creditcarddataanalysis / 1046_159.py
antitheft159's picture
Upload 1046_159.py
8c93f11 verified
raw
history blame
6.36 kB
# -*- coding: utf-8 -*-
"""1046.159
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1uxVrUlNk5jB6t_CKcD_4ZvpDnJfiKqyu
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv('/content/Credit_Data.csv')
data.head()
data.drop('ID',axis=1,inplace=True)
data.shape
def get_summary(df):
df_desc = pd.DataFrame(df.describe(include='all').transpose())
df_summary = pd.DataFrame({
'dtype': df.dtypes,
'#missing': df.isnull().sum().values,
'#duplicates': df.duplicated().sum(),
'#unique': df.nunique().values,
'min': df_desc['min'].values,
'max': df_desc['max'].values,
'avg': df_desc['mean'].values,
'std dev': df_desc['std'].values,
})
return df_summary
get_summary(data).style.background_gradient()
target_col = 'Balance'
feature = data.drop('Balance', axis=1).columns
fig, ax = plt.subplots(2, 5, figsize=(20, 10))
axes = ax.flatten()
for i, col in enumerate(data[feature].columns):
sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i])
fig.suptitle('Interactions between Target Column and Features')
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(2, 6, figsize=(20, 10))
axes = ax.flatten()
for i, col in enumerate(data.columns):
sns.histplot(data=data, x=col, hue='Gender', ax=axes[i])
fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset")
plt.tight_layout()
for ax in axes:
if not ax.has_data():
fig.delaxes(ax)
plt.show()
sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind')
numeric_columns = data.select_dtypes(include='number').columns
fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2))
ax = ax.flatten()
for i, col in enumerate(numeric_columns):
sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i])
sns.violinplot(data=data, x=col, ax=ax[2*i + 1])
plt.tight_layout()
plt.show()
corr = data.select_dtypes(exclude='object').corr(method='spearman')
mask = np.triu(np.ones_like(corr))
sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True)
plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12})
from sklearn.preprocessing import OneHotEncoder
cat_columns = data.select_dtypes(include='O').columns.to_list()
dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8')
df = data.join(dummie_df)
df.drop(cat_columns,axis=1,inplace=True)
df.head()
from imblearn.over_sampling import SMOTE
from collections import Counter
X_train = df.drop('Student_Yes',axis=1)
y_train = df['Student_Yes']
sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1)
sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train)
print('Before sampling class distribution', Counter(y_train))
print('\nAfter sampling class distribution', Counter(sm_Y_train))
sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1)
sm_df.head()
get_summary(sm_df).style.background_gradient()
!pip install ydata_profiling
from ydata_profiling import ProfileReport
profile_report = ProfileReport(
sm_df,
sort=None,
progress_bar=False,
html = {'style': {'full_width': True}},
correlations={
"auto": {"calculate": True},
"pearson": {"calculate": False},
"spearman": {"calculate": False},
"kendall": {"calculate": False},
"phi_k": {"calculate": True},
"cramers": {"calculate": True},
},
explorative=True,
title="Profiling Report"
)
profile_report.to_file('output.html')
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)
lm = LinearRegression()
history = lm.fit(train_x, train_y)
pred = lm.predict(valid_x)
r2 = metrics.r2_score(valid_y,pred)
print('r2_score',r2)
lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_'])
lm_df.loc['intercept_'] = lm.intercept_
lm_df.sort_values(by='coef_')
plt.barh(y= lm_df.index, width='coef_', data=lm_df)
plt.show()
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn import metrics
X = sm_df.drop('Balance',axis=1)
y = sm_df.Balance
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True)
train_x.shape, valid_x.shape
X_trainv.shape, X_valid.shape
def create_polynomial_regression_model(degree):
"Create a polynomial regression model for the given degree"
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
X_train_poly = poly_features.fit_transform(X_trainv)
poly_model = LinearRegression()
poly_model.fit(X_train_poly, Y_trainv)
y_train_predicted = poly_model.predict(X_train_poly)
y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid))
mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted)
mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict)
return (mse_train, mse_valid,degree)
a=[]
for i in range(1,8):
a.append(create_polynomial_regression_model(i))
df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree'])
df.sort_values(by='Validation Error')
scaler = StandardScaler()
train_x = scaler.fit_transform(train_x)
valid_x = scaler.transform(valid_x)
polynomial_features = PolynomialFeatures(degree=2, include_bias=False)
train_x_poly = polynomial_features.fit_transform(train_x)
valid_x_poly = polynomial_features.fit_transform(valid_x)
polymodel = LinearRegression()
polymodel.fit(train_x_poly, train_y)
pred = polymodel.predict(valid_x_poly)
r2 = metrics.r2_score(valid_y,pred)
print('r2_score:', r2)