File size: 2,327 Bytes
680239e 71156c8 3b0a9fb 4943c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: cc-by-nc-sa-4.0
task_categories:
- image-classification
- image-segmentation
dataset_info:
features:
- name: image
dtype: image
- name: mask
dtype: image
- name: label
dtype:
class_label:
names:
'0': normal
'1': abnormal
splits:
- name: train
num_bytes: 252483624
num_examples: 219
- name: test
num_bytes: 26466712
num_examples: 132
download_size: 404252480
dataset_size: 278950336
---
## MVTec Capsule Category
### Dataset Labels
```
{0: "normal", 1: "abnormal"}
```
### Number of Images
```json
{'train': 219, 'test': 132}
```
### How to Use
- Install [datasets](https://pypi.org/project/datasets/):
```bash
pip install datasets
```
- Load the dataset:
```python
from datasets import load_dataset
ds = load_dataset("alexsu52/mvtec_capsule")
example = ds['train'][0]
```
### MVTEC Dataset Page
[https://www.mvtec.com/company/research/datasets/mvtec-ad](https://www.mvtec.com/company/research/datasets/mvtec-ad)
### Citation
Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten Steger: The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: International Journal of Computer Vision 129(4):1038-1059, 2021, DOI: 10.1007/s11263-020-01400-4.
Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9584-9592, 2019, DOI: 10.1109/CVPR.2019.00982.
### License
CC BY-NC-SA 4.0
### Dataset Summary
MVTec AD is a dataset for benchmarking anomaly detection methods with a focus on industrial inspection. It contains over 5000 high-resolution images divided into fifteen different object and texture categories. Each category comprises a set of defect-free training images and a test set of images with various kinds of defects as well as images without defects.
Pixel-precise annotations of all anomalies are also provided. More information can be in our paper "MVTec AD – A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection" and its extended version "The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection". |