File size: 1,963 Bytes
90b74ae 0a86160 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# -*- coding: utf-8 -*-
""".2646
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1rm4V5QMLQuWMZikisvPv9jIeKgMEAptr
"""
import pandas as pd
df = pd.read_csv('//content/Advertising And Sales.csv')
print(df.head())
print(df.describe())
print(df.info())
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid")
plt.figure(figsize=(14, 6))
plt.subplot(1, 3, 1)
sns.scatterplot(x='TV', y='Sales', data=df)
plt.title('TV Advertising vs Sales')
plt.subplot(1, 3, 2)
sns.scatterplot(x='Radio', y='Sales', data=df)
plt.title('Radio Advertising vs Sales')
plt.subplot(1, 3, 3)
sns.scatterplot(x='Newspaper', y='Sales', data=df)
plt.title('Newspaper Advertising vs Sales')
plt.tight_layout()
plt.show()
corr_matrix = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix')
plt.show()
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
X = df[['TV', 'Radio', 'Newspaper']]
y = df['Sales']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print('Mean Squared Error:' , mean_squared_error(y_test, y_pred))
print('R^2 Score:', r2_score(y_test, y_pred))
coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
print(coefficients)
def calculate_roi(spend, sales):
return sales / spend if spend != 0 else 0
df['TV_ROI'] = df.apply(lambda row: calculate_roi(row['TV'], row['Sales']), axis=1)
df['Radio_ROI'] = df.apply(lambda row: calculate_roi(row['Radio'], row['Sales']), axis=1)
df['Newspaper_ROI'] = df.apply(lambda row: calculate_roi(row['Newspaper'], row['Sales']), axis=1)
print(df[['TV_ROI', 'Radio_ROI', 'Newspaper_ROI']].head()) |