text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Query for OPUS data between times t1 and t2. <END_TASK> <USER_TASK:> Description: def get_between_times(self, t1, t2, target=None): """ Query for OPUS data between times t1 and t2. Parameters ---------- t1, t2 : datetime.datetime, strings Start and end time for the query. If type is datetime, will be converted to isoformat string. If type is string already, it needs to be in an accepted international format for time strings. target : str Potential target for the observation query. Most likely will reduce the amount of data matching the query a lot. Returns ------- None, but set's state of the object to have new query results stored in self.obsids. """
try: # checking if times have isoformat() method (datetimes have) t1 = t1.isoformat() t2 = t2.isoformat() except AttributeError: # if not, should already be a string, so do nothing. pass myquery = self._get_time_query(t1, t2) if target is not None: myquery["target"] = target self.create_files_request(myquery, fmt="json") self.unpack_json_response()
<SYSTEM_TASK:> Shows preview images using the Jupyter notebook HTML display. <END_TASK> <USER_TASK:> Description: def show_images(self, size="small"): """Shows preview images using the Jupyter notebook HTML display. Parameters ========== size : {'small', 'med', 'thumb', 'full'} Determines the size of the preview image to be shown. """
d = dict(small=256, med=512, thumb=100, full=1024) try: width = d[size] except KeyError: print("Allowed keys:", d.keys()) return img_urls = [i._get_img_url(size) for i in self.obsids] imagesList = "".join( [ "<img style='width: {0}px; margin: 0px; float: " "left; border: 1px solid black;' " "src='{1}' />".format(width, s) for s in img_urls ] ) display(HTML(imagesList))
<SYSTEM_TASK:> Download the previously found and stored Opus obsids. <END_TASK> <USER_TASK:> Description: def download_results(self, savedir=None, raw=True, calib=False, index=None): """Download the previously found and stored Opus obsids. Parameters ========== savedir: str or pathlib.Path, optional If the database root folder as defined by the config.ini should not be used, provide a different savedir here. It will be handed to PathManager. """
obsids = self.obsids if index is None else [self.obsids[index]] for obsid in obsids: pm = io.PathManager(obsid.img_id, savedir=savedir) pm.basepath.mkdir(exist_ok=True) to_download = [] if raw is True: to_download.extend(obsid.raw_urls) if calib is True: to_download.extend(obsid.calib_urls) for url in to_download: basename = Path(url).name print("Downloading", basename) store_path = str(pm.basepath / basename) try: urlretrieve(url, store_path) except Exception as e: urlretrieve(url.replace("https", "http"), store_path) return str(pm.basepath)
<SYSTEM_TASK:> Download preview files for the previously found and stored Opus obsids. <END_TASK> <USER_TASK:> Description: def download_previews(self, savedir=None): """Download preview files for the previously found and stored Opus obsids. Parameters ========== savedir: str or pathlib.Path, optional If the database root folder as defined by the config.ini should not be used, provide a different savedir here. It will be handed to PathManager. """
for obsid in self.obsids: pm = io.PathManager(obsid.img_id, savedir=savedir) pm.basepath.mkdir(exist_ok=True) basename = Path(obsid.medium_img_url).name print("Downloading", basename) urlretrieve(obsid.medium_img_url, str(pm.basepath / basename))
<SYSTEM_TASK:> Find which swap situtation we are in by time. <END_TASK> <USER_TASK:> Description: def which_epi_janus_resonance(name, time): """Find which swap situtation we are in by time. Starting from 2006-01-21 where a Janus-Epimetheus swap occured, and defining the next 4 years until the next swap as `scenario1, and the 4 years after that `scenario2`. Calculate in units of 4 years, in which scenario the given time falls. Parameters ---------- time : timestring, datetime Time of the image. The astropy Time object can deal with both formats. Returns ------- str The given name string (either `janus` or `epimetheus`) and attach a 1 or 2, as appropriate. """
t1 = Time('2002-01-21').to_datetime() delta = Time(time).to_datetime() - t1 yearfraction = delta.days / 365 if int(yearfraction / 4) % 2 == 0: return name + '2' else: return name + '1'
<SYSTEM_TASK:> Get a specific version of a layer. <END_TASK> <USER_TASK:> Description: def get_version(self, layer_id, version_id, expand=[]): """ Get a specific version of a layer. """
target_url = self.client.get_url('VERSION', 'GET', 'single', {'layer_id': layer_id, 'version_id': version_id}) return self._get(target_url, expand=expand)
<SYSTEM_TASK:> Creates a new draft version. <END_TASK> <USER_TASK:> Description: def create_draft(self, layer_id): """ Creates a new draft version. If anything in the data object has changed then an import will begin immediately. Otherwise to force a re-import from the previous sources call :py:meth:`koordinates.layers.LayerManager.start_import`. :rtype: Layer :return: the new version :raises Conflict: if there is already a draft version for this layer. """
target_url = self.client.get_url('VERSION', 'POST', 'create', {'layer_id': layer_id}) r = self.client.request('POST', target_url, json={}) return self.create_from_result(r.json())
<SYSTEM_TASK:> Set the XML metadata on a layer draft version. <END_TASK> <USER_TASK:> Description: def set_metadata(self, layer_id, version_id, fp): """ Set the XML metadata on a layer draft version. :param file fp: file-like object to read the XML metadata from. :raises NotAllowed: if the version is already published. """
base_url = self.client.get_url('VERSION', 'GET', 'single', {'layer_id': layer_id, 'version_id': version_id}) self._metadata.set(base_url, fp)
<SYSTEM_TASK:> Return if this version is the published version of a layer <END_TASK> <USER_TASK:> Description: def is_published_version(self): """ Return if this version is the published version of a layer """
pub_ver = getattr(self, 'published_version', None) this_ver = getattr(self, 'this_version', None) return this_ver and pub_ver and (this_ver == pub_ver)
<SYSTEM_TASK:> Return if this version is the draft version of a layer <END_TASK> <USER_TASK:> Description: def is_draft_version(self): """ Return if this version is the draft version of a layer """
pub_ver = getattr(self, 'published_version', None) latest_ver = getattr(self, 'latest_version', None) this_ver = getattr(self, 'this_version', None) return this_ver and latest_ver and (this_ver == latest_ver) and (latest_ver != pub_ver)
<SYSTEM_TASK:> Get a specific version of this layer <END_TASK> <USER_TASK:> Description: def get_version(self, version_id, expand=[]): """ Get a specific version of this layer """
target_url = self._client.get_url('VERSION', 'GET', 'single', {'layer_id': self.id, 'version_id': version_id}) return self._manager._get(target_url, expand=expand)
<SYSTEM_TASK:> Creates a publish task just for this version, which publishes as soon as any import is complete. <END_TASK> <USER_TASK:> Description: def publish(self, version_id=None): """ Creates a publish task just for this version, which publishes as soon as any import is complete. :return: the publish task :rtype: Publish :raises Conflict: If the version is already published, or already has a publish job. """
if not version_id: version_id = self.version.id target_url = self._client.get_url('VERSION', 'POST', 'publish', {'layer_id': self.id, 'version_id': version_id}) r = self._client.request('POST', target_url, json={}) return self._client.get_manager(Publish).create_from_result(r.json())
<SYSTEM_TASK:> Create and return poly1d objects. <END_TASK> <USER_TASK:> Description: def create_polynoms(): """Create and return poly1d objects. Uses the parameters from Morgan to create poly1d objects for calculations. """
fname = pr.resource_filename('pyciss', 'data/soliton_prediction_parameters.csv') res_df = pd.read_csv(fname) polys = {} for resorder, row in zip('65 54 43 21'.split(), range(4)): p = poly1d([res_df.loc[row, 'Slope (km/yr)'], res_df.loc[row, 'Intercept (km)']]) polys['janus ' + ':'.join(resorder)] = p return polys
<SYSTEM_TASK:> Workhorse function. <END_TASK> <USER_TASK:> Description: def check_for_soliton(img_id): """Workhorse function. Creates the polynom. Calculates radius constraints from attributes in `ringcube` object. Parameters ---------- ringcube : pyciss.ringcube.RingCube A containter class for a ring-projected ISS image file. Returns ------- dict Dictionary with all solitons found. Reason why it is a dict is that it could be more than one in one image. """
pm = io.PathManager(img_id) try: ringcube = RingCube(pm.cubepath) except FileNotFoundError: ringcube = RingCube(pm.undestriped) polys = create_polynoms() minrad = ringcube.minrad.to(u.km) maxrad = ringcube.maxrad.to(u.km) delta_years = get_year_since_resonance(ringcube) soliton_radii = {} for k, p in polys.items(): current_r = p(delta_years) * u.km if minrad < current_r < maxrad: soliton_radii[k] = current_r return soliton_radii if soliton_radii else None
<SYSTEM_TASK:> Takes the supplied headers and adds in any which <END_TASK> <USER_TASK:> Description: def _assemble_headers(self, method, user_headers=None): """ Takes the supplied headers and adds in any which are defined at a client level and then returns the result. :param user_headers: a `dict` containing headers defined at the request level, optional. :return: a `dict` instance """
headers = copy.deepcopy(user_headers or {}) if method not in ('GET', 'HEAD'): headers.setdefault('Content-Type', 'application/json') return headers
<SYSTEM_TASK:> Extracts parameters from a populated URL <END_TASK> <USER_TASK:> Description: def reverse_url(self, datatype, url, verb='GET', urltype='single', api_version=None): """ Extracts parameters from a populated URL :param datatype: a string identifying the data the url accesses. :param url: the fully-qualified URL to extract parameters from. :param verb: the HTTP verb needed for use with the url. :param urltype: an adjective used to the nature of the request. :return: dict """
api_version = api_version or 'v1' templates = getattr(self, 'URL_TEMPLATES__%s' % api_version) # this is fairly simplistic, if necessary we could use the parse lib template_url = r"https://(?P<api_host>.+)/services/api/(?P<api_version>.+)" template_url += re.sub(r'{([^}]+)}', r'(?P<\1>.+)', templates[datatype][verb][urltype]) # /foo/{foo_id}/bar/{id}/ m = re.match(template_url, url or '') if not m: raise KeyError("No reverse match from '%s' to %s.%s.%s" % (url, datatype, verb, urltype)) r = m.groupdict() del r['api_host'] if r.pop('api_version') != api_version: raise ValueError("API version mismatch") return r
<SYSTEM_TASK:> Returns a fully formed url <END_TASK> <USER_TASK:> Description: def get_url(self, datatype, verb, urltype, params={}, api_host=None, api_version=None): """Returns a fully formed url :param datatype: a string identifying the data the url will access. :param verb: the HTTP verb needed for use with the url. :param urltype: an adjective used to the nature of the request. :param \*\*params: substitution variables for the URL. :return: string :rtype: A fully formed url. """
api_version = api_version or 'v1' api_host = api_host or self.host subst = params.copy() subst['api_host'] = api_host subst['api_version'] = api_version url = "https://{api_host}/services/api/{api_version}" url += self.get_url_path(datatype, verb, urltype, params, api_version) return url.format(**subst)
<SYSTEM_TASK:> Turn CDMRemote variable into something like a numpy.ndarray. <END_TASK> <USER_TASK:> Description: def open_store_variable(self, name, var): """Turn CDMRemote variable into something like a numpy.ndarray."""
data = indexing.LazilyOuterIndexedArray(CDMArrayWrapper(name, self)) return Variable(var.dimensions, data, {a: getattr(var, a) for a in var.ncattrs()})
<SYSTEM_TASK:> Get the global attributes from underlying data set. <END_TASK> <USER_TASK:> Description: def get_attrs(self): """Get the global attributes from underlying data set."""
return FrozenOrderedDict((a, getattr(self.ds, a)) for a in self.ds.ncattrs())
<SYSTEM_TASK:> Get the dimensions from underlying data set. <END_TASK> <USER_TASK:> Description: def get_dimensions(self): """Get the dimensions from underlying data set."""
return FrozenOrderedDict((k, len(v)) for k, v in self.ds.dimensions.items())
<SYSTEM_TASK:> Identify the base URL of the THREDDS server from the catalog URL. <END_TASK> <USER_TASK:> Description: def _find_base_tds_url(catalog_url): """Identify the base URL of the THREDDS server from the catalog URL. Will retain URL scheme, host, port and username/password when present. """
url_components = urlparse(catalog_url) if url_components.path: return catalog_url.split(url_components.path)[0] else: return catalog_url
<SYSTEM_TASK:> Filter keys for an item closest to the desired time. <END_TASK> <USER_TASK:> Description: def filter_time_nearest(self, time, regex=None): """Filter keys for an item closest to the desired time. Loops over all keys in the collection and uses `regex` to extract and build `datetime`s. The collection of `datetime`s is compared to `start` and the value that has a `datetime` closest to that requested is returned.If none of the keys in the collection match the regex, indicating that the keys are not date/time-based, a ``ValueError`` is raised. Parameters ---------- time : ``datetime.datetime`` The desired time regex : str, optional The regular expression to use to extract date/time information from the key. If given, this should contain named groups: 'year', 'month', 'day', 'hour', 'minute', 'second', and 'microsecond', as appropriate. When a match is found, any of those groups missing from the pattern will be assigned a value of 0. The default pattern looks for patterns like: 20171118_2356. Returns ------- The value with a time closest to that desired """
return min(self._get_datasets_with_times(regex), key=lambda i: abs((i[0] - time).total_seconds()))[-1]
<SYSTEM_TASK:> Filter keys for all items within the desired time range. <END_TASK> <USER_TASK:> Description: def filter_time_range(self, start, end, regex=None): """Filter keys for all items within the desired time range. Loops over all keys in the collection and uses `regex` to extract and build `datetime`s. From the collection of `datetime`s, all values within `start` and `end` (inclusive) are returned. If none of the keys in the collection match the regex, indicating that the keys are not date/time-based, a ``ValueError`` is raised. Parameters ---------- start : ``datetime.datetime`` The start of the desired time range, inclusive end : ``datetime.datetime`` The end of the desired time range, inclusive regex : str, optional The regular expression to use to extract date/time information from the key. If given, this should contain named groups: 'year', 'month', 'day', 'hour', 'minute', 'second', and 'microsecond', as appropriate. When a match is found, any of those groups missing from the pattern will be assigned a value of 0. The default pattern looks for patterns like: 20171118_2356. Returns ------- All values corresponding to times within the specified range """
return [item[-1] for item in self._get_datasets_with_times(regex) if start <= item[0] <= end]
<SYSTEM_TASK:> Remove and return the value associated with case-insensitive ``key``. <END_TASK> <USER_TASK:> Description: def pop(self, key, *args, **kwargs): """Remove and return the value associated with case-insensitive ``key``."""
return super(CaseInsensitiveDict, self).pop(CaseInsensitiveStr(key))
<SYSTEM_TASK:> Resolve the url of the dataset when reading latest.xml. <END_TASK> <USER_TASK:> Description: def resolve_url(self, catalog_url): """Resolve the url of the dataset when reading latest.xml. Parameters ---------- catalog_url : str The catalog url to be resolved """
if catalog_url != '': resolver_base = catalog_url.split('catalog.xml')[0] resolver_url = resolver_base + self.url_path resolver_xml = session_manager.urlopen(resolver_url) tree = ET.parse(resolver_xml) root = tree.getroot() if 'name' in root.attrib: self.catalog_name = root.attrib['name'] else: self.catalog_name = 'No name found' resolved_url = '' found = False for child in root.iter(): if not found: tag_type = child.tag.split('}')[-1] if tag_type == 'dataset': if 'urlPath' in child.attrib: ds = Dataset(child) resolved_url = ds.url_path found = True if found: return resolved_url else: log.warning('no dataset url path found in latest.xml!')
<SYSTEM_TASK:> Make fully qualified urls for the access methods enabled on the dataset. <END_TASK> <USER_TASK:> Description: def make_access_urls(self, catalog_url, all_services, metadata=None): """Make fully qualified urls for the access methods enabled on the dataset. Parameters ---------- catalog_url : str The top level server url all_services : List[SimpleService] list of :class:`SimpleService` objects associated with the dataset metadata : dict Metadata from the :class:`TDSCatalog` """
all_service_dict = CaseInsensitiveDict({}) for service in all_services: all_service_dict[service.name] = service if isinstance(service, CompoundService): for subservice in service.services: all_service_dict[subservice.name] = subservice service_name = metadata.get('serviceName', None) access_urls = CaseInsensitiveDict({}) server_url = _find_base_tds_url(catalog_url) # process access urls for datasets that reference top # level catalog services (individual or compound service # types). if service_name in all_service_dict: service = all_service_dict[service_name] if service.service_type != 'Resolver': # if service is a CompoundService, create access url # for each SimpleService if isinstance(service, CompoundService): for subservice in service.services: server_base = urljoin(server_url, subservice.base) access_urls[subservice.service_type] = urljoin(server_base, self.url_path) else: server_base = urljoin(server_url, service.base) access_urls[service.service_type] = urljoin(server_base, self.url_path) # process access children of dataset elements for service_type in self.access_element_info: url_path = self.access_element_info[service_type] if service_type in all_service_dict: server_base = urljoin(server_url, all_service_dict[service_type].base) access_urls[service_type] = urljoin(server_base, url_path) self.access_urls = access_urls
<SYSTEM_TASK:> Create an access method from a catalog element. <END_TASK> <USER_TASK:> Description: def add_access_element_info(self, access_element): """Create an access method from a catalog element."""
service_name = access_element.attrib['serviceName'] url_path = access_element.attrib['urlPath'] self.access_element_info[service_name] = url_path
<SYSTEM_TASK:> Download the dataset to a local file. <END_TASK> <USER_TASK:> Description: def download(self, filename=None): """Download the dataset to a local file. Parameters ---------- filename : str, optional The full path to which the dataset will be saved """
if filename is None: filename = self.name with self.remote_open() as infile: with open(filename, 'wb') as outfile: outfile.write(infile.read())
<SYSTEM_TASK:> Access the remote dataset. <END_TASK> <USER_TASK:> Description: def remote_access(self, service=None, use_xarray=None): """Access the remote dataset. Open the remote dataset and get a netCDF4-compatible `Dataset` object providing index-based subsetting capabilities. Parameters ---------- service : str, optional The name of the service to use for access to the dataset, either 'CdmRemote' or 'OPENDAP'. Defaults to 'CdmRemote'. Returns ------- Dataset Object for netCDF4-like access to the dataset """
if service is None: service = 'CdmRemote' if 'CdmRemote' in self.access_urls else 'OPENDAP' if service not in (CaseInsensitiveStr('CdmRemote'), CaseInsensitiveStr('OPENDAP')): raise ValueError(service + ' is not a valid service for remote_access') return self.access_with_service(service, use_xarray)
<SYSTEM_TASK:> Subset the dataset. <END_TASK> <USER_TASK:> Description: def subset(self, service=None): """Subset the dataset. Open the remote dataset and get a client for talking to ``service``. Parameters ---------- service : str, optional The name of the service for subsetting the dataset. Defaults to 'NetcdfSubset' or 'NetcdfServer', in that order, depending on the services listed in the catalog. Returns ------- a client for communicating using ``service`` """
if service is None: for serviceName in self.ncssServiceNames: if serviceName in self.access_urls: service = serviceName break else: raise RuntimeError('Subset access is not available for this dataset.') elif service not in self.ncssServiceNames: raise ValueError(service + ' is not a valid service for subset. Options are: ' + ', '.join(self.ncssServiceNames)) return self.access_with_service(service)
<SYSTEM_TASK:> Access the dataset using a particular service. <END_TASK> <USER_TASK:> Description: def access_with_service(self, service, use_xarray=None): """Access the dataset using a particular service. Return an Python object capable of communicating with the server using the particular service. For instance, for 'HTTPServer' this is a file-like object capable of HTTP communication; for OPENDAP this is a netCDF4 dataset. Parameters ---------- service : str The name of the service for accessing the dataset Returns ------- An instance appropriate for communicating using ``service``. """
service = CaseInsensitiveStr(service) if service == 'CdmRemote': if use_xarray: from .cdmr.xarray_support import CDMRemoteStore try: import xarray as xr provider = lambda url: xr.open_dataset(CDMRemoteStore(url)) # noqa: E731 except ImportError: raise ImportError('CdmRemote access needs xarray to be installed.') else: from .cdmr import Dataset as CDMRDataset provider = CDMRDataset elif service == 'OPENDAP': if use_xarray: try: import xarray as xr provider = xr.open_dataset except ImportError: raise ImportError('xarray to be installed if `use_xarray` is True.') else: try: from netCDF4 import Dataset as NC4Dataset provider = NC4Dataset except ImportError: raise ImportError('OPENDAP access needs netCDF4-python to be installed.') elif service in self.ncssServiceNames: from .ncss import NCSS provider = NCSS elif service == 'HTTPServer': provider = session_manager.urlopen else: raise ValueError(service + ' is not an access method supported by Siphon') try: return provider(self.access_urls[service]) except KeyError: raise ValueError(service + ' is not available for this dataset')
<SYSTEM_TASK:> Get header information and store as metadata for the endpoint. <END_TASK> <USER_TASK:> Description: def _get_metadata(self): """Get header information and store as metadata for the endpoint."""
self.metadata = self.fetch_header() self.variables = {g.name for g in self.metadata.grids}
<SYSTEM_TASK:> Make a header request to the endpoint. <END_TASK> <USER_TASK:> Description: def fetch_header(self): """Make a header request to the endpoint."""
query = self.query().add_query_parameter(req='header') return self._parse_messages(self.get_query(query).content)[0]
<SYSTEM_TASK:> Request the featureType from the endpoint. <END_TASK> <USER_TASK:> Description: def fetch_feature_type(self): """Request the featureType from the endpoint."""
query = self.query().add_query_parameter(req='featureType') return self.get_query(query).content
<SYSTEM_TASK:> Pull down coordinate data from the endpoint. <END_TASK> <USER_TASK:> Description: def fetch_coords(self, query): """Pull down coordinate data from the endpoint."""
q = query.add_query_parameter(req='coord') return self._parse_messages(self.get_query(q).content)
<SYSTEM_TASK:> Retreive IGRA version 2 data for one station. <END_TASK> <USER_TASK:> Description: def request_data(cls, time, site_id, derived=False): """Retreive IGRA version 2 data for one station. Parameters -------- site_id : str 11-character IGRA2 station identifier. time : datetime The date and time of the desired observation. If list of two times is given, dataframes for all dates within the two dates will be returned. Returns ------- :class: `pandas.DataFrame` containing the data. """
igra2 = cls() # Set parameters for data query if derived: igra2.ftpsite = igra2.ftpsite + 'derived/derived-por/' igra2.suffix = igra2.suffix + '-drvd.txt' else: igra2.ftpsite = igra2.ftpsite + 'data/data-por/' igra2.suffix = igra2.suffix + '-data.txt' if type(time) == datetime.datetime: igra2.begin_date = time igra2.end_date = time else: igra2.begin_date, igra2.end_date = time igra2.site_id = site_id df, headers = igra2._get_data() return df, headers
<SYSTEM_TASK:> Process the IGRA2 text file for observations at site_id matching time. <END_TASK> <USER_TASK:> Description: def _get_data(self): """Process the IGRA2 text file for observations at site_id matching time. Return: ------- :class: `pandas.DataFrame` containing the body data. :class: `pandas.DataFrame` containing the header data. """
# Split the list of times into begin and end dates. If only # one date is supplied, set both begin and end dates equal to that date. body, header, dates_long, dates = self._get_data_raw() params = self._get_fwf_params() df_body = pd.read_fwf(StringIO(body), **params['body']) df_header = pd.read_fwf(StringIO(header), **params['header']) df_body['date'] = dates_long df_body = self._clean_body_df(df_body) df_header = self._clean_header_df(df_header) df_header['date'] = dates return df_body, df_header
<SYSTEM_TASK:> Download observations matching the time range. <END_TASK> <USER_TASK:> Description: def _get_data_raw(self): """Download observations matching the time range. Returns a tuple with a string for the body, string for the headers, and a list of dates. """
# Import need to be here so we can monkeypatch urlopen for testing and avoid # downloading live data for testing try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen with closing(urlopen(self.ftpsite + self.site_id + self.suffix + '.zip')) as url: f = ZipFile(BytesIO(url.read()), 'r').open(self.site_id + self.suffix) lines = [line.decode('utf-8') for line in f.readlines()] body, header, dates_long, dates = self._select_date_range(lines) return body, header, dates_long, dates
<SYSTEM_TASK:> Identify lines containing headers within the range begin_date to end_date. <END_TASK> <USER_TASK:> Description: def _select_date_range(self, lines): """Identify lines containing headers within the range begin_date to end_date. Parameters ----- lines: list list of lines from the IGRA2 data file. """
headers = [] num_lev = [] dates = [] # Get indices of headers, and make a list of dates and num_lev for idx, line in enumerate(lines): if line[0] == '#': year, month, day, hour = map(int, line[13:26].split()) # All soundings have YMD, most have hour try: date = datetime.datetime(year, month, day, hour) except ValueError: date = datetime.datetime(year, month, day) # Check date if self.begin_date <= date <= self.end_date: headers.append(idx) num_lev.append(int(line[32:36])) dates.append(date) if date > self.end_date: break if len(dates) == 0: # Break if no matched dates. # Could improve this later by showing the date range for the station. raise ValueError('No dates match selection.') # Compress body of data into a string begin_idx = min(headers) end_idx = max(headers) + num_lev[-1] # Make a boolean vector that selects only list indices within the time range selector = np.zeros(len(lines), dtype=bool) selector[begin_idx:end_idx + 1] = True selector[headers] = False body = ''.join([line for line in itertools.compress(lines, selector)]) selector[begin_idx:end_idx + 1] = ~selector[begin_idx:end_idx + 1] header = ''.join([line for line in itertools.compress(lines, selector)]) # expand date vector to match length of the body dataframe. dates_long = np.repeat(dates, num_lev) return body, header, dates_long, dates
<SYSTEM_TASK:> Format the dataframe, remove empty rows, and add units attribute. <END_TASK> <USER_TASK:> Description: def _clean_body_df(self, df): """Format the dataframe, remove empty rows, and add units attribute."""
if self.suffix == '-drvd.txt': df = df.dropna(subset=('temperature', 'reported_relative_humidity', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) df.units = {'pressure': 'hPa', 'reported_height': 'meter', 'calculated_height': 'meter', 'temperature': 'Kelvin', 'temperature_gradient': 'Kelvin / kilometer', 'potential_temperature': 'Kelvin', 'potential_temperature_gradient': 'Kelvin / kilometer', 'virtual_temperature': 'Kelvin', 'virtual_potential_temperature': 'Kelvin', 'vapor_pressure': 'Pascal', 'saturation_vapor_pressure': 'Pascal', 'reported_relative_humidity': 'percent', 'calculated_relative_humidity': 'percent', 'u_wind': 'meter / second', 'u_wind_gradient': '(meter / second) / kilometer)', 'v_wind': 'meter / second', 'v_wind_gradient': '(meter / second) / kilometer)', 'refractive_index': 'unitless'} else: df['u_wind'], df['v_wind'] = get_wind_components(df['speed'], np.deg2rad(df['direction'])) df['u_wind'] = np.round(df['u_wind'], 1) df['v_wind'] = np.round(df['v_wind'], 1) df = df.dropna(subset=('temperature', 'direction', 'speed', 'dewpoint_depression', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) df['dewpoint'] = df['temperature'] - df['dewpoint_depression'] df.drop('dewpoint_depression', axis=1, inplace=True) df.units = {'etime': 'second', 'pressure': 'hPa', 'height': 'meter', 'temperature': 'degC', 'dewpoint': 'degC', 'direction': 'degrees', 'speed': 'meter / second', 'u_wind': 'meter / second', 'v_wind': 'meter / second'} return df
<SYSTEM_TASK:> Format the header dataframe and add units. <END_TASK> <USER_TASK:> Description: def _clean_header_df(self, df): """Format the header dataframe and add units."""
if self.suffix == '-drvd.txt': df.units = {'release_time': 'second', 'precipitable_water': 'millimeter', 'inv_pressure': 'hPa', 'inv_height': 'meter', 'inv_strength': 'Kelvin', 'mixed_layer_pressure': 'hPa', 'mixed_layer_height': 'meter', 'freezing_point_pressure': 'hPa', 'freezing_point_height': 'meter', 'lcl_pressure': 'hPa', 'lcl_height': 'meter', 'lfc_pressure': 'hPa', 'lfc_height': 'meter', 'lnb_pressure': 'hPa', 'lnb_height': 'meter', 'lifted_index': 'degC', 'showalter_index': 'degC', 'k_index': 'degC', 'total_totals_index': 'degC', 'cape': 'Joule / kilogram', 'convective_inhibition': 'Joule / kilogram'} else: df.units = {'release_time': 'second', 'latitude': 'degrees', 'longitude': 'degrees'} return df
<SYSTEM_TASK:> Retrieve the realtime buoy data from NDBC. <END_TASK> <USER_TASK:> Description: def realtime_observations(cls, buoy, data_type='txt'): """Retrieve the realtime buoy data from NDBC. Parameters ---------- buoy : str Name of buoy data_type : str Type of data requested, must be one of 'txt' standard meteorological data 'drift' meteorological data from drifting buoys and limited moored buoy data mainly from international partners 'cwind' continuous winds data (10 minute average) 'spec' spectral wave summaries 'ocean' oceanographic data 'srad' solar radiation data 'dart' water column height 'supl' supplemental measurements data 'rain' hourly rain data Returns ------- Raw data string """
endpoint = cls() parsers = {'txt': endpoint._parse_met, 'drift': endpoint._parse_drift, 'cwind': endpoint._parse_cwind, 'spec': endpoint._parse_spec, 'ocean': endpoint._parse_ocean, 'srad': endpoint._parse_srad, 'dart': endpoint._parse_dart, 'supl': endpoint._parse_supl, 'rain': endpoint._parse_rain} if data_type not in parsers: raise KeyError('Data type must be txt, drift, cwind, spec, ocean, srad, dart,' 'supl, or rain for parsed realtime data.') raw_data = endpoint.raw_buoy_data(buoy, data_type=data_type) return parsers[data_type](raw_data)
<SYSTEM_TASK:> Determine which types of data are available for a given buoy. <END_TASK> <USER_TASK:> Description: def buoy_data_types(cls, buoy): """Determine which types of data are available for a given buoy. Parameters ---------- buoy : str Buoy name Returns ------- dict of valid file extensions and their descriptions """
endpoint = cls() file_types = {'txt': 'standard meteorological data', 'drift': 'meteorological data from drifting buoys and limited moored' 'buoy data mainly from international partners', 'cwind': 'continuous wind data (10 minute average)', 'spec': 'spectral wave summaries', 'data_spec': 'raw spectral wave data', 'swdir': 'spectral wave data (alpha1)', 'swdir2': 'spectral wave data (alpha2)', 'swr1': 'spectral wave data (r1)', 'swr2': 'spectral wave data (r2)', 'adcp': 'acoustic doppler current profiler', 'ocean': 'oceanographic data', 'tide': 'tide data', 'srad': 'solar radiation data', 'dart': 'water column height', 'supl': 'supplemental measurements data', 'rain': 'hourly rain data'} available_data = {} buoy_url = 'https://www.ndbc.noaa.gov/data/realtime2/' + buoy + '.' for key in file_types: if endpoint._check_if_url_valid(buoy_url + key): available_data[key] = file_types[key] return available_data
<SYSTEM_TASK:> Retrieve the raw buoy data contents from NDBC. <END_TASK> <USER_TASK:> Description: def raw_buoy_data(cls, buoy, data_type='txt'): """Retrieve the raw buoy data contents from NDBC. Parameters ---------- buoy : str Name of buoy data_type : str Type of data requested, must be one of 'txt' standard meteorological data 'drift' meteorological data from drifting buoys and limited moored buoy data mainly from international partners 'cwind' continuous winds data (10 minute average) 'spec' spectral wave summaries 'data_spec' raw spectral wave data 'swdir' spectral wave data (alpha1) 'swdir2' spectral wave data (alpha2) 'swr1' spectral wave data (r1) 'swr2' spectral wave data (r2) 'adcp' acoustic doppler current profiler 'ocean' oceanographic data 'tide' tide data 'srad' solar radiation data 'dart' water column height 'supl' supplemental measurements data 'rain' hourly rain data Returns ------- Raw data string """
endpoint = cls() resp = endpoint.get_path('data/realtime2/{}.{}'.format(buoy, data_type)) return resp.text
<SYSTEM_TASK:> Create a new HTTP session with our user-agent set. <END_TASK> <USER_TASK:> Description: def create_session(self): """Create a new HTTP session with our user-agent set. Returns ------- session : requests.Session The created session See Also -------- urlopen, set_session_options """
ret = requests.Session() ret.headers['User-Agent'] = self.user_agent for k, v in self.options.items(): setattr(ret, k, v) return ret
<SYSTEM_TASK:> GET a file-like object for a URL using HTTP. <END_TASK> <USER_TASK:> Description: def urlopen(self, url, **kwargs): """GET a file-like object for a URL using HTTP. This is a thin wrapper around :meth:`requests.Session.get` that returns a file-like object wrapped around the resulting content. Parameters ---------- url : str The URL to request kwargs : arbitrary keyword arguments Additional keyword arguments to pass to :meth:`requests.Session.get`. Returns ------- fobj : file-like object A file-like interface to the content in the response See Also -------- :meth:`requests.Session.get` """
return BytesIO(self.create_session().get(url, **kwargs).content)
<SYSTEM_TASK:> Add a request for a specific time to the query. <END_TASK> <USER_TASK:> Description: def time(self, time): """Add a request for a specific time to the query. This modifies the query in-place, but returns `self` so that multiple queries can be chained together on one line. This replaces any existing temporal queries that have been set. Parameters ---------- time : datetime.datetime The time to request Returns ------- self : DataQuery Returns self for chaining calls """
self._set_query(self.time_query, time=self._format_time(time)) return self
<SYSTEM_TASK:> Add a request for a time range to the query. <END_TASK> <USER_TASK:> Description: def time_range(self, start, end): """Add a request for a time range to the query. This modifies the query in-place, but returns `self` so that multiple queries can be chained together on one line. This replaces any existing temporal queries that have been set. Parameters ---------- start : datetime.datetime The start of the requested time range end : datetime.datetime The end of the requested time range Returns ------- self : DataQuery Returns self for chaining calls """
self._set_query(self.time_query, time_start=self._format_time(start), time_end=self._format_time(end)) return self
<SYSTEM_TASK:> Make a GET request, including a query, to the endpoint. <END_TASK> <USER_TASK:> Description: def get_query(self, query): """Make a GET request, including a query, to the endpoint. The path of the request is to the base URL assigned to the endpoint. Parameters ---------- query : DataQuery The query to pass when making the request Returns ------- resp : requests.Response The server's response to the request See Also -------- get_path, get """
url = self._base[:-1] if self._base[-1] == '/' else self._base return self.get(url, query)
<SYSTEM_TASK:> Make a GET request, optionally including a query, to a relative path. <END_TASK> <USER_TASK:> Description: def get_path(self, path, query=None): """Make a GET request, optionally including a query, to a relative path. The path of the request includes a path on top of the base URL assigned to the endpoint. Parameters ---------- path : str The path to request, relative to the endpoint query : DataQuery, optional The query to pass when making the request Returns ------- resp : requests.Response The server's response to the request See Also -------- get_query, get, url_path """
return self.get(self.url_path(path), query)
<SYSTEM_TASK:> Make a GET request, optionally including a parameters, to a path. <END_TASK> <USER_TASK:> Description: def get(self, path, params=None): """Make a GET request, optionally including a parameters, to a path. The path of the request is the full URL. Parameters ---------- path : str The URL to request params : DataQuery, optional The query to pass when making the request Returns ------- resp : requests.Response The server's response to the request Raises ------ HTTPError If the server returns anything other than a 200 (OK) code See Also -------- get_query, get """
resp = self._session.get(path, params=params) if resp.status_code != 200: if resp.headers.get('Content-Type', '').startswith('text/html'): text = resp.reason else: text = resp.text raise requests.HTTPError('Error accessing {0}\n' 'Server Error ({1:d}: {2})'.format(resp.request.url, resp.status_code, text)) return resp
<SYSTEM_TASK:> Return the full path to the Group, including any parent Groups. <END_TASK> <USER_TASK:> Description: def path(self): """Return the full path to the Group, including any parent Groups."""
# If root, return '/' if self.dataset is self: return '' else: # Otherwise recurse return self.dataset.path + '/' + self.name
<SYSTEM_TASK:> Populate the Variable from an NCStream object. <END_TASK> <USER_TASK:> Description: def load_from_stream(self, var): """Populate the Variable from an NCStream object."""
dims = [] for d in var.shape: dim = Dimension(None, d.name) dim.load_from_stream(d) dims.append(dim) self.dimensions = tuple(dim.name for dim in dims) self.shape = tuple(dim.size for dim in dims) self.ndim = len(var.shape) self._unpack_attrs(var.atts) data, dt, type_name = unpack_variable(var) if data is not None: data = data.reshape(self.shape) self._data = data self.dtype = dt self.datatype = type_name if hasattr(var, 'enumType') and var.enumType: self.datatype = var.enumType self._enum = True
<SYSTEM_TASK:> Get the needed header information to initialize dataset. <END_TASK> <USER_TASK:> Description: def _read_header(self): """Get the needed header information to initialize dataset."""
self._header = self.cdmrf.fetch_header() self.load_from_stream(self._header)
<SYSTEM_TASK:> Retrieve upper air observations from Iowa State's archive for a single station. <END_TASK> <USER_TASK:> Description: def request_data(cls, time, site_id, **kwargs): """Retrieve upper air observations from Iowa State's archive for a single station. Parameters ---------- time : datetime The date and time of the desired observation. site_id : str The three letter ICAO identifier of the station for which data should be downloaded. kwargs Arbitrary keyword arguments to use to initialize source Returns ------- :class:`pandas.DataFrame` containing the data """
endpoint = cls() df = endpoint._get_data(time, site_id, None, **kwargs) return df
<SYSTEM_TASK:> Retrieve upper air observations from Iowa State's archive for all stations. <END_TASK> <USER_TASK:> Description: def request_all_data(cls, time, pressure=None, **kwargs): """Retrieve upper air observations from Iowa State's archive for all stations. Parameters ---------- time : datetime The date and time of the desired observation. pressure : float, optional The mandatory pressure level at which to request data (in hPa). If none is given, all the available data in the profiles is returned. kwargs Arbitrary keyword arguments to use to initialize source Returns ------- :class:`pandas.DataFrame` containing the data """
endpoint = cls() df = endpoint._get_data(time, None, pressure, **kwargs) return df
<SYSTEM_TASK:> Download data from Iowa State's upper air archive. <END_TASK> <USER_TASK:> Description: def _get_data(self, time, site_id, pressure=None): """Download data from Iowa State's upper air archive. Parameters ---------- time : datetime Date and time for which data should be downloaded site_id : str Site id for which data should be downloaded pressure : float, optional Mandatory pressure level at which to request data (in hPa). Returns ------- :class:`pandas.DataFrame` containing the data """
json_data = self._get_data_raw(time, site_id, pressure) data = {} for profile in json_data['profiles']: for pt in profile['profile']: for field in ('drct', 'dwpc', 'hght', 'pres', 'sknt', 'tmpc'): data.setdefault(field, []).append(np.nan if pt[field] is None else pt[field]) for field in ('station', 'valid'): data.setdefault(field, []).append(np.nan if profile[field] is None else profile[field]) # Make sure that the first entry has a valid temperature and dewpoint idx = np.argmax(~(np.isnan(data['tmpc']) | np.isnan(data['dwpc']))) # Stuff data into a pandas dataframe df = pd.DataFrame() df['pressure'] = ma.masked_invalid(data['pres'][idx:]) df['height'] = ma.masked_invalid(data['hght'][idx:]) df['temperature'] = ma.masked_invalid(data['tmpc'][idx:]) df['dewpoint'] = ma.masked_invalid(data['dwpc'][idx:]) df['direction'] = ma.masked_invalid(data['drct'][idx:]) df['speed'] = ma.masked_invalid(data['sknt'][idx:]) df['station'] = data['station'][idx:] df['time'] = [datetime.strptime(valid, '%Y-%m-%dT%H:%M:%SZ') for valid in data['valid'][idx:]] # Calculate the u and v winds df['u_wind'], df['v_wind'] = get_wind_components(df['speed'], np.deg2rad(df['direction'])) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) # Add unit dictionary df.units = {'pressure': 'hPa', 'height': 'meter', 'temperature': 'degC', 'dewpoint': 'degC', 'direction': 'degrees', 'speed': 'knot', 'u_wind': 'knot', 'v_wind': 'knot', 'station': None, 'time': None} return df
<SYSTEM_TASK:> r"""Download data from the Iowa State's upper air archive. <END_TASK> <USER_TASK:> Description: def _get_data_raw(self, time, site_id, pressure=None): r"""Download data from the Iowa State's upper air archive. Parameters ---------- time : datetime Date and time for which data should be downloaded site_id : str Site id for which data should be downloaded pressure : float, optional Mandatory pressure level at which to request data (in hPa). Returns ------- list of json data """
query = {'ts': time.strftime('%Y%m%d%H00')} if site_id is not None: query['station'] = site_id if pressure is not None: query['pressure'] = pressure resp = self.get_path('raob.py', query) json_data = json.loads(resp.text) # See if the return is valid, but has no data if not (json_data['profiles'] and json_data['profiles'][0]['profile']): message = 'No data available ' if time is not None: message += 'for {time:%Y-%m-%d %HZ} '.format(time=time) if site_id is not None: message += 'for station {stid}'.format(stid=site_id) if pressure is not None: message += 'for pressure {pres}'.format(pres=pressure) message = message[:-1] + '.' raise ValueError(message) return json_data
<SYSTEM_TASK:> Specify one or more stations for the query. <END_TASK> <USER_TASK:> Description: def stations(self, *stns): """Specify one or more stations for the query. This modifies the query in-place, but returns `self` so that multiple queries can be chained together on one line. This replaces any existing spatial queries that have been set. Parameters ---------- stns : one or more strings One or more names of variables to request Returns ------- self : RadarQuery Returns self for chaining calls """
self._set_query(self.spatial_query, stn=stns) return self
<SYSTEM_TASK:> Fetch a parsed THREDDS catalog from the radar server. <END_TASK> <USER_TASK:> Description: def get_catalog(self, query): """Fetch a parsed THREDDS catalog from the radar server. Requests a catalog of radar data files data from the radar server given the parameters in `query` and returns a :class:`~siphon.catalog.TDSCatalog` instance. Parameters ---------- query : RadarQuery The parameters to send to the radar server Returns ------- catalog : TDSCatalog The catalog of matching data files Raises ------ :class:`~siphon.http_util.BadQueryError` When the query cannot be handled by the server See Also -------- get_catalog_raw """
# TODO: Refactor TDSCatalog so we don't need two requests, or to do URL munging try: url = self._base[:-1] if self._base[-1] == '/' else self._base url += '?' + str(query) return TDSCatalog(url) except ET.ParseError: raise BadQueryError(self.get_catalog_raw(query))
<SYSTEM_TASK:> Request data from the ACIS Web Services API. <END_TASK> <USER_TASK:> Description: def acis_request(method, params): """Request data from the ACIS Web Services API. Makes a request from the ACIS Web Services API for data based on a given method (StnMeta,StnData,MultiStnData,GridData,General) and parameters string. Information about the parameters can be obtained at: http://www.rcc-acis.org/docs_webservices.html If a connection to the API fails, then it will raise an exception. Some bad calls will also return empty dictionaries. ACIS Web Services is a distributed system! A call to the main URL can be delivered to any climate center running a public instance of the service. This makes the calls efficient, but also occasionaly results in failed calls when a server you are directed to is having problems. Generally, reconnecting after waiting a few seconds will resolve a problem. If problems are persistent, contact ACIS developers at the High Plains Regional Climate Center or Northeast Regional Climate Center who will look into server issues. Parameters ---------- method : str The Web Services request method (StnMeta, StnData, MultiStnData, GridData, General) params : dict A JSON array of parameters (See Web Services API) Returns ------- A dictionary of data based on the JSON parameters Raises ------ :class: `ACIS_API_Exception` When the API is unable to establish a connection or returns unparsable data. """
base_url = 'http://data.rcc-acis.org/' # ACIS Web API URL timeout = 300 if method == 'MultiStnData' else 60 try: response = session_manager.create_session().post(base_url + method, json=params, timeout=timeout) return response.json() except requests.exceptions.Timeout: raise AcisApiException('Connection Timeout') except requests.exceptions.TooManyRedirects: raise AcisApiException('Bad URL. Check your ACIS connection method string.') except ValueError: raise AcisApiException('No data returned! The ACIS parameter dictionary' 'may be incorrectly formatted')
<SYSTEM_TASK:> Combine multiple Point tags into an array. <END_TASK> <USER_TASK:> Description: def combine_xml_points(l, units, handle_units): """Combine multiple Point tags into an array."""
ret = {} for item in l: for key, value in item.items(): ret.setdefault(key, []).append(value) for key, value in ret.items(): if key != 'date': ret[key] = handle_units(value, units.get(key, None)) return ret
<SYSTEM_TASK:> Parse the CSV header returned by TDS. <END_TASK> <USER_TASK:> Description: def parse_csv_header(line): """Parse the CSV header returned by TDS."""
units = {} names = [] for var in line.split(','): start = var.find('[') if start < 0: names.append(str(var)) continue else: names.append(str(var[:start])) end = var.find(']', start) unitstr = var[start + 1:end] eq = unitstr.find('=') if eq >= 0: # go past = and ", skip final " units[names[-1]] = unitstr[eq + 2:-1] return names, units
<SYSTEM_TASK:> Fetch parsed data from a THREDDS server using NCSS. <END_TASK> <USER_TASK:> Description: def get_data(self, query): """Fetch parsed data from a THREDDS server using NCSS. Requests data from the NCSS endpoint given the parameters in `query` and handles parsing of the returned content based on the mimetype. Parameters ---------- query : NCSSQuery The parameters to send to the NCSS endpoint Returns ------- Parsed data response from the server. Exact format depends on the format of the response. See Also -------- get_data_raw """
resp = self.get_query(query) return response_handlers(resp, self.unit_handler)
<SYSTEM_TASK:> Register a function to handle a particular mimetype. <END_TASK> <USER_TASK:> Description: def register(self, mimetype): """Register a function to handle a particular mimetype."""
def dec(func): self._reg[mimetype] = func return func return dec
<SYSTEM_TASK:> Translate typed values into the appropriate python object. <END_TASK> <USER_TASK:> Description: def handle_typed_values(val, type_name, value_type): """Translate typed values into the appropriate python object. Takes an element name, value, and type and returns a list with the string value(s) properly converted to a python type. TypedValues are handled in ucar.ma2.DataType in netcdfJava in the DataType enum. Possibilities are: "boolean" "byte" "char" "short" "int" "long" "float" "double" "Sequence" "String" "Structure" "enum1" "enum2" "enum4" "opaque" "object" All of these are values written as strings in the xml, so simply applying int, float to the values will work in most cases (i.e. the TDS encodes them as string values properly). Examle XML element: <attribute name="scale_factor" type="double" value="0.0010000000474974513"/> Parameters ---------- val : string The string representation of the value attribute of the xml element type_name : string The string representation of the name attribute of the xml element value_type : string The string representation of the type attribute of the xml element Returns ------- val : list A list containing the properly typed python values. """
if value_type in ['byte', 'short', 'int', 'long']: try: val = [int(v) for v in re.split('[ ,]', val) if v] except ValueError: log.warning('Cannot convert "%s" to int. Keeping type as str.', val) elif value_type in ['float', 'double']: try: val = [float(v) for v in re.split('[ ,]', val) if v] except ValueError: log.warning('Cannot convert "%s" to float. Keeping type as str.', val) elif value_type == 'boolean': try: # special case for boolean type val = val.split() # values must be either true or false for potential_bool in val: if potential_bool not in ['true', 'false']: raise ValueError val = [True if item == 'true' else False for item in val] except ValueError: msg = 'Cannot convert values %s to boolean.' msg += ' Keeping type as str.' log.warning(msg, val) elif value_type == 'String': # nothing special for String type pass else: # possibilities - Sequence, Structure, enum, opaque, object, # and char. # Not sure how to handle these as I do not have an example # of how they would show up in dataset.xml log.warning('%s type %s not understood. Keeping as String.', type_name, value_type) if not isinstance(val, list): val = [val] return val
<SYSTEM_TASK:> r"""Download and parse upper air observations from an online archive. <END_TASK> <USER_TASK:> Description: def _get_data(self, time, site_id): r"""Download and parse upper air observations from an online archive. Parameters ---------- time : datetime The date and time of the desired observation. site_id : str The three letter ICAO identifier of the station for which data should be downloaded. Returns ------- :class:`pandas.DataFrame` containing the data """
raw_data = self._get_data_raw(time, site_id) soup = BeautifulSoup(raw_data, 'html.parser') tabular_data = StringIO(soup.find_all('pre')[0].contents[0]) col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(tabular_data, skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) df['u_wind'], df['v_wind'] = get_wind_components(df['speed'], np.deg2rad(df['direction'])) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed', 'u_wind', 'v_wind'), how='all').reset_index(drop=True) # Parse metadata meta_data = soup.find_all('pre')[1].contents[0] lines = meta_data.splitlines() # If the station doesn't have a name identified we need to insert a # record showing this for parsing to proceed. if 'Station number' in lines[1]: lines.insert(1, 'Station identifier: ') station = lines[1].split(':')[1].strip() station_number = int(lines[2].split(':')[1].strip()) sounding_time = datetime.strptime(lines[3].split(':')[1].strip(), '%y%m%d/%H%M') latitude = float(lines[4].split(':')[1].strip()) longitude = float(lines[5].split(':')[1].strip()) elevation = float(lines[6].split(':')[1].strip()) df['station'] = station df['station_number'] = station_number df['time'] = sounding_time df['latitude'] = latitude df['longitude'] = longitude df['elevation'] = elevation # Add unit dictionary df.units = {'pressure': 'hPa', 'height': 'meter', 'temperature': 'degC', 'dewpoint': 'degC', 'direction': 'degrees', 'speed': 'knot', 'u_wind': 'knot', 'v_wind': 'knot', 'station': None, 'station_number': None, 'time': None, 'latitude': 'degrees', 'longitude': 'degrees', 'elevation': 'meter'} return df
<SYSTEM_TASK:> Download data from the University of Wyoming's upper air archive. <END_TASK> <USER_TASK:> Description: def _get_data_raw(self, time, site_id): """Download data from the University of Wyoming's upper air archive. Parameters ---------- time : datetime Date and time for which data should be downloaded site_id : str Site id for which data should be downloaded Returns ------- text of the server response """
path = ('?region=naconf&TYPE=TEXT%3ALIST' '&YEAR={time:%Y}&MONTH={time:%m}&FROM={time:%d%H}&TO={time:%d%H}' '&STNM={stid}').format(time=time, stid=site_id) resp = self.get_path(path) # See if the return is valid, but has no data if resp.text.find('Can\'t') != -1: raise ValueError( 'No data available for {time:%Y-%m-%d %HZ} ' 'for station {stid}.'.format(time=time, stid=site_id)) return resp.text
<SYSTEM_TASK:> Handle reading an NcStream v1 data block from a file-like object. <END_TASK> <USER_TASK:> Description: def read_ncstream_data(fobj): """Handle reading an NcStream v1 data block from a file-like object."""
data = read_proto_object(fobj, stream.Data) if data.dataType in (stream.STRING, stream.OPAQUE) or data.vdata: log.debug('Reading string/opaque/vlen') num_obj = read_var_int(fobj) log.debug('Num objects: %d', num_obj) blocks = [read_block(fobj) for _ in range(num_obj)] if data.dataType == stream.STRING: blocks = [b.decode('utf-8', errors='ignore') for b in blocks] # Again endian isn't coded properly dt = data_type_to_numpy(data.dataType).newbyteorder('>') if data.vdata: return np.array([np.frombuffer(b, dtype=dt) for b in blocks]) else: return np.array(blocks, dtype=dt) elif data.dataType in _dtypeLookup: log.debug('Reading array data') bin_data = read_block(fobj) log.debug('Binary data: %s', bin_data) # Hard code to big endian for now since it's not encoded correctly dt = data_type_to_numpy(data.dataType).newbyteorder('>') # Handle decompressing the bytes if data.compress == stream.DEFLATE: bin_data = zlib.decompress(bin_data) assert len(bin_data) == data.uncompressedSize elif data.compress != stream.NONE: raise NotImplementedError('Compression type {0} not implemented!'.format( data.compress)) # Turn bytes into an array return reshape_array(data, np.frombuffer(bin_data, dtype=dt)) elif data.dataType == stream.STRUCTURE: sd = read_proto_object(fobj, stream.StructureData) # Make a datatype appropriate to the rows of struct endian = '>' if data.bigend else '<' dt = np.dtype([(endian, np.void, sd.rowLength)]) # Turn bytes into an array return reshape_array(data, np.frombuffer(sd.data, dtype=dt)) elif data.dataType == stream.SEQUENCE: log.debug('Reading sequence') blocks = [] magic = read_magic(fobj) while magic != MAGIC_VEND: if magic == MAGIC_VDATA: log.error('Bad magic for struct/seq data!') blocks.append(read_proto_object(fobj, stream.StructureData)) magic = read_magic(fobj) return data, blocks else: raise NotImplementedError("Don't know how to handle data type: {0}".format( data.dataType))
<SYSTEM_TASK:> Handle reading an NcStream error from a file-like object and raise as error. <END_TASK> <USER_TASK:> Description: def read_ncstream_err(fobj): """Handle reading an NcStream error from a file-like object and raise as error."""
err = read_proto_object(fobj, stream.Error) raise RuntimeError(err.message)
<SYSTEM_TASK:> Read messages from a file-like object until stream is exhausted. <END_TASK> <USER_TASK:> Description: def read_messages(fobj, magic_table): """Read messages from a file-like object until stream is exhausted."""
messages = [] while True: magic = read_magic(fobj) if not magic: break func = magic_table.get(magic) if func is not None: messages.append(func(fobj)) else: log.error('Unknown magic: ' + str(' '.join('{0:02x}'.format(b) for b in bytearray(magic)))) return messages
<SYSTEM_TASK:> Read a block of data and parse using the given protobuf object. <END_TASK> <USER_TASK:> Description: def read_proto_object(fobj, klass): """Read a block of data and parse using the given protobuf object."""
log.debug('%s chunk', klass.__name__) obj = klass() obj.ParseFromString(read_block(fobj)) log.debug('Header: %s', str(obj)) return obj
<SYSTEM_TASK:> Read a block. <END_TASK> <USER_TASK:> Description: def read_block(fobj): """Read a block. Reads a block from a file object by first reading the number of bytes to read, which must be encoded as a variable-byte length integer. Parameters ---------- fobj : file-like object The file to read from. Returns ------- bytes block of bytes read """
num = read_var_int(fobj) log.debug('Next block: %d bytes', num) return fobj.read(num)
<SYSTEM_TASK:> Process vlen coming back from NCStream v2. <END_TASK> <USER_TASK:> Description: def process_vlen(data_header, array): """Process vlen coming back from NCStream v2. This takes the array of values and slices into an object array, with entries containing the appropriate pieces of the original array. Sizes are controlled by the passed in `data_header`. Parameters ---------- data_header : Header array : :class:`numpy.ndarray` Returns ------- ndarray object array containing sub-sequences from the original primitive array """
source = iter(array) return np.array([np.fromiter(itertools.islice(source, size), dtype=array.dtype) for size in data_header.vlens])
<SYSTEM_TASK:> Convert DataCol from NCStream v2 into an array with appropriate type. <END_TASK> <USER_TASK:> Description: def datacol_to_array(datacol): """Convert DataCol from NCStream v2 into an array with appropriate type. Depending on the data type specified, this extracts data from the appropriate members and packs into a :class:`numpy.ndarray`, recursing as necessary for compound data types. Parameters ---------- datacol : DataCol Returns ------- ndarray array containing extracted data """
if datacol.dataType == stream.STRING: arr = np.array(datacol.stringdata, dtype=np.object) elif datacol.dataType == stream.OPAQUE: arr = np.array(datacol.opaquedata, dtype=np.object) elif datacol.dataType == stream.STRUCTURE: members = OrderedDict((mem.name, datacol_to_array(mem)) for mem in datacol.structdata.memberData) log.debug('Struct members:\n%s', str(members)) # str() around name necessary because protobuf gives unicode names, but dtype doesn't # support them on Python 2 dt = np.dtype([(str(name), arr.dtype) for name, arr in members.items()]) log.debug('Struct dtype: %s', str(dt)) arr = np.empty((datacol.nelems,), dtype=dt) for name, arr_data in members.items(): arr[name] = arr_data else: # Make an appropriate datatype endian = '>' if datacol.bigend else '<' dt = data_type_to_numpy(datacol.dataType).newbyteorder(endian) # Turn bytes into an array arr = np.frombuffer(datacol.primdata, dtype=dt) if arr.size != datacol.nelems: log.warning('Array size %d does not agree with nelems %d', arr.size, datacol.nelems) if datacol.isVlen: arr = process_vlen(datacol, arr) if arr.dtype == np.object_: arr = reshape_array(datacol, arr) else: # In this case, the array collapsed, need different resize that # correctly sizes from elements shape = tuple(r.size for r in datacol.section.range) + (datacol.vlens[0],) arr = arr.reshape(*shape) else: arr = reshape_array(datacol, arr) return arr
<SYSTEM_TASK:> Extract the appropriate array shape from the header. <END_TASK> <USER_TASK:> Description: def reshape_array(data_header, array): """Extract the appropriate array shape from the header. Can handle taking a data header and either bytes containing data or a StructureData instance, which will have binary data as well as some additional information. Parameters ---------- array : :class:`numpy.ndarray` data_header : Data """
shape = tuple(r.size for r in data_header.section.range) if shape: return array.reshape(*shape) else: return array
<SYSTEM_TASK:> Convert an ncstream datatype to a numpy one. <END_TASK> <USER_TASK:> Description: def data_type_to_numpy(datatype, unsigned=False): """Convert an ncstream datatype to a numpy one."""
basic_type = _dtypeLookup[datatype] if datatype in (stream.STRING, stream.OPAQUE): return np.dtype(basic_type) if unsigned: basic_type = basic_type.replace('i', 'u') return np.dtype('=' + basic_type)
<SYSTEM_TASK:> Convert a Structure specification to a numpy structured dtype. <END_TASK> <USER_TASK:> Description: def struct_to_dtype(struct): """Convert a Structure specification to a numpy structured dtype."""
# str() around name necessary because protobuf gives unicode names, but dtype doesn't # support them on Python 2 fields = [(str(var.name), data_type_to_numpy(var.dataType, var.unsigned)) for var in struct.vars] for s in struct.structs: fields.append((str(s.name), struct_to_dtype(s))) log.debug('Structure fields: %s', fields) dt = np.dtype(fields) return dt
<SYSTEM_TASK:> Unpack an NCStream Variable into information we can use. <END_TASK> <USER_TASK:> Description: def unpack_variable(var): """Unpack an NCStream Variable into information we can use."""
# If we actually get a structure instance, handle turning that into a variable if var.dataType == stream.STRUCTURE: return None, struct_to_dtype(var), 'Structure' elif var.dataType == stream.SEQUENCE: log.warning('Sequence support not implemented!') dt = data_type_to_numpy(var.dataType, var.unsigned) if var.dataType == stream.OPAQUE: type_name = 'opaque' elif var.dataType == stream.STRING: type_name = 'string' else: type_name = dt.name if var.data: log.debug('Storing variable data: %s %s', dt, var.data) if var.dataType == stream.STRING: data = var.data else: # Always sent big endian data = np.frombuffer(var.data, dtype=dt.newbyteorder('>')) else: data = None return data, dt, type_name
<SYSTEM_TASK:> Unpack an embedded attribute into a python or numpy object. <END_TASK> <USER_TASK:> Description: def unpack_attribute(att): """Unpack an embedded attribute into a python or numpy object."""
if att.unsigned: log.warning('Unsupported unsigned attribute!') # TDS 5.0 now has a dataType attribute that takes precedence if att.len == 0: # Empty val = None elif att.dataType == stream.STRING: # Then look for new datatype string val = att.sdata elif att.dataType: # Then a non-zero new data type val = np.frombuffer(att.data, dtype='>' + _dtypeLookup[att.dataType], count=att.len) elif att.type: # Then non-zero old-data type0 val = np.frombuffer(att.data, dtype=_attrConverters[att.type], count=att.len) elif att.sdata: # This leaves both 0, try old string val = att.sdata else: # Assume new datatype is Char (0) val = np.array(att.data, dtype=_dtypeLookup[att.dataType]) if att.len == 1: val = val[0] return att.name, val
<SYSTEM_TASK:> Read a variable-length integer. <END_TASK> <USER_TASK:> Description: def read_var_int(file_obj): """Read a variable-length integer. Parameters ---------- file_obj : file-like object The file to read from. Returns ------- int the variable-length value read """
# Read all bytes from here, stopping with the first one that does not have # the MSB set. Save the lower 7 bits, and keep stacking to the *left*. val = 0 shift = 0 while True: # Read next byte next_val = ord(file_obj.read(1)) val |= ((next_val & 0x7F) << shift) shift += 7 if not next_val & 0x80: break return val
<SYSTEM_TASK:> Retrieve data from CDMRemote for one or more variables. <END_TASK> <USER_TASK:> Description: def fetch_data(self, **var): """Retrieve data from CDMRemote for one or more variables."""
varstr = ','.join(name + self._convert_indices(ind) for name, ind in var.items()) query = self.query().add_query_parameter(req='data', var=varstr) return self._fetch(query)
<SYSTEM_TASK:> Generate a new query for CDMRemote. <END_TASK> <USER_TASK:> Description: def query(self): """Generate a new query for CDMRemote. This handles turning on compression if necessary. Returns ------- HTTPQuery The created query. """
q = super(CDMRemote, self).query() # Turn on compression if it's been set on the object if self.deflate: q.add_query_parameter(deflate=self.deflate) return q
<SYSTEM_TASK:> Login to verisure app api <END_TASK> <USER_TASK:> Description: def login(self): """ Login to verisure app api Login before calling any read or write commands """
if os.path.exists(self._cookieFileName): with open(self._cookieFileName, 'r') as cookieFile: self._vid = cookieFile.read().strip() try: self._get_installations() except ResponseError: self._vid = None os.remove(self._cookieFileName) if self._vid is None: self._create_cookie() with open(self._cookieFileName, 'w') as cookieFile: cookieFile.write(self._vid) self._get_installations() self._giid = self.installations[0]['giid']
<SYSTEM_TASK:> Get information about installations <END_TASK> <USER_TASK:> Description: def _get_installations(self): """ Get information about installations """
response = None for base_url in urls.BASE_URLS: urls.BASE_URL = base_url try: response = requests.get( urls.get_installations(self._username), headers={ 'Cookie': 'vid={}'.format(self._vid), 'Accept': 'application/json,' 'text/javascript, */*; q=0.01', }) if 2 == response.status_code // 100: break elif 503 == response.status_code: continue else: raise ResponseError(response.status_code, response.text) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) self.installations = json.loads(response.text)
<SYSTEM_TASK:> Turn on or off smartplug <END_TASK> <USER_TASK:> Description: def set_smartplug_state(self, device_label, state): """ Turn on or off smartplug Args: device_label (str): Smartplug device label state (boolean): new status, 'True' or 'False' """
response = None try: response = requests.post( urls.smartplug(self._giid), headers={ 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}, data=json.dumps([{ "deviceLabel": device_label, "state": state}])) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response)
<SYSTEM_TASK:> Get recent events <END_TASK> <USER_TASK:> Description: def get_history(self, filters=(), pagesize=15, offset=0): """ Get recent events Args: filters (string set): 'ARM', 'DISARM', 'FIRE', 'INTRUSION', 'TECHNICAL', 'SOS', 'WARNING', 'LOCK', 'UNLOCK' pagesize (int): Number of events to display offset (int): Skip pagesize * offset first events """
response = None try: response = requests.get( urls.history(self._giid), headers={ 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Cookie': 'vid={}'.format(self._vid)}, params={ "offset": int(offset), "pagesize": int(pagesize), "notificationCategories": filters}) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) return json.loads(response.text)
<SYSTEM_TASK:> Lock or unlock <END_TASK> <USER_TASK:> Description: def set_lock_state(self, code, device_label, state): """ Lock or unlock Args: code (str): Lock code device_label (str): device label of lock state (str): 'lock' or 'unlock' """
response = None try: response = requests.put( urls.set_lockstate(self._giid, device_label, state), headers={ 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}, data=json.dumps({"code": str(code)})) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) return json.loads(response.text)
<SYSTEM_TASK:> Get lock configuration <END_TASK> <USER_TASK:> Description: def get_lock_config(self, device_label): """ Get lock configuration Args: device_label (str): device label of lock """
response = None try: response = requests.get( urls.lockconfig(self._giid, device_label), headers={ 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Cookie': 'vid={}'.format(self._vid)}) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) return json.loads(response.text)
<SYSTEM_TASK:> Set lock configuration <END_TASK> <USER_TASK:> Description: def set_lock_config(self, device_label, volume=None, voice_level=None, auto_lock_enabled=None): """ Set lock configuration Args: device_label (str): device label of lock volume (str): 'SILENCE', 'LOW' or 'HIGH' voice_level (str): 'ESSENTIAL' or 'NORMAL' auto_lock_enabled (boolean): auto lock enabled """
response = None data = {} if volume: data['volume'] = volume if voice_level: data['voiceLevel'] = voice_level if auto_lock_enabled is not None: data['autoLockEnabled'] = auto_lock_enabled try: response = requests.put( urls.lockconfig(self._giid, device_label), headers={ 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}, data=json.dumps(data)) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response)
<SYSTEM_TASK:> Capture smartcam image <END_TASK> <USER_TASK:> Description: def capture_image(self, device_label): """ Capture smartcam image Args: device_label (str): device label of camera """
response = None try: response = requests.post( urls.imagecapture(self._giid, device_label), headers={ 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response)
<SYSTEM_TASK:> Get smartcam image series <END_TASK> <USER_TASK:> Description: def get_camera_imageseries(self, number_of_imageseries=10, offset=0): """ Get smartcam image series Args: number_of_imageseries (int): number of image series to get offset (int): skip offset amount of image series """
response = None try: response = requests.get( urls.get_imageseries(self._giid), headers={ 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Cookie': 'vid={}'.format(self._vid)}, params={ "numberOfImageSeries": int(number_of_imageseries), "offset": int(offset), "fromDate": "", "toDate": "", "onlyNotViewed": "", "_": self._giid}) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) return json.loads(response.text)
<SYSTEM_TASK:> Download image taken by a smartcam <END_TASK> <USER_TASK:> Description: def download_image(self, device_label, image_id, file_name): """ Download image taken by a smartcam Args: device_label (str): device label of camera image_id (str): image id from image series file_name (str): path to file """
response = None try: response = requests.get( urls.download_image(self._giid, device_label, image_id), headers={ 'Cookie': 'vid={}'.format(self._vid)}, stream=True) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) with open(file_name, 'wb') as image_file: for chunk in response.iter_content(chunk_size=1024): if chunk: image_file.write(chunk)
<SYSTEM_TASK:> Print the result of a verisure request <END_TASK> <USER_TASK:> Description: def print_result(overview, *names): """ Print the result of a verisure request """
if names: for name in names: toprint = overview for part in name.split('/'): toprint = toprint[part] print(json.dumps(toprint, indent=4, separators=(',', ': '))) else: print(json.dumps(overview, indent=4, separators=(',', ': ')))
<SYSTEM_TASK:> Shortcut to retrieving the ContentType id of the model. <END_TASK> <USER_TASK:> Description: def type_id(self): """ Shortcut to retrieving the ContentType id of the model. """
try: return ContentType.objects.get_for_model(self.model, for_concrete_model=False).id except DatabaseError as e: raise DatabaseError("Unable to fetch ContentType object, is a plugin being registered before the initial syncdb? (original error: {0})".format(str(e)))
<SYSTEM_TASK:> Return a cache key for the content item output. <END_TASK> <USER_TASK:> Description: def get_rendering_cache_key(placeholder_name, contentitem): """ Return a cache key for the content item output. .. seealso:: The :func:`ContentItem.clear_cache() <fluent_contents.models.ContentItem.clear_cache>` function can be used to remove the cache keys of a retrieved object. """
if not contentitem.pk: return None return "contentitem.@{0}.{1}.{2}".format( placeholder_name, contentitem.plugin.type_name, # always returns the upcasted name. contentitem.pk, # already unique per language_code )
<SYSTEM_TASK:> Return a cache key for an existing placeholder object. <END_TASK> <USER_TASK:> Description: def get_placeholder_cache_key(placeholder, language_code): """ Return a cache key for an existing placeholder object. This key is used to cache the entire output of a placeholder. """
return _get_placeholder_cache_key_for_id( placeholder.parent_type_id, placeholder.parent_id, placeholder.slot, language_code )
<SYSTEM_TASK:> Return a cache key for a placeholder. <END_TASK> <USER_TASK:> Description: def get_placeholder_cache_key_for_parent(parent_object, placeholder_name, language_code): """ Return a cache key for a placeholder. This key is used to cache the entire output of a placeholder. """
parent_type = ContentType.objects.get_for_model(parent_object) return _get_placeholder_cache_key_for_id( parent_type.id, parent_object.pk, placeholder_name, language_code )
<SYSTEM_TASK:> See if there are items that point to a removed model. <END_TASK> <USER_TASK:> Description: def remove_stale_items(self, stale_cts): """ See if there are items that point to a removed model. """
stale_ct_ids = list(stale_cts.keys()) items = (ContentItem.objects .non_polymorphic() # very important, or polymorphic skips them on fetching derived data .filter(polymorphic_ctype__in=stale_ct_ids) .order_by('polymorphic_ctype', 'pk') ) if not items: self.stdout.write("No stale items found.") return if self.dry_run: self.stdout.write("The following content items are stale:") else: self.stdout.write("The following content items were stale:") for item in items: ct = stale_cts[item.polymorphic_ctype_id] self.stdout.write("- #{id} points to removed {app_label}.{model}".format( id=item.pk, app_label=ct.app_label, model=ct.model )) if not self.dry_run: try: item.delete() except PluginNotFound: Model.delete(item)
<SYSTEM_TASK:> See if there are items that no longer point to an existing parent. <END_TASK> <USER_TASK:> Description: def remove_unreferenced_items(self, stale_cts): """ See if there are items that no longer point to an existing parent. """
stale_ct_ids = list(stale_cts.keys()) parent_types = (ContentItem.objects.order_by() .exclude(polymorphic_ctype__in=stale_ct_ids) .values_list('parent_type', flat=True).distinct()) num_unreferenced = 0 for ct_id in parent_types: parent_ct = ContentType.objects.get_for_id(ct_id) unreferenced_items = (ContentItem.objects .filter(parent_type=ct_id) .order_by('polymorphic_ctype', 'pk')) if parent_ct.model_class() is not None: # Only select the items that are part of removed pages, # unless the parent type was removed - then removing all is correct. unreferenced_items = unreferenced_items.exclude( parent_id__in=parent_ct.get_all_objects_for_this_type() ) if unreferenced_items: for item in unreferenced_items: self.stdout.write( "- {cls}#{id} points to nonexisting {app_label}.{model}".format( cls=item.__class__.__name__, id=item.pk, app_label=parent_ct.app_label, model=parent_ct.model )) num_unreferenced += 1 if not self.dry_run and self.remove_unreferenced: item.delete() if not num_unreferenced: self.stdout.write("No unreferenced items found.") else: self.stdout.write("{0} unreferenced items found.".format(num_unreferenced)) if not self.remove_unreferenced: self.stdout.write("Re-run this command with --remove-unreferenced to remove these items")