File size: 8,569 Bytes
f074031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import numpy as np
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
import re
pd.options.display.float_format = '{:,.2f}'.format
df = pd.read_csv("/content/cybersecurity_attacks.csv")
print(f"There are {df.shape[0]}, row and {df.shape[1]} columns in the dataset")
df.columns
df.isna().sum()
df.duplicated().sum()
df['Malware Indicators'] = df['Malware Indicators'].apply(lambda x: 'No Detection' if pd.isna(x) else x)
df['Alerts/Warnings'] = df['Alerts/Warnings'].apply(lambda x: 'yes' if x == 'Alert Triggered' else 'no')
df['Prowx Information'] = df['Proxy Information'].apply(lambda x: 'No proxy' if pd.isna(x) else x)
df['Firewall Logs'] = df['Firewall Logs'].apply(lambda x: 'No Data' if pd.isna(x) else x)
df['IDS/IPS Alerts'] = df['IDS/IPS Alerts'].apply(lambda x: 'No Data' if pd.isna(x) else x)
df['Source Port'] = df['Source Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
df['Destination Port'] = df['Destination Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
df.isna().sum()
df['Device Information'].value_counts()
df['Browser'] = df['Device Information'].str.split('/').str[0]
df['Browser'].unique()
patterns = [
r'Windows',
r'Linux',
r'Android',
r'iPad',
r'iPhone',
r'Macintosh',
]
def extract_device_or_os(user_agent):
for pattern in patterns:
match = re.search(pattern, user_agent, re.I)
if match:
return match.group()
return 'Unknown'
df['Device/OS'] = df['Device Information'].apply(extract_device_or_os)
df = df.drop('Device Information', axis = 1)
device_counts = df['Device/OS'].value_counts()
device_counts_df = pd.DataFrame(device_counts).reset_index()
device_counts_df.columns = ['Device/OS', 'Count of Attacks']
top_devices = device_counts_df.head(10)
print(top_devices)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Device/OS', hue='Device/OS', data=top_devices, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Device/OS')
plt.title('Top 10 Devices/OS Targeted by Attacks')
plt.tight_layout()
plt.show()
attack_type_counts = df['Attack Type'].value_counts()
attack_type_counts_df = pd.DataFrame(attack_type_counts).reset_index()
attack_type_counts_df.columns = ['Attack Type', 'Count of Attacks']
top_attack_types = attack_type_counts_df.head(10)
print(top_attack_types)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Attack Type', hue='Attack Type', data=top_attack_types, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Attack Type')
plt.title('Top 10 Most Common Attack Types')
plt.tight_layout()
plt.show()
geo_location_counts = df['Geo-location Data'].value_counts()
geo_location_counts_df = pd.DataFrame(geo_location_counts).reset_index()
geo_location_counts_df.columns = ['Geo-location Data', 'Count of Attacks']
top_geo_locations = geo_location_counts_df.head(10)
print(top_geo_locations)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Geo-location Data', hue='Geo-location Data', data=top_geo_locations, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Geo-location Data')
plt.title('Top 10 Geographic Locations Source of Malicious Traffic')
plt.tight_layout()
plt.show()
destination_port_counts = df['Destination Port'].value_counts()
destination_port_counts_df = pd.DataFrame(destination_port_counts).reset_index()
destination_port_counts_df.columns = ['Destination Port', 'Count of Attacks']
top_destination_ports = destination_port_counts_df.head(10)
print(top_destination_ports)
plt.figure(figsize=(10, 6))
sns.barplot(x='Destination Port', y='Count of Attacks', hue='Count of Attacks', data=top_destination_ports, palette='viridis', dodge=False)
plt.xlabel('Destination Port')
plt.ylabel('Count of Attacks')
plt.title('Top 10 Most Targeted Destination Ports')
plt.tight_layout()
plt.show()
severity_mapping = {'Low': 1, 'Medium': 2, 'High': 3}
df['Severity Level Numeric'] = df['Severity Level'].map(severity_mapping)
protocol_severity = df.groupby('Protocol')['Severity Level Numeric'].mean().reset_index()
protocol_severity = protocol_severity.sort_values(by='Severity Level Numeric', ascending=False)
top_protocol_severity = protocol_severity.head(10)
print(top_protocol_severity)
plt.figure(figsize=(10, 6))
sns.barplot(x='Severity Level Numeric', y='Protocol', hue='Severity Level Numeric', data=top_protocol_severity, palette='viridis', dodge=False)
plt.xlabel('Mean Severity Level')
plt.ylabel('Protocol')
plt.title('Top 10 Protocols by Mean Severity Level')
plt.tight_layout()
plt.show()
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
df['Month'] = df['Timestamp'].dt.month
month_counts = df['Month'].value_counts()
month_counts_df = pd.DataFrame(month_counts).reset_index()
month_counts_df.columns = ['Month', 'Count of Attacks']
sorted_month_counts = month_counts_df.sort_values(by='Month')
print(sorted_month_counts)
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df['Month'] = df['Timestamp'].dt.month
attacks_by_month = df.groupby('Month').size().reset_index(name='Attack Count')
heatmap_data = attacks_by_month.pivot_table(index='Month', columns='Month', values='Attack Count', aggfunc='sum', fill_value=0)
plt.figure(figsize=(10, 6))
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd', cbar=True)
plt.title('Cybersecurity Attacks Frequency by Month')
plt.xlabel('Month')
plt.ylabel('Month')
plt.tight_layout()
plt.show()
malicious_traffic = df[df['Malware Indicators'] == 'IoCDetected']
traffic_type_counts = malicious_traffic['Traffic Type'].value_counts()
traffic_type_counts_df = pd.DataFrame(traffic_type_counts).reset_index()
traffic_type_counts_df.columns = ['Traffic Type', 'Count of Malicious Incidents']
top_traffic_types = traffic_type_counts_df.head(10)
print(top_traffic_types)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Malicious Incidents', y='Traffic Type', hue='Count of Malicious Incidents', data=top_traffic_types, palette='viridis', dodge=False)
plt.xlabel('Count of Malicious Incidents')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Flagged with "IoC Detected"')
plt.tight_layout()
plt.show()
threshold = 75.0
infiltration_data = df[df['Anomaly Scores'] > threshold]
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
top_vulnerable_traffic = vulnerable_traffic_df.head(10)
print(top_vulnerable_traffic)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, dodge=False)
plt.xlabel('Count of Infiltrations')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Vulnerable to Infiltration (Anomaly Scores)')
plt.tight_layout()
plt.show()
threshold = df['Anomaly Scores'].quantile(0.95)
print(f"Threshold for Anomaly Scores: {threshold}\n")
infiltration_data = df[df['Anomaly Scores'] > threshold]
print(infiltration_data.head())
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
top_vulnerable_traffic = vulnerable_traffic_df.head(10)
print(top_vulnerable_traffic)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, palette='viridis', dodge=False)
plt.xlabel('Count of Infiltrations')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Vulnerable to Infiltration (High Anomaly Scores)')
plt.tight_layout()
plt.show()
cyber_attacks_data = df[df['Action Taken'].str.contains('Blocked', case=False, na=False)]
vulnerable_devices_os_counts = cyber_attacks_data['Device/OS'].value_counts()
vulnerable_devices_os_df = pd.DataFrame(vulnerable_devices_os_counts).reset_index()
vulnerable_devices_os_df.columns = ['Device/OS', 'Count of Cyber Attacks']
top_vulnerable_devices_os = vulnerable_devices_os_df.head(10)
print(top_vulnerable_devices_os)
plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Cyber Attacks', y='Device/OS', hue='Count of Cyber Attacks', data=top_vulnerable_devices_os, palette='viridis', dodge=False)
plt.xlabel('Count of Cyber Attacks')
plt.ylabel('Device/OS')
plt.title('Top Devices/OS Vulnerable to Cyber Attacks')
plt.tight_layout()
plt.show |