Datasets:

ArXiv:
License:
File size: 16,071 Bytes
61b59da
 
 
 
 
 
e6eae55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e794755
31a3897
e794755
cd89cc0
 
 
 
 
 
 
31a3897
e794755
e6eae55
 
 
 
 
 
 
e794755
31a3897
 
 
 
e6eae55
 
 
 
 
 
 
31a3897
e6eae55
31a3897
 
 
61b59da
31a3897
 
e6eae55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
 
 
e6eae55
31a3897
 
 
 
 
 
 
 
d903b08
31a3897
 
 
 
 
 
 
 
 
e794755
 
 
 
 
 
 
 
 
 
31a3897
 
e794755
 
 
31a3897
e794755
 
31a3897
 
e794755
31a3897
e794755
 
31a3897
 
d903b08
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
 
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
 
e794755
d903b08
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
d903b08
 
 
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d903b08
 
 
e794755
d903b08
 
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
e794755
 
 
 
 
 
 
 
 
 
 
 
d903b08
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
 
e794755
 
 
 
 
 
 
 
 
 
 
 
 
 
31a3897
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
---
license: cc-by-nc-nd-4.0
tags:
- Autonomous Driving
- Computer Vision
---

# Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset
[Yiming Li](https://roboticsyimingli.github.io/), 
[Zhiheng Li](https://zl3466.github.io/), 
[Nuo Chen](), 
[Moonjun Gong](https://moonjungong.github.io/), 
[Zonglin Lyu](), 
[Zehong Wang](), 
[Peili Jiang](), 
[Chen Feng](https://engineering.nyu.edu/faculty/chen-feng)

[Paper](https://arxiv.org/abs/2406.09383)

[Tutorial](#tutorial)

Checkout our [project website](https://ai4ce.github.io/MARS/) for demo videos.
Codes to reproduce the videos are available in `/visualize` folder of `main` branch.

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ooi8v0KOUhWYDbqbfLkVG.jpeg)

# Multiagent
<img src="asset/multiagent_21.gif" width="80%"/>

# Multitraversal
<img src="asset/multitraversal_61.gif" width="80%"/>


<br/>

# News

- [2024/06] Both Multiagent and Multitraversal subsets are now available for download on [huggingface](https://huggingface.co/datasets/ai4ce/MARS). 

- [2024/06]The preprint version is available on [arXiv]([https://huggingface.co/datasets/ai4ce/MARS](https://arxiv.org/abs/2406.09383)). 

- [2024/02] Our paper has been accepted on CVPR 2024 🎉🎉🎉



<br/>

# Abstract
In collaboration with the self-driving company [May Mobility](https://maymobility.com/), we present the MARS dataset which unifies scenarios that enable multiagent, multitraversal, and multimodal autonomous vehicle research.

MARS is collected with a fleet of autonomous vehicles driving within a certain geographical area. Each vehicle has its own route and different vehicles may appear at nearby locations. Each vehicle is equipped with a LiDAR and surround-view RGB cameras.

We curate two subsets in MARS: one facilitates collaborative driving with multiple vehicles simultaneously present at the same location, and the other enables memory retrospection through asynchronous traversals of the same location by multiple vehicles. We conduct experiments in place recognition and neural reconstruction. More importantly, MARS introduces new research opportunities and challenges such as multitraversal 3D reconstruction, multiagent perception, and unsupervised object discovery.


#### Our dataset uses the same structure as the [NuScenes](https://www.nuscenes.org/nuscenes) Dataset:

- Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene.
- Multiagent: the whole set is a NuScenes object, and each multiagent encounter is one scene.

<br/>

# License
[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)

<br/>

# Bibtex

```
@InProceedings{Li_2024_CVPR,
    author    = {Li, Yiming and Li, Zhiheng and Chen, Nuo and Gong, Moonjun and Lyu, Zonglin and Wang, Zehong and Jiang, Peili and Feng, Chen},
    title     = {Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {22041-22051}
}
```

<br/>

# Tutorial
This tutorial explains how the NuScenes structure works in our dataset, including how you may access a scene and query its samples of sensor data.

- [Devkit Initialization](#initialization)
  - [Multitraversal](#load-multitraversal)
  - [Multiagent](#load-multiagent)
- [Scene](#scene)
- [Sample](#sample)
- [Sample Data](#sample-data)
  - [Sensor Names](#sensor-names)
  - [Camera](#camera-data)
  - [LiDAR](#lidar-data)
  - [IMU](#imu-data)
  - [Ego & Sensor Pose](#vehicle-and-sensor-pose)
- [LiDAR-Image projection](#lidar-image-projection)

<br/>

## Initialization
First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
```
pip install nuscenes-devkit
```

Import NuScenes devkit:
```
from nuscenes.nuscenes import NuScenes
```

#### Load Multitraversal 
loading data of location 10:
```
# The "version" variable is the name of the folder holding all .json metadata tables.
location = 10
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True)
```

#### Load Multiagent
loading data for the full set:
```
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True)
```

<br/>


## Scene
To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
```
print(nusc.scene)
```
Output:
```
[{'token': '97hitl8ya1335v8zkixvsj3q69tgx801', 'nbr_samples': 611, 'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx', 'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu', 'name': '2023_10_04_scene_3_maisy', 'intersection': 10, 'err_max': 20068.00981996727},
{'token': 'o858jv3a464383gk9mm8at71ai994d3n', 'nbr_samples': 542, 'first_sample_token': '933ho5988jo3hu848b54749x10gd7u14', 'last_sample_token': 'os54se39x1px2ve12x3r1b87e0d7l1gn', 'name': '2023_10_04_scene_4_maisy', 'intersection': 10, 'err_max': 23959.357933579337},
{'token': 'xv2jkx6m0o3t044bazyz9nwbe5d5i7yy', 'nbr_samples': 702, 'first_sample_token': '8rqb40c919d6n5cd553c3j01v178k28m', 'last_sample_token': 'skr79z433oyi6jljr4nx7ft8c42549nn', 'name': '2023_10_04_scene_6_mike', 'intersection': 10, 'err_max': 27593.048433048432},
{'token': '48e90c7dx401j97391g6549zmljbg0hk', 'nbr_samples': 702, 'first_sample_token': 'ui8631xb2in5la133319c5301wvx1fib', 'last_sample_token': 'xrns1rpma4p00hf39305ckol3p91x59w', 'name': '2023_10_04_scene_9_mike', 'intersection': 10, 'err_max': 24777.237891737892},
...
]

```

The scenes can then be retrieved by indexing:
```
num_of_scenes = len(nusc.scene)
my_scene = nusc.scene[0]    # scene at index 0, which is the first scene of this location
print(first_scene)
```
Output:
```
{'token': '97hitl8ya1335v8zkixvsj3q69tgx801',
'nbr_samples': 611,
'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx',
'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu',
'name': '2023_10_04_scene_3_maisy',
'intersection': 10,
'err_max': 20068.00981996727}
```
- `nbr_samples`: number of samples (frames) of this scene.
- `name`: name of the scene, including its date and name of the vehicle it is from (in this example, the data is from Oct. 4th 2023, vehicle maisy).
- `intersection`: location index. 
- `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.

<br/>

## Sample
Get the first sample (frame) of one scene:
```
first_sample_token = my_scene['first_sample_token']    # get sample token
my_sample = nusc.get('sample', first_sample_token)    # get sample metadata
print(my_sample)
```

Output:
```
{'token': 'udrq868482482o88p9r2n8b86li7cfxx',
'timestamp': 1696454482883182,
'prev': '',
'next': 'v15b2l4iaq1x0abxr45jn6bi08j72i01',
'scene_token': '97hitl8ya1335v8zkixvsj3q69tgx801',
'data': {
  'CAM_FRONT_CENTER': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
  'CAM_FRONT_LEFT': 'c13nf903o913k30rrz33b0jq4f0z7y2d',
  'CAM_FRONT_RIGHT': '67ydh75sam2dtk67r8m3bk07ba0lz3ib',
  'CAM_BACK_CENTER': '1n09qfm9vw65xpohjqgji2g58459gfuq',
  'CAM_SIDE_LEFT': '14up588181925s8bqe3pe44d60316ey0',
  'CAM_SIDE_RIGHT': 'x95k7rvhmxkndcj8mc2821c1cs8d46y5',
  'LIDAR_FRONT_CENTER': '13y90okaf208cqqy1v54z87cpv88k2qy',
  'IMU_TOP': 'to711a9v6yltyvxn5653cth9w2o493z4'
},
'anns': []}
```
- `prev`: token of the previous sample.
- `next`': token of the next sample.
- `data`: dict of data tokens of this sample's sensor data.
- `anns`: empty as we do not have annotation data at this moment.

<br/>

## Sample Data
### Sensor Names
Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
```
['CAM_FRONT_CENTER',
'CAM_FRONT_LEFT',
'CAM_FRONT_RIGHT',
'CAM_BACK_CENTER',
'CAM_SIDE_LEFT',
'CAM_SIDE_RIGHT',
'LIDAR_FRONT_CENTER',
'IMU_TOP']
```

---
### Camera Data
All image data are already undistorted. 

To load a piece data, we start with querying its `sample_data` dictionary object from the metadata:
```
sensor = 'CAM_FRONT_CENTER'
sample_data_token = my_sample['data'][sensor]
FC_data = nusc.get('sample_data', sample_data_token)
print(FC_data)
```
Output: 
```
{'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'sample_token': 'udrq868482482o88p9r2n8b86li7cfxx',
'ego_pose_token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'calibrated_sensor_token': 'r5491t78vlex3qii8gyh3vjp0avkrj47',
'timestamp': 1696454482897062,
'fileformat': 'jpg',
'is_key_frame': True,
'height': 464,
'width': 720,
'filename': 'sweeps/CAM_FRONT_CENTER/1696454482897062.jpg',
'prev': '',
'next': '33r4265w297khyvqe033sl2r6m5iylcr',
'sensor_modality': 'camera',
'channel': 'CAM_FRONT_CENTER'}
```
- `ego_pose_token`: token of vehicle ego pose at the time of this sample.
- `calibrated_sensor_token`: token of sensor calibration information (e.g. distortion coefficient, camera intrinsics, sensor pose & location relative to vehicle, etc.).
- `is_key_frame`: disregard; all images have been marked as key frame in our dataset.
- `height`: image height in pixel
- `width`: image width in pixel
- `filename`: image directory relative to the dataset's root folder
- `prev`: previous data token for this sensor
- `next`: next data token for this sensor

After getting the `sample_data` dictionary, Use NuScenes devkit's `get_sample_data()` function to retrieve the data's absolute path. 

Then you may now load the image in any ways you'd like. Here's an example using `cv2`:
```
import cv2

data_path, boxes, camera_intrinsic = nusc.get_sample_data(sample_data_token)
img = cv2.imread(data_path)
cv2.imshow('fc_img', img)
cv2.waitKey()
```

Output: 
```
('{$dataset_root}/MARS_multitraversal/10/sweeps/CAM_FRONT_CENTER/1696454482897062.jpg',
[],
array([[661.094568 ,   0.       , 370.6625195],
       [  0.       , 657.7004865, 209.509716 ],
       [  0.       ,   0.       ,   1.       ]]))
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/EBo7WeD9JV1asBfbONTym.png)

---
### LiDAR Data

Impoirt data calss "LidarPointCloud" from NuScenes devkit for convenient lidar pcd loading and manipulation.

The `.bcd.bin` LiDAR data in our dataset has 5 dimensions: [ x || y || z || intensity || ring ].

The 5-dimensional data array is in `pcd.points`. Below is an example of visualizing the pcd with Open3d interactive visualizer.


```
import open3d as o3d
from nuscenes.utils.data_classes import LidarPointCloud

sensor = 'LIDAR_FRONT_CENTER'
sample_data_token = my_sample['data'][sensor]
lidar_data = nusc.get('sample_data', sample_data_token)

data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor])

pcd = LidarPointCloud.from_file(data_path)
print(pcd.points)
pts = pcd.points[:3].T

# open3d visualizer
vis1 = o3d.visualization.Visualizer()
vis1.create_window(
    window_name='pcd viewer',
    width=256 * 4,
    height=256 * 4,
    left=480,
    top=270)
vis1.get_render_option().background_color = [0, 0, 0]
vis1.get_render_option().point_size = 1
vis1.get_render_option().show_coordinate_frame = True

o3d_pcd = o3d.geometry.PointCloud()
o3d_pcd.points = o3d.utility.Vector3dVector(pts)

vis1.add_geometry(o3d_pcd)
while True:
    vis1.update_geometry(o3d_pcd)
    vis1.poll_events()
    vis1.update_renderer()
    time.sleep(0.005)
```

Output: 
```
5-d lidar data: 
[[ 3.7755847e+00  5.0539265e+00  5.4277039e+00 ...  3.1050100e+00
   3.4012783e+00  3.7089713e+00]
 [-6.3800979e+00 -7.9569578e+00 -7.9752398e+00 ... -7.9960880e+00
  -7.9981585e+00 -8.0107889e+00]
 [-1.5409404e+00 -3.2752687e-01  5.7313687e-01 ...  5.5921113e-01
  -7.5427920e-01  6.6252775e-02]
 [ 9.0000000e+00  1.6000000e+01  1.4000000e+01 ...  1.1000000e+01
   1.8000000e+01  1.6000000e+01]
 [ 4.0000000e+00  5.3000000e+01  1.0200000e+02 ...  1.0500000e+02
   2.6000000e+01  7.5000000e+01]]
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ZED1ba3r7qeBzkeNQK3oq.png)


---
### IMU Data
IMU data in our dataset is saved as json files.
```
sensor = 'IMU_TOP'
sample_data_token = my_sample['data'][sensor]
lidar_data = nusc.get('sample_data', sample_data_token)

data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor])

imu_data = json.load(open(data_path))
print(imu_data)
```

Output:
```
{'utime': 1696454482879084,
'lat': 42.28098291158676,
'lon': -83.74725341796875,
'elev': 259.40500593185425,
'vel': [0.19750464521348476, -4.99952995654127e-27, -0.00017731071625348704],
'avel': [-0.0007668623868539726, -0.0006575787383553688, 0.0007131154834496556],
'acc': [-0.28270150907337666, -0.03748669268679805, 9.785771369934082]}
```
- `lat`: GPS latitude.
- `lon`: GPS longitude.
- `elev`: GPS elevation.
- `vel`: vehicle instant velocity [x, y, z] in m/s.
- `avel`: vehicle instant angular velocity [x, y, z] in rad/s.
- `acc`: vehicle instant acceleration [x, y, z] in m/s^2.

---
### Vehicle and Sensor Pose
Poses are represented as one rotation matrix and one translation matrix.
- rotation: quaternion [w, x, y, z]
- translation: [x, y, z] in meters

Sensor-to-vehicle poses may differ for different vehicles. But for each vehicle, its sensor poses should remain unchanged across all scenes & samples.

Vehicle ego pose can be quaried from sensor data. It should be the same for all sensors in the same sample.

```
# get the vehicle ego pose at the time of this FC_data
vehicle_pose_fc = nusc.get('ego_pose', FC_data['ego_pose_token'])
print("vehicle pose: \n", vehicle_pose_fc, "\n")

# get the vehicle ego pose at the time of this lidar_data, should be the same as that queried from FC_data as they are from the same sample.
vehicle_pose = nusc.get('ego_pose', lidar_data['ego_pose_token'])
print("vehicle pose: \n", vehicle_pose, "\n")

# get camera pose relative to vehicle at the time of this sample
fc_pose = nusc.get('calibrated_sensor', FC_data['calibrated_sensor_token'])
print("CAM_FRONT_CENTER pose: \n", fc_pose, "\n")

# get lidar pose relative to vehicle at the time of this sample
lidar_pose = nusc.get('calibrated_sensor', lidar_data['calibrated_sensor_token'])
print("CAM_FRONT_CENTER pose: \n", lidar_pose)
```

Output: 
```
vehicle pose: 
 {'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'timestamp': 1696454482883182,
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065],
'translation': [-146.83352790433003, -21.327001411798392, 0.0]} 

vehicle pose: 
 {'token': '13y90okaf208cqqy1v54z87cpv88k2qy',
'timestamp': 1696454482883182,
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065],
'translation': [-146.83352790433003, -21.327001411798392, 0.0]} 

CAM_FRONT_CENTER pose: 
 {'token': 'r5491t78vlex3qii8gyh3vjp0avkrj47',
'sensor_token': '1gk062vf442xsn86xo152qw92596k8b9',
'translation': [2.24715, 0.0, 1.4725],
'rotation': [0.49834929780875276, -0.4844970241435727, 0.5050790448056688, -0.5116695901338464],
'camera_intrinsic': [[661.094568, 0.0, 370.6625195], [0.0, 657.7004865, 209.509716], [0.0, 0.0, 1.0]],
'distortion_coefficient': [0.122235, -1.055498, 2.795589, -2.639154]} 

CAM_FRONT_CENTER pose: 
 {'token': '6f367iy1b5c97e8gu614n63jg1f5os19',
'sensor_token': 'myfmnd47g91ijn0a7481eymfk253iwy9',
'translation': [2.12778, 0.0, 1.57],
'rotation': [0.9997984797097376, 0.009068089160690487, 0.006271772522201215, -0.016776012592418482]}

```

<br/>

## LiDAR-Image projection
- Use NuScenes devkit's `render_pointcloud_in_image()` method.
- The first variable is a sample token.
- Use `camera_channel` to specify the camera name you'd like to project the poiint cloud onto.
```
nusc.render_pointcloud_in_image(my_sample['token'],
                                pointsensor_channel='LIDAR_FRONT_CENTER',
                                camera_channel='CAM_FRONT_CENTER',
                                render_intensity=False,
                                show_lidarseg=False)
```

Output: 

![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/zDrqBzfs6oV5ugVCsCQLL.png)