xx / get_results.py
ahmedheakl's picture
Update get_results.py
d42a347 verified
import json
import sys
import numpy as np
from utils import *
from tqdm import tqdm
from pydantic import BaseModel
from openai import OpenAI
from typing import List
import multiprocessing as mp
from functools import partial
from glob import glob
class AnswerScore(BaseModel):
score: int
data_functions = {
# medical
"medicalmmt": medicalmmt_eval,
"medicalMMMU": medicalMMMU_eval,
"medicalMMMUPro": medicalMMMU_eval,
# cultural
"celebvqa": celebvqa_eval,
"foodvqa": foodvqa_eval,
"countriesvqa": countriesvqa_eval,
# agro
"agrovqa": agrovqa_eval,
# chart and diagrams
"iconqa": iconqa_eval,
"chartqa": chartqa_eval,
"diagramsMMMU": diagramsMMMU_eval,
"diagramsvqa": diagramsvqa_eval,
"tablesvqa": tablesvqa_eval,
# video
"culturevideovqa": culturevideovqa_eval,
"videomme": videomme_eval,
# ocr
"ocrisi": ocrisi_eval,
"khatt": khatt_eval,
"isidocvqa": isidocvqa_eval,
"patddocvqa": patddocvqa_eval,
"patsocr": patsocr_eval,
"evarest": evarest_eval,
"historicalbooks": historicalbooks_eval,
"arabicocr": arabicocr_eval,
# vqa
"mme": mme_eval,
"mmbench": mmbench_eval,
"vqammt": vqammt_eval,
"seed": seed_eval,
"mmmu": mmmu_eval,
"countbench": countbench_eval,
"hallucinationmmt": hallucinationmmt_eval,
"pope": pope_eval,
"scienceqa": scienceqa_eval,
"examsv": examsv_eval,
"gqa": gqa_eval,
"vizwiz": vizwiz_eval,
"infographicsvqa": infographicsvqa_eval,
"blink": blink_eval,
"realworldqa": realworldqa_eval,
"mutliimagemmt": mutliimagemmt_eval,
"muribench": muribench_eval,
"objectcoco": objectcoco_eval,
}
fuzz = {
"mtvqa": mtvqa_user_prompt,
"geochat": geochat_user_prompt,
"mathvista": mathvista_user_prompt,
"vqav2": vqav2_user_prompt,
}
medical_data = ["medicalmmt", "medicalMMMU", "medicalMMMUPro"]
medical_results = {}
cultural_data = ["celebvqa", "foodvqa", "countriesvqa"]
cultural_results = {}
agro_data = ["agrovqa"]
agro_results = {}
charts_data = ["iconqa", "chartqa", "diagramsMMMU", "diagramsvqa", "tablesvqa"]
charts_results = {}
remotesensing_data = ["geochat"]
remotesensing_results = {}
video_data = ["culturevideovqa", "videomme"]
video_results = {}
ocr_data = ["ocrisi", "khatt", "isidocvqa", "patddocvqa", "patsocr", "mtvqa", "evarest", "historicalbooks", "arabicocr"]
ocr_results = {}
vqa_data = ["mme", "mmbench", "vqammt", "seed", "mmmu", "countbench", "hallucinationmmt", "pope", "mathvista", "scienceqa", "examsv", "gqa", "vizwiz", "vqav2", "infographicsvqa", "blink", "realworldqa", "mutliimagemmt", "muribench", "objectcoco"]
vqa_results = {}
def eval_gpt(row, user_prompt):
client = OpenAI()
question = row['question'].split("\n")[0]
pred = row['pred_answer']
pred = pred.split("assistant\n")[-1].strip()
gt = row['answer']
messages = [
{
"role": "system",
"content": fuzz_eval_system_prompt,
},
{
"role": "user",
"content": user_prompt.format(question=question, pred=pred, gt=gt)
},
]
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=300,
tools=[
{
"type": "function",
"function": {
"name": "answer_score",
"description": "Provide a [0, 1] score to the semantic similarity between two sentences",
"parameters": AnswerScore.model_json_schema(),
},
}
],
tool_choice={"type": "function", "function": {"name": "answer_score"}},
)
vqa_answer = AnswerScore.model_validate_json(
completion.choices[0].message.tool_calls[0].function.arguments
)
return {
'index': row['index'],
'question': question,
'pred_answer': pred,
'answer': gt,
'evaluation': vqa_answer.score
}
def process_chunk(user_prompt, chunk):
d = []
for row in chunk:
try:
d.append(eval_gpt(row, user_prompt))
except Exception as e:
print("ERROR", e)
continue
return d
def fuzz_eval(user_prompt, data):
num_cores = mp.cpu_count()
chunk_size = len(data) // num_cores
chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]
pool = mp.Pool(num_cores)
results = []
process_chunk_f = partial(process_chunk, user_prompt)
with tqdm(total=len(data)) as pbar:
for chunk_result in pool.imap_unordered(process_chunk_f, chunks):
results.extend(chunk_result)
pbar.update(len(chunk_result))
pool.close()
pool.join()
correct_count = sum(1 for item in results if item['evaluation'] == 1)
total_count = len(results)
return round(correct_count * 100 / total_count, 2)
MODEL = "peacock"
files = glob(f"results/{MODEL}_*.json")
for file in files:
name = file.split(f"_")[-1].replace(".json", "")
print(name)
with open(file, "r") as f:
data = json.load(f)
if len(data) == 0: continue
accuracy = 0
if name in fuzz:
accuracy = fuzz_eval(fuzz[name], data)
else:
tot = 0
for r in data:
tot += data_functions[name](r["pred_answer"], r["answer"])
accuracy = round(tot * 100 / len(data), 2)
print(f"{name}: {tot} / {len(data)} -> {accuracy:.2f}")
if name in medical_data:
medical_results[name] = accuracy
elif name in cultural_data:
cultural_results[name] = accuracy
elif name in agro_data:
agro_results[name] = accuracy
elif name in charts_data:
charts_results[name] = accuracy
elif name in remotesensing_data:
remotesensing_results[name] = accuracy
elif name in video_data:
video_results[name] = accuracy
elif name in ocr_data:
ocr_results[name] = accuracy
elif name in vqa_data:
vqa_results[name] = accuracy
from pprint import pprint
print("\nMedical Results")
pprint(medical_results)
if len(medical_results) > 0:
print("Medical average:", round(sum(list(medical_results.values())) / len(medical_results), 2))
print("\ncultural Results")
pprint(cultural_results)
if len(cultural_results) > 0:
print("cultural average:", round(sum(list(cultural_results.values())) / len(cultural_results), 2))
print("\nagro Results")
pprint(agro_results)
if len(agro_results) > 0:
print("agro average:", round(sum(list(agro_results.values())) / len(agro_results), 2))
print("\ncharts Results")
pprint(charts_results)
if len(charts_results) > 0:
print("charts average:", round(sum(list(charts_results.values())) / len(charts_results), 2))
print("\nremotesensing Results")
pprint(remotesensing_results)
if len(remotesensing_results) > 0:
print("remotesensing average:", round(sum(list(remotesensing_results.values())) / len(remotesensing_results), 2))
print("\nvideo Results")
pprint(video_results)
if len(video_results) > 0:
print("video average:", round(sum(list(video_results.values())) / len(video_results), 2))
print("\nocr Results")
pprint(ocr_results)
if len(ocr_results) > 0:
print("ocr average:", round(sum(list(ocr_results.values())) / len(ocr_results), 2))
print("\nvqa Results")
pprint(vqa_results)
if len(vqa_results) > 0:
print("vqa average:", round(sum(list(vqa_results.values())) / len(vqa_results), 2))