_1434 / _1434.py
antitheft159's picture
Upload _1434.py
5801cb4 verified
# -*- coding: utf-8 -*-
""".1434
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1zCqF_BIYa91iouRTczXbC21smYapzDHu
"""
# Commented out IPython magic to ensure Python compatibility.
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# %matplotlib inline
file_path = '/content/Fake Postings.csv'
df = pd.read_csv(file_path)
df.head()
df.isnull().sum()
sns.countplot(x='fraudulent', data=df)
plt.title('Distribution of Fraudulent Job Postings')
plt.show()
sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index)
plt.title('Distribution Type Distribution')
plt.show()
plt.figure(figsize=(10, 8))
sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10])
df.fillna('Unknown', inplace=True)
df['fraudulent'] = df['fraudulent'].astype(int)
df['description_length'] = df['description'].apply(len)
df['num_requirements'] = df['requirements'].apply(lambda x: len(x.split(',')))
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
features = ['description_length', 'num_requirements']
X = df[features]
y = df['fraudulent']
if len(y.unique()) < 2:
print("The target variable 'fraudulent' must have at least two classes. Exiting...")
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=-.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
if len(y.unique()) >= 2:
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2}')
if len(y.unique()) >= 2:
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
if len(y.unique()) >= 2:
print(classification_report(y_test, y_pred))