File size: 7,504 Bytes
ff275df d42a347 ff275df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import json
import sys
import numpy as np
from utils import *
from tqdm import tqdm
from pydantic import BaseModel
from openai import OpenAI
from typing import List
import multiprocessing as mp
from functools import partial
from glob import glob
class AnswerScore(BaseModel):
score: int
data_functions = {
# medical
"medicalmmt": medicalmmt_eval,
"medicalMMMU": medicalMMMU_eval,
"medicalMMMUPro": medicalMMMU_eval,
# cultural
"celebvqa": celebvqa_eval,
"foodvqa": foodvqa_eval,
"countriesvqa": countriesvqa_eval,
# agro
"agrovqa": agrovqa_eval,
# chart and diagrams
"iconqa": iconqa_eval,
"chartqa": chartqa_eval,
"diagramsMMMU": diagramsMMMU_eval,
"diagramsvqa": diagramsvqa_eval,
"tablesvqa": tablesvqa_eval,
# video
"culturevideovqa": culturevideovqa_eval,
"videomme": videomme_eval,
# ocr
"ocrisi": ocrisi_eval,
"khatt": khatt_eval,
"isidocvqa": isidocvqa_eval,
"patddocvqa": patddocvqa_eval,
"patsocr": patsocr_eval,
"evarest": evarest_eval,
"historicalbooks": historicalbooks_eval,
"arabicocr": arabicocr_eval,
# vqa
"mme": mme_eval,
"mmbench": mmbench_eval,
"vqammt": vqammt_eval,
"seed": seed_eval,
"mmmu": mmmu_eval,
"countbench": countbench_eval,
"hallucinationmmt": hallucinationmmt_eval,
"pope": pope_eval,
"scienceqa": scienceqa_eval,
"examsv": examsv_eval,
"gqa": gqa_eval,
"vizwiz": vizwiz_eval,
"infographicsvqa": infographicsvqa_eval,
"blink": blink_eval,
"realworldqa": realworldqa_eval,
"mutliimagemmt": mutliimagemmt_eval,
"muribench": muribench_eval,
"objectcoco": objectcoco_eval,
}
fuzz = {
"mtvqa": mtvqa_user_prompt,
"geochat": geochat_user_prompt,
"mathvista": mathvista_user_prompt,
"vqav2": vqav2_user_prompt,
}
medical_data = ["medicalmmt", "medicalMMMU", "medicalMMMUPro"]
medical_results = {}
cultural_data = ["celebvqa", "foodvqa", "countriesvqa"]
cultural_results = {}
agro_data = ["agrovqa"]
agro_results = {}
charts_data = ["iconqa", "chartqa", "diagramsMMMU", "diagramsvqa", "tablesvqa"]
charts_results = {}
remotesensing_data = ["geochat"]
remotesensing_results = {}
video_data = ["culturevideovqa", "videomme"]
video_results = {}
ocr_data = ["ocrisi", "khatt", "isidocvqa", "patddocvqa", "patsocr", "mtvqa", "evarest", "historicalbooks", "arabicocr"]
ocr_results = {}
vqa_data = ["mme", "mmbench", "vqammt", "seed", "mmmu", "countbench", "hallucinationmmt", "pope", "mathvista", "scienceqa", "examsv", "gqa", "vizwiz", "vqav2", "infographicsvqa", "blink", "realworldqa", "mutliimagemmt", "muribench", "objectcoco"]
vqa_results = {}
def eval_gpt(row, user_prompt):
client = OpenAI()
question = row['question'].split("\n")[0]
pred = row['pred_answer']
pred = pred.split("assistant\n")[-1].strip()
gt = row['answer']
messages = [
{
"role": "system",
"content": fuzz_eval_system_prompt,
},
{
"role": "user",
"content": user_prompt.format(question=question, pred=pred, gt=gt)
},
]
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=300,
tools=[
{
"type": "function",
"function": {
"name": "answer_score",
"description": "Provide a [0, 1] score to the semantic similarity between two sentences",
"parameters": AnswerScore.model_json_schema(),
},
}
],
tool_choice={"type": "function", "function": {"name": "answer_score"}},
)
vqa_answer = AnswerScore.model_validate_json(
completion.choices[0].message.tool_calls[0].function.arguments
)
return {
'index': row['index'],
'question': question,
'pred_answer': pred,
'answer': gt,
'evaluation': vqa_answer.score
}
def process_chunk(user_prompt, chunk):
d = []
for row in chunk:
try:
d.append(eval_gpt(row, user_prompt))
except Exception as e:
print("ERROR", e)
continue
return d
def fuzz_eval(user_prompt, data):
num_cores = mp.cpu_count()
chunk_size = len(data) // num_cores
chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]
pool = mp.Pool(num_cores)
results = []
process_chunk_f = partial(process_chunk, user_prompt)
with tqdm(total=len(data)) as pbar:
for chunk_result in pool.imap_unordered(process_chunk_f, chunks):
results.extend(chunk_result)
pbar.update(len(chunk_result))
pool.close()
pool.join()
correct_count = sum(1 for item in results if item['evaluation'] == 1)
total_count = len(results)
return round(correct_count * 100 / total_count, 2)
MODEL = "peacock"
files = glob(f"results/{MODEL}_*.json")
for file in files:
name = file.split(f"_")[-1].replace(".json", "")
print(name)
with open(file, "r") as f:
data = json.load(f)
if len(data) == 0: continue
accuracy = 0
if name in fuzz:
accuracy = fuzz_eval(fuzz[name], data)
else:
tot = 0
for r in data:
tot += data_functions[name](r["pred_answer"], r["answer"])
accuracy = round(tot * 100 / len(data), 2)
print(f"{name}: {tot} / {len(data)} -> {accuracy:.2f}")
if name in medical_data:
medical_results[name] = accuracy
elif name in cultural_data:
cultural_results[name] = accuracy
elif name in agro_data:
agro_results[name] = accuracy
elif name in charts_data:
charts_results[name] = accuracy
elif name in remotesensing_data:
remotesensing_results[name] = accuracy
elif name in video_data:
video_results[name] = accuracy
elif name in ocr_data:
ocr_results[name] = accuracy
elif name in vqa_data:
vqa_results[name] = accuracy
from pprint import pprint
print("\nMedical Results")
pprint(medical_results)
if len(medical_results) > 0:
print("Medical average:", round(sum(list(medical_results.values())) / len(medical_results), 2))
print("\ncultural Results")
pprint(cultural_results)
if len(cultural_results) > 0:
print("cultural average:", round(sum(list(cultural_results.values())) / len(cultural_results), 2))
print("\nagro Results")
pprint(agro_results)
if len(agro_results) > 0:
print("agro average:", round(sum(list(agro_results.values())) / len(agro_results), 2))
print("\ncharts Results")
pprint(charts_results)
if len(charts_results) > 0:
print("charts average:", round(sum(list(charts_results.values())) / len(charts_results), 2))
print("\nremotesensing Results")
pprint(remotesensing_results)
if len(remotesensing_results) > 0:
print("remotesensing average:", round(sum(list(remotesensing_results.values())) / len(remotesensing_results), 2))
print("\nvideo Results")
pprint(video_results)
if len(video_results) > 0:
print("video average:", round(sum(list(video_results.values())) / len(video_results), 2))
print("\nocr Results")
pprint(ocr_results)
if len(ocr_results) > 0:
print("ocr average:", round(sum(list(ocr_results.values())) / len(ocr_results), 2))
print("\nvqa Results")
pprint(vqa_results)
if len(vqa_results) > 0:
print("vqa average:", round(sum(list(vqa_results.values())) / len(vqa_results), 2)) |