|
|
|
""".1434 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1zCqF_BIYa91iouRTczXbC21smYapzDHu |
|
""" |
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
file_path = '/content/Fake Postings.csv' |
|
df = pd.read_csv(file_path) |
|
|
|
df.head() |
|
|
|
df.isnull().sum() |
|
|
|
sns.countplot(x='fraudulent', data=df) |
|
plt.title('Distribution of Fraudulent Job Postings') |
|
plt.show() |
|
|
|
sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index) |
|
plt.title('Distribution Type Distribution') |
|
plt.show() |
|
|
|
plt.figure(figsize=(10, 8)) |
|
sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10]) |
|
|
|
df.fillna('Unknown', inplace=True) |
|
df['fraudulent'] = df['fraudulent'].astype(int) |
|
|
|
df['description_length'] = df['description'].apply(len) |
|
df['num_requirements'] = df['requirements'].apply(lambda x: len(x.split(','))) |
|
|
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report |
|
|
|
features = ['description_length', 'num_requirements'] |
|
X = df[features] |
|
y = df['fraudulent'] |
|
|
|
if len(y.unique()) < 2: |
|
print("The target variable 'fraudulent' must have at least two classes. Exiting...") |
|
else: |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=-.2, random_state=42) |
|
|
|
model = LogisticRegression() |
|
model.fit(X_train, y_train) |
|
|
|
if len(y.unique()) >= 2: |
|
y_pred = model.predict(X_test) |
|
|
|
accuracy = accuracy_score(y_test, y_pred) |
|
print(f'Accuracy: {accuracy:.2}') |
|
|
|
if len(y.unique()) >= 2: |
|
conf_matrix = confusion_matrix(y_test, y_pred) |
|
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues') |
|
plt.title('Confusion Matrix') |
|
plt.xlabel('Predicted') |
|
plt.ylabel('Actual') |
|
plt.show() |
|
|
|
if len(y.unique()) >= 2: |
|
print(classification_report(y_test, y_pred)) |