File size: 6,788 Bytes
cb2eba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import math
import torch
from typing import Callable, List
import pandas as pd
import json
import os
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from utils import *
from PIL import Image
import shutil
from glob import glob
import numpy as np
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, AddedToken
from datasets import load_dataset
model = InstructBlipForConditionalGeneration.from_pretrained("UBC-NLP/Peacock")
processor = InstructBlipProcessor.from_pretrained("UBC-NLP/Peacock")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def handle_images1(row: pd.Series) -> List[str]:
return [row["image"].convert("RGB")]
def handle_images2(row: pd.Series) -> List[str]:
return [
row.get(f"image_{i}", None).convert("RGB")
for i in range(9)
if row.get(f"image_{i}", None) is not None
]
def save_images(images: List[str], with_resize: bool = True):
for i, image in enumerate(images):
if image is None:
continue
if with_resize:
img = image
width, height = img.size
req_dim = 420
new_width = req_dim if width > height else int((req_dim / height) * width)
new_height = int((req_dim / width) * height) if width > height else req_dim
img = img.resize((420, 420))
img = img.convert("RGB")
img.save(f"temp/image{i}.png")
def generate_qwen(prompt: str, images: List[str]) -> str:
images = images[:1]
save_images(images)
inputs = processor(images=Image.open("temp/image0.png").convert("RGB"), text=prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=1,
max_length=256,
min_length=2,
top_p=0.9,
temperature=1,
length_penalty=1.0,
repetition_penalty=1.5,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
return generated_text
answer_field = "answer"
def process_row(row: pd.Series, fn: Callable, fn_images: Callable) -> dict:
i, row = row
d = {}
try:
d["index"] = i
images = fn_images(row)
d["pred_answer"] = generate_qwen(fn(row), images)
d["answer"] = str(row[answer_field])
d["question"] = fn(row)
print(f"Question: {fn(row)}\nPredicted: {d['pred_answer']}")
return d
except Exception as e:
print(f"Error processing row: {e}")
return None
name_to_processor = {
"mmmu": mmmu_doc_to_text,
"mme": mme_doc_to_text,
"gqa": gqa_doc_to_text,
"realworldqa": realworldqa_doc_to_text,
"vqav2": vqav2_doc_to_text,
"vizwiz": vizwiz_doc_to_text,
"pope": pope_doc_to_text,
"countbench": countbench_doc_to_text,
"medicalMMMU": medicalMMMU_doc_to_text,
"medicalMMMUPro": medicalMMMUPro_doc_to_text,
"diagramsMMMU": diagramsMMMU_doc_to_text,
"mmbench": mmbench_doc_to_text,
"seed": seed_doc_to_text,
"medicalmmt": medicalmmt_doc_to_text,
"hallucinationmmt": hallucinationmmt_doc_to_text,
"vqammt": vqammt_doc_to_text,
"mutliimagemmt": mutliimagemmt_doc_to_text,
"isidocvqa": isidocvqa_doc_to_text,
"patddocvqa": patddocvqa_doc_to_text,
"celebvqa": celebvqa_doc_to_text,
"countriesvqa": countriesvqa_doc_to_text,
"foodvqa": foodvqa_doc_to_text,
"objectcoco": objectcoco_doc_to_text,
"blink": blink_doc_to_text,
"examsv": examsv_doc_to_text,
"chartqa": chartqa_doc_to_text,
"mtvqa": mtvqa_doc_to_text,
"mathvista": mathvista_doc_to_text,
"infographicsvqa": infographicsvqa_doc_to_text,
"agrovqa": agrovqa_doc_to_text,
"diagramsvqa": diagramsvqa_doc_to_text,
"tablesvqa": tablesvqa_doc_to_text,
"iconqa": iconqa_doc_to_text,
"scienceqa": scienceqa_doc_to_text,
"ocrisi": ocrisi_doc_to_text,
"evarest": evarest_doc_to_text,
"historicalbooks": historicalbooks_doc_to_text,
"khatt": khatt_doc_to_text,
"patsocr": patsocr_doc_to_text,
"arabicocr": arabicocr_doc_to_text,
"culturevideovqa": culturevideovqa_doc_to_text,
"videomme": videomme_doc_to_text,
"geochat": geochat_doc_to_text,
"muribench": muribench_doc_to_text,
}
name_to_handle_type = {
# "mmmu": handle_images2,
# "mme": handle_images1,
# "gqa": handle_images1,
# "realworldqa": handle_images1,
# "vqav2": handle_images1,
# "vizwiz": handle_images1,
# "pope": handle_images1,
# "countbench": handle_images1,
# "medicalMMMU": handle_images2,
# "medicalMMMUPro": handle_images2,
# "diagramsMMMU": handle_images2,
# "mmbench": handle_images1,
# "seed": handle_images2,
"vqammt": handle_images1,
"isidocvqa": handle_images1,
"patddocvqa": handle_images1,
"celebvqa": handle_images1,
"countriesvqa": handle_images1,
"foodvqa": handle_images1,
"objectcoco": handle_images1,
"blink": handle_images2,
"examsv": handle_images1,
"chartqa": handle_images1,
"mtvqa": handle_images1,
"mathvista": handle_images1,
"infographicsvqa": handle_images1,
"agrovqa": handle_images1,
"diagramsvqa": handle_images1,
"tablesvqa": handle_images1,
"scienceqa": handle_images1,
"geochat": handle_images1,
"ocrisi": handle_images1,
"evarest": handle_images1,
"historicalbooks": handle_images1,
"khatt": handle_images1,
"patsocr": handle_images1,
"hallucinationmmt": handle_images1,
"medicalmmt": handle_images1,
"arabicocr": handle_images1,
# "iconqa": handle_images2,
# "culturevideovqa": handle_images2,
# "muribench": handle_images2,
# "videomme": handle_images2,
# "mutliimagemmt": handle_images2,
}
names = list(name_to_handle_type.keys())
os.makedirs("results", exist_ok=True)
os.makedirs("temp", exist_ok=True)
for name in tqdm(names):
try:
ds = load_dataset(f"ahmedheakl/arabicp_{name}", split="train", num_proc=4)
except:
continue
# if os.path.exists(f"results/peacock_{name}.json"):
# with open(f"results/peacock_{name}.json", "r", encoding="utf-8") as f:
# dd = json.load(f)
# if len(dd) >= (len(ds) // 2): continue
df = pd.DataFrame(ds)
print(f"Evaluating {name} dataset")
fn = name_to_processor[name]
fn_images = name_to_handle_type[name]
results = []
for i in tqdm(range(len(df))):
results.append(process_row((i, df.iloc[i]), fn, fn_images))
report = [r for r in results if r is not None]
with open(f"results/peacock_{name}.json", "w", encoding="utf-8") as f:
json.dump(report, f, ensure_ascii=False, indent=2)
shutil.rmtree("temp")
|