text_prompt
stringlengths 157
13.1k
| code_prompt
stringlengths 7
19.8k
⌀ |
---|---|
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def selection(self):
"""A complete |Selection| object of all "supplying" and "routing" elements and required nodes. Selection("complete", nodes=("node_1123", "node_1125", "node_11269", "node_1129", "node_113", "node_outlet"), elements=("land_111", "land_1121", "land_1122", "land_1123", "land_1124", "land_1125", "land_11261", "land_11262", "land_11269", "land_1129", "land_113", "stream_1123", "stream_1125", "stream_11269", "stream_1129", "stream_113")) Besides the possible modifications on the names of the different nodes and elements, the name of the selection can be set differently: Selection("sel", """ |
return selectiontools.Selection(
self.selection_name, self.nodes, self.elements) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def chars2str(chars) -> List[str]: """Inversion function of function |str2chars|. ['zeros', 'ones'] [] """ |
strings = collections.deque()
for subchars in chars:
substrings = collections.deque()
for char in subchars:
if char:
substrings.append(char.decode('utf-8'))
else:
substrings.append('')
strings.append(''.join(substrings))
return list(strings) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def create_dimension(ncfile, name, length) -> None: """Add a new dimension with the given name and length to the given NetCDF file. Essentially, |create_dimension| just calls the equally named method of the NetCDF library, but adds information to possible error messages: 5 While trying to add dimension `dim1` with length `5` \ """ |
try:
ncfile.createDimension(name, length)
except BaseException:
objecttools.augment_excmessage(
'While trying to add dimension `%s` with length `%d` '
'to the NetCDF file `%s`'
% (name, length, get_filepath(ncfile))) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def create_variable(ncfile, name, datatype, dimensions) -> None: """Add a new variable with the given name, datatype, and dimensions to the given NetCDF file. Essentially, |create_variable| just calls the equally named method of the NetCDF library, but adds information to possible error messages: While trying to add variable `var1` with datatype `f8` and \ dimensions `('dim1',)` to the NetCDF file `test.nc`, the following error \ array([ nan, nan, nan, nan, nan]) """ |
default = fillvalue if (datatype == 'f8') else None
try:
ncfile.createVariable(
name, datatype, dimensions=dimensions, fill_value=default)
ncfile[name].long_name = name
except BaseException:
objecttools.augment_excmessage(
'While trying to add variable `%s` with datatype `%s` '
'and dimensions `%s` to the NetCDF file `%s`'
% (name, datatype, dimensions, get_filepath(ncfile))) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def query_variable(ncfile, name) -> netcdf4.Variable: """Return the variable with the given name from the given NetCDF file. Essentially, |query_variable| just performs a key assess via the used NetCDF library, but adds information to possible error messages: Traceback (most recent call last):
OSError: NetCDF file `model.nc` does not contain variable `flux_prec`. True """ |
try:
return ncfile[name]
except (IndexError, KeyError):
raise OSError(
'NetCDF file `%s` does not contain variable `%s`.'
% (get_filepath(ncfile), name)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def query_timegrid(ncfile) -> timetools.Timegrid: """Return the |Timegrid| defined by the given NetCDF file. Timegrid('1996-01-01 00:00:00', '2007-01-01 00:00:00', '1d') """ |
timepoints = ncfile[varmapping['timepoints']]
refdate = timetools.Date.from_cfunits(timepoints.units)
return timetools.Timegrid.from_timepoints(
timepoints=timepoints[:],
refdate=refdate,
unit=timepoints.units.strip().split()[0]) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def query_array(ncfile, name) -> numpy.ndarray: """Return the data of the variable with the given name from the given NetCDF file. The following example shows that |query_array| returns |nan| entries to represent missing values even when the respective NetCDF variable defines a different fill value: array([-999., -999., -999., -999., -999.]) array([ nan, nan, nan, nan, nan]) """ |
variable = query_variable(ncfile, name)
maskedarray = variable[:]
fillvalue_ = getattr(variable, '_FillValue', numpy.nan)
if not numpy.isnan(fillvalue_):
maskedarray[maskedarray.mask] = numpy.nan
return maskedarray.data |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def log(self, sequence, infoarray) -> None: """Prepare a |NetCDFFile| object suitable for the given |IOSequence| object, when necessary, and pass the given arguments to its |NetCDFFile.log| method.""" |
if isinstance(sequence, sequencetools.ModelSequence):
descr = sequence.descr_model
else:
descr = 'node'
if self._isolate:
descr = '%s_%s' % (descr, sequence.descr_sequence)
if ((infoarray is not None) and
(infoarray.info['type'] != 'unmodified')):
descr = '%s_%s' % (descr, infoarray.info['type'])
dirpath = sequence.dirpath_ext
try:
files = self.folders[dirpath]
except KeyError:
files: Dict[str, 'NetCDFFile'] = collections.OrderedDict()
self.folders[dirpath] = files
try:
file_ = files[descr]
except KeyError:
file_ = NetCDFFile(
name=descr,
flatten=self._flatten,
isolate=self._isolate,
timeaxis=self._timeaxis,
dirpath=dirpath)
files[descr] = file_
file_.log(sequence, infoarray) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def read(self) -> None: """Call method |NetCDFFile.read| of all handled |NetCDFFile| objects. """ |
for folder in self.folders.values():
for file_ in folder.values():
file_.read() |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def write(self) -> None: """Call method |NetCDFFile.write| of all handled |NetCDFFile| objects. """ |
if self.folders:
init = hydpy.pub.timegrids.init
timeunits = init.firstdate.to_cfunits('hours')
timepoints = init.to_timepoints('hours')
for folder in self.folders.values():
for file_ in folder.values():
file_.write(timeunits, timepoints) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
"""A |tuple| of names of all handled |NetCDFFile| objects.""" |
return tuple(sorted(set(itertools.chain(
*(_.keys() for _ in self.folders.values()))))) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def log(self, sequence, infoarray) -> None: """Pass the given |IoSequence| to a suitable instance of a |NetCDFVariableBase| subclass. When writing data, the second argument should be an |InfoArray|. When reading data, this argument is ignored. Simply pass |None|. (1) We prepare some devices handling some sequences by applying function |prepare_io_example_1|. We limit our attention to the returned elements, which handle the more diverse sequences: (2) We define some shortcuts for the sequences used in the following examples: (3) We define a function that logs these example sequences to a given |NetCDFFile| object and prints some information about the resulting object structure. Note that sequence `nkor2` is logged twice, the first time with its original time series data, the second time with averaged values: (4) We prepare a |NetCDFFile| object with both options `flatten` and `isolate` being disabled: (5) We log all test sequences results in two |NetCDFVariableDeep| and one |NetCDFVariableAgg| objects. To keep both NetCDF variables related to |lland_fluxes.NKor| distinguishable, the name `flux_nkor_mean` includes information about the kind of aggregation performed: input_nied NetCDFVariableDeep ('element1', 'element2') flux_nkor NetCDFVariableDeep ('element2',) flux_nkor_mean NetCDFVariableAgg ('element2', 'element3') (6) We confirm that the |NetCDFVariableBase| objects received the required information: 'element2' InfoArray([[ 16., 17.], [ 18., 19.], [ 20., 21.], [ 22., 23.]]) 'element2' InfoArray([ 16.5, 18.5, 20.5, 22.5]) (7) We again prepare a |NetCDFFile| object, but now with both options `flatten` and `isolate` being enabled. To log test sequences with their original time series data does now trigger the initialisation of class |NetCDFVariableFlat|. When passing aggregated data, nothing changes: input_nied NetCDFVariableFlat ('element1', 'element2') flux_nkor NetCDFVariableFlat ('element2_0', 'element2_1') flux_nkor_mean NetCDFVariableAgg ('element2', 'element3') 'element2' InfoArray([[ 16., 17.], [ 18., 19.], [ 20., 21.], [ 22., 23.]]) 'element2' InfoArray([ 16.5, 18.5, 20.5, 22.5]) (8) We technically confirm that the `isolate` argument is passed to the constructor of subclasses of |NetCDFVariableBase| correctly: """ |
aggregated = ((infoarray is not None) and
(infoarray.info['type'] != 'unmodified'))
descr = sequence.descr_sequence
if aggregated:
descr = '_'.join([descr, infoarray.info['type']])
if descr in self.variables:
var_ = self.variables[descr]
else:
if aggregated:
cls = NetCDFVariableAgg
elif self._flatten:
cls = NetCDFVariableFlat
else:
cls = NetCDFVariableDeep
var_ = cls(name=descr,
isolate=self._isolate,
timeaxis=self._timeaxis)
self.variables[descr] = var_
var_.log(sequence, infoarray) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def filepath(self) -> str: """The NetCDF file path.""" |
return os.path.join(self._dirpath, self.name + '.nc') |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def read(self) -> None: """Open an existing NetCDF file temporarily and call method |NetCDFVariableDeep.read| of all handled |NetCDFVariableBase| objects.""" |
try:
with netcdf4.Dataset(self.filepath, "r") as ncfile:
timegrid = query_timegrid(ncfile)
for variable in self.variables.values():
variable.read(ncfile, timegrid)
except BaseException:
objecttools.augment_excmessage(
f'While trying to read data from NetCDF file `{self.filepath}`') |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def write(self, timeunit, timepoints) -> None: """Open a new NetCDF file temporarily and call method |NetCDFVariableBase.write| of all handled |NetCDFVariableBase| objects.""" |
with netcdf4.Dataset(self.filepath, "w") as ncfile:
ncfile.Conventions = 'CF-1.6'
self._insert_timepoints(ncfile, timepoints, timeunit)
for variable in self.variables.values():
variable.write(ncfile) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_index(self, name_subdevice) -> int: """Item access to the wrapped |dict| object with a specialized error message.""" |
try:
return self.dict_[name_subdevice]
except KeyError:
raise OSError(
'No data for sequence `%s` and (sub)device `%s` '
'in NetCDF file `%s` available.'
% (self.name_sequence,
name_subdevice,
self.name_ncfile)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def log(self, sequence, infoarray) -> None: """Log the given |IOSequence| object either for reading or writing data. The optional `array` argument allows for passing alternative data in an |InfoArray| object replacing the series of the |IOSequence| object, which is useful for writing modified (e.g. spatially averaged) time series. Logged time series data is available via attribute access: True True False Traceback (most recent call last):
AttributeError: The NetCDFVariable object `flux_nkor` does \ neither handle time series data under the (sub)device name `element2` \ nor does it define a member named `element2`. """ |
descr_device = sequence.descr_device
self.sequences[descr_device] = sequence
self.arrays[descr_device] = infoarray |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def sort_timeplaceentries(self, timeentry, placeentry) -> Tuple[Any, Any]: """Return a |tuple| containing the given `timeentry` and `placeentry` sorted in agreement with the currently selected `timeaxis`. ('place', 'time') ('time', 'place') """ |
if self._timeaxis:
return placeentry, timeentry
return timeentry, placeentry |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_timeplaceslice(self, placeindex) -> \ Union[Tuple[slice, int], Tuple[int, slice]]: """Return a |tuple| for indexing a complete time series of a certain location available in |NetCDFVariableBase.array|. (2, slice(None, None, None)) (slice(None, None, None), 2) """ |
return self.sort_timeplaceentries(slice(None), int(placeindex)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
"""A |tuple| containing the device names.""" |
self: NetCDFVariableBase
return tuple(self.sequences.keys()) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
"""Return a |tuple| of one |int| and some |slice| objects to accesses all values of a certain device within |NetCDFVariableDeep.array|. (2, slice(None, None, None), slice(0, 3, None)) (4, slice(None, None, None), slice(0, 1, None), slice(0, 2, None)) (slice(None, None, None), 4, slice(0, 1, None), slice(0, 2, None)) """ |
slices = list(self.get_timeplaceslice(idx))
for length in shape:
slices.append(slice(0, length))
return tuple(slices) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
"""Required shape of |NetCDFVariableDeep.array|. For the default configuration, the first axis corresponds to the number of devices, and the second one to the number of timesteps. We show this for the 0-dimensional input sequence |lland_inputs.Nied|: (3, 4) For higher dimensional sequences, each new entry corresponds to the maximum number of fields the respective sequences require. In the next example, we select the 1-dimensional sequence |lland_fluxes.NKor|. The maximum number 3 (last value of the returned |tuple|) is due to the third element defining three hydrological response units: (3, 4, 3) When using the first axis for time (`timeaxis=0`) the order of the first two |tuple| entries turns: (4, 3, 3) """ |
nmb_place = len(self.sequences)
nmb_time = len(hydpy.pub.timegrids.init)
nmb_others = collections.deque()
for sequence in self.sequences.values():
nmb_others.append(sequence.shape)
nmb_others_max = tuple(numpy.max(nmb_others, axis=0))
return self.sort_timeplaceentries(nmb_time, nmb_place) + nmb_others_max |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def array(self) -> numpy.ndarray: """The series data of all logged |IOSequence| objects contained in one single |numpy.ndarray|. The documentation on |NetCDFVariableDeep.shape| explains how |NetCDFVariableDeep.array| is structured. The first example confirms that, for the default configuration, the first axis definces the location, while the second one defines time: array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]) For higher dimensional sequences, |NetCDFVariableDeep.array| can contain missing values. Such missing values show up for some fiels of the second example element, which defines only two hydrological response units instead of three: array([[ 16., 17., nan], [ 18., 19., nan], [ 20., 21., nan], [ 22., 23., nan]]) When using the first axis for time (`timeaxis=0`) the same data can be accessed with slightly different indexing: array([[ 16., 17., nan], [ 18., 19., nan], [ 20., 21., nan], [ 22., 23., nan]]) """ |
array = numpy.full(self.shape, fillvalue, dtype=float)
for idx, (descr, subarray) in enumerate(self.arrays.items()):
sequence = self.sequences[descr]
array[self.get_slices(idx, sequence.shape)] = subarray
return array |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def shape(self) -> Tuple[int, int]: """Required shape of |NetCDFVariableAgg.array|. For the default configuration, the first axis corresponds to the number of devices, and the second one to the number of timesteps. We show this for the 1-dimensional input sequence |lland_fluxes.NKor|: (3, 4) When using the first axis as the "timeaxis", the order of |tuple| entries turns: (4, 3) """ |
return self.sort_timeplaceentries(
len(hydpy.pub.timegrids.init), len(self.sequences)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def array(self) -> numpy.ndarray: """The aggregated data of all logged |IOSequence| objects contained in one single |numpy.ndarray| object. The documentation on |NetCDFVariableAgg.shape| explains how |NetCDFVariableAgg.array| is structured. This first example confirms that, under default configuration (`timeaxis=1`), the first axis corresponds to the location, while the second one corresponds to time: array([[ 12. , 13. , 14. , 15. ], [ 16.5, 18.5, 20.5, 22.5], [ 25. , 28. , 31. , 34. ]]) When using the first axis as the "timeaxis", the resulting |NetCDFVariableAgg.array| is the transposed: array([[ 12. , 16.5, 25. ], [ 13. , 18.5, 28. ], [ 14. , 20.5, 31. ], [ 15. , 22.5, 34. ]]) """ |
array = numpy.full(self.shape, fillvalue, dtype=float)
for idx, subarray in enumerate(self.arrays.values()):
array[self.get_timeplaceslice(idx)] = subarray
return array |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def shape(self) -> Tuple[int, int]: """Required shape of |NetCDFVariableFlat.array|. For 0-dimensional sequences like |lland_inputs.Nied| and for the default configuration (`timeaxis=1`), the first axis corresponds to the number of devices, and the second one two the number of timesteps: (3, 4) For higher dimensional sequences, the first axis corresponds to "subdevices", e.g. hydrological response units within different elements. The 1-dimensional sequence |lland_fluxes.NKor| is logged for three elements with one, two, and three response units respectively, making up a sum of six subdevices: (6, 4) When using the first axis as the "timeaxis", the order of |tuple| entries turns: (4, 6) """ |
return self.sort_timeplaceentries(
len(hydpy.pub.timegrids.init),
sum(len(seq) for seq in self.sequences.values())) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def array(self) -> numpy.ndarray: """The series data of all logged |IOSequence| objects contained in one single |numpy.ndarray| object. The documentation on |NetCDFVariableAgg.shape| explains how |NetCDFVariableAgg.array| is structured. The first example confirms that, under default configuration (`timeaxis=1`), the first axis corresponds to the location, while the second one corresponds to time: array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]) Due to the flattening of higher dimensional sequences, their individual time series (e.g. of different hydrological response units) are spread over the rows of the array. For the 1-dimensional sequence |lland_fluxes.NKor|, the individual time series of the second element are stored in row two and three: array([[ 16., 18., 20., 22.], [ 17., 19., 21., 23.]]) When using the first axis as the "timeaxis", the individual time series of the second element are stored in column two and three: array([[ 16., 17.], [ 18., 19.], [ 20., 21.], [ 22., 23.]]) """ |
array = numpy.full(self.shape, fillvalue, dtype=float)
idx0 = 0
idxs: List[Any] = [slice(None)]
for seq, subarray in zip(self.sequences.values(),
self.arrays.values()):
for prod in self._product(seq.shape):
subsubarray = subarray[tuple(idxs + list(prod))]
array[self.get_timeplaceslice(idx0)] = subsubarray
idx0 += 1
return array |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def update(self):
"""Determine the number of substeps. Initialize a llake model and assume a simulation step size of 12 hours: If the maximum internal step size is also set to 12 hours, there is only one internal calculation step per outer simulation step: nmbsubsteps(1) Assigning smaller values to `maxdt` increases `nmbstepsize`: nmbsubsteps(12) In case the simulationstep is not a whole multiple of `dwmax`, the value of `nmbsubsteps` is rounded up: nmbsubsteps(13) Even for `maxdt` values exceeding the simulationstep, the value of `numbsubsteps` does not become smaller than one: nmbsubsteps(1) """ |
maxdt = self.subpars.pars.control.maxdt
seconds = self.simulationstep.seconds
self.value = numpy.ceil(seconds/maxdt) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def update(self):
"""Calulate the auxilary term. vq(toy_1_1_0_0_0=[0.0, 243200.0, 2086400.0], toy_7_1_0_0_0=[0.0, 286400.0, 2216000.0]) """ |
con = self.subpars.pars.control
der = self.subpars
for (toy, qs) in con.q:
setattr(self, str(toy), 2.*con.v+der.seconds/der.nmbsubsteps*qs)
self.refresh() |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def prepare_io_example_1() -> Tuple[devicetools.Nodes, devicetools.Elements]: # noinspection PyUnresolvedReferences """Prepare an IO example configuration. (1) Prepares a short initialisation period of five days: Timegrids(Timegrid('2000-01-01 00:00:00', '2000-01-05 00:00:00', '1d')) (2) Prepares a plain IO testing directory structure: 'inputpath' 'outputpath' 'outputpath' 'nodepath' ['inputpath', 'nodepath', 'outputpath'] (3) Returns three |Element| objects handling either application model |lland_v1| or |lland_v2|, and two |Node| objects handling variables `Q` and `T`: element1 lland_v1 element2 lland_v1 element3 lland_v2 node1 Q node2 T (4) Prepares the time series data of the input sequence |lland_inputs.Nied|, flux sequence |lland_fluxes.NKor|, and state sequence |lland_states.BoWa| for each model instance, and |Sim| for each node instance (all values are different), e.g.: InfoArray([ 0., 1., 2., 3.]) InfoArray([[ 12.], [ 13.], [ 14.], [ 15.]]) InfoArray([[ 48., 49., 50.], [ 51., 52., 53.], [ 54., 55., 56.], [ 57., 58., 59.]]) InfoArray([ 64., 65., 66., 67.]) (5) All sequences carry |numpy.ndarray| objects with (deep) copies of the time series data for testing: InfoArray(True, dtype=bool) InfoArray(False, dtype=bool) """ |
from hydpy import TestIO
TestIO.clear()
from hydpy.core.filetools import SequenceManager
hydpy.pub.sequencemanager = SequenceManager()
with TestIO():
hydpy.pub.sequencemanager.inputdirpath = 'inputpath'
hydpy.pub.sequencemanager.fluxdirpath = 'outputpath'
hydpy.pub.sequencemanager.statedirpath = 'outputpath'
hydpy.pub.sequencemanager.nodedirpath = 'nodepath'
hydpy.pub.timegrids = '2000-01-01', '2000-01-05', '1d'
from hydpy import Node, Nodes, Element, Elements, prepare_model
node1 = Node('node1')
node2 = Node('node2', variable='T')
nodes = Nodes(node1, node2)
element1 = Element('element1', outlets=node1)
element2 = Element('element2', outlets=node1)
element3 = Element('element3', outlets=node1)
elements = Elements(element1, element2, element3)
from hydpy.models import lland_v1, lland_v2
element1.model = prepare_model(lland_v1)
element2.model = prepare_model(lland_v1)
element3.model = prepare_model(lland_v2)
from hydpy.models.lland import ACKER
for idx, element in enumerate(elements):
parameters = element.model.parameters
parameters.control.nhru(idx+1)
parameters.control.lnk(ACKER)
parameters.derived.absfhru(10.0)
with hydpy.pub.options.printprogress(False):
nodes.prepare_simseries()
elements.prepare_inputseries()
elements.prepare_fluxseries()
elements.prepare_stateseries()
def init_values(seq, value1_):
value2_ = value1_ + len(seq.series.flatten())
values_ = numpy.arange(value1_, value2_, dtype=float)
seq.testarray = values_.reshape(seq.seriesshape)
seq.series = seq.testarray.copy()
return value2_
import numpy
value1 = 0
for subname, seqname in zip(['inputs', 'fluxes', 'states'],
['nied', 'nkor', 'bowa']):
for element in elements:
subseqs = getattr(element.model.sequences, subname)
value1 = init_values(getattr(subseqs, seqname), value1)
for node in nodes:
value1 = init_values(node.sequences.sim, value1)
return nodes, elements |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
| def get_postalcodes_around_radius(self, pc, radius):
postalcodes = self.get(pc)
if postalcodes is None:
raise PostalCodeNotFoundException("Could not find postal code you're searching for.")
else:
pc = postalcodes[0]
radius = float(radius)
'''
Bounding box calculations updated from pyzipcode
'''
earth_radius = 6371
dlat = radius / earth_radius
dlon = asin(sin(dlat) / cos(radians(pc.latitude)))
lat_delta = degrees(dlat)
lon_delta = degrees(dlon)
if lat_delta < 0:
lat_range = (pc.latitude + lat_delta, pc.latitude - lat_delta)
else:
lat_range = (pc.latitude - lat_delta, pc.latitude + lat_delta)
long_range = (pc.longitude - lat_delta, pc.longitude + lon_delta)
return format_result(self.conn_manager.query(PC_RANGE_QUERY % (
long_range[0], long_range[1],
lat_range[0], lat_range[1]
))) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_all_team_ids():
"""Returns a pandas DataFrame with all Team IDs""" |
df = get_all_player_ids("all_data")
df = pd.DataFrame({"TEAM_NAME": df.TEAM_NAME.unique(),
"TEAM_ID": df.TEAM_ID.unique()})
return df |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_team_id(team_name):
""" Returns the team ID associated with the team name that is passed in. Parameters team_name : str The team name whose ID we want. NOTE: Only pass in the team name (e.g. "Lakers"), not the city, or city and team name, or the team abbreviation. Returns ------- team_id : int The team ID associated with the team name. """ |
df = get_all_team_ids()
df = df[df.TEAM_NAME == team_name]
if len(df) == 0:
er = "Invalid team name or there is no team with that name."
raise ValueError(er)
team_id = df.TEAM_ID.iloc[0]
return team_id |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_game_logs(self):
"""Returns team game logs as a pandas DataFrame""" |
logs = self.response.json()['resultSets'][0]['rowSet']
headers = self.response.json()['resultSets'][0]['headers']
df = pd.DataFrame(logs, columns=headers)
df.GAME_DATE = pd.to_datetime(df.GAME_DATE)
return df |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_game_id(self, date):
"""Returns the Game ID associated with the date that is passed in. Parameters date : str The date associated with the game whose Game ID. The date that is passed in can take on a numeric format of MM/DD/YY (like "01/06/16" or "01/06/2016") or the expanded Month Day, Year format (like "Jan 06, 2016" or "January 06, 2016"). Returns ------- game_id : str The desired Game ID. """ |
df = self.get_game_logs()
game_id = df[df.GAME_DATE == date].Game_ID.values[0]
return game_id |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def update_params(self, parameters):
"""Pass in a dictionary to update url parameters for NBA stats API Parameters parameters : dict A dict containing key, value pairs that correspond with NBA stats API parameters. Returns ------- self : TeamLog The TeamLog object containing the updated NBA stats API parameters. """ |
self.url_paramaters.update(parameters)
self.response = requests.get(self.base_url, params=self.url_paramaters,
headers=HEADERS)
# raise error if status code is not 200
self.response.raise_for_status()
return self |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_shots(self):
"""Returns the shot chart data as a pandas DataFrame.""" |
shots = self.response.json()['resultSets'][0]['rowSet']
headers = self.response.json()['resultSets'][0]['headers']
return pd.DataFrame(shots, columns=headers) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def unsubscribe(self, subscription, max=None):
""" Unsubscribe will remove interest in the given subject. If max is provided an automatic Unsubscribe that is processed by the server when max messages have been received Args: subscription (pynats.Subscription):
a Subscription object max (int=None):
number of messages """ |
if max is None:
self._send('UNSUB %d' % subscription.sid)
self._subscriptions.pop(subscription.sid)
else:
subscription.max = max
self._send('UNSUB %d %s' % (subscription.sid, max)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def request(self, subject, callback, msg=None):
""" ublish a message with an implicit inbox listener as the reply. Message is optional. Args: subject (string):
a string with the subject callback (function):
callback to be called msg (string=None):
payload string """ |
inbox = self._build_inbox()
s = self.subscribe(inbox, callback)
self.unsubscribe(s, 1)
self.publish(subject, msg, inbox)
return s |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def draw_court(ax=None, color='gray', lw=1, outer_lines=False):
"""Returns an axes with a basketball court drawn onto to it. This function draws a court based on the x and y-axis values that the NBA stats API provides for the shot chart data. For example the center of the hoop is located at the (0,0) coordinate. Twenty-two feet from the left of the center of the hoop in is represented by the (-220,0) coordinates. So one foot equals +/-10 units on the x and y-axis. Parameters ax : Axes, optional The Axes object to plot the court onto. color : matplotlib color, optional The color of the court lines. lw : float, optional The linewidth the of the court lines. outer_lines : boolean, optional If `True` it draws the out of bound lines in same style as the rest of the court. Returns ------- ax : Axes The Axes object with the court on it. """ |
if ax is None:
ax = plt.gca()
# Create the various parts of an NBA basketball court
# Create the basketball hoop
hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False)
# Create backboard
backboard = Rectangle((-30, -12.5), 60, 0, linewidth=lw, color=color)
# The paint
# Create the outer box 0f the paint, width=16ft, height=19ft
outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color,
fill=False)
# Create the inner box of the paint, widt=12ft, height=19ft
inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color,
fill=False)
# Create free throw top arc
top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180,
linewidth=lw, color=color, fill=False)
# Create free throw bottom arc
bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0,
linewidth=lw, color=color, linestyle='dashed')
# Restricted Zone, it is an arc with 4ft radius from center of the hoop
restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw,
color=color)
# Three point line
# Create the right side 3pt lines, it's 14ft long before it arcs
corner_three_a = Rectangle((-220, -47.5), 0, 140, linewidth=lw,
color=color)
# Create the right side 3pt lines, it's 14ft long before it arcs
corner_three_b = Rectangle((220, -47.5), 0, 140, linewidth=lw, color=color)
# 3pt arc - center of arc will be the hoop, arc is 23'9" away from hoop
three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw,
color=color)
# Center Court
center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0,
linewidth=lw, color=color)
center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0,
linewidth=lw, color=color)
# List of the court elements to be plotted onto the axes
court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw,
bottom_free_throw, restricted, corner_three_a,
corner_three_b, three_arc, center_outer_arc,
center_inner_arc]
if outer_lines:
# Draw the half court line, baseline and side out bound lines
outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw,
color=color, fill=False)
court_elements.append(outer_lines)
# Add the court elements onto the axes
for element in court_elements:
ax.add_patch(element)
return ax |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def shot_chart(x, y, kind="scatter", title="", color="b", cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color="gray", court_lw=1, outer_lines=False, flip_court=False, kde_shade=True, gridsize=None, ax=None, despine=False, **kwargs):
""" Returns an Axes object with player shots plotted. Parameters x, y : strings or vector The x and y coordinates of the shots taken. They can be passed in as vectors (such as a pandas Series) or as columns from the pandas DataFrame passed into ``data``. data : DataFrame, optional DataFrame containing shots where ``x`` and ``y`` represent the shot location coordinates. kind : { "scatter", "kde", "hex" }, optional The kind of shot chart to create. title : str, optional The title for the plot. color : matplotlib color, optional Color used to plot the shots cmap : matplotlib Colormap object or name, optional Colormap for the range of data values. If one isn't provided, the colormap is derived from the valuue passed to ``color``. Used for KDE and Hexbin plots. {x, y}lim : two-tuples, optional The axis limits of the plot. court_color : matplotlib color, optional The color of the court lines. court_lw : float, optional The linewidth the of the court lines. outer_lines : boolean, optional If ``True`` the out of bound lines are drawn in as a matplotlib Rectangle. flip_court : boolean, optional If ``True`` orients the hoop towards the bottom of the plot. Default is ``False``, which orients the court where the hoop is towards the top of the plot. kde_shade : boolean, optional Default is ``True``, which shades in the KDE contours. gridsize : int, optional Number of hexagons in the x-direction. The default is calculated using the Freedman-Diaconis method. ax : Axes, optional The Axes object to plot the court onto. despine : boolean, optional If ``True``, removes the spines. kwargs : key, value pairs Keyword arguments for matplotlib Collection properties or seaborn plots. Returns ------- ax : Axes The Axes object with the shot chart plotted on it. """ |
if ax is None:
ax = plt.gca()
if cmap is None:
cmap = sns.light_palette(color, as_cmap=True)
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
ax.tick_params(labelbottom="off", labelleft="off")
ax.set_title(title, fontsize=18)
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
if kind == "scatter":
ax.scatter(x, y, c=color, **kwargs)
elif kind == "kde":
sns.kdeplot(x, y, shade=kde_shade, cmap=cmap, ax=ax, **kwargs)
ax.set_xlabel('')
ax.set_ylabel('')
elif kind == "hex":
if gridsize is None:
# Get the number of bins for hexbin using Freedman-Diaconis rule
# This is idea was taken from seaborn, which got the calculation
# from http://stats.stackexchange.com/questions/798/
from seaborn.distributions import _freedman_diaconis_bins
x_bin = _freedman_diaconis_bins(x)
y_bin = _freedman_diaconis_bins(y)
gridsize = int(np.mean([x_bin, y_bin]))
ax.hexbin(x, y, gridsize=gridsize, cmap=cmap, **kwargs)
else:
raise ValueError("kind must be 'scatter', 'kde', or 'hex'.")
# Set the spines to match the rest of court lines, makes outer_lines
# somewhate unnecessary
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
if despine:
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
return ax |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def shot_chart_jointplot(x, y, data=None, kind="scatter", title="", color="b", cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color="gray", court_lw=1, outer_lines=False, flip_court=False, size=(12, 11), space=0, despine=False, joint_kws=None, marginal_kws=None, **kwargs):
""" Returns a seaborn JointGrid using sns.jointplot Parameters x, y : strings or vector The x and y coordinates of the shots taken. They can be passed in as vectors (such as a pandas Series) or as column names from the pandas DataFrame passed into ``data``. data : DataFrame, optional DataFrame containing shots where ``x`` and ``y`` represent the shot location coordinates. kind : { "scatter", "kde", "hex" }, optional The kind of shot chart to create. title : str, optional The title for the plot. color : matplotlib color, optional Color used to plot the shots cmap : matplotlib Colormap object or name, optional Colormap for the range of data values. If one isn't provided, the colormap is derived from the valuue passed to ``color``. Used for KDE and Hexbin joint plots. {x, y}lim : two-tuples, optional The axis limits of the plot. The defaults represent the out of bounds lines and half court line. court_color : matplotlib color, optional The color of the court lines. court_lw : float, optional The linewidth the of the court lines. outer_lines : boolean, optional If ``True`` the out of bound lines are drawn in as a matplotlib Rectangle. flip_court : boolean, optional If ``True`` orients the hoop towards the bottom of the plot. Default is ``False``, which orients the court where the hoop is towards the top of the plot. gridsize : int, optional Number of hexagons in the x-direction. The default is calculated using the Freedman-Diaconis method. size : tuple, optional The width and height of the plot in inches. space : numeric, optional The space between the joint and marginal plots. {joint, marginal}_kws : dicts Additional kewyord arguments for joint and marginal plot components. kwargs : key, value pairs Keyword arguments for matplotlib Collection properties or seaborn plots. Returns ------- grid : JointGrid The JointGrid object with the shot chart plotted on it. """ |
# If a colormap is not provided, then it is based off of the color
if cmap is None:
cmap = sns.light_palette(color, as_cmap=True)
if kind not in ["scatter", "kde", "hex"]:
raise ValueError("kind must be 'scatter', 'kde', or 'hex'.")
grid = sns.jointplot(x=x, y=y, data=data, stat_func=None, kind=kind,
space=0, color=color, cmap=cmap, joint_kws=joint_kws,
marginal_kws=marginal_kws, **kwargs)
grid.fig.set_size_inches(size)
# A joint plot has 3 Axes, the first one called ax_joint
# is the one we want to draw our court onto and adjust some other settings
ax = grid.ax_joint
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
# Get rid of axis labels and tick marks
ax.set_xlabel('')
ax.set_ylabel('')
ax.tick_params(labelbottom='off', labelleft='off')
# Add a title
ax.set_title(title, y=1.2, fontsize=18)
# Set the spines to match the rest of court lines, makes outer_lines
# somewhate unnecessary
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
# set the margin joint spines to be same as the rest of the plot
grid.ax_marg_x.spines[spine].set_lw(court_lw)
grid.ax_marg_x.spines[spine].set_color(court_color)
grid.ax_marg_y.spines[spine].set_lw(court_lw)
grid.ax_marg_y.spines[spine].set_color(court_color)
if despine:
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
return grid |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def heatmap(x, y, z, title="", cmap=plt.cm.YlOrRd, bins=20, xlim=(-250, 250), ylim=(422.5, -47.5), facecolor='lightgray', facecolor_alpha=0.4, court_color="black", court_lw=0.5, outer_lines=False, flip_court=False, ax=None, **kwargs):
""" Returns an AxesImage object that contains a heatmap. TODO: Redo some code and explain parameters """ |
# Bin the FGA (x, y) and Calculcate the mean number of times shot was
# made (z) within each bin
# mean is the calculated FG percentage for each bin
mean, xedges, yedges, binnumber = binned_statistic_2d(x=x, y=y,
values=z,
statistic='mean',
bins=bins)
if ax is None:
ax = plt.gca()
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
ax.tick_params(labelbottom="off", labelleft="off")
ax.set_title(title, fontsize=18)
ax.patch.set_facecolor(facecolor)
ax.patch.set_alpha(facecolor_alpha)
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
heatmap = ax.imshow(mean.T, origin='lower', extent=[xedges[0], xedges[-1],
yedges[0], yedges[-1]], interpolation='nearest',
cmap=cmap)
return heatmap |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def bokeh_draw_court(figure, line_color='gray', line_width=1):
"""Returns a figure with the basketball court lines drawn onto it This function draws a court based on the x and y-axis values that the NBA stats API provides for the shot chart data. For example the center of the hoop is located at the (0,0) coordinate. Twenty-two feet from the left of the center of the hoop in is represented by the (-220,0) coordinates. So one foot equals +/-10 units on the x and y-axis. Parameters figure : Bokeh figure object The Axes object to plot the court onto. line_color : str, optional The color of the court lines. Can be a a Hex value. line_width : float, optional The linewidth the of the court lines in pixels. Returns ------- figure : Figure The Figure object with the court on it. """ |
# hoop
figure.circle(x=0, y=0, radius=7.5, fill_alpha=0,
line_color=line_color, line_width=line_width)
# backboard
figure.line(x=range(-30, 31), y=-12.5, line_color=line_color)
# The paint
# outerbox
figure.rect(x=0, y=47.5, width=160, height=190, fill_alpha=0,
line_color=line_color, line_width=line_width)
# innerbox
# left inner box line
figure.line(x=-60, y=np.arange(-47.5, 143.5), line_color=line_color,
line_width=line_width)
# right inner box line
figure.line(x=60, y=np.arange(-47.5, 143.5), line_color=line_color,
line_width=line_width)
# Restricted Zone
figure.arc(x=0, y=0, radius=40, start_angle=pi, end_angle=0,
line_color=line_color, line_width=line_width)
# top free throw arc
figure.arc(x=0, y=142.5, radius=60, start_angle=pi, end_angle=0,
line_color=line_color)
# bottome free throw arc
figure.arc(x=0, y=142.5, radius=60, start_angle=0, end_angle=pi,
line_color=line_color, line_dash="dashed")
# Three point line
# corner three point lines
figure.line(x=-220, y=np.arange(-47.5, 92.5), line_color=line_color,
line_width=line_width)
figure.line(x=220, y=np.arange(-47.5, 92.5), line_color=line_color,
line_width=line_width)
# # three point arc
figure.arc(x=0, y=0, radius=237.5, start_angle=3.528, end_angle=-0.3863,
line_color=line_color, line_width=line_width)
# add center court
# outer center arc
figure.arc(x=0, y=422.5, radius=60, start_angle=0, end_angle=pi,
line_color=line_color, line_width=line_width)
# inner center arct
figure.arc(x=0, y=422.5, radius=20, start_angle=0, end_angle=pi,
line_color=line_color, line_width=line_width)
# outer lines, consistting of half court lines and out of bounds lines
figure.rect(x=0, y=187.5, width=500, height=470, fill_alpha=0,
line_color=line_color, line_width=line_width)
return figure |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def bokeh_shot_chart(data, x="LOC_X", y="LOC_Y", fill_color="#1f77b4", scatter_size=10, fill_alpha=0.4, line_alpha=0.4, court_line_color='gray', court_line_width=1, hover_tool=False, tooltips=None, **kwargs):
# TODO: Settings for hover tooltip """ Returns a figure with both FGA and basketball court lines drawn onto it. This function expects data to be a ColumnDataSource with the x and y values named "LOC_X" and "LOC_Y". Otherwise specify x and y. Parameters data : DataFrame The DataFrame that contains the shot chart data. x, y : str, optional The x and y coordinates of the shots taken. fill_color : str, optional The fill color of the shots. Can be a a Hex value. scatter_size : int, optional The size of the dots for the scatter plot. fill_alpha : float, optional Alpha value for the shots. Must be a floating point value between 0 (transparent) to 1 (opaque). line_alpha : float, optiona Alpha value for the outer lines of the plotted shots. Must be a floating point value between 0 (transparent) to 1 (opaque). court_line_color : str, optional The color of the court lines. Can be a a Hex value. court_line_width : float, optional The linewidth the of the court lines in pixels. hover_tool : boolean, optional If ``True``, creates hover tooltip for the plot. tooltips : List of tuples, optional Provides the information for the the hover tooltip. Returns ------- fig : Figure The Figure object with the shot chart plotted on it. """ |
source = ColumnDataSource(data)
fig = figure(width=700, height=658, x_range=[-250, 250],
y_range=[422.5, -47.5], min_border=0, x_axis_type=None,
y_axis_type=None, outline_line_color="black", **kwargs)
fig.scatter(x, y, source=source, size=scatter_size, color=fill_color,
alpha=fill_alpha, line_alpha=line_alpha)
bokeh_draw_court(fig, line_color=court_line_color,
line_width=court_line_width)
if hover_tool:
hover = HoverTool(renderers=[fig.renderers[0]], tooltips=tooltips)
fig.add_tools(hover)
return fig |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _kmedoids_run(X, n_clusters, distance, max_iter, tol, rng):
""" Run a single trial of k-medoids clustering on dataset X, and given number of clusters """ |
membs = np.empty(shape=X.shape[0], dtype=int)
centers = kmeans._kmeans_init(X, n_clusters, method='', rng=rng)
sse_last = 9999.9
n_iter = 0
for it in range(1,max_iter):
membs = kmeans._assign_clusters(X, centers)
centers,sse_arr = _update_centers(X, membs, n_clusters, distance)
sse_total = np.sum(sse_arr)
if np.abs(sse_total - sse_last) < tol:
n_iter = it
break
sse_last = sse_total
return(centers, membs, sse_total, sse_arr, n_iter) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _init_mixture_params(X, n_mixtures, init_method):
""" Initialize mixture density parameters with equal priors random means identity covariance matrices """ |
init_priors = np.ones(shape=n_mixtures, dtype=float) / n_mixtures
if init_method == 'kmeans':
km = _kmeans.KMeans(n_clusters = n_mixtures, n_trials=20)
km.fit(X)
init_means = km.centers_
else:
inx_rand = np.random.choice(X.shape[0], size=n_mixtures)
init_means = X[inx_rand,:]
if np.any(np.isnan(init_means)):
raise ValueError("Init means are NaN! ")
n_features = X.shape[1]
init_covars = np.empty(shape=(n_mixtures, n_features, n_features), dtype=float)
for i in range(n_mixtures):
init_covars[i] = np.eye(n_features)
return(init_priors, init_means, init_covars) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def __log_density_single(x, mean, covar):
""" This is just a test function to calculate the normal density at x given mean and covariance matrix. Note: this function is not efficient, so _log_multivariate_density is recommended for use. """ |
n_dim = mean.shape[0]
dx = x - mean
covar_inv = scipy.linalg.inv(covar)
covar_det = scipy.linalg.det(covar)
den = np.dot(np.dot(dx.T, covar_inv), dx) + n_dim*np.log(2*np.pi) + np.log(covar_det)
return(-1/2 * den) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _validate_params(priors, means, covars):
""" Validation Check for M.L. paramateres """ |
for i,(p,m,cv) in enumerate(zip(priors, means, covars)):
if np.any(np.isinf(p)) or np.any(np.isnan(p)):
raise ValueError("Component %d of priors is not valid " % i)
if np.any(np.isinf(m)) or np.any(np.isnan(m)):
raise ValueError("Component %d of means is not valid " % i)
if np.any(np.isinf(cv)) or np.any(np.isnan(cv)):
raise ValueError("Component %d of covars is not valid " % i)
if (not np.allclose(cv, cv.T) or np.any(scipy.linalg.eigvalsh(cv) <= 0)):
raise ValueError("Component %d of covars must be positive-definite" % i) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def fit(self, X):
""" Fit mixture-density parameters with EM algorithm """ |
params_dict = _fit_gmm_params(X=X, n_mixtures=self.n_clusters, \
n_init=self.n_trials, init_method=self.init_method, \
n_iter=self.max_iter, tol=self.tol)
self.priors_ = params_dict['priors']
self.means_ = params_dict['means']
self.covars_ = params_dict['covars']
self.converged = True
self.labels_ = self.predict(X) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _kmeans_init(X, n_clusters, method='balanced', rng=None):
""" Initialize k=n_clusters centroids randomly """ |
n_samples = X.shape[0]
if rng is None:
cent_idx = np.random.choice(n_samples, replace=False, size=n_clusters)
else:
#print('Generate random centers using RNG')
cent_idx = rng.choice(n_samples, replace=False, size=n_clusters)
centers = X[cent_idx,:]
mean_X = np.mean(X, axis=0)
if method == 'balanced':
centers[n_clusters-1] = n_clusters*mean_X - np.sum(centers[:(n_clusters-1)], axis=0)
return (centers) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _cal_dist2center(X, center):
""" Calculate the SSE to the cluster center """ |
dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1,X.shape[1]), metric='seuclidean')
return(np.sum(dmemb2cen)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _kmeans_run(X, n_clusters, max_iter, tol):
""" Run a single trial of k-means clustering on dataset X, and given number of clusters """ |
membs = np.empty(shape=X.shape[0], dtype=int)
centers = _kmeans_init(X, n_clusters)
sse_last = 9999.9
n_iter = 0
for it in range(1,max_iter):
membs = _assign_clusters(X, centers)
centers,sse_arr = _update_centers(X, membs, n_clusters)
sse_total = np.sum(sse_arr)
if np.abs(sse_total - sse_last) < tol:
n_iter = it
break
sse_last = sse_total
return(centers, membs, sse_total, sse_arr, n_iter) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _kmeans(X, n_clusters, max_iter, n_trials, tol):
""" Run multiple trials of k-means clustering, and outputt he best centers, and cluster labels """ |
n_samples, n_features = X.shape[0], X.shape[1]
centers_best = np.empty(shape=(n_clusters,n_features), dtype=float)
labels_best = np.empty(shape=n_samples, dtype=int)
for i in range(n_trials):
centers, labels, sse_tot, sse_arr, n_iter = _kmeans_run(X, n_clusters, max_iter, tol)
if i==0:
sse_tot_best = sse_tot
sse_arr_best = sse_arr
n_iter_best = n_iter
centers_best = centers.copy()
labels_best = labels.copy()
if sse_tot < sse_tot_best:
sse_tot_best = sse_tot
sse_arr_best = sse_arr
n_iter_best = n_iter
centers_best = centers.copy()
labels_best = labels.copy()
return(centers_best, labels_best, sse_arr_best, n_iter_best) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _cut_tree(tree, n_clusters, membs):
""" Cut the tree to get desired number of clusters as n_clusters 2 <= n_desired <= n_clusters """ |
## starting from root,
## a node is added to the cut_set or
## its children are added to node_set
assert(n_clusters >= 2)
assert(n_clusters <= len(tree.leaves()))
cut_centers = dict() #np.empty(shape=(n_clusters, ndim), dtype=float)
for i in range(n_clusters-1):
if i==0:
search_set = set(tree.children(0))
node_set,cut_set = set(), set()
else:
search_set = node_set.union(cut_set)
node_set,cut_set = set(), set()
if i+2 == n_clusters:
cut_set = search_set
else:
for _ in range(len(search_set)):
n = search_set.pop()
if n.data['ilev'] is None or n.data['ilev']>i+2:
cut_set.add(n)
else:
nid = n.identifier
if n.data['ilev']-2==i:
node_set = node_set.union(set(tree.children(nid)))
conv_membs = membs.copy()
for node in cut_set:
nid = node.identifier
label = node.data['label']
cut_centers[label] = node.data['center']
sub_leaves = tree.leaves(nid)
for leaf in sub_leaves:
indx = np.where(conv_membs == leaf)[0]
conv_membs[indx] = nid
return(conv_membs, cut_centers) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _add_tree_node(tree, label, ilev, X=None, size=None, center=None, sse=None, parent=None):
""" Add a node to the tree if parent is not known, the node is a root The nodes of this tree keep properties of each cluster/subcluster: size --> cluster size as the number of points in the cluster center --> mean of the cluster label --> cluster label sse --> sum-squared-error for that single cluster ilev --> the level at which this node is split into 2 children """ |
if size is None:
size = X.shape[0]
if (center is None):
center = np.mean(X, axis=0)
if (sse is None):
sse = _kmeans._cal_dist2center(X, center)
center = list(center)
datadict = {
'size' : size,
'center': center,
'label' : label,
'sse' : sse,
'ilev' : None
}
if (parent is None):
tree.create_node(label, label, data=datadict)
else:
tree.create_node(label, label, parent=parent, data=datadict)
tree.get_node(parent).data['ilev'] = ilev
return(tree) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _bisect_kmeans(X, n_clusters, n_trials, max_iter, tol):
""" Apply Bisecting Kmeans clustering to reach n_clusters number of clusters """ |
membs = np.empty(shape=X.shape[0], dtype=int)
centers = dict() #np.empty(shape=(n_clusters,X.shape[1]), dtype=float)
sse_arr = dict() #-1.0*np.ones(shape=n_clusters, dtype=float)
## data structure to store cluster hierarchies
tree = treelib.Tree()
tree = _add_tree_node(tree, 0, ilev=0, X=X)
km = _kmeans.KMeans(n_clusters=2, n_trials=n_trials, max_iter=max_iter, tol=tol)
for i in range(1,n_clusters):
sel_clust_id,sel_memb_ids = _select_cluster_2_split(membs, tree)
X_sub = X[sel_memb_ids,:]
km.fit(X_sub)
#print("Bisecting Step %d :"%i, sel_clust_id, km.sse_arr_, km.centers_)
## Updating the clusters & properties
#sse_arr[[sel_clust_id,i]] = km.sse_arr_
#centers[[sel_clust_id,i]] = km.centers_
tree = _add_tree_node(tree, 2*i-1, i, \
size=np.sum(km.labels_ == 0), center=km.centers_[0], \
sse=km.sse_arr_[0], parent= sel_clust_id)
tree = _add_tree_node(tree, 2*i, i, \
size=np.sum(km.labels_ == 1), center=km.centers_[1], \
sse=km.sse_arr_[1], parent= sel_clust_id)
pred_labels = km.labels_
pred_labels[np.where(pred_labels == 1)[0]] = 2*i
pred_labels[np.where(pred_labels == 0)[0]] = 2*i - 1
#if sel_clust_id == 1:
# pred_labels[np.where(pred_labels == 0)[0]] = sel_clust_id
# pred_labels[np.where(pred_labels == 1)[0]] = i
#else:
# pred_labels[np.where(pred_labels == 1)[0]] = i
# pred_labels[np.where(pred_labels == 0)[0]] = sel_clust_id
membs[sel_memb_ids] = pred_labels
for n in tree.leaves():
label = n.data['label']
centers[label] = n.data['center']
sse_arr[label] = n.data['sse']
return(centers, membs, sse_arr, tree) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def comparison_table(self, caption=None, label="tab:model_comp", hlines=True, aic=True, bic=True, dic=True, sort="bic", descending=True):
# pragma: no cover """ Return a LaTeX ready table of model comparisons. Parameters caption : str, optional The table caption to insert. label : str, optional The table label to insert. hlines : bool, optional Whether to insert hlines in the table or not. aic : bool, optional Whether to include a column for AICc or not. bic : bool, optional Whether to include a column for BIC or not. dic : bool, optional Whether to include a column for DIC or not. sort : str, optional How to sort the models. Should be one of "bic", "aic" or "dic". descending : bool, optional The sort order. Returns ------- str A LaTeX table to be copied into your document. """ |
if sort == "bic":
assert bic, "You cannot sort by BIC if you turn it off"
if sort == "aic":
assert aic, "You cannot sort by AIC if you turn it off"
if sort == "dic":
assert dic, "You cannot sort by DIC if you turn it off"
if caption is None:
caption = ""
if label is None:
label = ""
base_string = get_latex_table_frame(caption, label)
end_text = " \\\\ \n"
num_cols = 1 + (1 if aic else 0) + (1 if bic else 0)
column_text = "c" * (num_cols + 1)
center_text = ""
hline_text = "\\hline\n"
if hlines:
center_text += hline_text
center_text += "\tModel" + (" & AIC" if aic else "") + (" & BIC " if bic else "") \
+ (" & DIC " if dic else "") + end_text
if hlines:
center_text += "\t" + hline_text
if aic:
aics = self.aic()
else:
aics = np.zeros(len(self.parent.chains))
if bic:
bics = self.bic()
else:
bics = np.zeros(len(self.parent.chains))
if dic:
dics = self.dic()
else:
dics = np.zeros(len(self.parent.chains))
if sort == "bic":
to_sort = bics
elif sort == "aic":
to_sort = aics
elif sort == "dic":
to_sort = dics
else:
raise ValueError("sort %s not recognised, must be dic, aic or dic" % sort)
good = [i for i, t in enumerate(to_sort) if t is not None]
names = [self.parent.chains[g].name for g in good]
aics = [aics[g] for g in good]
bics = [bics[g] for g in good]
to_sort = bics if sort == "bic" else aics
indexes = np.argsort(to_sort)
if descending:
indexes = indexes[::-1]
for i in indexes:
line = "\t" + names[i]
if aic:
line += " & %5.1f " % aics[i]
if bic:
line += " & %5.1f " % bics[i]
if dic:
line += " & %5.1f " % dics[i]
line += end_text
center_text += line
if hlines:
center_text += "\t" + hline_text
return base_string % (column_text, center_text) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def plot_walks(self, parameters=None, truth=None, extents=None, display=False, filename=None, chains=None, convolve=None, figsize=None, plot_weights=True, plot_posterior=True, log_weight=None):
# pragma: no cover """ Plots the chain walk; the parameter values as a function of step index. This plot is more for a sanity or consistency check than for use with final results. Plotting this before plotting with :func:`plot` allows you to quickly see if the chains are well behaved, or if certain parameters are suspect or require a greater burn in period. The desired outcome is to see an unchanging distribution along the x-axis of the plot. If there are obvious tails or features in the parameters, you probably want to investigate. Parameters parameters : list[str]|int, optional Specify a subset of parameters to plot. If not set, all parameters are plotted. If an integer is given, only the first so many parameters are plotted. truth : list[float]|dict[str], optional A list of truth values corresponding to parameters, or a dictionary of truth values keyed by the parameter. extents : list[tuple]|dict[str], optional A list of two-tuples for plot extents per parameter, or a dictionary of extents keyed by the parameter. display : bool, optional If set, shows the plot using ``plt.show()`` filename : str, optional If set, saves the figure to the filename chains : int|str, list[str|int], optional Used to specify which chain to show if more than one chain is loaded in. Can be an integer, specifying the chain index, or a str, specifying the chain name. convolve : int, optional If set, overplots a smoothed version of the steps using ``convolve`` as the width of the smoothing filter. figsize : tuple, optional If set, sets the created figure size. plot_weights : bool, optional If true, plots the weight if they are available plot_posterior : bool, optional If true, plots the log posterior if they are available log_weight : bool, optional Whether to display weights in log space or not. If None, the value is inferred by the mean weights of the plotted chains. Returns ------- figure the matplotlib figure created """ |
chains, parameters, truth, extents, _ = self._sanitise(chains, parameters, truth, extents)
n = len(parameters)
extra = 0
if plot_weights:
plot_weights = plot_weights and np.any([np.any(c.weights != 1.0) for c in chains])
plot_posterior = plot_posterior and np.any([c.posterior is not None for c in chains])
if plot_weights:
extra += 1
if plot_posterior:
extra += 1
if figsize is None:
figsize = (8, 0.75 + (n + extra))
fig, axes = plt.subplots(figsize=figsize, nrows=n + extra, squeeze=False, sharex=True)
for i, axes_row in enumerate(axes):
ax = axes_row[0]
if i >= extra:
p = parameters[i - n]
for chain in chains:
if p in chain.parameters:
chain_row = chain.get_data(p)
self._plot_walk(ax, p, chain_row, extents=extents.get(p), convolve=convolve, color=chain.config["color"])
if truth.get(p) is not None:
self._plot_walk_truth(ax, truth.get(p))
else:
if i == 0 and plot_posterior:
for chain in chains:
if chain.posterior is not None:
self._plot_walk(ax, "$\log(P)$", chain.posterior - chain.posterior.max(),
convolve=convolve, color=chain.config["color"])
else:
if log_weight is None:
log_weight = np.any([chain.weights.mean() < 0.1 for chain in chains])
if log_weight:
for chain in chains:
self._plot_walk(ax, r"$\log_{10}(w)$", np.log10(chain.weights),
convolve=convolve, color=chain.config["color"])
else:
for chain in chains:
self._plot_walk(ax, "$w$", chain.weights,
convolve=convolve, color=chain.config["color"])
if filename is not None:
if isinstance(filename, str):
filename = [filename]
for f in filename:
self._save_fig(fig, f, 300)
if display:
plt.show()
return fig |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def gelman_rubin(self, chain=None, threshold=0.05):
r""" Runs the Gelman Rubin diagnostic on the supplied chains. Parameters chain : int|str, optional Which chain to run the diagnostic on. By default, this is `None`, which will run the diagnostic on all chains. You can also supply and integer (the chain index) or a string, for the chain name (if you set one). threshold : float, optional The maximum deviation permitted from 1 for the final value :math:`\hat{R}` Returns ------- float whether or not the chains pass the test Notes ----- I follow PyMC in calculating the Gelman-Rubin statistic, where, having :math:`m` chains of length :math:`n`, we compute .. math:: B = \frac{n}{m-1} \sum_{j=1}^{m} \left(\bar{\theta}_{.j} - \bar{\theta}_{..}\right)^2 W = \frac{1}{m} \sum_{j=1}^{m} \left[ \frac{1}{n-1} \sum_{i=1}^{n} \left( \theta_{ij} - \bar{\theta_{.j}}\right)^2 \right] where :math:`\theta` represents each model parameter. We then compute :math:`\hat{V} = \frac{n_1}{n}W + \frac{1}{n}B`, and have our convergence ratio :math:`\hat{R} = \sqrt{\frac{\hat{V}}{W}}`. We check that for all parameters, this ratio deviates from unity by less than the supplied threshold. """ |
if chain is None:
return np.all([self.gelman_rubin(k, threshold=threshold) for k in range(len(self.parent.chains))])
index = self.parent._get_chain(chain)
assert len(index) == 1, "Please specify only one chain, have %d chains" % len(index)
chain = self.parent.chains[index[0]]
num_walkers = chain.walkers
parameters = chain.parameters
name = chain.name
data = chain.chain
chains = np.split(data, num_walkers)
assert num_walkers > 1, "Cannot run Gelman-Rubin statistic with only one walker"
m = 1.0 * len(chains)
n = 1.0 * chains[0].shape[0]
all_mean = np.mean(data, axis=0)
chain_means = np.array([np.mean(c, axis=0) for c in chains])
chain_var = np.array([np.var(c, axis=0, ddof=1) for c in chains])
b = n / (m - 1) * ((chain_means - all_mean)**2).sum(axis=0)
w = (1 / m) * chain_var.sum(axis=0)
var = (n - 1) * w / n + b / n
v = var + b / (n * m)
R = np.sqrt(v / w)
passed = np.abs(R - 1) < threshold
print("Gelman-Rubin Statistic values for chain %s" % name)
for p, v, pas in zip(parameters, R, passed):
param = "Param %d" % p if isinstance(p, int) else p
print("%s: %7.5f (%s)" % (param, v, "Passed" if pas else "Failed"))
return np.all(passed) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def geweke(self, chain=None, first=0.1, last=0.5, threshold=0.05):
""" Runs the Geweke diagnostic on the supplied chains. Parameters chain : int|str, optional Which chain to run the diagnostic on. By default, this is `None`, which will run the diagnostic on all chains. You can also supply and integer (the chain index) or a string, for the chain name (if you set one). first : float, optional The amount of the start of the chain to use last : float, optional The end amount of the chain to use threshold : float, optional The p-value to use when testing for normality. Returns ------- float whether or not the chains pass the test """ |
if chain is None:
return np.all([self.geweke(k, threshold=threshold) for k in range(len(self.parent.chains))])
index = self.parent._get_chain(chain)
assert len(index) == 1, "Please specify only one chain, have %d chains" % len(index)
chain = self.parent.chains[index[0]]
num_walkers = chain.walkers
assert num_walkers is not None and num_walkers > 0, \
"You need to specify the number of walkers to use the Geweke diagnostic."
name = chain.name
data = chain.chain
chains = np.split(data, num_walkers)
n = 1.0 * chains[0].shape[0]
n_start = int(np.floor(first * n))
n_end = int(np.floor((1 - last) * n))
mean_start = np.array([np.mean(c[:n_start, i])
for c in chains for i in range(c.shape[1])])
var_start = np.array([self._spec(c[:n_start, i]) / c[:n_start, i].size
for c in chains for i in range(c.shape[1])])
mean_end = np.array([np.mean(c[n_end:, i])
for c in chains for i in range(c.shape[1])])
var_end = np.array([self._spec(c[n_end:, i]) / c[n_end:, i].size
for c in chains for i in range(c.shape[1])])
zs = (mean_start - mean_end) / (np.sqrt(var_start + var_end))
_, pvalue = normaltest(zs)
print("Gweke Statistic for chain %s has p-value %e" % (name, pvalue))
return pvalue > threshold |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_latex_table(self, parameters=None, transpose=False, caption=None, label="tab:model_params", hlines=True, blank_fill="--"):
# pragma: no cover """ Generates a LaTeX table from parameter summaries. Parameters parameters : list[str], optional A list of what parameters to include in the table. By default, includes all parameters transpose : bool, optional Defaults to False, which gives each column as a parameter, each chain (framework) as a row. You can swap it so that you have a parameter each row and a framework each column by setting this to True caption : str, optional If you want to generate a caption for the table through Python, use this. Defaults to an empty string label : str, optional If you want to generate a label for the table through Python, use this. Defaults to an empty string hlines : bool, optional Inserts ``\\hline`` before and after the header, and at the end of table. blank_fill : str, optional If a framework does not have a particular parameter, will fill that cell of the table with this string. Returns ------- str the LaTeX table. """ |
if parameters is None:
parameters = self.parent._all_parameters
for p in parameters:
assert isinstance(p, str), \
"Generating a LaTeX table requires all parameters have labels"
num_parameters = len(parameters)
num_chains = len(self.parent.chains)
fit_values = self.get_summary(squeeze=False)
if label is None:
label = ""
if caption is None:
caption = ""
end_text = " \\\\ \n"
if transpose:
column_text = "c" * (num_chains + 1)
else:
column_text = "c" * (num_parameters + 1)
center_text = ""
hline_text = "\\hline\n"
if hlines:
center_text += hline_text + "\t\t"
if transpose:
center_text += " & ".join(["Parameter"] + [c.name for c in self.parent.chains]) + end_text
if hlines:
center_text += "\t\t" + hline_text
for p in parameters:
arr = ["\t\t" + p]
for chain_res in fit_values:
if p in chain_res:
arr.append(self.get_parameter_text(*chain_res[p], wrap=True))
else:
arr.append(blank_fill)
center_text += " & ".join(arr) + end_text
else:
center_text += " & ".join(["Model"] + parameters) + end_text
if hlines:
center_text += "\t\t" + hline_text
for name, chain_res in zip([c.name for c in self.parent.chains], fit_values):
arr = ["\t\t" + name]
for p in parameters:
if p in chain_res:
arr.append(self.get_parameter_text(*chain_res[p], wrap=True))
else:
arr.append(blank_fill)
center_text += " & ".join(arr) + end_text
if hlines:
center_text += "\t\t" + hline_text
final_text = get_latex_table_frame(caption, label) % (column_text, center_text)
return final_text |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_summary(self, squeeze=True, parameters=None, chains=None):
""" Gets a summary of the marginalised parameter distributions. Parameters squeeze : bool, optional Squeeze the summaries. If you only have one chain, squeeze will not return a length one list, just the single summary. If this is false, you will get a length one list. parameters : list[str], optional A list of parameters which to generate summaries for. chains : list[int|str], optional A list of the chains to get a summary of. Returns ------- list of dictionaries One entry per chain, parameter bounds stored in dictionary with parameter as key """ |
results = []
if chains is None:
chains = self.parent.chains
else:
if isinstance(chains, (int, str)):
chains = [chains]
chains = [self.parent.chains[i] for c in chains for i in self.parent._get_chain(c)]
for chain in chains:
res = {}
params_to_find = parameters if parameters is not None else chain.parameters
for p in params_to_find:
if p not in chain.parameters:
continue
summary = self.get_parameter_summary(chain, p)
res[p] = summary
results.append(res)
if squeeze and len(results) == 1:
return results[0]
return results |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_max_posteriors(self, parameters=None, squeeze=True, chains=None):
""" Gets the maximum posterior point in parameter space from the passed parameters. Requires the chains to have set `posterior` values. Parameters parameters : str|list[str] The parameters to find squeeze : bool, optional Squeeze the summaries. If you only have one chain, squeeze will not return a length one list, just the single summary. If this is false, you will get a length one list. chains : list[int|str], optional A list of the chains to get a summary of. Returns ------- list of two-tuples One entry per chain, two-tuple represents the max-likelihood coordinate """ |
results = []
if chains is None:
chains = self.parent.chains
else:
if isinstance(chains, (int, str)):
chains = [chains]
chains = [self.parent.chains[i] for c in chains for i in self.parent._get_chain(c)]
if isinstance(parameters, str):
parameters = [parameters]
for chain in chains:
if chain.posterior_max_index is None:
results.append(None)
continue
res = {}
params_to_find = parameters if parameters is not None else chain.parameters
for p in params_to_find:
if p in chain.parameters:
res[p] = chain.posterior_max_params[p]
results.append(res)
if squeeze and len(results) == 1:
return results[0]
return results |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_correlations(self, chain=0, parameters=None):
""" Takes a chain and returns the correlation between chain parameters. Parameters chain : int|str, optional The chain index or name. Defaults to first chain. parameters : list[str], optional The list of parameters to compute correlations. Defaults to all parameters for the given chain. Returns ------- tuple The first index giving a list of parameter names, the second index being the 2D correlation matrix. """ |
parameters, cov = self.get_covariance(chain=chain, parameters=parameters)
diag = np.sqrt(np.diag(cov))
divisor = diag[None, :] * diag[:, None]
correlations = cov / divisor
return parameters, correlations |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_covariance(self, chain=0, parameters=None):
""" Takes a chain and returns the covariance between chain parameters. Parameters chain : int|str, optional The chain index or name. Defaults to first chain. parameters : list[str], optional The list of parameters to compute correlations. Defaults to all parameters for the given chain. Returns ------- tuple The first index giving a list of parameter names, the second index being the 2D covariance matrix. """ |
index = self.parent._get_chain(chain)
assert len(index) == 1, "Please specify only one chain, have %d chains" % len(index)
chain = self.parent.chains[index[0]]
if parameters is None:
parameters = chain.parameters
data = chain.get_data(parameters)
cov = np.atleast_2d(np.cov(data, aweights=chain.weights, rowvar=False))
return parameters, cov |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_correlation_table(self, chain=0, parameters=None, caption="Parameter Correlations", label="tab:parameter_correlations"):
""" Gets a LaTeX table of parameter correlations. Parameters chain : int|str, optional The chain index or name. Defaults to first chain. parameters : list[str], optional The list of parameters to compute correlations. Defaults to all parameters for the given chain. caption : str, optional The LaTeX table caption. label : str, optional The LaTeX table label. Returns ------- str The LaTeX table ready to go! """ |
parameters, cor = self.get_correlations(chain=chain, parameters=parameters)
return self._get_2d_latex_table(parameters, cor, caption, label) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_covariance_table(self, chain=0, parameters=None, caption="Parameter Covariance", label="tab:parameter_covariance"):
""" Gets a LaTeX table of parameter covariance. Parameters chain : int|str, optional The chain index or name. Defaults to first chain. parameters : list[str], optional The list of parameters to compute correlations. Defaults to all parameters for the given chain. caption : str, optional The LaTeX table caption. label : str, optional The LaTeX table label. Returns ------- str The LaTeX table ready to go! """ |
parameters, cov = self.get_covariance(chain=chain, parameters=parameters)
return self._get_2d_latex_table(parameters, cov, caption, label) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def get_parameter_text(self, lower, maximum, upper, wrap=False):
""" Generates LaTeX appropriate text from marginalised parameter bounds. Parameters lower : float The lower bound on the parameter maximum : float The value of the parameter with maximum probability upper : float The upper bound on the parameter wrap : bool Wrap output text in dollar signs for LaTeX Returns ------- str The formatted text given the parameter bounds """ |
if lower is None or upper is None:
return ""
upper_error = upper - maximum
lower_error = maximum - lower
if upper_error != 0 and lower_error != 0:
resolution = min(np.floor(np.log10(np.abs(upper_error))),
np.floor(np.log10(np.abs(lower_error))))
elif upper_error == 0 and lower_error != 0:
resolution = np.floor(np.log10(np.abs(lower_error)))
elif upper_error != 0 and lower_error == 0:
resolution = np.floor(np.log10(np.abs(upper_error)))
else:
resolution = np.floor(np.log10(np.abs(maximum)))
factor = 0
fmt = "%0.1f"
r = 1
if np.abs(resolution) > 2:
factor = -resolution
if resolution == 2:
fmt = "%0.0f"
factor = -1
r = 0
if resolution == 1:
fmt = "%0.0f"
if resolution == -1:
fmt = "%0.2f"
r = 2
elif resolution == -2:
fmt = "%0.3f"
r = 3
upper_error *= 10 ** factor
lower_error *= 10 ** factor
maximum *= 10 ** factor
upper_error = round(upper_error, r)
lower_error = round(lower_error, r)
maximum = round(maximum, r)
if maximum == -0.0:
maximum = 0.0
if resolution == 2:
upper_error *= 10 ** -factor
lower_error *= 10 ** -factor
maximum *= 10 ** -factor
factor = 0
fmt = "%0.0f"
upper_error_text = fmt % upper_error
lower_error_text = fmt % lower_error
if upper_error_text == lower_error_text:
text = r"%s\pm %s" % (fmt, "%s") % (maximum, lower_error_text)
else:
text = r"%s^{+%s}_{-%s}" % (fmt, "%s", "%s") % \
(maximum, upper_error_text, lower_error_text)
if factor != 0:
text = r"\left( %s \right) \times 10^{%d}" % (text, -factor)
if wrap:
text = "$%s$" % text
return text |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def remove_chain(self, chain=-1):
""" Removes a chain from ChainConsumer. Calling this will require any configurations set to be redone! Parameters chain : int|str, list[str|int] The chain(s) to remove. You can pass in either the chain index, or the chain name, to remove it. By default removes the last chain added. Returns ------- ChainConsumer Itself, to allow chaining calls. """ |
if isinstance(chain, str) or isinstance(chain, int):
chain = [chain]
chain = sorted([i for c in chain for i in self._get_chain(c)])[::-1]
assert len(chain) == len(list(set(chain))), "Error, you are trying to remove a chain more than once."
for index in chain:
del self.chains[index]
seen = set()
self._all_parameters = [p for c in self.chains for p in c.parameters if not (p in seen or seen.add(p))]
# Need to reconfigure
self._init_params()
return self |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def configure_truth(self, **kwargs):
# pragma: no cover """ Configure the arguments passed to the ``axvline`` and ``axhline`` methods when plotting truth values. If you do not call this explicitly, the :func:`plot` method will invoke this method automatically. Recommended to set the parameters ``linestyle``, ``color`` and/or ``alpha`` if you want some basic control. Default is to use an opaque black dashed line. Parameters kwargs : dict The keyword arguments to unwrap when calling ``axvline`` and ``axhline``. Returns ------- ChainConsumer Itself, to allow chaining calls. """ |
if kwargs.get("ls") is None and kwargs.get("linestyle") is None:
kwargs["ls"] = "--"
kwargs["dashes"] = (3, 3)
if kwargs.get("color") is None:
kwargs["color"] = "#000000"
self.config_truth = kwargs
self._configured_truth = True
return self |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def divide_chain(self, chain=0):
""" Returns a ChainConsumer instance containing all the walks of a given chain as individual chains themselves. This method might be useful if, for example, your chain was made using MCMC with 4 walkers. To check the sampling of all 4 walkers agree, you could call this to get a ChainConsumer instance with one chain for ech of the four walks. If you then plot, hopefully all four contours you would see agree. Parameters chain : int|str, optional The index or name of the chain you want divided Returns ------- ChainConsumer A new ChainConsumer instance with the same settings as the parent instance, containing ``num_walker`` chains. """ |
indexes = self._get_chain(chain)
con = ChainConsumer()
for index in indexes:
chain = self.chains[index]
assert chain.walkers is not None, "The chain you have selected was not added with any walkers!"
num_walkers = chain.walkers
data = np.split(chain.chain, num_walkers)
ws = np.split(chain.weights, num_walkers)
for j, (c, w) in enumerate(zip(data, ws)):
con.add_chain(c, weights=w, name="Chain %d" % j, parameters=chain.parameters)
return con |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def threshold(args):
"""Calculate motif score threshold for a given FPR.""" |
if args.fpr < 0 or args.fpr > 1:
print("Please specify a FPR between 0 and 1")
sys.exit(1)
motifs = read_motifs(args.pwmfile)
s = Scanner()
s.set_motifs(args.pwmfile)
s.set_threshold(args.fpr, filename=args.inputfile)
print("Motif\tScore\tCutoff")
for motif in motifs:
min_score = motif.pwm_min_score()
max_score = motif.pwm_max_score()
opt_score = s.threshold[motif.id]
if opt_score is None:
opt_score = motif.pwm_max_score()
threshold = (opt_score - min_score) / (max_score - min_score)
print("{0}\t{1}\t{2}".format(
motif.id, opt_score, threshold)) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def values_to_labels(fg_vals, bg_vals):
""" Convert two arrays of values to an array of labels and an array of scores. Parameters fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. Returns ------- y_true : array Labels. y_score : array Values. """ |
y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))
y_score = np.hstack((fg_vals, bg_vals))
return y_true, y_score |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def max_enrichment(fg_vals, bg_vals, minbg=2):
""" Computes the maximum enrichment. Parameters fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. minbg : int, optional Minimum number of matches in background. The default is 2. Returns ------- enrichment : float Maximum enrichment. """ |
scores = np.hstack((fg_vals, bg_vals))
idx = np.argsort(scores)
x = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))
xsort = x[idx]
l_fg = len(fg_vals)
l_bg = len(bg_vals)
m = 0
s = 0
for i in range(len(scores), 0, -1):
bgcount = float(len(xsort[i:][xsort[i:] == 0]))
if bgcount >= minbg:
enr = (len(xsort[i:][xsort[i:] == 1]) / l_fg) / (bgcount / l_bg)
if enr > m:
m = enr
s = scores[idx[i]]
return m |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def roc_auc_xlim(x_bla, y_bla, xlim=0.1):
""" Computes the ROC Area Under Curve until a certain FPR value. Parameters fg_vals : array_like list of values for positive set bg_vals : array_like list of values for negative set xlim : float, optional FPR value Returns ------- score : float ROC AUC score """ |
x = x_bla[:]
y = y_bla[:]
x.sort()
y.sort()
u = {}
for i in x + y:
u[i] = 1
vals = sorted(u.keys())
len_x = float(len(x))
len_y = float(len(y))
new_x = []
new_y = []
x_p = 0
y_p = 0
for val in vals[::-1]:
while len(x) > 0 and x[-1] >= val:
x.pop()
x_p += 1
while len(y) > 0 and y[-1] >= val:
y.pop()
y_p += 1
new_y.append((len_x - x_p) / len_x)
new_x.append((len_y - y_p) / len_y)
#print new_x
#print new_y
new_x = 1 - np.array(new_x)
new_y = 1 - np.array(new_y)
#plot(new_x, new_y)
#show()
x = new_x
y = new_y
if len(x) != len(y):
raise ValueError("Unequal!")
if not xlim:
xlim = 1.0
auc = 0.0
bla = zip(stats.rankdata(x), range(len(x)))
bla = sorted(bla, key=lambda x: x[1])
prev_x = x[bla[0][1]]
prev_y = y[bla[0][1]]
index = 1
while index < len(bla) and x[bla[index][1]] <= xlim:
_, i = bla[index]
auc += y[i] * (x[i] - prev_x) - ((x[i] - prev_x) * (y[i] - prev_y) / 2.0)
prev_x = x[i]
prev_y = y[i]
index += 1
if index < len(bla):
(rank, i) = bla[index]
auc += prev_y * (xlim - prev_x) + ((y[i] - prev_y)/(x[i] - prev_x) * (xlim -prev_x) * (xlim - prev_x)/2)
return auc |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def max_fmeasure(fg_vals, bg_vals):
""" Computes the maximum F-measure. Parameters fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. Returns ------- f : float Maximum f-measure. """ |
x, y = roc_values(fg_vals, bg_vals)
x, y = x[1:], y[1:] # don't include origin
p = y / (y + x)
filt = np.logical_and((p * y) > 0, (p + y) > 0)
p = p[filt]
y = y[filt]
f = (2 * p * y) / (p + y)
if len(f) > 0:
#return np.nanmax(f), np.nanmax(y[f == np.nanmax(f)])
return np.nanmax(f)
else:
return None |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def ks_pvalue(fg_pos, bg_pos=None):
""" Computes the Kolmogorov-Smirnov p-value of position distribution. Parameters fg_pos : array_like The list of values for the positive set. bg_pos : array_like, optional The list of values for the negative set. Returns ------- p : float KS p-value. """ |
if len(fg_pos) == 0:
return 1.0
a = np.array(fg_pos, dtype="float") / max(fg_pos)
p = kstest(a, "uniform")[1]
return p |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def ks_significance(fg_pos, bg_pos=None):
""" Computes the -log10 of Kolmogorov-Smirnov p-value of position distribution. Parameters fg_pos : array_like The list of values for the positive set. bg_pos : array_like, optional The list of values for the negative set. Returns ------- p : float -log10(KS p-value). """ |
p = ks_pvalue(fg_pos, max(fg_pos))
if p > 0:
return -np.log10(p)
else:
return np.inf |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def setup_data():
"""Load and shape data for training with Keras + Pescador. Returns ------- input_shape : tuple, len=3 Shape of each sample; adapts to channel configuration of Keras. X_train, y_train : np.ndarrays Images and labels for training. X_test, y_test : np.ndarrays Images and labels for test. """ |
# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
return input_shape, (x_train, y_train), (x_test, y_test) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def build_model(input_shape):
"""Create a compiled Keras model. Parameters input_shape : tuple, len=3 Shape of each image sample. Returns ------- model : keras.Model Constructed model. """ |
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
return model |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
| def sampler(X, y):
'''A basic generator for sampling data.
Parameters
----------
X : np.ndarray, len=n_samples, ndim=4
Image data.
y : np.ndarray, len=n_samples, ndim=2
One-hot encoded class vectors.
Yields
------
data : dict
Single image sample, like {X: np.ndarray, y: np.ndarray}
'''
X = np.atleast_2d(X)
# y's are binary vectors, and should be of shape (10,) after this.
y = np.atleast_1d(y)
n = X.shape[0]
while True:
i = np.random.randint(0, n)
yield {'X': X[i], 'y': y[i]} |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
| def additive_noise(stream, key='X', scale=1e-1):
'''Add noise to a data stream.
Parameters
----------
stream : iterable
A stream that yields data objects.
key : string, default='X'
Name of the field to add noise.
scale : float, default=0.1
Scale factor for gaussian noise.
Yields
------
data : dict
Updated data objects in the stream.
'''
for data in stream:
noise_shape = data[key].shape
noise = scale * np.random.randn(*noise_shape)
data[key] = data[key] + noise
yield data |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def parse_denovo_params(user_params=None):
"""Return default GimmeMotifs parameters. Defaults will be replaced with parameters defined in user_params. Parameters user_params : dict, optional User-defined parameters. Returns ------- params : dict """ |
config = MotifConfig()
if user_params is None:
user_params = {}
params = config.get_default_params()
params.update(user_params)
if params.get("torque"):
logger.debug("Using torque")
else:
logger.debug("Using multiprocessing")
params["background"] = [x.strip() for x in params["background"].split(",")]
logger.debug("Parameters:")
for param, value in params.items():
logger.debug(" %s: %s", param, value)
# Maximum time?
if params["max_time"]:
try:
max_time = params["max_time"] = float(params["max_time"])
except Exception:
logger.debug("Could not parse max_time value, setting to no limit")
params["max_time"] = -1
if params["max_time"] > 0:
logger.debug("Time limit for motif prediction: %0.2f hours", max_time)
params["max_time"] = 3600 * params["max_time"]
logger.debug("Max_time in seconds %0.0f", max_time)
else:
logger.debug("No time limit for motif prediction")
return params |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def rankagg(df, method="stuart"):
"""Return aggregated ranks. Implementation is ported from the RobustRankAggreg R package References: Kolde et al., 2012, DOI: 10.1093/bioinformatics/btr709 Stuart et al., 2003, DOI: 10.1126/science.1087447 Parameters df : pandas.DataFrame DataFrame with values to be ranked and aggregated Returns ------- pandas.DataFrame with aggregated ranks """ |
rmat = pd.DataFrame(index=df.iloc[:,0])
step = 1 / rmat.shape[0]
for col in df.columns:
rmat[col] = pd.DataFrame({col:np.arange(step, 1 + step, step)}, index=df[col]).loc[rmat.index]
rmat = rmat.apply(sorted, 1, result_type="expand")
p = rmat.apply(qStuart, 1)
df = pd.DataFrame(
{"p.adjust":multipletests(p, method="h")[1]},
index=rmat.index).sort_values('p.adjust')
return df["p.adjust"] |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def data_gen(n_ops=100):
"""Yield data, while optionally burning compute cycles. Parameters n_ops : int, default=100 Number of operations to run between yielding data. Returns ------- data : dict A object which looks like it might come from some machine learning problem, with X as features, and y as targets. """ |
while True:
X = np.random.uniform(size=(64, 64))
yield dict(X=costly_function(X, n_ops),
y=np.random.randint(10, size=(1,))) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def mp_calc_stats(motifs, fg_fa, bg_fa, bg_name=None):
"""Parallel calculation of motif statistics.""" |
try:
stats = calc_stats(motifs, fg_fa, bg_fa, ncpus=1)
except Exception as e:
raise
sys.stderr.write("ERROR: {}\n".format(str(e)))
stats = {}
if not bg_name:
bg_name = "default"
return bg_name, stats |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def _run_tool(job_name, t, fastafile, params):
"""Parallel motif prediction.""" |
try:
result = t.run(fastafile, params, mytmpdir())
except Exception as e:
result = ([], "", "{} failed to run: {}".format(job_name, e))
return job_name, result |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def predict_motifs(infile, bgfile, outfile, params=None, stats_fg=None, stats_bg=None):
""" Predict motifs, input is a FASTA-file""" |
# Parse parameters
required_params = ["tools", "available_tools", "analysis",
"genome", "use_strand", "max_time"]
if params is None:
params = parse_denovo_params()
else:
for p in required_params:
if p not in params:
params = parse_denovo_params()
break
# Define all tools
tools = dict(
[
(x.strip(), x in [y.strip() for y in params["tools"].split(",")])
for x in params["available_tools"].split(",")
]
)
# Predict the motifs
analysis = params["analysis"]
logger.info("starting motif prediction (%s)", analysis)
logger.info("tools: %s",
", ".join([x for x in tools.keys() if tools[x]]))
result = pp_predict_motifs(
infile,
outfile,
analysis,
params.get("genome", None),
params["use_strand"],
bgfile,
tools,
None,
#logger=logger,
max_time=params["max_time"],
stats_fg=stats_fg,
stats_bg=stats_bg
)
motifs = result.motifs
logger.info("predicted %s motifs", len(motifs))
logger.debug("written to %s", outfile)
if len(motifs) == 0:
logger.info("no motifs found")
result.motifs = []
return result |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def add_motifs(self, args):
"""Add motifs to the result object.""" |
self.lock.acquire()
# Callback function for motif programs
if args is None or len(args) != 2 or len(args[1]) != 3:
try:
job = args[0]
logger.warn("job %s failed", job)
self.finished.append(job)
except Exception:
logger.warn("job failed")
return
job, (motifs, stdout, stderr) = args
logger.info("%s finished, found %s motifs", job, len(motifs))
for motif in motifs:
if self.do_counter:
self.counter += 1
motif.id = "gimme_{}_".format(self.counter) + motif.id
f = open(self.outfile, "a")
f.write("%s\n" % motif.to_pfm())
f.close()
self.motifs.append(motif)
if self.do_stats and len(motifs) > 0:
#job_id = "%s_%s" % (motif.id, motif.to_consensus())
logger.debug("Starting stats job of %s motifs", len(motifs))
for bg_name, bg_fa in self.background.items():
job = self.job_server.apply_async(
mp_calc_stats,
(motifs, self.fg_fa, bg_fa, bg_name),
callback=self.add_stats
)
self.stat_jobs.append(job)
logger.debug("stdout %s: %s", job, stdout)
logger.debug("stdout %s: %s", job, stderr)
self.finished.append(job)
self.lock.release() |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def wait_for_stats(self):
"""Make sure all jobs are finished.""" |
logging.debug("waiting for statistics to finish")
for job in self.stat_jobs:
job.get()
sleep(2) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def add_stats(self, args):
"""Callback to add motif statistics.""" |
bg_name, stats = args
logger.debug("Stats: %s %s", bg_name, stats)
for motif_id in stats.keys():
if motif_id not in self.stats:
self.stats[motif_id] = {}
self.stats[motif_id][bg_name] = stats[motif_id] |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def prepare_denovo_input_narrowpeak(inputfile, params, outdir):
"""Prepare a narrowPeak file for de novo motif prediction. All regions to same size; split in test and validation set; converted to FASTA. Parameters inputfile : str BED file with input regions. params : dict Dictionary with parameters. outdir : str Output directory to save files. """ |
bedfile = os.path.join(outdir, "input.from.narrowpeak.bed")
p = re.compile(r'^(#|track|browser)')
width = int(params["width"])
logger.info("preparing input (narrowPeak to BED, width %s)", width)
warn_no_summit = True
with open(bedfile, "w") as f_out:
with open(inputfile) as f_in:
for line in f_in:
if p.search(line):
continue
vals = line.strip().split("\t")
start, end = int(vals[1]), int(vals[2])
summit = int(vals[9])
if summit == -1:
if warn_no_summit:
logger.warn("No summit present in narrowPeak file, using the peak center.")
warn_no_summit = False
summit = (end - start) // 2
start = start + summit - (width // 2)
end = start + width
f_out.write("{}\t{}\t{}\t{}\n".format(
vals[0],
start,
end,
vals[6]
))
prepare_denovo_input_bed(bedfile, params, outdir) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def prepare_denovo_input_bed(inputfile, params, outdir):
"""Prepare a BED file for de novo motif prediction. All regions to same size; split in test and validation set; converted to FASTA. Parameters inputfile : str BED file with input regions. params : dict Dictionary with parameters. outdir : str Output directory to save files. """ |
logger.info("preparing input (BED)")
# Create BED file with regions of equal size
width = int(params["width"])
bedfile = os.path.join(outdir, "input.bed")
write_equalwidth_bedfile(inputfile, width, bedfile)
abs_max = int(params["abs_max"])
fraction = float(params["fraction"])
pred_bedfile = os.path.join(outdir, "prediction.bed")
val_bedfile = os.path.join(outdir, "validation.bed")
# Split input into prediction and validation set
logger.debug(
"Splitting %s into prediction set (%s) and validation set (%s)",
bedfile, pred_bedfile, val_bedfile)
divide_file(bedfile, pred_bedfile, val_bedfile, fraction, abs_max)
config = MotifConfig()
genome = Genome(params["genome"])
for infile in [pred_bedfile, val_bedfile]:
genome.track2fasta(
infile,
infile.replace(".bed", ".fa"),
)
# Create file for location plots
lwidth = int(params["lwidth"])
extend = (lwidth - width) // 2
genome.track2fasta(
val_bedfile,
os.path.join(outdir, "localization.fa"),
extend_up=extend,
extend_down=extend,
stranded=params["use_strand"],
) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def create_background(bg_type, fafile, outfile, genome="hg18", width=200, nr_times=10, custom_background=None):
"""Create background of a specific type. Parameters bg_type : str Name of background type. fafile : str Name of input FASTA file. outfile : str Name of output FASTA file. genome : str, optional Genome name. width : int, optional Size of regions. nr_times : int, optional Generate this times as many background sequences as compared to input file. Returns ------- nr_seqs : int Number of sequences created. """ |
width = int(width)
config = MotifConfig()
fg = Fasta(fafile)
if bg_type in ["genomic", "gc"]:
if not genome:
logger.error("Need a genome to create background")
sys.exit(1)
if bg_type == "random":
f = MarkovFasta(fg, k=1, n=nr_times * len(fg))
logger.debug("Random background: %s", outfile)
elif bg_type == "genomic":
logger.debug("Creating genomic background")
f = RandomGenomicFasta(genome, width, nr_times * len(fg))
elif bg_type == "gc":
logger.debug("Creating GC matched background")
f = MatchedGcFasta(fafile, genome, nr_times * len(fg))
logger.debug("GC matched background: %s", outfile)
elif bg_type == "promoter":
fname = Genome(genome).filename
gene_file = fname.replace(".fa", ".annotation.bed.gz")
if not gene_file:
gene_file = os.path.join(config.get_gene_dir(), "%s.bed" % genome)
if not os.path.exists(gene_file):
print("Could not find a gene file for genome {}")
print("Did you use the --annotation flag for genomepy?")
print("Alternatively make sure there is a file called {}.bed in {}".format(genome, config.get_gene_dir()))
raise ValueError()
logger.info(
"Creating random promoter background (%s, using genes in %s)",
genome, gene_file)
f = PromoterFasta(gene_file, genome, width, nr_times * len(fg))
logger.debug("Random promoter background: %s", outfile)
elif bg_type == "custom":
bg_file = custom_background
if not bg_file:
raise IOError(
"Background file not specified!")
if not os.path.exists(bg_file):
raise IOError(
"Custom background file %s does not exist!",
bg_file)
else:
logger.info("Copying custom background file %s to %s.",
bg_file, outfile)
f = Fasta(bg_file)
l = np.median([len(seq) for seq in f.seqs])
if l < (width * 0.95) or l > (width * 1.05):
logger.warn(
"The custom background file %s contains sequences with a "
"median length of %s, while GimmeMotifs predicts motifs in sequences "
"of length %s. This will influence the statistics! It is recommended "
"to use background sequences of the same length.",
bg_file, l, width)
f.writefasta(outfile)
return len(f) |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def create_backgrounds(outdir, background=None, genome="hg38", width=200, custom_background=None):
"""Create different backgrounds for motif prediction and validation. Parameters outdir : str Directory to save results. background : list, optional Background types to create, default is 'random'. genome : str, optional Genome name (for genomic and gc backgrounds). width : int, optional Size of background regions Returns ------- bg_info : dict Keys: background name, values: file name. """ |
if background is None:
background = ["random"]
nr_sequences = {}
# Create background for motif prediction
if "gc" in background:
pred_bg = "gc"
else:
pred_bg = background[0]
create_background(
pred_bg,
os.path.join(outdir, "prediction.fa"),
os.path.join(outdir, "prediction.bg.fa"),
genome=genome,
width=width,
custom_background=custom_background)
# Get background fasta files for statistics
bg_info = {}
nr_sequences = {}
for bg in background:
fname = os.path.join(outdir, "bg.{}.fa".format(bg))
nr_sequences[bg] = create_background(
bg,
os.path.join(outdir, "validation.fa"),
fname,
genome=genome,
width=width,
custom_background=custom_background)
bg_info[bg] = fname
return bg_info |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def filter_significant_motifs(fname, result, bg, metrics=None):
"""Filter significant motifs based on several statistics. Parameters fname : str Filename of output file were significant motifs will be saved. result : PredictionResult instance Contains motifs and associated statistics. bg : str Name of background type to use. metrics : sequence Metric with associated minimum values. The default is (("max_enrichment", 3), ("roc_auc", 0.55), ("enr_at_f[r", 0.55)) Returns ------- motifs : list List of Motif instances. """ |
sig_motifs = []
with open(fname, "w") as f:
for motif in result.motifs:
stats = result.stats.get(
"%s_%s" % (motif.id, motif.to_consensus()), {}).get(bg, {}
)
if _is_significant(stats, metrics):
f.write("%s\n" % motif.to_pfm())
sig_motifs.append(motif)
logger.info("%s motifs are significant", len(sig_motifs))
logger.debug("written to %s", fname)
return sig_motifs |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def best_motif_in_cluster(single_pwm, clus_pwm, clusters, fg_fa, background, stats=None, metrics=("roc_auc", "recall_at_fdr")):
"""Return the best motif per cluster for a clustering results. The motif can be either the average motif or one of the clustered motifs. Parameters single_pwm : str Filename of motifs. clus_pwm : str Filename of motifs. clusters : Motif clustering result. fg_fa : str Filename of FASTA file. background : dict Dictionary for background file names. stats : dict, optional If statistics are not supplied they will be computed. metrics : sequence, optional Metrics to use for motif evaluation. Default are "roc_auc" and "recall_at_fdr". Returns ------- motifs : list List of Motif instances. """ |
# combine original and clustered motifs
motifs = read_motifs(single_pwm) + read_motifs(clus_pwm)
motifs = dict([(str(m), m) for m in motifs])
# get the statistics for those motifs that were not yet checked
clustered_motifs = []
for clus,singles in clusters:
for motif in set([clus] + singles):
if str(motif) not in stats:
clustered_motifs.append(motifs[str(motif)])
new_stats = {}
for bg, bg_fa in background.items():
for m,s in calc_stats(clustered_motifs, fg_fa, bg_fa).items():
if m not in new_stats:
new_stats[m] = {}
new_stats[m][bg] = s
stats.update(new_stats)
rank = rank_motifs(stats, metrics)
# rank the motifs
best_motifs = []
for clus, singles in clusters:
if len(singles) > 1:
eval_motifs = singles
if clus not in motifs:
eval_motifs.append(clus)
eval_motifs = [motifs[str(e)] for e in eval_motifs]
best_motif = sorted(eval_motifs, key=lambda x: rank[str(x)])[-1]
best_motifs.append(best_motif)
else:
best_motifs.append(clus)
for bg in background:
stats[str(best_motifs[-1])][bg]["num_cluster"] = len(singles)
best_motifs = sorted(best_motifs, key=lambda x: rank[str(x)], reverse=True)
return best_motifs |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def rename_motifs(motifs, stats=None):
"""Rename motifs to GimmeMotifs_1..GimmeMotifs_N. If stats object is passed, stats will be copied.""" |
final_motifs = []
for i, motif in enumerate(motifs):
old = str(motif)
motif.id = "GimmeMotifs_{}".format(i + 1)
final_motifs.append(motif)
if stats:
stats[str(motif)] = stats[old].copy()
if stats:
return final_motifs, stats
else:
return final_motifs |
<SYSTEM_TASK:>
Solve the following problem using Python, implementing the functions described below, one line at a time
<END_TASK>
<USER_TASK:>
Description:
def register_db(cls, dbname):
"""Register method to keep list of dbs.""" |
def decorator(subclass):
"""Register as decorator function."""
cls._dbs[dbname] = subclass
subclass.name = dbname
return subclass
return decorator |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.