AgiBotWorld-Alpha / README.md
BobXie's picture
Update README.md
67624f7 verified
|
raw
history blame
4.36 kB
metadata
pretty_name: AgiBot World
size_categories:
  - 100K<n<2000K
task_categories:
  - other
language:
  - en
tags:
  - real-world
  - dual-arm
  - Robotics manipulation
Image Alt Text

Agibot World Colosseo (Agibot) πŸŒπŸ€–

  • Challenges with Current Benchmarks:
    • Low data quality and limited sensing capabilities.
    • Short-horizon tasks in controlled environments.
  • First Large-Scale Robotic Learning Platform for Multi-purpose Robotic Manipulation.
  • Includes data, models, benchmarks, and ecosystem.
  • Aims to democratize real-robot data for the academic community.
  • Aspires to trigger the β€œImageNet moment” for Embodied AI in the near future.

Key Features πŸ”‘

  • One Million+ Demonstrations from 100 robots.
  • 100+ real-world scenarios across 5 business sectors.
  • Tasks involving:
    • Fine-grained manipulation
    • Long-horizon planning
    • Dual-robot collaboration
  • Cutting-Edge Hardware:
    • Visuotactile Sensors
    • 6-DoF hands
    • Mobile dual-arm robots with full-body control

Research Potential 🌱

  • Supports multimodal imitation learning and multi-agent collaboration, and beyond.
  • State-of-the-art hardware for scalable robotic systems in production.
  • Researchers and practitioners are invited to leverage this newly open-source platform to shape the future of Embodied AI.

Platform Release πŸ“…

  • Agibot Alpha: ~100,000 trajectories of real-robot data.
  • Full platform suite coming by end of Q1 2025.
  • Agibot-World Robot Manipulation Challenge

Get started

Download AgiBot Dataset

Installation

Dataset Structure

data
β”œβ”€β”€ task_info
β”‚   β”œβ”€β”€ task_374.json
β”‚   β”œβ”€β”€ task_256.json
β”‚   └── ...
β”œβ”€β”€ 374[task_id]
β”‚   β”œβ”€β”€ 64825[episode_id]
β”‚   β”‚   β”œβ”€β”€ depth
β”‚   β”‚   β”œβ”€β”€ parameters
β”‚   β”‚   β”œβ”€β”€ videos
β”‚   β”‚   β”œβ”€β”€ meta_info.json
β”‚   β”‚   └── aligned_joints.h5
β”‚   β”œβ”€β”€ 67832
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ 321
β”‚   └── ...

In the aligned_joints.h5 file, we organize the information in this format.

aligned_joints.h5
β”œβ”€β”€ action
β”‚   β”œβ”€β”€ joint
β”‚   β”œβ”€β”€ effector
β”‚   └── ...
β”œβ”€β”€ state
β”‚   β”œβ”€β”€ joint
β”‚   β”œβ”€β”€ effector
β”‚   └── ...