File size: 6,176 Bytes
8c93f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv('/content/Credit_Data.csv')
data.head()
data.drop('ID',axis=1,inplace=True)
data.shape
def get_summary(df):
df_desc = pd.DataFrame(df.describe(include='all').transpose())
df_summary = pd.DataFrame({
'dtype': df.dtypes,
'#missing': df.isnull().sum().values,
'#duplicates': df.duplicated().sum(),
'#unique': df.nunique().values,
'min': df_desc['min'].values,
'max': df_desc['max'].values,
'avg': df_desc['mean'].values,
'std dev': df_desc['std'].values,
})
return df_summary
get_summary(data).style.background_gradient()
target_col = 'Balance'
feature = data.drop('Balance', axis=1).columns
fig, ax = plt.subplots(2, 5, figsize=(20, 10))
axes = ax.flatten()
for i, col in enumerate(data[feature].columns):
sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i])
fig.suptitle('Interactions between Target Column and Features')
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(2, 6, figsize=(20, 10))
axes = ax.flatten()
for i, col in enumerate(data.columns):
sns.histplot(data=data, x=col, hue='Gender', ax=axes[i])
fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset")
plt.tight_layout()
for ax in axes:
if not ax.has_data():
fig.delaxes(ax)
plt.show()
sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind')
numeric_columns = data.select_dtypes(include='number').columns
fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2))
ax = ax.flatten()
for i, col in enumerate(numeric_columns):
sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i])
sns.violinplot(data=data, x=col, ax=ax[2*i + 1])
plt.tight_layout()
plt.show()
corr = data.select_dtypes(exclude='object').corr(method='spearman')
mask = np.triu(np.ones_like(corr))
sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True)
plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12})
from sklearn.preprocessing import OneHotEncoder
cat_columns = data.select_dtypes(include='O').columns.to_list()
dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8')
df = data.join(dummie_df)
df.drop(cat_columns,axis=1,inplace=True)
df.head()
from imblearn.over_sampling import SMOTE
from collections import Counter
X_train = df.drop('Student_Yes',axis=1)
y_train = df['Student_Yes']
sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1)
sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train)
print('Before sampling class distribution', Counter(y_train))
print('\nAfter sampling class distribution', Counter(sm_Y_train))
sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1)
sm_df.head()
get_summary(sm_df).style.background_gradient()
!pip install ydata_profiling
from ydata_profiling import ProfileReport
profile_report = ProfileReport(
sm_df,
sort=None,
progress_bar=False,
html = {'style': {'full_width': True}},
correlations={
"auto": {"calculate": True},
"pearson": {"calculate": False},
"spearman": {"calculate": False},
"kendall": {"calculate": False},
"phi_k": {"calculate": True},
"cramers": {"calculate": True},
},
explorative=True,
title="Profiling Report"
)
profile_report.to_file('output.html')
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)
lm = LinearRegression()
history = lm.fit(train_x, train_y)
pred = lm.predict(valid_x)
r2 = metrics.r2_score(valid_y,pred)
print('r2_score',r2)
lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_'])
lm_df.loc['intercept_'] = lm.intercept_
lm_df.sort_values(by='coef_')
plt.barh(y= lm_df.index, width='coef_', data=lm_df)
plt.show()
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn import metrics
X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True)
train_x.shape, valid_x.shape
X_trainv.shape, X_valid.shape
def create_polynomial_regression_model(degree):
"Create a polynomial regression model for the given degree"
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
X_train_poly = poly_features.fit_transform(X_trainv)
poly_model = LinearRegression()
poly_model.fit(X_train_poly, Y_trainv)
y_train_predicted = poly_model.predict(X_train_poly)
y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid))
mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted)
mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict)
return (mse_train, mse_valid,degree)
a=[]
for i in range(1,8):
a.append(create_polynomial_regression_model(i))
df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree'])
df.sort_values(by='Validation Error')
scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)
polynomial_features = PolynomialFeatures(degree=2, include_bias=False)
train_x_poly = polynomial_features.fit_transform(train_x)
valid_x_poly = polynomial_features.fit_transform(valid_x)
polymodel = LinearRegression()
polymodel.fit(train_x_poly, train_y)
pred = polymodel.predict(valid_x_poly)
r2 = metrics.r2_score(valid_y,pred)
print('r2_score:', r2) |