = osp.join(img_dir, 'annotations_train.json') # DO NOT USE bbox_path = osp.join(bbox_dir, 'bbox_fix_done.json') coco = COCO(anno_path) cocoDt = coco.loadRes(bbox_path) print ('--- --- End Loading Annotations and Predictions --- ---') # read img imgs = coco.imgs cats = coco.cats anns = coco.imgToAnns dets = cocoDt.imgToAnns gt_color = (0, 255, 255) det_color = (0, 0, 255) thick = 2 inconsistency_flag = False pbar = tqdm(total=len(imgs)) for key, val in imgs.items(): key = int(key) # print (key, val) file_path = osp.join(img_dir, val['file_name']) gt_im = cv2.imread(file_path) det_im = cv2.imread(file_path) h = val['height'] num_bbox = len(anns[key]) print(num_bbox) if num_bbox != num_of_skus: continue gt_cls_all = [] det_cls_all = [] inconsistency_flag = False for idx in range(0, num_bbox): gt_bbox = anns[key][idx]['bbox'] gt_bbox = [int(p) for p in gt_bbox] gt_catId = anns[key][idx]['category_id'] gt_cls = str(cats[gt_catId]['name']) gt_cls_all.append(gt_cls) gt_score = 1 gt_title = 'GT: %s:%.2f' % (gt_cls, gt_score) print("--- gt_box: ", gt_bbox) cv2.rectangle(gt_im, (gt_bbox[0], gt_bbox[1]), (gt_bbox[2], gt_bbox[3]), gt_color, thick) cv2.putText(gt_im, gt_title, (gt_bbox[0], gt_bbox[3] + 8), 0, 8e-4 * h, gt_color, thick // 3) # cv2.imwrite(osp.join(save_dir, '{}_Product_fix'.format(str(num_of_skus)), val['file_name']), gt_im) if len(dets[key]) == 0: print('{} None detections'.format(key)) im = np.hstack((det_im, gt_im)) cv2.imwrite(osp.join(save_dir, 'None_Detections', val['file_name']), im) continue dets_sorted = sorted(dets[key], key=scoring, reverse=True) num_det_bbox = len(dets_sorted) # not drawing all the detected bounding boxes if num_det_bbox > num_bbox: num_det_bbox = num_bbox for idx in range(0, num_det_bbox): det_bbox = dets_sorted[idx]['bbox'] det_catId = dets_sorted[idx]['category_id'] det_cls = str(cats[det_catId]['name']) det_cls_all.append(det_cls) det_socre = dets_sorted[idx]['score'] det_title = 'DET: %s:%.2f' % (det_cls, det_socre) # print ("--- det_box: ", det_bbox) cv2.rectangle(det_im, (int(det_bbox[0]), int(det_bbox[1])), (int(det_bbox[2]), int(det_bbox[3])), det_color, thick) cv2.putText(det_im, det_title, (int(det_bbox[0]), int(det_bbox[1]) - 8), 0, 8e-4 * h, det_color, thick // 3) im =
np.hstack((det_im, gt_im))
numpy.hstack
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg from davg.lanefinding.ImgMgr import ImgMgr from davg.lanefinding.BirdsEyeTransform import BirdsEyeTransform from davg.lanefinding.Thresholds import Thresholds from davg.lanefinding.LaneMath import LaneMath from davg.lanefinding.Prediction import Prediction from davg.lanefinding.Line import Line from davg.lanefinding.DiagnosticScreen import DiagnosticScreen class Pipeline(): def __init__(self): self.img_mgr = ImgMgr() self.birdseye = BirdsEyeTransform() pass def get_birdseye_binary_warped(self, img, undistort=True): ''' Convenience method. Undistorts an image (using previously determined globally accessible calibration data), warps it to the birdseye view, converting it to a uint8 after warping, then applying the combined threshold. Optionally: skip the undistort step. ''' if (undistort): undistorted = self.img_mgr.undistort(img) else: undistorted = img # Warp to birds-eye view masked = self.birdseye.apply_cropping_mask(undistorted) warped = self.birdseye.warp(masked) # Apply the thresholds return Thresholds.davg_thresh(warped) def find_lane_lines_using_windows(self, binary_warped): # This code was taken from the Udacity 'Finding the Lines' section of the # Advanced Lane Finding lesson # https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/2b62a1c3-e151-4a0e-b6b6-e424fa46ceab/lessons/40ec78ee-fb7c-4b53-94a8-028c5c60b858/concepts/c41a4b6b-9e57-44e6-9df9-7e4e74a1a49a # Assuming you have created a warped binary image called "binary_warped" # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[int(binary_warped.shape[0]*0.75):,:], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]//2) leftx_base =
np.argmax(histogram[:midpoint])
numpy.argmax
from warnings import WarningMessage import numpy as np from numpy.lib.npyio import save from cellpose import models import torch import cv2 import os,sys,time import skimage default_cellpose_kwargs = { 'anisotropy': 1, 'diameter': 40, 'min_size': 500, 'stitch_threshold': 0.1, } default_pixel_sizes = [250,108,108] class Cellpose_Segmentation_Psedu3D: """""" def __init__(self, _im, data_type='DAPI', save_filename=None, verbose=True): """""" # inherit from superclass super().__init__() # save images self.raw_im = _im self.data_type = data_type self.allowed_types = ['DAPI', 'polyT'] if self.data_type not in self.allowed_types: raise ValueError(f"input datatype {self.data_type} not in {self.allowed_types}") # save self.save_filename = save_filename self.verbose = verbose def run(self): """""" _lys, _sel_ids = Cellpose_Segmentation_Psedu3D.pick_Z_stacks(self.raw_im) _mask = Cellpose_Segmentation_Psedu3D.run_segmentation(_lys) _clean_mask = Cellpose_Segmentation_Psedu3D.merge_3d_masks(_mask) _z = Cellpose_Segmentation_Psedu3D.convert_layer_list_to_um(_sel_ids) _full_mask = Cellpose_Segmentation_Psedu3D.interploate_z_masks(_clean_mask, _z) return _full_mask @staticmethod def pick_Z_stacks(im:np.ndarray, num_layer_project:int=5, num_layer_overlap:int=1, projection_method:'function'=np.mean, verbose=True, ): _im = im.copy() # projection on z _sel_layers = [] for _i, _ly in enumerate(_im): if _i < num_layer_project-1: continue if len(_sel_layers) == 0 or min(_sel_layers[-1][-1*num_layer_overlap-1:]) + num_layer_project <= _i: _sel_layers.append(np.arange(_i-num_layer_project+1, _i+1)) # generate max projections _max_proj_layers = np.array([projection_method(_im[np.array(_lys)],axis=0) for _lys in _sel_layers]) if verbose: print(f"- {len(_max_proj_layers)} layers selected with {projection_method} projection.") return _max_proj_layers, _sel_layers @staticmethod def run_segmentation(_projected_im, model_type='nuclei', use_gpu=True, diameter=60, min_size=10, cellprob_threshold=0.5, stitch_threshold=0.2, flow_threshold=1.0, verbose=True, ): from cellpose import models # segmentation seg_model = models.Cellpose(gpu=use_gpu, model_type=model_type) masks, _, _, _ = seg_model.eval( np.array([_projected_im,_projected_im]), z_axis=1, channel_axis=0, diameter=diameter, channels=[0,0], min_size=min_size, cellprob_threshold=cellprob_threshold, # -6 to 6, positively correlate with number of masks stitch_threshold=stitch_threshold, flow_threshold=flow_threshold, do_3D=False) # clear ram del(seg_model) return masks @staticmethod def merge_3d_masks(masks, overlap_th=0.9, verbose=True): import time # copy masks _masks = np.array(masks).copy() all_mask_ids = np.unique(_masks) all_mask_ids = all_mask_ids[all_mask_ids>0] xy_projections = [(_masks==_i).any(0) for _i in all_mask_ids] kept_masks = np.zeros(np.shape(_masks), dtype=np.uint16) kept_ids = [] # intialize if verbose: print(f"- start merging 3d masks") _start_time = time.time() unprocessed_ids = list(all_mask_ids) while len(unprocessed_ids) > 0: # default: kept this cell _kept_flag = True # extract i _i = unprocessed_ids.pop(0) _i_msk = xy_projections[list(all_mask_ids).index(_i)] # calculate j percentage to see whether merge this into _j for _j in unprocessed_ids: # extract j _j_msk = xy_projections[list(all_mask_ids).index(_j)] # compare these two masks _i_percent = np.sum(_i_msk*_j_msk) / np.sum(_i_msk) _j_percent = np.sum(_i_msk*_j_msk) / np.sum(_j_msk) if _i_percent > 0 or _j_percent > 0: if verbose: print(f"-- overlap found for cell:{_i} to {_j}", _i_percent, _j_percent) # remove i, merge into j if _i_percent > overlap_th: _kept_flag = False # update mask, i already removed by continue _masks[_masks==_i] = _j xy_projections[list(all_mask_ids).index(_j)] = (_masks==_j).any(0) if verbose: print(f"--- skip {_i}") break # remove j, merge into i elif _j_percent > overlap_th: _kept_flag = False # remove j unprocessed_ids.pop(unprocessed_ids.index(_j)) # update mask _masks[_masks==_j] = _i xy_projections[list(all_mask_ids).index(_i)] = (_masks==_i).any(0) # redo i unprocessed_ids = [_i] + unprocessed_ids if verbose: print(f"--- redo {_i}") break # save this mask if there's no overlap if _kept_flag: kept_masks[_masks==_i] = np.max(np.unique(kept_masks))+1 kept_ids.append(_i) if verbose: print(f"- {np.max(kept_masks)} labels kept.") print(f"- finish in {time.time()-_start_time:.2f}s. ") return kept_masks @staticmethod def convert_layer_list_to_um(layer_lists:list, step_sizes:float=0.2, select_method:'function'=np.median): return step_sizes * np.array([select_method(_lys) for _lys in layer_lists]) @staticmethod def interploate_z_masks(z_masks, z_coords, target_z_coords=np.round(np.arange(0,12,0.2),2), mode='nearest', verbose=True, ): # target z _final_mask = [] _final_coords = np.round(target_z_coords, 3) for _fz in _final_coords: if _fz in z_coords: _final_mask.append(z_masks[np.where(z_coords==_fz)[0][0]]) else: if mode == 'nearest': _final_mask.append(z_masks[np.argmin(np.abs(z_coords-_fz))]) continue # find nearest neighbors if np.sum(z_coords > _fz) > 0: _upper_z = np.min(z_coords[z_coords > _fz]) else: _upper_z = np.max(z_coords) if np.sum(z_coords < _fz) > 0: _lower_z = np.max(z_coords[z_coords < _fz]) else: _lower_z = np.min(z_coords) if _upper_z == _lower_z: # copy the closest mask to extrapolate _final_mask.append(z_masks[np.where(z_coords==_upper_z)[0][0]]) else: # interploate _upper_mask = z_masks[np.where(z_coords==_upper_z)[0][0]].astype(np.float32) _lower_mask = z_masks[np.where(z_coords==_lower_z)[0][0]].astype(np.float32) _inter_mask = (_upper_z-_fz)/(_upper_z-_lower_z) * _lower_mask if verbose: print(f"- reconstruct {len(_final_mask)} layers") return np.array(_final_mask) class Cellpose_Segmentation_3D(): """Do 3D cellpose segmentation to DAPI image, and additionally watershed on polyT iamge given the DAPI seeds Minimal usage: seg_cls = Cellpose_Segmentation_3D(dapi_im, polyt_im, pixel_size, save_filename=filename) # create class labels = seg_cls.run() # run segmentation seg_cls.save() # save segmentation results """ def __init__(self, dapi_im, polyt_im=None, pixel_sizes=default_pixel_sizes, cellpose_kwargs={}, watershed_beta=1, save_filename=None, load_from_savefile=True, verbose=True): """Create CellposeSegmentation3D class""" # inherit from superclass #super().__init__() # save images self.dapi_im = dapi_im self.polyt_im = polyt_im # parameters self.pixel_sizes = pixel_sizes self.cellpose_kwargs = {_k:_v for _k,_v in default_cellpose_kwargs.items()} self.cellpose_kwargs.update(cellpose_kwargs) self.watershed_beta = watershed_beta # save info self.save_filename = save_filename self.verbose = verbose # load if load_from_savefile and save_filename is not None and os.path.exists(save_filename): self.load() def run(self, model_type='nuclei', use_gpu=True, overwrite=False,): """Composite segmentation with reshaped image""" if hasattr(self, 'segmentation_masks') and not overwrite: if self.verbose: print(f"-- segmentation_masks already exist, skip.") return self.segmentation_masks else: # _resized_shape = self.generate_resize_shape(self.dapi_im.shape, self.pixel_sizes) # _resized_dapi_im = self.reshape_raw_images(self.dapi_im, _resized_shape) if hasattr(self, 'polyt_im') and getattr(self, 'polyt_im') is not None: _resized_polyt_im = self.reshape_raw_images(self.polyt_im, _resized_shape) else: _resized_polyt_im = None # _resized_masks = self.run_segmentation(_resized_dapi_im, _resized_polyt_im, model_type=model_type, use_gpu=use_gpu, cellpose_kwargs=self.cellpose_kwargs) # revert mask size _masks = self.reshape_masks(_resized_masks, np.shape(self.dapi_im)) # watershed if hasattr(self, 'polyt_im') and getattr(self, 'polyt_im') is not None: _extended_masks = self.watershed_with_mask(self.polyt_im, _masks, self.watershed_beta) else: _extended_masks = self.watershed_with_mask(self.dapi_im, _masks, self.watershed_beta) # add to attributes setattr(self, 'segmentation_masks', _extended_masks) return _extended_masks def save(self, save_filename=None, overwrite=False): # decide save_filename if save_filename is None and self.save_filename is None: WarningMessage(f"save_filename not given.") elif save_filename is not None: _save_filename = save_filename else: _save_filename = self.save_filename # save if not os.path.exists(_save_filename) or overwrite: # save if self.verbose: print(f"-- saving mask into file: {_save_filename}") np.save(_save_filename.split(os.path.extsep+_save_filename.split(os.path.extsep)[-1])[0], self.segmentation_masks) else: if self.verbose: print(f"-- save_file:{_save_filename} already exists, skip. ") def load(self, save_filename=None, overwrite=False): # decide save_filename if save_filename is None and self.save_filename is None: WarningMessage(f"save_filename not given.") elif save_filename is not None: _save_filename = save_filename else: _save_filename = self.save_filename # load if not hasattr(self, 'segmentation_masks') or overwrite: if os.path.exists(_save_filename): if self.verbose: print(f"-- loading mask from file: {_save_filename}") self.segmentation_masks = np.load(_save_filename) else: if self.verbose: print(f"-- file: {_save_filename} doesn't exist, skip. ") else: if self.verbose: print(f"-- segmentation_masks already exists, skip. ") def clear(self): if self.verbose: print(f"-- removing segmentation_masks from class") if hasattr(self, 'segmentation_masks'): delattr(self, 'segmentation_masks') @staticmethod def generate_resize_shape(image_shape, pixel_sizes): resize_shape = np.floor(np.array(image_shape)[1:] * np.array(pixel_sizes)[1:] \ / np.array(pixel_sizes)[0]).astype(np.int32) return resize_shape @staticmethod def reshape_raw_images(raw_im, resize_shape, ): """Reshape raw image into smaller image to fit-in GPU""" _reshaped_im = np.array([cv2.resize(_lr, tuple(resize_shape[-2:]), interpolation=cv2.INTER_AREA) for _lr in raw_im]) return _reshaped_im @staticmethod def reshape_masks(masks, resize_shape, ): """Reshape raw image into smaller image to fit-in GPU""" _reshaped_masks = np.array([cv2.resize(_lr, tuple(resize_shape[-2:]), interpolation=cv2.INTER_NEAREST) for _lr in masks]) return _reshaped_masks @staticmethod def run_segmentation(small_dapi_im, small_polyt_im=None, model_type='nuclei', use_gpu=True, cellpose_kwargs={}, verbose=True, ): # check inputs _start_time = time.time() if small_polyt_im is None: small_polyt_im = np.zeros(np.shape(small_dapi_im), dtype=small_dapi_im.dtype) # create model seg_model = models.Cellpose(gpu=use_gpu, model_type=model_type) # parameters _cellpose_kwargs = {_k:_v for _k,_v in default_cellpose_kwargs.items()} _cellpose_kwargs.update(cellpose_kwargs) # run segmentation masks, _, _, _ = seg_model.eval(
np.stack([small_polyt_im, small_dapi_im], axis=3)
numpy.stack
# -*- coding: utf-8 -*- import cv2 import numpy as np from utils import * class GraphMaker: foreground = 1 background = 0 seeds = 0 segmented = 1 def __init__(self): self.image = None self.graph = None self.overlay = None self.seed_overlay = None self.segment_overlay = None self.mask = None self.load_image('images/cup1.jpg') self.background_seeds = [] self.foreground_seeds = [] self.background_average = np.array(3) self.foreground_average = np.array(3) self.nodes = [] self.edges = [] self.current_overlay = self.seeds def load_image(self, filename): self.image = cv2.imread(filename) self.height, self.width, _ = np.shape(self.image) print(self.height, self.width) self.graph = np.zeros_like(self.image) self.seed_overlay = np.zeros_like(self.image) self.segment_overlay = np.zeros_like(self.image) self.mask = None def add_seed(self, x, y, type): if self.image is None: print('Please load an image before adding seeds.') if type == self.background: if not self.background_seeds.__contains__((x, y)): self.background_seeds.append((x, y)) # 在图上画出一个矩形点 cv2.rectangle(self.seed_overlay, (x-1, y-1), (x+1, y+1), (0, 0, 255), -1) elif type == self.foreground: if not self.foreground_seeds.__contains__((x, y)): self.foreground_seeds.append((x, y)) cv2.rectangle(self.seed_overlay, (x-1, y-1), (x+1, y+1), (0, 255, 0), -1) def clear_seeds(self): self.background_seeds = [] self.foreground_seeds = [] self.seed_overlay = np.zeros_like(self.seed_overlay) def get_overlay(self): if self.current_overlay == self.seeds: return self.seed_overlay else: return self.segment_overlay def get_image_with_overlay(self, overlayNumber): if overlayNumber == self.seeds: return cv2.addWeighted(self.image, 0.9, self.seed_overlay, 0.4, 0.1) else: return cv2.addWeighted(self.image, 0.9, self.segment_overlay, 0.9, 0.1) def create_graph(self): if len(self.background_seeds) == 0 or len(self.foreground_seeds) == 0: print("Please enter at least one foreground and background seed.") return print("Making graph") print("Finding foreground and background averages") self.find_averages() print("Cutting graph") self.cut_graph() def find_averages(self): self.background_average = np.zeros(3) self.foreground_average = np.zeros(3) for coordinate in self.background_seeds: print(self.image[coordinate[1], coordinate[0]]) self.background_average += self.image[coordinate[1], coordinate[0]] self.background_average /= len(self.background_seeds) for coordinate in self.foreground_seeds: self.foreground_average += self.image[coordinate[1], coordinate[0]] self.foreground_average /= len(self.foreground_seeds) def cut_graph(self): self.foreground_plane = np.zeros((self.height, self.width, 3)) self.background_plane = np.zeros((self.height, self.width, 3)) self.foreground_plane[:, :, 0] = self.foreground_average[0] self.foreground_plane[:, :, 1] = self.foreground_average[1] self.foreground_plane[:, :, 2] = self.foreground_average[2] self.background_plane[:, :, 0] = self.background_average[0] self.background_plane[:, :, 1] = self.background_average[1] self.background_plane[:, :, 2] = self.background_average[2] d1 = self.image - self.foreground_plane f1 = np.sqrt(d1[:, :, 0] ** 2 + d1[:, :, 1] ** 2 + d1[:, :, 2] ** 2) d2 = self.image - self.background_plane f2 = np.sqrt(d2[:, :, 0] ** 2 + d2[:, :, 1] ** 2 + d2[:, :, 2] ** 2) f = f1 - f2 tau = 0.1 sigma = 0.05 mu = 1 imgray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) u = primal_dual(imgray, sigma, tau, mu, f, iters=500) u[u > 0.5] = 1 u[u <= 0.5] = 0 for coordinate in self.background_seeds: u[coordinate[1], coordinate[0]] = 0 for coordinate in self.foreground_seeds: u[coordinate[1], coordinate[0]] = 1 u = np.array(u, dtype=np.int32) self.segment_overlay = np.zeros_like(self.segment_overlay) self.mask = np.zeros_like(self.image, dtype=bool) indices =
np.where(u == 1)
numpy.where
""" routines for automatic calibration. - peakdet (useful to find maxima in an array without taking derivative) - get_most_prominent_peaks (find by looking for spikes in spectrum derivative) - match_peaks (identify peaks based on ratios between known gamma energies) - calibrate_tl208 (main routine -- fits multiple peaks w/ Radford peak shape) - get_calibration_energies (a good place to put pk energies) """ import sys import numpy as np from pygama.analysis.peak_fitting import * from pygama.analysis.histograms import get_bin_centers, get_gaussian_guess import matplotlib.pyplot as plt import matplotlib.gridspec as gs from scipy.signal import argrelextrema, medfilt, find_peaks_cwt from scipy.ndimage.filters import gaussian_filter1d from scipy.stats import norm import scipy.optimize as op def peakdet(v, delta, x): """ Converted from MATLAB script at: http://billauer.co.il/peakdet.html Returns two arrays: [maxtab, mintab] = peakdet(v, delta, x) An updated (vectorized) version is in pygama.dsp.transforms.peakdet """ maxtab, mintab = [], [] # sanity checks x, v = np.asarray(x), np.asarray(v) if len(v) != len(x): exit("Input vectors v and x must have same length") if not np.isscalar(delta): exit("Input argument delta must be a scalar") if delta <= 0: exit("Input argument delta must be positive") maxes, mins = [], [] min, max = np.inf, -np.inf find_max = True for i in range(len(x)): # for i=0, all 4 of these get set if v[i] > max: max, imax = v[i], x[i] if v[i] < min: min, imin = v[i], x[i] if find_max: # if the sample is less than the current max, # declare the previous one a maximum, then set this as the new "min" if v[i] < max - delta: maxes.append((imax, max)) min, imin = v[i], x[i] find_max = False else: # if the sample is more than the current min, # declare the previous one a minimum, then set this as the new "max" if v[i] > min + delta: mins.append((imin, min)) max, imax = v[i], x[i] find_max = True return np.array(maxes), np.array(mins) def get_most_prominent_peaks(energySeries, xlo, xhi, xpb, max_num_peaks=np.inf, test=False): """ find the most prominent peaks in a spectrum by looking for spikes in derivative of spectrum energySeries: array of measured energies max_num_peaks = maximum number of most prominent peaks to find return a histogram around the most prominent peak in a spectrum of a given percentage of width """ nb = int((xhi-xlo)/xpb) hist, bin_edges = np.histogram(energySeries, range=(xlo, xhi), bins=nb) bin_centers = get_bin_centers(bin_edges) # median filter along the spectrum, do this as a "baseline subtraction" hist_med = medfilt(hist, 21) hist = hist - hist_med # identify peaks with a scipy function (could be improved ...) peak_idxs = find_peaks_cwt(hist, np.arange(1, 10, 0.1), min_snr=5) #changed range from (5,10,0.1) peak_idxs = arr = peak_idxs.astype('int32') #was having trouble with int64 dtype peak_energies = bin_centers[peak_idxs] # pick the num_peaks most prominent peaks if max_num_peaks < len(peak_energies): peak_vals = hist[peak_idxs] sort_idxs = np.argsort(peak_vals) peak_idxs_max = peak_idxs[sort_idxs[-max_num_peaks:]] peak_energies = np.sort(bin_centers[peak_idxs_max]) if test: plt.plot(bin_centers, hist, ds='steps', lw=1, c='b') for e in peak_energies: plt.axvline(e, color="r", lw=1, alpha=0.6) plt.xlabel("Energy [ADC]", ha='right', x=1) plt.ylabel("Filtered Spectrum", ha='right', y=1) plt.tight_layout() plt.show() #exit() return peak_energies def match_peaks(data_pks, cal_pks, plotFigure=None): """ Match uncalibrated peaks with literature energy values. """ from itertools import combinations from scipy.stats import linregress n_pks = len(cal_pks) if len(cal_pks) < len(data_pks) else len(data_pks) cal_sets = combinations(range(len(cal_pks)), n_pks) data_sets = combinations(range(len(data_pks)), n_pks) best_err, best_m, best_b = np.inf, None, None for i,cal_set in enumerate(cal_sets): cal = cal_pks[list(cal_set)] # lit energies for this set for data_set in data_sets: data = data_pks[list(data_set)] # uncal energies for this set m, b, _, _, _ = linregress(data, y=cal) err =
np.sum((cal - (m * data + b))**2)
numpy.sum
from __future__ import division from scipy import signal, stats, ndimage from datetime import datetime import os import re from glob import glob import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as colors from matplotlib.patches import Rectangle import matplotlib.transforms as transforms from matplotlib.collections import LineCollection from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings from ephysiopy.dacq2py import axonaIO from ephysiopy.dacq2py.tetrode_dict import TetrodeDict from ephysiopy.common import binning from ephysiopy.common.ephys_generic import FieldCalcs from ephysiopy.dacq2py.spikecalcs import SpikeCalcs from ephysiopy.common.eegcalcs import EEGCalcs from ephysiopy.dacq2py.cluster import Kluster from ephysiopy.dacq2py import tintcolours as tcols from ephysiopy.common.gridcell import SAC from itertools import combinations from mpl_toolkits.axes_grid1 import ImageGrid import skimage, skimage.morphology from skimage import feature from collections import OrderedDict warnings.filterwarnings("ignore", message="divide by zero encountered in int_scalars") warnings.filterwarnings("ignore", message="divide by zero encountered in divide") warnings.filterwarnings("ignore", message="invalid value encountered in divide") warnings.filterwarnings("ignore", message="Casting complex values to real discards the imaginary part") class Trial(axonaIO.IO, SAC, dict): """ Provides methods to plot electrophysiology data acquired using the Axona DACQ recording system and methods to extract some measures from that data The actual loading of the data is done lazily i.e. only when you ask for position data (say plotting the path the animal took in the trial) is the position data actually loaded. The class also uses as attibutes several instances of subpackages (binning.Ratemap for example) so that the code could be made more modular. Parameters ---------- filename_root : str Absolute location on the filesystem of the set of files without a suffix Attributes ---------- filename_root : str Absolute location on the filesystem of the set of files without a suffix basename : str Basename of the set of files without a suffix (everything after the last trailing slash) EEG : dacq2py.axonaIO.EEG Containing data from .eeg file EGF : dacq2py.axonaIO.EEG Containing data from .egf file STM : dacq2py.axonaIO.Stim Contains stimulation data (timestamps mostly) and header + some additions work done below POS : dacq2py.axonaIO.Pos Contains raw and post-processed position data (xy, dir, speed etc) & header TETRODE : extension of Pythons dict Each value is an instance of dacq2py.axonaIO.Tetrode. Contains methods to get cluster spike times, cluster indices etc posFilter : dict Keys are things like 'speed', 'time'; values are n x 2 arrays of range of values *to keep* setheader : dict Corresponds to the .set file for the file set. Keys/ values are all strings _available_files : list All files matching the filename_root + any valid suffix metadata : collections.OrderedDict Some basic info if the file is an "rh" one (see _parseMetaData) ratemap : dacq2py.ephys_generic.binning.Ratemap class instance See Also -------- ephysiopy.common.binning :Basic binning of data, calculation of bin sizes etc ephysiopy.common.eegcalcs : Contains filters, eeg power spectra methods ephysiopy.common.spikecalcs : Temporal measures of spike trains and extracting parameters from waveforms and clusters ephysiopy.common.fieldcalcs : Methods for extracting information from 2D ratemaps Examples -------- >>> from dacq2py.dacq2py_util import Trial >>> T = Trial(r'/media/robin/data/Dropbox/Science/Recordings/M851/M851_140908t1rh') """ def __init__(self, filename_root, **kwargs): # try and intelligently get full filename from just the root filename_root = self.getFullFile(filename_root) self.basename = os.path.basename(filename_root) self.filename_root = filename_root self._EEG = None self._EGF = None self._STM = None self._POS = None if 'volts' in kwargs: useVolts = kwargs['volts'] self.TETRODE = TetrodeDict(filename_root, volts=useVolts) # see TETRODE class above else: self.TETRODE = TetrodeDict(filename_root) self._posFilter = None # a dict used to filter pos self._setheader = None self.ratemap = None #becomes binning.RateMap instance - see POS getter property below self.spikecalcs = SpikeCalcs() self.fieldcalcs = FieldCalcs() self._isinteractive = 1 self._figNum = 1 self._min_spks = 1 self._available_files = None self._getAvailableFiles() self.metadata = OrderedDict() self.tetrodes = None self.clusters = None self.pos_weights = None if 'cm' in kwargs: self.useCm = kwargs['cm'] else: self.useCm = False try: self._parseMetaData() except: self.metadata = {'Contents': 'Not an rhayman file'} try: self.getTsAndCs() except: pass self.eeg_file = 1 def __repr__(self): return '{self.__class__.__name__}({self.filename_root})'.format(self=self) def hasFiles(self): """ Checks for some automated yaml processing """ for i in self.axona_files: if os.path.isfile(self.filename_root + i): self['has_' + i[1:]] = True else: self['has_' + i[1:]] = False def getFullFile(self, filename): """ Used to constuct filename_root in __init__ Parameters ---------- filename : str The absolute path the files being analysed here without any suffix """ if os.path.isdir(r'/home/robin/Dropbox/Science/Recordings'): pname, _ = os.path.split(filename) if len(pname) == 0: defaultDir = r'/home/robin/Dropbox/Science/Recordings' animal = filename.split('_')[0] filename = os.path.join(defaultDir, animal, filename) return filename @property def setheader(self): """ Returns ---------- dict : setheader Matches contents of .set file with keys and values all mapped as strings """ if self._setheader is None: try: self._setheader = self.getHeader(self.filename_root + '.set') except IOError: self._setheader = None return self._setheader @setheader.setter def setheader(self, value): self._setheader = value @property def ppm(self): return self.__ppm @ppm.setter def ppm(self, value): self.__ppm = value # Update POS self.POS.ppm = value # Update Ratemap self.ratemap = binning.RateMap(self.POS.xy, self.POS.dir, self.POS.speed, self.pos_weights, self.POS.ppm, self.useCm) @property def POS(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.POS: Contains raw and post-processed position data """ if self._POS is None: try: self._POS = axonaIO.Pos(self.filename_root, cm=self.useCm) self._POS.postprocesspos() self._xlims = (int(self.POS.xy[0,:].min()), int(self.POS.xy[0,:].max())) self._ylims = (int(self.POS.xy[1,:].min()), int(self.POS.xy[1,:].max())) self.pos_weights = np.ravel(np.ones((1, self.POS.npos), dtype=np.float) / self.POS.pos_sample_rate) self.ratemap = binning.RateMap(self.POS.xy, self.POS.dir, self.POS.speed, self.pos_weights, self.POS.ppm, self.useCm) except IOError: self._POS = None return self._POS @POS.setter def POS(self, value): self._POS = value @property def EEG(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.EEG: eeg data and header """ if self._EEG is None: try: self._EEG = axonaIO.EEG(self.filename_root, eeg_file=self.eeg_file) self.pos2eegScale = int(self.EEG.sample_rate / self.POS.pos_sample_rate) except IOError: self._EEG = None return self._EEG @EEG.setter def EEG(self, value): self._EEG = value @property def EGF(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.EGF: eeg data and header from .egf file """ if self._EGF is None: try: self._EGF = axonaIO.EEG(self.filename_root, eeg_file=self.eeg_file, egf=1) self.pos2egfScale = int(self.EGF.sample_rate / self.POS.pos_sample_rate) except IOError: self._EGF = None return self._EGF @EGF.setter def EGF(self, value): self._EGF = value @property def STM(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.Stim: Stimulation data and header + some extras parsed from pos, eeg and set files """ if self._STM is None: try: self._STM = axonaIO.Stim(self.filename_root) """ update the STM dict with some relevant values from the .set file and the headers of the eeg and pos files """ posHdr = self.getHeader(self.filename_root + '.pos') eegHdr = self.getHeader(self.filename_root + '.eeg') self._STM['posSampRate'] = self.getHeaderVal(posHdr, 'sample_rate') self._STM['eegSampRate'] = self.getHeaderVal(eegHdr, 'sample_rate') try: egfHdr = self.getHeader(self.filename_root + '.egf') self._STM['egfSampRate'] = self.getHeaderVal(egfHdr, 'sample_rate') except: pass stim_pwidth = int(self.setheader['stim_pwidth']) / int(1000) # get into ms self._STM['off'] = self._STM['on'] + int(stim_pwidth) """ There are a set of key / value pairs in the set file that correspond to the patterns/ protocols specified in the Stimulator menu in DACQ. Extract those items now... There are five possibe "patterns" that can be used in a trial. Those patterns consist of either "Pause (no stimulation)" or some user-defined stimulation pattern. Whether or not one of the five was used is specified in "stim_patternmask_n" where n is 1-5. Confusingly in dacqUSB these 5 things are called "Protocols" accessed from the menu Stimulator/Protocols... within that window they are actually called "Phase 1", "Phase 2" etc. To keep everything in order it's best to iterate through using a for loop as a dict is not guaranteed to be ordered and I cba to use an OrderedDict. In dacqUSB nomencalture the pattern is actually the stimulation you want to apply i.e. 10ms pulse every 150ms or whatever. The "pattern" is what is applied within every Phase. """ # phase_info : a dict for each phase that is active phase_info = {'startTime': None, 'duration': None, 'name': None, 'pulseWidth': None, 'pulsePause': None} stim_dict = {} stim_patt_dict = {} for k,v in self.setheader.items(): if k.startswith("stim_patternmask_"): if (int(v) == 1): # get the number of the phase phase_num = k[-1] stim_dict['Phase_' + phase_num] = phase_info.copy() if k.startswith("stim_patt_"): stim_patt_dict[k] = v self.patt_dict = stim_patt_dict for k,v in stim_dict.items(): phase_num = k[-1] stim_dict[k]['duration'] = int(self.setheader['stim_patterntimes_' + phase_num]) phase_name = self.setheader['stim_patternnames_' + phase_num] stim_dict[k]['name'] = phase_name if not (phase_name.startswith("Pause")): # find the matching string in the stim_patt_dict for kk,vv in stim_patt_dict.items(): split_str = vv.split('"') patt_name = split_str[1] if (patt_name == phase_name): ss = split_str[2].split() stim_dict[k]['pulseWidth'] = int(ss[0]) stim_dict[k]['pulsePause'] = int(ss[2]) # make the dict ordered by Phase number self.STM['stim_params'] = OrderedDict(sorted(stim_dict.items())) except IOError: self._STM = None return self._STM @STM.setter def STM(self, value): self._STM = value @property def posFilter(self): """ self.posFilter : dict Keys are strings such as 'speed', 'time' etc. Values are n x 2 arrays of values *to keep* """ return self._posFilter @posFilter.setter def posFilter(self, value): """Filters data depending on the filter specified in the dictionary value Parameters ---------- value : dict Filter dict. Legal keys include: 'time', 'dir', 'speed', 'xrange', 'yrange'. If key is 'time', values must be a n x 2 numpy array that specifies the times to keep in SECONDS. If key is 'dir' values must be a two element list/ array that specifies the directions to keep in DEGREES NB the values can be singular strings of either 'w', 'e', 'n' or 's' which filters for a +/-45 degree range around that cardinal direction. If key is 'speed' values are a 2 element list/ array to keep specified in m/s. If key is 'xrange' or 'yrange' values are a two element list/ array that specify the x or y values to keep in PIXELS. Returns ------- dacq2py_util.Trial : object The Trial object is modified in place and all the relevant variables are filtered and changed to numpy masked arrays Examples -------- >>> import numpy as np >>> T = dacq2py_util.Trial(r'D:\M851\M851_140908t1rh') >>> T.posFilter = {'time': np.array([600,1200])} """ # If masked, remove all masks on all aspects of data if np.ma.is_masked(self.POS.speed): self.POS.speed.mask = np.ma.nomask if np.ma.is_masked(self.POS.dir): self.POS.dir.mask = np.ma.nomask if np.ma.is_masked(self.POS.xy): self.POS.xy.mask = np.ma.nomask if np.ma.is_masked(self.EEG.eeg): self.EEG.eeg.mask = np.ma.nomask if np.ma.is_masked(self.EGF.eeg): self.EGF.eeg.mask = np.ma.nomask if np.any(self.EEG.EEGphase): if np.ma.is_masked(self.EEG.EEGphase): self.EEG.EEGphase.mask = np.ma.nomask if self.TETRODE:#true if TETRODE dict has entries for tet in self.TETRODE.keys(): if np.ma.is_masked(self.TETRODE[tet].waveforms): self.TETRODE[tet].waveforms.mask = np.ma.nomask self.TETRODE[tet].spk_ts.mask = np.ma.nomask if value is None: return idx = self.POS.filterPos(value) if self.TETRODE: for tet in self.TETRODE.keys(): posSamps = self.TETRODE[tet].getPosSamples() common = np.in1d(posSamps, np.nonzero(idx)[1]) # Mask timestamps first as this is a vector, then expand # out the mask array (common) self.TETRODE[tet].spk_ts = np.ma.masked_where(common, self.TETRODE[tet].spk_ts) common = common[:, None, None] common = np.repeat(np.repeat(common, 4, axis=1), 50, axis=-1) self.TETRODE[tet].waveforms = np.ma.masked_where(common, self.TETRODE[tet].waveforms) self.POS.speed = np.squeeze(np.ma.masked_where(idx, np.expand_dims(self.POS.speed,0))) self.POS.dir = np.squeeze(np.ma.masked_where(idx, np.expand_dims(self.POS.dir,0))) posMask = np.squeeze(idx) posMask = np.vstack((posMask, posMask)) self.POS.xy = np.ma.masked_where(posMask, self.POS.xy) self.EEG.eeg = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2eegScale), self.EEG.eeg) if self.EGF: self.EGF.eeg = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2egfScale), self.EGF.eeg) if np.any(self.EEG.EEGphase): self.EEG.EEGphase = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2eegScale), self.EEG.EEGphase) self._posFilter = value def print_stim_dict(self): """ Prints out keys/ values of STM dict """ for k,v in self.STM.items(): print(k, v) def _filterForStm(self, laser=None): """ Cycles through the STM dict and fiters for laser on / off periods and applies the filter to the pos and eeg data NB tetrode data not dealt with yet Parameters ---------- laser : bool Whether to filter for laser stimulation events """ if laser is not None: times = [0] phaseType = [] for k, d in self.STM['stim_params'].items(): for kk, v in d.items(): if 'duration' in kk: times.append(v) if 'name' in kk: phaseType.append(v) periods = np.cumsum(times) period_bounds = dict.fromkeys(set(phaseType), []) for pk in period_bounds.keys(): bounds = [] for k, d in self.STM['stim_params'].items(): if pk == d['name']: idx = int(k.split('_')[1]) bounds.append(periods[idx-1:idx+1]) period_bounds[pk] = bounds for k, v in period_bounds.items(): if laser == 0: if 'Pause' in k: self.posFilter = {'time': np.array(v)} elif laser == 1: if 'Pause' not in k: self.posFilter = {'time': np.array(v)} def _getAvailableFiles(self): self._available_files = glob(self.filename_root + '*') def _getMap(self, tetrode=None, cluster=None, var2bin='pos', binsize=3, smooth_sz=5, smooth=True, **kwargs): """ Returns the ratemap (smoothed or unsmoothed) for a given tetrode and cluster Parameters ---------- tetrode : int the tetrode you want to look at cluster : int, 1xn array/ list a single number or list (or 1xn array) of the clusters to plot binsize : int, optional size of bins. Defaults to 3 smooth_sz : int the width of the smoothing kernel (see **kwargs for more) var2bin : str (Optional) Defaults to 'pos'. Which variable to bin. Can be either 'pos', 'dir' or 'speed'. Works with masked arrays smooth : bool, optional. Defaults to true. Whether to smooth the data or not **kwargs : extra arguments include: 'gaussian' - the smoothing kernel used is gaussian in shape not the default boxcar 'after' - smoothing of the pos and spike maps is done after spikes are divided by pos 'shuffle' - the time in ms by how much to shift the spikes by. Used for generated distributions for null hypothesis testing Returns ------- rmap : np.array The data binned up as requested """ if 'pos' in var2bin: varType = 'xy' else: varType = var2bin if tetrode is None: idx = np.arange(0, self.POS.npos) mapType = 'pos' else: idx = self.TETRODE[tetrode].getClustIdx(cluster) mapType = 'rate' spk_weights = np.bincount(idx, minlength=self.POS.npos) if 'shuffle' in kwargs.keys(): spk_weights = np.roll(spk_weights, int(kwargs['shuffle']) * 50) # * 50 to go from seconds into pos_samples if np.ma.is_masked(self.POS.xy): mask = ~np.ma.getmask(self.POS.xy[0]) pos_weights = mask.astype(np.int) self.ratemap.pos_weights = pos_weights spk_weights[~mask] = 0 # Update the ratemap instance with arguments fed into this method self.ratemap.binsize = binsize self.ratemap.smooth_sz = smooth_sz if 'cmsPerBin' in kwargs: self.ratemap.cmsPerBin = kwargs['cmsPerBin'] if 'ppm' in kwargs: self.ratemap.ppm = kwargs['ppm'] rmap = self.ratemap.getMap(spk_weights, varType, mapType, smooth) return rmap def _getPath(self): """ Returns ------- self.POS.xy : np.array The smoothed xy positions filtered appropriately """ if np.ma.is_masked(self.POS.xy): return self.POS.xy[:, ~self.POS.xy.mask[0, :]] return self.POS.xy def _getDir(self): """ Returns ------------ self.POS.dir : np.array The smoothed directional data filtered appropriately """ if np.ma.is_masked(self.POS.dir): return self.POS.dir[:, ~self.POS.dir.mask[0, :]] return self.POS.dir def _getFieldLims(self, tetrode, cluster, binsize=3): """ Returns a labelled matrix of the ratemap for a given cluster on a given tetrode. Binsize can be fractional for smaller bins. Uses anything > than the half peak rate to select as a field. Data is heavily smoothed Parameters ---------- tetrode : int The tetrode to examine cluster : int The cluster identity Returns ------- labelled ratemap and the x and y edges of the binned data as a 3-tuple """ rmap, (ye, xe) = self._getMap(tetrode, cluster, binsize=binsize) rmap[np.isnan(rmap)] = 0.0 h = int(np.max(rmap.shape) / 2) sm_rmap = self.ratemap.blurImage(rmap, h, ftype='gaussian') thresh = np.max(sm_rmap.ravel()) * 0.2 # select area > 20% of peak # do some image processing magic to get region to keep as field distance = ndimage.distance_transform_edt(sm_rmap > thresh) mask = feature.peak_local_max(distance, indices=False, exclude_border=False, labels=sm_rmap > thresh) label = ndimage.label(mask)[0] w = skimage.morphology.watershed(-distance, label, mask=sm_rmap > thresh) label = ndimage.label(w)[0] return label, xe, ye def _getClusterPhaseVals(self, tetrode, cluster): """ Returns the phases of the LFP theta a given cluster fired at Parameters ----------- tetrode : int The tetrode to examine cluster : int The cluster identity Returns ------- eegphase : np.array The phase of theta a cluster fired at """ ts = self.TETRODE[tetrode].getSpkTS() ts = ts / (self.TETRODE[tetrode].timebase / self.EEG.sample_rate) ts_idx = np.floor(ts[self.TETRODE[tetrode].cut == cluster]).astype(np.int) self.EEG.thetaAmpPhase() EEGphase = self.EEG.EEGphase[ts_idx] return EEGphase def _getThetaCycles(self): """ Return a tuple of indices into the EEG record that denotes the peaks and troughs of theta cycles """ sm_eeg = self.EEG.eegfilter() df_eeg = np.diff(sm_eeg) pts = np.diff((df_eeg > 0).astype(int), 2) pts = ((pts == 1).nonzero()[0]).astype(int) peaks = pts[sm_eeg[pts] > 0] + 1 troughs = pts[sm_eeg[pts] < 0] + 2 return peaks, troughs def _getSpikeInCycle(self, peakIdx, spkIdx, whichSpk='first'): """ given an array of spike indices into eeg and indices of peaks in the smoothed, theta-filtered eeg signal this returns the first spike in the cycle whichSpk can be 'first' or 'last' """ if 'first' in whichSpk: side = 'left' elif 'last' in whichSpk: side = 'right' peaks, _ = self._getThetaCycles() spk2eeg_idx = (spkIdx / (self.TETRODE[self.tetrode].timebase / self.EEG.sample_rate)).astype(np.int) idx = np.searchsorted(peaks, spk2eeg_idx, side=side) _, unique_indices = np.unique(idx, return_index=True) return spk2eeg_idx[unique_indices] def _parseMetaData(self): """ Parses the filename (mine has a standard format) to populate some of the objects properties (self.animal_id, self.trial_num etc) """ pname, fname = os.path.split(self.filename_root) self.metadata['Filename'] = fname self.metadata['Path'] = pname if 'R' in fname[0]: self.metadata['Animal'] = 'Rat' else: self.metadata['Animal'] = 'Mouse' self.metadata['Experimenter'] = fname[-2:] self.metadata['Animal_id'] = fname.rsplit('_')[0] trial_date = self.setheader['trial_date'] + ':' + self.setheader['trial_time'] self.metadata['Trial_date'] = datetime.strptime(trial_date, '%A, %d %b %Y:%H:%M:%S') self.metadata['Trial_num'] = int(fname.rsplit('t')[1][0:-2]) def _set_figure_title(self, fig, tet, clust): fig.canvas.set_window_title('Tetrode: {0} Cluster: {1}'.format(tet, clust)) def _set_ax_title(self, ax, tet, clust): ax.set_title('Tetrode: {0}\nCluster: {1}'.format(tet, clust)) def klustakwik(self, d): """ Calls two methods below (kluster and getPC) to run klustakwik on a given tetrode with nFet number of features (for the PCA) Parameters ---------- d : dict Specifies the vector of features to be used in clustering. Each key is the identity of a tetrode (i.e. 1, 2 etc) and the values are the features used to do the clustering for that tetrode (i.e. 'PC1', 'PC2', 'Amp' (amplitude) etc """ legal_values = ['PC1', 'PC2', 'PC3', 'PC4', 'Amp', 'Vt', 'P', 'T', 'tP', 'tT', 'En', 'Ar'] reg = re.compile(".*(PC).*") # check for number of principal comps # check for any input errors in whole dictionary first for i_tetrode in d.keys(): for v in d[i_tetrode]: if v not in legal_values: raise ValueError('Could not find %s in %s' % (v, legal_values)) # iterate through features and see what the max principal component is for i_tetrode in d.keys(): pcs = [m.group(0) for l in d[i_tetrode] for m in [reg.search(l)] if m] waves = self.TETRODE[i_tetrode].waveforms princomp = None if pcs: max_pc = [] for pc in pcs: max_pc.append(int(pc[2])) num_pcs = np.max(max_pc) # get max number of prin comps princomp = self.TETRODE[i_tetrode].getParam(waves, param='PCA', fet=num_pcs) # Rearrange the output from PCA calc to match the # number of requested principal components inds2keep = [] for m in max_pc: inds2keep.append(np.arange((m-1)*4, (m)*4)) inds2keep = np.hstack(inds2keep) princomp = np.take(princomp, inds2keep, axis=1) out = [] for value in d[i_tetrode]: if 'PC' not in value: out.append(self.TETRODE[i_tetrode].getParam(waves, param=value)) if princomp is not None: out.append(princomp) out = np.hstack(out) c = Kluster(self.filename_root, i_tetrode, out) c.make_fet() mask = c.get_mask() c.make_fmask(mask) c.kluster() def getcoherence(self, tetrode, cluster, binsize=3, **kwargs): """ Wrapper for fieldcalcs.coherence - see docs there """ smthd = self._getMap(tetrode=tetrode, cluster=cluster, var2bin='pos', binsize=binsize, smooth_sz=5, smooth=True, **kwargs) unsmthd = self._getMap(tetrode=tetrode, cluster=cluster, var2bin='pos', binsize=binsize, smooth_sz=5, smooth=False, **kwargs) return self.fieldcalcs.coherence(smthd[0], unsmthd[0]) def getkldiv(self, tetrode, cluster, binsize=3, **kwargs): """ Wrapper for fieldcalcs.kldiv - see there for explanation """ polarMap = self._getMap(tetrode=tetrode, cluster=cluster, var2bin='dir', binsize=binsize, smooth_sz=5, smooth=True, **kwargs) return self.fieldcalcs.kldiv_dir(polarMap[0]) def getmrv(self, tetrode, cluster, **kwargs): """ Calculate the mean resultant vector length and direction for a given cluster/ cell A wrapper for statscalcs.Statscalcs.mean_resultant_vector (see statscalcs.py) Parameters ---------- tetrode : int The tetrode to exmaine cluster : int The cluster to examine Returns ---------- r : float the mean resultant vector length (range = 0-1) th : float the mean resultant vector direction (in radians) """ idx = self.TETRODE[tetrode].getClustIdx(cluster) angsInRads = np.deg2rad(self.POS.dir[idx]) from ephysiopy.common.statscalcs import StatsCalcs S = StatsCalcs() r, th = S.mean_resultant_vector(angsInRads) return r, th def getcircR(self, tetrode, cluster, **kwargs): """ Calculate the mean resultant vector length of circular data Unlike getmrv (above) this only returns the vector length. This is calculated differently (using complex numbers) but is a) faster, b) works with binned data and, c) plays nicer/ easier with shuffles of the spike train Parameters ---------- tetrode : int The tetrode to examine cluster : int The cluster to examine **kwargs: Legal values of interest: shuffle: int the number of seconds to shift the spike train Returns ---------- r : float the mean resultant vector length (range = 0-1) """ idx = self.TETRODE[tetrode].getClustIdx(cluster) spk_weights = np.bincount(idx, minlength=self.POS.npos) if 'shuffle' in kwargs.keys(): spk_weights = np.roll(spk_weights, int(kwargs['shuffle'] * 50)) inc = (np.pi*2) / 120.0 h = self.ratemap._RateMap__binData(np.deg2rad(self.POS.dir), np.arange(0, np.pi*2+inc, inc), spk_weights) from statscalcs import StatsCalcs S = StatsCalcs() R = S.circ_r(h[1][0][0:-1], h[0]) return R def getskaggsInfo(self, tetrode, cluster, binsize=3, **kwargs): """ Gets the Skagss information theory measure for the given cluster. Parameters ---------- tetrode : int The tetrode to exmaine cluster : int The cluster to examine binsize : int Size of bins in cms Returns ------- bits per spike : float Notes ----- binning could be over any single spatial variable (e.g. location, direction, speed). See Also -------- Wrapper for ephysiopy.common.fieldcalcs.skaggsInfo """ ratemap = self._getMap(tetrode, cluster, binsize=binsize, **kwargs)[0] dwelltimes = self._getMap(binsize=binsize, **kwargs)[0] ratemap, _, dwelltimes = self.ratemap._RateMap__adaptiveMap(ratemap, dwelltimes) return self.fieldcalcs.skaggsInfo(ratemap, dwelltimes) def getTsAndCs(self, verbose=False): """ Prints out the available tetrodes and clusters """ cut_files = [(f) for f in glob(self.filename_root + '*') if 'cut' in f] m = re.compile('(.*)_(.*).cut', re.M|re.I) tAndCdict = {} if cut_files: for f in cut_files: tet = int(m.match(f).group(2)) try: data = self.getCut(tet) clusters = list(np.unique(data)) if clusters[0]==0: clusters.pop(0) if clusters: tAndCdict[tet] = clusters if verbose: print('\nTetrode {0} contains clusters: {1}'.format(tet, clusters)) except: if verbose: print('\nTetrode{0} has no cut'.format(tet)) else: pass if tAndCdict: tets = [] clusts = [] for t,c in tAndCdict.items(): for cc in c: tets.append(str(t)) clusts.append(str(cc)) """ The two fucking stupid lines below are so yaml can serialize the object correctly """ self.tetrodes = map(int,tets) self.clusters = map(int,clusts) return tAndCdict def plotMap(self, tetrode, clusters, ax=None, var2bin='pos', *args, **kwargs): """ Plots a ratemap for a given tetrode and cluster Parameters ---------- tetrode : int The tetrode you want to look at cluster : int or array_like The cluster(s) to plot ax : matplotlib.Axes, optional Defaults to None. Which axis to add the plot to; if None then a new figure window is produced Keyword arguments ----------------- 'bar' : boolean For use with directional data to produce a polar histogram plot 'add_peak_rate' : boolean Adds the peak rate (to 2 decimal places) to the figure binsize : int, optional size of bins. Defaults to 3. smooth_sz : the width of the smoothing kernel (see keyword args for more) var2bin: optional, defaults to 'pos'. Which variable to bin. Can be either 'pos', 'dir' or 'speed'. Works with masked arrays smooth : bool, optional Defaults to True. Whether to smooth the data Returns ------- ratemap : numpy.ndarray Dimensionality depends on if a directional (1d) or positional (2d) map was requested See Also -------- Wrapper for _plotMap() so multiple clusters can be plotted Examples -------- >>> T = dacq2py_util.Trial('M845_141003t1rh') >>> # Plot the ratemap for cluster 1 on tetrode 1 >>> T.plotMap(1,1) >>> # Add the peak rate to the figure window >>> T.plotMap(1,1,add_peak_rate=True) >>> # Plot the polar map for same cluster >>> T.plotMap(1,1,var2bin='dir') >>> # Plot the unsmoothed dwell map for the trial >>> T.plotMap(None,None,smooth=False) """ for key in ('var2bin', 'ax', 'binsize','smooth_sz', 'smooth'): if key in kwargs: setattr(self, key, kwargs[key]) if isinstance(clusters, int): setattr(self, 'clusters', [clusters]) elif isinstance(clusters, list): setattr(self, 'clusters', clusters) elif isinstance(clusters, str): if 'all' in clusters: tetDict = self.getTsAndCs() setattr(self, 'clusters', tetDict[tetrode]) clusters = getattr(self, 'clusters', None) # var2bin = getattr(self, 'var2bin', 'pos') ax = getattr(self, 'ax', None) binsize = getattr(self, 'binsize', 3) smooth_sz = getattr(self.ratemap, 'smooth_sz', 5) smooth = getattr(self, 'smooth', True) if len(clusters) == 1: ncols = 1 nrows = 1 elif np.logical_and(len(clusters) > 1, len(clusters) < 6): ncols = len(clusters) nrows = 1 else: ncols = 5 nrows = int(np.floor(len(clusters) / 5) + 1) if ax is None: fig = plt.figure() if 'dir' in var2bin: ax = fig.add_subplot(nrows, ncols, 1, projection='polar') else: ax = fig.add_subplot(nrows, ncols, 1) axes_out = [] if clusters is None: axes = fig.add_subplot(1, 1, 1) ax, ratemap = self._plotMap(None, None, var2bin=var2bin, ax=ax, binsize=binsize, smooth_sz=smooth_sz, smooth=smooth, *args, **kwargs) self._set_ax_title(axes, tetrode, clusters) axes_out.append(ax) if len(clusters) == 1: cluster = clusters[0] ax, ratemap = self._plotMap(tetrode=tetrode, cluster=cluster, var2bin=var2bin, ax=ax, binsize=binsize, smooth_sz=smooth_sz, smooth=smooth, *args, **kwargs) axes = ax # # check kwargs to see if we want to add peak rate to axes if "add_peak_rate" in kwargs: if kwargs['add_peak_rate']: ax.annotate('{:.2f}'.format(np.max(ratemap)), (0.9,0.15), \ xycoords='figure fraction', textcoords='figure fraction', color='k', size=30, weight='bold', ha='center', va='center') self._set_ax_title(axes, tetrode, cluster) axes_out.append(ax) else: fig.set_facecolor('w') fig.set_frameon(False) plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) for iax, cluster in enumerate(clusters): inax = fig.add_subplot(nrows, ncols, iax+1) ax, ratemap = self._plotMap(tetrode=tetrode, cluster=cluster, var2bin=var2bin, binsize=binsize, smooth_sz=smooth_sz, smooth=smooth, ax=inax) self._set_ax_title(inax, tetrode, cluster) axes_out.append(ax) return axes_out def _plotMap(self, tetrode=None, cluster=None, ax=None, var2bin='pos', binsize=3, smooth_sz=5, smooth=True, **kwargs): """ Plots a ratemap for a given tetrode and cluster Parameters ---------- tetrode : int the tetrode you want to look at cluster : int, 1xn array/ list a single number or list (or 1xn array) of the clusters to plot binsize : int, optional size of bins. Defaults to 3 smooth_sz : int the width of the smoothing kernel (see **kwargs for more) var2bin : optional, defaults to 'pos'. Which variable to bin. Can be either 'pos', 'dir' or 'speed'. Works with masked arrays smooth : bool Defaults to true. Whether to smooth the data or not ax : matplotlib.axes Defaults to None. Which axis to add the plot to; if None then a new figure window is produced **kwargs : various 'bar' - for use with directional data to produce a polar histogram plot Returns ------- ratemap: ndarray (1d or 2d) depending on whether a directional (1d) or positional (2d) map was asked for an ndarray is returned """ rmap = self._getMap(tetrode=tetrode, cluster=cluster, var2bin=var2bin, binsize=binsize, smooth_sz=smooth_sz, smooth=smooth, **kwargs) if rmap[0].ndim == 1: # polar plot if ax is None: fig = plt.figure() self._set_figure_title(fig, tetrode, cluster) ax = fig.add_subplot(111, projection='polar') theta = np.deg2rad(rmap[1][0][1:]) ax.clear() ax.plot(theta, rmap[0]) ax.set_aspect('equal') ax.tick_params(axis='both', which='both', bottom='off', left='off', right='off', top='off', labelbottom='off', labelleft='off', labeltop='off', labelright='off') ax.set_rticks([]) # deal with vmin/ vmax in kwargs if 'vmax' in kwargs.keys(): ax.set_rmax(kwargs['vmax']) # See if we should add the mean resultant vector (mrv) if 'add_mrv' in kwargs.keys(): from statscalcs import StatsCalcs S = StatsCalcs() idx = self.TETRODE[tetrode].getClustIdx(cluster) angles = self.POS.dir[idx] print('len angles: {}'.format(len(angles))) r, th = S.mean_resultant_vector(np.deg2rad(angles)) ax.hold(True) print('r: {}\nth: {}'.format(r,th)) ax.plot([th, th],[0, r*np.max(rmap[0])],'r') ax.set_thetagrids([0, 90, 180, 270]) ratemap = rmap[0] elif rmap[0].ndim == 2: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) self._set_figure_title(fig, tetrode, cluster) # mask the ratemap where NaNs occur for plotting purposes ratemap = np.ma.MaskedArray(rmap[0], np.isnan(rmap[0]), copy=True) x, y = np.meshgrid(rmap[1][1][0:-1], rmap[1][0][0:-1][::-1]) # deal with vmin/ vmax in kwargs if 'vmax' in kwargs.keys(): vmax = kwargs['vmax'] else: vmax = np.max(np.ravel(ratemap)) ax.pcolormesh(x, y, ratemap, cmap=cm.jet, edgecolors='face', vmax=vmax) ax.axis([x.min(), x.max(), y.min(), y.max()]) ax.set_aspect('equal') plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) return ax, ratemap def plotPath(self, ax=None, clamp=False, label=False, applyStm=False, **kwargs): """ Plots the animals path during a trial. Default is to limit plot range to the min/ max of x/y extent of path Parameters ---------- ax : matplotlib.Axes The axes to plot into. If none a new figure window is created clamp : bool whether the axes are clamped to self._xlims and self._ylims or not applyStm : bool Whether to overlay r crosses on the path where the laser events occurred """ if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = plt.gcf() fig.set_facecolor('w') xy = self._getPath() ax.plot(xy[0], xy[1], color=[0.8627, 0.8627, 0.8627],**kwargs) ax.invert_yaxis() if applyStm: stmTS = self.STM.getPosTS() stmXY = xy[:, stmTS.astype(int)] ax.plot(stmXY[0], stmXY[1], 'rx', ms=2) if clamp: ax.set_xlim(self._xlims) ax.set_ylim(self._ylims) ax.set_aspect('equal') if not label: plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) def plotSpikesOnPath(self, tetrode, clusters, ax=None, clamp=False, **kwargs): """ Plots the spikes on the path during a trial for a particular tetrode/ cluster(s) Parameters ---------- tetrode: int the tetrode you want to look at cluster : int, 1xn array/ list a single number or list (or 1xn array) of the clusters to plot clamp : bool, optional whether to restrict the plot to the self._xlims and self_ylims property ax : matplotlib.Axes defaults to None. Which axis to add the plot to. If None a new figure window is produced """ if not isinstance(clusters, (np.ndarray, list)): if isinstance(clusters, str): clusters = self.availableClusters else: clusters = [clusters] xy = self.POS.xy for i, clust in enumerate(clusters): if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(xy[0], xy[1], c=tcols.colours[0], zorder=1) idx = self.TETRODE[tetrode].getClustIdx(clust) # useful to override default colour scheme for publication figures if 'mec' in kwargs.keys(): mec = kwargs.pop('mec') else: mec = tcols.colours[clust] ax.plot(xy[0, idx], xy[1, idx], 's', c=mec, mec=mec, **kwargs) if clamp: ax.set_xlim(self._xlims) ax.set_ylim(self._ylims) ax.set_aspect('equal') ax.invert_yaxis() plt.tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off') plt.setp(ax.get_xticklabels() + ax.get_yticklabels(), visible=False) return ax def plotRaster(self, tetrode, clusters, ax=None, dt=(-50, 100), prc_max = 0.5, ms_per_bin=1, histtype='count', hist=True, **kwargs): """ Wrapper for _plotRaster allowing multiple clusters to be plotted in separate figure windows Parameters ---------- tetrode : int cluster : int dt : 2-tuple the window of time in ms to examine zeroed on the event of interest i.e. the first value will probably be negative as in the default example prc_max : float the proportion of firing the cell has to 'lose' to count as silent; a float between 0 and 1 ax - matplotlib.Axes the axes to plot into. If not provided a new figure is created ms_per_bin : int The number of milliseconds in each bin of the raster plot histtype : str either 'count' or 'rate' - the resulting histogram plotted above the raster plot will consist of either the counts of spikes in ms_per_bin or the mean rate in ms_per_bin """ if isinstance(clusters, int): clusters = [clusters] elif isinstance(clusters, str): if 'all' in clusters: tetDict = self.getTsAndCs() clusters = tetDict[tetrode] for cluster in clusters: # Calculate the stimulation ratio stim_histo = self.getRasterHist(tetrode, cluster, dt=dt, hist=hist) mean_stim_spikes = np.sum(stim_histo, 1) pre_stim_spks = np.mean(mean_stim_spikes[0:50]) post_stim_spks = np.mean(mean_stim_spikes[50:60]) ratio = (post_stim_spks-pre_stim_spks) / (post_stim_spks+pre_stim_spks) print("Stimulation ratio = {}".format(ratio)) self._plotRaster(tetrode=tetrode, cluster=cluster, dt=dt,prc_max=prc_max, ax=ax, ms_per_bin=ms_per_bin,histtype=histtype, **kwargs) return ratio def _plotRaster(self, tetrode, cluster, dt=(-50, 100), prc_max=0.5, ax=None, ms_per_bin=1, histtype='count', **kwargs): """ Plots a raster plot for a specified tetrode/ cluster Parameters ---------- tetrode : int cluster : int dt : 2-tuple the window of time in ms to examine zeroed on the event of interest i.e. the first value will probably be negative as in the default example prc_max : float the proportion of firing the cell has to 'lose' to count as silent; a float between 0 and 1 ax - matplotlib.Axes the axes to plot into. If not provided a new figure is created ms_per_bin : int The number of milliseconds in each bin of the raster plot histtype : str either 'count' or 'rate' - the resulting histogram plotted above the raster plot will consist of either the counts of spikes in ms_per_bin or the mean rate in ms_per_bin """ if 'x1' in kwargs.keys(): x1 = kwargs.pop('x1') else: x1 = self.TETRODE[tetrode].getClustTS(cluster) x1 = x1 / int(self.TETRODE[tetrode].timebase / 1000.) #in ms x1.sort() on_good = self.STM.getTS() dt = np.array(dt) irange = on_good[:, np.newaxis] + dt[np.newaxis, :] dts = np.searchsorted(x1, irange) y = [] x = [] for i, t in enumerate(dts): tmp = x1[t[0]:t[1]] - on_good[i] x.extend(tmp) y.extend(np.repeat(i, len(tmp))) if ax is None: fig = plt.figure(figsize=(4.0, 7.0)) self._set_figure_title(fig, tetrode, cluster) axScatter = fig.add_subplot(111) else: axScatter = ax axScatter.scatter(x, y, marker='.', s=2, rasterized=False, **kwargs) divider = make_axes_locatable(axScatter) axScatter.set_xticks((dt[0], 0, dt[1])) axScatter.set_xticklabels((str(dt[0]), '0', str(dt[1]))) axHistx = divider.append_axes("top", 0.95, pad=0.2, sharex=axScatter, transform=axScatter.transAxes) scattTrans = transforms.blended_transform_factory(axScatter.transData, axScatter.transAxes) stim_pwidth = int(self.setheader['stim_pwidth']) axScatter.add_patch(Rectangle((0, 0), width=stim_pwidth/1000., height=1, transform=scattTrans, color=[0, 0, 1], alpha=0.5)) histTrans = transforms.blended_transform_factory(axHistx.transData, axHistx.transAxes) axHistx.add_patch(Rectangle((0, 0), width=stim_pwidth/1000., height=1, transform=histTrans, color=[0, 0, 1], alpha=0.5)) axScatter.set_ylabel('Laser stimulation events', labelpad=-18.5) axScatter.set_xlabel('Time to stimulus onset(ms)') nStms = int(self.STM['num_stm_samples']) axScatter.set_ylim(0, nStms) # Label only the min and max of the y-axis ylabels = axScatter.get_yticklabels() for i in range(1, len(ylabels)-1): ylabels[i].set_visible(False) yticks = axScatter.get_yticklines() for i in range(1, len(yticks)-1): yticks[i].set_visible(False) histColor = [192/255.0,192/255.0,192/255.0] histX = axHistx.hist(x, bins=np.arange(dt[0], dt[1] + ms_per_bin, ms_per_bin), color=histColor, alpha=0.6, range=dt, rasterized=True, histtype='stepfilled') vals = histX[0] bins = histX[1] if 'rate' in histtype: axHistx.set_ylabel('Rate') mn_rate_pre_stim = np.mean(vals[bins[1:] < 0]) idx = np.logical_and(bins[1:] > 0, bins[1:] < 10).nonzero()[0] mn_rate_post_stim = np.mean(vals[idx]) above_half_idx = idx[(vals[idx] < mn_rate_pre_stim * prc_max).nonzero()[0]] half_pre_rate_ms = bins[above_half_idx[0]] print('\ntime to {0}% of pre-stimulus rate = {1}ms'.format(*(prc_max * 100, half_pre_rate_ms))) print('mean pre-laser rate = {0}Hz'.format(mn_rate_pre_stim)) print('mean 10ms post-laser rate = {0}'.format(mn_rate_post_stim)) else: axHistx.set_ylabel('Spike count', labelpad=-2.5) plt.setp(axHistx.get_xticklabels(), visible=False) # Label only the min and max of the y-axis ylabels = axHistx.get_yticklabels() for i in range(1, len(ylabels)-1): ylabels[i].set_visible(False) yticks = axHistx.get_yticklines() for i in range(1, len(yticks)-1): yticks[i].set_visible(False) axHistx.set_xlim(dt) axScatter.set_xlim(dt) return x,y def getRasterHist(self, tetrode, cluster, dt=(-50, 100), hist=True): """ Calculates the histogram of the raster of spikes during a series of events Parameters ---------- tetrode : int cluster : int dt : tuple the window of time in ms to examine zeroed on the event of interest i.e. the first value will probably be negative as in the default example hist : bool not sure """ x1 = self.TETRODE[tetrode].getClustTS(cluster) x1 = x1 / int(self.TETRODE[tetrode].timebase / 1000.) #in ms x1.sort() on_good = self.STM.getTS() dt = np.array(dt) irange = on_good[:, np.newaxis] + dt[np.newaxis, :] dts = np.searchsorted(x1, irange) y = [] x = [] for i, t in enumerate(dts): tmp = x1[t[0]:t[1]] - on_good[i] x.extend(tmp) y.extend(np.repeat(i, len(tmp))) if hist: nEvents = int(self.STM["num_stm_samples"]) return np.histogram2d(x, y, bins=[np.arange(dt[0],dt[1]+1,1), np.arange(0,nEvents+1, 1)])[0] else: return np.histogram(x, bins=np.arange(dt[0],dt[1]+1,1), range=dt)[0] def plot_event_EEG(self, eeg_type='egf', dt=(-50, 100), plot=True, ax=None, evenOnsets=True, **kwargs): """ Plots out the eeg record following an 'on' event in the log file Parameters ---------- eeg_type : str either 'eeg' or 'egf' dt : tuple time to look before and after an onset event plot : bool whether to plot the stimulus-triggered-eeg ax : matplotlib.axis will plot into this axis if supplied (new figure produced if plot is None and ax is None) evenOnsets: bool if True assume there is supposed to be an even difference between the events in the .stm file. If events are found that have an uneven difference they are thrown out. NB The difference is calculated from information gleaned from the trial.STM field. If False this is ignored. """ on_good = self.STM.getTS()#timestamps in ms """ Check for inter-stimulus time differences to make sure that the large majority (99%) of on pulses are regularly spaced - otherwise issue a warning """ df = np.diff(np.diff(on_good)) if np.count_nonzero(df) / float(len(on_good)) * 100 > 1: warnings.warn('More than 1% of on events differ in size', UserWarning) #check for abnormally large number of stim events and abort if len(on_good) > 100000: raise Exception('Very large number of stimulation events. Aborting plot_event_EEG') #get the eeg data and indices to use if 'egf' in eeg_type: eeg = self.EGF.eeg on_idx = self.STM.getEGFIdx() eeg_samps_per_ms = self.EGF.sample_rate / 1000.0 elif 'eeg' in eeg_type: eeg = self.EEG.eeg on_idx = self.STM.getEEGIdx() eeg_samps_per_ms = self.EEG.sample_rate / 1000.0 """ NB the following conditional assumes there is only one phase of the stimulation that actually contains stim events. If there is more than one then the last one will be the one used """ df = np.diff(on_good) """ keep pulsePause here as used lower down to plot multiple Rectangle patches in case the dt tuple specifies a range of values higher than the pause between stimulation events """ pulsePause = 0 if evenOnsets: for k, v in self.STM.items(): if isinstance(v, OrderedDict): for kk, vv in v.items(): for kkk, vvv in vv.items(): if 'Pause' in kkk: if vvv is not None: pulsePause = vvv pulsePause_ms = pulsePause / 1000#this is the desired unequalPausesIdx = np.nonzero(df!=pulsePause_ms)[0] on_good = np.delete(on_good, unequalPausesIdx) on_idx = np.delete(on_idx, unequalPausesIdx) eeg = eeg - np.ma.mean(eeg) dt_eeg = eeg_samps_per_ms * np.array(dt) rng = np.arange(dt_eeg[0], dt_eeg[1], 1) idx = (on_idx[np.newaxis, :] + rng[:, np.newaxis]).astype(int) result = np.zeros((len(rng), len(on_good))) result = eeg[idx] if not plot: return result, idx else: mn = np.mean(result, 1) se = np.std(result, 1) / np.sqrt(len(on_good)) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: ax = ax ax.errorbar(np.linspace(dt[0], dt[1], len(mn)), mn * 1e6, yerr=se*1e6, rasterized=False) ax.set_xlim(dt) axTrans = transforms.blended_transform_factory(ax.transData, ax.transAxes) stim_pwidth = int(self.setheader['stim_pwidth']) if pulsePause > 0: a = np.arange(0, dt[1], pulsePause_ms) b = np.arange(0, dt[0], -pulsePause_ms) patchStarts = np.unique(np.concatenate((a, b))) for p in patchStarts: ax.add_patch(Rectangle((p, 0), width=stim_pwidth/1000., height=1, transform=axTrans, color=[1, 1, 0], alpha=0.5)) ax.set_ylabel('LFP ($\mu$V)') ax.set_xlabel('Time(ms)') return result def plotEventEEGRange(self, eeg_type='egf', stimTrials=[0,1], ax=None, **kwargs): """ Calls plot_event_eeg with defaults and no plotting and then plots out a time period in seconds from x1 to x2 and overlays the correct time in seconds on the x-axis - meant for manual inspection of the effect of stimulation events on the eeg Parameters ------------ eeg_type : str either 'egf' or 'eeg' although probably no point using 'eeg' as sample rate too low stimTrials : list the stimulation 'trial' to plot, starting at 0 NB stimulating every 150ms for 10ms for 20 minutes gets you 8000 trials ax : matplotlib.axis the axis to plot into. A new figure is produced if this is None """ result, idx = self.plot_event_EEG(eeg_type=eeg_type, plot=False) eeg_samp_rate = self.STM[eeg_type + 'SampRate'] time_ms = idx / float(eeg_samp_rate / 1000.) eeg_blocks = [] time_blocks = [] for t in stimTrials: eeg_blocks.append(result[:, t]) time_blocks.append(time_ms[:, t]) speed_idx = (idx / (eeg_samp_rate / self.POS.pos_sample_rate)).astype(int) speed = self.POS.speed[0, np.ravel(speed_idx, 'F')] max_speed = np.max(speed) speed = np.reshape(speed, idx.shape, 'F') # filter the eeg data in the theta and gamma bands E = EEGCalcs(self.filename_root) eeg = self.EGF.eeg eeg = eeg - np.ma.mean(eeg) sampRate = self.EGF.sample_rate theta_eeg = E.filterWithButter(eeg, 4, 8, sampRate, 2) gamma_eeg = E.filterWithButter(eeg, 30, 80, sampRate, 2) theta = theta_eeg[np.ravel(idx, 'F')] theta = np.reshape(theta, idx.shape, 'F') gamma = gamma_eeg[np.ravel(idx, 'F')] gamma = np.reshape(gamma, idx.shape, 'F') #dt is (-50, 150) rectStart = int((eeg_samp_rate / 1000.) * 50) rectEnd = int((eeg_samp_rate / 1000.) * 60) if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: ax = ax ax1 = ax.twinx() for block in zip(time_blocks, eeg_blocks, stimTrials): ax.plot(block[0], block[1], color=[0.8627, 0.8627, 0.8627]) ax.hold(True) ax.plot(block[0], theta[:, block[2]], 'r') ax.plot(block[0], gamma[:, block[2]], 'g') ax1.plot(block[0], speed[:, block[2]], 'y') ax1.set_ylim(0, np.max(max_speed) * 4) axTrans = transforms.blended_transform_factory(ax.transData, ax.transAxes) i = block[0][rectStart] j = block[0][rectEnd] - block[0][rectStart] ax.add_patch(Rectangle((i,0), width=j, height=1, transform=axTrans, color=[41./256, 161./256, 230./256], alpha=0.5)) ax.set_xlim(time_blocks[0][0], time_blocks[-1][-1]) ylabels = ax1.yaxis.get_majorticklabels() for i,xxx in enumerate(ylabels): if i > 1: xxx.set_visible(False) else: xxx.set_color('k') yticks = ax1.yaxis.get_major_ticks() for i,xxx in enumerate(yticks): if i > 1: xxx.set_visible(False) def adjust_median_speed(self, min_speed=5, plot=True): """ Parameters ---------- min_speed : float plot : bool """ grandMedian = stats.nanmedian(self.POS.speed, 1) sortedSpIdx = np.argsort(self.POS.speed) sortedSp = np.sort(self.POS.speed) indMedian = np.nonzero(sortedSp >= grandMedian)[1][0] indFirstOverThresh = np.nonzero(sortedSp >= min_speed)[1][0] indLastNotNan = np.nonzero(~np.isnan(sortedSp))[1][-1] halfWidth = np.min([indMedian-indFirstOverThresh, indLastNotNan-indMedian]) if plot: fig = plt.figure() ax = fig.add_subplot(111) maxSp = sortedSp[0, indLastNotNan] L = sortedSp.shape[1] rect = Rectangle(xy=(0, indMedian-halfWidth), width=maxSp, height=indMedian+halfWidth/2, color='b', alpha=0.5) ax.add_patch(rect) ax.plot(sortedSp[0, 0:indLastNotNan], np.arange(indLastNotNan), 'k', lw=2) ax.set_xlabel('Speed (cm/s)') ax.set_ylabel('Cumulative number of samples') if indLastNotNan != L: ax.plot((0, maxSp), (indLastNotNan+1, indLastNotNan+1), 'r-') ax.plot((0, maxSp), (L, L), 'r-') ax.set_xlim(0, maxSp) ax.set_ylim(0, L) ax.plot((0, maxSp), (indMedian, indMedian), 'b', lw=1) ax.plot((grandMedian, grandMedian), (0, indMedian), 'b-') ax.plot(grandMedian, indMedian, 'bo', ms=12) ax.plot((0, maxSp), (indFirstOverThresh, indFirstOverThresh), 'b', lw=1) ax.plot((min_speed, min_speed), (0, indFirstOverThresh), 'b--') ax.plot(min_speed, indFirstOverThresh, 'bo', ms=12) return sortedSpIdx[indMedian-halfWidth:indMedian+halfWidth] def plotRateVSpeed(self, tetrode, cluster, minSpeed=0.0, maxSpeed = 40.0, sigma=3.0, shuffle=False, nShuffles=100, plot=False, ax=None, verbose=False, getShuffledData=False, getData=False, **kwargs): """ Plots the instantaneous firing rate of a cell against running speed Also outputs a couple of measures as with Kropff et al., 2015; the Pearsons correlation and the depth of modulation (dom) - see below for details Parameters ------------------- tetrode : int the tetrode to use cluster : int the cluster to use minSpeed : float speeds below this value are masked and not used maxSpeed : float speeds above this value are masked and not used sigma : float the standard deviation of the gaussian used to smooth the spike train shuffle : bool, default False Whether to calculate the significance of the speed score or not This is done by calculating the correlation between speed and the shuffled spike train for nShuffles where the shuffles are only allowed with the window (trial_start + minTime) : (trial_end - minTime). Default is 30 seconds as with Kropff et al., 2015. Default False nShuffles : int How many times to perform the shuffle. Defaults to 100 as with Kropff et al., 2015 plot : bool Whether to plot output or not. Defaults to False """ speed = self.POS.speed.ravel() # Calculate histogram to see how much is accounted for in each bin if np.nanmax(speed) < maxSpeed: maxSpeed = np.nanmax(speed) if verbose: print('Capping speed to max in data: {:.2f}'.format(maxSpeed)) spd_bins = np.arange(minSpeed, maxSpeed, 1.0) # Construct the mask speed_filt = np.ma.MaskedArray(speed) speed_filt = np.ma.masked_where(speed_filt < minSpeed, speed_filt) speed_filt = np.ma.masked_where(speed_filt > maxSpeed, speed_filt) spk_sm = self._getTimeSmoothedSpikes(tetrode, cluster, sigma) spk_sm = np.ma.MaskedArray(spk_sm, mask=np.ma.getmask(speed_filt)) # res is the basic correlation between running speed and instantaneous # firing rate res = stats.mstats.pearsonr(spk_sm, speed_filt) if shuffle: duration = self.POS.npos / self.POS.pos_sample_rate shuffles = np.linspace(30, duration-30, nShuffles) shuffled_rs = [] for time in shuffles: shuffled_spks = self._getTimeSmoothedSpikes(tetrode, cluster, sigma, time) shuffled_rs.append(stats.mstats.pearsonr(shuffled_spks, speed_filt)[0]) prob = np.array([.90, .95, .99]) qtiles = stats.mstats.mquantiles(shuffled_rs, prob) if verbose: print("Running speed vs firing rate correlation (PPMC): {0}".format(res[0])) print("The {0} percentiles are {1}".format(prob*100, qtiles)) spd_dig = np.digitize(speed_filt, spd_bins, right=True) mn_rate = np.array([np.ma.mean(spk_sm[spd_dig==i]) for i in range(0,len(spd_bins))]) if plot: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(spd_bins, mn_rate * self.POS.pos_sample_rate, 'k') ax.set_xlim(spd_bins[0], spd_bins[-1]) ax.set_ylabel("Firing rate(Hz)") ax.set_xlabel("Speed(cm/s)") ylabels = ax.get_yticklabels() for i in range(1, len(ylabels)-1): ylabels[i].set_visible(False) yticks = ax.get_yticklines() for i in range(1, len(yticks)-1): yticks[i].set_visible(False) xlabels = ax.get_xticklabels() for i in range(1, len(xlabels)-1): xlabels[i].set_visible(False) xticks = ax.get_xticklines() for i in range(1, len(xticks)-1): xticks[i].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') if "add_peak_rate" in kwargs: if kwargs['add_peak_rate']: ax.annotate('{:.2f}'.format(np.max(res[0])), (0.15,0.9), \ xycoords='axes fraction', textcoords='axes fraction', color='k', size=30, weight='bold', ha='center', va='center') if getData: return res[0], spd_bins, mn_rate * self.POS.pos_sample_rate if getShuffledData: return res[0], shuffled_rs else: return res[0] def plotRollingCorrRateVSpeed(self, tetrode, cluster, minSpeed=2.0, sigma=3.0, **kwargs): """ Plots the rolling correlation of instantaneous firing rate of a given cell against running speed Parameters ---------- tetrode : int cluster : int minSpeed : float sigma : float The width of the smoothing kernel applied to the spike train to smooth it """ speed_filt = self.POS.speed.ravel() #filter for low speeds lowSpeedIdx = speed_filt < minSpeed spk_sm = self._getTimeSmoothedSpikes(tetrode, cluster, sigma) windowSize = 50 runningCorr = np.ones_like(spk_sm) for i in range(len(spk_sm)): runningCorr[i] = stats.pearsonr(spk_sm[i:i+windowSize], speed_filt[i:i+windowSize])[0] speed_filt = np.ma.MaskedArray(speed_filt, lowSpeedIdx) spk_sm = np.ma.MaskedArray(spk_sm, lowSpeedIdx) # mask the running correlation where there is no rate (ie the cell fails # to fire) new_mask = np.ma.mask_or(lowSpeedIdx, spk_sm==0) runningCorr = np.ma.MaskedArray(runningCorr, new_mask) fig, ax = plt.subplots() fig.subplots_adjust(right=0.75) ax2 = ax.twinx() ax3 = ax.twinx() ax2.spines["right"].set_position(("axes", 1.2)) ax3.set_frame_on(True) ax3.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) ax3.spines["right"].set_visible(True) p1, = ax.plot(speed_filt, 'b') p2, = ax2.plot(spk_sm, 'r') p3, = ax3.plot(runningCorr, 'k') ax.set_xlim(0, len(speed_filt)) ax.set_ylim(0, np.max(speed_filt)) ax2.set_ylim(0, np.max(spk_sm)) ax3.set_ylim(-1, 1) ax.set_ylabel('Speed(cm/s)') ax2.set_ylabel('Instantaneous firing rate(Hz)') ax3.set_ylabel('Running correlation') ax.yaxis.label.set_color(p1.get_color()) ax2.yaxis.label.set_color(p2.get_color()) ax3.yaxis.label.set_color(p3.get_color()) tkw = dict(size=4, width=1.5) ax.tick_params(axis='y', colors=p1.get_color(), **tkw) ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) ax.tick_params(axis='x', **tkw) def _getTimeSmoothedSpikes(self, tetrode, cluster, sigma=3.0, shuffle=None): """ Returns a spike train the same length as num pos samples that has been smoothed in time with a gaussian kernel M in width and standard deviation equal to sigma Parameters -------------- tetrode : int the tetrode to use cluster : int the cluster to use sigma : float the standard deviation of the gaussian used to smooth the spike train """ x1 = self.TETRODE[tetrode].getClustIdx(cluster) spk_sm = self.spikecalcs.smoothSpikePosCount(x1, self.POS.npos, sigma, shuffle) return spk_sm def plotFreqVSpeed(self, minSp=5, maxSp=50, spStep=5, ax=None, laserFilter=None, **kwargs): """ Plots running speed vs eeg frequencies and does linear regression. Also adds position sample histogram TODO: filter out negative frequencies - do this as default in EEG class Parameters ---------- minSp : int speeds below this are ignored maxSp : int speeds above this are ignored spStep : int the bin width for speed ax : matplotlib.axes the axes in which to plot laser : int or None whether to filter for laser on/ off events None means no filtering at all; 1 means laser is on and data is filtered for on periods 0 means filter for laser off periods """ sp = np.ma.compressed(self.POS.speed) if laserFilter: eeg = self.EEG.eeg EE = EEGCalcs(self.filename_root, thetaRange=[6,12]) if 'dip' in kwargs: d = kwargs['dip'] else: d = 15.0 if 'width' in kwargs: w = kwargs['width'] else: w = 0.125 if 'stimFreq' in kwargs: sf = kwargs['stimFreq'] else: sf = 6.66 fx = EE.filterForLaser(E=eeg, width=w, dip=d, stimFreq=sf)#filters out laser stimulation artifact fxx = self.EEG.eegfilter(fx) self.EEG.thetaAmpPhase(fxx)#filters for theta freq = self.EEG.EEGinstfreq else: try: freq = self.EEG.EEGinstfreq except: self.EEG.thetaAmpPhase() freq = self.EEG.EEGinstfreq freq[freq<0] = np.nan sp_bins = np.arange(minSp, maxSp, spStep) sp_dig = np.digitize(sp, sp_bins) freq = np.reshape(freq, (self.POS.npos, self.EEG.sample_rate/self.POS.pos_sample_rate)) if np.ma.is_masked(self.POS.speed): mask = np.ma.getmask(self.POS.speed) mask = np.tile(mask.T, self.EEG.sample_rate/self.POS.pos_sample_rate) freq = np.ma.MaskedArray(freq, mask=mask) mn_freq = np.nanmean(freq, 1) mn_freq = np.ma.compressed(mn_freq) X = [mn_freq[sp_dig==i] for i in range(len(sp_bins))] # remove any nans which will screw plt.boxplots ability to calculate means # and do the boxplot correctly for i,x in enumerate(X): idx = ~np.isfinite(x) X[i] = np.delete(x,np.nonzero(idx)) if ax is None: fig = plt.figure() fig.set_facecolor('w') ax = plt.gca() else: fig = plt.gcf() fig.set_facecolor('w') # set up some properties for the elements in the box plot bprops = {'c': [0.8627, 0.8627, 0.8627]} wprops = {'c': [0.8627, 0.8627, 0.8627]} ax.boxplot(X, positions=sp_bins, boxprops=bprops, whiskerprops=wprops) medians = np.array([stats.nanmedian(x) for x in X]) nan_idx = np.isnan(medians) slope, intercept, r_value, p_value, std_err = stats.linregress(sp_bins[~nan_idx], medians[~nan_idx]) minFreq = np.min(medians[~nan_idx]) - 1.0 maxFreq = np.max(medians[~nan_idx]) + 1.0 ax.set_ylim(minFreq, maxFreq) # ax.set_xlim(0, sp_bins[-1]) # ylims = np.array(ax.get_ylim()) xlims = np.array(ax.get_xlim()) res = stats.theilslopes(medians[~nan_idx], sp_bins[~nan_idx], 0.90) ax.plot([0,xlims[1]], (res[1], res[1] + (res[0] * sp_bins[-1])), 'r-') ax.plot([0,xlims[1]], (res[1], res[1] + (res[2] * sp_bins[-1])), 'r--') ax.plot([0,xlims[1]], (res[1], res[1] + (res[3] * sp_bins[-1])), 'r--') # ax.plot([0,xlims[1]], (intercept, intercept + (sp_bins[-1] * slope)), 'k--', lw=2) ax.set_ylabel('Frequency(Hz)') ax.set_xlabel('Speed (cm/s)') ax.set_title('Intercept: {0:.3f} Slope: {1:.5f}'.format(intercept, slope)) # add the right-hand y-axis and format ax1 = ax.twinx() # get a histogram of speed to be plotted against the right-hand y-axis h,e = np.histogram(np.ma.compressed(sp), bins=len(sp_bins)*10, range=(0, sp_bins[-1])) ax1.bar(e[0:-1], h, color=[0.6667, 0.6667, 0], linewidth=0, align='edge') ax1.set_ylim(0, np.max(h) * 4) # reduce the 'height' of the secondary plot # ax1.set_xlim(0, sp_bins[-1]+spStep) ax1.set_ylabel('Position samples', color=[0.6667, 0.6667, 0]) ax1.yaxis.set_label_coords(1.1,.15) ylabels = ax1.yaxis.get_majorticklabels() for i,xxx in enumerate(ylabels): if i > 1: xxx.set_visible(False) else: xxx.set_color([0.6667, 0.6667, 0]) yticks = ax1.yaxis.get_major_ticks() for i,xxx in enumerate(yticks): if i > 1: xxx.set_visible(False) return ax, intercept, slope def plotPhaseOfFiring(self, tetrode, cluster, ax=None, **kwargs): """ Plots the phase of firing of a given cluster as a histogram Parameters ---------- tetrode : int cluster : int ax : matplotlib.Axes """ phase = self._getClusterPhaseVals(tetrode, cluster) if ax is None: fig = plt.figure() ax = fig.add_subplot(211) ax2 = fig.add_subplot(212) # make the plot like the Somogyi figures! fig.set_facecolor('#203C8A') phase = np.hstack((phase, phase + (2*np.pi))) ax2.hist(phase, bins=120, range=(-np.pi, 3*np.pi), color='w', histtype='stepfilled') t = np.arange(-np.pi, 3 * np.pi, 0.1) ax.plot(t, np.sin(t), 'w') ax.annotate('180', xy=(-np.pi-0.2, 0), xycoords='data', ha='right', va='center', color='w', fontsize=20) ax.set_axis_bgcolor('#203C8A') ax.set_ylim(-1.1, 1.1) ax.axis('off') ax2.set_axis_bgcolor('#203C8A') plt.axis('off') def plotPhaseInField(self, tetrode, cluster, ax=None, **kwargs): """ Plots theta phase of spikes in a place field (found using _getFieldLims) as individual colours for each run through the field TODO: broken Parameters ---------- tetrode : int cluster : int ax : matplotlib.Axes """ if not self.EEG: self.EEG = EEG(self.filename_root) self.EEG.thetaAmpPhase() self.EEG.EEGphase = np.rad2deg(self.EEG.EEGphase) runs_to_keep, spk_in_run, run_duration = self.getFieldRuns(tetrode, cluster) if ax is None: ax = plt.gca() else: ax = ax for spks in spk_in_run: ax.plot(self.POS.xy[0,spks], self.EEG.EEGphase[spks * self.pos2eegScale]+180,'.') ax.set_title(self.filename_root.split('\\')[-1] + ' cluster ' + str(cluster) + ' on tetrode ' + str(tetrode)) plt.show() def plotSpectrogram(self, eegType='eeg', ymin=0, ymax=50, ax=None, secsPerBin=2, laser=False, width=0.125, dip=15.0): """ Plots a spectrogram of the LFP of the whole trial Parameters -------------- eegType : str Whether to do use .eeg file or .egf file. Defaults to eeg ymin / ymax : int Minimum/ maximum frequency (y-axis) to plot ax : matplotlib.pyplot.axis] Which axis to add the plot to. If None a new figure window is produced secsPerBin : int Size of the x-axis bins laser : bool Whether to filter the eeg for laser stimulation events width/ dip : float Parameters for Kaisser filter in eegcalcs.EEGCalcs - see there for definition Returns ------------ Plots the spectrogram """ if 'eeg' in eegType: E = self.EEG.eeg if np.ma.is_masked(E): E = E.compressed() Fs = self.EEG.sample_rate elif 'egf' in eegType: E = self.EGF.eeg if np.ma.is_masked(E): E = E.compressed() Fs = self.EGF.sample_rate EE = EEGCalcs(self.filename_root,thetaRange=[6,12]) if laser: """ Split the eeg into the parts where the laser is on and off and then reassemble for the spectrogram NB this assumes the laser comes on at 600s for 20 minutes and then goes off """ mask = np.ones_like(E).astype(bool) mask[600*int(Fs):1800*int(Fs)] = False # filter # import pdb # pdb.set_trace() fx = EE.filterForLaser(E=E[~mask], width=width, dip=dip) # reassemble Etmp = np.zeros_like(E) Etmp[~mask] = fx Etmp[mask] = E[mask] fx = Etmp else: fx = E nperseg = int(Fs * secsPerBin) freqs, times, Sxx = signal.spectrogram(fx, Fs, nperseg=nperseg) # Sxx_sm = self.ratemap.blurImage(Sxx, (secsPerBin*2)+1) Sxx_sm = Sxx x, y = np.meshgrid(times, freqs) if ax is None: plt.figure() ax = plt.gca() im = ax.pcolormesh(x, y, Sxx_sm, edgecolors='face', cmap='RdBu',norm=colors.LogNorm()) im = ax.pcolormesh(x, y, Sxx_sm, edgecolors='face', norm=colors.LogNorm()) ax.set_xlim(times[0], times[-1]) ax.set_ylim(ymin, ymax) ax.set_xlabel('Time(s)') ax.set_ylabel('Frequency(Hz)') if laser: ax.vlines(600,ymin,ymax) ax.vlines(1800,ymin,ymax) ax.set_xticks((0, 600, 1800, 2400)) ax.set_xticklabels((str(0), str(600), str(1800), str(2400))) return freqs, times, Sxx, im def plotEEGPower(self, E=None, eegType='eeg', smthKernelSigma=0.1875, freqBand=(6,12), outsideBand=(3,125), s2nWdth=2, xmax=125, ymax=None, plot=True, ax=None, **kwargs): """ Plots the eeg power spectrum. Annotates graph around theta frequency band. Parameters ------------- E : numpy.array (Optional) numEEGSamples sized numpy array of raw eeg signal amplitude. eegType : str (Optional) Either 'eeg' or 'egf'. The .eeg file type to use. Defaults to 'eeg' smthKernelSigma : float (Optional) number of points in the output window for gaussian filtering of eeg. This value is multipled by the binsPerHz which comes from the length of the fft (derived from nextpow2 for speed). freqBand : two-tuple (Optional) the theta-band to examine. outsideBand : two-tuple (Optional): frequencies outside these values are ignored. NOT IMPLEMENTED. s2nWdth : int (Optional) Determines the width of the window to calculate the signal-to-noise ratio. xmax : int (Optional) Maximum x-value (frequency) to plot to. Defaults to 125 ymax : int (Optional) Maximum y-value to plot to. Defaults to None so plots full range plot : bool (Optional) Whether to produce a plot ax : matplotlib.pyplot.axis instance (Optional) The axis to plot in to. Returns ------------- ax : matplotlib.pyplot.axis instance The axis containing the plot. """ if E is None: if 'eeg' in eegType: E = self.EEG.eeg freqBand = (self.EEG.x1, self.EEG.x2) if np.ma.is_masked(E): E = E.compressed() sample_rate = self.EEG.sample_rate elif 'egf' in eegType: E = self.EGF.eeg freqBand = (self.EEG.x1, self.EEG.x2) if np.ma.is_masked(E): E = E.compressed() sample_rate = self.EGF.sample_rate else: if np.ma.is_masked(E): E = E.compressed() sample_rate = kwargs['sample_rate'] nqLim = 0 nqLim = sample_rate / 2 origLength = len(E) fftLength = 2 ** self.EEG.nextpow2(origLength).astype(int) freqs, power = signal.periodogram(E, fs=sample_rate, return_onesided=True, nfft=fftLength) fftHalfLength = fftLength / 2+1 # calculate the number of points in the gaussian window - gleaned from gaussian_filter1d # which lives in scipy/ndimage/filters.py binsPerHz = (fftHalfLength-1) / nqLim kernelSigma = smthKernelSigma * binsPerHz smthKernelWidth = 2 * int(4.0 * kernelSigma + 0.5) + 1 gaussWin = signal.gaussian(smthKernelWidth, kernelSigma) # smooth the power sm_power = signal.fftconvolve(power, gaussWin, 'same') # normalize the smoothed power by the length of the fft sm_power = sm_power / np.sqrt(len(sm_power)) # calculate some metrics spectrumMaskBand = np.logical_and(freqs>freqBand[0], freqs<freqBand[1]) bandMaxPower = np.max(sm_power[spectrumMaskBand]) maxBinInBand = np.argmax(sm_power[spectrumMaskBand]) bandFreqs = freqs[spectrumMaskBand] freqAtBandMaxPower = bandFreqs[maxBinInBand] # find power in windows around peak, divide by power in rest of spectrum # to get SNR spectrumMaskPeak = np.logical_and(freqs>freqAtBandMaxPower-s2nWdth/2, freqs < freqAtBandMaxPower + s2nWdth/2) snr = np.nanmean(sm_power[spectrumMaskPeak]) / np.nanmean(sm_power[~spectrumMaskPeak]) # collect all the following keywords into a dict for output dictKeys = ('sm_power','freqs', 'spectrumMaskPeak', 'power','freqBand', 'freqAtBandMaxPower', 'bandMaxPower', 'xmax', 'ymax', 'snr', 'kernelSigma', 'binsPerHz') outDict = dict.fromkeys(dictKeys,np.nan) for thiskey in outDict.keys(): outDict[thiskey] = locals()[thiskey]# neat trick: locals is a dict that holds all locally scoped variables if plot: if ax is None: plt.figure() ax = plt.gca() ax.plot(freqs, power, alpha=0.5, color=[0.8627, 0.8627, 0.8627]) # ax.hold(1) ax.plot(freqs, sm_power) r = Rectangle((freqBand[0],0), width=np.diff(freqBand)[0], height=np.diff(ax.get_ylim())[0], alpha=0.25, color='r', ec='none') ax.add_patch(r) ax.set_xlim(0,xmax) ax.set_ylim(0, bandMaxPower / 0.8) ax.set_xlabel('Frequency') ax.set_ylabel('Power') ax.text(x = freqBand[1] / 0.9, y = bandMaxPower, s = str(freqAtBandMaxPower)[0:4], fontsize=20) return ax def plotClusterSpace(self, tetrode, clusters=None, ax=None, bins=256,**kwargs): """ Plots the cluster space for the given tetrode Parameters ---------- tetrode : int the tetrode cluster space to plot clusters : int or list or np.array the clusters to colour in ax : matplotlib.pyplot.axis the axis to plot into bins : int the number of bins to use in the histogram **kwargs : can include a param keyword for the parameter to construct the histogram from - this defaults to amplitude ('Amp') but can be any valid key in the getParam method of the Tetrode class Returns ------- fig: handle to figure window """ if clusters is not None and not isinstance(clusters, (np.ndarray, list)): clusters = [clusters] # ie needs to be iterable waves = self.TETRODE[tetrode].waveforms if self.TETRODE[tetrode].volts: waves = (waves * 128) / self.TETRODE[tetrode].scaling[:, np.newaxis] waves = waves.astype(int) cutfile = self.TETRODE[tetrode].cut if cutfile is not None: cutfile = np.array(cutfile) if 'param' in kwargs.keys(): param = kwargs['param'] else: param = 'Amp' amps = self.TETRODE[tetrode].getParam(waves, param=param) bad_electrodes = np.setdiff1d(np.array(range(4)),np.array(np.sum(amps,0).nonzero())[0]) cmap = np.tile(tcols.colours[0],(bins,1)) cmap[0] = (1,1,1) cmap = colors.ListedColormap(cmap) cmap._init() alpha_vals = np.ones(cmap.N+3) alpha_vals[0] = 0 cmap._lut[:,-1] = alpha_vals cmb = combinations(range(4),2) if 'figure' in kwargs.keys(): fig = kwargs.pop('figure') else: fig = plt.figure() if ax is None: ax = fig.add_subplot(111) else: ax = ax ax.axis('off') # fig = plt.gcf() rect = ax.get_position().bounds grid = ImageGrid(fig, rect, nrows_ncols= (2,3), axes_pad=0.1) if 'Amp' in param: myRange = [[0,256],[0,256]] else: myRange = None for i, c in enumerate(cmb): if c not in bad_electrodes: H = np.histogram2d(amps[:,c[0]], amps[:,c[1]], range = myRange, bins=bins) grid[i].imshow(H[0], cmap=cmap, interpolation='nearest') if clusters is not None: for thisclust in clusters: if 'clustColour' in kwargs.keys(): clustColour = kwargs['clustColour'] else: clustColour = tcols.colours[thisclust] clustidx = (cutfile==thisclust).nonzero()[0] H = np.histogram2d(amps[clustidx,c[0]],amps[clustidx,c[1]], range=myRange, bins=bins) H = H[0] H = signal.convolve2d(H, np.ones((3, 3)), mode='same') clustCMap = np.tile(clustColour,(bins,1)) clustCMap[0] = (1,1,1) clustCMap = colors.ListedColormap(clustCMap) clustCMap._init() clustCMap._lut[:,-1] = alpha_vals grid[i].imshow(H, cmap=clustCMap, interpolation='nearest') s = str(c[0]+1) + ' v ' + str(c[1]+1) grid[i].text(0.05,0.95, s, va='top', ha='left', size='small', color='k', transform=grid[i].transAxes) grid[i].set_xlim([0,bins]) grid[i].set_ylim([0,bins]) grid[i].tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off') plt.setp([a.get_xticklabels() for a in grid], visible=False) plt.setp([a.get_yticklabels() for a in grid], visible=False) return fig def plotXCorr(self, tetrode, clusters, ax=None, Trange=(-500,500), bins=None, annotate=True, **kwargs): """ Plots the temporal autocorrelogram (defaults to +/- 500ms) TODO: needs to be able to take in two tetrodes & make sure Trange in ms Parameters ---------- tetrode : int clusters : int or list ax : matplotlib.Axes The axes to plot into. If None a new figure window is created TRange : two-tuple The range over which to examine the events. Zero time is the occurance of the event bins : int The number of bins to assign the data to annotate : bool Whether to add the cluster identities to the figure axis **kwargs if 'add_peak_rate' is in the kwargs then that is also added to the axes """ if isinstance(clusters, (np.ndarray, list, int)): clusters = [clusters] if isinstance(tetrode, (np.ndarray, list, int)): tetrode = [tetrode] duration = np.diff(Trange) if bins is None: bins = 201 if ax is None: fig = plt.figure() ax = fig.add_subplot(111) if len(clusters) == 1: cluster_a = cluster_b = clusters[0] elif len(clusters) == 2: cluster_a = clusters[0] cluster_b = clusters[1] if len(tetrode) == 1: tetrode_a = tetrode[0] tetrode_b = None elif len(tetrode) == 2: tetrode_a = tetrode[0] tetrode_b = tetrode[1] Trange = np.array(Trange) timebase = self.TETRODE[tetrode_a].timebase x1 = self.TETRODE[tetrode_a].getClustTS(cluster_a) / (timebase/1000) if tetrode_b is None: if cluster_b is None: x2 = x1 cluster_b = cluster_a else: x2 = self.TETRODE[tetrode_a].getClustTS(cluster_b) / (timebase/1000) else: x2 = self.TETRODE[tetrode_b].getClustTS(cluster_b) / (timebase/1000) if self.posFilter: idx = np.nonzero(~self.POS.xy.mask[0])[0] # indices to keep x1PosSamp = (x1 / (1000 / self.POS.pos_sample_rate)).astype(int) x1 = x1[np.in1d(x1PosSamp, idx)] if cluster_b is not None: x2PosSamp = (x2 / (1000 / self.POS.pos_sample_rate)).astype(int) x2 = x2[np.in1d(x2PosSamp, idx)] y = self.spikecalcs.xcorr(x1, x2, Trange=Trange) h = ax.hist(y[y != 0], bins=bins, range=Trange, color='k', histtype='stepfilled') ax.set_xlim(Trange) if annotate: if cluster_b is None: cond_rate = np.count_nonzero(y == 0) / np.float(duration) ax.text(0.55, .9, "{0:.4}".format(str(cond_rate)), ha='center', va='center', transform=ax.transAxes) else: if np.logical_or((tetrode_a == tetrode_b), tetrode_b is None): if (cluster_a == cluster_b): #autocorr being done so get theta modulation modIdx = self.spikecalcs.thetaModIdx(x1) ax.set_title('Cluster {0} vs Cluster {1}\ntheta modulation: {2:.4f}'.format(cluster_a, cluster_b, modIdx)) if "add_peak_rate" in kwargs: if kwargs['add_peak_rate']: ax.annotate('{:.2f}'.format(np.max(modIdx)), (0.15,0.9), \ xycoords='axes fraction', textcoords='axes fraction', color='k', size=30, weight='bold', ha='center', va='center') # ax.set_title('Cluster ' + str(cluster_a) + ' vs Cluster ' + str(cluster_b) +'\ntheta modulation=' + str(modIdx)) else: ax.set_title('Cluster ' + str(cluster_a) + ' vs Cluster ' + str(cluster_b)) ax.set_xlabel('Time(ms)') ax.set_xticks((Trange[0], 0, Trange[1])) ax.set_xticklabels((str(Trange[0]), '0', str(Trange[1]))) ax.tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off') ax.set_yticklabels('') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.xaxis.set_ticks_position('bottom') return ax, h def getThetaModIdx(self, tetrode, cluster): """ Calculates the theta modulation index of a clusters autocorrelogram as the difference between the first trough and second peak of the autocorrelogram (actually the difference over their sum) Parameters -------------- tetrode : int The tetrode the cluster is on cluster : int The cluster identity Returns ------------- thetaModulation : int The depth of theta modulation """ x1 = self.TETRODE[tetrode].getClustTS(cluster) / float(self.TETRODE[tetrode].timebase) * 1000 if self.posFilter: idx = np.nonzero(~self.POS.xy.mask[0])[0] # indices to keep x1PosSamp = (x1 / (1000 / self.POS.pos_sample_rate)).astype(int) x1 = x1[
np.in1d(x1PosSamp, idx)
numpy.in1d
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the Projected Gradient Descent attack `ProjectedGradientDescent` as an iterative method in which, after each iteration, the perturbation is projected on an lp-ball of specified radius (in addition to clipping the values of the adversarial sample so that it lies in the permitted data range). This is the attack proposed by Madry et al. for adversarial training. | Paper link: https://arxiv.org/abs/1706.06083 """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import Optional, Union, TYPE_CHECKING import numpy as np from tqdm.auto import tqdm from art.config import ART_NUMPY_DTYPE from art.estimators.estimator import BaseEstimator, LossGradientsMixin from art.estimators.classification.classifier import ClassifierMixin from art.attacks.evasion.projected_gradient_descent.projected_gradient_descent_numpy import ( ProjectedGradientDescentCommon, ) from art.utils import compute_success, random_sphere, compute_success_array if TYPE_CHECKING: import torch from art.estimators.classification.pytorch import PyTorchClassifier logger = logging.getLogger(__name__) class ProjectedGradientDescentPyTorch(ProjectedGradientDescentCommon): """ The Projected Gradient Descent attack is an iterative method in which, after each iteration, the perturbation is projected on an lp-ball of specified radius (in addition to clipping the values of the adversarial sample so that it lies in the permitted data range). This is the attack proposed by Madry et al. for adversarial training. | Paper link: https://arxiv.org/abs/1706.06083 """ _estimator_requirements = (BaseEstimator, LossGradientsMixin, ClassifierMixin) def __init__( self, estimator: Union["PyTorchClassifier"], norm: Union[int, float, str] = np.inf, eps: Union[int, float, np.ndarray] = 0.3, eps_step: Union[int, float, np.ndarray] = 0.1, max_iter: int = 100, targeted: bool = False, num_random_init: int = 0, batch_size: int = 32, random_eps: bool = False, verbose: bool = True, ): """ Create a :class:`.ProjectedGradientDescentPyTorch` instance. :param estimator: An trained estimator. :param norm: The norm of the adversarial perturbation. Possible values: "inf", np.inf, 1 or 2. :param eps: Maximum perturbation that the attacker can introduce. :param eps_step: Attack step size (input variation) at each iteration. :param random_eps: When True, epsilon is drawn randomly from truncated normal distribution. The literature suggests this for FGSM based training to generalize across different epsilons. eps_step is modified to preserve the ratio of eps / eps_step. The effectiveness of this method with PGD is untested (https://arxiv.org/pdf/1611.01236.pdf). :param max_iter: The maximum number of iterations. :param targeted: Indicates whether the attack is targeted (True) or untargeted (False). :param num_random_init: Number of random initialisations within the epsilon ball. For num_random_init=0 starting at the original input. :param batch_size: Size of the batch on which adversarial samples are generated. :param verbose: Show progress bars. """ if not estimator.all_framework_preprocessing: raise NotImplementedError( "The framework-specific implementation only supports framework-specific preprocessing." ) super(ProjectedGradientDescentPyTorch, self).__init__( estimator=estimator, norm=norm, eps=eps, eps_step=eps_step, max_iter=max_iter, targeted=targeted, num_random_init=num_random_init, batch_size=batch_size, random_eps=random_eps, verbose=verbose, ) def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Generate adversarial samples and return them in an array. :param x: An array with the original inputs. :param y: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)` or indices of shape (nb_samples,). Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is `None`. :param mask: An array with a mask broadcastable to input `x` defining where to apply adversarial perturbations. Shape needs to be broadcastable to the shape of x and can also be of the same shape as `x`. Any features for which the mask is zero will not be adversarially perturbed. :type mask: `np.ndarray` :return: An array holding the adversarial examples. """ import torch # lgtm [py/repeated-import] mask = self._get_mask(x, **kwargs) # Ensure eps is broadcastable self._check_compatibility_input_and_eps(x=x) # Check whether random eps is enabled self._random_eps() # Set up targets targets = self._set_targets(x, y) # Create dataset if mask is not None: # Here we need to make a distinction: if the masks are different for each input, we need to index # those for the current batch. Otherwise (i.e. mask is meant to be broadcasted), keep it as it is. if len(mask.shape) == len(x.shape): dataset = torch.utils.data.TensorDataset( torch.from_numpy(x.astype(ART_NUMPY_DTYPE)), torch.from_numpy(targets.astype(ART_NUMPY_DTYPE)), torch.from_numpy(mask.astype(ART_NUMPY_DTYPE)), ) else: dataset = torch.utils.data.TensorDataset( torch.from_numpy(x.astype(ART_NUMPY_DTYPE)), torch.from_numpy(targets.astype(ART_NUMPY_DTYPE)), torch.from_numpy(np.array([mask.astype(ART_NUMPY_DTYPE)] * x.shape[0])), ) else: dataset = torch.utils.data.TensorDataset( torch.from_numpy(x.astype(ART_NUMPY_DTYPE)), torch.from_numpy(targets.astype(ART_NUMPY_DTYPE)), ) data_loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False, drop_last=False ) # Start to compute adversarial examples adv_x = x.astype(ART_NUMPY_DTYPE) # Compute perturbation with batching for (batch_id, batch_all) in enumerate( tqdm(data_loader, desc="PGD - Batches", leave=False, disable=not self.verbose) ): if mask is not None: (batch, batch_labels, mask_batch) = batch_all[0], batch_all[1], batch_all[2] else: (batch, batch_labels, mask_batch) = batch_all[0], batch_all[1], None batch_index_1, batch_index_2 = batch_id * self.batch_size, (batch_id + 1) * self.batch_size # Compute batch_eps and batch_eps_step if isinstance(self.eps, np.ndarray): if len(self.eps.shape) == len(x.shape) and self.eps.shape[0] == x.shape[0]: batch_eps = self.eps[batch_index_1:batch_index_2] batch_eps_step = self.eps_step[batch_index_1:batch_index_2] else: batch_eps = self.eps batch_eps_step = self.eps_step else: batch_eps = self.eps batch_eps_step = self.eps_step for rand_init_num in range(max(1, self.num_random_init)): if rand_init_num == 0: # first iteration: use the adversarial examples as they are the only ones we have now adv_x[batch_index_1:batch_index_2] = self._generate_batch( x=batch, targets=batch_labels, mask=mask_batch, eps=batch_eps, eps_step=batch_eps_step ) else: adversarial_batch = self._generate_batch( x=batch, targets=batch_labels, mask=mask_batch, eps=batch_eps, eps_step=batch_eps_step ) # return the successful adversarial examples attack_success = compute_success_array( self.estimator, batch, batch_labels, adversarial_batch, self.targeted, batch_size=self.batch_size, ) adv_x[batch_index_1:batch_index_2][attack_success] = adversarial_batch[attack_success] logger.info( "Success rate of attack: %.2f%%", 100 * compute_success(self.estimator, x, targets, adv_x, self.targeted, batch_size=self.batch_size), ) return adv_x def _generate_batch( self, x: "torch.Tensor", targets: "torch.Tensor", mask: "torch.Tensor", eps: Union[int, float, np.ndarray], eps_step: Union[int, float, np.ndarray], ) -> np.ndarray: """ Generate a batch of adversarial samples and return them in an array. :param x: An array with the original inputs. :param targets: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)`. :param mask: An array with a mask to be applied to the adversarial perturbations. Shape needs to be broadcastable to the shape of x. Any features for which the mask is zero will not be adversarially perturbed. :param eps: Maximum perturbation that the attacker can introduce. :param eps_step: Attack step size (input variation) at each iteration. :return: Adversarial examples. """ import torch # lgtm [py/repeated-import] inputs = x.to(self.estimator.device) targets = targets.to(self.estimator.device) adv_x = torch.clone(inputs) if mask is not None: mask = mask.to(self.estimator.device) for i_max_iter in range(self.max_iter): adv_x = self._compute_torch( adv_x, inputs, targets, mask, eps, eps_step, self.num_random_init > 0 and i_max_iter == 0, ) return adv_x.cpu().detach().numpy() def _compute_perturbation( self, x: "torch.Tensor", y: "torch.Tensor", mask: Optional["torch.Tensor"] ) -> "torch.Tensor": """ Compute perturbations. :param x: Current adversarial examples. :param y: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)` or indices of shape (nb_samples,). Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is `None`. :param mask: An array with a mask broadcastable to input `x` defining where to apply adversarial perturbations. Shape needs to be broadcastable to the shape of x and can also be of the same shape as `x`. Any features for which the mask is zero will not be adversarially perturbed. :return: Perturbations. """ import torch # lgtm [py/repeated-import] # Pick a small scalar to avoid division by 0 tol = 10e-8 # Get gradient wrt loss; invert it if attack is targeted grad = self.estimator.loss_gradient(x=x, y=y) * (1 - 2 * int(self.targeted)) # Apply mask if mask is not None: grad = torch.where(mask == 0.0, torch.tensor(0.0), grad) # Apply norm bound if self.norm in ["inf", np.inf]: grad = grad.sign() elif self.norm == 1: ind = tuple(range(1, len(x.shape))) grad = grad / (torch.sum(grad.abs(), dim=ind, keepdims=True) + tol) # type: ignore elif self.norm == 2: ind = tuple(range(1, len(x.shape))) grad = grad / (torch.sqrt(torch.sum(grad * grad, axis=ind, keepdims=True)) + tol) # type: ignore assert x.shape == grad.shape return grad def _apply_perturbation( self, x: "torch.Tensor", perturbation: "torch.Tensor", eps_step: Union[int, float, np.ndarray] ) -> "torch.Tensor": """ Apply perturbation on examples. :param x: Current adversarial examples. :param perturbation: Current perturbations. :param eps_step: Attack step size (input variation) at each iteration. :return: Adversarial examples. """ import torch # lgtm [py/repeated-import] eps_step = np.array(eps_step, dtype=ART_NUMPY_DTYPE) x = x + torch.tensor(eps_step).to(self.estimator.device) * perturbation if self.estimator.clip_values is not None: clip_min, clip_max = self.estimator.clip_values x = torch.max( torch.min(x, torch.tensor(clip_max).to(self.estimator.device)), torch.tensor(clip_min).to(self.estimator.device), ) return x def _compute_torch( self, x: "torch.Tensor", x_init: "torch.Tensor", y: "torch.Tensor", mask: "torch.Tensor", eps: Union[int, float, np.ndarray], eps_step: Union[int, float, np.ndarray], random_init: bool, ) -> "torch.Tensor": """ Compute adversarial examples for one iteration. :param x: Current adversarial examples. :param x_init: An array with the original inputs. :param y: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)` or indices of shape (nb_samples,). Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). :param mask: An array with a mask broadcastable to input `x` defining where to apply adversarial perturbations. Shape needs to be broadcastable to the shape of x and can also be of the same shape as `x`. Any features for which the mask is zero will not be adversarially perturbed. :param eps: Maximum perturbation that the attacker can introduce. :param eps_step: Attack step size (input variation) at each iteration. :param random_init: Random initialisation within the epsilon ball. For random_init=False starting at the original input. :return: Adversarial examples. """ import torch # lgtm [py/repeated-import] if random_init: n = x.shape[0] m =
np.prod(x.shape[1:])
numpy.prod
import os import numpy as np import sys from skeletons.utilities import dataIO template ='''#!/bin/bash # # add all other SBATCH directives here # #SBATCH -p {PARTITION} # use the COX partition #SBATCH -n 1 # Number of cores #SBATCH -N 1 # Ensure that all cores are on one matching #SBATCH --mem={MEMORY} # CPU memory in MBs #SBATCH -t 0-{HOURS}:00 # time in dd-hh:mm to run the code for #SBATCH --mail-type=NONE # send all email types (start, end, error, etc.) #SBATCH --mail-user=<EMAIL> # email address to send to #SBATCH -o {OUTPUT_PATH}/{JOBNAME}.out # where to write the log files #SBATCH -e {ERROR_PATH}/{JOBNAME}.err # where to write the error files #SBATCH -J thinning_{JOBNAME} # jobname given to job module load Anaconda3/5.0.1-fasrc02 source activate fillholes export PYTHONPATH=$PYTHONPATH:{RUNCODEDIRECTORY} cd {RUNCODEDIRECTORY}skeletons/examples/ python scripts/{COMMAND} echo "DONE" ''' def makeFolder(folder_path): if os.path.exists(folder_path): raise ValueError("Folderpath " + folder_path + " already exists!") else: os.mkdir(folder_path) def writeFile(filename, data): if os.path.exists(filename): raise ValueError("File " + filename + " already exists!") else: with open(filename, 'w') as fd: fd.write(data) if(len(sys.argv))!=5: raise ValueError(" Scripts needs 4 cluster partitions as input, put 0 if not less desired") else: n_part = 0 partitions = ["0","0","0","0"] if sys.argv[1]!="0": partitions[0] = sys.argv[1] n_part +=1 if sys.argv[2]!="0": partitions[1] = sys.argv[2] n_part +=1 if sys.argv[3]!="0": partitions[2] = sys.argv[3] n_part +=1 if sys.argv[4]!="0": partitions[3] = sys.argv[4] n_part +=1 files_written = 0 prefix = "Zebrafinch" ID_max = 410 refinement_chunksize = 50 error_path = dataIO.OutputDirectory(prefix) + "error_files/" output_path = dataIO.OutputDirectory(prefix) + "output_files/" slurm_path = dataIO.OutputDirectory(prefix)+"slurm_files/" code_run_path = dataIO.CodeDirectory(prefix) block_size = dataIO.Blocksize(prefix) start_blocks = dataIO.StartBlocks(prefix) n_blocks = dataIO.NBlocks(prefix) block_volume = block_size[0]*block_size[1]*block_size[2] memory = str(int(block_volume*3*8*3/1000/1000)) memory_step4 = str(50000) run_hours = str(int(block_volume/(1024*1024*1024)*2)) template = template.replace('{RUNCODEDIRECTORY}', code_run_path) template = template.replace('{HOURS}', run_hours) SLURM_OUTPUT_FOLDER = slurm_path step01folderpath = SLURM_OUTPUT_FOLDER+"step01/" step02folderpath = SLURM_OUTPUT_FOLDER+"step02/" step03folderpath = SLURM_OUTPUT_FOLDER+"step03/" step04folderpath = SLURM_OUTPUT_FOLDER+"step04/" makeFolder(step01folderpath) makeFolder(step02folderpath) makeFolder(step03folderpath) makeFolder(step04folderpath) # write slurm for step two for bz in range(start_blocks[0], start_blocks[0] + n_blocks[0]): command = "step1.py" + " " + str(bz) jobname = "S1"+"_" +"z"+str(bz).zfill(2) t = template t = t.replace('{JOBNAME}', jobname) t = t.replace('{COMMAND}', command) t = t.replace('{ERROR_PATH}', error_path) t = t.replace('{OUTPUT_PATH}', output_path) t = t.replace('{MEMORY}', memory) t = t.replace('{PARTITION}', partitions[np.random.randint(0,n_part)]) filename = step01folderpath + jobname + ".slurm" writeFile(filename, t) files_written += 1 # write slurm for step three for bz in range(start_blocks[0], start_blocks[0] + n_blocks[0]): command = "step2.py" + " " + str(bz) jobname = "S2"+"_" +"z"+str(bz).zfill(2) t = template t = t.replace('{JOBNAME}', jobname) t = t.replace('{COMMAND}', command) t = t.replace('{ERROR_PATH}', error_path) t = t.replace('{OUTPUT_PATH}', output_path) t = t.replace('{MEMORY}', memory) t = t.replace('{PARTITION}', partitions[np.random.randint(0,n_part)]) filename = step02folderpath + jobname + ".slurm" writeFile(filename, t) files_written += 1 # write slurm for step four for bz in range(start_blocks[0], start_blocks[0] + n_blocks[0]): for by in range(start_blocks[1], start_blocks[1] + n_blocks[1]): for bx in range(start_blocks[2], start_blocks[2] + n_blocks[2]): command = "step3.py" + " " + str(bz) + " " + str(by) + " " + str(bx) jobname = "S3"+"_"+ "z"+str(bz).zfill(2)+"y"+str(by).zfill(2)+"x"+str(bx).zfill(2) t = template t = t.replace('{JOBNAME}', jobname) t = t.replace('{COMMAND}', command) t = t.replace('{ERROR_PATH}', error_path) t = t.replace('{OUTPUT_PATH}', output_path) t = t.replace('{MEMORY}', memory) t = t.replace('{PARTITION}', partitions[np.random.randint(0,n_part)]) filename = step03folderpath + jobname + ".slurm" writeFile(filename, t) files_written += 1 ID_range = np.arange(1,ID_max) for ID_start in ID_range[::refinement_chunksize]: ID_end = ID_start+refinement_chunksize-1 command = "step4.py" + " " + str(ID_start) + " " + str(ID_end) jobname = "S4" + "_" + str(ID_start) + "_" + str(ID_end) t = template t = t.replace('{JOBNAME}', jobname) t = t.replace('{COMMAND}', command) t = t.replace('{ERROR_PATH}', error_path) t = t.replace('{OUTPUT_PATH}', output_path) t = t.replace('{MEMORY}', str(memory_step4)) t = t.replace('{PARTITION}', partitions[
np.random.randint(0,n_part)
numpy.random.randint
import sys, numpy as np import proxmin from functools import partial import logging logging.basicConfig() logger = logging.getLogger("proxmin") logger.setLevel(logging.INFO) # location of true minimum of f dX = np.array([1, 0.5]) def f(X): """Shifted parabola""" return np.sum((X - dX) ** 2, axis=-1) def grad_f(X): return 2 * (X - dX) def step_f(X, it=0): L = 2 slowdown = 0.1 # to see behavior better return slowdown * 1 / L def prox_circle(X, step): """Projection onto circle""" center = np.array([0, 0]) dX = X - center radius = 0.5 phi = np.arctan2(dX[1], dX[0]) return center + radius * np.array([np.cos(phi), np.sin(phi)]) def prox_xline(x, step): """Projection onto line in x""" if not np.isscalar(x): x = x[0] if x > 0.5: return np.array([0.5]) else: return np.array([x]) def prox_yline(y, step): """Projection onto line in y""" if not np.isscalar(y): y = y[0] if y > -0.75: return np.array([-0.75]) else: return np.array([y]) def prox_line(X, step): """2D projection onto 2 lines""" return np.concatenate((prox_xline(X[0], step), prox_yline(X[1], step))) def prox_lim(X, step, boundary=None): """Proximal projection operator""" if boundary == "circle": return prox_circle(X, step) if boundary == "line": return prox_line(X, step) # default: do nothing return X def prox_gradf(X, step): """Gradient step""" return X - step * grad_f(X) def prox_gradf_lim(X, step, boundary=None): """Forward-backward step: gradient, followed by projection""" return prox_lim(prox_gradf(X, step), step, boundary=boundary) def plotResults(trace, label="", boundary=None): import matplotlib.pyplot as plt import matplotlib.patches as patches lims = -2, 2 X = np.dstack( np.meshgrid(
np.linspace(lims[0], lims[1], 1000)
numpy.linspace
""" This module contains the `PostProcessor` class. It contains all advanced postprocessing functionalities that require Python 3.x packages like NumPy and Matplotlib. """ from __future__ import absolute_import import os from .PostProcessor import PostProcessor as Post from ..generic.general_methods import aedt_exception_handler import time import math import warnings try: import numpy as np except ImportError: warnings.warn("The NumPy module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install numpy\n\nRequires CPython.") try: import pyvista as pv pyvista_available = True except ImportError: warnings.warn("The PyVista module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install pyvista\n\nRequires CPython.") try: from IPython.display import Image, display ipython_available = True except ImportError: warnings.warn("The Ipython module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install ipython\n\nRequires CPython.") try: import matplotlib.pyplot as plt except ImportError: warnings.warn("The Matplotlib module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install matplotlib\n\nRequires CPython.") def is_float(istring): """Convert a string to a float. Parameters ---------- istring : str String to convert to a float. Returns ------- float Converted float when successful, ``0`` when when failed. """ try: return float(istring.strip()) except Exception: return 0 class PostProcessor(Post): """Contains advanced postprocessing functionalities that require Python 3.x packages like NumPy and Matplotlib. Parameters ---------- parent : Inherited parent object. """ def __init__(self, parent): Post.__init__(self, parent) @aedt_exception_handler def nb_display(self, show_axis=True, show_grid=True, show_ruler=True): """Show the Jupyter Notebook display. .. note:: Jupyter Notebook is not supported by IronPython. Parameters ---------- show_axis : bool, optional Whether to show the axes. The default is ``True``. show_grid : bool, optional Whether to show the grid. The default is ``True``. show_ruler : bool, optional Whether to show the ruler. The default is ``True``. Returns ------- :class:`IPython.core.display.Image` Jupyter notebook image. """ file_name = self.export_model_picture(show_axis=show_axis, show_grid=show_grid, show_ruler=show_ruler) return Image(file_name, width=500) @aedt_exception_handler def get_efields_data(self, setup_sweep_name='', ff_setup="Infinite Sphere1", freq='All'): """Compute Etheta and EPhi. .. warning:: This method requires NumPy to be installed on your machine. Parameters ---------- setup_sweep_name : str, optional Name of the setup for computing the report. The default is ``""``, in which case the nominal adaptive is applied. ff_setup : str, optional Far field setup. The default is ``"Infinite Sphere1"``. freq : str, optional The default is ``"All"``. Returns ------- np.ndarray numpy array containing ``[theta_range, phi_range, Etheta, Ephi]``. """ if not setup_sweep_name: setup_sweep_name = self._parent.nominal_adaptive results_dict = {} all_sources = self.post_osolution.GetAllSources() # assuming only 1 mode all_sources_with_modes = [s + ':1' for s in all_sources] for n, source in enumerate(all_sources_with_modes): edit_sources_ctxt = [["IncludePortPostProcessing:=", False, "SpecifySystemPower:=", False]] for m, each in enumerate(all_sources_with_modes): if n == m: # set only 1 source to 1W, all the rest to 0 mag = 1 else: mag = 0 phase = 0 edit_sources_ctxt.append( ["Name:=", "{}".format(each), "Magnitude:=", "{}W".format(mag), "Phase:=", "{}deg".format(phase)]) self.post_osolution.EditSources(edit_sources_ctxt) ctxt = ['Context:=', ff_setup] sweeps = ['Theta:=', ['All'], 'Phi:=', ['All'], 'Freq:=', [freq]] trace_name = "rETheta" solnData = self.get_far_field_data(setup_sweep_name=setup_sweep_name, domain=ff_setup, expression=trace_name) data = solnData.nominal_variation theta_vals = np.degrees(np.array(data.GetSweepValues('Theta'))) phi_vals = np.degrees(np.array(data.GetSweepValues('Phi'))) # phi is outer loop theta_unique = np.unique(theta_vals) phi_unique = np.unique(phi_vals) theta_range = np.linspace(np.min(theta_vals), np.max(theta_vals), np.size(theta_unique)) phi_range = np.linspace(np.min(phi_vals), np.max(phi_vals), np.size(phi_unique)) real_theta = np.array(data.GetRealDataValues(trace_name)) imag_theta = np.array(data.GetImagDataValues(trace_name)) trace_name = "rEPhi" solnData = self.get_far_field_data(setup_sweep_name=setup_sweep_name, domain=ff_setup, expression=trace_name) data = solnData.nominal_variation real_phi = np.array(data.GetRealDataValues(trace_name)) imag_phi = np.array(data.GetImagDataValues(trace_name)) Etheta = np.vectorize(complex)(real_theta, imag_theta) Ephi = np.vectorize(complex)(real_phi, imag_phi) source_name_without_mode = source.replace(':1', '') results_dict[source_name_without_mode] = [theta_range, phi_range, Etheta, Ephi] return results_dict @aedt_exception_handler def ff_sum_with_delta_phase(self, ff_data, xphase=0, yphase=0): """Generate a far field sum with a delta phase. Parameters ---------- ff_data : xphase : float, optional Phase in the X-axis direction. The default is ``0``. yphase : float, optional Phase in the Y-axis direction. The default is ``0``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ array_size = [4, 4] loc_offset = 2 rETheta = ff_data[2] rEPhi = ff_data[3] weight = np.zeros((array_size[0], array_size[0])) mag = np.ones((array_size[0], array_size[0])) for m in range(array_size[0]): for n in range(array_size[1]): mag = mag[m][n] ang = np.radians(xphase * m) + np.radians(yphase * n) weight[m][n] = np.sqrt(mag) * np.exp(1 * ang) return True @aedt_exception_handler def _triangle_vertex(self, elements_nodes, num_nodes_per_element, take_all_nodes=True): """ Parameters ---------- elements_nodes : num_nodes_per_element : take_all_nodes : bool, optional The default is ``True``. Returns ------- """ trg_vertex = [] if num_nodes_per_element == 10 and take_all_nodes: for e in elements_nodes: trg_vertex.append([e[0], e[1], e[3]]) trg_vertex.append([e[1], e[2], e[4]]) trg_vertex.append([e[1], e[4], e[3]]) trg_vertex.append([e[3], e[4], e[5]]) trg_vertex.append([e[9], e[6], e[8]]) trg_vertex.append([e[6], e[0], e[3]]) trg_vertex.append([e[6], e[3], e[8]]) trg_vertex.append([e[8], e[3], e[5]]) trg_vertex.append([e[9], e[7], e[8]]) trg_vertex.append([e[7], e[2], e[4]]) trg_vertex.append([e[7], e[4], e[8]]) trg_vertex.append([e[8], e[4], e[5]]) trg_vertex.append([e[9], e[7], e[6]]) trg_vertex.append([e[7], e[2], e[1]]) trg_vertex.append([e[7], e[1], e[6]]) trg_vertex.append([e[6], e[1], e[0]]) elif num_nodes_per_element == 10 and not take_all_nodes: for e in elements_nodes: trg_vertex.append([e[0], e[2], e[5]]) trg_vertex.append([e[9], e[0], e[5]]) trg_vertex.append([e[9], e[2], e[0]]) trg_vertex.append([e[9], e[2], e[5]]) elif num_nodes_per_element == 6 and not take_all_nodes: for e in elements_nodes: trg_vertex.append([e[0], e[2], e[5]]) elif num_nodes_per_element == 6 and take_all_nodes: for e in elements_nodes: trg_vertex.append([e[0], e[1], e[3]]) trg_vertex.append([e[1], e[2], e[4]]) trg_vertex.append([e[1], e[4], e[3]]) trg_vertex.append([e[3], e[4], e[5]]) elif num_nodes_per_element == 4 and take_all_nodes: for e in elements_nodes: trg_vertex.append([e[0], e[1], e[3]]) trg_vertex.append([e[1], e[2], e[3]]) trg_vertex.append([e[0], e[1], e[2]]) trg_vertex.append([e[0], e[2], e[3]]) elif num_nodes_per_element == 3: trg_vertex = elements_nodes return trg_vertex @aedt_exception_handler def _plot_from_aedtplt(self, aedtplt_files=None, imageformat="jpg", view="iso", plot_type="Full", plot_label="Temperature", model_color="#8faf8f", show_model_edge=False, off_screen=False): """Export the 3D field solver mesh, fields, or both mesh and fields as images using Python Plotly. .. note:: This method is currently supported only on Windows using CPython. Parameters ---------- aedtplt_files : str or list, optional Names of the one or more AEDTPLT files generated by AEDT. The default is ``None``. imageformat : str, optional Format of the image file. Options are ``"jpg"``, ``"png"``, ``"svg"``, and ``"webp"``. The default is ``"jpg"``. view : str, optional View to export. Options are ``"iso"``, ``"x"`` , ``"y"``, ``"z"``, and ``"all"``. The default is ``"iso"``. The ``"all"`` option exports all views. plot_type : str, optional Type of the plot. The default is ``"Full"``. plot_label : str, optional Label for the plot. The default is ``"Temperature"``. model_color : str, optional Color scheme for the 3D model. The default is ``"#8faf8f"``, which is silver. show_model_edge : bool, optional Whether to return a list of the files that are generated. The default is ``False``. off_screen : bool, optional The default is ``False``. Returns ------- list List of exported files. """ start = time.time() if type(aedtplt_files) is str: aedtplt_files = [aedtplt_files] plot = pv.Plotter(off_screen=off_screen) if not off_screen: plot.enable_anti_aliasing() plot.enable_fly_to_right_click() lines = [] for file in aedtplt_files: if ".aedtplt" in file: with open(file, "r") as f: drawing_found = False for line in f: if "$begin Drawing" in line: drawing_found = True l_tmp = [] continue if "$end Drawing" in line: lines.append(l_tmp) drawing_found = False continue if drawing_found: l_tmp.append(line) continue if "Number of drawing:" in line: n_drawings = int(line[18:]) continue elif ".obj" in file: mesh = pv.read(file) def create_object_mesh(opacity): """Create the mesh. Parameters ---------- opacity : Returns ------- """ try: plot.remove_actor("Volumes") except: pass plot.add_mesh(mesh, show_scalar_bar=False, opacity=opacity, cmap=[model_color], name="3D Model", show_edges=show_model_edge, edge_color=model_color) plot.add_slider_widget(create_object_mesh, [0, 1], style='modern', value=0.75, pointa=[0.81, 0.98], pointb=[0.95, 0.98], title="Opacity") filename = os.path.splitext(aedtplt_files[0])[0] print(filename) for drawing_lines in lines: bounding = [] elements = [] nodes_list = [] solution = [] for l in drawing_lines: if "BoundingBox(" in l: bounding = l[l.find("(") + 1:-2].split(",") bounding = [i.strip() for i in bounding] if "Elements(" in l: elements = l[l.find("(") + 1:-2].split(",") elements = [int(i.strip()) for i in elements] if "Nodes(" in l: nodes_list = l[l.find("(") + 1:-2].split(",") nodes_list = [float(i.strip()) for i in nodes_list] if "ElemSolution(" in l: # convert list of strings to list of floats sols = l[l.find("(") + 1:-2].split(",") sols = [is_float(value) for value in sols] # sols = [float(i.strip()) for i in sols] num_solution_per_element = int(sols[2]) sols = sols[3:] sols = [sols[i:i + num_solution_per_element] for i in range(0, len(sols), num_solution_per_element)] solution = [sum(i) / num_solution_per_element for i in sols] nodes = [[nodes_list[i], nodes_list[i + 1], nodes_list[i + 2]] for i in range(0, len(nodes_list), 3)] num_nodes = elements[0] num_elements = elements[1] elements = elements[2:] element_type = elements[0] num_nodes_per_element = elements[4] hl = 5 # header length elements_nodes = [] for i in range(0, len(elements), num_nodes_per_element + hl): elements_nodes.append([elements[i + hl + n] for n in range(num_nodes_per_element)]) if solution: take_all_nodes = True # solution case else: take_all_nodes = False # mesh case trg_vertex = self._triangle_vertex(elements_nodes, num_nodes_per_element, take_all_nodes) # remove duplicates nodup_list = [list(i) for i in list(set([frozenset(t) for t in trg_vertex]))] sols_vertex = [] if solution: sv = {} for els, s in zip(elements_nodes, solution): for el in els: if el in sv: sv[el] = (sv[el] + s) / 2 else: sv[el] = s sols_vertex = [sv[v] for v in sorted(sv.keys())] array = [[3] + [j - 1 for j in i] for i in nodup_list] faces = np.hstack(array) vertices = np.array(nodes) surf = pv.PolyData(vertices, faces) if sols_vertex: temps = np.array(sols_vertex) mean = np.mean(temps) std = np.std(temps) if np.min(temps) > 0: log = True else: log = False surf.point_arrays[plot_label] = temps sargs = dict(title_font_size=10, label_font_size=10, shadow=True, n_labels=9, italic=True, fmt="%.1f", font_family="arial") if plot_type == "Clip": plot.add_text("Full Plot", font_size=15) if solution: class MyCustomRoutine(): """ """ def __init__(self, mesh): self.output = mesh # Expected PyVista mesh type # default parameters self.kwargs = { 'min_val': 0.5, 'max_val': 30, } def __call__(self, param, value): self.kwargs[param] = value self.update() def update(self): """ """ # This is where you call your simulation try: plot.remove_actor("FieldPlot") except: pass plot.add_mesh(surf, scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', show_edges=False, clim=[self.kwargs['min_val'], self.kwargs['max_val']], pickable=True, smooth_shading=True, name="FieldPlot") return engine = MyCustomRoutine(surf) plot.add_box_widget(surf, show_edges=False, scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', pickable=True, smooth_shading=True, name="FieldPlot") plot.add_slider_widget(callback=lambda value: engine('min_val', value), rng=[np.min(temps), np.max(temps)], title='Lower', style='modern', value=np.min(temps), pointa=(.5, .98), pointb=(.65, .98)) plot.add_slider_widget(callback=lambda value: engine('max_val', value), rng=[np.min(temps), np.max(temps)], title='Upper', style='modern', value=np.max(temps), pointa=(.66, .98), pointb=(.8, .98)) else: plot.add_box_widget(surf, show_edges=True, line_width=0.1, color="grey", pickable=True, smooth_shading=True) else: plot.add_text("Full Plot", font_size=15) if solution: class MyCustomRoutine(): """ """ def __init__(self, mesh): self.output = mesh # Expected PyVista mesh type # default parameters self.kwargs = { 'min_val': 0.5, 'max_val': 30, } def __call__(self, param, value): self.kwargs[param] = value self.update() def update(self): """ """ # This is where you call your simulation try: plot.remove_actor("FieldPlot") except: pass plot.add_mesh(surf, scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', show_edges=False, clim=[self.kwargs['min_val'], self.kwargs['max_val']], pickable=True, smooth_shading=True, name="FieldPlot") return engine = MyCustomRoutine(surf) plot.add_mesh(surf, show_edges=False, scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', pickable=True, smooth_shading=True, name="FieldPlot") plot.add_slider_widget(callback=lambda value: engine('min_val', value), rng=[np.min(temps), np.max(temps)], title='Lower', style='modern', value=np.min(temps), pointa=(.5, .98), pointb=(.65, .98)) plot.add_slider_widget(callback=lambda value: engine('max_val', value), rng=[np.min(temps), np.max(temps)], title='Upper', style='modern', value=np.max(temps), pointa=(.66, .98), pointb=(.8, .98)) else: plot.add_mesh(surf, show_edges=True, line_width=0.1, color="grey", pickable=True, smooth_shading=True) plot.show_axes() plot.show_grid() if view == "iso": plot.view_isometric() elif view == "x": plot.view_yz() elif view == "y": plot.view_xz() elif view == "z": plot.view_xy() files_list = [] if plot: end = time.time() - start self._messenger.add_info_message("PyVista plot generation took {} seconds.".format(end)) if off_screen: if imageformat: plot.show(screenshot=filename + "." + imageformat) files_list.append(filename + "." + imageformat) else: plot.show() else: def show(screen=None, interactive=True): """ Parameters ---------- screen : optional The default is ``None``. interactive : bool, optional The default is ``True``. Returns ------- """ if screen: plot.show(screenshot=screen, interactive=interactive, full_screen=True) else: plot.show(interactive=interactive) if imageformat: show(filename + "." + imageformat, True) files_list.append(filename + "." + imageformat) else: show(filename + "." + imageformat, False) for f in aedtplt_files: os.remove(os.path.join(f)) return files_list @aedt_exception_handler def _animation_from_aedtflt(self, aedtplt_files=None, variation_var="Time", variation_list=[], plot_label="Temperature", model_color="#8faf8f", export_gif=False, off_screen=False): """Export the 3D field solver mesh, fields, or both mesh and fields as images using Python Plotly. .. note:: This method is currently supported only on Windows using CPython. Parameters ---------- aedtplt_files : str or list, optional Names of the one or more AEDTPLT files generated by AEDT. The default is ``None``. variation_var : str, optional Variable to vary. The default is ``"Time"``. variation_list : list, optional List of variation values. The default is ``[]``. plot_label : str, optional Label for the plot. The default is ``"Temperature"``. model_color : str, optional Color scheme for the 3D model. The default is ``"#8faf8f"``, which is silver. export_gif : bool, optional Whether to export the animation as a GIF file. The default is ``False``. off_screen : bool, optional The default is ``False``. Returns ------- str Name of the GIF file. """ frame_per_seconds = 0.5 start = time.time() if type(aedtplt_files) is str: aedtplt_files = [aedtplt_files] plot = pv.Plotter(notebook=False, off_screen=off_screen) if not off_screen: plot.enable_anti_aliasing() plot.enable_fly_to_right_click() lines = [] for file in aedtplt_files: if ".aedtplt" in file: with open(file, "r") as f: drawing_found = False for line in f: if "$begin Drawing" in line: drawing_found = True l_tmp = [] continue if "$end Drawing" in line: lines.append(l_tmp) drawing_found = False continue if drawing_found: l_tmp.append(line) continue if "Number of drawing:" in line: n_drawings = int(line[18:]) continue elif ".obj" in file: mesh = pv.read(file) plot.add_mesh(mesh, show_scalar_bar=False, opacity=0.75, cmap=[model_color], name="3D Model", show_edges=False, edge_color=model_color) # def create_object_mesh(opacity): # try: # p.remove_actor("Volumes") # except: # pass # p.add_mesh(mesh, show_scalar_bar=False, opacity=opacity, cmap=[model_color], name="3D Model", # show_edges=False, edge_color=model_color) # p.add_slider_widget(create_object_mesh, [0,1], style='modern', value=0.75,pointa=[0.81,0.98], pointb=[0.95,0.98],title="Opacity") filename = os.path.splitext(aedtplt_files[0])[0] print(filename) surfs=[] log = False mins=1e12 maxs=-1e12 log = True for drawing_lines in lines: bounding = [] elements = [] nodes_list = [] solution = [] for l in drawing_lines: if "BoundingBox(" in l: bounding = l[l.find("(") + 1:-2].split(",") bounding = [i.strip() for i in bounding] if "Elements(" in l: elements = l[l.find("(") + 1:-2].split(",") elements = [int(i.strip()) for i in elements] if "Nodes(" in l: nodes_list = l[l.find("(") + 1:-2].split(",") nodes_list = [float(i.strip()) for i in nodes_list] if "ElemSolution(" in l: # convert list of strings to list of floats sols = l[l.find("(") + 1:-2].split(",") sols = [is_float(value) for value in sols] num_solution_per_element = int(sols[2]) sols = sols[3:] sols = [sols[i:i + num_solution_per_element] for i in range(0, len(sols), num_solution_per_element)] solution = [sum(i) / num_solution_per_element for i in sols] nodes = [[nodes_list[i], nodes_list[i + 1], nodes_list[i + 2]] for i in range(0, len(nodes_list), 3)] num_nodes = elements[0] num_elements = elements[1] elements = elements[2:] element_type = elements[0] num_nodes_per_element = elements[4] hl = 5 # header length elements_nodes = [] for i in range(0, len(elements), num_nodes_per_element + hl): elements_nodes.append([elements[i + hl + n] for n in range(num_nodes_per_element)]) if solution: take_all_nodes = True # solution case else: take_all_nodes = False # mesh case trg_vertex = self._triangle_vertex(elements_nodes, num_nodes_per_element, take_all_nodes) # remove duplicates nodup_list = [list(i) for i in list(set([frozenset(t) for t in trg_vertex]))] sols_vertex = [] if solution: sv = {} for els, s in zip(elements_nodes, solution): for el in els: if el in sv: sv[el] = (sv[el] + s) / 2 else: sv[el] = s sols_vertex = [sv[v] for v in sorted(sv.keys())] array = [[3] + [j - 1 for j in i] for i in nodup_list] faces = np.hstack(array) vertices = np.array(nodes) surf = pv.PolyData(vertices, faces) if sols_vertex: temps = np.array(sols_vertex) mean = np.mean(temps) std = np.std(temps) if np.min(temps) <=0: log = False surf.point_arrays[plot_label] = temps if solution: surfs.append(surf) if np.min(temps)<mins: mins=np.min(temps) if np.max(temps) > maxs: maxs = np.max(temps) self._animating = True gifname=None if export_gif: gifname= os.path.splitext(aedtplt_files[0])[0]+".gif" plot.open_gif(gifname) def q_callback(): """exit when user wants to leave""" self._animating = False self._pause=False def p_callback(): """exit when user wants to leave""" self._pause = not self._pause plot.add_text('Press p for Play/Pause, Press q to exit ', font_size=8, position='upper_left') plot.add_text(' ', font_size=10, position=[0, 0]) plot.add_key_event("q", q_callback) plot.add_key_event("p", p_callback) # run until q is pressed plot.show_axes() plot.show_grid() cpos = plot.show(interactive=False, auto_close=False, interactive_update=not off_screen) sargs = dict(title_font_size=10, label_font_size=10, shadow=True, n_labels=9, italic=True, fmt="%.1f", font_family="arial") plot.add_mesh(surfs[0], scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', clim=[mins, maxs], show_edges=False, pickable=True, smooth_shading=True, name="FieldPlot") plot.isometric_view() start = time.time() plot.update(1, force_redraw=True) first_loop = True if export_gif: first_loop = True plot.write_frame() else: first_loop = False i=1 while self._animating: if self._pause: time.sleep(1) plot.update(1, force_redraw=True) continue #p.remove_actor("FieldPlot") if i >= len(surfs): if off_screen: break i=0 first_loop = False scalars = surfs[i].point_arrays[plot_label] plot.update_scalars(scalars, render=False) # p.add_mesh(surfs[i], scalars=plot_label, log_scale=log, scalar_bar_args=sargs, cmap='rainbow', # show_edges=False, pickable=True, smooth_shading=True, name="FieldPlot") plot.textActor.SetInput(variation_var + " = " + variation_list[i]) if not hasattr(plot, 'ren_win'): break #p.update(1, force_redraw=True) time.sleep(max(0, frame_per_seconds - (time.time() - start))) start = time.time() if off_screen: plot.render() else: plot.update(1, force_redraw=True) if first_loop: plot.write_frame() time.sleep(0.2) i+=1 plot.close() for el in aedtplt_files: os.remove(el) return gifname @aedt_exception_handler def export_model_obj(self): """Export the model.""" assert self._parent._aedt_version >= "2021.2", self._messenger.add_error_message("Object is supported from AEDT 2021 R2.") project_path = self._parent.project_path obj_list = self._parent.modeler.primitives.object_names obj_list = [i for i in obj_list if not self._parent.modeler.primitives.objects[ self._parent.modeler.primitives.get_obj_id(i)].is3d or ( self._parent.modeler.primitives.objects[ self._parent.modeler.primitives.get_obj_id(i)].material_name.lower() != "vacuum" and self._parent.modeler.primitives.objects[ self._parent.modeler.primitives.get_obj_id(i)].material_name.lower() != "air")] self._parent.modeler.oeditor.ExportModelMeshToFile(os.path.join(project_path, "Model.obj"), obj_list) return os.path.join(project_path, "Model.obj") @aedt_exception_handler def export_mesh_obj(self, setup_name=None, intrinsic_dict={}): """Export the mesh. Parameters ---------- setup_name : str, optional Name of the setup. The default is ``None``. intrinsic_dict : dict, optipnal. Intrinsic dictionary that is needed for the export. The default is ``{}``. Returns ------- """ project_path = self._parent.project_path if not setup_name: setup_name = self._parent.nominal_adaptive face_lists = [] obj_list = self._parent.modeler.primitives.object_names for el in obj_list: obj_id = self._parent.modeler.primitives.get_obj_id(el) if not self._parent.modeler.primitives.objects[obj_id].is3d or ( self._parent.modeler.primitives.objects[obj_id].material_name != "vacuum" and self._parent.modeler.primitives.objects[obj_id].material_name != "air"): face_lists += self._parent.modeler.primitives.get_object_faces(obj_id) plot = self.create_fieldplot_surface(face_lists, "Mesh", setup_name, intrinsic_dict) if plot: file_to_add = self.export_field_plot(plot.name, project_path) plot.delete() return file_to_add return None @aedt_exception_handler def plot_model_obj(self, export_afterplot=True, jupyter=False): """Plot the model. Parameters ---------- export_afterplot : bool, optional Whether to export the plot after it is generated. The default is ``True``. jupyter : bool, optional Whether to generate the plot using Jupyter Notebook. The default is ``False``. Returns ------- list List of plot files. """ assert self._parent._aedt_version >= "2021.2", self._messenger.add_error_message("Object is supported from AEDT 2021 R2.") files = [self.export_model_obj()] if export_afterplot: imageformat='jpg' else: imageformat=None file_list = self._plot_from_aedtplt(files, imageformat=imageformat, plot_label="3D Model", model_color="#8faf8f", show_model_edge=False, jupyter=jupyter) return file_list @aedt_exception_handler def plot_field_from_fieldplot(self, plotname, project_path="", meshplot=False, setup_name=None, intrinsic_dict={}, imageformat="jpg", view="iso", plot_label="Temperature", plot_folder=None, off_screen=False): """Export a field plot to an image file (JPG or PNG) using Python Plotly. .. note:: The Plotly module rebuilds the mesh and the overlap fields on the mesh. Parameters ---------- plotname : str Name of the field plot to export. project_path : str, optional Path for saving the image file. The default is ``""``. meshplot : bool, optional Whether to create and plot the mesh over the fields. The default is ``False``. setup_name : str, optional Name of the setup or sweep to use for the export. The default is ``None``. intrinsic_dict : dict, optional Intrinsic dictionary that is needed for the export when ``meshplot="True"``. The default is ``{}``. imageformat : str, optional Format of the image file. Options are ``"jpg"``, ``"png"``, ``"svg"``, and ``"webp"``. The default is ``"jpg"``. view : str, optional View to export. Options are ``"iso"``, ``"x"`` , ``"y"``, ``"z"``, and ``"all"``. The default is ``"iso"``. If ``"all"``, all views are exported. plot_label : str, optional Type of the plot. The default is ``"Temperature"``. plot_folder : str, optional Plot folder to update before exporting the field. The default is ``None``, in which case all plot folders are updated. Returns ------- type List of exported files. """ if not plot_folder: self.ofieldsreporter.UpdateAllFieldsPlots() else: self.ofieldsreporter.UpdateQuantityFieldsPlots(plot_folder) start = time.time() files_to_add = [] if not project_path: project_path = self._parent.project_path file_to_add = self.export_field_plot(plotname, project_path) file_list=None if not file_to_add: return False else: files_to_add.append(file_to_add) if meshplot: if self._parent._aedt_version >= "2021.2": files_to_add.append(self.export_model_obj()) else: file_to_add = self.export_mesh_obj(setup_name, intrinsic_dict) if file_to_add: files_to_add.append(file_to_add) file_list = self._plot_from_aedtplt(files_to_add, imageformat=imageformat, view=view, plot_label=plot_label, off_screen=off_screen) endt = time.time() - start print("Field Generation, export and plot time: ", endt) return file_list @aedt_exception_handler def animate_fields_from_aedtplt(self, plotname, plot_folder=None, meshplot=False, setup_name=None, intrinsic_dict={}, variation_variable="Phi", variation_list=['0deg'], project_path="", export_gif=False, off_screen=False): """Generate a field plot to an image file (JPG or PNG) using PyVista. .. note:: The PyVista module rebuilds the mesh and the overlap fields on the mesh. Parameters ---------- plotname : str Name of the plot or the name of the object. plot_folder : str, optional Name of the folder in which the plot resides. The default is ``None``. setup_name : str, optional Name of the setup (sweep) to use for the export. The default is ``None``. intrinsic_dict : dict, optional Intrinsic dictionary that is needed for the export. The default is ``{}``. variation_variable : str, optional Variable to vary. The default is ``"Phi"``. variation_list : list, optional List of variation values with units. The default is ``["0deg"]``. project_path : str, optional Path for the export. The default is ``""``. meshplot : bool, optional The default is ``False``. export_gif : bool, optional The default is ``False``. off_screen : bool, optional Generate the animation without showing an interactive plot. The default is ``False``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ if not plot_folder: self.ofieldsreporter.UpdateAllFieldsPlots() else: self.ofieldsreporter.UpdateQuantityFieldsPlots(plot_folder) files_to_add = [] if meshplot: if self._parent._aedt_version >= "2021.2": files_to_add.append(self.export_model_obj()) else: file_to_add = self.export_mesh_obj(setup_name, intrinsic_dict) if file_to_add: files_to_add.append(file_to_add) for el in variation_list: self._parent.odesign.ChangeProperty( [ "NAME:AllTabs", [ "NAME:FieldsPostProcessorTab", [ "NAME:PropServers", "FieldsReporter:"+plotname ], [ "NAME:ChangedProps", [ "NAME:"+variation_variable, "Value:=" , el ] ] ] ]) files_to_add.append(self.export_field_plot(plotname, project_path,plotname+variation_variable+str(el))) self._animation_from_aedtflt(files_to_add, variation_variable, variation_list, export_gif=export_gif, off_screen=off_screen) return True @aedt_exception_handler def animate_fields_from_aedtplt_2(self, quantityname, object_list, plottype, meshplot=False, setup_name=None, intrinsic_dict={}, variation_variable="Phi", variation_list=['0deg'], project_path="", export_gif=False, off_screen=False): """Generate a field plot to an image file (JPG or PNG) using PyVista. .. note:: The PyVista module rebuilds the mesh and the overlap fields on the mesh. This method creates the plot and exports it. It is an alternative to the method :func:`animate_fields_from_aedtplt`, which uses an existing plot. Parameters ---------- quantityname : str Name of the plot or the name of the object. object_list : list, optional Name of the ``folderplot`` folder. plottype : str Type of the plot. Options are ``"Surface"``, ``"Volume"``, and ``"CutPlane"``. meshplot : bool, optional The default is ``False``. setup_name : str, optional Name of the setup (sweep) to use for the export. The default is ``None``. intrinsic_dict : dict, optional Intrinsic dictionary that is needed for the export. The default is ``{}``. variation_variable : str, optional Variable to vary. The default is ``"Phi"``. variation_list : list, option List of variation values with units. The default is ``["0deg"]``. project_path : str, optional Path for the export. The default is ``""``. export_gif : bool, optional Whether to export to a GIF file. The default is ``False``, in which case the plot is exported to a JPG file. off_screen : bool, optional The default is ``False``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ if not project_path: project_path = self._parent.project_path files_to_add = [] if meshplot: if self._parent._aedt_version >= "2021.2": files_to_add.append(self.export_model_obj()) else: file_to_add = self.export_mesh_obj(setup_name, intrinsic_dict) if file_to_add: files_to_add.append(file_to_add) v = 0 for el in variation_list: intrinsic_dict[variation_variable] = el if plottype == "Surface": plotf = self.create_fieldplot_surface(object_list, quantityname, setup_name, intrinsic_dict) elif plottype == "Volume": plotf = self.create_fieldplot_volume(object_list, quantityname, setup_name, intrinsic_dict) else: plotf = self.create_fieldplot_cutplane(object_list, quantityname, setup_name, intrinsic_dict) if plotf: file_to_add = self.export_field_plot(plotf.name, project_path, plotf.name + str(v)) if file_to_add: files_to_add.append(file_to_add) plotf.delete() v += 1 return self._animation_from_aedtflt(files_to_add, variation_variable, variation_list, export_gif=export_gif, off_screen=off_screen) @aedt_exception_handler def far_field_plot(self, ff_data, x=0, y=0, qty='rETotal', dB=True, array_size=[4, 4]): """Generate a far field plot. Parameters ---------- ff_data : x : float, optional The default is ``0``. y : float, optional The default is ``0``. qty : str, optional The default is ``"rETotal"``. dB : bool, optional The default is ``True``. array_size : list List for the array size. The default is ``[4, 4]``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ loc_offset = 2 # if array index is not starting at [1,1] xphase = float(y) yphase = float(x) array_shape = (array_size[0], array_size[1]) weight = np.zeros(array_shape, dtype=complex) mag = np.ones(array_shape, dtype='object') port_names_arranged = np.chararray(array_shape) all_ports = ff_data.keys() w_dict = {} # calculate weights based off of progressive phase shift port_name = [] for m in range(array_shape[0]): for n in range(array_shape[1]): mag_val = mag[m][n] ang = np.radians(xphase * m) + np.radians(yphase * n) weight[m][n] = np.sqrt(mag_val) * np.exp(1j * ang) current_index_str = '[' + str(m + 1 + loc_offset) + ',' + str(n + 1 + loc_offset) + ']' port_name = [y for y in all_ports if current_index_str in y] w_dict[port_name[0]] = weight[m][n] length_of_ff_data = len(ff_data[port_name[0]][2]) array_shape = (len(w_dict), length_of_ff_data) rEtheta_fields = np.zeros(array_shape, dtype=complex) rEphi_fields =
np.zeros(array_shape, dtype=complex)
numpy.zeros
""" The LT box contains an assortment of plotting, histogramming and fitting routines used for data analysis. The plotting routines have been imported from the :ref:`plotting` module and the fitting routines have been imported from the :ref:`LT_Fit`. For detailed information about these functions check the :ref:`plotting` and the the :ref:`LT_Fit` documentation. Normally all you should need to do is import the `box`_ and you have a *box of tools*. Example:: >>> import LT.box as B ------------------------------------------- Imported functions: From LT.plotting: * :meth:`~LT.plotting.plot_exp`: plot experimental data points with or without error bar * :meth:`~LT.plotting.plot_line`: plot a line through a set of data points * :meth:`~LT.plotting.plot_spline`: plot a spline curve through a set of data points * dplot_exp: (:meth:`~LT.plotting.datafile_plot_exp`) is like plot_exp but accesses the datafile variables directly via their names * dplot_line: (:meth:`~LT.plotting.datafile_plot_theory`) like plot_line for datafile variables * dplot_spline: (:meth:`~LT.plotting.datafile_spline_plot_theory`) like plot_spline for datafiles variables From LT_Fit: * :class:`~LT_Fit.linear_fit.linefit`: fit a straight line through a set of data points * :class:`~LT_Fit.linear_fit.polyfit`: fit a polynomial * :class:`~LT_Fit.linear_fit.gen_linfit`: general linear fit * :class:`~LT_Fit.gen_fit.genfit`: general, non-linear fit ------------------------------------------- """ import numpy as np import matplotlib.pyplot as pl from matplotlib.colors import LogNorm from matplotlib import ticker import copy import LT # include the version with parameters from .pdatafile import pdfile from .plotting import plot_exp from .plotting import plot_line from .plotting import plot_spline from .plotting import datafile_plot_exp as dplot_exp from .plotting import datafile_plot_theory as dplot_line from .plotting import datafile_spline_plot_theory as dplot_spline from LT_Fit.linear_fit import linefit from LT_Fit.linear_fit import polyfit from LT_Fit.linear_fit import gen_linfit from LT_Fit.parameters import * # general fitting from LT_Fit.gen_fit import genfit # this is done for general linear fitting # for MCA spectra from . import MCA as mcsp def get_file(file, **kwargs): """ Assume that B is the name of LT.box. Open and read the file:: >>> md = B.get_file( 'file.data' ) """ return pdfile(file, **kwargs) def get_data(D, var): """ Assume that B is the name of LT.box. Get all the values of variable 'my_var' as a :func:`numpy.array`:: >>> mv = B.get_data(md, 'my_var') """ return np.array(D.get_data(var)) # window cuts def in_between(xmin, xmax, val): """ return a selection of the values in val that satisfy: xmin <= val <= xmax Returns ------- numpy array of True and False """ return (xmin <= val) & (val <= xmax) # select data within a window def select_data(xmin, a, xmax): """ Assume that B is the name of LT.box. Find which values of an array A lie between 0.8 and 1.2 >>> iw = B.select_data( 0.8, A, 1.2) iw now is an array of indices, A[iw] is an array with values between 0.8 and 1.2 in general: B.select_data(xmin, a, xmax) """ return np.where( in_between(xmin, xmax, a) ) # Determine if a point is inside a given polygon or not # Polygon is a list of (x,y) pairs. This function # returns True or False. The algorithm is called # the "Ray Casting Method". # # here the rays are cast horizontally to the right (toward positive x) def point_in_poly(x,y,poly): """ x, y coordinates of a point to test if it lies inside a polygon given by a list of (xv, yv) vertices returns True if inside """ n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] # cycles to all possible values # is y larger than any of the two min. y-values ? if y > min(p1y,p2y): # if so is y smaller than any of the two max. y-values if y <= max(p1y,p2y): # there is a potential that the point is inside if x <= max(p1x,p2x): if p1y != p2y: # point not on a vertex calculate intersection with a horizontal line at y xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xints: inside = not inside # print ' i, p1x, p1y, p2x, p2y, x, y ', i, p1x, p1y, p2x, p2y, x, y, inside p1x,p1y = p2x,p2y return inside def array_point_in_poly(r,poly): """ r arrays of points; array with shape (N,s), where N is the number of points poly an array of vertices for the polygon with the shape (M,2), M number of polygon vertices return a list of logical values indicating if the point is inside or outside the poly. """ inside = [] for rr in r: inside.append( point_in_poly(rr[0], rr[1], poly) ) return np.array(inside) ## Test # polygon = [(-5,5),(5,5),(5,-5),(-5,-5)] # point_x = -4 # point_y = -3 ## Call the function with the points and the polygon # print point_in_poly(point_x,point_y,polygon) # histogram class exception class histoError(Exception): def __init__(self, comment, value): self.comment = comment self.value = value def __str__(self): return self.comment + repr(self.value) # 1d -histogram class # # fitting of a gaussian on a quadratic back ground is built in # class histo: """ Define a histogram based on the np.histogram class. The various ways of defining one are: * If *a* is a 1D ( :func:`numpy.array`) containing the data to be histogrammed >>> h = histo( a ) * If *his* is the output of the :func:`numpy.histogram` function >>> h = histo(histogram = his) * If ``bc`` is a 1D array with bin center values, and ``bcont`` contains bin content values then: >>> h = histo(bin_center = bc, bin_content = bcont) * A filename for a stored histogram is given >>> h = histo(filename), where filename contains the pdatafile Usually the result of a histo.save operation Important keywords: ============ ===================================================== Keyword Meaning ============ ===================================================== values Array of values to be histogrammed (:func:`numpy.array`) range Lower and upper limits of binning ( e.g. ``range = (10.,20.)`` ) bins Number of bins histogram Result of :func:`numpy.histogram` function bin_error Array of errors for each bin content (:func:`numpy.array`) bin_center Array of bin-center values (:func:`numpy.array`) bin_content Array of bin-content values (:func:`numpy.array`) file Load data from file window Set a window (a zoom window) title Set the title xlabel Set the x-label ylabel Set the y-label ============ ===================================================== Additional keyword arguments are passed to the :func:`numpy.histogram` function """ def __init__(self,\ values = None, \ range = None, \ bins = None, \ histogram = None, \ bin_error = None, \ bin_center = None, \ bin_content = None, \ file = None, \ window = None, \ title = 'my histogram', \ xlabel = 'x-bin', \ ylabel = 'content', \ **kwargs): self.res = None self.fit_dict = {} # initialize fitting self.b0 = Parameter(0., 'b0') self.b1 = Parameter(0., 'b1') self.b2 = Parameter(0., 'b2') self.mean = Parameter(1.,'mean') self.sigma = Parameter(1., 'sigma') self.A = Parameter(1., 'A') # create a dictionary for vairable fitting self.fit_par = { "b0" : self.b0, \ "b1" : self.b1, \ "b2" : self.b2, \ "mean" : self.mean, \ "sigma": self.sigma, \ "A" : self.A} # setup fitting list self.set_fit_list() self.window_set = False if values is not None: # values have been given for filling if (range is None) and (bins is None): self.fill(values, **kwargs) elif (range is not None) and (bins is None): self.fill(values, range = range, **kwargs) elif (range is None) and (bins is not None): self.fill(values, bins = bins, **kwargs) else: self.fill(values, bins = bins, range = range, **kwargs) elif file is not None: # create from file self.load(file) return elif histogram is not None: # the output of the numpy histogram function has been given self.res = histogram elif (bin_center is not None) and (bin_content is not None): # the histogram content is given direectly self.bin_center = np.copy(bin_center) self.bin_content = np.copy(bin_content) self.bin_width = np.diff(self.bin_center)[0] self.__get_histogram() self.title = title self.xlabel = xlabel self.ylabel = ylabel self.__setup_bins(error = bin_error) self.nbins = self.bin_center.shape[0] if window is None: self.clear_window() else: self.set_window( xmin = window[0], xmax = window[1]) def save_index(self, i): # make sure i is always within the allowed range return min(len(self.bin_content)-1, i) def fill(self, y, add = False, **kwargs): """ Fill the histogram with the values stored in the :func:`numpy.array` y. ============ ===================================================== Keyword Meaning ============ ===================================================== add if True add the results to the existing content ============ ===================================================== Additional keyword arguments are passed to the :func:`numpy.histogram` function """ if not add: # a new filling try: self.res = np.histogram(y, new = None, **kwargs) except: self.res = np.histogram(y, **kwargs) self.__setup_bins(error = None) else: # the bins have already been defined continue # to accumulate statistics if self.res is None: print("no binning information: try fill with add = False ") return try: res = np.histogram(y, new = True, bins = self.res[1], **kwargs) except: res = np.histogram(y, bins = self.res[1], **kwargs) # add the new bin content to the old one self.res = (self.res[0] + res[0], self.res[1]) # update the histogram information self.__setup_bins(error = None) # end of fill def clear(self): """ Set the content and errors to 0. """ self.bin_content = np.zeros_like(self.bin_content) self.bin_error = np.zeros_like(self.bin_content) self.res = (np.zeros_like(self.res[0]), self.res[1]) self.__prepare_histo_plot() def sum(self, xmin = None, xmax = None): """ Return the sum of all bins. If the limits are given, calculate the sum of all bins between the bins that contain the values xmin and xmax. Example:: >>> s0 = h.sum() # add all bins >>> s1 = h.sum(0.5, 1.1) # add the bins between 0.5 and 1.1 >>> s2 = h.sum(xmin = 0.5, xmax = 1.1) # add the bins between 0.5 and 1.1 ============ ===================================================== Keyword Meaning ============ ===================================================== xmin lower limit of sum of bin content xmax upper limit of sum ============ ===================================================== The errors are also calculated. """ if (xmin is None) and (xmax is None): sum = self.bin_content.sum() sum_err = np.sqrt( (self.bin_error**2).sum()) elif (xmin is None): sel = (self.bin_center <= xmax) sum = self.bin_content[sel].sum() sum_err = np.sqrt( (self.bin_error[sel]**2).sum()) elif (xmax is None): sel = (xmin <= self.bin_center) sum = (self.bin_content[sel]).sum() sum_err = np.sqrt( (self.bin_error[sel]**2).sum()) else: sel = (xmin <= self.bin_center) & (self.bin_center <= xmax) sum = (self.bin_content[sel]).sum() sum_err = np.sqrt( (self.bin_error[sel]**2).sum()) return (sum, sum_err) def copy(self): """ Create a copy of the histogram:: >>>hc = h.copy() Only the histogram values are copied, no lables and titles etc. """ res = (np.copy(self.res[0]), np.copy(self.res[1]) ) err = np.copy( self.bin_error ) return histo(histogram = res, bin_error = err) def rebin(self, n, scale = False, use_mean = False, replace = False): """ rebin the histogram by a factor n:: >>>hc = h.rebin(2) ============ ===================================================== Keyword Meaning ============ ===================================================== scale True: the original bin number is not a multiple of n and the last bin content will be scaled use_mean True: the new bin content is the mean of the bin_content replace True: replace the current histogram with the rebinned version ============ ===================================================== """ n_bins = self.bin_center.shape[0] divisible = (np.mod(n_bins, n) != 0) # change bin content bco_sl, bco_mean_sl, sl, fact_sl = self._rebin_array(self.bin_content, n) be2_sl, mean_sl, sl, fact_sl = self._rebin_array(self.bin_error**2, n) sum_sl, bc_sl, sl, fact_sl = self._rebin_array(self.bin_center, n) # adjust the bin center of last bin if necessary if not divisible: bc_sl[-1] = bc_sl[-2]+ np.diff(bc_sl)[0] if scale: bco_sl *= fact_sl # store new histogram parameters and update histogram if not use_mean: bin_content = bco_sl bin_error = np.sqrt(be2_sl) else: bin_content = bco_mean_sl s_i, n_p = self._sl_indices(sl, n_bins) # n_p number of points per slice b_e = np.sqrt(be2_sl)/np.array(n_p) bin_error = b_e bin_center = bc_sl if replace: self.bin_content = np.copy(bin_content) self.bin_error = np.copy(bin_error) self.bin_center = np.copy(bin_center) self.__get_histogram() # prepare for plotting self.__prepare_histo_plot() else: # return a new histogram hn = self.__new_histogram(bin_content, bin_center, bin_error) hn.xlabel = self.xlabel hn.ylabel = self.ylabel hn.title = self.title return hn def plot(self,filled = 'True', ymin = 0., axes = None, ignore_zeros = False, **kwargs): """ Plot the histogram content: ============ ===================================================== Keyword Meaning ============ ===================================================== filled if True draw a filled histogram ymin lower limit where fill starts (horizontal line) ignore_zeros do not plot channels with bin content 0 (default = False) ============ ===================================================== """ if axes is None: axes = pl.gca() if ymin is None: ymin = self.cont_min # prepare histo plot if axes have changed self.__prepare_histo_plot() if filled : xx = self.xpl yy = self.ypl if ignore_zeros: sel = yy != 0. else: sel = np.ones_like(yy).astype('bool') axes.fill_between( xx[sel], yy[sel], y2=ymin, **kwargs) else: xx = np.concatenate([self.xpl[:1], self.xpl, self.xpl[-1:]]) yy = np.concatenate([np.array([ymin]), self.ypl, np.array([ymin])]) if ignore_zeros: sel = yy != 0. else: sel = np.ones_like(yy).astype('bool') axes.plot(xx[sel],yy[sel], **kwargs) if self.window_set: axes.set_xlim( (self.win_min, self.win_max) ) # prepare y scale sel = (self.win_min <= self.xpl) & (self.xpl <= self.win_max) ymin = self.ypl[sel].min() ymax = self.ypl[sel].max() axes.set_ylim( (ymin, ymax) ) axes.set_xlabel(self.xlabel) axes.set_ylabel(self.ylabel) axes.set_title(self.title) def set_window(self, xmin = None, xmax = None): """ Define a window into the histogram. This is similar to a zoom or a region of interest (ROI) ============ ===================================================== Keyword Meaning ============ ===================================================== xmin lower limit for plotting or fitting xmax upper limit ============ ===================================================== """ # a call to __setup_bins MUST preced usage of this call self.window_set = True if xmin is None: self.win_min = self.xpl.min() else: self.win_min = xmin if xmax is None: self.win_max = self.xpl.max() else: self.win_max = xmax return def set_window_view(self): """ Like set_windows but uses the current display limits. This is only useful if the histogram has been plotted. """ xmin,xmax = pl.xlim() self.set_window(xmin,xmax) def clear_window(self): """ Reset (Clear) the defined window """ # a call to __setup_bins MUST preced usage of this call self.window_set = False self.win_min = self.xpl.min() self.win_max = self.xpl.max() def plot_exp(self, ignore_zeros = False, **kwargs): """ Plot histogram content and errors like experimental data. ============ ===================================================== Keyword Meaning ============ ===================================================== ignore_zeros do not plot channels with bin content 0 (default = False) ============ ===================================================== """ xx = self.bin_center yy = self.bin_content dyy = self.bin_error if ignore_zeros: sel = yy != 0. else: sel = np.ones_like(yy).astype('bool') plot_exp(xx[sel], yy[sel], dyy[sel],\ x_label = self.xlabel, \ y_label = self.ylabel, \ plot_title = self.title, \ **kwargs) def save(self, filename = 'histo.data'): """ Save the histogram in :mod:`~LT.pdatafile` format """ of = open(filename, 'w') of.write('#\ title = %s\n'%(self.title)) of.write('#\ xlabel = %s\n'%(self.xlabel)) of.write('#\ ylabel = %s\n'%(self.ylabel)) # now write the current fit parameters for key in self.fit_par: name = key + ' = %r' err_name = '; d_'+name fmt = '#\ '+name+err_name+'\n' l = fmt%( self.fit_par[key].value, self.fit_par[key].err) of.write(l) of.write('# \n') of.write('#! bin_center[f, 0]/ bin_content[f,1]/ bin_error[f, 2]/ \n') for i,bc in enumerate(self.bin_center): of.write ("%r %r %r \n"%( bc, self.bin_content[i], self.bin_error[i]) ) of.close() def load(self, file='histo.data'): """ read the histogram data from :mod:`~LT.pdatafile` If the file does not result from a save function make sure that all the necessary data are present. """ data = get_file(file) # first the data self.bin_center = np.array(data.get_data('bin_center') ) self.bin_content = np.array(data.get_data('bin_content') ) self.bin_error = np.array(data.get_data('bin_error') ) # now the parameters self.title = data.par.get_value('title', str) self.xlabel = data.par.get_value('xlabel', str) self.ylabel = data.par.get_value('ylabel', str) # now the fit parameters for key in self.fit_par: name = key dname = 'd_'+key self.fit_par[key].set(data.par.get_value(name, float), \ err = data.par.get_value(dname, float)) self.bin_width = np.diff(self.bin_center)[0] self.__get_histogram() self.bins = self.res[1] self.__prepare_histo_plot() # plot the fit x = np.linspace(self.bins[0], self.bins[-1:][0], 100) self.fit_dict['xpl'] = x self.fit_dict['ypl'] = self.fit_func(x) def find_bin(self, x): """ Find the bin that would contain the value x """ # self.bins contains the bin edged if (x < self.bins[0]): print('searched value {0} < lowest bin = {1} '.format(x, self.bins[0])) return 0 elif (x > self.bins[-1:][0]): print('searched value {0} > highest bin = {1} '.format(x, self.bins[-1:][0])) return len(self.bins) - 1 elif (x == self.bins[0]): return 0 else: return (np.searchsorted(self.bins, x) - 1 ) def set_fit_list(self, fit = [ 'A', 'mean', 'sigma'] ): """ Define which parameters are to be fitted. The default list is :: fit = [ 'A', 'mean', 'sigma'] to use all parameters:: h.set_fit_list( fit = [ 'A', 'mean', 'sigma', 'b0', 'b1', 'b2']) """ if fit==[]: # empty list show possibilities print('possible fit parameters:') print(list(self.fit_par.keys())) return self.fit_names = fit self.fit_list = [] for key in self.fit_names: try: curr_par_name = self.fit_par[key] except: print('cannot use parameter :', key, ' (does not exist ?!)') continue self.fit_list.append(curr_par_name) # end of fitting list def show_fit_list(self): """ Show the current fit list Returns ------- None. """ print("\nCurrent fit list : ", [k.name for k in self.fit_list]) print("\nAvailable parameters: [ 'A', 'mean', 'sigma', 'b0', 'b1', 'b2']") def fit(self, xmin = None, xmax = None, init = True, ignore_zeros = True, **kwargs): """ Fit a gaussian on a quadratic background. You can also just fit a background or just a gaussian. All this is controlled by which parameters you want to fit. Another important part of non-linear fitting is that you need to provide reasonable guesses for the fit parameters. The parameters in :class:`~LT.box.histo` are not just numbers but objects with their own properties and functions (see :class:`~LT_Fit.parameters.Parameter` ). The full fit function is as follows: :math:`$ f(x) = b_0 + b_1x + b_2x^2 + A exp(-(x - \mu)^2/\sigma^2)$` The (:class:`LT.box.histo`) parameters are: =================== ================================================ Parameter Histo Class Member =================== ================================================ :math:`$b_o $` b0 :math:`$b_1 $` b1 :math:`$b_2 $` b2 :math:`$A $` A :math:`$\mu $` mean :math:`$\sigma $` sigma =================== ================================================ Which parameters are fitted is defined in :meth:`~LT.box.histo.set_fit_list` Keyword arguments are: ============ ===================================================== Keyword Meaning ============ ===================================================== xmin lower fit limit xmax upper fit limit init True/False (default = True) estimate initial fit parameters automatically ignore_zeros True/False (default = True) ignore channels with bin content zero kwargs additional keywords are passed to gen_fit (use only if you know what you are doing!) ============ ===================================================== """ # is there a range given, or is a window set sel_all = np.ones_like(self.bin_center, dtype = 'bool') if init: self.init_gauss(xmin, xmax) if (xmin is None) and (xmax is None): # check if a window is set if self.window_set: # if so use the set window limits sel = (self.win_min <= self.bin_center) & (self.bin_center <= self.win_max) self.fit_indx, = np.where ( sel ) else: # if not use all data self.fit_indx, = np.where(sel_all) elif (xmin is None): sel = (self.bin_center <= xmax) if self.window_set: # if so check which is smaller sel_w = (self.bin_center <= self.win_max) & sel self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) elif (xmax is None): sel = (xmin <= self.bin_center) if self.window_set: # if so check which is larger sel_w = (self.win_min <= self.bin_center) & sel self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) else: sel = (xmin <= self.bin_center) & ( self.bin_center <= xmax) if self.window_set: # if so check the set window limits sel_w = (self.win_min <= self.bin_center) & ( self.bin_center <= self.win_max) & sel # use the tighter limits self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) # set minimal error to 1 is_zero = np.where(self.bin_error == 0.) self.bin_error[is_zero] = 1. # do the fit if ignore_zeros: # ignore bins with content of 0 sel = self.bin_content[self.fit_indx] != 0. bin_content = self.bin_content[self.fit_indx][sel] bin_center = self.bin_center[self.fit_indx][sel] bin_error = self.bin_error[self.fit_indx][sel] else: bin_content = self.bin_content[self.fit_indx] bin_center = self.bin_center[self.fit_indx] bin_error = self.bin_error[self.fit_indx] # do the fit using the new version self.F = genfit( self.fit_func, self.fit_list, \ x = bin_center, \ y = bin_content, \ y_err = bin_error, \ full_output=1, \ ftol = 0.001, \ print_results = False, **kwargs) self.fit_dict = self.F.stat self.fit_dict['xpl'] = self.F.xpl self.fit_dict['ypl'] = self.F.ypl # get the covariance matrix if self.fit_dict == {}: print("Problem with fit: no result, check parameters !") return self.cov = self.F.covar self.chi2_red = self.F.chi2_red self.chi2 = self.F.chi2 self.CL = self.F.CL # print the result print('----------------------------------------------------------------------') print('Fit results:') for key in self.fit_names: print(key, ' = ', self.fit_par[key].value,' +/- ', self.fit_par[key].err) print('Chi square = ', self.F.chi2) print('Chi sq./DoF = ', self.F.chi2_red) print('----------------------------------------------------------------------') self.calc_fit_plot() def fit_view(self, init = True): """ Fit histogram using the current display limits as fit range. This is only useful if the histogram has been plotted. """ xmin,xmax = pl.xlim() self.fit(xmin,xmax, init = init) def init_parameters(self): """ Reset fit parameters to their default values Returns ------- None. """ self.b0.set(0.) self.b1.set(0.) self.b2.set(0.) self.mean.set(0.) self.sigma.set(1.) self.A.set(1.) def init_gauss(self, xmin = None, xmax = None): """ Calculate the initial parameter guess for a gaussian. These parameters can them be used in the call to :class:`~LT.box.histo.fit` """ # is there a range given, or is a window set sel_all = np.ones_like(self.bin_center, dtype = 'bool') if (xmin is None) and (xmax is None): # check if a window is set if self.window_set: # if so use the set window limits sel = (self.win_min <= self.bin_center) & (self.bin_center <= self.win_max) self.fit_indx, = np.where ( sel ) else: # if not use all data self.fit_indx, = np.where(sel_all) elif (xmin is None): sel = (self.bin_center <= xmax) if self.window_set: # if so check which is smaller sel_w = (self.bin_center <= self.win_max) & sel self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) elif (xmax is None): sel = (xmin <= self.bin_center) if self.window_set: # if so check which is larger sel_w = (self.win_min <= self.bin_center) & sel self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) else: sel = (xmin <= self.bin_center) & ( self.bin_center <= xmax) if self.window_set: # if so check the set window limits sel_w = (self.win_min <= self.bin_center) & ( self.bin_center <= self.win_max) & sel # use the tighter limits self.fit_indx, = np.where(sel_w) else: self.fit_indx, = np.where(sel) # set minimal error to 1 is_zero = np.where(self.bin_error == 0.) self.bin_error[is_zero] = 1. # do the fit bin_content = self.bin_content[self.fit_indx] bin_center = self.bin_center[self.fit_indx] # bin_error = self.bin_error[self.fit_indx] # calculate initial parameters mean = np.sum(bin_center*bin_content)/bin_content.sum() sigma = np.sqrt( np.sum(bin_content*(bin_center - mean)**2)/bin_content.sum()) A = bin_content.max() # store the parameters self.A.set(A) self.mean.set(mean) self.sigma.set(sigma) def calc_fit_plot(self): # plot the fit imax = min(len(self.bins)-1, self.fit_indx[-1:][0] + 1) xmin = self.bins[self.fit_indx][0] xmax = self.bins[imax] x = np.linspace(xmin, xmax, 100) self.fit_dict['xpl'] = x self.fit_dict['ypl'] = self.fit_func(x) def plot_fit(self, color = 'r', axes = None, **kwargs): """ Plot the fitted curve ============ ===================================================== Keyword Meaning ============ ===================================================== color color of the fitted line ============ ===================================================== """ if axes is None: axes = pl.gca() if self.fit_dict == {}: print('no fit, nothing to plot !') else: plot_line(self.fit_dict['xpl'], self.fit_dict['ypl'], color = color, axes = axes, **kwargs) if self.window_set: axes.set_xlim( (self.win_min, self.win_max) ) def fit_func(self, x): """ The function fitted to the histogram data """ fit_val = (self.b2()*x + self.b1())*x + self.b0() + \ self.A()*np.exp(-0.5*((x-self.mean())/self.sigma() )**2) return fit_val def apply_calibration(self, cal): """ apply x-axis calibration, new axis values are cal(xaxis) """ self.bin_center = cal(self.bin_center) self.bin_width = np.diff(self.bin_center)[0] self.bins = cal(self.bins) # prepare histo plot if axes have changed self.__prepare_histo_plot() # private functions def __setup_bins(self, error = None ): self.bin_width = np.diff(self.res[1])[0] self.bin_center = self.res[1][:-1] + self.bin_width/2. self.bin_content = self.res[0] self.bins = self.res[1] if error is None: self.bin_error = np.sqrt(self.bin_content) else: self.bin_error = error self.__prepare_histo_plot() def __get_histogram(self): # create the histogram arrays from bin_width, bin_center, bin_content and bin_error res1 = np.concatenate( [self.bin_center - self.bin_width/2., self.bin_center[-1:] + self.bin_width/2.]) res0 = self.bin_content self.res = ([res0,res1]) def __new_histogram(self, b_content, b_center, b_error): # setup new np historam parameters using content, center abd error arrays # same as get_histogram # return a new histogram with these parameters b_width = np.diff(b_center)[0] res1 = np.concatenate( [b_center - b_width/2., b_center[-1:] + b_width/2.]) res0 = b_content res = ([res0,res1]) return histo(histogram = res, bin_error = b_error, window = (self.win_min, self.win_max)) def __prepare_histo_plot(self): # prepare data for plotting as steps self.cont_min = self.res[0].min() iv = self.bin_width / 2. self.xpl = np.array(list(zip( self.bin_center - iv, self.bin_center + iv))).ravel() self.ypl = np.array(list(zip( self.bin_content, self.bin_content))).ravel() def _sl_indices(self, sla, Ni): # sla arrayt of slices # Ni length of array that the slices are applied to # get indices for slices and number of elements per slice si = [sll.indices(Ni) for sll in sla] np = [x[1] - x[0] for x in si] # list of index tuples : start,stop, step # number of corresonding elements return si, np def _rebin_array(self, x, n): # rebin 1d array, useful for histograms # start array for slices i_s = np.arange(0, x.shape[0]+n, n, dtype=int) # end array for slices # i_e = np.roll(i_s, -1) i_e = np.arange(n, x.shape[0]+2*n, n, dtype=int) # create the slices slices = [ slice(s, e) for s, e in zip(i_s,i_e)] # sum over the slices sum_sl = np.array([np.sum(x[sl]) for sl in slices[:-1]]) # mean value of the slices mean_sl = np.array([np.mean(x[sl]) for sl in slices[:-1]]) # factor to correct the sum for slices that are shorter than n fact = np.array([np.float(n)/len(x[sl]) for sl in slices[:-1]]) # return the values return sum_sl, mean_sl, slices[:-1], fact def __add__(self, v): if np.isscalar(v): res0 = self.bin_content + v err = self.bin_error res1 = np.copy(self.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) # add 2 histograms and take care of the errors elif np.array_equal(self.bin_center.shape, v.bin_center.shape): # this is the content res0 = self.res[0] + v.res[0] err = np.sqrt( self.bin_error**2 + v.bin_error**2) res1 = np.copy(v.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) else: print('bin centers do not match-> cannot add, sorry !') return None def __sub__(self, v): # subtract 2 histograms and take care of the errors if np.isscalar(v): res0 = self.bin_content - v err = self.bin_error res1 = np.copy(self.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) elif np.array_equal(self.bin_center.shape, v.bin_center.shape): res0 = self.res[0] - v.res[0] err = np.sqrt( self.bin_error**2 + v.bin_error**2) res1 = np.copy(v.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) else: print('bin centers do not match-> cannot subtract, sorry !') return None def __mul__(self, v): # scale a histogram multiply from left if np.isscalar(v): res0 = v*self.bin_content err = v*self.bin_error res1 = np.copy(self.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) elif np.array_equal(self.bin_center.shape, v.bin_center.shape): res0 = self.res[0] * v.res[0] err = np.sqrt(self.bin_error**2 + v.bin_error**2) res1 = np.copy(self.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) else: print('bin centers do not match-> cannot multiply, sorry !') return None def __truediv__(self, v): # divide 2 histograms and take care of the errors # check the shapes if np.isscalar(v): res0 = self.res[0]/v err = self.bin_error/v res1 = np.copy(self.res[1]) res = ([res0, res1]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) elif np.array_equal(self.bin_content.shape, v.bin_content.shape): # this is the content res0 = self.bin_content / v.bin_content f1 = 1./v.bin_content f2 = res0/v.bin_content err = np.sqrt( (f1*self.bin_error)**2 + (f2*v.bin_error)**2) res1 = np.copy(v.res[1]) res = ([res0, res1]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) else: print('bin centers do not match-> cannot divide, sorry !') return None def __rmul__(self, c): # scale a histogram multiply from right res0 = c*self.res[0] err = c*self.bin_error res1 = np.copy(self.res[1]) res = ([res0, res1 ]) return histo(histogram = res, bin_error = err, window = (self.win_min, self.win_max)) # end of 1d-histo class # 2d histogram class class histo2d: """ Define a 2d histogram based on the np.histogram2d class. The various ways of defining one are: * If *xv* is a 1D ( :func:`numpy.array`) containing the x-value data to be histogrammed and *yx* is a 1D array containing the y-value data : >>> h2 = histo2d( xv, yv ) * If *his2* is the output of the :func:`numpy.histogram2d` function >>> h2 = histo2d(histogram = his2) * If ``xbc`` is an array with x-bin center values, ``ybc`` is an array with y-bin center values and ``bcont`` contains bin content values then use: >>> h2 = histo2d(x_bin_center = xbc, y_bin_center = ybc, bin_content = bcont) * A filename for a stored histogram is given >>> h2 = histo2d(filename), where filename contains the pdatafile Usually the result of a histo2d.save operation Important keywords: ============ ===================================================== Keyword Meaning ============ ===================================================== xvalues Array of x-values to be histogrammed (1d-:func:`numpy.array`) yvalues Array of y-values to be histogrammed (1d-:func:`numpy.array`) range Lower and upper limits of binning ( e.g. ``range = (10.,20.)`` ) bins Number of bins, or [binsx, binsy] histogram Result of :func:`numpy.histogram2d` function x_bin_center 1d-Array of x - bin-center values (:func:`numpy.array`) y_bin_center 1d-Array of y - bin-center values (:func:`numpy.array`) bin_content 2d-Array of bin-content values (:func:`numpy.array`) bin_error 2d-Array of errors for each bin content (:func:`numpy.array`) file Load data from file title Set the title xlabel Set the x-label ylabel Set the y-label zlabel Set the z-label colorbar if True, plot a colorbar bad_color Set the color for plot for bins below zmin (default: w) logz if True plot content on log scale ============ ===================================================== Additional keyword arguments are passed to the :func:`numpy.histogram2d` function """ def __init__(self,\ x_values = None, \ y_values = None, \ range = None, \ bins = None, \ histogram = None, \ bin_error = None, \ bin_content = None, \ x_bin_center = None, \ y_bin_center = None, \ file = None, \ title = 'my histogram', \ xlabel = 'x-bin', \ ylabel = 'y-bin', \ zlabel = 'content',\ bad_color = 'w',\ colorbar = True, \ logz = False,\ **kwargs): self.bad_color = bad_color # color for bad pixels self.colorbar = colorbar self.logz = logz # initialize fitting if (x_values is not None) and (y_values is not None): # values have been given for filling if (range is None) and (bins is None): self.fill(x_values, y_values, **kwargs) elif (range is not None) and (bins is None): self.fill(x_values, y_values, range = range, **kwargs) elif (range is None) and (bins is not None): self.fill(x_values, y_values, bins = bins, **kwargs) else: self.fill(x_values, y_values, bins = bins, range = range, **kwargs) elif file is not None: # create from file self.load(file) return elif histogram is not None: # the output of the numpy histogram function has been given self.res = histogram elif (x_bin_center is not None) and (y_bin_center is not None) and (bin_content is not None): # the histogram content is given direectly self.x_bin_center = np.copy(x_bin_center) self.y_bin_center = np.copy(y_bin_center) self.bin_content = np.copy(bin_content) if(bin_error is not None): self.bin_error = bin_error self.__setup_histogram() self.title = title self.xlabel = xlabel self.ylabel = ylabel self.zlabel = zlabel self.__setup_bins(error = bin_error) self.nbins_x = self.x_bin_center.shape[0] self.nbins_y = self.y_bin_center.shape[0] def set_nans(self, value = 0., err_value = 1.): """ replace nans by specified values ============ ===================================================== Keyword Meaning ============ ===================================================== value replaces the nan in bin_content (default 0) err_value replaces the corresponding bin_error (default 1) ============ ===================================================== Returns ------- None. """ sel = np.isnan(self.bin_content) self.bin_content[sel] = value self.bin_error[sel] = err_value def fill(self, x, y, add = False, **kwargs): """ Fill the histogram with the values stored in the :func:`numpy.array` y. ============ ===================================================== Keyword Meaning ============ ===================================================== add if True add the results to the existing content ============ ===================================================== Additional keyword arguments are passed to the :func:`numpy.histogram` function """ if not add: # a new filling try: self.res = np.histogram2d(x, y, new = None, **kwargs) except: self.res = np.histogram2d(x, y, **kwargs) self.__setup_bins(error = None) else: # the bins have already been defined continue # to accumulate statistics if self.res is None: print("no binning information: try fill with add = False ") return res = np.histogram2d(x, y, bins = [self.x_bins,self.y_bins], **kwargs) # add the new bin content to the old one self.res = (self.res[0] + res[0], self.res[1], self.res[2]) # update the histogram information self.__setup_bins(error = None) # end of fill def clear(self): """ Set the content and errors to 0. """ self.bin_content = np.zeros_like(self.bin_content) self.bin_error = np.zeros_like(self.bin_content) self.res = (np.zeros_like(self.res[0]), self.res[1], self.res[2]) self.x_bin_width = np.zeros_like(self.x_bin_width) self.y_bin_width =
np.zeros_like(self.y_bin_width)
numpy.zeros_like
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVR from functools import reduce import seaborn as sns from sklearn.preprocessing import MinMaxScaler import requests import datetime as dt from datetime import timedelta import calendar import time from scipy.special import binom import urllib.request, json import os import http.client import tensorflow as tf class DataGeneratorSeq(object): def __init__(self,prices,batch_size,num_unroll): self._prices = prices self._prices_length = len(self._prices) - num_unroll self._batch_size = batch_size self._num_unroll = num_unroll self._segments = self._prices_length // self._batch_size self._cursor = [offset * self._segments for offset in range(self._batch_size)] def next_batch(self): batch_data = np.zeros((self._batch_size),dtype=np.float32) batch_labels = np.zeros((self._batch_size),dtype=np.float32) for b in range(self._batch_size): if self._cursor[b]+1>=self._prices_length: self._cursor[b] = np.random.randint(0,(b+1)*self._segments) batch_data[b] = self._prices[self._cursor[b]] batch_labels[b]= self._prices[self._cursor[b]+np.random.randint(0,5)] self._cursor[b] = (self._cursor[b]+1)%self._prices_length return batch_data,batch_labels def unroll_batches(self): unroll_data,unroll_labels = [],[] init_data, init_label = None,None for ui in range(self._num_unroll): data, labels = self.next_batch() unroll_data.append(data) unroll_labels.append(labels) return unroll_data, unroll_labels def reset_indices(self): for b in range(self._batch_size): self._cursor[b] = np.random.randint(0,min((b+1)*self._segments,self._prices_length-1)) class NeuralNetworkModel(): def read_csv_file(self): self.myDataFromCSV = pd.read_csv('minutes.csv') print(self.myDataFromCSV) self.timestamps_c = [] self.prices_c = [] self.timestamps_c = self.myDataFromCSV.loc[:,'time'].as_matrix() self.prices_c = self.myDataFromCSV.loc[:,'last'].as_matrix() self.prices_c = self.prices_c[-12000:] self.timestamps_c = self.timestamps_c[-12000:] self.dates_c = [] for j in self.timestamps_c: self.dates_c.append(time.ctime(j)) self.MSE_errors = [] self.df_comp = {'dates': self.dates_c, 'prices': self.prices_c} self.df_c = pd.DataFrame(data=self.df_comp) self.df_c = self.df_c.sort_values('dates') self.df_c = self.df_c.reset_index(drop=True) self.df_c.head() self.vizialize_initial_data() def vizialize_initial_data(self): plt.figure(figsize = (18,9)) plt.plot(range(self.df_c.shape[0]),(self.df_c['prices'])) plt.xticks(range(0,self.df_c.shape[0],500),self.df_c['dates'].loc[::500],rotation=45) plt.xlabel('Date',fontsize=18) plt.ylabel('Price',fontsize=18) plt.show() self.divide_by_train_test_data() def divide_by_train_test_data(self): self.prices = self.df_c.loc[:,'prices'].as_matrix() self.train_data = self.prices[:11000] self.test_data = self.prices[11000:] self.scale_data() def scale_data(self): self.scaler = MinMaxScaler() self.train_data = self.train_data.reshape(-1,1) self.test_data = self.test_data.reshape(-1,1) self.train_scaler() def train_scaler(self): self.smoothing_window_size = 2500 for di in range(0,10000,self.smoothing_window_size): self.scaler.fit(self.train_data[di:di+self.smoothing_window_size,:]) self.train_data[di:di+self.smoothing_window_size,:] = self.scaler.transform(self.train_data[di:di+self.smoothing_window_size,:]) # You normalize the last bit of remaining data self.scaler.fit(self.train_data[di+self.smoothing_window_size:,:]) self.train_data[di+self.smoothing_window_size:,:] = self.scaler.transform(self.train_data[di+self.smoothing_window_size:,:]) # Reshape both train and test data self.train_data = self.train_data.reshape(-1) # Normalize test data self.test_data = self.scaler.transform(self.test_data).reshape(-1) self.perform_exponential_moving_average() def perform_exponential_moving_average(self): self.EMA = 0.0 self.gamma = 0.1 for ti in range(11000): self.EMA = self.gamma*self.train_data[ti] + (1-self.gamma)*self.EMA self.train_data[ti] = self.EMA self.all_mid_data = np.concatenate([self.train_data,self.test_data],axis=0) self.standart_average_calc() def standart_average_calc(self): self.window_size = 100 self.N = self.train_data.size self.std_avg_predictions = [] self.std_avg_x = [] self.mse_errors = [] for pred_idx in range(self.window_size,self.N): if pred_idx >= self.N: self.date = self.dt_c.datetime.strptime(k, '%Y-%m-%d %H:%M:%S').date() + dt.timedelta(days=1) else: self.date = self.df_c.loc[pred_idx,'dates'] self.std_avg_predictions.append(np.mean(self.train_data[pred_idx-self.window_size:pred_idx])) self.mse_errors.append((self.std_avg_predictions[-1]-self.train_data[pred_idx])**2) self.std_avg_x.append(self.date) print('MSE error for standard averaging: %.5f'%(0.5*np.mean(self.mse_errors))) self.standart_average_vizualize() def standart_average_vizualize(self): plt.figure(figsize = (18,9)) plt.plot(range(self.df_c.shape[0]),self.all_mid_data,color='b',label='True') plt.plot(range(self.window_size,self.N),self.std_avg_predictions,color='orange',label='Prediction') plt.xlabel('Date') plt.ylabel('Price') plt.legend(fontsize=18) plt.show() self.exponential_moving_average_calc() def exponential_moving_average_calc(self): self.window_size = 100 self.N = self.train_data.size self.run_avg_predictions = [] self.run_avg_x = [] self.mse_errors = [] self.running_mean = 0.0 self.run_avg_predictions.append(self.running_mean) self.decay = 0.5 for pred_idx in range(1,self.N): self.running_mean = self.running_mean*self.decay + (1.0-self.decay)*self.train_data[pred_idx-1] self.run_avg_predictions.append(self.running_mean) self.mse_errors.append((self.run_avg_predictions[-1]-self.train_data[pred_idx])**2) self.run_avg_x.append(self.date) print('MSE error for EMA averaging: %.5f'%(0.5*
np.mean(self.mse_errors)
numpy.mean
import numpy as np # Helper function to calculate the sigmoid def sigmoid(z): sig = 1 / (1 +
np.exp(-z)
numpy.exp
import centrosome.filter import numpy import six.moves from cellprofiler_core.constants.measurement import ( GROUP_NUMBER, GROUP_INDEX, R_FIRST_IMAGE_NUMBER, R_SECOND_IMAGE_NUMBER, R_FIRST_OBJECT_NUMBER, R_SECOND_OBJECT_NUMBER, C_COUNT, MCA_AVAILABLE_POST_GROUP, M_LOCATION_CENTER_X, M_LOCATION_CENTER_Y, ) from cellprofiler_core.image import ImageSetList import cellprofiler_core.measurement from cellprofiler_core.object import ObjectSet, Objects import cellprofiler.modules.trackobjects import tests.modules from cellprofiler_core.pipeline import Pipeline, LoadException, RunException from cellprofiler_core.workspace import Workspace OBJECT_NAME = "objects" def test_load_v3(): file = tests.modules.get_test_resources_directory("trackobjects/v3.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = Pipeline() def callback(caller, event): assert not isinstance(event, LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) module = pipeline.modules()[0] assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) assert module.tracking_method == "LAP" assert module.object_name.value == "Nuclei" assert module.pixel_radius.value == 80 assert module.display_type.value == "Color and Number" assert not module.wants_image assert module.measurement == "AreaShape_Area" assert module.image_name == "TrackedCells" assert module.wants_second_phase assert module.split_cost == 41 assert module.merge_cost == 42 assert module.max_gap_score == 53 assert module.max_split_score == 54 assert module.max_merge_score == 55 assert module.max_frame_distance == 6 def test_load_v4(): file = tests.modules.get_test_resources_directory("trackobjects/v4.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = Pipeline() def callback(caller, event): assert not isinstance(event, LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) assert len(pipeline.modules()) == 3 for module, tracking_method, model, save_img, phase2, meas, dop in zip( pipeline.modules(), ("Measurements", "Overlap", "Distance"), ( cellprofiler.modules.trackobjects.M_BOTH, cellprofiler.modules.trackobjects.M_RANDOM, cellprofiler.modules.trackobjects.M_VELOCITY, ), (True, False, True), (True, False, True), ("Slothfulness", "Prescience", "Trepidation"), ( cellprofiler.modules.trackobjects.DT_COLOR_AND_NUMBER, cellprofiler.modules.trackobjects.DT_COLOR_ONLY, cellprofiler.modules.trackobjects.DT_COLOR_AND_NUMBER, ), ): assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) assert module.tracking_method == tracking_method assert module.model == model assert module.wants_image.value == save_img assert module.wants_second_phase.value == phase2 assert module.measurement == meas assert module.pixel_radius == 50 assert module.display_type == dop assert module.image_name == "TrackByLAP" assert module.radius_std == 3 assert module.radius_limit.min == 3.0 assert module.radius_limit.max == 10.0 assert module.gap_cost == 40 assert module.split_cost == 1 assert module.merge_cost == 1 assert module.max_gap_score == 51 assert module.max_split_score == 52 assert module.max_merge_score == 53 assert module.max_frame_distance == 4 def test_load_v5(): file = tests.modules.get_test_resources_directory("trackobjects/v5.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = Pipeline() def callback(caller, event): assert not isinstance(event, LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) assert len(pipeline.modules()) == 1 m = pipeline.modules()[0] assert isinstance(m, cellprofiler.modules.trackobjects.TrackObjects) assert m.tracking_method == "LAP" assert m.object_name == "Turtles" assert m.measurement == "Steadiness" assert m.pixel_radius == 44 assert m.display_type == cellprofiler.modules.trackobjects.DT_COLOR_AND_NUMBER assert not m.wants_image assert m.image_name == "TrackedTurtles" assert m.model == cellprofiler.modules.trackobjects.M_BOTH assert m.radius_std == 3 assert m.radius_limit.min == 3 assert m.radius_limit.max == 11 assert m.wants_second_phase assert m.gap_cost == 39 assert m.split_cost == 41 assert m.merge_cost == 42 assert m.max_frame_distance == 8 assert m.wants_minimum_lifetime assert m.min_lifetime == 2 assert not m.wants_maximum_lifetime assert m.max_lifetime == 1000 def test_load_v6(): file = tests.modules.get_test_resources_directory("trackobjects/v6.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = Pipeline() def callback(caller, event): assert not isinstance(event, LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) assert len(pipeline.modules()) == 1 m = pipeline.modules()[0] assert isinstance(m, cellprofiler.modules.trackobjects.TrackObjects) assert m.tracking_method == "LAP" assert m.object_name == "Turtles" assert m.measurement == "Steadiness" assert m.pixel_radius == 44 assert m.display_type == cellprofiler.modules.trackobjects.DT_COLOR_AND_NUMBER assert not m.wants_image assert m.image_name == "TrackedTurtles" assert m.model == cellprofiler.modules.trackobjects.M_BOTH assert m.radius_std == 3 assert m.radius_limit.min == 3 assert m.radius_limit.max == 11 assert m.wants_second_phase assert m.gap_cost == 39 assert m.split_cost == 41 assert m.merge_cost == 42 assert m.max_frame_distance == 8 assert m.wants_minimum_lifetime assert m.min_lifetime == 2 assert not m.wants_maximum_lifetime assert m.max_lifetime == 1000 assert m.mitosis_cost == 79 assert m.mitosis_max_distance == 41 def runTrackObjects(labels_list, fn=None, measurement=None): """Run two cycles of TrackObjects labels1 - the labels matrix for the first cycle labels2 - the labels matrix for the second cycle fn - a callback function called with the module and workspace. It has the signature, fn(module, workspace, n) where n is 0 when called prior to prepare_run, 1 prior to first iteration and 2 prior to second iteration. returns the measurements """ module = cellprofiler.modules.trackobjects.TrackObjects() module.set_module_num(1) module.object_name.value = OBJECT_NAME module.pixel_radius.value = 50 module.measurement.value = "measurement" measurements = cellprofiler_core.measurement.Measurements() measurements.add_all_measurements( "Image", GROUP_NUMBER, [1] * len(labels_list), ) measurements.add_all_measurements( "Image", GROUP_INDEX, list(range(1, len(labels_list) + 1)), ) pipeline = Pipeline() pipeline.add_module(module) image_set_list = ImageSetList() if fn: fn(module, None, 0) module.prepare_run( Workspace(pipeline, module, None, None, measurements, image_set_list) ) first = True for labels, index in zip(labels_list, list(range(len(labels_list)))): object_set = ObjectSet() objects = Objects() objects.segmented = labels object_set.add_objects(objects, OBJECT_NAME) image_set = image_set_list.get_image_set(index) if first: first = False else: measurements.next_image_set() if measurement is not None: measurements.add_measurement( OBJECT_NAME, "measurement", numpy.array(measurement[index]) ) workspace = Workspace( pipeline, module, image_set, object_set, measurements, image_set_list ) if fn: fn(module, workspace, index + 1) module.run(workspace) return measurements def test_track_nothing(): """Run TrackObjects on an empty labels matrix""" columns = [] def fn(module, workspace, index, columns=columns): if workspace is not None and index == 0: columns += module.get_measurement_columns(workspace.pipeline) measurements = runTrackObjects( (numpy.zeros((10, 10), int), numpy.zeros((10, 10), int)), fn ) features = [ feature for feature in measurements.get_feature_names(OBJECT_NAME) if feature.startswith(cellprofiler.modules.trackobjects.F_PREFIX) ] assert all( [column[1] in features for column in columns if column[0] == OBJECT_NAME] ) for feature in cellprofiler.modules.trackobjects.F_ALL: name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "50")) assert name in features value = measurements.get_current_measurement(OBJECT_NAME, name) assert len(value) == 0 features = [ feature for feature in measurements.get_feature_names("Image") if feature.startswith(cellprofiler.modules.trackobjects.F_PREFIX) ] assert all([column[1] in features for column in columns if column[0] == "Image"]) for feature in cellprofiler.modules.trackobjects.F_IMAGE_ALL: name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "50") ) assert name in features value = measurements.get_current_image_measurement(name) assert value == 0 def test_00_track_one_then_nothing(): """Run track objects on an object that disappears Regression test of IMG-1090 """ labels = numpy.zeros((10, 10), int) labels[3:6, 2:7] = 1 measurements = runTrackObjects((labels, numpy.zeros((10, 10), int))) feature = "_".join( ( cellprofiler.modules.trackobjects.F_PREFIX, cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT, OBJECT_NAME, "50", ) ) value = measurements.get_current_image_measurement(feature) assert value == 1 def test_track_one_distance(): """Track an object that doesn't move using distance""" labels = numpy.zeros((10, 10), int) labels[3:6, 2:7] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 1 module.tracking_method.value = "Distance" measurements = runTrackObjects((labels, labels), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "1")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert round(abs(m(cellprofiler.modules.trackobjects.F_TRAJECTORY_X) - 0), 7) == 0 assert round(abs(m(cellprofiler.modules.trackobjects.F_TRAJECTORY_Y) - 0), 7) == 0 assert ( round(abs(m(cellprofiler.modules.trackobjects.F_DISTANCE_TRAVELED) - 0), 7) == 0 ) assert ( round(abs(m(cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE) - 0), 7) == 0 ) assert m(cellprofiler.modules.trackobjects.F_LABEL) == 1 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 1 assert m(cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER) == 1 assert m(cellprofiler.modules.trackobjects.F_LIFETIME) == 2 def m(feature): name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "1") ) return measurements.get_current_image_measurement(name) assert m(cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_SPLIT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_MERGE_COUNT) == 0 check_relationships(measurements, [1], [1], [2], [1]) def test_track_one_moving(): """Track an object that moves""" labels_list = [] distance = 0 last_i, last_j = (0, 0) for i_off, j_off in ((0, 0), (2, 0), (2, 1), (0, 1)): distance = i_off - last_i + j_off - last_j last_i, last_j = (i_off, j_off) labels = numpy.zeros((10, 10), int) labels[4 + i_off : 7 + i_off, 4 + j_off : 7 + j_off] = 1 labels_list.append(labels) def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 3 module.tracking_method.value = "Distance" measurements = runTrackObjects(labels_list, fn) def m(feature, expected): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "3")) value_set = measurements.get_all_measurements(OBJECT_NAME, name) assert len(expected) == len(value_set) for values, x in zip(value_set, expected): assert len(values) == 1 assert round(abs(values[0] - x), 7) == 0 m(cellprofiler.modules.trackobjects.F_TRAJECTORY_X, [0, 0, 1, 0]) m(cellprofiler.modules.trackobjects.F_TRAJECTORY_Y, [0, 2, 0, -2]) m(cellprofiler.modules.trackobjects.F_DISTANCE_TRAVELED, [0, 2, 1, 2]) m(cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE, [0, 2, 3, 5]) m(cellprofiler.modules.trackobjects.F_LABEL, [1, 1, 1, 1]) m(cellprofiler.modules.trackobjects.F_LIFETIME, [1, 2, 3, 4]) m( cellprofiler.modules.trackobjects.F_LINEARITY, [1, 1, numpy.sqrt(5) / 3, 1.0 / 5.0], ) def m(feature): name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "3") ) return measurements.get_current_image_measurement(name) assert m(cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_SPLIT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_MERGE_COUNT) == 0 image_numbers = numpy.arange(1, len(labels_list) + 1) object_numbers = numpy.ones(len(image_numbers)) check_relationships( measurements, image_numbers[:-1], object_numbers[:-1], image_numbers[1:], object_numbers[1:], ) def test_track_split(): """Track an object that splits""" labels1 = numpy.zeros((11, 9), int) labels1[1:10, 1:8] = 1 labels2 = numpy.zeros((10, 10), int) labels2[1:6, 1:8] = 1 labels2[6:10, 1:8] = 2 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 5 module.tracking_method.value = "Distance" measurements = runTrackObjects((labels1, labels2, labels2), fn) def m(feature, idx): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "5")) values = measurements.get_measurement(OBJECT_NAME, name, idx + 1) assert len(values) == 2 return values labels = m(cellprofiler.modules.trackobjects.F_LABEL, 2) assert len(labels) == 2 assert numpy.all(labels == 1) parents = m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER, 1) assert numpy.all(parents == 1) assert numpy.all(m(cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER, 1) == 1) parents = m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER, 2) assert numpy.all(parents == numpy.array([1, 2])) assert numpy.all(m(cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER, 2) == 2) def m(feature): name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "5") ) return measurements.get_all_measurements("Image", name)[1] assert m(cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_SPLIT_COUNT) == 1 assert m(cellprofiler.modules.trackobjects.F_MERGE_COUNT) == 0 check_relationships( measurements, [1, 1, 2, 2], [1, 1, 1, 2], [2, 2, 3, 3], [1, 2, 1, 2] ) def test_track_negative(): """Track unrelated objects""" labels1 = numpy.zeros((10, 10), int) labels1[1:5, 1:5] = 1 labels2 = numpy.zeros((10, 10), int) labels2[6:9, 6:9] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 1 module.tracking_method.value = "Distance" measurements = runTrackObjects((labels1, labels2), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "1")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 0 def m(feature): name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "1") ) return measurements.get_current_image_measurement(name) assert m(cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT) == 1 assert m(cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT) == 1 assert m(cellprofiler.modules.trackobjects.F_SPLIT_COUNT) == 0 assert m(cellprofiler.modules.trackobjects.F_MERGE_COUNT) == 0 def test_track_ambiguous(): """Track disambiguation from among two possible parents""" labels1 = numpy.zeros((20, 20), int) labels1[1:4, 1:4] = 1 labels1[16:19, 16:19] = 2 labels2 = numpy.zeros((20, 20), int) labels2[10:15, 10:15] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 20 module.tracking_method.value = "Distance" measurements = runTrackObjects((labels1, labels2), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "20")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 2 def test_overlap_positive(): """Track overlapping objects""" labels1 = numpy.zeros((10, 10), int) labels1[3:6, 4:7] = 1 labels2 = numpy.zeros((10, 10), int) labels2[4:7, 5:9] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 2 module.tracking_method.value = "Overlap" measurements = runTrackObjects((labels1, labels2), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "2")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 1 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 1 def test_overlap_negative(): """Track objects that don't overlap""" labels1 = numpy.zeros((20, 20), int) labels1[3:6, 4:7] = 1 labels2 = numpy.zeros((20, 20), int) labels2[14:17, 15:19] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 2 module.tracking_method.value = "Overlap" measurements = runTrackObjects((labels1, labels2), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "2")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 0 def test_overlap_ambiguous(): """Track an object that overlaps two parents""" labels1 = numpy.zeros((20, 20), int) labels1[1:5, 1:5] = 1 labels1[15:19, 15:19] = 2 labels2 = numpy.zeros((20, 20), int) labels2[4:18, 4:18] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 2 module.tracking_method.value = "Overlap" measurements = runTrackObjects((labels1, labels2), fn) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "2")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 2 def test_measurement_positive(): """Test tracking an object by measurement""" labels1 = numpy.zeros((10, 10), int) labels1[3:6, 4:7] = 1 labels2 = numpy.zeros((10, 10), int) labels2[4:7, 5:9] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 2 module.tracking_method.value = "Measurements" measurements = runTrackObjects((labels1, labels2), fn, [[1], [1]]) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "2")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 1 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 1 def test_measurement_negative(): """Test tracking with too great a jump between successive images""" labels1 = numpy.zeros((20, 20), int) labels1[3:6, 4:7] = 1 labels2 = numpy.zeros((20, 20), int) labels2[14:17, 15:19] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 2 module.tracking_method.value = "Measurements" measurements = runTrackObjects((labels1, labels2), fn, [[1], [1]]) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "2")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 0 def test_ambiguous(): """Test measurement with ambiguous parent choice""" labels1 = numpy.zeros((20, 20), int) labels1[1:5, 1:5] = 1 labels1[15:19, 15:19] = 2 labels2 = numpy.zeros((20, 20), int) labels2[6:14, 6:14] = 1 def fn(module, workspace, idx): if idx == 0: module.pixel_radius.value = 4 module.tracking_method.value = "Measurements" measurements = runTrackObjects((labels1, labels2), fn, [[1, 10], [9]]) def m(feature): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature, "4")) values = measurements.get_current_measurement(OBJECT_NAME, name) assert len(values) == 1 return values[0] assert m(cellprofiler.modules.trackobjects.F_LABEL) == 2 assert m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER) == 2 def test_cross_numbered_objects(): """Test labeling when object 1 in one image becomes object 2 in next""" i, j = numpy.mgrid[0:10, 0:20] labels = (i > 5) + (j > 10) * 2 pp = numpy.array(list(centrosome.filter.permutations([1, 2, 3, 4]))) def fn(module, workspace, idx): if idx == 0: module.tracking_method.value = "LAP" measurements = runTrackObjects([numpy.array(p)[labels] for p in pp], fn) def m(feature, i): name = "_".join((cellprofiler.modules.trackobjects.F_PREFIX, feature)) values = measurements[OBJECT_NAME, name, i + 1] assert len(values) == 4 return values for i, p in enumerate(pp): l = m(cellprofiler.modules.trackobjects.F_LABEL, i) numpy.testing.assert_array_equal(numpy.arange(1, 5), p[l - 1]) if i > 0: p_prev = pp[i - 1] order = numpy.lexsort([p]) expected_po = p_prev[order] po = m(cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER, i) numpy.testing.assert_array_equal(po, expected_po) pi = m(cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER, i) numpy.testing.assert_array_equal(pi, i) image_numbers, _ = numpy.mgrid[1 : (len(pp) + 1), 0:4] check_relationships( measurements, image_numbers[:-1, :].flatten(), pp[:-1, :].flatten(), image_numbers[1:, :].flatten(), pp[1:, :].flatten(), ) def test_measurement_columns(): """Test get_measurement_columns function""" module = cellprofiler.modules.trackobjects.TrackObjects() module.object_name.value = OBJECT_NAME module.tracking_method.value = "Distance" module.pixel_radius.value = 10 columns = module.get_measurement_columns(None) assert len(columns) == len(cellprofiler.modules.trackobjects.F_ALL) + len( cellprofiler.modules.trackobjects.F_IMAGE_ALL ) for object_name, features in ( (OBJECT_NAME, cellprofiler.modules.trackobjects.F_ALL), ("Image", cellprofiler.modules.trackobjects.F_IMAGE_ALL,), ): for feature in features: if object_name == OBJECT_NAME: name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature, "10") ) else: name = "_".join( ( cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, "10", ) ) index = [column[1] for column in columns].index(name) assert index != -1 column = columns[index] assert column[0] == object_name def test_measurement_columns_lap(): """Test get_measurement_columns function for LAP""" module = cellprofiler.modules.trackobjects.TrackObjects() module.object_name.value = OBJECT_NAME module.tracking_method.value = "LAP" module.model.value = cellprofiler.modules.trackobjects.M_BOTH second_phase = [ cellprofiler.modules.trackobjects.F_LINKING_DISTANCE, cellprofiler.modules.trackobjects.F_MOVEMENT_MODEL, ] for wants in (True, False): module.wants_second_phase.value = wants columns = module.get_measurement_columns(None) # 2, 2, 4 for the static model # 4, 4, 16 for the velocity model other_features = [ cellprofiler.modules.trackobjects.F_AREA, cellprofiler.modules.trackobjects.F_LINKING_DISTANCE, cellprofiler.modules.trackobjects.F_LINK_TYPE, cellprofiler.modules.trackobjects.F_MOVEMENT_MODEL, cellprofiler.modules.trackobjects.F_STANDARD_DEVIATION, ] if wants: other_features += [ cellprofiler.modules.trackobjects.F_GAP_LENGTH, cellprofiler.modules.trackobjects.F_GAP_SCORE, cellprofiler.modules.trackobjects.F_MERGE_SCORE, cellprofiler.modules.trackobjects.F_SPLIT_SCORE, cellprofiler.modules.trackobjects.F_MITOSIS_SCORE, ] assert ( len(columns) == len(cellprofiler.modules.trackobjects.F_ALL) + len(cellprofiler.modules.trackobjects.F_IMAGE_ALL) + len(other_features) + 2 + 2 + 4 + 4 + 4 + 16 ) kalman_features = [ cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_STATE, cellprofiler.modules.trackobjects.F_VY, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_NOISE, cellprofiler.modules.trackobjects.F_VY, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_Y, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_STATIC_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_X, cellprofiler.modules.trackobjects.F_VY, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_Y, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_Y, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_Y, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_Y, cellprofiler.modules.trackobjects.F_VY, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VX, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VX, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VX, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VX, cellprofiler.modules.trackobjects.F_VY, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VY, cellprofiler.modules.trackobjects.F_X, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VY, cellprofiler.modules.trackobjects.F_Y, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VY, cellprofiler.modules.trackobjects.F_VX, ), cellprofiler.modules.trackobjects.kalman_feature( cellprofiler.modules.trackobjects.F_VELOCITY_MODEL, cellprofiler.modules.trackobjects.F_COV, cellprofiler.modules.trackobjects.F_VY, cellprofiler.modules.trackobjects.F_VY, ), ] for object_name, features in ( ( OBJECT_NAME, cellprofiler.modules.trackobjects.F_ALL + kalman_features + other_features, ), ("Image", cellprofiler.modules.trackobjects.F_IMAGE_ALL,), ): for feature in features: if object_name == OBJECT_NAME: name = "_".join( (cellprofiler.modules.trackobjects.F_PREFIX, feature) ) else: name = "_".join( ( cellprofiler.modules.trackobjects.F_PREFIX, feature, OBJECT_NAME, ) ) index = [column[1] for column in columns].index(name) assert index != -1 column = columns[index] assert column[0] == object_name if wants or feature in second_phase: assert len(column) == 4 assert MCA_AVAILABLE_POST_GROUP in column[3] assert column[3][MCA_AVAILABLE_POST_GROUP] else: assert ( (len(column) == 3) or (MCA_AVAILABLE_POST_GROUP not in column[3]) or (not column[3][MCA_AVAILABLE_POST_GROUP]) ) def test_measurements(): """Test the different measurement pieces""" module = cellprofiler.modules.trackobjects.TrackObjects() module.object_name.value = OBJECT_NAME module.image_name.value = "image" module.pixel_radius.value = 10 categories = module.get_categories(None, "Foo") assert len(categories) == 0 categories = module.get_categories(None, OBJECT_NAME) assert len(categories) == 1 assert categories[0] == cellprofiler.modules.trackobjects.F_PREFIX features = module.get_measurements(None, OBJECT_NAME, "Foo") assert len(features) == 0 features = module.get_measurements( None, OBJECT_NAME, cellprofiler.modules.trackobjects.F_PREFIX ) assert len(features) == len(cellprofiler.modules.trackobjects.F_ALL) assert all( [feature in cellprofiler.modules.trackobjects.F_ALL for feature in features] ) scales = module.get_measurement_scales( None, OBJECT_NAME, cellprofiler.modules.trackobjects.F_PREFIX, "Foo", "image" ) assert len(scales) == 0 for feature in cellprofiler.modules.trackobjects.F_ALL: scales = module.get_measurement_scales( None, OBJECT_NAME, cellprofiler.modules.trackobjects.F_PREFIX, feature, "image", ) assert len(scales) == 1 assert int(scales[0]) == 10 def make_lap2_workspace(objs, nimages, group_numbers=None, group_indexes=None): """Make a workspace to test the second half of LAP objs - a N x 7 array of "objects" composed of the following pieces per object objs[0] - image set # for object objs[1] - label for object objs[2] - parent image # objs[3] - parent object # objs[4] - x coordinate for object objs[5] - y coordinate for object objs[6] - area for object nimages - # of image sets group_numbers - group numbers for each image set, defaults to all 1 group_indexes - group indexes for each image set, defaults to range """ module = cellprofiler.modules.trackobjects.TrackObjects() module.set_module_num(1) module.object_name.value = OBJECT_NAME module.tracking_method.value = "LAP" module.wants_second_phase.value = True module.wants_lifetime_filtering.value = False module.wants_minimum_lifetime.value = False module.min_lifetime.value = 1 module.wants_maximum_lifetime.value = False module.max_lifetime.value = 100 module.pixel_radius.value = 50 pipeline = Pipeline() def callback(caller, event): assert not isinstance(event, RunException) pipeline.add_listener(callback) pipeline.add_module(module) m = cellprofiler_core.measurement.Measurements() if objs.shape[0] > 0: nobjects = numpy.bincount(objs[:, 0].astype(int)) else: nobjects = numpy.zeros(nimages, int) for i in range(nimages): m.next_image_set(i + 1) for index, feature, dtype in ( ( 1, module.measurement_name(cellprofiler.modules.trackobjects.F_LABEL), int, ), ( 2, module.measurement_name( cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER ), int, ), ( 3, module.measurement_name( cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER ), int, ), (4, M_LOCATION_CENTER_X, float), (5, M_LOCATION_CENTER_Y, float), ( 6, module.measurement_name(cellprofiler.modules.trackobjects.F_AREA), float, ), ): values = objs[objs[:, 0] == i, index].astype(dtype) m.add_measurement(OBJECT_NAME, feature, values, i + 1) m.add_measurement("Image", "ImageNumber", i + 1) m.add_measurement( "Image", GROUP_NUMBER, 1 if group_numbers is None else group_numbers[i], image_set_number=i + 1, ) m.add_measurement( "Image", GROUP_INDEX, i if group_indexes is None else group_indexes[i], image_set_number=i + 1, ) # # Add blanks of the right sizes for measurements that are recalculated # m.add_measurement( "Image", "_".join((C_COUNT, OBJECT_NAME)), nobjects[i], image_set_number=i + 1, ) for feature in ( cellprofiler.modules.trackobjects.F_DISTANCE_TRAVELED, cellprofiler.modules.trackobjects.F_DISPLACEMENT, cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE, cellprofiler.modules.trackobjects.F_TRAJECTORY_X, cellprofiler.modules.trackobjects.F_TRAJECTORY_Y, cellprofiler.modules.trackobjects.F_LINEARITY, cellprofiler.modules.trackobjects.F_LIFETIME, cellprofiler.modules.trackobjects.F_FINAL_AGE, cellprofiler.modules.trackobjects.F_LINKING_DISTANCE, cellprofiler.modules.trackobjects.F_LINK_TYPE, cellprofiler.modules.trackobjects.F_MOVEMENT_MODEL, cellprofiler.modules.trackobjects.F_STANDARD_DEVIATION, ): dtype = ( int if feature in ( cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER, cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER, cellprofiler.modules.trackobjects.F_LIFETIME, cellprofiler.modules.trackobjects.F_LINK_TYPE, cellprofiler.modules.trackobjects.F_MOVEMENT_MODEL, ) else float ) m.add_measurement( OBJECT_NAME, module.measurement_name(feature), numpy.NaN * numpy.ones(nobjects[i], dtype) if feature == cellprofiler.modules.trackobjects.F_FINAL_AGE else numpy.zeros(nobjects[i], dtype), image_set_number=i + 1, ) for feature in ( cellprofiler.modules.trackobjects.F_SPLIT_COUNT, cellprofiler.modules.trackobjects.F_MERGE_COUNT, ): m.add_measurement( "Image", module.image_measurement_name(feature), 0, image_set_number=i + 1, ) # # Figure out how many new and lost objects per image set # label_sets = [set() for i in range(nimages)] for row in objs: label_sets[row[0]].add(row[1]) if group_numbers is None: group_numbers = numpy.ones(nimages, int) if group_indexes is None: group_indexes = numpy.arange(nimages) + 1 # # New objects are ones without matching labels in the previous set # for i in range(0, nimages): if group_indexes[i] == 1: new_objects = len(label_sets[i]) lost_objects = 0 else: new_objects = sum( [1 for label in label_sets[i] if label not in label_sets[i - 1]] ) lost_objects = sum( [1 for label in label_sets[i - 1] if label not in label_sets[i]] ) m.add_measurement( "Image", module.image_measurement_name( cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT ), new_objects, image_set_number=i + 1, ) m.add_measurement( "Image", module.image_measurement_name( cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT ), lost_objects, image_set_number=i + 1, ) m.image_set_number = nimages image_set_list = ImageSetList() for i in range(nimages): image_set = image_set_list.get_image_set(i) workspace = Workspace(pipeline, module, image_set, ObjectSet(), m, image_set_list,) return workspace, module def check_measurements(workspace, d): """Check measurements against expected values workspace - workspace that was run d - dictionary of feature name and list of expected measurement values """ m = workspace.measurements assert isinstance(m,cellprofiler_core.measurement.Measurements) module = workspace.module assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) for feature, expected in list(d.items()): if numpy.isscalar(expected[0]): mname = module.image_measurement_name(feature) values = m.get_all_measurements("Image", mname) assert len(expected) == len(values), ( "Expected # image sets (%d) != actual (%d) for %s" % (len(expected), len(values), feature) ) assert all([v == e for v, e in zip(values, expected)]), ( "Values don't match for " + feature ) else: mname = module.measurement_name(feature) values = m.get_all_measurements(OBJECT_NAME, mname) assert len(expected) == len(values), ( "Expected # image sets (%d) != actual (%d) for %s" % (len(expected), len(values), feature) ) for i, (e, v) in enumerate(zip(expected, values)): assert len(e) == len(v), ( "Expected # of objects (%d) != actual (%d) for %s:%d" % (len(e), len(v), feature, i) ) numpy.testing.assert_almost_equal(v, e) def check_relationships( m, expected_parent_image_numbers, expected_parent_object_numbers, expected_child_image_numbers, expected_child_object_numbers, ): """Check the relationship measurements against expected""" expected_parent_image_numbers = numpy.atleast_1d(expected_parent_image_numbers) expected_child_image_numbers = numpy.atleast_1d(expected_child_image_numbers) expected_parent_object_numbers = numpy.atleast_1d(expected_parent_object_numbers) expected_child_object_numbers = numpy.atleast_1d(expected_child_object_numbers) assert isinstance(m,cellprofiler_core.measurement.Measurements) r = m.get_relationships( 1, cellprofiler.modules.trackobjects.R_PARENT, OBJECT_NAME, OBJECT_NAME ) actual_parent_image_numbers = r[R_FIRST_IMAGE_NUMBER] actual_parent_object_numbers = r[R_FIRST_OBJECT_NUMBER] actual_child_image_numbers = r[R_SECOND_IMAGE_NUMBER] actual_child_object_numbers = r[R_SECOND_OBJECT_NUMBER] assert len(actual_parent_image_numbers) == len(expected_parent_image_numbers) # # Sort similarly # for i1, o1, i2, o2 in ( ( expected_parent_image_numbers, expected_parent_object_numbers, expected_child_image_numbers, expected_child_object_numbers, ), ( actual_parent_image_numbers, actual_parent_object_numbers, actual_child_image_numbers, actual_child_object_numbers, ), ): order = numpy.lexsort((i1, o1, i2, o2)) for x in (i1, o1, i2, o2): x[:] = x[order] for expected, actual in zip( ( expected_parent_image_numbers, expected_parent_object_numbers, expected_child_image_numbers, expected_child_object_numbers, ), ( actual_parent_image_numbers, actual_parent_object_numbers, actual_child_image_numbers, actual_child_object_numbers, ), ): numpy.testing.assert_array_equal(expected, actual) def test_lap_none(): """Run the second part of LAP on one image of nothing""" with MonkeyPatchedDelete(): workspace, module = make_lap2_workspace(numpy.zeros((0, 7)), 1) assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) module.run_as_data_tool(workspace) check_measurements( workspace, { cellprofiler.modules.trackobjects.F_LABEL: [numpy.zeros(0, int)], cellprofiler.modules.trackobjects.F_DISTANCE_TRAVELED: [numpy.zeros(0)], cellprofiler.modules.trackobjects.F_DISPLACEMENT: [numpy.zeros(0)], cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE: [ numpy.zeros(0) ], cellprofiler.modules.trackobjects.F_TRAJECTORY_X: [numpy.zeros(0)], cellprofiler.modules.trackobjects.F_TRAJECTORY_Y: [numpy.zeros(0)], cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT: [0], cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT: [0], cellprofiler.modules.trackobjects.F_MERGE_COUNT: [0], cellprofiler.modules.trackobjects.F_SPLIT_COUNT: [0], }, ) def test_lap_one(): """Run the second part of LAP on one image of one object""" with MonkeyPatchedDelete(): workspace, module = make_lap2_workspace( numpy.array([[0, 1, 0, 0, 100, 100, 25]]), 1 ) assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) module.run_as_data_tool(workspace) check_measurements( workspace, { cellprofiler.modules.trackobjects.F_LABEL: [numpy.array([1])], cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER: [ numpy.array([0]) ], cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER: [ numpy.array([0]) ], cellprofiler.modules.trackobjects.F_DISPLACEMENT: [numpy.zeros(1)], cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE: [ numpy.zeros(1) ], cellprofiler.modules.trackobjects.F_TRAJECTORY_X: [numpy.zeros(1)], cellprofiler.modules.trackobjects.F_TRAJECTORY_Y: [numpy.zeros(1)], cellprofiler.modules.trackobjects.F_NEW_OBJECT_COUNT: [1], cellprofiler.modules.trackobjects.F_LOST_OBJECT_COUNT: [0], cellprofiler.modules.trackobjects.F_MERGE_COUNT: [0], cellprofiler.modules.trackobjects.F_SPLIT_COUNT: [0], }, ) def test_bridge_gap(): """Bridge a gap of zero frames between two objects""" with MonkeyPatchedDelete(): workspace, module = make_lap2_workspace( numpy.array([[0, 1, 0, 0, 1, 2, 25], [2, 2, 0, 0, 101, 102, 25]]), 3 ) assert isinstance(module, cellprofiler.modules.trackobjects.TrackObjects) # # The cost of bridging the gap should be 141. We set the alternative # score to 142 so that bridging wins. # module.gap_cost.value = 142 module.max_gap_score.value = 142 module.run_as_data_tool(workspace) distance = numpy.array([numpy.sqrt(2 * 100 * 100)]) check_measurements( workspace, { cellprofiler.modules.trackobjects.F_LABEL: [ numpy.array([1]), numpy.zeros(0), numpy.array([1]), ], cellprofiler.modules.trackobjects.F_PARENT_IMAGE_NUMBER: [ numpy.array([0]), numpy.zeros(0, int), numpy.array([1]), ], cellprofiler.modules.trackobjects.F_PARENT_OBJECT_NUMBER: [ numpy.array([0]), numpy.zeros(0, int), numpy.array([1]), ], cellprofiler.modules.trackobjects.F_DISTANCE_TRAVELED: [ numpy.zeros(1), numpy.zeros(0), distance, ], cellprofiler.modules.trackobjects.F_INTEGRATED_DISTANCE: [ numpy.zeros(1), numpy.zeros(0), distance, ], cellprofiler.modules.trackobjects.F_TRAJECTORY_X: [ numpy.zeros(1), numpy.zeros(0), numpy.array([100]), ], cellprofiler.modules.trackobjects.F_TRAJECTORY_Y: [ numpy.zeros(1), numpy.zeros(0), numpy.array([100]), ], cellprofiler.modules.trackobjects.F_LINEARITY: [ numpy.array([numpy.nan]), numpy.zeros(0), numpy.array([1]), ], cellprofiler.modules.trackobjects.F_LIFETIME: [ numpy.ones(1), numpy.zeros(0),
numpy.array([2])
numpy.array
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2019 <NAME> <<EMAIL>> # # Distributed under terms of the GNU-License license. """ Long-term extreme response analysis of offshore structures by combining importance sampling with subset simulation Ying Min Low, Xiaoxu Huang <NAME>. On the prediction of extreme wave crest heights. In: Proceedings of the 7th international workshop on wave hindcasting and forecasting, Meteorological Service of Canada. 2002. <NAME>. and <NAME>. (2000): “Metocean Design Criteria for Kvitebjørn”, Statoil Report , C193-KVB-N-FD-0001, Rev. date: 2000-12-14, Stavanger, 2000. """ import numpy as np import scipy.stats as stats import uqra from ._envbase import EnvBase #### Hs distribution Class ################################################## ################################################## class DistHs(object): def __init__(self): self.name = 'Lonowe' self.mu_Hs = 0.77 self.sigma_Hs = 0.6565 self.Hs_shape = 1.503 self.Hs_scale = 2.691 self.h0 = 2.9 self.dist1 = stats.lognorm(s=self.sigma_Hs, scale=np.exp(self.mu_Hs)) self.dist2 = stats.weibull_min(c=self.Hs_shape, scale=self.Hs_scale) def ppf(self, u): """ Return Hs samples corresponding ppf values u """ assert np.logical_and(u >=0, u <=1).all(), 'CDF values should be in range [0,1]' hs1 = self.dist1.ppf(u) hs2 = self.dist2.ppf(u) hs = np.where(hs1 < self.h0, hs1, hs2) return hs def cdf(self, hs): """ Return Hs cdf """ hs_cdf1 = self.dist1.cdf(hs) hs_cdf2 = self.dist2.cdf(hs) hs_cdf = np.where(hs < self.h0, hs_cdf1, hs_cdf2) return hs_cdf def rvs(self, size=1): hs1 = self.dist1.rvs(size=size) hs2 = self.dist2.rvs(size=size) hs = np.where(hs1 < self.h0, hs1, hs2) return hs def pdf(self, hs): hs_pdf1 = self.dist1.pdf(hs) hs_pdf2 = self.dist2.pdf(hs) hs_pdf = np.where(hs < self.h0, hs_pdf1, hs_pdf2) return hs_pdf def get_distribution(self, x, key='value'): """ Return Hs distribution based on x value For Kvitebjorn, Hs distribution is a piecewise distribution connected at Hs = H0 or ppf_Hs = ppf_h0 (icdf_h0) key = 'value' dist_Hs = dist1 if x < h0 = dist2 if x > h0 or dist_hs = dist1 if cdf_x < ppf_h0 = dist2 if cdf_x > ppf_h0 key = 'ppf' - value: physical value of Hs - ppf: point percentile value of Hs """ dist1 = stats.lognorm(s=self.sigma_Hs, scale=np.exp(self.mu_Hs)) dist2 = stats.weibull_min(c=self.Hs_shape, scale=self.Hs_scale) ppf_h0 = dist1.cdf(self.h0) if key.lower() == 'value': dist = dist1 if x <= h0 else dist2 elif key.lower() == 'ppf': dist = dsit1 if x <= ppf_h0 else dist2 else: raise ValueError('Key value: {} is not defined'.format(key)) ################################################## ################################################## class DistTp(object): def __init__(self, hs): self.a1 = 1.134 self.a2 = 0.892 self.a3 = 0.225 self.b1 = 0.005 self.b2 = 0.120 self.b3 = 0.455 self.hs = hs self.dist = stats.lognorm(s=1) def rvs(self, size=1): mu_tp = self.a1 + self.a2* self.hs**self.a3 sigma_tp = np.sqrt(self.b1 + self.b2*np.exp(-self.b3*self.hs)) tp = stats.lognorm.rvs(sigma_tp, loc=0, scale=np.exp(mu_tp), size=[size,self.hs.size]) tp = np.squeeze(tp) assert self.hs.shape == tp.shape return tp def ppf(self, u): """ Generate Tp sample values based on given Hs values: """ mu_tp = self.a1 + self.a2* self.hs**self.a3 sigma_tp = np.sqrt(self.b1 + self.b2*np.exp(-self.b3*self.hs)) tp = stats.lognorm.ppf(u, sigma_tp, loc=0, scale=np.exp(mu_tp)) return tp def cdf(self, tp): mu_tp = self.a1 + self.a2* self.hs**self.a3 sigma_tp = np.sqrt(self.b1 + self.b2*np.exp(-self.b3*self.hs)) tp_cdf = stats.lognorm.cdf(tp, sigma_tp, loc=0, scale=
np.exp(mu_tp)
numpy.exp
# -*- coding: utf-8 -*- # File: parallel_map.py import numpy as np import ctypes import copy import threading import multiprocessing as mp from six.moves import queue import zmq from .base import DataFlow, ProxyDataFlow, DataFlowReentrantGuard from .common import RepeatedData from ..utils.concurrency import StoppableThread, enable_death_signal from ..utils import logger from ..utils.serialize import loads, dumps from .parallel import ( _MultiProcessZMQDataFlow, _repeat_iter, _get_pipe_name, _bind_guard, _zmq_catch_error) __all__ = ['ThreadedMapData', 'MultiThreadMapData', 'MultiProcessMapData', 'MultiProcessMapDataZMQ'] class _ParallelMapData(ProxyDataFlow): def __init__(self, ds, buffer_size, strict=False): super(_ParallelMapData, self).__init__(ds) assert buffer_size > 0, buffer_size self._buffer_size = buffer_size self._buffer_occupancy = 0 # actual #elements in buffer, only useful in strict mode self._strict = strict def reset_state(self): super(_ParallelMapData, self).reset_state() if not self._strict: ds = RepeatedData(self.ds, -1) else: ds = self.ds self._iter = ds.__iter__() def _recv(self): pass def _send(self, dp): pass def _recv_filter_none(self): ret = self._recv() assert ret is not None, \ "[{}] Map function cannot return None when strict mode is used.".format(type(self).__name__) return ret def _fill_buffer(self, cnt=None): if cnt is None: cnt = self._buffer_size - self._buffer_occupancy try: for _ in range(cnt): dp = next(self._iter) self._send(dp) except StopIteration: logger.error( "[{}] buffer_size cannot be larger than the size of the DataFlow when strict=True!".format( type(self).__name__)) raise self._buffer_occupancy += cnt def get_data_non_strict(self): for dp in self._iter: self._send(dp) ret = self._recv() if ret is not None: yield ret def get_data_strict(self): self._fill_buffer() for dp in self._iter: self._send(dp) yield self._recv_filter_none() self._iter = self.ds.__iter__() # refresh # first clear the buffer, then fill for k in range(self._buffer_size): dp = self._recv_filter_none() self._buffer_occupancy -= 1 if k == self._buffer_size - 1: self._fill_buffer() yield dp def __iter__(self): if self._strict: for dp in self.get_data_strict(): yield dp else: for dp in self.get_data_non_strict(): yield dp class MultiThreadMapData(_ParallelMapData): """ Same as :class:`MapData`, but start threads to run the mapping function. This is useful when the mapping function is the bottleneck, but you don't want to start processes for the entire dataflow pipeline. Note: 1. There is tiny communication overhead with threads, but you should avoid starting many threads in your main process to reduce GIL contention. The threads will only start in the process which calls :meth:`reset_state()`. Therefore you can use ``PrefetchDataZMQ(MultiThreadMapData(...), 1)`` to reduce GIL contention. 2. Threads run in parallel and can take different time to run the mapping function. Therefore the order of datapoints won't be preserved, and datapoints from one pass of `df.__iter__()` might get mixed with datapoints from the next pass. You can use **strict mode**, where `MultiThreadMapData.__iter__()` is guaranteed to produce the exact set which `df.__iter__()` produces. Although the order of data still isn't preserved. The behavior of strict mode is undefined if the dataflow is infinite. """ class _Worker(StoppableThread): def __init__(self, inq, outq, evt, map_func): super(MultiThreadMapData._Worker, self).__init__(evt) self.inq = inq self.outq = outq self.func = map_func self.daemon = True def run(self): try: while True: dp = self.queue_get_stoppable(self.inq) if self.stopped(): return # cannot ignore None here. will lead to unsynced send/recv obj = self.func(dp) self.queue_put_stoppable(self.outq, obj) except Exception: if self.stopped(): pass # skip duplicated error messages else: raise finally: self.stop() def __init__(self, ds, nr_thread, map_func, buffer_size=200, strict=False): """ Args: ds (DataFlow): the dataflow to map nr_thread (int): number of threads to use map_func (callable): datapoint -> datapoint | None buffer_size (int): number of datapoints in the buffer strict (bool): use "strict mode", see notes above. """ super(MultiThreadMapData, self).__init__(ds, buffer_size, strict) self._strict = strict self.nr_thread = nr_thread self.map_func = map_func self._threads = [] self._evt = None def reset_state(self): super(MultiThreadMapData, self).reset_state() if self._threads: self._threads[0].stop() for t in self._threads: t.join() self._in_queue = queue.Queue() self._out_queue = queue.Queue() self._evt = threading.Event() self._threads = [MultiThreadMapData._Worker( self._in_queue, self._out_queue, self._evt, self.map_func) for _ in range(self.nr_thread)] for t in self._threads: t.start() self._guard = DataFlowReentrantGuard() # Call once at the beginning, to ensure inq+outq has a total of buffer_size elements self._fill_buffer() def _recv(self): return self._out_queue.get() def _send(self, dp): self._in_queue.put(dp) def __iter__(self): with self._guard: for dp in super(MultiThreadMapData, self).__iter__(): yield dp def __del__(self): if self._evt is not None: self._evt.set() for p in self._threads: p.stop() p.join(timeout=5.0) # if p.is_alive(): # logger.warn("Cannot join thread {}.".format(p.name)) # TODO deprecated ThreadedMapData = MultiThreadMapData class MultiProcessMapDataZMQ(_ParallelMapData, _MultiProcessZMQDataFlow): """ Same as :class:`MapData`, but start processes to run the mapping function, and communicate with ZeroMQ pipe. Note: 1. Processes run in parallel and can take different time to run the mapping function. Therefore the order of datapoints won't be preserved, and datapoints from one pass of `df.__iter__()` might get mixed with datapoints from the next pass. You can use **strict mode**, where `MultiProcessMapData.__iter__()` is guaranteed to produce the exact set which `df.__iter__()` produces. Although the order of data still isn't preserved. The behavior of strict mode is undefined if the dataflow is infinite. """ class _Worker(mp.Process): def __init__(self, identity, map_func, pipename, hwm): super(MultiProcessMapDataZMQ._Worker, self).__init__() self.identity = identity self.map_func = map_func self.pipename = pipename self.hwm = hwm def run(self): enable_death_signal(_warn=self.identity == b'0') ctx = zmq.Context() socket = ctx.socket(zmq.REP) socket.setsockopt(zmq.IDENTITY, self.identity) socket.set_hwm(self.hwm) socket.connect(self.pipename) while True: dp = loads(socket.recv(copy=False)) dp = self.map_func(dp) socket.send(dumps(dp), copy=False) def __init__(self, ds, nr_proc, map_func, buffer_size=200, strict=False): """ Args: ds (DataFlow): the dataflow to map nr_proc(int): number of threads to use map_func (callable): datapoint -> datapoint | None buffer_size (int): number of datapoints in the buffer strict (bool): use "strict mode", see notes above. """ _ParallelMapData.__init__(self, ds, buffer_size, strict) _MultiProcessZMQDataFlow.__init__(self) self.nr_proc = nr_proc self.map_func = map_func self._strict = strict self._procs = [] self._guard = DataFlowReentrantGuard() def reset_state(self): _MultiProcessZMQDataFlow.reset_state(self) _ParallelMapData.reset_state(self) self.context = zmq.Context() self.socket = self.context.socket(zmq.DEALER) self.socket.set_hwm(self._buffer_size * 2) pipename = _get_pipe_name('dataflow-map') _bind_guard(self.socket, pipename) self._proc_ids = [u'{}'.format(k).encode('utf-8') for k in range(self.nr_proc)] worker_hwm = int(self._buffer_size * 2 // self.nr_proc) self._procs = [MultiProcessMapDataZMQ._Worker( self._proc_ids[k], self.map_func, pipename, worker_hwm) for k in range(self.nr_proc)] self._start_processes() self._fill_buffer() # pre-fill the bufer def _send(self, dp): msg = [b"", dumps(dp)] self.socket.send_multipart(msg, copy=False) def _recv(self): msg = self.socket.recv_multipart(copy=False) dp = loads(msg[1]) return dp def __iter__(self): with self._guard, _zmq_catch_error('MultiProcessMapData'): for dp in super(MultiProcessMapDataZMQ, self).__iter__(): yield dp MultiProcessMapData = MultiProcessMapDataZMQ # alias def _pool_map(data): global SHARED_ARR, WORKER_ID, MAP_FUNC res = MAP_FUNC(data) if res is None: return None shared =
np.reshape(SHARED_ARR, res.shape)
numpy.reshape
# -*- coding: utf-8 -*- """ Solve the inverse problem of the coupled ODE system #dS/dt = - BetaI(t)*I/N * S #S = N-E-I-J-D-H-R dI/dt = BetaI(t)*I/N * S - gamma * I dH/dt = (p*gamma) * I - (q*phiD) * H - ((1-q)*phiR) * H dD/dt = (q*phiD) * H dR/dt = ((1-p)*gamma) * I + ((1-q)*phiR) * H dI_sum/dt = BetaI(t)*I/N * S dH_sum/dt = (p*gamma) * I Here the parameters BetaI, p, and q are inferred as time-dependent function gamma, phiD, and phiR are given """ import sys sys.path.insert(0, '../../Utilities/') import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import pandas import math import tensorflow as tf import numpy as np from numpy import * # from numpy import matlib as mb import matplotlib.pyplot as plt import matplotlib.dates as mdates import scipy.io from scipy.interpolate import griddata import time from itertools import product, combinations from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection #from plotting import newfig, savefig from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.gridspec as gridspec import datetime from pyDOE import lhs # from scipy.special import gamma from scipy.special import jacobi start_time = time.time() #np.random.seed(1234) #tf.set_random_seed(1234) # tf.random.set_seed(1234) #%% class PhysicsInformedNN: #Initialize the class def __init__(self, t_train, I_new_train, D_new_train, H_new_train, I_sum_train, D_sum_train, H_sum_train, U0, t_f, S_SIHDR, I_SIHDR, H_SIHDR, D_SIHDR, R_SIHDR, lb, ub, N, layers, layers_kappa, layers_BetaI, layers_p, layers_q): self.N = N #Data for training self.t_train = t_train self.I_new_train = I_new_train self.D_new_train = D_new_train self.H_new_train = H_new_train self.I_sum_train = I_sum_train self.D_sum_train = D_sum_train self.H_sum_train = H_sum_train self.S_cur_train = S_SIHDR self.I_cur_train = I_SIHDR self.H_cur_train = H_SIHDR self.D_cur_train = D_SIHDR self.R_cur_train = R_SIHDR self.I0_new = U0[0] self.D0_new = U0[1] self.H0_new = U0[2] self.I0_sum = U0[3] self.D0_sum = U0[4] self.H0_sum = U0[5] self.S0 = U0[6] self.I0 = U0[7] self.H0 = U0[8] self.D0 = U0[9] self.R0 = U0[10] self.t_f = t_f #Time division s self.M = len(t_f)-1 self.tau = t_f[1]-t_f[0] #Bounds self.lb = lb self.ub = ub # initialize NN self.weights, self.biases = self.initialize_NN(layers) self.weights_kappa, self.biases_kappa = self.initialize_NN(layers_kappa) self.weights_BetaI, self.biases_BetaI = self.initialize_NN(layers_BetaI) self.weights_p, self.biases_p = self.initialize_NN(layers_p) self.weights_q, self.biases_q = self.initialize_NN(layers_q) # self.weights_kappa1, self.biases_kappa1 = self.initialize_NN(layers_kappa) # self.weights_kappa2, self.biases_kappa2 = self.initialize_NN(layers_kappa) # self.weights_kappa3, self.biases_kappa3 = self.initialize_NN(layers_kappa) # self.weights_kappa4, self.biases_kappa4 = self.initialize_NN(layers_kappa) # self.weights_kappa5, self.biases_kappa5 = self.initialize_NN(layers_kappa) self.Kappa1_COEF = tf.Variable(tf.zeros([poly_order,1], dtype=tf.float64) , dtype=tf.float64, trainable=True) self.Kappa2_COEF = tf.Variable(tf.zeros([poly_order,1], dtype=tf.float64) , dtype=tf.float64, trainable=True) self.Kappa3_COEF = tf.Variable(tf.zeros([poly_order,1], dtype=tf.float64) , dtype=tf.float64, trainable=True) self.Kappa4_COEF = tf.Variable(tf.zeros([poly_order,1], dtype=tf.float64) , dtype=tf.float64, trainable=True) self.Kappa5_COEF = tf.Variable(tf.zeros([poly_order,1], dtype=tf.float64) , dtype=tf.float64, trainable=True) #Fixed parameters self.N = N self.gamma = tf.Variable(1.0/6.0,dtype=tf.float64,trainable=False) self.phiD = tf.Variable(1.0/15.0,dtype=tf.float64,trainable=False) self.phiR = tf.Variable(1.0/7.5,dtype=tf.float64,trainable=False) # self.phiD = tf.Variable(1.0/17.0,dtype=tf.float64,trainable=False) # self.phiR = tf.Variable(1.0/4.0,dtype=tf.float64,trainable=False) #Fitted parameters # bound_p = [0, 1] # bound_q = [0, 1] # self.p = bound_p[0]+(bound_p[1]-bound_p[0])*tf.sigmoid(tf.Variable(0.0,dtype=tf.float64, trainable=True)) # self.q = bound_q[0]+(bound_q[1]-bound_q[0])*tf.sigmoid(tf.Variable(0.0,dtype=tf.float64, trainable=True)) #tf placeholders and graph self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) self.saver = tf.train.Saver() # placeholders for inputs self.t_u = tf.placeholder(tf.float64, shape=[None, self.t_train.shape[1]]) self.I_new_u = tf.placeholder(tf.float64, shape=[None, self.I_new_train.shape[1]]) self.D_new_u = tf.placeholder(tf.float64, shape=[None, self.D_new_train.shape[1]]) self.H_new_u = tf.placeholder(tf.float64, shape=[None, self.H_new_train.shape[1]]) self.I_sum_u = tf.placeholder(tf.float64, shape=[None, self.I_sum_train.shape[1]]) self.D_sum_u = tf.placeholder(tf.float64, shape=[None, self.D_sum_train.shape[1]]) self.H_sum_u = tf.placeholder(tf.float64, shape=[None, self.H_sum_train.shape[1]]) self.I0_new_u = tf.placeholder(tf.float64, shape=[None, self.I0_new.shape[1]]) self.D0_new_u = tf.placeholder(tf.float64, shape=[None, self.D0_new.shape[1]]) self.H0_new_u = tf.placeholder(tf.float64, shape=[None, self.H0_new.shape[1]]) self.I0_sum_u = tf.placeholder(tf.float64, shape=[None, self.I0_sum.shape[1]]) self.D0_sum_u = tf.placeholder(tf.float64, shape=[None, self.D0_sum.shape[1]]) self.H0_sum_u = tf.placeholder(tf.float64, shape=[None, self.H0_sum.shape[1]]) self.t_tf = tf.placeholder(tf.float64, shape=[None, self.t_f.shape[1]]) # physics informed neural networks self.S_pred, self.I_pred, self.H_pred, self.D_pred, self.R_pred, self.I_sum_pred, self.H_sum_pred = self.net_u(self.t_u) self.D_sum_pred = self.D_pred # self.Kappa_pred1 = self.net_Kappa1(self.t_u) # self.Kappa_pred2 = self.net_Kappa2(self.t_u) # self.Kappa_pred3 = self.net_Kappa3(self.t_u) # self.Kappa_pred4 = self.net_Kappa4(self.t_u) # self.Kappa_pred5 = self.net_Kappa5(self.t_u) self.Kappa_pred1 = self.net_Kappa1_plot() self.Kappa_pred2 = self.net_Kappa2_plot() self.Kappa_pred3 = self.net_Kappa3_plot() self.Kappa_pred4 = self.net_Kappa4_plot() self.Kappa_pred5 = self.net_Kappa5_plot() self.BetaI_pred = self.net_BetaI(self.t_u) self.p_pred = self.net_p (self.t_u) self.q_pred = self.net_q (self.t_u) self.I_new_pred = self.I_sum_pred[1:,:] - self.I_sum_pred[:-1,:] self.D_new_pred = self.D_sum_pred[1:,:] - self.D_sum_pred[:-1,:] self.H_new_pred = self.H_sum_pred[1:,:] - self.H_sum_pred[:-1,:] self.I0_new_pred = self.I_new_pred[0] self.D0_new_pred = self.D_new_pred[0] self.H0_new_pred = self.H_new_pred[0] self.I0_sum_pred = self.I_sum_pred[0] self.D0_sum_pred = self.D_sum_pred[0] self.H0_sum_pred = self.H_sum_pred[0] self.S0_pred = self.S_pred[0] self.I0_pred = self.I_pred[0] self.D0_pred = self.D_pred[0] self.H0_pred = self.H_pred[0] self.R0_pred = self.R_pred[0] self.S_f, self.I_f, self.H_f, self.D_f, self.R_f, self.I_sum_f, self.H_sum_f, self.R_con = self.net_f(self.t_tf) # loss self.lossU0 = 100*tf.reduce_mean(tf.square(self.I0_new_u - self.I0_new_pred)) + \ 100*tf.reduce_mean(tf.square(self.D0_new_u - self.D0_new_pred)) + \ 100*tf.reduce_mean(tf.square(self.H0_new_u - self.H0_new_pred)) + \ tf.reduce_mean(tf.square(self.I0_sum_u - self.I0_sum_pred)) + \ tf.reduce_mean(tf.square(self.D0_sum_u - self.D0_sum_pred)) + \ tf.reduce_mean(tf.square(self.H0_sum_u - self.H0_sum_pred)) + \ tf.reduce_mean(tf.square(self.S0 - self.S0_pred)) + \ tf.reduce_mean(tf.square(self.I0 - self.I0_pred)) + \ tf.reduce_mean(tf.square(self.D0 - self.D0_pred)) + \ tf.reduce_mean(tf.square(self.H0 - self.H0_pred)) + \ tf.reduce_mean(tf.square(self.R0 - self.R0_pred)) self.lossU = 300*tf.reduce_mean(tf.square(self.I_new_u[:-1,:] - self.I_new_pred)) + \ 300*tf.reduce_mean(tf.square(self.D_new_u[:-1,:] - self.D_new_pred)) + \ 300*tf.reduce_mean(tf.square(self.H_new_u[:-1,:] - self.H_new_pred)) + \ tf.reduce_mean(tf.square(self.I_sum_u - self.I_sum_pred)) + \ tf.reduce_mean(tf.square(self.D_sum_u - self.D_sum_pred)) + \ tf.reduce_mean(tf.square(self.H_sum_u - self.H_sum_pred)) + \ tf.reduce_mean(tf.square(self.I_pred - self.I_cur_train)) + \ tf.reduce_mean(tf.square(self.H_pred - self.H_cur_train)) # tf.reduce_mean(tf.square(self.S_pred - self.S_cur_train)) + \ # tf.reduce_mean(tf.square(self.D_pred - self.D_cur_train)) + \ # tf.reduce_mean(tf.square(self.R_pred - self.R_cur_train)) self.lossF =tf.reduce_mean(tf.square(self.S_f))\ + tf.reduce_mean(tf.square(self.I_f))\ + tf.reduce_mean(tf.square(self.H_f)) \ + tf.reduce_mean(tf.square(self.D_f)) \ + tf.reduce_mean(tf.square(self.R_f)) \ + tf.reduce_mean(tf.square(self.I_sum_f)) \ + tf.reduce_mean(tf.square(self.H_sum_f)) \ + tf.reduce_mean(tf.square(self.R_con)) self.loss = 10*self.lossU0 + 150*self.lossU + self.lossF #Optimizer self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol' : 1.0 * np.finfo(float).eps}) self.optimizer_Adam = tf.train.AdamOptimizer() self.train_op_Adam = self.optimizer_Adam.minimize(self.loss) init = tf.global_variables_initializer() self.sess.run(init) #Initialize the nueral network def initialize_NN(self, layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = self.xavier_init(size=[layers[l], layers[l+1]]) #weights for the current layer b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float64), dtype=tf.float64) #biases for the current layer weights.append(W) #save the elements in W to weights (a row vector) biases.append(b) #save the elements in b to biases (a 1Xsum(layers) row vector) return weights, biases #generating weights def xavier_init(self, size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev, dtype=tf.float64), dtype=tf.float64) #Architecture of the neural network def neural_net(self, t, weights, biases): num_layers = len(weights) + 1 H = 2.0*(t-self.lb)/(self.ub-self.lb) - 1.0 for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y def net_BetaI(self, t): BetaI = self.neural_net(t, self.weights_BetaI, self.biases_BetaI) bound_b = [tf.constant(0.0, dtype=tf.float64), tf.constant(1.0, dtype=tf.float64)] return bound_b[0]+(bound_b[1]-bound_b[0])*tf.sigmoid(BetaI) def net_p(self, t): # p = self.neural_net(t, self.weights_p, self.biases_p) # return tf.sigmoid(p) p = 0.5*(1-tf.tanh(t-50.0))*(0.5-0.1)+0.1 return p def net_q(self, t): # q = self.neural_net(t, self.weights_q, self.biases_q) # return tf.sigmoid(q) q = 0.5*(1-tf.tanh(t-150.0))*(0.5-0.2)+0.2 return q def net_u(self, t): SIHDR = self.neural_net(t, self.weights, self.biases) #SIHDR = SIHDR**2 S = SIHDR[:,0:1] I = SIHDR[:,1:2] H = SIHDR[:,2:3] D = SIHDR[:,3:4] R = SIHDR[:,4:5] I_sum = SIHDR[:,5:6] H_sum = SIHDR[:,6:7] return S, I, H, D, R, I_sum, H_sum #Temporal fractional order in (0,1) # def net_Kappa(self,t): # Kappa = self.neural_net(t, self.weights_kappa, self.biases_kappa) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) # # return tf.exp(t*0.0)*0.99999 # def net_Kappa1(self,t): # Kappa = self.neural_net(t, self.weights_kappa1, self.biases_kappa1) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) # def net_Kappa2(self,t): # Kappa = self.neural_net(t, self.weights_kappa2, self.biases_kappa2) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) # def net_Kappa3(self,t): # Kappa = self.neural_net(t, self.weights_kappa3, self.biases_kappa3) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) # def net_Kappa4(self,t): # Kappa = self.neural_net(t, self.weights_kappa4, self.biases_kappa4) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) # def net_Kappa5(self,t): # Kappa = self.neural_net(t, self.weights_kappa5, self.biases_kappa5) # return 1e-5+tf.sigmoid(Kappa)*(1-1e-5) def net_Kappa1(self): polys = tf.constant(np.transpose(Jacobi_polys[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa1_COEF) return tf.sigmoid(Kappa) def net_Kappa2(self): polys = tf.constant(np.transpose(Jacobi_polys[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa2_COEF) return tf.sigmoid(Kappa) def net_Kappa3(self): polys = tf.constant(np.transpose(Jacobi_polys[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa3_COEF) return tf.sigmoid(Kappa) def net_Kappa4(self): polys = tf.constant(np.transpose(Jacobi_polys[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa4_COEF) return tf.sigmoid(Kappa) def net_Kappa5(self): polys = tf.constant(np.transpose(Jacobi_polys[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa5_COEF) return tf.sigmoid(Kappa) def net_Kappa1_plot(self): polys = tf.constant(np.transpose(Jacobi_polys_plots[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa1_COEF) return tf.sigmoid(Kappa) def net_Kappa2_plot(self): polys = tf.constant(np.transpose(Jacobi_polys_plots[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa2_COEF) return tf.sigmoid(Kappa) def net_Kappa3_plot(self): polys = tf.constant(np.transpose(Jacobi_polys_plots[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa3_COEF) return tf.sigmoid(Kappa) def net_Kappa4_plot(self): polys = tf.constant(np.transpose(Jacobi_polys_plots[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa4_COEF) return tf.sigmoid(Kappa) def net_Kappa5_plot(self): polys = tf.constant(np.transpose(Jacobi_polys_plots[:poly_order,:]), dtype=tf.float64) Kappa = tf.matmul(polys, self.Kappa5_COEF) return tf.sigmoid(Kappa) #fractional differential coefficients for the L1 approximation def FDM1(self, Kappa): m = self.M #int Tau = self.tau #array kappa_vec = tf.reshape(Kappa, [m+1,1]) #tnsor kappa_mat = tf.tile(kappa_vec, [1, m-1]) idx = np.tril_indices(m+1, k=-1) Temp1 = np.zeros([m+1,m+1]) Temp1[idx] = idx[0]-idx[1] Temp1 = np.tril(Temp1, k=-2) #(m+1,m+1) numpy array Temp1 = tf.constant(Temp1, dtype = tf.float64) #(m+1,m+1) tensor Temp2 = -np.eye(m+1) Temp2[idx] = idx[0]-idx[1]-1 Temp2 = np.tril(Temp2, k=-2) Temp2 = tf.constant(Temp2, dtype = tf.float64) Temp3 = -2*np.eye(m+1) Temp3[idx] = idx[0]-idx[1]-2 Temp3 = np.tril(Temp3, k=-2) Temp3 = tf.constant(Temp3, dtype = tf.float64) A = np.concatenate((np.zeros((1,m)), np.eye(m)), axis=0, out=None) A = tf.constant(A[:,0:m-1], dtype = tf.float64) Temp = tf.pow(Temp1[:,0:m-1],1.0-kappa_mat) -\ 2*tf.pow(Temp2[:,0:m-1],1.0-kappa_mat) +\ tf.pow(Temp3[:,0:m-1],1.0-kappa_mat) + A L_Temp1 = tf.constant(np.arange(m), dtype = tf.float64) #np.arange(m) L_Temp1 = tf.pow(tf.reshape(L_Temp1, [m,1]), 1.0-kappa_vec[1:m+1, 0:1]) L_Temp2 = tf.constant(np.arange(m)+1, dtype = tf.float64) #np.arange(m) + 1 L_Temp2 = tf.pow(tf.reshape(L_Temp2, [m,1]), 1.0-kappa_vec[1:m+1, 0:1]) L_Temp = tf.concat((tf.zeros((1,1), dtype = tf.float64), L_Temp1-L_Temp2), axis=0) R_Temp = tf.concat((tf.zeros((m,1), dtype = tf.float64), tf.ones((1,1), dtype = tf.float64)), axis=0) coeff_mat = tf.concat((L_Temp, Temp, R_Temp), axis=1) c = tf.tile(tf.math.divide(tf.pow(Tau, -kappa_vec), tf.exp(tf.lgamma(2-kappa_vec))), tf.constant([1, m+1], dtype = tf.int32)) coeff_mat = tf.multiply(c, coeff_mat) return coeff_mat def net_f(self, t): #load fixed parameters gamma = self.gamma phiD = self.phiD phiR = self.phiR #load time-dependent parameters betaI = 0.25 #self.net_BetaI(t) p = 0.2 #self.net_p(t) q = 0.3 #self.net_q(t) #Obtain SIHDR from Neural network S, I, H, D, R, I_sum, H_sum = self.net_u(t) #Time derivatives #Fractional differential matrix Kappa1 = self.net_Kappa1() Kappa2 = self.net_Kappa2() Kappa3 = self.net_Kappa3() Kappa4 = self.net_Kappa4() Kappa5 = self.net_Kappa5() DiffMat1 = self.FDM1(Kappa1) DiffMat2 = self.FDM1(Kappa2) DiffMat3 = self.FDM1(Kappa3) DiffMat4 = self.FDM1(Kappa4) DiffMat5 = self.FDM1(Kappa5) #fractional time derivatives # DM = self.DM S_t = tf.matmul(DiffMat1, S) I_t = tf.matmul(DiffMat2, I) H_t = tf.matmul(DiffMat3, H) D_t = tf.matmul(DiffMat4, D) R_t = tf.matmul(DiffMat5, R) I_sum_t = tf.matmul(DiffMat2, I_sum) H_sum_t = tf.matmul(DiffMat3, H_sum) T = tf.constant(7.0, dtype = tf.float64) # T = tf.constant(len(self.t_train), dtype = tf.float64) ## fractional derivative S_t = tf.pow(T, Kappa1-1)*S_t/tf.exp(tf.lgamma(1.0+Kappa1)) I_t = tf.pow(T, Kappa2-1)*I_t/tf.exp(tf.lgamma(1.0+Kappa2)) H_t = tf.pow(T, Kappa3-1)*H_t/tf.exp(tf.lgamma(1.0+Kappa3)) D_t = tf.pow(T, Kappa4-1)*D_t/tf.exp(tf.lgamma(1.0+Kappa4)) R_t = tf.pow(T, Kappa5-1)*R_t/tf.exp(tf.lgamma(1.0+Kappa5)) I_sum_t = tf.pow(T, Kappa2-1)*I_sum_t/tf.exp(tf.lgamma(1.0+Kappa2)) H_sum_t = tf.pow(T, Kappa3-1)*H_sum_t/tf.exp(tf.lgamma(1.0+Kappa3)) ## integer order derivative # S_t = tf.gradients(S, t, unconnected_gradients='zero')[0] # I_t = tf.gradients(I, t, unconnected_gradients='zero')[0] # H_t = tf.gradients(H, t, unconnected_gradients='zero')[0] # D_t = tf.gradients(D, t, unconnected_gradients='zero')[0] # R_t = tf.gradients(R, t, unconnected_gradients='zero')[0] # I_sum_t = tf.gradients(I_sum, t, unconnected_gradients='zero')[0] # H_sum_t = tf.gradients(H_sum, t, unconnected_gradients='zero')[0] #Residuals f_S = S_t + betaI*I/self.N * S f_I = I_t - betaI*I/self.N * S + gamma * I f_H = H_t - (p*gamma) * I + (q*phiD) * H + ((1-q)*phiR) * H f_D = D_t - (q*phiD)*H f_R = R_t - ((1-p)*gamma) * I - ((1-q)*phiR) * H f_I_sum = I_sum_t - betaI*I/self.N * S f_H_sum = H_sum_t - (p*gamma)*I f_con = S + I + H + D + R - self.N return f_S[1:,:], f_I[1:,:], f_H[1:,:], f_D[1:,:], f_R[1:,:], f_I_sum[1:,:], f_H_sum[1:,:], f_con[1:,:] def callback(self, loss, lossU0, lossU, lossF): total_records_LBFGS.append(np.array([loss, lossU0, lossU, lossF])) print('Loss: %.3e, LossU0: %.3e, LossU: %.3e, LossF: %.3e' % (loss, lossU0, lossU, lossF)) def train(self, nIter): tf_dict = {self.t_u: self.t_train, self.t_tf: self.t_f, self.I_new_u: self.I_new_train, self.D_new_u: self.D_new_train, self.H_new_u: self.H_new_train, self.I_sum_u: self.I_sum_train, self.H_sum_u: self.H_sum_train, self.D_sum_u: self.D_sum_train, self.I0_new_u: self.I0_new, self.D0_new_u: self.D0_new, self.H0_new_u: self.H0_new, self.I0_sum_u: self.I0_sum, self.D0_sum_u: self.D0_sum, self.H0_sum_u: self.H0_sum} start_time = time.time() for it in range(nIter+1): self.sess.run(self.train_op_Adam, tf_dict) # Print if it % 100 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.loss, tf_dict) lossU0_value = self.sess.run(self.lossU0, tf_dict) lossU_value = self.sess.run(self.lossU, tf_dict) lossF_value = self.sess.run(self.lossF, tf_dict) Kappa1_records.append(self.sess.run(self.Kappa_pred1)) Kappa2_records.append(self.sess.run(self.Kappa_pred2)) Kappa3_records.append(self.sess.run(self.Kappa_pred3)) Kappa4_records.append(self.sess.run(self.Kappa_pred4)) Kappa5_records.append(self.sess.run(self.Kappa_pred5)) total_records.append(np.array([it, loss_value, lossU0_value, lossU_value, lossF_value])) print('It: %d, Loss: %.3e, LossU0: %.3e, LossU: %.3e, LossF: %.3e, Time: %.2f' % (it, loss_value, lossU0_value, lossU_value, lossF_value, elapsed)) start_time = time.time() if LBFGS: self.optimizer.minimize(self.sess, feed_dict = tf_dict, #Inputs of the minimize operator fetches = [self.loss, self.lossU0, self.lossU, self.lossF], loss_callback = self.callback) #Show the results of minimize operator def predict(self, t_star): tf_dict = {self.t_u: t_star, self.I0_new_u: self.I0_new, self.D0_new_u: self.D0_new, self.H0_new_u: self.H0_new} S = self. sess.run(self.S_pred, tf_dict) I = self. sess.run(self.I_pred, tf_dict) H = self. sess.run(self.H_pred, tf_dict) D = self. sess.run(self.D_pred, tf_dict) R = self. sess.run(self.R_pred, tf_dict) I_sum = self. sess.run(self.I_sum_pred, tf_dict) H_sum = self. sess.run(self.H_sum_pred, tf_dict) D_sum = self. sess.run(self.D_sum_pred, tf_dict) I_new = self. sess.run(self.I_new_pred, tf_dict) D_new = self. sess.run(self.D_new_pred, tf_dict) H_new = self. sess.run(self.H_new_pred, tf_dict) Kappa1 = self.sess.run(self.Kappa_pred1, tf_dict) Kappa2 = self.sess.run(self.Kappa_pred2, tf_dict) Kappa3 = self.sess.run(self.Kappa_pred3, tf_dict) Kappa4 = self.sess.run(self.Kappa_pred4, tf_dict) Kappa5 = self.sess.run(self.Kappa_pred5, tf_dict) BetaI = self.sess.run(self.BetaI_pred, tf_dict) p = self.sess.run(self.p_pred, tf_dict) q = self.sess.run(self.q_pred, tf_dict) return S, I, H, D, R, I_new, H_new, D_new, I_sum, H_sum, D_sum, \ Kappa1, Kappa2, Kappa3, Kappa4, Kappa5, BetaI, p, q ############################################################ #%% if __name__=="__main__": #Architecture of of the NN layers=[1] + 6*[30] + [7] layers_kappa=[1] + 2*[15] + [1] layers_BetaI=[1] + 2*[15] + [1] layers_p=[1] + 2*[15] + [1] layers_q=[1] + 2*[15] + [1] current_directory = os.getcwd() relative_path_loadSIR = '/../Model-SIHDR-DATA/' read_results_to = current_directory + relative_path_loadSIR S_SIHDR = np.loadtxt(read_results_to + 'S_pred_mean.txt')[:,None] I_SIHDR = np.loadtxt(read_results_to + 'I_pred_mean.txt')[:,None] H_SIHDR = np.loadtxt(read_results_to + 'H_pred_mean.txt')[:,None] D_SIHDR = np.loadtxt(read_results_to + 'D_pred_mean.txt')[:,None] R_SIHDR = np.loadtxt(read_results_to + 'R_pred_mean.txt')[:,None] S_SIHDR = S_SIHDR/1e-4 I_SIHDR = I_SIHDR/1e-4 H_SIHDR = H_SIHDR/1e-4 D_SIHDR = D_SIHDR/1e-4 R_SIHDR = R_SIHDR/1e-4 t_star = np.arange(len(I_SIHDR)) t_star = t_star[:,None] N = 8.399e6 # I0 = I_SIHDR[0:1, :] # H0 = H_SIHDR[0:1, :] # D0 = D_SIHDR[0:1, :] # R0 = R_SIHDR[0:1, :] # S0 = N - I0 - R0 # S0 = S0.reshape([1,1]) sf = 1e-6 N = N*sf S_SIHDR = S_SIHDR * sf I_SIHDR = I_SIHDR * sf H_SIHDR = H_SIHDR * sf D_SIHDR = D_SIHDR * sf R_SIHDR = R_SIHDR * sf # S0 = S0 *sf # I0 = I0 * sf # H0 = H0 * sf # D0 = D0 * sf # R0 = R0 * sf #Load data data_frame = pandas.read_csv('../Data/data-by-day.csv') I_new_star = data_frame['CASE_COUNT'] #T x 1 array H_new_star = data_frame['HOSPITALIZED_COUNT'] #T x 1 array D_new_star = data_frame['DEATH_COUNT'] #T x 1 array #7 days average I_new_star = I_new_star.rolling(window=7).mean() H_new_star = H_new_star.rolling(window=7).mean() D_new_star = D_new_star.rolling(window=7).mean() I_new_star = I_new_star.to_numpy(dtype=np.float64) H_new_star = H_new_star.to_numpy(dtype=np.float64) D_new_star = D_new_star.to_numpy(dtype=np.float64) I_new_star = I_new_star[6:] H_new_star = H_new_star[6:] D_new_star = D_new_star[6:] I_new_star = I_new_star.reshape([len(I_new_star), 1]) H_new_star = H_new_star.reshape([len(H_new_star), 1]) D_new_star = D_new_star.reshape([len(D_new_star), 1]) I_sum_star = np.cumsum(I_new_star) H_sum_star = np.cumsum(H_new_star) D_sum_star = np.cumsum(D_new_star) I_sum_star = I_sum_star.reshape([len(I_sum_star), 1]) H_sum_star = H_sum_star.reshape([len(H_sum_star), 1]) D_sum_star = D_sum_star.reshape([len(D_sum_star), 1]) #t_star = np.arange(len(I_new_star)) #t_star = t_star.reshape([len(t_star),1]) #N = 8.399e6 #Scaling #sf = 1e-5 #N = N * sf I_new_star = I_new_star * sf D_new_star = D_new_star * sf H_new_star = H_new_star * sf I_sum_star = I_sum_star * sf H_sum_star = H_sum_star * sf D_sum_star = D_sum_star * sf #lower and upper bounds lb = t_star.min(0) ub = t_star.max(0) #Initial conditions I0_new = I_new_star[0:1,:] D0_new = D_new_star[0:1,:] H0_new = H_new_star[0:1,:] I0_sum = I_sum_star[0:1,:] D0_sum = D_sum_star[0:1,:] H0_sum = H_sum_star[0:1,:] #Initial conditions I0 = I_sum_star[0:1,:] D0 = D_sum_star[0:1,:] H0 = np.array([[0.0]]) R0 = np.array([[0.0]]) S0 = N - I0 - D0 - H0 - R0 S0 = S0.reshape([1,1]) U0 = [I0_new, D0_new, H0_new, I0_sum, D0_sum, H0_sum, S0, I0, H0, D0, R0] #Residual points N_f = 3000 #5 * len(t_star) t_f = np.linspace(lb, ub, num = N_f) #uniformed grid for evaluating fractional derivative poly_order = 10 t_f_mapped = -1 + 2/(ub-lb) * (t_f - lb) t_star_mapped = -1 + 2/(ub-lb) * (t_star - lb) Jacobi_polys = np.asarray([ jacobi(n,0,0)(t_f_mapped.flatten()) for n in range(0, 15)]) Jacobi_polys_plots = np.asarray([ jacobi(n,0,0)(t_star_mapped.flatten()) for n in range(0, 15)]) #%% ###################################################################### ######################## Training and Predicting ############################### ###################################################################### # t_train = (t_star-lb)/(ub-lb) t_train = t_star I_new_train = I_new_star D_new_train = D_new_star H_new_train = H_new_star I_sum_train = I_sum_star D_sum_train = D_sum_star H_sum_train = H_sum_star from datetime import datetime now = datetime.now() # dt_string = now.strftime("%m-%d-%H-%M") dt_string = now.strftime("%m-%d") #save results current_directory = os.getcwd() for j in range(10): casenumber = 'set' + str(j+1) relative_path_results = '/Model5-Dev/Train-Results-'+dt_string+'-'+casenumber+'/' save_results_to = current_directory + relative_path_results if not os.path.exists(save_results_to): os.makedirs(save_results_to) relative_path = '/Model5-Dev/Train-model-'+dt_string+'-'+casenumber+'/' save_models_to = current_directory + relative_path if not os.path.exists(save_models_to): os.makedirs(save_models_to) break #Training total_records = [] Kappa1_records = [] Kappa2_records = [] Kappa3_records = [] Kappa4_records = [] Kappa5_records = [] total_records_LBFGS = [] model = PhysicsInformedNN(t_train, I_new_train, D_new_train, H_new_train, I_sum_train, D_sum_train, H_sum_train, U0, t_f, S_SIHDR, I_SIHDR, H_SIHDR, D_SIHDR, R_SIHDR, lb, ub, N, layers, layers_kappa, layers_BetaI, layers_p, layers_q) LBFGS = True # LBFGS = False model.train(10000) #Training with n iterations model.saver.save(model.sess, save_models_to+"model.ckpt") #Predicting S, I, H, D, R, I_new, H_new, D_new, I_sum, H_sum, D_sum, \ Kappa1, Kappa2, Kappa3, Kappa4, Kappa5, BetaI, p, q = model.predict(t_star) import datetime end_time = time.time() print(datetime.timedelta(seconds=int(end_time-start_time))) #Calculate RC Rc = BetaI /(1.0/6.0) #%% #save data np.savetxt(save_results_to + 'S.txt', S.reshape((-1,1))) np.savetxt(save_results_to + 'I.txt', I.reshape((-1,1))) np.savetxt(save_results_to + 'D.txt', D.reshape((-1,1))) np.savetxt(save_results_to + 'H.txt', H.reshape((-1,1))) np.savetxt(save_results_to + 'R.txt', R.reshape((-1,1))) np.savetxt(save_results_to + 'I_new.txt', I_new.reshape((-1,1))) np.savetxt(save_results_to + 'D_new.txt', D_new.reshape((-1,1))) np.savetxt(save_results_to + 'H_new.txt', H_new.reshape((-1,1))) np.savetxt(save_results_to + 'I_sum.txt', I_sum.reshape((-1,1))) np.savetxt(save_results_to + 'H_sum.txt', H_sum.reshape((-1,1))) np.savetxt(save_results_to + 'D_sum.txt', D_sum.reshape((-1,1))) # #save BetaI, Rc, and sigma np.savetxt(save_results_to + 't_star.txt', t_star.reshape((-1,1))) np.savetxt(save_results_to + 'Rc.txt', Rc.reshape((-1,1))) np.savetxt(save_results_to + 'Kappa1.txt', Kappa1.reshape((-1,1))) np.savetxt(save_results_to + 'Kappa2.txt', Kappa2.reshape((-1,1))) np.savetxt(save_results_to + 'Kappa3.txt', Kappa3.reshape((-1,1))) np.savetxt(save_results_to + 'Kappa4.txt', Kappa4.reshape((-1,1))) np.savetxt(save_results_to + 'Kappa5.txt', Kappa5.reshape((-1,1))) np.savetxt(save_results_to + 'BetaI.txt', BetaI.reshape((-1,1))) np.savetxt(save_results_to + 'p.txt', p.reshape((-1,1))) np.savetxt(save_results_to + 'q.txt', q.reshape((-1,1))) #%% #records for Adam N_Iter = len(total_records) iteration = np.asarray(total_records)[:,0] loss_his = np.asarray(total_records)[:,1] loss_his_u0 = np.asarray(total_records)[:,2] loss_his_u = np.asarray(total_records)[:,3] loss_his_f = np.asarray(total_records)[:,4] #records for LBFGS if LBFGS: N_Iter_LBFGS = len(total_records_LBFGS) iteration_LBFGS =
np.arange(N_Iter_LBFGS)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 12 13:34:49 2020 @author: lukepinkel """ import numba import numpy as np import scipy as sp import scipy.special SQRT2 = np.sqrt(2) ROOT2PI = np.sqrt(2.0 * np.pi) def poisson_logp(x, mu, logp=True): p = sp.special.xlogy(x, mu) - sp.special.gammaln(x + 1) - mu if logp==False: p = np.exp(p) return p def log1p(x): return np.log(1+x) def norm_cdf(x, mean=0.0, sd=1.0): z = (x - mean) / sd p = (sp.special.erf(z/SQRT2) + 1.0) / 2.0 return p def norm_pdf(x, mean=0.0, sd=1.0): z = (x - mean) / sd p = np.exp(-z**2 / 2.0) / (ROOT2PI * sd) return p def get_part(arr, sol, size, step, maximum, res): if step==size: res.append(sol.copy()) else: sol[step] = 1 while sol[step]<=maximum: get_part(arr, sol, size, step+1, maximum, res) sol[step] += 1 get_part(arr, sol, size, step+1, maximum+1, res) def partition_set(n): size = n arr =
np.arange(1, size+1)
numpy.arange
import os.path import numpy as np import psi4 from pyresponse.ao2mo import AO2MO from pyresponse.core import AO2MOTransformationType, Hamiltonian, Program, Spin from pyresponse.cphf import CPHF from pyresponse.data import REFDIR from pyresponse.operators import Operator from pyresponse.psi4 import molecules from pyresponse.psi4.utils import ( mocoeffs_from_psi4wfn, moenergies_from_psi4wfn, occupations_from_psi4wfn, ) from pyresponse.solvers import ExactInv np.set_printoptions(precision=8, linewidth=200, suppress=True) datadir = REFDIR / "psi4numpy" / "water" def test_geometric_hessian_rhf_outside_solver_psi4numpy(): psi4.core.set_output_file("output.dat", False) mol = psi4.geometry( """ O H 1 1.1 H 1 1.1 2 104 symmetry c1 """ ) psi4.core.set_active_molecule(mol) options = { "BASIS": "STO-3G", "SCF_TYPE": "PK", "E_CONVERGENCE": 1e-10, "D_CONVERGENCE": 1e-10, } psi4.set_options(options) _, wfn = psi4.energy("SCF", return_wfn=True) # Assuming C1 symmetry occ = wfn.doccpi()[0] nmo = wfn.nmo() vir = nmo - occ C = wfn.Ca_subset("AO", "ALL") npC = np.asarray(C) mints = psi4.core.MintsHelper(wfn.basisset()) H_ao = np.asarray(mints.ao_kinetic()) + np.asarray(mints.ao_potential()) # Update H, transform to MO basis H = np.einsum("uj,vi,uv", npC, npC, H_ao) # Integral generation from Psi4's MintsHelper MO = np.asarray(mints.mo_eri(C, C, C, C)) # Physicist notation MO = MO.swapaxes(1, 2) F = H + 2.0 * np.einsum("pmqm->pq", MO[:, :occ, :, :occ]) F -= np.einsum("pmmq->pq", MO[:, :occ, :occ, :]) # Uncomment every `np.save` call to regenerate reference data. # np.save(os.path.join(datadir, 'F.npy'), F) F_ref = np.load(os.path.join(datadir, "F.npy")) np.testing.assert_allclose(F, F_ref, rtol=0, atol=1.0e-10) natoms = mol.natom() cart = ["_X", "_Y", "_Z"] oei_dict = {"S": "OVERLAP", "T": "KINETIC", "V": "POTENTIAL"} deriv1_mat = {} deriv1 = {} # 1st Derivative of OEIs for atom in range(natoms): for key in oei_dict: deriv1_mat[key + str(atom)] = mints.mo_oei_deriv1(oei_dict[key], atom, C, C) for p in range(3): map_key = key + str(atom) + cart[p] deriv1[map_key] = np.asarray(deriv1_mat[key + str(atom)][p]) # np.save(os.path.join(datadir, f'{map_key}.npy'), deriv1[map_key]) deriv1_ref = np.load(os.path.join(datadir, f"{map_key}.npy")) np.testing.assert_allclose(deriv1[map_key], deriv1_ref, rtol=0, atol=1.0e-10) # 1st Derivative of TEIs for atom in range(natoms): string = "TEI" + str(atom) deriv1_mat[string] = mints.mo_tei_deriv1(atom, C, C, C, C) for p in range(3): map_key = string + cart[p] deriv1[map_key] = np.asarray(deriv1_mat[string][p]) # np.save(os.path.join(datadir, f'{map_key}.npy'), deriv1[map_key]) deriv1_ref = np.load(os.path.join(datadir, f"{map_key}.npy")) np.testing.assert_allclose(deriv1[map_key], deriv1_ref, rtol=0, atol=1.0e-10) Hes = {} deriv2_mat = {} deriv2 = {} Hes["S"] = np.zeros((3 * natoms, 3 * natoms)) Hes["V"] =
np.zeros((3 * natoms, 3 * natoms))
numpy.zeros
import numpy as np from numpy.testing import ( assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_equal, ) from pytest import raises from menpo.math import as_matrix from menpo.model import LinearVectorModel, PCAModel, PCAVectorModel from menpo.shape import PointCloud def test_linear_model_creation(): data = np.zeros((3, 120)) LinearVectorModel(data) def test_linear_model_basics(): data = np.random.random((3, 120)) linear_model = LinearVectorModel(data) assert linear_model.n_components == 3 assert linear_model.n_components == 3 assert linear_model.n_features == 120 def test_linear_model_project_vector(): data = np.zeros((3, 120)) data[0, 0] = 1 data[1, 1] = 1 data[2, 2] = 1 linear_model = LinearVectorModel(data) sample = np.random.random(120) weights = linear_model.project(sample) assert_allclose(weights, sample[:3]) def test_linear_model_component(): data = np.random.random((3, 120)) linear_model = LinearVectorModel(data) assert_equal(linear_model.component(2), data[2]) def test_linear_model_instance_vector(): data = np.zeros((3, 120)) data[0, 0] = 1 data[1, 1] = 1 data[2, 2] = 1 linear_model = LinearVectorModel(data) weights = np.array([0.263, 7, 41.2]) projected = linear_model.instance(weights) # only the first 3 features are non zero... assert_allclose(projected[:3], weights) # rest should be nil assert_allclose(projected[3:], 0) def test_pca_n_active_components(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) # integer model.n_active_components = 5 assert_equal(model.n_active_components, 5) def test_pca_n_active_components_too_many(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) # too many components model.n_active_components = 100 assert_equal(model.n_active_components, 9) # reset too smaller number of components model.n_active_components = 5 assert_equal(model.n_active_components, 5) # reset to too many components model.n_active_components = 100 assert_equal(model.n_active_components, 9) def test_pca_n_active_components_negative(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) with raises(ValueError): model.n_active_components = -5 def test_pca_trim(): samples = [PointCloud(np.random.randn(10)) for _ in range(10)] model = PCAModel(samples) # trim components model.trim_components(5) # number of active components should be the same as number of components assert_equal(model.n_active_components, model.n_components) def test_pca_trim_variance_limit(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) with raises(ValueError): # impossible to keep more than 1.0 ratio variance model.trim_components(2.5) def test_pca_trim_negative_integers(): samples = [PointCloud(np.random.randn(10)) for _ in range(10)] model = PCAModel(samples) with raises(ValueError): # no negative number of components model.trim_components(-2) def test_pca_trim_negative_float(): samples = [PointCloud(np.random.randn(10)) for _ in range(10)] model = PCAModel(samples) with raises(ValueError): # no negative number of components model.trim_components(-2) def test_pca_variance(): samples = [PointCloud(np.random.randn(10)) for _ in range(10)] model = PCAModel(samples) # kept variance must be equal to total variance assert_equal(model.variance(), model.original_variance()) # kept variance ratio must be 1.0 assert_equal(model.variance_ratio(), 1.0) # noise variance must be 0.0 assert_equal(model.noise_variance(), 0.0) # noise variance ratio must be also 0.0 assert_equal(model.noise_variance_ratio(), 0.0) def test_pca_inverse_noise_variance(): samples = [PointCloud(np.random.randn(10)) for _ in range(10)] model = PCAModel(samples) with raises(ValueError): # inverse noise_variance it's not computable model.inverse_noise_variance() def test_pca_variance_after_change_n_active_components(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) # set number of active components model.n_active_components = 5 # kept variance must be smaller than total variance assert model.variance() < model.original_variance() # kept variance ratio must be smaller than 1.0 assert model.variance_ratio() < 1.0 # noise variance must be bigger than 0.0 assert model.noise_variance() > 0.0 # noise variance ratio must also be bigger than 0.0 assert model.noise_variance_ratio() > 0.0 # inverse noise variance is computable assert model.inverse_noise_variance() == 1 / model.noise_variance() def test_pca_variance_after_trim(): samples = [np.random.randn(10) for _ in range(10)] model = PCAVectorModel(samples) # set number of active components model.trim_components(5) # kept variance must be smaller than total variance assert model.variance() < model.original_variance() # kept variance ratio must be smaller than 1.0 assert model.variance_ratio() < 1.0 # noise variance must be bigger than 0.0 assert model.noise_variance() > 0.0 # noise variance ratio must also be bigger than 0.0 assert model.noise_variance_ratio() > 0.0 # inverse noise variance is computable assert model.inverse_noise_variance() == 1 / model.noise_variance() def test_pca_orthogonalize_against(): pca_samples = np.random.randn(10, 10) pca_model = PCAVectorModel(pca_samples) lm_samples = np.asarray([np.random.randn(10) for _ in range(4)]) lm_model = LinearVectorModel(np.asarray(lm_samples)) # orthogonalize pca_model.orthonormalize_against_inplace(lm_model) # number of active components must remain the same assert_equal(pca_model.n_active_components, 6) def test_pca_orthogonalize_against_with_less_active_components(): pca_samples = np.random.randn(10, 10) pca_model = PCAVectorModel(pca_samples) lm_samples = np.asarray([np.random.randn(10) for _ in range(4)]) lm_model = LinearVectorModel(np.asarray(lm_samples)) # set number of active components pca_model.n_active_components = 5 # orthogonalize pca_model.orthonormalize_against_inplace(lm_model) # number of active components must remain the same assert_equal(pca_model.n_active_components, 5) def test_pca_increment_centred(): pca_samples = [PointCloud(np.random.randn(10, 2)) for _ in range(10)] ipca_model = PCAModel(pca_samples[:3]) ipca_model.increment(pca_samples[3:6]) ipca_model.increment(pca_samples[6:]) bpca_model = PCAModel(pca_samples) assert_almost_equal(np.abs(ipca_model.components), np.abs(bpca_model.components)) assert_almost_equal(ipca_model.eigenvalues, bpca_model.eigenvalues) assert_almost_equal(ipca_model.mean().as_vector(), bpca_model.mean().as_vector()) def test_pca_increment_noncentred(): pca_samples = [np.random.randn(10) for _ in range(10)] ipca_model = PCAVectorModel(pca_samples[:3], centre=False) ipca_model.increment(pca_samples[3:6]) ipca_model.increment(pca_samples[6:]) bpca_model = PCAVectorModel(pca_samples, centre=False) assert_almost_equal(np.abs(ipca_model.components), np.abs(bpca_model.components)) assert_almost_equal(ipca_model.eigenvalues, bpca_model.eigenvalues) assert_almost_equal(ipca_model.mean(), bpca_model.mean()) def test_pca_vector_init_from_covariance(): n_samples = 30 n_features = 10 centre_values = [True, False] for centre in centre_values: # generate samples matrix and mean vector samples = np.random.randn(n_samples, n_features) mean = np.mean(samples, axis=0) # compute covariance matrix if centre: X = samples - mean C = np.dot(X.T, X) / (n_samples - 1) else: C = np.dot(samples.T, samples) / (n_samples - 1) # create the 2 pca models pca1 = PCAVectorModel.init_from_covariance_matrix( C, mean, centred=centre, n_samples=n_samples ) pca2 = PCAVectorModel(samples, centre=centre, inplace=False) # compare them assert_array_almost_equal(pca1.mean(), pca2.mean()) assert_array_almost_equal( pca1.component(0, with_mean=False), pca2.component(0, with_mean=False) ) assert_array_almost_equal(pca1.component(7), pca2.component(7)) assert_array_almost_equal(pca1.components, pca2.components)
assert_array_almost_equal(pca1.eigenvalues, pca2.eigenvalues)
numpy.testing.assert_array_almost_equal
# -*- coding: utf-8 -*- """ Module to perform core QuakeMigrate functions: detect() and locate(). """ import warnings import numpy as np from obspy import UTCDateTime, Stream, Trace from obspy.signal.invsim import cosine_taper from obspy.signal.trigger import classic_sta_lta import pandas as pd from scipy.interpolate import Rbf from scipy.optimize import curve_fit from scipy.signal import butter, lfilter, fftconvolve import QMigrate.core.model as qmod import QMigrate.core.QMigratelib as ilib import QMigrate.io.quakeio as qio import QMigrate.plot.quakeplot as qplot import QMigrate.util as util # Filter warnings warnings.filterwarnings("ignore", message=("Covariance of the parameters" + " could not be estimated")) warnings.filterwarnings("ignore", message=("File will be written with more" + " than one different record" + " lengths. This might have a" + " negative influence on the" + " compatibility with other" + " programs.")) def sta_lta_centred(a, nsta, nlta): """ Calculates the ratio of the average signal in a short-term (signal) window to a preceding long-term (noise) window. STA/LTA value is assigned to the end of the LTA / start of the STA. Parameters ---------- a : array-like Signal array nsta : int Number of samples in short-term window nlta : int Number of samples in long-term window Returns ------- sta / lta : array-like Ratio of short term average to average in a preceding long term average window. STA/LTA value is assigned to end of LTA window / start of STA window -- "centred" """ nsta = int(round(nsta)) nlta = int(round(nlta)) # Cumulative sum to calculate moving average sta = np.cumsum(a ** 2) sta = np.require(sta, dtype=np.float) lta = sta.copy() # Compute the STA and the LTA sta[nsta:] = sta[nsta:] - sta[:-nsta] sta[nsta:-nsta] = sta[nsta*2:] sta /= nsta lta[nlta:] = lta[nlta:] - lta[:-nlta] lta /= nlta sta[:(nlta - 1)] = 0 sta[-nsta:] = 0 # Avoid division by zero by setting zero values to tiny float dtiny = np.finfo(0.0).tiny idx = lta < dtiny lta[idx] - dtiny return sta / lta def onset(sig, stw, ltw, centred=False): """ Calculate STA/LTA onset (characteristic) function from filtered seismic data. Parameters ---------- sig : array-like Data signal used to generate an onset function stw : int Short term window length (# of samples) ltw : int Long term window length (# of samples) centred : bool, optional Compute centred STA/LTA (STA window is preceded by LTA window; value is assigned to end of LTA window / start of STA window) or classic STA/LTA (STA window is within LTA window; value is assigned to end of STA & LTA windows). Centred gives less phase-shifted (late) onset function, and is closer to a Gaussian approximation, but is far more sensitive to data with sharp offsets due to instrument failures. We recommend using classic for detect() and centred for locate() if your data quality allows it. This is the default behaviour; override by setting self.onset_centred. Returns ------- onset_raw : array-like Raw STA/LTA ratio onset function generated from data onset : array-like log10(onset_raw) ; after clipping between -0.2 and infinity. """ stw = int(round(stw)) ltw = int(round(ltw)) n_channels, n_samples = sig.shape onset = np.copy(sig) onset_raw = np.copy(sig) for i in range(n_channels): if np.sum(sig[i, :]) == 0.0: onset[i, :] = 0.0 onset_raw[i, :] = onset[i, :] else: if centred is True: onset[i, :] = sta_lta_centred(sig[i, :], stw, ltw) else: onset[i, :] = classic_sta_lta(sig[i, :], stw, ltw) onset_raw[i, :] = onset[i, :] np.clip(1 + onset[i, :], 0.8, np.inf, onset[i, :]) np.log(onset[i, :], onset[i, :]) return onset_raw, onset def filter(sig, sampling_rate, lc, hc, order=2): """ Apply zero phase-shift Butterworth band-pass filter to seismic data. Parameters ---------- sig : array-like Data signal to be filtered sampling_rate : int Number of samples per second, in Hz lc : float Lowpass frequency of band-pass filter hc : float Highpass frequency of band-pass filter order : int, optional Number of corners. NOTE: two-pass filter effectively doubles the number of corners. Returns ------- fsig : array-like Filtered seismic data """ # Construct butterworth band-pass filter b1, a1 = butter(order, [2.0 * lc / sampling_rate, 2.0 * hc / sampling_rate], btype="band") nchan, nsamp = sig.shape fsig = np.copy(sig) # Apply cosine taper then apply band-pass filter in both directions for ch in range(0, nchan): fsig[ch, :] = fsig[ch, :] - fsig[ch, 0] tap = cosine_taper(len(fsig[ch, :]), 0.1) fsig[ch, :] = fsig[ch, :] * tap fsig[ch, :] = lfilter(b1, a1, fsig[ch, ::-1])[::-1] fsig[ch, :] = lfilter(b1, a1, fsig[ch, :]) return fsig class DefaultQuakeScan(object): """ Default parameter class for QuakeScan. """ def __init__(self): """ Initialise DefaultQuakeScan object. Parameters (all optional) ---------- p_bp_filter : array-like, [float, float, int] Butterworth bandpass filter specification [lowpass, highpass, corners*] *NOTE: two-pass filter effectively doubles the number of corners. s_bp_filter : array-like, [float, float, int] Butterworth bandpass filter specification [lowpass, highpass, corners*] *NOTE: two-pass filter effectively doubles the number of corners. p_onset_win : array-like, floats P onset window parameters [STA, LTA] s_onset_win : array-like, floats S onset window parameters [STA, LTA] decimate : array-like, ints Decimation factor in each grid axis to apply to the look-up table [Dec_x, Dec_y, Dec_z] time_step : float Time length (in seconds) of time step used in detect(). Note: total detect run duration should be divisible by time_step. Increasing time_step will increase RAM usage during detect, but will slightly speed up overall detect run. sampling_rate : int Desired sampling rate for input data; sampling rate that detect() and locate() will be computed at. onset_centred : bool, optional Compute centred STA/LTA (STA window is preceded by LTA window; value is assigned to end of LTA window / start of STA window) or classic STA/LTA (STA window is within LTA window; value is assigned to end of STA & LTA windows). Centred gives less phase-shifted (late) onset function, and is closer to a Gaussian approximation, but is far more sensitive to data with sharp offsets due to instrument failures. We recommend using classic for detect() and centred for locate() if your data quality allows it. This is the default behaviour; override by setting this variable. pick_threshold : float (between 0 and 1) For use with picking_mode = 'Gaussian'. Picks will only be made if the onset function exceeds this percentile of the noise level (average amplitude of onset function outside pick windows). Recommended starting value: 1.0 picking_mode : str Currently the only available picking mode is 'Gaussian' fraction_tt : float Defines width of time window around expected phase arrival time in which to search for a phase pick as a function of the travel-time from the event location to that station -- should be an estimate of the uncertainty in the velocity model. marginal_window : float Time window (+/- marginal_window) about the maximum coalescence time to marginalise the 4d coalescence grid compouted in locate() to estimate the earthquake location and uncertainty. Should be an estimate of the time uncertainty in the earthquake origin time - a combination of the expected spatial error and the seismic velocity in the region of the event pre_pad : float, optional Option to override the default pre-pad duration of data to read before computing 4d coalescence in detect() and locate(). Default value is calculated from the onset function durations. n_cores : int Number of cores to use on the executing host for detect() /locate() continuous_scanmseed_write : bool Option to continuously write the .scanmseed file outputted by detect() at the end of every time step. Default behaviour is to write at the end of the time period, or the end of each day. plot_event_summary : bool, optional Plot event summary figure - see QMigrate.plot.quakeplot for more details. plot_station_traces : bool, optional Plot data and onset functions overlain by phase picks for each station used in locate() plot_coal_video : bool, optional Plot coalescence video for each earthquake located in locate() write_4d_coal_grid : bool, optional Save the full 4d coalescence grid output by compute for each event located by locate() -- NOTE these files are large. write_cut_waveforms : bool, optional Write raw cut waveforms for all data found in the archive for each event located by locate() -- NOTE this data has not been processed or quality-checked! cut_waveform_format : str, optional File format to write waveform data to. Options are all file formats supported by obspy, including: "MSEED" (default), "SAC", "SEGY", "GSE2" pre_cut : float, optional Specify how long before the event origin time to cut the waveform data from post_cut : float, optional Specify how long after the event origin time to cut the waveform data to xy_files : list, string List of file strings: With columns ["File", "Color", "Linewidth", "Linestyle"] Where File is the file path to the xy file to be plotted on the map. File should contain two columns ["Longitude", "Latitude"]. ** NOTE ** - do not include a header line in either file. """ # Filter parameters self.p_bp_filter = [2.0, 16.0, 2] self.s_bp_filter = [2.0, 12.0, 2] # Onset window parameters self.p_onset_win = [0.2, 1.0] self.s_onset_win = [0.2, 1.0] # Traveltime lookup table decimation factor self.decimate = [1, 1, 1] # Time step for continuous compute in detect self.time_step = 120. # Data sampling rate self.sampling_rate = 50 # Centred onset function override -- None means it will be # automatically set in detect() and locate() self.onset_centred = None # Pick related parameters self.pick_threshold = 1.0 self.picking_mode = "Gaussian" self.fraction_tt = 0.1 # Marginal window self.marginal_window = 2. # Default pre-pad for compute self.pre_pad = None # Number of cores to perform detect/locate on self.n_cores = 1 # Toggle whether to incrementally write .scanmseed in detect() self.continuous_scanmseed_write = False # Plotting toggles self.plot_event_summary = True self.plot_station_traces = False self.plot_coal_video = False # Saving toggles self.write_4d_coal_grid = False self.write_cut_waveforms = False self.cut_waveform_format = "MSEED" self.pre_cut = None self.post_cut = None # xy files for plotting self.xy_files = None class QuakeScan(DefaultQuakeScan): """ QuakeMigrate scanning class Forms the core of the QuakeMigrate method, providing wrapper functions for the C-compiled migration methods. Methods ------- detect(start_time, end_time) Core detection method -- compute decimated 3-D coalescence continuously throughout entire time period; output as .scanmseed (in mSEED format). locate(start_time, end_time) Core locate method -- compute 3-D coalescence over short time window around candidate earthquake triggered from coastream; output location & uncertainties (.event file), phase picks (.picks file), plus multiple optional plots / data for further analysis and processing. """ raw_data = {} filt_data = {} onset_data = {} DEFAULT_GAUSSIAN_FIT = {"popt": 0, "xdata": 0, "xdata_dt": 0, "PickValue": -1} EVENT_FILE_COLS = ["DT", "COA", "X", "Y", "Z", "LocalGaussian_X", "LocalGaussian_Y", "LocalGaussian_Z", "LocalGaussian_ErrX", "LocalGaussian_ErrY", "LocalGaussian_ErrZ", "GlobalCovariance_X", "GlobalCovariance_Y", "GlobalCovariance_Z", "GlobalCovariance_ErrX", "GlobalCovariance_ErrY", "GlobalCovariance_ErrZ"] def __init__(self, data, lookup_table, output_path=None, run_name=None, log=False): """ Class initialisation method. Parameters ---------- data : Archive object Contains information on data archive structure and read_waveform_data() method lookup_table : str Look-up table file path output_path : str Path of parent output directory: e.g. ./OUTPUT run_name : str Name of current run: all outputs will be saved in the directory output_path/run_name """ DefaultQuakeScan.__init__(self) self.data = data lut = qmod.LUT() lut.load(lookup_table) self.lut = lut if output_path is not None: self.output = qio.QuakeIO(output_path, run_name, log) else: self.output = None # Define post-pad as a function of the maximum travel-time between a # station and a grid point plus the LTA (in case onset_centred is True) # ---> applies to both detect() and locate() ttmax = np.max(lut.fetch_map("TIME_S")) lta_max = max(self.p_onset_win[1], self.s_onset_win[1]) self.post_pad = np.ceil(ttmax + 2 * lta_max) self.log = log msg = "=" * 120 + "\n" msg += "=" * 120 + "\n" msg += "\tQuakeMigrate - Coalescence Scanning - Path: {} - Name: {}\n" msg += "=" * 120 + "\n" msg += "=" * 120 + "\n" msg = msg.format(self.output.path, self.output.name) self.output.log(msg, self.log) def __str__(self): """ Return short summary string of the QuakeScan object It will provide information on all of the various parameters that the user can/has set. """ out = "QuakeMigrate parameters" out += "\n\tTime step\t\t:\t{}".format(self.time_step) out += "\n\n\tData sampling rate\t:\t{}".format(self.sampling_rate) out += "\n\n\tDecimation\t\t:\t[{}, {}, {}]".format( self.decimate[0], self.decimate[1], self.decimate[2]) out += "\n\n\tBandpass filter P\t:\t[{}, {}, {}]".format( self.p_bp_filter[0], self.p_bp_filter[1], self.p_bp_filter[2]) out += "\n\tBandpass filter S\t:\t[{}, {}, {}]".format( self.s_bp_filter[0], self.s_bp_filter[1], self.s_bp_filter[2]) out += "\n\n\tOnset P [STA, LTA]\t:\t[{}, {}]".format( self.p_onset_win[0], self.p_onset_win[1]) out += "\n\tOnset S [STA, LTA]\t:\t[{}, {}]".format( self.s_onset_win[0], self.s_onset_win[1]) out += "\n\n\tPre-pad\t\t\t:\t{}".format(self.pre_pad) out += "\n\tPost-pad\t\t:\t{}".format(self.post_pad) out += "\n\n\tMarginal window\t\t:\t{}".format(self.marginal_window) out += "\n\tPick threshold\t\t:\t{}".format(self.pick_threshold) out += "\n\tPicking mode\t\t:\t{}".format(self.picking_mode) out += "\n\tFraction ttime\t\t:\t{}".format(self.fraction_tt) out += "\n\n\tCentred onset\t\t:\t{}".format(self.onset_centred) out += "\n\n\tNumber of CPUs\t\t:\t{}".format(self.n_cores) return out def detect(self, start_time, end_time): """ Scans through continuous data calculating coalescence on a decimated 3D grid by back-migrating P and S onset (characteristic) functions. Parameters ---------- start_time : str Start time of continuous scan end_time : str End time of continuous scan (last sample returned will be that which immediately precedes this time stamp) log : bool, optional Write output to a log file (default: False) """ # Convert times to UTCDateTime objects start_time = UTCDateTime(start_time) end_time = UTCDateTime(end_time) # Decimate LUT self.lut = self.lut.decimate(self.decimate) # Detect uses the non-centred onset by default if self.onset_centred is None: self.onset_centred = False # Define pre-pad as a function of the onset windows if self.pre_pad is None: self.pre_pad = max(self.p_onset_win[1], self.s_onset_win[1]) \ + 3 * max(self.p_onset_win[0], self.s_onset_win[0]) msg = "=" * 120 + "\n" msg += "\tDETECT - Continuous Seismic Processing\n" msg += "=" * 120 + "\n" msg += "\n" msg += "\tParameters specified:\n" msg += "\t\tStart time = {}\n" msg += "\t\tEnd time = {}\n" msg += "\t\tTime step (s) = {}\n" msg += "\t\tNumber of CPUs = {}\n" msg += "\n" msg += "\t\tSampling rate = {}\n" msg += "\t\tGrid decimation [X, Y, Z] = [{}, {}, {}]\n" msg += "\t\tBandpass filter P = [{}, {}, {}]\n" msg += "\t\tBandpass filter S = [{}, {}, {}]\n" msg += "\t\tOnset P [STA, LTA] = [{}, {}]\n" msg += "\t\tOnset S [STA, LTA] = [{}, {}]\n" msg += "\n" msg += "=" * 120 msg = msg.format(str(start_time), str(end_time), self.time_step, self.n_cores, self.sampling_rate, self.decimate[0], self.decimate[1], self.decimate[2], self.p_bp_filter[0], self.p_bp_filter[1], self.p_bp_filter[2], self.s_bp_filter[0], self.s_bp_filter[1], self.s_bp_filter[2], self.p_onset_win[0], self.p_onset_win[1], self.s_onset_win[0], self.s_onset_win[1]) self.output.log(msg, self.log) # Detect max coalescence value and location at each time sample # within the decimated grid self._continuous_compute(start_time, end_time) def locate(self, start_time, end_time): """ Re-computes the 3D coalescence on a less decimated grid for a short time window around each candidate earthquake triggered from the decimated continuous detect scan. Calculates event location and uncertainties, makes phase arrival picks, plus multiple optional plotting / data outputs for further analysis and processing. Parameters ---------- start_time : str Start time of locate run: earliest event trigger time that will be located end_time : str End time of locate run: latest event trigger time that will be located is one sample before this time log : bool, optional Write output to a log file (default: False) """ # Convert times to UTCDateTime objects start_time = UTCDateTime(start_time) end_time = UTCDateTime(end_time) msg = "=" * 120 + "\n" msg += "\tLOCATE - Determining earthquake location and uncertainty\n" msg += "=" * 120 + "\n" msg += "\n" msg += "\tParameters specified:\n" msg += "\t\tStart time = {}\n" msg += "\t\tEnd time = {}\n" msg += "\t\tNumber of CPUs = {}\n\n" msg += "=" * 120 + "\n" msg = msg.format(str(start_time), str(end_time), self.n_cores) self.output.log(msg, self.log) # Decimate LUT self.lut = self.lut.decimate(self.decimate) # Locate uses the centred onset by default if self.onset_centred is None: self.onset_centred = True self._locate_events(start_time, end_time) def _append_coastream(self, coastream, daten, max_coa, max_coa_norm, loc, sampling_rate): """ Append latest timestep of detect() output to obspy.Stream() object. Multiply by factor of ["1e5", "1e5", "1e6", "1e6", "1e3"] respectively for channels ["COA", "COA_N", "X", "Y", "Z"], round and convert to int32 as this dramatically reduces memory usage, and allows the coastream data to be saved in mSEED format with STEIM2 compression. The multiplication factor is removed when the data is read back in. Parameters ---------- coastream : obspy Stream object Data output by detect() so far channels: ["COA", "COA_N", "X", "Y", "Z"] NOTE these values have been multiplied by a factor and converted to an int daten : array-like Array of UTCDateTime time stamps for the time step max_coa : array-like Coalescence value through time max_coa_norm : array-like Normalised coalescence value through time loc : array-like Location of maximum coalescence through time sampling_rate : int Sampling rate that detect is run at. Returns ------- coastream : obspy Stream object Data output by detect() so far with most recent timestep appended channels: ["COA", "COA_N", "X", "Y", "Z"] NOTE these values have been multiplied by a factor and converted to an int """ # clip max value of COA to prevent int overflow max_coa[max_coa > 21474.] = 21474. max_coa_norm[max_coa_norm > 21474.] = 21474. npts = len(max_coa) starttime = UTCDateTime(daten[0]) meta = {"network": "NW", "npts": npts, "sampling_rate": sampling_rate, "starttime": starttime} st = Stream(Trace(data=np.round(max_coa * 1e5).astype(np.int32), header={**{"station": "COA"}, **meta})) st += Stream(Trace(data=np.round(max_coa_norm * 1e5).astype(np.int32), header={**{"station": "COA_N"}, **meta})) st += Stream(Trace(data=np.round(loc[:, 0] * 1e6).astype(np.int32), header={**{"station": "X"}, **meta})) st += Stream(Trace(data=np.round(loc[:, 1] * 1e6).astype(np.int32), header={**{"station": "Y"}, **meta})) st += Stream(Trace(data=np.round(loc[:, 2] * 1e3).astype(np.int32), header={**{"station": "Z"}, **meta})) if coastream is not None: coastream = coastream + st coastream.merge(method=-1) else: coastream = st # Have we moved to the next day? If so write out the file and empty # coastream written = False if coastream[0].stats.starttime.julday != \ coastream[0].stats.endtime.julday: write_start = coastream[0].stats.starttime write_end = UTCDateTime(coastream[0].stats.endtime.date) \ - 1 / coastream[0].stats.sampling_rate self.output.write_coastream(coastream, write_start, write_end) written = True coastream.trim(starttime=write_end + 1 / sampling_rate) return coastream, written def _continuous_compute(self, start_time, end_time): """ Compute coalescence between two time stamps, divided into small time steps. Outputs coastream and station availability data to file. Parameters ---------- start_time : UTCDateTime object Time stamp of first sample end_time : UTCDateTime object Time stamp of final sample """ coastream = None t_length = self.pre_pad + self.post_pad + self.time_step self.pre_pad += np.ceil(t_length * 0.06) self.post_pad += np.ceil(t_length * 0.06) try: nsteps = int(np.ceil((end_time - start_time) / self.time_step)) except AttributeError: msg = "Error: Time step has not been specified" self.output.log(msg, self.log) # Initialise pandas DataFrame object to track availability stn_ava_data = pd.DataFrame(index=np.arange(nsteps), columns=self.data.stations) for i in range(nsteps): timer = util.Stopwatch() w_beg = start_time + self.time_step * i - self.pre_pad w_end = start_time + self.time_step * (i + 1) + self.post_pad msg = ("~" * 24) + " Processing : {} - {} " + ("~" * 24) msg = msg.format(str(w_beg), str(w_end)) self.output.log(msg, self.log) try: self.data.read_waveform_data(w_beg, w_end, self.sampling_rate) daten, max_coa, max_coa_norm, loc, map_4d = self._compute( w_beg, w_end, self.data.signal, self.data.availability) stn_ava_data.loc[i] = self.data.availability coord = self.lut.xyz2coord(loc) del loc, map_4d except util.ArchiveEmptyException: msg = "!" * 24 + " " * 16 msg += " No files in archive for this time step " msg += " " * 16 + "!" * 24 self.output.log(msg, self.log) daten, max_coa, max_coa_norm, coord = self._empty(w_beg, w_end) stn_ava_data.loc[i] = self.data.availability except util.DataGapException: msg = "!" * 24 + " " * 9 msg += "All available data for this time period contains gaps" msg += " " * 10 + "!" * 24 msg += "\n" + "!" * 24 + " " * 11 msg += "or data not available at start/end of time period" msg += " " * 12 + "!" * 24 self.output.log(msg, self.log) daten, max_coa, max_coa_norm, coord = self._empty(w_beg, w_end) stn_ava_data.loc[i] = self.data.availability stn_ava_data.rename(index={i: str(w_beg + self.pre_pad)}, inplace=True) # Append upto sample-before-last - if end_time is # 2014-08-24T00:00:00, your last sample will be 2014-08-23T23:59:59 coastream, written = self._append_coastream(coastream, daten[:-1], max_coa[:-1], max_coa_norm[:-1], coord[:-1, :], self.sampling_rate) del daten, max_coa, max_coa_norm, coord if self.continuous_scanmseed_write and not written: self.output.write_coastream(coastream) written = True self.output.log(timer(), self.log) if not written: self.output.write_coastream(coastream) del coastream self.output.write_stn_availability(stn_ava_data) self.output.log("=" * 120, self.log) def _locate_events(self, start_time, end_time): """ Loop through list of earthquakes read in from trigger results and re-compute coalescence; output phase picks, event location and uncertainty, plus optional plots and outputs. Parameters ---------- start_time : UTCDateTime object Start time of locate run: earliest event trigger time that will be located end_time : UTCDateTime object End time of locate run: latest event trigger time that will be located """ # Define pre-pad as a function of the onset windows if self.pre_pad is None: self.pre_pad = max(self.p_onset_win[1], self.s_onset_win[1]) \ + 3 * max(self.p_onset_win[0], self.s_onset_win[0]) # Adjust pre- and post-pad to take into account cosine taper t_length = self.pre_pad + 4*self.marginal_window + self.post_pad self.pre_pad += np.ceil(t_length * 0.06) self.post_pad += np.ceil(t_length * 0.06) trig_events = self.output.read_triggered_events(start_time, end_time) n_evts = len(trig_events) for i, trig_event in trig_events.iterrows(): event_uid = trig_event["EventID"] msg = "=" * 120 + "\n" msg += "\tEVENT - {} of {} - {}\n" msg += "=" * 120 + "\n\n" msg += "\tDetermining event location...\n" msg = msg.format(i + 1, n_evts, event_uid) self.output.log(msg, self.log) w_beg = trig_event["CoaTime"] - 2*self.marginal_window \ - self.pre_pad w_end = trig_event["CoaTime"] + 2*self.marginal_window \ + self.post_pad timer = util.Stopwatch() self.output.log("\tReading waveform data...", self.log) try: self._read_event_waveform_data(trig_event, w_beg, w_end) except util.ArchiveEmptyException: msg = "\tNo files found in archive for this time period" self.output.log(msg, self.log) continue except util.DataGapException: msg = "\tAll available data for this time period contains gaps" msg += "\n\tOR data not available at start/end of time period\n" self.output.log(msg, self.log) continue self.output.log(timer(), self.log) timer = util.Stopwatch() self.output.log("\tComputing 4D coalescence grid...", self.log) daten, max_coa, max_coa_norm, loc, map_4d = self._compute( w_beg, w_end, self.data.signal, self.data.availability) coord = self.lut.xyz2coord(np.array(loc).astype(int)) event_coa_data = pd.DataFrame(np.array((daten, max_coa, coord[:, 0], coord[:, 1], coord[:, 2])).transpose(), columns=["DT", "COA", "X", "Y", "Z"]) event_coa_data["DT"] = event_coa_data["DT"].apply(UTCDateTime) event_coa_data_dtmax = \ event_coa_data["DT"].iloc[event_coa_data["COA"].astype("float").idxmax()] w_beg_mw = event_coa_data_dtmax - self.marginal_window w_end_mw = event_coa_data_dtmax + self.marginal_window if (event_coa_data_dtmax >= trig_event["CoaTime"] - self.marginal_window) \ and (event_coa_data_dtmax <= trig_event["CoaTime"] + self.marginal_window): w_beg_mw = event_coa_data_dtmax - self.marginal_window w_end_mw = event_coa_data_dtmax + self.marginal_window else: msg = "\n\tEvent {} is outside marginal window.\n" msg += "\tDefine more realistic error - the marginal window" msg += " should be an estimate of the origin time uncertainty," msg += "\n\tdetermined by the expected spatial uncertainty and" msg += "the seismic velocity in the region of the earthquake\n" msg += "\n" + "=" * 120 + "\n" msg = msg.format(event_uid) self.output.log(msg, self.log) continue event_mw_data = event_coa_data event_mw_data = event_mw_data[(event_mw_data["DT"] >= w_beg_mw) & (event_mw_data["DT"] <= w_end_mw)] map_4d = map_4d[:, :, :, event_mw_data.index[0]:event_mw_data.index[-1]] event_mw_data = event_mw_data.reset_index(drop=True) event_max_coa = event_mw_data.iloc[event_mw_data["COA"].astype("float").idxmax()] # Update event UID; make out_str event_uid = str(event_max_coa.values[0]) for char_ in ["-", ":", ".", " ", "Z", "T"]: event_uid = event_uid.replace(char_, "") out_str = "{}_{}".format(self.output.name, event_uid) self.output.log(timer(), self.log) # Make phase picks timer = util.Stopwatch() self.output.log("\tMaking phase picks...", self.log) phase_picks = self._phase_picker(event_max_coa) self.output.write_picks(phase_picks["Pick"], event_uid) self.output.log(timer(), self.log) # Determining earthquake location error timer = util.Stopwatch() self.output.log("\tDetermining earthquake location and uncertainty...", self.log) loc_spline, loc_gau, loc_gau_err, loc_cov, \ loc_cov_err = self._calculate_location(map_4d) self.output.log(timer(), self.log) # Make event dictionary with all final event location data event = pd.DataFrame([[event_max_coa.values[0], event_max_coa.values[1], loc_spline[0], loc_spline[1], loc_spline[2], loc_gau[0], loc_gau[1], loc_gau[2], loc_gau_err[0], loc_gau_err[1], loc_gau_err[2], loc_cov[0], loc_cov[1], loc_cov[2], loc_cov_err[0], loc_cov_err[1], loc_cov_err[2]]], columns=self.EVENT_FILE_COLS) self.output.write_event(event, event_uid) self._optional_locate_outputs(event_mw_data, event, out_str, phase_picks, event_uid, map_4d) self.output.log("=" * 120 + "\n", self.log) del map_4d, event_coa_data, event_mw_data, event_max_coa, \ phase_picks self.coa_map = None def _read_event_waveform_data(self, event, w_beg, w_end): """ Read waveform data for a triggered event. Parameters ---------- event : pandas DataFrame Triggered event output from _trigger_scn(). Columns: ["EventNum", "CoaTime", "COA_V", "COA_X", "COA_Y", "COA_Z", "MinTime", "MaxTime"] w_beg : UTCDateTime object Start datetime to read waveform data w_end : UTCDateTime object End datetime to read waveform data Returns ------- daten, max_coa, max_coa_norm, coord : array-like Empty arrays with the correct shape to write to .scanmseed as if they were coastream outputs from _compute() """ # Extra pre- and post-pad default to None pre_pad = post_pad = None if self.pre_cut: # only subtract 1*marginal_window so if the event otime moves by # this much the selected pre_cut can still be applied pre_pad = self.pre_cut - self.marginal_window - self.pre_pad if pre_pad < 0: msg = "\t\tWarning: specified pre_cut {} is shorter than" msg += "default pre_pad\n" msg += "\t\t\tCutting from pre_pad = {}" msg = msg.format(self.pre_cut, self.pre_pad) self.output.log(msg, self.log) pre_pad = None if self.post_cut: # only subtract 1*marginal_window so if the event otime moves by # this much the selected post_cut can still be applied post_pad = self.post_cut - self.marginal_window - \ self.post_pad if post_pad < 0: msg = "\t\tWarning: specified post_cut {} is shorter than" msg += "default post_pad\n" msg += "\t\t\tCutting to post_pad = {}" msg = msg.format(self.post_cut, self.post_pad) self.output.log(msg, self.log) post_pad = None self.data.read_waveform_data(w_beg, w_end, self.sampling_rate, pre_pad, post_pad) def _compute(self, w_beg, w_end, signal, station_availability): """ Compute 3-D coalescence between two time stamps. Parameters ---------- w_beg : UTCDateTime object Time stamp of first sample in window w_end : UTCDateTime object Time stamp of final sample in window signal : array-like Pre-processed continuous 3-component data stream for all available stations -- linearly detrended, de-meaned, resampled if necessary station_availability : array-like List of available stations Returns ------- daten : array-like UTCDateTime time stamp for each sample between w_beg and w_end max_coa : array-like Coalescence value through time max_coa_norm : array-like Normalised coalescence value through time loc : array-like Location of maximum coalescence through time map_4d : array-like 4-D coalescence map """ avail_idx = np.where(station_availability == 1)[0] sige = signal[0] sign = signal[1] sigz = signal[2] p_onset_raw, p_onset = self._compute_p_onset(sigz, self.sampling_rate) s_onset_raw, s_onset = self._compute_s_onset(sige, sign, self.sampling_rate) self.data.p_onset = p_onset self.data.s_onset = s_onset self.data.p_onset_raw = p_onset_raw self.data.s_onset_raw = s_onset_raw ps_onset = np.concatenate((self.data.p_onset, self.data.s_onset)) ps_onset[np.isnan(ps_onset)] = 0 p_ttime = self.lut.fetch_index("TIME_P", self.sampling_rate) s_ttime = self.lut.fetch_index("TIME_S", self.sampling_rate) ttime = np.c_[p_ttime, s_ttime] del p_ttime, s_ttime nchan, tsamp = ps_onset.shape pre_smp = int(round(self.pre_pad * int(self.sampling_rate))) pos_smp = int(round(self.post_pad * int(self.sampling_rate))) nsamp = tsamp - pre_smp - pos_smp # Prep empty 4-D coalescence map and run C-compiled ilib.migrate() ncell = tuple(self.lut.cell_count) map_4d = np.zeros(ncell + (nsamp,), dtype=np.float64) ilib.migrate(ps_onset, ttime, pre_smp, pos_smp, nsamp, map_4d, self.n_cores) # Prep empty coa and loc arrays and run C-compiled ilib.find_max_coa() max_coa =
np.zeros(nsamp, np.double)
numpy.zeros
import numpy as np from scipy.optimize import minimize from numba import jit ''' extract information from other numpy waveforms ''' class Waveana(object): def __init__(self, wave=[], eid=0): self.eid = eid self.wave = wave self.meanBaseline = 0 self.std = 0 self.allCharge = 0 self.minPeakCharge = 0 self.minPeakBaseline = 0 self.minPeakStd = 0 self.end5mV = 0 self.begin5mV = 0 self.tpl = [] self.triggerTime = 0 def setWave(self, wave): self.wave = wave self.meanBaseline = 0 self.std = 0 self.allCharge = 0 self.minPeakCharge = 0 self.minPeakBaseline = np.average(wave) self.minPeakStd = np.std(wave) self.end5mV = 0 self.begin5mV = 0 self.minIndex = np.argmin(self.wave) def getBaseline(self, nsigma=5, padding=5, threshold=1): # 仅仅去除超出判定阈值前后padding区域,取平均值,使用的负脉冲判断 std = max(np.std(self.wave), threshold) meanBaseline = np.average(self.wave) signalPos = np.where(self.wave<(meanBaseline-nsigma*std))[0] if signalPos.shape[0]>0: signalPos = np.unique(np.clip(signalPos.reshape(-1,1)+np.arange(-padding,padding), 0, self.wave.shape[0])) mask = np.ones(self.wave.shape[0]).astype(bool) mask[signalPos] = False cutWave = self.wave[mask] else: cutWave = self.wave self.meanBaseline = np.average(cutWave) self.std = np.std(cutWave) return self.meanBaseline, self.std def getBaselineFine(self, minIndex, nsigma=5, expandWidth=500, desiredWidth=100, padding=10): # extract the wave,尽可能使用波形前面的100ns/500ns部分计算基线大小,如果不够长,使用波形后面紧跟的500ns计算 if minIndex< desiredWidth: begin = np.clip(minIndex+100, 0, self.wave.shape[0]) end = np.clip(begin+expandWidth, 0, self.wave.shape[0]) else: begin = np.clip(minIndex - expandWidth, 0, self.wave.shape[0]) end = minIndex - 10 extractWave = self.wave[begin:end] self.hist = np.histogram(extractWave, bins=1000, range=[1,1001])[0] baselineEstimate = np.argmax(self.hist)+1 stdl = np.max([0,baselineEstimate-6]) stdr = np.min([self.hist.shape[0],baselineEstimate+5]) for i in range(baselineEstimate-1, np.max([0,baselineEstimate-6]),-1): if self.hist[i]<(self.hist[baselineEstimate-1]/2): stdl=i break for i in range(baselineEstimate, np.min([self.hist.shape[0],baselineEstimate+6])): if self.hist[i]<(self.hist[baselineEstimate-1]/2): stdr=i break stdEstimate = (stdr-stdl)/2.355/2 threshold = np.clip(nsigma*stdEstimate,1,5) signalPos = extractWave<(baselineEstimate-threshold) signalPos = np.unique(np.clip(signalPos.reshape(-1,1)+np.arange(-padding,padding), 0, self.wave.shape[0])) mask = np.ones(extractWave.shape[0]).astype(bool) mask[signalPos] = False cutWave = extractWave[mask] # 取出std比较小的部分,和上述算法互相对比,取最佳 cutWave2 = self.getSmallStdWave() if np.std(cutWave2)<np.std(cutWave) or cutWave.shape[0]<=10: cutWave = cutWave2 baselineEstimate = np.average(cutWave) stdEstimate = np.std(cutWave) # [begin,end] is the interval of baseline self.begin = begin self.end = end if np.isnan(self.minPeakStd): print(cutWave) print(self.minPeakStd,self.minPeakBaseline) exit(1) self.minPeakBaseline = baselineEstimate self.minPeakStd = stdEstimate ''' threshold = np.clip(nsigma*stdEstimate,3,5) cutWave0 = cutWave[(cutWave>=(baselineEstimate-threshold))&(cutWave<=(baselineEstimate+threshold))] self.minPeakBaseline = np.average(cutWave0) self.minPeakStd = np.std(cutWave0) if np.isnan(self.minPeakStd): print(cutWave) print(cutWave0) print(self.minPeakStd,self.minPeakBaseline) exit(1) ''' return self.minPeakBaseline def getSmallStdWave(self, number=10): step = int(self.wave.shape[0]/10) stdArray = np.zeros(number) for i in range(number): stdArray[i] = np.std(self.wave[i*step:(i+1)*step]) smallIndex = np.argmin(stdArray) return self.wave[smallIndex*step:(smallIndex+1)*step] def findPeakStd(self, npeak=2, nsigma=3, chargeThreshold=15, baselength=50): ''' use baseline noise std* nsigma as threshold for whether signal. nthreshold for the second signal ''' peakflag = 0 peakList = [] threshold = self.meanBaseline-self.std*nsigma self.modifyWave = self.wave+0 # if self.minPeak<self.std*nsigma: # return peakList # else: peakList.append(self.resolve(self.minIndex,nsigma)) for n in range(npeak-1): # negative wave; discrimina by charge temp = self.resolve(np.argmin(self.modifyWave),nsigma) if temp[2]>chargeThreshold: peakList.append(temp) return peakList def resolve(self, peakPos, nsigma): peak = self.modifyWave[peakPos] # find the forehead baseline, otherwise back to find; start and end cursor = peakPos-1 threshold = self.meanBaseline-self.std*nsigma while cursor>=100 and self.modifyWave[cursor]<=threshold: cursor = cursor - 1 if cursor>= 100: baseline = np.average(self.modifyWave[(cursor-100):(cursor-10)]) std = np.std(self.modifyWave[(cursor-100):(cursor-10)]) else: cursor = peakPos+1 while cursor<=(self.modifyWave.shape[0]-100) and self.modifyWave[cursor]<=threshold: cursor = cursor + 1 baseline = np.average(self.modifyWave[(cursor+10):(cursor+100)]) std = np.std(self.modifyWave[(cursor+10):(cursor+100)]) # update threshold threshold = baseline - std*nsigma cursor = peakPos - 1 while cursor>=0 and self.modifyWave[cursor]<=threshold: cursor = cursor - 1 begin = cursor if begin>10: cBegin = begin-10 else: cBegin = 0 cursor = peakPos + 1 while cursor<(self.modifyWave.shape[0]) and self.modifyWave[cursor]<=threshold: cursor = cursor + 1 end = cursor if end<(self.modifyWave.shape[0]-10): cEnd = end + 10 else: cEnd = self.modifyWave.shape[0] peakRiseTime = peakPos-begin peakDownTime = end - peakPos peakCharge = np.sum(baseline-self.modifyWave[cBegin:cEnd]) self.modifyWave[begin:end] = baseline return (peakPos, peakCharge, peak, peakRiseTime, peakDownTime, baseline, std) def integrateWave(self): baseline = self.minPeakBaseline self.allCharge =
np.sum(baseline-self.wave)
numpy.sum
from __future__ import division import json import numpy as np import pandas as pd from scipy.spatial.distance import cdist from visigoth.tools import flexible_values from visigoth.stimuli import ElementArray, Point, StimAperture from psychopy import visual, event class AttWedge(object): def __init__(self, win, field_size, wedge_angle, element_size, element_tex, element_mask, contrast, sf_distr, prop_color, drift_rate, oddball_coherence): # Define the length and width of the rectangular area with stims self.length = length = field_size / 2 + 2 * element_size self.width = width = 2 * np.tan(np.deg2rad(wedge_angle) / 2) * length # Use poisson disc sampling to get roughly uniform coverage of the area xys = poisson_disc_sample(length, width, element_size / 4) self.xys = xys # Assign parameters we will need when drawing the stimulus self.edge_offset = width / 2 + element_size / 2 self.drift_step = drift_rate / win.framerate self.sf_distr = sf_distr self.prop_color = prop_color self.wedge_angle = wedge_angle self.oddball_coherence = oddball_coherence self.element_size = element_size self.element_tex = element_tex self.element_mask = element_mask # Initialize the angled bars that will be superimposed to define # the "wedge" shape of the stimulus l, w, o = length, width, 2 * element_size self.edge_verts = [
np.array([(-o, 0), (l + o, 0), (l + o, +w), (-o, +w)])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import gr3 import faulthandler from PyQt5 import QtCore, QtGui, QtWidgets import sys import os import gr import signal from . import spinVis_camera from . import spinVis_coor from PyQt5.QtWidgets import (QHBoxLayout, QCheckBox, QRadioButton, QButtonGroup, QLineEdit, QVBoxLayout, QPushButton, QLabel, QTableWidgetItem) # Import der versch. QtWidgets from PyQt5.QtCore import Qt import math import numpy as np class MainWindow(QtWidgets.QWidget): #Class MainWindow is the overall window, consisting of a GUI and a canvas part def __init__(self,ladestyle , *args, **kwargs): super().__init__(**kwargs) #Takes data from parent self.inputstyle = ladestyle #Shows if data comes from pipe or file selection self.initUI() #Initialize User Interfaces pass def initUI(self): self.setWindowTitle('SpinVis2 by PGI/JCNS-TA') self.draw_window = GLWidget() #Initialisation of the canvas window self.gui_window = GUIWindow( self.draw_window, self.inputstyle) #Initialisation of the GUI with the GLWindow as an parameter self.draw_window.setMinimumSize(700, 700) #Size 700x700 is the biggest window possible for the laptop display of a MacBook Pro self.gui_window.setSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) self.gui_window.setFocusPolicy(Qt.ClickFocus) self.complete_window_hbox = QHBoxLayout() # Horizontales Layout umd beides nebeneinander zulegen self.complete_window_hbox.addWidget(self.draw_window) self.complete_window_hbox.addWidget(self.gui_window) self.complete_window_hbox.setContentsMargins(0, 0, 0, 0) self.complete_window_hbox.setSpacing(0) # Abstand 0 setzen um beides direkt nebeneinander zu haben self.setLayout(self.complete_window_hbox) def keyPressEvent(self, QKeyEvent): #self.gui_window.p_win.perspective_check.setFocusPolicy(Qt.NoFocus) #self.gui_window.p_win.orthographic_check.setFocusPolicy(Qt.NoFocus) if QKeyEvent.key() == QtCore.Qt.Key_Right: self.draw_window.rotate_right() if QKeyEvent.key() == QtCore.Qt.Key_Left: self.draw_window.rotate_left() if QKeyEvent.key() == QtCore.Qt.Key_Up: self.draw_window.rotate_up() if QKeyEvent.key() == QtCore.Qt.Key_Down: self.draw_window.rotate_down() if QKeyEvent.key() == QtCore.Qt.Key_A: self.draw_window.move_left() if QKeyEvent.key() == QtCore.Qt.Key_D: self.draw_window.move_right() if QKeyEvent.key() == QtCore.Qt.Key_W: self.draw_window.move_up() if QKeyEvent.key() == QtCore.Qt.Key_S: self.draw_window.move_down() if QKeyEvent.key() == QtCore.Qt.Key_Z: spinVis_camera.zoom(0.1, self.draw_window.width(), self.draw_window.height()) if QKeyEvent.key() == QtCore.Qt.Key_X: spinVis_camera.zoom(- 0.1, self.draw_window.width(), self.draw_window.height()) self.draw_window.update() class GUIWindow( QtWidgets.QScrollArea): # GUI Window setzt sich aus einzelnen Windows die vertikal unteieinander gelegt wurden zusammen def __init__(self,glwindow, ladestyle, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebergabe des GLwindows als lokale private variable self.ladestyle = ladestyle self.initUI() pass def initUI(self): self.parent_widget = QtWidgets.QWidget() self.pgroup = QtWidgets.QGroupBox() self.p_win = ProjectionWindow(self._glwindow) self.slide_win = AngleWindow(self._glwindow) #Slider Boxlayout fuer Kamerasteuerung per Slider self.t_win = TranslationWindow(self._glwindow) self.bond_win = BondWindow(self._glwindow) self.screen_win = ScreenWindow(self._glwindow) # Screen Boxlayout fuer Screenshot steuerung self.cs_win = SpinColorWindow(self._glwindow) self.l_win = DataLoadWindow(self._glwindow, self.ladestyle, self.cs_win) # Lade Boxlayout um neuen Datensatz zu laden self.c_win = ColorWindow(self._glwindow, self.cs_win) # Color Boxlayout um Farbe für Hintergrund und Spins zu setzen self.v_win = VideoWindow(self._glwindow) self.vbox = QVBoxLayout() self.vbox.addWidget(self.p_win) self.vbox.addWidget(self.slide_win) self.vbox.addWidget(self.t_win) self.vbox.addWidget(self.bond_win) self.vbox.addWidget(self.screen_win) self.vbox.addWidget(self.l_win) self.vbox.addWidget(self.cs_win) self.vbox.addWidget(self.c_win) self.vbox.addWidget(self.v_win) self.vbox.addStretch(1) self.parent_widget.setLayout(self.vbox) self.setWidget(self.parent_widget) self.setWidgetResizable(True) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) class ProjectionWindow(QtWidgets.QWidget): # def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebergabe des GLwindows als lokale private variable self.initUI() pass def initUI(self): self.projectiongroup = QtWidgets.QGroupBox("Projection Window") self.projectiongroup.setTitle("Projection Window") self.projectiongroup.setToolTip("The projectiontype defines how a 3D object is pictured on a 2D screen. \n" "The perspektive projection is simulating the effects of the real world. Objects \n" "farther away appear smaller. The orthographic projection depicts every object \n" "with the same size. It may reveal patterns in the data, that would else remain hidden") self.groupbox = QtWidgets.QVBoxLayout() self.groupbox.addWidget(self.projectiongroup) self.projection_box = QHBoxLayout() # Eine grosse HBox die ein Label und eine weite HBox beinhaltet. In der sind 2 VBoxLayouts mit jeweils einem HLabel und einem RadioButton # self.projection_box.addStretch(1) self.projection_label = QtWidgets.QLabel() self.projection_label.setText("Choose a perspective type:") # Pop-Up das Hilftext anzeigt self.checkboxbox = QHBoxLayout() # Checkboxbox beinhaltet 2 HBoxen, die je ein Label und ein Radiobutton haben self.perspective_box = QHBoxLayout() self.perspective_check = QRadioButton() self.perspective_check.setFocusPolicy(Qt.NoFocus) self.perspective_label = QLabel() self.perspective_label.setText("Perspektive") # self.perspective_check.toggle() self.perspective_box.addWidget(self.perspective_label) self.perspective_box.addWidget(self.perspective_check) self.checkboxmanagment = QButtonGroup() # Mit der Buttongroup werden die Radiobuttons auf exklusiv gestellt self.orthographic_box = QHBoxLayout() self.orthographic_check = QRadioButton() self.orthographic_check.setChecked(True) self.orthographic_check.setFocusPolicy(Qt.NoFocus) self.orthographic_label = QLabel() self.orthographic_label.setText("Orthographic") self.perspective_box.addWidget(self.orthographic_label) self.perspective_box.addWidget(self.orthographic_check) self.checkboxbox.addLayout(self.perspective_box) self.checkboxbox.addLayout(self.orthographic_box) self.orthographic_check.clicked.connect(self.radio_clicked) self.perspective_check.clicked.connect(self.radio_clicked) self.projection_box.addWidget(self.projection_label) self.projection_box.addLayout(self.checkboxbox) self.projectiongroup.setLayout(self.projection_box) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) pass def radio_clicked(self): if self.orthographic_check.isChecked(): spinVis_camera.is_orthograpghic = True spinVis_camera.set_projection_type_orthographic() else: spinVis_camera.is_orthograpghic = False spinVis_camera.set_projection_type_perspective() self._glwindow.update() def is_orthographic_projection(self): if self.orthographic_check.isChecked(): return True else: return False class SpinColorWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung self.initUI() pass def initUI(self): self.spincolorgroup = QtWidgets.QGroupBox("Spin Color Window") self.spincolorgroup.setTitle("Spin Color Window") self.spincolorgroup.setToolTip("Click on the cell under the symbol of the spins you want to change color.\n" "If you use the feature further down to change the color of all spins or \n" "change the data set that is in use, the selection will be reseted. \n" "If you want to load a color scheme, it must have the same list of symbols \n" "like the one you have loaded right now. A saved color scheme can be found \n" "under spinvis_color_save.txt") self.groupbox = QtWidgets.QVBoxLayout() self.groupbox.addWidget(self.spincolorgroup) self.table_box = QtWidgets.QHBoxLayout() self.button_box = QtWidgets.QVBoxLayout() self.load_scheme_button = QtWidgets.QPushButton("Load scheme") self.load_scheme_button.setFixedSize(130,30) self.load_scheme_button.clicked.connect(self.load_color) self.save_scheme_button = QtWidgets.QPushButton("Save scheme") self.save_scheme_button.setFixedSize(130,30) self.save_scheme_button.clicked.connect(self.save_color) self.button_box.addWidget(self.save_scheme_button) self.button_box.addWidget(self.load_scheme_button) self.color_table = QtWidgets.QTableWidget(0, 0) self.color_table.setFixedHeight(70) self.color_table.setFocusPolicy(Qt.ClickFocus) self.table_box.addWidget(self.color_table) self.table_box.addLayout(self.button_box) self.color_table.clicked.connect(self.on_click) self.spincolorgroup.setLayout(self.table_box) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) def load_color(self): options = QtWidgets.QFileDialog.Options() # File Dialog zum auswählen der Daten-Datei options |= QtWidgets.QFileDialog.DontUseNativeDialog input, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Choose your data", "", "All Files (*);;", options=options) list = [] if (not input): pass # Falls nichts ausgewählt wird, wird kein neuer Datensatz gewählt else: if not (input.endswith(".txt")): print("Please make sure that your file is a '.txt'") return try: # Es wird probiert den Pfad zu öffnen um eine Exception, bei nicht vorhandener Datei abzufangen (mit Path-Dialog eeigentlich unnötig) with open(input, 'r') as f: pass except FileNotFoundError: print("This path does not exist, please try again") return with open(input, 'r') as infile: # Fuer den Bereich die Datei oeffnen, fuer jede Zeile das ganze in 3 Tupel schreiben for line in infile.readlines(): line = line.strip() list.append(line) if len(list) == self.color_table.columnCount(): i= 0 for line in list: helf = line.split() # Leerzeichen als Trennzeichen if helf[0] == self.color_table.horizontalHeaderItem(i).text().title(): rgb_list = [int(helf[1]), int(helf[2]), int(helf[3])] rgb = QtGui.QColor.fromRgb(rgb_list[0], rgb_list[1], rgb_list[2]) self.color_table.item(0, i).setBackground(rgb) spinVis_camera.set_symbol_spin_color([helf[1], helf[2], helf[3]], self.color_table.horizontalHeaderItem( i).text().title()) i = i+1 def save_color(self): f = open("spinvis_color_save.txt", "w") for i in range(self.color_table.columnCount()): symbol = self.color_table.horizontalHeaderItem(i).text().title() rgbtuple = self.color_table.item(0, i).background().color().getRgb() print(symbol + "\t" + str(rgbtuple[0]) + "\t" + str(rgbtuple[1]) + "\t" + str(rgbtuple[2]), file=f) f.close() def on_click(self): spin_rgb = [c * 255 for c in spinVis_camera.spin_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255 for currentQTableWidgetItem in self.color_table.selectedItems(): currentQTableWidgetItem.setSelected(False) selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb(*spin_rgb)) if selectedColor.isValid(): self.color_table.item(currentQTableWidgetItem.row(), currentQTableWidgetItem.column()).setBackground(selectedColor) spinVis_camera.set_symbol_spin_color(selectedColor.getRgb(), self.color_table.horizontalHeaderItem(currentQTableWidgetItem.column()).text().title()) self._glwindow.update() def fillTable(self, list): symbol_list = np.array(list) self.color_table.setRowCount(1) f = open("listtest.txt", 'w') for e in symbol_list: print(e, file=f) self.color_table.setColumnCount(len(symbol_list)) i = 0 symbol_list_int = symbol_list.tolist() for e in symbol_list_int: self.color_table.setHorizontalHeaderItem(i, QTableWidgetItem(str(e))) self.color_table.setItem(0, i, QTableWidgetItem("")) c = spinVis_camera.get_symbol_color(e) self.color_table.item(0, i).setBackground(QtGui.QColor.fromRgb(int(c[0]), int(c[1]), int(c[2]))) i = i+1 def color_all_spins(self, rgb): for e in range(self.color_table.columnCount().__int__()): self.color_table.item(0, e).setBackground(QtGui.QColor.fromRgb(rgb[0], rgb[1], rgb[2])) class DataLoadWindow(QtWidgets.QWidget): def __init__(self, glwindow, ladestyle, spin_colour_win,*args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung self.lade_style = ladestyle self.spin_colour_win = spin_colour_win self.initUI() pass def initUI(self): self.loadgroup = QtWidgets.QGroupBox("Data Load Window") self.loadgroup.setTitle("Data Load Window") self.loadgroup.setToolTip("Please choose a '.txt' file to load that has the following structure: \n" "the position of the center of the spin, the direction of the spin, a symbol. \n" "For example: -1.819 6.300 -25.500 0.022 -0.075 0.355 54. \n" "Its important that the individual numbers are seperated by tabs. \n" "But you can also save a data file. If you do so you can find it under \n" "spinvis_save_data.txt.") self.groupbox = QtWidgets.QVBoxLayout() self.groupbox.addWidget(self.loadgroup) self.load_label = QtWidgets.QLabel() self.load_label.setText("Load new set of spins from a txt file:") self.load_button = QPushButton('Load set', self) self.load_button.setFixedSize(130, 30) self.load_button.clicked.connect(self.load_file) self.save_button = QPushButton('Save set', self) self.save_button.setFixedSize(130, 30) self.save_button.clicked.connect(self.save_data) self.hbox = QHBoxLayout() # HBox mit einem Label und einem Knopf zum Laden #self.hbox.addStretch(1) self.hbox.addWidget(self.load_label) self.hbox.addWidget(self.save_button) self.hbox.addWidget(self.load_button) self.loadgroup.setLayout(self.hbox) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) def save_data(self): spinVis_camera.save_file() def load_file(self): options = QtWidgets.QFileDialog.Options() # File Dialog zum auswählen der Daten-Datei options |= QtWidgets.QFileDialog.DontUseNativeDialog input, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Choose your data", "", "All Files (*);;", options=options) if (not input): pass # Falls nichts ausgewählt wird, wird kein neuer Datensatz gewählt else: self._glwindow.data_path = input # So wird der Eingabestring verwendet und der neue Datensatz gewählt #try: self._glwindow.setDataSet() ''' except TypeError: typ_err_box = QtWidgets.QMessageBox() typ_err_box.setIcon(2) # Gives warning Icon typ_err_box.setText("Error ocurred while trying to load a data set!") typ_err_box.setInformativeText( "Something went wrong trying to open the data file. Please make sure that the the selected file is a '.txt'-file with the schematic" " described in the tooltip.") typ_err_box.exec_()''' self.spin_colour_win.fillTable(spinVis_camera.fill_table()) class ColorWindow(QtWidgets.QWidget): def __init__(self, glwindow,spin_color_window, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung self._spin_color_win = spin_color_window self.initUI() pass def initUI(self): self.colorgroup = QtWidgets.QGroupBox("Color Window") self.colorgroup.setTitle("Color Window") self.colorgroup.setToolTip("Click on either button to open a window where you can choose a color \n" "for either the background or the spins. This color will be saved for \n" "how long the app is running. However it will be reset if you restart \n" "the app.") self.groupbox = QtWidgets.QVBoxLayout() self.groupbox.addWidget(self.colorgroup) self.color_hbox = QHBoxLayout() # Hbox mt 2 Knöpfen und einem Label self.color_label = QLabel() self.color_label.setText("Choose a color:") self.sphere_switch = QtWidgets.QPushButton() self.sphere_switch.setText("Switch spheres") self.sphere_switch.clicked.connect(self.switch_sphere) self.bg_color_button = QPushButton('Background', self) self.bg_color_button.setFixedSize(100, 30) self.bg_color_button.clicked.connect(self.get_bg_color) self.spin_color_button = QPushButton('Spins', self) self.spin_color_button.setFixedSize(100, 30) self.spin_color_button.clicked.connect(self.get_spin_color) self.color_dialog = QtWidgets.QColorDialog() # Dialog Picker zum Farben auswählen self.color_hbox.addWidget(self.color_label) self.color_hbox.addWidget(self.sphere_switch) self.color_hbox.addWidget(self.bg_color_button) self.color_hbox.addWidget(self.spin_color_button) self.colorgroup.setLayout(self.color_hbox) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) def switch_sphere(self): if self._glwindow._issphere: self._glwindow._issphere = False else: self._glwindow._issphere = True self._glwindow.spinDraw() self._glwindow.update() def get_bg_color(self): bg_rgb = [c * 255 for c in spinVis_camera.bg_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255 selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb( *bg_rgb)) # Speichert die Auswahl des Farbendialogs und setzt Standardwert auf vorher umgewandelte Farben if selectedColor.isValid(): self._glwindow.set_bg_color(selectedColor.getRgb()) def get_spin_color(self): spin_rgb = [c * 255 for c in spinVis_camera.spin_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255 selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb( *spin_rgb)) # Speichert die Auswahl des Farbendialogs und setzt Standardwert auf vorher umgewandelte Farben if selectedColor.isValid(): self._spin_color_win.color_all_spins(selectedColor.getRgb()) spin_rgb[0] = selectedColor.getRgb()[0] / 255 spin_rgb[1] = selectedColor.getRgb()[1] / 255 spin_rgb[2] = selectedColor.getRgb()[2] / 255 self._glwindow.set_spin_color(selectedColor.getRgb()) class VideoWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung self.initUI() pass def initUI(self): self.vidgroup = QtWidgets.QGroupBox("Video Window") self.vidgroup.setTitle("Video Window") self.vidgroup.setToolTip("Create a video by clicking once on the 'Make a video' button. Pressing a second time\n" "will finish the video. The default parameters are 1920*1920 pixels and 60 fps.\n" "But if you enter valid value, they will be used instead. The default name is spinvis_output.mp4") self.groupbox = QtWidgets.QVBoxLayout() self.vidbox = QHBoxLayout() self.vidlabel = QLabel() self.vidlabel.setText("Create a video: ") self.groupbox.addWidget(self.vidgroup) self.namebox = QVBoxLayout() self.namelabel = QLabel() self.namelabel.setText("Name the video:") self.vidname = QtWidgets.QTextEdit() self.vidname.setFixedSize(100,25) self.namebox.addWidget(self.vidlabel) self.namebox.addWidget(self.vidname) self.fpsbox = QVBoxLayout() self.fpslabel = QLabel() self.fpslabel.setText("FPS:") self.validator = QtGui.QIntValidator(1, 120, self) self.fpscounter = QtWidgets.QLineEdit() self.fpscounter.setValidator(self.validator) self.fpscounter.setFixedSize(25,25) self.fpsbox.addWidget(self.fpslabel) self.fpsbox.addWidget(self.fpscounter) self.resolution_validator = QtGui.QIntValidator(1, 4000, self) self.widthbox = QVBoxLayout() self.widthlabel = QLabel() self.widthlabel.setText("Width: ") self.vidwidth = QtWidgets.QLineEdit() self.vidwidth.setValidator(self.resolution_validator) self.vidwidth.setFixedSize(50, 25) self.widthbox.addWidget(self.widthlabel) self.widthbox.addWidget(self.vidwidth) self.heighthbox = QVBoxLayout() self.heightlabel = QLabel() self.heightlabel.setText("Height: ") self.vidheight = QtWidgets.QLineEdit() self.vidheight.setValidator(self.resolution_validator) self.vidheight.setFixedSize(50, 25) self.heighthbox.addWidget(self.heightlabel) self.heighthbox.addWidget(self.vidheight) self.vidbutton = QPushButton("Make a video") self.vidbutton.clicked.connect(self.doVideo) self.vidbox.addLayout(self.namebox) self.vidbox.addLayout(self.fpsbox) self.vidbox.addLayout(self.widthbox) self.vidbox.addLayout(self.heighthbox) self.vidbox.addWidget(self.vidbutton) self.vidgroup.setLayout(self.vidbox) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) def doVideo(self): self._glwindow.make_video(self.vidname.toPlainText().title(), self.fpscounter.text().title(), self.vidwidth.text().title(), self.vidheight.text().title()) pass class ScreenWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung self.initUI() pass def initUI(self): self.screengroup = QtWidgets.QGroupBox("Screenshot Window") self.screengroup.setTitle("Screenshot Window") self.screengroup.setToolTip("Click the button to generate a screenshot. This screenshot contains only the\n" "coloured part of the window, not the gui. Currently length is the fixed size \n" "of 1000 * 1000px, but we are working on a setting for that. The screenshot can \n" "either be in the PNG or the HTML-format. Latter can be opend with your browser") self.outer_box = QVBoxLayout() # Position the screengroup on the widget (self) self.outer_box.addWidget(self.screengroup) self.fullbox = QHBoxLayout() # Fullbox beinhaltet Screenshotknopf, Radiobuttons und Eingabe Zeile, jeweils in VBox mit Labeln self.screenbox = QVBoxLayout() # Screenbox beinhaltet das Label und den Knopf names Screenshot self.lbl = QLabel() self.screenbutton = QPushButton('Screenshot', self) self.screenbutton.setFixedSize(100, 30) self.screenbutton.clicked.connect(self.doScreenshot) self.lbl.setText("Screenshot") self.lbl.setFixedSize(100, 30) self.screenbox.addWidget(self.lbl) self.screenbox.addWidget(self.screenbutton) self.fileVBox = QVBoxLayout() # Filebox beinhaltet die Eingabezeile und das Label self.fileName = QLineEdit() self.fileName.setFocusPolicy(Qt.ClickFocus) self.fileLabel = QLabel() self.fileLabel.setText("Filename:") self.fileVBox.addWidget(self.fileLabel) self.fileVBox.addWidget(self.fileName) self.checkboxbox = QHBoxLayout() # Checkboxbox beinhaltet 2 HBoxen, die je ein Label und ein Radiobutton haben self.pngbox = QVBoxLayout() self.pngcheck = QRadioButton() self.pngcheck.setChecked(True) self.pnglabel = QLabel() self.pnglabel.setText("PNG") self.pngcheck.toggle() self.pngbox.addWidget(self.pnglabel) self.pngbox.addWidget(self.pngcheck) self.checkboxmanagment = QButtonGroup() # Mit der Buttongroup werden die Radiobuttons auf exklusiv gestellt self.povbox = QVBoxLayout() self.povcheck = QRadioButton() self.povcheck.setChecked(False) self.povlabel = QLabel() self.povlabel.setText("POV") self.htmlbox = QVBoxLayout() self.htmlcheck = QRadioButton() self.htmlcheck.setChecked(False) self.htmllabel = QLabel() self.htmllabel.setText("HTML") # self.pngcheck..connect(self.pngChange) # self.htmlcheck.stateChanged.connect(self.htmlChange) self.checkboxmanagment.addButton( self.pngcheck) # Hinzufuegen der Radiobuttons und dann das setzen der Gruppe auf exklusiv self.checkboxmanagment.addButton(self.povcheck) self.checkboxmanagment.addButton(self.htmlcheck) self.checkboxmanagment.setExclusive(True) # Exklusiv, sodass immer nur genau ein Knopf an sein kann self.povbox.addWidget(self.povlabel) self.povbox.addWidget(self.povcheck) self.htmlbox.addWidget(self.htmllabel) self.htmlbox.addWidget(self.htmlcheck) self.checkboxbox.addLayout(self.pngbox) self.checkboxbox.addLayout(self.povbox) self.checkboxbox.addLayout(self.htmlbox) self.fullbox.addLayout(self.screenbox) # Hinzufuegen der einzelnen Boxen zu der Gesamtbox self.fullbox.addLayout(self.checkboxbox) self.fullbox.addLayout(self.fileVBox) self.screengroup.setLayout(self.fullbox) self.outer_box.setContentsMargins(0, 0, 0, 0) self.setLayout(self.outer_box) self.warning_box = QtWidgets.QMessageBox() self.warning_box.setText("The name must be at least one character long") pass def doScreenshot(self): if self.pngcheck.isChecked(): # Wenn die Png Box an ist dann wird der Dateiname auf Variable gesetzt und das ganze anf das dataname = self.fileName.text() # glwindw uebergeben, da ansonsten zu fehlern kommt if dataname != "": self._glwindow.export(dataname) else: self.warning_box.show() else: if self.htmlcheck.isChecked(): format = "html" else: format = "pov" filename = spinVis_camera.make_screenshot(self.fileName.text(), format, 1920, 1920) # Test.screenshot ruft gr3.export mit html/pov auf spinVis_camera.render_povray(filename, block=False) self._glwindow.update() self.update() pass class AngleWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebergabe des glwindow self.initUI() pass def initUI(self): self.anglegroup = QtWidgets.QGroupBox("Angle Window") self.anglegroup.setTitle("Angle Window") self.anglegroup.setToolTip("These 3 angles allow you to set a specific camera position. While phi and thete\n" "depict your camera position, is alpha used to show the rotation of the upvector.\n" "Any tripel you enter gives a unique view. ") self.groupbox = QtWidgets.QHBoxLayout() self.groupbox.addWidget(self.anglegroup) self.anglebox = QHBoxLayout() self.theta_box = QHBoxLayout() self.theta_lbl = QLabel() self.theta_lbl.setText("Theta: ") self.theta_input = QtWidgets.QLineEdit() self.theta_input.setFocusPolicy(Qt.ClickFocus) self.theta_input.setFixedSize(70,25) self.theta_box.addWidget(self.theta_lbl) self.theta_box.addWidget(self.theta_input) #self.theta_validator = QtGui.QDoubleValidator(-1/2 * math.pi, math.pi/2,5, self) #self.theta_input.setValidator(self.theta_validator) self.phi_box = QHBoxLayout() self.phi_lbl = QLabel() self.phi_lbl.setText("Phi: ") self.phi_input = QtWidgets.QLineEdit() self.phi_input.setFocusPolicy(Qt.ClickFocus) self.phi_input.setFixedSize(75,25) self.phi_box.addWidget(self.phi_lbl) self.phi_box.addWidget(self.phi_input) #self.phi_validator = QtGui.QDoubleValidator(-1* math.pi, math.pi,5, self) #self.phi_input.setValidator(self.phi_validator) self.up_box = QHBoxLayout() self.up_lbl = QLabel() self.up_lbl.setText("Alpha: ") self.up_input = QtWidgets.QLineEdit() self.up_input.setFocusPolicy(Qt.ClickFocus) self.up_input.setFixedSize(75, 25) self.up_box.addWidget(self.up_lbl) self.up_box.addWidget(self.up_input) self.angle_button = QPushButton("Set camera") self.angle_button.setMaximumSize(150, 25) self.angle_button.clicked.connect(self.camera_change_from_angle) euler_norm = np.linalg.norm(spinVis_coor.camera_koordinates) euler_theta = math.acos(spinVis_coor.camera_koordinates[2] / euler_norm) euler_phi = np.arctan2(spinVis_coor.camera_koordinates[1], spinVis_coor.camera_koordinates[0]) self.theta_input.setText(str(round(euler_theta, 5))) self.phi_input.setText(str(round(euler_phi, 5))) r = np.array([-math.sin(euler_phi), math.cos(euler_phi), 0]) v = np.array([-math.cos(euler_phi) * math.cos(euler_theta), -math.sin(euler_phi) * math.cos(euler_theta), math.sin(euler_theta)]) alpha = math.atan2(-1 * np.dot(spinVis_camera.up_vector, r), np.dot(spinVis_camera.up_vector, v)) self.up_input.setText(str(round(alpha, 5))) self.anglebox.addLayout(self.theta_box) self.anglebox.addLayout(self.phi_box) self.anglebox.addLayout(self.up_box) self.anglebox.addWidget(self.angle_button) self.anglegroup.setLayout(self.anglebox) self._glwindow.register(self.theta_input) self._glwindow.register(self.phi_input) self._glwindow.register(self.up_input) self.groupbox.setContentsMargins(0,0,0,0) self.setLayout(self.groupbox) def keyPressEvent(self, QKeyEvent): if QKeyEvent.key() == QtCore.Qt.Key_Return or QKeyEvent.key() == QtCore.Qt.Key_Enter: self.camera_change_from_angle() def camera_change_from_angle(self): try: theta = float(self.theta_input.text().__str__()) phi = float(self.phi_input.text().__str__()) input_up = float(self.up_input.text().__str__()) r = np.array([-math.sin(phi), math.cos(phi), 0]) v = np.array([-math.cos(phi) * math.cos(theta), -math.sin(phi) * math.cos(theta), math.sin(theta)]) self._glwindow.new_up_v = v * math.cos(input_up) - r * math.sin(input_up) spinVis_coor.euler_angles_to_koordinates(theta, phi, np.linalg.norm(spinVis_coor.camera_koordinates), input_up) self._glwindow.update() except ValueError: val_err_box = QtWidgets.QMessageBox() val_err_box.setIcon(2) # Gives warning Icon val_err_box.setText("Error ocurred while trying to recalculate the camera position!") val_err_box.setInformativeText("Your entred value was not a floating number. Please make sure that your input is right, before trying to change the camera.") val_err_box.exec_() class BondWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._distance_threshold = 0.0 self._glwindow = glwindow # Uebergabe des glwindow self.initUI() spinVis_camera.bond_distance_threshold_callback = lambda value: self.threshold_input.setText(str(round(value, 5))) def initUI(self): self.bondgroup = QtWidgets.QGroupBox("Bond Window") self.bondgroup.setTitle("Bond Window") self.bondgroup.setToolTip("Set a distance threshold for bond calculation. The default value is 150 per cent\n" "of the minimum distance between the centers of two spins.") self.groupbox = QtWidgets.QHBoxLayout() self.groupbox.addWidget(self.bondgroup) self.bondbox = QHBoxLayout() self.threshold_box = QHBoxLayout() self.threshold_checkbox = QCheckBox("Show bonds") self.threshold_checkbox.stateChanged.connect(self.update_bond_distance_threshold) self.threshold_lbl = QLabel() self.threshold_lbl.setText("Distance threshold: ") self.threshold_input = QtWidgets.QLineEdit() self.threshold_input.setFocusPolicy(Qt.ClickFocus) self.threshold_input.setFixedSize(70, 25) self.threshold_input.returnPressed.connect(self.update_bond_distance_threshold) self.threshold_box.addWidget(self.threshold_checkbox) self.threshold_box.addWidget(self.threshold_lbl) self.threshold_box.addWidget(self.threshold_input) self.bond_button = QPushButton("Set threshold") self.bond_button.setMaximumSize(150, 25) self.bond_button.clicked.connect(self.update_bond_distance_threshold) self.bondbox.addLayout(self.threshold_box) self.bondbox.addWidget(self.bond_button) self.bondgroup.setLayout(self.bondbox) self.groupbox.setContentsMargins(0, 0, 0, 0) self.setLayout(self.groupbox) def update_bond_distance_threshold(self): try: if self.threshold_input.text().strip() != "": threshold = float(self.threshold_input.text()) spinVis_camera.bond_distance_threshold = threshold else: spinVis_camera.bond_distance_threshold = None spinVis_camera.bond_is_activated = self.threshold_checkbox.isChecked() self._glwindow.spinDraw() self._glwindow.update() except ValueError: val_err_box = QtWidgets.QMessageBox() val_err_box.setIcon(2) # Gives warning Icon val_err_box.setText("Error ocurred while trying to recalculate the bonds!") val_err_box.setInformativeText("Your entred value was not a floating number. Please make sure that your input is right, before trying to change the bond distance threshold.") val_err_box.exec_() class TranslationWindow(QtWidgets.QWidget): def __init__(self, glwindow, *args, **kwargs): super().__init__(*args, **kwargs) self._camera_angle = 0.0 self._glwindow = glwindow # Uebergabe des glwindow self.initUI() pass def initUI(self): self.translationgroup = QtWidgets.QGroupBox("Angle Window") self.translationgroup.setTitle("Translation Window") self.translationgroup.setToolTip("These 3 angles allow you to set a specific camera position. While phi and thete\n" "depict your camera position, is alpha used to show the rotation of the upvector.\n" "Any tripel you enter gives a unique view. ") self.groupbox = QtWidgets.QHBoxLayout() self.groupbox.addWidget(self.translationgroup) self.translationbox = QHBoxLayout() self.x_box = QHBoxLayout() self.x_lbl = QLabel() self.x_lbl.setText("X: ") self.x_input = QtWidgets.QLineEdit() self.x_input.setFocusPolicy(Qt.ClickFocus) self.x_input.setFixedSize(70,25) self.x_box.addWidget(self.x_lbl) self.x_box.addWidget(self.x_input) #self.theta_validator = QtGui.QDoubleValidator(-1/2 * math.pi, math.pi/2,5, self) #self.theta_input.setValidator(self.theta_validator) self._glwindow._focus_observer.append(self.x_input.setText) self.y_box = QHBoxLayout() self.y_lbl = QLabel() self.y_lbl.setText("Y: ") self.y_input = QtWidgets.QLineEdit() self.y_input.setFocusPolicy(Qt.ClickFocus) self.y_input.setFixedSize(75,25) self.y_box.addWidget(self.y_lbl) self.y_box.addWidget(self.y_input) self._glwindow._focus_observer.append(self.y_input.setText) #self.phi_validator = QtGui.QDoubleValidator(-1* math.pi, math.pi,5, self) #self.phi_input.setValidator(self.phi_validator) self.z_box = QHBoxLayout() self.z_lbl = QLabel() self.z_lbl.setText("Z: ") self.z_input = QtWidgets.QLineEdit() self.z_input.setFocusPolicy(Qt.ClickFocus) self.z_input.setFixedSize(75, 25) self.z_box.addWidget(self.z_lbl) self.z_box.addWidget(self.z_input) self._glwindow._focus_observer.append(self.z_input.setText) self.translation_button = QPushButton("Translate focus") self.translation_button.setMaximumSize(150, 25) self.translation_button.clicked.connect(self.change_focus_point) self.x_input.setText(str(0)) self.y_input.setText(str(0)) self.z_input.setText(str(0)) self.translationbox.addLayout(self.x_box) self.translationbox.addLayout(self.y_box) self.translationbox.addLayout(self.z_box) self.translationbox.addWidget(self.translation_button) self.translationgroup.setLayout(self.translationbox) self.groupbox.setContentsMargins(0,0,0,0) self.setLayout(self.groupbox) def keyPressEvent(self, QKeyEvent): if QKeyEvent.key() == QtCore.Qt.Key_Return or QKeyEvent.key() == QtCore.Qt.Key_Enter: self.change_focus_point() def change_focus_point(self): spinVis_camera.focus_point = np.array([float(self.x_input.text()), float(self.y_input.text()), float(self.z_input.text())]) spinVis_camera.grLookAt() self._glwindow.update() class GLWidget(QtWidgets.QOpenGLWidget): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._first_paint = True self._make_video = False self._camera_angle = 0.0 self._draw_spin = True # Verhindert das bei jeder Kamerabewegung die Spins neu gezeichnet werden self._export_screen = False # exportScreen wird beim Knopfdruck auf True gestellt und triggert so export() self.point_c_vektor = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1], spinVis_coor.camera_koordinates[ 2]]) # Ortsvektor des Punktes andem die Kamerabewegung aufhört self.current_camera_vector = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1], spinVis_coor.camera_koordinates[2]]) # Kameravektor self.camera_vektor_length = np.linalg.norm(spinVis_coor.camera_koordinates) # Norm des Kameravektors self.point_a_vektor = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1], spinVis_coor.camera_koordinates[ 2]]) # Ortsvektor des Punktes andem die Kamerabewegung startet self._radius = 2 # Radius des Arcballs self.focus_point = np.array([0.0, 0.0, 0.0]) # Fokuspunkt self.new_up_v = np.array([0.0, 0.0, 1.0]) # self._pressed_first_time = False self._mouseY = 1.0 self._maus_z = 2.0 self.first_rot = True self.upslidval = 0 self.sideslidval = 0 self.vid_timer = QtCore.QTimer() self.vid_timer.timeout.connect(self.video_connect) self._angle_observers = [] self._angle_blocker = [] self._focus_observer = [] self._issphere = spinVis_camera.IS_SPHERE_DEFAULT self.data_path = "" self.setAcceptDrops(True) self.initUI() pass def export(self, stringname): # Export Funktion im GLWindow um Freeze zu vermeiden self._export_screen = True self.screendateiname = stringname # Benutzt den uebergebenen dateinamen self.update() def dragEnterEvent(self, event): data = event.mimeData() urls = data.urls() if urls and urls[0].scheme() == "file": event.acceptProposedAction() def dropEvent(self, event): data = event.mimeData() urls = data.urls() if urls and urls[0].scheme() == "file": filepath = str(urls[0].path()) self.data_path = filepath self.setDataSet() def initUI(self): x = 0 y = 0 pass def initializeGL(self): gr3.init() # test.eingabe() gr3.usecurrentframebuffer() spinVis_camera.grSetUp(self.width(), self.height()) # GrSetup mit Zoomvariable und den Winkeln fuer die Kugelgleichung def resizeGL(self, width, height): spinVis_camera.grSetUp(self.width(), self.height()) def spinDraw(self): spinVis_camera.grDrawSpin(None, self._issphere, skip_colors=True) def paintGL(self): gr3.usecurrentframebuffer() if self._make_video: gr.clearws() gr3.drawimage(0, 1, 0, 1, self.width(), self.height(), gr3.GR3_Drawable.GR3_DRAWABLE_GKS) gr.updatews() if self._export_screen: # Screenshot und setzen von export screen auf False fuer neuen Durchlauf spinVis_camera.grSetUp(1920, 1920) spinVis_camera.make_screenshot(self.screendateiname, "png", 1920, 1920) spinVis_camera.grSetUp(self.width(), self.height()) self._export_screen = False gr3.drawimage(0, self.devicePixelRatio() * self.width(), 0, self.devicePixelRatio() * self.height(), self.devicePixelRatio() * self.width(), self.devicePixelRatio() * self.height(), gr3.GR3_Drawable.GR3_DRAWABLE_OPENGL) def trackballCameraChange(self): spinVis_camera.grCameraArcBallChange(self.current_camera_vector) self.update() def rotation_matrix(self, axis, theta): # Berechnet aus Achse und Winkel eine Rotationsmatrix um den der Kamerapunkt rotiert wird axis = np.array(axis) if (math.sqrt(np.dot(axis, axis)) != 0): axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def mouseMoveEvent(self, e): if self._mouseX == e.x() and self._mouseY == self.height() - e.y(): # Wenn nicht rotiert wurde wird es abgebrochen (Berechnung unnötig) return self._mouseX = e.x() self._mouseY = self.height() - e.y() # Setzt Y 0-Wert auf unten links statt oben links self.point_c_vektor[0] = 2 * self._mouseX / self.width() - 1 # Umrechnung der Werte von 0-Fenstergrösse zu 0-1 self.point_c_vektor[1] = 2 * self._mouseY / self.height() - 1 self.calculate_koordinates_from_mouseclick(self.point_c_vektor) # Berechnung des 3D Punktes der Kamerabewegung self.change_camera(self.point_a_vektor, self.point_c_vektor) self.point_a_vektor = list(self.point_c_vektor) # Update Vektor a für nächste Berechnung self.update() def calculate_koordinates_from_mouseclick(self, list): if (math.sqrt(list[0] ** 2 + list[1] ** 2) <= self._radius / math.sqrt( 2)): # Berechnung des 3D-Punktes durch Arc-Ball Berechnung list[2] = math.sqrt(self._radius ** 2 - (list[0] ** 2 + list[1] ** 2)) else: list[2] = self._radius ** 2 / (2 * (list[0] ** 2 + list[1] ** 2)) def wheelEvent(self, event): pixels = event.pixelDelta() degrees = event.angleDelta() / 8 if not pixels.isNull(): zoom = pixels.y() / 10 else: zoom = degrees.y() / 5 spinVis_camera.zoom(zoom, self.width(), self.height()) self.camera_vektor_length = np.linalg.norm(spinVis_coor.camera_koordinates) # self.current_camera_vector = koor.camera_koordinates self.update() def mousePressEvent(self, e): self._mouseX = e.x() self._mouseY = self.height() - e.y() self.point_a_vektor[0] = 2 * self._mouseX / self.width() - 1 # Umrechnung der Werte von 0-Fenstergrösse zu 0-1 self.point_a_vektor[1] = 2 * self._mouseY / self.height() - 1 self.calculate_koordinates_from_mouseclick(self.point_a_vektor) pass def recalculate_up_vector(self, forward_vector, up_vector): # Berechnet den neuen up_vector aus dem neuen forward_vector right_vector = np.cross(forward_vector, up_vector) up_vector = np.cross(right_vector, forward_vector) return up_vector / np.linalg.norm(up_vector) def change_camera(self, start_point, end_point): i = 0 self.new_up_v = self.recalculate_up_vector(spinVis_coor.camera_koordinates, self.new_up_v) # Update des up Vektors skalar = np.dot(start_point, end_point) # Skalarprodukt der Endpunkte der Kamerabewegung if skalar: # Falls das Skalar 0 ist also die Ortsvektoren orthogonal sind dann wird nicht berechnet u = np.cross(start_point, end_point) up_vector = self.new_up_v # lokale Instanz des Up Vektors forward_vector = spinVis_coor.camera_koordinates - spinVis_camera.focus_point right_vector = np.cross(forward_vector, up_vector) up_vector = np.cross(right_vector, forward_vector) forward_vector /= np.linalg.norm(forward_vector) right_vector /= np.linalg.norm(right_vector) up_vector /= np.linalg.norm(up_vector) u = u[0] * right_vector - u[1] * up_vector + u[2] * forward_vector norm = np.linalg.norm(u) theta = np.arctan(norm / skalar) if norm: self.new_up_v = np.dot(self.rotation_matrix(u, theta), self.new_up_v) camera_vector = spinVis_coor.camera_koordinates - spinVis_camera.focus_point spinVis_coor.camera_koordinates = np.dot(self.rotation_matrix(u, theta), spinVis_coor.camera_koordinates) spinVis_coor.camera_koordinates /= np.linalg.norm(spinVis_coor.camera_koordinates) spinVis_coor.camera_koordinates *= self.camera_vektor_length spinVis_coor.camera_koordinates = np.dot(self.rotation_matrix(u, theta), spinVis_coor.camera_koordinates - spinVis_camera.focus_point) + spinVis_camera.focus_point euler_norm = np.linalg.norm(spinVis_coor.camera_koordinates - spinVis_camera.focus_point) euler_theta = math.acos((spinVis_coor.camera_koordinates[2] - spinVis_camera.focus_point[2]) / euler_norm) euler_phi = np.arctan2(spinVis_coor.camera_koordinates[1] - spinVis_camera.focus_point[1], spinVis_coor.camera_koordinates[0] - spinVis_camera.focus_point[0]) for observer in self._angle_observers: if (i == 0): observer.setText(str(round(euler_theta, 5))) i += 1 elif i == 1: observer.setText(str(round(euler_phi, 5))) i += 1 else: r = np.array([-math.sin(euler_phi), math.cos(euler_phi), 0]) v = np.array([-math.cos(euler_phi)*math.cos(euler_theta), -math.sin(euler_phi)*math.cos(euler_theta), math.sin(euler_theta)]) alpha = math.atan2(-1 * np.dot(up_vector, r), np.dot(up_vector, v)) observer.setText(str(round(alpha, 5))) spinVis_camera.setUpVektor(self.new_up_v) spinVis_camera.grCameraArcBallChange(spinVis_coor.camera_koordinates) def rotate_right(self): center_point_vektor = np.array([0.0, 0.0, 0.0]) self.calculate_koordinates_from_mouseclick(center_point_vektor) rotate_point_vektor = np.array([0.02, 0.0, 0.0]) self.calculate_koordinates_from_mouseclick(rotate_point_vektor) self.change_camera(center_point_vektor, rotate_point_vektor) def rotate_left(self): center_point_vektor = np.array([0.0, 0.0, 0.0]) self.calculate_koordinates_from_mouseclick(center_point_vektor) rotate_point_vektor = np.array([-0.02, 0.0, 0.0]) self.calculate_koordinates_from_mouseclick(rotate_point_vektor) self.change_camera(center_point_vektor, rotate_point_vektor) def rotate_up(self): center_point_vektor = np.array([0.0, 0.0, 0.0]) self.calculate_koordinates_from_mouseclick(center_point_vektor) rotate_point_vektor = np.array([0.0, 0.02, 0.0]) self.calculate_koordinates_from_mouseclick(rotate_point_vektor) self.change_camera(center_point_vektor, rotate_point_vektor) def rotate_down(self): center_point_vektor =
np.array([0.0, 0.0, 0.0])
numpy.array
""" mateqn.py Matrix equation solvers (Lyapunov, Riccati) Implementation of the functions lyap, dlyap, care and dare for solution of Lyapunov and Riccati equations. """ # Python 3 compatibility (needs to go here) from __future__ import print_function """Copyright (c) 2011, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the project author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CALTECH OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Author: <NAME> """ from numpy import shape, size, array, asarray, copy, zeros, eye, dot from scipy.linalg import eigvals, solve_discrete_are, solve from .exception import ControlSlycot, ControlArgument from .statesp import _ssmatrix __all__ = ['lyap', 'dlyap', 'dare', 'care'] #### Lyapunov equation solvers lyap and dlyap def lyap(A, Q, C=None, E=None): """X = lyap(A, Q) solves the continuous-time Lyapunov equation :math:`A X + X A^T + Q = 0` where A and Q are square matrices of the same dimension. Further, Q must be symmetric. X = lyap(A,Q,C) solves the Sylvester equation :math:`A X + X Q + C = 0` where A and Q are square matrices. X = lyap(A,Q,None,E) solves the generalized continuous-time Lyapunov equation :math:`A X E^T + E X A^T + Q = 0` where Q is a symmetric matrix and A, Q and E are square matrices of the same dimension. """ # Make sure we have access to the right slycot routines try: from slycot import sb03md except ImportError: raise ControlSlycot("can't find slycot module 'sb03md'") try: from slycot import sb04md except ImportError: raise ControlSlycot("can't find slycot module 'sb04md'") # Reshape 1-d arrays if len(shape(A)) == 1: A = A.reshape(1, A.size) if len(shape(Q)) == 1: Q = Q.reshape(1, Q.size) if C is not None and len(shape(C)) == 1: C = C.reshape(1, C.size) if E is not None and len(shape(E)) == 1: E = E.reshape(1, E.size) # Determine main dimensions if size(A) == 1: n = 1 else: n = size(A, 0) if size(Q) == 1: m = 1 else: m = size(Q, 0) # Solve standard Lyapunov equation if C is None and E is None: # Check input data for consistency if shape(A) != shape(Q): raise ControlArgument("A and Q must be matrices of identical \ sizes.") if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if size(Q) > 1 and shape(Q)[0] != shape(Q)[1]: raise ControlArgument("Q must be a quadratic matrix.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") # Solve the Lyapunov equation by calling Slycot function sb03md try: X,scale,sep,ferr,w = sb03md(n,-Q,A,eye(n,n),'C',trana='T') except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info elif ve.info == n+1: e = ValueError("The matrix A and -A have common or very \ close eigenvalues.") e.info = ve.info else: e = ValueError("The QR algorithm failed to compute all \ the eigenvalues (see LAPACK Library routine DGEES).") e.info = ve.info raise e # Solve the Sylvester equation elif C is not None and E is None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if size(Q) > 1 and shape(Q)[0] != shape(Q)[1]: raise ControlArgument("Q must be a quadratic matrix.") if (size(C) > 1 and shape(C)[0] != n) or \ (size(C) > 1 and shape(C)[1] != m) or \ (size(C) == 1 and size(A) != 1) or (size(C) == 1 and size(Q) != 1): raise ControlArgument("C matrix has incompatible dimensions.") # Solve the Sylvester equation by calling the Slycot function sb04md try: X = sb04md(n,m,A,Q,-C) except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info elif ve.info > m: e = ValueError("A singular matrix was encountered whilst \ solving for the %i-th column of matrix X." % ve.info-m) e.info = ve.info else: e = ValueError("The QR algorithm failed to compute all the \ eigenvalues (see LAPACK Library routine DGEES).") e.info = ve.info raise e # Solve the generalized Lyapunov equation elif C is None and E is not None: # Check input data for consistency if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ (size(Q) == 1 and n > 1): raise ControlArgument("Q must be a square matrix with the same \ dimension as A.") if (size(E) > 1 and shape(E)[0] != shape(E)[1]) or \ (size(E) > 1 and shape(E)[0] != n) or \ (size(E) == 1 and n > 1): raise ControlArgument("E must be a square matrix with the same \ dimension as A.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") # Make sure we have access to the write slicot routine try: from slycot import sg03ad except ImportError: raise ControlSlycot("can't find slycot module 'sg03ad'") # Solve the generalized Lyapunov equation by calling Slycot # function sg03ad try: A,E,Q,Z,X,scale,sep,ferr,alphar,alphai,beta = \ sg03ad('C','B','N','T','L',n,A,E,eye(n,n),eye(n,n),-Q) except ValueError as ve: if ve.info < 0 or ve.info > 4: e = ValueError(ve.message) e.info = ve.info elif ve.info == 1: e = ValueError("The matrix contained in the upper \ Hessenberg part of the array A is not in \ upper quasitriangular form") e.info = ve.info elif ve.info == 2: e = ValueError("The pencil A - lambda * E cannot be \ reduced to generalized Schur form: LAPACK \ routine DGEGS has failed to converge") e.info = ve.info elif ve.info == 4: e = ValueError("The pencil A - lambda * E has a \ degenerate pair of eigenvalues. That is, \ lambda_i = lambda_j for some i and j, where \ lambda_i and lambda_j are eigenvalues of \ A - lambda * E. Hence, the equation is \ singular; perturbed values were \ used to solve the equation (but the matrices \ A and E are unchanged)") e.info = ve.info raise e # Invalid set of input parameters else: raise ControlArgument("Invalid set of input parameters") return _ssmatrix(X) def dlyap(A,Q,C=None,E=None): """ dlyap(A,Q) solves the discrete-time Lyapunov equation :math:`A X A^T - X + Q = 0` where A and Q are square matrices of the same dimension. Further Q must be symmetric. dlyap(A,Q,C) solves the Sylvester equation :math:`A X Q^T - X + C = 0` where A and Q are square matrices. dlyap(A,Q,None,E) solves the generalized discrete-time Lyapunov equation :math:`A X A^T - E X E^T + Q = 0` where Q is a symmetric matrix and A, Q and E are square matrices of the same dimension. """ # Make sure we have access to the right slycot routines try: from slycot import sb03md except ImportError: raise ControlSlycot("can't find slycot module 'sb03md'") try: from slycot import sb04qd except ImportError: raise ControlSlycot("can't find slycot module 'sb04qd'") try: from slycot import sg03ad except ImportError: raise ControlSlycot("can't find slycot module 'sg03ad'") # Reshape 1-d arrays if len(shape(A)) == 1: A = A.reshape(1,A.size) if len(shape(Q)) == 1: Q = Q.reshape(1,Q.size) if C is not None and len(shape(C)) == 1: C = C.reshape(1,C.size) if E is not None and len(shape(E)) == 1: E = E.reshape(1,E.size) # Determine main dimensions if size(A) == 1: n = 1 else: n = size(A,0) if size(Q) == 1: m = 1 else: m = size(Q,0) # Solve standard Lyapunov equation if C is None and E is None: # Check input data for consistency if shape(A) != shape(Q): raise ControlArgument("A and Q must be matrices of identical \ sizes.") if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if size(Q) > 1 and shape(Q)[0] != shape(Q)[1]: raise ControlArgument("Q must be a quadratic matrix.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") # Solve the Lyapunov equation by calling the Slycot function sb03md try: X,scale,sep,ferr,w = sb03md(n,-Q,A,eye(n,n),'D',trana='T') except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info else: e = ValueError("The QR algorithm failed to compute all the \ eigenvalues (see LAPACK Library routine DGEES).") e.info = ve.info raise e # Solve the Sylvester equation elif C is not None and E is None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix") if size(Q) > 1 and shape(Q)[0] != shape(Q)[1]: raise ControlArgument("Q must be a quadratic matrix") if (size(C) > 1 and shape(C)[0] != n) or \ (size(C) > 1 and shape(C)[1] != m) or \ (size(C) == 1 and size(A) != 1) or (size(C) == 1 and size(Q) != 1): raise ControlArgument("C matrix has incompatible dimensions") # Solve the Sylvester equation by calling Slycot function sb04qd try: X = sb04qd(n,m,-A,asarray(Q).T,C) except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info elif ve.info > m: e = ValueError("A singular matrix was encountered whilst \ solving for the %i-th column of matrix X." % ve.info-m) e.info = ve.info else: e = ValueError("The QR algorithm failed to compute all the \ eigenvalues (see LAPACK Library routine DGEES)") e.info = ve.info raise e # Solve the generalized Lyapunov equation elif C is None and E is not None: # Check input data for consistency if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ (size(Q) == 1 and n > 1): raise ControlArgument("Q must be a square matrix with the same \ dimension as A.") if (size(E) > 1 and shape(E)[0] != shape(E)[1]) or \ (size(E) > 1 and shape(E)[0] != n) or \ (size(E) == 1 and n > 1): raise ControlArgument("E must be a square matrix with the same \ dimension as A.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") # Solve the generalized Lyapunov equation by calling Slycot # function sg03ad try: A,E,Q,Z,X,scale,sep,ferr,alphar,alphai,beta = \ sg03ad('D','B','N','T','L',n,A,E,eye(n,n),eye(n,n),-Q) except ValueError as ve: if ve.info < 0 or ve.info > 4: e = ValueError(ve.message) e.info = ve.info elif ve.info == 1: e = ValueError("The matrix contained in the upper \ Hessenberg part of the array A is not in \ upper quasitriangular form") e.info = ve.info elif ve.info == 2: e = ValueError("The pencil A - lambda * E cannot be \ reduced to generalized Schur form: LAPACK \ routine DGEGS has failed to converge") e.info = ve.info elif ve.info == 3: e = ValueError("The pencil A - lambda * E has a \ pair of reciprocal eigenvalues. That is, \ lambda_i = 1/lambda_j for some i and j, \ where lambda_i and lambda_j are eigenvalues \ of A - lambda * E. Hence, the equation is \ singular; perturbed values were \ used to solve the equation (but the \ matrices A and E are unchanged)") e.info = ve.info raise e # Invalid set of input parameters else: raise ControlArgument("Invalid set of input parameters") return _ssmatrix(X) #### Riccati equation solvers care and dare def care(A, B, Q, R=None, S=None, E=None, stabilizing=True): """ (X,L,G) = care(A,B,Q,R=None) solves the continuous-time algebraic Riccati equation :math:`A^T X + X A - X B R^{-1} B^T X + Q = 0` where A and Q are square matrices of the same dimension. Further, Q and R are a symmetric matrices. If R is None, it is set to the identity matrix. The function returns the solution X, the gain matrix G = B^T X and the closed loop eigenvalues L, i.e., the eigenvalues of A - B G. (X,L,G) = care(A,B,Q,R,S,E) solves the generalized continuous-time algebraic Riccati equation :math:`A^T X E + E^T X A - (E^T X B + S) R^{-1} (B^T X E + S^T) + Q = 0` where A, Q and E are square matrices of the same dimension. Further, Q and R are symmetric matrices. If R is None, it is set to the identity matrix. The function returns the solution X, the gain matrix G = R^-1 (B^T X E + S^T) and the closed loop eigenvalues L, i.e., the eigenvalues of A - B G , E.""" # Make sure we can import required slycot routine try: from slycot import sb02md except ImportError: raise ControlSlycot("can't find slycot module 'sb02md'") try: from slycot import sb02mt except ImportError: raise ControlSlycot("can't find slycot module 'sb02mt'") # Make sure we can find the required slycot routine try: from slycot import sg02ad except ImportError: raise ControlSlycot("can't find slycot module 'sg02ad'") # Reshape 1-d arrays if len(shape(A)) == 1: A = A.reshape(1,A.size) if len(shape(B)) == 1: B = B.reshape(1,B.size) if len(shape(Q)) == 1: Q = Q.reshape(1,Q.size) if R is not None and len(shape(R)) == 1: R = R.reshape(1,R.size) if S is not None and len(shape(S)) == 1: S = S.reshape(1,S.size) if E is not None and len(shape(E)) == 1: E = E.reshape(1,E.size) # Determine main dimensions if size(A) == 1: n = 1 else: n = size(A,0) if size(B) == 1: m = 1 else: m = size(B,1) if R is None: R = eye(m,m) # Solve the standard algebraic Riccati equation if S is None and E is None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ size(Q) == 1 and n > 1: raise ControlArgument("Q must be a quadratic matrix of the same \ dimension as A.") if (size(B) > 1 and shape(B)[0] != n) or \ size(B) == 1 and n > 1: raise ControlArgument("Incompatible dimensions of B matrix.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") if not (asarray(R) == asarray(R).T).all(): raise ControlArgument("R must be a symmetric matrix.") # Create back-up of arrays needed for later computations R_ba = copy(R) B_ba = copy(B) # Solve the standard algebraic Riccati equation by calling Slycot # functions sb02mt and sb02md try: A_b,B_b,Q_b,R_b,L_b,ipiv,oufact,G = sb02mt(n,m,B,R) except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info elif ve.info == m+1: e = ValueError("The matrix R is numerically singular.") e.info = ve.info else: e = ValueError("The %i-th element of d in the UdU (LdL) \ factorization is zero." % ve.info) e.info = ve.info raise e try: if stabilizing: sort = 'S' else: sort = 'U' X, rcond, w, S_o, U, A_inv = sb02md(n, A, G, Q, 'C', sort=sort) except ValueError as ve: if ve.info < 0 or ve.info > 5: e = ValueError(ve.message) e.info = ve.info elif ve.info == 1: e = ValueError("The matrix A is (numerically) singular in \ continuous-time case.") e.info = ve.info elif ve.info == 2: e = ValueError("The Hamiltonian or symplectic matrix H cannot \ be reduced to real Schur form.") e.info = ve.info elif ve.info == 3: e = ValueError("The real Schur form of the Hamiltonian or \ symplectic matrix H cannot be appropriately ordered.") e.info = ve.info elif ve.info == 4: e = ValueError("The Hamiltonian or symplectic matrix H has \ less than n stable eigenvalues.") e.info = ve.info elif ve.info == 5: e = ValueError("The N-th order system of linear algebraic \ equations is singular to working precision.") e.info = ve.info raise e # Calculate the gain matrix G if size(R_b) == 1: G = dot(dot(1/(R_ba), asarray(B_ba).T), X) else: G = dot(solve(R_ba, asarray(B_ba).T), X) # Return the solution X, the closed-loop eigenvalues L and # the gain matrix G return (_ssmatrix(X) , w[:n] , _ssmatrix(G)) # Solve the generalized algebraic Riccati equation elif S is not None and E is not None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ size(Q) == 1 and n > 1: raise ControlArgument("Q must be a quadratic matrix of the same \ dimension as A.") if (size(B) > 1 and shape(B)[0] != n) or \ size(B) == 1 and n > 1: raise ControlArgument("Incompatible dimensions of B matrix.") if (size(E) > 1 and shape(E)[0] != shape(E)[1]) or \ (size(E) > 1 and shape(E)[0] != n) or \ size(E) == 1 and n > 1: raise ControlArgument("E must be a quadratic matrix of the same \ dimension as A.") if (size(R) > 1 and shape(R)[0] != shape(R)[1]) or \ (size(R) > 1 and shape(R)[0] != m) or \ size(R) == 1 and m > 1: raise ControlArgument("R must be a quadratic matrix of the same \ dimension as the number of columns in the B matrix.") if (size(S) > 1 and shape(S)[0] != n) or \ (size(S) > 1 and shape(S)[1] != m) or \ size(S) == 1 and n > 1 or \ size(S) == 1 and m > 1: raise ControlArgument("Incompatible dimensions of S matrix.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") if not (asarray(R) == asarray(R).T).all(): raise ControlArgument("R must be a symmetric matrix.") # Create back-up of arrays needed for later computations R_b = copy(R) B_b = copy(B) E_b = copy(E) S_b = copy(S) # Solve the generalized algebraic Riccati equation by calling the # Slycot function sg02ad try: if stabilizing: sort = 'S' else: sort = 'U' rcondu, X, alfar, alfai, beta, S_o, T, U, iwarn = \ sg02ad('C', 'B', 'N', 'U', 'N', 'N', sort, 'R', n, m, 0, A, E, B, Q, R, S) except ValueError as ve: if ve.info < 0 or ve.info > 7: e = ValueError(ve.message) e.info = ve.info elif ve.info == 1: e = ValueError("The computed extended matrix pencil is \ singular, possibly due to rounding errors.") e.info = ve.info elif ve.info == 2: e = ValueError("The QZ algorithm failed.") e.info = ve.info elif ve.info == 3: e = ValueError("Reordering of the generalized eigenvalues \ failed.") e.info = ve.info elif ve.info == 4: e = ValueError("After reordering, roundoff changed values of \ some complex eigenvalues so that leading \ eigenvalues in the generalized Schur form no \ longer satisfy the stability condition; this \ could also be caused due to scaling.") e.info = ve.info elif ve.info == 5: e = ValueError("The computed dimension of the solution does \ not equal N.") e.info = ve.info elif ve.info == 6: e = ValueError("The spectrum is too close to the boundary of \ the stability domain.") e.info = ve.info elif ve.info == 7: e = ValueError("A singular matrix was encountered during the \ computation of the solution matrix X.") e.info = ve.info raise e # Calculate the closed-loop eigenvalues L L = zeros((n,1)) L.dtype = 'complex64' for i in range(n): L[i] = (alfar[i] + alfai[i]*1j)/beta[i] # Calculate the gain matrix G if size(R_b) == 1: G = dot(1/(R_b), dot(asarray(B_b).T, dot(X,E_b)) + asarray(S_b).T) else: G = solve(R_b, dot(asarray(B_b).T, dot(X, E_b)) + asarray(S_b).T) # Return the solution X, the closed-loop eigenvalues L and # the gain matrix G return (_ssmatrix(X), L, _ssmatrix(G)) # Invalid set of input parameters else: raise ControlArgument("Invalid set of input parameters.") def dare(A, B, Q, R, S=None, E=None, stabilizing=True): """ (X,L,G) = dare(A,B,Q,R) solves the discrete-time algebraic Riccati equation :math:`A^T X A - X - A^T X B (B^T X B + R)^{-1} B^T X A + Q = 0` where A and Q are square matrices of the same dimension. Further, Q is a symmetric matrix. The function returns the solution X, the gain matrix G = (B^T X B + R)^-1 B^T X A and the closed loop eigenvalues L, i.e., the eigenvalues of A - B G. (X,L,G) = dare(A,B,Q,R,S,E) solves the generalized discrete-time algebraic Riccati equation :math:`A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^{-1} (B^T X A + S^T) + Q = 0` where A, Q and E are square matrices of the same dimension. Further, Q and R are symmetric matrices. The function returns the solution X, the gain matrix :math:`G = (B^T X B + R)^{-1} (B^T X A + S^T)` and the closed loop eigenvalues L, i.e., the eigenvalues of A - B G , E. """ if S is not None or E is not None or not stabilizing: return dare_old(A, B, Q, R, S, E, stabilizing) else: Rmat = _ssmatrix(R) Qmat = _ssmatrix(Q) X = solve_discrete_are(A, B, Qmat, Rmat) G = solve(B.T.dot(X).dot(B) + Rmat, B.T.dot(X).dot(A)) L = eigvals(A - B.dot(G)) return _ssmatrix(X), L, _ssmatrix(G) def dare_old(A, B, Q, R, S=None, E=None, stabilizing=True): # Make sure we can import required slycot routine try: from slycot import sb02md except ImportError: raise ControlSlycot("can't find slycot module 'sb02md'") try: from slycot import sb02mt except ImportError: raise ControlSlycot("can't find slycot module 'sb02mt'") # Make sure we can find the required slycot routine try: from slycot import sg02ad except ImportError: raise ControlSlycot("can't find slycot module 'sg02ad'") # Reshape 1-d arrays if len(shape(A)) == 1: A = A.reshape(1,A.size) if len(shape(B)) == 1: B = B.reshape(1,B.size) if len(shape(Q)) == 1: Q = Q.reshape(1,Q.size) if R is not None and len(shape(R)) == 1: R = R.reshape(1,R.size) if S is not None and len(shape(S)) == 1: S = S.reshape(1,S.size) if E is not None and len(shape(E)) == 1: E = E.reshape(1,E.size) # Determine main dimensions if size(A) == 1: n = 1 else: n = size(A,0) if size(B) == 1: m = 1 else: m = size(B,1) # Solve the standard algebraic Riccati equation if S is None and E is None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ size(Q) == 1 and n > 1: raise ControlArgument("Q must be a quadratic matrix of the same \ dimension as A.") if (size(B) > 1 and shape(B)[0] != n) or \ size(B) == 1 and n > 1: raise ControlArgument("Incompatible dimensions of B matrix.") if not (asarray(Q) == asarray(Q).T).all(): raise ControlArgument("Q must be a symmetric matrix.") if not (asarray(R) == asarray(R).T).all(): raise ControlArgument("R must be a symmetric matrix.") # Create back-up of arrays needed for later computations A_ba = copy(A) R_ba = copy(R) B_ba = copy(B) # Solve the standard algebraic Riccati equation by calling Slycot # functions sb02mt and sb02md try: A_b,B_b,Q_b,R_b,L_b,ipiv,oufact,G = sb02mt(n,m,B,R) except ValueError as ve: if ve.info < 0: e = ValueError(ve.message) e.info = ve.info elif ve.info == m+1: e = ValueError("The matrix R is numerically singular.") e.info = ve.info else: e = ValueError("The %i-th element of d in the UdU (LdL) \ factorization is zero." % ve.info) e.info = ve.info raise e try: if stabilizing: sort = 'S' else: sort = 'U' X, rcond, w, S, U, A_inv = sb02md(n, A, G, Q, 'D', sort=sort) except ValueError as ve: if ve.info < 0 or ve.info > 5: e = ValueError(ve.message) e.info = ve.info elif ve.info == 1: e = ValueError("The matrix A is (numerically) singular in \ discrete-time case.") e.info = ve.info elif ve.info == 2: e = ValueError("The Hamiltonian or symplectic matrix H cannot \ be reduced to real Schur form.") e.info = ve.info elif ve.info == 3: e = ValueError("The real Schur form of the Hamiltonian or \ symplectic matrix H cannot be appropriately ordered.") e.info = ve.info elif ve.info == 4: e = ValueError("The Hamiltonian or symplectic matrix H has \ less than n stable eigenvalues.") e.info = ve.info elif ve.info == 5: e = ValueError("The N-th order system of linear algebraic \ equations is singular to working precision.") e.info = ve.info raise e # Calculate the gain matrix G if size(R_b) == 1: G = dot(1/(dot(asarray(B_ba).T, dot(X, B_ba)) + R_ba), \ dot(asarray(B_ba).T, dot(X, A_ba))) else: G = solve(dot(asarray(B_ba).T, dot(X, B_ba)) + R_ba, \ dot(asarray(B_ba).T, dot(X, A_ba))) # Return the solution X, the closed-loop eigenvalues L and # the gain matrix G return (_ssmatrix(X) , w[:n], _ssmatrix(G)) # Solve the generalized algebraic Riccati equation elif S is not None and E is not None: # Check input data for consistency if size(A) > 1 and shape(A)[0] != shape(A)[1]: raise ControlArgument("A must be a quadratic matrix.") if (size(Q) > 1 and shape(Q)[0] != shape(Q)[1]) or \ (size(Q) > 1 and shape(Q)[0] != n) or \ size(Q) == 1 and n > 1: raise ControlArgument("Q must be a quadratic matrix of the same \ dimension as A.") if (size(B) > 1 and shape(B)[0] != n) or \ size(B) == 1 and n > 1: raise ControlArgument("Incompatible dimensions of B matrix.") if (size(E) > 1 and shape(E)[0] != shape(E)[1]) or \ (size(E) > 1 and shape(E)[0] != n) or \ size(E) == 1 and n > 1: raise ControlArgument("E must be a quadratic matrix of the same \ dimension as A.") if (size(R) > 1 and shape(R)[0] != shape(R)[1]) or \ (size(R) > 1 and shape(R)[0] != m) or \ size(R) == 1 and m > 1: raise ControlArgument("R must be a quadratic matrix of the same \ dimension as the number of columns in the B matrix.") if (
size(S)
numpy.size
""" This script takes a folder of GCaMP6f experiments and analyzes their data. This script is extremely rigid, and requires the folder to be organized in a very specific way. Image acquisition and foler arrangement is described here: https://github.com/swharden/ROI-Analysis-Pipeline/tree/master/pyROI """ import os import sys import glob import numpy as np import matplotlib.pyplot as plt def plotDataLines(times, data, AVG, ERR, b1, b2, title, showLines=False, showAvg=False, saveAs=False): print(f"Creating new figure: {title}") plt.figure(figsize=(8, 6)) plt.grid(alpha=.4, ls='--') plt.axvspan(b1, b2, color='b', alpha=.1, label="baseline", lw=0) #plt.axvspan(10, 13, color='r', alpha=.1, label="ANG-II", lw=0) plt.axhline(0, color='k', ls='--') if len(times)<len(data): print(f"There's a time point mismatch!") print(f"number of times seen: {len(times)}") print(f"number of data points: {len(data)}") averageTimeSpacing = times[-1]/len(times) print(f"average space between times: {averageTimeSpacing}") while len(times)<len(data): additionalTimePoint = times[-1]+averageTimeSpacing print(f"adding a time point to compensate: {additionalTimePoint}") times = np.append(times, additionalTimePoint) if showLines: nLines = len(data[0]) print(f"Graphing {len(times)} time points as {nLines} individual lines") for i in range(nLines): thisData = data[:, i] plt.plot(times, thisData, label="ROI-%02d" % i, alpha=.8) if showAvg: print(f"Graphing {len(times)} time points as individual lines") plt.plot(times, AVG, color='k', lw=3, alpha=.7) plt.fill_between(times, AVG+ERR, AVG-ERR, color='k', alpha=.2, lw=0) plt.ylabel(r'$\Delta$ F/F', fontsize=16) # delta F(neuron)/F(background) plt.xlabel("Experiment Duration (minutes)", fontsize=16) plt.title(title, fontsize=24) plt.legend(framealpha=1, shadow=True, fancybox=True, facecolor="#EEEEEE") plt.tight_layout() plt.margins(0, .1) if saveAs: print("saving",saveAs) plt.savefig(saveAs) plt.close() def analyzeExperiment(path, recalculate=False, baselineMinutes=[7, 9]): path = os.path.abspath(path) title = os.path.basename(path) print("Analyzing experiment:", path) # create folder where output images will go if not os.path.exists(path+"/swhlab/"): print("making swhlab subfolder to hold output data") os.mkdir(path+"/swhlab/") # figure out the time axis #times = np.arange(len(data))/framerate times = createTimesCSVfile(path) avgFrameRate = len(times)/(times[-1]-times[0]) # load the data data = np.loadtxt(path+"/results.xls", skiprows=1, delimiter="\t") data = data[:, 1:] # remove first column (just ascending numbers) baselineROI = data[:, 0] # the first ROI is always a baseline data = data[:, 1:] # remove the baseline column now # do the analysis / ratios for i in range(len(data[0])): thisRow = data[:, i] thisRow = thisRow/baselineROI # report intensity as a fraction relative to baseline thisRow = thisRow*100 # convert it to percent b1, b2 = baselineMinutes baseline = np.average(thisRow[int(b1*avgFrameRate):int(b2*avgFrameRate)]) data[:, i] = thisRow - baseline # calculate average and stderr AVG = np.average(data, axis=1) ERR = np.std(data, axis=1)/np.power(len(data),.5) # save what we've calculated
np.savetxt(path+"/dataRaw.csv", data, delimiter=',', fmt="%f")
numpy.savetxt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 28 20:34:58 2019 @author: kenneth """ import numpy as np class Perceptron(object): def __init__(self, activation = False, norm = None, lamda = None): self.activation = activation self.norm = norm self.lamda = lamda if self.norm == 'l2': if self.lamda is None: self.lamda = 0.001 else: self.lamda = lamda elif self.norm == 'l1': if self.lamda is None: self.lamda = 0.001 else: self.lamda = lamda elif self.norm == 'ElasticNet': if self.lamda is None: self.lamda = 0.001 else: self.lamda = lamda return @staticmethod def sigmoid(X, beta): ''' :params: X: traing data at ith iteration :return: 0 or 1 ''' return 1/(1 + np.exp(-(np.dot(X, beta)))) @staticmethod def relu(X, beta): ''' :params: X: traing data at ith iteration :return: 0 or max ''' return np.maximum(np.dot(X, beta), 0) @staticmethod def tanh(X, beta): ''' :params: X: traing data at ith iteration :return: 0 or tanh(X, beta) ''' return (np.exp(np.dot(X, beta)) - np.exp(-np.dot(X, beta)))/\ (np.exp(np.dot(X, beta)) + np.exp(-np.dot(X, beta))) def cost(self, X, Y, beta): ''' :params: X: traing data at ith iteration :return: 0 or 1 ''' if not self.norm: if not self.activation or self.activation == 'sigmoid': return -(1/len(Y)) * np.sum((Y*np.log(Perceptron.sigmoid(X, beta))) + ((1 - Y)*np.log(1 - Perceptron.sigmoid(X, beta)))) elif self.activation == 'relu': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta))))))) elif self.activation == 'tanh': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.tanh(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta))))))) elif self.norm == 'l2': if not self.activation or self.activation == 'sigmoid': return -(1/len(Y)) * (np.sum((Y*np.log(Perceptron.sigmoid(X, beta))) + ((1 - Y)*np.log(1 - Perceptron.sigmoid(X, beta)))) + ((self.lamda/2)*np.sum(np.square(beta)))) elif self.activation == 'relu': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))))) + \ ((self.lamda/2)*np.sum(np.square(beta)))) elif self.activation == 'tanh': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.tanh(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))))) + \ ((self.lamda/2)*np.sum(np.square(beta)))) elif self.norm == 'l1': if not self.activation or self.activation == 'sigmoid': return -(1/len(Y)) * (np.sum((Y*np.log(Perceptron.sigmoid(X, beta))) + ((1 - Y)*np.log(1 - Perceptron.sigmoid(X, beta)))) + ((self.lamda)*np.sum(beta))) elif self.activation == 'relu': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))))) + \ ((self.lamda)*np.sum(beta))) elif self.activation == 'tanh': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.tanh(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))))) + \ ((self.lamda)*np.sum(beta))) elif self.norm == 'ElasticNet': if not self.activation or self.activation == 'sigmoid': return -(1/len(Y)) * (np.sum((Y*np.log(Perceptron.sigmoid(X, beta))) + ((1 - Y)*np.log(1 - Perceptron.sigmoid(X, beta)))) + ((self.lamda/2)*np.sum(np.square(beta))) + ((self.lamda)*np.sum(beta))) elif self.activation == 'relu': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.relu(X, beta)))))) + \ ((self.lamda/2)*np.sum(np.square(beta))) + ((self.lamda)*np.sum(beta))) elif self.activation == 'tanh': return -(1/len(Y)) * (np.sum((Y*np.where(np.log(Perceptron.tanh(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))) + \ ((1 - Y)*np.log(1 - np.where(np.log(Perceptron.relu(X, beta)) == 1, 0.99, np.log(Perceptron.tanh(X, beta)))))) + \ ((self.lamda/2)*np.sum(np.square(beta))) + ((self.lamda)*np.sum(beta))) def fit(self, X, Y, alpha, iterations): self.alpha = alpha self.iterations = iterations self.beta = np.zeros(X.shape[1]).reshape(-1, 1) self.cost_rec = np.zeros(self.iterations) self.beta_rec = np.zeros((self.iterations, X.shape[1])) #--Unregularized if not self.norm: if not self.activation or self.activation == 'sigmoid': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * X_samp.T.dot(Y_samp - Perceptron.sigmoid(X_samp, self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'relu': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * X_samp.T.dot(Y_samp - Perceptron.relu(X_samp, self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'tanh': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * X_samp.T.dot(Y_samp - Perceptron.tanh(X_samp, self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self #--l2 elif self.norm == 'l2': if not self.activation or self.activation == 'sigmoid': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.sigmoid(X_samp, self.beta)) +\ ((self.lamda/len(Y))*self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'relu': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.relu(X_samp, self.beta)) +\ ((self.lamda/len(Y))*self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'tanh': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.tanh(X_samp, self.beta)) +\ ((self.lamda/len(Y))*self.beta)) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self #--l1 elif self.norm == 'l1': if not self.activation or self.activation == 'sigmoid': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.sigmoid(X_samp, self.beta)) +\ (self.lamda*np.sign(self.beta))) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'relu': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.relu(X_samp, self.beta)) +\ (self.lamda*np.sign(self.beta))) self.beta_rec[ii, :] = self.beta.T sampledCost += self.cost(X_samp, Y_samp, self.beta) self.cost_rec[ii] = sampledCost print('*'*40) print('%s iteratiion, cost = %s'%(ii, self.cost_rec[ii])) return self elif self.activation == 'tanh': ylen = len(Y) for ii in range(self.iterations): #compute stochastic gradient sampledCost = 0 for ij in range(ylen): random_samples = np.random.randint(1, ylen) X_samp = X[:random_samples] Y_samp = Y[:random_samples] self.beta = self.beta + (1/len(Y_samp)) *(self.alpha) * (X_samp.T.dot(Y_samp - Perceptron.tanh(X_samp, self.beta)) +\ (self.lamda*
np.sign(self.beta)
numpy.sign
import tensorflow as tf import numpy as np import time from sklearn.base import BaseEstimator from tensorflow import keras # tf.enable_eager_execution() #print(tf.executing_eagerly()) # tfe = tf.contrib.eager class Model(object): """Fuzzy Cognitive Maps model """ def __init__(self, **kwargs): # print(kwargs) self.dim = kwargs.get('dim') self.act = kwargs.get('act') self.depth = kwargs.get('depth', 5) self.init_method = kwargs.get('init_method', None) random_state = kwargs.get('random_state') if random_state is not None: np.random.seed(random_state) weights = kwargs.get('weights') if weights is None: w,b = self._generate_inital_weights() else: w=weights[0] b=weights[1] self.dim = w.shape[0] if (w.shape[0] != w.shape[1]): raise ValueError('Expecting square matrix W, while the shape is (%d,%d)' % w.shape) if (w.shape[0] != b.shape[0]): raise ValueError('W and b shapes should be equal') self.W = tf.Variable(w) self.b = tf.Variable(b.reshape(b.size, 1)) def _generate_inital_weights(self): if self.init_method == 'random': w = np.random.randn(self.dim, self.dim) * 0.01 b = np.random.randn(self.dim) * 0.01 if self.init_method == 'xavier': w =
np.random.randn(self.dim, self.dim)
numpy.random.randn
r"""This module contains code to generate synthetic diffusion signal attenuation following several state-of-the-art model, including diffusion tensor [1]_, stick model [2]_, hindered diffusion in cylinder [3]_, and mixture of the above. All the models described here have axial and antipodal symmetry, and we define an abstract class to serve as in interface. References ---------- .. [1] <NAME>, <NAME>, and <NAME>. "MR diffusion tensor spectroscopy and imaging." Biophysical journal 66, no. 1 (1994): 259-267 .. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. "Characterization and propagation of uncertainty in diffusion-weighted MR Imaging." Magnetic Resonance in Medicine 50, no. 5 (2003): 1077-1088. .. [3] Soderman, Olle, and <NAME>. "Restricted diffusion in cylindrical geometry." Journal of Magnetic Resonance, Series A 117, no. 1 (1995): 94-97. """ import numpy as np from phantomas.utils import shm from numpy.polynomial.legendre import Legendre class AxiallySymmetricModel(): """This class is an abstract class which defines the interface for all the synthetic models in use in phantomas. """ def signal(self, qnorms, thetas, tau=1 / (4 * np.pi**2)): r""" Returns the simulated signal attenuation. The angles thetas correspond to the angles between the sampling directions and the principal axis of the diffusion model. Must be implemented in subclasses. Parameters ---------- qnorms : array-like shape (K, ) The norm of q vectors in mm\ :superscript:`-1`. thetas : array-like, shape (K, ) Angles between the sampling directions and the axis. tau : double Diffusion time in s. """ raise NotImplementedError("The method signal must be implemented in " "subclasses.") def odf(self, thetas, tau=1 / (4 * np.pi**2)): """Returns the ground truth ODF, when available. Parameters ---------- thetas : array-like, shape (K, ) Angles between the sampling directions and the axis. tau : double The diffusion time in s. """ raise NotImplementedError("The method signal must be implemented in " "subclasses") def signal_convolution_sh(self, order, qnorm, tau=1 / (4 * np.pi**2), nb_samples=100): r""" Returns the convolution operator in spherical harmonics basis, using the Funk-Hecke theorem as described in [1]_. Parameters ---------- order : int The (even) spherical harmonics truncation order. qnorm : double The norm of q vector in mm\ :superscript:`-1`. tau : double The diffusion time in s. nb_samples : int The number of samples controling the accuracy of the numerical integral. Note ---- The function implemented here is the general, numerical implementation of the Funk-Hecke theorem. It is eventually replaced by analytical formula (when available) in subclasses. References ---------- .. [1] Descoteaux, Maxime. "High angular resolution diffusion MRI: from local estimation to segmentation and tractography." PhD diss., Universite de Nice Sophia-Antipolis, France, 2010. """ cos_thetas = np.linspace(0, 1, nb_samples) thetas = np.arccos(cos_thetas) qnorms = qnorm * np.ones(nb_samples) fir = self.signal(qnorms, thetas, tau) H = np.zeros((order + 1, nb_samples)) dim_sh = shm.dimension(order) for l in range(0, order + 1, 2): coeffs = np.zeros(l + 1) coeffs[l] = 1.0 H[l, :] = Legendre(coeffs)(cos_thetas) ls = map(shm.sh_degree, range(dim_sh)) rs = np.dot(H, fir) / nb_samples return rs[ls] class GaussianModel(AxiallySymmetricModel): r""" This class models a Gaussian diffusion tensor wot axial symmetry. Typically, the eigenvalues of this tensors are :math:`\lambda_1 \gg \lambda_2 = \lambda_3`. Parameters ---------- lambda1 : double The eigenvalue associated with the principal direction, in mm\ :sup:`2`/s. lambda2 : double The eigenvalue associated with the two minor eigenvectors, in mm\ :sup:`2`/s. """ def __init__(self, lambda1=1.7e-3, lambda2=0.2e-3): self.lambda1 = lambda1 self.lambda2 = lambda2 def signal(self, qnorms, thetas, tau=1 / (4 * np.pi**2)): r"""Returns the simulated signal attenuation, following the Stejskal and Tanner [1]_ equation. The angles thetas correspond to the angles between the sampling directions and the principal axis of the diffusion tensor. Parameters ---------- qnorms : array-like shape (K, ) The norm of q vectors in mm\ :superscript:`-1`. thetas : array-like, shape (K, ) Angles between the sampling directions and the axis. tau : double Diffusion time in the Stejskal and Tanner sequence in s. """ bvals = 4 * np.pi**2 * qnorms**2 * tau signal =
np.exp(-bvals * self.lambda2)
numpy.exp
import matplotlib.pyplot as plt from wordcloud import WordCloud from functools import reduce import numpy as np def plot_word_clouds(classifiers, feature_names_list, top_features=20): f, axs = plt.subplots(len(classifiers), 2, figsize=(50, 25)) for classifier, feature_names, ax in zip(classifiers, feature_names_list, axs): coef = classifier.coef_.ravel() top_positive_coefficients = np.argsort(coef)[-top_features:] top_negative_coefficients = np.argsort(coef)[:top_features] positives = [int(1000 * x) for x in coef[top_positive_coefficients]] negatives = [abs(int(1000 * x)) for x in coef[top_negative_coefficients]] positive_text = ' '.join( reduce( lambda x, y: x + y, [[pos_word] * pos_coef for pos_word, pos_coef in zip(np.array(feature_names)[top_positive_coefficients], positives)] ) ) negative_text = ' '.join( reduce( lambda x, y: x + y, [[neg_word] * neg_coef for neg_word, neg_coef in zip(np.array(feature_names)[top_negative_coefficients], negatives)] ) ) pos_wordcloud = WordCloud(collocations=False, max_words=top_features).generate(positive_text) neg_wordcloud = WordCloud(collocations=False, max_words=top_features).generate(negative_text) ax[0].imshow(pos_wordcloud, interpolation="bilinear") ax[0].axis("off") ax[0].set_title('Top-{} positive words'.format(top_features), fontsize=45) ax[1].imshow(neg_wordcloud, interpolation="bilinear") ax[1].axis("off") ax[1].set_title('Top-{} negative words'.format(top_features), fontsize=45) plt.tight_layout() plt.show() def plot_coefficients(classifiers, feature_names_list, top_features=20): f, axs = plt.subplots(1, len(classifiers), sharey=False, sharex=False, figsize=(30, 50)) for classifier, feature_names, ax in zip(classifiers, feature_names_list, axs): coef = classifier.coef_.ravel() top_positive_coefficients = np.argsort(coef)[-top_features:] top_negative_coefficients =
np.argsort(coef)
numpy.argsort
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob import openpyxl import copy import gc as garc import time from fcgadgets.macgyver import utilities_general as gu from fcgadgets.macgyver import utilities_inventory as invu from fcgadgets.silviculture import economics as econo from fcgadgets.taz import aspatial_stat_models as asm #%% CONVERT LUT NUMBER TO STRING NAME def lut_n2s(dc,numb): if numb!=-999: vals=np.fromiter(dc.values(),dtype=float) keys=np.fromiter(dc.keys(),dtype='<U70') ind=np.where(vals==numb)[0] s=keys[ind] else: s=np.array(['Unidentified'],ndmin=1) return s #%% Index to batch def IndexToBatch(meta,iBat): iStart=meta['Project']['Batch Interval']*iBat iStop=np.minimum(meta['Project']['N Stand'],iStart+meta['Project']['Batch Interval']) indBat=np.arange(iStart,iStop,1) return indBat #%% QUERY RESULTS CODES FOR MANAGEMENT ACTIVITY TYPES def QueryResultsActivity(d): # Convert to arrays with at least 1d for key in d: d[key]=np.array(d[key],ndmin=1) Name=[] for i in range(d['SILV_BASE_CODE'].size): if (d['SILV_BASE_CODE'][i]=='FE') & (d['SILV_TECHNIQUE_CODE'][i]=='CA'): Name.append('Fertilization Aerial') elif (d['SILV_BASE_CODE'][i]=='FE') & (d['SILV_TECHNIQUE_CODE'][i]=='CG') & (d['SILV_METHOD_CODE'][i]!='BAGS'): Name.append('Fertilization Hand') elif (d['SILV_BASE_CODE'][i]=='FE') & (d['SILV_TECHNIQUE_CODE'][i]=='CG') & (d['SILV_METHOD_CODE'][i]=='BAGS'): Name.append('Fertilization Teabag') elif (d['SILV_BASE_CODE'][i]=='FE') & (d['SILV_TECHNIQUE_CODE'][i]=='OG'): Name.append('Fertilization Organic') elif (d['SILV_BASE_CODE'][i]=='PL') & (d['SILV_METHOD_CODE'][i]!='LAYOT'): # The planting in road rehab projects falls into this milestone type Name.append('Planting') elif (d['SILV_BASE_CODE'][i]=='DS') & (d['SILV_TECHNIQUE_CODE'][i]!='GS'): # Everything except grass seeding Name.append('Direct Seeding') elif (d['SILV_BASE_CODE'][i]=='PC') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_OBJECTIVE_CODE_1'][i]=='DM'): # This will exclude SILV_TECHNIQUE_CODE=BI. Virtually all of it is mechanical. Name.append('Dwarf Mistletoe Control') elif (d['SILV_BASE_CODE'][i]=='PC') & (d['SILV_TECHNIQUE_CODE'][i]=='CA') & (d['SILV_OBJECTIVE_CODE_1'][i]=='ID'): Name.append('IDW Control') elif (d['SILV_BASE_CODE'][i]=='RD') & (d['SILV_BASE_CODE'][i]=='UP'): Name.append('Road Rehab') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='BU') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='PBURN'): Name.append('Slashpile Burn') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='Unidentified') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='GUARD') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='HAND') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='KNOCK') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='POWER') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='MANCT') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='MDOWN') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='PILE') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='MA') & (d['SILV_METHOD_CODE'][i]=='SNAG') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='CABLE') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='GUARD') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='MDOWN') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='PILE') | \ (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='PUSH'): Name.append('Knockdown') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='BRIP'): Name.append('Ripping') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='DISC'): Name.append('Disc Trenching') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='MULCH'): Name.append('Mulching') elif (d['SILV_BASE_CODE'][i]=='SP') & (d['SILV_TECHNIQUE_CODE'][i]=='ME') & (d['SILV_METHOD_CODE'][i]=='HARV'): Name.append('Harvest Salvage') elif (d['SILV_BASE_CODE'][i]=='LB') & (d['SILV_TECHNIQUE_CODE'][i]=='GR'): Name.append('LB-GR') elif (d['SILV_BASE_CODE'][i]=='SU'): Name.append('Surveys') else: Name.append('Undefined') return Name #%% CONVERT DICTIONARY TO DATA STRUCTURE CLASS class BunchDictionary(dict): def __init__(self, *args, **kwds): super(BunchDictionary, self).__init__(*args, **kwds) self.__dict__ = self #%% Build event chronology from spreadsheet def BuildEventChronologyFromSpreadsheet(meta): # Import inventory to get BGC zone iScn=0 iBat=0 inv=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Inventory_Bat' + FixFileNum(iBat) + '.pkl') # Simulate wildfires if (meta['Scenario'][iScn]['Wildfire Status Pre-modern']=='On') | (meta['Scenario'][iScn]['Wildfire Status Modern']=='On') | (meta['Scenario'][iScn]['Wildfire Status Future']=='On'): asm.SimulateWildfireFromAAO(meta,inv) # Simulate MPB if (meta['Scenario'][iScn]['MPB Status Pre-modern']=='On') | (meta['Scenario'][iScn]['MPB Status Modern']=='On') | (meta['Scenario'][iScn]['MPB Status Future']=='On'): asm.SimulateIBMFromAAO(meta,inv) for iScn in range(meta['Project']['N Scenario']): for iEns in range(meta['Project']['N Ensemble']): # Import wildfire simulations from Taz if (meta['Scenario'][iScn]['Wildfire Status Pre-modern']=='On') | (meta['Scenario'][iScn]['Wildfire Status Modern']=='On') | (meta['Scenario'][iScn]['Wildfire Status Future']=='On'): wf_sim=gu.ipickle(meta['Paths']['Project'] + '\\Inputs\\Ensembles\\wf_sim_Scn' + FixFileNum(iScn) + '_Ens' + FixFileNum(iEns) + '.pkl') if 'idx' in wf_sim: idx=wf_sim['idx'] tmp=wf_sim.copy() for v in ['Occurrence','Mortality']: wf_sim[v]=np.zeros((meta['Project']['N Time'],meta['Project']['N Stand']),dtype='int16') wf_sim[v][idx[0],idx[1]]=tmp[v] del tmp # Import IBM if (meta['Scenario'][iScn]['MPB Status Pre-modern']=='On') | (meta['Scenario'][iScn]['MPB Status Modern']=='On') | (meta['Scenario'][iScn]['MPB Status Future']=='On'): ibm_sim=gu.ipickle(meta['Paths']['Project'] + '\\Inputs\\Ensembles\\ibm_sim_Scn' + FixFileNum(iScn) + '_Ens' + FixFileNum(iEns) + '.pkl') if 'idx' in ibm_sim: idx=ibm_sim['idx'] tmp=ibm_sim.copy() for v in ['Occurrence','Mortality']: ibm_sim[v]=np.zeros((meta['Project']['N Time'],meta['Project']['N Stand']),dtype='int16') ibm_sim[v][idx[0],idx[1]]=tmp[v] del tmp for iBat in range(meta['Project']['N Batch']): # Index to batch indBat=IndexToBatch(meta,iBat) # Always just one stand iS=0 tv=np.arange(meta['Project']['Year Start'],meta['Project']['Year End']+1,1) # Initialize dictionary ec={} ec['ID_Type']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') ec['MortalityFactor']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') ec['GrowthFactor']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') ec['ID_GrowthCurve']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') #---------------------------------------------------------- # Add spinup events #---------------------------------------------------------- ivl_spin=meta['Project']['Spinup Disturbance Return Inverval'] YearRef=meta['Scenario'][iScn]['Year1_DisFromInv'] AgeRef=meta['Scenario'][iScn]['Age1_DisFromInv'] if AgeRef>=0: Year=np.arange(YearRef-AgeRef-100*ivl_spin,YearRef-AgeRef+ivl_spin,ivl_spin) else: Year1=meta['Project']['Year Start']+ivl_spin Year2=meta['Project']['Spinup Year End'] Year=np.arange(Year1,Year2+1,meta['Project']['Spinup Disturbance Return Inverval']) for iYr in range(Year.size): iT=np.where(tv==Year[iYr])[0] ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Project']['Spinup Disturbance Type']] ec['MortalityFactor'][iT,iS,0]=100 ec['GrowthFactor'][iT,iS,0]=0 ec['ID_GrowthCurve'][iT,iS,0]=meta['Project']['Spinup Growth Curve ID'] #---------------------------------------------------------- # Add events from inventory #---------------------------------------------------------- for iYr in range(1,8): if np.isnan(meta['Scenario'][iScn]['Year' + str(iYr) + '_DisFromInv'])==True: continue # If IDW, convert IDW class to growth and mortality factor sc=np.array(['IDW-T','IDW-L','IDW-M','IDW-S','IDW-V','IDW-MM','IDW-MS','IDW-MV','IDW-SS','IDW-SV','IDW-VV']) flg_i=0 indSc=np.where(sc==meta['Scenario'][iScn]['Type' + str(iYr) + '_DisFromInv'])[0] if indSc.size!=0: if flg_i==0: dfParDistBySC=pd.read_excel(meta['Paths']['Model Code'] + '\\Parameters\\Parameters_DisturbanceBySeverityClass.xlsx') flg_i=1 indPar=np.where( (dfParDistBySC['Name']=='IDW') & (dfParDistBySC['SeverityCD']==sc[indSc[0]][4:]) )[0] ID_TypeN=meta['LUT']['Dist']['IDW'] MF=dfParDistBySC.loc[indPar,'MortalityFactor'] GF=dfParDistBySC.loc[indPar,'GrowthFactor'] else: ID_TypeS=meta['Scenario'][iScn]['Type' + str(iYr) + '_DisFromInv'] try: ID_TypeN=meta['LUT']['Dist'][ID_TypeS] except: print(iScn) print(iYr) print(ID_TypeS) MF=meta['Scenario'][iScn]['Severity' + str(iYr) + '_DisFromInv'] GF=0 Year=meta['Scenario'][iScn]['Year' + str(iYr) + '_DisFromInv'] iT=np.where(tv==Year)[0] if iT.size==0: print('Warning: An event was scheduled outside the timeframe of the simulation.') iE=np.where(ec['ID_Type'][iT,iS,:]==0)[1] ec['ID_Type'][iT,iS,iE[0]]=ID_TypeN ec['MortalityFactor'][iT,iS,iE[0]]=MF ec['GrowthFactor'][iT,iS,iE[0]]=GF ec['ID_GrowthCurve'][iT,iS,iE[0]]=meta['Scenario'][iScn]['GrowthCurve' + str(iYr) + '_DisFromInv'] #---------------------------------------------------------- # Add simulated wildfire from Taz #---------------------------------------------------------- ind=np.array([],dtype=int) if meta['Scenario'][iScn]['Wildfire Status Pre-modern']=='On': ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']<1920) )[0] ind=np.append(ind,ind0) if meta['Scenario'][iScn]['Wildfire Status Modern']=='On': ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']>=1920) & (meta['Year']<meta['Project']['Year Project']) )[0] ind=np.append(ind,ind0) if meta['Scenario'][iScn]['Wildfire Status Future']=='On': ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']>=meta['Project']['Year Project']) )[0] ind=np.append(ind,ind0) if ind.size>0: ID_Type=meta['LUT']['Dist']['Wildfire']*np.ones(ind.size) Year=tv[ind] MortF=wf_sim['Mortality'][ind,iS] GrowthF=0*np.ones(ind.size) ID_GrowthCurve=1*np.ones(ind.size) for iYr in range(Year.size): iT=np.where(tv==Year[iYr])[0] ec['ID_Type'][iT,iS,0]=ID_Type[iYr] ec['MortalityFactor'][iT,iS,0]=MortF[iYr] ec['GrowthFactor'][iT,iS,0]=GrowthF[iYr] ec['ID_GrowthCurve'][iT,iS,0]=ID_GrowthCurve[iYr] #---------------------------------------------------------- # Add simulated MPB from Taz #---------------------------------------------------------- ind=np.array([],dtype=int) if meta['Scenario'][iScn]['MPB Status Pre-modern']=='On': ind0=np.where( (ibm_sim['Occurrence'][:,iS]==1) & (meta['Year']<1920) )[0] ind=np.append(ind,ind0) if meta['Scenario'][iScn]['MPB Status Modern']=='On': ind0=np.where( (ibm_sim['Occurrence'][:,iS]==1) & (meta['Year']>=1920) & (meta['Year']<meta['Project']['Year Project']) )[0] ind=np.append(ind,ind0) if meta['Scenario'][iScn]['MPB Status Future']=='On': ind0=np.where( (ibm_sim['Occurrence'][:,iS]==1) & (meta['Year']>=meta['Project']['Year Project']) )[0] ind=np.append(ind,ind0) if ind.size>0: ID_Type=meta['LUT']['Dist']['IBM']*np.ones(ind.size) Year=tv[ind] MortF=ibm_sim['Mortality'][ind,iS] GrowthF=0*np.ones(ind.size) ID_GrowthCurve=1*np.ones(ind.size) for iYr in range(Year.size): iT=np.where(tv==Year[iYr])[0] ec['ID_Type'][iT,iS,0]=ID_Type[iYr] ec['MortalityFactor'][iT,iS,0]=MortF[iYr] ec['GrowthFactor'][iT,iS,0]=GrowthF[iYr] ec['ID_GrowthCurve'][iT,iS,0]=ID_GrowthCurve[iYr] #-------------------------------------------------------------- # Save to file #-------------------------------------------------------------- gu.opickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl',ec) return #def BuildEventChronologyFromSpreadsheet_old(meta): # # #-------------------------------------------------------------------------- # # Simulated wildfire (different among stands, the same among scenarios) # #-------------------------------------------------------------------------- # # iScn=0 # iBat=0 # # # Import inventory to get BGC zone # inv=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Inventory_Bat' + FixFileNum(iBat) + '.pkl') # # for iScn in range(meta['Project']['N Scenario']): # # wf_sim=asm.SimulateWildfireFromAAO_StandsActAsEnsembles(meta,inv,iScn) # # for iEns in range(meta['Project']['N Ensemble']): # for iBat in range(meta['Project']['N Batch']): # # # Index to batch # indBat=IndexToBatch(meta,iBat) # N_StandsInBatch=len(indBat) # # tv=np.arange(meta['Project']['Year Start'],meta['Project']['Year End']+1,1) # # # Initialize dictionary # ec={} # ec['ID_Type']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') # ec['MortalityFactor']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') # ec['GrowthFactor']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') # ec['ID_GrowthCurve']=np.zeros((meta['Year'].size,indBat.size,meta['Core']['Max Events Per Year']),dtype='int16') # # for iS in range(N_StandsInBatch): # # #---------------------------------------------------------- # # Add spinup events # #---------------------------------------------------------- # # ivl_spin=meta['Project']['Spinup Disturbance Return Inverval'] # YearRef=meta['Scenario'][iScn]['Year1_DisFromInv'] # AgeRef=meta['Scenario'][iScn]['Age1_DisFromInv'] # if AgeRef>=0: # Year=np.arange(YearRef-AgeRef-100*ivl_spin,YearRef-AgeRef+ivl_spin,ivl_spin) # else: # Year1=meta['Project']['Year Start']+ivl_spin # Year2=meta['Project']['Spinup Year End'] # Year=np.arange(Year1,Year2+1,meta['Project']['Spinup Disturbance Return Inverval']) # # for iYr in range(Year.size): # iT=np.where(tv==Year[iYr])[0] # ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Project']['Spinup Disturbance Type']] # ec['MortalityFactor'][iT,iS,0]=100 # ec['GrowthFactor'][iT,iS,0]=0 # ec['ID_GrowthCurve'][iT,iS,0]=meta['Project']['Spinup Growth Curve ID'] # # #---------------------------------------------------------- # # Add simulated constant disturbances # #---------------------------------------------------------- # ## # Historical disturbance from simulation 1 ## ri=meta['Scenario'][iScn]['ReturnInterval1_Hist_DisFromSim'] ## if (ri!=0) & (np.isnan(ri)==False): ## ## p_Dist=1/ri ## p_Rand=np.random.uniform(0,1,size=(meta['Year'].size)) ## it=np.where((p_Rand<p_Dist) & (meta['Year']>meta['Project']['Spinup Year End']) & (meta['Year']<meta['Project']['Year Project']))[0] ## Year=meta['Year'][it] ## for iYr in range(Year.size): ## iT=np.where(tv==Year[iYr])[0] ## ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Scenario'][iScn]['Type1_Hist_DisFromSim']] ## ec['MortalityFactor'][iT,iS,0]=100 ## ec['GrowthFactor'][iT,iS,0]=0 ## ec['ID_GrowthCurve'][iT,iS,0]=meta['Project']['Spinup Growth Curve ID'] # ## # Historical disturbance from simulation 2 ## ri=meta['Scenario'][iScn]['ReturnInterval2_Hist_DisFromSim'] ## if (ri!=0) & (np.isnan(ri)==False): ## ## p_Dist=1/ri ## p_Rand=np.random.uniform(0,1,size=(meta['Year'].size)) ## it=np.where((p_Rand<p_Dist) & (meta['Year']>meta['Project']['Spinup Year End']) & (meta['Year']<meta['Project']['Year Project']))[0] ## Year=meta['Year'][it] ## for iYr in range(Year.size): ## iT=np.where(tv==Year[iYr])[0] ## ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Scenario'][iScn]['Type2_Hist_DisFromSim']] ## ec['MortalityFactor'][iT,iS,0]=100 ## ec['GrowthFactor'][iT,iS,0]=0 ## ec['ID_GrowthCurve'][iT,iS,0]=meta['Project']['Spinup Growth Curve ID'] # # #---------------------------------------------------------- # # Add events from inventory # #---------------------------------------------------------- # # for iYr in range(1,8): # # if np.isnan(meta['Scenario'][iScn]['Year' + str(iYr) + '_DisFromInv'])==True: # continue # # # If IDW, convert IDW class to growth and mortality factor # sc=np.array(['IDW-T','IDW-L','IDW-M','IDW-S','IDW-V','IDW-MM','IDW-MS','IDW-MV','IDW-SS','IDW-SV','IDW-VV']) # flg_i=0 # indSc=np.where(sc==meta['Scenario'][iScn]['Type' + str(iYr) + '_DisFromInv'])[0] # if indSc.size!=0: # if flg_i==0: # dfParDistBySC=pd.read_excel(meta['Paths']['Model Code'] + '\\Parameters\\Parameters_DisturbanceBySeverityClass.xlsx') # flg_i=1 # indPar=np.where( (dfParDistBySC['Name']=='IDW') & (dfParDistBySC['SeverityCD']==sc[indSc[0]][4:]) )[0] # ID_TypeN=meta['LUT']['Dist']['IDW'] # MF=dfParDistBySC.loc[indPar,'MortalityFactor'] # GF=dfParDistBySC.loc[indPar,'GrowthFactor'] # else: # ID_TypeS=meta['Scenario'][iScn]['Type' + str(iYr) + '_DisFromInv'] # ID_TypeN=meta['LUT']['Dist'][ID_TypeS] # MF=meta['Scenario'][iScn]['Severity' + str(iYr) + '_DisFromInv'] # GF=0 # # Year=meta['Scenario'][iScn]['Year' + str(iYr) + '_DisFromInv'] # iT=np.where(tv==Year)[0] # # iE=np.where(ec['ID_Type'][iT,iS,:]==0)[1] # # ec['ID_Type'][iT,iS,iE[0]]=ID_TypeN # ec['MortalityFactor'][iT,iS,iE[0]]=MF # ec['GrowthFactor'][iT,iS,iE[0]]=GF # ec['ID_GrowthCurve'][iT,iS,iE[0]]=meta['Scenario'][iScn]['GrowthCurve' + str(iYr) + '_DisFromInv'] # # #---------------------------------------------------------- # # Add simulated constant future disturbances # #---------------------------------------------------------- # ## # Future disturbance from simulation 1 ## ri=meta['Scenario'][iScn]['ReturnInterval1_Fut_DisFromSim'] ## if (ri!=0) & (np.isnan(ri)==False): ## ## p_Dist=1/ri ## p_Rand=np.random.uniform(0,1,size=(meta['Year'].size)) ## it=np.where((p_Rand<p_Dist) & (meta['Year']>meta['Project']['Year Project']))[0] ## Year=meta['Year'][it] ## for iYr in range(Year.size): ## iT=np.where(tv==Year[iYr])[0] ## ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Scenario'][iScn]['Type1_Fut_DisFromSim']] ## ec['MortalityFactor'][iT,iS,0]=100 ## ec['GrowthFactor'][iT,iS,0]=0 ## ec['ID_GrowthCurve'][iT,iS,0]=meta['Spinup Growth Curve ID'] ## ## # Future disturbance from simulation 2 ## ri=meta['Scenario'][iScn]['ReturnInterval2_Fut_DisFromSim'] ## if (ri!=0) & (np.isnan(ri)==False): ## ## p_Dist=1/ri ## p_Rand=np.random.uniform(0,1,size=(meta['Year'].size)) ## it=np.where((p_Rand<p_Dist) & (meta['Year']>meta['Project']['Year Project']))[0] ## Year=meta['Year'][it] ## for iYr in range(Year.size): ## iT=np.where(tv==Year[iYr])[0] ## ec['ID_Type'][iT,iS,0]=meta['LUT']['Dist'][meta['Scenario'][iScn]['Type2_Fut_DisFromSim']] ## ec['MortalityFactor'][iT,iS,0]=100 ## ec['GrowthFactor'][iT,iS,0]=0 ## ec['ID_GrowthCurve'][iT,iS,0]=meta['Spinup Growth Curve ID'] # # #---------------------------------------------------------- # # Add simulated wildfire from Taz # #---------------------------------------------------------- # # ind=np.array([]) # if meta['Scenario'][iScn]['Wildfire Status Pre-modern']=='On': # ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']<1920) )[0] # ind=np.append(ind,ind0) # if meta['Scenario'][iScn]['Wildfire Status Modern']=='On': # ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']>=1920) & (meta['Year']<meta['Project']['Year Project']) )[0] # ind=np.append(ind,ind0) # if meta['Scenario'][iScn]['Wildfire Status Future']=='On': # ind0=np.where( (wf_sim['Occurrence'][:,iS]==1) & (meta['Year']>=meta['Project']['Year Project']) )[0] # ind=np.append(ind,ind0) # # if ind.size>0: # # ID_Type=meta['LUT']['Dist']['Wildfire']*np.ones(ind.size) # Year=tv[ind] # MortF=wf_sim['Mortality'][ind,iS] # GrowthF=0*np.ones(ind.size) # ID_GrowthCurve=1*np.ones(ind.size) # # for iYr in range(Year.size): # iT=np.where(tv==Year[iYr])[0] # ec['ID_Type'][iT,iS,0]=ID_Type[iYr] # ec['MortalityFactor'][iT,iS,0]=MortF[iYr] # ec['GrowthFactor'][iT,iS,0]=GrowthF[iYr] # ec['ID_GrowthCurve'][iT,iS,0]=ID_GrowthCurve[iYr] # # #---------------------------------------------------------- # # Add simulated MPB from Taz # #---------------------------------------------------------- # # # To do list... # # #-------------------------------------------------------------- # # Save to file # #-------------------------------------------------------------- # # gu.opickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl',ec) #%% Decompress event chronology def EventChronologyDecompress(meta,ec,iScn,iEns,iBat): # Uncompress event chronology if it has been compressed if 'idx' in ec: idx=ec['idx'] tmp=ec.copy() for v in ['ID_Type','MortalityFactor','GrowthFactor','ID_GrowthCurve']: ec[v]=np.zeros((meta['Project']['N Time'],meta['Project']['Batch Size'][iBat],meta['Core']['Max Events Per Year']),dtype='int16') ec[v][idx[0],idx[1],idx[2]]=tmp[v] del tmp return ec #%% Fix ensemble name and numbering def FixFileNum(ind): indStrFixed=str(ind+1) if len(indStrFixed)==1: indStrFixed='000' + indStrFixed elif len(indStrFixed)==2: indStrFixed='00' + indStrFixed elif len(indStrFixed)==3: indStrFixed='0' + indStrFixed return indStrFixed #%% Configure project def ImportProjectConfig(meta): #-------------------------------------------------------------------------- # Initialize nested dictionaries #-------------------------------------------------------------------------- if 'Project' not in meta: meta['Project']={} if 'Core' not in meta: meta['Core']={} #-------------------------------------------------------------------------- # Import project parameters from spreadsheet #-------------------------------------------------------------------------- df=pd.read_excel(meta['Paths']['Project'] + '\\Inputs\\ProjectConfig.xlsx',sheet_name='Project') for i in range(len(df)): Name=df['Name'].iloc[i] Value=df['Value'].iloc[i] if Name[-1]==':': # Exclude headers continue meta['Project'][Name]=Value #-------------------------------------------------------------------------- # Import look-up tables #-------------------------------------------------------------------------- meta=invu.Load_LUTs(meta) #-------------------------------------------------------------------------- # Define pool names #-------------------------------------------------------------------------- # Pool names (ecosystem) # *** If you change this, you need to change the same list in "Update Parameters" *** meta['Core']['Name Pools Eco']=['StemMerch','StemNonMerch','Foliage','Branch','Bark','RootCoarse','RootFine', \ 'PiledStemMerch','PiledStemNonMerch','PiledBranch','PiledBark','PiledSnagStem','PiledSnagBranch', \ 'LitterVF','LitterF','LitterM','LitterS','SnagStem','SnagBranch','SoilVF','SoilF','SoilS'] # Used in fert work: ,'LitterDecomp' # Number of ecosystem pools meta['Core']['N Pools Eco']=len(meta['Core']['Name Pools Eco']) # Pool names (products) meta['Core']['Name Pools Pro']=['SFH','MFH','Comm','Furn','Ship','Repairs', \ 'Other','Paper','EffluentPulp','PowerFacilityDom','PowerFacilityFor','PowerGrid', \ 'Pellets','LogExport','FirewoodDom','FirewoodFor','DumpWood', \ 'DumpPaper','LandfillWoodDegradable','LandfillWoodNonDegradable', \ 'LandfillPaperDegradable','LandfillPaperNonDegradable','E_CO2','E_CH4'] # Number of product pools meta['Core']['N Pools Pro']=len(meta['Core']['Name Pools Pro']) #-------------------------------------------------------------------------- # Define indices to each pool #-------------------------------------------------------------------------- # Indices to ecosystem pools pools meta['Core']['iEP']={}; cnt=0 for nam in meta['Core']['Name Pools Eco']: meta['Core']['iEP'][nam]=cnt cnt=cnt+1 iEP=meta['Core']['iEP'] meta['Core']['iEP']['BiomassTotal']=np.array([iEP['StemMerch'],iEP['StemNonMerch'],iEP['Foliage'],iEP['Branch'],iEP['Bark'],iEP['RootCoarse'],iEP['RootFine']]) meta['Core']['iEP']['BiomassAboveground']=np.array([iEP['StemMerch'],iEP['StemNonMerch'],iEP['Foliage'],iEP['Branch'],iEP['Bark']]) meta['Core']['iEP']['BiomassBelowground']=np.array([iEP['RootCoarse'],iEP['RootFine']]) meta['Core']['iEP']['DeadWood']=np.array([iEP['PiledStemMerch'],iEP['PiledStemNonMerch'],iEP['PiledBranch'],iEP['PiledBark'],iEP['SnagStem'],iEP['SnagBranch']]) meta['Core']['iEP']['Litter']=np.array([iEP['LitterVF'],iEP['LitterF'],iEP['LitterM'],iEP['LitterS']]) meta['Core']['iEP']['Piled']=np.array([iEP['PiledStemMerch'],iEP['PiledStemNonMerch'],iEP['PiledBranch'],iEP['PiledBark'],iEP['PiledSnagStem'],iEP['PiledSnagBranch']]) meta['Core']['iEP']['Soil']=np.array([iEP['SoilVF'],iEP['SoilF'],iEP['SoilS']]) # Indices to produce pools pools meta['Core']['iPP']={}; cnt=0 for nam in meta['Core']['Name Pools Pro']: meta['Core']['iPP'][nam]=cnt cnt=cnt+1 iPP=meta['Core']['iPP'] meta['Core']['iPP']['InUse']=np.array([ iPP['SFH'],iPP['MFH'],iPP['Comm'],iPP['Furn'],iPP['Ship'],iPP['Repairs'],iPP['Other'],iPP['Paper'] ]) meta['Core']['iPP']['DumpLandfill']=np.array([ iPP['DumpWood'],iPP['DumpPaper'],iPP['LandfillWoodDegradable'],iPP['LandfillWoodNonDegradable'],iPP['LandfillPaperDegradable'],iPP['LandfillPaperNonDegradable'] ]) #-------------------------------------------------------------------------- # Maximum number of events per year # 8 appears to be sufficient but this may need to be changed for some # special projects #-------------------------------------------------------------------------- meta['Core']['Max Events Per Year']=8 #-------------------------------------------------------------------------- # Define time #-------------------------------------------------------------------------- # Calendar year meta['Year']=np.arange(meta['Project']['Year Start'],meta['Project']['Year End']+1,1) meta['Project']['N Time']=meta['Year'].size #-------------------------------------------------------------------------- # Dimensions of simulation #-------------------------------------------------------------------------- # Number of stands if meta['Project']['Scenario Source']=='Spreadsheet': meta['Project']['N Stand']=1 elif meta['Project']['Scenario Source']=='Portfolio': meta['Project']['N Stand']=meta['Project']['N Stand per Activity Type']*meta['Project']['AIL']['N AT']*meta['Project']['AIL']['N Years'] # Number of batches meta['Project']['N Batch']=np.ceil(meta['Project']['N Stand']/meta['Project']['Batch Interval']).astype(int) # Initialize list that can keep track of batch sizes meta['Project']['Batch Size']=[None]*meta['Project']['N Batch'] for iBat in range(meta['Project']['N Batch']): meta['Project']['Batch Size'][iBat]=IndexToBatch(meta,iBat).size #-------------------------------------------------------------------------- # Import model parameters #-------------------------------------------------------------------------- meta=ImportParameters(meta) #-------------------------------------------------------------------------- # Define scenario parameters #-------------------------------------------------------------------------- if meta['Project']['Scenario Source']!='Portfolio': df=pd.read_excel(meta['Paths']['Project'] + '\\Inputs\\ProjectConfig.xlsx',sheet_name='Scenarios',usecols='A:OM') df=df.iloc[:,df.iloc[0,:].isnull().values==False] meta['Scenario']=list() for i in range(1,df.shape[1]): pScn0={} for j in range(df.shape[0]): if df.iloc[j,0][-1]==':': # Exclude headers continue pScn0.update({df.iloc[j,0]:df.iat[j,i]}) meta['Scenario'].append(pScn0) # Number of scenarios meta['Project']['N Scenario']=np.sum([i['Scenario Status']=='On' for i in meta['Scenario']]) #-------------------------------------------------------------------------- # Initialize project folders if they do not exist #-------------------------------------------------------------------------- meta['Paths']['Input Scenario']=[] meta['Paths']['Output Scenario']=[] for iScn in range(0,meta['Project']['N Scenario']): meta['Paths']['Input Scenario'].append(meta['Paths']['Project'] + '\\Inputs\\Scenario' + FixFileNum(iScn)) if os.path.exists(meta['Paths']['Input Scenario'][iScn])==False: os.mkdir(meta['Paths']['Input Scenario'][iScn]) meta['Paths']['Output Scenario'].append(meta['Paths']['Project'] + '\\Outputs\\Scenario' + FixFileNum(iScn)) if os.path.exists(meta['Paths']['Output Scenario'][iScn])==False: os.mkdir(meta['Paths']['Output Scenario'][iScn]) #-------------------------------------------------------------------------- # Scale factors #-------------------------------------------------------------------------- # *** Scale factor for saving results (this needs to be 100, 10 does not # capture carbon fluxes and it will affect GHG benefit estimates) *** # One variable ('CO2e_E_Products') requires the big one meta['Core']['Scale Factor Export Small']=0.001 meta['Core']['Scale Factor Export Big']=0.001 #-------------------------------------------------------------------------- # Growth curve information #-------------------------------------------------------------------------- meta['GC']={} meta['GC']['N Growth Curves']=5 meta['GC']['ID GC Unique']=np.array([1,2,3,4,5]) meta['GC']['BatchTIPSY Maximum Age']=200 meta['GC']['BatchTIPSY Column Names']=['Age','VolTot0','VolMerch125', 'VolMerch175','ODT_Bark','ODT_Branch','ODT_Foliage','ODT_Roots', 'ODT_Stem','MortalityVolumeTotal'] # Scale factor for growth curves # Note: Do not change this to 0.1 - aerial fertilization response will not work properly at 0.1 meta['GC']['Scale Factor']=0.001 #-------------------------------------------------------------------------- # Growth factor information # *** Not currently used *** #-------------------------------------------------------------------------- # # Default status of growth factors # meta['Scenario Switch']['Net Growth Factor Status']=[None]*meta['Project']['N Scenario'] # meta['Scenario Switch']['Mortality Factor Status']=[None]*meta['Project']['N Scenario'] # for iScn in range(0,meta['Project']['N Scenario']): # meta['Scenario Switch']['Net Growth Factor Status'][iScn]='Off' # meta['Scenario Switch']['Mortality Factor Status'][iScn]='Off' # #meta['Scenario Switch'][iScn]['Status Net Growth Factor']='Off' # #meta['Scenario'][iScn]['Status Mortality Factor']='Off' #-------------------------------------------------------------------------- # Harvested wood product information # Year to start calling annual HWP methods - running it before 1800 is a # waste of time. #-------------------------------------------------------------------------- meta['Core']['HWP Year Start']=1800 #-------------------------------------------------------------------------- # Nutrient management information (for compatibility with "silviculture" module) #-------------------------------------------------------------------------- # Initialize dictionary meta['Nutrient Management']={} # Initialize index to stands affected by nutrient application meta['Nutrient Management']['iApplication']=[] # BGC zone exclusions (for on-the-fly application scheduler) meta['Nutrient Management']['BGC Zone Exclusion CD']=['PP','IDF','MH','BAFA','BG','CMA','IMA'] meta['Nutrient Management']['BGC Zone Exclusion ID']=np.zeros(len(meta['Nutrient Management']['BGC Zone Exclusion CD'])) for iZ in range(len(meta['Nutrient Management']['BGC Zone Exclusion CD'])): meta['Nutrient Management']['BGC Zone Exclusion ID'][iZ]=meta['LUT']['VRI']['BEC_ZONE_CODE'][ meta['Nutrient Management']['BGC Zone Exclusion CD'][iZ] ] #-------------------------------------------------------------------------- # Simulate random numbers that can be used for simulating harvest on the fly # The annual numbers will be the same among scenarios, but vary by ensemble #-------------------------------------------------------------------------- # *** If you assign completely random numbers, random variation will occur among # scenarios, which can add considerable noise and demands many ensembles. # Conversely if you assign these pre-set sequeences, the random component will # vary among ensembles, but not among scenarios. meta['Project']['On the Fly']={} meta['Project']['On the Fly']['Random Numbers']={} meta['Project']['On the Fly']['Random Numbers']['Scale Factor']=0.0001 # Only create these files if they will be used # Not needed for portfolio projects if meta['Project']['Scenario Source']!='Portfolio': flg_h=0 for iScn in range(meta['Project']['N Scenario']): if (meta['Scenario'][iScn]['Harvest Status Historical']=='On') | (meta['Scenario'][iScn]['Harvest Status Future']=='On'): flg_h=1 break flg_b=0 for iScn in range(meta['Project']['N Scenario']): if (meta['Scenario'][iScn]['Breakup Status']=='On'): flg_b=1 break # Create random numbers and save them for iEns in range(meta['Project']['N Ensemble']): for iBat in range(meta['Project']['N Batch']): if flg_h==1: rn=np.random.random( (meta['Project']['N Time'],meta['Project']['Batch Size'][iBat]) ) rn=rn/meta['Project']['On the Fly']['Random Numbers']['Scale Factor'] rn=rn.astype('int16') gu.opickle(meta['Paths']['Project'] + '\\Inputs\\Ensembles\\RandomNumbers_Harvest_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl',rn) if flg_b==1: rn=np.random.random( (meta['Project']['N Time'],meta['Project']['Batch Size'][iBat]) ) rn=rn/meta['Project']['On the Fly']['Random Numbers']['Scale Factor'] rn=rn.astype('int16') gu.opickle(meta['Paths']['Project'] + '\\Inputs\\Ensembles\\RandomNumbers_Breakup_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl',rn) #meta['Project']['On the Fly']['Random Numbers']['Harvest']=np.random.random((meta['Project']['N Time'],meta['Project']['N Ensemble'])) #meta['Project']['On the Fly']['Random Numbers']['Breakup']=np.random.random((meta['Project']['N Time'],meta['Project']['N Ensemble'])) #-------------------------------------------------------------------------- # Parameter uncertainty by ensemble #-------------------------------------------------------------------------- # Initialize list meta['Param']['By Ensemble']=[None]*meta['Project']['N Ensemble'] for iEns in range(meta['Project']['N Ensemble']): # Initialize dictionary meta['Param']['By Ensemble'][iEns]={} #---------------------------------------------------------------------- # Biomass turnover #---------------------------------------------------------------------- if meta['Project']['Uncertainty Status Biomass Turnover']=='On': meta['Param']['By Ensemble'][iEns]['Biomass Turnover']={} for k in meta['Param']['BE']['Biomass Turnover'].keys(): mu=meta['Param']['BE']['Biomass Turnover'][k] sig=meta['Param']['Sigma']['Biomass Turnover'][k] bl=meta['Param']['BL']['Biomass Turnover'][k] bu=meta['Param']['BU']['Biomass Turnover'][k] r=np.random.normal(loc=mu,scale=mu*sig) if (bl!=-9999) & (bu!=-9999): r=gu.Clamp(r,bl,bu) elif (bl!=-9999) & (bu==-9999): r=np.maximum(bl,r) elif (bl==-9999) & (bu!=-9999): r=np.minimum(bu,r) else: r=r meta['Param']['By Ensemble'][iEns]['Biomass Turnover'][k]=r #---------------------------------------------------------------------- # Decomposition #---------------------------------------------------------------------- if meta['Project']['Uncertainty Status Decomposition']=='On': meta['Param']['By Ensemble'][iEns]['Decomp']={} for k in meta['Param']['BE']['Decomp'].keys(): mu=meta['Param']['BE']['Decomp'][k] sig=meta['Param']['Sigma']['Decomp'][k] bl=meta['Param']['BL']['Decomp'][k] bu=meta['Param']['BU']['Decomp'][k] r=np.random.normal(loc=mu,scale=mu*sig) if (bl!=-9999) & (bu!=-9999): r=gu.Clamp(r,bl,bu) elif (bl!=-9999) & (bu==-9999): r=np.maximum(bl,r) elif (bl==-9999) & (bu!=-9999): r=np.minimum(bu,r) else: r=r meta['Param']['By Ensemble'][iEns]['Decomp'][k]=r #---------------------------------------------------------------------- # Harvesting #---------------------------------------------------------------------- if meta['Project']['Uncertainty Status Harvest Utilization']=='On': meta['Param']['By Ensemble'][iEns]['Dist']={} EventList=['Harvest','Harvest Salvage'] for Event in EventList: ID_Type=meta['LUT']['Dist'][Event] meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]={} #-------------------------------------------------------------- # Biomass merch #-------------------------------------------------------------- # Removed fraction mu=meta['Param']['BE']['Dist'][ID_Type]['BiomassMerch_Removed'] sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) r_Removed=np.random.normal(loc=mu,scale=mu*sig) r_Removed=gu.Clamp(r_Removed,bl,bu) meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_Removed']=r_Removed # Total fraction that is piled and dispersed r_PiledAndDispersed=1.0-r_Removed # Specific piled fraction mu=np.array([0.60]) # Specific fraction that is piled sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) rSpecific_Piled=np.random.normal(loc=mu,scale=mu*sig) rSpecific_Piled=gu.Clamp(rSpecific_Piled,bl,bu) # Piled fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_Piled']=r_PiledAndDispersed*rSpecific_Piled # Specific dispersed fraction rSpecific_Dispersed=1.0-rSpecific_Piled # Dispersed fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_LeftOnSite']=r_PiledAndDispersed*rSpecific_Dispersed #print(meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_Removed']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_Piled']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassMerch_LeftOnSite']) #-------------------------------------------------------------- # Biomass non-merch #-------------------------------------------------------------- # Removed fraction mu=meta['Param']['BE']['Dist'][ID_Type]['BiomassNonMerch_Removed'] sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) r_Removed=np.random.normal(loc=mu,scale=mu*sig) r_Removed=gu.Clamp(r_Removed,bl,bu) meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_Removed']=r_Removed # Total fraction that is piled and dispersed r_PiledAndDispersed=1.0-r_Removed # Specific piled fraction mu=np.array([0.60]) # Specific fraction that is piled sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) rSpecific_Piled=np.random.normal(loc=mu,scale=mu*sig) rSpecific_Piled=gu.Clamp(rSpecific_Piled,bl,bu) # Piled fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_Piled']=r_PiledAndDispersed*rSpecific_Piled # Specific dispersed fraction rSpecific_Dispersed=1.0-rSpecific_Piled # Dispersed fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_LeftOnSite']=r_PiledAndDispersed*rSpecific_Dispersed #print(meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_Removed']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_Piled']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['BiomassNonMerch_LeftOnSite']) #-------------------------------------------------------------- # Snags #-------------------------------------------------------------- # Removed fraction mu=meta['Param']['BE']['Dist'][ID_Type]['Snags_Removed'] sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) r_Removed=np.random.normal(loc=mu,scale=mu*sig) r_Removed=gu.Clamp(r_Removed,bl,bu) meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_Removed']=r_Removed # Total fraction that is piled and dispersed r_PiledAndDispersed=1.0-r_Removed # Specific piled fraction mu=np.array([0.60]) # Specific fraction that is piled sig=np.array([0.1]) bl=np.array([0.0]) bu=np.array([1.0]) rSpecific_Piled=np.random.normal(loc=mu,scale=mu*sig) rSpecific_Piled=gu.Clamp(rSpecific_Piled,bl,bu) # Piled fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_Piled']=r_PiledAndDispersed*rSpecific_Piled # Specific dispersed fraction rSpecific_Dispersed=1.0-rSpecific_Piled # Dispersed fraction meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_LeftOnSite']=r_PiledAndDispersed*rSpecific_Dispersed #print(meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_Removed']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_Piled']+meta['Param']['By Ensemble'][iEns]['Dist'][ID_Type]['Snags_LeftOnSite']) #---------------------------------------------------------------------- # Substitution effects #---------------------------------------------------------------------- if meta['Project']['Uncertainty Status Substitution']=='On': meta['Param']['By Ensemble'][iEns]['Substitution']={} lv=['LumberDisplacementFactor','PanelDisplacementFactor'] for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=np.maximum(0,r) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r lv0=np.array(['PowerFacilityDomFracDisplacingRenewables','PowerFacilityDomFracDisplacingCoal','PowerFacilityDomFracDisplacingDiesel','PowerFacilityDomFracDisplacingNaturalGas','PowerFacilityDomFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r lv0=np.array(['PowerFacilityForFracDisplacingRenewables','PowerFacilityForFracDisplacingCoal','PowerFacilityForFracDisplacingDiesel','PowerFacilityForFracDisplacingNaturalGas','PowerFacilityForFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r lv0=np.array(['PelletFracDisplacingRenewables','PelletFracDisplacingCoal','PelletFracDisplacingDiesel','PelletFracDisplacingNaturalGas','PelletFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r lv0=np.array(['FirewoodDomFracDisplacingRenewables','FirewoodDomFracDisplacingCoal','FirewoodDomFracDisplacingDiesel','FirewoodDomFracDisplacingNaturalGas','FirewoodDomFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r lv0=np.array(['FirewoodForFracDisplacingRenewables','FirewoodForFracDisplacingCoal','FirewoodForFracDisplacingDiesel','FirewoodForFracDisplacingNaturalGas','FirewoodForFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r lv0=np.array(['PowerGridFracDisplacingRenewables','PowerGridFracDisplacingCoal','PowerGridFracDisplacingDiesel','PowerGridFracDisplacingNaturalGas','PowerGridFracDisplacingOil']) lv=lv0[np.argsort(np.random.random(len(lv0)))] r_remain=1.0 for k in lv: mu=meta['Param']['BE']['Substitution'][k] sig=meta['Param']['Sigma']['Substitution'][k] r=np.array(np.random.normal(loc=mu,scale=mu*sig),dtype=float) r=gu.Clamp(r,0.0,r_remain) meta['Param']['By Ensemble'][iEns]['Substitution'][k]=r r_remain=r_remain-r #---------------------------------------------------------------------- # Nutrient mmanagement #---------------------------------------------------------------------- if meta['Project']['Uncertainty Status Nutrient Application']=='On': meta['Param']['By Ensemble'][iEns]['Nutrient Management']={} for k in meta['Param']['BE']['Nutrient Management'].keys(): mu=meta['Param']['BE']['Nutrient Management'][k] sig=meta['Param']['Sigma']['Nutrient Management'][k] r=np.random.normal(loc=mu,scale=mu*sig) r=np.maximum(0,r) meta['Param']['By Ensemble'][iEns]['Nutrient Management'][k]=r #-------------------------------------------------------------------------- # Parameter override options #-------------------------------------------------------------------------- meta['Project']['Override Default Parameters']={} #-------------------------------------------------------------------------- # Scenario info for portfolio projects #-------------------------------------------------------------------------- if meta['Project']['Scenario Source']=='Portfolio': # Index to rows with implementation indAT=np.where(np.sum(meta['Project']['AIL']['Area'],axis=0)>0)[0] meta['Project']['Portfolio']={} meta['Project']['Portfolio']['ID Portfolio']=np.zeros(meta['Project']['N Stand'],dtype=int) meta['Project']['Portfolio']['ID AT']=np.zeros(meta['Project']['N Stand'],dtype=int) meta['Project']['Portfolio']['ID AT Unique']=np.zeros(meta['Project']['N Stand'],dtype=int) meta['Project']['Portfolio']['Area']=np.zeros(meta['Project']['N Stand']) meta['Project']['Portfolio']['Year']=np.zeros(meta['Project']['N Stand']) cnt=0 for iA in range(meta['Project']['AIL']['N AT']): for iY in range(meta['Project']['AIL']['N Years']): for iS in range(meta['Project']['N Stand per Activity Type']): meta['Project']['Portfolio']['ID Portfolio'][cnt]=meta['Project']['AIL']['ID Portfolio'][indAT[iA]] meta['Project']['Portfolio']['ID AT'][cnt]=meta['Project']['AIL']['ID AT'][indAT[iA]] meta['Project']['Portfolio']['ID AT Unique'][cnt]=meta['Project']['AIL']['ID AT Unique'][indAT[iA]] meta['Project']['Portfolio']['Area'][cnt]=meta['Project']['AIL']['Area'][iY,indAT[iA]] meta['Project']['Portfolio']['Year'][cnt]=meta['Project']['AIL']['Year'][iY] cnt=cnt+1 # Scenario information # Will this tool ever be used with on-the-fly disturbances? Current set # to "off". meta['Scenario']=[None]*meta['Project']['N Scenario'] for iScn in range(meta['Project']['N Scenario']): meta['Scenario'][iScn]={} # *** This is super awkward - simulations can't change between activities or scenarios!!! # Do we need that type of functionality for the PT? *** meta['Scenario'][iScn]['Wildfire Scenario ID']=meta['Project']['Activities']['Wildfire Scenario ID'][0] meta['Scenario'][iScn]['Wildfire Status Pre-modern']=meta['Project']['Activities']['Wildfire Status Pre-modern'][0] meta['Scenario'][iScn]['Wildfire Status Modern']=meta['Project']['Activities']['Wildfire Status Modern'][0] meta['Scenario'][iScn]['Wildfire Status Future']=meta['Project']['Activities']['Wildfire Status Future'][0] meta['Scenario'][iScn]['Harvest Status Historical']='Off' meta['Scenario'][iScn]['Harvest Status Future']='Off' meta['Scenario'][iScn]['Breakup Status']='Off' meta['Scenario'][iScn]['Nutrient Application Status']='Off' return meta #%% Load scenario results # Return a list of dictionaries for each scenario. If multiple ensemble were run, # the function will retun the average. def LoadSingleOutputFile(meta,iScn,iEns,iBat): # Extract indices iEP=meta['Core']['iEP'] # Extract biophysical parameters bB=meta['Param']['BEV']['Biophysical'] # Open batch results pth=meta['Paths']['Project'] + '\\Outputs\\Scenario' + FixFileNum(iScn) + '\\Data_Scn' + FixFileNum(iScn) + '_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl' v0=gu.ipickle(pth) # Convert to float and apply scale factor for k in v0.keys(): # Skip mortality summary by agent if (k=='C_M_ByAgent'): continue v0[k]=v0[k].astype(float) if (k=='E_CO2e_LULUCF_HWP') | (k=='E_CO2e_ESC_Comb') | (k=='E_CO2e_ET_Comb') | (k=='E_CO2e_IPPU_Comb'): v0[k]=v0[k]*meta['Core']['Scale Factor Export Big'] else: v0[k]=v0[k]*meta['Core']['Scale Factor Export Small'] #-------------------------------------------------------------------------- # Add derived variables #-------------------------------------------------------------------------- if meta['Project']['Save Biomass Pools']=='On': # Aggregate variables not yet generated # Aggregate pools v0['C_Biomass_Tot']=np.sum(v0['C_Eco_Pools'][:,:,iEP['BiomassTotal']],axis=2) v0['C_Piled_Tot']=np.sum(v0['C_Eco_Pools'][:,:,iEP['Piled']],axis=2) v0['C_Litter_Tot']=np.sum(v0['C_Eco_Pools'][:,:,iEP['Litter']],axis=2) v0['C_DeadWood_Tot']=np.sum(v0['C_Eco_Pools'][:,:,iEP['DeadWood']],axis=2) v0['C_Soil_Tot']=np.sum(v0['C_Eco_Pools'][:,:,iEP['Soil']],axis=2) v0['C_InUse_Tot']=np.sum(v0['C_Pro_Pools'][:,:,meta['Core']['iPP']['InUse']],axis=2) v0['C_DumpLandfill_Tot']=np.sum(v0['C_Pro_Pools'][:,:,meta['Core']['iPP']['DumpLandfill']],axis=2) # Aggregate fluxes v0['C_G_Gross_Tot']=np.sum(v0['C_G_Gross'],axis=2) v0['C_G_Net_Tot']=np.sum(v0['C_G_Net'],axis=2) v0['C_M_Reg_Tot']=np.sum(v0['C_M_Reg'],axis=2) v0['C_LF_Tot']=np.sum(v0['C_LF'],axis=2) v0['C_RH_Tot']=np.sum(v0['C_RH'],axis=2) # Net primary productivity (MgC/ha/yr) v0['C_NPP_Tot']=v0['C_G_Net_Tot']+v0['C_M_Reg_Tot']+v0['C_LF_Tot'] # Harvest removals (MgC/ha/yr) v0['C_ToMill']=v0['C_ToMillMerch']+v0['C_ToMillNonMerch']+v0['C_ToMillSnagStem'] # Net ecosystem production (tCO2e/ha/yr) v0['E_CO2e_LULUCF_NEE']=-1*bB['Ratio_CO2_to_C']*(v0['C_NPP_Tot']-v0['C_RH_Tot']) # Ecosystem fire total (tCO2e/ha/yr) v0['E_CO2e_LULUCF_Fire']=v0['E_CO2e_LULUCF_Wildfire']+v0['E_CO2e_LULUCF_OpenBurning'] # For unknown reasons, trying to reverse sign when calculated messes up the array # Do it here instead. v0['E_CO2e_ESC_SubBM']=-1*v0['E_CO2e_ESC_SubBM'] v0['E_CO2e_ESC_SubE']=-1*v0['E_CO2e_ESC_SubE'] # Atmospheric GHG balance (tCO2e/ha/yr) v0['E_CO2e_AGHGB_WSub']=v0['E_CO2e_LULUCF_NEE']+v0['E_CO2e_LULUCF_Wildfire']+v0['E_CO2e_LULUCF_OpenBurning']+ \ v0['E_CO2e_LULUCF_EcoOther']+v0['E_CO2e_LULUCF_HWP']+v0['E_CO2e_ESC_SubE']+v0['E_CO2e_ESC_SubBM']+v0['E_CO2e_ESC_Comb']+v0['E_CO2e_ET_Comb']+v0['E_CO2e_IPPU_Comb'] v0['E_CO2e_AGHGB_WOSub']=v0['E_CO2e_LULUCF_NEE']+v0['E_CO2e_LULUCF_Wildfire']+v0['E_CO2e_LULUCF_OpenBurning']+ \ v0['E_CO2e_LULUCF_EcoOther']+v0['E_CO2e_LULUCF_HWP']+v0['E_CO2e_ESC_Comb']+v0['E_CO2e_ET_Comb']+v0['E_CO2e_IPPU_Comb'] # Add cumulative v0['E_CO2e_AGHGB_WSub_cumu']=np.cumsum(v0['E_CO2e_AGHGB_WSub'],axis=0) v0['E_CO2e_AGHGB_WOSub_cumu']=np.cumsum(v0['E_CO2e_AGHGB_WOSub'],axis=0) # Add year it=np.where(meta['Year']>=meta['Project']['Year Start Saving'])[0] v0['Year']=meta['Year'][it] # Add cumulative (starting from a specified start year) iT=np.where(v0['Year']>=meta['Project']['Year Start Cumulative'])[0] v0['E_CO2e_AGHGB_WSub_cumu_from_tref']=np.zeros(v0['A'].shape) v0['E_CO2e_AGHGB_WSub_cumu_from_tref'][iT,:]=np.cumsum(v0['E_CO2e_AGHGB_WSub'][iT,:],axis=0) v0['E_CO2e_AGHGB_WOSub_cumu_from_tref']=np.zeros(v0['A'].shape) v0['E_CO2e_AGHGB_WOSub_cumu_from_tref'][iT,:]=np.cumsum(v0['E_CO2e_AGHGB_WOSub'][iT,:],axis=0) return v0 #%% LOAD SCENARIO RUSULTS # Return a list of dictionaries for each scenario. If multiple ensemble were run, # the function will retun the average. def LoadScenarioResults(meta): # Initialize list that will contain scenarios v1=[] for iScn in range(meta['Project']['N Scenario']): for iEns in range(meta['Project']['N Ensemble']): for iBat in range(meta['Project']['N Batch']): #-------------------------------------------------------------- # Open batch results #-------------------------------------------------------------- data_batch=LoadSingleOutputFile(meta,iScn,iEns,iBat) # Import event chronology if (meta['Scenario'][iScn]['Harvest Status Future']=='On') | (meta['Scenario'][iScn]['Breakup Status']=='On'): ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Modified_Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') else: ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') # Uncompress event chronology if it has been compressed ec=EventChronologyDecompress(meta,ec,iScn,iEns,iBat) # Inventory inv=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Inventory_Bat' + FixFileNum(iBat) + '.pkl') # Cashflow econ=econo.CalculateNetRevenue(meta,iScn,iEns,iBat,inv,ec,data_batch) data_batch.update(econ) #-------------------------------------------------------------- # Accumulate data in each batch #-------------------------------------------------------------- if iBat==0: data_all=data_batch else: for key1 in data_batch.keys(): if key1=='Year': # Only needed once continue elif (key1=='C_M_ByAgent'): # Nested dictionary for key2 in data_batch[key1].keys(): data_all[key1][key2]=np.append(data_all[key1][key2],data_batch[key1][key2],axis=1) else: # No nested dictionary data_all[key1]=np.append(data_all[key1],data_batch[key1],axis=1) #------------------------------------------------------------------ # Sum across ensembles #------------------------------------------------------------------ if iEns==0: data_sum2ave=data_all else: for key1 in data_batch.keys(): if (key1=='C_M_ByAgent'): # Nested dictionary for key2 in data_batch[key1].keys(): data_sum2ave[key1][key2]=data_sum2ave[key1][key2]+data_all[key1][key2] else: # No nested dictionary data_sum2ave[key1]=data_sum2ave[key1]+data_all[key1] #---------------------------------------------------------------------- # If the simulation includes ensembles, calculate average #---------------------------------------------------------------------- for key1 in data_batch.keys(): # Skip mortality summary by agent if (key1=='C_M_ByAgent'): # Nested dictioanry for key2 in data_batch[key1].keys(): data_sum2ave[key1][key2]=data_sum2ave[key1][key2]/meta['Project']['N Ensemble'] else: # No nested dictionary data_sum2ave[key1]=data_sum2ave[key1]/meta['Project']['N Ensemble'] #---------------------------------------------------------------------- # Add year #---------------------------------------------------------------------- it=np.where(meta['Year']>=meta['Project']['Year Start Saving'])[0] data_sum2ave['Year']=meta['Year'][it] #---------------------------------------------------------------------- # Append to list #---------------------------------------------------------------------- v1.append(data_sum2ave) return v1 #%% Model Output Statistics def ModelOutputStats(meta,**kwargs): #-------------------------------------------------------------------------- # Kewword argumenst #-------------------------------------------------------------------------- if 'KeepEachEnsemble' in kwargs.keys(): flag_KeepEnsembles=1 else: # Default is to not save individual ensembles flag_KeepEnsembles=0 if 'StandsToInclude' in kwargs.keys(): flag_stands_to_include=kwargs['StandsToInclude'] else: flag_stands_to_include=[] if 'IncludeArea' in kwargs.keys(): flag_Area=1 else: # Default is to not inlcude area flag_Area=0 if 'IncludeMortalityByAgents' in kwargs.keys(): flag_MortAg=1 else: # Default is to not inlcude mortality by agents flag_MortAg=0 flag_save=1 # Confidence intervals based on multiplier x S.E. sigma_multiplier=2.0 #-------------------------------------------------------------------------- # Time #-------------------------------------------------------------------------- tv=np.arange(meta['Project']['Year Start Saving'],meta['Project']['Year End']+1,1) tv_full=np.arange(meta['Project']['Year Start'],meta['Project']['Year End']+1,1) #-------------------------------------------------------------------------- # Initialize MOS list #-------------------------------------------------------------------------- mos=[None]*meta['Project']['N Scenario'] #-------------------------------------------------------------------------- # Loop through scenarios #-------------------------------------------------------------------------- for iScn in range(meta['Project']['N Scenario']): #t0=time.time() # Operations oper=['Mean','Sum'] #---------------------------------------------------------------------- # Initialize structure #---------------------------------------------------------------------- mosScn={} # GHG balance mosScn['v1']={} mosScn['v1']['Mean']={} mosScn['v1']['Sum']={} d1=LoadSingleOutputFile(meta,0,0,0) # Varialbe to excluse v2exclude_v1=['Year','C_M_ByAgent'] for k in d1.keys(): if np.isin(k,v2exclude_v1)==True: continue for op in oper: mosScn['v1'][op][k]={} mosScn['v1'][op][k]['Ensembles']=np.zeros((tv.size,meta['Project']['N Ensemble'])) mosScn['v1'][op][k]['Ensemble Mean']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble SD']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble CIL']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble CIH']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble P1']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble P10']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble P90']=np.zeros(tv.size) mosScn['v1'][op][k]['Ensemble P99']=np.zeros(tv.size) # Cashflow mosScn['Cashflow']={} mosScn['Cashflow']['Mean']={} mosScn['Cashflow']['Sum']={} # Import event chronology iEns=0 iBat=0 if (meta['Scenario'][iScn]['Harvest Status Future']=='On') | (meta['Scenario'][iScn]['Breakup Status']=='On'): ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Modified_Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') else: ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') # Uncompress event chronology if it has been compressed ec=EventChronologyDecompress(meta,ec,iScn,iEns,iBat) # Inventory inv=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Inventory_Bat' + FixFileNum(iBat) + '.pkl') # Cashflow econ0=econo.CalculateNetRevenue(meta,iScn,iEns,iBat,inv,ec,d1) del ec,inv # Varialbe to excluse v2exclude_cashflow=['Price Lumber','Price Plywood','Price OSB','Price MDF','Price Newsprint','Price PowerFacilityDom','Price PowerGrid','Price Pellets','Price LogExport','Price FirewoodDom','Exchange Rate US','Exchange Rate Euro'] for k in econ0.keys(): # Exclude if np.isin(k,v2exclude_cashflow)==True: continue for op in oper: mosScn['Cashflow'][op][k]={} mosScn['Cashflow'][op][k]['Ensembles']=np.zeros((tv.size,meta['Project']['N Ensemble'])) mosScn['Cashflow'][op][k]['Ensemble Mean']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble SD']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble CIL']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble CIH']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble P1']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble P10']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble P90']=np.zeros(tv.size) mosScn['Cashflow'][op][k]['Ensemble P99']=np.zeros(tv.size) if flag_MortAg==1: mosScn['C_M_ByAgent']={} mosScn['C_M_ByAgent']['Mean']={} mosScn['C_M_ByAgent']['Sum']={} for k in d1['C_M_ByAgent'].keys(): for op in oper: mosScn['C_M_ByAgent'][op][k]={} mosScn['C_M_ByAgent'][op][k]['Ensembles']=np.zeros((tv.size,meta['Project']['N Ensemble'])) mosScn['C_M_ByAgent'][op][k]['Ensemble Mean']=np.zeros(tv.size) mosScn['C_M_ByAgent'][op][k]['Ensemble SD']=np.zeros(tv.size) if flag_Area==1: mosScn['Area']={} for k in meta['LUT']['Dist'].keys(): mosScn['Area'][k]={} mosScn['Area'][k]['Ensembles']=np.zeros((tv.size,meta['Project']['N Ensemble'])) mosScn['Area'][k]['Ensemble Mean']=np.zeros(tv.size) mosScn['Area'][k]['Ensemble SD']=np.zeros(tv.size) #---------------------------------------------------------------------- # Loop through ensembles #---------------------------------------------------------------------- for iEns in range(meta['Project']['N Ensemble']): # Initialize dictionaries for each ensemble v1={} cashflow={} C_M_ByAgent={} N_Stands_Included=0 for iBat in range(meta['Project']['N Batch']): # Include specific subset of stands if len(flag_stands_to_include)==0: ikp=np.arange(0,meta['Project']['Batch Size'][iBat],1,dtype=int) else: ikp=np.where(flag_stands_to_include[iScn][iEns][iBat]==1)[0] N_Stands_Included=N_Stands_Included+ikp.size # Load basic output d1=LoadSingleOutputFile(meta,iScn,iEns,iBat) # Some projects may elect to keep each biomass pool in output ("Save Biomass Pools"=On") # This script doesn't handle it so they need to be summed first. if meta['Project']['Save Biomass Pools']=='On': List=['C_Eco_Pools','C_Pro_Pools','C_G_Gross','C_G_Net','C_M_Reg','C_LF','C_RH'] for iList in range(len(List)): nam=List[iList] d1[nam]=np.sum(d1[nam][:,ikp],axis=2) for k in d1.keys(): if np.isin(k,v2exclude_v1)==True: continue if iBat==0: v1[k]=np.sum(d1[k][:,ikp],axis=1) else: v1[k]=v1[k]+np.sum(d1[k][:,ikp],axis=1) # Mortality summary by agent if flag_MortAg==1: for k in d1['C_M_ByAgent'].keys(): if iBat==0: C_M_ByAgent[k]=d1['C_M_ByAgent'][k].flatten() else: C_M_ByAgent[k]=C_M_ByAgent[k]+d1['C_M_ByAgent'][k].flatten() # Import event chronology if (meta['Scenario'][iScn]['Harvest Status Future']=='On') | (meta['Scenario'][iScn]['Breakup Status']=='On'): ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Modified_Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') else: ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') # Uncompress event chronology if it has been compressed ec=EventChronologyDecompress(meta,ec,iScn,iEns,iBat) # Inventory inv=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Inventory_Bat' + FixFileNum(iBat) + '.pkl') # Cashflow econ=econo.CalculateNetRevenue(meta,iScn,iEns,iBat,inv,ec,d1) for k in econ0.keys(): if np.isin(k,v2exclude_cashflow)==True: continue if iBat==0: cashflow[k]=np.sum(econ[k][:,ikp],axis=1) else: cashflow[k]=cashflow[k]+np.sum(econ[k][:,ikp],axis=1) # Area if flag_Area==1: for iYr in range(tv_full.size): it=np.where(tv==tv_full[iYr])[0] if it.size==0: continue ID_Type0=ec['ID_Type'][iYr,ikp,:].flatten() u=np.unique(ID_Type0) for iU in range(u.size): if u[iU]==0: continue id=lut_n2s(meta['LUT']['Dist'],u[iU])[0] ind=np.where(ID_Type0==u[iU])[0] mosScn['Area'][id]['Ensembles'][it,iEns]=mosScn['Area'][id]['Ensembles'][it,iEns]+ind.size # Delete variables from workspace del d1,ec,econ garc.collect() #------------------------------------------------------------------ # Populate MOS for each scenario #------------------------------------------------------------------ for k in v1.keys(): if np.isin(k,v2exclude_v1)==True: continue mosScn['v1']['Sum'][k]['Ensembles'][:,iEns]=v1[k].copy() mosScn['v1']['Mean'][k]['Ensembles'][:,iEns]=v1[k].copy()/N_Stands_Included #meta['Project']['N Stand'] for k in econ0.keys(): if np.isin(k,v2exclude_cashflow)==True: continue mosScn['Cashflow']['Sum'][k]['Ensembles'][:,iEns]=cashflow[k].copy() mosScn['Cashflow']['Mean'][k]['Ensembles'][:,iEns]=cashflow[k].copy()/N_Stands_Included #meta['Project']['N Stand'] if flag_MortAg==1: for k in C_M_ByAgent.keys(): mosScn['C_M_ByAgent']['Sum'][k]['Ensembles'][:,iEns]=C_M_ByAgent[k].copy() mosScn['C_M_ByAgent']['Mean'][k]['Ensembles'][:,iEns]=C_M_ByAgent[k].copy()/N_Stands_Included #meta['Project']['N Stand'] #---------------------------------------------------------------------- # Calculate statistics #---------------------------------------------------------------------- # Basic output for k in v1.keys(): if np.isin(k,v2exclude_v1)==True: continue mosScn['v1']['Sum'][k]['Ensemble Mean']=np.mean(mosScn['v1']['Sum'][k]['Ensembles'],axis=1) mosScn['v1']['Sum'][k]['Ensemble SD']=np.std(mosScn['v1']['Sum'][k]['Ensembles'],axis=1) mosScn['v1']['Sum'][k]['Ensemble CIL']=np.mean(mosScn['v1']['Sum'][k]['Ensembles'],axis=1)-sigma_multiplier*np.std(mosScn['v1']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['v1']['Sum'][k]['Ensemble CIH']=np.mean(mosScn['v1']['Sum'][k]['Ensembles'],axis=1)+sigma_multiplier*np.std(mosScn['v1']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['v1']['Sum'][k]['Ensemble P1']=np.percentile(mosScn['v1']['Sum'][k]['Ensembles'],1,axis=1) mosScn['v1']['Sum'][k]['Ensemble P10']=np.percentile(mosScn['v1']['Sum'][k]['Ensembles'],10,axis=1) mosScn['v1']['Sum'][k]['Ensemble P90']=np.percentile(mosScn['v1']['Sum'][k]['Ensembles'],90,axis=1) mosScn['v1']['Sum'][k]['Ensemble P99']=np.percentile(mosScn['v1']['Sum'][k]['Ensembles'],99,axis=1) mosScn['v1']['Mean'][k]['Ensemble Mean']=np.mean(mosScn['v1']['Mean'][k]['Ensembles'],axis=1) mosScn['v1']['Mean'][k]['Ensemble SD']=np.std(mosScn['v1']['Mean'][k]['Ensembles'],axis=1) mosScn['v1']['Mean'][k]['Ensemble CIL']=np.mean(mosScn['v1']['Mean'][k]['Ensembles'],axis=1)-sigma_multiplier*np.std(mosScn['v1']['Mean'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['v1']['Mean'][k]['Ensemble CIH']=np.mean(mosScn['v1']['Mean'][k]['Ensembles'],axis=1)+sigma_multiplier*np.std(mosScn['v1']['Mean'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['v1']['Mean'][k]['Ensemble P1']=np.percentile(mosScn['v1']['Mean'][k]['Ensembles'],1,axis=1) mosScn['v1']['Mean'][k]['Ensemble P10']=np.percentile(mosScn['v1']['Mean'][k]['Ensembles'],10,axis=1) mosScn['v1']['Mean'][k]['Ensemble P90']=np.percentile(mosScn['v1']['Mean'][k]['Ensembles'],90,axis=1) mosScn['v1']['Mean'][k]['Ensemble P99']=np.percentile(mosScn['v1']['Mean'][k]['Ensembles'],99,axis=1) if flag_KeepEnsembles==0: del mosScn['v1']['Sum'][k]['Ensembles'] del mosScn['v1']['Mean'][k]['Ensembles'] # By mortality agent if flag_MortAg==1: for k in C_M_ByAgent.keys(): mosScn['C_M_ByAgent']['Sum'][k]['Ensemble Mean']=np.mean(mosScn['C_M_ByAgent']['Sum'][k]['Ensembles'],axis=1) mosScn['C_M_ByAgent']['Sum'][k]['Ensemble SD']=np.std(mosScn['C_M_ByAgent']['Sum'][k]['Ensembles'],axis=1) mosScn['C_M_ByAgent']['Mean'][k]['Ensemble Mean']=np.mean(mosScn['C_M_ByAgent']['Mean'][k]['Ensembles'],axis=1) mosScn['C_M_ByAgent']['Mean'][k]['Ensemble SD']=np.std(mosScn['C_M_ByAgent']['Mean'][k]['Ensembles'],axis=1) if flag_KeepEnsembles==0: del mosScn['C_M_ByAgent']['Sum'][k]['Ensembles'] del mosScn['C_M_ByAgent']['Mean'][k]['Ensembles'] # Area impacted if flag_Area==1: for k in mosScn['Area'].keys(): mosScn['Area'][k]['Ensemble Mean']=np.mean(mosScn['Area'][k]['Ensembles'],axis=1) mosScn['Area'][k]['Ensemble SD']=np.std(mosScn['Area'][k]['Ensembles'],axis=1) mosScn['Area'][k]['Ensemble Mean']=np.mean(mosScn['Area'][k]['Ensembles'],axis=1) mosScn['Area'][k]['Ensemble SD']=np.std(mosScn['Area'][k]['Ensembles'],axis=1) if flag_KeepEnsembles==0: del mosScn['Area'][k]['Ensembles'] # Cashflow for k in econ0.keys(): if np.isin(k,v2exclude_cashflow)==True: continue mosScn['Cashflow']['Sum'][k]['Ensemble Mean']=np.mean(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1) mosScn['Cashflow']['Sum'][k]['Ensemble SD']=np.std(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1) mosScn['Cashflow']['Sum'][k]['Ensemble CIL']=np.mean(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)-sigma_multiplier*np.std(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['Cashflow']['Sum'][k]['Ensemble CIH']=np.mean(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)+sigma_multiplier*np.std(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['Cashflow']['Sum'][k]['Ensemble P1']=np.percentile(mosScn['Cashflow']['Sum'][k]['Ensembles'],1,axis=1) mosScn['Cashflow']['Sum'][k]['Ensemble P10']=np.percentile(mosScn['Cashflow']['Sum'][k]['Ensembles'],10,axis=1) mosScn['Cashflow']['Sum'][k]['Ensemble P90']=np.percentile(mosScn['Cashflow']['Sum'][k]['Ensembles'],90,axis=1) mosScn['Cashflow']['Sum'][k]['Ensemble P99']=np.percentile(mosScn['Cashflow']['Sum'][k]['Ensembles'],99,axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble Mean']=np.mean(mosScn['Cashflow']['Mean'][k]['Ensembles'],axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble SD']=np.std(mosScn['Cashflow']['Mean'][k]['Ensembles'],axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble CIL']=np.mean(mosScn['Cashflow']['Mean'][k]['Ensembles'],axis=1)-sigma_multiplier*np.std(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['Cashflow']['Mean'][k]['Ensemble CIH']=np.mean(mosScn['Cashflow']['Mean'][k]['Ensembles'],axis=1)+sigma_multiplier*np.std(mosScn['Cashflow']['Sum'][k]['Ensembles'],axis=1)/np.sqrt(meta['Project']['N Ensemble']) mosScn['Cashflow']['Mean'][k]['Ensemble P1']=np.percentile(mosScn['Cashflow']['Mean'][k]['Ensembles'],1,axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble P10']=np.percentile(mosScn['Cashflow']['Mean'][k]['Ensembles'],10,axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble P90']=np.percentile(mosScn['Cashflow']['Mean'][k]['Ensembles'],90,axis=1) mosScn['Cashflow']['Mean'][k]['Ensemble P99']=np.percentile(mosScn['Cashflow']['Mean'][k]['Ensembles'],99,axis=1) if flag_KeepEnsembles==0: del mosScn['Cashflow']['Sum'][k]['Ensembles'] del mosScn['Cashflow']['Mean'][k]['Ensembles'] #t1=time.time() # Add scenario results to MOS dictionary mos[iScn]=copy.deepcopy(mosScn) #-------------------------------------------------------------------------- # Save #-------------------------------------------------------------------------- if flag_save==1: gu.opickle(meta['Paths']['Project'] + '\\Outputs\\MOS.pkl',mos) return mos #%% Save MOS GHG output variables by multipolygon subset def MosByMPSubset_GHGB(meta,ListSubsetMP): t0=time.time() # Error multiplier sigma_multiplier=1.0 # Import multipolygons atu_multipolygons=gu.ipickle(meta['Paths']['Geospatial'] + '\\atu_multipolygons.pkl') # Import sxy sxy=gu.ipickle(meta['Paths']['Geospatial'] + '\\sxy.pkl') # Create listed index (faster than indexing on the fly) Crosswalk_sxy_to_mp=[None]*len(ListSubsetMP) for iMP in range(len(ListSubsetMP)): d={} d['Index']=np.where(sxy['ID_atu_multipolygons']==ListSubsetMP[iMP])[0] Crosswalk_sxy_to_mp[iMP]=d # Area Area=np.zeros( len(ListSubsetMP) ) for iMP in range(len(ListSubsetMP)): Area0=atu_multipolygons[ListSubsetMP[iMP]]['ACTUAL_TREATMENT_AREA'] if Area0==None: print('Encounterd no area, using zero') Area0=0 Area[iMP]=Area0 # Time series of saved results tv_saving=np.arange(meta['Project']['Year Start Saving'],meta['Project']['Year End']+1,1) # Operations oper=['Mean','Sum'] # GHG balance variables d0=LoadSingleOutputFile(meta,0,0,0) # All (excluding 'C_M_ByAgent' and 'Year') v2include=['A', 'V_StemMerch', 'V_StemMerchToMill', 'LogSizeEnhancement', 'C_Biomass_Tot', 'C_Piled_Tot', 'C_Litter_Tot', 'C_DeadWood_Tot', 'C_Soil_Tot', 'C_InUse_Tot', 'C_DumpLandfill_Tot', 'C_M_Dist', 'C_G_Gross_Tot', 'C_G_Net_Tot', 'C_M_Reg_Tot', 'C_LF_Tot', 'C_RH_Tot', 'C_ToMillMerch', 'C_ToMillNonMerch', 'C_ToMillSnagStem', 'C_ToSlashpileBurn', 'C_ToLumber', 'C_ToPlywood', 'C_ToOSB', 'C_ToMDF', 'C_ToPaper', 'C_ToPowerFacilityDom', 'C_ToPowerFacilityFor', 'C_ToPowerGrid', 'C_ToPellets', 'C_ToFirewoodDom', 'C_ToFirewoodFor', 'C_ToLogExport', 'E_CO2e_LULUCF_NEE', 'E_CO2e_LULUCF_Wildfire', 'E_CO2e_LULUCF_OpenBurning', 'E_CO2e_LULUCF_EcoOther', 'E_CO2e_LULUCF_HWP', 'E_CO2e_ESC_Comb', 'E_CO2e_ESC_SubE', 'E_CO2e_ESC_SubBM', 'E_CO2e_ET_Comb', 'E_CO2e_IPPU_Comb', 'C_NPP_Tot', 'C_ToMill', 'E_CO2e_LULUCF_Fire', 'E_CO2e_AGHGB_WSub', 'E_CO2e_AGHGB_WOSub', 'E_CO2e_AGHGB_WSub_cumu', 'E_CO2e_AGHGB_WOSub_cumu', 'E_CO2e_AGHGB_WSub_cumu_from_tref', 'E_CO2e_AGHGB_WOSub_cumu_from_tref'] #-------------------------------------------------------------------------- # Initialize data by multipolygon structure #-------------------------------------------------------------------------- mos=[None]*meta['Project']['N Scenario'] for iScn in range(meta['Project']['N Scenario']): d={} for op in oper: d[op]={} for k in d0.keys(): if np.isin(k,v2include)==False: continue for op in oper: d[op][k]={} d[op][k]['Ensemble Mean']=np.zeros((tv_saving.size,len(ListSubsetMP))) d[op][k]['Ensemble CIL']=np.zeros((tv_saving.size,len(ListSubsetMP))) d[op][k]['Ensemble CIH']=np.zeros((tv_saving.size,len(ListSubsetMP))) mos[iScn]=d #-------------------------------------------------------------------------- # Loop through scenarios #-------------------------------------------------------------------------- for iScn in range(meta['Project']['N Scenario']): # Initialize data matrix Data={} for op in oper: Data[op]=np.zeros( (tv_saving.size,meta['Project']['N Ensemble'],len(ListSubsetMP),len(v2include)) ,dtype=np.float) #---------------------------------------------------------------------- # Loop through ensembles #---------------------------------------------------------------------- for iEns in range(meta['Project']['N Ensemble']): print(iEns) #------------------------------------------------------------------ # Import batches #------------------------------------------------------------------ # Initialize temporary data structure for full simulation DataSXY=np.zeros( (tv_saving.size,meta['Project']['N Stand'],len(v2include)) ,dtype=np.float) # Import batches for iBat in range(meta['Project']['N Batch']): indBat=IndexToBatch(meta,iBat) d1=LoadSingleOutputFile(meta,iScn,iEns,iBat) cnt_k=0 for k in d0.keys(): if np.isin(k,v2include)==False: continue DataSXY[:,indBat,cnt_k]=d1[k].copy() cnt_k=cnt_k+1 del d1 #garc.collect() #------------------------------------------------------------------ # Calculate mean for multipolygon subset #------------------------------------------------------------------ for iMP in range(len(ListSubsetMP)): indMP=Crosswalk_sxy_to_mp[iMP]['Index'] mu=np.mean(DataSXY[:,indMP,:],axis=1) for op in oper: if op=='Mean': Data[op][:,iEns,iMP,:]=mu else: Data[op][:,iEns,iMP,:]=np.sum(Area[iMP])*mu #---------------------------------------------------------------------- # Add stats to MOS structure #---------------------------------------------------------------------- cnt_k=0 for k in d0.keys(): if np.isin(k,v2include)==False: continue for op in oper: mu=np.mean(Data[op][:,:,:,cnt_k],axis=1) sd=np.std(Data[op][:,:,:,cnt_k],axis=1) cil=mu-sigma_multiplier*sd/np.sqrt(meta['Project']['N Ensemble']) cih=mu+sigma_multiplier*sd/np.sqrt(meta['Project']['N Ensemble']) mos[iScn][op][k]['Ensemble Mean']=mu mos[iScn][op][k]['Ensemble CIL']=cil mos[iScn][op][k]['Ensemble CIH']=cih cnt_k=cnt_k+1 #-------------------------------------------------------------------------- # Save #-------------------------------------------------------------------------- gu.opickle(meta['Paths']['Project'] + '\\Outputs\\MosByMPSubset_GHGB.pkl',mos) t1=time.time() print((t1-t0)/60) return #%% Save MOS GHG output variables by multipolygon #def MosByMP_GHG(meta,switch_area): # # sigma_multiplier=1.0 # # # Import multipolygons # atu_multipolygons=gu.ipickle(meta['Paths']['Geospatial'] + '\\atu_multipolygons.pkl') # # # Import sxy # sxy=gu.ipickle(meta['Paths']['Geospatial'] + '\\sxy.pkl') # # # Unique MPs # uMP=np.unique(sxy['ID_atu_multipolygons']) # # # Create listed index (faster than indexing on the fly) # Crosswalk_sxy_to_mp=[None]*uMP.size # for iMP in range(uMP.size): # d={} # d['Index']=np.where(sxy['ID_atu_multipolygons']==uMP[iMP])[0] # Crosswalk_sxy_to_mp[iMP]=d # # # Time series of saved results # tv_full=np.arange(meta['Project']['Year Start'],meta['Project']['Year End']+1,1) # tv_saving=np.arange(meta['Project']['Year Start Saving'],meta['Project']['Year End']+1,1) # it=np.where( (tv_full>=tv_saving[0]) & (tv_full<=tv_saving[-1]) )[0] # # # Operations # oper=['Mean','Sum'] # # # GHG balance variables # d0=LoadSingleOutputFile(meta,0,0,0) # # v2exclude_v1=['Year','C_M_ByAgent','LogSizeEnhancement','C_Piled_Tot','C_M_Dist','C_G_Gross_Tot','C_G_Net_Tot','C_M_Reg_Tot','C_LF_Tot','C_RH_Tot', \ # 'C_ToMillNonMerch','C_ToMillSnagStem','C_ToSlashpileBurn','C_ToLumber','C_ToPlywood','C_ToOSB','C_ToMDF','C_ToPaper','C_ToPowerFacilityDom','C_ToPowerFacilityFor', \ # 'C_ToPowerGrid','C_ToPellets','C_ToFirewoodDom','C_ToFirewoodFor','C_ToLogExport','E_CO2e_LULUCF_OpenBurning','E_CO2e_LULUCF_EcoOther','E_CO2e_LULUCF_HWP', \ # 'E_CO2e_ESC_Comb','E_CO2e_ESC_SubE','E_CO2e_ESC_SubBM','E_CO2e_ET_Comb','E_CO2e_IPPU_Comb','C_NPP_Tot','C_ToMill','E_CO2e_LULUCF_Fire'] # # # Scale factor used to temporarily store data # ScaleFactor=0.001 # # #-------------------------------------------------------------------------- # # Initialize data by multipolygon structure # #-------------------------------------------------------------------------- # # MosByMP=[None]*meta['Project']['N Scenario'] # # for iScn in range(meta['Project']['N Scenario']): # # d={} # d['v1']={} # d['v1']['Mean']={} # d['v1']['Sum']={} # for k in d0.keys(): # if np.isin(k,v2exclude_v1)==True: # continue # for op in oper: # d['v1'][op][k]={} # d['v1'][op][k]['Ensemble Mean']=np.zeros((tv_saving.size,uMP.size)) # d['v1'][op][k]['Ensemble CIL']=np.zeros((tv_saving.size,uMP.size)) # d['v1'][op][k]['Ensemble CIH']=np.zeros((tv_saving.size,uMP.size)) # # if switch_area=='On': # d['Area']={} # for k in meta['LUT']['Dist'].keys(): # d['Area'][k]={} # d['Area'][k]['Ensemble Mean']=np.zeros((tv_saving.size,uMP.size)) # # MosByMP[iScn]=d # # #-------------------------------------------------------------------------- # # Loop through scenarios # #-------------------------------------------------------------------------- # # for iScn in range(meta['Project']['N Scenario']): # # for iEns in range(meta['Project']['N Ensemble']): # # #------------------------------------------------------------------ # # Initialize temporary data structure for full simulation # #------------------------------------------------------------------ # # Data={} # # Data['v1']={} # for k in d0.keys(): # if np.isin(k,v2exclude_v1)==True: # continue # Data['v1'][k]=np.zeros((tv_saving.size,meta['Project']['N Stand']),dtype=int) # # if switch_area=='On': # Data['Area']={} # for k in MosByMP[iScn]['Area']: # Data['Area'][k]=np.zeros((tv_saving.size,meta['Project']['N Stand']),dtype=int) # # #------------------------------------------------------------------ # # Populate full simulation results # #------------------------------------------------------------------ # # for iBat in range(meta['Project']['N Batch']): # # indBat=IndexToBatch(meta,iBat) # # d1=LoadSingleOutputFile(meta,iScn,iEns,iBat) # # for k in d0.keys(): # if np.isin(k,v2exclude_v1)==True: # continue # tmp=d1[k]/ScaleFactor # Data['v1'][k][:,indBat]=tmp.copy().astype(int) # # if (switch_area=='On' ): # # # Import event chronology # if (meta['Scenario'][iScn]['Harvest Status Future']=='On') | (meta['Scenario'][iScn]['Breakup Status']=='On'): # ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Modified_Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') # else: # ec=gu.ipickle(meta['Paths']['Input Scenario'][iScn] + '\\Events_Ens' + FixFileNum(iEns) + '_Bat' + FixFileNum(iBat) + '.pkl') # # # Uncompress event chronology if it has been compressed # ec=EventChronologyDecompress(meta,ec,iScn,iEns,iBat) # # if switch_area=='On': # for k in Data['Area'].keys(): # Data0=np.zeros((tv_saving.size,indBat.size)) # for iEY in range(meta['Core']['Max Events Per Year']): # ind=np.where(ec['ID_Type'][it,:,iEY]==meta['LUT']['Dist'][k])[0] # Data0[ind]=Data0[ind]+1 # Data['Area'][k][:,indBat]=Data0 # # del d1,ec # garc.collect() # # if switch_area=='On': # # Populating the final structure with area data is slow - get a flag # # indicator of whether each event ID can be skipped because it has no # # info # flag_Area={} # for k in Data['Area'].keys(): # if np.sum(Data['Area'][k])>0: # flag_Area[k]=1 # else: # flag_Area[k]=0 # # #------------------------------------------------------------------ # # Calculate stats and populate results for each treatment area # #------------------------------------------------------------------ # # for iMP in range(uMP.size): # # ATA=atu_multipolygons[uMP[iMP]]['ACTUAL_TREATMENT_AREA'] # if ATA==None: # print('Encounterd no area, using zero') # ATA=0 # # ind=Crosswalk_sxy_to_mp[iMP]['Index'] # # for k in d0.keys(): # # if np.isin(k,v2exclude_v1)==True: # continue # # tmp=ScaleFactor*Data['v1'][k][:,ind].astype(float) # # mu=np.mean(tmp,axis=1) # sd=np.std(tmp,axis=1) # cil=mu-sigma_multiplier*sd/np.sqrt(ind.size*meta['Project']['N Ensemble']) # cih=mu+sigma_multiplier*sd/np.sqrt(ind.size*meta['Project']['N Ensemble']) # # MosByMP[iScn]['v1']['Mean'][k]['Ensemble Mean'][:,iMP]=MosByMP[iScn]['v1']['Mean'][k]['Ensemble Mean'][:,iMP]+mu # MosByMP[iScn]['v1']['Mean'][k]['Ensemble CIL'][:,iMP]=MosByMP[iScn]['v1']['Mean'][k]['Ensemble CIL'][:,iMP]+cil # MosByMP[iScn]['v1']['Mean'][k]['Ensemble CIH'][:,iMP]=MosByMP[iScn]['v1']['Mean'][k]['Ensemble CIH'][:,iMP]+cih # # MosByMP[iScn]['v1']['Sum'][k]['Ensemble Mean'][:,iMP]=MosByMP[iScn]['v1']['Sum'][k]['Ensemble Mean'][:,iMP]+ATA*mu # MosByMP[iScn]['v1']['Sum'][k]['Ensemble CIL'][:,iMP]=MosByMP[iScn]['v1']['Sum'][k]['Ensemble CIL'][:,iMP]+ATA*cil # MosByMP[iScn]['v1']['Sum'][k]['Ensemble CIH'][:,iMP]=MosByMP[iScn]['v1']['Sum'][k]['Ensemble CIH'][:,iMP]+ATA*cih # # if switch_area=='On': # for k in MosByMP[iScn]['Area']: # if flag_Area[k]==1: # # Only continue if there are some events # MosByMP[iScn]['Area'][k]['Ensemble Mean'][:,iMP]=MosByMP[iScn]['Area'][k]['Ensemble Mean'][:,iMP]+np.sum(Data['Area'][k][:,ind],axis=1) # # #-------------------------------------------------------------------------- # # Divide by number of ensembles # #-------------------------------------------------------------------------- # # for iScn in range(meta['Project']['N Scenario']): # # for k in d0.keys(): # if np.isin(k,v2exclude_v1)==True: # continue # for op in oper: # MosByMP[iScn]['v1'][op][k]['Ensemble Mean']=MosByMP[iScn]['v1'][op][k]['Ensemble Mean']/meta['Project']['N Ensemble'] # MosByMP[iScn]['v1'][op][k]['Ensemble CIL']=MosByMP[iScn]['v1'][op][k]['Ensemble CIL']/meta['Project']['N Ensemble'] # MosByMP[iScn]['v1'][op][k]['Ensemble CIH']=MosByMP[iScn]['v1'][op][k]['Ensemble CIH']/meta['Project']['N Ensemble'] # # if switch_area=='On': # for iV in MosByMP[iScn]['Area']: # MosByMP[iScn]['Area'][iV]['Ensemble Mean'][:,iMP]=MosByMP[iScn]['Area'][iV]['Ensemble Mean'][:,iMP]/meta['Project']['N Ensemble'] # # #-------------------------------------------------------------------------- # # Apply scale factor to data # #-------------------------------------------------------------------------- # # ListV=['Ensemble Mean','Ensemble CIL','Ensemble CIH'] # # for iScn in range(meta['Project']['N Scenario']): # # for k in d0.keys(): # # if np.isin(k,v2exclude_v1)==True: # continue # # for op in oper: # # for vnam in ListV: # # if (k=='E_CO2e_LULUCF_HWP') | (k=='E_CO2e_ESC_Comb') | (k=='E_CO2e_ET_Comb') | (k=='E_CO2e_IPPU_Comb'): # MosByMP[iScn]['v1'][op][k][vnam]=MosByMP[iScn]['v1'][op][k][vnam]/meta['Core']['Scale Factor Export Big'] # else: # MosByMP[iScn]['v1'][op][k][vnam]=MosByMP[iScn]['v1'][op][k][vnam]/meta['Core']['Scale Factor Export Small'] # # if np.max(MosByMP[iScn]['v1'][op][k][vnam])<32767: # MosByMP[iScn]['v1'][op][k][vnam]=MosByMP[iScn]['v1'][op][k][vnam].astype('int16') # else: # MosByMP[iScn]['v1'][op][k][vnam]=MosByMP[iScn]['v1'][op][k][vnam].astype(int) # # if switch_area=='On': # for k in MosByMP[iScn]['Area']: # MosByMP[iScn]['Area'][k]['Ensemble Mean'][:,iMP]=MosByMP[iScn]['Area'][k]['Ensemble Mean'][:,iMP]/meta['Core']['Scale Factor Export Small'] # # #-------------------------------------------------------------------------- # # Save # #-------------------------------------------------------------------------- # # gu.opickle(meta['Paths']['Project'] + '\\Outputs\\MosByMP_GHGB.pkl',MosByMP) # return #%% Model output statistics by project type and year (GHG balance variables only) def MosByPTAndYear_GHGB(meta): t0=time.time() # Error multiplier sigma_multiplier=2.0 # Import multipolygons atu_multipolygons=gu.ipickle(meta['Paths']['Geospatial'] + '\\atu_multipolygons.pkl') # Import sxy sxy=gu.ipickle(meta['Paths']['Geospatial'] + '\\sxy.pkl') # Unique MPs uMP=np.unique(sxy['ID_atu_multipolygons']) # Unique project types uPT=np.unique(meta['Project']['ProjectType']) # Create listed index (faster than indexing on the fly) Crosswalk_sxy_to_mp=[None]*uMP.size for iMP in range(uMP.size): d={} d['Index']=np.where(sxy['ID_atu_multipolygons']==uMP[iMP])[0] Crosswalk_sxy_to_mp[iMP]=d #-------------------------------------------------------------------------- # Project type by uMP #-------------------------------------------------------------------------- id_pt=np.zeros(uMP.size) for iMP in range(uMP.size): id_pt[iMP]=meta['Project']['ProjectTypeByMP'][uMP[iMP]] #-------------------------------------------------------------------------- # Area #-------------------------------------------------------------------------- ATA=np.zeros( uMP.size ) for iMP in range(uMP.size): ata0=atu_multipolygons[uMP[iMP]]['ACTUAL_TREATMENT_AREA'] if ata0==None: print('Encounterd no area, using zero') ata0=0 ATA[iMP]=ata0 #-------------------------------------------------------------------------- # Year #-------------------------------------------------------------------------- Year=np.zeros( uMP.size ) for iMP in range(uMP.size): yr0=atu_multipolygons[uMP[iMP]]['Year'] if yr0==None: print('Encounterd no area, using zero') yr0=0 Year[iMP]=yr0 # Time series of saved results tv_saving=np.arange(meta['Project']['Year Start Saving'],meta['Project']['Year End']+1,1) # Years of implementation uT=np.unique(Year) tv_imp=np.arange(np.min(uT),np.max(uT)+1,1) # Operations oper=['Mean','Sum'] # GHG balance variables d0=LoadSingleOutputFile(meta,0,0,0) # All (excluding 'C_M_ByAgent' and 'Year') v2include=['A', 'V_StemMerch', 'V_StemMerchToMill', 'LogSizeEnhancement', 'C_Biomass_Tot', 'C_Piled_Tot', 'C_Litter_Tot', 'C_DeadWood_Tot', 'C_Soil_Tot', 'C_InUse_Tot', 'C_DumpLandfill_Tot', 'C_M_Dist', 'C_G_Gross_Tot', 'C_G_Net_Tot', 'C_M_Reg_Tot', 'C_LF_Tot', 'C_RH_Tot', 'C_ToMillMerch', 'C_ToMillNonMerch', 'C_ToMillSnagStem', 'C_ToSlashpileBurn', 'C_ToLumber', 'C_ToPlywood', 'C_ToOSB', 'C_ToMDF', 'C_ToPaper', 'C_ToPowerFacilityDom', 'C_ToPowerFacilityFor', 'C_ToPowerGrid', 'C_ToPellets', 'C_ToFirewoodDom', 'C_ToFirewoodFor', 'C_ToLogExport', 'E_CO2e_LULUCF_NEE', 'E_CO2e_LULUCF_Wildfire', 'E_CO2e_LULUCF_OpenBurning', 'E_CO2e_LULUCF_EcoOther', 'E_CO2e_LULUCF_HWP', 'E_CO2e_ESC_Comb', 'E_CO2e_ESC_SubE', 'E_CO2e_ESC_SubBM', 'E_CO2e_ET_Comb', 'E_CO2e_IPPU_Comb', 'C_NPP_Tot', 'C_ToMill', 'E_CO2e_LULUCF_Fire', 'E_CO2e_AGHGB_WSub', 'E_CO2e_AGHGB_WOSub', 'E_CO2e_AGHGB_WSub_cumu', 'E_CO2e_AGHGB_WOSub_cumu', 'E_CO2e_AGHGB_WSub_cumu_from_tref', 'E_CO2e_AGHGB_WOSub_cumu_from_tref'] #-------------------------------------------------------------------------- # Initialize data by multipolygon structure (by PT) #-------------------------------------------------------------------------- MosByPT=[None]*meta['Project']['N Scenario'] for iScn in range(meta['Project']['N Scenario']): d={} for op in oper: d[op]={} for k in d0.keys(): if np.isin(k,v2include)==False: continue for op in oper: d[op][k]={} d[op][k]['Ensemble Mean']=np.zeros((tv_saving.size,uPT.size)) d[op][k]['Ensemble CIL']=np.zeros((tv_saving.size,uPT.size)) d[op][k]['Ensemble CIH']=np.zeros((tv_saving.size,uPT.size)) MosByPT[iScn]=d #-------------------------------------------------------------------------- # Initialize data by multipolygon structure (by PT and Year) #-------------------------------------------------------------------------- MosByPTAndYr=[None]*meta['Project']['N Scenario'] for iScn in range(meta['Project']['N Scenario']): d={} for t in tv_imp: d[t]={} for op in oper: d[t][op]={} for k in d0.keys(): if np.isin(k,v2include)==False: continue for t in tv_imp: for op in oper: d[t][op][k]={} d[t][op][k]['Ensemble Mean']=np.zeros((tv_saving.size,uPT.size)) d[t][op][k]['Ensemble CIL']=np.zeros((tv_saving.size,uPT.size)) d[t][op][k]['Ensemble CIH']=np.zeros((tv_saving.size,uPT.size)) MosByPTAndYr[iScn]=d #-------------------------------------------------------------------------- # Loop through scenarios #-------------------------------------------------------------------------- for iScn in range(meta['Project']['N Scenario']): DataByPT={} for op in oper: DataByPT[op]=np.zeros( (tv_saving.size,meta['Project']['N Ensemble'],uPT.size,len(v2include)) ,dtype=np.float) DataByPTAndYr={} for t in tv_imp: DataByPTAndYr[t]={} for op in oper: DataByPTAndYr[t][op]=np.zeros( (tv_saving.size,meta['Project']['N Ensemble'],uPT.size,len(v2include)) ,dtype=np.float) for iEns in range(meta['Project']['N Ensemble']): # Initialize temporary data structure for full simulation DataSXY=np.zeros( (tv_saving.size,meta['Project']['N Stand'],len(v2include)) ,dtype=np.float) # Import batches for iBat in range(meta['Project']['N Batch']): indBat=IndexToBatch(meta,iBat) d1=LoadSingleOutputFile(meta,iScn,iEns,iBat) cnt_k=0 for k in d0.keys(): if np.isin(k,v2include)==False: continue DataSXY[:,indBat,cnt_k]=d1[k].copy() cnt_k=cnt_k+1 del d1 garc.collect() # Convert to MP DataMP=np.zeros( (tv_saving.size,uMP.size,len(v2include)) ) for iMP in range(uMP.size): indMP=Crosswalk_sxy_to_mp[iMP]['Index'] DataMP[:,iMP,:]=np.mean(DataSXY[:,indMP,:],axis=1) for iPT in range(uPT.size): # Summarize by PT ind=np.where( (id_pt==uPT[iPT]) )[0] for op in oper: mu=np.mean(DataMP[:,ind,:],axis=1) if op=='Mean': DataByPT[op][:,iEns,iPT,:]=mu else: DataByPT[op][:,iEns,iPT,:]=np.sum(ATA[ind])*mu # Summmarize by PT and year for t in tv_imp: ind=np.where( (id_pt==uPT[iPT]) & (Year==t) )[0] for op in oper: mu=np.mean(DataMP[:,ind,:],axis=1) if op=='Mean': DataByPTAndYr[t][op][:,iEns,iPT,:]=mu else: DataByPTAndYr[t][op][:,iEns,iPT,:]=np.sum(ATA[ind])*mu cnt_k=0 for k in d0.keys(): if np.isin(k,v2include)==False: continue for op in oper: # Mos by PT mu=np.mean(DataByPT[op][:,:,:,cnt_k],axis=1) sd=np.std(DataByPT[op][:,:,:,cnt_k],axis=1) cil=mu-sigma_multiplier*sd/np.sqrt(meta['Project']['N Ensemble']) cih=mu+sigma_multiplier*sd/np.sqrt(meta['Project']['N Ensemble']) MosByPT[iScn][op][k]['Ensemble Mean']=mu MosByPT[iScn][op][k]['Ensemble CIL']=cil MosByPT[iScn][op][k]['Ensemble CIH']=cih # Mos by PT and year for t in tv_imp: mu=np.mean(DataByPTAndYr[t][op][:,:,:,cnt_k],axis=1) sd=np.std(DataByPTAndYr[t][op][:,:,:,cnt_k],axis=1) cil=mu-sigma_multiplier*sd/
np.sqrt(meta['Project']['N Ensemble'])
numpy.sqrt
import numpy as np import glfw import math from enum import IntEnum from cyberdesk.paperspace import Paper from cyberdesk.graphics2d import draw_text_centered from cyberdesk.graphics3d import CanvasTexture, Material, quad_shader, QuadGeometry from cyberdesk.input import Gamepad, GamepadButton, GamepadAxis from cyberdesk import Color large_button_size = 0.6 small_button_size = 0.4 gamepad_image_buttons = [ (np.array((2.5, 2.5)), large_button_size, GamepadButton.UP), (
np.array((1.5, 3.5))
numpy.array
from sklearn.neighbors import KernelDensity as kde import numpy as np import pickle as pkl import matplotlib.pyplot as plt class gaussian_kde(object): def __init__(self, data, bandwidth=0.03): self.training_data = data self.bandwidth = bandwidth self.kde = kde(kernel='gaussian', bandwidth=self.bandwidth).fit(self.training_data) def update(self, new_data): self.training_data = np.concatenate([self.training_data, new_data], axis = 0) self.kde.fit(self.training_data) return self def comp_prob(self, x): if isinstance(x, (float, np.float, np.float32, np.float64)): x = np.array([[x]]) elif isinstance(x, (list, np.ndarray)): x = np.expand_dims(np.array(x), axis=-1) x = np.exp(self.kde.score_samples(x)) return x.squeeze() class object_belief(object): def __init__(self): self.belief = np.array([0.5, 0.5]) def update(self, score, kde): neg_prob = kde[0].comp_prob(score) pos_prob = kde[1].comp_prob(score) self.belief *= [neg_prob, pos_prob] self.belief /= self.belief.sum() return self.belief def reset(self): self.belief = np.array([0.5, 0.5]) if __name__=="__main__": with open("../../density_esti_train_data.pkl") as f: data = pkl.load(f) data = data["ground"] pos_data = [] neg_data = [] for d in data: for i, score in enumerate(d["scores"]): if str(i) in d["gt"]: pos_data.append(score) else: neg_data.append(score) pos_data = np.expand_dims(np.array(pos_data), axis=-1) pos_data = np.sort(pos_data, axis=0)[5:-5] neg_data = np.expand_dims(
np.array(neg_data)
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Oct 8 18:14:19 2020 @author: agarwal.270a """ import os import numpy as np import matplotlib.pyplot as plt from scipy.signal import detrend import tensorflow as tf from tensorflow.keras import layers from tensorflow import keras import pickle import glob import pandas as pd from tensorflow.keras.activations import relu import datetime from utils import make_data_pipe, Rpeak2HR, sliding_window_fragmentation tf.keras.backend.set_floatx('float32') lrelu_pt2=lambda x: relu(x, alpha=0.2) #tf.keras.backend.clear_session() #TODO: Added to run only on CPU when needed #tf.config.set_visible_devices([], 'GPU') #%% Loading Data def get_train_data(path,val_files=[],test_files=[], win_len=8,step=1,Fs_pks=100): ''' Use all files in the folder 'path' except the val_files and test_files ''' def get_clean_ppg_and_ecg(files): list_clean_ppg=[];list_arr_pks=[] for i in range(len(files)): df=pd.read_csv(files[i],header=None) arr=df.values if 'clean' in files[i]: arr[:,41:45]=(detrend(arr[:,41:45].reshape(-1),0,'constant') ).reshape((-1,4)) list_clean_ppg+=[np.concatenate([arr[:,29:30],arr[:,41:45]], axis=-1),arr[:,30:31],arr[:,39:40],arr[:,40:41]] list_arr_pks+=[arr[:,45:49].reshape(-1)] return list_clean_ppg,list_arr_pks files=glob.glob(path+'*.csv') #files=[fil for fil in files if 'WZ' in fil] #get wenxiao's data #separate val and test files s3=set(files);s4=set(val_files+test_files) files_2=list(s3.difference(s4)) #files_2=[files_2[0]] #files_2=[fil for fil in files if not((val_names[0] in fil))] list_clean_ppg,list_arr_pks=get_clean_ppg_and_ecg(files_2) dsample_factr=4 Fs_pks=int(Fs_pks/dsample_factr) win_len=win_len*Fs_pks list_r_pk_locs=[np.arange(len(arr_pks))[arr_pks.astype(bool)] for arr_pks in list_arr_pks] #get nearest dsampled idx #TODO: Started using round instead of floor list_r_pk_locs_dsampled=[np.round(r_pk_locs/dsample_factr).astype(int) for r_pk_locs in list_r_pk_locs] #print([np.max(r_pks) for r_pks in list_r_pk_locs_dsampled]) #print([len(ppg) for ppg in list_clean_ppg[::4]]) list_arr_pks_dsampled=[] for j in range(len(list_arr_pks)): arr_pks_dsampled=np.zeros([int(len(list_arr_pks[j])/dsample_factr),1]) #check & correct for rare rounding up issue in the last element if list_r_pk_locs_dsampled[j][-1]==len(arr_pks_dsampled): list_r_pk_locs_dsampled[j][-1]-=1 arr_pks_dsampled[list_r_pk_locs_dsampled[j]]=1 list_arr_pks_dsampled.append(arr_pks_dsampled) #print([len(ppg) for ppg in list_arr_pks_dsampled]) list_HR=[4*[Rpeak2HR(arr_pks,win_len,step,Fs_pks)] for arr_pks in list_arr_pks_dsampled] list_HR=sum(list_HR,[]) #list_HR=[HR[::dsample_factr] for HR in list_HR] return list_clean_ppg,list_HR def get_test_data(file_path,win_len,step,Fs_pks): df=pd.read_csv(file_path,header=None) arr=df.values test_in=[np.concatenate([arr[:,29:30],arr[:,41:45]],axis=-1),arr[:,30:31], arr[:,39:40],arr[:,40:41]] arr_pks=arr[:,45:49].reshape(-1) dsample_factr=4 Fs_pks=int(Fs_pks/dsample_factr) win_len=win_len*Fs_pks r_pk_locs=np.arange(len(arr_pks))[arr_pks.astype(bool)] #get nearest dsampled idx #TODO: Started using round instead of floor r_pk_locs_dsampled=np.round(r_pk_locs/dsample_factr).astype(int) #print([np.max(r_pks) for r_pks in list_r_pk_locs_dsampled]) #print([len(ppg) for ppg in list_clean_ppg[::4]]) arr_pks_dsampled=np.zeros([len(test_in[0]),1]) #check & correct for rare rounding up issue in the last element if r_pk_locs_dsampled[-1]==len(arr_pks_dsampled): r_pk_locs_dsampled[-1]-=1 arr_pks_dsampled[r_pk_locs_dsampled]=1 #print([len(ppg) for ppg in list_arr_pks_dsampled]) list_HR=4*[Rpeak2HR(arr_pks_dsampled,win_len,step,Fs_pks)] test_in=[ppg.astype('float32') for ppg in test_in] test_out=[HR[:,0].astype('float32') for HR in list_HR] return test_in,test_out #%% def create_model(in_shape,HR_win_len=200): expand_dims = layers.Lambda(lambda x: tf.expand_dims(x,axis=-1), name='expand_dims') #RNN model via. Functional API rnn = layers.GRU(64, return_sequences=True, return_state=True) sig_in = layers.Input(shape=in_shape) #x = expand_dims(sig_in) x = sig_in _, final_state=rnn(x[:,:-HR_win_len,:]) #warm-up RNN rnn_out, _ = rnn(x[:,-HR_win_len:,:],initial_state=final_state) HR_hat=layers.Conv1D(filters=1,kernel_size=1, strides=1,padding='same', activation=None,name='Conv_{}'.format(1))(rnn_out) HR_hat=layers.Flatten()(HR_hat) model = keras.Model(sig_in, HR_hat, name='model_HR') return model def create_infer_model(in_shape): #RNN model via. Functional API rnn = layers.GRU(64, return_sequences=True, return_state=True) initial_state = layers.Input(shape=(64,)) sig_in = layers.Input(shape=in_shape) rnn_out, final_state = rnn(sig_in,initial_state=initial_state) HR_hat=layers.Conv1D(filters=1,kernel_size=1, strides=1,padding='same', activation=None,name='Conv_{}'.format(1))(rnn_out) HR_hat=layers.Flatten()(HR_hat) model = keras.Model([initial_state,sig_in],[final_state,HR_hat], name='model_infer_HR') return model #%% def main(): #Get Train Data plt.close('all') path_prefix='data/pre-training' exp_id='1_3' log_prefix='data/post-training/experiments/{}'.format(exp_id) path=(path_prefix+'/') val_files=[path+'2019092801_3154_clean.csv'] test_files=[path+'2019092820_5701_clean.csv'] win_len=8 #in sec step=1 #in n_samples Fs_pks=100 #in Hz #input_list,output_list=[],[] list_sigs,list_HR=get_train_data(path,val_files,test_files,win_len, step,Fs_pks) #Pre-process data dsample_factr=4;Fs_new=int(Fs_pks/dsample_factr) sample_win_len,step_size=win_len*Fs_new,2*Fs_new HR_win_len=sample_win_len*3 #TODO: Can change this later, 4 is arbitrary choice after profs suggestion ppg_win_len=sample_win_len+HR_win_len model_sigs_in,model_HR_out=[],[] for j in range(len(list_HR)): #HR=list_HR[j][list_arr_pks[j].astype(bool)] ppg,HR=list_sigs[j][:,0:1],list_HR[j] ppg=sliding_window_fragmentation([ppg],ppg_win_len,step_size) HR=sliding_window_fragmentation([HR],HR_win_len,step_size) print(len(ppg),len(HR)) model_sigs_in.append(ppg) model_HR_out.append(HR[:len(ppg)]) #clipping extra HRs at the end model_sigs_in=np.concatenate(model_sigs_in,axis=0) model_HR_out=
np.concatenate(model_HR_out,axis=0)
numpy.concatenate
import re import numpy as np import pandas as pd from sklearn.base import BaseEstimator from sklearn.linear_model import LogisticRegression from .transform import WOETransformer, Combiner, ELSE_GROUP, EMPTY_BIN from .utils import to_ndarray, bin_by_splits, save_json, read_json RE_NUM = r'-?\d+(.\d+)?' RE_SEP = r'[~-]' RE_BEGIN = r'(-inf|{num})'.format(num = RE_NUM) RE_END = r'(inf|{num})'.format(num = RE_NUM) RE_RANGE = r'\[{begin}\s*{sep}\s*{end}\)'.format( begin = RE_BEGIN, end = RE_END, sep = RE_SEP, ) NUMBER_EMPTY = -9999999 NUMBER_INF = 1e10 FACTOR_EMPTY = 'MISSING' FACTOR_UNKNOWN = 'UNKNOWN' class ScoreCard(BaseEstimator): def __init__(self, pdo = 60, rate = 2, base_odds = 35, base_score = 750, card = None, combiner = {}, transer = None, **kwargs): """ Args: card (dict|str|IOBase): dict of card or io to read json combiner (toad.Combiner) transer (toad.WOETransformer) """ self.pdo = pdo self.rate = rate self.base_odds = base_odds self.base_score = base_score self.factor = pdo / np.log(rate) self.offset = base_score - self.factor * np.log(base_odds) self.combiner = combiner self.transer = transer self.model = LogisticRegression(**kwargs) if card is not None: self.generate_card(card = card) @property def coef_(self): """ coef of LR model """ return self.weight def generate_card(self, card = None): """ Args: card (dict|str|IOBase): dict of card or io to read json """ if card is not None: if not isinstance(card, dict): card = read_json(card) return self.set_card(card) rules = self._get_rules(self.combiner, self.transer) self.set_combiner(rules) map = self.generate_map(self.transer, self.model) self.set_score(map) return self def fit(self, X, y): """ Args: X (2D DataFrame) Y (array-like) """ self.features_ = X.columns.tolist() for f in self.features_: if f not in self.transer._rules: raise Exception('column \'{f}\' is not in transer'.format(f = f)) self.model.fit(X, y) self.generate_card() return self def _transer_to_rules(self, transer): c = dict() for k in transer._rules: c[k] = np.reshape(transer._rules[k]['value'], (-1, 1)).tolist() return c def _merge_combiner(self, cbs): res = dict() for item in cbs[::-1]: if isinstance(item, Combiner): item = item.export() res.update(item) return res def _get_rules(self, combiner, transer): transer_rules = self._transer_to_rules(transer) if isinstance(combiner, list): combiner = self._merge_combiner(combiner) elif isinstance(combiner, Combiner): combiner = combiner.export() if self._check_rules(combiner, transer_rules): transer_rules.update(combiner) return transer_rules def _check_rules(self, combiner, transer): for col in combiner: if col not in transer: continue l_c = len(combiner[col]) l_t = len(transer[col]) if l_c == 0: continue if isinstance(combiner[col][0], (int, float)): if l_c != l_t - 1: raise Exception('column \'{col}\' is not matched, assert {l_t} bins but given {l_c}'.format(col = col, l_t = l_t, l_c = l_c + 1)) else: if l_c != l_t: raise Exception('column \'{col}\' is not matched, assert {l_t} bins but given {l_c}'.format(col = col, l_t = l_t, l_c = l_c)) return True def _parse_range(self, bins): exp = re.compile(RE_RANGE) l = list() for item in bins: if item == 'nan': l.append(np.nan) continue m = exp.match(item) # if is not range if m is None: return None # get the end number of range split = m.group(3) if split == 'inf': split = np.inf else: split = float(split) l.append(split) return np.array(l) def _parse_card(self, card): bins = card.keys() scores = card.values() scores = np.array(list(scores)) groups = self._parse_range(bins) # if is continuous if groups is not None: ix = np.argsort(groups) scores = scores[ix] groups = groups[ix[:-1]] else: groups = list() for item in bins: if item == ELSE_GROUP: groups.append(item) else: groups.append(item.split(',')) groups = np.array(groups) return groups, scores def set_card(self, card): """set card dict """ combiner = dict() map = dict() for feature in card: bins, scores = self._parse_card(card[feature]) combiner[feature] = bins map[feature] = scores self.set_combiner(combiner) self.set_score(map) return self def set_combiner(self, combiner): """set combiner """ if not isinstance(combiner, Combiner): combiner = Combiner().load(combiner) self.combiner = combiner def set_score(self, map): """set score map by dict """ sm = dict() for key in map: s = map[key] if isinstance(s, np.ndarray): sm[key] = np.copy(s) else: sm[key] = np.array(s) self.score_map = sm def predict(self, X, **kwargs): """predict score Args: X (2D array-like): X to predict return_sub (bool): if need to return sub score, default `False` Returns: array-like: predicted score DataFrame: sub score for each feature """ select = list(self.score_map.keys()) bins = self.combine(X[select]) return self.bin_to_score(bins, **kwargs) def proba_to_score(self, prob): """covert probability to score """ odds = (1 - prob) / prob return self.factor * np.log(odds) + self.offset def combine(self, X): return self.combiner.transform(X) def bin_to_score(self, bins, return_sub = False): """predict score from bins """ res = bins.copy() for col in self.score_map: s_map = self.score_map[col] b = bins[col].values # set default group to min score b[b == EMPTY_BIN] = np.argmin(s_map) # replace score res[col] = s_map[b] score = np.sum(res.values, axis = 1) if return_sub is False: return score return score, res def woe_to_score(self, woe, weight = None): """calculate score by woe """ woe = to_ndarray(woe) if weight is None: weight = self.weight b = self.offset - self.factor * self.bias s = -self.factor * weight * woe # drop score whose weight is 0 mask = 1 if isinstance(weight, np.ndarray): mask = (weight != 0).astype(int) return (s + b / self.n_features_) * mask def set_model(self, model): """set logistic regression model """ self.weight = model.coef_[0] self.bias = model.intercept_[0] self.n_features_ = (self.weight != 0).sum() def generate_map(self, transer, model): """calculate score map by woe """ self.set_model(model) s_map = dict() for i, k in enumerate(self.features_): weight = self.weight[i] # skip feature whose weight is 0 if weight == 0: continue woe = transer._rules[k]['woe'] s_map[k] = self.woe_to_score(woe, weight = weight) return s_map def export(self, to_frame = False, to_json = None, to_csv = None, decimal = 2): """generate a scorecard object Args: to_frame (bool): return DataFrame of card to_json (str|IOBase): io to write json file to_csv (filepath|IOBase): file to write csv Returns: dict """ card = dict() combiner = self.combiner.export(format = True) for col in self.score_map: bins = combiner[col] card[col] = dict() for i in range(len(bins)): card[col][bins[i]] = round(self.score_map[col][i], decimal) if to_json is not None: save_json(card, to_json) if to_frame or to_csv is not None: rows = list() for name in card: for value, score in card[name].items(): rows.append({ 'name': name, 'value': value, 'score': score, }) card = pd.DataFrame(rows) if to_csv is not None: return card.to_csv(to_csv) return card def _generate_testing_frame(self, maps, size = 'max', mishap = True, gap = 1e-2): """ Args: maps (dict): map of values or splits to generate frame size (int|str): size of frame. 'max' (default), 'lcm' mishap (bool): is need to add mishap patch to test frame gap (float): size of gap for testing border Returns: DataFrame """ number_patch = np.array([NUMBER_EMPTY, NUMBER_INF]) factor_patch = np.array([FACTOR_EMPTY, FACTOR_UNKNOWN]) values = [] cols = [] for k, v in maps.items(): v = np.array(v) if np.issubdtype(v.dtype, np.number): items = np.concatenate((v, v - gap)) patch = number_patch else: # remove else group mask = np.argwhere(v == ELSE_GROUP) if mask.size > 0: v =
np.delete(v, mask)
numpy.delete
#IMPORTS....................................................................... import pandas as pd from numpy import log2 as log from sklearn.metrics import confusion_matrix import seaborn as sns import os # accessing directory structure import numpy as np import matplotlib.pyplot as plt import random eps = np.finfo(float).eps #Small value such that log won't fail Directory = "" os.chdir(Directory) #%% DATASETS................................................................... def get_wine_dataset(): df = pd.read_csv('wine.data', delimiter=',') df.columns=['Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids','Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity','Hue' , 'OD280/OD315 of diluted wines','Proline' ] #df.to_excel("outputttt.xlsx") return df #%% LOAD DATASET............................................................... df = get_wine_dataset() class_attribute = 'Class' class_column = df[class_attribute] df.drop(labels=[class_attribute], axis=1,inplace = True) #Removes the column with class labels df.insert(len(df.columns), class_attribute, class_column) # inserts class label column at the end of the dataframe #df.to_excel("test_cont.xlsx") print(df) #%%FUNCTIONS................................................................... def accuracy(y_true, y_predicted): '''Reports the accuracy of two lists of true and predicted values''' correct = 0 count = 0 for true, pred in zip(y_true, y_predicted): if int(true) == int(pred): correct += 1 else: print(count) count += 1 accuracy = correct/len(y_predicted)*100 print('Accuracy of classifer {:0.2f} %' .format(accuracy)) return accuracy def print_conf_mat(y_true, y_predicted): '''Prints the confusion matrix from the true and predicted class labels''' mat1 = confusion_matrix(y_true, y_predicted) #labels=["positive", "negative"]) #true_mat = confusion_matrix(y_true,y_true,labels=["positive", "negative"]) #plt.figure(0) ax= plt.subplot() sns.heatmap(mat1, square=True, annot=True, cbar=False,fmt="d", ax = ax) ax.set_title('Predicted Matrix') ax.set_xlabel('predicted value') ax.set_ylabel('true value') plt.show() return def entropy(dataframe, target_attribute): '''Calculates the Entropy of a dataset for the target attribute''' entropy = 0 #Initialize Entropy values = dataframe[target_attribute].unique() #Play has two options 'Yes', 'No' play_data = list(dataframe[target_attribute].values) for value in values: proportion = play_data.count(value)/len(play_data) #Proportion of given value in the dataset entropy += -proportion*
log(proportion)
numpy.log2
''' import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import dash_admin_components as dac from dash.dependencies import Input, Output, State, ALL import plotly.graph_objs as go ''' from helpers import constants, hertz_to_microtone # import score_component as sc import pickle # import dash # from dash.exceptions import PreventUpdate import pretty_midi import search_the_like import numpy as np import soundfile as sf import base64 import io from scipy.signal import convolve from masking_slice import spectral_centroid import alternate_mfcc import combine_peaks import maskingCurve_peakInput from helpers.constants import instrument_data_path, ir_data_path #path='/Users/admin-upu10438/Sync/Score-Tool' #path='N:\Cloud folders (Dropbox - Sync and OneDrive)\Sync\Sync\Score-Tool' #with open(path+'/database/no_data_orchestra.pickle', 'rb') as handle: # orchestra = pickle.load(handle) #app = dash.Dash(__name__) #server = app.server #instrument_data_path='N:/Score-Tool iowa samples/out' # instrument_data_path = 'c:/sample_database' #instrument_data_path='/home/uljas/sample_library' #ir_data_path='N:/Score-Tool iowa samples' # ir_data_path = 'c:/sample_database/musatalo' #ir_data_path='/home/uljas/sample_library/musatalo' from helpers.constants import instrument_data_path, ir_data_path def cutSample(data): fadeamount = 300 maxindex =
np.argmax(data > 0.01)
numpy.argmax
''' Utility functions for GAIN. (1) normalization: MinMax Normalizer (2) renormalization: Recover the data from normalzied data (3) rounding: Handlecategorical variables after imputation (4) rmse_loss: Evaluate imputed data in terms of RMSE (5) xavier_init: Xavier initialization (6) binary_sampler: sample binary random variables (7) uniform_sampler: sample uniform random variables (8) sample_batch_index: sample random batch index (9) show_results : Show results after training the model (10) Crop : Cropping the data from center with a shape ''' # Necessary packages import numpy as np import matplotlib.pyplot as plt import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from evaluations import nrmse def data_preprocessor(data, miss_rate, x_dim, y_dim): samples, rows, cols, _ = data.shape startx, starty = cols//2, rows//2 temp_data = np.zeros(shape=(samples, x_dim, y_dim, 1), dtype=np.float32) for s in range(samples): temp_data[s] = data[s][startx-x_dim//2:starty+x_dim//2, startx-x_dim//2:starty+x_dim//2, :] data_x = np.reshape(temp_data, [samples, x_dim*y_dim]).astype(np.float32) # Parameters no, dim = data_x.shape data_x[0][0:3] = np.nan # Introduce missing data data_m = binary_sampler(1-miss_rate, no, dim) miss_data_x = data_x.copy() miss_data_x[data_m == 0] = np.nan return data_x, miss_data_x, data_m def normalization (data, parameters=None): ''' Normalize data in [0, 1] range. Args: - data: original data Returns: - norm_data: normalized data - norm_parameters: min_val, max_val for each feature for renormalization ''' # Parameters _, dim = data.shape norm_data = data.copy() if parameters is None: # MixMax normalization min_val = np.zeros(dim) max_val = np.zeros(dim) # For each dimension for i in range(dim): min_val[i] = np.nanmin(norm_data[:,i]) norm_data[:,i] = norm_data[:,i] - np.nanmin(norm_data[:,i]) max_val[i] = np.nanmax(norm_data[:,i]) norm_data[:,i] = norm_data[:,i] / (np.nanmax(norm_data[:,i]) + 1e-6) # Return norm_parameters for renormalization norm_parameters = {'min_val': min_val, 'max_val': max_val} else: min_val = parameters['min_val'] max_val = parameters['max_val'] # For each dimension for i in range(dim): norm_data[:,i] = norm_data[:,i] - min_val[i] norm_data[:,i] = norm_data[:,i] / (max_val[i] + 1e-6) norm_parameters = parameters return norm_data, norm_parameters def renormalization (norm_data, norm_parameters): ''' Renormalize data from [0, 1] range to the original range. Args: - norm_data: normalized data - norm_parameters: min_val, max_val for each feature for renormalization Returns: - renorm_data: renormalized original data ''' min_val = norm_parameters['min_val'] max_val = norm_parameters['max_val'] _, dim = norm_data.shape renorm_data = norm_data.copy() for i in range(dim): renorm_data[:,i] = renorm_data[:,i] * (max_val[i] + 1e-6) renorm_data[:,i] = renorm_data[:,i] + min_val[i] return renorm_data def rounding (imputed_data, data_x): ''' Round imputed data for categorical variables. Args: - imputed_data: imputed data - data_x: original data with missing values Returns: - rounded_data: rounded imputed data ''' _, dim = data_x.shape rounded_data = imputed_data.copy() for i in range(dim): temp = data_x[~np.isnan(data_x[:, i]), i] # Only for the categorical variable if len(np.unique(temp)) < 20: rounded_data[:, i] = np.round(rounded_data[:, i]) return rounded_data def rmse_loss (ori_data, imputed_data, data_m): ''' Compute RMSE loss between ori_data and imputed_data Args: - ori_data: original data without missing values - imputed_data: imputed data - data_m: indicator matrix for missingness Returns: - rmse: Root Mean Squared Error ''' ori_data, norm_parameters = normalization(ori_data) imputed_data, _ = normalization(imputed_data, norm_parameters) # Only for missing values nominator = np.sum(((1-data_m) * ori_data - (1-data_m) * imputed_data)**2) denominator = np.sum(1-data_m) rmse = np.sqrt(nominator/float(denominator)) return rmse def xavier_init(size): ''' Xavier initialization. Args: - size: vector size Returns: - initialized random vector. ''' in_dim = size[0] xavier_stddev = 1. / tf.sqrt(in_dim / 2.) return tf.random_normal(shape = size, stddev = xavier_stddev) def binary_sampler(p, rows, cols): ''' Sample binary random variables. Args: - p: probability of 1 - rows: the number of rows - cols: the number of columns Returns: - binary_random_matrix: generated binary random matrix. ''' unif_random_matrix = np.random.uniform(0., 1., size = [rows, cols]) binary_random_matrix = 1*(unif_random_matrix < p) return binary_random_matrix def uniform_sampler(low, high, rows, cols): ''' Sample uniform random variables. Args: - low: low limit - high: high limit - rows: the number of rows - cols: the number of columns Returns: - uniform_random_matrix: generated uniform random matrix. ''' return np.random.uniform(low, high, size = [rows, cols]) def sample_batch_index(total, batch_size): ''' Sample index of the mini-batch. Args: - total: total number of samples - batch_size: batch size Returns: - batch_idx: batch index ''' total_idx = np.random.permutation(total) batch_idx = total_idx[:batch_size] return batch_idx def show_results(data_x, miss_data_x, data_m, imputed_data, num_examples=1, cmap=None): for i in range(num_examples): i = np.random.randint(0, len(imputed_data)) print('Image : %d'%i) # drop original NaN actual = data_x[i][np.logical_not(np.isnan(data_x[i]))] mask = data_m[i][np.logical_not(np.isnan(data_x[i]))] predicted = imputed_data[i][np.logical_not(
np.isnan(data_x[i])
numpy.isnan
""" Item-based k-NN collaborative filtering. """ import pathlib import logging import pandas as pd import numpy as np import scipy.sparse as sps import scipy.sparse.linalg as spla from numba import njit, prange from lenskit import util, matrix from . import Predictor _logger = logging.getLogger(__name__) @njit(nogil=True) def _predict_weighted_average(model, nitems, nrange, ratings, targets): min_nbrs, max_nbrs = nrange scores = np.full(nitems, np.nan, dtype=np.float_) for i in prange(targets.shape[0]): iidx = targets[i] rptr = model.rowptrs[iidx] rend = model.rowptrs[iidx + 1] num = 0 denom = 0 nnbrs = 0 for j in range(rptr, rend): nidx = model.colinds[j] if np.isnan(ratings[nidx]): continue nnbrs = nnbrs + 1 num = num + ratings[nidx] * model.values[j] denom = denom + np.abs(model.values[j]) if max_nbrs > 0 and nnbrs >= max_nbrs: break if nnbrs < min_nbrs: continue scores[iidx] = num / denom return scores @njit(nogil=True) def _predict_sum(model, nitems, nrange, ratings, targets): min_nbrs, max_nbrs = nrange scores = np.full(nitems, np.nan, dtype=np.float_) for i in prange(targets.shape[0]): iidx = targets[i] rptr = model.rowptrs[iidx] rend = model.rowptrs[iidx + 1] score = 0 nnbrs = 0 for j in range(rptr, rend): nidx = model.colinds[j] if np.isnan(ratings[nidx]): continue nnbrs = nnbrs + 1 score = score + model.values[j] if max_nbrs > 0 and nnbrs >= max_nbrs: break if nnbrs < min_nbrs: continue scores[iidx] = score return scores _predictors = { 'weighted-average': _predict_weighted_average, 'sum': _predict_sum } class ItemItem(Predictor): """ Item-item nearest-neighbor collaborative filtering with ratings. This item-item implementation is not terribly configurable; it hard-codes design decisions found to work well in the previous Java-based LensKit code. Attributes: item_index_(pandas.Index): the index of item IDs. item_means_(numpy.ndarray): the mean rating for each known item. item_counts_(numpy.ndarray): the number of saved neighbors for each item. sim_matrix_(matrix.CSR): the similarity matrix. user_index_(pandas.Index): the index of known user IDs for the rating matrix. rating_matrix_(matrix.CSR): the user-item rating matrix for looking up users' ratings. """ def __init__(self, nnbrs, min_nbrs=1, min_sim=1.0e-6, save_nbrs=None, center=True, aggregate='weighted-average'): """ Args: nnbrs(int): the maximum number of neighbors for scoring each item (``None`` for unlimited) min_nbrs(int): the minimum number of neighbors for scoring each item min_sim(double): minimum similarity threshold for considering a neighbor save_nbrs(double): the number of neighbors to save per item in the trained model (``None`` for unlimited) center(bool): whether to normalize (mean-center) rating vectors. Turn this off when working with unary data and other data types that don't respond well to centering. aggregate: the type of aggregation to do. Can be ``weighted-average`` or ``sum``. """ self.nnbrs = nnbrs if self.nnbrs is not None and self.nnbrs < 1: self.nnbrs = -1 self.min_nbrs = min_nbrs if self.min_nbrs is not None and self.min_nbrs < 1: self.min_nbrs = 1 self.min_sim = min_sim self.save_nbrs = save_nbrs self.center = center self.aggregate = aggregate try: self._predict_agg = _predictors[aggregate] except KeyError: raise ValueError('unknown aggregator {}'.format(aggregate)) def fit(self, ratings): """ Train a model. The model-training process depends on ``save_nbrs`` and ``min_sim``, but *not* on other algorithm parameters. Args: ratings(pandas.DataFrame): (user,item,rating) data for computing item similarities. """ # Training proceeds in 2 steps: # 1. Normalize item vectors to be mean-centered and unit-normalized # 2. Compute similarities with pairwise dot products self._timer = util.Stopwatch() init_rmat, users, items = matrix.sparse_ratings(ratings) n_items = len(items) _logger.info('[%s] made sparse matrix for %d items (%d ratings from %d users)', self._timer, len(items), init_rmat.nnz, len(users)) rmat, item_means = self._mean_center(ratings, init_rmat, items) rmat = self._normalize(rmat) _logger.info('[%s] computing similarity matrix', self._timer) smat = self._compute_similarities(rmat) _logger.info('[%s] got neighborhoods for %d of %d items', self._timer, np.sum(np.diff(smat.rowptrs) > 0), n_items) _logger.info('[%s] computed %d neighbor pairs', self._timer, smat.nnz) self.item_index_ = items self.item_means_ = item_means self.item_counts_ = np.diff(smat.rowptrs) self.sim_matrix_ = smat self.user_index_ = users self.rating_matrix_ = init_rmat return self def _mean_center(self, ratings, rmat, items): if not self.center: return rmat, None item_means = ratings.groupby('item').rating.mean() item_means = item_means.reindex(items).values mcvals = rmat.values - item_means[rmat.colinds] nmat = matrix.CSR(rmat.nrows, rmat.ncols, rmat.nnz, rmat.rowptrs.copy(), rmat.colinds.copy(), mcvals) _logger.info('[%s] computed means for %d items', self._timer, len(item_means)) return nmat, item_means def _normalize(self, rmat): rmat = matrix.csr_to_scipy(rmat) # compute column norms norms = spla.norm(rmat, 2, axis=0) # and multiply by a diagonal to normalize columns recip_norms = norms.copy() is_nz = recip_norms > 0 recip_norms[is_nz] = np.reciprocal(recip_norms[is_nz]) norm_mat = rmat @ sps.diags(recip_norms) assert norm_mat.shape[1] == rmat.shape[1] # and reset NaN norm_mat.data[np.isnan(norm_mat.data)] = 0 _logger.info('[%s] normalized rating matrix columns', self._timer) return matrix.csr_from_scipy(norm_mat, False) def _compute_similarities(self, rmat): mkl = matrix.mkl_ops() if mkl is None: return self._scipy_similarities(rmat) else: return self._mkl_similarities(mkl, rmat) def _scipy_similarities(self, rmat): nitems = rmat.ncols sp_rmat = matrix.csr_to_scipy(rmat) _logger.info('[%s] multiplying matrix with scipy', self._timer) smat = sp_rmat.T @ sp_rmat smat = smat.tocoo() rows, cols, vals = smat.row, smat.col, smat.data rows = rows[:smat.nnz] cols = cols[:smat.nnz] vals = vals[:smat.nnz] rows, cols, vals = self._filter_similarities(rows, cols, vals) csr = self._select_similarities(nitems, rows, cols, vals) return csr def _mkl_similarities(self, mkl, rmat): nitems = rmat.ncols assert rmat.values is not None _logger.info('[%s] multiplying matrix with MKL', self._timer) smat = mkl.csr_syrk(rmat) rows = matrix.csr_rowinds(smat) cols = smat.colinds vals = smat.values rows, cols, vals = self._filter_similarities(rows, cols, vals) del smat nnz = len(rows) _logger.info('[%s] making matrix symmetric (%d nnz)', self._timer, nnz) rows = np.resize(rows, nnz * 2) cols = np.resize(cols, nnz * 2) vals = np.resize(vals, nnz * 2) rows[nnz:] = cols[:nnz] cols[nnz:] = rows[:nnz] vals[nnz:] = vals[:nnz] csr = self._select_similarities(nitems, rows, cols, vals) return csr def _filter_similarities(self, rows, cols, vals): "Threshold similarites & remove self-similarities." _logger.info('[%s] filtering %d similarities', self._timer, len(rows)) # remove self-similarity mask = rows != cols # remove too-small similarities if self.min_sim is not None: mask = np.logical_and(mask, vals >= self.min_sim) _logger.info('[%s] filter keeps %d of %d entries', self._timer, np.sum(mask), len(rows)) return rows[mask], cols[mask], vals[mask] def _select_similarities(self, nitems, rows, cols, vals): _logger.info('[%s] ordering similarities', self._timer) csr = matrix.csr_from_coo(rows, cols, vals, shape=(nitems, nitems)) csr.sort_values() if self.save_nbrs is None or self.save_nbrs <= 0: return csr _logger.info('[%s] picking %d top similarities', self._timer, self.save_nbrs) counts = csr.row_nnzs() _logger.debug('have %d rows in size range [%d,%d]', len(counts), np.min(counts), np.max(counts)) ncounts =
np.fmin(counts, self.save_nbrs)
numpy.fmin
import megengine as mge import megengine.functional as F import megengine.module as M import numpy as np from megengine.autodiff import GradManager from meg_networks import FullyConnectedLayer batch_size = 2 in_channels = 512 w_dim = 512 lr = 0.1 # activation = 'linear' # activation = 'lrelu' # activation = 'relu' # activation = 'tanh' activation = 'sigmoid' # activation = 'elu' # activation = 'selu' # activation = 'softplus' # activation = 'swish' model = FullyConnectedLayer(w_dim, in_channels, activation=activation, bias_init=1) model.train() optimizer = mge.optimizer.SGD(model.parameters(), lr=lr, momentum=0.9) model.load_state_dict(mge.load("pytorch_fullyConnectedLayer.pkl", map_location="cpu")) dic2 =
np.load('01_fullyConnectedLayer_grad.npz')
numpy.load
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Verify Rate of Change QC test """ import numpy as np from numpy import ma from cotede.qctests import RateOfChange, rate_of_change from ..data import DummyData from .compare import compare_feature_input_types, compare_input_types def test_rate_of_change(): """Basic test on feature rate of change """ x = [1, -1, 2, 2, 3, 2, 4] y = rate_of_change(x) output = [np.nan, -2.0, 3.0, 0.0, 1.0, -1.0, 2.0] assert isinstance(y, np.ndarray) assert np.allclose(y, output, equal_nan=True) def test_feature_input_types(): x = np.array([1, -1, 2, 2, 3, 2, 4]) compare_feature_input_types(rate_of_change, x) def test_standard_dataset(): """Test RateOfChange procedure with a standard dataset """ profile = DummyData() features = { "rate_of_change": [ np.nan, 0.02, 0.0, -0.03, -0.32, -1.53, -1.61, -3.9, -2.56, -4.31, -4.15, 1, -2.22, -2.13, np.nan, ] } flags = {"rate_of_change": [0, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 9]} cfg = {"threshold": 4, "flag_good": 1, "flag_bad": 4} y = RateOfChange(profile, "TEMP", cfg) for f in features: assert np.allclose(y.features[f], features[f], equal_nan=True) for f in flags: assert
np.allclose(y.flags[f], flags[f], equal_nan=True)
numpy.allclose
''' To do: test for endianness by checking for sane values, store in flag Use: data = SU("/path/to/inputFile.su") data.read("/path/to/raw.npy") ''' import numpy as np, sys, os import mmap from .headers import su_header_dtype import pprint def memory(): """ Get node total memory and memory usage """ with open('/proc/meminfo', 'r') as mem: ret = {} tmp = 0 for i in mem: sline = i.split() if str(sline[0]) == 'MemTotal:': ret['total'] = int(sline[1]) elif str(sline[0]) in ('MemFree:', 'Buffers:', 'Cached:'): tmp += int(sline[1]) ret['free'] = tmp ret['used'] = int(ret['total']) - int(ret['free']) return ret class SU(object): ''' reading and writing SU files, including those larger than RAM, to and from .npy files ''' def __init__(self, _file): self.params = {} self.params['byteswap'] = False self._file = self.params['filename'] = _file self.readNS() self.calculateChunks() self.report() def readNS(self): raw = open(self._file, 'rb').read(240) self.ns = ns1 = np.fromstring(raw, dtype=su_header_dtype, count=1)['ns'][0] ns2 =
np.fromstring(raw, dtype=su_header_dtype, count=1)
numpy.fromstring
from T2GEORES import geometry as geometry import numpy as np import re as re import subprocess import datetime import matplotlib.pyplot as plt import matplotlib.patches as mpatches import shutil import os import itertools import json import shapefile import pylab as plb import math import sys from scipy.spatial import ConvexHull from scipy.interpolate import griddata from scipy.spatial.distance import cdist from scipy.spatial import cKDTree import pandas as pd from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator) import pyvista as pv import vtk import sqlite3 import geopandas as gpd import string from lloydRelax import Field class py2amesh: """It creates a mesh based on well positions and irregular blocks The main characteristics are: -It generates the mesh based on defined boundaries -The inner section is called wellfield and can contain elements with hexagonal or square shape -The wellfield can be delimited by a shapefile or by fixed squared boundaries. -It allows to generates elements along a line to represent structures. -The voronoi elements are generated by AMESH. -The elements name cannot contain two consecutive zeros. -The well blocks are the first on the list -It creates the input files to work on Steinar (RockEditor) -It can export a defined layer on a shapefile format -It can plot a selected layer (It is recommended to use the function plot_voronoi() to plot) -Two json file are generated with the correlative block for each well, from which can be track during all the modelling steps. Parameters ---------- filename : str File name with well feedzone location filepath : str Path of input files Xmin : float Minimun X coordinates for the grid Xmax : float Maximun X coordinates for the grid Ymin : float Minimun Y coordinates for the grid Ymax : float Maximun Y coordinates for the grid toler : float AMESH parameter layers : dictionary Name (correlative) and thickness of every layer on the model, keyword on input_dictionary layer_to_plot : int In case it is specified a voronoi plot will be performed x_space : float Horizontal distance between elements for the outerfield y_space : float Vertical distance between elements for the outerfield radius_criteria: float Minimun distance between well location and a regular element x_from_boarder: float Horizontal distance from the first element to the east border y_from_boarder: float Vertical distance from the first element to the south border x_gap_min: float Minimun X coordinates on the grid for the well field x_gap_max: float Maximun X coordinates on the grid for the well field x_gap_space: float Horizontal distance between elements for the farfield y_gap_min: float Minimun Y coordinates on the grid for the well field o y_gap_max: float Maximun X coordinates on the grid for the well field y_gap_space: float Vertical distance between elements for the farfield plot_names: bool If true it plots the name of the blocks from the selected layer to plot plot_centers: bool If true it plots the centers of the blocks from the selected layer to plot z0_level: float Reference level (elevation) for all the grid, keyword on input_dictionary mesh_creation: bool If true the mesh is created plot_layer: bool If true it plots the selected layer to_steinar: bool If true it creates the input files for steinar to_GIS: bool If true it generates a shapefile of the selected layer plot_all_GIS: bool If true it generates a shapefile of all layers from_leapfrog: bool lee archivos leapfrong ../mesh/from_leapfrog/LF_geometry.dat y ../mesh/from_leapfrog/LF_t2.dat, sin embargo se pierde la simbologia usada en leapfrog y no te utiliza la malla regular ni los pozos. Solamente se crea la malla utilizando amesh line_file: str It defines the path and name of a line that can represented a fault or other structure on the mesh, The input file must contain the header: ID,X,Y on csv format. ID referes to the same structure, thus, more than one structure can be defined on a single file. fault_distance: float In case a line_file is define, some paralels elements will be created at a defined distance with_polygon: bool If true a shapefile will be read to define the wellfield. polygon_shape: str The shapefile deines the wellfield boundaries. The shape must not contain any cavity set_inac_from_poly: bool If true all the elements on the outside of the shapefile are defined as inactive set_inac_from_inner:bool If true all the elements on the outerfield are defined as inactive rotate: bool If true it rotates the mesh a defined angle angle: float Angle in degrees inner_mesh_type: string Type of mesh on the inner part of the mesh, it could be 'honeycomb' or 'regular' Returns ------- file eleme: list of blocks from the grid file conne : list of connections on the grid shapefile mesh_{field}_layer_{layer} : shapefile of a defined (or all) layer including rock distribution plot Voronoi plot (in case is specified) Attention --------- A copy of AMESH must be on the path or directory """ def __init__(self,filename,filepath,Xmin,Xmax,Ymin,Ymax,\ toler,layers,layer_to_plot,x_space,y_space,radius_criteria,\ x_from_boarder,y_from_boarder,\ x_gap_min,x_gap_max,x_gap_space,y_gap_min,y_gap_max,y_gap_space,\ plot_names,plot_centers,z0_level,plot_all_GIS,from_leapfrog,line_file,fault_distance,with_polygon,polygon_shape,set_inac_from_poly,set_inac_from_inner,rotate,angle,inner_mesh_type,\ distance_points,fault_rows,relaxation_times,points_around_well,distance_points_around_well): self.filename=filename self.filepath=filepath self.layers=layers self.number_of_layer=len(layers) self.Xmin=Xmin self.Xmax=Xmax self.Ymin=Ymin self.Ymax=Ymax self.z0_level=z0_level self.layer_to_plot=layer_to_plot self.radius_criteria=radius_criteria self.x_space=x_space self.y_space=y_space self.x_from_boarder=x_from_boarder self.y_from_boarder=y_from_boarder self.z=0 self.delf_rock="101" #Layer index self.filename_out="in" self.toler=toler self.x_gap_min=x_gap_min self.x_gap_max=x_gap_max self.x_gap_space=x_gap_space self.y_gap_min=y_gap_min self.y_gap_max=y_gap_max self.y_gap_space=y_gap_space self.plot_names=plot_names self.plot_centers=plot_centers self.plot_all_GIS=plot_all_GIS self.from_leapfrog=from_leapfrog self.line_file=line_file self.fault_distance=fault_distance self.with_polygon=with_polygon self.set_inac_from_poly=set_inac_from_poly self.set_inac_from_inner=set_inac_from_inner self.rotate=rotate self.angle=angle self.inner_mesh_type=inner_mesh_type self.polygon_shape=polygon_shape self.distance_points=distance_points self.fault_rows=fault_rows self.relaxation_times=relaxation_times self.points_around_well=points_around_well self.distance_points_around_well=distance_points_around_well if self.with_polygon: shape = shapefile.Reader(polygon_shape) #first feature of the shapefile feature = shape.shapeRecords()[0] points = feature.shape.__geo_interface__ self.polygon=[] for n in points: for v in points[n]: if n=='coordinates': self.polygon.append([v[0],v[1]]) # (GeoJSON format) #Read border to clip write into in files borders=gpd.read_file('../../GIS/reservoir/reservoir_limits_1_pol.shp') border_points=[] for line in borders.iterrows(): pointList = line[1].geometry.exterior.coords.xy for point in zip(pointList[0],pointList[1]): border_points.append([point[0],point[1]]) self.polygon_external=border_points[::-1][0:-1] self.color_dict = {1:[['AA','AB','AC','AD','AE','AF','AG'],'ROCK1','red'],\ 2:[['BA','BB','BC','BD','BE','BF','BG'],'ROCK2','white'],\ 3:[['CA','CB','CC','CD','CE','CF','CG'],'ROCK3','yellow'],\ 4:[['DA','DB','DC','DD','DE','DF','DG'],'ROCK4','blue'],\ 5:[['EA','EB','EC','ED','EE','EF','EG'],'ROCK5','green'],\ 6:[['FA','FB','FC','FD','FE','FF','FG'],'ROCK6','purple'],\ 7:[['GA','GB','GC','GD','GE','GF','GG'],'ROCK7','#ff69b4'],\ 8:[['HA','HB','HC','HD','HE','HF','HG'],'ROCK8','darkorange'],\ 9:[['IA','IB','IC','ID','IE','IF','IG'],'ROCK9','cyan'],\ 10:[['JA','JB','JC','JD','JE','JF','JG'],'ROK10','magenta'],\ 11:[['KA','KB','KC','KD','KE','KF','KG'],'ROK11','#faebd7'],\ 12:[['LA','LB','LC','LD','LE','LF','LG'],'ROK12','#2e8b57'],\ 13:[['MA','MB','MC','MD','ME','MF','MG'],'ROK13','#eeefff'],\ 14:[['NA','NB','NC','ND','NE','NF','NG'],'ROK14','#da70d6'],\ 15:[['OA','OB','OC','OD','OE','OF','OG'],'ROK15','#ff7f50'],\ 16:[['PA','PB','PC','PD','PE','PF','PG'],'ROK16','#cd853f'],\ 17:[['QA','QB','QC','QD','QE','QF','QG'],'ROK17','#bc8f8f'],\ 18:[['RA','RB','RC','RD','RE','RF','RG'],'ROK18','#5f9ea0'],\ 19:[['SA','SB','SC','SD','SE','SF','SG'],'ROK19','#daa520'], 20:[['TA','TB','SC','SD','SE','SF','SG'],'ROK20','#daa520'], 21:[['UA','UB','UC','UD','UE','UF','UG'],'ROK21','#daa520'], 22:[['VA','VB','SC','VD','VE','VF','VG'],'ROK22','#daa520'], 23:[['WA','WB','SC','WD','WE','WF','WG'],'ROK23','#daa520'], 24:[['XA','XB','SC','XD','XE','XF','XG'],'ROK19','#daa520'], 25:[['YA','YB','SC','YD','YE','YF','YG'],'ROK19','#daa520'], 26:[['ZA','ZB','SC','ZD','ZE','ZF','ZG'],'ROK19','#daa520']} self.rock_dict={} prof_cont=0 for jk in range(1,len(layers)+1): if jk==1: prof_cont=layers[jk-1]*0.5 z_real=z0_level-prof_cont elif jk>1: prof_cont=prof_cont+layers[jk-1]*0.5+layers[jk-2]*0.5 z_real=z0_level-prof_cont self.rock_dict[jk]=[self.color_dict[jk][0][0],self.color_dict[jk][1],\ self.color_dict[jk][2],self.color_dict[jk][0][0],z_real,self.layers[jk-1]] def regular_mesh(self): """Genera malla regular en en toda la extension de la region definida por Xmin,Xmax,Ymin y Ymax """ x_regular=range(self.Xmin+self.x_from_boarder,self.Xmax+self.x_space-self.x_from_boarder,self.x_space) y_regular=range(self.Ymin+self.y_from_boarder,self.Ymax+self.y_space-self.y_from_boarder,self.y_space) x_regular_small=range(self.x_gap_min,self.x_gap_max+self.x_gap_space,self.x_gap_space) y_regular_small=range(self.y_gap_min,self.y_gap_max+self.y_gap_space,self.y_gap_space) self.mesh_array=[] for nx in x_regular: for ny in y_regular: if ((nx<self.x_gap_min) or (nx>self.x_gap_max)) or ((ny<self.y_gap_min) or (ny>self.y_gap_max)): self.mesh_array.append([nx,ny]) #Small polygon area must be here for nxx in x_regular_small: cnt=0 for nyy in y_regular_small: if [nxx,nyy] not in self.mesh_array: if self.inner_mesh_type=='honeycomb': if cnt%2==0: self.mesh_array.append([nxx,nyy]) else: self.mesh_array.append([nxx+self.x_gap_space/2,nyy]) elif self.inner_mesh_type=='regular': self.mesh_array.append([nxx,nyy]) cnt+=1 if self.rotate: angle=self.angle for pair in range(len(self.mesh_array)): x1=self.mesh_array[pair][0]-self.Xmin y1=self.mesh_array[pair][1]-self.Ymin self.mesh_array[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.Xmin self.mesh_array[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.Ymin return np.array(self.mesh_array) def check_in_out(self,position,point,source): """Verifica si un punto de la malla del campo cercano esta dentro o fuera del poligo definido por el shapefile de entrada o del campo cercano """ if position=='internal': polygon=self.polygon elif position=='external': polygon=self.polygon_external boolean=False if source=='shapefile': cnt=0 for n in range(len(polygon)): if n+1!=len(polygon): m,b=plb.polyfit([polygon[n][0],polygon[n+1][0]],[polygon[n][1],polygon[n+1][1]],1) val_range=[polygon[n][1],polygon[n+1][1]] elif n+1==len(polygon): m,b=plb.polyfit([polygon[-1][0],polygon[0][0]],[polygon[-1][1],polygon[0][1]],1) val_range=[polygon[-1][1],polygon[0][1]] x=(point[1]-b)/m if point[0]<x and min(val_range)<point[1] and point[1]<max(val_range): cnt+=1 if cnt==1: boolean=True elif source=='inner': Xarray_inner=np.array([self.x_gap_min,self.x_gap_max+self.x_gap_space]) Yarray_inner=np.array([self.y_gap_min,self.y_gap_max+self.y_gap_space]) if Xarray_inner[0]<point[0] and Xarray_inner[1]>point[0] and Yarray_inner[0]<point[1] and Yarray_inner[1]>point[1]: boolean=True return boolean def reg_pol_mesh(self): """Crea malla regular cuando existe un poligono de entrada """ #x_regular=np.arange(self.Xmin+self.x_from_boarder,self.Xmax+self.x_space-self.x_from_boarder,self.x_space) #y_regular=np.arange(self.Ymin+self.y_from_boarder,self.Ymax+self.y_space-self.y_from_boarder,self.y_space) nx=40 #number of elements in one direction n_times=4 ny=int((self.Ymax+2*n_times*self.x_from_boarder-self.Ymin)*nx/(self.Xmax-self.Xmin+n_times*2*self.x_from_boarder)) x_regular=np.linspace(self.Xmin-n_times*self.x_from_boarder,self.Xmax+n_times*self.x_from_boarder,nx,endpoint=True) #generation of regular grid on X y_regular=np.linspace(self.Ymin-n_times*self.y_from_boarder,self.Ymax+n_times*self.x_from_boarder,ny,endpoint=True) #generation of regular grid on Y self.mesh_array=[] for nx in x_regular: for ny in y_regular: self.mesh_array.append([nx,ny]) if self.rotate: angle=self.angle for pair in range(len(self.mesh_array)): x1=self.mesh_array[pair][0]-(self.Xmin-n_times*self.x_from_boarder) y1=self.mesh_array[pair][1]-(self.Ymin-n_times*self.x_from_boarder) self.mesh_array[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.Xmin-n_times*self.x_from_boarder self.mesh_array[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.Ymin-n_times*self.x_from_boarder x_pol=[] y_pol=[] for n in range(len(self.polygon)): x_pol.append(int(self.polygon[n][0])) y_pol.append(int(self.polygon[n][1])) x_pol.append(int(self.polygon[0][0])) y_pol.append(int(self.polygon[0][1])) x_gap_min=self.x_gap_min#min(x_pol) x_gap_max=self.x_gap_max#max(x_pol) y_gap_min=self.y_gap_min#min(y_pol) y_gap_max=self.y_gap_max#max(y_pol) small_mesh=[] #x_regular_small=np.arange(x_gap_min,x_gap_max+self.x_gap_space,self.x_gap_space) #y_regular_small=np.arange(y_gap_min,y_gap_max+self.y_gap_space,self.y_gap_space) x_regular_small=np.arange(x_gap_min,x_gap_max,self.x_gap_space) y_regular_small=np.arange(y_gap_min,y_gap_max,self.y_gap_space) for nxx in x_regular_small: cnt=0 for nyy in y_regular_small: if [nxx,nyy] not in small_mesh: if self.inner_mesh_type=='honeycomb': if cnt%2==0: small_mesh.append([nxx,nyy]) else: small_mesh.append([nxx+self.x_gap_space/2,nyy]) elif self.inner_mesh_type=='regular': small_mesh.append([nxx,nyy]) cnt+=1 if self.rotate: angle=self.angle for pair in range(len(small_mesh)): x1=small_mesh[pair][0]-self.x_gap_min y1=small_mesh[pair][1]-self.y_gap_min small_mesh[pair][0]=x1*math.cos(math.pi*angle/180)-y1*math.sin(math.pi*angle/180)+self.x_gap_min small_mesh[pair][1]=x1*math.sin(math.pi*angle/180)+y1*math.cos(math.pi*angle/180)+self.y_gap_min to_delete=[] for v in range(len(self.mesh_array)): point=[self.mesh_array[v][0],self.mesh_array[v][1]] check=self.check_in_out('internal',point,source='shapefile') if check: to_delete.append(v) self.mesh_array=np.delete(self.mesh_array, to_delete, 0) to_delete=[] for v in range(len(small_mesh)): point=[small_mesh[v][0],small_mesh[v][1]] check=self.check_in_out('internal',point,source='shapefile') if not check: to_delete.append(v) small_mesh=np.delete(small_mesh, to_delete, 0) mesh_pol=[] for vk in range(len(self.mesh_array)): mesh_pol.append([self.mesh_array[vk][0],self.mesh_array[vk][1]]) for vk in range(len(small_mesh)): mesh_pol.append([small_mesh[vk][0],small_mesh[vk][1]]) return np.array(mesh_pol) def radius_select(self,x0,y0,xr,yr,type_i='mesh'): """Verifica si dos puntos estan mas cerca que el criterio seleccionado """ r=((x0-xr)**2+(y0-yr)**2)**0.5 if type_i=='mesh': cx=self.radius_criteria elif type_i=='well': cx=10*0.4*2**0.5 elif type_i=='fault': cx=15 if r<cx: boolean=1 else: boolean=0 return boolean def from_leapfrog_mesh(self): """Extrae puntos mas extremos y la posicion de los elementos de un set de datos provinientes de leapfrog, sin embargo no considera los elementos asociados a la roca ATM 0 """ geometry_file="../mesh/from_leapfrog/LF_geometry.dat" leapfrog_t2_file="../mesh/from_leapfrog/LF_t2.dat" #Creates a dictionary using the layers printlayer=False layer_min=[] layers={} with open(geometry_file,'r') as f: for line in f.readlines(): if line.rstrip()=='LAYERS': printlayer=True continue elif line.rstrip()=='SURFA' or line.rstrip()=='': printlayer=False if printlayer: layer=line.rstrip()[0:2] if layer==' 0': layer_min.append(line.rstrip()[2:13]) layer_middle=line.rstrip()[13:23] layer_max=line.rstrip()[13:23] continue else: layer_max=layer_min[-1] layer_min.append(line.rstrip()[2:13]) layer_middle=line.rstrip()[13:23] layers[int(layer)]=[float(layer_max),float(layer_middle),float(layer_min[-1])] max_layer=max(layers.keys()) xc=[] yc=[] self.LP_mesh=[] printeleme=False #Takes the elements at the selected leyer with open(leapfrog_t2_file,'r') as f: for line in f.readlines(): if line.rstrip()=='ELEME': printeleme=True continue elif line.rstrip()=='CONNE' or line.rstrip()=='': printeleme=False if printeleme and line.rstrip()[0:5]!="ATM 0" and int(line.rstrip()[3:5])==max_layer: xc=float(line.rstrip()[51:60]) yc=float(line.rstrip()[60:70]) self.LP_mesh.append([xc,yc]) #Creates a dictionary of the VERTICES printvertices=False self.x_min=1E20 self.x_max=0 self.y_min=1E20 self.y_max=0 with open(geometry_file,'r') as f: for line in f.readlines(): #It will read between the keywords GRID and CONNECTIONS if line.rstrip()=='VERTICES': printvertices=True continue elif line.rstrip()=='GRID' or line.rstrip()=="": printvertices=False if printvertices: vertice_x=float(line.rstrip()[4:13]) vertice_y=float(line.rstrip()[13:23]) if vertice_x>self.x_max: self.x_max=vertice_x if vertice_y>self.y_max: self.y_max=vertice_y if vertice_x<self.x_min: self.x_min=vertice_x if vertice_y<self.y_min: self.y_min=vertice_y return self.x_max,self.x_min, self.y_min,self.y_max, self.LP_mesh def data(self): """Define los puntos que ingresaran al archivo de entrada para amesh. Adicionalmente, en caso de definir un linea en el archivo de entrada <i><lines_data/i> se procedera a ingresar estos puntos y crear puntos paralelos en ambos extremos de la linea """ self.raw_data=np.genfromtxt(self.filepath+self.filename,dtype={'names':('ID','MD','X','Y','Z','TYPE'),'formats':('<U7','f4','f4','f4','f4','<U10')},delimiter=',',skip_header=True) self.IDXY={} if not self.from_leapfrog: if self.with_polygon: regular_mesh=self.reg_pol_mesh() else: regular_mesh=self.regular_mesh() else: x,x1,y1,y2,regular_mesh=self.from_leapfrog_mesh() for n in range(len(self.raw_data['ID'])): #Store the data from wells self.IDXY["%s"%(str(self.raw_data['ID'][n]))]=[self.raw_data['X'][n],self.raw_data['Y'][n],self.raw_data['TYPE'][n]] #self.IDXY["%s"%(str(self.raw_data['ID'][n])).split("'")[1]]=[self.raw_data['X'][n],self.raw_data['Y'][n],self.raw_data['TYPE'][n]] to_delete=[] x0=self.raw_data['X'][n] y0=self.raw_data['Y'][n] #Delete the regular points close to the wells for ngrid in range(len(regular_mesh)): if abs(x0-regular_mesh[ngrid][0])<self.radius_criteria or abs(y0-regular_mesh[ngrid][1])<self.radius_criteria: boolean=self.radius_select(x0,y0,regular_mesh[ngrid][0],regular_mesh[ngrid][1]) if boolean==1: to_delete.append(ngrid) regular_mesh=
np.delete(regular_mesh, to_delete, 0)
numpy.delete
""" I/O for VTU. <https://vtk.org/Wiki/VTK_XML_Formats> <https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf> """ import base64 import re import sys import zlib import numpy as np from ..__about__ import __version__ from .._common import info, join_strings, raw_from_cell_data, replace_space, warn from .._exceptions import CorruptionError, ReadError from .._helpers import register_format from .._mesh import CellBlock, Mesh from .._vtk_common import meshio_to_vtk_order, meshio_to_vtk_type, vtk_cells_from_data # Paraview 5.8.1's built-in Python doesn't have lzma. try: import lzma except ModuleNotFoundError: lzma = None def num_bytes_to_num_base64_chars(num_bytes): # Rounding up in integer division works by double negation since Python # always rounds down. return -(-num_bytes // 3) * 4 def _polyhedron_cells_from_data(offsets, faces, faceoffsets, cell_data_raw): # In general the number of faces will vary between cells, and the # number of nodes vary between faces for each cell. The information # will be stored as a List (one item per cell) of lists (one item # per face of the cell) of np-arrays of node indices. cells = {} cell_data = {} # The data format for face-cells is: # num_faces_cell_0, # num_nodes_face_0, node_ind_0, node_ind_1, .. # num_nodes_face_1, node_ind_0, node_ind_1, .. # ... # num_faces_cell_1, # ... # See https://vtk.org/Wiki/VTK/Polyhedron_Support for more. # The faceoffsets describes the end of the face description for each # cell. Switch faceoffsets to give start points, not end points faceoffsets = np.append([0], faceoffsets[:-1]) # Double loop over cells then faces. # This will be slow, but seems necessary to cover all cases for cell_start in faceoffsets: num_faces_this_cell = faces[cell_start] faces_this_cell = [] next_face = cell_start + 1 for _ in range(num_faces_this_cell): num_nodes_this_face = faces[next_face] faces_this_cell.append( np.array( faces[next_face + 1 : (next_face + num_nodes_this_face + 1)], dtype=int, ) ) # Increase by number of nodes just read, plus the item giving # number of nodes per face next_face += num_nodes_this_face + 1 # Done with this cell # Find number of nodes for this cell num_nodes_this_cell = np.unique(
np.hstack([v for v in faces_this_cell])
numpy.hstack
import numpy as np import pytest from ..interpolate import ( interpolate_image_and_noise, copy_masked_edges_image_and_noise, interpolate_image_at_mask, ) def test_interpolate_image_at_mask(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) bmask = np.zeros_like(image, dtype=bool) bmask[30:35, 40:45] = True # put nans here to make sure interp is done ok image[bmask] = np.nan iimage = interpolate_image_at_mask( image=image, bad_msk=bmask, ) assert np.allclose(iimage, 10 + x*5) def test_interpolate_image_at_mask_allbad(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) bmask = np.zeros_like(image, dtype=bool) bmask[:, :] = True iimage = interpolate_image_at_mask( image=image, bad_msk=bmask, ) assert iimage is None def test_interpolate_image_and_noise_weight(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 0 weight[30:35, 40:45] = 0.0 # put nans here to make sure interp is done ok msk = weight <= 0 image[msk] = np.nan rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] iimage, inoises = interpolate_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=noises) assert np.allclose(iimage, 10 + x*5) # make sure noise field was inteprolated rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] for noise, inoise in zip(noises, inoises): assert not np.allclose(noise[msk], inoise[msk]) assert np.allclose(noise[~msk], inoise[~msk]) def test_interpolate_image_and_noise_weight_fill(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 0 weight[30:50, 40:60] = 0.0 # put nans here to make sure interp is done ok msk = weight <= 0 image[msk] = np.nan rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] rng = np.random.RandomState(seed=42) iimage, inoises = interpolate_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=noises, rng=rng, fill_isolated_with_noise=True, ) assert not np.allclose(iimage, 10 + x*5) assert np.allclose(np.mean(iimage[35:45, 45:55]), 0, rtol=0, atol=0.2) # make sure noise field was inteprolated rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] for noise, inoise in zip(noises, inoises): assert not np.allclose(noise[msk], inoise[msk]) assert np.allclose(noise[~msk], inoise[~msk]) def test_interpolate_image_and_noise_bmask(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 1 rng = np.random.RandomState(seed=42) bmask[30:35, 40:45] = 1 bmask[:, 0] = 2 bmask[:, -1] = 4 # put nans here to make sure interp is done ok msk = (bmask & bad_flags) != 0 image[msk] = np.nan rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] iimage, inoises = interpolate_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=noises) assert np.allclose(iimage, 10 + x*5) # make sure noise field was inteprolated rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] for noise, inoise in zip(noises, inoises): assert not np.allclose(noise[msk], inoise[msk]) assert np.allclose(noise[~msk], inoise[~msk]) def test_interpolate_image_and_noise_big_missing(): y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 1 rng = np.random.RandomState(seed=42) nse = rng.normal(size=image.shape) bmask[15:80, 15:80] = 1 # put nans here to make sure interp is done ok msk = (bmask & bad_flags) != 0 image[msk] = np.nan iimage, inoises = interpolate_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=[nse]) # interp will be waaay off but shpuld have happened assert np.all(np.isfinite(iimage)) # make sure noise field was inteprolated rng = np.random.RandomState(seed=42) noise = rng.normal(size=image.shape) assert not np.allclose(noise[msk], inoises[0][msk]) assert np.allclose(noise[~msk], inoises[0][~msk]) def test_interpolate_image_and_noise_allbad(): # linear image interp should be perfect for regions smaller than the # patches used for interpolation y, x = np.mgrid[0:100, 0:100] image = (10 + x*5).astype(np.float32) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 1 rng = np.random.RandomState(seed=42) bmask[:, :] = 1 # put nans here to make sure interp is done ok msk = (bmask & bad_flags) != 0 image[msk] = np.nan rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] iimage, inoises = interpolate_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=noises) assert iimage is None assert inoises is None def test_interpolate_gauss_image(show=False): """ test that our interpolation works decently for a linear piece missing from a gaussian image """ rng = np.random.RandomState(seed=31415) noise = 0.001 sigma = 4.0 is2 = 1.0/sigma**2 dims = 51, 51 cen = (np.array(dims)-1.0)/2.0 rows, cols = np.mgrid[ 0:dims[0], 0:dims[1], ] rows = rows - cen[0] cols = cols - cen[1] image_unmasked = np.exp(-0.5*(rows**2 + cols**2)*is2) weight = image_unmasked*0 + 1.0/noise**2 noise_image = rng.normal(scale=noise, size=image_unmasked.shape) badcol = int(cen[1]-3) bw = 3 rr = badcol-bw, badcol+bw+1 weight[rr[0]:rr[1], badcol] = 0.0 image_masked = image_unmasked.copy() image_masked[rr[0]:rr[1], badcol] = 0.0 bmask = np.zeros_like(image_unmasked, dtype=np.int32) bad_flags = 0 iimage, inoises = interpolate_image_and_noise( image=image_masked, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=[noise_image], ) maxdiff = np.abs(image_unmasked-iimage).max() if show: import images images.view_mosaic([image_masked, weight]) images.compare_images( image_unmasked, iimage, width=2000, height=int(2000*2/3), ) print('max diff:', maxdiff) assert maxdiff < 0.0025 @pytest.mark.parametrize("kind", ["x", "y"]) @pytest.mark.parametrize("i,ii", [(0, 1), (-1, -2)]) def test_copy_masked_edges_image_and_noise_weight(i, ii, kind): rng = np.random.RandomState(seed=56) image = rng.uniform(size=(100, 100)) weight = np.ones_like(image) bmask = np.zeros_like(image, dtype=np.int32) bad_flags = 0 if kind == "x": weight[:, i] = 0 else: weight[i, :] = 0 # put nans here to make sure interp is done ok msk = weight <= 0 image[msk] = np.nan rng = np.random.RandomState(seed=42) noises = [ rng.normal(size=image.shape), rng.normal(size=image.shape), rng.normal(size=image.shape), ] iimage, inoises, ibmask, iweight = copy_masked_edges_image_and_noise( image=image, weight=weight, bmask=bmask, bad_flags=bad_flags, noises=noises) if kind == "x": assert np.allclose(iimage[:, i], image[:, ii]) assert np.allclose(ibmask[:, i], bmask[:, ii]) assert np.allclose(iweight[:, i], weight[:, ii]) for noise, inoise in zip(noises, inoises): assert np.allclose(inoise[:, i], noise[:, ii]) else: assert np.allclose(iimage[i, :], image[ii, :]) assert np.allclose(ibmask[i, :], bmask[ii, :]) assert np.allclose(iweight[i, :], weight[ii, :]) for noise, inoise in zip(noises, inoises): assert np.allclose(inoise[i, :], noise[ii, :]) @pytest.mark.parametrize("kind", ["x", "y"]) @pytest.mark.parametrize("i,ii", [(0, 1), (-1, -2)]) def test_copy_masked_edges_image_and_noise_bmask(i, ii, kind): rng =
np.random.RandomState(seed=56)
numpy.random.RandomState
import unittest import sys import numpy as np import os import warnings from pyiron.atomistics.structure.atom import Atom from pyiron.atomistics.structure.atoms import Atoms, CrystalStructure from pyiron.atomistics.structure.sparse_list import SparseList from pyiron.atomistics.structure.periodic_table import PeriodicTable, ChemicalElement from pyiron.base.generic.hdfio import FileHDFio class TestAtoms(unittest.TestCase): @classmethod def tearDownClass(cls): if sys.version_info[0] >= 3: file_location = os.path.dirname(os.path.abspath(__file__)) if os.path.isfile(os.path.join(file_location, "../../static/atomistics/test_hdf")): os.remove(os.path.join(file_location, "../../static/atomistics/test_hdf")) @classmethod def setUpClass(cls): C = Atom('C').element cls.C3 = Atoms([C, C, C], positions=[[0, 0, 0], [0, 0, 2], [0, 2, 0]]) cls.C2 = Atoms(2 * [Atom('C')]) def setUp(self): # These atoms are reset before every test. self.CO2 = Atoms("CO2", positions=[[0, 0, 0], [0, 0, 1.5], [0, 1.5, 0]]) def test__init__(self): pos, cell = generate_fcc_lattice() pse = PeriodicTable() el = pse.element("Al") basis = Atoms() self.assertIsInstance(basis, Atoms) self.assertIsInstance(basis.info, dict) self.assertIsInstance(basis.arrays, dict) self.assertIsInstance(basis.adsorbate_info, dict) self.assertIsInstance(basis.units, dict) self.assertIsInstance(basis.pbc, (bool, list, np.ndarray)) self.assertIsInstance(basis.indices, np.ndarray) self.assertIsNone(basis.positions) self.assertIsInstance(basis.species, list) self.assertIsInstance(basis.elements, np.ndarray) self.assertIsNone(basis.cell) basis = Atoms(symbols='Al', positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) self.assertEqual(basis.get_spacegroup()["Number"], 225) basis = Atoms(elements='Al', positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) basis = Atoms(elements=['Al'], positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) self.assertRaises(ValueError, Atoms, symbols="Pt", elements='Al', positions=pos, cell=cell) basis = Atoms(numbers=[13], positions=pos, cell=cell) self.assertEqual(basis.get_majority_species()['symbol'], "Al") basis = Atoms(species=[el], indices=[0], positions=pos, cell=cell) self.assertEqual(basis.get_majority_species()['symbol'], "Al") self.assertIsInstance(basis, Atoms) self.assertIsInstance(basis.info, dict) self.assertIsInstance(basis.arrays, dict) self.assertIsInstance(basis.adsorbate_info, dict) self.assertIsInstance(basis.units, dict) self.assertIsInstance(basis.pbc, (bool, list, np.ndarray)) self.assertIsInstance(basis.indices, np.ndarray) self.assertIsInstance(basis.species, list) self.assertIsInstance(basis.cell, np.ndarray) self.assertIsInstance(basis.positions, np.ndarray) self.assertIsInstance(basis.get_scaled_positions(), np.ndarray) self.assertIsInstance(basis.elements, np.ndarray) def test_set_species(self): pos, cell = generate_fcc_lattice() pse = PeriodicTable() el = pse.element("Pt") basis = Atoms(symbols='Al', positions=pos, cell=cell) self.assertEqual(basis.get_chemical_formula(), "Al") basis.set_species([el]) self.assertEqual(basis.get_chemical_formula(), "Pt") self.assertTrue("Al" not in [sp.Abbreviation] for sp in basis._species_to_index_dict.keys()) self.assertTrue("Pt" in [sp.Abbreviation] for sp in basis._species_to_index_dict.keys()) def test_new_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis)) basis.new_array(name="spins", a=spins) self.assertTrue(np.array_equal(basis.arrays['spins'], spins)) def test_set_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis), dtype=float) basis.set_array(name="spins", a=2*spins, dtype=int) self.assertTrue(np.array_equal(basis.arrays['spins'], 2 * spins)) def test_get_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis), dtype=float) basis.set_array(name="spins", a=2*spins, dtype=int) self.assertTrue(np.array_equal(basis.arrays['spins'], 2 * spins)) self.assertTrue(np.array_equal(basis.get_array(name="spins"), 2 * spins)) def test_add_tags(self): self.CO2.add_tag(test_tag="a") self.assertIsInstance(self.CO2.test_tag, SparseList) self.assertEqual(self.CO2.test_tag[0], "a") self.assertEqual(self.CO2.test_tag[0], self.CO2.test_tag[2]) self.assertIsInstance(self.CO2.test_tag.list(), list) self.CO2.add_tag(selective_dynamics=[True, True, True]) self.CO2.selective_dynamics[1] = [True, False, True] self.assertEqual(self.CO2.selective_dynamics[1], [True, False, True]) self.assertIsInstance(self.CO2.selective_dynamics.list(), list) def test_get_tags(self): self.CO2.add_tag(test_tag="a") self.assertIsInstance(self.CO2.test_tag, SparseList) self.assertIsInstance(self.CO2.get_tags(), type(dict().keys())) def test_get_pbc(self): self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) self.assertEqual(len(self.CO2.get_pbc()), 3) def test_set_pbc(self): self.CO2.set_pbc(value=[True, True, False]) self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) self.assertTrue(np.array_equal([True, True, False], self.CO2.get_pbc())) self.CO2.set_pbc(value=False) self.assertTrue(np.array_equal([False, False, False], self.CO2.get_pbc())) self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) def test_chemical_element(self): conv = self.CO2.convert_element('C') self.assertIsInstance(conv, ChemicalElement) self.assertIsInstance(self.CO2.convert_element(conv), ChemicalElement) self.assertIsInstance(self.CO2.convert_element(self.CO2[0]), ChemicalElement) with self.assertRaises(AssertionError): self.assertIsInstance(self.CO2.convert_element(self.CO2), ChemicalElement) self.assertEqual(len(self.CO2.species), 2) def test_copy(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis_copy = basis.copy() self.assertEqual(basis, basis_copy) basis_copy[:] = "Pt" self.assertNotEqual(basis, basis_copy) def test_numbers_to_elements(self): num_list = [1, 12, 13, 6] self.assertTrue(np.array_equal([el.Abbreviation for el in self.CO2.numbers_to_elements(num_list)], ['H', 'Mg', 'Al', 'C'])) def test_scaled_pos_xyz(self): basis = Atoms(symbols='AlAl', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) pos_xyz = basis.pos_xyz() self.assertAlmostEqual(np.linalg.norm(pos_xyz[0]-np.array([0, 1])), 0) scaled_pos_xyz = basis.scaled_pos_xyz() self.assertAlmostEqual(np.linalg.norm(pos_xyz[0]-basis.cell[0,0]*scaled_pos_xyz[0]), 0) def test_to_hdf(self): if sys.version_info[0] >= 3: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../static/atomistics/test_hdf") abs_filename = os.path.abspath(filename) hdf_obj = FileHDFio(abs_filename) pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([2, 2, 2]) basis.to_hdf(hdf_obj, "test_structure") self.assertTrue(np.array_equal(hdf_obj["test_structure/positions"], basis.positions)) basis_new = Atoms().from_hdf(hdf_obj, "test_structure") self.assertEqual(basis, basis_new) def test_from_hdf(self): if sys.version_info[0] >= 3: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../static/atomistics/test_hdf") abs_filename = os.path.abspath(filename) hdf_obj = FileHDFio(abs_filename) pos, cell = generate_fcc_lattice() basis_store = Atoms(symbols='Al', positions=pos, cell=cell) basis_store.set_repeat([2, 2, 2]) basis_store.to_hdf(hdf_obj, "simple_structure") basis = Atoms().from_hdf(hdf_obj, group_name="simple_structure") self.assertEqual(len(basis), 8) self.assertEqual(basis.get_majority_species()['symbol'], "Al") self.assertEqual(basis.get_spacegroup()['Number'], 225) def test_create_Fe_bcc(self): self.pse = PeriodicTable() self.pse.add_element("Fe", "Fe_up", spin="up", pseudo_name='GGA') self.pse.add_element("Fe", "Fe_down", spin="down", pseudo_name='GGA') Fe_up = self.pse.element("Fe_up") Fe_down = self.pse.element("Fe_down") self.Fe_bcc = Atoms([Fe_up, Fe_down], scaled_positions=[[0, 0, 0], [0.25, 0.25, 0.25]], cell=np.identity(3)) self.Fe_bcc.add_tag("group") self.Fe_bcc.group[:] = 0 def test_convert_formula(self): self.assertEqual(self.CO2.convert_formula('C'), ['C']) self.assertEqual(self.CO2.convert_formula('C3'), ['C', 'C', 'C']) self.assertEqual(self.CO2.convert_formula('CO2'), ['C', 'O', 'O']) self.assertEqual(self.CO2.convert_formula('CO2Fe'), ['C', 'O', 'O', 'Fe']) self.assertEqual(self.CO2.convert_formula('CO2FeF21'), ['C', 'O', 'O', 'Fe', 'F', 'F']) def test__getitem__(self): self.assertEqual(self.CO2[0].symbol, 'C') self.assertEqual(self.C3[2].position.tolist(), [0, 2, 0]) self.assertTrue((self.C3[1:].positions == np.array([[0, 0, 2], [0, 2, 0]])).all()) short_basis = self.CO2[0] self.assertIsInstance(short_basis, Atom) short_basis = self.CO2[[0]] self.assertIsInstance(short_basis, Atoms) self.assertEqual(short_basis.indices[0], 0) self.assertEqual(len(short_basis.species), 1) short_basis = self.CO2[[2]] self.assertIsInstance(short_basis, Atoms) self.assertEqual(short_basis.indices[0], 0) self.assertEqual(len(short_basis.species), 1) basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.positions += [0., 0., 0.5] basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() basis.set_repeat([3, 3, 3]) mg_indices = basis.select_index("Mg") o_indices = basis.select_index("O") basis_new = basis[mg_indices] + basis[o_indices] self.assertEqual(len(basis_new._tag_list), len(basis[mg_indices]) + len(basis[o_indices])) self.assertEqual(basis_new.get_spacegroup()["Number"], 225) def test_positions(self): self.assertEqual(self.CO2[1:].positions[1:].tolist(), [[0.0, 1.5, 0.0]]) self.CO2.positions[1][0] = 5. self.assertEqual(self.CO2.positions[1].tolist(), [5.0, 0, 1.5]) def test_set_positions(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_positions(np.array([[2.5, 2.5, 2.5]])) self.assertTrue(np.array_equal(basis.positions, [[2.5, 2.5, 2.5]])) def test_set_scaled_positions(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell, a=4.2) basis.set_scaled_positions(np.array([[0.5, 0.5, 0.5]])) self.assertTrue(np.array_equal(basis.get_scaled_positions(), [[0.5, 0.5, 0.5]])) self.assertTrue(np.array_equal(basis.positions, np.dot([[0.5, 0.5, 0.5]], basis.cell))) with warnings.catch_warnings(record=True): basis.scaled_positions = np.array([[0.5, 0.5, 0.5]]) self.assertTrue(np.array_equal(basis.scaled_positions, [[0.5, 0.5, 0.5]])) def test_cell(self): CO = Atoms("CO", positions=[[0, 0, 0], [0, 0, 2]], cell=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], pbc=[True, True, True]) self.assertTrue((CO.get_cell() == np.identity(3)).all()) self.assertTrue((CO.cell == np.identity(3)).all()) CO.cell[2][2] = 10. self.assertTrue(CO.cell[2, 2] == 10.) self.assertAlmostEqual(CO.get_volume(), 10) self.assertAlmostEqual(CO.get_volume(per_atom=True), 0.5*10) with self.assertRaises(ValueError): CO.cell = -np.eye(3) with self.assertRaises(ValueError): CO.cell = [2,1] def test_add(self): COX = self.C2 + Atom("O", position=[0, 0, -2]) COX += Atom("O", position=[0, 0, -4]) COX += COX n_objects = len(set(COX.get_species_objects())) n_species = len(set(COX.get_chemical_elements())) self.assertEqual(n_objects, n_species) def test_pbc(self): CO = Atoms("CO", positions=[[0, 0, 0], [0, 0, 2]], cell=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], pbc=[True, True, True]) self.assertTrue((CO.pbc == np.array([True, True, True])).all()) CO.set_pbc((True, True, False)) def test_get_masses_DOF(self): self.assertEqual(len(self.CO2.get_masses_dof()), len(self.CO2.positions.flatten())) def test_get_center_of_mass(self): basis = Atoms(elements='AlFe', positions=[3*[0.5], 3*[1.5]], cell=2*np.eye(3)) mass = np.array(basis.get_masses()) self.assertAlmostEqual((mass[0]*0.5+mass[1]*1.5)/mass.sum(), basis.get_center_of_mass()[0]) basis.set_repeat(2) self.assertAlmostEqual((mass[0]*0.5+mass[1]*1.5)/mass.sum()+1, basis.get_center_of_mass()[0]) def test_rotate(self): unitcell = Atoms(elements='AlFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) basis = unitcell.copy() basis.rotate(vector=[0, 0, 0.1*np.pi]) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() basis.rotate(vector=[0, 0, 1], angle=0.1*np.pi) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() center_of_mass = basis.get_center_of_mass() basis.rotate(vector=[0, 0, 0.1*np.pi], center='com') self.assertTrue(np.allclose(basis.get_center_of_mass(), center_of_mass)) basis = unitcell.copy() center_of_positions = basis.positions.mean(axis=0) basis.rotate(vector=[0, 0, 1], center='cop') self.assertTrue(np.allclose(center_of_positions, basis.positions.mean(axis=0))) basis = unitcell.copy() position = basis.positions[1] basis.rotate(vector=[0, 0, 1], center='cou') self.assertTrue(np.allclose(position, basis.positions[1])) basis = unitcell.copy() basis.rotate(vector=np.random.random(3), rotate_cell=True) self.assertAlmostEqual(basis.get_scaled_positions()[1,0], 0.5) basis = unitcell.copy() basis.rotate(vector=np.random.random(3), index_list=[0]) self.assertTrue(np.allclose(unitcell.positions.flatten(), basis.positions.flatten())) def test_rotate_euler(self): unitcell = Atoms(elements='AlFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) basis = unitcell.copy() basis.rotate_euler(phi=0.1*np.pi) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() center_of_mass = basis.get_center_of_mass() basis.rotate_euler(phi=0.1*np.pi, center='com') self.assertTrue(np.allclose(basis.get_center_of_mass(), center_of_mass)) basis = unitcell.copy() center_of_positions = basis.positions.mean(axis=0) basis.rotate_euler(phi=0.1*np.pi, center='cop') self.assertTrue(np.allclose(center_of_positions, basis.positions.mean(axis=0))) basis = unitcell.copy() position = basis.positions[1] basis.rotate_euler(phi=0.1*np.pi, center='cou') self.assertTrue(np.allclose(position, basis.positions[1])) def test_get_parent_basis(self): periodic_table = PeriodicTable() periodic_table.add_element(parent_element="O", new_element="O_up") O_up = periodic_table.element("O_up") O_basis = Atoms([O_up], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_simple = Atoms(["O"], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_parent = O_basis.get_parent_basis() self.assertNotEqual(O_basis, O_parent) self.assertEqual(O_simple, O_parent) self.assertEqual(O_parent[0].symbol, "O") periodic_table.add_element(parent_element="O", new_element="O_down") O_down = periodic_table.element("O_down") O_basis = Atoms([O_up, O_down], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5], [0, 0, 0]]) O_simple = Atoms(["O", "O"], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_parent = O_basis.get_parent_basis() self.assertNotEqual(O_basis, O_parent) self.assertEqual(O_simple, O_parent) self.assertEqual(O_parent.get_chemical_formula(), "O2") self.assertEqual(len(O_basis.species), 2) self.assertEqual(len(O_simple.species), 1) self.assertEqual(len(O_parent.species), 1) def test_profiling(self): num = 1000 C100 = Atoms(num * ["C"], positions=[(0, 0, 0) for _ in range(num)]) self.assertEqual(len(C100), num) def test_Au(self): a = 4.05 # Gold lattice constant b = a / 2. fcc = Atoms(['Au'], cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True) # print fcc # print "volume: ", fcc.get_volume() def test_set_absolute(self): a = 4.05 # Gold lattice constant b = a / 2. positions = np.array([(0.5, 0.4, 0.)]) fcc = Atoms(symbols=['Au'], scaled_positions=positions, cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True) # fcc.set_absolute() # print fcc.positions # fcc.set_relative() self.assertTrue(np.linalg.norm(fcc.get_scaled_positions() - positions) < 1e-10) def test_set_relative(self): lattice = CrystalStructure(element='Al', bravais_basis='fcc', lattice_constants=4) basis_relative = lattice.copy() basis_relative.set_relative() basis_relative.cell[0,0] = 6 basis_absolute = lattice.copy() basis_absolute.set_absolute() basis_absolute.cell[0,0] = 6 self.assertAlmostEqual(basis_relative.positions[-1,0]*1.5, basis_absolute.positions[-1,0]) basis = lattice.copy() self.assertAlmostEqual(basis.get_scaled_positions()[-1,0], basis_relative.get_scaled_positions()[-1,0]) basis.cell[0,0] = 6 self.assertAlmostEqual(basis.positions[-1,0], basis_absolute.positions[-1,0]) basis = lattice.copy() basis_relative = lattice.copy() basis_relative.set_relative() basis.positions[-1,0] = 0.5 basis_relative.positions[-1,0] = 0.5 self.assertAlmostEqual(basis.positions[-1,0], basis_relative.positions[-1,0]) basis.cell = 3*np.ones(3) self.assertAlmostEqual(basis.get_volume(), 27) basis.cell = np.append(np.ones(3), 90-np.random.random(3)).flatten() self.assertLess(basis.get_volume(), 1) def test_repeat(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.set_scaled_positions(basis_O.get_scaled_positions()+[0., 0., 0.5]) basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() basis.add_tag(selective_dynamics=[True, True, True]) basis.selective_dynamics[basis.select_index("O")] = [False, False, False] len_before = len(basis) sel_dyn_before = np.array(basis.selective_dynamics.list()) self.assertTrue(np.alltrue(np.logical_not(np.alltrue(sel_dyn_before[basis.select_index("O")], axis=1)))) self.assertTrue(np.alltrue(np.alltrue(sel_dyn_before[basis.select_index("Mg")], axis=1))) basis.set_repeat([3, 3, 2]) sel_dyn_after = np.array(basis.selective_dynamics.list()) len_after = len(basis) self.assertEqual(basis.get_spacegroup()["Number"], 225) self.assertEqual(len_before * 18, len_after) self.assertEqual(len(sel_dyn_before) * 18, len(sel_dyn_after)) self.assertTrue(np.alltrue(np.logical_not(np.alltrue(sel_dyn_after[basis.select_index("O")], axis=1)))) self.assertTrue(np.alltrue(np.alltrue(sel_dyn_after[basis.select_index("Mg")], axis=1))) basis = basis_Mg + basis_O basis.add_tag(spin=None) basis.spin[basis.select_index("Mg")] = 1 basis.spin[basis.select_index("O")] = -1 self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) basis = basis_Mg + basis_O basis.add_tag(spin=None) # Indices set as int Mg_indices = np.array(basis.select_index("Mg"), dtype=int).tolist() for ind in Mg_indices: basis.spin[ind] = 1 O_indices = np.array(basis.select_index("O"), dtype=int).tolist() for ind in O_indices: basis.spin[ind] = -1 basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) # Indices set as numpy.int Mg_indices = np.array(basis.select_index("Mg"), dtype=np.int) for ind in Mg_indices: basis.spin[ind] = 1 O_indices = np.array(basis.select_index("O"), dtype=np.int) for ind in O_indices: basis.spin[ind] = -1 basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) def test_boundary(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) NaCl.set_repeat([3, 3, 3]) # NaCl.plot3d() NaCl_bound = NaCl.get_boundary_region(0.2) # NaCl_bound.plot3d() def test_get_distance(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) self.assertAlmostEqual(NaCl.get_distance(0, 1), 2.2*0.5*np.sqrt(3)) self.assertAlmostEqual(NaCl.get_distance(0, [0, 0, 0.5]), 0.5) self.assertAlmostEqual(NaCl.get_distance([0, 0, 0], [0, 0, 0.5]), 0.5) def test_get_neighborhood(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) neigh = basis.get_neighborhood([0, 0, 0.1]) self.assertEqual(neigh.distances[0], 0.1) def test_get_neighbors(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) # NaCl.repeat([3, 3, 3]) # NaCl.positions = [(1,1,1)] boundary = NaCl.get_boundary_region(3.5) extended_cell = NaCl + boundary # extended_cell.plot3d() nbr_dict = NaCl.get_neighbors(num_neighbors=12, t_vec=True) basis = Atoms(symbols='FeFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) neigh = basis.get_neighbors(include_boundary=False) self.assertAlmostEqual(neigh.distances[0][0], np.sqrt(3)) basis.set_repeat(2) self.assertAlmostEqual(neigh.distances[0][0], np.sqrt(3)) # print nbr_dict.distances # print [set(s) for s in nbr_dict.shells] def test_center_coordinates(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) NaCl.set_repeat([3, 3, 3]) NaCl.positions += [2.2, 2.2, 2.2] NaCl.center_coordinates_in_unit_cell(origin=-0.5) self.assertTrue(-0.5 <= np.min(NaCl.get_scaled_positions())) self.assertTrue(np.max(NaCl.get_scaled_positions() < 0.5)) NaCl.center_coordinates_in_unit_cell(origin=0.) self.assertTrue(0 <= np.min(NaCl.positions)) self.assertTrue(np.max(NaCl.get_scaled_positions() < 1)) @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_cna_adaptive(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) basis.analyse_ovito_cna_adaptive()['CommonNeighborAnalysis.counts.BCC']==2 @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_centro_symmetry(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) self.assertTrue(all(basis.analyse_ovito_centro_symmetry()==np.array([0.75, 0.75]))) @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_voronoi_volume(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) self.assertTrue(all(basis.analyse_ovito_centro_symmetry()==np.array([0.5, 0.5]))) @unittest.skip("skip nglview because it is not installed in the test environment") def test_plot3d(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) view = basis.plot3d() def test_get_shell_radius(self): basis = Atoms('FeFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) self.assertAlmostEqual(basis.get_shell_radius(), np.mean(list(basis.get_shells().values()))) def test_group_points_by_symmetry(self): basis = Atoms('FeFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) self.assertEqual(len(basis.group_points_by_symmetry([3*[0.5], 3*[1.5]])), 1) self.assertEqual(len(basis.group_points_by_symmetry([3*[0.5], 3*[1.4]])), 2) def test_get_equivalent_voronoi_vertices(self): basis = Atoms('FeFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) vert = basis.get_equivalent_voronoi_vertices() self.assertEqual(len(vert), 1) self.assertGreater(np.min(np.linalg.norm(vert[0]-basis.positions[0], axis=-1)), 0.5) self.assertGreater(np.min(np.linalg.norm(vert[0]-basis.positions[1], axis=-1)), 0.5) def test_get_shells(self): dim = 3 cell = 2.2 * np.identity(dim) Al_sc = Atoms('AlAl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) Al_sc.set_repeat([3, 3, 3]) self.assertEqual(np.round(Al_sc.get_shells()[2], 6), 2.2) def test_get_shell_matrix(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) output = basis.get_shell_matrix(shell=1, restraint_matrix=['Fe', 'Fe']) self.assertIsInstance(output, np.ndarray) self.assertEqual(np.sum(output), 16) self.assertTrue(np.all(np.dot(output, output) == np.identity(2)*64)) def test_get_distance_matrix(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") output = basis.get_distance_matrix() self.assertIsInstance(output, np.ndarray) output = np.rint(output*2/np.sqrt(3)) self.assertTrue(np.all(np.dot(output, output)==np.identity(2))) self.assertEqual(len(w), 1) def test_cluster_analysis(self): import random cell = 2.2 * np.identity(3) Al_sc = Atoms(elements=['Al', 'Al'], scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) Al_sc.set_repeat([4, 4, 4]) neighbors = Al_sc.get_neighbors(num_neighbors=100, t_vec=False, exclude_self=True) c_Zn = 0.1 pse = PeriodicTable() Zn = pse.element("Zn") random.seed(123456) for _ in range(1): Zn_ind = random.sample(range(len(Al_sc)), int(c_Zn * len(Al_sc))) # for i_Zn in Zn_ind: # Al_sc.elements[i_Zn] = Zn cluster = Al_sc.cluster_analysis(Zn_ind, neighbors) cluster_len = np.sort([len(v) for k, v in cluster.items()]) # print np.histogram(cluster_len), np.sum(cluster_len), len(Zn_ind) # for key, value in cluster.items(): # el = pse.Element((key % 100) + 1) # for i_el in value: # Al_sc.elements[i_el] = el # Al_sc.plot3d() def test_get_bonds(self): dim = 3 cell = 2.62 * np.identity(dim) d1, d2 = 0.6, 0.6 H2O = Atoms('H2O', scaled_positions=[(d1, d2, 0), (d1, -d2, 0), (0, 0, 0)], cell=cell) H2O.set_repeat([1, 1, 3]) # H2O.plot3d(show_bonds=True) #, bond_stretch=2) # print H2O.get_bonds(radius=2.)[0] # print np.sum(H2O.get_masses())/H2O.get_volume() def test_get_symmetry(self): cell = 2.2 * np.identity(3) Al = Atoms('AlAl', positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell).repeat(2) self.assertEqual(len(set(Al.get_symmetry()['equivalent_atoms'])), 1) self.assertEqual(len(Al.get_symmetry()['translations']), 96) self.assertEqual(len(Al.get_symmetry()['translations']), len(Al.get_symmetry()['rotations'])) def test_get_voronoi_vertices(self): cell = 2.2 * np.identity(3) Al = Atoms('AlAl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) pos, box = Al._get_voronoi_vertices() self.assertEqual(len(pos), 14) def test_get_parent_symbols(self): self.assertTrue(np.array_equal(self.CO2.get_parent_symbols(), ["C", "O", "O"])) self.assertTrue(np.array_equal(self.CO2.get_parent_symbols(), self.CO2.get_chemical_symbols())) cell = np.eye(3) * 10.0 pse = PeriodicTable() pse.add_element("O", "O_up", spin="up") o_up = pse.element("O_up") basis = Atoms([o_up], scaled_positions=[[0.27, 0.27, 0.27]], cell=cell) self.assertTrue(np.array_equal(basis.get_parent_symbols(), ["O"])) self.assertFalse(np.array_equal(basis.get_parent_symbols(), basis.get_chemical_symbols())) def test_get_chemical_symbols(self): self.assertTrue(np.array_equal(self.CO2.get_chemical_symbols(), ["C", "O", "O"])) cell = np.eye(3) * 10.0 pse = PeriodicTable() pse.add_element("O", "O_up", spin="up") o_up = pse.element("O_up") basis = Atoms([o_up], scaled_positions=[[0.27, 0.27, 0.27]], cell=cell) self.assertTrue(np.array_equal(basis.get_chemical_symbols(), ["O_up"])) def test_get_symmetry_dataset(self): cell = 2.2 * np.identity(3) Al_sc = Atoms('AlAl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) Al_sc.set_repeat([2, 2, 2]) self.assertEqual(Al_sc.get_symmetry_dataset()['number'], 229) def test_get_space_group(self): cell = 2.2 * np.identity(3) Al_sc = Atoms('AlAl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) self.assertEqual(Al_sc.get_spacegroup()['InternationalTableSymbol'], 'Im-3m') self.assertEqual(Al_sc.get_spacegroup()['Number'], 229) cell = 4.2 * (0.5 * np.ones((3, 3)) - 0.5 * np.eye(3)) Al_fcc = Atoms('Al', scaled_positions=[(0, 0, 0)], cell=cell) self.assertEqual(Al_fcc.get_spacegroup()['InternationalTableSymbol'], 'Fm-3m') self.assertEqual(Al_fcc.get_spacegroup()['Number'], 225) a = 3.18 c = 1.623 * a cell = np.eye(3) cell[0, 0] = a cell[2, 2] = c cell[1, 0] = -a/2. cell[1, 1] = np.sqrt(3) * a / 2. pos = np.array([[0., 0., 0.], [1./3., 2./3., 1./2.]]) Mg_hcp = Atoms('Mg2', scaled_positions=pos, cell=cell) self.assertEqual(Mg_hcp.get_spacegroup()['Number'], 194) cell = np.eye(3) cell[0, 0] = a cell[2, 2] = c cell[1, 1] = np.sqrt(3) * a pos = np.array([[0., 0., 0.], [0.5, 0.5, 0.], [0.5, 0.16666667, 0.5], [0., 0.66666667, 0.5]]) Mg_hcp = Atoms('Mg4', scaled_positions=pos, cell=cell) self.assertEqual(Mg_hcp.get_spacegroup()['Number'], 194) def test_get_primitive_cell(self): cell = 2.2 * np.identity(3) Al_sc = Atoms('AlFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) Al_sc.set_repeat([2, 2, 2]) primitive_cell = Al_sc.get_primitive_cell() self.assertEqual(primitive_cell.get_spacegroup()['Number'], 221) def test_get_ir_reciprocal_mesh(self): cell = 2.2 * np.identity(3) Al_sc = Atoms('AlAl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) self.assertEqual(len(Al_sc.get_ir_reciprocal_mesh([3, 3, 3])[0]), 27) def test_get_number_species_atoms(self): self.assertEqual(list(self.CO2.get_number_species_atoms().values()), [1, 2]) def test_get_chemical_formula(self): self.assertEqual(self.CO2.get_chemical_formula(), "CO2") def test_get_equivalent_atoms(self): cell = 2.2 * np.identity(3) Al_sc = Atoms('AlFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) Al_sc.set_repeat([2, 2, 2]) def test_center(self): old_pos = self.CO2.positions.copy() self.CO2.center(vacuum=5) new_array = old_pos + 5 * np.ones(3) self.assertTrue(np.array_equal(self.CO2.positions, new_array)) def test_get_positions(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) self.assertTrue(np.array_equal(basis_Mg.positions, basis_Mg.get_positions())) def test_get_scaled_positions(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_Mg.cell += 0.1*np.random.random((3,3)) basis_Mg = basis_Mg.center_coordinates_in_unit_cell() self.assertTrue(np.allclose(np.dot(np.linalg.inv(basis_Mg.cell).T, basis_Mg.positions.T).T, basis_Mg.get_scaled_positions())) def test_occupy_lattice(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.set_scaled_positions(basis_O.get_scaled_positions()+[0., 0., 0.5]) basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() orig_basis = basis.copy() self.assertEqual(basis.get_chemical_formula(), "Mg4O4") Mg_indices = basis.select_index("Mg") O_indices = basis.select_index("O") basis.occupy_lattice(Na=Mg_indices) self.assertEqual(basis.get_chemical_formula(), "Na4O4") basis.occupy_lattice(Cl=O_indices) self.assertEqual(basis.get_chemical_formula(), "Cl4Na4") self.assertTrue(np.array_equal(basis.select_index("Na"), Mg_indices)) self.assertTrue(np.array_equal(basis.select_index("Cl"), O_indices)) orig_basis.set_repeat([2, 2, 2]) Mg_indices = orig_basis.select_index("Mg") O_indices = orig_basis.select_index("O") orig_basis.occupy_lattice(Cl=O_indices, Na=Mg_indices) self.assertEqual(orig_basis.get_chemical_formula(), "Cl32Na32") orig_basis.occupy_lattice(H=O_indices[0]) self.assertEqual(orig_basis.get_chemical_formula(), "Cl31HNa32") def test_get_majority_species(self): basis = Atoms(symbols=4*['Fe'], positions=np.random.random((4, 3)), cell=np.eye(3)) self.assertEqual(basis.get_majority_species()['count'], 4) self.assertEqual(basis.get_majority_species()['symbol'], 'Fe') basis = Atoms(symbols=['Fe', 'Cu', 'Ni', 'Al'], positions=np.random.random((4, 3)), cell=np.eye(3)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") basis.get_majority_species() self.assertEqual(len(w), 1) def test_select_index(self): basis = Atoms(symbols=['Fe', 'Cu', 'Ni', 'Al'], positions=np.random.random((4, 3)), cell=np.eye(3)) self.assertTrue(np.array_equal(basis.select_index("Fe"), [0])) self.assertTrue(np.array_equal(basis.select_index("Ni"), [2])) self.assertTrue(np.array_equal(basis.select_index(['Cu', 'Al']), [1, 3])) Fe = basis.convert_element('Fe') Ni = basis.convert_element('Ni') self.assertTrue(np.array_equal(basis.select_index([Fe, Ni]), [0, 2])) pse = PeriodicTable() pse.add_element("Ni", "Ni_up", spin=1) ni_up = pse.element("Ni_up") basis = Atoms(symbols=['Fe', 'Cu', ni_up, 'Al'], positions=np.random.random((4, 3)), cell=np.eye(3)) self.assertTrue(np.array_equal(basis.select_index("Fe"), [0])) self.assertTrue(np.array_equal(basis.select_index(ni_up), [2])) self.assertTrue(np.array_equal(basis.select_index(['Cu', 'Al']), [1, 3])) Fe = basis.convert_element('Fe') Ni = basis.convert_element(ni_up) self.assertTrue(np.array_equal(basis.select_index([Fe, Ni]), [0, 2])) def test_parent_index(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.positions += [0., 0., 0.5] basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() basis.set_repeat([2, 2, 2]) o_indices = basis.select_index("O") pse = PeriodicTable() pse.add_element("O", "O_up", spin="up") o_up = pse.element("O_up") basis[o_indices] = o_up self.assertTrue(np.array_equal(o_indices, basis.select_index(o_up))) self.assertEqual(len(basis.select_index("O")), 0) self.assertTrue(np.array_equal(o_indices, basis.select_parent_index("O"))) def test__eq__(self): test_basis = self.CO2.copy() self.assertEqual(test_basis, self.CO2) test_basis.positions[2] += 0.0 self.assertEqual(test_basis, self.CO2) self.assertNotEqual(self.C2, self.CO2) def test__add__(self): cell = np.eye(3) * 10.0 basis_0 = Atoms(["O"], scaled_positions=[[0.5, 0.5, 0.5]], cell=cell) basis_1 = Atoms(["H"], scaled_positions=[[0.75, 0.75, 0.75]], cell=cell) basis_2 = Atoms(["H"], scaled_positions=[[0.25, 0.25, 0.25]], cell=cell) basis_3 = Atoms(["H", "O", "N"], scaled_positions=[[0.35, 0.35, 0.35], [0., 0., 0.], [0., 0., 0.1]], cell=cell) pse = PeriodicTable() pse.add_element("O", "O_up", spin="up") o_up = pse.element("O_up") basis_4 = Atoms([o_up], scaled_positions=[[0.27, 0.27, 0.27]], cell=np.eye(3) * 20.0) b = basis_0 + basis_1 self.assertEqual(b.get_chemical_formula(), "HO") b = basis_0 + basis_1 + basis_2 self.assertEqual(b.get_chemical_formula(), "H2O") b += basis_2 self.assertEqual(b.get_chemical_formula(), "H3O") b = basis_0 + basis_1 + basis_2 + basis_3 self.assertEqual(b.get_chemical_formula(), "H3NO2") self.assertTrue(np.array_equal(b.get_scaled_positions()[b.select_index("N")], [[0., 0., 0.1]])) self.assertTrue(np.allclose(b.get_scaled_positions()[b.select_index("H")], [[0.75, 0.75, 0.75], [0.25, 0.25, 0.25], [0.35, 0.35, 0.35]])) self.assertTrue(np.allclose(b.get_scaled_positions()[b.select_index("O")], [[0.5, 0.5, 0.5], [0., 0., 0.]])) b.set_repeat([2, 2, 2]) self.assertEqual(b.get_chemical_formula(), "H24N8O16") b += basis_4 self.assertEqual(b.get_chemical_formula(), "H24N8O16O_up") self.assertTrue(np.allclose(b.get_scaled_positions()[b.select_index(o_up)], [[0.27, 0.27, 0.27]])) COX = self.C2 + Atom("O", position=[0, 0, -2]) COX += Atom("O", position=[0, 0, -4]) COX += COX n_objects = len(set(COX.get_species_objects())) n_species = len(set(COX.get_chemical_elements())) self.assertEqual(n_objects, n_species) self.assertEqual(n_objects, 2) self.assertEqual(n_species, 2) basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) # basis_O.set_relative() basis_O.set_scaled_positions([0., 0., 0.5]+basis_O.get_scaled_positions()) basis = basis_Mg + basis_O self.assertEqual(len(basis._tag_list), len(basis_Mg._tag_list) + len(basis_O._tag_list)) basis.center_coordinates_in_unit_cell() self.assertEqual(basis.get_spacegroup()["Number"], 225) def test__delitem__(self): cell = np.eye(3) * 10.0 basis_0 = Atoms(["O"], scaled_positions=[[0.5, 0.5, 0.5]], cell=cell) basis_1 = Atoms(["H"], scaled_positions=[[0.75, 0.75, 0.75]], cell=cell) basis_2 = Atoms(["H"], scaled_positions=[[0.25, 0.25, 0.25]], cell=cell) basis_3 = Atoms(["H", "O", "N"], scaled_positions=[[0.35, 0.35, 0.35], [0., 0., 0.], [0., 0., 0.1]], cell=cell) pse = PeriodicTable() pse.add_element("O", "O_up", spin="up") o_up = pse.element("O_up") basis_4 = Atoms([o_up], scaled_positions=[[0.27, 0.27, 0.27]], cell=cell) b = basis_0 + basis_1 + basis_2 + basis_3 + basis_4 O_indices = b.select_index("O") self.assertEqual(len(b), 7) self.assertEqual(len(b.indices), 7) self.assertEqual(len(b.species), 4) b.__delitem__(O_indices[0]) self.assertEqual(b.get_chemical_formula(), "H3NOO_up") self.assertEqual(len(b), 6) self.assertEqual(len(b.indices), 6) self.assertEqual(len(b._tag_list), 6) self.assertEqual(len(b.species), 4) O_indices = b.select_index("O") b.__delitem__(O_indices) self.assertEqual(b.get_chemical_formula(), "H3NO_up") self.assertEqual(len(b), 5) self.assertEqual(len(b.indices), 5) self.assertEqual(len(b.species), 3) self.assertEqual(np.max(b.indices), 2) N_indices = b.select_index("N") b.__delitem__(N_indices) self.assertEqual(b.get_chemical_formula(), "H3O_up") self.assertEqual(len(b), 4) self.assertEqual(len(b.indices), 4) self.assertEqual(len(b.species), 2) self.assertEqual(np.max(b.indices), 1) O_indices = b.select_index(o_up) b.__delitem__(O_indices) self.assertEqual(b.get_chemical_formula(), "H3") self.assertEqual(len(b), 3) self.assertEqual(len(b.indices), 3) self.assertEqual(len(b.species), 1) self.assertEqual(np.max(b.indices), 0) def test__setitem__(self): basis = self.CO2.copy() basis[0] = 'H' basis[1] = 'H' self.assertEqual(basis.get_chemical_formula(), "H2O") self.assertEqual(len(basis.species), 2) self.assertEqual(len(basis.get_species_symbols()), 2) basis = self.CO2.copy() basis[0] = 'H' basis[
np.int64(0)
numpy.int64
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Provide functions that operate on projections """ import itertools import warnings import multiprocessing import tomopy import numpy as np import scipy as sp import concurrent.futures as cf from typing import Tuple from scipy.signal import medfilt from scipy.signal import medfilt2d from scipy.ndimage import gaussian_filter from scipy.ndimage import gaussian_filter1d from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from skimage import exposure from skimage.transform import probabilistic_hough_line from skimage.feature import canny from skimage.feature import register_translation from sklearn.cluster import KMeans from tifffile import imread from lmfit.models import GaussianModel from lmfit.models import LorentzianModel from tomopy import minus_log from tomopy import find_center_pc from tomoproc.util.npmath import rescale_image from tomoproc.util.peakfitting import fit_sigmoid from tomoproc.util.npmath import rescale_image from tomoproc.util.npmath import binded_minus_log def detect_sample_in_sinogram( sino: np.ndarray, kernel_size: int=3, sigma: int=50, minimum_distance_to_edge: int=5, ) -> Tuple[int, int]: """ Description ----------- Automatically detect the left and right edge of the sample region in a sinogram with median and gaussian filtering. Parameters ---------- sino: np.ndarray Sinogram for evaluation kernel_size: int median filter (quick denoising) kernel size sigma: int gaussian filter kernel size minimum_distance_to_edge: int minimum amount of pixels to sinogram edge Returns ------- (int, int) left and right edge of the sample region """ # use median filter and gaussian filter to locate the sample region # -- median filter is to counter impulse noise # -- gaussian filter is for estimating the sample location prf = np.gradient( np.sum( gaussian_filter( medfilt2d(sino, kernel_size=kernel_size), sigma=sigma, ), axis=0, ) ) return ( max(prf.argmin(), minimum_distance_to_edge), min(prf.argmax(), sino.shape[1]-minimum_distance_to_edge), ) def detect_corrupted_proj( projs: np.ndarray, omegas: np.ndarray, threshold: float=0.8, ) -> Tuple[np.ndarray, np.ndarray]: """ Description ----------- Corrupted frames/projections will add a forgy layer (artifact) of random noise to the final reconstruction. These corrupted frames can be detected through 180 degree pair-wise checking. Parameters ---------- projs: np.ndarray tomography image stack [axis_omega, axis_imgrow, axis_imgcol] omegas: np.ndarray angular position vector threshold: float Threshold for picking out the outliers Returns ------- tuple(np.ndarray, np.ndarray) idx_BAD idx_GOOD Return the indices of BAD frames and GOOD frames/projections """ # assume equal step, find the index range equals to 180 degree dn = int(np.pi/abs(omegas[1] - omegas[0])) # get the cnts from each 180 pairs # use the faster version instead with cf.ProcessPoolExecutor() as e: _jobs = [ e.submit( tomopy.find_center_pc, rescale_image(binded_minus_log(projs[nimg,:,:])), rescale_image(binded_minus_log(projs[nimg+dn,:,:])), ) for nimg in range(dn) ] cnts = [me.result() for me in _jobs] # 180 -> 360 cnts = np.array(cnts + cnts) # locate outlier diff = np.absolute(cnts - medfilt(cnts))/cnts return np.where(diff>threshold)[0], np.where(diff<=threshold)[0] def guess_slit_box(img: np.ndarray, boost: bool=True) -> dict: """ Description ----------- Auto detect/guess the four blades position (in pixels) for given image Parameters ---------- img: np.ndarray 2D tomography image with slit box Returns ------- dict: dictionary contains the approximated position (in pixel) for the four slit blades NOTE ---- For images without any slit blades, a random (probably useless) region will be returned. Relative fast: tested on MacBookPro13,3 395 ms ± 14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) """ if boost: # Contrast stretching pl, ph = np.percentile(img, (2, 98)) img = exposure.rescale_intensity(img, in_range=(pl, ph)) # equilize hist img = exposure.equalize_adapthist(img) # map to log to reveal transition box img = np.log(medfilt2d(img.astype(float))+1) # get row and col profile gradient pdot_col = np.gradient(gaussian_filter1d(np.average(img, axis=0), sigma=11)) pdot_row = np.gradient(gaussian_filter1d(np.average(img, axis=1), sigma=11)) return { 'left': np.argmax(pdot_col), 'right': np.argmin(pdot_col), 'top': np.argmax(pdot_row), 'bot': np.argmin(pdot_row), } def detect_slit_corners(img: np.ndarray, r: float=50) -> list: """ Description ----------- Detect four corners (sub-pixel) formed by the four balde slits commonly used at 1ID@APS. Parameters ---------- img: np.ndarray input images, slit baldes must be visible within the image r: float domain size, will be automatically adjusted to avoid out-of-bound issue Returns ------- list[upper_left, lower_left, lower_right, upper_right] List of the sub-pixel positions of the four corners in the counter-clock-wise order NOTE ---- The location of the corner is affected by the size of the domain (r). A consistent value is recommended for quantitative analysis, such as detector drift correction. """ # guess the rough location first # by default use boost contrast, if failed, use raw image img = _safe_read_img(img) try: edges = guess_slit_box(img, boost=True) le,re,te,be = edges['left'], edges['right'], edges['top'], edges['bot'] r_row, r_col = min(r, be-te-1), min(r, re-le-1) safe_domain = lambda row, col: [(max(row - r_row, 0), min(row + r_row + 1, img.shape[0])), (max(col - r_col, 0), min(col + r_col + 1, img.shape[1])), ] cnrs = [(te, le), (be, le), (be, re), (te, re)] # (row, col) for i, cnr in enumerate(cnrs): rowrange, colrange = safe_domain(*cnr) domain = img[rowrange[0]:rowrange[1], colrange[0]:colrange[1]] horizontal_lp = np.average(domain, axis=0) vertical_lp = np.average(domain, axis=1) popt, _ = fit_sigmoid(np.arange(len(vertical_lp)), vertical_lp) _row = popt[0] popt, _ = fit_sigmoid(np.arange(len(horizontal_lp)), horizontal_lp) _col = popt[0] cnrs[i] = (rowrange[0]+_row, colrange[0]+_col) except: print("boost contrast leads to error, use raw image instead") edges = guess_slit_box(img, boost=False) le,re,te,be = edges['left'], edges['right'], edges['top'], edges['bot'] r_row, r_col = min(r, be-te-1), min(r, re-le-1) safe_domain = lambda row, col: [(max(row - r_row, 0), min(row + r_row + 1, img.shape[0])), (max(col - r_col, 0), min(col + r_col + 1, img.shape[1])), ] cnrs = [(te, le), (be, le), (be, re), (te, re)] # (row, col) for i, cnr in enumerate(cnrs): rowrange, colrange = safe_domain(*cnr) domain = img[rowrange[0]:rowrange[1], colrange[0]:colrange[1]] horizontal_lp =
np.average(domain, axis=0)
numpy.average
#!/usr/bin/python ''' calculates spatial scale of the activity patterns, determines fractures, the spatial scale of the correlation structure, the eccentricity of the local correlations, and the dimensionality of the activity patterns. ''' import numpy as np import os import sys import h5py import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import cv2 from skimage.morphology import skeletonize from scipy.ndimage import measurements, binary_fill_holes, binary_erosion, binary_dilation,label from scipy.optimize import curve_fit from scipy.ndimage.morphology import distance_transform_edt from scipy.interpolate import interp2d from analysis.tools import auto_correlation,find_local_maxima,get_point_neighbourhood,\ ellipse_fitting,calc_surrogate_activity_pattern,get_peak_corr_vals,\ dimension_abbott,smooth_map from network_model.tools import save_activity def expfct_full(x,tau,a): return np.exp(-x/tau)*(1.-a)+a matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' sz = 25 #fontsize lw = 2 #linewidth fontdict = {'fontsize' : sz} if __name__=="__main__": ## version to analyse VERSION = int(sys.argv[1]) file_path = save_activity.global_path + 'data2d/' image_path = save_activity.global_path + 'image/' ## SCRIPT SETTINGS ## save_data = True ## save computed data in hdf5 file frame_no = -1 ## which activity frame to analyse (per event) ## choose which analyses to run spatial_scale_analysis = True fracture_analysis = True elli_analysis = True long_range_analysis = True dimensionality_analysis = True ## loading and storing paths listfiles = os.listdir(file_path) str_to_search = 'params_new_v{}.0.hdf5'.format(VERSION) # 'corr_matrix' matched_files = np.array(listfiles)[np.array(['{}'.format(str_to_search) in string for string in listfiles])] for ifolder in ['activity','envelope','fracture','corr']: if not os.path.exists(image_path + 'activity_v{}/{}'.format(VERSION,ifolder)): os.makedirs(image_path + 'activity_v{}/{}'.format(VERSION,ifolder)) '''fracture processing parameters''' filter_thr = 0 delta = 1 ## folder name of generated pdfs where_to = 'activity_v{}'.format(VERSION) if save_data: full_name = file_path + 'fracture_analysis_v{}.hdf5'.format(VERSION) vals_to_plot = h5py.File(full_name,'a') for item in matched_files: network_params = h5py.File(file_path+item,"r") network_output = h5py.File(file_path+'activity_v{}.0.hdf5'.format(VERSION),"r") all_keys = np.array(sorted(network_output.keys())).astype(int) for iidx in all_keys: try: iidx = str(iidx) print('*** {} ***'.format(iidx));sys.stdout.flush() ecc = network_params[iidx]['ecc'].value if True: ## activity shape = events x number of frames x N x M activity = network_output[iidx]['activity'].value N,M = network_params[iidx]['shape'].value final_pattern = activity[:,frame_no,:,:] npatterns = final_pattern.shape[0] ''' correlation over time''' cc = np.corrcoef(final_pattern.reshape(npatterns,N*M),rowvar=0) roi = np.sum(np.isfinite(cc),axis=0)>0 roi = roi.reshape(M,N) bnd,end = 0,N nid = np.sum(roi) ''' estimate wavelength ''' sigma1 = network_params[iidx]['sigmax'].value sigma2 = network_params[iidx]['inh_factor'].value*sigma1 wavelength_mh = np.sqrt( 4*np.pi**2/4.*(sigma1**2-sigma2**2)/np.log(sigma1/sigma2) ) wavelength_pxl = 1./np.sqrt( np.sum((1.*network_params[iidx]['kmax'].value/np.array([N,M]))**2) ) ''' gradient of corr patterns ''' normed = (cc - np.nanmean(cc,axis=0)[None,:])/np.nanstd(cc,axis=0)[None,:] normed = normed.reshape(N*M,N,M) grad_x = 1-np.nanmean(normed*np.roll(normed,1,axis=1),axis=0) grad_y = 1-np.nanmean(normed*np.roll(normed,1,axis=2),axis=0) grad = np.sqrt((grad_x)**2 + (grad_y)**2 ) estimate_wavelength = 1.*wavelength_mh '''estimate spatial scale of activity patterns''' if (spatial_scale_analysis or save_data): try: estimate_wavelength = vals_to_plot['{}/{}'.format(iidx , 'est_wavelength')].value wavelength_mh = vals_to_plot['{}/{}'.format(iidx , 'wavelength')].value except: idcs = np.random.choice(np.arange(npatterns),size=npatterns,replace=False) autocorr = auto_correlation.get_autocorr(final_pattern[idcs,:,:],max_lag=N//2,method='wiener_khinchin') rough_patch_size = int(np.nanmax([wavelength_mh//2,7])) #410microns in data maxima = np.zeros_like(autocorr,dtype=int) for i,iautocorr in enumerate(autocorr): maxima[i,:,:] = find_local_maxima.detect_peaks(iautocorr,rough_patch_size,roi=None) maxima[:,M//2,N//2] = 0 coord_x,coord_y = np.meshgrid(np.arange(-(N//2),N//2+1,1),np.arange(-(M//2),M//2+1,1)) distance_to_center = np.sqrt((1.*coord_x)**2 + (1.*coord_y)**2) maxima_sum = np.sum(maxima,axis=0) distances = distance_to_center[maxima_sum>0] estimate_wavelength = np.nanmin(distances) ring = (distance_to_center<(estimate_wavelength*1.3))*(distance_to_center>(estimate_wavelength*0.8)) maxima[:,np.logical_not(ring)] = 0 estimate_wavelength = np.nanmean(distance_to_center[np.sum(maxima,axis=0)>0]) if save_data: try: vals_to_plot.create_dataset('{}/{}'.format(iidx , 'wavelength'), data=wavelength_mh) vals_to_plot.create_dataset('{}/{}'.format(iidx , 'est_wavelength'), data=estimate_wavelength) except: dset=vals_to_plot['{}'.format(iidx)] for jkey in ['wavelength','est_wavelength']: if jkey in dset.keys(): del dset[jkey] dset['wavelength'] = wavelength_mh dset['est_wavelength'] = estimate_wavelength print('***');sys.stdout.flush() print('Spatial scale Lambda = {:.2f} (unit pixels)'.format(estimate_wavelength)) print('*** Spatial scale analysis done ***');sys.stdout.flush() ''' same processing as experimental data for finding fractures''' if fracture_analysis: print('start fracture_analysis') grad = cv2.medianBlur(grad.astype('float32'), 3) grad_with_nan = np.copy(grad) ynan,xnan = np.where(np.logical_not(np.isfinite(grad))) for iy,ix in zip(ynan,xnan): grad[iy,ix] = np.nanmean(grad[[(iy-1)%M,iy,(iy+1)%M]*3,[(ix-1)%N,ix,(ix+1)%N,ix,(ix+1)%N,(ix-1)%N,(ix+1)%N,(ix-1)%N,ix]]) ''' histogramm span full range from a to b, histogram normalisation/stretching''' mingrad = np.nanmin(grad) maxgrad = np.nanmax(grad) a,b = 0,256 grad_normalised = (grad-mingrad)/(maxgrad-mingrad)*(b-a)+a #a=-1,b=1 clahe = cv2.createCLAHE(clipLimit=20, tileGridSize=(10,10) ) grad_normalised = clahe.apply(grad_normalised.astype('uint8')) ''' apply a highpass filter''' grad_filter = smooth_map.high_normalize(grad_normalised, mask=None, sigma=15)#, sig_low=2) ''' Thresholding + remove small objects(morphology) ''' furrow = grad_filter > filter_thr #(1-np.exp(-4.)) ''' get rid of holes ''' furrow_erosion = np.copy(furrow) labels,num_features = measurements.label(furrow, np.ones((3,3),dtype=int)) for ifeature in range(1,num_features+1): furrow_part = np.sum(labels==ifeature) if furrow_part<3: labels[labels==ifeature]=0 furrow_dilated = labels>0 furrow_skeleton = skeletonize(furrow_dilated) furrow_skeleton_mask = furrow_skeleton*np.isfinite(grad_with_nan) distance_map_fg = distance_transform_edt(np.logical_not(furrow_skeleton_mask)) try: wavelength_pxl = estimate_wavelength except: wavelength_pxl = np.nanmax(distance_map_fg)*2 max_peaks = distance_map_fg>(wavelength_pxl/7.) '''fracture strength''' grad[np.logical_not(np.isfinite(grad_with_nan))] = np.nan dist_furrow = grad[furrow_skeleton_mask] dist_peaks = grad[max_peaks] strength_val = np.nanmedian(dist_furrow[np.isfinite(dist_furrow)]) - np.nanmedian(dist_peaks[np.isfinite(dist_peaks)]) ''' plotting fracture''' if True: fig=plt.figure() ax = fig.add_subplot(111) cmap = 'binary' MU = np.nanmean(grad) SD = np.nanstd(grad) im=ax.imshow(grad*estimate_wavelength*10/1000.,interpolation='nearest',cmap=cmap,vmin=0,vmax=0.1) plt.colorbar(im) fig.savefig(image_path + '{}/fracture/fract_{}_010.pdf'.format(where_to,iidx),dpi=200,format='pdf') plt.close(fig) if save_data: try: vals_to_plot.create_dataset('{}/{}'.format(iidx , 'strength_val'), data=strength_val) except: dset=vals_to_plot['{}'.format(iidx)] for jkey in ['strength_val']: if jkey in dset.keys(): del dset[jkey] dset['strength_val'] = strength_val print('***');sys.stdout.flush() print('Fracture strength = {:.5f} (per Lambda)'.format(strength_val*estimate_wavelength*10/1000.)) print('*** Fracture analysis done ***');sys.stdout.flush() '''compare ellipse props on fractures from regions away from fractures''' if elli_analysis: cc = cc.reshape(M,N,M,N) local_patch_size = 9 interpolate_by = 3 try: elli_params = vals_to_plot['{}/{}'.format(iidx , 'elli_params')].value except: print('No ellipse_params found. Refit ellipses!');sys.stdout.flush() if interpolate_by>1: local_patch_size *= 3 cc2d = np.copy(cc) roi_float = roi.astype(float) cc2d[np.logical_not(np.isfinite(cc2d))] = 0 roiy,roix = np.where(roi) roi_fft = np.pad( np.fft.fftshift(np.fft.fft2(roi_float)),((N,N),(N,N)),'constant') roi_intp = np.real(np.fft.ifft2(np.fft.fftshift(roi_fft))*9) roi_intp = roi_intp>0.5 if (final_pattern.shape[1]>50 and estimate_wavelength<16): local_patch_size = 5*3 corrs = [] for irow in range(M): if np.sum(roiy==irow)==0: continue cc2d_fft = np.pad( np.fft.fftshift(np.fft.fft2(cc2d[irow,:,:,:],axes=(1,2)),axes=(1,2)),((0,0),(N,N),(N,N)), 'constant') cc2d_intp = np.real(np.fft.ifft2(np.fft.fftshift(cc2d_fft,axes=(1,2)),axes=(1,2))*9) cc2d_intp[:,np.logical_not(roi_intp)] = np.nan cc2d_intp = cc2d_intp[roi[irow,:],:,:] points_of_interest = [roiy[roiy==irow]*3,roix[roiy==irow]*3] icorrs,convolved = get_point_neighbourhood.get_point_neighbourhood(points_of_interest,cc2d_intp,local_patch_size) if len(corrs)==0: corrs = icorrs else: corrs = np.concatenate([corrs,icorrs]) corrs = np.array(corrs) corrs = corrs.reshape(nid,2*local_patch_size+1,2*local_patch_size+1) else: cc2d = cc2d[roi,:,:] cc2d_fft = np.pad( np.fft.fftshift(np.fft.fft2(cc2d,axes=(1,2)),axes=(1,2)),((0,0),(N,N),(N,N)), 'constant') cc2d_intp = np.real(np.fft.ifft2(np.fft.fftshift(cc2d_fft,axes=(1,2)),axes=(1,2))*9) cc2d_intp[:,np.logical_not(roi_intp)] = np.nan points_of_interest = [roiy*3,roix*3] corrs,convolved = get_point_neighbourhood.get_point_neighbourhood(points_of_interest,cc2d_intp,local_patch_size) else: cc2d_intp=cc[roi,:,:] points_of_interest = roi corrs,convolved = get_point_neighbourhood.get_point_neighbourhood(points_of_interest,cc2d_intp,local_patch_size) fig = plt.figure() for i in range(6): for j in range(6): ax = fig.add_subplot(6,6,i*6+j+1) ax.imshow(corrs[i*6+j+1,:,:],interpolation='nearest',cmap='RdBu_r',vmin=-0.75,vmax=0.75) fig.savefig(image_path + '{}/fracture/corrs_{}.pdf'.format(where_to,iidx),dpi=200,format='pdf') plt.close(fig) p1 = 1 np.random.seed(46756) part = np.random.choice(np.arange(2),size=nid,replace=True,p=[1-p1,p1]).astype(bool) threshold_mode = 0.7 ellies_corr,ellies_thr,check_ellc,check_cntc = ellipse_fitting.get_fit_ellipse(corrs[part,:,:].copy(),\ 'corr', threshold_mode, full_output=False) ''' check how many local regions were fitted ''' keysc = ellies_corr.keys() print('Fits in corr={} of total={}'.format(len(keysc),np.sum(part)));sys.stdout.flush() elli_params = np.empty((4,N,M))*np.nan yroi,xroi = np.where(roi) for ikey in sorted(ellies_corr.keys()): elli_params[0,yroi[int(ikey)],xroi[int(ikey)]] = ellies_corr[ikey][0]/180*np.pi #ori in rad elli_params[1,yroi[int(ikey)],xroi[int(ikey)]] = ellies_corr[ikey][1] #ecc elli_params[2,yroi[int(ikey)],xroi[int(ikey)]] = ellies_corr[ikey][2] #a (height) elli_params[3,yroi[int(ikey)],xroi[int(ikey)]] = ellies_corr[ikey][3] #b (width) eccs = np.argsort(elli_params[1,roi]) try: del ellies_corr except: pass mean_ecc =
np.nanmean(elli_params[1,bnd:end,bnd:end])
numpy.nanmean
#!/usr/bin/env python3 import sys, os from os.path import join as pjoin import shutil import signal import socket import time import copy import random import socket import math import json import logging import tempfile import multiprocessing import traceback from datetime import datetime, timedelta from pprint import pprint, pformat from collections import namedtuple from rttypes.frame import FrameOfReference import numpy as np import numpy.random import pymongo from bson.objectid import ObjectId import h5py try: from tqdm import tqdm except ImportError as e: # return no-op wrapper def tqdm(iterable, *args, **kwargs): return iterable import payloadtypes import defaults from api_enums import (MESSAGETYPE, STATUS, MLROLE, PROCSTATUS, MCGEOTYPE, VARTYPE, DBCOLLECTIONS, PARTICLETYPE, STORAGETYPE) from commandmenu import CommandMenuBase, menucommand import parse import socketio import dicomutils from loaders import ArrayLoader from sparse import SparseMatrixCOO from utils import load_bin, save_bin, none_or_type, get_resizing_params import database from filewriters import RotatingNPFileWriter import quan_config import restactions from beamlist import read_beamlist, ensure_exclusive_setting import log logger = log.get_module_logger("client") LOW_PARTICLES = int(18e6) HIGH_PARTICLES = int(2e3) dsaddr = None def get_simdoc(filter): """Multiprocessing worker function""" database.reinit_dbclient() return database.db[DBCOLLECTIONS.SIMULATION].find_one(filter) def sort_beamlets_columnorder(beamdoc): return sorted(beamdoc['beamlets'], key=lambda x: x['position'][0]*beamdoc['fmapdims'][0]+x['position'][1]) def validate_rest_response(response): if response['status'] != STATUS.SUCCESS: raise RuntimeError('action failed with error: {!s}'.format(response['message'])) return response['content'] def load_bbox(bbox_dict, voxelsize): """load bbox coordsys from bbox.json file""" bbox = payloadtypes.CoordSys() bbox.spacing = voxelsize bbox.start = [bbox_dict[k][0] for k in ['x','y','z']] bbox.size = [int(math.ceil((bbox_dict[k][1]-bbox.start[ii])/voxelsize[ii])) for ii, k in enumerate(['x','y','z'])] return bbox #================== # Command Line Menu #================== class CMenuDebug(CommandMenuBase): description = 'Client for interacting with distributed Monte Carlo Dose Calculation network' @staticmethod def generate_simulation_payload(geometry_file, gps_file, reply_host, reply_port): """simulation test payload send directly to computeserver""" payload = payloadtypes.SimInstruction() payload.id = str(database.ObjectId()) payload.num_vacant_threads = 2 payload.beam_id = str(database.ObjectId()) payload.subbeam_id = str(database.ObjectId()) payload.files = { 'geometry': socketio.pack_file_text(name='mcgeo.txt', file=geometry_file), 'gps': socketio.pack_file_text(name='gps.mac', file=gps_file), } payload.simulations = [ payloadtypes.SimulationConfig.fromdict({'id': str(database.ObjectId()), 'num_runs': 1, 'num_particles': LOW_PARTICLES, 'vartype': VARTYPE.LOW, }), payloadtypes.SimulationConfig.fromdict({'id': str(database.ObjectId()), 'num_runs': 30, 'num_particles': HIGH_PARTICLES, 'vartype': VARTYPE.HIGH, }), ] payload.reply_host = reply_host payload.reply_port = reply_port return payload @staticmethod def submit_request(payload, timeout=10): starttime = time.perf_counter() ipidx = 0 while True: if timeout and timeout > 0 and time.perf_counter()-starttime > timeout: raise OSError('Timeout reached while trying to submit processing request') try: cs_addr = defaults.cs_address[ipidx] response = payload.send_request(cs_addr, timeout=None, conection_timeout=1) if response['status'] == STATUS.SUCCESS: break except (socket.timeout, ConnectionRefusedError, ConnectionResetError) as err: logger.debug('timeout while trying to connect to "{}:{}"'.format(*cs_addr)) ipidx = (ipidx+1)%len(defaults.cs_address) time.sleep(1) return cs_addr @menucommand def test_simulation(self, parser): """Send a test simulation processing request""" parser.add_argument('num', nargs='?', type=int, default=0, help='send a number of tests immediately') parser.add_argument('--replyhost', '--rh', default='127.0.0.1') parser.add_argument('--replyport', '--rp', type=int, default=5567) self.args = parser.parse_args(namespace=self.args) if self.args.num > 0: for jobnum in range(self.args.num): logger.info('submitting simulation request {} of {}'.format(jobnum+1, self.args.num)) CMenuDebug.submit_request( CMenuDebug.generate_simulation_payload('./test/mcgeo.txt', './test/gps.mac', self.args.replyhost, self.args.replyport), timeout=None ) logger.info('request accepted') return while True: input('press enter to send a task request\n') CMenuDebug.submit_request( CMenuDebug.generate_simulation_payload('./test/mcgeo.txt', './test/gps.mac', self.args.replyhost, self.args.replyport), timeout=None ) logger.info('request accepted') class CMenuDatabase(CommandMenuBase): description='Apply actions directly on database' def register_addl_args(self, parser): parse.register_db_args(parser) parser.add_argument('--data', '-d', type=str, default="db_data", help="set data root directory") def run_after_parse(self): # set global settings database.init_dbclient(host=self.args.dbhost, port=self.args.dbport, dbname=self.args.dbname, auth=self.args.dbauth) database.InitDataStorage(self.args.data) #==================================== # REUSABLE DB MANIPULATION #==================================== @menucommand def resetdb(self, parser): """Reset specified database, clearing all data from it""" dbname = self.args.dbname client, db = database.dbclient, database.db logger.info("Resetting database \"{}\"".format(dbname)) available_dbs = client.list_database_names() if not dbname in available_dbs: raise pymongo.database.ConfigurationError("Database \"{}\" does not exist. Options are: [{}]".format(dbname, ','.join(available_dbs))) logger.warning("Are you sure you want to reset the database \"{}\"?".format(dbname)) resp = input("(y/[n]): ") if resp.lower() in ['y', 'yes']: logger.warning('Deleting database...') client.drop_database(dbname) logger.warning('Done') else: logger.warning('aborted') logger.warning("Would you like to also clear all data from referenced data directory \"{}\"?".format(database.DATASTORE.DATAROOT)) resp = input("(y/[n]): ") if resp.lower() in ['y', 'yes']: logger.warning('Deleting referenced data...') try: logger.debug('attempting to delete: '+database.DATASTORE.DATAROOT) shutil.rmtree(database.DATASTORE.DATAROOT) except Exception as e: logger.exception('Error while attempting to delete directory tree "{}"'.format(database.DATASTORE.DATAROOT)) logger.warning('Done') else: logger.warning('aborted') @menucommand def backupdb(self, parser): """Copy current state of database to new table""" parser.add_argument('--backup-name', default='{}_backup'.format(self.args.dbname)) self.args = parser.parse_args(namespace=self.args) dbclient, db = database.dbclient, database.db backupdb = dbclient[self.args.backup_name] if self.args.backup_name in dbclient.list_database_names(): logger.warning("database \"{}\" already exists. Would you like to overwrite?".format(self.args.backup_name)) resp = input("(y/[n]): ") if resp.lower() in ['y', 'yes']: logger.warning('Deleting database...') dbclient.drop_database(self.args.backup_name) logger.warning('Done') else: logger.warning('Could not complete backup!') return logger.info('Copying database "{}" to "{}"'.format(self.args.dbname, self.args.backup_name)) for collname in db.list_collection_names(): logger.debug('copying collection "{}"'.format(collname)) backupcoll = backupdb[collname] backupcoll.insert_many(db[collname].find()) @menucommand def cleandb(self, parser): """Verify all simulation documents for file size/existence. Reset invalid docs for recalculation""" parser.add_argument('-n', '--dry-run', action='store_true', help='just print invalid entries') parser.add_argument('-a', '--action', choices=['all', 'corrupt_sims', 'leftovers'], default='all', help='Which action to take (default=all)') self.args = parser.parse_args(namespace=self.args) # the order of these cleanup commands matters if self.args.action in [ 'all', 'leftovers' ]: database.cleandb_remove_leftover_files(dryrun=self.args.dry_run) if self.args.action in [ 'all', 'corrupt_sims' ]: database.cleandb_reset_corrupt_sims(dryrun=self.args.dry_run) #==================================== # TREATMENT PLANNING FUNCTIONS #==================================== @menucommand def generate(self, parser): """>>Collection of results generation functions""" self.CMenuResultsGeneration() class CMenuResultsGeneration(CommandMenuBase): @staticmethod def _get_beam_ids(beamlistfile=None, image_id=None, image_uid=None, image_doi=None, geom_id=None): beam_ids = [] if beamlistfile is not None: with open(beamlistfile, 'r') as fd: for beam_id in fd: beam_ids.append(beam_id.rstrip('\n')) else: # use all beams associated to image/geom pair imagedoc = database.get_image_doc(id= image_id, uid=image_uid, doi=image_doi) geomdoc = database.get_geometry_doc(id=geom_id, image_id=imagedoc['_id']) assert str(geomdoc['image_id']) == str(imagedoc['_id']) beam_ids = next(database.db[DBCOLLECTIONS.BEAMPHOTON].aggregate([ {'$match': {"geom_id": ObjectId(geomdoc['_id'])}}, {'$group': { "_id": '0', "ids": { "$push": "$_id" } }}, ]))['ids'] return beam_ids @menucommand def dataset(self, parser): parser.add_argument('--nparticles', type=int, default=None, help='filter only samples for this number of particles') parser.add_argument('--limit-examples', type=int, default=float('inf'), help='max number of data example pairs to include') parser.add_argument('--fsize', type=float, default=1, help='max filesize in GB before splitting') parser.add_argument('--xcontext', type=none_or_type(int), default=20, help='number of slices included to either side of beamlet center (along x-axis)') parser.add_argument('--zcontext', type=none_or_type(int), default=20, help='number of slices included to either side of beamlet center (along z-axis)') parser.add_argument('--out', '-o', default=None, help='directory to dump training data') parser.parse_args(namespace=self.args) if self.args.out is None: self.args.out = 'dataset_{!s}'.format(datetime.now().strftime('%F_%T')) db = database.db dosefactor = 1e26 # multply raw MC dose arrays by this value before pre-processing loadarr = ArrayLoader(reorient=True, context=(self.args.xcontext, 50, self.args.zcontext), get_geom=True, get_label=True, multiproc=True,dosefactor=dosefactor) os.makedirs(self.args.out, exist_ok=True) error_logger = open(pjoin(self.args.out, 'errors.txt'), 'w') for role in [MLROLE.TRAIN, MLROLE.TEST]: if role == MLROLE.TEST: limit_examples = 8000 else: limit_examples = self.args.limit_examples outdir = pjoin(self.args.out, role) os.makedirs(outdir, exist_ok=True) datafw = RotatingNPFileWriter(pjoin(outdir, role), max_fsize=self.args.fsize, texthead='image_id,beam_id,subbeam_id,sim_id,sample_id') # RANDOMLY SAMPLE A SUBSET OF SIMULATIONS beam_ids = [doc['_id'] for doc in db[DBCOLLECTIONS.BEAMPHOTON].find({ 'mlrole': role, # 'date_added': {"$gte": datetime(2020, 1, 5)}, })] filter = { "magnetic_field": [0.0, 0.0, 1.5, 'tesla'], 'procstatus.status': PROCSTATUS.FINISHED, 'vartype': VARTYPE.HIGH, 'beam_id': {"$in": beam_ids}, } if self.args.nparticles: filter['num_particles'] = int(self.args.nparticles) try: nsims = db[DBCOLLECTIONS.SIMULATION].aggregate([ {"$match": filter}, {"$count": 'num_sims'} ]).next()['num_sims'] except StopIteration: logger.info('no documents matched query') continue logger.info('{} matching samples'.format(nsims)) # GET UNIFORM RANDOM SAMPLE OF DOCS simdocs = random.sample(list(db[DBCOLLECTIONS.SIMULATION].find(filter)), k=min(nsims, limit_examples)) logger.info('randomly sampled {} documents'.format(len(simdocs))) with multiprocessing.Pool() as pool: iresults = pool.imap(loadarr, simdocs, chunksize=8) for ii, (result, simdoc) in enumerate(zip(tqdm(iresults, total=len(simdocs), desc='Constructing {} dataset'.format(role.title())), simdocs)): if result is None: raise RuntimeError('Error while loading beamlet dose arrays for simulation "{!s}"'.format(simdoc['_id'])) input_arrs, geom_arr, label_arr = result[0] # Check for empty dose (bad beamlet specification during random select?) ctr_idx = np.array(label_arr.shape[0])//2 sumslice = slice(max(0, ctr_idx-5), min(label_arr.shape[2], ctr_idx+5)) volsum = np.sum(label_arr[sumslice, :, sumslice]) if volsum < 1000: error_logger.write("corrupt dose ({}) on volume: {!s}\n".format(volsum, simdoc['_id'])) error_logger.flush() continue try: assert np.amin(label_arr)>=0.0 for input_arr in input_arrs: assert np.amin(input_arr)>=0.0 except AssertionError as e: print(simdoc['_id'], np.amin(label_arr), [np.amin(input_arr) for input_arr in input_arrs]) raise channel_arrs = [] for input_arr in input_arrs: channel_arrs.append( np.stack([label_arr, input_arr, geom_arr], axis=-1).astype(np.float32) ) sample_arr = np.stack(channel_arrs, axis=0) text_out = [] for sampledoc in simdoc['samples']: text_out.append('{!s},{!s},{!s},{!s},{!s}'.format( simdoc['image_id'], simdoc['beam_id'], simdoc['subbeam_id'], simdoc['_id'], sampledoc['_id'], )) datafw.write(sample_arr, text=text_out) datafw.save() with open(pjoin(self.args.out, 'stats.json'), 'w') as fd: json.dump({'factor': [dosefactor, dosefactor, 1.0]}, fd) error_logger.close() @menucommand def masks(self, parser): """Export a file containing mask volumes matching the image coordinate system, respecting the user-specified voxelsize (if it was manually defined)""" parser.add_argument('--image_id', type=str, help="image database id") parser.add_argument('--image_uid', type=str, help="image dicom uid") parser.add_argument('--image_doi', type=str, help="image doi") parser.add_argument('--geom_id', type=str, help="geometry database id") parser.add_argument('--numpy', action='store_true', help='also produce a .npy file for each mask') parser.add_argument('--out', default='masks.h5', help='file to write mask data') self.args = parser.parse_args() imagedoc = database.get_image_doc(id=self.args.image_id, uid=self.args.image_uid, doi=self.args.image_doi) assert imagedoc is not None assert 'rtstruct' in imagedoc geomdoc = database.get_geometry_doc(id=self.args.geom_id, image_id=imagedoc['_id']) # calculate resizing params ic = imagedoc['coordsys'] # Get list of structures existing_structures = {doc['name']: doc['_id'] for doc in imagedoc['structures']} structure_names = set(existing_structures.keys()) if imagedoc['rtstruct'] is not None: structure_names.update(dicomutils.get_roi_names(database.dbabspath(imagedoc['rtstruct']))) # also get any custom masks (directly inserted as voxelized mask arrays) logger.info("Found structures: {}".format(structure_names)) # generate missing masks for structure_name in structure_names: if structure_name in existing_structures: continue logger.info('Requesting mask generation for structure "{}"'.format(structure_name)) try: existing_structures[structure_name] = database.structure_insert(imagedoc['_id'], name=structure_name) except: logger.warning("Failed to create mask for structure \"{}\", most likely because it " \ "doesn't contain any boundary coordinates.".format(structure_name)) # add structure masking voxels of low density (air) within body contour air_struct_name = "T_AIR" if air_struct_name not in existing_structures: # force recompute ctvol, _ = database.get_ctvolume(imagedoc['_id']) air_mask = np.where(ctvol<0.2, 1, 0).astype(np.int8) existing_structures[air_struct_name] = database.structure_insert(imagedoc['_id'], air_struct_name, mask=air_mask) # refresh local copy of imagedoc and fetch mask data from it imagedoc = database.get_doc(DBCOLLECTIONS.IMAGES, imagedoc['_id']) # save to file try: logger.info('Saving masks for structures: {!s}'.format([s['name'] for s in imagedoc['structures']])) with h5py.File(self.args.out, 'w') as h5fd: try: for ii, structure in enumerate(tqdm(imagedoc['structures'], desc='Saving masks')): sc = structure['boundbox'] f_mask = database.dbabspath(structure['maskfile']) mask_arr = np.load(f_mask) # size matches CT mask_name = structure['name'] # crop to the mask bbox for efficient storage subslice = get_resizing_params(ic, sc) cropped_mask = mask_arr[subslice] assert list(cropped_mask.shape) == sc['size'][::-1] group = h5fd.create_group(mask_name) group.attrs['index'] = ii group.attrs['name'] = mask_name arrprops = group.create_group('ArrayProps') arrprops.attrs['crop_size'] = cropped_mask.shape[::-1] arrprops.attrs['crop_start'] = [sl.start for sl in subslice][::-1] arrprops.attrs['size'] = ic['size'] group['mask'] = cropped_mask.astype(np.int8) if self.args.numpy: fname = pjoin(os.path.dirname(self.args.out), 'npmasks', mask_name+'.npy') os.makedirs(os.path.dirname(fname), exist_ok=True) np.save(fname, cropped_mask) except: logger.exception('Structure "{}" is missing its mask file'.format(structure['name'])) raise except: os.remove(self.args.out) @menucommand def fmaps(self, parser): parser.add_argument('--image_id', type=str, help="image database id") parser.add_argument('--image_uid', type=str, help="image dicom uid") parser.add_argument('--image_doi', type=str, help="image doi") parser.add_argument('--geom_id', type=str, help="geometry database id") parser.add_argument('--beamlist', type=str, help='file listing all beam ObjectIds to include') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) self.args = parser.parse_args(namespace=self.args) from fmaps import Beam, Fmaps fmaps = Fmaps() beam_ids = self._get_beam_ids(beamlistfile=self.args.beamlist, image_id=self.args.image_id, image_uid=self.args.image_uid, image_doi=self.args.image_doi, geom_id=self.args.geom_id) for bb, beam_id in enumerate(tqdm(beam_ids, desc='Loading beams')): # download per-beamlet dose and construct sparse matrix as .mat file beamdoc = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': ObjectId(beam_id)}) fluence_map = np.zeros([beamdoc['fmapdims'][1],beamdoc['fmapdims'][0]]) for ii, beamletdoc in enumerate(beamdoc['beamlets']): pos = beamletdoc['position'] fluence_map[pos[0], pos[1]] = 1.0 fmaps.addBeam(Beam(fluence_map, gantry=beamdoc['angle_gantry'], couch=beamdoc['angle_couch'], coll=beamdoc['angle_coll'], iso=[x/10 for x in beamdoc['isocenter']], sad=beamdoc['sad']/10, beamlet_size=[x/10 for x in beamdoc['beamletsize']], beamlet_spacing=[x/10 for x in beamdoc['beamletspacing']], )) fmaps.generate(self.args.out) @menucommand def exportdata(self, parser): parser.add_argument('--image_id', type=str, help="image database id") parser.add_argument('--image_uid', type=str, help="image dicom uid") parser.add_argument('--image_doi', type=str, help="image doi") parser.add_argument('--geom_id', type=str, help="geometry database id") parser.add_argument('--beamlist', type=str, help='file listing all beam ObjectIds to include') parser.add_argument('--nparticles', type=float, help='number of simulation histories') parser.add_argument('--tag', type=str, help='tag string referencing a set of simulations') parser.add_argument('--drop_thresh', default=None, type=none_or_type(float), help='drop dose values below this percent of each beamlet\'s max element') parser.add_argument('--magnetic_field', default=None, type=none_or_type(float), help='magnetic field strength in Z-direction (unit: Tesla)') parser.add_argument('--name', type=str, default='dose3d.bin', help='name of data file to export for every beamlet') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) self.args = parser.parse_args() assert self.args.drop_thresh is None or self.args.drop_thresh >= 0.0 data_filename = os.path.basename(self.args.name) # prepare data output if os.path.isdir(self.args.out): outfile = pjoin(self.args.out, os.path.splitext(data_filename)[0]+'.h5') else: outfile = self.args.out os.makedirs(os.path.dirname(outfile), exist_ok=True) assert os.path.isdir(os.path.dirname(outfile)) imagedoc = database.get_image_doc(id=self.args.image_id, uid=self.args.image_uid, doi=self.args.image_doi) geomdoc = database.get_geometry_doc(id=self.args.geom_id, image_id=imagedoc['_id']) # calculate resizing params gc = geomdoc['coordsys'] ic = imagedoc['coordsys'] subslice = get_resizing_params(ic, gc) logger.debug('embedding data subarray with size {!s} into full array with size {!s} at {!s}'.format( gc['size'], ic['size'], '[{}]'.format(', '.join(['{}:{}'.format(sl.start,sl.stop) for sl in subslice][::-1])))) beam_ids = self._get_beam_ids(beamlistfile=self.args.beamlist, image_id=self.args.image_id, image_uid=self.args.image_uid, image_doi=self.args.image_doi, geom_id=self.args.geom_id) loadarr = ArrayLoader(multiproc=True, dosefactor=1.0, max_samples=1, data_filename=data_filename) # download per-beamlet dose and construct sparse matrix as .mat file sparsemat = SparseMatrixCOO(outfile, drop_thresh=self.args.drop_thresh) for bb, beam_id in enumerate(tqdm(beam_ids, desc='Processing beams')): # supplementary information beamdoc = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': ObjectId(beam_id)}) filters = [] beamlet_ids = [] for beamletdoc in sort_beamlets_columnorder(beamdoc): beamlet_ids.append(beamletdoc['_id']) filter = {'subbeam_id': ObjectId(beamletdoc['_id']), 'procstatus.status': {'$in': [PROCSTATUS.FINISHED, PROCSTATUS.SKIPPED]}} if self.args.nparticles: filter['num_particles'] = int(self.args.nparticles) if self.args.magnetic_field: filter['magnetic_field.2'] = self.args.magnetic_field, if self.args.tag: filter['tag'] = self.args.tag filters.append(filter) simdocs = [] for ifilter in filters: simdoc = get_simdoc(ifilter) simdocs.append(simdoc) if not all((doc is not None for doc in simdocs)): nfinished = 0 for doc in simdocs: if doc is not None: nfinished += 1 raise RuntimeError('Only {} of {} simulations for beam "{}" have been completed. ' \ 'Please wait for the rest to complete and try again.'.format(nfinished, len(simdocs), beam_id) ) # check for requested data file nwithdata = 0 nskipped = 0 for simdoc in simdocs: if simdoc['num_particles'] <= 0: nskipped += 1 elif os.path.isfile(pjoin(database.build_datapath_sample(simdoc['_id'], simdoc['samples'][0]['_id']), data_filename)): nwithdata += 1 if (nwithdata + nskipped) < len(simdocs): raise RuntimeError('{} of {} simulations for beam "{}" contain the requested data file: "{}".\n' 'Try again with one of the following data filenames or wait and try later: {!s}'.format( nwithdata + nskipped, len(simdocs), beam_id, data_filename, os.listdir(database.build_datapath_sample(simdocs[0]['_id'], simdocs[0]['samples'][0]['_id'])) )) with multiprocessing.Pool() as pool: def poolmap(chunksize): def f(*args): return pool.imap(*args, chunksize=chunksize) return f map_funcs = [poolmap(8), poolmap(1), map] while len(map_funcs): try: map_func = map_funcs.pop(0) iresults = map_func(loadarr, simdocs) for ii, (result, simdoc) in enumerate(zip(tqdm(iresults, desc='Collecting beamlet data', total=len(simdocs)), simdocs)): if result is None: raise RuntimeError('Error while loading beamlet data arrays for simulation "{!s}"'.format(simdoc['_id'])) # load noisy dose volume for one beamlet dosearr = result[0][0][0] if np.all(dosearr == 0): # add empty column sparsemat.add_column(None) else: # resize to match CT coordsys fulldosearr = np.zeros(ic['size'][::-1]) fulldosearr[subslice] = dosearr sparsemat.add_column(fulldosearr) break except multiprocessing.pool.MaybeEncodingError as err: logger.warning('Data loading failed, falling back to less efficient method') assert len(map_funcs) continue logger.info('Writing sparse beamlet data matrix to file: "{}"'.format(outfile)) sparsemat.finish() @menucommand def export_detection_data(self, parser): parser.add_argument('--image_id', type=str, help="image database id") parser.add_argument('--image_uid', type=str, help="image dicom uid") parser.add_argument('--image_doi', type=str, help="image doi") parser.add_argument('--geom_id', type=str, help="geometry database id") parser.add_argument('--beamlist', type=str, help='file listing all beam ObjectIds to include') parser.add_argument('--nparticles', type=float, help='number of simulation histories') parser.add_argument('--tag', type=str, help='tag string referencing a set of simulations') parser.add_argument('--name', type=str, default='detectedevents.pb', help='name of data file to aggregate from every beamlet') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) self.args = parser.parse_args() # You need to copy your protobuf_pb2 file into ./dosecalc/webapi/ for this to work from protobuf_pb2 import pbDetectedEvents, pbDetectionEvent # strip any directory names from user-specified protobuf filename # This is the name of the file we will match against for each of the simulation outputs data_filename = os.path.basename(self.args.name) # prepare data output (either .mat or .h5 would be convenient for matlab users) if os.path.isdir(self.args.out): outfile = pjoin(self.args.out, os.path.splitext(data_filename)[0]+'.h5') else: outfile = self.args.out os.makedirs(os.path.dirname(outfile), exist_ok=True) assert os.path.isdir(os.path.dirname(outfile)) # Begin our navigation of the mongodb database # database entries are called documents (docs). They act like python dictionaries after # we retrieve them with a .find() or .find_one() command (called inside my get_*_doc() functions) # for a complete list of the contents of each "doc" type, see the bottom of database.py # (gen_doc_*() functions define the database document structures) # # we essentially navigate the tree-like hierarchy of linked documents by repeatedly searching for the # child doc that has a matching id, stored in the parent doc # the tree looks like: image -> geometry -> beam(s) -> beamlet(s) -> simulation(s) -> sample(s) imagedoc = database.get_image_doc(id=self.args.image_id, uid=self.args.image_uid, doi=self.args.image_doi) geomdoc = database.get_geometry_doc(id=self.args.geom_id, image_id=imagedoc['_id']) # this is a convenience function for matching to beam docs by one of the five options. # match by image_id/uid/doi is simplest (gives all beams for an image) # the _id is generated when the image is first inserted # _uid is the Dicom uuid assigned when the image is captured by the scanner # _doi is the "plan_name" you assign when running simpledose create-plan <doi> <data-dir> # match by beam_id is also possible for absolute control. --beamlist expects a text file with a # mongodb-assigned beam_id on each line. you can access the id of any document with doc['_id'] beam_ids = self._get_beam_ids(beamlistfile=self.args.beamlist, image_id=self.args.image_id, image_uid=self.args.image_uid, image_doi=self.args.image_doi, geom_id=self.args.geom_id) # Let's pretend that you are simply appending the data from each DetectionEvent to the end of each # of the following four data arrays. You can probably find a way to write a list of structs to h5 # just like you did for the protobuf file, but writing four equal-length (co-registered) arrays # is much simpler than writing a list of structs with h5. allGlobalTimes = [] allEventIds = [] allDetectorIds = [] allEnergies = [] allBeams = [] allBeamlets = [] # locate/read per-beamlet data and aggregate into final output file for bb, beam_id in enumerate(tqdm(beam_ids, desc='Processing beams')): beamdoc = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': ObjectId(beam_id)}) filters = [] beamlet_ids = [] # iterate over the beamlets in this beamdoc, sorted by the beamlet position in fmap for beamletdoc in sort_beamlets_columnorder(beamdoc): beamlet_ids.append(beamletdoc['_id']) # filters are used with .find() and .find_one() to access specific docs from the database # these filters are saved to a list for now, and used in a multithreaded lookup function later filter = {'subbeam_id': ObjectId(beamletdoc['_id']), 'procstatus.status': {'$in': [PROCSTATUS.FINISHED, PROCSTATUS.SKIPPED]}} if self.args.nparticles: filter['num_particles'] = int(self.args.nparticles) if self.args.tag: filter['tag'] = self.args.tag filters.append(filter) # call get_simdoc() [at top of file] for each filter, using a multithreaded approach for speed #with multiprocessing.Pool() as pool: #simdocs = pool.map(get_simdoc, filters) #print(list(filters)) #simdocs = map(get_simdoc, filters) simdocs = [] for ifilter in filters: simdoc = get_simdoc(ifilter) simdocs.append(simdoc) # pool.map is a blocking call, so we only get to this line after get_simdoc() has been called # for every filter. Now we look at the success/fail of each filter to make sure there are no # errors, otherwise we quit. Common error here is if some simulation tasks are still running. if not all((doc is not None for doc in simdocs)): nfinished = 0 for doc in simdocs: if doc is not None: nfinished += 1 raise RuntimeError('Only {} of {} simulations for beam "{}" have been completed. ' \ 'Please wait for the rest to complete and try again.'.format(nfinished, len(simdocs), beam_id) ) # check for requested data file. We look in the per-simulation data folder in <dbdata> to confirm # that the requested data file exists for all sims. Error and exit otherwise. # common error here is a type in the filename, so some options are suggested to remind the user # of the actual files produced by geant4. nwithdata = 0 nskipped = 0 for simdoc in simdocs: if simdoc['num_particles'] <= 0: nskipped += 1 elif os.path.isfile(pjoin(database.build_datapath_sample(simdoc['_id'], simdoc['samples'][0]['_id']), data_filename)): nwithdata += 1 # if (nwithdata + nskipped) < len(simdocs): # raise RuntimeError('{} of {} simulations for beam "{}" contain the requested data file: "{}". Try again with one of the following data filenames: {!s}'.format( # nwithdata + nskipped, len(simdocs), beam_id, data_filename, # os.listdir(database.build_datapath_sample(simdocs[0]['_id'], simdocs[0]['samples'][0]['_id'])) # )) # now we know that all data files exist, we just need to read them to memory, aggregate somehow, # then write the data to the output file. I removed my complex multiprocessing approach to keep # this easy to understand. You can try to implement multiprocessing later if you want #print(simdocs) #print(list(simdocs)) for bblets, simdoc in enumerate(simdocs): if not simdoc['samples']: continue else: # build the path leading to this sim's data file sampledoc = simdoc['samples'][0] sim_data_dir = database.build_datapath_sample(simdoc['_id'], sampledoc['_id']) data_path = pjoin(sim_data_dir, data_filename) # read the data from protobuf data file with open(data_path, 'rb') as fd: detected_events = pbDetectedEvents() detected_events.ParseFromString(fd.read()) # merge this sim's data into an aggregate data structure # (you should decide how to implement this. This is just an example) # aggregate the data into memory for event in detected_events.detectionEvent: allGlobalTimes.append(event.globalTime) allEventIds.append(event.eventId) allDetectorIds.append(event.detectorId) allEnergies.append(event.energy) allBeams.append(bb) allBeamlets.append(bblets) # heres a simple example of writing each of the four lists as a separate "dataset" in h5 # This will make it easy to read all the data into matlab as four separate vectors with h5py.File(outfile, mode='w') as h5root: h5root.create_dataset('/globalTimes', data=allGlobalTimes) h5root.create_dataset('/eventIds', data=allEventIds) h5root.create_dataset('/detectorIds', data=allDetectorIds) h5root.create_dataset('/energy', data=allEnergies) h5root.create_dataset('/beamNo', data=allBeams) h5root.create_dataset('/beamletNo', data=allBeamlets) logger.info('Writing detected events to file: "{}"'.format(outfile)) @menucommand def beamletdose_DL(self, parser): parser.add_argument('beamlist', type=str, help='file listing all beam ObjectIds to include') parser.add_argument('--nparticles', type=float, help='number of simulation histories') parser.add_argument('--drop_thresh', default=None, type=none_or_type(float), help='drop dose values below this percent of each beamlet\'s max element') parser.add_argument('--magnetic_field', default=1.5, type=float, help='magnetic field strength in Z-direction (unit: Tesla)') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) parser.add_argument('--predict', nargs=3, help='--predict <config-file> <weights-file> <stats-file>') parser.add_argument('--nopredict', nargs=1, help='--nopredict <stats-file>') parser.add_argument('--zcontext', type=none_or_type(int), default=12, help='number of slices on each side of beamlet center (z-axis) to include in dosecalc') parser.add_argument('--xcontext', type=none_or_type(int), default=12, help='number of rows/cols on each side of beamlet center (x,y-axes) to include in dosecalc') parser.add_argument('--make-plots', action='store_true', default=False, help='save debug plots indicating prediction output') parser.add_argument('--cpu', action='store_true', help='inference on CPU') self.args = parser.parse_args(namespace=self.args) assert self.args.predict or self.args.nopredict assert self.args.drop_thresh is None or self.args.drop_thresh >= 0.0 assert self.args.zcontext is None or self.args.zcontext > 0 assert self.args.xcontext is None or self.args.xcontext > 0 make_plots = self.args.make_plots # make_plots = True # prepare data output if os.path.isdir(self.args.out): if self.args.predict: outfile = pjoin(self.args.out, 'beamlet_dose_predicted.h5') else: outfile = pjoin(self.args.out, 'beamlet_dose.h5') else: outfile = self.args.out os.makedirs(os.path.dirname(outfile), exist_ok=True) assert os.path.isdir(os.path.dirname(outfile)) # prepare dose prediction model model = None if self.args.predict: if self.args.cpu: os.environ['CUDA_VISIBLE_DEVICES'] = "" config_file, weights_file, stats_file = self.args.predict # docker volume mounting magic places the mcdose module in this src directory from mcdose import get_trained_model mcdoselogger = logging.getLogger('MCDose') mcdoselogger.addHandler(logging.StreamHandler()) mcdoselogger.setLevel(logging.DEBUG) model = get_trained_model( config=config_file, weights=weights_file, normstats=stats_file, ) else: stats_file = self.args.nopredict[0] with open(stats_file, 'r') as fd: normstats = json.load(fd) if 'factor' not in normstats: normstats['factor'] = [1.0]*len(normstats['mean']) with open(self.args.beamlist, 'r') as fd: beam_ids = [line.rstrip('\n') for line in fd] loadarr = ArrayLoader(reorient=True, context=(self.args.xcontext, 60, self.args.zcontext), get_geom=True, get_label=make_plots, reversible=True, multiproc=True, dosefactor=normstats['factor'][0]) # download per-beamlet dose and construct sparse matrix as .mat file sparsemat = SparseMatrixCOO(outfile, drop_thresh=self.args.drop_thresh) for bb, beam_id in enumerate(tqdm(beam_ids, desc='Processing beams')): # supplementary information beamdoc = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': ObjectId(beam_id)}) geomdoc = database.db[DBCOLLECTIONS.MCGEOM].find_one({'_id': ObjectId(beamdoc['geom_id'])}) arrsize = geomdoc['coordsys']['size'] theta = beamdoc['angle_gantry'] filters = [] beamlet_ids = [] for beamletdoc in sort_beamlets_columnorder(beamdoc): beamlet_ids.append(beamletdoc['_id']) filter = {'subbeam_id': ObjectId(beamletdoc['_id']), 'magnetic_field.2': self.args.magnetic_field} if self.args.nparticles: filter['num_particles'] = int(self.args.nparticles) filters.append(filter) with multiprocessing.Pool() as pool: simdocs = pool.map(get_simdoc, filters) with multiprocessing.Pool() as pool: iresults = pool.imap(loadarr, simdocs, chunksize=8) # iresults = (loadarr(simdoc) for simdoc in simdocs) for ii, (result, simdoc) in enumerate(zip(tqdm(iresults, desc='Collecting dose data', total=len(simdocs)), simdocs)): if result is None: raise RuntimeError('Error while loading beamlet dose arrays for simulation "{!s}"'.format(simdoc['_id'])) if model is None: # load noisy dose volume for one beamlet rotdosearr, unprocessor = result[0][0][0], result[1] # force all dose to go through rotations to match aliasing effects (for now) dosearr = unprocessor(rotdosearr) dosearr[dosearr<0.0] = 0.0 # enforce realistic dose (aliasing and prediction may contain neg. artifacts) else: # predict clean dose from noisy dose arrs, unprocessor = result dosearr, geomarr = arrs[0][0], arrs[1] # predict, rotate back (already rotated by loadarr) inputs = (np.stack((dosearr, geomarr), axis=-1)[None,...]).astype(np.float32) rotpredarr = model(inputs).numpy()[0,...,0] predarr = unprocessor(rotpredarr) # drop "example" and "channel" axes predarr[predarr<0.0] = 0.0 # enforce realistic dose (aliasing and prediction may contain neg. artifacts) if make_plots and ii < 10: gtrutharr = arrs[2] # drop channel axis import matplotlib.pyplot as plt from mcdose.visualize import create_volume_dose_figure, save_figure_array figimg = create_volume_dose_figure( np.stack([ np.stack([ gtrutharr[sliceidx], dosearr [sliceidx], predarr [sliceidx], geomarr [sliceidx], predarr[sliceidx] - gtrutharr[sliceidx], ], axis=0) for sliceidx in range(inputs.shape[1]) ], axis=0), dpi=200, col_labels=['ground truth', 'input', 'predict', 'geom', 'predict - input'], own_scale=False ) fig_outdir = os.path.splitext(outfile)[0]+'_figs' os.makedirs(fig_outdir, exist_ok=True) save_figure_array(figimg, pjoin(fig_outdir, 'beam{:04d}_blt{:05d}.png'.format(bb, ii))) # replace noisy dose with predicted dose in sparse matrix dosearr = predarr sparsemat.add_column(dosearr) logger.info('Writing sparse beamlet dose matrix to file: "{}"'.format(outfile)) sparsemat.finish() @menucommand def finaldose(self, parser): """sum the beamlet-dose volumes for the specified beams and save to file""" parser.add_argument('--image_id', type=str, help="image database id") parser.add_argument('--image_uid', type=str, help="image dicom uid") parser.add_argument('--image_doi', type=str, help="image doi") parser.add_argument('--geom_id', type=str, help="geometry database id") parser.add_argument('--beamlist', type=str, help='file listing all beam ObjectIds to include') parser.add_argument('--nparticles', type=float, help='number of simulation histories') parser.add_argument('--magnetic_field', default=None, type=none_or_type(float), help='magnetic field strength in Z-direction (unit: Tesla)') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) self.args = parser.parse_args(namespace=self.args) outdir = self.args.out imagedoc = database.get_image_doc(id=self.args.image_id, uid=self.args.image_uid, doi=self.args.image_doi) geomdoc = database.get_geometry_doc(id=self.args.geom_id, image_id=imagedoc['_id']) beam_ids = self._get_beam_ids(beamlistfile=self.args.beamlist, image_id=self.args.image_id, image_uid=self.args.image_uid, image_doi=self.args.image_doi, geom_id=self.args.geom_id) # calculate resizing params gc = geomdoc['coordsys'] ic = imagedoc['coordsys'] subslice = get_resizing_params(ic, gc) logger.debug('embedding dose subarray with size {!s} into full array with size {!s} at {!s}'.format( gc['size'], ic['size'], '[{}]'.format(', '.join(['{}:{}'.format(sl.start,sl.stop) for sl in subslice][::-1])))) # get simulation samples one by one subarrsize = gc['size'] sumarrs = {('finaldose', 'dosefile'): np.zeros(subarrsize[::-1]), ('density', 'densfile'): np.zeros(subarrsize[::-1]), } for bb, beam_id in enumerate(tqdm(beam_ids, desc='Processing beams')): # download per-beamlet dose and sum together beamdoc = database.get_doc(DBCOLLECTIONS.BEAMPHOTON, beam_id) assert ObjectId(beamdoc['geom_id']) == ObjectId(geomdoc['_id']) nbeamletdocs = len(beamdoc['beamlets']) for ii, beamletdoc in enumerate(tqdm(beamdoc['beamlets'], desc='Summing beamlets')): filter = { 'subbeam_id': ObjectId(beamletdoc['_id']), } if self.args.nparticles: filter['num_particles'] = int(self.args.nparticles) if self.args.magnetic_field: filter['magnetic_field.2'] = self.args.magnetic_field, simdoc = database.db[DBCOLLECTIONS.SIMULATION].find_one(filter) for key in sumarrs.keys(): arrlabel, arrtype = key if arrtype == 'densfile' and ii>0: continue datafile = database.dbabspath(simdoc['samples'][0][arrtype]) with open(datafile, 'rb') as fd: buf = fd.read() dtype = 'f4' if arrtype == 'densfile' else 'f8' arr = np.frombuffer(buf, dtype).reshape(subarrsize[::-1]) sumarrs[key] += arr for key, sumarr in sumarrs.items(): arrlabel, arrtype = key fullarr = np.zeros(ic['size'][::-1]) fullarr[subslice] = sumarr sumarrs[key] = fullarr os.makedirs(outdir, exist_ok=True) for (arrlabel, arrtype), sumarr in sumarrs.items(): np.save(pjoin(outdir, '{}.npy'.format(arrlabel)), sumarr) save_bin(pjoin(outdir, '{}.raw'.format(arrlabel)), sumarr) #TODO convert rest to db api @menucommand def quan_mcconfig(self, parser): raise NotImplementedError("need to convert from rest api to db api") parser.add_argument('beam_id', help='Beam ObjectId, or file with beam id on each line') parser.add_argument('--out', '-o', type=str, default=os.path.curdir) self.args = parser.parse_args(namespace=self.args) beam_ids = [] if os.path.isfile(self.args.beam_id): with open(self.args.beam_id, 'r') as fd: for beam_id in fd: beam_ids.append(beam_id.rstrip()) else: beam_ids.append(self.args.beam_id) for beam_id in beam_ids: outdir = pjoin(self.args.out, beam_id) os.makedirs(outdir, exist_ok=True) # download per-beamlet dose and sum together p = payloadtypes.RESTReqBeamPhotonGet() p.beam_id = beam_id p.recursive = False beamdoc = validate_rest_response(p.send_request(dsaddr)) beamlets = [blt['position'] for blt in beamdoc['beamlets']] beamlets.sort(key=lambda p: p[1]*1000+p[0]) # define beams and control points cp = quan_config.ControlPoint() cp.gantry_rot = beamdoc['angle_gantry'] cp.mu = 1.0 # replace with 1/#cp cp.sad = beamdoc['sad'] cp.iso = beamdoc['isocenter'] # cp.xjaw_pos = tuple([d*(beamdoc['fmapdims'][0]/2)*beamdoc['beamletsize'][0] for d in [-1.0, 1.0]]) # cp.yjaw_pos = tuple([d*(beamdoc['fmapdims'][1]/2)*beamdoc['beamletsize'][1] for d in [-1.0, 1.0]]) # split into multiple control points to fill holes in target projection leaf_edge_seqs = quan_config.get_leaf_edges(beamlets, beamdoc['fmapdims'], beamdoc['beamletsize']) cps = [] for id, seq in enumerate(leaf_edge_seqs): cp_copy = copy.deepcopy(cp) cp_copy.id = id+1 cp_copy.leaf_edges = seq cp_copy.xjaw_pos, cp_copy.yjaw_pos = quan_config.get_jaw_positions(seq, beamdoc['fmapdims'], beamdoc['beamletsize']) cp_copy.mu = 1/len(leaf_edge_seqs) cps.append(cp_copy) mlcbeams = [quan_config.MLCBeam()] mlcbeams[-1].control_points = cps quan_config.generate_mlcdef(pjoin(outdir, 'mlcdef_{!s}.txt'.format(beam_id)), beamdoc['fmapdims'], beamdoc['beamletsize']) quan_config.generate_rtplan(outdir, mlcbeams, fsuffix=beam_id) #==================================== # SINGLE-USE FUNCTIONS #==================================== @menucommand def userfunc(self, parser): """>> Collection of single-use user functions for brute forcing database change""" self.CMenuUserFunctions() class CMenuUserFunctions(CommandMenuBase): @menucommand def update_nruns(self, parser): db = database.db beamdocs = db[DBCOLLECTIONS.BEAMPHOTON].find({'mlrole': 'test'}) for beam in beamdocs: for beamlet in beam['beamlets']: for simulation in beamlet['simulations']: result = db[DBCOLLECTIONS.SIMULATION].update_one({'_id': simulation}, update={'$set': {'num_runs': 1}}) if not result.matched_count: raise RuntimeError('Failed to modify simulation "{!s}"'.format(simulation)) @menucommand def add_sim_tasks(self, parser): """Add new sims to all beams matching MLROLE""" parser.add_argument('--role', required=True, choices=[MLROLE.TRAIN, MLROLE.TEST], type=str, help='Filter for beams to which to add sims') parser.add_argument('--nparticles', required=True, type=int, nargs="+", help='Number of particles to simulate (may supply multiple)') parser.add_argument('--vartype', choices=[VARTYPE.HIGH, VARTYPE.LOW], default='highvar', help='type of sample') parser.add_argument('--nsamples', type=int, default=1, help='number of simulations to run') parser.parse_args(namespace=self.args) beamids = database.db[DBCOLLECTIONS.BEAMPHOTON].aggregate([ {'$match': {'mlrole': self.args.role}}, {'$project': {'_id': True}}, {'$group': {'_id': None, 'ids': {'$addToSet': '$_id'}}} ]).next()['ids'] print('Adding simulation tasks for {} beams'.format(len(beamids))) for nparticles in self.args.nparticles: print('Adding for {} histories'.format(nparticles)) for beamid in beamids: database.add_sims_to_beam(beam_id=beamid, vartype=self.args.vartype, num_runs=self.args.nsamples, num_particles=nparticles) @menucommand def test_code(self, parser): image_id = "5d9bd5ec4f71a0917827897e" geom_id = "5d9bd5f04f71a09178278980" out = "/media/hdd1/g4sim/beamlet_dose/HN010/1.5T/10e6/test" # check volumes ctvolume, _ = database.get_ctvolume(image_id=image_id) np.save(pjoin(out, "ctvolume.npy"), ctvolume) geomvolume, _ = database.get_geometry_volume(geom_id=geom_id) np.save(pjoin(out, "geomvolume.npy"), geomvolume) # check mcgeom import geometry mcgeom_out = pjoin(out, "mcgeom.txt") mcgeomvol_out = pjoin(out, "mcgeomvolume.npy") if not os.path.exists(mcgeom_out): geometry.generate_geometry(mcgeom_out, geomvolume, (2.5, 2.5, 2.5)) if not os.path.exists(mcgeomvol_out): with open(mcgeom_out) as fd: size = [int(x) for x in fd.readline().strip('\n').split(' ')] voxelsize = [float(x) for x in fd.readline().strip('\n').split(' ')] start = [float(x) for x in fd.readline().strip('\n').split(' ')] mcgeomvolume = np.zeros(size[::-1]).ravel() for ii, line in enumerate(fd): mcgeomvolume[ii] = float(line.strip('\n').split(' ')[0]) mcgeomvolume = mcgeomvolume.reshape(size[::-1]) np.save(mcgeomvol_out, mcgeomvolume) @menucommand def diff_beamlets(self, parser): parser.add_argument('beamlists', nargs=2, type=str) self.args =parser.parse_args(namespace=self.args) beamlists = [] for beamlist_file in self.args.beamlists: with open(beamlist_file, 'r') as fd: beamlist=[] for line in fd: beamlist.append(ObjectId(line.strip('\n'))) beamlists.append(beamlist) for beama, beamb in zip(*beamlists): beamdoca = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': beama}) beamdocb = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': beamb}) assert beamdoca and beamdocb # extract beamlets def extract_beamlets(beamdoc): beamlets = [] for blt in beamdoc['beamlets']: beamlets.append(blt['position']) return beamlets beamletsa = extract_beamlets(beamdoca) beamletsb = extract_beamlets(beamdocb) assert database.diff_fluence_arrays(beamletsa, beamletsb, verbose=True) @menucommand def test_new_raytrace(self, parser): # get ctdoc, geomdoc, structure_id to test imdoc = database.db[DBCOLLECTIONS.IMAGES].find_one({'doi': "HN010"}) geomdoc = database.db[DBCOLLECTIONS.MCGEOM].find_one({'image_id': imdoc['_id']}) beamlists = { 'P_PTV_5400': [ObjectId(x) for x in [ '5e165b29f7aee215815be409', '5e165b29f7aee215815be532', '5e165b2af7aee215815be641', '5e165b2af7aee215815be7bd', '5e165b2af7aee215815be93e', '5e165b2af7aee215815bea38', '5e165b2af7aee215815beb80', ]], 'P_PTV_5940': [ObjectId(x) for x in [ '5e165c05f7aee215815c088c', '5e165c05f7aee215815c0a96', '5e165c06f7aee215815c0d2d', '5e165c06f7aee215815c0f3c', '5e165c06f7aee215815c10ea', '5e165c07f7aee215815c134d', '5e165c07f7aee215815c15ba', ]], } for ptvname, beamlist in beamlists.items(): beamdocs = list(database.db[DBCOLLECTIONS.BEAMPHOTON].find({'_id': {"$in": beamlist}})) structdoc = None for struct in imdoc['structures']: if struct['name'] == ptvname: structdoc = struct assert len(beamdocs) for x in (imdoc, geomdoc, structdoc, beamdocs[0]): assert '_id' in x # calcluate new raytrace result import geometry for bb, beamdoc in enumerate(beamdocs): mask = database.get_structure_mask(imdoc['_id'], structdoc['_id']) # full sized mask active_beamlets, fmap = geometry.get_active_beamlets( mask=mask, angle_gantry=beamdoc['angle_gantry'], angle_couch=beamdoc['angle_couch'], angle_coll=beamdoc['angle_coll'], iso=beamdoc['isocenter'], start=imdoc['coordsys']['start'], spacing=imdoc['coordsys']['spacing'], fmapdims=beamdoc['fmapdims'], beamletspacing=beamdoc['beamletspacing'], beamletsize=beamdoc['beamletsize'], sad=beamdoc['sad'], ) # extract old raytrace result old_active_beamlets = [] for blt in beamdoc['beamlets']: old_active_beamlets.append(blt['position']) database.diff_fluence_arrays(active_beamlets, old_active_beamlets) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.subplots(2,2) fmapnew = database.make_fluence_array(active_beamlets, beamdoc['fmapdims']) ax[0,0].imshow(fmapnew) ax[0,1].imshow(fmap) fmapold = database.make_fluence_array(old_active_beamlets, beamdoc['fmapdims']) ax[1,0].imshow(fmapold) im =ax[1,1].imshow(fmapnew-fmapold, cmap='RdBu') plt.colorbar(im) fig.savefig('test_{}_{}.png'.format(ptvname, bb)) @menucommand def patchbeamlets(self, parser): """resolve differences between existing beams and replacement fluence maps by deleting unnecessary beamlets and adding newly introduced beamlets """ # for struct in database.db[DBCOLLECTIONS.IMAGES].find_one({"_id": ObjectId("5d9bd5ec4f71a0917827897e")})['structures']: # print('{:30s} {!s:50s}'.format(struct['name'], struct['_id'])) # beamdocs = database.db[DBCOLLECTIONS.BEAMPHOTON].find({"geom_id": ObjectId("5e16564100ad46279500ed4b")}) # for beam in beamdocs: # print(beam['_id'], len(beam['beamlets'])) # return beams = [ { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5400/", 'magnetic_field': [0,0,0.0,'tesla'], 'beam_ids': { "5e165b5df7aee215815bf62e": "fmap-000000.raw", "5e165b5df7aee215815bf757": "fmap-000001.raw", "5e165b5ef7aee215815bf866": "fmap-000002.raw", "5e165b5ef7aee215815bf9e2": "fmap-000003.raw", "5e165b5ef7aee215815bfb63": "fmap-000004.raw", "5e165b5ff7aee215815bfc5d": "fmap-000005.raw", "5e165b5ff7aee215815bfda5": "fmap-000006.raw", } }, { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5400/", 'magnetic_field': [0,0,1.5,'tesla'], 'beam_ids': { "5e165b29f7aee215815be409": "fmap-000000.raw", "5e165b29f7aee215815be532": "fmap-000001.raw", "5e165b2af7aee215815be641": "fmap-000002.raw", "5e165b2af7aee215815be7bd": "fmap-000003.raw", "5e165b2af7aee215815be93e": "fmap-000004.raw", "5e165b2af7aee215815bea38": "fmap-000005.raw", "5e165b2af7aee215815beb80": "fmap-000006.raw", } }, { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5940/", 'magnetic_field': [0,0,0.0,'tesla'], 'beam_ids': { "5e165c24f7aee215815c2639": "fmap-000000.raw", "5e165c25f7aee215815c2843": "fmap-000001.raw", "5e165c25f7aee215815c2ada": "fmap-000002.raw", "5e165c25f7aee215815c2ce9": "fmap-000003.raw", "5e165c25f7aee215815c2e97": "fmap-000004.raw", "5e165c26f7aee215815c30fa": "fmap-000005.raw", "5e165c26f7aee215815c3367": "fmap-000006.raw", } }, { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5940/", 'magnetic_field': [0,0,1.5,'tesla'], 'beam_ids': { "5e165c05f7aee215815c088c": "fmap-000000.raw", "5e165c05f7aee215815c0a96": "fmap-000001.raw", "5e165c06f7aee215815c0d2d": "fmap-000002.raw", "5e165c06f7aee215815c0f3c": "fmap-000003.raw", "5e165c06f7aee215815c10ea": "fmap-000004.raw", "5e165c07f7aee215815c134d": "fmap-000005.raw", "5e165c07f7aee215815c15ba": "fmap-000006.raw", } } ] for beam in beams: for bb, (beam_id, fmapfile) in enumerate( beam['beam_ids'].items() ): fmaps_folder = beam['fmaps_folder'] fmapfile = pjoin(fmaps_folder, fmapfile) fmap = np.squeeze(load_bin(fmapfile, (1, 40, 40))) beamdoc = database.db[DBCOLLECTIONS.BEAMPHOTON].find_one({'_id': ObjectId(beam_id)}) print(beam_id, len(beamdoc['beamlets']), np.count_nonzero(fmap)) # create fmap from database fmap_db = np.zeros((40,40)) for blt in beamdoc['beamlets']: y, x = blt['position'] fmap_db[y, x] = 1.0 save_bin(pjoin(fmaps_folder, 'fmap_from_db-{:06d}.raw'.format(bb)), fmap_db) # delete unnecessary beamlets for blt in beamdoc['beamlets']: if fmap[y, x] <= 0.0: print('deleting beamlet: [x={}, y={}]'.format(x, y)) database.subbeam_delete(beam_id=beam_id, subbeam_id=blt['_id']) # add new beamlets positions_yx = [] for y in range(fmap.shape[0]): for x in range(fmap.shape[1]): if fmap[y, x] > 0 and fmap_db[y, x] <= 0: print('adding beamlet: [x={}, y={}]'.format(x, y)) positions_yx.append((y, x)) # populate new beamlets with simulation specs subbeam_ids = database.subbeam_insert(beam_id=beam_id, positions=positions_yx) for subbeam_id in subbeam_ids: sim_id = database.simulation_insert(beam_id=beam_id, subbeam_id=subbeam_id, vartype=VARTYPE.LOW, num_particles=1e5, magnetic_field=beam['magnetic_field'], num_runs=1) @menucommand def insert_sims_by_geometry(self, parser): """Insert a set of simulation requests for all beamlets assigned to a geometry""" parser.add_argument("geom_id", type=str) self.args = parser.parse_args(namespace=self.args) geomdoc = database.get_doc(DBCOLLECTIONS.MCGEOM, self.args.geom_id) if geomdoc is None: raise RuntimeError("Couldn't find geometry \"{}\"".format(self.args.geom_id)) # simdocs = database.db[DBCOLLECTIONS.SIMULATION].find({ # '$and': [ # {'geom_id': ObjectId(geomdoc['_id'])}, # {'num_particles': {'$lt': 20000}}, # {'date_added': {'$gte': datetime.today()-timedelta(hours=1)}}, # ] # }) # for simdoc in simdocs: # database.simulation_delete(simdoc['_id']) beams = [ { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN011/fluence_maps/", 'magnetic_field': [0,0,1.5,'tesla'], 'beam_ids': { "5e15407dc9c073745a01cb7c": "fmap-000000.raw", "5e15407dc9c073745a01cc75": "fmap-000001.raw", "5e15407ec9c073745a01cd97": "fmap-000002.raw", "5e15407ec9c073745a01ced3": "fmap-000003.raw", "5e15407fc9c073745a01cfe6": "fmap-000004.raw", "5e15407fc9c073745a01d0f4": "fmap-000005.raw", "5e154080c9c073745a01d229": "fmap-000006.raw", } }, { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5400/", 'magnetic_field': [0,0,1.5,'tesla'], 'beam_ids': { "5e165b29f7aee215815be409": "fmap-000000.raw", "5e165b29f7aee215815be532": "fmap-000001.raw", "5e165b2af7aee215815be641": "fmap-000002.raw", "5e165b2af7aee215815be7bd": "fmap-000003.raw", "5e165b2af7aee215815be93e": "fmap-000004.raw", "5e165b2af7aee215815bea38": "fmap-000005.raw", "5e165b2af7aee215815beb80": "fmap-000006.raw", } }, { "fmaps_folder": "/media/hdd1/dosecalc_debug/ryan_fmaps/HN010/fluence_maps_5940/", 'magnetic_field': [0,0,1.5,'tesla'], 'beam_ids': { "5e165c05f7aee215815c088c": "fmap-000000.raw", "5e165c05f7aee215815c0a96": "fmap-000001.raw", "5e165c06f7aee215815c0d2d": "fmap-000002.raw", "5e165c06f7aee215815c0f3c": "fmap-000003.raw", "5e165c06f7aee215815c10ea": "fmap-000004.raw", "5e165c07f7aee215815c134d": "fmap-000005.raw", "5e165c07f7aee215815c15ba": "fmap-000006.raw", } } ] for beam in beams: for beam_id in beam['beam_ids'].keys(): # beamdocs = database.db[DBCOLLECTIONS.BEAMPHOTON].find({'geom_id': ObjectId(self.args.geom_id)}) beamdoc = database.get_doc(DBCOLLECTIONS.BEAMPHOTON, beam_id) for subbeam in beamdoc['beamlets']: for num_particles in [500, 1000, 2000, 5000]: database.simulation_insert(beam_id=beamdoc['_id'], subbeam_id=subbeam['_id'], vartype=VARTYPE.LOW if num_particles>=1e5 else VARTYPE.HIGH, num_particles=num_particles, magnetic_field=[0,0,1.5,'tesla'], num_runs=1) @menucommand def relocate_density_files(self, parser): """iterate through all beamlets and relocate density file to mcgeometry folder where it can be shared to save on disk space """ for geomdoc in database.db[DBCOLLECTIONS.MCGEOM].find(): geom_id = geomdoc['_id'] densfile_path = pjoin(database.build_datapath_geom(geom_id), 'InputDensity.bin') print("Shared density path is \"{}\"".format(densfile_path)) densfile_exists = os.path.isfile(densfile_path) for simdoc in database.db[DBCOLLECTIONS.SIMULATION].find({'geom_id': geom_id}): for sampledoc in simdoc['samples']: oldfile = database.dbabspath(sampledoc['densfile']) if not densfile_exists: # copy this density file to shared location try: shutil.copy2(oldfile, densfile_path) except Exception as e: print(e) densfile_exists = True print('copied file from "{} to "{}'.format(oldfile, densfile_path)) # redirect path to shared file (convert to relative path if necessary) newfile_rel = database.dbrelpath(densfile_path) if sampledoc['densfile'] != newfile_rel: res = database.db[DBCOLLECTIONS.SIMULATION].update_many( filter={ '_id': simdoc['_id'], 'samples._id': sampledoc['_id'], }, update={ '$set': {'samples.$.densfile': newfile_rel} } ) print('updated sample "{}" densfile path to "{}"'.format(sampledoc['_id'], newfile_rel)) # delete redundant file (don't delete relocated/shared file) if oldfile != densfile_path: try: os.remove(oldfile) except: print('failed to delete file: \"{}\"'.format(oldfile)) print('deleted redundant densfile "{}"'.format(oldfile)) # delete additional large/wasteful files for fname in ('run_log.txt', ): filepath = pjoin(database.build_datapath_simulation(simdoc['_id']), fname) try: os.remove(filepath) except Exception as e: print('failed to delete file: \"{}\"'.format(filepath)) print('deleted unnecessary file "{}"'.format(filepath)) # TODO @menucommand def remove_duplicate_beams(self, parser): raise NotImplementedError() repmap = namedtuple("repmap", ("old", "new")) replace_map = [ repmap("<KEY>", "<KEY>"), repmap("5dd5c9974b45cc99f1aa834b", "<KEY>"), repmap("<KEY>", "<KEY>"), repmap("5dd5c9984b45cc99f1aa85a9", "<KEY>"), repmap("<KEY>", "<KEY>"), repmap("5dd5c9984b45cc99f1aa87ca", "5dd5ca4a4b45cc99f1aab6e1"), repmap("5dd5c9994b45cc99f1aa88ff", "<KEY>"), ] for rep in replace_map: # get old beamdoc # for each beamlet in oldbeamdoc # match to correct beamlet in newbeamdoc (by position) # insert simulation objects into newbeamdoc array, and change beam_id and subbeam_id for these simulations # move simulation data from oldbeamdoc to newbeamdoc folder (optional) # delete old beams docs pass @menucommand def insert_new_training_data(self, parser): """Added on 12jan2020 to create new geometry for all images/geoms designated for training/validation Since original geometry had issues with flipped z-axis and swapped beamlet position x and y indices""" # for all HN data associated with train/validate, add new geometry objects and re-generate random assortment # of beams, beamlets, and simulations associated with those new geometries image_uids = [] for imdoc in database.db[DBCOLLECTIONS.IMAGES].find({'doi': {'$not': {"$in": ['HN010', 'HN011']}}}): print(imdoc['doi'], imdoc['_id']) image_uids.append(imdoc['_id']) print() gfd = open('corrupt_geoms.txt', 'w') for image_id in image_uids: print("Image: {}".format(image_id)) # cleanup half-completed geoms for geomdoc in database.db[DBCOLLECTIONS.MCGEOM].find({ 'image_id': image_id, 'date_added': {'$gte': datetime.today()-timedelta(hours=2)}, }): print('deleting geom: "{}"'.format(geomdoc['_id'])) database.geometry_delete(geomdoc['_id']) # add new geoms for oldgeomdoc in list(database.db[DBCOLLECTIONS.MCGEOM].find({'image_id': image_id})): try: nbeams = next(database.db[DBCOLLECTIONS.BEAMPHOTON].aggregate([ {'$match': {'geom_id': oldgeomdoc['_id']}}, {'$count': 'nbeams'} ]))['nbeams'] if nbeams is None or nbeams<=0: raise StopIteration except StopIteration as e: print("Geometry \"{}\" is empty, deletion is possible but not performed now".format(oldgeomdoc['_id'])) # database.geometry_delete(oldgeomdoc['_id']) continue geom_id = database.geometry_insert(image_id=image_id, **oldgeomdoc['coordsys'], ) geomdoc = database.get_doc(DBCOLLECTIONS.MCGEOM, geom_id) database.db[DBCOLLECTIONS.MCGEOM].update_one( filter={'_id': oldgeomdoc['_id']}, update={"$set": {'procstatus.message': 'Corrupt: flipped sim mcgeom'}} ) gfd.write('{!s}\n'.format(oldgeomdoc['_id'])) # create new beams for beamdoc in database.db[DBCOLLECTIONS.BEAMPHOTON].find( {'geom_id': oldgeomdoc['_id']} ): if beamdoc is not None: structure_id = beamdoc['structure_id'] print(" Structure id: {}".format(structure_id)) break assert structure_id is not None structuredoc = next((x for x in database.db[DBCOLLECTIONS.IMAGES].find_one({'_id': image_id})['structures'] if str(x['_id'])==str(structure_id))) actual_isocenter = structuredoc['centroid'] iso_shift = (10, 10, 20) # allowable shift from centroid [units: mm] for angle in
np.random.uniform(0, 2*math.pi, size=40)
numpy.random.uniform
import numpy as np import matplotlib.pyplot as plt import os from utils_examples import generate_synthetic_measure path = os.getcwd() + "/output/" if not os.path.isdir(path): os.mkdir(path) if not os.path.isdir(path + "/paper/"): os.mkdir(path + "/paper/") if not os.path.isdir(path + "/cvrate/"): os.mkdir(path + "/cvrate/") rc = {"pdf.fonttype": 42, 'text.usetex': True, 'text.latex.preview': True, 'text.latex.preamble': [r'\usepackage{amsmath}', r'\usepackage{amssymb}']} plt.rcParams.update(rc) def load_wot_data(): import wot import pandas as pd gene_set_scores = pd.read_csv('data/gene_set_scores.csv', index_col=0) proliferation = gene_set_scores['Cell.cycle'] apoptosis = gene_set_scores['Apoptosis'] # apply logistic function to transform to birth rate and death rate def logistic(x, L, k, x0=0): f = L / (1 +
np.exp(-k * (x - x0))
numpy.exp
# -*- coding: utf-8 -*- """ Created on Fri Feb 8 22:10:13 2019 @author: <NAME> """ import numpy as np from .grid_configuration import config import torch.utils.data import torch import pandas as pd from scipy import signal # hyper parameters use_forcast_weather = 1 # whether to use the forecast data, 1 means True, 0 means False delta_weather = 0 use_filter = 1 # 对获得的Dimensionless trend进行低通滤波 use_ratio = 1 # dimensionless ratio use_mean_ratio = 1 use_different_mean_ratio = 0 # 各个区用不同的ratio (this indicates that each district only uses its own dimensionless trend) use_CV_ratio = 1 # 使用交叉检验中的ratio (this indicates that different groups have different dimensionless trends, and the districts within each group use the same dimensionless trend) use_weather_error_test = 0 # 此时只有test有误差 weather_error_test = 0.0 use_weather_error_train = 1 # 此时只有train有误差, 有利于提升鲁棒性 weather_error_train = 0.05 def ave_ratio (data_origin, use_filter): # the default value of the dimensionless trend. When more accurate expert experience is available, this function can be replaced by the dimensionless trend generated by the expert system. # calculate the average ratio of all the districts # inputs: the original data of all districts # outputs: mean_ratio_all is a (num_districts*num_data) matrix. it is the mean_ratio of all districts # mean_ratio_all_ave is an array with size of (num_data,). it is the average mean_ratio over all districts mean_ratio_all = None for i in range (14): load = data_origin[i] load_raw_array = load.iloc[:, 1] # 32616个ratio input_load = np.array(load_raw_array) data_num = np.shape(input_load)[0] week_num = int(data_num/168) # calculate the number of weeks # reshape loads to (num of hours in one week) * (num of weeks) delet_ID = np.arange(week_num*168, data_num) input_load_del = np.delete( input_load, delet_ID, 0)# 产生整数周的结果 input_load_week = input_load_del.reshape(168, week_num) # 168(num of hours in one week) * num of weeks # calculate the average ratio in one week input_load_week_mean = np.mean(input_load_week, axis=1) print('original:',np.mean(input_load_week_mean)) #print('original:',np.max(input_load_week_mean)-np.min(input_load_week_mean)) if use_filter == True: # 低通滤波 b, a = signal.butter(8, 0.2, 'lowpass') filter_input_load_week_mean = signal.filtfilt(b, a, input_load_week_mean) # 放缩到过滤前ratio的尺度。因为过滤会使得ratio的尺度降低。 filter_input_load_week_mean = (filter_input_load_week_mean-np.min(filter_input_load_week_mean)) / (np.max(filter_input_load_week_mean)-np.min(filter_input_load_week_mean)) input_load_week_mean = filter_input_load_week_mean * (np.max(input_load_week_mean)-np.min(input_load_week_mean)) + np.min(input_load_week_mean) print('filtered:',np.mean(input_load_week_mean)) # generate the average ratio for the length of data_num mean_ratio = None for i in range (week_num+1): if mean_ratio is None: mean_ratio = input_load_week_mean else: mean_ratio = np.hstack((mean_ratio, input_load_week_mean)) delet_ID = np.arange(data_num, np.shape(mean_ratio)[0]) mean_ratio = np.delete( mean_ratio, delet_ID, 0).reshape(1,-1) # save the mean_ratio of all districts if mean_ratio_all is None: # mean_ratio_all is the mean_ratio of all the districts mean_ratio_all = mean_ratio else: mean_ratio_all = np.vstack((mean_ratio_all, mean_ratio)) mean_ratio_all_ave = np.mean(np.delete(mean_ratio_all,[10,13],0), axis=0) # mean_ratio_all_ave is the average of mean_ratio_all over 14 districts #np.savetxt('load_results.csv', np.array(mean_ratio_all).T, delimiter=',') mean_ratio_group1 = (np.sum(np.delete(mean_ratio_all,[10,13],0), axis=0)-mean_ratio_all[4,:]-mean_ratio_all[3,:]-mean_ratio_all[0,:])/9 print('the sum of filtered:',np.mean(np.sum(np.delete(mean_ratio_all,[10,13],0), axis=0))) mean_ratio_group2 = (np.sum(np.delete(mean_ratio_all,[10,13],0), axis=0)-mean_ratio_all[5,:]-mean_ratio_all[7,:]-mean_ratio_all[2,:])/9 mean_ratio_group3 = (np.sum(np.delete(mean_ratio_all,[10,13],0), axis=0)-mean_ratio_all[11,:]-mean_ratio_all[8,:]-mean_ratio_all[6,:])/9 mean_ratio_group4 = (np.sum(np.delete(mean_ratio_all,[10,13],0), axis=0)-mean_ratio_all[12,:]-mean_ratio_all[1,:]-mean_ratio_all[9,:])/9 mean_ratio_group = np.vstack(( np.vstack(( np.vstack(( mean_ratio_group1,mean_ratio_group2 )),mean_ratio_group3 )),mean_ratio_group4 )) print('the group of filtered:',np.mean(mean_ratio_group, axis=1)) #np.savetxt('ratio_group.csv', np.array(mean_ratio_group).T, delimiter=',') return mean_ratio_all, mean_ratio_all_ave, mean_ratio_group # 都是32616长度的。但是在真正预测的时候,对于output,缺少第一天,应该是32592.因此对于预测要删除开头24个 # load data data_origin = [] data_list = ['CY','HD','FT','SJS','PG','YZ','CP', 'MTG','FS','DX','HR','MY','SY','YQ'] # 缺少net 缺少PG,PG天气数据从2010年6月开始,缺失过多 for i in range (14): if use_ratio == True: name = config.data_path + '/data_day_'+ data_list[i] +'.csv' else: name = config.data_path + '/real_data_day_'+ data_list[i] +'.csv' #name = 'E:/Research CYT/grid/enlstm_code/ratio/data/data_day_'+ data_list[i] +'.csv' script = 'df = pd.read_csv(\'{0}\')'.format(name) script2 = 'data_origin.append(df)' exec (script) exec (script2) #print(i) print('shape of df',np.shape(np.array(df))) # 根据各区数据对load分别归一化,生产load_normal load_mean = np.zeros((14, 4)) # 3对应的是load+weather+风速 load_mean_save = np.zeros((14, 1)) load_std = np.zeros((14, 4)) load_std_save = np.zeros((14, 1)) load_normal = [] # 对应正则化后的load和weather,维度为x*1,已经拼接成一列了 # generate the mean_ratio_all if use_mean_ratio == True: mean_ratio_all, mean_ratio_all_ave, mean_ratio_group = ave_ratio (data_origin, use_filter) print ('shape of mean_ratio_all is:', np.shape(mean_ratio_all)) print ('shape of mean_ratio_all_ave is:', np.shape(mean_ratio_all_ave)) #np.savetxt('test.csv', mean_ratio_group.T, delimiter=',') # 生成基本数据 generate the whole dataset and normalize a part of it # generate the load_normal, include load, weather(tem, rhu, wind) for i in range (14): load = data_origin[i] load_raw_array = load.iloc[:, 1:2] if use_mean_ratio == True: if use_different_mean_ratio == True: load_raw_array = load_raw_array - mean_ratio_all[i,:].reshape(-1,1) elif use_CV_ratio == True: load_raw_array = load_raw_array - mean_ratio_group[config.test_set_ID,:].reshape(-1,1) else: load_raw_array = load_raw_array - mean_ratio_all_ave.reshape(-1,1) weather_raw_array = load.iloc[:, 2:5] # calculate the change of weather if delta_weather == True: weather_raw_array =
np.array(weather_raw_array)
numpy.array
# -*- coding: utf-8 -*- """ <NAME> Computational Biologist Target Sciences GSK <EMAIL> """ import numpy as np import matplotlib.pyplot as plt import dataclasses from scipy import stats def get_unique_pcuts(P, max_cuts=1000): uP = np.unique(P)[::-1] uP = np.insert(uP, 0, uP[0] + (uP[0]-uP[1])) if uP.size > 1 else np.insert(uP, 0, 1.01*uP[0]) if uP.size > max_cuts: return uP[np.linspace(0, uP.size-1, max_cuts, dtype='int64')] else: return uP def get_priority_cutoff_metadata(stat_cut, pp_min_frac=0.1, xx_min_frac=0.01): ap = stat_cut.select('ap',[])[0] pp_min = int(np.ceil(ap*pp_min_frac)) xx_min = int(np.ceil(ap*xx_min_frac)) is_qualified_cutoff = np.logical_and((stat_cut.matrix[np.in1d(stat_cut.rowlabels, ['tp', 'fp', 'tn', 'fn']),:] >= xx_min).all(0).reshape(-1), (stat_cut.matrix[stat_cut.rowlabels=='pp',:] >= pp_min).reshape(-1)) if (~is_qualified_cutoff).all(): is_qualified_cutoff[:] = True # if no qualified cutoffs, resort to all cutoffs mcc = stat_cut.select('mcc',[]) ppv = stat_cut.select('ppv',[]) mcc_max = mcc[is_qualified_cutoff].max() ppv_max = ppv[is_qualified_cutoff].max() mcc_idx = np.where(mcc >= mcc_max - 0.01*np.abs(mcc_max))[0][-1] ppv_idx = np.where(ppv >= ppv_max - 0.01*np.abs(ppv_max))[0][-1] p50_idx = np.argmin((stat_cut.select('p',[])-0.5)**2) ppe_idx = np.argmin((stat_cut.select('pp',[])-ap)**2) stat_cut.columnmeta['mcc_cutoff'] = np.arange(stat_cut.shape[1], dtype='int64') == mcc_idx stat_cut.columnmeta['ppv_cutoff'] = np.arange(stat_cut.shape[1], dtype='int64') == ppv_idx stat_cut.columnmeta['p50_cutoff'] = np.arange(stat_cut.shape[1], dtype='int64') == p50_idx stat_cut.columnmeta['ppe_cutoff'] = np.arange(stat_cut.shape[1], dtype='int64') == ppe_idx def get_classifier_performance_stats(Y, P, uP=1000, classifier_stats='all', plot_curves=True, get_priority_cutoffs=True, pp_min_frac=0.1, xx_min_frac=0.01): if type(uP) == int: uP = get_unique_pcuts(P=P, max_cuts=uP).reshape(-1,1) elif len(uP.shape) == 1: uP = uP.reshape(-1,1) if type(classifier_stats) == str: classifier_stats = np.array(['p', 'n', 'ap', 'an', 'pp', 'pn', 'tp', 'fp', 'tn', 'fn', 'tpr', 'fpr', 'auroc', 'fnr', 'tnr', 'mcr', 'acc', 'fdr', 'ppv', 'auprc', 'fomr', 'npv', 'plr', 'nlr', 'dor', 'drr', 'darr', 'mrr', 'marr', 'f1s', 'mcc', 'fnlp'], dtype='object') n = np.float64(Y.size) + 0.2 ap = Y.sum().astype('float64') + 0.1 an = (~Y).sum().astype('float64') + 0.1 pp = (P >= uP).sum(1).astype('float64') + 0.1 pn = (P < uP).sum(1).astype('float64') + 0.1 tp = np.logical_and(P >= uP, Y).sum(1).astype('float64') + 0.05 # if count is 5, then this introduces 1% error fp = np.logical_and(P >= uP, ~Y).sum(1).astype('float64') + 0.05 # so don't take seriously any cut-off where tn = np.logical_and(P < uP, ~Y).sum(1).astype('float64') + 0.05 # any count is less than 5 fn =
np.logical_and(P < uP, Y)
numpy.logical_and
# Read 2 3D-coordinates from .trr trajectory files # input: tpr_filename, the filename of .tpr file in Gromacs # trr_filename, the filename of .trr file in Gromacs # select_atoms_filename#, the filename including a command-line # for keeping trajectory of the selected atoms # output: coordinates#, xyz position of atoms, (#frame x #atoms x 3) # unit_cells, box dimension (#frame x (x,y,z)) # Example: coordinates1, coordinates2, unit_cells = read_coord_trr_3d_select2('topol.tpr','traj.trr','b.select','peo.select') def read_trr_3d_select2(tpr_filename, trr_filename, select_atoms_filename1, select_atoms_filename2, mode): print("io.read_trr_3d_select2:") # import import MDAnalysis import numpy as np # check the arg, mode outmode = np.zeros(3,dtype=bool) # use true and false in python as 1 and 0 if 'pos' in mode: outmode[0] = True if 'vel' in mode: outmode[1] = True if 'forc' in mode: outmode[2] = True if not np.any(outmode): # if all is false raise ValueError(" wrong arg mode {}".format(mode)) ndata = sum(bool(x) for x in outmode) print(" output data #sets = {} by your mode setting {} ".format(ndata,mode)) # read a line of select command-line for MDAnalysis select_command = [] for select_atoms_filename in [select_atoms_filename1, select_atoms_filename2]: if select_atoms_filename is not None: try: open_file = open(select_atoms_filename, 'r') except IOError: raise IOError(" problem with opening ",select_atoms_filename) select_command_temp = open_file.readline().strip() open_file.close() print(" select written in {}: {}".format(select_atoms_filename,select_command_temp)) select_command.append(select_command_temp) else: raise ValueError(" wrong select atom files {}".format(select_atoms_filename)) # Read trajectory using MDAnalysis u = MDAnalysis.Universe(tpr_filename,trr_filename) n_frames = len(u.trajectory) # obtain a set of atom index n_atoms = [] atoms = [] for iselect in select_command: list_atoms = u.select_atoms(iselect).indices print(" You selected {} atoms for selection {}".format(len(list_atoms),iselect)) if len(list_atoms) == 0: raise ValueError(" No atom is selected. {} may be wrong in grammer.".format(iselect)) atoms.append(list_atoms) n_atoms.append(len(list_atoms)) print(" selected total #atoms: {}".format(n_atoms)) # initailize variables if ndata > 1: data1 = np.zeros((ndata, n_frames, n_atoms[0], 3)) data2 = np.zeros((ndata, n_frames, n_atoms[1], 3)) else: data1 = np.zeros((n_frames, n_atoms[0], 3)) data2 = np.zeros((n_frames, n_atoms[1], 3)) unit_cells = np.zeros((n_frames, 6)) # read trajectory print(" starting reading trajectory...") i_frame = 0 mod_frame = process_init() for ts in u.trajectory: try: if ndata == 1: if outmode[0]: tmp = np.array(ts._pos) if outmode[1]: tmp = np.array(ts._velocities) if outmode[2]: tmp = np.array(ts._forces) data1[i_frame, :, :] = tmp[atoms[0]] data2[i_frame, :, :] = tmp[atoms[1]] else: dataset = 0 if outmode[0]: tmp = np.array(ts._pos) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if outmode[1]: tmp = np.array(ts._velocities) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if outmode[2]: tmp = np.array(ts._forces) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if dataset != ndata: raise ValueError(" weird number of data set reading trajectory. {} {}".format(dataset,ndata)) unit_cells[i_frame, :] = ts._unitcell except IndexError: raise ValueError(" There are more coordinates to be read than indicated in the header.") i_frame += 1 mod_frame = process_print(i_frame,n_frames,mod_frame) # check consistency; final i_frame should be the same as # frames if i_frame != n_frames: print(" actual nframes {} in trajectory != the length claimed in header of trajectory {}".format(i_frame, n_frames)) print(" saving trajectory is problem (due to limit of disk quota). Size of your data will be {} by force".format(i_frame)) print(" # frames will be extracted from trajectory = {} (excludes t=0)".format(i_frame-1)) # box info if all(unit_cells[0,:] == unit_cells[1,:]): print(" The system may be in NVT ensemble") else: # for gromacs (tpr, trr files) # unit_cells = [length_x, length_y, length_z, angles, ...] if 'trr' in trr_filename and 'tpr' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][1] == unit_cells[1][1]: print(" may be in NPAT ensemble") else: print(" may be in NPT ensemble") # for openmm (pdb, dcd files) # unit_cells = [length_x, alpha angle, length_y, beta angle, theta angle, length_z] if 'dcd' in trr_filename and 'pdb' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][2] == unit_cells[1][2]: print(" may be in NPAT ensemble") else: print(" may be in NPT ensemble") if ndata == 1: #return data1[0:i_frame-1], data2[0:i_frame-1], unit_cells[0:i_frame-1] return data1[1:i_frame], data2[1:i_frame], unit_cells[1:i_frame] else: return data1[:,1:i_frame,:,:], data2[:,1:i_frame,:,:], unit_cells[1:i_frame] # Read 3D-coordinates from .trr trajectory files # input: tpr_filename, the filename of .tpr file in Gromacs # trr_filename, the filename of .trr file in Gromacs # select_atoms_filename, the filename including a command-line # for keeping trajectory of the selected atoms # output: coordinates, xyz position of atoms, (#frame x #atoms x 3) # unit_cells, box dimension (#frame x (x,y,z)) # Example: coordinates, unit_cells = read_coord_trr_3d('topol.tpr','traj.trr','b.select') def read_trr_3d_select1(tpr_filename, trr_filename, select_atoms_filename=None, mode='pos'): print("read_trr_3d_select1:") # import import MDAnalysis import numpy as np # check the arg, mode outmode = np.zeros(3,dtype=bool) # use true and false in python as 1 and 0 if 'pos' in mode: outmode[0] = True if 'vel' in mode: outmode[1] = True if 'forc' in mode: outmode[2] = True if not np.any(outmode): # if all is false raise ValueError(" wrong arg mode {}".format(mode)) ndata = sum(bool(x) for x in outmode) print(" output data #sets = {} by your mode setting {} ".format(ndata,mode)) # read a line of select command-line for MDAnalysis select_command = [] if select_atoms_filename is not None: try: open_file = open(select_atoms_filename, 'r') except IOError: raise IOError(" problem with opening ",select_atoms_filename) select_command_temp = open_file.readline().strip() open_file.close() print(" select written in {}: {}".format(select_atoms_filename,select_command_temp)) select_command.append(select_command_temp) #else: # raise ValueError(" wrong select atom files {}".format(select_atoms_filename)) # Read trajectory using MDAnalysis u = MDAnalysis.Universe(tpr_filename,trr_filename) n_frames = len(u.trajectory) # obtain a set of atom index n_atoms = [] atoms = [] if select_atoms_filename is not None: for iselect in select_command: list_atoms = u.select_atoms(iselect).indices if len(list_atoms) == 0: raise ValueError(" No atom is selected. {} may be wrong in grammer.".format(iselect)) else: list_atoms = u.select_atoms("all").indices atoms.append(list_atoms) n_atoms.append(len(list_atoms)) print(" selected total #atoms: {}".format(n_atoms)) # initailize variables if ndata > 1: data1 = np.zeros((ndata, n_frames, n_atoms[0], 3)) else: data1 = np.zeros((n_frames, n_atoms[0], 3)) unit_cells = np.zeros((n_frames, 6)) # read trajectory print(" starting reading trajectory...") i_frame = 0 mod_frame = process_init() for ts in u.trajectory: try: if ndata == 1: if outmode[0]: tmp = np.array(ts._pos) if outmode[1]: tmp = np.array(ts._velocities) if outmode[2]: tmp = np.array(ts._forces) data1[i_frame, :, :] = tmp[atoms[0]] else: dataset = 0 if outmode[0]: tmp = np.array(ts._pos) data1[dataset, i_frame, :, :] = tmp[atoms[0]] dataset = dataset + 1 if outmode[1]: tmp = np.array(ts._velocities) data1[dataset, i_frame, :, :] = tmp[atoms[0]] dataset = dataset + 1 if outmode[2]: tmp = np.array(ts._forces) data1[dataset, i_frame, :, :] = tmp[atoms[0]] dataset = dataset + 1 if dataset != ndata: raise ValueError(" weird number of data set reading trajectory. {} {}".format(dataset,ndata)) unit_cells[i_frame, :] = ts._unitcell except IndexError: raise ValueError(" There are more coordinates to be read than indicated in the header.") i_frame += 1 mod_frame = process_print(i_frame,n_frames,mod_frame) # check consistency; final i_frame should be the same as # frames if i_frame != n_frames: print(" actual nframes {} in trajectory != the length claimed in header of trajectory {}".format(i_frame, n_frames)) print(" saving trajectory is problem (due to limit of disk quota). Size of your data will be {} by force".format(i_frame)) print("# frames will be extracted from trajectory = {} (excludes t=0)".format(i_frame-1)) # box info if all(unit_cells[0,:] == unit_cells[1,:]): print("The system may be in NVT ensemble") else: # for gromacs (tpr, trr files) # unit_cells = [length_x, length_y, length_z, angles, ...] if 'trr' in trr_filename and 'tpr' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][1] == unit_cells[1][1]: print("may be in NPAT ensemble") else: print("may be in NPT ensemble") # for openmm (pdb, dcd files) # unit_cells = [length_x, alpha angle, length_y, beta angle, theta angle, length_z] if 'dcd' in trr_filename and 'pdb' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][2] == unit_cells[1][2]: print("may be in NPAT ensemble") else: print("may be in NPT ensemble") if ndata == 1: return data1[1:i_frame], unit_cells[1:i_frame] #return data1[0:i_frame-1], data2[0:i_frame-1], unit_cells[0:i_frame-1] else: return data1[:,1:i_frame,:,:], unit_cells[1:i_frame] # return data1[0]:pos, data1[1]:force if your mode is "pos force" # Read 2 3D-coordinates from .trr trajectory files # input: tpr_filename, the filename of .tpr file in Gromacs # trr_filename, the filename of .trr file in Gromacs # select_atoms_filename#, the filename including a command-line # for keeping trajectory of the selected atoms # output: coordinates#, xyz position of atoms, (#frame x #atoms x 3) # unit_cells, box dimension (#frame x (x,y,z)) # Example: coordinates1, coordinates2, unit_cells = read_coord_trr_3d_select2('topol.tpr','traj.trr','b.select','peo.select') def read_trr_3d_select2(tpr_filename, trr_filename, select_atoms_filename1, select_atoms_filename2, mode): print("io.read_trr_3d_select2:") # import import MDAnalysis import numpy as np # check the arg, mode outmode = np.zeros(3,dtype=bool) # use true and false in python as 1 and 0 if 'pos' in mode: outmode[0] = True if 'vel' in mode: outmode[1] = True if 'forc' in mode: outmode[2] = True if not np.any(outmode): # if all is false raise ValueError(" wrong arg mode {}".format(mode)) ndata = sum(bool(x) for x in outmode) print(" output data #sets = {} by your mode setting {} ".format(ndata,mode)) # read a line of select command-line for MDAnalysis select_command = [] for select_atoms_filename in [select_atoms_filename1, select_atoms_filename2]: if select_atoms_filename is not None: try: open_file = open(select_atoms_filename, 'r') except IOError: raise IOError(" problem with opening ",select_atoms_filename) select_command_temp = open_file.readline().strip() open_file.close() print(" select written in {}: {}".format(select_atoms_filename,select_command_temp)) select_command.append(select_command_temp) else: raise ValueError(" wrong select atom files {}".format(select_atoms_filename)) # Read trajectory using MDAnalysis u = MDAnalysis.Universe(tpr_filename,trr_filename) n_frames = len(u.trajectory) # obtain a set of atom index n_atoms = [] atoms = [] for iselect in select_command: list_atoms = u.select_atoms(iselect).indices print(" You selected {} atoms for selection {}".format(len(list_atoms),iselect)) if len(list_atoms) == 0: raise ValueError(" No atom is selected. {} may be wrong in grammer.".format(iselect)) atoms.append(list_atoms) n_atoms.append(len(list_atoms)) print(" selected total #atoms: {}".format(n_atoms)) # initailize variables if ndata > 1: data1 = np.zeros((ndata, n_frames, n_atoms[0], 3)) data2 = np.zeros((ndata, n_frames, n_atoms[1], 3)) else: data1 = np.zeros((n_frames, n_atoms[0], 3)) data2 = np.zeros((n_frames, n_atoms[1], 3)) unit_cells = np.zeros((n_frames, 6)) # read trajectory print(" starting reading trajectory...") i_frame = 0 mod_frame = process_init() for ts in u.trajectory: try: if ndata == 1: if outmode[0]: tmp = np.array(ts._pos) if outmode[1]: tmp = np.array(ts._velocities) if outmode[2]: tmp = np.array(ts._forces) data1[i_frame, :, :] = tmp[atoms[0]] data2[i_frame, :, :] = tmp[atoms[1]] else: dataset = 0 if outmode[0]: tmp = np.array(ts._pos) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if outmode[1]: tmp = np.array(ts._velocities) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if outmode[2]: tmp = np.array(ts._forces) data1[dataset, i_frame, :, :] = tmp[atoms[0]] data2[dataset, i_frame, :, :] = tmp[atoms[1]] dataset = dataset + 1 if dataset != ndata: raise ValueError(" weird number of data set reading trajectory. {} {}".format(dataset,ndata)) unit_cells[i_frame, :] = ts._unitcell except IndexError: raise ValueError(" There are more coordinates to be read than indicated in the header.") i_frame += 1 mod_frame = process_print(i_frame,n_frames,mod_frame) # check consistency; final i_frame should be the same as # frames if i_frame != n_frames: print(" actual nframes {} in trajectory != the length claimed in header of trajectory {}".format(i_frame, n_frames)) print(" saving trajectory is problem (due to limit of disk quota). Size of your data will be {} by force".format(i_frame)) print(" # frames will be extracted from trajectory = {} (excludes t=0)".format(i_frame-1)) # box info if all(unit_cells[0,:] == unit_cells[1,:]): print(" The system may be in NVT ensemble") else: # for gromacs (tpr, trr files) # unit_cells = [length_x, length_y, length_z, angles, ...] if 'trr' in trr_filename and 'tpr' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][1] == unit_cells[1][1]: print(" may be in NPAT ensemble") else: print(" may be in NPT ensemble") # for openmm (pdb, dcd files) # unit_cells = [length_x, alpha angle, length_y, beta angle, theta angle, length_z] if 'dcd' in trr_filename and 'pdb' in tpr_filename: if unit_cells[0][0] == unit_cells[1][0] and unit_cells[0][2] == unit_cells[1][2]: print(" may be in NPAT ensemble") else: print(" may be in NPT ensemble") if ndata == 1: #return data1[0:i_frame-1], data2[0:i_frame-1], unit_cells[0:i_frame-1] return data1[1:i_frame], data2[1:i_frame], unit_cells[1:i_frame] else: return data1[:,1:i_frame,:,:], data2[:,1:i_frame,:,:], unit_cells[1:i_frame] # Read some 3D-coordinates from .trr trajectory files # input: tpr_filename, the filename of .tpr file in Gromacs # trr_filename, the filename of .trr file in Gromacs # select_atoms_filename#, the filename including a command-line # for keeping trajectory of the selected atoms # output: coordinates#, xyz position of atoms, (#frame x #atoms x 3) # unit_cells, box dimension (#frame x (x,y,z)) # Example: coordinates, unit_cells = read_coord_trr_3d_select2('topol.tpr','traj.trr','b.select','peo.select') def read_trr_3d_selects(tpr_filename, trr_filename, select_filename, mode): print("io.read_trr_3d_selects: ######## INCOMPLETE coding #### ") # import import MDAnalysis import numpy as np # check the arg, mode outmode = np.zeros(3,dtype=bool) # use true and false in python as 1 and 0 if 'pos' in mode: outmode[0] = True if 'vel' in mode: outmode[1] = True if 'forc' in mode: outmode[2] = True if not np.any(outmode): # if all is false raise ValueError(" wrong arg mode {}".format(mode)) ndata = sum(bool(x) for x in outmode) print(" output data #sets = {} by your mode setting {} ".format(ndata,mode)) # read a line of select command-line for MDAnalysis select_command = [] if select_filename is not None: try: open_file = open(select_filename, 'r') except IOError: raise IOError(" problem with opening ",select_atoms_filename) for line in oepn_file: iline = line.strip() # line is blank or comment line if not iline or iline.startswith('#') or iline.startswith('@'): continue print(" select written in {}: {}".format(select_filename,iline)) select_command.append(iline) n_select = len(select_command) open_file.close() else: raise ValueError(" wrong select atom files {}".format(select_atoms_filename)) # Read trajectory using MDAnalysis u = MDAnalysis.Universe(tpr_filename,trr_filename) n_frames = len(u.trajectory) # obtain a set of atom index n_atoms = [] atoms = [] for iselect in select_command: list_atoms = u.select_atoms(iselect).indices if len(list_atoms) == 0: raise ValueError(" No atom is selected. {} may be wrong in grammer.".format(iselect)) atoms.append(list_atoms) n_atoms.append(len(list_atoms)) print(" selected total #atoms: {}".format(n_atoms)) ######################################## followings are not complete # initailize variables with zeros if ndata > 1: data1 = np.zeros((ndata, n_frames, n_atoms[0], 3)) data2 = np.zeros((ndata, n_frames, n_atoms[1], 3)) else: data1 = np.zeros((n_frames, n_atoms[0], 3)) data2 = np.zeros((n_frames, n_atoms[1], 3)) unit_cells =
np.zeros((n_frames, 6))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # S_EnsembleFlexProbs [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=S_EnsembleFlexProbs&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ExerEnsembleFP). # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) from collections import namedtuple import numpy as np from numpy import arange, array, ones, diff, abs, log, exp, sqrt, r_ from numpy import sum as npsum, min as npmin, max as npmax from scipy.io import loadmat import matplotlib.pyplot as plt from matplotlib.pyplot import figure, bar, legend, xlim, ylim, scatter, ylabel, \ xlabel, title, xticks, yticks import matplotlib.dates as mdates plt.style.use('seaborn') np.seterr(all='ignore') from CONFIG import GLOBAL_DB, TEMPORARY_DB from ARPM_utils import save_plot, struct_to_dict, date_mtop from intersect_matlab import intersect from HistogramFP import HistogramFP from RollPrices2YieldToMat import RollPrices2YieldToMat from EffectiveScenarios import EffectiveScenarios from ConditionalFP import ConditionalFP from Stats import Stats from ColorCodedFP import ColorCodedFP # - # ## Upload data # + try: db = loadmat(os.path.join(GLOBAL_DB, 'db_Stocks'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_Stocks'), squeeze_me=True) SPX = struct_to_dict(db['SPX']) try: db = loadmat(os.path.join(GLOBAL_DB, 'db_VIX'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_VIX'), squeeze_me=True) VIX = struct_to_dict(db['VIX']) try: db = loadmat(os.path.join(GLOBAL_DB, 'db_SwapCurve'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_SwapCurve'), squeeze_me=True) DF_Rolling = struct_to_dict(db['DF_Rolling']) # - # ## Recover the invariants and the time series of the conditioning variables # + # invariants (S&P500 returns) epsi = diff(log(SPX.Price_close)) # CONDITIONING VARIABLES # 1) VIX (VIX.value) # 2) 5years Swap Zero Rate ZeroRates,_ = RollPrices2YieldToMat(DF_Rolling.TimeToMat, DF_Rolling.Prices) zr5 = ZeroRates[DF_Rolling.TimeToMat == 5,:] # merging datasets date,_,_ = intersect(intersect(SPX.Date[1:], VIX.Date), DF_Rolling.Dates) _, i_spx,_ = intersect(SPX.Date[1:], date) _, i_vix,_ = intersect(VIX.Date, date) _, i_zr,_ = intersect(DF_Rolling.Dates, date) epsi = epsi[i_spx].reshape(1,-1) z1 = VIX.value[i_vix].reshape(1,-1) z2 = zr5[0,i_zr].reshape(1,-1) t_ = len(date) # - # ## Compute the Flexible Probabilities conditioning on each of the two factors # + alpha = 0.3 # prior lam = log(2) / 1080 prior = exp(-lam*abs(arange(t_, 1 + -1, -1))).reshape(1,-1) prior = prior / npsum(prior) # flex. probs conditioned on VIX (z1) VIXcond = namedtuple('conditioner', ['Series', 'TargetValue', 'Leeway']) VIXcond.Series = z1 VIXcond.TargetValue = np.atleast_2d(z1[0,-1]) VIXcond.Leeway = alpha p1 = ConditionalFP(VIXcond, prior) # flex. probs conditioned on the swap rate (z2) ZRcond = namedtuple('conditioner', ['Series', 'TargetValue', 'Leeway']) ZRcond.Series = z2 ZRcond.TargetValue = np.atleast_2d(z2[[0],[-1]]) ZRcond.Leeway = alpha p2 = ConditionalFP(ZRcond, prior) # - # ## Compute the respective Effective Number of Scenarios and the diversity indicator # + # effective number of scenarios typ = namedtuple('type','Entropy') typ.Entropy = 'Exp' ens1 = EffectiveScenarios(p1, typ) ens2 = EffectiveScenarios(p2, typ) # diversity indicator rho2_12 = npsum(sqrt(p1*p2)) # overlap: Bhattacharyya coefficient dd12 = sqrt(1 - rho2_12) # Hellinger distance d1 = dd12 # Diversity d2 = d1 # - # ## Weights of the Flexible Probabilities Ensemble Posterior weights = r_[ens1*d1, ens2*d2] weights = weights / npsum(weights) # ## Optimal set of Flex. Probs as log-mixture opt_p = exp(weights[0]*log(p1) + weights[1]*log(p2)) opt_p = opt_p /
npsum(opt_p)
numpy.sum
# -*- coding: utf-8 -*- """ ====== lockin ====== This module contains classes and functions for performing digital lock-in amplifier data analysis. """ from __future__ import division, absolute_import, print_function import numpy as np from scipy import signal, optimize import matplotlib as mpl import matplotlib.pyplot as plt import h5py import pandas as pd import sigutils from scipy.signal.signaltools import _centered from kpfm.util import next_fast_len class LockIn(object): """A basic digital lock-in amplifier. Run an input signal x through a digital lock-in amplifier. A finite impulse response (FIR) lock-in filter can be provided by `lock` or `lock2`, or a custom FIR filter can be used by directly calling `run`. After generating the complex lock-in output, the lock-in can be phased by running `phase`, or `autophase`. After phasing, the lock-in output channels are X, the in-phase channel and Y, the out-of-phase channel. Parameters ---------- t: array_like Time array x: array_like Input signal array fs: float Sampling rate Example ------- >>> fs = 1000.0 >>> t = np.arange(1000)/fs >>> A = 1 - 0.1 * t >>> f = 80 + 0.1 * t >>> x = A * np.sin(np.cumsum(f)*2*np.pi/fs) >>> li = LockIn(t, x, fs) We process the data with a 20 Hz bandwidth lock-in amplifier filter. >>> li.lock(bw=20.0) Response: f mag dB 0.000 1.000 0.000 10.000 0.996 -0.035 20.000 0.500 -6.022 40.025 0.000 -91.020 80.051 0.000 -113.516 500.000 0.000 -204.987 The lock-in amplifier automatically infers the reference frequency. The printed response shows the lock-in amplifier gain at different frequencies. For the output to be valid the gain at the reference frequency must be very small (-60 dB or smaller). We phase the lock-in amplifier output, and then have the lock-in variables available for use. >>> li.phase() >>> li('t') # Shortcut for accessing masked version of the signal. """ def __init__(self, t, x, fs=None): self.t = t self.x = x if fs is not None: self.fs = fs else: self.fs = 1/np.mean(np.gradient(t)) self.f0_est = freq_from_fft(self.x, self.fs) @classmethod def from_x(Cls, x, fs, t0=0): """Generate the time array internally.""" t = t0 + np.arange(x.size) / fs return Cls(t, x, fs) def __call__(self, key): """Shorthand for validly masked section of any data array.""" return getattr(self, key)[self.m] def __repr__(self): f0 = getattr(self, 'f0', self.f0_est) return "LockIn(f0={})".format(f0) def run(self, f0=None, fir=None): """Run the lock-in amplifier at reference frequency ``f0``, using the finite impulse response filter ``fir``. """ if f0 is None: self.f0 = f0 = self.f0_est else: self.f0 = f0 if fir is not None: self.fir = fir self.z = z = signal.fftconvolve(self.x * np.exp(-2j*np.pi*f0*self.t), 2*self.fir, "same") n_fir = self.fir.size indices = np.arange(self.t.size) # Valid region mask # This is borrowed explicitly from scipy.signal.sigtools.fftconvolve self.m = m = np.zeros_like(self.t, dtype=bool) mask_indices = _centered(indices, self.t.size - n_fir + 1) if n_fir % 2 == 0: mask_indices += 1 self.m[mask_indices] = True self.A = abs(self.z) self.phi = np.angle(self.z) def lock(self, bw=None, f0=None, bw_ratio=0.5, coeff_ratio=9., coeffs=None, window='blackman'): """Standard, windowed finite impulse response filter.""" t = self.t fs = self.fs if f0 is None: self.f0 = f0 = self.f0_est else: self.f0 = f0 if bw is None: if bw_ratio > 1: raise ValueError("Bandwidth ratio 'bw_ratio' must be < 1 (bw_ratio={}".format(bw_ratio)) bw = bw_ratio * f0 / (self.fs/2) else: bw = bw / (self.fs/2) if coeffs is None: coeffs = round(coeff_ratio / bw, 0) if coeffs > self.x.size: raise ValueError( """No valid output when 'coeffs' > t.size (coeffs: {}, t.size: {}). Reduce coeffs by increasing bw, bw_ratio, or decreasing coeff_ratio, or provide more data.""".format(coeffs, t.size)) self.fir = b = signal.firwin(coeffs, bw, window=window) w, rep = signal.freqz(b, worN=np.pi*np.array([0., bw/2, bw, f0/self.fs, f0/(self.fs/2.), 1.])) print("Response:") _print_magnitude_data(w, rep, fs) self.run(f0=f0) def lock2(self, f0=None, fp_ratio=0.1, fc_ratio=0.4, coeff_ratio=8, fp=None, fc=None, coeffs=None, window='blackman', print_response=True): t = self.t fs = self.fs if f0 is None: self.f0 = f0 = self.f0_est else: self.f0 = f0 if fp is None: fp = fp_ratio * f0 if fc is None: fc = fc_ratio * f0 self.fir = b = lock2(f0, fp, fc, fs, coeff_ratio, coeffs, window, print_response=print_response) if coeffs > self.x.size: raise ValueError( """No valid output when 'coeffs' > t.size (coeffs: {}, t.size: {}). Reduce coeffs by increasing bw, bw_ratio, decreasing coeff_ratio, or provide more data.""".format(coeffs, t.size)) self.run(f0=f0) def lock_butter(self, N, f3dB, t_exclude=0, f0=None, print_response=True): """Butterworth filter the lock-in amplifier output""" t = self.t fs = self.fs nyq = fs / 2. f3dB = f3dB / nyq self.iir = ba = signal.iirfilter(N, f3dB, btype='low') if f0 is None: self.f0 = f0 = self.f0_est self.z = z = signal.lfilter(self.iir[0], self.iir[1], self.z) # TODO: Fix accounting on final / initial point m = self.m self.m = self.m & (t >= (t[m][0] + t_exclude)) & (t < (t[m][-1] - t_exclude)) self.A = abs(self.z) self.phi = np.angle(self.z) if print_response: w, rep = signal.freqz(self.iir[0], self.iir[1], worN=np.pi*np.array([0., f3dB/2, f3dB, 0.5*f0/nyq, f0/nyq, 1.])) print("Response:") _print_magnitude_data(w, rep, fs) def _output_df_X_Y(self): """Helper function for outputting frequency shift and lock-in X, Y channels after phasing.""" self.df = np.gradient(self.dphi) * self.fs / (2*np.pi) self.Z = np.exp(-1j*self.phi_fit) * self.z self.X = self.Z.real self.Y = self.Z.imag def manual_phase(self, phi0, f0corr=None): "Manually phase the lock-in output with phase phi0 (in radians)." self.phi0 = phi0 if f0corr is not None: self.f0corr = f0corr delta_f0 = f0corr - self.f0 else: self.f0corr = self.f0 delta_f0 = 0.0 self.phi_fit = self.t * delta_f0 * 2 * np.pi + self.phi0 self.dphi = np.unwrap(((self.phi - self.phi_fit + np.pi) % (2*np.pi)) - np.pi) self._output_df_X_Y() def autophase(self, ti=None, tf=None, unwrap=False, x0=[0., 0.], adjust_f0=True): t = self.t m = self.m z = self.z if unwrap: phi = np.unwrap(self.phi) else: phi = self.phi if ti is None and tf is None: mask = m elif ti is not None and tf is None: mask = m & (t >= ti) elif ti is None and tf is not None: mask = m & (t < tf) else: mask = m & (t >= ti) & (t < tf) self.mb = mb = auto_phase(t[mask], phi[mask], x0, adjust_f0=adjust_f0) self.phi0 = mb[-1] self.phi_fit = np.polyval(mb, t) self.dphi = np.unwrap(( (self.phi - self.phi_fit + np.pi) % (2*np.pi)) - np.pi) if adjust_f0: self.f0corr = self.f0 + mb[0] / (2*np.pi) else: self.f0corr = self.f0 self._output_df_X_Y() def phase(self, ti=None, tf=None, weight=True, adjust_f0=True): t = self.t m = self.m z = self.z poly_order = int(adjust_f0) if ti is None and tf is None: mask = m elif ti is not None and tf is None: mask = m & (t >= ti) elif ti is None and tf is not None: mask = m & (t < tf) else: mask = m & (t >= ti) & (t < tf) phi = np.unwrap(self.phi[mask]) std = np.std(self.phi[mask]) phi_norm = phi / std try: if weight: A = abs(z[mask]) / np.std(abs(z[mask])) self.mb = mb = np.polyfit(t[mask], phi_norm, poly_order, w=A) * std else: self.mb = mb = np.polyfit(t[mask], phi_norm, poly_order) * std except TypeError: print(t) print(ti) print(tf) raise self.phi_fit = np.polyval(mb, t) self.dphi = np.unwrap(((self.phi - self.phi_fit + np.pi) % (2*np.pi)) - np.pi) self.phi0 = mb[-1] if adjust_f0: self.f0corr = self.f0 + mb[0] / (2*np.pi) else: self.f0corr = self.f0 self._output_df_X_Y() def decimate(self, factor=None): if factor is None: factor = int(self.fs//self.f0) self.dec_t = self.t[self.m][::factor] self.dec_phi = self.dphi[self.m][::factor] self.dec_A = self.A[self.m][::factor] self.dec_df = self.df[self.m][::factor] self.dec_f0 = self.f0 self.dec_fs = self.fs/factor self.dec_z = self.z[self.m][::factor] def phase_dec(self, ti=None, tf=None, weight=True): t = self.dec_t m = np.ones_like(self.dec_z, dtype=bool) z = self.dec_z if ti is None and tf is None: mask = m elif ti is not None and tf is None: mask = m & (t >= ti) elif ti is None and tf is not None: mask = m & (t < tf) else: mask = m & (t >= ti) & (t < tf) phi = np.unwrap(np.angle(z)) std = np.std(phi[mask]) phi_norm = phi / std try: if weight: A = abs(z[mask]) / np.std(abs(z[mask])) self.mb = mb = np.polyfit(t[mask], phi_norm[mask], 1, w=A) * std else: self.mb = mb = np.polyfit(t[mask], phi_norm[mask], 1) * std except TypeError: print(t) print(ti) print(tf) raise phi_fit = np.polyval(mb, t) dphi = np.unwrap(((phi - phi_fit + np.pi) % (2*np.pi)) - np.pi) df = np.gradient(dphi) * self.dec_fs / (2*np.pi) self.f0_dec_direct = self.f0 + mb[0] / (2*np.pi) def absolute_phase(self, mask, guess=0.0): """Perform a curve fit """ phi = self.phi[mask] + self.t[mask]*2*np.pi*self.f0corr popt, pcov = curve_fit(lambda phi, phi0: self.A[mask]*
np.cos(phi+phi0)
numpy.cos
import numpy as np from base_class import TabularRLModel from schedules import LinearSchedule, ExponentialSchedule from gym.spaces import Tuple, Discrete import cloudpickle as pickle remove = ['hvalues', 'qvalues', 'policy'] class QTabularRLModel(TabularRLModel): def __init__( self, policy, env, gamma=0.99, learning_rate=1e-2, buffer_size=None, exploration_type='linear', exploration_frac=None, exploration_ep=250, exploration_initial_eps=1., exploration_final_eps=0.05, double_q=False, policy_kwargs=None, seed=None, intent=False ): super(QTabularRLModel, self).__init__( policy, env, gamma, learning_rate, buffer_size, exploration_type, exploration_frac, exploration_ep, exploration_initial_eps, exploration_final_eps, double_q, policy_kwargs, seed, intent ) self._aliases() def _aliases(self): self.qvalues = self.policy.qvalues if self.policy.intent: self.hvalues = self.policy.hvalues def learn(self, total_timesteps=None, total_episodes=None, log_interval=100, ckpt_interval=100, ckpt_path=None): last_100rewards = np.zeros(100) last_100rewards[:] = np.NaN if total_timesteps and total_episodes: raise ValueError("Only one of total_timesteps or total_episodes can be specified") if ckpt_path is None: print('Checkpoint path is not provided, no intermediate models will be saved') loop_type = 'episode' if total_episodes else 'timesteps' loop_var = total_timesteps if total_timesteps is not None else total_episodes # if self.exploration_frac is None: # self.exploration = LinearSchedule(frac=self.exploration_ep, # initial=self.exploration_initial_eps, # final=self.exploration_final_eps) # else: # self.exploration = LinearSchedule(frac=self.exploration_frac * loop_var, # initial=self.exploration_initial_eps, # final=self.exploration_final_eps) if self.exploration_type == 'linear': self.exploration = LinearSchedule( frac=self.exploration_frac * loop_var, initial=self.exploration_initial_eps, final=self.exploration_final_eps) elif self.exploration_type == 'exponential': self.exploration = ExponentialSchedule( frac=self.exploration_frac, initial=self.exploration_initial_eps, final=self.exploration_final_eps) train = True done = False step = 0 ep_reward = 0 obs = self.env.reset() while train: if loop_type == 'episode': update_eps = self.exploration.value(self.ep_done) if loop_type == 'timesteps': update_eps = self.exploration.value(self.elapsed_steps) if np.random.random_sample() > update_eps: action, value = self.policy.predict(obs, deterministic=True) else: action, value = self.policy.predict(obs, deterministic=False) next_obs, reward, done, info = self.env.step(action) # print(step, next_obs, self.qvalues[next_obs]) # argmax_a = np.argmax(self.qvalues[next_obs]) # argmax_a, _ = self.policy.predict(obs, deterministic=True) argmax_a = np.argmax(self.qvalues[next_obs]) if isinstance(self.observation_space, Tuple): # print(obs, action) expected_reward = reward + self.gamma*self.qvalues[next_obs + (argmax_a,)]*(1-int(done))-self.qvalues[obs + (action,)] self.qvalues[obs + (action,)] += self.learning_rate * expected_reward if self.policy.intent: intent_update = np.zeros(self.qvalues.shape) intent_update[obs + (action,)] += 1 expected_intent = intent_update + self.gamma * self.hvalues[next_obs + (argmax_a,)] * (1-int(done)) - self.hvalues[obs + (action,)] self.hvalues[obs + (action,)] = self.hvalues[obs + (action,)] + self.learning_rate * expected_intent if isinstance(self.observation_space, Discrete): expected_reward = reward + self.gamma*np.max(self.qvalues[next_obs])*(1-int(done))-self.qvalues[obs, action] self.qvalues[obs, action] += self.learning_rate * expected_reward if self.policy.intent: intent_update =
np.zeros(self.qvalues.shape)
numpy.zeros
""" This is the Signal Processor that extracts data from images from the fluoro-sequencer microscope. Nomenclature Field One position of the X/Y stage Channel One wavelength of measured light Cycle One chemical cycle (Pre, Mock or Edman) Anomaly An area of an image that has a problem (dust, etc) Raw image Unmodified images Balance image A raw image scaled to compensate for uneven illumination Aligned field stack The stage is not perfect and may not return to exactly the same position each cycle, a computational alignment correction finds the optimal X/Y translation. Border The extra dead space that is added to an aligned field stack to ensure that all images are visible. Composite image When 1+ of the channels/cycles for a field are stacked Background removed image When an image has the background subtracted. This may result in negative values so be careful when displaying. Fiducial images Any image (may just be a transform of raw data) that is intended only to enhance the alignment algorithm. Peak A spot found that, presumably, is generated by a single molecule. Radmat (aka "Radiometry Matrix") A matrix such that each row is a peak and each column is a measurement of brightness (using area-under-the-curve of the peak) for each channel/cycle. Sometimes stored flatten (n_cycles * n_channel) cy_ims A set of images through all cycles for one field/channel. chcy_ims A set of images for all channel/cycles for one field. roi A Region Of Interest """ import numpy as np import scipy import cv2 from scipy.stats import norm import math import pandas as pd from scipy import ndimage from munch import Munch from plaster.tools.utils.utils import safe_list_get, is_power_of_2 from plaster.tools.zap import zap from plaster.tools.image import imops from plaster.tools.image.coord import XY, YX, WH, HW, ROI, Rect from plaster.tools.schema import check from plaster.run.sigproc_v1.sigproc_v1_result import SigprocV1Result def _flatten(s): return np.reshape(s, (s.shape[0], s.shape[1] * s.shape[2])) def _quality(im): """ Measure the quality of an image by spatial low-pass filter. High quality images are one where there is very little low-frequency (but above DC) bands. """ a = np.copy(im) a -= np.mean(a) power = np.abs(np.fft.fftshift(np.fft.fft2(a))) power[power == 0] = 1 cen = YX(power.shape) / 2 dim_half = 3 dim = HW(dim_half * 2 + 1, dim_half * 2 + 1) roi = ROI(cen, dim, center=True) im = power[roi] eigen = imops.eigen_moments(im) score = power.sum() / np.sqrt(eigen.sum()) return score def _find_anomalies(cy_ims, iqr_bounds): """ Given a cy stack of images for a field, find the anomalies. Arguments: cy_ims: array (n_cycles, height, width) iqr_bounds: The inter-quartile-range to use on the distribution to things outside of the normal range. Returns: List of bad rects for each cycle (List[n_cycles] of lists) """ import skimage # Defer slow imports import skimage.transform # Defer slow imports from scipy.stats import iqr # Defer slow imports def slice_im_into_squares(im, sub_dim): # Crazy numpy kung-foo. By reshaping the image into a four-dimensional # array I can then use the np.mean on the inner dimensions. r, c = im.shape assert r == c and r % sub_dim == 0 im = im.reshape(r // sub_dim, sub_dim, r // sub_dim, sub_dim) # At this point, im is now 4-dimensional like: 256, 2, 256, 2 # But we want the 2, 2 next to each other for simplicity so swap the inner axes im = im.swapaxes(1, 2) # Now its shape is: 256, 256, 2, 2. return im def dens_squares(frame, subdim): assert frame.ndim == 2 squares = slice_im_into_squares(frame, subdim) # squares is like: 256, 256, 2, 2. So we need the mean of the last two axes return np.mean(squares, axis=(2, 3)) assert cy_ims.ndim == 3 and cy_ims.shape[1] == cy_ims.shape[2] subdim = 4 n_cycles = cy_ims.shape[0] dens_per_cycle = np.array( [dens_squares(cy_ims[cy], subdim) for cy in range(n_cycles)] ) # Use IQR to set the threshold of what will be considered an anomaly across all cycles den_threshold = np.median(dens_per_cycle) + scipy.stats.iqr( dens_per_cycle, rng=(100 - iqr_bounds, iqr_bounds) ) # FIND the bad rects for each cycle bad_rects_by_cycle = [] bad_by_cycle = [] mask_by_cycle = [] for cy in range(n_cycles): bad_rects = [] im = cy_ims[cy] dens = dens_per_cycle[cy] bad_mask = np.zeros_like(dens) bad_mask[dens > den_threshold] = 1 # EXPAND the bad areas by erosion and dilate. # Erosion gets rid of the single-pixel hits and dilation expands the bad areas kernel = np.ones((3, 3), np.uint8) mask = cv2.erode(bad_mask, kernel, iterations=1) mask = cv2.dilate(mask, kernel, iterations=3) scale = im.shape[0] // mask.shape[0] full_size_mask = skimage.transform.rescale( mask, scale=scale, multichannel=False, mode="constant", anti_aliasing=False ).astype(bool) # FIND rect contours of bad areas contours, hierarchy = cv2.findContours( full_size_mask.astype("uint8"), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE ) for cnt in contours: bad_rects += [cv2.boundingRect(cnt)] bad_rects_by_cycle += [bad_rects] bad_by_cycle += [bad_mask] mask_by_cycle += [mask] return bad_rects_by_cycle, dens_per_cycle, bad_by_cycle, mask_by_cycle def _mask_anomalies(cy_ims, bad_rects_by_cycle): """ Given a cycle stack of images and the list of bad rects, fill all these rects with background noise so that the aligner won't be confused by those anomalies. Arguments: cy_ims: array (n_cycles, height, width) bad_rects_by_cycle: List of bad rects for each cycle Returns: A copy of cy_ims with the bad rects masked with noise """ assert cy_ims.ndim == 3 and cy_ims.shape[1] == cy_ims.shape[2] n_cycles, _, _ = cy_ims.shape masked_ims = np.zeros_like(cy_ims) for cy in range(n_cycles): src_im = cy_ims[cy] bad_rects = bad_rects_by_cycle[cy] # MAKE a mask_im with 0 inside bad rects, 1 otherwise mask_im = np.ones_like(src_im) for rect in bad_rects: imops.fill( mask_im, loc=XY(rect[0], rect[1]), dim=WH(rect[2], rect[3]), val=0 ) # FIND the characteristics of a normal distribution that fits the # data that is not masked out (that is, we don't want the anomalies # in this distribution). If src_im is entirely masked, mean=std=0. # TASK: This could be accelerated by subsampling. mean = std = 0 if np.any(mask_im): mean, std = norm.fit(src_im[mask_im > 0]) bg_noise = norm.rvs(loc=mean, scale=std, size=src_im.shape, random_state=None) masked_ims[cy] = np.where(mask_im < 1, bg_noise, src_im) return masked_ims def _roi_from_edges(b, t, l, r): return ROI(loc=YX(b, l), dim=HW(t - b, r - l)) def _hat_masks(hat_rad, brim_rad): """ Returns hat and brim boolean masks. brim_rad is from the center, _not_ in addition to hat_rad """ mea = 2 * brim_rad + 1 hat = imops.generate_circle_mask(hat_rad, mea) brim = imops.generate_circle_mask(brim_rad, mea) brim = brim & ~hat return hat, brim def _remove_nans_from_radiometry(signal, noise, localbg): assert signal.shape == noise.shape flat_sig = _flatten(signal) flat_noi = _flatten(noise) flat_lbg = _flatten(localbg) nan_rows = np.any( np.isnan(flat_sig) | np.isnan(flat_noi) | np.isnan(flat_lbg), axis=1 ) rows = np.argwhere(nan_rows) signal[rows, :, :] = 0.0 noise[rows, :, :] = 0.0 localbg[rows, :, :] = 0.0 def _radiometry(im, loc, dim, bg_bias, localbg_mask): """ Arguments: im: 2D image (some field, channel, cycle) loc: the (y,x) coordinates of the peak dim: the integer dimensions of the mask bg_bias: the background bias to remove Returns: signal, noise (or NAN if something goes wrong). Both are always non-negative localbg: The median of a surrounding aria After a careful analysis considering three types of radiometers the Kernel Method was chosen The others considered were: * Hat method where the signal is the sum(hat_pixel - brim_median). * This is fast but scores poorly compared to Kernel Method. And, it can not estimate noise. * Fitted method where a 2D Gaussian is fit to the data. * This method is very expensive, fails to converge in various edge cases, and doesn't score any better than the Kernel Method. * Kernel method (chosen) where a center-of-mass calculation is used to generate a unit-area Gaussian Kernel which is then used to weigh the peak data. Noise can be estimated by squaring that mask and then computing residuals. """ assert localbg_mask.shape[0] == dim[0] and localbg_mask.shape[1] == dim[1] roi = ROI(loc, dim, center=True) nans = (np.nan, np.nan, np.nan) # REJECT if too near edges if ( roi[0].start < 0 or roi[1].start < 0 or roi[0].stop >= im.shape[0] or roi[1].stop >= im.shape[1] ): return nans peak_im = im[roi[0], roi[1]] localbg = np.median(peak_im[localbg_mask]) # CENTER by finding the Center Of Mass (COM) positive = np.where(peak_im > 0, peak_im, 0.0) if positive.sum() == 0.0: # Avoid COM warning from library by testing for all zeros return nans com = ndimage.measurements.center_of_mass(positive) offset_y = com[0] - int(peak_im.shape[0] / 2) offset_x = com[1] - int(peak_im.shape[1] / 2) if not (-2 <= offset_y <= 2 and -2 <= offset_x <= 2): # Data is so poor that the center-of-mass outside of reasonable bounds return nans # REMOVE the background peak_im = (peak_im - bg_bias).clip(min=0) kernel = imops.generate_gauss_kernel(1.0, offset_x, offset_y, mea=peak_im.shape[0]) kernel_squared = kernel * kernel kernel_squared_sum = kernel_squared.sum() # WEIGH the data with the kernel and then normalize by the kernel_squared_sum to estimate signal weighted = kernel * peak_im signal = weighted.sum() / kernel_squared_sum # COMPUTE the noise by examining the residuals residuals = peak_im - signal * kernel var_residuals = np.var(residuals) noise = np.sqrt(var_residuals / kernel_squared_sum) assert noise >= 0.0 return max(0, signal), noise, localbg def _step_1_measure_quality(raw_chcy_ims, sigproc_params): n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim quality = np.zeros((n_inchannels, n_cycles)) for cy in range(n_cycles): for ch in range(n_inchannels): quality[ch, cy] = _quality(raw_chcy_ims[ch, cy]) return quality def _step_2a_mask_anomalies(raw_chcy_ims, sigproc_params): """ Find anomalies and fill them with background noise so that they won't fool the aligner. Arguments: raw_chcy_ims: (n_channel, n_cycles, dim, dim) sigproc_params: SigprocParams Returns: raw_mask_rects: a list of bad rect lists (channel, cycle) i.e. for each channel there is a list inside of which is a list per cycle inside of which is a list of bad rects anomaly_removed_chcy_ims: Copies of the raw_chcy_ims with the bad areas filled in with background-like noise so that the aligner won't get confused. """ n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim anom_iqr_cutoff = sigproc_params.anomaly_iqr_cutoff raw_mask_rects = [None] * n_inchannels dst_chcy_ims = np.copy(raw_chcy_ims) if anom_iqr_cutoff is not None: for ch in range(n_inchannels): raw_mask_rects[ch], _, _, _ = _find_anomalies( raw_chcy_ims[ch, :], anom_iqr_cutoff ) dst_chcy_ims[ch, :] = _mask_anomalies( raw_chcy_ims[ch, :], raw_mask_rects[ch] ) return raw_mask_rects, dst_chcy_ims def _step_2b_find_bg_median(chcy_ims, sigproc_params): """ Computes the median of the image on each channel/cycle Returns: medians_by_ch_cy: A matrix of median values """ n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim medians_by_ch_cy = np.zeros((n_inchannels, n_cycles)) for cy in range(n_cycles): for ch in range(n_inchannels): medians_by_ch_cy[ch, cy] = np.median(chcy_ims[ch, cy]) return medians_by_ch_cy def _step_2c_composite_channels(chcy_ims, medians_by_ch_cy, sigproc_params): """ Merges specified channels for each cycle after background subtraction. The channel list is sometimes partial because there are some experiments where data was recorded in a channel that is bad. Returns: composite cy_ims (channels merged) after background subtraction """ n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim dst_cy_ims = np.zeros((n_cycles, dim, dim)) for cy in range(n_cycles): for inch in range(n_inchannels): if inch in sigproc_params.channel_indices_for_alignment: imops.accum_inplace( dst_cy_ims[cy], (chcy_ims[inch, cy] - medians_by_ch_cy[inch, cy]).clip(min=0), ) return dst_cy_ims def _step_2_align(raw_chcy_ims, sigproc_params): """ Each cycle the stage moves, but it is not perfectly accurate when it returns to the same field. The stage does _not_ move between channels, therefore the channels for each field over each cycle can be merged to improve alignment. Returns: A DataFrame of all the results, most importantly the shift_y, shift_x needed to each cycle to align the images. ch_merged_cy_ims """ n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim raw_mask_rects, anomaly_removed_ims = _step_2a_mask_anomalies( raw_chcy_ims, sigproc_params ) medians_by_ch_cy = _step_2b_find_bg_median(raw_chcy_ims, sigproc_params) ch_merged_cy_ims = _step_2c_composite_channels( anomaly_removed_ims, medians_by_ch_cy, sigproc_params ) # GENERATE fiducial_ims kernel = imops.generate_gauss_kernel(1.0) kernel = kernel - kernel.mean() # Eliminate DC bias fiducial_ims = np.array( [imops.convolve(im.clip(min=0), kernel) for im in ch_merged_cy_ims] ) alignment_offsets = imops.align(fiducial_ims) ch_out_to_in = sigproc_params.output_channel_to_input_channel field_df = pd.DataFrame( [ dict( cycle_i=cy, shift_y=off[0], shift_x=off[1], channel_i=outch, bg_median=medians_by_ch_cy[ch_out_to_in(outch), cy], n_mask_rects=len(raw_mask_rects[ch_out_to_in(outch)][cy]), mask_area=sum( [ rect[2] * rect[3] for rect in raw_mask_rects[ch_out_to_in(outch)][cy] ] ), ) for outch in range(n_outchannels) for cy, off in zip(range(n_cycles), alignment_offsets) ] ) return field_df, ch_merged_cy_ims, raw_mask_rects def _step_3_composite_aligned_images( field_df, ch_merged_cy_ims, raw_chcy_ims, sigproc_params ): """ Generate aligned images and composites """ n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim # Note offsets are the same for each channel, and we only want one set of # offsets because we're aligning channel-merged images. offsets = [ XY(row.shift_x, row.shift_y) for row in field_df[field_df.channel_i == 0] .set_index("cycle_i") .sort_index()[["shift_y", "shift_x"]] .itertuples() ] # Needs to be a list of Coords median_by_ch_cy = ( field_df.set_index(["channel_i", "cycle_i"]) .sort_index() .bg_median.values.reshape((n_outchannels, n_cycles)) ) chcy_composite_im, border_size = imops.composite( ch_merged_cy_ims, offsets, start_accum=sigproc_params.peak_find_start, limit_accum=sigproc_params.peak_find_n_cycles, ) # GENERATE aligned images in the new coordinate system aligned_dim = HW(chcy_composite_im.shape) aligned_ims = np.zeros((n_outchannels, n_cycles, aligned_dim.h, aligned_dim.w,)) aligned_raw_chcy_ims = np.zeros_like(aligned_ims) border = YX(border_size, border_size) for outch in range(n_outchannels): inch = sigproc_params.output_channel_to_input_channel(outch) for cy, offset in zip(range(n_cycles), offsets): imops.accum_inplace( aligned_raw_chcy_ims[outch, cy], src=raw_chcy_ims[inch, cy], loc=border - offset, ) imops.accum_inplace( aligned_ims[outch, cy], src=(raw_chcy_ims[inch, cy] - median_by_ch_cy[outch, cy]).clip(min=0), loc=border - offset, ) # BLACK out the borders by clipping in only pixels that are in every cycle l = border_size - field_df.shift_x.min() r = aligned_dim.w - border_size - field_df.shift_x.max() b = border_size - field_df.shift_y.min() t = aligned_dim.h - border_size - field_df.shift_y.max() roi = _roi_from_edges(b, t, l, r) aligned_roi_rect = Rect(b, t, l, r) aligned_composite_chcy_im = np.zeros(aligned_dim) aligned_composite_chcy_im[roi] = chcy_composite_im[roi] med =
np.median(chcy_composite_im[roi])
numpy.median
import pandas as pd import numpy as np import os from .constants import random_index from importlib import resources import io def total(matrix, num_of_params): '''total function sums the column of matrix and returns a 1d-array Args: matrix: It is the pairwise comparison matrix after taking user input num_of_params: Number of factors taken for comparison''' tot = np.full((num_of_params), 0, dtype=float) for i in range(num_of_params): for j in range(num_of_params): tot[i] = tot[i] + matrix[j, i] return(tot) def normalization(sum_of_column, matrix, num_of_params): ''''normalization function computes the matrix with ouput from total function and returns matrix Args: sum_of_column: It is the sum of each column of pariwise comparison matrix and also a output from total function matrix: It is the pariwise comparison matrix after taking user input num_of_params: Number of factors taken for comparison''' norm =
np.full((num_of_params, num_of_params), 1, dtype=float)
numpy.full
# Adapted from http://www.3dkingdoms.com/weekly/weekly.php?a=3 # Input: # The Axis-Aligned bounding box is defined by B1 and B2 # B1:[x,y,z], the smallest values of X, Y, Z # B2:[x,y,z], the largest values of X, Y, Z # L1: [x,y,z], point 1 on the line # L2: [x,y,z], point 2 on the line # # Output: # return True if line (L1, L2) intersects with the box (B1, B2) import numpy as np class Point: def __init__(self, x,y,z): self.x=np.array(x) self.y=np.array(y) self.z=
np.array(z)
numpy.array
import numpy as np import matplotlib.pyplot as plt import itertools import copy from os import path, getcwd, makedirs from plotter_params import plot_setup from qutip import sigmax, sigmay, sigmaz, qeye, basis, Qobj, tensor, cnot, gate_expand_1toN, gate_expand_2toN """ Testing whether the figure of merit F ~ Tr[U(rho_k)W_k']Tr[E(rho_k)W_k'] preserves the ordering of circuits (i.e. if one circuit implements a higher fidelity unitary than another is this reflected in the values for the figure of merit?). """ def get_pauli_basis(nqubits): iters = [''.join(i) for i in itertools.product('0123', repeat=nqubits)] p_ops = {'0': qeye(2), '1': sigmax(), '2': sigmay(), '3': sigmaz()} basis = [] for item in iters: _ops = [] for k in item: _ops.append(p_ops[k]) basis.append(tensor(_ops)) return basis def get_state_basis(nqubits): iters = [''.join(i) for i in itertools.product('0123', repeat=nqubits)] # s_ops = {'0': Qobj([[1, 0], [0, 0]]), # '1': Qobj([[0, 0], [0, 1]]), # '2': Qobj([[0.5, 0.5], [0.5, 0.5]]), # '3': Qobj([[0.5, -1j*0.5], [1j*0.5, 0.5]])} a = np.sqrt(1) c = np.sqrt(0) e = np.sqrt(0.5) g = 1j*np.sqrt(0.5) b, d, f, h = [np.sqrt(1 - np.abs(i)**2) for i in (a, c, e, g)] # h = 1j*h # A = Qobj([[1.0, 0.0]]) # B = Qobj([[0.57714519003, 0.81664155516]]) # C = Qobj([[0.57714519003, 0.471320746 + 0.66690343j]]) # D = Qobj([[0.57714519003, 0.471320746 - 0.66690343j]]) # # A, B, C, D = [_op/(_op*_op.dag()).tr() for _op in (A, B, C, D)] s_ops = {'0': Qobj([[a*np.conj(a), a*np.conj(b)], [np.conj(a)*b, b*np.conj(b)]]), '1': Qobj([[c*np.conj(c), c*np.conj(d)], [np.conj(c)*d, d*np.conj(d)]]), '2': Qobj([[e*np.conj(e), e*np.conj(f)], [np.conj(e)*f, f*np.conj(f)]]), '3': Qobj([[g*np.conj(g), g*np.conj(h)], [np.conj(g)*h, h*np.conj(h)]])} # s_ops = {'0': A.dag()*A, # '1': B.dag()*B, # '2': C.dag()*C, # '3': D.dag()*D # } basis = [] for item in iters: _ops = [] for k in item: _ops.append(s_ops[k]) basis.append(tensor(_ops)) return basis def fidelity(U, V, nqubits): basis = get_pauli_basis(nqubits) d = 2**nqubits sum = 0 for op in basis: sum += (U*op*U.dag()*V*op*V.dag()).tr() return np.abs(sum/d**3) def figure_of_merit(U, V, nqubits): basis = get_state_basis(nqubits) d = 2**nqubits sum = 0 for op in basis: sum += (U*op*U.dag()*V*op*V.dag()).tr() return np.abs(sum/d**2) def generate_u3(theta, phi, lam): u_00 = np.cos(theta/2) u_01 = -np.exp(1j*lam)*np.sin(theta/2) u_10 = np.exp(1j*phi)*np.sin(theta/2) u_11 =
np.exp(1j*(lam + phi))
numpy.exp
import os import gdal import numpy as np import warnings def main(input_folder, output_folder, Date): # Do not show warnings warnings.filterwarnings('ignore') import pyWAPOR.ETLook as ETLook import pyWAPOR.Functions.Processing_Functions as PF import pyWAPOR.ETLook.outputs as out # Define Date string Date_str = "%d%02d%02d" %(Date.year, Date.month, Date.day) # Input folder Date input_folder_date = os.path.join(input_folder, Date_str) ############################ Define inputs ################################ #input_files ALBEDO_filename = os.path.join(input_folder_date, "ALBEDO_%s.tif" %Date_str) NDVI_filename = os.path.join(input_folder_date, "NDVI_%s.tif" %Date_str) LST_filename = os.path.join(input_folder_date, "LST_%s.tif" %Date_str) Time_filename = os.path.join(input_folder_date, "Time_%s.tif" %Date_str) Lat_filename = os.path.join(input_folder_date, "Lat_%s.tif" %Date_str) Lon_filename = os.path.join(input_folder_date, "Lon_%s.tif" %Date_str) DEM_filename = os.path.join(input_folder_date, "DEM.tif") Slope_filename = os.path.join(input_folder_date, "Slope.tif") Aspect_filename = os.path.join(input_folder_date, "Aspect.tif") LandMask_filename = os.path.join(input_folder_date, "LandMask.tif") Bulk_filename =os.path.join(input_folder_date, "Bulk_Stomatal_resistance.tif") MaxObs_filename = os.path.join(input_folder_date, "Maximum_Obstacle_Height.tif") Pair_24_0_filename = os.path.join(input_folder_date, "Pair_24_0_%s.tif" %Date_str) Pair_inst_0_filename = os.path.join(input_folder_date, "Pair_inst_0_%s.tif" %Date_str) Pair_inst_filename = os.path.join(input_folder_date, "Pair_inst_%s.tif" %Date_str) Pre_filename = os.path.join(input_folder_date, "Precipitation_%s.tif" %Date_str) Hum_24_filename = os.path.join(input_folder_date, "qv_24_%s.tif" %Date_str) Hum_inst_filename = os.path.join(input_folder_date, "qv_inst_%s.tif" %Date_str) Tair_24_filename = os.path.join(input_folder_date, "tair_24_%s.tif" %Date_str) Tair_inst_filename = os.path.join(input_folder_date,"tair_inst_%s.tif" %Date_str) Tair_amp_filename = os.path.join(input_folder_date, "Tair_amp_%s.tif" %Date_str) Wind_24_filename = os.path.join(input_folder_date, "wind_24_%s.tif" %Date_str) Wind_inst_filename = os.path.join(input_folder_date, "wind_inst_%s.tif" %Date_str) WatCol_inst_filename = os.path.join(input_folder_date, "wv_inst_%s.tif" %Date_str) Trans_24_filename = os.path.join(input_folder_date, "Trans_24_%s.tif" %Date_str) ############################ Define outputs ############################### # Output folder Date output_folder_date = os.path.join(output_folder, Date_str) if not os.path.exists(output_folder_date): os.makedirs(output_folder_date) #output_files vc_filename = os.path.join(output_folder_date, "vc_%s.tif" %Date_str) lai_filename = os.path.join(output_folder_date, "LAI_%s.tif" %Date_str) lai_eff_filename= os.path.join(output_folder_date, "LAI_eff_%s.tif" %Date_str) sf_soil_filename = os.path.join(output_folder_date, "sf_soil_%s.tif" %Date_str) lat_filename= os.path.join(output_folder_date, "lat_%s.tif" %Date_str) slope_filename= os.path.join(output_folder_date, "slope_%s.tif" %Date_str) aspect_filename = os.path.join(output_folder_date, "aspect_%s.tif" %Date_str) ra_24_toa_filename = os.path.join(output_folder_date, "ra_24_toa_%s.tif" %Date_str) ws_filename = os.path.join(output_folder_date, "ws_%s.tif" %Date_str) diffusion_index_filename = os.path.join(output_folder_date, "diffusion_index_%s.tif" %Date_str) ra_24_filename = os.path.join(output_folder_date, "ra_24_%s.tif" %Date_str) stress_rad_filename = os.path.join(output_folder_date, "stress_rad_%s.tif" %Date_str) p_air_24_filename = os.path.join(output_folder_date, "p_air_24_%s.tif" %Date_str) vp_24_filename = os.path.join(output_folder_date, "vp_24_%s.tif" %Date_str) svp_24_filename = os.path.join(output_folder_date, "svp_24_%s.tif" %Date_str) vpd_24_filename = os.path.join(output_folder_date, "vpd_24_%s.tif" %Date_str) stress_vpd_filename = os.path.join(output_folder_date, "stress_vpd_%s.tif" %Date_str) stress_temp_filename = os.path.join(output_folder_date, "stress_temp_%s.tif" %Date_str) r_canopy_0_filename= os.path.join(output_folder_date, "r_canopy_0_%s.tif" %Date_str) t_air_k_24_filename = os.path.join(output_folder_date, "t_air_k_24_%s.tif" %Date_str) l_net_filename = os.path.join(output_folder_date, "l_net_%s.tif" %Date_str) int_mm_filename = os.path.join(output_folder_date, "int_mm_%s.tif" %Date_str) lh_24_filename = os.path.join(output_folder_date, "lh_24_%s.tif" %Date_str) int_wm2_filename = os.path.join(output_folder_date, "int_wm2_%s.tif" %Date_str) rn_24_filename = os.path.join(output_folder_date, "rn_24_%s.tif" %Date_str) rn_24_canopy_filename= os.path.join(output_folder_date, "rn_24_canopy_%s.tif" %Date_str) t_air_k_i_filename = os.path.join(output_folder_date, "t_air_k_i_%s.tif" %Date_str) vp_i_filename = os.path.join(output_folder_date, "vp_i_%s.tif" %Date_str) ad_moist_i_filename= os.path.join(output_folder_date, "ad_moist_i_%s.tif" %Date_str) ad_dry_i_filename = os.path.join(output_folder_date, "ad_dry_i_%s.tif" %Date_str) ad_i_filename= os.path.join(output_folder_date, "ad_i_%s.tif" %Date_str) u_b_i_bare_filename= os.path.join(output_folder_date, "u_b_i_bare_%s.tif" %Date_str) lon_filename= os.path.join(output_folder_date, "lon_%s.tif" %Date_str) ha_filename= os.path.join(output_folder_date, "ha_%s.tif" %Date_str) ied_filename= os.path.join(output_folder_date, "ied_%s.tif" %Date_str) h0_filename = os.path.join(output_folder_date, "h0_%s.tif" %Date_str) h0ref_filename = os.path.join(output_folder_date, "h0ref_%s.tif" %Date_str) m_filename = os.path.join(output_folder_date, "m_%s.tif" %Date_str) rotm_filename = os.path.join(output_folder_date, "rotm_%s.tif" %Date_str) Tl2_filename = os.path.join(output_folder_date, "Tl2_%s.tif" %Date_str) B0c_filename = os.path.join(output_folder_date, "B0c_%s.tif" %Date_str) Bhc_filename = os.path.join(output_folder_date, "Bhc_%s.tif" %Date_str) Dhc_filename = os.path.join(output_folder_date, "Dhc_%s.tif" %Date_str) ra_hor_clear_i_filename = os.path.join(output_folder_date, "ra_hor_clear_i_%s.tif" %Date_str) emiss_atm_i_filename = os.path.join(output_folder_date, "emiss_atm_i_%s.tif" %Date_str) rn_bare_filename = os.path.join(output_folder_date, "rn_bare_%s.tif" %Date_str) rn_full_filename= os.path.join(output_folder_date, "rn_full_%s.tif" %Date_str) u_b_i_full_filename = os.path.join(output_folder_date, "u_b_i_full_%s.tif" %Date_str) u_star_i_bare_filename = os.path.join(output_folder_date, "u_star_i_bare_%s.tif" %Date_str) u_star_i_full_filename = os.path.join(output_folder_date, "u_star_i_full_%s.tif" %Date_str) u_i_soil_filename = os.path.join(output_folder_date, "u_i_soil_%s.tif" %Date_str) ras_filename = os.path.join(output_folder_date, "ras_%s.tif" %Date_str) raa_filename = os.path.join(output_folder_date, "raa_%s.tif" %Date_str) rac_filename= os.path.join(output_folder_date, "rac_%s.tif" %Date_str) t_max_bare_filename = os.path.join(output_folder_date, "t_max_bare_%s.tif" %Date_str) t_max_full_filename= os.path.join(output_folder_date, "t_max_full_%s.tif" %Date_str) w_i_filename = os.path.join(output_folder_date, "w_i_%s.tif" %Date_str) t_dew_i_filename = os.path.join(output_folder_date, "t_dew_i_%s.tif" %Date_str) t_wet_i_filename = os.path.join(output_folder_date, "t_wet_i_%s.tif" %Date_str) t_wet_k_i_filename = os.path.join(output_folder_date, "t_wet_k_i_%s.tif" %Date_str) lst_max_filename = os.path.join(output_folder_date, "lst_max_%s.tif" %Date_str) se_root_filename = os.path.join(output_folder_date, "se_root_%s.tif" %Date_str) stress_moist_filename= os.path.join(output_folder_date, "stress_moist_%s.tif" %Date_str) r_canopy_0_filename= os.path.join(output_folder_date, "r_canopy_0_%s.tif" %Date_str) r_canopy_filename= os.path.join(output_folder_date, "r_canopy_%s.tif" %Date_str) z_obst_filename = os.path.join(output_folder_date, "z_obst_%s.tif" %Date_str) z_oro_filename = os.path.join(output_folder_date, "z_oro_%s.tif" %Date_str) z0m_filename = os.path.join(output_folder_date, "z0m_%s.tif" %Date_str) ra_canopy_init_filename = os.path.join(output_folder_date, "ra_canopy_init_%s.tif" %Date_str) u_b_24_filename = os.path.join(output_folder_date, "u_b_24_%s.tif" %Date_str) disp_filename = os.path.join(output_folder_date, "disp_%s.tif" %Date_str) u_star_24_init_filename = os.path.join(output_folder_date, "u_star_24_init_%s.tif" %Date_str) ad_dry_24_filename = os.path.join(output_folder_date, "ad_dry_24_%s.tif" %Date_str) ad_moist_24_filename = os.path.join(output_folder_date, "ad_moist_24_%s.tif" %Date_str) ad_24_filename = os.path.join(output_folder_date, "ad_24_%s.tif" %Date_str) psy_24_filename = os.path.join(output_folder_date, "psy_24_%s.tif" %Date_str) ssvp_24_filename = os.path.join(output_folder_date, "ssvp_24_%s.tif" %Date_str) t_24_init_filename = os.path.join(output_folder_date, "t_24_init_%s.tif" %Date_str) h_canopy_24_init_filename= os.path.join(output_folder_date, "h_canopy_24_init_%s.tif" %Date_str) t_24_filename= os.path.join(output_folder_date, "t_24_%s.tif" %Date_str) t_24_mm_filename= os.path.join(output_folder_date, "t_24_mm_%s.tif" %Date_str) sf_soil_filename= os.path.join(output_folder_date, "sf_soil_%s.tif" %Date_str) rn_24_soil_filename= os.path.join(output_folder_date, "rn_24_soil_%s.tif" %Date_str) r_soil_filename= os.path.join(output_folder_date, "r_soil_%s.tif" %Date_str) ra_soil_init_filename= os.path.join(output_folder_date, "ra_soil_init_%s.tif" %Date_str) u_b_24_filename= os.path.join(output_folder_date, "u_b_24_%s.tif" %Date_str) u_star_24_soil_init_filename= os.path.join(output_folder_date, "u_star_24_soil_init_%s.tif" %Date_str) g0_bs_filename= os.path.join(output_folder_date, "g0_bs_%s.tif" %Date_str) g0_24_filename= os.path.join(output_folder_date, "g0_24_%s.tif" %Date_str) e_24_init_filename= os.path.join(output_folder_date, "e_24_init_%s.tif" %Date_str) h_soil_24_init_filename= os.path.join(output_folder_date, "h_soil_24_init_%s.tif" %Date_str) e_24_filename= os.path.join(output_folder_date, "e_24_%s.tif" %Date_str) e_24_mm_filename= os.path.join(output_folder_date, "e_24_mm_%s.tif" %Date_str) et_24_mm_filename= os.path.join(output_folder_date, "et_24_mm_%s.tif" %Date_str) rn_24_grass_filename= os.path.join(output_folder_date, "rn_24_grass_%s.tif" %Date_str) et_ref_24_filename= os.path.join(output_folder_date, "et_ref_24_%s.tif" %Date_str) et_ref_24_mm_filename= os.path.join(output_folder_date, "et_ref_24_mm_%s.tif" %Date_str) ########################## Open input rasters ############################# dest_lst = gdal.Open(LST_filename) lst = dest_lst.GetRasterBand(1).ReadAsArray() lst[lst == -9999] = np.nan dest_albedo = gdal.Open(ALBEDO_filename) r0 = dest_albedo.GetRasterBand(1).ReadAsArray() r0[np.isnan(lst)] = np.nan dest_ndvi = gdal.Open(NDVI_filename) ndvi = dest_ndvi.GetRasterBand(1).ReadAsArray() ndvi[np.isnan(lst)] = np.nan desttime = gdal.Open(Time_filename) dtime = desttime.GetRasterBand(1).ReadAsArray() dtime[np.isnan(lst)] = np.nan dest_lat = gdal.Open(Lat_filename) lat_deg = dest_lat.GetRasterBand(1).ReadAsArray() lat_deg[np.isnan(lst)] = np.nan dest_lon = gdal.Open(Lon_filename) lon_deg = dest_lon.GetRasterBand(1).ReadAsArray() lon_deg[np.isnan(lst)] = np.nan dest_dem = gdal.Open(DEM_filename) z = dest_dem.GetRasterBand(1).ReadAsArray() z[np.isnan(lst)] = np.nan dest_slope = gdal.Open(Slope_filename) slope_deg = dest_slope.GetRasterBand(1).ReadAsArray() slope_deg[np.isnan(lst)] = np.nan dest_aspect = gdal.Open(Aspect_filename) aspect_deg = dest_aspect.GetRasterBand(1).ReadAsArray() aspect_deg[np.isnan(lst)] = np.nan dest_lm = gdal.Open(LandMask_filename) land_mask = dest_lm.GetRasterBand(1).ReadAsArray() land_mask[np.isnan(lst)] = np.nan #dest_bulk = gdal.Open(Bulk_filename) #bulk = dest_bulk.GetRasterBand(1).ReadAsArray() dest_maxobs = gdal.Open(MaxObs_filename) z_obst_max = dest_maxobs.GetRasterBand(1).ReadAsArray() z_obst_max[np.isnan(lst)] = np.nan dest_pairsea24 = gdal.Open(Pair_24_0_filename) p_air_0_24 = dest_pairsea24.GetRasterBand(1).ReadAsArray() p_air_0_24 = ETLook.meteo.air_pressure_kpa2mbar(p_air_0_24) p_air_0_24[np.isnan(lst)] = np.nan dest_pairseainst = gdal.Open(Pair_inst_0_filename) p_air_0_i = dest_pairseainst.GetRasterBand(1).ReadAsArray() p_air_0_i = ETLook.meteo.air_pressure_kpa2mbar(p_air_0_i) p_air_0_i[np.isnan(lst)] = np.nan dest_pairinst = gdal.Open(Pair_inst_filename) p_air_i = dest_pairinst.GetRasterBand(1).ReadAsArray() p_air_i = ETLook.meteo.air_pressure_kpa2mbar(p_air_i) p_air_i[np.isnan(lst)] = np.nan dest_precip = gdal.Open(Pre_filename) P_24 = dest_precip.GetRasterBand(1).ReadAsArray() P_24[np.isnan(lst)] = np.nan dest_hum24 = gdal.Open(Hum_24_filename) qv_24 = dest_hum24.GetRasterBand(1).ReadAsArray() qv_24[np.isnan(lst)] = np.nan dest_huminst = gdal.Open(Hum_inst_filename) qv_i = dest_huminst.GetRasterBand(1).ReadAsArray() qv_i[
np.isnan(lst)
numpy.isnan
from control4.core.mdp import MDP from control4.config import floatX import numpy as np def idx2onehot(i,n): out = np.zeros(n,floatX) out[i] = 1 return out class Nav2dState(object): def __init__(self,pos,targpos,t): self.pos = pos self.targpos = targpos self.t = t self.path = [pos.copy()] class Nav2D(MDP): def __init__(self, halfsize=3.0, obs_efference=True, obs_cur_pos=False, target_mode="four"): self.halfsize = halfsize self.thresh_dist = 0.8 self.sample_frac = 0.2 self.t_max = 50 self.viewer = None self.target_mode = target_mode self.obs_efference=obs_efference self.obs_cur_pos=obs_cur_pos self._obs_dim = 4 if self.target_mode == "four": self._obs_dim += 4 if self.obs_efference: self._obs_dim += 2 if self.obs_cur_pos: self._obs_dim += 2 def call(self, input_arrs): state = input_arrs["x"] u = input_arrs["u"] assert u.shape[0]==1 u = u[0] u = np.clip(u,-1,1) ytarg = state.pos + u halfsize = self.halfsize components = [ytarg > halfsize, ytarg < -halfsize] if self.target_mode == "four": components.append(np.zeros(4,floatX)) ytarg = np.clip(ytarg, -halfsize, halfsize) state.path.append(ytarg.copy()) state.pos = ytarg targ_pos = state.targpos state.t += 1 done = int(state.t == self.t_max or np.square(targ_pos - state.pos).sum() < self.thresh_dist**2) cost = np.array([done*(state.t - self.t_max)],floatX) ################################ # Observation if self.obs_efference: components.append(u) if self.obs_cur_pos: components.append(targ_pos) # XXX o = np.concatenate(components) return { "x" : state, "o" : o.reshape(1,-1), "c" : cost.reshape(1,-1), "done" : done } def initialize_mdp_arrays(self): frac = self.sample_frac pos = (2*np.random.rand(2)-.1)*self.halfsize*frac pos = pos.astype(floatX) halfsize = self.halfsize if self.target_mode == "four": targs_42 = np.array([[halfsize,0],[0,halfsize],[-halfsize,0],[0,-halfsize]],floatX) targidx = np.random.randint(4) targpos = targs_42[targidx] elif self.target_mode == "unif": targpos = np.random.uniform(low=-halfsize,high=halfsize,size=(2,)).astype(floatX) targidx = None x_init = Nav2dState(pos, targpos, 0) if targidx is None: components = [np.zeros(4,floatX)] else: components = [np.zeros(4,floatX),idx2onehot(targidx,4)] if self.obs_efference: components.append(np.zeros(2,floatX)) if self.obs_cur_pos: components.append(pos) o_init = np.concatenate(components) c_init =
np.array([0],floatX)
numpy.array
# pylint: disable=R0201 import json from unittest.mock import MagicMock import numpy as np import pytest from napari.utils import Colormap from PartSegCore.image_operations import RadiusType from PartSegCore.json_hooks import EventedDict, ProfileDict, ProfileEncoder, profile_hook, recursive_update_dict def test_recursive_update_dict_basic(): dict1 = {"a": 1, "b": 2} dict2 = {"b": 3, "c": 4} dict1_copy = dict1.copy() dict1.update(dict2) recursive_update_dict(dict1_copy, dict2) assert dict1 == dict1_copy def test_recursive_update_dict(): dict1 = {"a": {"k": 1, "l": 2}, "b": {"k": 1, "l": 2}} dict2 = {"a": {"m": 3, "l": 4}, "b": 3, "c": 4} recursive_update_dict(dict1, dict2) assert dict1 == {"a": {"k": 1, "l": 4, "m": 3}, "b": 3, "c": 4} class TestEventedDict: def test_simple_add(self): receiver = MagicMock() dkt = EventedDict() dkt.setted.connect(receiver.set) dkt.deleted.connect(receiver.delete) dkt["a"] = 1 assert dkt["a"] == 1 assert receiver.set.call_count == 1 assert "'a': 1" in str(dkt) assert "'a': 1" in repr(dkt) dkt["a"] = 2 assert dkt["a"] == 2 assert receiver.set.call_count == 2 assert len(dkt) == 1 del dkt["a"] assert receiver.set.call_count == 2 assert receiver.delete.call_count == 1 assert len(dkt) == 0 def test_simple_add_remove(self): callback_list = [] def callback_add(): callback_list.append(1) def callback_delete(): callback_list.append(2) dkt = EventedDict() dkt.setted.connect(callback_add) dkt.deleted.connect(callback_delete) dkt[1] = 1 dkt[2] = 1 assert len(dkt) == 2 assert callback_list == [1, 1] del dkt[1] assert len(dkt) == 1 assert callback_list == [1, 1, 2] def test_nested_evented(self): dkt = EventedDict(bar={"foo": {"baz": 1}}) assert isinstance(dkt["bar"], EventedDict) assert isinstance(dkt["bar"]["foo"], EventedDict) assert dkt["bar"]["foo"]["baz"] == 1 dkt["baz"] = {"bar": {"foo": 1}} assert isinstance(dkt["baz"], EventedDict) assert isinstance(dkt["baz"]["bar"], EventedDict) assert dkt["baz"]["bar"]["foo"] == 1 def test_serialize(self, tmp_path): dkt = EventedDict( **{"a": {"b": {"c": 1, "d": 2, "e": 3}, "f": 1}, "g": {"h": {"i": 1, "j": 2}, "k": [6, 7, 8]}} ) with (tmp_path / "test_dict.json").open("w") as f_p: json.dump(dkt, f_p, cls=ProfileEncoder) with (tmp_path / "test_dict.json").open("r") as f_p: dkt2 = json.load(f_p, object_hook=profile_hook) assert isinstance(dkt2, EventedDict) assert isinstance(dkt2["a"], EventedDict) assert dkt["g"]["k"] == [6, 7, 8] def test_signal_names(self): receiver = MagicMock() dkt = EventedDict(baz={"foo": 1}) dkt.setted.connect(receiver.set) dkt.deleted.connect(receiver.deleted) dkt["foo"] = 1 assert receiver.set.call_count == 1 receiver.set.assert_called_with("foo") dkt["bar"] = EventedDict() assert receiver.set.call_count == 2 receiver.set.assert_called_with("bar") dkt["bar"]["baz"] = 1 assert receiver.set.call_count == 3 receiver.set.assert_called_with("bar.baz") dkt["baz"]["foo"] = 2 assert receiver.set.call_count == 4 receiver.set.assert_called_with("baz.foo") del dkt["bar"]["baz"] assert receiver.deleted.call_count == 1 receiver.deleted.assert_called_with("bar.baz") del dkt["bar"] assert receiver.deleted.call_count == 2 receiver.deleted.assert_called_with("bar") def test_propagate_signal(self): receiver = MagicMock() dkt = EventedDict(baz={"foo": 1}) dkt.setted.connect(receiver.set) dkt.deleted.connect(receiver.deleted) dkt["baz"].base_key = "" dkt["baz"]["foo"] = 2 receiver.set.assert_called_with("foo") receiver.set.assert_called_once() del dkt["baz"]["foo"] receiver.deleted.assert_called_with("foo") receiver.deleted.assert_called_once() class TestProfileDict: def test_simple(self): dkt = ProfileDict() dkt.set("a.b.c", 1) dkt.set("a.b.a", 2) assert dkt.get("a.b.c") == 1 with pytest.raises(KeyError): dkt.get("a.b.d") dkt.get("a.b.d", 3) assert dkt.get("a.b.d") == 3 assert dkt.get("a.b") == {"a": 2, "c": 1, "d": 3} with pytest.raises(TypeError): dkt.set("a.b.c.d", 3) def test_update(self): dkt = ProfileDict() dkt.update(a=1, b=2, c=3) assert dkt.my_dict == {"a": 1, "b": 2, "c": 3} dkt2 = ProfileDict() dkt2.update(c=4, d={"a": 2, "e": 7}) assert dkt2.get("d.e") == 7 dkt.update(dkt2) assert dkt.get("d.e") == 7 assert dkt.get("c") == 4 dkt.update({"g": 1, "h": 4}) assert dkt.get("g") == 1 dkt.update({"w": 1, "z": 4}, w=3) assert dkt.get("w") == 3 assert dkt.verify_data() assert dkt.filter_data() == [] dkt.set("e.h.l", {"aaa": 1, "__error__": True}) assert not dkt.verify_data() assert dkt.filter_data() == ["e.h"] def test_serialize(self, tmp_path): dkt = ProfileDict() dkt.set("a.b.c", 1) dkt.set("a.b.a", 2) with open(tmp_path / "test.json", "w") as f_p: json.dump(dkt, f_p, cls=ProfileEncoder) with open(tmp_path / "test.json") as f_p: dkt2 = json.load(f_p, object_hook=profile_hook) assert dkt.my_dict == dkt2.my_dict def test_callback(self): def dummy_call(): receiver.dummy() receiver = MagicMock() dkt = ProfileDict() dkt.connect("", receiver.empty) dkt.connect("", dummy_call) dkt.connect("b", receiver.b) dkt.connect(["d", "c"], receiver.dc) dkt.set("test.a", 1) assert receiver.empty.call_count == 1 assert receiver.dummy.call_count == 1 receiver.empty.assert_called_with("a") receiver.dummy.assert_called_with() dkt.set("test.a", 1) assert receiver.empty.call_count == 1 receiver.b.assert_not_called() dkt.set("test2.a", 1) assert receiver.empty.call_count == 2 receiver.b.assert_not_called() dkt.set(["test", "b"], 1) assert receiver.empty.call_count == 3 assert receiver.b.call_count == 1 dkt.set("test.d.c", 1) receiver.dc.assert_called_once() dkt.set("test.a", 2) assert receiver.empty.call_count == 5 def test_profile_hook_colormap_load(bundle_test_dir): with open(bundle_test_dir / "view_settings_v0.12.6.json") as f_p: json.load(f_p, object_hook=profile_hook) def test_colormap_dump(tmp_path): cmap_list = [Colormap([(0, 0, 0), (1, 1, 1)]), Colormap([(0, 0, 0), (1, 1, 1)], controls=[0, 1])] with open(tmp_path / "test.json", "w") as f_p: json.dump(cmap_list, f_p, cls=ProfileEncoder) with open(tmp_path / "test.json") as f_p: cmap_list2 = json.load(f_p, object_hook=profile_hook) assert np.array_equal(cmap_list[0].colors, cmap_list2[0].colors) assert
np.array_equal(cmap_list[0].controls, cmap_list2[0].controls)
numpy.array_equal
import numpy as np import random import math import os class QL(object): def __init__(self): self.action_table = [[0] * 3 for _ in range(120)] self.q_table = np.array([[1] * 120 for _ in range(16)]) self.q0_table = self.q_table self.p_table = np.array([[1/120] * 120 for _ in range(16)]) self.gen_action_table() self.beta = 0.6 self.lr = 0.15 self.gamma = 0.80 #生成行为表 def gen_action_table(self): index = 0 for a in range(10, 25, 2): for b in range(10, 25, 2): for c in range(10, 25, 2): for d in range(10, 25, 2): if a + b + c + d == 70 - 16: self.action_table[index] = [a, b, c] index += 1 #行为决策 def select_action(self, status): p_select_line = self.p_table[status] q_select_line = self.q_table[status] min_q_poss = np.where(q_select_line==np.min(q_select_line))[0] min_q_pos = random.choice(min_q_poss) p_select_line[min_q_pos] += self.beta * (1 - p_select_line[min_q_pos]) for i in range(0,120): if i != min_q_pos: p_select_line[i] -= self.beta * p_select_line[i] self.p_table[status] = p_select_line p_select_cumsum = np.cumsum(p_select_line) p_select_cumsum = np.insert(p_select_cumsum, 0, 0) random_float = random.random() #二分查找法查找随机浮点数对应行为 a = 0 b = 120 while(a != b): c = math.ceil((a + b)/2) if random_float >= p_select_cumsum[c]: a = c else: b = c - 1 return a #学习,更新Q表 def learn(self, status, action, reward, status_): q_predict = self.q_table[status][action] q_target = reward + self.gamma * min(self.q_table[status_]) self.q_table[status][action] = q_predict + self.lr*(q_target - q_predict) #返回核查阶段的行为值 def check(self, status): q_select_line = self.q_table[status] min_q_poss = np.where(q_select_line==np.min(q_select_line))[0] min_q_pos = random.choice(min_q_poss) return min_q_pos #存储q表,p表 def save_data(self): np.save("q.npy", self.q_table) np.save("p.npy", self.p_table) if(os.path.exists("Q.xls")): os.remove("Q.xls") output = open("Q.xls", 'w', encoding='utf-8') for i in range(len(self.q_table)): for j in range(len(self.q_table[i])): output.write(str(self.q_table[i][j])) output.write('\t') output.write('\n') output.close() print("Have save Q table to file.") #读取q表,p表 def load_data(self): if os.path.exists("q.npy"): try: self.q_table = np.load("q.npy") print("已读取q表") except: print("读取q表有误,请删除后重试") else: print("q表不存在,使用初始q表") if os.path.exists("p.npy"): try: self.p_table =
np.load("p.npy")
numpy.load
import numpy as np from scipy.optimize import brentq from scipy.integrate import quad from scipy.stats import norm,nbinom from scipy.stats import multivariate_normal as mvn from prime_utils import normal_logpdf from prime_model import modelPred import datetime from dateutil import parser def logpost(state,params): """ Compute log-posterior density values; this function assumes the likelihood is a product of independent Gaussian distributions Parameters ---------- state: python list or numpy array model parameters params: dictionary detailed settings for the epidemiological model Returns ------- llik: float natural logarithm of the likelihood density lpri: float natural logarithm of the prior density """ # parameters new_cases = params['new_cases'] prior_types = params['prior_types'] prior_info = params['prior_info'] model_type = params['model_type'] error_model_type = params['error_model_type'] error_weight = params['error_weight'] assert(params['days_extra']==0) # evaluate the model people_with_symptoms_cdf = modelPred(state,params,is_cdf=True) people_with_symptoms = np.zeros(people_with_symptoms_cdf.shape[0]) for i in range(1,people_with_symptoms.shape[0]): people_with_symptoms[i] = people_with_symptoms_cdf[i]-people_with_symptoms_cdf[i-1] # print(people_with_symptoms_cdf,people_with_symptoms) # quit() # log-likelihood ndays = params['days_since_day0'].shape[0] llik = 0.0 if error_model_type == "add": # additive error err = np.exp(state[-1]) elif error_model_type == "addMult": # additive & multiplicative error err = np.exp(state[-2])+np.exp(state[-1])*people_with_symptoms # apply weighting to error terms if specified if error_weight is not None: err *= error_weight # kchowdh: vectorize log norm pdf npws = (people_with_symptoms - new_cases)/err # apply weighting to error terms if specified llik = np.sum(norm._logpdf(npws) - np.log(err)) # log-prior lpri = 0.0 for i in range(state.shape[0]): if prior_types[i]=='g': log_pdf_vals = normal_logpdf(state[i],loc=prior_info[i][0],scale=prior_info[i][1]) lpri = lpri+log_pdf_vals return [llik,lpri] def logpost_negb(state,params): """ Compute log-posterior density values; this function assumes the likelihood is a product of negative-binomial distributions Parameters ---------- state: python list or numpy array model parameters params: dictionary detailed settings for the epidemiological model Returns ------- llik: float natural logarithm of the likelihood density lpri: float natural logarithm of the prior density """ # parameters new_cases = params['new_cases'] prior_types = params['prior_types'] prior_info = params['prior_info'] model_type = params['model_type'] error_weight = params['error_weight'] assert(params['days_extra']==0) # compute cases # people_with_symptoms = modelPred(state,params) people_with_symptoms_cdf = modelPred(state,params,is_cdf=True) people_with_symptoms = np.zeros(people_with_symptoms_cdf.shape[0]) for i in range(1,people_with_symptoms.shape[0]): people_with_symptoms[i] = people_with_symptoms_cdf[i]-people_with_symptoms_cdf[i-1] # log-likelihood alpha_ind = 4 if model_type == "twoWave": alpha_ind = 8 elif model_type == "threeWave": alpha_ind = 12 alpha = np.exp(state[alpha_ind]) prob = alpha/(alpha+people_with_symptoms) llkarray=np.array([np.log(1e-10+nbinom._pmf(obs, n=alpha, p=p)) for obs,p in zip(new_cases,prob)]) # apply weighting to error terms if specified if error_weight is not None: llkarray += np.log(error_weight) llik = np.sum(llkarray[1:]) # log-prior lpri = 0.0 for i in range(state.shape[0]): if prior_types[i]=='g': log_pdf_vals = normal_logpdf(state[i],loc=prior_info[i][0],scale=prior_info[i][1]) lpri = lpri+log_pdf_vals return [llik,lpri] def logpost_poisson(state,params): """ Compute log-posterior density values; this function assumes the likelihood is a product of poisson distributions Parameters ---------- state: python list or numpy array model parameters params: dictionary detailed settings for the epidemiological model Returns ------- llik: float natural logarithm of the likelihood density lpri: float natural logarithm of the prior density """ # parameters new_cases = params['new_cases'] prior_types = params['prior_types'] prior_info = params['prior_info'] error_weight = params['error_weight'] assert(params['days_extra']==0) # compute cases # people_with_symptoms = modelPred(state,params) people_with_symptoms_cdf = modelPred(state,params,is_cdf=True) people_with_symptoms = np.zeros(people_with_symptoms_cdf.shape[0]) for i in range(1,people_with_symptoms.shape[0]): people_with_symptoms[i] = people_with_symptoms_cdf[i]-people_with_symptoms_cdf[i-1] # log-likelihood # alpha = np.exp(state[4]) llkarray=np.array([-lbd+k*np.log(lbd+1.e-4) for k,lbd in zip(new_cases,people_with_symptoms)]) # apply weighting to error terms if specified if error_weight is not None: llkarray +=
np.log(error_weight)
numpy.log
import numpy as np from matplotlib import pyplot as plt class IMU: def __init__(self, accel_sigma=0.1, gyro_sigma=0.5): self.accel_sigma = accel_sigma self.gyro_sigma = gyro_sigma def measure(self, true_state): """true_state is [theta, phi, q, p]""" theta = true_state[0] + np.random.normal(0, self.accel_sigma) phi = true_state[1] + np.random.normal(0, self.accel_sigma) q = true_state[2] + np.random.normal(0, self.gyro_sigma) p = true_state[3] + np.random.normal(0, self.gyro_sigma) return
np.array([theta,phi,q,p])
numpy.array
import numpy as np import pandas as pd from scipy.optimize import fsolve def wavenumber(f, h, g=9.81): """ solves the dispersion relation, returns the wave number k INPUTS: omega: wave cyclic frequency [rad/s], scalar or array-like h : water depth [m] g: gravity [m/s^2] OUTPUTS: k: wavenumber """ omega = 2*np.pi*f if hasattr(omega, '__len__'): k = np.array([fsolve(lambda k: om**2/g - k*np.tanh(k*h), (om**2)/g)[0] for om in omega]) else: func = lambda k: omega**2/g - k*np.tanh(k*h) k_guess = (omega**2)/g k = fsolve(func, k_guess)[0] return k # Functions def elevation2d(a, f, k, eps, t, x=0): """ wave elevation (eta) INPUTS: a : amplitudes, scalar or array-like of dimension nf f : frequencies, scalar or array-like of dimension nf k : wavenumbers, scalar or array-like of dimension nf t : time, scalar or array-like of dimension nt x : longitudinal position, scalar or array like of dimension (nx) OUTPUTS: eta: wave elevation """ t = np.atleast_1d(t) a = np.atleast_1d(a) f = np.atleast_1d(f) k = np.atleast_1d(k) eps = np.atleast_1d(eps) x = np.atleast_1d(x) omega = 2*np.pi * f if len(t)==1: eta = np.zeros(x.shape) for ai,oi,ki,ei in zip(a,omega,k,eps): eta += ai * np.cos(oi*t - ki*x + ei) elif len(x)==1: eta = np.zeros(t.shape) for ai,oi,ki,ei in zip(a,omega,k,eps): eta += ai * np.cos(oi*t - ki*x + ei) else: raise NotImplementedError() return eta # def kinematics2d(a, f, k, eps, h, t, z, x=None, Wheeler=False, eta=None): """ 2D wave kinematics, longitudinal velocity and acceleration along x z ^ | |--> x z=0 (sea level) -> vel(z,t) ~~~~~~ z=-h (sea bed) INPUTS: a : amplitudes, scalar or array-like of dimension (nf) f : frequencies, scalar or array-like of dimension (nf) k : wavenumbers, scalar or array-like of dimension (nf) t : time, scalar or array-like of dimension nt z : vertical position, scalar or 1d or nd-array-like of dimension(s) (n x ..). NOTE: z=0 sea level, z=-h sea floor x : longitudinal position, scalar or 1d or nd-array-like of dimension(s) (n x ..) OUTPUTS: vel: wave velocity at t,z,x acc: wave acceleartion at t,z,x """ t = np.atleast_1d(t) f = np.atleast_1d(f) a = np.atleast_1d(a) eps = np.atleast_1d(eps) k = np.atleast_1d(k) z = np.atleast_1d(z) if x is None: x=z*0 else: x = np.asarray(x) omega = 2 * np.pi * f # angular frequency if Wheeler: if eta is None: raise Exception('Provide wave elevation (eta), scalar, for Wheeler') # User need to provide eta for wheeler stretching if len(t)==1: z = (z-eta)*h/(h+eta) else: raise NotImplementedError('Wheeler stretching, need to consider cases where t is function of time') z = z+h # 0 at sea bed if len(t)==1: vel = np.zeros(z.shape) acc =
np.zeros(z.shape)
numpy.zeros
import numpy as np from .preprocessing import no_preproc, split_train_val __author__ = '<NAME>' class Dataset(object): def __init__(self, name, features, labels, indices_train, indices_test, indices_val, num_classes=None, feature_preproc_fn=no_preproc, class_names=None): self.name = name self.features = features self.labels = labels self.indices_train = indices_train self.indices_val = indices_val self.indices_test = indices_test self.feature_preproc_fn = feature_preproc_fn self.num_val = len(self.indices_val) self.num_test = len(self.indices_test) self.num_samples = len(features) self.features_shape = features[0].shape self.num_features =
np.prod(features[0].shape)
numpy.prod
import numpy as np import scipy as sp import random import warnings import math import matplotlib.pyplot as plt import seaborn as sns from sklearn.neighbors import KDTree, BallTree from sklearn.metrics import pairwise_distances from scipy.cluster.hierarchy import linkage from scipy.spatial.distance import squareform TOL = 1e-15 INF = 1e15 ### GAMMA LINKAGE def lazy_intersection(increasing, increasing2, f2) : # find first occurence of increasing[i] >= f2(increasing2[i]) first = 0 last = len(increasing)-1 if increasing[first] >= f2(increasing2[first]) : return first, False if increasing[last] < f2(increasing2[last]) : return last, True while first+1 < last : midpoint = (first + last)//2 if increasing[midpoint] >= f2(increasing2[midpoint]) : last = midpoint else: first = midpoint return last, False class MPSpace : """Implements a finite metric probability space that can compute \ its kernel density estimates""" POSSIBLE_KERNELS = {'square', 'triangle', 'epanechnikov'} def __init__(self, X, metric = 'minkowski', measure = None, leaf_size = 40, p = 2) : # if metric = 'precomputed' then assumes that X is a distance matrix # to do: check that input is correct self.metric = metric self.p = p self.size = X.shape[0] if measure is None : self.measure = np.full(self.size, 1./self.size) self.counting_measure = True self.dimension = X.shape[1] self.metric = metric if metric != 'precomputed' : self.points = X else : self.points = np.array(range(self.size)) self.fit_on = None self.kernel = None self.fitted_nn = False self.fitted_density_estimates = False self.nn_distance = None self.nn_indices = None self.square_kernel_estimate = None self.delta = None self.kernel_estimate = None self.maxk = None self.maxs = None self.tol = TOL if metric in KDTree.valid_metrics : self.tree = KDTree(X, metric=metric, leaf_size=leaf_size, p = p) elif metric in BallTree.valid_metrics : self.tree = BallTree(X, metric=metric, leaf_size=leaf_size) elif metric == 'precomputed': self.dist_mat = X else : raise Exception("Metric given is not supported.") def fit(self, maxk = None, maxs = 0, kernel = 'square', fit_on = None) : self.fit_nn(maxk = maxk, maxs = maxs, fit_on = fit_on) self.fit_density_estimates(kernel = kernel) def fit_nn(self, maxk, maxs, fit_on) : # to do: check input if fit_on == None : fit_on = range(0,self.size) # fit_on can be just a number < 1 if isinstance(fit_on, float) and fit_on < 1 : n_samples = int(self.size * fit_on) fit_on = random.sample(range(self.size),n_samples) # or > 1 if isinstance(fit_on, int) and fit_on > 1 : n_samples = fit_on fit_on = random.sample(range(self.size),n_samples) self.fit_on = fit_on fit_on = self.points[fit_on] if maxk == None : maxk = self.size if maxk == 1 and maxs == 0 : warnings.warn("Fitting with k = 1 and s = 0.") if maxk > self.size : warnings.warn("Trying to fit with k > |data set|. Changing to k = |data set|.") maxk = self.size self.maxs = maxs self.maxk = maxk if self.metric != 'precomputed' : # to do: check if dualtree or breadth_first set to False is faster k_neighbors = self.tree.query(\ fit_on, self.maxk, return_distance = True, sort_results = True, dualtree = True, breadth_first = True) k_neighbors = (np.array(k_neighbors[1]),np.array(k_neighbors[0])) maxs_given_by_maxk = np.min(k_neighbors[1][:,-1]) neighbors = [] nn_distance = [] if maxs < maxs_given_by_maxk : self.maxs = maxs_given_by_maxk neighbors = k_neighbors[0] nn_distance = k_neighbors[1] else : s_neighbors = self.tree.query_radius(\ fit_on, maxs, return_distance = True, sort_results = True) for i in range(len(fit_on)) : # can this be done more efficiently at a lower level? if len(k_neighbors[0][i]) >= len(s_neighbors[0][i]) : neighbors.append(k_neighbors[0][i]) nn_distance.append(k_neighbors[1][i]) else : neighbors.append(s_neighbors[0][i]) nn_distance.append(s_neighbors[1][i]) else : warnings.warn("For now, for distance matrix we assume maxk = number of points.") self.maxk = self.size neighbors = np.argsort(self.dist_mat) nn_distance = self.dist_mat[np.arange(len(self.dist_mat)), neighbors.transpose()].transpose() self.nn_indices = np.array(neighbors) self.nn_distance = np.array(nn_distance) self.fitted_nn = True def fit_density_estimates(self, kernel) : self.kernel = kernel self.fitted_density_estimates = True self.square_kernel_estimate = np.cumsum(self.measure[self.nn_indices], axis = 1) if kernel == 'square' : self.kernel_estimate = self.square_kernel_estimate else : with np.errstate(divide='ignore'): inv_width = np.where(self.nn_distance < self.tol, 0, np.divide(1.,self.nn_distance)) if kernel == 'triangle' : self.delta = np.cumsum(self.measure[self.nn_indices] * self.nn_distance, axis = 1) self.kernel_estimate = self.square_kernel_estimate - inv_width * self.delta elif kernel == 'epanechnikov' : self.delta = np.cumsum(self.measure[self.nn_indices] * np.square(self.nn_distance), axis = 1) self.kernel_estimate = self.square_kernel_estimate - np.square(inv_width) * self.delta def kde_at_index_width(self, point_index, neighbor_index, width = None) : # to do: check input if width is None : width = self.nn_distance[point_index][neighbor_index] if self.kernel == 'square' : return self.square_kernel_estimate[point_index][neighbor_index] else : with np.errstate(divide='ignore'): inv_width = np.where(width < self.tol, 0, np.divide(1.,width)) if self.kernel == 'triangle' : return self.square_kernel_estimate[point_index][neighbor_index] -\ inv_width * self.delta[point_index][neighbor_index] elif self.kernel == 'epanechnikov' : return self.square_kernel_estimate[point_index][neighbor_index] -\ np.square(inv_width) * self.delta[point_index][neighbor_index] def kde(self, point_index, width) : # to do: check input (in particular that the index is in bound) width = np.array(width) # find the index (resp. indices) of the neighbor (resp. neighbors) # whose distance is (left) closest to width (resp. each element of width) pos = np.searchsorted(self.nn_distance[point_index], width, side = 'right') pos -= 1 # number of local neighbors of the point n_neighbors = len(self.nn_distance[point_index]) # check if the k value we computed is exact or only a lower bound # (in that case, annotate it in the out_of_range list) if n_neighbors < self.size : if width.ndim == 1 : # two conditions needed for out of bound out_of_range = np.where(pos == n_neighbors-1, True, False) if self.maxs > self.tol : out_of_range_ = np.where(width > self.maxs, True, False) out_of_range = np.logical_and(out_of_range, out_of_range_) else : out_of_range = (pos == n_neighbors-1 and self.nn_distance[pos] > self.maxs) else : if width.ndim == 1 : out_of_range = np.full(len(width),False) else : out_of_range = False return self.kde_at_index_width(point_index,pos,width), out_of_range # to do: use multiple cores when have lots of point indices def core_scale(self, point_index, gamma) : """Given a curve gamma (that takes an r and returns s,t,k) and a list of (indices of) points in the space, returns the r-time at which the points are born.""" # point_index can be a list point_index = np.array(point_index) if gamma.s_component.is_constant : #warnings.warn("s component is constant.") return self.core_scale_constant_s(point_index, gamma) elif gamma.k_component.is_constant : #warnings.warn("k component is constant.") return self.core_scale_varying_s_constant_k(point_index, gamma) else : return self.core_scale_varying_s_k(point_index, gamma) def core_scale_constant_s(self, point_index, gamma) : s0 = gamma.s_component.func(gamma.minr) kde_s0 = np.vectorize(lambda i : self.kde(i,s0)) kdes, out_of_range = kde_s0(point_index) if np.any(out_of_range) : warnings.warn("Don't have enough neighbors to properly calculate core scale.") return gamma.k_component.inverse(kdes) def core_scale_varying_s_constant_k(self, point_index, gamma) : k0 = gamma.k_component.func(gamma.minr) if k0 < TOL : #warnings.warn("k is constant and 0, output is just single-linkage.") return np.zeros((len(point_index))) if k0 > 1 : warnings.warn("The curve doesn't intersect the shadow.") zero = np.vectorize(lambda x : 0) return zero(point_index) if self.kernel == 'square' and self.counting_measure : # square kernel with couting measure and constant k i_indices = int(np.ceil(k0 * self.size)) - 1 if i_indices + 1 > self.maxk : if self.maxk < self.size : # to do: check that the boundary cases are correct here out_of_range = np.where((i_indices + 1 >\ np.apply_along_axis(len,-1,self.nn_indices[point_index])) &\ (i_indices + 1 < self.size), True, False) if np.any(out_of_range) : warnings.warn("Don't have enough neighbors to properly compute core scale.") else : i_indices = [] for p in point_index : i_indices.append(np.searchsorted(self.kernel_estimate[p],k0, side = 'left')) i_indices = np.array(i_indices) if self.maxk < self.size : out_of_range = np.where((i_indices >=\ np.apply_along_axis(len,-1,self.nn_indices[point_index])) &\ (np.apply_along_axis(len,-1,self.nn_indices[point_index]) < self.size), True, False) if np.any(out_of_range) : warnings.warn("Don't have enough neighbors to properly compute core scale.") if self.kernel == 'square' : return gamma.s_component.inverse(self.nn_distance[(point_index, i_indices)]) if self.kernel == 'triangle' : op = lambda p, i : np.divide(self.delta[p,i-1], (self.square_kernel_estimate[p,i-1] - k0)) elif self.kernel == 'epanechnikov' : op = lambda p, i : np.sqrt(np.divide(self.delta[p,i-1], self.square_kernel_estimate[p,i-1] - k0)) return gamma.s_component.inverse(np.where(i_indices == 0, 0, op(point_index,i_indices))) def core_scale_varying_s_k(self, point_index, gamma) : k_s_inv = lambda d : gamma.k_component.func(gamma.s_component.func_inv(d)) i_indices = [] for p in point_index : i_indices.append(lazy_intersection(self.kernel_estimate[p], self.nn_distance[p], k_s_inv)) i_indices = np.array(i_indices) out_of_range = i_indices[:,1] if np.any(out_of_range) : # to do: better message for second condition warnings.warn("Don't have enough neighbors to properly compute core scale, or point takes too long to appear.") i_indices = i_indices[:,0] if self.kernel == 'square' : op = lambda p, i : np.where(self.kernel_estimate[p,i-1] >= k_s_inv(self.nn_distance[p,i]),\ gamma.s_component.func(gamma.k_component.func_inv(self.kernel_estimate[p,i-1])), self.nn_distance[p,i]) return gamma.s_component.inverse(np.where(i_indices == 0, 0, op(point_index,i_indices))) else : # to do: set tolerance so user can choose it, and handle nonconvergence in some controlled way op_ = lambda p, i : sp.optimize.brentq(lambda s : self.kde(p, s)[0] -\ gamma.k_component.func(gamma.s_component.func_inv(s)), self.nn_distance[p,i-1], self.nn_distance[p,i], disp = True) op = lambda p, i : 0 if i == 0 else op_(p,i) return gamma.s_component.inverse(np.array(list(map(op, point_index, i_indices)))) def its_shadow(self, gridk = 1.1, grids = 1, n_bins = 250) : # to do: check input if not self.fitted_density_estimates : raise Exception("Must fit before computing shadow.") # create grid if not given explicitly if isinstance(gridk, float) or isinstance(gridk, int) : n_bins = n_bins max_grid_k = gridk gridk = np.array(range(0,n_bins))/(n_bins-1) * max_grid_k max_grid_s = grids grids = np.array(range(0,n_bins))/(n_bins-1) * max_grid_s shadow = np.zeros((len(gridk),len(grids))) mask = np.full((len(gridk),len(grids)),False) for i in range(len(self.fit_on)) : estimates, out_of_bounds = self.kde(i, grids) k_indices = np.searchsorted(gridk, estimates, side = 'left') k_indices -= 1 shadow[(k_indices, range(0,len(k_indices)))] += self.measure[i] for s_index, b in enumerate(out_of_bounds) : if b : mask[k_indices[s_index]][s_index] = True shadow = shadow[::-1].cumsum(axis = 0)[::-1] normalize_by = np.sum(self.measure[self.fit_on]) shadow /= normalize_by mask = np.logical_or.accumulate(mask) return Shadow(gridk, grids, shadow, mask) def gamma_linkage(self, gamma, consistent = False, intrinsic_dim = 1) : covariant = gamma.covariant if self.metric == "precomputed" : sl_dist = self.dist_mat.copy() else : sl_dist = pairwise_distances(self.points, metric = self.metric, p = self.p) indices = np.arange(self.size) core_scales = self.core_scale(indices, gamma) sl_dist = gamma.t_component.inverse(sl_dist) if not covariant : sl_dist = np.minimum(sl_dist, core_scales) sl_dist = np.minimum(sl_dist.T,core_scales).T sl_dist[sl_dist < TOL] = TOL sl_dist = np.reciprocal(sl_dist) else : sl_dist = np.maximum(sl_dist, core_scales) sl_dist = np.maximum(sl_dist.T,core_scales).T sl_dist[sl_dist > INF] = INF sl = linkage(squareform(sl_dist, checks=False), 'single') merges = sl[:,0:2].astype(int) merges_heights = sl[:,2] if not covariant : merges_heights = np.reciprocal(merges_heights) merges_heights[merges_heights >= INF/2] = np.infty merges_heights[merges_heights <= TOL*2] = 0 ret = HierarchicalClustering(self.points, covariant, core_scales, merges, merges_heights, gamma.minr, gamma.maxr) if consistent : d = intrinsic_dim if d == 1 : if self.kernel == "square" : cons = 2 elif self.kernel == "triangle" : cons = 1 elif self.kernel == "epanechnikov" : cons = 4/3 else : if self.kernel == "square" : cons = (np.pi ** (d/2)) / math.gamma(d/2 + 1) elif self.kernel == "triangle" : cons = (2 * np.pi**((d-1)/2))/(math.gamma((d-1)/2) * d * (d+1)) elif self.kernel == "epanechnikov" : cons = (2 * np.pi**((d-1)/2) * 2)/(math.gamma((d-1)/2) * d * (d+2)) v_s = lambda s : cons * s**d inverse_rescaling = np.vectorize(lambda r : gamma.k_component.func(r) / v_s(gamma.s_component.func(r))) # new covariance is False ret.reindex(inverse_rescaling, 0, np.inf, False) return ret def connection_radius(self) : gamma = Gamma_curve.constant_k_alpha_s_indexed(0) return self.gamma_linkage(gamma).start_and_end()[1] class PersCluster: def __init__(self, identifier=None, child=None, parents=None, size=2, index=None, min_m=2, max_m=2): self.id = identifier self.child = child self.parents = parents self.size = size self.index = index self.min_m = min_m self.max_m = max_m self.score_summands = np.zeros(shape = max_m - min_m + 1, dtype=np.float64) self.id_after_pruning = identifier self.score_summand_after_pruning = 0 def reset_after_pruning(self): self.id_after_pruning = self.id self.score_summand_after_pruning = 0 def score(self, m): return np.sum(self.score_summands[m - self.min_m:]) + self.score_summand_after_pruning def update_score_summands(self, current_index): if self.size >= self.min_m: if self.size <= self.max_m: self.score_summands[self.size - self.min_m] = self.size * np.abs(current_index - self.index) else: self.score_summands[self.max_m - self.min_m] += self.size * np.abs(current_index - self.index) class PCTree: def __init__(self, pers_clusters, pc_of_points, min_m, max_m, roots): self.pers_clusters = pers_clusters self.pc_of_points = pc_of_points self.min_m = min_m self.max_m = max_m self.roots = roots def point_ancestors_of_x_to_y(self, x, y, dictionary): dictionary[x] = y pc = self.pers_clusters[x] if pc.parents != None: for parent in pc.parents: self.point_ancestors_of_x_to_y(parent, y, dictionary) def optimal_clustering(self, ident, m): pc = self.pers_clusters[ident] if pc.parents == None: if pc.size < m: return [], 0 if pc.size >= m: return [pc.id_after_pruning], pc.score(m) else: parent_0_id = pc.parents[0] parent_1_id = pc.parents[1] parent_0 = self.pers_clusters[parent_0_id] parent_1 = self.pers_clusters[parent_1_id] if parent_0.size >= m and parent_1.size >= m: clustering_0, score_0 = self.optimal_clustering(parent_0_id, m) clustering_1, score_1 = self.optimal_clustering(parent_1_id, m) if score_0 + score_1 >= pc.score(m): return clustering_0 + clustering_1, score_0 + score_1 else: return [pc.id_after_pruning], pc.score(m) if parent_0.size < m and parent_1.size >= m: parent_1.id_after_pruning = pc.id_after_pruning parent_1.score_summand_after_pruning = pc.score(m) return self.optimal_clustering(parent_1_id, m) if parent_1.size < m and parent_0.size >= m: parent_0.id_after_pruning = pc.id_after_pruning parent_0.score_summand_after_pruning = pc.score(m) return self.optimal_clustering(parent_0_id, m) if parent_0.size < m and parent_1.size < m: if pc.size < m: return [], 0 if pc.size >= m: return [pc.id_after_pruning], pc.score(m) def measure_based_flattening_PC(self, m, verbose=False, allow_one_cluster=False): if m < self.min_m: raise Exception("m is smaller than min_m!") if m > self.max_m: raise Exception("m is larger than max_m!") pc_of_points = self.pc_of_points.copy() num_points = pc_of_points.shape[0] result_ids = [] if allow_one_cluster: # compute optimal clustering for root in self.roots: clustering, score = self.optimal_clustering(root, m) result_ids += clustering else: if len(self.roots) == 1: root = self.roots[0] pc = self.pers_clusters[root] pc.score_summand_after_pruning = -np.inf #compute optimal clustering clustering, score = self.optimal_clustering(root, m) result_ids = clustering else: # compute optimal clustering for root in self.roots: clustering, score = self.optimal_clustering(root, m) result_ids += clustering # if x is a member of the optimal solution, # and x' is an ancestor of x, then # the points of x' should be in the same cluster as x id_to_flat_id = {} for count, ident in enumerate(result_ids): self.point_ancestors_of_x_to_y(ident, count, id_to_flat_id) for p in range(num_points): if pc_of_points[p] in id_to_flat_id.keys(): pc_of_points[p] = id_to_flat_id[pc_of_points[p]] else: pc_of_points[p] = -1 # reset the after-pruning data of all persistent clusters, # in case we flatten again with a different m for key in self.pers_clusters.keys(): pc = self.pers_clusters[key] pc.reset_after_pruning() if verbose: return pc_of_points, result_ids else: return pc_of_points class HierarchicalClustering : """Implements a hierarchical clustering of a dataset""" def __init__(self, X, covariant, heights, merges, merges_heights, minr, maxr) : self.points = X self.covariant = covariant #self.dend = dend self.merges = merges self.merges_heights = merges_heights self.heights = heights self.maxr = maxr self.minr = minr def persistence_based_flattening(self, threshold = None, num_clusters = None) : if threshold == None and num_clusters == None : raise Exception("Either threshold or num_clusters must be given.") if threshold != None and num_clusters != None : warnings.warn("Both threshold and num_clusters given, using threshold.") elif threshold == None : bd = self.PD(end="infinity")[0] pers = np.abs(bd[:,0] - bd[:,1]) if num_clusters + 1 > bd.shape[0] : threshold = 0 else : spers = np.sort(pers) threshold = (spers[-num_clusters] + spers[-(num_clusters+1)])/2 heights = self.heights.copy() merges_heights = self.merges_heights.copy() if not self.covariant : heights = -heights - TOL merges_heights = -merges_heights else : heights = heights - TOL # for numerical reasons, it may be that a point is merged before it appears, # we subtract TOL, above, to make sure this doesn't happen appearances = np.argsort(heights) uf = UnionFind() clusters_birth = {} clusters_died = {} clusters = [] hind = 0 mind = 0 n_points = heights.shape[0] while True : while hind < n_points and heights[appearances[hind]] <= merges_heights[mind] : uf.find(appearances[hind]) clusters_birth[appearances[hind]] = heights[appearances[hind]] hind += 1 if hind == n_points : current_height = np.infty else : current_height = heights[appearances[hind]] while mind < merges_heights.shape[0] and merges_heights[mind] < current_height : xy = self.merges[mind] x, y = xy rx = uf.find(x) ry = uf.find(y) if rx not in clusters_died and ry not in clusters_died : bx = clusters_birth[rx] by = clusters_birth[ry] if bx > merges_heights[mind] - threshold or by > merges_heights[mind] - threshold : del clusters_birth[rx] del clusters_birth[ry] uf.union(x,y) uf.union(x,mind + n_points) rxy = uf.find(x) clusters_birth[rxy] = min(bx, by) else : # they both must die if clusters_birth[rx] + threshold <= merges_heights[mind] : clusters.append(uf.equivalence_class(x)) if clusters_birth[ry] + threshold <= merges_heights[mind] : clusters.append(uf.equivalence_class(y)) uf.union(x,y) uf.union(x,mind + n_points) rxy = uf.find(x) clusters_died[rxy] = True elif rx in clusters_died and ry in clusters_died : # both of them are dead uf.union(x,y) uf.union(x,mind + n_points) rxy = uf.find(x) clusters_died[rxy] = True else : if rx in clusters_died : x, y = y, x rx, ry = ry, rx # ry already died and rx just died if clusters_birth[rx] + threshold <= merges_heights[mind] : clusters.append(uf.equivalence_class(x)) uf.union(x,y) uf.union(x,mind + n_points) rxy = uf.find(x) clusters_died[rxy] = True mind += 1 if mind == merges_heights.shape[0] : break death = np.inf #if self.covariant : # death = np.inf #else : # death = -self.minr for x in range(n_points) : rx = uf.find(x) if rx not in clusters_died : if clusters_birth[rx] + threshold <= death : clusters.append(uf.equivalence_class(x)) clusters_died[rx] = True current_cluster = 0 res = np.full(n_points, -1) for cl in clusters : for x in cl : if x < n_points : res[x] = current_cluster current_cluster += 1 return current_cluster, res def reindex(self, inverse_rescaling, new_min, new_max, new_covariance) : self.minr = new_min self.maxr = new_max self.covariant = new_covariance self.merges_heights = inverse_rescaling(self.merges_heights) self.heights = inverse_rescaling(self.heights) def start_and_end(self) : #returns the first and last things that happen in the hierarchical clustering if self.covariant : return np.min(self.heights), np.max(self.merges_heights) else : return np.max(self.heights), np.min(self.merges_heights) def interleaving_distance(self, hc) : """Computes the interleaving distance between self and the given hierarchical clustering.\ Assumes that self and the given hierarchical clustering are defined over the same set.""" heights1 = self.heights heights2 = hc.heights merges1 = self.merges merges2 = hc.merges merges_heights1 = self.merges_heights.copy() merges_heights2 = hc.merges_heights.copy() if not self.covariant : merges_heights1 = - merges_heights1 merges_heights2 = - merges_heights2 nmerges1 = len(merges1) nmerges2 = len(merges2) npoints = len(self.heights) #to do: fail if different number of points dist = np.amax(np.abs(heights1 - heights2)) # compute the assymetric interleaving distance from 1 to 2 # to do: we assume that everything merges together right after the last thing that happens # maybe this should be done at the level of dendrograms? i = 0 epsilon1 = dist uf1 = UnionFind() uf1_ = UnionFind() for xy,r,n in zip(merges1, merges_heights1, range(nmerges1)): x,y = xy uf1_.union(x,y) uf1_.union(x,n + npoints) while i < nmerges2 and merges_heights2[i] < r + epsilon1 : uf1.union(merges2[i,0], merges2[i,1]) uf1.union(merges2[i,0], i + npoints) i = i + 1 rx = uf1_.find(x) ry = uf1_.find(y) while i < nmerges2 and uf1.find(rx) != uf1.find(ry) : epsilon1 = merges_heights2[i] - r uf1.union(merges2[i,0], merges2[i,1]) uf1.union(merges2[i,0], i + npoints) i = i + 1 i = 0 epsilon2 = epsilon1 uf2 = UnionFind() uf2_ = UnionFind() for xy,r in zip(merges2, merges_heights2): x,y = xy uf2_.union(x,y) uf2_.union(x,n + npoints) while i < nmerges1 and merges_heights1[i] < r + epsilon2 : uf2.union(merges1[i,0], merges1[i,1]) uf2.union(merges1[i,0], i + npoints) i = i + 1 rx = uf2_.find(x) ry = uf2_.find(y) while i < nmerges1 and uf2.find(rx) != uf2.find(ry) : epsilon2 = merges_heights1[i] - r uf2.union(merges1[i,0], merges1[i,1]) uf2.union(merges1[i,0], i + npoints) i = i + 1 return epsilon2 def PD(self, end = None) : # ti is the terminal index: # a point in the pd that never dies will have ti as its death index. heights = self.heights.copy() merges = self.merges.copy() merges_heights = self.merges_heights.copy() covariant = self.covariant if end == "infinity" : if covariant : ti = INF else : ti = TOL else : if covariant : ti = self.maxr else : ti = self.minr num_points = heights.shape[0] num_merges = merges.shape[0] # initialize persistence diagram # in the end, pers_diag[i, 0] will be the birth, # and pers_diag[i, 1] will be the death # of the point represented by the datapoint i. # if pers_diag[i, :] = [-1, -1] at the end, we ignore it. pers_diag = np.empty(shape=(num_points, 2), dtype=np.float64) pers_diag.fill(-1) # initialize an array of cluster representatives # for the cluster i in the stepwise dendrogram, # cluster_reps[i] is a datapoint in that cluster cluster_reps = np.empty(shape=num_points + num_merges, dtype=np.int64) cluster_reps.fill(-1) # if the dendrogram is contravariant, # we reindex by taking the reciprocal if covariant == False: heights = np.reciprocal(heights) merges_heights[merges_heights < TOL] = TOL merges_heights[merges_heights > INF] = INF merges_heights = np.reciprocal(merges_heights) if ti <= TOL: ti = INF elif ti >= INF : ti = TOL else: ti = np.reciprocal(ti) for i in range(num_merges): cluster_0 = merges[i, 0] cluster_1 = merges[i, 1] # if both clusters are singletons if cluster_0 < num_points and cluster_1 < num_points: height_0 = heights[cluster_0] height_1 = heights[cluster_1] current_height = merges_heights[i] # if cluster_0 was just born, but cluster_1 was already alive if np.abs(height_0 - current_height) < TOL and np.abs(height_1 - current_height) >= TOL: pers_diag[cluster_1, :] = [height_1, ti] cluster_reps[num_points + i] = cluster_1 # if cluster_1 was just born, but cluster_0 was already alive if np.abs(height_1 - current_height) < TOL and np.abs(height_0 - current_height) >= TOL: pers_diag[cluster_0, :] = [height_0, ti] cluster_reps[num_points + i] = cluster_0 # if cluster_0 and cluster_1 were just born if np.abs(height_0 - current_height) < TOL and np.abs(height_1 - current_height) < TOL: pers_diag[cluster_0, :] = [height_0, ti] cluster_reps[num_points + i] = cluster_0 # if cluster_0 and cluster_1 were both already alive if np.abs(height_0 - current_height) >= TOL and np.abs(height_1 - current_height) >= TOL: # if cluster_1 is born first if height_0 >= height_1: pers_diag[cluster_0, :] = [height_0, current_height] pers_diag[cluster_1, :] = [height_1, ti] cluster_reps[num_points + i] = cluster_1 # if cluster_0 is born first if height_0 < height_1: pers_diag[cluster_0, :] = [height_0, ti] pers_diag[cluster_1, :] = [height_1, current_height] cluster_reps[num_points + i] = cluster_0 # if cluster_0 is a singleton and cluster_1 is not if cluster_0 < num_points and cluster_1 >= num_points: height_0 = heights[cluster_0] rep_1 = cluster_reps[cluster_1] height_1 = pers_diag[rep_1, 0] current_height = merges_heights[i] # if cluster_0 was just born if np.abs(height_0 - current_height) < TOL: cluster_reps[num_points + i] = rep_1 # if cluster_0 was already alive if np.abs(height_0 - current_height) >= TOL: # the singleton is younger than the cluster if height_0 >= height_1: pers_diag[cluster_0, :] = [height_0, current_height] cluster_reps[num_points + i] = rep_1 # the singleton is older than the cluster if height_0 < height_1: pers_diag[cluster_0, :] = [height_0, ti] pers_diag[rep_1, 1] = current_height cluster_reps[num_points + i] = cluster_0 # if cluster_1 is a singleton and cluster_0 is not if cluster_1 < num_points and cluster_0 >= num_points: height_1 = heights[cluster_1] rep_0 = cluster_reps[cluster_0] height_0 = pers_diag[rep_0, 0] current_height = merges_heights[i] # if cluster_1 was just born if np.abs(height_1 - current_height) < TOL: cluster_reps[num_points + i] = rep_0 # if cluster_1 was already alive if np.abs(height_1 - current_height) >= TOL: # the singleton is younger than the cluster if height_1 >= height_0: pers_diag[cluster_1, :] = [height_1, current_height] cluster_reps[num_points + i] = rep_0 # the singleton is older than the cluster if height_1 < height_0: pers_diag[cluster_1, :] = [height_1, ti] pers_diag[rep_0, 1] = current_height cluster_reps[num_points + i] = cluster_1 # if neither cluster is a singleton if cluster_0 >= num_points and cluster_1 >= num_points: rep_0 = cluster_reps[cluster_0] height_0 = pers_diag[rep_0, 0] rep_1 = cluster_reps[cluster_1] height_1 = pers_diag[rep_1, 0] current_height = merges_heights[i] # cluster_0 is younger than cluster_1 if height_0 >= height_1: pers_diag[rep_0, 1] = current_height cluster_reps[num_points + i] = rep_1 # cluster_1 is younger than cluster_0 if height_0 < height_1: pers_diag[rep_1, 1] = current_height cluster_reps[num_points + i] = rep_0 # check if there are points in the dataset # that never appeared in the dendrogram appeared = np.zeros(shape=num_points, dtype=np.int64) for i in range(num_merges): cluster_0 = merges[i, 0] cluster_1 = merges[i, 1] if cluster_0 < num_points: appeared[cluster_0] = 1 if cluster_1 < num_points: appeared[cluster_1] = 1 for i in range(num_points): if appeared[i] == 0: pers_diag[i, :] = [heights[i], ti] # remove all rows from the persistence diagram that were never modified non_empty_indices = [] for i in range(num_points): if pers_diag[i, 0] > -1: non_empty_indices.append(i) trimmed_pers_diag = np.empty(shape=(len(non_empty_indices), 2), dtype=np.float64) #representatives = np.empty(shape=(len(non_empty_indices), 1), dtype=np.int32) for i in range(len(non_empty_indices)): trimmed_pers_diag[i, 0] = pers_diag[non_empty_indices[i], 0] trimmed_pers_diag[i, 1] = pers_diag[non_empty_indices[i], 1] if covariant == False: trimmed_pers_diag[:, [0, 1]] = np.reciprocal(trimmed_pers_diag[:, [0, 1]]) trimmed_pers_diag[trimmed_pers_diag <= TOL*2] = 0 trimmed_pers_diag[trimmed_pers_diag >= INF/2] = np.infty # set the death of the first born point to -infinity if covariant == False and end == "infinity" : #trimmed_pers_diag[np.argmax(trimmed_pers_diag[:,0]),1] = -np.infty first_birth = np.max(trimmed_pers_diag[:,0]) first_born = np.argwhere(trimmed_pers_diag[:,0] > first_birth - TOL).flatten() # of the first born, take the last to die most_persistent = np.argmin(trimmed_pers_diag[first_born,1]) index = first_born[most_persistent] trimmed_pers_diag[index,1] = -np.infty non_trivial_points = np.abs(trimmed_pers_diag[:,0] - trimmed_pers_diag[:,1]) > TOL return trimmed_pers_diag[non_trivial_points], np.array(non_empty_indices)[non_trivial_points] def measure_based_flattening(self, m): # compute poset of persistent clusters X = self.PC(min_m = m, max_m = m) return X.measure_based_flattening_PC(m = m) def measure_based_flattening_several_m(self, min_m, max_m): # compute poset of persistent clusters X = self.PC(min_m = min_m, max_m = max_m) # compute all measure-based flattenings num_points = self.heights.shape[0] labels = np.empty(shape=(max_m - min_m + 1, num_points), dtype=np.int64) ids = {} for m in range(min_m, max_m + 1): labels_m, ids_m = X.measure_based_flattening_PC(m = m, verbose = True) labels[m - min_m, :] = labels_m ids[m] = ids_m critical_m = [(min_m, len(ids[min_m]))] for m in range(min_m + 1, max_m + 1): if len(ids[m-1]) != len(ids[m]): critical_m.append((m, len(ids[m]))) else: if set(ids[m-1]) != set(ids[m]): critical_m.append((m, len(ids[m]))) return labels, critical_m # Returns the PC of the hierarchical clustering, # after the measure-based pruning with m=2. # From this, one can compute the measure-based flattening with any m # such that min_m <= m <= max_m. def PC(self, min_m, max_m): covariant = self.covariant if covariant : ti = self.maxr else : ti = self.minr num_points = self.heights.shape[0] num_merges = self.merges.shape[0] pc_of_points = np.empty(shape=num_points, dtype=np.int64) pc_of_points.fill(-1) X = PCTree(pers_clusters = {}, pc_of_points = pc_of_points, min_m = min_m, max_m = max_m, roots = []) # Initialize an array of cluster identifiers. # For the cluster i in the stepwise dendrogram, # cluster_ids[i] will be the identifier of the persistent cluster # to which i belongs. cluster_ids = np.empty(shape=num_merges, dtype=np.int64) cluster_ids.fill(-1) for i in range(num_merges): cluster_0 = self.merges[i, 0] cluster_1 = self.merges[i, 1] # if both clusters are singletons if cluster_0 < num_points and cluster_1 < num_points: # add persistent cluster to the PC pers_cluster = PersCluster(identifier = i, index = self.merges_heights[i], min_m = min_m, max_m = max_m) X.pers_clusters[i] = pers_cluster # cluster i in the stepwise dendrogram belongs to # the persistent cluster i cluster_ids[i] = i # both singletons belong to the persistent cluster i pc_of_points[cluster_0] = i pc_of_points[cluster_1] = i # if cluster_0 is not a singleton and cluster_1 is a singleton if cluster_0 >= num_points and cluster_1 < num_points: # find the persistent cluster to which cluster_0 belongs ident = cluster_ids[cluster_0 - num_points] pc = X.pers_clusters[ident] current_index = self.merges_heights[i] # update the score of pc pc.update_score_summands(current_index) # update the index where pc was last visited pc.index = current_index # pc has increased in size, since cluster_1 was added pc.size += 1 # cluster_1 belongs to pc pc_of_points[cluster_1] = ident # cluster i in the stepwise dendrogram belongs to # the persistent cluster ident cluster_ids[i] = ident # if cluster_1 is not a singleton and cluster_0 is a singleton if cluster_1 >= num_points and cluster_0 < num_points: # find the persistent cluster to which cluster_1 belongs ident = cluster_ids[cluster_1 - num_points] pc = X.pers_clusters[ident] current_index = self.merges_heights[i] # update the score of pc pc.update_score_summands(current_index) # update the index where pc was last visited pc.index = current_index # pc has increased in size, since cluster_0 was added pc.size += 1 # cluster_0 belongs to pc pc_of_points[cluster_0] = ident # cluster i in the stepwise dendrogram belongs to # the persistent cluster ident cluster_ids[i] = ident # if both clusters are not singletons if cluster_0 >= num_points and cluster_1 >= num_points: # find the persistent cluster to which cluster_0 belongs ident_0 = cluster_ids[cluster_0 - num_points] pc_0 = X.pers_clusters[ident_0] # find the persistent cluster to which cluster_1 belongs ident_1 = cluster_ids[cluster_1 - num_points] pc_1 = X.pers_clusters[ident_1] current_index = self.merges_heights[i] # update the score of pc_0 pc_0.update_score_summands(current_index) # update the score of pc_1 pc_1.update_score_summands(current_index) # Since pc_0 and pc_1 have merged, # they create a child in X pers_cluster = PersCluster(identifier = i, parents = [ident_0, ident_1], size = pc_0.size + pc_1.size, index = current_index, min_m = min_m, max_m = max_m) X.pers_clusters[i] = pers_cluster pc_0.child = i pc_1.child = i # cluster i in the stepwise dendrogram belongs to # the persistent cluster i cluster_ids[i] = i # find the roots of the PC for ident in X.pers_clusters.keys(): if X.pers_clusters[ident].child == None: X.roots.append(ident) # we have to finish computing the scores of root elements current_index = ti for root in X.roots: # find the persistent cluster to which root belongs pc = X.pers_clusters[root] # update the score of pc pc.update_score_summands(current_index) return X class Shadow : # returns an empty shadow def __init__(self, gridk, grids, matrix, mask) : self.gridk = gridk self.grids = grids self.matrix = matrix self.mask = mask ### UNION FIND class UnionFind: def __str__(self) : return 'par: ' + str(self.parent) + '\n' +\ 'rnk: ' + str(self.rank) + '\n' +\ 'siz: ' + str(self.size) + '\n' +\ 'rep: ' + str(self.representatives) def __init__(self): self.parent = {} self.rank = {} self.size = {} self.representatives = set() self.next = {} def __copy__(self): new_uf = UnionFind() new_uf.parent = self.parent.copy() new_uf.rank = self.rank.copy() new_uf.size = self.size.copy() new_uf.representatives = self.representatives.copy() new_uf.next = self.next.copy() return new_uf def class_size(self, obj) : root = self.find(obj) return self.size[root] def class_representatives(self) : return self.representatives def insert_object(self, obj): if not obj in self.parent : self.parent[obj] = obj self.rank[obj] = 0 self.size[obj] = 1 self.representatives.add(obj) self.next[obj] = obj def find(self, obj): if not obj in self.parent : self.insert_object(obj) return obj if self.parent[obj] != obj : self.parent[obj] = self.find(self.parent[obj]) return self.parent[obj] def union(self, obj1, obj2): root1 = self.find(obj1) root2 = self.find(obj2) if root1 == root2 : return if self.rank[obj1] < self.rank[obj2] : root1, root2 = root2, root1 self.parent[root2] = root1 self.size[root1] = self.size[root1] + self.size[root2] self.representatives.remove(root2) self.next[root1], self.next[root2] = self.next[root2], self.next[root1] if self.rank[root1] == self.rank[root2] : self.rank[root1] = self.rank[root1] + 1 def equivalence_class(self, obj) : next_obj = self.next[obj] cl = [obj] while next_obj != obj : cl.append(next_obj) next_obj = self.next[next_obj] return cl ### CURVES def line(slope, intercept, r) : return slope * r + intercept def constant(const, r) : return const def identity(r) : return r def times(alpha,r) : return alpha * r class Parametrized_interval : def __init__(self, dom_min, dom_max, cod_min, cod_max, func, covariant, func_inv = None) : # to do: check input self.covariant = covariant self.dom_min = dom_min self.dom_max = dom_max self.cod_min = cod_min self.cod_max = cod_max self.func = func # could be None self.func_inv = func_inv if func_inv == None : self.is_constant = True else : self.is_constant = False def inverse(self, r) : # to do: we don't assume the curve is invertible # in the constant case self.cod_min == self.cod_max, # make sure that the conditions are mutually exclusive # and their union is everything condlist = [ r < self.cod_min, r >= self.cod_max ] if self.covariant : choicelist = [ self.dom_min, self.dom_max ] else : choicelist = [ self.dom_max, self.dom_min ] #to do: handle non-invertible curves better if self.func_inv == None : return np.select(condlist,choicelist, default = 0) else: return np.select(condlist,choicelist, default = self.func_inv(r)) def linear(dom_min, dom_max, cod_min, cod_max, slope, intercept, slope_inv = None, intercept_inv = None) : dom_min = dom_min dom_max = dom_max cod_min = cod_min cod_max = cod_max func = lambda r : line(slope,intercept, r) if slope_inv != None : func_inv = lambda r : line(slope_inv,intercept_inv, r) else : func_inv = None if slope >= 0 : covariant = True else : covariant = False return Parametrized_interval(dom_min, dom_max, cod_min, cod_max, func, covariant, func_inv = func_inv) def linear_increasing(dom_min, dom_max, cod_min, cod_max) : slope = (cod_max - cod_min)/(dom_max - dom_min) intercept = cod_min - slope * dom_min slope_inv = 1./slope intercept_inv = -intercept * slope_inv return Parametrized_interval.linear(dom_min, dom_max, cod_min, cod_max,\ slope, intercept, slope_inv = slope_inv, intercept_inv = intercept_inv) def linear_decreasing(dom_min, dom_max, cod_min, cod_max) : slope = (cod_min - cod_max)/(dom_max - dom_min) intercept = cod_max - slope * dom_min slope_inv = 1./slope intercept_inv = -intercept * slope_inv return Parametrized_interval.linear(dom_min, dom_max, cod_min, cod_max,\ slope, intercept, slope_inv = slope_inv, intercept_inv = intercept_inv) def constant(dom_min, dom_max, const, covariant) : # to do: test dom_min = dom_min dom_max = dom_max cod_min = const cod_max = const func = lambda r : constant(const, r) return Parametrized_interval(dom_min, dom_max, cod_min, cod_max, func, covariant) def identity() : dom_min = 0 dom_max = np.infty cod_min = 0 cod_max = np.infty func = identity func_inv = func return Parametrized_interval(dom_min, dom_max, cod_min, cod_max, func, True, func_inv = func_inv) def times(alpha) : dom_min = 0 dom_max = np.infty cod_min = 0 cod_max = np.infty func = lambda r : times(alpha, r) func_inv = lambda r : times(1./alpha,r) return Parametrized_interval(dom_min, dom_max, cod_min, cod_max, func, True, func_inv = func_inv) class Gamma_curve : def __init__(self, s_component, t_component, k_component) : # to do: actually, it does make sense for both components to be constant if s_component.is_constant and k_component.is_constant : raise Exception("Both components shouldn't be constant.") if s_component.is_constant : self.covariant = not k_component.covariant else : self.covariant = s_component.covariant self.s_component = s_component self.t_component = t_component self.k_component = k_component #self.k_s_inv = None # to do: check that domains coincide (and min should be 0) self.maxr = s_component.dom_max self.minr = 0 def linear_interpolator_alpha_k_indexed(k, s, alpha = 1) : k_component = Parametrized_interval.linear_increasing(0,k,0,k) s_component = Parametrized_interval.linear_decreasing(0,k,0,s) t_component = Parametrized_interval.linear_decreasing(0,k,0,alpha * s) return Gamma_curve(s_component,t_component,k_component) def linear_interpolator_alpha_s_indexed(k, s, alpha = 1) : k_component = Parametrized_interval.linear_decreasing(0,s,0,k) s_component = Parametrized_interval.linear_increasing(0,s,0,s) t_component = Parametrized_interval.linear_increasing(0,s,0,alpha * s) return Gamma_curve(s_component,t_component,k_component) def constant_k_alpha_s_indexed(k,alpha = 1, maxs = np.infty) : k_component = Parametrized_interval.constant(0,maxs,k,False) s_component = Parametrized_interval.identity() t_component = Parametrized_interval.times(alpha) return Gamma_curve(s_component,t_component,k_component) def constant_s_t_k_indexed(s,t,maxk = np.infty) : k_component = Parametrized_interval.identity() s_component = Parametrized_interval.constant(0,maxk,s,False) t_component = Parametrized_interval.constant(0,maxk,t,False) return Gamma_curve(s_component,t_component,k_component) ### PLOTTING SHADOWS def latex_float(f): # https://stackoverflow.com/a/13490601/2171328 float_str = "{0:.2g}".format(f) if "e" in float_str: base, exponent = float_str.split("e") #return r"{0} \times 10^{{{1}}}".format(base, int(exponent)) return r"{0}e{{{1}}}".format(base, int(exponent)) else: return float_str def ticks_in_scientific_notation(tks) : #return [ "$" + latex_float(t) + "$" for t in tks] return [ latex_float(t) for t in tks] def plot_shadow(shadow, n_ticks = 11, n_shadows = 10, maxt = None, gammas = None, n_samples_curve_domain = 10000, h_size = 10, v_size = 5) : #sns.set(rc={'text.usetex': True}) # set size of final picture sns.set(rc={'figure.figsize':(h_size,v_size)}) # draw heat map ax = sns.heatmap(np.flip(shadow.matrix,0), cmap = sns.color_palette("Blues", n_shadows), mask = np.flip(shadow.mask,0), rasterized=True) ax.set_facecolor('Grey') old_xticks = ax.get_xticks() new_xticks = np.linspace(np.min(old_xticks), np.max(old_xticks), n_ticks) new_xlabels = ticks_in_scientific_notation(np.linspace(shadow.grids[0], shadow.grids[-1], n_ticks)) ax.set_xticks(new_xticks) ax.set_xticklabels(new_xlabels) old_yticks = ax.get_yticks() new_yticks = np.linspace(np.min(old_yticks), np.max(old_yticks), n_ticks) new_ylabels = ticks_in_scientific_notation(
np.linspace(shadow.gridk[-1], shadow.gridk[0], n_ticks)
numpy.linspace
import unittest import numpy as np from railrl.misc import np_util from railrl.testing.np_test_case import NPTestCase class TestNpUtil(NPTestCase): def test_softmax_1d(self): values = np.array([1, 2]) denom_1 = np.exp(1) +
np.exp(2)
numpy.exp
#### # # Copyright 2020. Triad National Security, LLC. All rights reserved. # This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos # National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. # Department of Energy/National Nuclear Security Administration. All rights in the program are # reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear # Security Administration. The Government is granted for itself and others acting on its behalf a # nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare # derivative works, distribute copies to the public, perform publicly and display publicly, and to permit # others to do so. # #### ## label recognition ## Authors: <NAME> and <NAME> # Standard packages import argparse import glob import copy import numpy as np import re # Image packages from PIL import Image # Needed for reading TIF import scipy.ndimage from scipy.spatial import Delaunay from skimage.color import rgb2gray from skimage.filters import threshold_otsu import skimage from skimage.io import imsave # Text packages import pytesseract ### Alpha-shape calculation with helper functions ### def edge_length(point_a, point_b): """ point_a and point_b are 2-tuples or lists of length 2, representing endpoints of an edge. Returns the Euclidean distance between point_a and point_b. """ return np.sqrt((point_a[0] - point_b[0]) ** 2 + (point_a[1] - point_b[1]) ** 2) def add_alpha_edge(edges, i, j, only_outer=True): """ Add a line between the i-th and j-th points, if not in the list already """ if (i, j) in edges or (j, i) in edges: # already added assert (j, i) in edges, "Alpha-shape: Can't go twice over the same directed edge" if only_outer: # if both neighboring triangles are in shape, it's not a boundary edge edges.remove((j, i)) return edges.add((i, j)) def alpha_shape(points, alpha, only_outer=True): assert points.shape[0] > 3, "Alpha-shape needs at least four points" tri = Delaunay(points) edges = set() for ia, ib, ic in tri.vertices: pa = points[ia] pb = points[ib] pc = points[ic] a = edge_length(pa, pb) b = edge_length(pb, pc) c = edge_length(pc, pa) s = (a + b + c) / 2.0 area = np.sqrt(s * (s - a) * (s - b) * (s - c)) #overflow potential? circum_r = a * b * c / (4.0 * area) if circum_r < alpha: add_alpha_edge(edges, ia, ib, only_outer) add_alpha_edge(edges, ib, ic, only_outer) add_alpha_edge(edges, ic, ia, only_outer) return edges ### Helper functions ### def draw_edges(points, edges, image_shape): edge_imarray = np.zeros(image_shape, dtype=np.uint8) for i,j in edges: row_i, col_i = points[i] row_j, col_j = points[j] rows, cols = skimage.draw.line(row_i, col_i, row_j, col_j) # or skimage.draw.line_aa(edge) for anti-aliased line edge_imarray[rows, cols] = 1 return edge_imarray def draw_mask(points, edges, image_shape): # Start with the polygon outlines mask_imarray = draw_edges(points, edges, image_shape) # Then fill them in mask_imarray = scipy.ndimage.binary_fill_holes(mask_imarray) return mask_imarray def pad_box(bounding_box, padding, image_shape): """ Add padding around given bounding box making sure not to exceed boundaries of the image. bounding_box is 4-tuple (min_row, min_col, max_row, max_col). Returns a new bounding_box as a 4-tuple. """ (min_row, min_col, max_row, max_col) = bounding_box min_row = max(min_row - padding, 0) min_col = max(min_col - padding, 0) max_row = min(max_row + padding, image_shape[0]) max_col = min(max_col + padding, image_shape[1]) return (min_row, min_col, max_row, max_col) def is_landscape(min_row, min_col, max_row, max_col): # Returns true if box is in "landscape" mode (wider than tall), and # false otherise. # Box should be rotated if it is taller than it is wide height = max_row - min_row width = max_col - min_col return width > height def save_image(filename, bin_array): """ Takes a binary array, inverts black/white, then saves to the given filename. """ imsave(filename, skimage.img_as_ubyte(np.logical_not(bin_array)), check_contrast=False) return ### Label extraction function ### def label_extraction(im, name, kernel_width, region_size_min, region_size_max, alpha, box_padding, output_dir, regexp_filter=None, save_regions=False, save_all_images=False): """ Finds the figure labels in the given image. Returns a list of bounding boxes and text strings of the identified figure labels. Optionally, will save the images associated with the bounding box and/or all images associated with intermediate image processing steps. """ # Convert image to array orig_im = np.array(im) imarray = copy.deepcopy(orig_im) # If not grayscale, make it grayscale if len(imarray.shape) != 2: imarray = rgb2gray(imarray) # Threshold foreground/background threshold = threshold_otsu(imarray) img_bw = imarray < threshold if save_all_images: save_image(output_dir + "bw_" + name + ".png", img_bw) # Fill regions to segment img_fill = scipy.ndimage.binary_fill_holes(img_bw) #img_fill = np.array(img_fill, dtype=np.uint8) if save_all_images: save_image(output_dir + "fill_" + name + ".png", img_fill) # Find connected components # Use skimage instead of opencv for consistency and reduced package requirements pixels_labeled_by_component = skimage.measure.label(img_fill) regions_list = skimage.measure.regionprops(pixels_labeled_by_component) sizes = [x.area for x in regions_list] nb_components = len(regions_list) # Filter connected components based on size label_candidate_pixels = np.zeros((imarray.shape)) for i in range(nb_components): if sizes[i] <= region_size_max and sizes[i] >= region_size_min: label_candidate_pixels[pixels_labeled_by_component == i + 1] = 1 if save_all_images: save_image(output_dir + "candidate_" + name + ".png", label_candidate_pixels) # Check if any pixels are potentially text if not label_candidate_pixels.any(): print("No text found in image " + name) return (None, None) # Erosion (dilation on inverse image) (dashed-line removal) kernel = np.ones((1,kernel_width), np.uint8) # horizontal kernel label_area = skimage.morphology.binary_erosion(label_candidate_pixels, kernel) kernel = np.ones((kernel_width,1), np.uint8) # vertical kernel label_area = skimage.morphology.binary_erosion(label_area, kernel) if save_all_images: save_image(output_dir + "dashgone_" + name + ".png", label_area) # Find alpha-shape (non-convex hull) points = np.transpose(np.where(label_area == 1)) # Alpha-shape needs at least 4 points if not points.shape[0] > 3: print("No text found in image " + name) return (None, None) try: edges = alpha_shape(points, alpha=alpha, only_outer=True) except: print("Alpha shape failed for " + name) return (None, None) # Get mask of alpha-shapes edges_imarray = draw_edges(points, edges, label_area.shape) mask_imarray = draw_mask(points, edges, label_area.shape) if save_all_images: save_image(output_dir + "alphamask_" + name + ".png", mask_imarray) save_image(output_dir + "alpha_" + name + ".png", edges_imarray) # Get bounding boxes pixels_labeled_by_component = skimage.measure.label(mask_imarray) regions_list = skimage.measure.regionprops(pixels_labeled_by_component, orig_im) boxes = [] # list of results labels = [] for i, region in enumerate(regions_list): bounding_box = region.bbox # (min_row, min_col, max_row, max_col) convex_mask = region.convex_image # binary image with same size as bounding_box # Check if there is any difference between the bounding box and the convex mask # i.e. noise pixels between the convex mask and the bounding box #region_image = region.intensity_image # not working as expected, so do it explicitly if box_padding > 0: bounding_box = pad_box(bounding_box, box_padding, imarray.shape) (min_row, min_col, max_row, max_col) = bounding_box region_image = skimage.img_as_ubyte(orig_im[min_row:max_row, min_col:max_col]) # OCR the region by masking the whole image (OCR works better as full-page than on small image) # First check if it needs to be rotated if not is_landscape(min_row, min_col, max_row, max_col): region_image = skimage.transform.rotate(region_image, 270, resize=True) # Make blank image the size of the original image ocr_img = np.array(np.ones(imarray.shape) * np.amax(orig_im), dtype=np.uint8) # Copy region into blank image ocr_img[min_row:max_row, min_col:max_col] =
np.array(orig_im[min_row:max_row, min_col:max_col], dtype=np.uint8)
numpy.array
import networkx as nx import numpy as np from tqdm import tqdm from pathlib import Path from argparse import ArgumentParser import os from datetime import datetime import pickle from torch.utils.tensorboard import SummaryWriter import pandas as pd import operator import matplotlib.pyplot as plt def analyze_results(rootdir='results', dstdir='analysis', filepattern='experiment_results.pkl', tensorboard=False, tb_k_best=1, csv=False, final_adaptive=False, plot=False, starting_policies_abspath=None, avg=False): # make directory where to save analysis files - tables, tensorboard etc. if not os.path.exists(dstdir): os.makedirs(dstdir) # load all results files stored in the rootdir summary = [] for path in tqdm(Path(rootdir).rglob(filepattern), desc='Loading files'): with open(path, 'rb') as f: res = pickle.load(f) summary.append(res) def str_hparams(hparams_dict): """ Serialize predefined key-value pairs into a string, useful to define tensorboard logdirs, such that configs can be identified and filtered on tensorboard scalars tab :param hparams_dict: a dictionary of hparam, value pairs. :returns s: a string consists of acronyms of keys and their corresponding values. """ short_keys = { 'policy': 'plc', # MCCORMIC_CYCLE_SEPARATOR PARAMETERS 'max_per_node': 'mpnd', 'max_per_round': 'mprd', 'criterion': 'crt', 'max_per_root': 'mprt', 'forcecut': 'fct', # SCIP SEPARATING PARAMETERS 'objparalfac': 'opl', 'dircutoffdistfac': 'dcd', 'efficacyfac': 'eff', 'intsupportfac': 'isp', 'maxcutsroot': 'mcr', } s = 'cfg' for k, sk in short_keys.items(): v = hparams_dict.get(k, None) if v is not None: s += '-{}={}'.format(sk, v) return s ##### PARSING LOG FILES ##### # parse the experiment result files results = {} # stats of cycle inequalities policies baselines = {} # stats of some predefined baselines datasets = {} # metadata for grouping/parsing results analysis = {} # return dict containing some important info # statistics are stored in results/baselines dictionaries in the following hierarchy # results[<dataset str>][<config tuple>][<stat_key str>][<graph_idx int>][<seed int>] for s in tqdm(summary, desc='Parsing files'): dataset = s['config']['data_abspath'].split('/')[-1] # the name of the dataset if dataset not in datasets.keys(): print('Adding dataset ', dataset) analysis[dataset] = {} datasets[dataset] = {} datasets[dataset]['config_keys'] = [k for k in s['config'].keys() if k != 'scip_seed' and k != 'graph_idx' and k != 'sweep_config' and k != 'data_abspath' and k != 'starting_policies_abspath'] # store these two to ensure that all the experiments completed successfully. datasets[dataset]['scip_seeds'] = set(s['config']['sweep_config']['sweep']['scip_seed']['values']) datasets[dataset]['graph_idx_range'] = list(range(s['config']['sweep_config']['sweep']['graph_idx']['range'])) datasets[dataset]['missing_experiments'] = [] datasets[dataset]['sweep_config'] = s['config']['sweep_config'] datasets[dataset]['configs'] = {} datasets[dataset]['experiment'] = s['experiment'] datasets[dataset]['optimal_values'] = {} datasets[dataset]['baseline'] = {} datasets[dataset]['max_lp_iterations'] = {graph_idx: {} for graph_idx in range(s['config']['sweep_config']['sweep']['graph_idx']['range'])} datasets[dataset]['best_dualbound'] = {graph_idx: {} for graph_idx in range(s['config']['sweep_config']['sweep']['graph_idx']['range'])} results[dataset] = {} baselines[dataset] = {} # for a case some scip seed was missing when the dictionary was created datasets[dataset]['scip_seeds'].update(s['config']['sweep_config']['sweep']['scip_seed']['values']) graph_idx = s['config']['graph_idx'] scip_seed = s['config']['scip_seed'] # read and update the instance optimal value (MAXCUT) if graph_idx not in datasets[dataset]['optimal_values'].keys(): # read the annotated graph and update its optimal value if any filepath = os.path.join(s['config']['data_abspath'], 'graph_idx_{}.pkl'.format(graph_idx)) # filepath = 'data/barabasi-albert-n50-m10-weights-normal-seed100/graph_idx_0.pkl' with open(filepath, 'rb') as f: G, baseline = pickle.load(f) cut = nx.get_edge_attributes(G, 'cut') # if len(cut) > 0: # weight = nx.get_edge_attributes(G, 'weight') # datasets[dataset]['optimal_values'][graph_idx] = sum([weight[e] for e in G.edges if cut[e]]) # else: # datasets[dataset]['optimal_values'][graph_idx] = 0 # default datasets[dataset]['optimal_values'][graph_idx] = baseline['optimal_value'] # cut_selection_dqn experiment file format datasets[dataset]['baseline'][graph_idx] = baseline # cut_selection_dqn experiment file format # set baselines policy string for plots legend: if s['config']['maxcutsroot'] == 2000 and \ s['config']['maxcutsroot'] == 2000 and \ s['config']['intsupportfac'] == 0.1 and \ s['config']['efficacyfac'] == 1 and \ s['config']['dircutoffdistfac'] == 0.5 and \ s['config']['objparalfac'] == 0.1 and \ not s['config']['forcecut'] and \ s['config']['policy'] != 'adaptive': s['config']['policy'] = 'default_cut_selection' elif s['config']['policy'] == 'baseline' and s['config']['max_per_root'] == 0: s['config']['policy'] = 'no_cycles' elif s['config']['policy'] == 'baseline' and s['config']['max_per_round'] > 0: s['config']['policy'] = 'force{}{}'.format(s['config']['max_per_round'], s['config']['criterion']) elif s['config']['policy'] == 'baseline' and s['config']['max_per_round'] == -1: s['config']['policy'] = 'force_all_cycles' # create a hashable config identifier config = tuple([s['config'][k] for k in datasets[dataset]['config_keys']]) # create skeleton for storing stats collected from experiments with config if config not in datasets[dataset]['configs'].keys(): datasets[dataset]['configs'][config] = s['config'] if s['config']['policy'] == 'expert' or (s['config']['policy'] == 'adaptive' and not final_adaptive): results[dataset][config] = {stat_key: {graph_idx: {} for graph_idx in range(s['config']['sweep_config']['sweep']['graph_idx']['range'])} for stat_key in s['stats'].keys()} else: baselines[dataset][config] = {stat_key: {graph_idx: {} for graph_idx in range(s['config']['sweep_config']['sweep']['graph_idx']['range'])} for stat_key in s['stats'].keys()} # now store the experiment results in the appropriate dictionary dictionary = results if s['config']['policy'] == 'expert' or (s['config']['policy'] == 'adaptive' and not final_adaptive) else baselines for stat_key, value in s['stats'].items(): dictionary[dataset][config][stat_key][graph_idx][scip_seed] = value ##### PROCESSING RESULTS ##### # if an experiment is missing, generate its configuration and append to missing_experiments # the script will generate a configuration file, and command line to run in order to # accomplish all the missing experiments for dataset in datasets.keys(): bsl = baselines[dataset] res = results[dataset] max_lp_iterations = datasets[dataset]['max_lp_iterations'] best_dualbound = datasets[dataset]['best_dualbound'] ########################################################################### # 1. find missing experiments, and by the way, # store the best_dualbound and max_lp_iterations for each graph and seed ########################################################################### for dictionary in [bsl, res]: for config, stats in tqdm(dictionary.items(), desc='Detecting missing experiments'): # compute the integral of dual_bound w.r.t lp_iterations # report missing seeds/graphs missing_graph_and_seed = [] dualbounds = stats['dualbound'] lp_iterations = stats['lp_iterations'] for graph_idx in datasets[dataset]['graph_idx_range']: for scip_seed in datasets[dataset]['scip_seeds']: if scip_seed not in dualbounds[graph_idx].keys(): if (graph_idx, scip_seed) not in missing_graph_and_seed: experiment_config = datasets[dataset]['configs'][config].copy() experiment_config['graph_idx'] = graph_idx experiment_config['scip_seed'] = scip_seed datasets[dataset]['missing_experiments'].append(experiment_config) missing_graph_and_seed.append((graph_idx, scip_seed)) continue # find the best dualbound achieved and the maximal lp_iterations max_lp_iterations[graph_idx][scip_seed] = max(max_lp_iterations[graph_idx].get(scip_seed, 0), lp_iterations[graph_idx][scip_seed][-1]) best_dualbound[graph_idx][scip_seed] = min(best_dualbound[graph_idx].get(scip_seed, 0), dualbounds[graph_idx][scip_seed][-1]) ############################################################################################### # 2. for each config, graph and seed, compute the dualbound integral w.r.t the lp_iterations. # then, compute the mean and std across all seeds within graphs, # and also std of stds across all graphs ############################################################################################### for dictionary in [bsl, res]: for config, stats in tqdm(dictionary.items(), desc='Computing dualbound integral'): dualbounds = stats['dualbound'] lp_iterations = stats['lp_iterations'] all_values = [] # all dualbound integrals to compute overall average all_stds = [] # all graph-wise integral std to compute std of stds stats['dualbound_integral'] = {} stats['cuts_applied'] = {} stats['cuts_applied_normalized'] = {} stats['cuts_generated'] = {} stats['cuts_generated_normalized'] = {} stats['maxcutsroot'] = {} for graph_idx in datasets[dataset]['graph_idx_range']: values = [] # dualbound integrals of the current graph to compute average and std across seeds stats['dualbound_integral'][graph_idx] = {} stats['cuts_applied'][graph_idx] = {} stats['cuts_applied_normalized'][graph_idx] = {} stats['cuts_generated'][graph_idx] = {} stats['cuts_generated_normalized'][graph_idx] = {} stats['maxcutsroot'][graph_idx] = {} for scip_seed in dualbounds[graph_idx].keys(): # compute some more stats: cuts_applied = np.array(stats['ncuts_applied'][graph_idx][scip_seed]) cuts_generated = np.array(stats['ncuts'][graph_idx][scip_seed]) cuts_applied[1:] -= cuts_applied[:-1] cuts_generated[1:] -= cuts_generated[:-1] hp = datasets[dataset]['configs'][config] if hp['policy'] == 'adaptive' and final_adaptive: with open(starting_policies_abspath, 'rb') as f: sp = pickle.load(f) freq = hp['policy_update_freq'] n_iter = hp['n_policy_iterations'] maxcutsroot = [sp[it]['maxcutsroot'] for it in range(n_iter) for rnd in range(freq)] if len(maxcutsroot) > len(cuts_applied): maxcutsroot = maxcutsroot[:len(cuts_applied)] else: maxcutsroot += [2000]*(len(cuts_applied) - len(maxcutsroot)) maxcutsroot = np.array(maxcutsroot) else: maxcutsroot = np.array([hp['maxcutsroot']]*len(cuts_applied)) cuts_applied_normalized = cuts_applied / maxcutsroot cuts_generated_normalized = cuts_generated / maxcutsroot stats['cuts_applied'][graph_idx][scip_seed] = cuts_applied.tolist() stats['cuts_generated'][graph_idx][scip_seed] = cuts_generated.tolist() stats['cuts_applied_normalized'][graph_idx][scip_seed] = cuts_applied_normalized.tolist() stats['cuts_generated_normalized'][graph_idx][scip_seed] = cuts_generated_normalized.tolist() stats['maxcutsroot'][graph_idx][scip_seed] = maxcutsroot.tolist() # the integral support is [0, max_lp_iterations] # TODO: check if extension is saved to the source object. support_end = max_lp_iterations[graph_idx][scip_seed] dualbound = dualbounds[graph_idx][scip_seed] lp_iter = lp_iterations[graph_idx][scip_seed] if lp_iter[-1] < support_end: lp_iter.append(support_end) # dualbound.append(dualbound[-1]) # extend all stats with their last value (constant extension) for k, s in stats.items(): if k not in ['dualbound_integral', 'lp_iterations']: s[graph_idx][scip_seed].append(s[graph_idx][scip_seed][-1]) dualbound = np.array(dualbound) # compute the lp iterations executed at each round to compute the dualbound_integral by Riemann sum lp_iter_intervals = np.array(lp_iter) lp_iter_intervals[1:] -= lp_iter_intervals[:-1] integral = np.sum(dualbound * lp_iter_intervals) stats['dualbound_integral'][graph_idx][scip_seed] = integral values.append(integral) all_values.append(integral) if len(values) > 0: # compute the average and std of the integral across seeds, and store in stats stats['dualbound_integral'][graph_idx]['avg'] = np.mean(values) stats['dualbound_integral'][graph_idx]['std'] = np.std(values) all_stds.append(
np.std(values)
numpy.std
import sys, os cur_file_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(cur_file_path, '..')) import importlib, time, math, shutil, json import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from utils.logging import Logger, mkdir from utils.transforms import rotation_matrix_to_angle_axis, batch_rodrigues from datasets.amass_utils import CONTACT_INDS from body_model.utils import SMPL_JOINTS, KEYPT_VERTS, smpl_to_openpose from fitting.fitting_utils import OP_IGNORE_JOINTS, parse_floor_plane, compute_cam2prior, OP_EDGE_LIST, log_cur_stats from fitting.fitting_loss import FittingLoss import gc LINE_SEARCH = 'strong_wolfe' J_BODY = len(SMPL_JOINTS) - 1 # no root CONTACT_THRESH = 0.5 class MotionOptimizer(): ''' Fits SMPL shape and motion to observation sequence ''' def __init__( self, device, body_model, # SMPL model to use (its batch_size should be B*T) num_betas, # beta size in SMPL model batch_size, # number of sequences to optimize seq_len, # length of the sequences observed_modalities, # list of the kinds of observations to use loss_weights, # dict of weights for each loss term pose_prior, # VPoser model motion_prior=None, # humor model init_motion_prior=None, # dict of GMM params to use for prior on initial motion state optim_floor=False, # if true, optimize the floor plane along with body motion (need 2d observations) camera_matrix=None, # camera intrinsics to use for reprojection if applicable robust_loss_type='none', robust_tuning_const=4.6851, joint2d_sigma=100, stage3_tune_init_state=True, stage3_tune_init_num_frames=15, stage3_tune_init_freeze_start=30, stage3_tune_init_freeze_end=50, stage3_contact_refine_only=False, use_chamfer=False, im_dim=(1080, 1080)): # image dimensions to use for visualization B, T = batch_size, seq_len self.batch_size = B self.seq_len = T self.body_model = body_model self.num_betas = num_betas self.optim_floor = optim_floor self.stage3_tune_init_state = stage3_tune_init_state self.stage3_tune_init_num_frames = stage3_tune_init_num_frames self.stage3_tune_init_freeze_start = stage3_tune_init_freeze_start self.stage3_tune_init_freeze_end = stage3_tune_init_freeze_end self.stage3_contact_refine_only = stage3_contact_refine_only self.im_dim = im_dim # # create the optimization variables # # number of states to explicitly optimize for # For first stages this will always be the full sequence num_state_steps = T # latent body pose self.pose_prior = pose_prior self.latent_pose_dim = self.pose_prior.latentD self.latent_pose = torch.zeros( (B, num_state_steps, self.latent_pose_dim)).to(device) # root (global) transformation self.trans = torch.zeros((B, num_state_steps, 3)).to(device) self.root_orient = torch.zeros( (B, num_state_steps, 3)).to(device) # aa parameterization self.root_orient[:, :, 0] = np.pi # body shape self.betas = torch.zeros( (B, num_betas)).to(device) # same shape for all steps self.motion_prior = motion_prior self.init_motion_prior = init_motion_prior self.latent_motion = None if self.motion_prior is not None: # need latent dynamics sequence as well self.latent_motion_dim = self.motion_prior.latent_size self.cond_prior = self.motion_prior.use_conditional_prior # additional optimization params to set later self.trans_vel = None self.root_orient_vel = None self.joints_vel = None else: Logger.log( 'Need the motion prior to use all-implicit parameterization!') exit() self.init_fidx = np.zeros( (B) ) # the frame chosen to use for the initial state (first frame by default) self.cam_f = self.cam_center = None if self.optim_floor: if camera_matrix is None: Logger.log( 'Must have camera intrinsics (camera_matrix) to optimize the floor plane!' ) exit() # NOTE: we assume a static camera, so we optimize the params of the floor plane instead of camera extrinsics self.floor_plane = torch.zeros( (B, 3)).to(device) # normal vector (a, b, c) scaled by offset (d) self.floor_plane[:, 2] = 1.0 # up axis initially # will not be optimized, extra auxiliary variables which are determined from the floor plane and root orient pose # we only have one transformation for the chosen "key" frame in the sequence self.cam2prior_R = torch.eye(3).reshape((1, 3, 3)).expand( (B, 3, 3)).to(device) self.cam2prior_t = torch.zeros((B, 3)).to(device) self.cam2prior_root_height = torch.zeros((B, 1)).to(device) cam_fx = camera_matrix[:, 0, 0] cam_fy = camera_matrix[:, 1, 1] cam_cx = camera_matrix[:, 0, 2] cam_cy = camera_matrix[:, 1, 2] # focal length and center are same for all timesteps self.cam_f = torch.stack([cam_fx, cam_fy], dim=1) self.cam_center = torch.stack([cam_cx, cam_cy], dim=1) self.use_camera = self.cam_f is not None and self.cam_center is not None # # create the loss function # self.smpl2op_map = smpl_to_openpose(body_model.model_type, use_hands=False, use_face=False, use_face_contour=False, openpose_format='coco25') self.fitting_loss = FittingLoss(loss_weights, self.init_motion_prior, self.smpl2op_map, OP_IGNORE_JOINTS, self.cam_f, self.cam_center, robust_loss_type, robust_tuning_const, joints2d_sigma=joint2d_sigma, use_chamfer=use_chamfer).to(device) def initialize(self, observed_data): if self.optim_floor: # initialize the floor # assumes observed floor is (a, b, c, d) where (a, b, c) is the normal and (d) the offset floor_normals = observed_data['floor_plane'][:, :3] floor_offsets = observed_data['floor_plane'][:, 3:] self.floor_plane = floor_normals * floor_offsets self.floor_plane = self.floor_plane.to( torch.float).clone().detach() self.floor_plane.requires_grad = True # optimizing from 2D data, must initialize cam/body trans if 'points3d' in observed_data: # initialize with mean of point cloud point_seq = observed_data['points3d'] # B x T x N x 3 self.trans = torch.mean(point_seq, dim=2).clone().detach() elif 'joints2d' in observed_data: # only have RGB data to use # use focal length and bone lengths to approximate # (based on PROX https://github.com/mohamedhassanmus/prox/blob/master/prox/fitting.py) # get 3D joints mapped to OpenPose body_pose = self.latent2pose(self.latent_pose) pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) joints3d_full = torch.cat( [pred_data['joints3d'], pred_data['joints3d_extra']], dim=2) joints3d_op = joints3d_full[:, :, self.smpl2op_map, :] # openpose observations joints2d_obs = observed_data['joints2d'][:, :, :, :2] joints2d_conf = observed_data['joints2d'][:, :, :, 2] # find least-occluded 2d frame num_2d_vis = torch.sum(joints2d_conf > 0.0, dim=2) best_2d_idx = torch.max(num_2d_vis, dim=1)[1] # calculate bone lengths and confidence in each bone length bone3d = [] bone2d = [] conf2d = [] for pair in OP_EDGE_LIST: diff3d = torch.norm(joints3d_op[:, 0, pair[0], :] - joints3d_op[:, 0, pair[1], :], dim=1) # does not change over time diff2d = torch.norm(joints2d_obs[:, :, pair[0], :] - joints2d_obs[:, :, pair[1], :], dim=2) minconf2d = torch.min(joints2d_conf[:, :, pair[0]], joints2d_conf[:, :, pair[1]]) bone3d.append(diff3d) bone2d.append(diff2d) conf2d.append(minconf2d) bone3d = torch.stack(bone3d, dim=1) bone2d = torch.stack(bone2d, dim=2) bone2d = bone2d[np.arange(self.batch_size), best_2d_idx, :] conf2d = torch.stack(conf2d, dim=2) conf2d = conf2d[np.arange(self.batch_size), best_2d_idx, :] # mean over all mean_bone3d = torch.mean(bone3d, dim=1) mean_bone2d = torch.mean(bone2d * (conf2d > 0.0), dim=1) # approx z based on ratio init_z = self.cam_f[:, 0] * (mean_bone3d / mean_bone2d) self.trans[:, :, 2] = init_z.unsqueeze(1).expand( (self.batch_size, self.seq_len)).detach() def run(self, observed_data, data_fps=30, lr=1.0, num_iter=[30, 70, 70], lbfgs_max_iter=30, stages_res_out=None, fit_gender='neutral'): if len(num_iter) != 3: print( 'Must have num iters for 3 stages! But %d stages were given!' % (len(num_iter))) exit() per_stage_outputs = {} # SMPL results after each stage out_names = [i.split("/")[-1] for i in stages_res_out] # # Initialization # self.initialize(observed_data) # # Stage I: Only global root and orientation # Logger.log( 'Optimizing stage 1 - global root translation and orientation for %d interations...' % (num_iter[0])) self.fitting_loss.set_stage(0) self.trans.requires_grad = True self.root_orient.requires_grad = True self.betas.requires_grad = False self.latent_pose.requires_grad = False root_opt_params = [self.trans, self.root_orient] root_optim = torch.optim.LBFGS(root_opt_params, max_iter=lbfgs_max_iter, lr=lr, line_search_fn=LINE_SEARCH) for i in range(num_iter[0]): Logger.log('ITER: %d' % (i)) self.fitting_loss.cur_optim_step = i stats_dict = None def closure(): root_optim.zero_grad() pred_data = dict() # Use current params to go through SMPL and get joints3d, verts3d, points3d body_pose = self.latent2pose(self.latent_pose) pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) # compute data losses only loss, stats_dict = self.fitting_loss.root_fit( observed_data, pred_data) # log_cur_stats(stats_dict, loss, iter=i) loss.backward() return loss root_optim.step(closure) print( f"Stage I: ======= iter {i}: {observed_data['seq_interval'].cpu().numpy().tolist()} {out_names}=======" ) body_pose = self.latent2pose(self.latent_pose) stage1_pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) per_stage_outputs['stage1'] = stage1_pred_data if stages_res_out is not None: res_betas = self.betas.clone().detach().cpu().numpy() res_trans = self.trans.clone().detach().cpu().numpy() res_root_orient = self.root_orient.clone().detach().cpu().numpy() res_body_pose = body_pose.clone().detach().cpu().numpy() for bidx, res_out_path in enumerate(stages_res_out): cur_res_out_path = os.path.join(res_out_path, 'stage1_results.npz') np.savez(cur_res_out_path, betas=res_betas[bidx], trans=res_trans[bidx], root_orient=res_root_orient[bidx], pose_body=res_body_pose[bidx]) gc.collect() # # Stage II full pose and shape # Logger.log( 'Optimizing stage 2 - full shape and pose for %d iterations..' % (num_iter[1])) self.fitting_loss.set_stage(1) self.trans.requires_grad = True self.root_orient.requires_grad = True self.betas.requires_grad = True self.latent_pose.requires_grad = True smpl_opt_params = [ self.trans, self.root_orient, self.betas, self.latent_pose ] smpl_optim = torch.optim.LBFGS(smpl_opt_params, max_iter=lbfgs_max_iter, lr=lr, line_search_fn=LINE_SEARCH) for i in range(num_iter[1]): Logger.log('ITER: %d' % (i)) def closure(): smpl_optim.zero_grad() pred_data = dict() # Use current params to go through SMPL and get joints3d, verts3d, points3d body_pose = self.latent2pose(self.latent_pose) pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) pred_data['latent_pose'] = self.latent_pose pred_data['betas'] = self.betas # compute data losses and pose prior loss, stats_dict = self.fitting_loss.smpl_fit( observed_data, pred_data, self.seq_len) # log_cur_stats(stats_dict, loss, iter=i) loss.backward() return loss print( f"Stage II: ======= iter {i}: {observed_data['seq_interval'].cpu().numpy().tolist()} {out_names}=======" ) smpl_optim.step(closure) body_pose = self.latent2pose(self.latent_pose) stage2_pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) per_stage_outputs['stage2'] = stage2_pred_data if stages_res_out is not None: res_betas = self.betas.clone().detach().cpu().numpy() res_trans = self.trans.clone().detach().cpu().numpy() res_root_orient = self.root_orient.clone().detach().cpu().numpy() res_body_pose = body_pose.clone().detach().cpu().numpy() for bidx, res_out_path in enumerate(stages_res_out): cur_res_out_path = os.path.join(res_out_path, 'stage2_results.npz') np.savez(cur_res_out_path, betas=res_betas[bidx], trans=res_trans[bidx], root_orient=res_root_orient[bidx], pose_body=res_body_pose[bidx]) if self.motion_prior is None: # No need to continue optimizing return self.get_optim_result(body_pose), per_stage_outputs gc.collect() # # Stage III full pose and shape with motion prior # Logger.log( 'Optimizing stage 3 - shape and pose with motion prior for %d iterations..' % (num_iter[2])) self.fitting_loss.set_stage(2) og_overlap_consist_weight = self.fitting_loss.loss_weights[ 'rgb_overlap_consist'] prior_opt_params = [] # initialize latent motion with inference from the current SMPL sequence cur_body_pose = self.latent2pose(self.latent_pose) if self.optim_floor: # initialize camera2prior transformation init_smpl_data, _ = self.smpl_results(self.trans, self.root_orient, cur_body_pose, self.betas) self.cam2prior_R, self.cam2prior_t, self.cam2prior_root_height = compute_cam2prior( self.floor_plane, self.trans[np.arange(self.batch_size), self.init_fidx], self.root_orient[np.arange(self.batch_size), self.init_fidx], init_smpl_data['joints3d'][np.arange(self.batch_size), self.init_fidx]) # save stage 2 output in prior frame later (after we get final floor estimate) to compare to stage2_result_data_dict = { 'trans': self.trans.clone().detach(), 'root_orient': self.root_orient.clone().detach(), 'pose_body': cur_body_pose.clone().detach(), 'betas': self.betas.clone().detach() } self.latent_motion = self.infer_latent_motion(self.trans, self.root_orient, cur_body_pose, self.betas, data_fps).detach() self.latent_motion.requires_grad = True # also need additional optim params for additional prior inputs at first frame (to enable rollout) if self.motion_prior.model_data_config in [ 'smpl+joints', 'smpl+joints+contacts' ]: # initialize from current SMPL sequence vel_trans = self.trans vel_root_orient = self.root_orient if self.optim_floor: # velocities are always kept in the canonical space since they are only used here for rollout data_dict = { 'trans': self.trans, 'root_orient': self.root_orient } prior_data_dict = self.apply_cam2prior( data_dict, self.cam2prior_R, self.cam2prior_t, self.cam2prior_root_height, cur_body_pose, self.betas, self.init_fidx) vel_trans = prior_data_dict['trans'] vel_root_orient = prior_data_dict['root_orient'] self.trans_vel, self.joints_vel, self.root_orient_vel = \ self.estimate_velocities(self.trans, self.root_orient, cur_body_pose, self.betas, data_fps) self.trans_vel = self.trans_vel[:, :1].detach() self.joints_vel = self.joints_vel[:, :1].detach() self.root_orient_vel = self.root_orient_vel[:, :1].detach() self.trans_vel.requires_grad = True self.joints_vel.requires_grad = True self.root_orient_vel.requires_grad = True prior_opt_params = [ self.trans_vel, self.joints_vel, self.root_orient_vel ] else: raise NotImplementedError('data return config not supported') # update SMPL optim variables to be only initial state (initialized to current value) self.trans = self.trans[:, :1].detach() self.root_orient = self.root_orient[:, :1].detach() self.latent_pose = self.latent_pose[:, :1].detach() self.trans.requires_grad = True self.root_orient.requires_grad = True self.latent_pose.requires_grad = True if self.optim_floor: self.floor_plane.requires_grad = True self.betas.requires_grad = True motion_opt_params = [ self.trans, self.root_orient, self.latent_pose, self.betas ] motion_opt_params += [self.latent_motion] motion_opt_params += prior_opt_params if self.optim_floor: motion_opt_params += [self.floor_plane] # record intiialization stats body_pose = self.latent2pose(self.latent_pose) rollout_results, cam_rollout_results = self.rollout_latent_motion( self.trans, self.root_orient, body_pose, self.betas, prior_opt_params, self.latent_motion, fit_gender=fit_gender) stage3_init_pred_data, _ = self.smpl_results( cam_rollout_results['trans'].clone().detach(), cam_rollout_results['root_orient'].clone().detach(), cam_rollout_results['pose_body'].clone().detach(), self.betas) if 'contacts' in rollout_results: stage3_init_pred_data['contacts'] = rollout_results[ 'contacts'].clone().detach() per_stage_outputs['stage3_init'] = stage3_init_pred_data if stages_res_out is not None: res_body_pose = cam_rollout_results['pose_body'].clone().detach( ).cpu().numpy() res_trans = cam_rollout_results['trans'].clone().detach().cpu( ).cpu().numpy() res_root_orient = cam_rollout_results['root_orient'].clone( ).detach().cpu().numpy() res_betas = self.betas.clone().detach().cpu().numpy() # camera frame for bidx, res_out_path in enumerate(stages_res_out): cur_res_out_path = os.path.join(res_out_path, 'stage3_init_results.npz') save_dict = { 'betas': res_betas[bidx], 'trans': res_trans[bidx], 'root_orient': res_root_orient[bidx], 'pose_body': res_body_pose[bidx] } if 'contacts' in rollout_results: save_dict['contacts'] = rollout_results['contacts'][ bidx].clone().detach().cpu().numpy() if self.optim_floor: save_dict['floor_plane'] = self.floor_plane[bidx].clone( ).detach().cpu().numpy() np.savez(cur_res_out_path, **save_dict) # prior frame if self.optim_floor: res_trans = rollout_results['trans'].clone().detach().cpu( ).cpu().numpy() res_root_orient = rollout_results['root_orient'].clone( ).detach().cpu().numpy() for bidx, res_out_path in enumerate(stages_res_out): cur_res_out_path = os.path.join( res_out_path, 'stage3_init_results_prior.npz') save_dict = { 'betas': res_betas[bidx], 'trans': res_trans[bidx], 'root_orient': res_root_orient[bidx], 'pose_body': res_body_pose[bidx] } if 'contacts' in rollout_results: save_dict['contacts'] = rollout_results['contacts'][ bidx].clone().detach().cpu().numpy() np.savez(cur_res_out_path, **save_dict) init_motion_scale = 1.0 # single-step losses must be scaled commensurately with losses summed over whole sequence motion_optim = torch.optim.LBFGS(motion_opt_params, max_iter=lbfgs_max_iter, lr=lr, line_search_fn=LINE_SEARCH) motion_optim_curr = motion_optim_refine = None if self.stage3_tune_init_state: freeze_optim_params = [self.latent_motion, self.betas] if self.optim_floor: freeze_optim_params += [self.floor_plane] motion_optim_curr = torch.optim.LBFGS(freeze_optim_params, max_iter=lbfgs_max_iter, lr=lr, line_search_fn=LINE_SEARCH) motion_optim_refine = torch.optim.LBFGS(motion_opt_params, max_iter=lbfgs_max_iter, lr=lr, line_search_fn=LINE_SEARCH) cur_stage3_nsteps = self.stage3_tune_init_num_frames saved_contact_height_weight = self.fitting_loss.loss_weights[ 'contact_height'] saved_contact_vel_weight = self.fitting_loss.loss_weights[ 'contact_vel'] for i in range(num_iter[2]): if self.stage3_tune_init_state and i >= self.stage3_tune_init_freeze_start and i < self.stage3_tune_init_freeze_end: # freeze initial state motion_optim = motion_optim_curr self.trans.requires_grad = False self.root_orient.requires_grad = False self.latent_pose.requires_grad = False self.trans_vel.requires_grad = False self.joints_vel.requires_grad = False self.root_orient_vel.requires_grad = False if self.stage3_contact_refine_only: self.fitting_loss.loss_weights['contact_height'] = 0.0 self.fitting_loss.loss_weights['contact_vel'] = 0.0 init_motion_scale = float( self.seq_len) / self.stage3_tune_init_num_frames elif self.stage3_tune_init_state and i >= self.stage3_tune_init_freeze_end: # refine motion_optim = motion_optim_refine self.trans.requires_grad = True self.root_orient.requires_grad = True self.latent_pose.requires_grad = True self.trans_vel.requires_grad = True self.joints_vel.requires_grad = True self.root_orient_vel.requires_grad = True self.betas.requires_grad = True if self.optim_floor: self.floor_plane.requires_grad = True if self.stage3_contact_refine_only: self.fitting_loss.loss_weights[ 'contact_height'] = saved_contact_height_weight self.fitting_loss.loss_weights[ 'contact_vel'] = saved_contact_vel_weight init_motion_scale = float( self.seq_len) / self.stage3_tune_init_num_frames Logger.log('ITER: %d' % (i)) def closure(): motion_optim.zero_grad() cur_body_pose = self.latent2pose(self.latent_pose) if self.optim_floor: # update the cam2prior transformation based on current initial state variable and floor values cam_smpl_data, _ = self.smpl_results( self.trans, self.root_orient, cur_body_pose, self.betas) self.cam2prior_R, self.cam2prior_t, self.cam2prior_root_height = compute_cam2prior( self.floor_plane, self.trans[:, 0], self.root_orient[:, 0], cam_smpl_data['joints3d'][:, 0]) pred_data = dict() # Use current params to go through SMPL and get joints3d, verts3d, points3d cur_trans = self.trans cur_root_orient = self.root_orient cur_betas = self.betas cur_latent_pose = self.latent_pose cur_latent_motion = self.latent_motion cur_cond_prior = None cur_rollout_joints = None cur_contacts = cur_contacts_conf = None cur_cam_trans = cur_cam_root_orient = None if self.stage3_tune_init_state and i < self.stage3_tune_init_freeze_start: cur_latent_motion = cur_latent_motion[:, :( cur_stage3_nsteps - 1)] # rollout full sequence with current latent dynamics # rollout_results are in prior space, cam_rollout_results are in camera frame rollout_results, cam_rollout_results = self.rollout_latent_motion( cur_trans, cur_root_orient, cur_body_pose, cur_betas, prior_opt_params, cur_latent_motion, return_prior=self.cond_prior, fit_gender=fit_gender) cur_trans = rollout_results['trans'] cur_root_orient = rollout_results['root_orient'] cur_body_pose = rollout_results['pose_body'] cur_cam_trans = cam_rollout_results['trans'] cur_cam_root_orient = cam_rollout_results['root_orient'] if self.cond_prior: cur_cond_prior = rollout_results['cond_prior'] # re-encode entire body pose sequence cur_latent_pose = self.pose2latent(cur_body_pose) cur_rollout_joints = rollout_results['joints'] if 'contacts' in rollout_results: cur_contacts = rollout_results['contacts'] cur_contacts_conf = rollout_results['contacts_conf'] pred_data, _ = self.smpl_results(cur_trans, cur_root_orient, cur_body_pose, cur_betas) pred_data['latent_pose'] = cur_latent_pose pred_data['betas'] = cur_betas pred_data['latent_motion'] = cur_latent_motion # info for init state pose prior pred_data['joints_vel'] = self.joints_vel pred_data['trans_vel'] = self.trans_vel pred_data['root_orient_vel'] = self.root_orient_vel pred_data['joints3d_rollout'] = cur_rollout_joints if cur_contacts is not None: pred_data['contacts'] = cur_contacts if cur_contacts_conf is not None: pred_data['contacts_conf'] = cur_contacts_conf cam_pred_data = pred_data if self.optim_floor: cam_pred_data, _ = self.smpl_results( cur_cam_trans, cur_cam_root_orient, cur_body_pose, cur_betas) cam_pred_data['latent_pose'] = cur_latent_pose cam_pred_data['betas'] = cur_betas cam_pred_data['floor_plane'] = self.floor_plane loss_nsteps = self.seq_len loss_obs_data = observed_data if self.stage3_tune_init_state and i < self.stage3_tune_init_freeze_start: loss_obs_data = { k: v[:, :cur_stage3_nsteps] for k, v in observed_data.items() if k != 'prev_batch_overlap_res' } if 'prev_batch_overlap_res' in observed_data: loss_obs_data[ 'prev_batch_overlap_res'] = observed_data[ 'prev_batch_overlap_res'] loss_nsteps = cur_stage3_nsteps # if in initial stage, don't want to use overlap constraintsloss_obs_data['prev_batch_overlap_res']['seq_interval'] self.fitting_loss.loss_weights['rgb_overlap_consist'] = 0.0 # compute data losses, pose & motion prior loss, stats_dict = self.fitting_loss.motion_fit( loss_obs_data, pred_data, cam_pred_data, loss_nsteps, cond_prior=cur_cond_prior, init_motion_scale=init_motion_scale) if self.stage3_tune_init_state and i < self.stage3_tune_init_freeze_start: # change it back self.fitting_loss.loss_weights[ 'rgb_overlap_consist'] = og_overlap_consist_weight # log_cur_stats(stats_dict, loss, iter=i) loss.backward() return loss print( f"Stage III: ======= iter {i}: {observed_data['seq_interval'].cpu().numpy().tolist()} {out_names}=======" ) motion_optim.step(closure) body_pose = self.latent2pose(self.latent_pose) rollout_joints = rollout_results = None # rollout and reset self.smpl_params to rolled out results so that get_optim_result works rollout_results, cam_rollout_results = self.rollout_latent_motion( self.trans, self.root_orient, body_pose, self.betas, prior_opt_params, self.latent_motion, fit_gender=fit_gender) body_pose = rollout_results['pose_body'] self.latent_pose = self.pose2latent(body_pose) self.trans = cam_rollout_results['trans'] self.root_orient = cam_rollout_results['root_orient'] rollout_joints = rollout_results['joints'] stage3_pred_data, _ = self.smpl_results(self.trans, self.root_orient, body_pose, self.betas) if rollout_joints is not None: if self.optim_floor: stage3_pred_data['prior_joints3d_rollout'] = rollout_joints else: stage3_pred_data['joints3d_rollout'] = rollout_joints if rollout_results is not None and 'contacts' in rollout_results: stage3_pred_data['contacts'] = rollout_results['contacts'] if self.optim_floor: stage3_pred_data['prior_trans'] = rollout_results['trans'] stage3_pred_data['prior_root_orient'] = rollout_results[ 'root_orient'] per_stage_outputs['stage3'] = stage3_pred_data final_optim_res = self.get_optim_result(body_pose) if rollout_results is not None and 'contacts' in rollout_results: final_optim_res['contacts'] = rollout_results['contacts'] if self.optim_floor: # go back and also save results from stage 2 using the final optimized floor to transform to prior frame if stages_res_out is not None: # need to recompute the tranformation for stage 2 results with the final floor stg2_cam_smpl_data, _ = self.smpl_results( stage2_result_data_dict['trans'], stage2_result_data_dict['root_orient'], stage2_result_data_dict['pose_body'], stage2_result_data_dict['betas']) stg2_cam2prior_R, stg2_cam2prior_t, stg2_cam2prior_root_height = compute_cam2prior( self.floor_plane, stage2_result_data_dict['trans'][ np.arange(self.batch_size), self.init_fidx], stage2_result_data_dict['root_orient'][ np.arange(self.batch_size), self.init_fidx], stg2_cam_smpl_data['joints3d'][np.arange(self.batch_size), self.init_fidx]) stage2_prior_data_dict = self.apply_cam2prior( stage2_result_data_dict, stg2_cam2prior_R, stg2_cam2prior_t, stg2_cam2prior_root_height, stage2_result_data_dict['pose_body'], stage2_result_data_dict['betas'], self.init_fidx) if stages_res_out is not None: # save stage 2 output in prior frame to compare to res_betas = self.betas.clone().detach().cpu().numpy() res_trans = stage2_prior_data_dict['trans'].clone().detach( ).cpu().numpy() res_root_orient = stage2_prior_data_dict['root_orient'].clone( ).detach().cpu().numpy() res_body_pose = cur_body_pose.clone().detach().cpu().numpy() for bidx, res_out_path in enumerate(stages_res_out): cur_res_out_path = os.path.join( res_out_path, 'stage2_results_prior.npz') np.savez(cur_res_out_path, betas=res_betas[bidx], trans=res_trans[bidx], root_orient=res_root_orient[bidx], pose_body=res_body_pose[bidx]) return final_optim_res, per_stage_outputs def apply_cam2prior(self, data_dict, R, t, root_height, body_pose, betas, key_frame_idx, inverse=False): ''' Applies the camera2prior tranformation made up of R, t to the data in data dict and returns a new dictionary with the transformed data. Right now supports: trans, root_orient. NOTE: If the number of timesteps in trans/root_orient is 1, this function assumes they are at key_frame_idx. (othherwise the calculation of cur_root_height or trans_offset in inverse case is not correct) key_frame_idx : the timestep used to compute cam2prior size (B) tensor inverse : if true, applies the inverse transformation from prior space to camera ''' prior_dict = dict() if 'root_orient' in data_dict: # B x T x 3 root_orient = data_dict['root_orient'] B, T, _ = root_orient.size() R_time = R.unsqueeze(1).expand((B, T, 3, 3)) t_time = t.unsqueeze(1).expand((B, T, 3)) root_orient_mat = batch_rodrigues(root_orient.reshape( (-1, 3))).reshape((B, T, 3, 3)) if inverse: prior_root_orient_mat = torch.matmul(R_time.transpose(3, 2), root_orient_mat) else: prior_root_orient_mat = torch.matmul(R_time, root_orient_mat) prior_root_orient = rotation_matrix_to_angle_axis( prior_root_orient_mat.reshape((B * T, 3, 3))).reshape( (B, T, 3)) prior_dict['root_orient'] = prior_root_orient if 'trans' in data_dict and 'root_orient' in data_dict: # B x T x 3 trans = data_dict['trans'] B, T, _ = trans.size() R_time = R.unsqueeze(1).expand((B, T, 3, 3)) t_time = t.unsqueeze(1).expand((B, T, 3)) if inverse: # transform so key frame at origin if T > 1: trans_offset = trans[
np.arange(B)
numpy.arange
#!/usr/bin/env python3 # Author: <NAME> # Contact: <EMAIL> """Define common operations for **PETGEM**.""" # --------------------------------------------------------------- # Load python modules # --------------------------------------------------------------- import time import yaml import sys import os import numpy as np from functools import wraps from colorama import Fore from singleton_decorator import singleton # --------------------------------------------------------------- # Load petgem modules (BSC) # --------------------------------------------------------------- from .parallel import MPIEnvironment # ############################################################### # ################ CLASSES DEFINITION ################## # ############################################################### # --------------------------------------------------------------- # Class Print definition # --------------------------------------------------------------- class Print(object): """ This class provides methods for pretty print. :param object str: string to be printed. :return: None. :rtype: None. """ # Options for Gauss points computation (switch case) _options = { 1: Fore.BLACK, 2: Fore.BLUE, 3: Fore.CYAN, 4: Fore.GREEN, 5: Fore.LIGHTBLACK_EX, 6: Fore.LIGHTBLUE_EX, 7: Fore.LIGHTCYAN_EX, 8: Fore.LIGHTGREEN_EX, 9: Fore.LIGHTMAGENTA_EX, 10: Fore.LIGHTRED_EX, 11: Fore.LIGHTWHITE_EX, 12: Fore.LIGHTYELLOW_EX, 13: Fore.MAGENTA, 14: Fore.RED, 15: Fore.WHITE, 16: Fore.YELLOW } # Constructor def __init__(self, text, color_code=None): """Constructor.""" self._log(text, color_code) # Logging method def _log(self, text, color_code=None): """ Configure and prints a text. :param str text: text to be printed. :param int color_code: text color code. :return: None. """ # Verify if color_code is None, then use black color if color_code is None: color_code = int(16) set_color = self._options[color_code] print(set_color + text) sys.stdout.flush() return @classmethod def header(self): """Print the header. :param: None. :return: None. :rtype: None. """ # Specific color code for printing the header color_code = 5 if( MPIEnvironment().rank == 0 ): self._log(self, '%'*75, color_code) self._log(self, '%%%' + ' '*69 + '%%%', color_code) self._log(self, '%%%'+ 'PETGEM'.center(69) + '%%%', color_code) self._log(self, '%%%'+ 'Parallel Edge-based Tool for Electromagnetic Modelling'.center(69) + '%%%', color_code) self._log(self, '%%%' + ' '*69 + '%%%', color_code) self._log(self, '%'*75, color_code) self._log(self, '%%%' + ' '*69 + '%%%', color_code) self._log(self, '%%% (c) <NAME>' + ' '*40 + '%%%', color_code) self._log(self, '%%% Barcelona Supercomputing Center (BSC-CNS), 2021' + ' '*19 + '%%%', color_code) self._log(self, '%%%' + ' '*69 + '%%%', color_code) self._log(self, '%'*75, color_code) return @classmethod def master(self, text, color_code=None): """ If the caller is the master process, this method prints a message. :param: None. :return: None. :rtype: None. """ if( MPIEnvironment().rank == 0 ): self._log(self, text, color_code) return # --------------------------------------------------------------- # Class InputParameters definition # --------------------------------------------------------------- class InputParameters(object): """Method to import a yaml parameter file. :param dict object: user params yaml file. :return: user parameters as object view. :rtype: object. """ def __init__(self, params, parEnv): """Class constructor. :param str params: yaml parameters file. :param object parEnv: parallel environment object. :return: InputParameters object. :rtype: object """ # --------------------------------------------------------------- # Read the input parameters file # --------------------------------------------------------------- with open(params, 'r') as f: # The FullLoader parameter handles the conversion from YAML # scalar values to the Python dictionary format inputs = yaml.safe_load(f) # Get set of parameters self.model = inputs['model'] self.run = inputs['run'] self.output = inputs['output'] # --------------------------------------------------------------- # Check modeling mode # --------------------------------------------------------------- if not ('mode' in self.model.keys()): Print.master(' Modeling mode not provided. Please, verify the parameter file consistency.') exit(-1) else: if not ((self.model.get('mode') == 'csem') or (self.model.get('mode') == 'mt')): Print.master(' Modeling mode not supported.') exit(-1) # --------------------------------------------------------------- # Check parameters consistency for csem mode # --------------------------------------------------------------- if (self.model.get('mode') == 'csem'): if not ('csem' in self.model.keys()): Print.master(' csem parameters not provided. Please, verify the parameter file consistency.') exit(-1) else: # Check consistency of csem params conductivity_from_file, num_polarizations = self.__verify_CSEM_params__(self.model) # --------------------------------------------------------------- # Check parameters consistency for mt mode # --------------------------------------------------------------- elif (self.model.get('mode') == 'mt'): if not ('mt' in self.model.keys()): Print.master(' mt parameters not provided. Please, verify the parameter file consistency.') exit(-1) else: # Check consistency of mt params conductivity_from_file, num_polarizations = self.__verify_MT_params__(self.model) # Update number of models, interpolation strategy and # polarization modes self.run.update({'conductivity_from_file': conductivity_from_file}) self.run.update({'num_polarizations': num_polarizations}) # --------------------------------------------------------------- # Check consistency of common parameters # --------------------------------------------------------------- # Mesh if not ('mesh' in self.model.keys()): Print.master(' mesh parameter not provided. Please, verify the parameter file consistency.') exit(-1) # Receivers if not ('receivers' in self.model.keys()): Print.master(' receivers parameter not provided. Please, verify the parameter file consistency.') exit(-1) # Basis order if not ('nord' in self.run.keys()): Print.master(' nord parameter not provided. Please, verify the parameter file consistency.') exit(-1) else: if ((self.run.get('nord') < 1) or (self.run.get('nord') > 6)): Print.master(' Vector finite element basis order not supported. Please, select a valid order (1,2,3,4,5,6).') exit(-1) # Cuda support if not ('cuda' in self.run.keys()): self.run.update({'cuda': False}) else: if not ((self.run.get('cuda') is False) or (self.run.get('cuda') is True)): Print.master(' cuda option not supported. Please, select a valid order (True/False).') exit(-1) # Output if not ('vtk' in self.output.keys()): self.output.update({'vtk': False}) if not ('directory' in self.output.keys()): Print.master(' output directory parameter not provided. Please, verify the parameter file consistency.') exit(-1) else: if(parEnv.rank == 0): if not os.path.exists(self.output.get('directory')): os.mkdir(self.output.get('directory')) # If not scratch directory, use output directory if not ('directory_scratch' in self.output.keys()): self.output.update({'directory_scratch': self.output.get('directory')}) self.output.update({'remove_scratch': False}) else: if(parEnv.rank == 0): if not os.path.exists(self.output.get('directory_scratch')): os.mkdir(self.output.get('directory_scratch')) self.output.update({'remove_scratch': True}) return def __verify_CSEM_params__(self, data): """Verify consistency of CSEM parameters :param dict data: csem dictionary :return: input conductivity model from file or array. :rtype: bool """ # Get csem parameters csem_params = data.get('csem') # One "polarization mode" per csem model num_polarizations = np.int(1) # Check consistency for csem modeling # Check sigma consistency if not ('sigma' in csem_params.keys()): Print.master(' csem parameters not provided. Please, verify the parameter file consistency.') exit(-1) else: # Get sigma parameters i_sigma = csem_params.get('sigma') # Conductivity file if ('file' in i_sigma.keys()): # No vectors conductivity if (('horizontal' in i_sigma.keys()) or ('vertical' in i_sigma.keys())): Print.master(' sigma parameters invalid. Please, verify the parameter file consistency.') exit(-1) else: conductivity_from_file = True # Vector conductivity elif (('horizontal' in i_sigma.keys()) and ('vertical' in i_sigma.keys())): # No file conductivity if ('file' in i_sigma.keys()): Print.master(' sigma parameters invalid. Please, verify the parameter file consistency.') exit(-1) else: conductivity_from_file = False else: Print.master(' sigma parameters invalid. Please, verify the parameter file consistency.') exit(-1) # Check source consistency if not ('source' in csem_params.keys()): Print.master(' source parameters not provided. Please, verify the parameter file consistency.') exit(-1) else: # Get source parameters i_source = csem_params.get('source') # Check number of source parameters if not (len(i_source) == 6): Print.master(' number of source parameters is not consistent. Please, verify the parameter file consistency.') exit(-1) else: base_params = ['frequency', 'position', 'azimuth', 'dip', 'current', 'length'] for i in
np.arange(6)
numpy.arange
""" "T#" test cases from https://archimede.dm.uniba.it/~bvpsolvers/testsetbvpsolvers/?page_id=27, [1]_. "R#" test cases from https://doi.org/10.2514/6.2019-3666, [2]_. References ---------- .. [1] <NAME> and <NAME>. "A fortran test set for boundary value problem solvers." AIP Conference Proceedings. 1648(1):020009, 2015. .. [2] <NAME> and <NAME>. "Numerical Algorithms for Solving Boundary-Value Problemson Reduced Dimensional Manifolds." AIAA Aviation 2019 Forum. 2019. """ import pytest import itertools from beluga.numeric.data_classes.Trajectory import Trajectory from beluga.numeric.bvp_solvers import Shooting import numpy as np import copy from scipy.special import erf # Test the shooting solver for each algorithm listed below ALGORITHMS = ['Armijo', 'SLSQP'] EASY = [1] MEDIUM = [1e-1] HARD = [1e-2] VHARD = [1e-3] tol = 1e-3 @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t1(algorithm, const): def odefun(y, _, k): return y[1], y[0] / k[0] def odejac(_, __, k): df_dy = np.array([[0, 1], [1 / k[0], 0]]) df_dp = np.empty((2, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 1], [0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = (np.exp(-sol.t / np.sqrt(sol.const)) - np.exp((sol.t - 2) / np.sqrt(sol.const))) / ( 1 - np.exp(-2.e0 / np.sqrt(sol.const))) e2 = (1. / (sol.const ** (1 / 2) * np.exp(sol.t / sol.const ** (1 / 2))) + np.exp( (sol.t - 2) / sol.const ** (1 / 2)) / sol.const ** (1 / 2)) / (1 / np.exp(2 / sol.const ** (1 / 2)) - 1) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t2(algorithm, const): def odefun(y, _, k): return y[1], y[1] / k[0] def odejac(_, __, k): df_dy = np.array([[0, 1], [0, 1 / k[0]]]) df_dp = np.empty((2, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 1], [0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = (1.e0 - np.exp((sol.t - 1.e0) / sol.const)) / (1.e0 - np.exp(-1.e0 / sol.const)) e2 = np.exp((sol.t - 1) / sol.const) / (sol.const * (1 / np.exp(1 / sol.const) - 1)) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, VHARD)) def test_t3(algorithm, const): def odefun(y, _, k): return (2 * y[1], 2 * (-(2 + np.cos(np.pi * y[2])) * y[1] + y[0] - (1 + k[0] * np.pi * np.pi) * np.cos( np.pi * y[2]) - (2 + np.cos(np.pi * y[2])) * np.pi * np.sin(np.pi * y[2])) / k[0], 2) def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], -(2 * np.cos(np.pi * y[2]) + 4)/k[0], (2*np.pi**2 * np.sin(np.pi * y[2])**2 + 2 * np.pi*np.sin(np.pi*y[2])*(k[0]*np.pi**2 + 1) - 2*np.pi**2*np.cos(np.pi*y[2])*(np.cos(np.pi*y[2]) + 2) + 2*y[1]*np.pi*np.sin(np.pi*y[2]))/k[0]], [0, 0, 0]], dtype=np.float) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] + 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) e2 = -np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t4(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * (((1 + k[0]) * y[0] - y[1]) / k[0]), 2 def odejac(_, __, k): df_dy = np.array([[0, 2, 0], [2 * (1 + k[0]) / k[0], 2 * (-1) / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1 - np.exp(-2), yf[0] - 1 - np.exp(-2 * (1 + k[0]) / k[0]), y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.exp(sol.y[:, 2] - 1) + np.exp(-((1 + sol.const[0]) * (1 + sol.y[:, 2]) / sol.const[0])) e2 = np.exp(sol.y[:, 2] - 1) - (sol.const[0] + 1) / ( sol.const[0] * np.exp((sol.y[:, 2] + 1) * (sol.const[0] + 1) / sol.const[0])) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t5(algorithm, const): def odefun(y, _, k): return (2 * y[1], 2 * ((y[0] + y[2] * y[1] - (1 + k[0] * np.pi ** 2) * np.cos(np.pi * y[2]) + y[2] * np.pi * np.sin(np.pi * y[2])) / k[0]), 2) def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], 2 * y[2] / k[0], (2 * (y[1] + np.pi * np.sin(np.pi * y[2]) + np.pi * np.sin(np.pi * y[2]) * (k * np.pi ** 2 + 1) + np.pi * np.pi * y[2] * np.cos(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] + 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) e2 = -np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t6(algorithm, const): def odefun(y, _, k): return (2 * y[1], 2 * ((-y[2] * y[1] - k[0] * np.pi ** 2 * np.cos(np.pi * y[2]) - np.pi * y[2] * np.sin( np.pi * y[2])) / k[0]), 2) def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [0, -2 * y[2] / k[0], -(2 * (y[1] + np.pi * np.sin(np.pi * y[2]) - k[0] * np.pi ** 3 * np.sin(np.pi * y[2]) + np.pi ** 2 * y[2] * np.cos(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 2, yf[0], y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) + erf(sol.y[:, 2] / np.sqrt(2 * sol.const[0])) / erf(1 / np.sqrt(2 * sol.const[0])) e2 = np.sqrt(2) / (np.sqrt(np.pi) * np.sqrt(sol.const[0]) * np.exp(sol.y[:, 2] ** 2 / (2 * sol.const[0])) * erf( np.sqrt(2) / (2 * np.sqrt(sol.const[0])))) - np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t7(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * ((-y[2] * y[1] + y[0] - (1.0e0 + k[0] * np.pi ** 2) * np.cos(np.pi * y[2]) - np.pi * y[2] * np.sin(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], -2 * y[2] / k[0], -(2 * (y[1] + np.pi * np.sin(np.pi * y[2]) + np.pi ** 2 * y[2] * np.cos(np.pi * y[2]) - np.pi * np.sin(np.pi * y[2]) * (k[0] * np.pi ** 2 + 1))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] - 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) + sol.y[:, 2] + ( sol.y[:, 2] * erf(sol.y[:, 2] / np.sqrt(2.0e0 * sol.const[0])) + np.sqrt(2 * sol.const[0] / np.pi) * np.exp(-sol.y[:, 2] ** 2 / (2 * sol.const[0]))) / ( erf(1.0e0 / np.sqrt(2 * sol.const[0])) + np.sqrt(2.0e0 * sol.const[0] / np.pi) * np.exp(-1 / (2 * sol.const[0]))) e2 = erf((np.sqrt(2) * sol.y[:, 2]) / (2 * np.sqrt(sol.const[0]))) / ( erf(np.sqrt(2) / (2 * np.sqrt(sol.const[0]))) + (np.sqrt(2) * np.sqrt(sol.const[0])) / ( np.sqrt(np.pi) * np.exp(1 / (2 * sol.const[0])))) - np.pi * np.sin(np.pi * sol.y[:, 2]) + 1 assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t8(algorithm, const): def odefun(y, _, k): return y[1], (-y[1] / k[0]), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] - 2, y0[2] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[1, 0, -1], [2, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = (2 - np.exp(-1 / sol.const[0]) - np.exp(-sol.y[:, 2] / sol.const[0])) / (1 - np.exp(-1 / sol.const[0])) e2 = -1 / (sol.const[0] * np.exp(sol.y[:, 2] / sol.const[0]) * (1 / np.exp(1 / sol.const[0]) - 1)) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t9(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * (-(4 * y[2] * y[1] + 2 * y[0]) / (k[0] + y[2] ** 2)), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [-4 / (y[2] ** 2 + k[0]), -(8 * y[2]) / (y[2] ** 2 + k[0]), (4 * y[2] * (2 * y[0] + 4 * y[1] * y[2])) / (y[2] ** 2 + k[0]) ** 2 - (8 * y[1]) / (y[2] ** 2 + k[0])], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1 / (1 + k[0]), yf[0] - 1 / (1 + k[0]), y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=2) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0., 1., 2) # noinspection PyTypeChecker solinit.y = np.array([[1. / (1. + const), 0., -1.], [1. / (1. + const), 1., 1.]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = 1 / (sol.const[0] + sol.y[:, 2] ** 2) e2 = -(2 * sol.y[:, 2]) / (sol.y[:, 2] ** 2 + sol.const[0]) ** 2 assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t10(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * (-y[2] * y[1] / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [0, 2 * (-y[2]) / k[0], 2 * (-y[1] / k[0])], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0] - 2, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, -1], [2, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = 1 + erf(sol.y[:, 2] / np.sqrt(2 * sol.const[0])) / erf(1 / np.sqrt(2 * sol.const[0])) e2 = np.sqrt(2) / (np.sqrt(np.pi) * np.sqrt(sol.const[0]) * np.exp(sol.y[:, 2] ** 2 / (2 * sol.const[0])) * erf( np.sqrt(2) / (2 * np.sqrt(sol.const[0])))) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t11(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * ((y[0] - k[0] * np.pi ** 2 * np.cos(np.pi * y[2]) - np.cos(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], 0, (2 * (np.pi * np.sin(np.pi * y[2]) + k[0] * np.pi ** 3 * np.sin(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] + 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) e2 = -np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t12(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * ((y[0] - k[0] * np.pi ** 2 * np.cos(np.pi * y[2]) - np.cos(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], 0, (2 * (np.pi * np.sin(np.pi * y[2]) + k[0] * np.pi ** 3 * np.sin(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0], y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp(-(1 - sol.y[:, 2]) / np.sqrt(sol.const[0])) e2 = np.exp((sol.y[:, 2] - 1) / np.sqrt(sol.const[0])) / np.sqrt(sol.const[0]) - np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t13(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * ((y[0] - k[0] * np.pi ** 2 * np.cos(np.pi * y[2]) - np.cos(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], 0, (2 * (np.pi * np.sin(np.pi * y[2]) + k[0] * np.pi ** 3 * np.sin(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0] + 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=2) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, -1], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp(-(1 + sol.y[:, 2]) / np.sqrt(sol.const[0])) e2 = -np.pi * np.sin(np.pi * sol.y[:, 2]) - 1 / ( np.sqrt(sol.const[0]) * np.exp((sol.y[:, 2] + 1) / np.sqrt(sol.const[0]))) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t14(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * ((y[0] - k[0] * np.pi ** 2 * np.cos(np.pi * y[2]) - np.cos(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 / k[0], 0, (2 * (np.pi * np.sin(np.pi * y[2]) + k[0] * np.pi ** 3 * np.sin(np.pi * y[2]))) / k[0]], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0], y0[2]+1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=4) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[0, 0, -1], [0, 0, 1]]) sol.const = np.array([const]) # noinspection PyTypeChecker cc = np.linspace(const * 10, const, 10) for c in cc: sol = copy.deepcopy(sol) sol.const = np.array([c]) sol = algo.solve(sol)['sol'] e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp(-(1 + sol.y[:, 2]) / np.sqrt(sol.const[0])) + np.exp( -(1 - sol.y[:, 2]) / np.sqrt(sol.const[0])) e2 = np.exp((sol.y[:, 2] - 1) / np.sqrt(sol.const[0])) / np.sqrt(sol.const[0]) - np.pi * np.sin( np.pi * sol.y[:, 2]) - 1 / (np.sqrt(sol.const[0]) * np.exp((sol.y[:, 2] + 1) / np.sqrt(sol.const[0]))) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t15(algorithm, const): def odefun(y, _, k): return 2 * y[1], 2 * (y[2] * y[0] / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 * (y[2] / k[0]), 0, 2 * (y[0] / k[0])], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] - 1, y0[2] + 1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[1, 0, -1], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] assert sol.converged is True @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t16(algorithm, const): def odefun(y, _, k): return 1 * y[1], 1 * (-y[0] * np.pi ** 2 / (4 * k[0])), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [-np.pi**2 / (4 * k[0]), 0, 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0], yf[0] - np.sin(np.pi / (2 * np.sqrt(k[0]))), y0[2] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.sin(np.pi * sol.y[:, 2] / (2 * np.sqrt(sol.const[0]))) e2 = (np.pi * np.cos((np.pi * sol.y[:, 2]) / (2 * np.sqrt(sol.const[0])))) / (2 * np.sqrt(sol.const[0])) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, VHARD)) def test_t17(algorithm, const): def odefun(y, _, k): return 0.2 * y[1], 0.2 * (-3 * k[0] * y[0] / (k[0] + y[2] ** 2) ** 2), 0.2 def odejac(y, _, k): df_dy = np.array([[0, 0.2, 0], [-(3 * k[0]) / (5 * (y[2] ** 2 + k[0]) ** 2), 0, (12 * k[0] * y[0] * y[2]) / (5 * (y[2] ** 2 + k[0]) ** 3)], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] + 0.1 / np.sqrt(k[0] + 0.01), yf[0] - 0.1 / np.sqrt(k[0] + 0.01), y0[2] + 0.1 algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = sol.y[:, 2]/np.sqrt(sol.const[0] + sol.y[:, 2] ** 2) e2 = 1 / np.sqrt(sol.y[:, 2] ** 2 + sol.const[0]) - sol.y[:, 2] ** 2 / (sol.y[:, 2] ** 2 + sol.const[0]) ** (3 / 2) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, HARD)) def test_t18(algorithm, const): def odefun(y, _, k): return y[1], (-y[1] / k[0]), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1, yf[0] - np.exp(-1 / k[0]), y0[2] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] e1 = np.exp(-sol.y[:, 2] / sol.const[0]) e2 = -1 / (sol.const[0] * np.exp(sol.y[:, 2] / sol.const[0])) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol) @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, VHARD)) def test_t19(algorithm, const): def odefun(y, _, k): return y[1], (-y[1] / k[0]), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0], y0[2] algo = Shooting(odefun, None, bcfun, algorithm=algorithm) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.const = np.array([const]) sol = algo.solve(solinit)['sol'] assert sol.converged @pytest.mark.parametrize("algorithm, const", itertools.product(ALGORITHMS, MEDIUM)) def test_t21(algorithm, const): def odefun(y, _, k): return y[1], (y[0] * (1 + y[0]) - np.exp(-2 * y[2] / np.sqrt(k[0]))) / k[0], 1 def odejac(y, _, k): df_dy = np.array([[0, 1, 0], [(2*y[0] + 1) / k[0], 0, (2 * np.exp(-(2 * y[2]) / np.sqrt(k[0]))) / k[0] ** (3 / 2)], [0, 0, 0]]) df_dp =
np.empty((3, 0))
numpy.empty
import torch import pandas as pd import numpy as np from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import Sampler import const # 0, batch * 1, batch * 2 ... class BatchIntervalSampler(Sampler): def __init__(self, data_length, batch_size): # data length 가 batch size 로 나뉘게 만듦 if data_length % batch_size != 0: data_length = data_length - (data_length % batch_size) self.indices =[] # print(data_length) batch_group_interval = int(data_length / batch_size) for group_idx in range(batch_group_interval): for local_idx in range(batch_size): self.indices.append(group_idx + local_idx * batch_group_interval) # print('sampler init', self.indices) def __iter__(self): return iter(self.indices) def __len__(self): return len(self.indices) def record_net_data_stats(label_temp, data_idx_map): net_class_count = {} net_data_count= {} for net_i, dataidx in data_idx_map.items(): unq, unq_cnt = np.unique(label_temp[dataidx], return_counts=True) tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))} net_class_count[net_i] = tmp net_data_count[net_i] = len(dataidx) print('Data statistics: %s' % str(net_class_count)) return net_class_count, net_data_count def GetCanDataset(total_edge, fold_num, packet_num, csv_path, txt_path): csv = pd.read_csv(csv_path) txt = open(txt_path, "r") lines = txt.read().splitlines() idx = 0 datum = [] label_temp = [] # [cur_idx ~ cur_idx + packet_num) while idx + packet_num - 1 < len(csv) // 2: line = lines[idx + packet_num - 1] if not line: break if line.split(' ')[1] == 'R': datum.append((idx, 1)) label_temp.append(1) else: datum.append((idx, 0)) label_temp.append(0) idx += 1 if (idx % 1000000 == 0): print(idx) fold_length = int(len(label_temp) / 5) train_datum = [] train_label_temp = [] for i in range(5): if i != fold_num: train_datum += datum[i*fold_length:(i+1)*fold_length] train_label_temp += label_temp[i*fold_length:(i+1)*fold_length] else: test_datum = datum[i*fold_length:(i+1)*fold_length] N = len(train_label_temp) train_label_temp = np.array(train_label_temp) proportions = np.random.dirichlet(np.repeat(1, total_edge)) proportions = np.cumsum(proportions) idx_batch = [[] for _ in range(total_edge)] data_idx_map = {} prev = 0.0 for j in range(total_edge): idx_batch[j] = [idx for idx in range(int(prev * N), int(proportions[j] * N))] prev = proportions[j] data_idx_map[j] = idx_batch[j] _, net_data_count = record_net_data_stats(train_label_temp, data_idx_map) return CanDataset(csv, train_datum, packet_num), data_idx_map, net_data_count, CanDataset(csv, test_datum, packet_num, False) class CanDataset(Dataset): def __init__(self, csv, datum, packet_num, is_train=True): self.csv = csv self.datum = datum self.packet_num = packet_num if is_train: self.idx_map = [] else: self.idx_map = [idx for idx in range(len(self.datum))] def __len__(self): return len(self.idx_map) - self.packet_num + 1 def set_idx_map(self, data_idx_map): self.idx_map = data_idx_map def __getitem__(self, idx): # [cur_idx ~ cur_idx + packet_num) start_i = self.datum[self.idx_map[idx]][0] is_regular = self.datum[self.idx_map[idx]][1] packet = np.zeros((const.CAN_DATA_LEN * self.packet_num)) for next_i in range(self.packet_num): data_len = self.csv.iloc[start_i + next_i, 1] for j in range(data_len): data_value = int(self.csv.iloc[start_i + next_i, 2 + j], 16) / 255.0 packet[j + const.CAN_DATA_LEN * next_i] = data_value return torch.from_numpy(packet).float(), is_regular def GetCanDatasetCNN(total_edge, fold_num, csv_path, txt_path): csv = pd.read_csv(csv_path) txt = open(txt_path, "r") lines = txt.read().splitlines() idx = 0 datum = [] label_temp = [] while idx < len(csv) // 2: line = lines[idx] if not line: break if line.split(' ')[1] == 'R': datum.append((idx, 1)) label_temp.append(1) else: datum.append((idx, 0)) label_temp.append(0) idx += 1 if (idx % 1000000 == 0): print(idx) fold_length = int(len(label_temp) / 5) train_datum = [] train_label_temp = [] for i in range(5): if i != fold_num: train_datum += datum[i*fold_length:(i+1)*fold_length] train_label_temp += label_temp[i*fold_length:(i+1)*fold_length] else: test_datum = datum[i*fold_length:(i+1)*fold_length] N = len(train_label_temp) train_label_temp = np.array(train_label_temp) proportions = np.random.dirichlet(np.repeat(1, total_edge)) proportions = np.cumsum(proportions) idx_batch = [[] for _ in range(total_edge)] data_idx_map = {} prev = 0.0 for j in range(total_edge): idx_batch[j] = [idx for idx in range(int(prev * N), int(proportions[j] * N))] prev = proportions[j] data_idx_map[j] = idx_batch[j] _, net_data_count = record_net_data_stats(train_label_temp, data_idx_map) return CanDatasetCNN(csv, train_datum), data_idx_map, net_data_count, CanDatasetCNN(csv, test_datum, False) class CanDatasetCNN(Dataset): def __init__(self, csv, datum, is_train=True): self.csv = csv self.datum = datum if is_train: self.idx_map = [] else: self.idx_map = [idx for idx in range(len(self.datum))] def __len__(self): return len(self.idx_map) def set_idx_map(self, data_idx_map): self.idx_map = data_idx_map def __getitem__(self, idx): start_i = self.datum[self.idx_map[idx]][0] is_regular = self.datum[self.idx_map[idx]][1] packet =
np.zeros((1, const.CNN_FRAME_LEN, const.CNN_FRAME_LEN))
numpy.zeros
# Copyright 2019 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #Adapted by <NAME> in November,2019 from this Colab notebook: #https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb. #Changes includes # - Reading our stressor data and parsing it properly # - reconfiguring the last layer to include N neurons corresponding to N categories # - correcting the probability output so that it follows [0,1] proper pattern # - better analysis with confusion matrix # - exporting to pb format for tensorflow serving api import os os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda-10.0/lib64' import sys print(sys.executable) from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit import pandas as pd import tensorflow as tf import tensorflow_hub as hub from datetime import datetime import matplotlib.pyplot as plt from sklearn.utils.multiclass import unique_labels from sklearn.metrics import f1_score,confusion_matrix,classification_report,accuracy_score import logging logging.basicConfig(stream=sys.stdout, level=logging.ERROR) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.max_colwidth', 1000) config = tf.ConfigProto() #config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 #config.gpu_options.visible_device_list="0" from tensorflow.python.client import device_lib device_lib.list_local_devices() import bert from bert import run_classifier_with_tfhub from bert import optimization from bert import tokenization from bert import modeling import numpy as np ############ Utils functions ################## def create_examples_prediction(df): """Creates examples for the training and dev sets.""" examples = [] for index, row in df.iterrows(): #labels = row[LABEL_HOT_VECTOR].strip('][').split(', ') #labels = [float(x) for x in labels] labels = list(row[label_list_text]) examples.append(labels) return pd.DataFrame(examples) def f(x): n = 2 # index of the second proability to get labeled index = np.argsort(x.values.flatten().tolist())[-n:][0] print(f"index is {index}") label = label_list_text[index] print(f"label is {label}") return label final_columns = ["sOrder","Input.text","is_stressor","is_stressor_conf","top_label","second_label","Branch", "Above SD-THRESHOLD","SD-THRESHOLD","SD","Other","Everyday Decision Making","Work","Social Relationships","Financial Problem","Health, Fatigue, or Physical Pain","Emotional Turmoil","Family Issues","School","avg_severity","median_severity","SD_severity","Votes","Source"] def get_test_experiment_df(test): test_predictions = [x[0]['probabilities'] for x in zip(getListPrediction(in_sentences=list(test[DATA_COLUMN])))] test_live_labels =
np.array(test_predictions)
numpy.array
# -*- coding: utf-8 -*- """ biosppy.signals.tools --------------------- This module provides various signal analysis methods in the time and frequency domains. :copyright: (c) 2015-2018 by Instituto de Telecomunicacoes :license: BSD 3-clause, see LICENSE for more details. """ # Imports # compat from __future__ import absolute_import, division, print_function from six.moves import range import six # 3rd party import numpy as np import scipy.signal as ss from scipy import interpolate, optimize from scipy.stats import stats # local from biosppy import utils def _norm_freq(frequency=None, sampling_rate=1000.): """Normalize frequency to Nyquist Frequency (Fs/2). Parameters ---------- frequency : int, float, list, array Frequencies to normalize. sampling_rate : int, float, optional Sampling frequency (Hz). Returns ------- wn : float, array Normalized frequencies. """ # check inputs if frequency is None: raise TypeError("Please specify a frequency to normalize.") # convert inputs to correct representation try: frequency = float(frequency) except TypeError: # maybe frequency is a list or array frequency = np.array(frequency, dtype='float') Fs = float(sampling_rate) wn = 2. * frequency / Fs return wn def _filter_init(b, a, alpha=1.): """Get an initial filter state that corresponds to the steady-state of the step response. Parameters ---------- b : array Numerator coefficients. a : array Denominator coefficients. alpha : float, optional Scaling factor. Returns ------- zi : array Initial filter state. """ zi = alpha * ss.lfilter_zi(b, a) return zi def _filter_signal(b, a, signal, zi=None, check_phase=True, **kwargs): """Filter a signal with given coefficients. Parameters ---------- b : array Numerator coefficients. a : array Denominator coefficients. signal : array Signal to filter. zi : array, optional Initial filter state. check_phase : bool, optional If True, use the forward-backward technique. ``**kwargs`` : dict, optional Additional keyword arguments are passed to the underlying filtering function. Returns ------- filtered : array Filtered signal. zf : array Final filter state. Notes ----- * If check_phase is True, zi cannot be set. """ # check inputs if check_phase and zi is not None: raise ValueError( "Incompatible arguments: initial filter state cannot be set when \ check_phase is True.") if zi is None: zf = None if check_phase: filtered = ss.filtfilt(b, a, signal, **kwargs) else: filtered = ss.lfilter(b, a, signal, **kwargs) else: filtered, zf = ss.lfilter(b, a, signal, zi=zi, **kwargs) return filtered, zf def _filter_resp(b, a, sampling_rate=1000., nfreqs=4096): """Compute the filter frequency response. Parameters ---------- b : array Numerator coefficients. a : array Denominator coefficients. sampling_rate : int, float, optional Sampling frequency (Hz). nfreqs : int, optional Number of frequency points to compute. Returns ------- freqs : array Array of frequencies (Hz) at which the response was computed. resp : array Frequency response. """ w, resp = ss.freqz(b, a, nfreqs) # convert frequencies freqs = w * sampling_rate / (2. * np.pi) return freqs, resp def _get_window(kernel, size, **kwargs): """Return a window with the specified parameters. Parameters ---------- kernel : str Type of window to create. size : int Size of the window. ``**kwargs`` : dict, optional Additional keyword arguments are passed to the underlying scipy.signal.windows function. Returns ------- window : array Created window. """ # mimics scipy.signal.get_window if kernel in ['blackman', 'black', 'blk']: winfunc = ss.blackman elif kernel in ['triangle', 'triang', 'tri']: winfunc = ss.triang elif kernel in ['hamming', 'hamm', 'ham']: winfunc = ss.hamming elif kernel in ['bartlett', 'bart', 'brt']: winfunc = ss.bartlett elif kernel in ['hanning', 'hann', 'han']: winfunc = ss.hann elif kernel in ['blackmanharris', 'blackharr', 'bkh']: winfunc = ss.blackmanharris elif kernel in ['parzen', 'parz', 'par']: winfunc = ss.parzen elif kernel in ['bohman', 'bman', 'bmn']: winfunc = ss.bohman elif kernel in ['nuttall', 'nutl', 'nut']: winfunc = ss.nuttall elif kernel in ['barthann', 'brthan', 'bth']: winfunc = ss.barthann elif kernel in ['flattop', 'flat', 'flt']: winfunc = ss.flattop elif kernel in ['kaiser', 'ksr']: winfunc = ss.kaiser elif kernel in ['gaussian', 'gauss', 'gss']: winfunc = ss.gaussian elif kernel in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = ss.general_gaussian elif kernel in ['boxcar', 'box', 'ones', 'rect', 'rectangular']: winfunc = ss.boxcar elif kernel in ['slepian', 'slep', 'optimal', 'dpss', 'dss']: winfunc = ss.slepian elif kernel in ['cosine', 'halfcosine']: winfunc = ss.cosine elif kernel in ['chebwin', 'cheb']: winfunc = ss.chebwin else: raise ValueError("Unknown window type.") try: window = winfunc(size, **kwargs) except TypeError as e: raise TypeError("Invalid window arguments: %s." % e) return window def get_filter(ftype='FIR', band='lowpass', order=None, frequency=None, sampling_rate=1000., **kwargs): """Compute digital (FIR or IIR) filter coefficients with the given parameters. Parameters ---------- ftype : str Filter type: * Finite Impulse Response filter ('FIR'); * Butterworth filter ('butter'); * Chebyshev filters ('cheby1', 'cheby2'); * Elliptic filter ('ellip'); * Bessel filter ('bessel'). band : str Band type: * Low-pass filter ('lowpass'); * High-pass filter ('highpass'); * Band-pass filter ('bandpass'); * Band-stop filter ('bandstop'). order : int Order of the filter. frequency : int, float, list, array Cutoff frequencies; format depends on type of band: * 'lowpass' or 'highpass': single frequency; * 'bandpass' or 'bandstop': pair of frequencies. sampling_rate : int, float, optional Sampling frequency (Hz). ``**kwargs`` : dict, optional Additional keyword arguments are passed to the underlying scipy.signal function. Returns ------- b : array Numerator coefficients. a : array Denominator coefficients. See Also: scipy.signal """ # check inputs if order is None: raise TypeError("Please specify the filter order.") if frequency is None: raise TypeError("Please specify the cutoff frequency.") if band not in ['lowpass', 'highpass', 'bandpass', 'bandstop']: raise ValueError( "Unknown filter type '%r'; choose 'lowpass', 'highpass', \ 'bandpass', or 'bandstop'." % band) # convert frequencies frequency = _norm_freq(frequency, sampling_rate) # get coeffs b, a = [], [] if ftype == 'FIR': # FIR filter if order % 2 == 0: order += 1 a = np.array([1]) if band in ['lowpass', 'bandstop']: b = ss.firwin(numtaps=order, cutoff=frequency, pass_zero=True, **kwargs) elif band in ['highpass', 'bandpass']: b = ss.firwin(numtaps=order, cutoff=frequency, pass_zero=False, **kwargs) elif ftype == 'butter': # Butterworth filter b, a = ss.butter(N=order, Wn=frequency, btype=band, analog=False, output='ba', **kwargs) elif ftype == 'cheby1': # Chebyshev type I filter b, a = ss.cheby1(N=order, Wn=frequency, btype=band, analog=False, output='ba', **kwargs) elif ftype == 'cheby2': # chebyshev type II filter b, a = ss.cheby2(N=order, Wn=frequency, btype=band, analog=False, output='ba', **kwargs) elif ftype == 'ellip': # Elliptic filter b, a = ss.ellip(N=order, Wn=frequency, btype=band, analog=False, output='ba', **kwargs) elif ftype == 'bessel': # Bessel filter b, a = ss.bessel(N=order, Wn=frequency, btype=band, analog=False, output='ba', **kwargs) return utils.ReturnTuple((b, a), ('b', 'a')) def filter_signal(signal=None, ftype='FIR', band='lowpass', order=None, frequency=None, sampling_rate=1000., **kwargs): """Filter a signal according to the given parameters. Parameters ---------- signal : array Signal to filter. ftype : str Filter type: * Finite Impulse Response filter ('FIR'); * Butterworth filter ('butter'); * Chebyshev filters ('cheby1', 'cheby2'); * Elliptic filter ('ellip'); * Bessel filter ('bessel'). band : str Band type: * Low-pass filter ('lowpass'); * High-pass filter ('highpass'); * Band-pass filter ('bandpass'); * Band-stop filter ('bandstop'). order : int Order of the filter. frequency : int, float, list, array Cutoff frequencies; format depends on type of band: * 'lowpass' or 'bandpass': single frequency; * 'bandpass' or 'bandstop': pair of frequencies. sampling_rate : int, float, optional Sampling frequency (Hz). ``**kwargs`` : dict, optional Additional keyword arguments are passed to the underlying scipy.signal function. Returns ------- signal : array Filtered signal. sampling_rate : float Sampling frequency (Hz). params : dict Filter parameters. Notes ----- * Uses a forward-backward filter implementation. Therefore, the combined filter has linear phase. """ # check inputs if signal is None: raise TypeError("Please specify a signal to filter.") # get filter b, a = get_filter(ftype=ftype, order=order, frequency=frequency, sampling_rate=sampling_rate, band=band, **kwargs) # filter filtered, _ = _filter_signal(b, a, signal, check_phase=True) # output params = { 'ftype': ftype, 'order': order, 'frequency': frequency, 'band': band, } params.update(kwargs) args = (filtered, sampling_rate, params) names = ('signal', 'sampling_rate', 'params') return utils.ReturnTuple(args, names) class OnlineFilter(object): """Online filtering. Parameters ---------- b : array Numerator coefficients. a : array Denominator coefficients. """ def __init__(self, b=None, a=None): # check inputs if b is None: raise TypeError('Please specify the numerator coefficients.') if a is None: raise TypeError('Please specify the denominator coefficients.') # self things self.b = b self.a = a # reset self.reset() def reset(self): """Reset the filter state.""" self.zi = None def filter(self, signal=None): """Filter a signal segment. Parameters ---------- signal : array Signal segment to filter. Returns ------- filtered : array Filtered signal segment. """ # check input if signal is None: raise TypeError('Please specify the input signal.') if self.zi is None: self.zi = signal[0] * ss.lfilter_zi(self.b, self.a) filtered, self.zi = ss.lfilter(self.b, self.a, signal, zi=self.zi) return utils.ReturnTuple((filtered, ), ('filtered', )) def smoother(signal=None, kernel='boxzen', size=10, mirror=True, **kwargs): """Smooth a signal using an N-point moving average [MAvg]_ filter. This implementation uses the convolution of a filter kernel with the input signal to compute the smoothed signal [Smit97]_. Availabel kernels: median, boxzen, boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation). Parameters ---------- signal : array Signal to smooth. kernel : str, array, optional Type of kernel to use; if array, use directly as the kernel. size : int, optional Size of the kernel; ignored if kernel is an array. mirror : bool, optional If True, signal edges are extended to avoid boundary effects. ``**kwargs`` : dict, optional Additional keyword arguments are passed to the underlying scipy.signal.windows function. Returns ------- signal : array Smoothed signal. params : dict Smoother parameters. Notes ----- * When the kernel is 'median', mirror is ignored. References ---------- .. [MAvg] Wikipedia, "Moving Average", http://en.wikipedia.org/wiki/Moving_average .. [Smit97] <NAME>, "Moving Average Filters - Implementation by Convolution", http://www.dspguide.com/ch15/1.htm, 1997 """ # check inputs if signal is None: raise TypeError("Please specify a signal to smooth.") length = len(signal) if isinstance(kernel, six.string_types): # check length if size > length: size = length - 1 if size < 1: size = 1 if kernel == 'boxzen': # hybrid method # 1st pass - boxcar kernel aux, _ = smoother(signal, kernel='boxcar', size=size, mirror=mirror) # 2nd pass - parzen kernel smoothed, _ = smoother(aux, kernel='parzen', size=size, mirror=mirror) params = {'kernel': kernel, 'size': size, 'mirror': mirror} args = (smoothed, params) names = ('signal', 'params') return utils.ReturnTuple(args, names) elif kernel == 'median': # median filter if size % 2 == 0: raise ValueError( "When the kernel is 'median', size must be odd.") smoothed = ss.medfilt(signal, kernel_size=size) params = {'kernel': kernel, 'size': size, 'mirror': mirror} args = (smoothed, params) names = ('signal', 'params') return utils.ReturnTuple(args, names) else: win = _get_window(kernel, size, **kwargs) elif isinstance(kernel, np.ndarray): win = kernel size = len(win) # check length if size > length: raise ValueError("Kernel size is bigger than signal length.") if size < 1: raise ValueError("Kernel size is smaller than 1.") else: raise TypeError("Unknown kernel type.") # convolve w = win / win.sum() if mirror: aux = np.concatenate( (signal[0] * np.ones(size), signal, signal[-1] * np.ones(size))) smoothed = np.convolve(w, aux, mode='same') smoothed = smoothed[size:-size] else: smoothed = np.convolve(w, signal, mode='same') # output params = {'kernel': kernel, 'size': size, 'mirror': mirror} params.update(kwargs) args = (smoothed, params) names = ('signal', 'params') return utils.ReturnTuple(args, names) def analytic_signal(signal=None, N=None): """Compute analytic signal, using the Hilbert Transform. Parameters ---------- signal : array Input signal. N : int, optional Number of Fourier components; default is `len(signal)`. Returns ------- amplitude : array Amplitude envelope of the analytic signal. phase : array Instantaneous phase component of the analystic signal. """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") # hilbert transform asig = ss.hilbert(signal, N=N) # amplitude envelope amp = np.absolute(asig) # instantaneous phase = np.angle(asig) return utils.ReturnTuple((amp, phase), ('amplitude', 'phase')) def phase_locking(signal1=None, signal2=None, N=None): """Compute the Phase-Locking Factor (PLF) between two signals. Parameters ---------- signal1 : array First input signal. signal2 : array Second input signal. N : int, optional Number of Fourier components. Returns ------- plf : float The PLF between the two signals. """ # check inputs if signal1 is None: raise TypeError("Please specify the first input signal.") if signal2 is None: raise TypeError("Please specify the second input signal.") if len(signal1) != len(signal2): raise ValueError("The input signals must have the same length.") # compute analytic signal asig1 = ss.hilbert(signal1, N=N) phase1 = np.angle(asig1) asig2 = ss.hilbert(signal2, N=N) phase2 = np.angle(asig2) # compute PLF plf = np.absolute(np.mean(np.exp(1j * (phase1 - phase2)))) return utils.ReturnTuple((plf,), ('plf',)) def power_spectrum(signal=None, sampling_rate=1000., pad=None, pow2=False, decibel=True): """Compute the power spectrum of a signal (one-sided). Parameters ---------- signal : array Input signal. sampling_rate : int, float, optional Sampling frequency (Hz). pad : int, optional Padding for the Fourier Transform (number of zeros added); defaults to no padding.. pow2 : bool, optional If True, rounds the number of points `N = len(signal) + pad` to the nearest power of 2 greater than N. decibel : bool, optional If True, returns the power in decibels. Returns ------- freqs : array Array of frequencies (Hz) at which the power was computed. power : array Power spectrum. """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") npoints = len(signal) if pad is not None: if pad >= 0: npoints += pad else: raise ValueError("Padding must be a positive integer.") # power of 2 if pow2: npoints = 2 ** (np.ceil(np.log2(npoints))) Nyq = float(sampling_rate) / 2 hpoints = npoints // 2 freqs = np.linspace(0, Nyq, hpoints) power = np.abs(np.fft.fft(signal, npoints)) / npoints # one-sided power = power[:hpoints] power[1:] *= 2 power = np.power(power, 2) if decibel: power = 10. * np.log10(power) return utils.ReturnTuple((freqs, power), ('freqs', 'power')) def welch_spectrum(signal=None, sampling_rate=1000., size=None, overlap=None, window='hanning', window_kwargs=None, pad=None, decibel=True): """Compute the power spectrum of a signal using Welch's method (one-sided). Parameters ---------- signal : array Input signal. sampling_rate : int, float, optional Sampling frequency (Hz). size : int, optional Number of points in each Welch segment; defaults to the equivalent of 1 second; ignored when 'window' is an array. overlap : int, optional Number of points to overlap between segments; defaults to `size / 2`. window : str, array, optional Type of window to use. window_kwargs : dict, optional Additional keyword arguments to pass on window creation; ignored if 'window' is an array. pad : int, optional Padding for the Fourier Transform (number of zeros added); defaults to no padding. decibel : bool, optional If True, returns the power in decibels. Returns ------- freqs : array Array of frequencies (Hz) at which the power was computed. power : array Power spectrum. Notes ----- * Detrends each Welch segment by removing the mean. """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") length = len(signal) sampling_rate = float(sampling_rate) if size is None: size = int(sampling_rate) if window_kwargs is None: window_kwargs = {} if isinstance(window, six.string_types): win = _get_window(window, size, **window_kwargs) elif isinstance(window, np.ndarray): win = window size = len(win) if size > length: raise ValueError('Segment size must be smaller than signal length.') if overlap is None: overlap = size // 2 elif overlap > size: raise ValueError('Overlap must be smaller than segment size.') nfft = size if pad is not None: if pad >= 0: nfft += pad else: raise ValueError("Padding must be a positive integer.") freqs, power = ss.welch( signal, fs=sampling_rate, window=win, nperseg=size, noverlap=overlap, nfft=nfft, detrend='constant', return_onesided=True, scaling='spectrum', ) # compensate one-sided power *= 2 if decibel: power = 10. * np.log10(power) return utils.ReturnTuple((freqs, power), ('freqs', 'power')) def band_power(freqs=None, power=None, frequency=None, decibel=True): """Compute the avearge power in a frequency band. Parameters ---------- freqs : array Array of frequencies (Hz) at which the power was computed. power : array Input power spectrum. frequency : list, array Pair of frequencies defining the band. decibel : bool, optional If True, input power is in decibels. Returns ------- avg_power : float The average power in the band. """ # check inputs if freqs is None: raise TypeError("Please specify the 'freqs' array.") if power is None: raise TypeError("Please specify the input power spectrum.") if len(freqs) != len(power): raise ValueError( "The input 'freqs' and 'power' arrays must have the same length.") if frequency is None: raise TypeError("Please specify the band frequencies.") try: f1, f2 = frequency except ValueError: raise ValueError("Input 'frequency' must be a pair of frequencies.") # make frequencies sane if f1 > f2: f1, f2 = f2, f1 if f1 < freqs[0]: f1 = freqs[0] if f2 > freqs[-1]: f2 = freqs[-1] # average sel = np.nonzero(np.logical_and(f1 <= freqs, freqs <= f2))[0] if decibel: aux = 10 ** (power / 10.) avg = np.mean(aux[sel]) avg = 10. * np.log10(avg) else: avg = np.mean(power[sel]) return utils.ReturnTuple((avg,), ('avg_power',)) def signal_stats(signal=None): """Compute various metrics describing the signal. Parameters ---------- signal : array Input signal. Returns ------- mean : float Mean of the signal. median : float Median of the signal. min : float Minimum signal value. max : float Maximum signal value. max_amp : float Maximum absolute signal amplitude, in relation to the mean. var : float Signal variance (unbiased). std_dev : float Standard signal deviation (unbiased). abs_dev : float Mean absolute signal deviation around the median. kurtosis : float Signal kurtosis (unbiased). skew : float Signal skewness (unbiased). """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") # ensure numpy signal = np.array(signal) # mean mean = np.mean(signal) # median median = np.median(signal) # min minVal = np.min(signal) # max maxVal = np.max(signal) # maximum amplitude maxAmp = np.abs(signal - mean).max() # variance sigma2 = signal.var(ddof=1) # standard deviation sigma = signal.std(ddof=1) # absolute deviation ad = np.mean(np.abs(signal - median)) # kurtosis kurt = stats.kurtosis(signal, bias=False) # skweness skew = stats.skew(signal, bias=False) # output args = (mean, median, minVal, maxVal, maxAmp, sigma2, sigma, ad, kurt, skew) names = ('mean', 'median', 'min', 'max', 'max_amp', 'var', 'std_dev', 'abs_dev', 'kurtosis', 'skewness') return utils.ReturnTuple(args, names) def normalize(signal=None, ddof=1): """Normalize a signal to zero mean and unitary standard deviation. Parameters ---------- signal : array Input signal. ddof : int, optional Delta degrees of freedom for standard deviation computation; the divisor is `N - ddof`, where `N` is the number of elements; default is one. Returns ------- signal : array Normalized signal. """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") # ensure numpy signal = np.array(signal) normalized = signal - signal.mean() normalized /= normalized.std(ddof=ddof) return utils.ReturnTuple((normalized,), ('signal',)) def zero_cross(signal=None, detrend=False): """Locate the indices where the signal crosses zero. Parameters ---------- signal : array Input signal. detrend : bool, optional If True, remove signal mean before computation. Returns ------- zeros : array Indices of zero crossings. Notes ----- * When the signal crosses zero between samples, the first index is returned. """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") if detrend: signal = signal - np.mean(signal) # zeros df = np.diff(np.sign(signal)) zeros = np.nonzero(np.abs(df) > 0)[0] return utils.ReturnTuple((zeros,), ('zeros',)) def find_extrema(signal=None, mode='both'): """Locate local extrema points in a signal. Based on Fermat's Theorem [Ferm]_. Parameters ---------- signal : array Input signal. mode : str, optional Whether to find maxima ('max'), minima ('min'), or both ('both'). Returns ------- extrema : array Indices of the extrama points. values : array Signal values at the extrema points. References ---------- .. [Ferm] Wikipedia, "Fermat's theorem (stationary points)", https://en.wikipedia.org/wiki/Fermat%27s_theorem_(stationary_points) """ # check inputs if signal is None: raise TypeError("Please specify an input signal.") if mode not in ['max', 'min', 'both']: raise ValueError("Unknwon mode %r." % mode) aux = np.diff(np.sign(np.diff(signal))) if mode == 'both': aux = np.abs(aux) extrema = np.nonzero(aux > 0)[0] + 1 elif mode == 'max': extrema =
np.nonzero(aux < 0)
numpy.nonzero