|
--- |
|
license: cc-by-nc-nd-4.0 |
|
tags: |
|
- Autonomous Driving |
|
- Computer Vision |
|
--- |
|
# Open MARS Dataset |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ooi8v0KOUhWYDbqbfLkVG.jpeg) |
|
|
|
<br/> |
|
|
|
## Welcome to the tutorial of Open MARS Dataset! |
|
|
|
Our paper has been accepted on CVPR 2024 🎉🎉🎉 |
|
|
|
Checkout our [project website](https://ai4ce.github.io/MARS/) for demo videos. |
|
Codes to reproduce the videos are available in `/visualize` folder of our [github repo](https://github.com/ai4ce/MARS). |
|
|
|
<br/> |
|
|
|
## Intro |
|
### The MARS dataset is collected with a fleet of autonomous vehicles from [MayMobility](https://maymobility.com/). |
|
|
|
Our dataset uses the same structure as the [NuScenes](https://www.nuscenes.org/nuscenes) Dataset: |
|
|
|
- Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene. |
|
- Multiagent: the whole set is a NuScenes object, and each multiagent encounter is one scene. |
|
|
|
<br/> |
|
|
|
## Download |
|
Both Multiagent and Multitraversal subsets are now available for [download on huggingface](https://huggingface.co/datasets/ai4ce/MARS). |
|
|
|
<br/> |
|
|
|
## Overview |
|
This tutorial explains how the NuScenes structure works in our dataset, including how you may access a scene and query its samples of sensor data. |
|
|
|
- [Devkit Initialization](#initialization) |
|
- [Multitraversal](#load-multitraversal) |
|
- [Multiagent](#load-multiagent) |
|
- [Scene](#scene) |
|
- [Sample](#sample) |
|
- [Sample Data](#sample-data) |
|
- [Sensor Names](#sensor-names) |
|
- [Camera](#camera-data) |
|
- [LiDAR](#lidar-data) |
|
- [IMU](#imu-data) |
|
- [Ego & Sensor Pose](#vehicle-and-sensor-pose) |
|
- [LiDAR-Image projection](#lidar-image-projection) |
|
|
|
<br/> |
|
|
|
## Initialization |
|
First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip: |
|
``` |
|
pip install nuscenes-devkit |
|
``` |
|
|
|
Import NuScenes devkit: |
|
``` |
|
from nuscenes.nuscenes import NuScenes |
|
``` |
|
|
|
#### Load Multitraversal |
|
loading data of location 10: |
|
``` |
|
# The "version" variable is the name of the folder holding all .json metadata tables. |
|
location = 10 |
|
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True) |
|
``` |
|
|
|
#### Load Multiagent |
|
loading data for the full set: |
|
``` |
|
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True) |
|
``` |
|
|
|
<br/> |
|
|
|
|
|
## Scene |
|
To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set): |
|
``` |
|
print(nusc.scene) |
|
``` |
|
Output: |
|
``` |
|
[{'token': '97hitl8ya1335v8zkixvsj3q69tgx801', 'nbr_samples': 611, 'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx', 'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu', 'name': '2023_10_04_scene_3_maisy', 'intersection': 10, 'err_max': 20068.00981996727}, |
|
{'token': 'o858jv3a464383gk9mm8at71ai994d3n', 'nbr_samples': 542, 'first_sample_token': '933ho5988jo3hu848b54749x10gd7u14', 'last_sample_token': 'os54se39x1px2ve12x3r1b87e0d7l1gn', 'name': '2023_10_04_scene_4_maisy', 'intersection': 10, 'err_max': 23959.357933579337}, |
|
{'token': 'xv2jkx6m0o3t044bazyz9nwbe5d5i7yy', 'nbr_samples': 702, 'first_sample_token': '8rqb40c919d6n5cd553c3j01v178k28m', 'last_sample_token': 'skr79z433oyi6jljr4nx7ft8c42549nn', 'name': '2023_10_04_scene_6_mike', 'intersection': 10, 'err_max': 27593.048433048432}, |
|
{'token': '48e90c7dx401j97391g6549zmljbg0hk', 'nbr_samples': 702, 'first_sample_token': 'ui8631xb2in5la133319c5301wvx1fib', 'last_sample_token': 'xrns1rpma4p00hf39305ckol3p91x59w', 'name': '2023_10_04_scene_9_mike', 'intersection': 10, 'err_max': 24777.237891737892}, |
|
... |
|
] |
|
|
|
``` |
|
|
|
The scenes can then be retrieved by indexing: |
|
``` |
|
num_of_scenes = len(nusc.scene) |
|
my_scene = nusc.scene[0] # scene at index 0, which is the first scene of this location |
|
print(first_scene) |
|
``` |
|
Output: |
|
``` |
|
{'token': '97hitl8ya1335v8zkixvsj3q69tgx801', |
|
'nbr_samples': 611, |
|
'first_sample_token': 'udrq868482482o88p9r2n8b86li7cfxx', |
|
'last_sample_token': '7s5ogk8m9id7apixkqoh3rep0s9113xu', |
|
'name': '2023_10_04_scene_3_maisy', |
|
'intersection': 10, |
|
'err_max': 20068.00981996727} |
|
``` |
|
- `nbr_samples`: number of samples (frames) of this scene. |
|
- `name`: name of the scene, including its date and name of the vehicle it is from (in this example, the data is from Oct. 4th 2023, vehicle maisy). |
|
- `intersection`: location index. |
|
- `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene. |
|
|
|
<br/> |
|
|
|
## Sample |
|
Get the first sample (frame) of one scene: |
|
``` |
|
first_sample_token = my_scene['first_sample_token'] # get sample token |
|
my_sample = nusc.get('sample', first_sample_token) # get sample metadata |
|
print(my_sample) |
|
``` |
|
|
|
Output: |
|
``` |
|
{'token': 'udrq868482482o88p9r2n8b86li7cfxx', |
|
'timestamp': 1696454482883182, |
|
'prev': '', |
|
'next': 'v15b2l4iaq1x0abxr45jn6bi08j72i01', |
|
'scene_token': '97hitl8ya1335v8zkixvsj3q69tgx801', |
|
'data': { |
|
'CAM_FRONT_CENTER': 'q9e0pgk3wiot983g4ha8178zrnr37m50', |
|
'CAM_FRONT_LEFT': 'c13nf903o913k30rrz33b0jq4f0z7y2d', |
|
'CAM_FRONT_RIGHT': '67ydh75sam2dtk67r8m3bk07ba0lz3ib', |
|
'CAM_BACK_CENTER': '1n09qfm9vw65xpohjqgji2g58459gfuq', |
|
'CAM_SIDE_LEFT': '14up588181925s8bqe3pe44d60316ey0', |
|
'CAM_SIDE_RIGHT': 'x95k7rvhmxkndcj8mc2821c1cs8d46y5', |
|
'LIDAR_FRONT_CENTER': '13y90okaf208cqqy1v54z87cpv88k2qy', |
|
'IMU_TOP': 'to711a9v6yltyvxn5653cth9w2o493z4' |
|
}, |
|
'anns': []} |
|
``` |
|
- `prev`: token of the previous sample. |
|
- `next`': token of the next sample. |
|
- `data`: dict of data tokens of this sample's sensor data. |
|
- `anns`: empty as we do not have annotation data at this moment. |
|
|
|
<br/> |
|
|
|
## Sample Data |
|
### Sensor Names |
|
Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are: |
|
``` |
|
['CAM_FRONT_CENTER', |
|
'CAM_FRONT_LEFT', |
|
'CAM_FRONT_RIGHT', |
|
'CAM_BACK_CENTER', |
|
'CAM_SIDE_LEFT', |
|
'CAM_SIDE_RIGHT', |
|
'LIDAR_FRONT_CENTER', |
|
'IMU_TOP'] |
|
``` |
|
|
|
--- |
|
### Camera Data |
|
All image data are already undistorted. |
|
|
|
To load a piece data, we start with querying its `sample_data` dictionary object from the metadata: |
|
``` |
|
sensor = 'CAM_FRONT_CENTER' |
|
sample_data_token = my_sample['data'][sensor] |
|
FC_data = nusc.get('sample_data', sample_data_token) |
|
print(FC_data) |
|
``` |
|
Output: |
|
``` |
|
{'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50', |
|
'sample_token': 'udrq868482482o88p9r2n8b86li7cfxx', |
|
'ego_pose_token': 'q9e0pgk3wiot983g4ha8178zrnr37m50', |
|
'calibrated_sensor_token': 'r5491t78vlex3qii8gyh3vjp0avkrj47', |
|
'timestamp': 1696454482897062, |
|
'fileformat': 'jpg', |
|
'is_key_frame': True, |
|
'height': 464, |
|
'width': 720, |
|
'filename': 'sweeps/CAM_FRONT_CENTER/1696454482897062.jpg', |
|
'prev': '', |
|
'next': '33r4265w297khyvqe033sl2r6m5iylcr', |
|
'sensor_modality': 'camera', |
|
'channel': 'CAM_FRONT_CENTER'} |
|
``` |
|
- `ego_pose_token`: token of vehicle ego pose at the time of this sample. |
|
- `calibrated_sensor_token`: token of sensor calibration information (e.g. distortion coefficient, camera intrinsics, sensor pose & location relative to vehicle, etc.). |
|
- `is_key_frame`: disregard; all images have been marked as key frame in our dataset. |
|
- `height`: image height in pixel |
|
- `width`: image width in pixel |
|
- `filename`: image directory relative to the dataset's root folder |
|
- `prev`: previous data token for this sensor |
|
- `next`: next data token for this sensor |
|
|
|
After getting the `sample_data` dictionary, Use NuScenes devkit's `get_sample_data()` function to retrieve the data's absolute path. |
|
|
|
Then you may now load the image in any ways you'd like. Here's an example using `cv2`: |
|
``` |
|
import cv2 |
|
|
|
data_path, boxes, camera_intrinsic = nusc.get_sample_data(sample_data_token) |
|
img = cv2.imread(data_path) |
|
cv2.imshow('fc_img', img) |
|
cv2.waitKey() |
|
``` |
|
|
|
Output: |
|
``` |
|
('{$dataset_root}/MARS_multitraversal/10/sweeps/CAM_FRONT_CENTER/1696454482897062.jpg', |
|
[], |
|
array([[661.094568 , 0. , 370.6625195], |
|
[ 0. , 657.7004865, 209.509716 ], |
|
[ 0. , 0. , 1. ]])) |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/EBo7WeD9JV1asBfbONTym.png) |
|
|
|
--- |
|
### LiDAR Data |
|
|
|
Impoirt data calss "LidarPointCloud" from NuScenes devkit for convenient lidar pcd loading and manipulation. |
|
|
|
The `.bcd.bin` LiDAR data in our dataset has 5 dimensions: [ x || y || z || intensity || ring ]. |
|
|
|
The 5-dimensional data array is in `pcd.points`. Below is an example of visualizing the pcd with Open3d interactive visualizer. |
|
|
|
|
|
``` |
|
import open3d as o3d |
|
from nuscenes.utils.data_classes import LidarPointCloud |
|
|
|
sensor = 'LIDAR_FRONT_CENTER' |
|
sample_data_token = my_sample['data'][sensor] |
|
lidar_data = nusc.get('sample_data', sample_data_token) |
|
|
|
data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor]) |
|
|
|
pcd = LidarPointCloud.from_file(data_path) |
|
print(pcd.points) |
|
pts = pcd.points[:3].T |
|
|
|
# open3d visualizer |
|
vis1 = o3d.visualization.Visualizer() |
|
vis1.create_window( |
|
window_name='pcd viewer', |
|
width=256 * 4, |
|
height=256 * 4, |
|
left=480, |
|
top=270) |
|
vis1.get_render_option().background_color = [0, 0, 0] |
|
vis1.get_render_option().point_size = 1 |
|
vis1.get_render_option().show_coordinate_frame = True |
|
|
|
o3d_pcd = o3d.geometry.PointCloud() |
|
o3d_pcd.points = o3d.utility.Vector3dVector(pts) |
|
|
|
vis1.add_geometry(o3d_pcd) |
|
while True: |
|
vis1.update_geometry(o3d_pcd) |
|
vis1.poll_events() |
|
vis1.update_renderer() |
|
time.sleep(0.005) |
|
``` |
|
|
|
Output: |
|
``` |
|
5-d lidar data: |
|
[[ 3.7755847e+00 5.0539265e+00 5.4277039e+00 ... 3.1050100e+00 |
|
3.4012783e+00 3.7089713e+00] |
|
[-6.3800979e+00 -7.9569578e+00 -7.9752398e+00 ... -7.9960880e+00 |
|
-7.9981585e+00 -8.0107889e+00] |
|
[-1.5409404e+00 -3.2752687e-01 5.7313687e-01 ... 5.5921113e-01 |
|
-7.5427920e-01 6.6252775e-02] |
|
[ 9.0000000e+00 1.6000000e+01 1.4000000e+01 ... 1.1000000e+01 |
|
1.8000000e+01 1.6000000e+01] |
|
[ 4.0000000e+00 5.3000000e+01 1.0200000e+02 ... 1.0500000e+02 |
|
2.6000000e+01 7.5000000e+01]] |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ZED1ba3r7qeBzkeNQK3oq.png) |
|
|
|
|
|
--- |
|
### IMU Data |
|
IMU data in our dataset is saved as json files. |
|
``` |
|
sensor = 'IMU_TOP' |
|
sample_data_token = my_sample['data'][sensor] |
|
lidar_data = nusc.get('sample_data', sample_data_token) |
|
|
|
data_path, boxes, _ = nusc.get_sample_data(my_sample['data'][sensor]) |
|
|
|
imu_data = json.load(open(data_path)) |
|
print(imu_data) |
|
``` |
|
|
|
Output: |
|
``` |
|
{'utime': 1696454482879084, |
|
'lat': 42.28098291158676, |
|
'lon': -83.74725341796875, |
|
'elev': 259.40500593185425, |
|
'vel': [0.19750464521348476, -4.99952995654127e-27, -0.00017731071625348704], |
|
'avel': [-0.0007668623868539726, -0.0006575787383553688, 0.0007131154834496556], |
|
'acc': [-0.28270150907337666, -0.03748669268679805, 9.785771369934082]} |
|
``` |
|
- `lat`: GPS latitude. |
|
- `lon`: GPS longitude. |
|
- `elev`: GPS elevation. |
|
- `vel`: vehicle instant velocity [x, y, z] in m/s. |
|
- `avel`: vehicle instant angular velocity [x, y, z] in rad/s. |
|
- `acc`: vehicle instant acceleration [x, y, z] in m/s^2. |
|
|
|
--- |
|
### Vehicle and Sensor Pose |
|
Poses are represented as one rotation matrix and one translation matrix. |
|
- rotation: quaternion [w, x, y, z] |
|
- translation: [x, y, z] in meters |
|
|
|
Sensor-to-vehicle poses may differ for different vehicles. But for each vehicle, its sensor poses should remain unchanged across all scenes & samples. |
|
|
|
Vehicle ego pose can be quaried from sensor data. It should be the same for all sensors in the same sample. |
|
|
|
``` |
|
# get the vehicle ego pose at the time of this FC_data |
|
vehicle_pose_fc = nusc.get('ego_pose', FC_data['ego_pose_token']) |
|
print("vehicle pose: \n", vehicle_pose_fc, "\n") |
|
|
|
# get the vehicle ego pose at the time of this lidar_data, should be the same as that queried from FC_data as they are from the same sample. |
|
vehicle_pose = nusc.get('ego_pose', lidar_data['ego_pose_token']) |
|
print("vehicle pose: \n", vehicle_pose, "\n") |
|
|
|
# get camera pose relative to vehicle at the time of this sample |
|
fc_pose = nusc.get('calibrated_sensor', FC_data['calibrated_sensor_token']) |
|
print("CAM_FRONT_CENTER pose: \n", fc_pose, "\n") |
|
|
|
# get lidar pose relative to vehicle at the time of this sample |
|
lidar_pose = nusc.get('calibrated_sensor', lidar_data['calibrated_sensor_token']) |
|
print("CAM_FRONT_CENTER pose: \n", lidar_pose) |
|
``` |
|
|
|
Output: |
|
``` |
|
vehicle pose: |
|
{'token': 'q9e0pgk3wiot983g4ha8178zrnr37m50', |
|
'timestamp': 1696454482883182, |
|
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065], |
|
'translation': [-146.83352790433003, -21.327001411798392, 0.0]} |
|
|
|
vehicle pose: |
|
{'token': '13y90okaf208cqqy1v54z87cpv88k2qy', |
|
'timestamp': 1696454482883182, |
|
'rotation': [-0.7174290249840286, 0.0, -0.0, -0.6966316057361065], |
|
'translation': [-146.83352790433003, -21.327001411798392, 0.0]} |
|
|
|
CAM_FRONT_CENTER pose: |
|
{'token': 'r5491t78vlex3qii8gyh3vjp0avkrj47', |
|
'sensor_token': '1gk062vf442xsn86xo152qw92596k8b9', |
|
'translation': [2.24715, 0.0, 1.4725], |
|
'rotation': [0.49834929780875276, -0.4844970241435727, 0.5050790448056688, -0.5116695901338464], |
|
'camera_intrinsic': [[661.094568, 0.0, 370.6625195], [0.0, 657.7004865, 209.509716], [0.0, 0.0, 1.0]], |
|
'distortion_coefficient': [0.122235, -1.055498, 2.795589, -2.639154]} |
|
|
|
CAM_FRONT_CENTER pose: |
|
{'token': '6f367iy1b5c97e8gu614n63jg1f5os19', |
|
'sensor_token': 'myfmnd47g91ijn0a7481eymfk253iwy9', |
|
'translation': [2.12778, 0.0, 1.57], |
|
'rotation': [0.9997984797097376, 0.009068089160690487, 0.006271772522201215, -0.016776012592418482]} |
|
|
|
``` |
|
|
|
<br/> |
|
|
|
## LiDAR-Image projection |
|
- Use NuScenes devkit's `render_pointcloud_in_image()` method. |
|
- The first variable is a sample token. |
|
- Use `camera_channel` to specify the camera name you'd like to project the poiint cloud onto. |
|
``` |
|
nusc.render_pointcloud_in_image(my_sample['token'], |
|
pointsensor_channel='LIDAR_FRONT_CENTER', |
|
camera_channel='CAM_FRONT_CENTER', |
|
render_intensity=False, |
|
show_lidarseg=False) |
|
``` |
|
|
|
Output: |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/zDrqBzfs6oV5ugVCsCQLL.png) |
|
|
|
|
|
|
|
|
|
|