File size: 8,569 Bytes
f074031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import numpy as np
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
import re

pd.options.display.float_format = '{:,.2f}'.format

df = pd.read_csv("/content/cybersecurity_attacks.csv")

print(f"There are {df.shape[0]}, row and {df.shape[1]} columns in the dataset")

df.columns

df.isna().sum()

df.duplicated().sum()

df['Malware Indicators'] = df['Malware Indicators'].apply(lambda x: 'No Detection' if pd.isna(x) else x)

df['Alerts/Warnings'] = df['Alerts/Warnings'].apply(lambda x: 'yes' if x == 'Alert Triggered' else 'no')

df['Prowx Information'] = df['Proxy Information'].apply(lambda x: 'No proxy' if pd.isna(x) else x)

df['Firewall Logs'] = df['Firewall Logs'].apply(lambda x: 'No Data' if pd.isna(x) else x)

df['IDS/IPS Alerts'] = df['IDS/IPS Alerts'].apply(lambda x: 'No Data' if pd.isna(x) else x)

df['Source Port'] = df['Source Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
df['Destination Port'] = df['Destination Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')

df.isna().sum()

df['Device Information'].value_counts()

df['Browser'] = df['Device Information'].str.split('/').str[0]

df['Browser'].unique()

patterns = [
    r'Windows',
    r'Linux',
    r'Android',
    r'iPad',
    r'iPhone',
    r'Macintosh',
]

def extract_device_or_os(user_agent):
  for pattern in patterns:
    match = re.search(pattern, user_agent, re.I)
    if match:
      return match.group()

    return 'Unknown'

df['Device/OS'] = df['Device Information'].apply(extract_device_or_os)

df = df.drop('Device Information', axis = 1)

device_counts = df['Device/OS'].value_counts()

device_counts_df = pd.DataFrame(device_counts).reset_index()
device_counts_df.columns = ['Device/OS', 'Count of Attacks']

top_devices = device_counts_df.head(10)
print(top_devices)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Device/OS', hue='Device/OS', data=top_devices, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Device/OS')
plt.title('Top 10 Devices/OS Targeted by Attacks')
plt.tight_layout()
plt.show()

attack_type_counts = df['Attack Type'].value_counts()
attack_type_counts_df = pd.DataFrame(attack_type_counts).reset_index()
attack_type_counts_df.columns = ['Attack Type', 'Count of Attacks']
top_attack_types = attack_type_counts_df.head(10)
print(top_attack_types)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Attack Type', hue='Attack Type', data=top_attack_types, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Attack Type')
plt.title('Top 10 Most Common Attack Types')
plt.tight_layout()
plt.show()

geo_location_counts = df['Geo-location Data'].value_counts()

geo_location_counts_df = pd.DataFrame(geo_location_counts).reset_index()
geo_location_counts_df.columns = ['Geo-location Data', 'Count of Attacks']
top_geo_locations = geo_location_counts_df.head(10)
print(top_geo_locations)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Attacks', y='Geo-location Data', hue='Geo-location Data', data=top_geo_locations, palette='viridis', dodge=False)
plt.xlabel('Count of Attacks')
plt.ylabel('Geo-location Data')
plt.title('Top 10 Geographic Locations Source of Malicious Traffic')
plt.tight_layout()
plt.show()

destination_port_counts = df['Destination Port'].value_counts()
destination_port_counts_df = pd.DataFrame(destination_port_counts).reset_index()
destination_port_counts_df.columns = ['Destination Port', 'Count of Attacks']

top_destination_ports = destination_port_counts_df.head(10)
print(top_destination_ports)

plt.figure(figsize=(10, 6))
sns.barplot(x='Destination Port', y='Count of Attacks', hue='Count of Attacks', data=top_destination_ports, palette='viridis', dodge=False)
plt.xlabel('Destination Port')
plt.ylabel('Count of Attacks')
plt.title('Top 10 Most Targeted Destination Ports')
plt.tight_layout()
plt.show()

severity_mapping = {'Low': 1, 'Medium': 2, 'High': 3}
df['Severity Level Numeric'] = df['Severity Level'].map(severity_mapping)

protocol_severity = df.groupby('Protocol')['Severity Level Numeric'].mean().reset_index()

protocol_severity = protocol_severity.sort_values(by='Severity Level Numeric', ascending=False)

top_protocol_severity = protocol_severity.head(10)
print(top_protocol_severity)

plt.figure(figsize=(10, 6))
sns.barplot(x='Severity Level Numeric', y='Protocol', hue='Severity Level Numeric', data=top_protocol_severity, palette='viridis', dodge=False)
plt.xlabel('Mean Severity Level')
plt.ylabel('Protocol')
plt.title('Top 10 Protocols by Mean Severity Level')
plt.tight_layout()
plt.show()

df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
df['Month'] = df['Timestamp'].dt.month
month_counts = df['Month'].value_counts()
month_counts_df = pd.DataFrame(month_counts).reset_index()
month_counts_df.columns = ['Month', 'Count of Attacks']
sorted_month_counts = month_counts_df.sort_values(by='Month')
print(sorted_month_counts)

df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df['Month'] = df['Timestamp'].dt.month

attacks_by_month = df.groupby('Month').size().reset_index(name='Attack Count')

heatmap_data = attacks_by_month.pivot_table(index='Month', columns='Month', values='Attack Count', aggfunc='sum', fill_value=0)
plt.figure(figsize=(10, 6))
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd', cbar=True)
plt.title('Cybersecurity Attacks Frequency by Month')
plt.xlabel('Month')
plt.ylabel('Month')
plt.tight_layout()
plt.show()

malicious_traffic = df[df['Malware Indicators'] == 'IoCDetected']

traffic_type_counts = malicious_traffic['Traffic Type'].value_counts()
traffic_type_counts_df = pd.DataFrame(traffic_type_counts).reset_index()
traffic_type_counts_df.columns = ['Traffic Type', 'Count of Malicious Incidents']

top_traffic_types = traffic_type_counts_df.head(10)
print(top_traffic_types)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Malicious Incidents', y='Traffic Type', hue='Count of Malicious Incidents', data=top_traffic_types, palette='viridis', dodge=False)
plt.xlabel('Count of Malicious Incidents')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Flagged with "IoC Detected"')
plt.tight_layout()
plt.show()

threshold = 75.0

infiltration_data = df[df['Anomaly Scores'] > threshold]

vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()

vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']

top_vulnerable_traffic = vulnerable_traffic_df.head(10)
print(top_vulnerable_traffic)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, dodge=False)
plt.xlabel('Count of Infiltrations')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Vulnerable to Infiltration (Anomaly Scores)')
plt.tight_layout()
plt.show()

threshold = df['Anomaly Scores'].quantile(0.95)
print(f"Threshold for Anomaly Scores: {threshold}\n")

infiltration_data = df[df['Anomaly Scores'] > threshold]

print(infiltration_data.head())

vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']

top_vulnerable_traffic = vulnerable_traffic_df.head(10)
print(top_vulnerable_traffic)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, palette='viridis', dodge=False)
plt.xlabel('Count of Infiltrations')
plt.ylabel('Traffic Type')
plt.title('Top Traffic Types Vulnerable to Infiltration (High Anomaly Scores)')
plt.tight_layout()
plt.show()

cyber_attacks_data = df[df['Action Taken'].str.contains('Blocked', case=False, na=False)]

vulnerable_devices_os_counts = cyber_attacks_data['Device/OS'].value_counts()
vulnerable_devices_os_df = pd.DataFrame(vulnerable_devices_os_counts).reset_index()
vulnerable_devices_os_df.columns = ['Device/OS', 'Count of Cyber Attacks']

top_vulnerable_devices_os = vulnerable_devices_os_df.head(10)
print(top_vulnerable_devices_os)

plt.figure(figsize=(10, 6))
sns.barplot(x='Count of Cyber Attacks', y='Device/OS', hue='Count of Cyber Attacks', data=top_vulnerable_devices_os, palette='viridis', dodge=False)
plt.xlabel('Count of Cyber Attacks')
plt.ylabel('Device/OS')
plt.title('Top Devices/OS Vulnerable to Cyber Attacks')
plt.tight_layout()
plt.show