Update README.md
Browse files
README.md
CHANGED
@@ -100,262 +100,11 @@ The dataset contains gzipped tab delimited text files for each direction. Each
|
|
100 |
|
101 |
The dataset contains 248 language pairs.
|
102 |
|
103 |
-
|
104 |
-
source_sentence target_sentence laser_score source_sentence_lid target_sentence_lid where lid is language classification probability
|
105 |
-
|
106 |
-
Here are the sentence counts for each pair:\
|
107 |
-
1621007 afr-eng \
|
108 |
-
1172757 afr-som \
|
109 |
-
497739 amh-eng\
|
110 |
-
1888196 amh-fra\
|
111 |
-
566422 amh-nya\
|
112 |
-
89763 amh-orm\
|
113 |
-
844829 amh-sna\
|
114 |
-
491233 amh-som\
|
115 |
-
52337 amh-ssw\
|
116 |
-
1013477 amh-swh\
|
117 |
-
257342 amh-tsn\
|
118 |
-
231190 amh-tso\
|
119 |
-
99902 amh-umb\
|
120 |
-
508311 amh-xho\
|
121 |
-
399634 amh-yor\
|
122 |
-
834986 amh-zul\
|
123 |
-
1372999 eng-fuv\
|
124 |
-
2309758 eng-hau\
|
125 |
-
172973 eng-ibo\
|
126 |
-
1656141 eng-kam\
|
127 |
-
9732858 eng-kin\
|
128 |
-
2890688 eng-lin\
|
129 |
-
3450573 eng-lug\
|
130 |
-
2767100 eng-luo\
|
131 |
-
3043677 eng-nso\
|
132 |
-
1548650 eng-nya\
|
133 |
-
2793755 eng-orm\
|
134 |
-
8782707 eng-sna\
|
135 |
-
576601 eng-som\
|
136 |
-
165712 eng-ssw\
|
137 |
-
23358739 eng-swh\
|
138 |
-
5931529 eng-tsn\
|
139 |
-
630860 eng-tso\
|
140 |
-
302901 eng-umb\
|
141 |
-
95678 eng-wol\
|
142 |
-
8690985 eng-xho\
|
143 |
-
1455571 eng-yor\
|
144 |
-
3862020 eng-zul\
|
145 |
-
372003 fra-hau\
|
146 |
-
630593 fra-ibo\
|
147 |
-
198309 fra-kam\
|
148 |
-
1289491 fra-kin\
|
149 |
-
347026 fra-lin\
|
150 |
-
377017 fra-lug\
|
151 |
-
295465 fra-luo\
|
152 |
-
321118 fra-nso\
|
153 |
-
1170250 fra-nya\
|
154 |
-
319649 fra-orm\
|
155 |
-
1256559 fra-som\
|
156 |
-
119523 fra-ssw\
|
157 |
-
2607867 fra-swh\
|
158 |
-
630801 fra-tsn\
|
159 |
-
440861 fra-tso\
|
160 |
-
236624 fra-umb\
|
161 |
-
189659 fra-wol\
|
162 |
-
1092123 fra-xho\
|
163 |
-
1760905 fra-zul\
|
164 |
-
227958 fuv-hau\
|
165 |
-
89652 fuv-ibo\
|
166 |
-
13571 fuv-kam\
|
167 |
-
192596 fuv-kin\
|
168 |
-
79341 fuv-lug\
|
169 |
-
50756 fuv-luo\
|
170 |
-
42429 fuv-nso\
|
171 |
-
189176 fuv-nya
|
172 |
-
67398 fuv-orm\
|
173 |
-
106809 fuv-sna\
|
174 |
-
203640 fuv-som\
|
175 |
-
19283 fuv-ssw\
|
176 |
-
275428 fuv-swh\
|
177 |
-
74068 fuv-tsn\
|
178 |
-
55015 fuv-tso\
|
179 |
-
27888 fuv-umb\
|
180 |
-
138286 fuv-xho\
|
181 |
-
331301 fuv-yor\
|
182 |
-
150846 fuv-zul\
|
183 |
-
247694 hau-ibo\
|
184 |
-
90033 hau-kam\
|
185 |
-
317291 hau-kin\
|
186 |
-
169056 hau-lug\
|
187 |
-
152246 hau-luo\
|
188 |
-
158432 hau-nso\
|
189 |
-
1141968 hau-nya\
|
190 |
-
101928 hau-orm\
|
191 |
-
780160 hau-sna\
|
192 |
-
490683 hau-som\
|
193 |
-
73076 hau-ssw\
|
194 |
-
893732 hau-swh\
|
195 |
-
265892 hau-tsn\
|
196 |
-
213552 hau-tso\
|
197 |
-
111124 hau-umb\
|
198 |
-
596312 hau-xho\
|
199 |
-
762819 hau-yor\
|
200 |
-
796053 hau-zul\
|
201 |
-
33966 ibo-kam\
|
202 |
-
154467 ibo-kin\
|
203 |
-
91272 ibo-lug\
|
204 |
-
71387 ibo-luo\
|
205 |
-
81767 ibo-nso\
|
206 |
-
486357 ibo-nya\
|
207 |
-
52249 ibo-orm\
|
208 |
-
444070 ibo-sna\
|
209 |
-
337727 ibo-som\
|
210 |
-
36426 ibo-ssw\
|
211 |
-
479101 ibo-swh\
|
212 |
-
131142 ibo-tsn\
|
213 |
-
99214 ibo-tso\
|
214 |
-
48163 ibo-umb\
|
215 |
-
323382 ibo-xho\
|
216 |
-
378378 ibo-yor\
|
217 |
-
491925 ibo-zul\
|
218 |
-
74809 kam-kin\
|
219 |
-
52158 kam-lug\
|
220 |
-
39193 kam-luo\
|
221 |
-
35061 kam-nso\
|
222 |
-
92704 kam-nya\
|
223 |
-
33964 kam-orm\
|
224 |
-
94385 kam-sna\
|
225 |
-
84297 kam-som\
|
226 |
-
16222 kam-ssw\
|
227 |
-
223474 kam-swh\
|
228 |
-
69242 kam-tsn\
|
229 |
-
73198 kam-tso\
|
230 |
-
41157 kam-umb\
|
231 |
-
80998 kam-xho\
|
232 |
-
69432 kam-yor\
|
233 |
-
114922 kam-zul\
|
234 |
-
188222 kin-lug\
|
235 |
-
157234 kin-luo\
|
236 |
-
196675 kin-nso\
|
237 |
-
389725 kin-nya\
|
238 |
-
101820 kin-orm\
|
239 |
-
385576 kin-sna\
|
240 |
-
258130 kin-som\
|
241 |
-
85684 kin-ssw\
|
242 |
-
743661 kin-swh\
|
243 |
-
268221 kin-tsn\
|
244 |
-
315691 kin-tso\
|
245 |
-
122759 kin-umb\
|
246 |
-
361464 kin-xho\
|
247 |
-
213902 kin-yor\
|
248 |
-
492158 kin-zul\
|
249 |
-
105776 lug-luo\
|
250 |
-
107569 lug-nso\
|
251 |
-
183247 lug-nya\
|
252 |
-
64732 lug-orm\
|
253 |
-
197359 lug-sna\
|
254 |
-
131828 lug-som\
|
255 |
-
51518 lug-ssw\
|
256 |
-
325122 lug-swh\
|
257 |
-
175387 lug-tsn\
|
258 |
-
148662 lug-tso\
|
259 |
-
75469 lug-umb\
|
260 |
-
154149 lug-xho\
|
261 |
-
137179 lug-yor\
|
262 |
-
194564 lug-zul\
|
263 |
-
87376 luo-nso\
|
264 |
-
166259 luo-nya\
|
265 |
-
48212 luo-orm\
|
266 |
-
204663 luo-sna\
|
267 |
-
123244 luo-som\
|
268 |
-
38356 luo-ssw\
|
269 |
-
324826 luo-swh\
|
270 |
-
133960 luo-tsn\
|
271 |
-
132306 luo-tso\
|
272 |
-
68896 luo-umb\
|
273 |
-
143748 luo-xho\
|
274 |
-
110753 luo-yor\
|
275 |
-
196325 luo-zul\
|
276 |
-
154111 nso-nya\
|
277 |
-
70340 nso-orm\
|
278 |
-
155175 nso-sna\
|
279 |
-
130594 nso-som\
|
280 |
-
74696 nso-ssw\
|
281 |
-
307206 nso-swh\
|
282 |
-
234768 nso-tsn\
|
283 |
-
212052 nso-tso\
|
284 |
-
63006 nso-umb\
|
285 |
-
200563 nso-xho\
|
286 |
-
148906 nso-yor\
|
287 |
-
230661 nso-zul\
|
288 |
-
82514 nya-orm\
|
289 |
-
976015 nya-sna\
|
290 |
-
516451 nya-som\
|
291 |
-
76598 nya-ssw\
|
292 |
-
1078568 nya-swh\
|
293 |
-
276998 nya-tsn\
|
294 |
-
350167 nya-tso\
|
295 |
-
141972 nya-umb\
|
296 |
-
698857 nya-xho\
|
297 |
-
512418 nya-yor\
|
298 |
-
1062461 nya-zul\
|
299 |
-
91493 orm-sna\
|
300 |
-
83049 orm-som\
|
301 |
-
31701 orm-ssw\
|
302 |
-
178212 orm-swh\
|
303 |
-
97553 orm-tsn\
|
304 |
-
78559 orm-tso\
|
305 |
-
44331 orm-umb\
|
306 |
-
95505 orm-xho\
|
307 |
-
73868 orm-yor\
|
308 |
-
92733 orm-zul\
|
309 |
-
511185 sna-som\
|
310 |
-
76168 sna-ssw\
|
311 |
-
1095473 sna-swh\
|
312 |
-
287574 sna-tsn\
|
313 |
-
336898 sna-tso\
|
314 |
-
152770 sna-umb\
|
315 |
-
842612 sna-xho\
|
316 |
-
524739 sna-yor\
|
317 |
-
1160370 sna-zul\
|
318 |
-
61247 som-ssw\
|
319 |
-
604372 som-swh\
|
320 |
-
179485 som-tsn\
|
321 |
-
177327 som-tso\
|
322 |
-
93461 som-umb\
|
323 |
-
69318 som-wol\
|
324 |
-
362513 som-xho\
|
325 |
-
355099 som-yor\
|
326 |
-
506404 som-zul\
|
327 |
-
147869 ssw-swh\
|
328 |
-
85369 ssw-tsn\
|
329 |
-
101540 ssw-tso\
|
330 |
-
29533 ssw-umb\
|
331 |
-
97437 ssw-xho\
|
332 |
-
66000 ssw-yor\
|
333 |
-
142991 ssw-zul\
|
334 |
-
480942 swh-tsn\
|
335 |
-
553410 swh-tso\
|
336 |
-
276967 swh-umb\
|
337 |
-
785796 swh-xho\
|
338 |
-
559321 swh-yor\
|
339 |
-
1240423 swh-zul\
|
340 |
-
285124 tsn-tso\
|
341 |
-
107024 tsn-umb\
|
342 |
-
287133 tsn-xho\
|
343 |
-
194308 tsn-yor\
|
344 |
-
341119 tsn-zul\
|
345 |
-
128803 tso-umb\
|
346 |
-
383556 tso-xho\
|
347 |
-
168359 tso-yor\
|
348 |
-
471398 tso-zul\
|
349 |
-
132264 umb-xho\
|
350 |
-
81309 umb-yor\
|
351 |
-
181634 umb-zul\
|
352 |
-
371261 xho-yor\
|
353 |
-
1066327 xho-zul\
|
354 |
-
560858 yor-zul
|
355 |
|
356 |
### Data Fields
|
357 |
|
358 |
-
Every instance for a language pair contains the following fields: 'translation' (containing sentence pairs), 'laser_score', 'source_sentence_lid', 'target_sentence_lid'.
|
359 |
|
360 |
Example:
|
361 |
```
|
|
|
100 |
|
101 |
The dataset contains 248 language pairs.
|
102 |
|
103 |
+
Sentence counts for each pair can be found [here](sentence_counts.txt).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
### Data Fields
|
106 |
|
107 |
+
Every instance for a language pair contains the following fields: 'translation' (containing sentence pairs), 'laser_score', 'source_sentence_lid', 'target_sentence_lid', where 'lid' is language classification probability.
|
108 |
|
109 |
Example:
|
110 |
```
|