akshitab commited on
Commit
ca504e4
·
1 Parent(s): ba4aec3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -253
README.md CHANGED
@@ -100,262 +100,11 @@ The dataset contains gzipped tab delimited text files for each direction. Each
100
 
101
  The dataset contains 248 language pairs.
102
 
103
- Columns are:
104
- source_sentence target_sentence laser_score source_sentence_lid target_sentence_lid where lid is language classification probability
105
-
106
- Here are the sentence counts for each pair:\
107
- 1621007 afr-eng \
108
- 1172757 afr-som \
109
- 497739 amh-eng\
110
- 1888196 amh-fra\
111
- 566422 amh-nya\
112
- 89763 amh-orm\
113
- 844829 amh-sna\
114
- 491233 amh-som\
115
- 52337 amh-ssw\
116
- 1013477 amh-swh\
117
- 257342 amh-tsn\
118
- 231190 amh-tso\
119
- 99902 amh-umb\
120
- 508311 amh-xho\
121
- 399634 amh-yor\
122
- 834986 amh-zul\
123
- 1372999 eng-fuv\
124
- 2309758 eng-hau\
125
- 172973 eng-ibo\
126
- 1656141 eng-kam\
127
- 9732858 eng-kin\
128
- 2890688 eng-lin\
129
- 3450573 eng-lug\
130
- 2767100 eng-luo\
131
- 3043677 eng-nso\
132
- 1548650 eng-nya\
133
- 2793755 eng-orm\
134
- 8782707 eng-sna\
135
- 576601 eng-som\
136
- 165712 eng-ssw\
137
- 23358739 eng-swh\
138
- 5931529 eng-tsn\
139
- 630860 eng-tso\
140
- 302901 eng-umb\
141
- 95678 eng-wol\
142
- 8690985 eng-xho\
143
- 1455571 eng-yor\
144
- 3862020 eng-zul\
145
- 372003 fra-hau\
146
- 630593 fra-ibo\
147
- 198309 fra-kam\
148
- 1289491 fra-kin\
149
- 347026 fra-lin\
150
- 377017 fra-lug\
151
- 295465 fra-luo\
152
- 321118 fra-nso\
153
- 1170250 fra-nya\
154
- 319649 fra-orm\
155
- 1256559 fra-som\
156
- 119523 fra-ssw\
157
- 2607867 fra-swh\
158
- 630801 fra-tsn\
159
- 440861 fra-tso\
160
- 236624 fra-umb\
161
- 189659 fra-wol\
162
- 1092123 fra-xho\
163
- 1760905 fra-zul\
164
- 227958 fuv-hau\
165
- 89652 fuv-ibo\
166
- 13571 fuv-kam\
167
- 192596 fuv-kin\
168
- 79341 fuv-lug\
169
- 50756 fuv-luo\
170
- 42429 fuv-nso\
171
- 189176 fuv-nya
172
- 67398 fuv-orm\
173
- 106809 fuv-sna\
174
- 203640 fuv-som\
175
- 19283 fuv-ssw\
176
- 275428 fuv-swh\
177
- 74068 fuv-tsn\
178
- 55015 fuv-tso\
179
- 27888 fuv-umb\
180
- 138286 fuv-xho\
181
- 331301 fuv-yor\
182
- 150846 fuv-zul\
183
- 247694 hau-ibo\
184
- 90033 hau-kam\
185
- 317291 hau-kin\
186
- 169056 hau-lug\
187
- 152246 hau-luo\
188
- 158432 hau-nso\
189
- 1141968 hau-nya\
190
- 101928 hau-orm\
191
- 780160 hau-sna\
192
- 490683 hau-som\
193
- 73076 hau-ssw\
194
- 893732 hau-swh\
195
- 265892 hau-tsn\
196
- 213552 hau-tso\
197
- 111124 hau-umb\
198
- 596312 hau-xho\
199
- 762819 hau-yor\
200
- 796053 hau-zul\
201
- 33966 ibo-kam\
202
- 154467 ibo-kin\
203
- 91272 ibo-lug\
204
- 71387 ibo-luo\
205
- 81767 ibo-nso\
206
- 486357 ibo-nya\
207
- 52249 ibo-orm\
208
- 444070 ibo-sna\
209
- 337727 ibo-som\
210
- 36426 ibo-ssw\
211
- 479101 ibo-swh\
212
- 131142 ibo-tsn\
213
- 99214 ibo-tso\
214
- 48163 ibo-umb\
215
- 323382 ibo-xho\
216
- 378378 ibo-yor\
217
- 491925 ibo-zul\
218
- 74809 kam-kin\
219
- 52158 kam-lug\
220
- 39193 kam-luo\
221
- 35061 kam-nso\
222
- 92704 kam-nya\
223
- 33964 kam-orm\
224
- 94385 kam-sna\
225
- 84297 kam-som\
226
- 16222 kam-ssw\
227
- 223474 kam-swh\
228
- 69242 kam-tsn\
229
- 73198 kam-tso\
230
- 41157 kam-umb\
231
- 80998 kam-xho\
232
- 69432 kam-yor\
233
- 114922 kam-zul\
234
- 188222 kin-lug\
235
- 157234 kin-luo\
236
- 196675 kin-nso\
237
- 389725 kin-nya\
238
- 101820 kin-orm\
239
- 385576 kin-sna\
240
- 258130 kin-som\
241
- 85684 kin-ssw\
242
- 743661 kin-swh\
243
- 268221 kin-tsn\
244
- 315691 kin-tso\
245
- 122759 kin-umb\
246
- 361464 kin-xho\
247
- 213902 kin-yor\
248
- 492158 kin-zul\
249
- 105776 lug-luo\
250
- 107569 lug-nso\
251
- 183247 lug-nya\
252
- 64732 lug-orm\
253
- 197359 lug-sna\
254
- 131828 lug-som\
255
- 51518 lug-ssw\
256
- 325122 lug-swh\
257
- 175387 lug-tsn\
258
- 148662 lug-tso\
259
- 75469 lug-umb\
260
- 154149 lug-xho\
261
- 137179 lug-yor\
262
- 194564 lug-zul\
263
- 87376 luo-nso\
264
- 166259 luo-nya\
265
- 48212 luo-orm\
266
- 204663 luo-sna\
267
- 123244 luo-som\
268
- 38356 luo-ssw\
269
- 324826 luo-swh\
270
- 133960 luo-tsn\
271
- 132306 luo-tso\
272
- 68896 luo-umb\
273
- 143748 luo-xho\
274
- 110753 luo-yor\
275
- 196325 luo-zul\
276
- 154111 nso-nya\
277
- 70340 nso-orm\
278
- 155175 nso-sna\
279
- 130594 nso-som\
280
- 74696 nso-ssw\
281
- 307206 nso-swh\
282
- 234768 nso-tsn\
283
- 212052 nso-tso\
284
- 63006 nso-umb\
285
- 200563 nso-xho\
286
- 148906 nso-yor\
287
- 230661 nso-zul\
288
- 82514 nya-orm\
289
- 976015 nya-sna\
290
- 516451 nya-som\
291
- 76598 nya-ssw\
292
- 1078568 nya-swh\
293
- 276998 nya-tsn\
294
- 350167 nya-tso\
295
- 141972 nya-umb\
296
- 698857 nya-xho\
297
- 512418 nya-yor\
298
- 1062461 nya-zul\
299
- 91493 orm-sna\
300
- 83049 orm-som\
301
- 31701 orm-ssw\
302
- 178212 orm-swh\
303
- 97553 orm-tsn\
304
- 78559 orm-tso\
305
- 44331 orm-umb\
306
- 95505 orm-xho\
307
- 73868 orm-yor\
308
- 92733 orm-zul\
309
- 511185 sna-som\
310
- 76168 sna-ssw\
311
- 1095473 sna-swh\
312
- 287574 sna-tsn\
313
- 336898 sna-tso\
314
- 152770 sna-umb\
315
- 842612 sna-xho\
316
- 524739 sna-yor\
317
- 1160370 sna-zul\
318
- 61247 som-ssw\
319
- 604372 som-swh\
320
- 179485 som-tsn\
321
- 177327 som-tso\
322
- 93461 som-umb\
323
- 69318 som-wol\
324
- 362513 som-xho\
325
- 355099 som-yor\
326
- 506404 som-zul\
327
- 147869 ssw-swh\
328
- 85369 ssw-tsn\
329
- 101540 ssw-tso\
330
- 29533 ssw-umb\
331
- 97437 ssw-xho\
332
- 66000 ssw-yor\
333
- 142991 ssw-zul\
334
- 480942 swh-tsn\
335
- 553410 swh-tso\
336
- 276967 swh-umb\
337
- 785796 swh-xho\
338
- 559321 swh-yor\
339
- 1240423 swh-zul\
340
- 285124 tsn-tso\
341
- 107024 tsn-umb\
342
- 287133 tsn-xho\
343
- 194308 tsn-yor\
344
- 341119 tsn-zul\
345
- 128803 tso-umb\
346
- 383556 tso-xho\
347
- 168359 tso-yor\
348
- 471398 tso-zul\
349
- 132264 umb-xho\
350
- 81309 umb-yor\
351
- 181634 umb-zul\
352
- 371261 xho-yor\
353
- 1066327 xho-zul\
354
- 560858 yor-zul
355
 
356
  ### Data Fields
357
 
358
- Every instance for a language pair contains the following fields: 'translation' (containing sentence pairs), 'laser_score', 'source_sentence_lid', 'target_sentence_lid'.
359
 
360
  Example:
361
  ```
 
100
 
101
  The dataset contains 248 language pairs.
102
 
103
+ Sentence counts for each pair can be found [here](sentence_counts.txt).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  ### Data Fields
106
 
107
+ Every instance for a language pair contains the following fields: 'translation' (containing sentence pairs), 'laser_score', 'source_sentence_lid', 'target_sentence_lid', where 'lid' is language classification probability.
108
 
109
  Example:
110
  ```