code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# Copyright 2018 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Validator for HWID configs.""" from typing import List from cros.factory.hwid.service.appengine.config import CONFIG from cros.factory.hwid.service.appengine import \ verification_payload_generator as vpg_module from cros.factory.hwid.v3 import contents_analyzer from cros.factory.hwid.v3 import database ErrorCode = contents_analyzer.ErrorCode Error = contents_analyzer.Error class ValidationError(Exception): """An exception class that indicates validation failures.""" def __init__(self, errors: List[Error]): super().__init__(str(errors)) self.errors = errors class HwidValidator: """Validates HWID configs.""" def Validate(self, hwid_config_contents): """Validates a HWID config. Uses strict validation (i.e. includes checksum validation). Args: hwid_config_contents: the current HWID config as a string. """ expected_checksum = database.Database.ChecksumForText(hwid_config_contents) contents_analyzer_inst = contents_analyzer.ContentsAnalyzer( hwid_config_contents, expected_checksum, None) report = contents_analyzer_inst.ValidateIntegrity() if report.errors: raise ValidationError(report.errors) def ValidateChange(self, hwid_config_contents, prev_hwid_config_contents): """Validates a HWID config change. This method validates the current config (strict, i.e. including its checksum), the previous config (non strict, i.e. no checksum validation) and the change itself (e.g. bitfields may only be appended at the end, not inserted in the middle). Args: hwid_config_contents: the current HWID config as a string. prev_hwid_config_contents: the previous HWID config as a string. Returns: A tuple (project, new_comps) where new_comps is a dict in the form of {category: [(ciq, qid, status),...]} which collects created/updated component names in the ${category}_${cid}_${qid} pattern. """ expected_checksum = database.Database.ChecksumForText(hwid_config_contents) analyzer = contents_analyzer.ContentsAnalyzer( hwid_config_contents, expected_checksum, prev_hwid_config_contents) report_of_change = analyzer.ValidateChange() if report_of_change.errors: raise ValidationError(report_of_change.errors) report_of_integrity = analyzer.ValidateIntegrity() if report_of_integrity.errors: raise ValidationError(report_of_integrity.errors) db = analyzer.curr_db_instance vpg_target = CONFIG.vpg_targets.get(db.project) if vpg_target: errors = vpg_module.GenerateVerificationPayload( [(db, vpg_target.waived_comp_categories)]).error_msgs if errors: raise ValidationError( [Error(ErrorCode.CONTENTS_ERROR, err) for err in errors]) return db.project, report_of_change.name_changed_components
[ "cros.factory.hwid.v3.database.Database.ChecksumForText", "cros.factory.hwid.service.appengine.config.CONFIG.vpg_targets.get", "cros.factory.hwid.service.appengine.verification_payload_generator.GenerateVerificationPayload", "cros.factory.hwid.v3.contents_analyzer.ContentsAnalyzer" ]
[((1060, 1115), 'cros.factory.hwid.v3.database.Database.ChecksumForText', 'database.Database.ChecksumForText', (['hwid_config_contents'], {}), '(hwid_config_contents)\n', (1093, 1115), False, 'from cros.factory.hwid.v3 import database\n'), ((1146, 1231), 'cros.factory.hwid.v3.contents_analyzer.ContentsAnalyzer', 'contents_analyzer.ContentsAnalyzer', (['hwid_config_contents', 'expected_checksum', 'None'], {}), '(hwid_config_contents, expected_checksum,\n None)\n', (1180, 1231), False, 'from cros.factory.hwid.v3 import contents_analyzer\n'), ((2140, 2195), 'cros.factory.hwid.v3.database.Database.ChecksumForText', 'database.Database.ChecksumForText', (['hwid_config_contents'], {}), '(hwid_config_contents)\n', (2173, 2195), False, 'from cros.factory.hwid.v3 import database\n'), ((2211, 2317), 'cros.factory.hwid.v3.contents_analyzer.ContentsAnalyzer', 'contents_analyzer.ContentsAnalyzer', (['hwid_config_contents', 'expected_checksum', 'prev_hwid_config_contents'], {}), '(hwid_config_contents, expected_checksum,\n prev_hwid_config_contents)\n', (2245, 2317), False, 'from cros.factory.hwid.v3 import contents_analyzer\n'), ((2658, 2692), 'cros.factory.hwid.service.appengine.config.CONFIG.vpg_targets.get', 'CONFIG.vpg_targets.get', (['db.project'], {}), '(db.project)\n', (2680, 2692), False, 'from cros.factory.hwid.service.appengine.config import CONFIG\n'), ((2727, 2813), 'cros.factory.hwid.service.appengine.verification_payload_generator.GenerateVerificationPayload', 'vpg_module.GenerateVerificationPayload', (['[(db, vpg_target.waived_comp_categories)]'], {}), '([(db, vpg_target.\n waived_comp_categories)])\n', (2765, 2813), True, 'from cros.factory.hwid.service.appengine import verification_payload_generator as vpg_module\n')]
import re sentence = input().lower() word = input().lower() pattern = f'{word}\\b' matches = re.findall(pattern, sentence) count = len(matches) print(count)
[ "re.findall" ]
[((101, 130), 're.findall', 're.findall', (['pattern', 'sentence'], {}), '(pattern, sentence)\n', (111, 130), False, 'import re\n')]
#!/usr/bin/python import os import sys import time import xlwt from lwt_testcasereader import TestCaseReader from lwt_testhost import TestHost from lwt_testcase import TestCase from lwtestssh import mysshError from lwt_config import * CONN_RST = "Connection reset by peer" class TestHarness: def __init__(self, testcasesfile, hostsfile, email, suitename="LWTestReport"): self.__testfile = testcasesfile self.__hostsfile = hostsfile self.__logfile = suitename + ".xls" self.__logsep = "\n" self.__logsepEx = "\n\n" self.__emailaddress = email try: self.__testcasereader = TestCaseReader(self.__testfile) self.__testcasereader.CopyHeader(); self.__testcasereader.CopyField() self.__hostread = open(self.__hostsfile, "r") self.__lwtestreport = xlwt.Workbook(encoding="utf-8") self.__testsummary = self.__lwtestreport.add_sheet("Test Summary") self.__distroresult = 0 self.AddTestSummaryHeader() self.TestMachines() self.__lwtestreport.save(self.__logfile) self.__hostread.close() self.MailResults(self.__emailaddress) except: self.__lwtestreport.save(self.__logfile) self.__hostread.close() def AddTestSummaryHeader(self): self.__testsummary.write(0, 0, "Host name") self.__testsummary.write(0, 1, "IP") self.__testsummary.write(0, 2, "Platform") self.__testsummary.write(0, 3, "Distribution") self.__testsummary.write(0, 4, "Processor Arch") self.__testsummary.write(0, 5, "Version") self.__testsummary.write(0, 6, "Total testcases") self.__testsummary.write(0, 7, "Pass") self.__testsummary.write(0, 8, "Fail") self.__testsummary.write(0, 9, "Skip") def TestMachines(self): machinecount = 0 hostinfo = self.__hostread.readline() while hostinfo != "": try: if not hostinfo.startswith("#"): host = hostinfo.split(",") if len(host) >= 3: #ip, root login username, root password machinecount += 1 testhost = TestHost(host[0], host[1], host[2]) if testhost.rootlogin(): testhost.findplatform() testhost.finddistribution() testhost.findipaddress() testhost.findhostname() testhost.findbitversion() self.__testsummary.write(machinecount, 0, testhost.hostname) self.__testsummary.write(machinecount, 1, testhost.ipaddress) self.__testsummary.write(machinecount, 2, testhost.platform) self.__testsummary.write(machinecount, 3, testhost.distribution) self.__testsummary.write(machinecount, 4, testhost.bitcompat) self.__testsummary.write(machinecount, 5, testhost.distroversion) self.__lwtestreport.save(self.__logfile) try: self.__distroresult = self.__lwtestreport.add_sheet(testhost.hostname) except: self.__distroresult = self.__lwtestreport.add_sheet(testhost.inputhostname) self.AddTestingHeader() Total, Pass, Fail = self.RunTestCases(testhost) self.__testsummary.write(machinecount, 6, Total) self.__testsummary.write(machinecount, 7, Pass) self.__testsummary.write(machinecount, 8, Fail) self.__testsummary.write(machinecount, 9, (Total - (Pass + Fail))) self.__lwtestreport.save(self.__logfile) testhost.rootlogout() else: testhost.__loginerror = True self.__testsummary.write(machinecount, 0, host[0]) self.__testsummary.write(machinecount, 8, testhost.loginerrmsg) #testhost.zipwinbindlogs() hostinfo = self.__hostread.readline() except: hostinfo = self.__hostread.readline() pass def AddTestingHeader(self): self.__distroresult.write(0, 0, "Testcase ID") self.__distroresult.write(0, 1, "Description") self.__distroresult.write(0, 2, "Test Result") self.__distroresult.write(0, 3, "Test case") self.__distroresult.write(0, 4, "Expected Result") self.__distroresult.write(0, 5, "System Result") self.__distroresult.write(0, 6, "Test case") self.__distroresult.write(0, 7, "Expected Result") self.__distroresult.write(0, 8, "System Result") self.__distroresult.write(0, 9, "Test case") self.__distroresult.write(0, 10, "Expected Result") self.__distroresult.write(0, 11, "System Result") self.__distroresult.write(0, 12, "Test case") self.__distroresult.write(0, 13, "Expected Result") self.__distroresult.write(0, 14, "System Result") #Get all test cases from test case and execute them def RunTestCases(self,host): TotalTestCases = 0 PassTestCases = 0 FailTestCases = 0 index = 0 reportindex = 0 try: maxrow = self.__testcasereader.GetRowCount() if index == maxrow: return TotalTestCases, PassTestCases, FailTestCases testcase = TestCase(host) while index < maxrow: testcaseline = self.__testcasereader.GetTestCaseLine(index) if not str(testcaseline[0]).startswith("#"): testcase.executetest(testcaseline) if testcase.result != "NOT RUN": TotalTestCases += 1 reportindex += 1 if str(testcase.result) == "FAIL": FailTestCases += 1 elif str(testcase.result) == "PASS": PassTestCases += 1 self.__distroresult.write(reportindex, 0, str(testcaseline[0])) self.__distroresult.write(reportindex, 1, testcaseline[1]) self.__distroresult.write(reportindex, 2, str(testcase.result)) column = 0 for command, expected, actual in testcase.testcaselog: if actual.strip().lower().find(CONN_RST.strip().lower()) > -1: if testcase.sshconn.connected: host.rootlogout(True) condition = True timeout = 0 while (timeout < MAX_TIMEOUT and condition): if host.rootlogin(): host.userloginname = host.rootloginname host.userpass = host.rootpass testcase.sshconn = host.rootconn condition = False time.sleep(2) timeout += 2 if condition == True: self.__distroresult.write(reportindex, column, command) self.__distroresult.write(reportindex, column+1, expected) self.__distroresult.write(reportindex, 0, actual.replace(" | ","\n").strip()) return column += 3 self.__distroresult.write(reportindex, column, command) self.__distroresult.write(reportindex, column+1, expected) if str(testcase.result) == "PASS": self.__distroresult.write(reportindex, column+2, expected) else: if actual.lower().find(expected.replace("\"","").lower().strip() ) != -1: self.__distroresult.write(reportindex, column+2, expected) else: error = actual error = "\t" + error.replace(" | ","\n").strip() self.__distroresult.write(reportindex, column+2, error) del testcase.testcaselog[:] installcmd = "install" domainjoincmd = "domainjoin" regshellcmd = "regshellstart" rebootcmd = "reboot" expectedcmd = "" error = "" if str(testcase.result) == "FAIL": if testcaseline[3].lower().strip().startswith(installcmd.lower().strip()): error = "Error: Likewise product installation failed. Skipping all test cases till build uninstalls" expectedcmd = "uninstall" elif testcaseline[3].lower().startswith(regshellcmd.lower().strip()): error = "Error: Failed to load regshell command tool. Skipping all regshell testcases" expectedcmd = "regshellstop" elif testcaseline[3].lower().strip().startswith(domainjoincmd.lower().strip()): error = "Error: Domain join failed. Skipping all domain join test cases" expectedcmd = "domainleave" elif testcaseline[3].lower().strip().startswith(rebootcmd.lower().strip()): error = "Error: System is not rebooted. Skipping all test cases " expectedcmd = "reboot" if expectedcmd != "": index += 1 while index < maxrow: testcaseline = self.__testcasereader.GetTestCaseLine(index) if not str(testcaseline[0]).startswith("#"): TotalTestCases += 1 if testcaseline[3].lower().strip().startswith(expectedcmd.lower().strip()): break index += 1 self.__distroresult.write(reportindex + 2, 0, "Error: build verification test fails") self.__distroresult.write(reportindex + 3, 0, error) reportindex += 3 testcaseline="" self.__lwtestreport.save(self.__logfile) index += 1 return TotalTestCases, PassTestCases, FailTestCases except: return TotalTestCases, PassTestCases, FailTestCases def MailResults(self, emailaddress): self.__logfile if emailaddress != "None": os.system("uuencode \"" + self.__logfile + "\" \"" + self.__logfile + "\" | mail -s \"Test Result\" " + emailaddress)
[ "lwt_testhost.TestHost", "time.sleep", "lwt_testcasereader.TestCaseReader", "lwt_testcase.TestCase", "os.system", "xlwt.Workbook" ]
[((658, 689), 'lwt_testcasereader.TestCaseReader', 'TestCaseReader', (['self.__testfile'], {}), '(self.__testfile)\n', (672, 689), False, 'from lwt_testcasereader import TestCaseReader\n'), ((878, 909), 'xlwt.Workbook', 'xlwt.Workbook', ([], {'encoding': '"""utf-8"""'}), "(encoding='utf-8')\n", (891, 909), False, 'import xlwt\n'), ((5947, 5961), 'lwt_testcase.TestCase', 'TestCase', (['host'], {}), '(host)\n', (5955, 5961), False, 'from lwt_testcase import TestCase\n'), ((11682, 11797), 'os.system', 'os.system', (['(\'uuencode "\' + self.__logfile + \'" "\' + self.__logfile +\n \'" | mail -s "Test Result" \' + emailaddress)'], {}), '(\'uuencode "\' + self.__logfile + \'" "\' + self.__logfile +\n \'" | mail -s "Test Result" \' + emailaddress)\n', (11691, 11797), False, 'import os\n'), ((2298, 2333), 'lwt_testhost.TestHost', 'TestHost', (['host[0]', 'host[1]', 'host[2]'], {}), '(host[0], host[1], host[2])\n', (2306, 2333), False, 'from lwt_testhost import TestHost\n'), ((7674, 7687), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (7684, 7687), False, 'import time\n')]
#!/usr/local/bin/python # -*- coding: utf-8 -*- import matplotlib.pyplot as plot plot.style.use('seaborn-whitegrid') import numpy as np import mvpissues issues = mvpissues.issues issues['morley'] = [] import gitlabprs import mvpprs import pprint prs = mvpprs.prs prs['morley'] = gitlabprs.prs['morley'] pp = pprint.PrettyPrinter(indent=2) def mkFreqs(points, selector): if len(points) == 0: return [] freqs = {} for x in points: s = selector(x) if s in freqs: freqs[s] = freqs[s] + 1 else: freqs[s] = 1 return sorted(freqs.items(), key=lambda kv: kv[0]) def mkAllFreqs(xs, selector): allFreqs = {} for points in xs: allFreqs[points] = mkFreqs(xs[points], selector) return allFreqs def sortByFrequency(freqs): return sorted(freqs, key=lambda kv: kv[1]) def unzip(xs): ret = [[],[]] for j in xs: ret[0].append(j[0]) ret[1].append(j[1]) return ret def render(x, y, xlabel, ylabel, title): if(len(x) == 0): return if(len(y) == 0): return _fig, ax = plot.subplots() ax.set_xticks(x) plot.plot(x, y, 'ro') plot.title(title) plot.xlabel(xlabel) plot.ylabel(ylabel) plot.show() def filterRelevantIssues(points): return filter(lambda x: x[0] <= 3*30 and x[0] >= 2, points) def filterRelevantPrs(points): return filter(lambda x: x[0] <= 3*30, points) def groupByDelta(points): def getSndByFst(x, ys): for y in ys: if y[0] == x: return y[1] return 0 ret = [] prev = -1 for curr in [0,1,2,3,4,5,10,20,30,40,60,90]: occurrences = 0 for j in range(prev + 1, curr + 1): occurrences = occurrences + getSndByFst(j, points) if occurrences > 0: if curr == prev + 1: ret.append([str(curr), occurrences]) else: ret.append([str(prev + 1) + '-' + str(curr), occurrences]) prev = curr return ret if __name__ == '__main__': allIssuesByDelta = mkAllFreqs(issues, lambda x: x['delta']) allPrsByDelta = mkAllFreqs(prs, lambda x: x['delta']) for compiler in allIssuesByDelta: #xy = unzip(filterRelevantIssues(allIssuesByDelta[compiler])) xy = unzip(groupByDelta(filterRelevantIssues(allIssuesByDelta[compiler]))) #render(xy[1], xy[0], 'amount of issues closed', 'days', compiler + u' issues (ν)') #xy1 = unzip(filterRelevantPrs(allPrsByDelta[compiler])) xy1 = unzip(groupByDelta(filterRelevantPrs(allPrsByDelta[compiler]))) render(xy1[1], xy1[0], 'amount of PRs closed', 'days', compiler + u' pull requests (ν)')
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.style.use", "pprint.PrettyPrinter", "matplotlib.pyplot.title", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((82, 117), 'matplotlib.pyplot.style.use', 'plot.style.use', (['"""seaborn-whitegrid"""'], {}), "('seaborn-whitegrid')\n", (96, 117), True, 'import matplotlib.pyplot as plot\n'), ((314, 344), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {'indent': '(2)'}), '(indent=2)\n', (334, 344), False, 'import pprint\n'), ((1032, 1047), 'matplotlib.pyplot.subplots', 'plot.subplots', ([], {}), '()\n', (1045, 1047), True, 'import matplotlib.pyplot as plot\n'), ((1069, 1090), 'matplotlib.pyplot.plot', 'plot.plot', (['x', 'y', '"""ro"""'], {}), "(x, y, 'ro')\n", (1078, 1090), True, 'import matplotlib.pyplot as plot\n'), ((1093, 1110), 'matplotlib.pyplot.title', 'plot.title', (['title'], {}), '(title)\n', (1103, 1110), True, 'import matplotlib.pyplot as plot\n'), ((1113, 1132), 'matplotlib.pyplot.xlabel', 'plot.xlabel', (['xlabel'], {}), '(xlabel)\n', (1124, 1132), True, 'import matplotlib.pyplot as plot\n'), ((1135, 1154), 'matplotlib.pyplot.ylabel', 'plot.ylabel', (['ylabel'], {}), '(ylabel)\n', (1146, 1154), True, 'import matplotlib.pyplot as plot\n'), ((1157, 1168), 'matplotlib.pyplot.show', 'plot.show', ([], {}), '()\n', (1166, 1168), True, 'import matplotlib.pyplot as plot\n')]
#C:\Python27\python.exe #!/usr/bin/env python # encoding: utf-8 import os, csv """ **** WRITE RESULTS TO FILE FUNCTIONS """ def WriteResultsToFile(resultDict, bcDict, seqDict, workdir, indexFile, customTxt=''): indexString = os.path.basename(indexFile).split(".")[0].split("_")[1] csvFile = os.path.join(workdir, "{}_barcode-mutation_count_{}.csv".format(indexString, customTxt)) with open(csvFile, "wb") as handle: fieldnames = ['Barcode', 'Mutation', 'MutationCount', 'BCSequence', 'BCSequenceCount', 'MutatedBCassociatedWith', 'MutationVariants', 'Frequency', 'LostBarcodes'] writer = csv.DictWriter(handle, fieldnames=fieldnames, delimiter='\t') writer.writeheader() for barcodeID in resultDict: BCSequence = "" BCSequenceCount = "" BCSequence = '\n'.join(str(x[0]) for x in bcDict[barcodeID]) + "\n" BCSequenceCount = '\n'.join(str(x[1]) for x in bcDict[barcodeID]) + "\n" TotalBCSequence = sum([x[1] for x in bcDict[barcodeID]]) if barcodeID in seqDict[barcodeID]: MutVarForUnqBc = '\n'.join(str(x[0]) for x in seqDict[barcodeID][barcodeID]) CountMutForUnqBc = '\n'.join(str(x[1]) for x in seqDict[barcodeID][barcodeID]) TotalMutForUncBc = len(seqDict[barcodeID][barcodeID]) else: MutVarForUnqBc = "none" CountMutForUnqBc = "none" TotalMutForUncBc = 1 if len(resultDict[barcodeID]) > 2: wtd = resultDict[barcodeID][2] if len(wtd) != 0: tmplist=[] for i in wtd.values(): tmplist.extend(i) AssociatedMutations = '\n'.join(str(x[0]) for x in tmplist) Frequency = '\n'.join(str(x[1]) for x in tmplist) MutatedBarcodes = "" for bc in wtd.keys(): countMut = len(wtd[bc]) if bc == wtd.keys()[len(wtd.keys())-1]: MutatedBarcodes += str(bc)+"\n"*(countMut-1) else: MutatedBarcodes += str(bc)+"\n"*countMut else: MutatedBarcodes = Frequency = AssociatedMutations = "" else: MutatedBarcodes = Frequency = AssociatedMutations = "" writer.writerow({ 'Barcode': barcodeID, 'Mutation': resultDict[barcodeID][0], 'MutationCount': resultDict[barcodeID][1], 'BCSequence': BCSequence, 'BCSequenceCount': BCSequenceCount, 'MutatedBCassociatedWith': barcodeID+"\n"*TotalMutForUncBc+MutatedBarcodes, 'MutationVariants': MutVarForUnqBc+"\n"+AssociatedMutations, 'Frequency': CountMutForUnqBc+"\n"+Frequency, 'LostBarcodes': TotalBCSequence-resultDict[barcodeID][1]}) return os.path.basename(csvFile) def WriteBcDictToFile(bcDict, workdir, indexFile, customTxt=''): indexString = os.path.basename(indexFile).split(".")[0].split("_")[1] csvFile = os.path.join(workdir, "{}_barcodeDictionary{}.csv".format(indexString, customTxt)) with open(csvFile, "wb") as handle: fieldnames = ['Barcode', 'BCSequence', 'BCSequenceCount'] writer = csv.DictWriter(handle, fieldnames=fieldnames, delimiter='\t') writer.writeheader() for barcodeID in bcDict: BCSequence = "" BCSequenceCount = "" BCSequence = '\n'.join(str(x[0]) for x in bcDict[barcodeID]) + "\n" BCSequenceCount = '\n'.join(str(x[1]) for x in bcDict[barcodeID]) + "\n" writer.writerow({ 'Barcode': barcodeID, 'BCSequence': BCSequence, 'BCSequenceCount': BCSequenceCount}) return os.path.basename(csvFile) def SimpleCsvWriter(resultDict, bcDict, workdir, indexFile, customTxt=''): indexString = os.path.basename(indexFile).split(".")[0].split("_")[1] csvFile = os.path.join(workdir, "{}_for_R_statistics{}.csv".format(indexString, customTxt)) if resultDict is None: resultDict = bcDict with open(csvFile, "wb") as handle: fieldnames = ['Barcode', 'BCSequenceCount'] writer = csv.DictWriter(handle, fieldnames=fieldnames, delimiter='\t') writer.writeheader() for barcodeID in resultDict: writer.writerow({ 'Barcode': barcodeID, 'BCSequenceCount': sum([x[1] for x in bcDict[barcodeID]])}) return csvFile
[ "csv.DictWriter", "os.path.basename" ]
[((3022, 3047), 'os.path.basename', 'os.path.basename', (['csvFile'], {}), '(csvFile)\n', (3038, 3047), False, 'import os, csv\n'), ((3932, 3957), 'os.path.basename', 'os.path.basename', (['csvFile'], {}), '(csvFile)\n', (3948, 3957), False, 'import os, csv\n'), ((617, 678), 'csv.DictWriter', 'csv.DictWriter', (['handle'], {'fieldnames': 'fieldnames', 'delimiter': '"""\t"""'}), "(handle, fieldnames=fieldnames, delimiter='\\t')\n", (631, 678), False, 'import os, csv\n'), ((3408, 3469), 'csv.DictWriter', 'csv.DictWriter', (['handle'], {'fieldnames': 'fieldnames', 'delimiter': '"""\t"""'}), "(handle, fieldnames=fieldnames, delimiter='\\t')\n", (3422, 3469), False, 'import os, csv\n'), ((4368, 4429), 'csv.DictWriter', 'csv.DictWriter', (['handle'], {'fieldnames': 'fieldnames', 'delimiter': '"""\t"""'}), "(handle, fieldnames=fieldnames, delimiter='\\t')\n", (4382, 4429), False, 'import os, csv\n'), ((230, 257), 'os.path.basename', 'os.path.basename', (['indexFile'], {}), '(indexFile)\n', (246, 257), False, 'import os, csv\n'), ((3132, 3159), 'os.path.basename', 'os.path.basename', (['indexFile'], {}), '(indexFile)\n', (3148, 3159), False, 'import os, csv\n'), ((4052, 4079), 'os.path.basename', 'os.path.basename', (['indexFile'], {}), '(indexFile)\n', (4068, 4079), False, 'import os, csv\n')]
try: from setuptools import setup except ImportError: from distutils.core import setup config = { 'description': 'Folder synchronization over (S)FTP', 'author': '<NAME>', 'url': 'https://github.com/marccarre/sftpsync', 'download_url': 'https://github.com/marccarre/sftpsync', 'author_email': '<EMAIL>', 'version': '0.1', 'install_requires': comma_separated_dependencies(), 'packages': ['sftpsync'], 'scripts': [], 'name': 'sftpsync' } def comma_separated_dependencies(exclusions=('#', 'nose', 'unittest2')): with open('requirements.txt', 'r') as f: return ','.join(dep.strip() for dep in f if len(dep.strip()) > 0 and all(not dep.startswith(e) for e in exclusions)) setup(**config)
[ "distutils.core.setup" ]
[((729, 744), 'distutils.core.setup', 'setup', ([], {}), '(**config)\n', (734, 744), False, 'from distutils.core import setup\n')]
from google.cloud import firestore import os class Firestore: def __init__(self,data:dict): self.instance_name = data['instance_name'] self.project = data['project'] self.machine_type = data['machine_type'] self.deployment_status = data['deployment_status'] self.job_status = data['job_status'] self.instance_ip = data['instance_ip'] self.deployed_on = data['deployed_on'] self.environment = data['environment'] def update_deployment(self): db = firestore.Client(self.project) update_data = { 'deployment_status': self.deployment_status, 'job_status': self.job_status, 'instance_ip': self.instance_ip, 'machine_type': self.machine_type, 'deployed_on': self.deployed_on } fb = db.collection("my-compute-firestore-table").document(self.environment).collection("compute_engine").document(self.instance_name) result = fb.update(update_data) print(result) return {'status': "firestore update successfull"} if __name__ == "__main__": project = os.getenv('PROJECT_ID') instance = os.getenv('instance_name') f = Firestore({'instance_name': instance,'machine_type':'f4-micro','instance_ip': '123','project': project,'deployment_status': 'completed','job_status': 'running','deployed_on': '123','environment': 'prod'}) print(f.update_deployment())
[ "google.cloud.firestore.Client", "os.getenv" ]
[((1198, 1221), 'os.getenv', 'os.getenv', (['"""PROJECT_ID"""'], {}), "('PROJECT_ID')\n", (1207, 1221), False, 'import os\n'), ((1237, 1263), 'os.getenv', 'os.getenv', (['"""instance_name"""'], {}), "('instance_name')\n", (1246, 1263), False, 'import os\n'), ((581, 611), 'google.cloud.firestore.Client', 'firestore.Client', (['self.project'], {}), '(self.project)\n', (597, 611), False, 'from google.cloud import firestore\n')]
import os import sys import pathlib import subprocess import pandas as pd from datetime import datetime import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt from module.neuralnetwork.MLP import MLP from module.reader.Reader import Reader def learn_using_single_series(mlp, no_of_last_samples, learning_data): for i in range(no_of_last_samples, len(learning_data) + 1): inputs = [data[0] for data in learning_data[i - no_of_last_samples:i]] \ + [data[1] for data in learning_data[i - no_of_last_samples:i]] outputs = [learning_data[i - 1][2], learning_data[i - 1][3]] mlp.learn(inputs, outputs, 0.05) def test_using_single_series(mlp, no_of_last_samples, testing_data): mlp_output = [] for i in range(no_of_last_samples, len(testing_data) + 1): inputs = [data[0] for data in testing_data[i - no_of_last_samples:i]] \ + [data[1] for data in testing_data[i - no_of_last_samples:i]] mlp_output.append(mlp.test(inputs)) return mlp_output def calculate_error(testing_data, mlp_output): error = [] for i in range(len(testing_data) - len(mlp_output), len(testing_data)): testing_data_row = testing_data[i] mlp_output_row = mlp_output[i - (len(testing_data) - len(mlp_output))] error.append((((testing_data_row[2] - mlp_output_row[0]) ** 2) + ((testing_data_row[3] - mlp_output_row[1]) ** 2)) ** 0.5) return error def calculate_distribution(testing_data, mlp_output): errors = calculate_error(testing_data, mlp_output) distribution = [] error = 0 while len(distribution) == 0 or distribution[-1] < len(errors): distribution.append(len(list(filter(lambda e: e < error, errors)))) error += 1 distribution = [x / len(errors) for x in distribution] return distribution def make_animation(testing_data, mlp_output): plt.clf() plt.plot([row[0] for row in testing_data], [row[1] for row in testing_data], "ro") plt.plot([row[2] for row in testing_data], [row[3] for row in testing_data], "go") plt.plot([row[0] for row in mlp_output], [row[1] for row in mlp_output], "bo") plt.draw() plt.pause(0.01) def main() -> None: print("Reading data...") reader = Reader() learning_data_series = reader.load_learning_data_series() testing_data = reader.load_testing_data() print("Creating list of experiments...") experiments = [] i = 1 while i < len(sys.argv): no_of_last_samples = int(sys.argv[i]) hidden_layers = [sys.argv[i + 2 + j] for j in range(int(sys.argv[i + 1]))] experiments.append([no_of_last_samples] + hidden_layers) i += len(hidden_layers) + 2 print(experiments) experiment_number = 1 for experiment in experiments: print("\nExperiment: " + str(experiment_number) + "/" + str(len(experiments))) experiment_number += 1 print("\tCreating MLP...") no_of_last_samples = experiment[0] mlp = MLP([str(no_of_last_samples * 2)] + experiment[1:] + ['2s']) print("\tTraining...") same_error_counter = 0 errors = [0.0] while same_error_counter < 10: #learn - single epoch for learning_data in learning_data_series: learn_using_single_series(mlp, no_of_last_samples, learning_data) #calculate and print error mlp_output = test_using_single_series(mlp, no_of_last_samples, testing_data) errors.append(sum(calculate_error(testing_data, mlp_output))) if abs(errors[-1] - errors[-2]) < 1: same_error_counter += 1 else: same_error_counter = 0 print("\t\t" + str(len(errors) - 1) + ": " + str(errors[-1])) #make animation (if there is only one experiment on the list) #if len(experiments) == 1: # make_animation(testing_data, mlp_output) filename = "" for i in experiment: filename += str(i) + "_" print("\tSaving graph to file...") plt.clf() plt.plot([row[0] for row in testing_data], [row[1] for row in testing_data], "ro") plt.plot([row[2] for row in testing_data], [row[3] for row in testing_data], "go") plt.plot([row[0] for row in mlp_output], [row[1] for row in mlp_output], "bo") plt.savefig(filename + "graph.jpg") print("\tSaving global errors from all iterations to file...") errors_file = open(filename + "errors", "w") errors_file.writelines([str(error) + "\n" for error in errors[1:]]) errors_file.close() print("\tSaving neurons' weights to file...") weights_file = open(filename + "weights", "w") weights_file.write(mlp.weights_to_string()) weights_file.close() print("\tCalculating cumulative distribution and saving it to file...") denormalized_testing_data = reader.denormalize_testing_data(testing_data) denormalized_mlp_output = reader.denormalize_mlp_output(mlp_output) distribution_learned = calculate_distribution(denormalized_testing_data, denormalized_mlp_output) distribution_original = calculate_distribution(denormalized_testing_data, denormalized_testing_data) plt.clf() plt.plot(range(len(distribution_learned)), distribution_learned, "ro") plt.plot(range(len(distribution_original)), distribution_original, "bo") plt.savefig(filename + "distribution_graph.jpg") pd.DataFrame({"distribution": distribution_learned}).to_excel(filename + "distribution.xlsx", index=False, header=False) display_finish() # UTIL ------------------------------------------------------------------------ # def display_finish() -> None: print("------------------------------------------------------------------------") print("FINISHED") print("------------------------------------------------------------------------") if __name__ == "__main__": #subprocess.call(["flake8", "."]) main()
[ "matplotlib.pyplot.savefig", "pandas.DataFrame", "matplotlib.use", "matplotlib.pyplot.clf", "matplotlib.pyplot.plot", "module.reader.Reader.Reader", "matplotlib.pyplot.pause", "matplotlib.pyplot.draw" ]
[((123, 144), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (137, 144), False, 'import matplotlib\n'), ((1919, 1928), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (1926, 1928), True, 'import matplotlib.pyplot as plt\n'), ((1933, 2019), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[0] for row in testing_data]', '[row[1] for row in testing_data]', '"""ro"""'], {}), "([row[0] for row in testing_data], [row[1] for row in testing_data],\n 'ro')\n", (1941, 2019), True, 'import matplotlib.pyplot as plt\n'), ((2020, 2106), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[2] for row in testing_data]', '[row[3] for row in testing_data]', '"""go"""'], {}), "([row[2] for row in testing_data], [row[3] for row in testing_data],\n 'go')\n", (2028, 2106), True, 'import matplotlib.pyplot as plt\n'), ((2107, 2185), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[0] for row in mlp_output]', '[row[1] for row in mlp_output]', '"""bo"""'], {}), "([row[0] for row in mlp_output], [row[1] for row in mlp_output], 'bo')\n", (2115, 2185), True, 'import matplotlib.pyplot as plt\n'), ((2190, 2200), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (2198, 2200), True, 'import matplotlib.pyplot as plt\n'), ((2205, 2220), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.01)'], {}), '(0.01)\n', (2214, 2220), True, 'import matplotlib.pyplot as plt\n'), ((2284, 2292), 'module.reader.Reader.Reader', 'Reader', ([], {}), '()\n', (2290, 2292), False, 'from module.reader.Reader import Reader\n'), ((4130, 4139), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4137, 4139), True, 'import matplotlib.pyplot as plt\n'), ((4148, 4234), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[0] for row in testing_data]', '[row[1] for row in testing_data]', '"""ro"""'], {}), "([row[0] for row in testing_data], [row[1] for row in testing_data],\n 'ro')\n", (4156, 4234), True, 'import matplotlib.pyplot as plt\n'), ((4239, 4325), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[2] for row in testing_data]', '[row[3] for row in testing_data]', '"""go"""'], {}), "([row[2] for row in testing_data], [row[3] for row in testing_data],\n 'go')\n", (4247, 4325), True, 'import matplotlib.pyplot as plt\n'), ((4330, 4408), 'matplotlib.pyplot.plot', 'plt.plot', (['[row[0] for row in mlp_output]', '[row[1] for row in mlp_output]', '"""bo"""'], {}), "([row[0] for row in mlp_output], [row[1] for row in mlp_output], 'bo')\n", (4338, 4408), True, 'import matplotlib.pyplot as plt\n'), ((4417, 4452), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(filename + 'graph.jpg')"], {}), "(filename + 'graph.jpg')\n", (4428, 4452), True, 'import matplotlib.pyplot as plt\n'), ((5335, 5344), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (5342, 5344), True, 'import matplotlib.pyplot as plt\n'), ((5513, 5561), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(filename + 'distribution_graph.jpg')"], {}), "(filename + 'distribution_graph.jpg')\n", (5524, 5561), True, 'import matplotlib.pyplot as plt\n'), ((5570, 5622), 'pandas.DataFrame', 'pd.DataFrame', (["{'distribution': distribution_learned}"], {}), "({'distribution': distribution_learned})\n", (5582, 5622), True, 'import pandas as pd\n')]
import inspect from numpydoc.docscrape import ClassDoc, FunctionDoc def numpydoc_type_desc(thing): if inspect.isfunction(thing) or inspect.ismethod(thing): docs = FunctionDoc(thing) elif inspect.isclass(thing): docs = ClassDoc(thing) else: raise RuntimeError("Don't know how to handle " + repr(thing)) npdoc_params = docs["Parameters"] types = [p.type for p in npdoc_params] descs = [" ".join(p.desc) for p in npdoc_params] return types, descs
[ "inspect.ismethod", "numpydoc.docscrape.ClassDoc", "numpydoc.docscrape.FunctionDoc", "inspect.isclass", "inspect.isfunction" ]
[((106, 131), 'inspect.isfunction', 'inspect.isfunction', (['thing'], {}), '(thing)\n', (124, 131), False, 'import inspect\n'), ((135, 158), 'inspect.ismethod', 'inspect.ismethod', (['thing'], {}), '(thing)\n', (151, 158), False, 'import inspect\n'), ((175, 193), 'numpydoc.docscrape.FunctionDoc', 'FunctionDoc', (['thing'], {}), '(thing)\n', (186, 193), False, 'from numpydoc.docscrape import ClassDoc, FunctionDoc\n'), ((203, 225), 'inspect.isclass', 'inspect.isclass', (['thing'], {}), '(thing)\n', (218, 225), False, 'import inspect\n'), ((242, 257), 'numpydoc.docscrape.ClassDoc', 'ClassDoc', (['thing'], {}), '(thing)\n', (250, 257), False, 'from numpydoc.docscrape import ClassDoc, FunctionDoc\n')]
import json import random from mock import Mock from hamcrest import ( assert_that, has_properties, has_entries, equal_to ) from stagecraft.apps.dashboards.models import Dashboard, Module from stagecraft.apps.dashboards.tests.factories.factories import( ModuleTypeFactory, DashboardFactory) from stagecraft.apps.datasets.tests.factories import( DataSetFactory) from ..spreadsheets import SpreadsheetMunger from ..import_dashboards import (dashboard_from_record, set_dashboard_attributes, import_dashboard, determine_modules_for_dashboard) with open('stagecraft/tools/fixtures/tx.json') as f: tx_worksheet = json.loads(f.read()) with open('stagecraft/tools/fixtures/names.json') as f: names_worksheet = json.loads(f.read()) def test_attributes_from_record(): munger = SpreadsheetMunger({ 'names_transaction_name': 11, 'names_transaction_slug': 12, 'names_service_name': 9, 'names_service_slug': 10, 'names_tx_id': 19, 'names_other_notes': 17, 'names_description': 8, }) mock_account = Mock() mock_account.open_by_key()\ .worksheet().get_all_values.return_value = tx_worksheet tx = munger.load_tx_worksheet(mock_account) mock_account = Mock() mock_account.open_by_key()\ .worksheet().get_all_values.return_value = names_worksheet names = munger.load_names_worksheet(mock_account) record = munger.merge(tx, names)[0] dashboard = Dashboard() dashboard = set_dashboard_attributes(dashboard, record, False) assert_that(dashboard, has_properties({ 'title': record['name'], 'description': record['description'], 'costs': record['costs'], 'other_notes': record['other_notes'], 'dashboard_type': 'high-volume-transaction', 'customer_type': record['customer_type'], 'business_model': record['business_model'], 'published': False })) def test_truncated_slug_is_replaced(): munger = SpreadsheetMunger({ 'names_transaction_name': 11, 'names_transaction_slug': 12, 'names_service_name': 9, 'names_service_slug': 10, 'names_tx_id': 19, 'names_other_notes': 17, 'names_description': 8, }) mock_account = Mock() mock_account.open_by_key() \ .worksheet().get_all_values.return_value = tx_worksheet tx = munger.load_tx_worksheet(mock_account) mock_account = Mock() mock_account.open_by_key() \ .worksheet().get_all_values.return_value = names_worksheet names = munger.load_names_worksheet(mock_account) record = munger.merge(tx, names)[0] truncated_slug = 'truncated-{}'.format(random.randrange(1e7)) record['tx_truncated'] = truncated_slug dashboard = DashboardFactory(slug=truncated_slug) dashboard = dashboard_from_record(record) assert_that(dashboard, has_properties({ 'slug': record['tx_id'] })) def test_truncated_slug_is_replaced_in_modules(): DataSetFactory( data_group__name='transactional-services', data_type__name='summaries') ModuleTypeFactory(name='kpi') ModuleTypeFactory(name='bar_chart_with_number') munger = SpreadsheetMunger({ 'names_transaction_name': 11, 'names_transaction_slug': 12, 'names_service_name': 9, 'names_service_slug': 10, 'names_tx_id': 19, 'names_other_notes': 17, 'names_description': 8, }) mock_account = Mock() mock_account.open_by_key() \ .worksheet().get_all_values.return_value = tx_worksheet tx = munger.load_tx_worksheet(mock_account) mock_account = Mock() mock_account.open_by_key() \ .worksheet().get_all_values.return_value = names_worksheet names = munger.load_names_worksheet(mock_account) record = munger.merge(tx, names)[0] truncated_slug = 'truncated-{}'.format(random.randrange(1e7)) full_tx_id = record['tx_id'] record['tx_id'] = truncated_slug DashboardFactory(slug=truncated_slug) summaries = [ { 'service_id': record['tx_id'], 'type': 'quarterly', 'cost_per_transaction': 0, 'digital_takeup': 0 }, { 'service_id': record['tx_id'], 'type': 'seasonally-adjusted', 'total_cost': 0 }, { 'service_id': full_tx_id, 'type': 'quarterly', 'cost_per_transaction': 0, 'digital_takeup': 0 }, { 'service_id': full_tx_id, 'type': 'seasonally-adjusted', 'total_cost': 0 } ] import_dashboard(record, summaries, dry_run=False) initial_modules = Module.objects.all() service_id_filters = set( [module.query_parameters['filter_by'][0] for module in initial_modules]) assert_that(len(service_id_filters), equal_to(1)) assert_that( service_id_filters.pop(), equal_to('service_id:{}'.format(truncated_slug))) record['tx_id'] = full_tx_id record['tx_truncated'] = truncated_slug import_dashboard(record, summaries, dry_run=False) new_modules = Module.objects.all() assert_that(len(new_modules), equal_to(len(initial_modules))) service_id_filters = set( [module.query_parameters['filter_by'][0] for module in new_modules]) assert_that(len(service_id_filters), equal_to(1)) assert_that( service_id_filters.pop(), equal_to('service_id:{}'.format(full_tx_id))) def test_published_unmodified(): """ Unless publish is True, dashboard.published should not be modified if already set. """ record = { 'name': '<NAME>', 'tx_id': 'test-dashboard', 'department': { 'abbr': 'DEPT', 'name': 'Dept', 'slug': 'dept' }, 'high_volume': False } dashboard = Dashboard() dashboard.published = True dashboard = set_dashboard_attributes(dashboard, record, False) assert_that(dashboard, has_properties({ 'title': record['name'], 'published': True })) def test_unset_published_modified(): """ If published is not set, it should be set to False unless the 'publish' param is True. """ record = { 'name': '<NAME>', 'tx_id': 'test-dashboard', 'department': { 'abbr': 'DEPT', 'name': 'Dept', 'slug': 'dept' }, 'high_volume': False } dashboard = Dashboard() dashboard = set_dashboard_attributes(dashboard, record, False) assert_that(dashboard, has_properties({ 'title': record['name'], 'published': False })) def test_update_published(): """ If published is set, it should be set to True if the 'publish' param is True. """ record = { 'name': '<NAME>', 'tx_id': 'test-dashboard', 'department': { 'abbr': 'DEPT', 'name': 'Dept', 'slug': 'dept' }, 'high_volume': False } dashboard = Dashboard() dashboard = set_dashboard_attributes(dashboard, record, True) assert_that(dashboard, has_properties({ 'title': record['name'], 'published': True })) def test_compulsory_modules(): """ These modules should always be present, regardless of the data available. """ summaries = [] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, })) def test_digital_takeup_present_seasonal(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'digital_takeup': 240542, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'digital_takeup': True, })) def test_digital_takeup_present_quarterly(): summaries = [ { 'service_id': 'tx_id', 'type': 'quarterly', 'digital_takeup': 240542, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'digital_takeup': True, })) def test_total_cost_present(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'total_cost': 240542, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'total_cost': True, })) def test_cost_per_transaction_present(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'cost_per_transaction': 240542, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'cost_per_transaction': True, })) def test_digital_takeup_present_seasonal_when_0(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'digital_takeup': 0, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'digital_takeup': True, })) def test_digital_takeup_present_quarterly_when_0(): summaries = [ { 'service_id': 'tx_id', 'type': 'quarterly', 'digital_takeup': 0, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'digital_takeup': True, })) def test_total_cost_present_when_0(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'total_cost': 0, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'total_cost': True, })) def test_cost_per_transaction_present_when_0(): summaries = [ { 'service_id': 'tx_id', 'type': 'seasonally-adjusted', 'cost_per_transaction': 0, } ] module_types = determine_modules_for_dashboard(summaries, 'tx_id') assert_that(module_types, has_entries({ 'transactions_per_year': True, 'transactions_per_quarter': True, 'cost_per_transaction': True, }))
[ "stagecraft.apps.dashboards.models.Dashboard", "random.randrange", "mock.Mock", "hamcrest.has_entries", "stagecraft.apps.datasets.tests.factories.DataSetFactory", "stagecraft.apps.dashboards.tests.factories.factories.DashboardFactory", "hamcrest.has_properties", "stagecraft.apps.dashboards.tests.factories.factories.ModuleTypeFactory", "stagecraft.apps.dashboards.models.Module.objects.all", "hamcrest.equal_to" ]
[((1185, 1191), 'mock.Mock', 'Mock', ([], {}), '()\n', (1189, 1191), False, 'from mock import Mock\n'), ((1356, 1362), 'mock.Mock', 'Mock', ([], {}), '()\n', (1360, 1362), False, 'from mock import Mock\n'), ((1574, 1585), 'stagecraft.apps.dashboards.models.Dashboard', 'Dashboard', ([], {}), '()\n', (1583, 1585), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((2384, 2390), 'mock.Mock', 'Mock', ([], {}), '()\n', (2388, 2390), False, 'from mock import Mock\n'), ((2556, 2562), 'mock.Mock', 'Mock', ([], {}), '()\n', (2560, 2562), False, 'from mock import Mock\n'), ((2885, 2922), 'stagecraft.apps.dashboards.tests.factories.factories.DashboardFactory', 'DashboardFactory', ([], {'slug': 'truncated_slug'}), '(slug=truncated_slug)\n', (2901, 2922), False, 'from stagecraft.apps.dashboards.tests.factories.factories import ModuleTypeFactory, DashboardFactory\n'), ((3110, 3201), 'stagecraft.apps.datasets.tests.factories.DataSetFactory', 'DataSetFactory', ([], {'data_group__name': '"""transactional-services"""', 'data_type__name': '"""summaries"""'}), "(data_group__name='transactional-services', data_type__name=\n 'summaries')\n", (3124, 3201), False, 'from stagecraft.apps.datasets.tests.factories import DataSetFactory\n'), ((3218, 3247), 'stagecraft.apps.dashboards.tests.factories.factories.ModuleTypeFactory', 'ModuleTypeFactory', ([], {'name': '"""kpi"""'}), "(name='kpi')\n", (3235, 3247), False, 'from stagecraft.apps.dashboards.tests.factories.factories import ModuleTypeFactory, DashboardFactory\n'), ((3252, 3299), 'stagecraft.apps.dashboards.tests.factories.factories.ModuleTypeFactory', 'ModuleTypeFactory', ([], {'name': '"""bar_chart_with_number"""'}), "(name='bar_chart_with_number')\n", (3269, 3299), False, 'from stagecraft.apps.dashboards.tests.factories.factories import ModuleTypeFactory, DashboardFactory\n'), ((3596, 3602), 'mock.Mock', 'Mock', ([], {}), '()\n', (3600, 3602), False, 'from mock import Mock\n'), ((3768, 3774), 'mock.Mock', 'Mock', ([], {}), '()\n', (3772, 3774), False, 'from mock import Mock\n'), ((4111, 4148), 'stagecraft.apps.dashboards.tests.factories.factories.DashboardFactory', 'DashboardFactory', ([], {'slug': 'truncated_slug'}), '(slug=truncated_slug)\n', (4127, 4148), False, 'from stagecraft.apps.dashboards.tests.factories.factories import ModuleTypeFactory, DashboardFactory\n'), ((4845, 4865), 'stagecraft.apps.dashboards.models.Module.objects.all', 'Module.objects.all', ([], {}), '()\n', (4863, 4865), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((5301, 5321), 'stagecraft.apps.dashboards.models.Module.objects.all', 'Module.objects.all', ([], {}), '()\n', (5319, 5321), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((6052, 6063), 'stagecraft.apps.dashboards.models.Dashboard', 'Dashboard', ([], {}), '()\n', (6061, 6063), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((6670, 6681), 'stagecraft.apps.dashboards.models.Dashboard', 'Dashboard', ([], {}), '()\n', (6679, 6681), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((7241, 7252), 'stagecraft.apps.dashboards.models.Dashboard', 'Dashboard', ([], {}), '()\n', (7250, 7252), False, 'from stagecraft.apps.dashboards.models import Dashboard, Module\n'), ((1681, 1994), 'hamcrest.has_properties', 'has_properties', (["{'title': record['name'], 'description': record['description'], 'costs':\n record['costs'], 'other_notes': record['other_notes'], 'dashboard_type':\n 'high-volume-transaction', 'customer_type': record['customer_type'],\n 'business_model': record['business_model'], 'published': False}"], {}), "({'title': record['name'], 'description': record[\n 'description'], 'costs': record['costs'], 'other_notes': record[\n 'other_notes'], 'dashboard_type': 'high-volume-transaction',\n 'customer_type': record['customer_type'], 'business_model': record[\n 'business_model'], 'published': False})\n", (1695, 1994), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((2801, 2829), 'random.randrange', 'random.randrange', (['(10000000.0)'], {}), '(10000000.0)\n', (2817, 2829), False, 'import random\n'), ((2997, 3038), 'hamcrest.has_properties', 'has_properties', (["{'slug': record['tx_id']}"], {}), "({'slug': record['tx_id']})\n", (3011, 3038), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((4013, 4041), 'random.randrange', 'random.randrange', (['(10000000.0)'], {}), '(10000000.0)\n', (4029, 4041), False, 'import random\n'), ((5027, 5038), 'hamcrest.equal_to', 'equal_to', (['(1)'], {}), '(1)\n', (5035, 5038), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((5546, 5557), 'hamcrest.equal_to', 'equal_to', (['(1)'], {}), '(1)\n', (5554, 5557), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((6190, 6250), 'hamcrest.has_properties', 'has_properties', (["{'title': record['name'], 'published': True}"], {}), "({'title': record['name'], 'published': True})\n", (6204, 6250), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((6777, 6838), 'hamcrest.has_properties', 'has_properties', (["{'title': record['name'], 'published': False}"], {}), "({'title': record['name'], 'published': False})\n", (6791, 6838), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((7347, 7407), 'hamcrest.has_properties', 'has_properties', (["{'title': record['name'], 'published': True}"], {}), "({'title': record['name'], 'published': True})\n", (7361, 7407), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((7680, 7758), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': True})\n", (7691, 7758), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((8091, 8198), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'digital_takeup': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'digital_takeup': True})\n", (8102, 8198), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((8525, 8632), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'digital_takeup': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'digital_takeup': True})\n", (8536, 8632), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((8951, 9054), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'total_cost': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'total_cost': True})\n", (8962, 9054), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((9393, 9506), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'cost_per_transaction': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'cost_per_transaction': True})\n", (9404, 9506), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((9844, 9951), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'digital_takeup': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'digital_takeup': True})\n", (9855, 9951), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((10280, 10387), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'digital_takeup': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'digital_takeup': True})\n", (10291, 10387), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((10708, 10811), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'total_cost': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'total_cost': True})\n", (10719, 10811), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n'), ((11152, 11265), 'hamcrest.has_entries', 'has_entries', (["{'transactions_per_year': True, 'transactions_per_quarter': True,\n 'cost_per_transaction': True}"], {}), "({'transactions_per_year': True, 'transactions_per_quarter': \n True, 'cost_per_transaction': True})\n", (11163, 11265), False, 'from hamcrest import assert_that, has_properties, has_entries, equal_to\n')]
"""Tests for seq_io module. """ from collections import OrderedDict import logging import tempfile from os import unlink import unittest from adapt.utils import seq_io __author__ = '<NAME> <<EMAIL>>' class TestFastaRead(unittest.TestCase): """Tests reading a fasta file. """ def setUp(self): # Disable logging logging.disable(logging.INFO) # Write the temporary fasta file self.fasta = tempfile.NamedTemporaryFile(mode='w', delete=False) self.fasta.write(">genome_1\n") self.fasta.write("ATACG\n") self.fasta.write("TATGC\n") self.fasta.write(">genome_2\n") self.fasta.write("ATCG\n") self.fasta.write("TT\n") self.fasta.write("Gg\n") self.fasta.write("\n") self.fasta.write(">genome_3\n") self.fasta.write("AAA\n") self.fasta.write("CCC\n") self.fasta.write("\n") self.fasta.write("\n") self.fasta.write(">genome_4\n") self.fasta.write("AtA\n") self.fasta.write("CGC\n") self.fasta.write("\n") self.fasta.write("\n") self.fasta.write("\n") self.fasta.write(">genome_5\n") self.fasta.write("AGGA\n") self.fasta.write("CAAT\n") self.fasta.write("\n") self.fasta.write("\n") # Closes the file so that it can be reopened on Windows self.fasta.close() self.expected = OrderedDict() self.expected["genome_1"] = "ATACGTATGC" self.expected["genome_2"] = "ATCGTTGG" self.expected["genome_3"] = "AAACCC" self.expected["genome_4"] = "ATACGC" self.expected["genome_5"] = "AGGACAAT" def test_read(self): seqs = seq_io.read_fasta(self.fasta.name, make_uppercase=True) self.assertEqual(seqs, self.expected) def tearDown(self): # Delete temporary file unlink(self.fasta.name) # Re-enable logging logging.disable(logging.NOTSET) class TestFastaWrite(unittest.TestCase): """Tests writing and reading a fasta file. """ def setUp(self): # Disable logging logging.disable(logging.INFO) # Create a temporary fasta file self.fasta = tempfile.NamedTemporaryFile(mode='w', delete=False) # Closes the file so that it can be reopened on Windows self.fasta.close() self.seqs = OrderedDict() self.seqs["genome_1"] = "ATACGTATGC" self.seqs["genome_2"] = "ATCGTTGG" self.seqs["genome_3"] = "AAACCC" self.seqs["genome_4"] = "ATACGC" self.seqs["genome_5"] = "AGGACAAT" def test_write_and_read(self): seq_io.write_fasta(self.seqs, self.fasta.name) seqs_read = seq_io.read_fasta(self.fasta.name, make_uppercase=True) self.assertEqual(self.seqs, seqs_read) def tearDown(self): # Delete temporary file unlink(self.fasta.name) # Re-enable logging logging.disable(logging.NOTSET)
[ "collections.OrderedDict", "adapt.utils.seq_io.write_fasta", "adapt.utils.seq_io.read_fasta", "os.unlink", "tempfile.NamedTemporaryFile", "logging.disable" ]
[((344, 373), 'logging.disable', 'logging.disable', (['logging.INFO'], {}), '(logging.INFO)\n', (359, 373), False, 'import logging\n'), ((437, 488), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'mode': '"""w"""', 'delete': '(False)'}), "(mode='w', delete=False)\n", (464, 488), False, 'import tempfile\n'), ((1432, 1445), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1443, 1445), False, 'from collections import OrderedDict\n'), ((1720, 1775), 'adapt.utils.seq_io.read_fasta', 'seq_io.read_fasta', (['self.fasta.name'], {'make_uppercase': '(True)'}), '(self.fasta.name, make_uppercase=True)\n', (1737, 1775), False, 'from adapt.utils import seq_io\n'), ((1887, 1910), 'os.unlink', 'unlink', (['self.fasta.name'], {}), '(self.fasta.name)\n', (1893, 1910), False, 'from os import unlink\n'), ((1948, 1979), 'logging.disable', 'logging.disable', (['logging.NOTSET'], {}), '(logging.NOTSET)\n', (1963, 1979), False, 'import logging\n'), ((2134, 2163), 'logging.disable', 'logging.disable', (['logging.INFO'], {}), '(logging.INFO)\n', (2149, 2163), False, 'import logging\n'), ((2226, 2277), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'mode': '"""w"""', 'delete': '(False)'}), "(mode='w', delete=False)\n", (2253, 2277), False, 'import tempfile\n'), ((2390, 2403), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2401, 2403), False, 'from collections import OrderedDict\n'), ((2661, 2707), 'adapt.utils.seq_io.write_fasta', 'seq_io.write_fasta', (['self.seqs', 'self.fasta.name'], {}), '(self.seqs, self.fasta.name)\n', (2679, 2707), False, 'from adapt.utils import seq_io\n'), ((2728, 2783), 'adapt.utils.seq_io.read_fasta', 'seq_io.read_fasta', (['self.fasta.name'], {'make_uppercase': '(True)'}), '(self.fasta.name, make_uppercase=True)\n', (2745, 2783), False, 'from adapt.utils import seq_io\n'), ((2896, 2919), 'os.unlink', 'unlink', (['self.fasta.name'], {}), '(self.fasta.name)\n', (2902, 2919), False, 'from os import unlink\n'), ((2957, 2988), 'logging.disable', 'logging.disable', (['logging.NOTSET'], {}), '(logging.NOTSET)\n', (2972, 2988), False, 'import logging\n')]
from setuptools import setup, find_packages import tensorhive import os this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='tensorhive', version=tensorhive.__version__, license='Apache License 2.0', packages=find_packages(), include_package_data=True, entry_points={ 'console_scripts': [ 'tensorhive = tensorhive.__main__:main' ], }, description='A user-friendly GPU management tool for distributed machine learning workloads', long_description=long_description, long_description_content_type='text/markdown', author='<NAME>, <NAME>, <NAME>', author_email='<EMAIL>', url='https://github.com/roscisz/TensorHive', download_url='https://github.com/roscisz/TensorHive/archive/{}.tar.gz'.format(tensorhive.__version__), keywords='gpu reservation calendar monitoring machine learning distributed tensorflow pytorch', install_requires=[ 'alembic==1.0.3', 'bcrypt==3.1.7', 'certifi==2020.12.5', 'cffi==1.14.5', 'chardet==4.0.0', 'Click==7.0', 'clickclick==20.10.2', 'coloredlogs==10.0', 'connexion==2.3.0', 'cryptography==3.2.1', 'Flask==1.1.4', 'Flask-Cors==3.0.7', 'Flask-JWT-Extended==3.13.1', 'gevent==21.1.2', 'greenlet==1.1.0', 'gunicorn==19.9.0', 'humanfriendly==9.1', 'idna==2.10', 'inflection==0.5.1', 'itsdangerous==1.1.0', 'Jinja2==2.11.3', 'jsonschema==2.6.0', 'Mako==1.1.4', 'MarkupSafe==1.1.1', 'openapi-spec-validator==0.2.9', 'paramiko==2.7.2', 'parallel-ssh==1.9.1', 'passlib==1.7.1', 'pycparser==2.20', 'PyJWT==1.7.1', 'PyNaCl==1.4.0', 'python-dateutil==2.8.1', 'python-editor==1.0.4', 'python-usernames==0.2.3', 'PyYAML==5.3.1', 'requests==2.25.1', 'Safe==0.4', 'six==1.16.0', 'SQLAlchemy==1.3.0', 'SQLAlchemy-Utils==0.33.8', 'ssh2-python==0.26.0', 'stringcase==1.2.0', 'swagger_ui_bundle==0.0.8', 'urllib3==1.26.4', 'Werkzeug==0.16.1', 'zope.event==4.5.0', 'zope.interface==5.4.0', ], zip_safe=False )
[ "os.path.dirname", "setuptools.find_packages", "os.path.join" ]
[((106, 131), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (121, 131), False, 'import os\n'), ((143, 184), 'os.path.join', 'os.path.join', (['this_directory', '"""README.md"""'], {}), "(this_directory, 'README.md')\n", (155, 184), False, 'import os\n'), ((357, 372), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (370, 372), False, 'from setuptools import setup, find_packages\n')]
import copy import functools import logging import os from distutils.util import strtobool from typing import Any, Callable, Dict from aws_xray_sdk.core import models, patch_all, xray_recorder is_cold_start = True logger = logging.getLogger(__name__) class Tracer: """Tracer using AWS-XRay to provide decorators with known defaults for Lambda functions When running locally, it detects whether it's running via SAM CLI, and if it is it returns dummy segments/subsegments instead. By default, it patches all available libraries supported by X-Ray SDK. Patching is automatically disabled when running locally via SAM CLI or by any other means. \n Ref: https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference/thirdparty.html Tracer keeps a copy of its configuration as it can be instantiated more than once. This is useful when you are using your own middlewares and want to utilize an existing Tracer. Make sure to set `auto_patch=False` in subsequent Tracer instances to avoid double patching. Environment variables --------------------- POWERTOOLS_TRACE_DISABLED : str disable tracer (e.g. `"true", "True", "TRUE"`) POWERTOOLS_SERVICE_NAME : str service name Parameters ---------- service: str Service name that will be appended in all tracing metadata auto_patch: bool Patch existing imported modules during initialization, by default True disabled: bool Flag to explicitly disable tracing, useful when running/testing locally. `Env POWERTOOLS_TRACE_DISABLED="true"` Example ------- **A Lambda function using Tracer** from aws_lambda_powertools.tracing import Tracer tracer = Tracer(service="greeting") @tracer.capture_method def greeting(name: str) -> Dict: return { "name": name } @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> Dict: print("Received event from Lambda...") response = greeting(name="Heitor") return response **Booking Lambda function using Tracer that adds additional annotation/metadata** from aws_lambda_powertools.tracing import Tracer tracer = Tracer(service="booking") @tracer.capture_method def confirm_booking(booking_id: str) -> Dict: resp = add_confirmation(booking_id) tracer.put_annotation("BookingConfirmation", resp['requestId']) tracer.put_metadata("Booking confirmation", resp) return resp @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> Dict: print("Received event from Lambda...") response = greeting(name="Heitor") return response **A Lambda function using service name via POWERTOOLS_SERVICE_NAME** export POWERTOOLS_SERVICE_NAME="booking" from aws_lambda_powertools.tracing import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> Dict: print("Received event from Lambda...") response = greeting(name="Lessa") return response **Reuse an existing instance of Tracer anywhere in the code** # lambda_handler.py from aws_lambda_powertools.tracing import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> Dict: ... # utils.py from aws_lambda_powertools.tracing import Tracer tracer = Tracer() ... Returns ------- Tracer Tracer instance with imported modules patched Limitations ----------- * Async handler and methods not supported """ _default_config = {"service": "service_undefined", "disabled": False, "provider": xray_recorder, "auto_patch": True} _config = copy.copy(_default_config) def __init__( self, service: str = None, disabled: bool = None, provider: xray_recorder = None, auto_patch: bool = None ): self.__build_config(service=service, disabled=disabled, provider=provider, auto_patch=auto_patch) self.provider = self._config["provider"] self.disabled = self._config["disabled"] self.service = self._config["service"] self.auto_patch = self._config["auto_patch"] if self.disabled: self.__disable_tracing_provider() if self.auto_patch: self.patch() def capture_lambda_handler(self, lambda_handler: Callable[[Dict, Any], Any] = None): """Decorator to create subsegment for lambda handlers As Lambda follows (event, context) signature we can remove some of the boilerplate and also capture any exception any Lambda function throws or its response as metadata Example ------- **Lambda function using capture_lambda_handler decorator** tracer = Tracer(service="payment") @tracer.capture_lambda_handler def handler(event, context) Parameters ---------- method : Callable Method to annotate on Raises ------ err Exception raised by method """ @functools.wraps(lambda_handler) def decorate(event, context): self.create_subsegment(name=f"## {lambda_handler.__name__}") try: logger.debug("Calling lambda handler") response = lambda_handler(event, context) logger.debug("Received lambda handler response successfully") logger.debug(response) if response: self.put_metadata("lambda handler response", response) except Exception as err: logger.exception("Exception received from lambda handler", exc_info=True) self.put_metadata(f"{self.service}_error", err) raise finally: self.end_subsegment() return response return decorate def capture_method(self, method: Callable = None): """Decorator to create subsegment for arbitrary functions It also captures both response and exceptions as metadata and creates a subsegment named `## <method_name>` Example ------- **Custom function using capture_method decorator** tracer = Tracer(service="payment") @tracer.capture_method def some_function() Parameters ---------- method : Callable Method to annotate on Raises ------ err Exception raised by method """ @functools.wraps(method) def decorate(*args, **kwargs): method_name = f"{method.__name__}" self.create_subsegment(name=f"## {method_name}") try: logger.debug(f"Calling method: {method_name}") response = method(*args, **kwargs) logger.debug(f"Received {method_name} response successfully") logger.debug(response) if response is not None: self.put_metadata(f"{method_name} response", response) except Exception as err: logger.exception(f"Exception received from '{method_name}'' method", exc_info=True) self.put_metadata(f"{method_name} error", err) raise finally: self.end_subsegment() return response return decorate def put_annotation(self, key: str, value: Any): """Adds annotation to existing segment or subsegment Example ------- Custom annotation for a pseudo service named payment tracer = Tracer(service="payment") tracer.put_annotation("PaymentStatus", "CONFIRMED") Parameters ---------- key : str Annotation key (e.g. PaymentStatus) value : Any Value for annotation (e.g. "CONFIRMED") """ # Will no longer be needed once #155 is resolved # https://github.com/aws/aws-xray-sdk-python/issues/155 if self.disabled: return logger.debug(f"Annotating on key '{key}'' with '{value}''") self.provider.put_annotation(key=key, value=value) def put_metadata(self, key: str, value: object, namespace: str = None): """Adds metadata to existing segment or subsegment Parameters ---------- key : str Metadata key value : object Value for metadata namespace : str, optional Namespace that metadata will lie under, by default None Example ------- Custom metadata for a pseudo service named payment tracer = Tracer(service="payment") response = collect_payment() tracer.put_metadata("Payment collection", response) """ # Will no longer be needed once #155 is resolved # https://github.com/aws/aws-xray-sdk-python/issues/155 if self.disabled: return _namespace = namespace or self.service logger.debug(f"Adding metadata on key '{key}'' with '{value}'' at namespace '{namespace}''") self.provider.put_metadata(key=key, value=value, namespace=_namespace) def create_subsegment(self, name: str) -> models.subsegment: """Creates subsegment or a dummy segment plus subsegment if tracing is disabled It also assumes Tracer would be instantiated statically so that cold starts are captured. Parameters ---------- name : str Subsegment name Example ------- Creates a genuine subsegment self.create_subsegment(name="a meaningful name") Returns ------- models.subsegment AWS X-Ray Subsegment """ # Will no longer be needed once #155 is resolved # https://github.com/aws/aws-xray-sdk-python/issues/155 subsegment = None if self.disabled: logger.debug("Tracing has been disabled, return dummy subsegment instead") segment = models.dummy_entities.DummySegment() subsegment = models.dummy_entities.DummySubsegment(segment) else: subsegment = self.provider.begin_subsegment(name=name) global is_cold_start if is_cold_start: logger.debug("Annotating cold start") subsegment.put_annotation("ColdStart", True) is_cold_start = False return subsegment def end_subsegment(self): """Ends an existing subsegment Parameters ---------- subsegment : models.subsegment Subsegment previously created """ if self.disabled: logger.debug("Tracing has been disabled, return instead") return self.provider.end_subsegment() def patch(self): """Patch modules for instrumentation""" logger.debug("Patching modules...") if self.disabled: logger.debug("Tracing has been disabled, aborting patch") return patch_all() # pragma: no cover def __disable_tracing_provider(self): """Forcefully disables tracing and patching""" from aws_xray_sdk import global_sdk_config global_sdk_config.set_sdk_enabled(False) def __is_trace_disabled(self) -> bool: """Detects whether trace has been disabled Tracing is automatically disabled in the following conditions: 1. Explicitly disabled via `TRACE_DISABLED` environment variable 2. Running in Lambda Emulators, or locally where X-Ray Daemon will not be listening 3. Explicitly disabled via constructor e.g `Tracer(disabled=True)` Returns ------- bool """ logger.debug("Verifying whether Tracing has been disabled") is_lambda_sam_cli = os.getenv("AWS_SAM_LOCAL") env_option = str(os.getenv("POWERTOOLS_TRACE_DISABLED", "false")) disabled_env = strtobool(env_option) if disabled_env: logger.debug("Tracing has been disabled via env var POWERTOOLS_TRACE_DISABLED") return disabled_env if is_lambda_sam_cli: logger.debug("Running under SAM CLI env or not in Lambda env; disabling Tracing") return True return False def __build_config( self, service: str = None, disabled: bool = None, provider: xray_recorder = None, auto_patch: bool = None ): """ Populates Tracer config for new and existing initializations """ is_disabled = disabled if disabled is not None else self.__is_trace_disabled() is_service = service if service is not None else os.getenv("POWERTOOLS_SERVICE_NAME") self._config["provider"] = provider if provider is not None else self._config["provider"] self._config["auto_patch"] = auto_patch if auto_patch is not None else self._config["auto_patch"] self._config["service"] = is_service if is_service else self._config["service"] self._config["disabled"] = is_disabled if is_disabled else self._config["disabled"] @classmethod def _reset_config(cls): cls._config = copy.copy(cls._default_config)
[ "logging.getLogger", "distutils.util.strtobool", "aws_xray_sdk.core.patch_all", "os.getenv", "aws_xray_sdk.core.models.dummy_entities.DummySegment", "functools.wraps", "aws_xray_sdk.global_sdk_config.set_sdk_enabled", "copy.copy", "aws_xray_sdk.core.models.dummy_entities.DummySubsegment" ]
[((225, 252), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (242, 252), False, 'import logging\n'), ((4003, 4029), 'copy.copy', 'copy.copy', (['_default_config'], {}), '(_default_config)\n', (4012, 4029), False, 'import copy\n'), ((5373, 5404), 'functools.wraps', 'functools.wraps', (['lambda_handler'], {}), '(lambda_handler)\n', (5388, 5404), False, 'import functools\n'), ((6851, 6874), 'functools.wraps', 'functools.wraps', (['method'], {}), '(method)\n', (6866, 6874), False, 'import functools\n'), ((11437, 11448), 'aws_xray_sdk.core.patch_all', 'patch_all', ([], {}), '()\n', (11446, 11448), False, 'from aws_xray_sdk.core import models, patch_all, xray_recorder\n'), ((11627, 11667), 'aws_xray_sdk.global_sdk_config.set_sdk_enabled', 'global_sdk_config.set_sdk_enabled', (['(False)'], {}), '(False)\n', (11660, 11667), False, 'from aws_xray_sdk import global_sdk_config\n'), ((12230, 12256), 'os.getenv', 'os.getenv', (['"""AWS_SAM_LOCAL"""'], {}), "('AWS_SAM_LOCAL')\n", (12239, 12256), False, 'import os\n'), ((12354, 12375), 'distutils.util.strtobool', 'strtobool', (['env_option'], {}), '(env_option)\n', (12363, 12375), False, 'from distutils.util import strtobool\n'), ((13554, 13584), 'copy.copy', 'copy.copy', (['cls._default_config'], {}), '(cls._default_config)\n', (13563, 13584), False, 'import copy\n'), ((10408, 10444), 'aws_xray_sdk.core.models.dummy_entities.DummySegment', 'models.dummy_entities.DummySegment', ([], {}), '()\n', (10442, 10444), False, 'from aws_xray_sdk.core import models, patch_all, xray_recorder\n'), ((10470, 10516), 'aws_xray_sdk.core.models.dummy_entities.DummySubsegment', 'models.dummy_entities.DummySubsegment', (['segment'], {}), '(segment)\n', (10507, 10516), False, 'from aws_xray_sdk.core import models, patch_all, xray_recorder\n'), ((12282, 12329), 'os.getenv', 'os.getenv', (['"""POWERTOOLS_TRACE_DISABLED"""', '"""false"""'], {}), "('POWERTOOLS_TRACE_DISABLED', 'false')\n", (12291, 12329), False, 'import os\n'), ((13064, 13100), 'os.getenv', 'os.getenv', (['"""POWERTOOLS_SERVICE_NAME"""'], {}), "('POWERTOOLS_SERVICE_NAME')\n", (13073, 13100), False, 'import os\n')]
import pacmap import numpy as np import matplotlib.pyplot as plt # loading preprocessed coil_20 dataset # you can change it with any dataset that is in the ndarray format, with the shape (N, D) # where N is the number of samples and D is the dimension of each sample X = np.load("../data/coil_20.npy", allow_pickle=True) X = X.reshape(X.shape[0], -1) y = np.load("./data/coil_20_labels.npy", allow_pickle=True) # Initialize the pacmap instance # Setting n_neighbors to "None" leads to an automatic parameter selection # choice shown in "parameter" section of the README file. # Notice that from v0.6.0 on, we rename the n_dims parameter to n_components. embedding = pacmap.PaCMAP(n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0) # fit the data (The index of transformed data corresponds to the index of the original data) X_transformed = embedding.fit_transform(X, init="pca") # visualize the embedding fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6)
[ "numpy.load", "matplotlib.pyplot.subplots", "pacmap.PaCMAP" ]
[((272, 321), 'numpy.load', 'np.load', (['"""../data/coil_20.npy"""'], {'allow_pickle': '(True)'}), "('../data/coil_20.npy', allow_pickle=True)\n", (279, 321), True, 'import numpy as np\n'), ((356, 411), 'numpy.load', 'np.load', (['"""./data/coil_20_labels.npy"""'], {'allow_pickle': '(True)'}), "('./data/coil_20_labels.npy', allow_pickle=True)\n", (363, 411), True, 'import numpy as np\n'), ((669, 744), 'pacmap.PaCMAP', 'pacmap.PaCMAP', ([], {'n_components': '(2)', 'n_neighbors': 'None', 'MN_ratio': '(0.5)', 'FP_ratio': '(2.0)'}), '(n_components=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0)\n', (682, 744), False, 'import pacmap\n'), ((932, 966), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(6, 6)'}), '(1, 1, figsize=(6, 6))\n', (944, 966), True, 'import matplotlib.pyplot as plt\n')]
from django.db import models # Create your models here. class Country(models.Model): country_name = models.CharField(max_length=50, blank=False) country_short_name = models.CharField(max_length=4, blank=False) country_img_url = models.CharField(max_length=120, blank=False) def __str__(self): return self.country_short_name class Sex(models.Model): sex_shortcut = models.CharField(max_length=4, blank=False) sex_full = models.CharField(max_length=40, blank=False) def __str__(self): return self.sex_shortcut class UserModel(models.Model): username = models.CharField(max_length=30, blank=False) email = models.EmailField(max_length=100) password = models.CharField(max_length=100, blank=False) name = models.CharField(max_length=30, blank=False) secondname = models.CharField(max_length=30, blank=False) surename = models.CharField(max_length=50, blank=False) country = models.ForeignKey(Country, related_name='country', on_delete=models.CASCADE) sex = models.ForeignKey(Sex, related_name='sex', on_delete=models.CASCADE) street = models.CharField(max_length=50, blank=False) postal_code = models.CharField(max_length=15, blank=False) birth_date = models.DateField() def __str__(self): return self.username
[ "django.db.models.EmailField", "django.db.models.DateField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((105, 149), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'blank': '(False)'}), '(max_length=50, blank=False)\n', (121, 149), False, 'from django.db import models\n'), ((175, 218), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(4)', 'blank': '(False)'}), '(max_length=4, blank=False)\n', (191, 218), False, 'from django.db import models\n'), ((241, 286), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(120)', 'blank': '(False)'}), '(max_length=120, blank=False)\n', (257, 286), False, 'from django.db import models\n'), ((395, 438), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(4)', 'blank': '(False)'}), '(max_length=4, blank=False)\n', (411, 438), False, 'from django.db import models\n'), ((454, 498), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)', 'blank': '(False)'}), '(max_length=40, blank=False)\n', (470, 498), False, 'from django.db import models\n'), ((604, 648), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)', 'blank': '(False)'}), '(max_length=30, blank=False)\n', (620, 648), False, 'from django.db import models\n'), ((661, 694), 'django.db.models.EmailField', 'models.EmailField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (678, 694), False, 'from django.db import models\n'), ((710, 755), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'blank': '(False)'}), '(max_length=100, blank=False)\n', (726, 755), False, 'from django.db import models\n'), ((767, 811), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)', 'blank': '(False)'}), '(max_length=30, blank=False)\n', (783, 811), False, 'from django.db import models\n'), ((829, 873), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)', 'blank': '(False)'}), '(max_length=30, blank=False)\n', (845, 873), False, 'from django.db import models\n'), ((889, 933), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'blank': '(False)'}), '(max_length=50, blank=False)\n', (905, 933), False, 'from django.db import models\n'), ((948, 1024), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Country'], {'related_name': '"""country"""', 'on_delete': 'models.CASCADE'}), "(Country, related_name='country', on_delete=models.CASCADE)\n", (965, 1024), False, 'from django.db import models\n'), ((1035, 1103), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Sex'], {'related_name': '"""sex"""', 'on_delete': 'models.CASCADE'}), "(Sex, related_name='sex', on_delete=models.CASCADE)\n", (1052, 1103), False, 'from django.db import models\n'), ((1117, 1161), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'blank': '(False)'}), '(max_length=50, blank=False)\n', (1133, 1161), False, 'from django.db import models\n'), ((1180, 1224), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(15)', 'blank': '(False)'}), '(max_length=15, blank=False)\n', (1196, 1224), False, 'from django.db import models\n'), ((1242, 1260), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (1258, 1260), False, 'from django.db import models\n')]
from __future__ import print_function from random import randint import numpy as np from Candy import * from Move import Move from uncertainty_exception import UncertaintyException class Board: DEFAULT_NUM_OF_CANDIES = 6 DEFAULT_HEIGHT = 9 DEFAULT_WIDTH = 9 DEFAULT_STRIKE = 3 NO_SCORE = 0 STRIPED, CHOCOLATE = 4, 5 NONE_MOVE = Move((-1, -1), (-1, -2), True) def __init__(self, num_of_candies=DEFAULT_NUM_OF_CANDIES, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, board_to_copy=None): """ this function create new game board """ self.num_of_candies = num_of_candies self.score = 0 self.board = None self.exploded_counter = 0 self.striped_counter = 0 self.wrapped_counter = 0 self.chocolate_counter = 0 self.unknown_prec = 0 if board_to_copy is not None and board_to_copy.any() and len(board_to_copy.shape) == 2 and \ board_to_copy.shape[0] * board_to_copy.shape[1] != 0: self.height = board_to_copy.shape[0] self.width = board_to_copy.shape[1] self.interpret_board(board_to_copy) else: self.height = height self.width = width self.initialize_board() @staticmethod def access_key(x, dictionary): for key in dictionary.keys(): if type(key) == int: if x == key: return key elif x in key: return key @staticmethod def get_candy(candy_number, location): translation_dict = {(0, 2, 4, 6, 8, 10): Candy, (1, 3, 5, 7, 9, 11): HorizontalStriped, (13, 14, 15, 16, 17, 18): VerticalStriped, 12: Chocolate, (19, 20, 21, 22, 23, 24): Wrapped, -1: 'special'} translation_color = {(0, 1, 13, 19): 0, (2, 3, 14, 20): 1, (4, 5, 15, 21): 2, (6, 7, 18, 22): 3, (8, 9, 16, 23): 4, (10, 11, 17, 24): 5, 12: 6} key = Board.access_key(candy_number, translation_dict) color_key = Board.access_key(candy_number, translation_color) return translation_dict[key](color=translation_color[color_key], location=location) def interpret_board(self, numbers_board): # initialize the new board board = np.ndarray(numbers_board.shape, dtype=object) self.height, self.width = board.shape for row in range(numbers_board.shape[0]): for col in range(numbers_board.shape[1]): board[row, col] = Board.get_candy(numbers_board[row, col], (row, col)) self.board = board def initialize_board(self): """ this function initialize new board with random candies. """ self.unknown_prec = 0 self.exploded_counter = 0 new_board = np.zeros(shape=(self.height, self.width), dtype=object) for row in range(self.height): for col in range(self.width): new_board[row][col] = Candy(randint(0, self.num_of_candies - 1), (row, col)) # in randint the edges are inclusive self.board = new_board def is_empty(self, location): return self.board[location].empty or isinstance(self.board[location], UnknownCandy) def check_row_matches(self, row, strike_length=DEFAULT_STRIKE): """ :param row: the row of want to check :param strike_length: the length of the strikes you want :return: list of tuple describe the the strikes in length of 3 or more in the row """ length, strike_start, strike_end = 1, 0, 0 list_of_matches = [] for col in range(self.width): if col == self.width - 1 or self.board[row, col].color != self.board[row, col + 1].color or self.is_empty( (row, col + 1)) or self.is_empty((row, col)): if length >= strike_length: list_of_matches.append((strike_start, strike_end)) length = 1 strike_start = col + 1 else: length += 1 strike_end = col + 1 return list_of_matches def check_col_matches(self, col, strike_length=DEFAULT_STRIKE): """ :param col: the col of want to check :param strike_length: the length of the strikes you want :return: list of tuple describe the the strikes in length of 3 or more in the col """ length, strike_start, strike_end = 1, 0, 0 list_of_matches = [] for row in range(self.height): if row == self.height - 1 or self.board[row][col].color != self.board[row + 1][col].color or self.is_empty( (row + 1, col)) or self.is_empty((row, col)): if length >= strike_length: list_of_matches.append((strike_start, strike_end)) length = 1 strike_start = row + 1 else: length += 1 strike_end = row + 1 return list_of_matches def mark_candies_to_explode(self, last_move=NONE_MOVE): """ this function mark all the candies in the board that need to be exploded and also create all the special candies in the board :param last_move: the last move :return the socre the initial marking accord to + the number of each type of special candies created """ score = Board.NO_SCORE ############## # ROW CHECK ############## if last_move != Board.NONE_MOVE: if isinstance(self.board[last_move.start], Special): score += self.board[last_move.start].swipe_explosion(self.board, last_move.end) if isinstance(self.board[last_move.end], Special): score += self.board[last_move.end].swipe_explosion(self.board, last_move.start) for row in range(self.height): for tuple_indices in self.check_row_matches(row): length = tuple_indices[1] - tuple_indices[0] + 1 for col_index in range(length): self.board[row][col_index + tuple_indices[0]].mark = True if length == Board.STRIPED: # stripe self.striped_counter += 1 score += 60 # todo estimate the score that will yield from this candy if row == last_move.start[0] or row == last_move.end[0]: if tuple_indices[1] >= last_move.start[1] >= tuple_indices[0]: self.board[row][last_move.start[1]] = VerticalStriped( self.board[row][last_move.start[1]].color, (row, last_move.start[1])) # "" elif tuple_indices[1] >= last_move.end[1] >= tuple_indices[ 0]: # the last move cause this streak self.board[row][last_move.end[1]] = Striped(self.board[row][last_move.end[1]].color, (row, last_move.end[1]), DIRECTIONS[VERT]) elif length >= Board.CHOCOLATE: # color bomb self.chocolate_counter += 1 # this is a five streak - each candy awards 40 points instead of 20 score += 120 if row == last_move.start[0] or row == last_move.end[0]: if tuple_indices[1] >= last_move.start[1] >= tuple_indices[0]: self.board[row][last_move.start[1]] = Chocolate((row, last_move.start[1])) # "" elif tuple_indices[1] >= last_move.end[1] >= tuple_indices[ 0]: # the last move cause this strike self.board[row][last_move.start[1]] = Chocolate((row, last_move.end[1])) ############## # COLUMN CHECK ############## for col in range(self.width): for tuple_indices in self.check_col_matches(col): length = tuple_indices[1] - tuple_indices[0] + 1 for row_index in range(length): candy = self.board[row_index + tuple_indices[0], col] # check for wrap if (candy.mark and not isinstance(candy, Wrapped)) or ( isinstance(candy, Striped) and not candy.mark and 0 < col < self.width - 1 and self.board[ row_index + tuple_indices[0], col - 1].mark and self.board[ row_index + tuple_indices[0], col - 1].color == candy.color and self.board[ row_index + tuple_indices[0], col + 1].mark and self.board[ row_index + tuple_indices[0], col + 1].color == candy.color): # if this is an wrap structure, even it also strip structure, make wrap if isinstance(candy, Striped): self.striped_counter -= 1 score -= 60 self.wrapped_counter += 1 score += 120 self.board[row_index + tuple_indices[0], col] = Wrapped( self.board[row_index + tuple_indices[0], col].color, (row_index + tuple_indices[0], col)) else: candy.mark = True if length == Board.STRIPED: # stripe self.striped_counter += 1 score += 60 if col == last_move.start[1] or col == last_move.end[1]: if tuple_indices[1] >= last_move.start[0] >= tuple_indices[0]: if self.board[last_move.start[0]][col].mark: # is not un marked wrap: self.board[last_move.start[0]][col] = HorizontalStriped( self.board[last_move.start[0], col].color, (last_move.start[0], col)) # "" elif tuple_indices[1] >= last_move.end[0] >= tuple_indices[ 0]: # the last move cause this strike if self.board[last_move.end[0]][col].mark: # is not un marked wrap: self.board[last_move.end[0]][col] = Striped(self.board[last_move.end[0], col].color, (last_move.end[0], col), DIRECTIONS[ HORZ]) # with the direction of the # last move direction, remove the mark! else: self.board[tuple_indices[1]][col] = Striped(self.board[tuple_indices[1]][col].color, (tuple_indices[1], col), DIRECTIONS[VERT]) elif length == Board.CHOCOLATE: # color bomb self.chocolate_counter += 1 if col == last_move.start[1] or col == last_move.end[1]: if tuple_indices[1] >= last_move.start[0] >= tuple_indices[0]: self.board[last_move.start[0]][col] = Chocolate((last_move.start[0], col)) elif tuple_indices[1] >= last_move.end[0] >= tuple_indices[ 0]: # the last move cause this strike self.board[last_move.start[0]][col] = Chocolate((last_move.start[0], col)) # with the direction of the last # move direction, remove the mark! return score def print_board(self): print() for row in range(self.height): for col in range(self.width): if self.board[row][col].empty: print('{:16}'.format("Empty"), end="") else: print(self.board[row][col], end="") print() print("The score of the board is: ", self.score) def in_board(self, location): """ :param location: a 2d coordinate :return: True if it is a valid coordinate on board """ return 0 <= location[0] < self.height and 0 <= location[1] < self.width def get_adjacent(self, location): """ :param location: a coordinate in board :return all adjacent locations to given location """ adjacent_loc = [(location[0] - 1, location[1]), (location[0] + 1, location[1]), (location[0], location[1] - 1), (location[0] - 1, location[1] + 1)] for adjacent in adjacent_loc: if not self.in_board(adjacent): adjacent_loc.remove(adjacent) return adjacent_loc # this function is part of board class def possible_moves(self): possible_moves = [] ######################## # check horizontal moves ######################## for row in range(self.height): for col in range(self.width - 1): self.make_move((row, col), (row, col + 1)) # make move only for checking for matching if self.check_row_matches(row) or self.check_col_matches(col) or self.check_col_matches( col + 1) or ( isinstance(self.board[row, col], Special) and isinstance(self.board[row, col + 1], Special)) or \ (isinstance(self.board[row, col], Chocolate) and not self.is_empty((row, col + 1))) or \ (isinstance(self.board[row, col + 1], Chocolate) and not self.is_empty((row, col))): possible_moves.append(Move((row, col), (row, col + 1), HORZ)) self.make_move((row, col), (row, col + 1)) # return to the original board by commit the move again ######################## # check vertical moves ######################## for col in range(self.width): for row in range(self.height - 1): self.make_move((row, col), (row + 1, col)) # make move only for checking for matching if self.check_col_matches(col) or self.check_row_matches(row) or self.check_row_matches( row + 1) or ( isinstance(self.board[row, col], Special) and isinstance(self.board[row + 1, col], Special)) or \ (isinstance(self.board[row, col], Chocolate) and not self.is_empty((row + 1, col))) or \ (isinstance(self.board[row + 1, col], Chocolate) and not self.is_empty((row, col))): possible_moves.append(Move((row, col), (row + 1, col), VERT)) self.make_move((row, col), (row + 1, col)) # return to the original board by commit the move again return possible_moves def print_possible_moves(self): possible_moves = self.possible_moves() print("possible moves:") for move_num, move in enumerate(possible_moves): print("move number " + str(move_num) + ": ", move) def make_move(self, start_tup, end_tup): tmp = self.board[start_tup] self.board[start_tup] = self.board[end_tup] self.board[start_tup].location = start_tup # we also need to update the location self.board[end_tup] = tmp self.board[end_tup].location = end_tup def cascade(self): for col in range(self.width): for row in range(self.height - 1, -1, -1): col_is_empty = False if self.board[(row, col)].empty: tmp_row = row # we don't want to override the original row while self.board[(tmp_row, col)].empty: if tmp_row == 0: # this is the higher candy in the col col_is_empty = True break tmp_row -= 1 if col_is_empty: break else: self.make_move((row, col), (tmp_row, col)) def print_matches(self): print() print("rows:") for row in range(self.height): if self.check_row_matches(row): print(str(row), " ", self.check_row_matches(row)) print("cols:") for col in range(self.width): if self.check_col_matches(col): print(str(col), " ", self.check_col_matches(col)) def explosions(self): score = 0 for row in range(self.height): for col in range(self.width): if self.board[row, col].mark and not self.board[row, col].empty: score += self.board[row, col].explode(self.board, multiplier=self.multiplier) return score def turn_chunk(self, move=NONE_MOVE, with_unknowns=True): score = self.mark_candies_to_explode(move) # self.print_board() score += self.explosions() self.cascade() self.reset_next_round() if not with_unknowns: self.update_unknowns() return score def turn_function(self, move=NONE_MOVE, with_unknowns=True): self.multiplier = 1 score = self.multiplier * self.turn_chunk(move, with_unknowns=with_unknowns) self.multiplier += 1 chain_score = self.multiplier * self.turn_chunk(with_unknowns=with_unknowns) while chain_score > 0: self.multiplier += 1 score += chain_score chain_score = self.multiplier * self.turn_chunk(with_unknowns=with_unknowns) self.score += score self.unknown_prec = float(self.exploded_counter) / (self.height * self.width) return score def reset_next_round(self, rand_flag=False): if rand_flag: self.update_unknowns() return for row in range(self.height): for col in range(self.width): if self.board[row, col].empty: self.exploded_counter += 1 self.board[row, col] = UnknownCandy((row, col)) def play_a_game(self, detailed_game=False): # flag if you want detailed game if detailed_game: self.print_board() self.turn_function() while True: self.print_board() possible_moves = self.possible_moves() if not possible_moves: print("no more possible moves") pass exit(0) self.print_possible_moves() x = raw_input("insert number of move") self.make_move(possible_moves[int(x)].start, possible_moves[int(x)].end) if detailed_game: self.print_board() raw_input() self.turn_function(Move(possible_moves[int(x)].start, possible_moves[int(x)].end, True)) def update_unknowns(self): for row in range(self.height): for col in range(self.width): if self.board[row, col].empty: self.board[row, col] = Candy(randint(0, 5), (row, col)) def play_game_with_random(self, player, num_of_runs=1, detailed=False): turns_counter = 0 self.turn_function(with_unknowns=False) self.reset_param() player.get_board(self) for i in range(num_of_runs): if detailed: self.print_board() # self.print_possible_moves() player.choose_move() best_move = player.get_best_move() if detailed: print(best_move) self.make_move(best_move.start, best_move.end) self.turn_function(move=best_move, with_unknowns=False) if detailed: self.print_board() turns_counter += 1 print(self.score, self.striped_counter, self.wrapped_counter, self.chocolate_counter) return self.score / turns_counter, self.striped_counter, self.wrapped_counter, self.chocolate_counter def reset_param(self): self.score = 0 self.striped_counter = 0 self.wrapped_counter = 0 self.chocolate_counter = 0 def evaluate_turn(self, score_coeff, stripe_coeff, wrapped_coeff, chocolate_coeff): return score_coeff * self.score / 100 + stripe_coeff * self.striped_counter + wrapped_coeff * \ self.wrapped_counter \ + chocolate_coeff * self.chocolate_counter def main(): board_to_copy = np.array([[4, 2, 23, 2, 2], [2, 23, 2, 8, 6], [4, 8, 23, 4, 2], [12, 2, 4, 0, 6]]) board = Board(board_to_copy=board_to_copy) board.play_a_game(True) # board = Board(height=6, width=5) # board_to_copy = np.array([[0, 0, 8, 2, 8], [4, 20, 19, 6, 2], [0, 2, 10, 2, 2], [10, 4, 0, 2, 10], [0, 8, 0, 8, # 2], [8, 0, 8, 0, 8]]) # board.interpret_board(board_to_copy) # board.print_board() # board.turn_function() # while True: # board.print_board() # possible_moves = board.possible_moves() # if not possible_moves: # print("no more possible moves") # pass # exit(0) # board.print_possible_moves() # x = raw_input("insert number of move") # board.make_move(possible_moves[int(x)].start, possible_moves[int(x)].end) # board.print_board() # raw_input() # board.turn_function(Move(possible_moves[int(x)].start, possible_moves[int(x)].end, True)) # def main(): # board = Board(height=3, width=5)111 # board_to_copy = np.array([[2,0,4,0,4],[0,0,2,0,4],[2,4,0,4,4]]) # board.interpret_board(board_to_copy) # board.print_board() # board.mark_candies_to_explode() # board.print_board() # board.print_matches() # board.explosions() # board.print_board() # board.print_matches() # board.cascade() # board.mark_candies_to_explode() # board.explosions() # board.cascade() # while True: # board.print_board() # possible_moves = board.possible_moves() # board.print_possible_moves() # x = raw_input("insert number of move") # board.make_move(possible_moves[int(x)].start, possible_moves[int(x)].end) # board.print_board() # raw_input() # board.mark_candies_to_explode(Move(possible_moves[int(x)].start, possible_moves[int(x)].end, True)) # board.explosions() # board.cascade() # if __name__ == '__main__':
[ "Move.Move", "numpy.array", "numpy.zeros", "numpy.ndarray", "random.randint" ]
[((373, 403), 'Move.Move', 'Move', (['(-1, -1)', '(-1, -2)', '(True)'], {}), '((-1, -1), (-1, -2), True)\n', (377, 403), False, 'from Move import Move\n'), ((21479, 21566), 'numpy.array', 'np.array', (['[[4, 2, 23, 2, 2], [2, 23, 2, 8, 6], [4, 8, 23, 4, 2], [12, 2, 4, 0, 6]]'], {}), '([[4, 2, 23, 2, 2], [2, 23, 2, 8, 6], [4, 8, 23, 4, 2], [12, 2, 4, \n 0, 6]])\n', (21487, 21566), True, 'import numpy as np\n'), ((2422, 2467), 'numpy.ndarray', 'np.ndarray', (['numbers_board.shape'], {'dtype': 'object'}), '(numbers_board.shape, dtype=object)\n', (2432, 2467), True, 'import numpy as np\n'), ((2954, 3009), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.height, self.width)', 'dtype': 'object'}), '(shape=(self.height, self.width), dtype=object)\n', (2962, 3009), True, 'import numpy as np\n'), ((3138, 3173), 'random.randint', 'randint', (['(0)', '(self.num_of_candies - 1)'], {}), '(0, self.num_of_candies - 1)\n', (3145, 3173), False, 'from random import randint\n'), ((14427, 14465), 'Move.Move', 'Move', (['(row, col)', '(row, col + 1)', 'HORZ'], {}), '((row, col), (row, col + 1), HORZ)\n', (14431, 14465), False, 'from Move import Move\n'), ((15492, 15530), 'Move.Move', 'Move', (['(row, col)', '(row + 1, col)', 'VERT'], {}), '((row, col), (row + 1, col), VERT)\n', (15496, 15530), False, 'from Move import Move\n'), ((20031, 20044), 'random.randint', 'randint', (['(0)', '(5)'], {}), '(0, 5)\n', (20038, 20044), False, 'from random import randint\n')]
import hashlib import jpype import os import struct from array import array from os.path import dirname, abspath def start_jvm(): jvm_path = jpype.getDefaultJVMPath() jars_path = os.path.join(dirname(abspath(__file__)), "jars") load_modules = ["commons-codec-1.6", "jpbc-plaf-1.2.0", "jpbc-api-1.2.0", "nics-crypto"] load_modules = [os.path.join(jars_path, x) + ".jar" for x in load_modules] jpype.startJVM(jvm_path, "-Djava.class.path=" + ":".join(load_modules)) AFGHGlobalParameters = AFGHProxyReEncryption = CurveElement = GTFiniteElement = None Tuple = String = params = None def init(): global AFGHGlobalParameters, AFGHProxyReEncryption, CurveElement, GTFiniteElement global Tuple, String, params start_jvm() AFGHGlobalParameters = jpype.JClass("nics.crypto.proxy.afgh.AFGHGlobalParameters") AFGHProxyReEncryption = jpype.JClass("nics.crypto.proxy.afgh.AFGHProxyReEncryption") CurveElement = jpype.JClass("it.unisa.dia.gas.plaf.jpbc.field.curve.CurveElement") GTFiniteElement = jpype.JClass("it.unisa.dia.gas.plaf.jpbc.field.gt.GTFiniteElement") Tuple = jpype.JClass("nics.crypto.Tuple") String = jpype.java.lang.String params = AFGHGlobalParameters(256, 1536) init() def load_priv(s): Zq = params.getZq() return Zq.newElement(jpype.java.math.BigInteger(array("b", s))) def dump_priv(priv): return array("b", jpype.java.math.BigInteger.toByteArray(priv.toBigInteger())).tostring() def load_pub(s): """Works for both public and re-encryption keys""" el = CurveElement(params.getG1()) el.setFromBytesCompressed(array("b", s)) return el def dump_pub(pub): return array("b", pub.toBytesCompressed()).tostring() def dump_gtf(el): return array("b", el.toBytes()).tostring() def load_gtf(m): x = GTFiniteElement(params.getZ()).duplicate() b = array("b", m) x.setFromBytes(b) return x def dump_re_message(m): return dump_gtf(m.get(1)) + dump_gtf(m.get(2)) def load_re_message(m): x1 = load_gtf(m[:len(m) // 2]) x2 = load_gtf(m[len(m) // 2:]) return Tuple([x1, x2]) def dump_e_message(m): x1 = dump_pub(m.get(1)) x2 = dump_gtf(m.get(2)) fmt = struct.pack("HH", len(x1), len(x2)) return fmt + x1 + x2 def load_e_message(m): l1, l2 = struct.unpack("HH", m[:4]) x1 = load_pub(m[4:(4 + l1)]) x2 = load_gtf(m[(4 + l1):]) return Tuple([x1, x2]) class Key(object): def __init__(self, priv=None, pub=None): """ :param str dump: Load private key from dump If there is no dump, will be generated """ self.priv = priv self.pub = pub if self.priv: priv_inv = priv.duplicate() self.priv_invert = priv_inv.invert() if self.pub: self.pub_pow = self.pub.pow() @classmethod def load_priv(cls, s, generate_pub=True): priv = load_priv(s) if generate_pub: pub = AFGHProxyReEncryption.generatePublicKey(priv, params) else: pub = None return cls(priv=priv, pub=pub) @classmethod def from_passphrase(cls, passphrase, generate_pub=True): return cls.load_priv(hashlib.sha256(passphrase.encode('utf8')).digest(), generate_pub=generate_pub) def dump_priv(self): return dump_priv(self.priv) def dump_pub(self): return dump_pub(self.pub) @classmethod def make_priv(cls, generate_pub=True): priv = AFGHProxyReEncryption.generateSecretKey(params) if generate_pub: pub = AFGHProxyReEncryption.generatePublicKey(priv, params) else: pub = None return cls(priv=priv, pub=pub) @classmethod def load_pub(cls, s): return cls(pub=load_pub(s)) def encrypt(self, message): e = AFGHProxyReEncryption.bytesToElement(array("b", message), params.getG2()) c_a = AFGHProxyReEncryption.secondLevelEncryption(e, self.pub_pow, params) return dump_e_message(c_a) def decrypt_my(self, s): c_a = load_e_message(s) m = AFGHProxyReEncryption.secondLevelDecryption(c_a, self.priv, params) return array("b", m.toBytes()).tostring().strip("\x00") def decrypt_re(self, s): c_b = load_re_message(s) m = AFGHProxyReEncryption.firstLevelDecryptionPreProcessing(c_b, self.priv_invert, params) r1 = array("b", m.toBytes()) r2 = r1.tostring() return r2.strip(b"\x00") def re_key(self, pub): if isinstance(pub, Key): pub = pub.pub # elif isinstance(pub, basestring): else: pub = load_pub(pub) return ReKey.make(self.priv, pub) class ReKey(object): def __init__(self, key): self.key = key self.key_ppp = params.getE().pairing(key) @classmethod def make(cls, priv, pub): if isinstance(priv, Key): priv = priv.priv if isinstance(pub, Key): pub = pub.pub key = AFGHProxyReEncryption.generateReEncryptionKey(pub.duplicate(), priv.duplicate()) return cls(key) def dump(self): return dump_pub(self.key) @classmethod def load(cls, s): return cls(load_pub(s)) def reencrypt(self, m): c_b = AFGHProxyReEncryption.reEncryption(load_e_message(m), self.key, self.key_ppp) return dump_re_message(c_b)
[ "array.array", "jpype.getDefaultJVMPath", "os.path.join", "struct.unpack", "os.path.abspath", "jpype.JClass" ]
[((148, 173), 'jpype.getDefaultJVMPath', 'jpype.getDefaultJVMPath', ([], {}), '()\n', (171, 173), False, 'import jpype\n'), ((782, 841), 'jpype.JClass', 'jpype.JClass', (['"""nics.crypto.proxy.afgh.AFGHGlobalParameters"""'], {}), "('nics.crypto.proxy.afgh.AFGHGlobalParameters')\n", (794, 841), False, 'import jpype\n'), ((870, 930), 'jpype.JClass', 'jpype.JClass', (['"""nics.crypto.proxy.afgh.AFGHProxyReEncryption"""'], {}), "('nics.crypto.proxy.afgh.AFGHProxyReEncryption')\n", (882, 930), False, 'import jpype\n'), ((950, 1017), 'jpype.JClass', 'jpype.JClass', (['"""it.unisa.dia.gas.plaf.jpbc.field.curve.CurveElement"""'], {}), "('it.unisa.dia.gas.plaf.jpbc.field.curve.CurveElement')\n", (962, 1017), False, 'import jpype\n'), ((1040, 1107), 'jpype.JClass', 'jpype.JClass', (['"""it.unisa.dia.gas.plaf.jpbc.field.gt.GTFiniteElement"""'], {}), "('it.unisa.dia.gas.plaf.jpbc.field.gt.GTFiniteElement')\n", (1052, 1107), False, 'import jpype\n'), ((1120, 1153), 'jpype.JClass', 'jpype.JClass', (['"""nics.crypto.Tuple"""'], {}), "('nics.crypto.Tuple')\n", (1132, 1153), False, 'import jpype\n'), ((1868, 1881), 'array.array', 'array', (['"""b"""', 'm'], {}), "('b', m)\n", (1873, 1881), False, 'from array import array\n'), ((2307, 2333), 'struct.unpack', 'struct.unpack', (['"""HH"""', 'm[:4]'], {}), "('HH', m[:4])\n", (2320, 2333), False, 'import struct\n'), ((1615, 1628), 'array.array', 'array', (['"""b"""', 's'], {}), "('b', s)\n", (1620, 1628), False, 'from array import array\n'), ((211, 228), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (218, 228), False, 'from os.path import dirname, abspath\n'), ((352, 378), 'os.path.join', 'os.path.join', (['jars_path', 'x'], {}), '(jars_path, x)\n', (364, 378), False, 'import os\n'), ((1340, 1353), 'array.array', 'array', (['"""b"""', 's'], {}), "('b', s)\n", (1345, 1353), False, 'from array import array\n'), ((3875, 3894), 'array.array', 'array', (['"""b"""', 'message'], {}), "('b', message)\n", (3880, 3894), False, 'from array import array\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Fastext Common Crawl vectors, e.g. use with filename "models:fasttext_fi_vectors/crawl-300d-fi.vec". """ import os import torchtext.vocab as vocab URL = 'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.fi.300.vec.gz' def download(datapath): return vocab.Vectors( name='cc.fi.300.vec.gz', url=URL, cache=os.path.join(datapath, 'models', 'fasttext_fi_vectors'), )
[ "os.path.join" ]
[((547, 602), 'os.path.join', 'os.path.join', (['datapath', '"""models"""', '"""fasttext_fi_vectors"""'], {}), "(datapath, 'models', 'fasttext_fi_vectors')\n", (559, 602), False, 'import os\n')]
from django.urls import path from . import views app_name = 'twitteruser' urlpatterns = [ path('', views.home_view, name='home_view'), path('profile/<int:user_id>/', views.profile_view, name='profile_view'), path('follow/<int:user_id>/', views.follow_user, name='follow_user'), path('unfollow/<int:user_id>/', views.unfollow_user, name='unfollow_user'), ]
[ "django.urls.path" ]
[((96, 139), 'django.urls.path', 'path', (['""""""', 'views.home_view'], {'name': '"""home_view"""'}), "('', views.home_view, name='home_view')\n", (100, 139), False, 'from django.urls import path\n'), ((145, 216), 'django.urls.path', 'path', (['"""profile/<int:user_id>/"""', 'views.profile_view'], {'name': '"""profile_view"""'}), "('profile/<int:user_id>/', views.profile_view, name='profile_view')\n", (149, 216), False, 'from django.urls import path\n'), ((222, 290), 'django.urls.path', 'path', (['"""follow/<int:user_id>/"""', 'views.follow_user'], {'name': '"""follow_user"""'}), "('follow/<int:user_id>/', views.follow_user, name='follow_user')\n", (226, 290), False, 'from django.urls import path\n'), ((296, 370), 'django.urls.path', 'path', (['"""unfollow/<int:user_id>/"""', 'views.unfollow_user'], {'name': '"""unfollow_user"""'}), "('unfollow/<int:user_id>/', views.unfollow_user, name='unfollow_user')\n", (300, 370), False, 'from django.urls import path\n')]
"""newskylabs/tools/bookblock/__main__.py: Main entry point for the `bookblock` tool. """ __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2019 <NAME>" __license__ = "Apache License 2.0, http://www.apache.org/licenses/LICENSE-2.0" __date__ = "2019/10/11" __version__ = '0.0.1.dev1' from newskylabs.tools.bookblock.scripts.bookblock import bookblock ## ========================================================= ## Main ## --------------------------------------------------------- if __name__ == '__main__': bookblock() ## ========================================================= ## ========================================================= ## fin.
[ "newskylabs.tools.bookblock.scripts.bookblock.bookblock" ]
[((568, 579), 'newskylabs.tools.bookblock.scripts.bookblock.bookblock', 'bookblock', ([], {}), '()\n', (577, 579), False, 'from newskylabs.tools.bookblock.scripts.bookblock import bookblock\n')]
import requests from pprint import pprint client_id = "58efa175549cbbe34857" client_secret = "a70cc1472f395ffe456b64b6ab018644" concrete_params = { "client_id": client_id, "client_secret": client_secret } base_url = "https://api.artsy.net/api/tokens/xapp_token" r = requests.post(base_url, params=concrete_params) pprint(r.text) headers = { "X-XAPP-Token": r.json()['token'] } url = "https://api.artsy.net/api/sales" r = requests.get(url, headers=headers) pprint(r.json()) if r.ok: import json path = "sales.json" with open(path, "w") as f: json.dump(r.json(), f)
[ "requests.post", "pprint.pprint", "requests.get" ]
[((276, 323), 'requests.post', 'requests.post', (['base_url'], {'params': 'concrete_params'}), '(base_url, params=concrete_params)\n', (289, 323), False, 'import requests\n'), ((324, 338), 'pprint.pprint', 'pprint', (['r.text'], {}), '(r.text)\n', (330, 338), False, 'from pprint import pprint\n'), ((437, 471), 'requests.get', 'requests.get', (['url'], {'headers': 'headers'}), '(url, headers=headers)\n', (449, 471), False, 'import requests\n')]
from misc_math import convert_to_base, base_to_dec from dictionary import dict_sort class Converter: """A class to convert strings to compact integers using a custom codec/lookup.""" def __init__(self, lookup=None): if lookup == None: self.lookup = {} else: self.lookup = lookup self.codec = ''.join(dict_sort(lookup)) @classmethod def from_codec(codec: str): """Creates a Converter object from a codec.""" lookup = {} for x in range(len(codec)): lookup[codec[x]] = x + 1 return Converter(lookup) def fit(self, strings): """Takes in a string or list of strings, and changes the lookup/codec to fit the string(s).""" if type(strings) == list: string = '\n'.join(strings) else: string = strings # Find and count characters for x in string: if x not in self.lookup: self.lookup[x] = string.count(x) else: self.lookup[x] = self.lookup.get(x) + string.count(x) if type(strings) == list: self.lookup['\n'] = self.lookup.get('\n') - len(strings) + 1 # Correct \n count if self.lookup.get('\n') == 0: del self.lookup['\n'] self.codec = ''.join(dict_sort(self.lookup)) def stoi(self, string: str) -> int: """Converts strings to integers based on the lookup/codec.""" return base_to_dec(string, len(self.codec), self.codec) def itos(self, number: int) -> str: """Converts integers to strings based on the lookup/codec.""" return convert_to_base(number, len(self.codec), self.codec) def __str__(self): return "Converter({})/Converter.from_codec({})".format(self.lookup, self.codec)
[ "dictionary.dict_sort" ]
[((358, 375), 'dictionary.dict_sort', 'dict_sort', (['lookup'], {}), '(lookup)\n', (367, 375), False, 'from dictionary import dict_sort\n'), ((1336, 1358), 'dictionary.dict_sort', 'dict_sort', (['self.lookup'], {}), '(self.lookup)\n', (1345, 1358), False, 'from dictionary import dict_sort\n')]