File size: 6,285 Bytes
ec364c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# -*- coding: utf-8 -*-
""".1402
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1-MyRdtV24jTgS9BfGaWSD_PPnzPW5R3E
"""
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv('/content/psychological_state_dataset.csv')
data.sample(20)
data.info()
numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns.tolist()
categorical_columns = data.select_dtypes(include=['object']).columns.tolist()
print("Numerical Columns:", numerical_columns)
print("Categorical Columns:", categorical_columns)
for col in categorical_columns:
print(f"Value counts for {col}:\n{data[col].value_counts()}\n")
for col in numerical_columns:
sns.histplot(data[col], kde=True, bins=30)
plt.title(f'Distribution of {col}')
plt.show()
for col in numerical_columns:
sns.boxplot(x=data[col])
plt.title(f'Boxplot of {col}')
plt.show()
for col in categorical_columns:
sns.countplot(x=data[col], order=data[col].value_counts().index)
plt.title(f'Distribution of {col}')
plt.xticks(rotation=45)
plt.show()
corr_matrix = data[numerical_columns].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap')
plt.show
sns.pairplot(data[numerical_columns])
plt.show()
for cat_col in categorical_columns:
if data[cat_col].nunique() < 5:
g = sns.FacetGrid(data, col=cat_col, sharey=False)
g.map(sns.histplot, "Skin Temp (°C)")
plt.show()
if 'Time' in categorical_columns:
data['Time'] = pd.to_datetime(data['Time'])
for col in numerical_columns:
sns.lineplot(x=data['Time'], y=data[col])
plt.title(f'{col} Over Time')
plt.show()
for col in ['Mood State', 'Psychological State']:
if col in categorical_columns:
sns.countplot(x=col, data=data, order=data[col].value_counts().index)
plt.title(f'{col} Distribution')
plt.show()
from math import pi
radar_data = data[numerical_columns].mean()
categories = radar_data.index
values = radar_data.values.tolist()
values += values[:1]
angles = [n / float(len(categories)) * 2 * pi for n in range(len(categories))]
angles += angles[:1]
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
plt.xticks(angles[:-1], categories)
ax.plot(angles, values, linewidth=2, linestyle='solid')
ax.fill(angles, values, alpha=0.4)
plt.title('Radar Chart of Numerical Data')
plt.show()
if 'Cognitive Load' in numerical_columns:
sns.scatterplot(x=data['Age'], y=data['Focus Duration (s)'], size=data['Cognitive Load'], sizes=(20, 200))
for cat_col in categorical_columns:
grouped_stats = data.groupby(cat_col)[numerical_columns].mean()
print(f"Grouped statistics for {cat_col}:\n", grouped_stats)
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[numerical_columns])
kmeans = KMeans(n_clusters=3, random_state=42)
data['Cluster'] = kmeans.fit_predict(scaled_data)
pca = PCA(n_components=2)
pca_data = pca.fit_transform(scaled_data)
plt.figure(figsize=(10, 6))
sns.scatterplot(x=pca_data[:, 0], y=pca_data[:, 1], hue=data['Cluster'], palette='viridis', s=100)
plt.title('K-Means Clusters Visualized in 2D')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()
from scipy.cluster.hierarchy import linkage, dendrogram
linked = linkage(scaled_data, method='ward')
plt.figure(figsize=(12, 6))
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=False)
plt.title('Hierarchiacal Clustering Dendrogram')
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.show()
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, random_state=42, perplexity=30, n_iter=300)
tsne_results = tsne.fit_transform(scaled_data)
plt.figure(figsize=(10, 6))
sns.scatterplot(x=tsne_results[:, 0], y=tsne_results[:,1], hue=data['Cluster'], palette='coolwarm', s=100)
plt.title('T-SNE Clustering Visualization')
plt.xlabel('TSNE Component 1')
plt.ylabel('TSNE Component 2')
plt.show()
for cat_col in categorical_columns:
grouped_data = data.groupby(cat_col)[numerical_columns].mean()
plt.figure(figsize=(12, 6))
sns.heatmap(grouped_data, annot=True, fmt=".2f", cmap='coolwarm')
plt.title(f'Mean Values of Numerical Features by {cat_col}')
plt.ylabel(cat_col)
plt.xlabel('Numerical Features')
plt.show()
from pandas.plotting import parallel_coordinates
parallel_data = data[numerical_columns].copy()
parallel_data['Cluster'] = data['Cluster']
plt.figure(figsize=(12, 6))
parallel_coordinates(parallel_data, class_column='Cluster', colormap='viridis')
plt.title('Parallel Coordinates Plot by Clusters')
plt.xticks(rotation=45)
plt.show()
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, accuracy_score
data_encoded = data.copy()
for col in categorical_columns:
le = LabelEncoder()
data_encoded[col] = le.fit_transform(data[col])
X = data_encoded.drop(['Cognitive Load'], axis=1)
y = data_encoded['Cognitive Load']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train[numerical_columns] = scaler.fit_transform(X_train[numerical_columns])
X_test[numerical_columns] = scaler.transform(X_test[numerical_columns])
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Classification Report:")
print(classification_report(y_test, y_pred))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d')
accuracy = accuracy_score(y_test, y_pred)
print(f"accuracy_score: {accuracy * 100:.2f}%")
feature_importances = pd.DataFrame({'Feature': X.columns, 'Importance': clf.feature_importances_})
feature_importances = feature_importances.sort_values(by='Importance', ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=feature_importances)
plt.title('Feature Importance')
plt.show() |