File size: 6,176 Bytes
8c93f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
import seaborn as sns
import warnings

warnings.filterwarnings('ignore')

data = pd.read_csv('/content/Credit_Data.csv')

data.head()

data.drop('ID',axis=1,inplace=True)

data.shape

def get_summary(df):
  df_desc = pd.DataFrame(df.describe(include='all').transpose())
  df_summary = pd.DataFrame({
      'dtype': df.dtypes,
      '#missing': df.isnull().sum().values,
      '#duplicates': df.duplicated().sum(),
      '#unique': df.nunique().values,
      'min': df_desc['min'].values,
      'max': df_desc['max'].values,
      'avg': df_desc['mean'].values,
      'std dev': df_desc['std'].values,
  })
  return df_summary

get_summary(data).style.background_gradient()

target_col = 'Balance'
feature = data.drop('Balance', axis=1).columns

fig, ax = plt.subplots(2, 5, figsize=(20, 10))
axes = ax.flatten()

for i, col in enumerate(data[feature].columns):
  sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i])

  fig.suptitle('Interactions between Target Column and Features')
  plt.tight_layout()
  plt.show()

fig, ax = plt.subplots(2, 6, figsize=(20, 10))
axes = ax.flatten()

for i, col in enumerate(data.columns):
  sns.histplot(data=data, x=col, hue='Gender', ax=axes[i])

  fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset")
  plt.tight_layout()

for ax in axes:
  if not ax.has_data():
      fig.delaxes(ax)

plt.show()

sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind')

numeric_columns = data.select_dtypes(include='number').columns

fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2))
ax = ax.flatten()

for i, col in enumerate(numeric_columns):
  sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i])
  sns.violinplot(data=data, x=col, ax=ax[2*i + 1])

plt.tight_layout()
plt.show()

corr = data.select_dtypes(exclude='object').corr(method='spearman')
mask = np.triu(np.ones_like(corr))

sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True)
plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12})

from sklearn.preprocessing import OneHotEncoder

cat_columns = data.select_dtypes(include='O').columns.to_list()

dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8')

df = data.join(dummie_df)
df.drop(cat_columns,axis=1,inplace=True)

df.head()

from imblearn.over_sampling import SMOTE
from collections import Counter

X_train = df.drop('Student_Yes',axis=1)
y_train = df['Student_Yes']

sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1)
sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train)

print('Before sampling class distribution', Counter(y_train))
print('\nAfter sampling class distribution', Counter(sm_Y_train))

sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1)
sm_df.head()

get_summary(sm_df).style.background_gradient()

!pip install ydata_profiling

from ydata_profiling import ProfileReport

profile_report = ProfileReport(
    sm_df,
    sort=None,
    progress_bar=False,
    html = {'style': {'full_width': True}},
    correlations={
        "auto": {"calculate": True},
        "pearson": {"calculate": False},
        "spearman": {"calculate": False},
        "kendall": {"calculate": False},
        "phi_k": {"calculate": True},
        "cramers": {"calculate": True},
    },
    explorative=True,
    title="Profiling Report"
)

profile_report.to_file('output.html')

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance

train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)

scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)

lm = LinearRegression()
history = lm.fit(train_x, train_y)
pred = lm.predict(valid_x)
r2 = metrics.r2_score(valid_y,pred)

print('r2_score',r2)

lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_'])

lm_df.loc['intercept_'] = lm.intercept_

lm_df.sort_values(by='coef_')

plt.barh(y= lm_df.index, width='coef_', data=lm_df)
plt.show()

from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn import metrics

X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance

train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)

X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True)

train_x.shape, valid_x.shape

X_trainv.shape, X_valid.shape

def create_polynomial_regression_model(degree):
  "Create a polynomial regression model for the given degree"

  poly_features = PolynomialFeatures(degree=degree, include_bias=False)

  X_train_poly = poly_features.fit_transform(X_trainv)

  poly_model = LinearRegression()
  poly_model.fit(X_train_poly, Y_trainv)

  y_train_predicted = poly_model.predict(X_train_poly)

  y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid))

  mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted)

  mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict)

  return (mse_train, mse_valid,degree)

a=[]
for i in range(1,8):
  a.append(create_polynomial_regression_model(i))
df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree'])
df.sort_values(by='Validation Error')

scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)

polynomial_features = PolynomialFeatures(degree=2, include_bias=False)
train_x_poly = polynomial_features.fit_transform(train_x)
valid_x_poly = polynomial_features.fit_transform(valid_x)

polymodel = LinearRegression()
polymodel.fit(train_x_poly, train_y)
pred = polymodel.predict(valid_x_poly)
r2 = metrics.r2_score(valid_y,pred)

print('r2_score:', r2)