metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train_instances.json
- split: dev
path: data/dev_instances.json
- split: test
path: data/test_instances.json
- config_name: has_html
data_files:
- split: train
path: data/train_instances_with_html.json
- split: dev
path: data/dev_instances_with_html.json
- split: test
path: data/test_instances_with_html.json
Preprocessed QASPER dataset
Working doc: https://docs.google.com/document/d/1gYPhPNJ5LGttgjix1dwai8pdNcqS6PbqhsM7W0rhKNQ/edit?usp=sharing
Original:
- Dataset: https://github.com/allenai/qasper-led-baseline
- Baseline repo: https://github.com/allenai/qasper-led-baseline
- HF: https://huggingface.co/datasets/allenai/qasper
Differences of our implementation over the original implementation:
- We use the dataset provided at https://huggingface.co/datasets/allenai/qasper since it doesn't require manually downloading files.
- We remove usage of
allennlp
since the Python package cannot be installed anymore. - We add baselines to qasper/models. Currently, we have
- QASPER (Longformer Encoder Decoder)
- GPT-3.5-Turbo
- TODO: RAG (with R=TF-IDF or Contriever) implemented in LangChain?
- We replace
allennlp
special tokens with the special tokens of the HF transformer tokenizer:- paragraph separator: '' -> tokenizer.sep_token
- sequence pair start tokens: _tokenizer.sequence_pair_start_tokens -> tokenizer.bos_token
Usage
from datasets import load_dataset
dataset = load_dataset("ag2435/qasper")