File size: 16,071 Bytes
61b59da e6eae55 e794755 31a3897 e794755 cd89cc0 31a3897 e794755 e6eae55 e794755 31a3897 e6eae55 31a3897 e6eae55 31a3897 61b59da 31a3897 e6eae55 31a3897 e6eae55 31a3897 d903b08 31a3897 e794755 31a3897 e794755 31a3897 e794755 31a3897 e794755 31a3897 e794755 31a3897 d903b08 e794755 31a3897 e794755 31a3897 e794755 d903b08 e794755 d903b08 e794755 d903b08 e794755 d903b08 e794755 31a3897 e794755 d903b08 e794755 31a3897 e794755 31a3897 e794755 31a3897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
---
license: cc-by-nc-nd-4.0
tags:
- Autonomous Driving
- Computer Vision
---
# Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset
[Yiming Li](https://roboticsyimingli.github.io/),
[Zhiheng Li](https://zl3466.github.io/),
[Nuo Chen](),
[Moonjun Gong](https://moonjungong.github.io/),
[Zonglin Lyu](),
[Zehong Wang](),
[Peili Jiang](),
[Chen Feng](https://engineering.nyu.edu/faculty/chen-feng)
[Paper](https://arxiv.org/abs/2406.09383)
[Tutorial](#tutorial)
Checkout our [project website](https://ai4ce.github.io/MARS/) for demo videos.
Codes to reproduce the videos are available in `/visualize` folder of `main` branch.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ooi8v0KOUhWYDbqbfLkVG.jpeg)
# Multiagent
<img src="asset/multiagent_21.gif" width="80%"/>
# Multitraversal
<img src="asset/multitraversal_61.gif" width="80%"/>
<br/>
# News
- [2024/06] Both Multiagent and Multitraversal subsets are now available for download on [huggingface](https://huggingface.co/datasets/ai4ce/MARS).
- [2024/06]The preprint version is available on [arXiv]([https://huggingface.co/datasets/ai4ce/MARS](https://arxiv.org/abs/2406.09383)).
- [2024/02] Our paper has been accepted on CVPR 2024 🎉🎉🎉
<br/>
# Abstract
In collaboration with the self-driving company [May Mobility](https://maymobility.com/), we present the MARS dataset which unifies scenarios that enable multiagent, multitraversal, and multimodal autonomous vehicle research.
MARS is collected with a fleet of autonomous vehicles driving within a certain geographical area. Each vehicle has its own route and different vehicles may appear at nearby locations. Each vehicle is equipped with a LiDAR and surround-view RGB cameras.
We curate two subsets in MARS: one facilitates collaborative driving with multiple vehicles simultaneously present at the same location, and the other enables memory retrospection through asynchronous traversals of the same location by multiple vehicles. We conduct experiments in place recognition and neural reconstruction. More importantly, MARS introduces new research opportunities and challenges such as multitraversal 3D reconstruction, multiagent perception, and unsupervised object discovery.
#### Our dataset uses the same structure as the [NuScenes](https://www.nuscenes.org/nuscenes) Dataset:
- Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene.
- Multiagent: the whole set is a NuScenes object, and each multiagent encounter is one scene.
<br/>
# License
[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
<br/>
# Bibtex
```
@InProceedings{Li_2024_CVPR,
author = {Li, Yiming and Li, Zhiheng and Chen, Nuo and Gong, Moonjun and Lyu, Zonglin and Wang, Zehong and Jiang, Peili and Feng, Chen},
title = {Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {22041-22051}
}
```
<br/>
# Tutorial
This tutorial explains how the NuScenes structure works in our dataset, including how you may access a scene and query its samples of sensor data.
- [Devkit Initialization](#initialization)
- [Multitraversal](#load-multitraversal)
- [Multiagent](#load-multiagent)
- [Scene](#scene)
- [Sample](#sample)
- [Sample Data](#sample-data)
- [Sensor Names](#sensor-names)
- [Camera](#camera-data)
- [LiDAR](#lidar-data)
- [IMU](#imu-data)
- [Ego & Sensor Pose](#vehicle-and-sensor-pose)
- [LiDAR-Image projection](#lidar-image-projection)
<br/>
## Initialization
First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
```
pip install nuscenes-devkit
```
Import NuScenes devkit:
```
from nuscenes.nuscenes import NuScenes
```
#### Load Multitraversal
loading data of location 10:
```
# The "version" variable is the name of the folder holding all .json metadata tables.
location = 10
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True)
```
#### Load Multiagent
loading data for the full set:
```
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True)
```
<br/>
## Scene
To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
```
print(nusc.scene)
```
Output:
```
[{'token': '97hitl8ya1335v8zkixvsj3q69tgx801', 'nbr_samples': 611, 'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx', 'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu', 'name': '2023_10_04_scene_3_maisy', 'intersection': 10, 'err_max': 20068.00981996727},
{'token': 'o858jv3a464383gk9mm8at71ai994d3n', 'nbr_samples': 542, 'first_sample_token': '933ho5988jo3hu848b54749x10gd7u14', 'last_sample_token': 'os54se39x1px2ve12x3r1b87e0d7l1gn', 'name': '2023_10_04_scene_4_maisy', 'intersection': 10, 'err_max': 23959.357933579337},
{'token': 'xv2jkx6m0o3t044bazyz9nwbe5d5i7yy', 'nbr_samples': 702, 'first_sample_token': '8rqb40c919d6n5cd553c3j01v178k28m', 'last_sample_token': 'skr79z433oyi6jljr4nx7ft8c42549nn', 'name': '2023_10_04_scene_6_mike', 'intersection': 10, 'err_max': 27593.048433048432},
{'token': '48e90c7dx401j97391g6549zmljbg0hk', 'nbr_samples': 702, 'first_sample_token': 'ui8631xb2in5la133319c5301wvx1fib', 'last_sample_token': 'xrns1rpma4p00hf39305ckol3p91x59w', 'name': '2023_10_04_scene_9_mike', 'intersection': 10, 'err_max': 24777.237891737892},
...
]
```
The scenes can then be retrieved by indexing:
```
num_of_scenes = len(nusc.scene)
my_scene = nusc.scene[0] # scene at index 0, which is the first scene of this location
print(first_scene)
```
Output:
```
{'token': '97hitl8ya1335v8zkixvsj3q69tgx801',
'nbr_samples': 611,
'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx',
'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu',
'name': '2023_10_04_scene_3_maisy',
'intersection': 10,
'err_max': 20068.00981996727}
```
- `nbr_samples`: number of samples (frames) of this scene.
- `name`: name of the scene, including its date and name of the vehicle it is from (in this example, the data is from Oct. 4th 2023, vehicle maisy).
- `intersection`: location index.
- `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.
<br/>
## Sample
Get the first sample (frame) of one scene:
```
first_sample_token = my_scene['first_sample_token'] # get sample token
my_sample = nusc.get('sample', first_sample_token) # get sample metadata
print(my_sample)
```
Output:
```
{'token': 'udrq868482482o88p9r2n8b86li7cfxx',
'timestamp': 1696454482883182,
'prev': '',
'next': 'v15b2l4iaq1x0abxr45jn6bi08j72i01',
'scene_token': '97hitl8ya1335v8zkixvsj3q69tgx801',
'data': {
'CAM_FRONT_CENTER': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'CAM_FRONT_LEFT': 'c13nf903o913k30rrz33b0jq4f0z7y2d',
'CAM_FRONT_RIGHT': '67ydh75sam2dtk67r8m3bk07ba0lz3ib',
'CAM_BACK_CENTER': '1n09qfm9vw65xpohjqgji2g58459gfuq',
'CAM_SIDE_LEFT': '14up588181925s8bqe3pe44d60316ey0',
'CAM_SIDE_RIGHT': 'x95k7rvhmxkndcj8mc2821c1cs8d46y5',
'LIDAR_FRONT_CENTER': '13y90okaf208cqqy1v54z87cpv88k2qy',
'IMU_TOP': 'to711a9v6yltyvxn5653cth9w2o493z4'
},
'anns': []}
```
- `prev`: token of the previous sample.
- `next`': token of the next sample.
- `data`: dict of data tokens of this sample's sensor data.
- `anns`: empty as we do not have annotation data at this moment.
<br/>
## Sample Data
### Sensor Names
Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
```
['CAM_FRONT_CENTER',
'CAM_FRONT_LEFT',
'CAM_FRONT_RIGHT',
'CAM_BACK_CENTER',
'CAM_SIDE_LEFT',
'CAM_SIDE_RIGHT',
'LIDAR_FRONT_CENTER',
'IMU_TOP']
```
---
### Camera Data
All image data are already undistorted.
To load a piece data, we start with querying its `sample_data` dictionary object from the metadata:
```
sensor = 'CAM_FRONT_CENTER'
sample_data_token = my_sample['data'][sensor]
FC_data = nusc.get('sample_data', sample_data_token)
print(FC_data)
```
Output:
```
{'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'sample_token': 'udrq868482482o88p9r2n8b86li7cfxx',
'ego_pose_token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'calibrated_sensor_token': 'r5491t78vlex3qii8gyh3vjp0avkrj47',
'timestamp': 1696454482897062,
'fileformat': 'jpg',
'is_key_frame': True,
'height': 464,
'width': 720,
'filename': 'sweeps/CAM_FRONT_CENTER/1696454482897062.jpg',
'prev': '',
'next': '33r4265w297khyvqe033sl2r6m5iylcr',
'sensor_modality': 'camera',
'channel': 'CAM_FRONT_CENTER'}
```
- `ego_pose_token`: token of vehicle ego pose at the time of this sample.
- `calibrated_sensor_token`: token of sensor calibration information (e.g. distortion coefficient, camera intrinsics, sensor pose & location relative to vehicle, etc.).
- `is_key_frame`: disregard; all images have been marked as key frame in our dataset.
- `height`: image height in pixel
- `width`: image width in pixel
- `filename`: image directory relative to the dataset's root folder
- `prev`: previous data token for this sensor
- `next`: next data token for this sensor
After getting the `sample_data` dictionary, Use NuScenes devkit's `get_sample_data()` function to retrieve the data's absolute path.
Then you may now load the image in any ways you'd like. Here's an example using `cv2`:
```
import cv2
data_path, boxes, camera_intrinsic = nusc.get_sample_data(sample_data_token)
img = cv2.imread(data_path)
cv2.imshow('fc_img', img)
cv2.waitKey()
```
Output:
```
('{$dataset_root}/MARS_multitraversal/10/sweeps/CAM_FRONT_CENTER/1696454482897062.jpg',
[],
array([[661.094568 , 0. , 370.6625195],
[ 0. , 657.7004865, 209.509716 ],
[ 0. , 0. , 1. ]]))
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/EBo7WeD9JV1asBfbONTym.png)
---
### LiDAR Data
Impoirt data calss "LidarPointCloud" from NuScenes devkit for convenient lidar pcd loading and manipulation.
The `.bcd.bin` LiDAR data in our dataset has 5 dimensions: [ x || y || z || intensity || ring ].
The 5-dimensional data array is in `pcd.points`. Below is an example of visualizing the pcd with Open3d interactive visualizer.
```
import open3d as o3d
from nuscenes.utils.data_classes import LidarPointCloud
sensor = 'LIDAR_FRONT_CENTER'
sample_data_token = my_sample['data'][sensor]
lidar_data = nusc.get('sample_data', sample_data_token)
data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor])
pcd = LidarPointCloud.from_file(data_path)
print(pcd.points)
pts = pcd.points[:3].T
# open3d visualizer
vis1 = o3d.visualization.Visualizer()
vis1.create_window(
window_name='pcd viewer',
width=256 * 4,
height=256 * 4,
left=480,
top=270)
vis1.get_render_option().background_color = [0, 0, 0]
vis1.get_render_option().point_size = 1
vis1.get_render_option().show_coordinate_frame = True
o3d_pcd = o3d.geometry.PointCloud()
o3d_pcd.points = o3d.utility.Vector3dVector(pts)
vis1.add_geometry(o3d_pcd)
while True:
vis1.update_geometry(o3d_pcd)
vis1.poll_events()
vis1.update_renderer()
time.sleep(0.005)
```
Output:
```
5-d lidar data:
[[ 3.7755847e+00 5.0539265e+00 5.4277039e+00 ... 3.1050100e+00
3.4012783e+00 3.7089713e+00]
[-6.3800979e+00 -7.9569578e+00 -7.9752398e+00 ... -7.9960880e+00
-7.9981585e+00 -8.0107889e+00]
[-1.5409404e+00 -3.2752687e-01 5.7313687e-01 ... 5.5921113e-01
-7.5427920e-01 6.6252775e-02]
[ 9.0000000e+00 1.6000000e+01 1.4000000e+01 ... 1.1000000e+01
1.8000000e+01 1.6000000e+01]
[ 4.0000000e+00 5.3000000e+01 1.0200000e+02 ... 1.0500000e+02
2.6000000e+01 7.5000000e+01]]
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ZED1ba3r7qeBzkeNQK3oq.png)
---
### IMU Data
IMU data in our dataset is saved as json files.
```
sensor = 'IMU_TOP'
sample_data_token = my_sample['data'][sensor]
lidar_data = nusc.get('sample_data', sample_data_token)
data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor])
imu_data = json.load(open(data_path))
print(imu_data)
```
Output:
```
{'utime': 1696454482879084,
'lat': 42.28098291158676,
'lon': -83.74725341796875,
'elev': 259.40500593185425,
'vel': [0.19750464521348476, -4.99952995654127e-27, -0.00017731071625348704],
'avel': [-0.0007668623868539726, -0.0006575787383553688, 0.0007131154834496556],
'acc': [-0.28270150907337666, -0.03748669268679805, 9.785771369934082]}
```
- `lat`: GPS latitude.
- `lon`: GPS longitude.
- `elev`: GPS elevation.
- `vel`: vehicle instant velocity [x, y, z] in m/s.
- `avel`: vehicle instant angular velocity [x, y, z] in rad/s.
- `acc`: vehicle instant acceleration [x, y, z] in m/s^2.
---
### Vehicle and Sensor Pose
Poses are represented as one rotation matrix and one translation matrix.
- rotation: quaternion [w, x, y, z]
- translation: [x, y, z] in meters
Sensor-to-vehicle poses may differ for different vehicles. But for each vehicle, its sensor poses should remain unchanged across all scenes & samples.
Vehicle ego pose can be quaried from sensor data. It should be the same for all sensors in the same sample.
```
# get the vehicle ego pose at the time of this FC_data
vehicle_pose_fc = nusc.get('ego_pose', FC_data['ego_pose_token'])
print("vehicle pose: \n", vehicle_pose_fc, "\n")
# get the vehicle ego pose at the time of this lidar_data, should be the same as that queried from FC_data as they are from the same sample.
vehicle_pose = nusc.get('ego_pose', lidar_data['ego_pose_token'])
print("vehicle pose: \n", vehicle_pose, "\n")
# get camera pose relative to vehicle at the time of this sample
fc_pose = nusc.get('calibrated_sensor', FC_data['calibrated_sensor_token'])
print("CAM_FRONT_CENTER pose: \n", fc_pose, "\n")
# get lidar pose relative to vehicle at the time of this sample
lidar_pose = nusc.get('calibrated_sensor', lidar_data['calibrated_sensor_token'])
print("CAM_FRONT_CENTER pose: \n", lidar_pose)
```
Output:
```
vehicle pose:
{'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50',
'timestamp': 1696454482883182,
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065],
'translation': [-146.83352790433003, -21.327001411798392, 0.0]}
vehicle pose:
{'token': '13y90okaf208cqqy1v54z87cpv88k2qy',
'timestamp': 1696454482883182,
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065],
'translation': [-146.83352790433003, -21.327001411798392, 0.0]}
CAM_FRONT_CENTER pose:
{'token': 'r5491t78vlex3qii8gyh3vjp0avkrj47',
'sensor_token': '1gk062vf442xsn86xo152qw92596k8b9',
'translation': [2.24715, 0.0, 1.4725],
'rotation': [0.49834929780875276, -0.4844970241435727, 0.5050790448056688, -0.5116695901338464],
'camera_intrinsic': [[661.094568, 0.0, 370.6625195], [0.0, 657.7004865, 209.509716], [0.0, 0.0, 1.0]],
'distortion_coefficient': [0.122235, -1.055498, 2.795589, -2.639154]}
CAM_FRONT_CENTER pose:
{'token': '6f367iy1b5c97e8gu614n63jg1f5os19',
'sensor_token': 'myfmnd47g91ijn0a7481eymfk253iwy9',
'translation': [2.12778, 0.0, 1.57],
'rotation': [0.9997984797097376, 0.009068089160690487, 0.006271772522201215, -0.016776012592418482]}
```
<br/>
## LiDAR-Image projection
- Use NuScenes devkit's `render_pointcloud_in_image()` method.
- The first variable is a sample token.
- Use `camera_channel` to specify the camera name you'd like to project the poiint cloud onto.
```
nusc.render_pointcloud_in_image(my_sample['token'],
pointsensor_channel='LIDAR_FRONT_CENTER',
camera_channel='CAM_FRONT_CENTER',
render_intensity=False,
show_lidarseg=False)
```
Output:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/zDrqBzfs6oV5ugVCsCQLL.png)
|