Create down_openr1.py
Browse files- down_openr1.py +63 -0
down_openr1.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from tqdm import tqdm
|
3 |
+
from datasets import load_dataset
|
4 |
+
import os
|
5 |
+
|
6 |
+
ds_id = "lmms-lab/multimodal-open-r1-8k-verified"
|
7 |
+
out_root = "LLaMA-Factory/data"
|
8 |
+
dataset_name = "open_r1_v2"
|
9 |
+
ds = load_dataset(ds_id, split="train")
|
10 |
+
SYSTEM_PROMPT = (
|
11 |
+
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
|
12 |
+
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
|
13 |
+
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
|
14 |
+
"<think> reasoning process here </think><answer> answer here </answer>"
|
15 |
+
)
|
16 |
+
data = []
|
17 |
+
os.makedirs(f"{out_root}/{dataset_name}", exist_ok=True)
|
18 |
+
for idx, d in tqdm(enumerate(ds), total=len(ds)):
|
19 |
+
base_image_path = f"{dataset_name}/{idx}.png"
|
20 |
+
image_path = f"{out_root}/{base_image_path}"
|
21 |
+
image = d['image']
|
22 |
+
image.save(image_path)
|
23 |
+
conversations = [
|
24 |
+
{
|
25 |
+
"role": "user",
|
26 |
+
"content": "<image>\n" + d['problem']
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"role": "assistant",
|
30 |
+
"content": d['solution']
|
31 |
+
}
|
32 |
+
]
|
33 |
+
data.append({
|
34 |
+
"conversations": conversations,
|
35 |
+
"images": [base_image_path],
|
36 |
+
"system": SYSTEM_PROMPT
|
37 |
+
})
|
38 |
+
|
39 |
+
output_path = f"{out_root}/{dataset_name}.json"
|
40 |
+
with open(output_path, "w") as f:
|
41 |
+
json.dump(data, f, indent=4, ensure_ascii=False)
|
42 |
+
|
43 |
+
with open(f"{out_root}/dataset_info.json", "r") as f:
|
44 |
+
dataset_info = json.load(f)
|
45 |
+
|
46 |
+
dataset_info[dataset_name] = {
|
47 |
+
"file_name": f"{dataset_name}.json",
|
48 |
+
"formatting": "sharegpt",
|
49 |
+
"columns": {
|
50 |
+
"messages": "conversations",
|
51 |
+
"images": "images",
|
52 |
+
"system": "system"
|
53 |
+
},
|
54 |
+
"tags": {
|
55 |
+
"role_tag": "role",
|
56 |
+
"content_tag": "content",
|
57 |
+
"user_tag": "user",
|
58 |
+
"assistant_tag": "assistant"
|
59 |
+
}
|
60 |
+
}
|
61 |
+
|
62 |
+
with open(f"{out_root}/dataset_info.json", "w") as f:
|
63 |
+
json.dump(dataset_info, f, indent=4, ensure_ascii=False)
|