File size: 6,285 Bytes
ec364c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-
""".1402

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1-MyRdtV24jTgS9BfGaWSD_PPnzPW5R3E
"""

import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

data = pd.read_csv('/content/psychological_state_dataset.csv')

data.sample(20)

data.info()

numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns.tolist()
categorical_columns = data.select_dtypes(include=['object']).columns.tolist()

print("Numerical Columns:", numerical_columns)
print("Categorical Columns:", categorical_columns)

for col in categorical_columns:
  print(f"Value counts for {col}:\n{data[col].value_counts()}\n")

for col in numerical_columns:
  sns.histplot(data[col], kde=True, bins=30)
  plt.title(f'Distribution of {col}')
  plt.show()

for col in numerical_columns:
  sns.boxplot(x=data[col])
  plt.title(f'Boxplot of {col}')
  plt.show()

for col in categorical_columns:
  sns.countplot(x=data[col], order=data[col].value_counts().index)
  plt.title(f'Distribution of {col}')
  plt.xticks(rotation=45)
  plt.show()

corr_matrix = data[numerical_columns].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap')
plt.show

sns.pairplot(data[numerical_columns])
plt.show()

for cat_col in categorical_columns:
  if data[cat_col].nunique() < 5:
    g = sns.FacetGrid(data, col=cat_col, sharey=False)
    g.map(sns.histplot, "Skin Temp (°C)")
    plt.show()

if 'Time' in categorical_columns:
  data['Time'] = pd.to_datetime(data['Time'])

  for col in numerical_columns:
    sns.lineplot(x=data['Time'], y=data[col])
    plt.title(f'{col} Over Time')
    plt.show()

for col in ['Mood State', 'Psychological State']:
  if col in categorical_columns:
    sns.countplot(x=col, data=data, order=data[col].value_counts().index)
    plt.title(f'{col} Distribution')
    plt.show()

from math import pi

radar_data = data[numerical_columns].mean()
categories = radar_data.index
values = radar_data.values.tolist()
values += values[:1]

angles = [n / float(len(categories)) * 2 * pi for n in range(len(categories))]
angles += angles[:1]

plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
plt.xticks(angles[:-1], categories)

ax.plot(angles, values, linewidth=2, linestyle='solid')
ax.fill(angles, values, alpha=0.4)
plt.title('Radar Chart of Numerical Data')
plt.show()

if 'Cognitive Load' in numerical_columns:
  sns.scatterplot(x=data['Age'], y=data['Focus Duration (s)'], size=data['Cognitive Load'], sizes=(20, 200))

for cat_col in categorical_columns:
  grouped_stats = data.groupby(cat_col)[numerical_columns].mean()
  print(f"Grouped statistics for {cat_col}:\n", grouped_stats)

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[numerical_columns])

kmeans = KMeans(n_clusters=3, random_state=42)
data['Cluster'] = kmeans.fit_predict(scaled_data)

pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)

plt.figure(figsize=(10, 6))
sns.scatterplot(x=pca_data[:, 0], y=pca_data[:, 1], hue=data['Cluster'], palette='viridis', s=100)
plt.title('K-Means Clusters Visualized in 2D')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()

from scipy.cluster.hierarchy import linkage, dendrogram

linked = linkage(scaled_data, method='ward')

plt.figure(figsize=(12, 6))
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=False)
plt.title('Hierarchiacal Clustering Dendrogram')
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.show()

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=300)
tsne_results = tsne.fit_transform(scaled_data)

plt.figure(figsize=(10, 6))
sns.scatterplot(x=tsne_results[:, 0], y=tsne_results[:,1], hue=data['Cluster'], palette='coolwarm', s=100)
plt.title('T-SNE Clustering Visualization')
plt.xlabel('TSNE Component 1')
plt.ylabel('TSNE Component 2')
plt.show()

for cat_col in categorical_columns:
  grouped_data = data.groupby(cat_col)[numerical_columns].mean()
  plt.figure(figsize=(12, 6))
  sns.heatmap(grouped_data, annot=True, fmt=".2f", cmap='coolwarm')
  plt.title(f'Mean Values of Numerical Features by {cat_col}')
  plt.ylabel(cat_col)
  plt.xlabel('Numerical Features')
  plt.show()

from pandas.plotting import parallel_coordinates

parallel_data = data[numerical_columns].copy()
parallel_data['Cluster'] = data['Cluster']

plt.figure(figsize=(12, 6))
parallel_coordinates(parallel_data, class_column='Cluster', colormap='viridis')
plt.title('Parallel Coordinates Plot by Clusters')
plt.xticks(rotation=45)
plt.show()

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, accuracy_score

data_encoded = data.copy()
for col in categorical_columns:
  le = LabelEncoder()
  data_encoded[col] = le.fit_transform(data[col])

X = data_encoded.drop(['Cognitive Load'], axis=1)
y = data_encoded['Cognitive Load']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train[numerical_columns] = scaler.fit_transform(X_train[numerical_columns])
X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])

clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print("Classification Report:")
print(classification_report(y_test, y_pred))

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d')

accuracy = accuracy_score(y_test, y_pred)
print(f"accuracy_score: {accuracy * 100:.2f}%")

feature_importances = pd.DataFrame({'Feature': X.columns, 'Importance': clf.feature_importances_})
feature_importances = feature_importances.sort_values(by='Importance', ascending=False)

plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=feature_importances)
plt.title('Feature Importance')
plt.show()