|
import numpy as np |
|
import pandas as pd |
|
import plotly.express as px |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import re |
|
|
|
pd.options.display.float_format = '{:,.2f}'.format |
|
|
|
df = pd.read_csv("/content/cybersecurity_attacks.csv") |
|
|
|
print(f"There are {df.shape[0]}, row and {df.shape[1]} columns in the dataset") |
|
|
|
df.columns |
|
|
|
df.isna().sum() |
|
|
|
df.duplicated().sum() |
|
|
|
df['Malware Indicators'] = df['Malware Indicators'].apply(lambda x: 'No Detection' if pd.isna(x) else x) |
|
|
|
df['Alerts/Warnings'] = df['Alerts/Warnings'].apply(lambda x: 'yes' if x == 'Alert Triggered' else 'no') |
|
|
|
df['Prowx Information'] = df['Proxy Information'].apply(lambda x: 'No proxy' if pd.isna(x) else x) |
|
|
|
df['Firewall Logs'] = df['Firewall Logs'].apply(lambda x: 'No Data' if pd.isna(x) else x) |
|
|
|
df['IDS/IPS Alerts'] = df['IDS/IPS Alerts'].apply(lambda x: 'No Data' if pd.isna(x) else x) |
|
|
|
df['Source Port'] = df['Source Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port') |
|
df['Destination Port'] = df['Destination Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port') |
|
|
|
df.isna().sum() |
|
|
|
df['Device Information'].value_counts() |
|
|
|
df['Browser'] = df['Device Information'].str.split('/').str[0] |
|
|
|
df['Browser'].unique() |
|
|
|
patterns = [ |
|
r'Windows', |
|
r'Linux', |
|
r'Android', |
|
r'iPad', |
|
r'iPhone', |
|
r'Macintosh', |
|
] |
|
|
|
def extract_device_or_os(user_agent): |
|
for pattern in patterns: |
|
match = re.search(pattern, user_agent, re.I) |
|
if match: |
|
return match.group() |
|
|
|
return 'Unknown' |
|
|
|
df['Device/OS'] = df['Device Information'].apply(extract_device_or_os) |
|
|
|
df = df.drop('Device Information', axis = 1) |
|
|
|
device_counts = df['Device/OS'].value_counts() |
|
|
|
device_counts_df = pd.DataFrame(device_counts).reset_index() |
|
device_counts_df.columns = ['Device/OS', 'Count of Attacks'] |
|
|
|
top_devices = device_counts_df.head(10) |
|
print(top_devices) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Attacks', y='Device/OS', hue='Device/OS', data=top_devices, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Attacks') |
|
plt.ylabel('Device/OS') |
|
plt.title('Top 10 Devices/OS Targeted by Attacks') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
attack_type_counts = df['Attack Type'].value_counts() |
|
attack_type_counts_df = pd.DataFrame(attack_type_counts).reset_index() |
|
attack_type_counts_df.columns = ['Attack Type', 'Count of Attacks'] |
|
top_attack_types = attack_type_counts_df.head(10) |
|
print(top_attack_types) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Attacks', y='Attack Type', hue='Attack Type', data=top_attack_types, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Attacks') |
|
plt.ylabel('Attack Type') |
|
plt.title('Top 10 Most Common Attack Types') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
geo_location_counts = df['Geo-location Data'].value_counts() |
|
|
|
geo_location_counts_df = pd.DataFrame(geo_location_counts).reset_index() |
|
geo_location_counts_df.columns = ['Geo-location Data', 'Count of Attacks'] |
|
top_geo_locations = geo_location_counts_df.head(10) |
|
print(top_geo_locations) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Attacks', y='Geo-location Data', hue='Geo-location Data', data=top_geo_locations, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Attacks') |
|
plt.ylabel('Geo-location Data') |
|
plt.title('Top 10 Geographic Locations Source of Malicious Traffic') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
destination_port_counts = df['Destination Port'].value_counts() |
|
destination_port_counts_df = pd.DataFrame(destination_port_counts).reset_index() |
|
destination_port_counts_df.columns = ['Destination Port', 'Count of Attacks'] |
|
|
|
top_destination_ports = destination_port_counts_df.head(10) |
|
print(top_destination_ports) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Destination Port', y='Count of Attacks', hue='Count of Attacks', data=top_destination_ports, palette='viridis', dodge=False) |
|
plt.xlabel('Destination Port') |
|
plt.ylabel('Count of Attacks') |
|
plt.title('Top 10 Most Targeted Destination Ports') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
severity_mapping = {'Low': 1, 'Medium': 2, 'High': 3} |
|
df['Severity Level Numeric'] = df['Severity Level'].map(severity_mapping) |
|
|
|
protocol_severity = df.groupby('Protocol')['Severity Level Numeric'].mean().reset_index() |
|
|
|
protocol_severity = protocol_severity.sort_values(by='Severity Level Numeric', ascending=False) |
|
|
|
top_protocol_severity = protocol_severity.head(10) |
|
print(top_protocol_severity) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Severity Level Numeric', y='Protocol', hue='Severity Level Numeric', data=top_protocol_severity, palette='viridis', dodge=False) |
|
plt.xlabel('Mean Severity Level') |
|
plt.ylabel('Protocol') |
|
plt.title('Top 10 Protocols by Mean Severity Level') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce') |
|
df['Month'] = df['Timestamp'].dt.month |
|
month_counts = df['Month'].value_counts() |
|
month_counts_df = pd.DataFrame(month_counts).reset_index() |
|
month_counts_df.columns = ['Month', 'Count of Attacks'] |
|
sorted_month_counts = month_counts_df.sort_values(by='Month') |
|
print(sorted_month_counts) |
|
|
|
df['Timestamp'] = pd.to_datetime(df['Timestamp']) |
|
df['Month'] = df['Timestamp'].dt.month |
|
|
|
attacks_by_month = df.groupby('Month').size().reset_index(name='Attack Count') |
|
|
|
heatmap_data = attacks_by_month.pivot_table(index='Month', columns='Month', values='Attack Count', aggfunc='sum', fill_value=0) |
|
plt.figure(figsize=(10, 6)) |
|
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd', cbar=True) |
|
plt.title('Cybersecurity Attacks Frequency by Month') |
|
plt.xlabel('Month') |
|
plt.ylabel('Month') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
malicious_traffic = df[df['Malware Indicators'] == 'IoCDetected'] |
|
|
|
traffic_type_counts = malicious_traffic['Traffic Type'].value_counts() |
|
traffic_type_counts_df = pd.DataFrame(traffic_type_counts).reset_index() |
|
traffic_type_counts_df.columns = ['Traffic Type', 'Count of Malicious Incidents'] |
|
|
|
top_traffic_types = traffic_type_counts_df.head(10) |
|
print(top_traffic_types) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Malicious Incidents', y='Traffic Type', hue='Count of Malicious Incidents', data=top_traffic_types, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Malicious Incidents') |
|
plt.ylabel('Traffic Type') |
|
plt.title('Top Traffic Types Flagged with "IoC Detected"') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
threshold = 75.0 |
|
|
|
infiltration_data = df[df['Anomaly Scores'] > threshold] |
|
|
|
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts() |
|
|
|
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index() |
|
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations'] |
|
|
|
top_vulnerable_traffic = vulnerable_traffic_df.head(10) |
|
print(top_vulnerable_traffic) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, dodge=False) |
|
plt.xlabel('Count of Infiltrations') |
|
plt.ylabel('Traffic Type') |
|
plt.title('Top Traffic Types Vulnerable to Infiltration (Anomaly Scores)') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
threshold = df['Anomaly Scores'].quantile(0.95) |
|
print(f"Threshold for Anomaly Scores: {threshold}\n") |
|
|
|
infiltration_data = df[df['Anomaly Scores'] > threshold] |
|
|
|
print(infiltration_data.head()) |
|
|
|
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts() |
|
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index() |
|
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations'] |
|
|
|
top_vulnerable_traffic = vulnerable_traffic_df.head(10) |
|
print(top_vulnerable_traffic) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Infiltrations') |
|
plt.ylabel('Traffic Type') |
|
plt.title('Top Traffic Types Vulnerable to Infiltration (High Anomaly Scores)') |
|
plt.tight_layout() |
|
plt.show() |
|
|
|
cyber_attacks_data = df[df['Action Taken'].str.contains('Blocked', case=False, na=False)] |
|
|
|
vulnerable_devices_os_counts = cyber_attacks_data['Device/OS'].value_counts() |
|
vulnerable_devices_os_df = pd.DataFrame(vulnerable_devices_os_counts).reset_index() |
|
vulnerable_devices_os_df.columns = ['Device/OS', 'Count of Cyber Attacks'] |
|
|
|
top_vulnerable_devices_os = vulnerable_devices_os_df.head(10) |
|
print(top_vulnerable_devices_os) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.barplot(x='Count of Cyber Attacks', y='Device/OS', hue='Count of Cyber Attacks', data=top_vulnerable_devices_os, palette='viridis', dodge=False) |
|
plt.xlabel('Count of Cyber Attacks') |
|
plt.ylabel('Device/OS') |
|
plt.title('Top Devices/OS Vulnerable to Cyber Attacks') |
|
plt.tight_layout() |
|
plt.show |