Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
ando55 commited on
Commit
16ad83a
·
verified ·
1 Parent(s): e471d41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -23
README.md CHANGED
@@ -637,39 +637,101 @@ size_categories:
637
 
638
  ## Dataset Description
639
 
640
- - **Repository**: https://github.com/ken-ando/WikiSQE
641
- - **Paper**: https://arxiv.org/abs/2305.05928
642
-
643
 
644
  ### Dataset Summary
645
 
646
- [WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia](https://arxiv.org/abs/2305.05928) by [Kenichiro Ando](https://ken-ando.github.io/kenichiro_ando/index.html), Satoshi Sekine and Mamoru Komachi (AAAI 2024).
647
 
648
- The WikiSQE dataset is an English-language dataset containing over 3.4 million sentences from all edit histories of English Wikipedia. All sentences in the dataset are considered by Wikipedia editors to have poor quality in some aspect. The aspects of poor quality are classified into 153 labels. A split for experiments used in the paper can be found here https://huggingface.co/datasets/ando55/WikiSQE_experiment.
 
649
 
650
- A complete list of labels:["a fact or an opinion", "according to whom", "additional citation needed", "ambiguous", "anachronism", "as of", "attribution needed", "author missing", "bare url", "better source needed", "broken citation", "broken footnote", "buzzword", "by how much", "by whom", "check issn", "check quotation syntax", "chronology citation needed", "circular definition", "circular reference", "citation needed", "citation not found", "clarification needed", "colloquialism", "compared to", "conflicted source", "contentious label", "context needed", "contradictory", "coordinates", "copyright violation", "date mismatch", "date missing", "dead link", "definition needed", "disambiguation needed", "discuss", "disputed", "dubious", "editorializing", "emphasis added", "episode needed", "example needed", "example's importance", "excessive citations", "excessive detail", "expand acronym", "failed verification", "from whom", "full citation needed", "further explanation needed", "generally unreliable", "globalize", "how", "how often", "image reference needed", "importance", "improper synthesis", "incomplete short citation", "incomprehensible", "inconsistent", "infringing link", "irrelevant citation", "jargon", "like whom", "link currently leads to a wrong person", "list entry too long", "marketing material", "may be outdated", "medical citation needed", "more detail needed", "need quotation on talk to verify", "need quotation to verify", "needs copy edit", "needs ipa", "needs update", "neologism", "neutrality disputed", "non sequitur", "non-primary source needed", "non-tertiary source needed", "not in citation given", "not specific enough to verify", "not verified in body", "old info", "opinion", "original research", "over-explained", "page needed", "page range too broad", "page will play audio when loaded", "password-protected", "peacock term", "predatory publisher", "promotion", "pronunciation", "qualify evidence", "quantify", "registration required", "relevant", "relevant to this paragraph", "relevant to this section", "repetition", "romanization needed", "says who", "scientific citation needed", "self-published source", "sentence fragment", "sia disambiguation needed", "sic", "spam link", "specify", "speculation", "spelling", "stress", "subscription may be required or content may be available in libraries", "subscription or uk public library membership required", "subscription required", "template problem", "text-source integrity", "third-party source needed", "this quote needs a citation", "this tertiary source reuses information from other sources but does not name them", "timeframe", "to be determined", "to whom", "tone", "unbalanced opinion", "under discussion", "unreliable fringe source", "unreliable medical source", "unreliable scientific source", "unreliable source", "until when", "user-generated source", "vague", "verification needed", "verify", "volume & issue needed", "weasel words", "when", "when defined as", "where", "which", "which calendar", "who", "who said this", "whose", "whose translation", "why", "with whom", "year missing", "year needed"]
651
 
652
- ### Data Fields
 
 
 
 
 
 
 
 
 
 
653
 
654
- - `text`: a string feature
655
 
656
- ### Label Details and Statistics
 
 
 
 
 
657
 
658
- See https://github.com/ken-ando/WikiSQE.
659
 
660
- ### Citation Information
 
 
 
 
 
 
 
 
 
 
661
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662
  @inproceedings{ando-etal-2024-wikisqe,
663
- title = "WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia",
664
- author = "Ando, Kenichiro and
665
- Sekine, Satoshi and
666
- Komachi, Mamoru",
667
- booktitle = "Proceedings of the AAAI Conference on Artificial Intelligence",
668
- volume= "38",
669
- number= "16",
670
- pages= "17656--17663",
671
- year= "2024",
672
- address = "Vancouver, Canada",
673
- publisher = "Association for the Advancement of Artificial Intelligence",
674
  }
675
- ```
 
 
637
 
638
  ## Dataset Description
639
 
640
+ * **Repository**: [https://github.com/ken-ando/WikiSQE](https://github.com/ken-ando/WikiSQE)
641
+ * **Paper**: [https://arxiv.org/abs/2305.05928](https://arxiv.org/abs/2305.05928)
 
642
 
643
  ### Dataset Summary
644
 
645
+ [WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia](https://arxiv.org/abs/2305.05928) by [Kenichiro Ando](https://ken-ando.github.io/kenichiro_ando/index.html), Satoshi Sekine and Mamoru Komachi (AAAI 2024).
646
 
647
+ The WikiSQE dataset is an Englishlanguage dataset containing **over 3.4million sentences** extracted from the complete edit history of English Wikipedia. Every sentence in the corpus is considered by Wikipedia editors to have **some quality issue**. The type of issue is annotated with one of **153 fine‑grained quality labels**.
648
+ The train/validation/test split used in the original paper is hosted separately at [https://huggingface.co/datasets/ando55/WikiSQE\_experiment](https://huggingface.co/datasets/ando55/WikiSQE_experiment).
649
 
650
+ A complete list of labels:
651
 
652
+ ```
653
+ ["a fact or an opinion", "according to whom", "additional citation needed", "ambiguous", "anachronism", "as of", "attribution needed", "author missing", "bare url", "better source needed", "broken citation", "broken footnote", "buzzword", "by how much", "by whom", "check issn", "check quotation syntax", "chronology citation needed", "circular definition", "circular reference", "citation needed", "citation not found", "clarification needed", "colloquialism", "compared to", "conflicted source", "contentious label", "context needed", "contradictory", "coordinates", "copyright violation", "date mismatch", "date missing", "dead link", "definition needed", "disambiguation needed", "discuss", "disputed", "dubious", "editorializing", "emphasis added", "episode needed", "example needed", "example's importance", "excessive citations", "excessive detail", "expand acronym", "failed verification", "from whom", "full citation needed", "further explanation needed", "generally unreliable", "globalize", "how", "how often", "image reference needed", "importance", "improper synthesis", "incomplete short citation", "incomprehensible", "inconsistent", "infringing link", "irrelevant citation", "jargon", "like whom", "link currently leads to a wrong person", "list entry too long", "marketing material", "may be outdated", "medical citation needed", "more detail needed", "need quotation on talk to verify", "need quotation to verify", "needs copy edit", "needs ipa", "needs update", "neologism", "neutrality disputed", "non sequitur", "non-primary source needed", "non-tertiary source needed", "not in citation given", "not specific enough to verify", "not verified in body", "old info", "opinion", "original research", "over-explained", "page needed", "page range too broad", "page will play audio when loaded", "password-protected", "peacock term", "predatory publisher", "promotion", "pronunciation", "qualify evidence", "quantify", "registration required", "relevant", "relevant to this paragraph", "relevant to this section", "repetition", "romanization needed", "says who", "scientific citation needed", "self-published source", "sentence fragment", "sia disambiguation needed", "sic", "spam link", "specify", "speculation", "spelling", "stress", "subscription may be required or content may be available in libraries", "subscription or uk public library membership required", "subscription required", "template problem", "text-source integrity", "third-party source needed", "this quote needs a citation", "this tertiary source reuses information from other sources but does not name them", "timeframe", "to be determined", "to whom", "tone", "unbalanced opinion", "under discussion", "unreliable fringe source", "unreliable medical source", "unreliable scientific source", "unreliable source", "until when", "user-generated source", "vague", "verification needed", "verify", "volume & issue needed", "weasel words", "when", "when defined as", "where", "which", "which calendar", "who", "who said this", "whose", "whose translation", "why", "with whom", "year missing", "year needed"]
654
+ ```
655
+
656
+ ---
657
+ ## Label Details and Statistics
658
+
659
+ Detailed frequency statistics, per‑label examples, and data‑collection scripts are available in the project repository: [https://github.com/ken-ando/WikiSQE](https://github.com/ken-ando/WikiSQE).
660
+
661
+ ---
662
+ ## How to Download & Use the Dataset
663
 
664
+ ### 1 — Quick load with the 🤗 `datasets` library
665
 
666
+ Use this route when you want to start analysing or training right away without storing the whole snapshot on disk.
667
+
668
+ ```bash
669
+ # Install (if you haven't already)
670
+ pip install --upgrade datasets huggingface_hub
671
+ ```
672
 
 
673
 
674
+ ```python
675
+ from huggingface_hub import snapshot_download
676
+
677
+ # Download the full dataset as parquet
678
+ repo_dir = snapshot_download(
679
+ repo_id="ando55/WikiSQE",
680
+ repo_type="dataset",
681
+ local_dir="WikiSQE_parquet",
682
+ local_dir_use_symlinks=False,
683
+ )
684
+ print("Saved at:", repo_dir)
685
  ```
686
+
687
+ **Tips**
688
+
689
+ * All splits are named `"train"` because the Wikipedia dump has no natural train/dev/test split.
690
+ Re‑use the official split ([https://huggingface.co/datasets/ando55/WikiSQE\_experiment](https://huggingface.co/datasets/ando55/WikiSQE_experiment)) or create your own.
691
+
692
+ ### 2 — Convert parquet to csv
693
+
694
+ ```python
695
+ import pyarrow.dataset as ds, pyarrow.csv as pv, pyarrow as pa, pathlib
696
+
697
+ src = pathlib.Path("WikiSQE_parquet")
698
+ dst = pathlib.Path("WikiSQE_csv"); dst.mkdir(exist_ok=True)
699
+
700
+ for pq in src.rglob("*.parquet"):
701
+ label = pq.parent.name
702
+ out = dst / f"{label}.csv"
703
+ first = not out.exists()
704
+ dset = ds.dataset(str(pq))
705
+ with out.open("ab") as f, pv.CSVWriter(f, dset.schema,
706
+ write_options=pv.WriteOptions(include_header=first)) as w:
707
+ for batch in dset.to_batches():
708
+ w.write_table(pa.Table.from_batches([batch]))
709
+ ```
710
+
711
+ ---
712
+
713
+ ## Data Fields
714
+
715
+ | Field | Type | Description |
716
+ | ------- | -------- | -------------------------------------------------------------------------------------------------- |
717
+ | `text` | *string* | Raw sentence from a Wikipedia revision that Wikipedia editors judged to contain a quality problem. |
718
+
719
+
720
+ ## Citation
721
+
722
+ If you use the dataset, please cite us:
723
+
724
+ ```bibtex
725
  @inproceedings{ando-etal-2024-wikisqe,
726
+ title = {{WikiSQE}: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia},
727
+ author = {Ando, Kenichiro and Sekine, Satoshi and Komachi, Mamoru},
728
+ booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
729
+ year = {2024},
730
+ volume = {38},
731
+ number = {16},
732
+ pages = {17656--17663},
733
+ address = {Vancouver, Canada},
734
+ publisher = {Association for the Advancement of Artificial Intelligence},
 
 
735
  }
736
+ ```
737
+