File size: 9,209 Bytes
bfbf441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d706db
bfbf441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c1111
bfbf441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb7ddb
 
 
 
 
 
bfbf441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
license: cc-by-nc-sa-4.0
task_categories:
- translation
- text-retrieval
language:
- fi
- gn
- ht
- id
- ja
- ka
- ro
- so
- sw
- ta
- th
- tr
- vi
- zh
tags:
- news
- multilingual
- machine-translated
- nllb
pretty_name: xMINDsmall
size_categories:
- 10K<n<100K
multilinguality:
- translation
- multilingual
- multi-parallel
source_datasets:
- MIND
configs:
- config_name: fin
  data_files:
  - split: train
    path: data/fin/train.parquet.gzip
  - split: dev
    path: data/fin/dev.parquet.gzip
- config_name: grn
  data_files:
  - split: train
    path: data/grn/train.parquet.gzip
  - split: dev
    path: data/grn/dev.parquet.gzip
- config_name: hat
  data_files:
  - split: train
    path: data/hat/train.parquet.gzip
  - split: dev
    path: data/hat/dev.parquet.gzip
- config_name: ind
  data_files:
  - split: train
    path: data/ind/train.parquet.gzip
  - split: dev
    path: data/ind/dev.parquet.gzip
- config_name: jpn
  data_files:
  - split: train
    path: data/jpn/train.parquet.gzip
  - split: dev
    path: data/jpn/dev.parquet.gzip
- config_name: kat
  data_files:
  - split: train
    path: data/kat/train.parquet.gzip
  - split: dev
    path: data/kat/dev.parquet.gzip
- config_name: ron
  data_files:
  - split: train
    path: data/ron/train.parquet.gzip
  - split: dev
    path: data/ron/dev.parquet.gzip
- config_name: som
  data_files:
  - split: train
    path: data/som/train.parquet.gzip
  - split: dev
    path: data/som/dev.parquet.gzip
- config_name: swh
  data_files:
  - split: train
    path: data/swh/train.parquet.gzip
  - split: dev
    path: data/swh/dev.parquet.gzip
- config_name: tam
  data_files:
  - split: train
    path: data/tam/train.parquet.gzip
  - split: dev
    path: data/tam/dev.parquet.gzip
- config_name: tha
  data_files:
  - split: train
    path: data/tha/train.parquet.gzip
  - split: dev
    path: data/tha/dev.parquet.gzip
- config_name: tur
  data_files:
  - split: train
    path: data/tur/train.parquet.gzip
  - split: dev
    path: data/tur/dev.parquet.gzip
- config_name: vie
  data_files:
  - split: train
    path: data/vie/train.parquet.gzip
  - split: dev
    path: data/vie/dev.parquet.gzip
- config_name: zho
  data_files:
  - split: train
    path: data/zho/train.parquet.gzip
  - split: dev
    path: data/zho/dev.parquet.gzip
---

# Dataset Card for xMINDsmall

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Uses](#uses)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Source Data](#source-data)
  - [Data Collection and Processing](#data-collection-and-processing)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://huggingface.co/datasets/aiana94/xMINDsmall
- **Repository:** https://github.com/andreeaiana/xMIND 
- **Paper:**  [MIND Your Language: A Multilingual Dataset for Cross-lingual News Recommendation](https://arxiv.org/abs/2403.17876)
- **Point of Contact:** [Andreea Iana](https://andreeaiana.github.io/)
- **License:** [CC-BY-4.0-NC-SA](https://creativecommons.org/licenses/by-nc-sa/4.0/)


### Dataset Summary

xMINDsmall is an open, large-scale multi-parallel news dataset for multi- and cross-lingual news recommendation. 
It is derived from the English [MINDsmall](https://msnews.github.io/) dataset using open-source neural machine translation (i.e., [NLLB 3.3B](https://huggingface.co/facebook/nllb-200-3.3B)).

For the *large version* of the dataset, see [xMINDlarge](https://huggingface.co/datasets/aiana94/xMINDlarge).

### Uses 

This dataset can be used for machine translation, text retrieval, or as a benchmark dataset for news recommendation.


### Languages

xMIND contains news translated into 14 linguistically and geographically diverse languages, with digital footprints of varying sizes.

| **Code** 	| **Language**     	| **Script** 	| **Macro-area** 	| **Family**     	| **Genus**             	|
|:----------|:------------------|:--------------|:------------------|:------------------|:--------------------------|
| FIN      	| Finnish          	| Latin      	| Eurasia        	| Uralic         	| Finnic                	| 
| GRN      	| Guarani          	| Latin      	| South-America  	| Tupian         	| Maweti-Guarani        	| 
| HAT      	| Haitian Creole   	| Latin      	| North-America  	| Indo-European  	| Creoles and Pidgins   	| 
| IND      	| Indonesian       	| Latin      	| Papunesia      	| Austronesian   	| Malayo-Sumbawan       	| 
| JPN     	| Japanese         	| Japanese   	| Eurasia        	| Japonic        	| Japanesic             	| 
| KAT      	| Georgian         	| Georgian   	| Eurasia        	| Kartvelic      	| Georgian-Zan          	| 
| RON      	| Romanian         	| Latin      	| Eurasia        	| Indo-European  	| Romance               	| 
| SOM      	| Somali           	| Latin      	| Africa         	| Afro-Asiatic   	| Lowland East Cushitic 	| 
| SWH      	| Swahili          	| Latin      	| Africa         	| Niger-Congo    	| Bantu                 	| 
| TAM      	| Tamil            	| Tamil      	| Eurasia        	| Dravidian      	| Dravidian             	| 
| THA      	| Thai             	| Thai       	| Eurasia        	| Tai-Kadai      	| Kam-Tai               	| 
| TUR      	| Turkish          	| Latin      	| Eurasia        	| Altaic         	| Turkic                	| 
| VIE      	| Vietnamese       	| Latin      	| Eurasia        	| Austro-Asiatic 	| Vietic                	| 
| ZHO      	| Mandarin Chinese 	| Han        	| Eurasia        	| Sino-Tibetan   	| Sinitic               	| 


## Dataset Structure

### Data Instances
```
>>> from datasets import load_dataset
>>> data = load_dataset('aiana94/xMINDsmall', 'ron')

# Please, specify the language code.

# A data point example is below:

{
"nid": "N49265"
"title": "Aceste reţete cu sos de afine sunt perfecte pentru cina de Ziua Recunoştinţei.",
"abstract": "Nu vei mai vrea niciodată versiunea cumpărată din magazin."
}

```

### 


### Data Fields

- nid (string): news ID (same as in the [MIND dataset](https://msnews.github.io/))
- title (string): news title
- abstract (string) : news abstract (optional)

### Data Splits

For all languages, there are two split: `train`, and `dev`.

## Dataset Creation


### Source Data

The news were machine-translated from the [MINDsmall dataset](https://msnews.github.io/).

#### Data Collection and Processing

We translated the news articles using the open-source model [NLLB 3.3B](https://huggingface.co/facebook/nllb-200-3.3B). 
For more details regarding the translation setup and data quality, we refer to the corresponding [paper](https://arxiv.org/abs/2403.17876).

#### Personal and Sensitive Information

The data is sourced from newspaper sources and contains mentions of public figures and individuals.


## Considerations for Using the Data

### Social Impact of Dataset
[More Information Needed]


### Discussion of Biases
[More Information Needed]


### Other Known Limitations

Users should keep in mind that the dataset contains short news texts (e.g., news titles and abstracts), which might limit the applicability of the developed systems to other domains.

## Additional Information 

### Licensing Information
The dataset is released under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
If you intend to use, adapt, or share xMINDsmall, particularly together with additional news and click behavior information from the original MIND dataset, please read and reference the [Microsoft Research License Terms](https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf) of MIND.

### Citation Infomation

**BibTeX:**

```bibtex
@inproceedings{iana2024mind,
  title={Mind your language: a multilingual dataset for cross-lingual news recommendation},
  author={Iana, Andreea and Glava{\v{s}}, Goran and Paulheim, Heiko},
  booktitle={Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={553--563},
  year={2024}
}

```

Also consider citing the following:

```bibtex
@inproceedings{wu2020mind,
  title={Mind: A large-scale dataset for news recommendation},
  author={Wu, Fangzhao and Qiao, Ying and Chen, Jiun-Hung and Wu, Chuhan and Qi, Tao and Lian, Jianxun and Liu, Danyang and Xie, Xing and Gao, Jianfeng and Wu, Winnie and others},
  booktitle={Proceedings of the 58th annual meeting of the association for computational linguistics},
  pages={3597--3606},
  year={2020}
}
```