text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Updates the population according to crossover and fitness criteria.
<END_TASK>
<USER_TASK:>
Description:
def update_pop(self):
"""Updates the population according to crossover and fitness criteria.
""" |
candidates = []
for ind in self.population:
candidates.append(self.crossover(ind))
self._params['model_count'] += len(candidates)
self.assign_fitnesses(candidates)
for i in range(len(self.population)):
if candidates[i].fitness > self.population[i].fitness:
self.population[i] = candidates[i] |
<SYSTEM_TASK:>
Generates initial population with random positions and speeds.
<END_TASK>
<USER_TASK:>
Description:
def initialize_pop(self):
"""Generates initial population with random positions and speeds.""" |
self.population = self.toolbox.swarm(n=self._params['popsize'])
if self._params['neighbours']:
for i in range(len(self.population)):
self.population[i].ident = i
self.population[i].neighbours = list(
set(
[(i - x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)] +
[i] +
[(i + x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)]
))
else:
for i in range(len(self.population)):
self.population[i].ident = i
self.population[i].neighbours = [
x for x in range(len(self.population))]
self.assign_fitnesses(self.population)
for part in self.population:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values |
<SYSTEM_TASK:>
Assigns initial fitnesses.
<END_TASK>
<USER_TASK:>
Description:
def initialize_pop(self):
"""Assigns initial fitnesses.""" |
self.toolbox.register("individual", self.generate)
self.toolbox.register("population", tools.initRepeat,
list, self.toolbox.individual)
self.population = self.toolbox.population(n=self._params['popsize'])
self.assign_fitnesses(self.population)
self._params['model_count'] += len(self.population) |
<SYSTEM_TASK:>
Creates a randomly the proposed value.
<END_TASK>
<USER_TASK:>
Description:
def randomise_proposed_value(self):
"""Creates a randomly the proposed value.
Raises
------
TypeError
Raised if this method is called on a static value.
TypeError
Raised if the parameter type is unknown.
""" |
if self.parameter_type is MMCParameterType.UNIFORM_DIST:
(a, b) = self.static_dist_or_list
self.proposed_value = random.uniform(a, b)
elif self.parameter_type is MMCParameterType.NORMAL_DIST:
(mu, sigma) = self.static_dist_or_list
self.proposed_value = random.normalvariate(mu, sigma)
elif self.parameter_type is MMCParameterType.DISCRETE_RANGE:
(min_v, max_v, step) = self.static_dist_or_list
self.proposed_value = random.choice(
numpy.arange(min_v, max_v, step))
elif self.parameter_type is MMCParameterType.LIST:
self.proposed_value = random.choice(self.static_dist_or_list)
elif self.parameter_type is MMCParameterType.STATIC_VALUE:
raise TypeError('This value is static, it cannot be mutated.')
else:
raise TypeError(
'Cannot randomise this parameter, unknown parameter type.')
return |
<SYSTEM_TASK:>
Changes the current value to the proposed value.
<END_TASK>
<USER_TASK:>
Description:
def accept_proposed_value(self):
"""Changes the current value to the proposed value.""" |
if self.proposed_value is not None:
self.current_value = self.proposed_value
self.proposed_value = None
return |
<SYSTEM_TASK:>
Begin the optimisation run.
<END_TASK>
<USER_TASK:>
Description:
def start_optimisation(self, rounds, temp=298.15):
"""Begin the optimisation run.
Parameters
----------
rounds : int
The number of rounds of optimisation to perform.
temp : float, optional
The temperature (in K) used during the optimisation.
""" |
self._generate_initial_model()
self._mmc_loop(rounds, temp=temp)
return |
<SYSTEM_TASK:>
Creates the initial model for the optimistation.
<END_TASK>
<USER_TASK:>
Description:
def _generate_initial_model(self):
"""Creates the initial model for the optimistation.
Raises
------
TypeError
Raised if the model failed to build. This could be due to
parameters being passed to the specification in the wrong
format.
""" |
initial_parameters = [p.current_value for p in self.current_parameters]
try:
initial_model = self.specification(*initial_parameters)
except TypeError:
raise TypeError(
'Failed to build initial model. Make sure that the input '
'parameters match the number and order of arguements '
'expected by the input specification.')
initial_model.pack_new_sequences(self.sequences)
self.current_energy = self.eval_function(initial_model)
self.best_energy = copy.deepcopy(self.current_energy)
self.best_parameters = copy.deepcopy(self.current_parameters)
self.best_model = initial_model
return |
<SYSTEM_TASK:>
The main MMC loop.
<END_TASK>
<USER_TASK:>
Description:
def _mmc_loop(self, rounds, temp=298.15, verbose=True):
"""The main MMC loop.
Parameters
----------
rounds : int
The number of rounds of optimisation to perform.
temp : float, optional
The temperature (in K) used during the optimisation.
verbose : bool, optional
If true, prints information about the run to std out.
""" |
# TODO add weighted randomisation of altered variable
current_round = 0
while current_round < rounds:
modifiable = list(filter(
lambda p: p.parameter_type is not MMCParameterType.STATIC_VALUE,
self.current_parameters))
chosen_parameter = random.choice(modifiable)
if chosen_parameter.parameter_type is MMCParameterType.UNIFORM_DIST:
chosen_parameter.randomise_proposed_value()
else:
chosen_parameter.randomise_proposed_value()
proposed_parameters = [
p.current_value
if p.proposed_value is None else p.proposed_value
for p in self.current_parameters]
model = self.specification(*proposed_parameters)
model.pack_new_sequences(self.sequences)
proposed_energy = self.eval_function(model)
# TODO Add proper logging
if verbose:
sys.stdout.write(
'\rRound: {}, Current energy: {}, Proposed energy: {} '
'(best {}), {}. '
.format(current_round, float_f(self.current_energy),
float_f(proposed_energy), float_f(
self.best_energy),
"ACCEPTED" if self.check_move(
proposed_energy, self.current_energy, t=temp)
else "DECLINED"
))
sys.stdout.flush()
if self.check_move(proposed_energy, self.current_energy, t=temp):
for p in self.current_parameters:
p.accept_proposed_value()
self.current_energy = proposed_energy
if self.current_energy < self.best_energy:
self.best_energy = copy.deepcopy(self.current_energy)
self.best_parameters = copy.deepcopy(
self.current_parameters)
self.best_model = model
else:
for p in self.current_parameters:
p.reject_proposed_value()
current_round += 1
return |
<SYSTEM_TASK:>
Used by the evolution process to generate a new individual.
<END_TASK>
<USER_TASK:>
Description:
def _crossover(self, ind):
"""Used by the evolution process to generate a new individual.
Notes
-----
This is a tweaked version of the classical DE crossover
algorithm, the main difference that candidate parameters are
generated using a lognormal distribution. Bound handling is
achieved by resampling where the candidate solution exceeds +/-1
Parameters
----------
ind : deap individual
Returns
-------
y : deap individual
An individual representing a candidate solution, to be
assigned a fitness.
""" |
if self.neighbours:
a, b, c = random.sample([self.population[i]
for i in ind.neighbours], 3)
else:
a, b, c = random.sample(self.population, 3)
y = self.toolbox.clone(a)
y.ident = ind.ident
y.neighbours = ind.neighbours
del y.fitness.values
# y should now be a copy of ind with the vector elements from a
ident = random.randrange(len(self.value_means))
for i, value in enumerate(y):
if i == ident or random.random() < self.cxpb:
entry = a[i] + random.lognormvariate(-1.2, 0.5) * \
self.diff_weight * (b[i] - c[i])
tries = 0
while abs(entry) > 1.0:
tries += 1
entry = a[i] + random.lognormvariate(-1.2, 0.5) * \
self.diff_weight * (b[i] - c[i])
if tries > 10000:
entry = a[i]
y[i] = entry
return y |
<SYSTEM_TASK:>
Generates a particle using the creator function.
<END_TASK>
<USER_TASK:>
Description:
def _generate(self):
"""Generates a particle using the creator function.
Notes
-----
Position and speed are uniformly randomly seeded within
allowed bounds. The particle also has speed limit settings
taken from global values.
Returns
-------
part : particle object
A particle used during optimisation.
""" |
part = creator.Particle(
[random.uniform(-1, 1)
for _ in range(len(self.value_means))])
part.speed = [
random.uniform(-self.max_speed, self.max_speed)
for _ in range(len(self.value_means))]
part.smin = -self.max_speed
part.smax = self.max_speed
part.ident = None
part.neighbours = None
return part |
<SYSTEM_TASK:>
Constriction factor update particle method.
<END_TASK>
<USER_TASK:>
Description:
def update_particle(self, part, chi=0.729843788, c=2.05):
"""Constriction factor update particle method.
Notes
-----
Looks for a list of neighbours attached to a particle and
uses the particle's best position and that of the best
neighbour.
""" |
neighbour_pool = [self.population[i] for i in part.neighbours]
best_neighbour = max(neighbour_pool, key=lambda x: x.best.fitness)
ce1 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce2 = (c * random.uniform(0, 1) for _ in range(len(part)))
ce1_p = map(operator.mul, ce1, map(operator.sub, part.best, part))
ce2_g = map(operator.mul, ce2, map(
operator.sub, best_neighbour.best, part))
chi_list = [chi] * len(part)
chi_list2 = [1 - chi] * len(part)
a = map(operator.sub,
map(operator.mul, chi_list, map(operator.add, ce1_p, ce2_g)),
map(operator.mul, chi_list2, part.speed))
part.speed = list(map(operator.add, part.speed, a))
for i, speed in enumerate(part.speed):
if speed < part.smin:
part.speed[i] = part.smin
elif speed > part.smax:
part.speed[i] = part.smax
part[:] = list(map(operator.add, part, part.speed))
return |
<SYSTEM_TASK:>
Makes an individual particle.
<END_TASK>
<USER_TASK:>
Description:
def _make_individual(self, paramlist):
"""Makes an individual particle.""" |
part = creator.Individual(paramlist)
part.ident = None
return part |
<SYSTEM_TASK:>
Number of .mmol files associated with code in the PDBE.
<END_TASK>
<USER_TASK:>
Description:
def number_of_mmols(code):
""" Number of .mmol files associated with code in the PDBE.
Notes
-----
This function makes a series of calls to the PDBE website using the requests module. This can make it slow!
Parameters
----------
code : str
PDB code.
Returns
-------
num_mmols : int
Raises
------
ValueError
If no .mmol files are found at all.
Could be due to erroneous input argument, or a problem with connecting to the PDBE.
""" |
# If num_mmols is already known, return it
if mmols_numbers:
if code in mmols_numbers.keys():
mmol = mmols_numbers[code][0]
return mmol
counter = 1
while True:
pdbe_url = "http://www.ebi.ac.uk/pdbe/static/entry/download/{0}-assembly-{1}.cif.gz".format(code, counter)
r = requests.get(pdbe_url)
if r.status_code == 200:
counter += 1
else:
break
if counter == 1:
while True:
pdb_url = "http://www.rcsb.org/pdb/files/{0}.pdb{1}.gz".format(code.upper(), counter)
r = requests.get(pdb_url)
if r.status_code == 200 and r.encoding is None:
counter += 1
else:
break
if counter == 1:
pdb_url = "http://files.rcsb.org/download/{0}.pdb".format(code.upper())
r = requests.get(pdb_url)
if r.status_code == 200:
counter += 1
num_mmols = counter - 1
if num_mmols == 0:
raise ValueError('Could not access ANY .mmol files for {0}'.format(code))
return num_mmols |
<SYSTEM_TASK:>
Get mmol file from PDBe and return its content as a string. Write to file if outfile given.
<END_TASK>
<USER_TASK:>
Description:
def get_mmol(code, mmol_number=None, outfile=None):
""" Get mmol file from PDBe and return its content as a string. Write to file if outfile given.
Parameters
----------
code : str
PDB code.
mmol_number : int
mmol number (biological assembly number) of file to download. Numbers from PDBe.
If None, defaults to the preferred biological assembly listed for code on the PDBe.
outfile : str
Filepath. Writes returned value to this file.
Returns
-------
mmol_string : str, or None
Content of the mmol file as a string.
None if there are no pdbe files to download, as determined by pdbe_status_code().
None if unable to download the mmol_file from the pdbe site.
Raises
------
ValueError
If the number of mmols for code is stored in mmols_numbers and if mmol_number is larger than this value.
""" |
if not mmol_number:
try:
mmol_number = preferred_mmol(code=code)
except (ValueError, TypeError, IOError):
print("No mmols for {0}".format(code))
return None
# sanity check
if mmols_numbers:
if code in mmols_numbers.keys():
num_mmols = mmols_numbers[code][0]
if mmol_number > num_mmols:
raise ValueError('There are only {0} mmols for code {1}. mmol_number {2} is too big'
.format(num_mmols, code, mmol_number))
# Download mmol file from the PDBE webserver.
pdbe_url = "http://www.ebi.ac.uk/pdbe/entry-files/download/{0}_{1}.mmol".format(code, mmol_number)
r = requests.get(pdbe_url)
if r.status_code == 200:
mmol_string = r.text
else:
# Download gz pdb file from the PDB.
pdb_url = "http://www.rcsb.org/pdb/files/{0}.pdb{1}.gz".format(code.upper(), mmol_number)
r = requests.get(pdb_url)
if r.status_code == 200:
temp_gz = tempfile.NamedTemporaryFile()
temp_gz.write(r.content)
with gzip.open(temp_gz.name, 'rb') as foo:
mmol_string = foo.read().decode()
else:
print("Could not download mmol file for {0}.\n Got requests status_code {1}".format(code, r.status_code))
return None
# Write to file
if outfile and mmol_string:
with open(outfile, 'w') as foo:
foo.write(mmol_string)
return mmol_string |
<SYSTEM_TASK:>
Get mmcif file associated with code from PDBE.
<END_TASK>
<USER_TASK:>
Description:
def get_mmcif(code, outfile=None):
""" Get mmcif file associated with code from PDBE.
Parameters
----------
code : str
PDB code.
outfile : str
Filepath. Writes returned value to this file.
Returns
-------
mmcif_file : str
Filepath to the mmcif file.
""" |
pdbe_url = "http://www.ebi.ac.uk/pdbe/entry-files/download/{0}.cif".format(code)
r = requests.get(pdbe_url)
if r.status_code == 200:
mmcif_string = r.text
else:
print("Could not download mmcif file for {0}".format(code))
mmcif_string = None
# Write to file.
if outfile and mmcif_string:
with open(outfile, 'w') as foo:
foo.write(mmcif_string)
return mmcif_string |
<SYSTEM_TASK:>
Get mmol number of preferred biological assembly as listed in the PDBe.
<END_TASK>
<USER_TASK:>
Description:
def preferred_mmol(code):
""" Get mmol number of preferred biological assembly as listed in the PDBe.
Notes
-----
First checks for code in mmols.json.
If code not yet in this json dictionary, uses requests module to scrape the PDBE for the preferred mmol number.
Parameters
----------
code : str
A PDB code.
Returns
-------
mmol : int
mmol number of preferred assembly.
Raises
------
TypeError
If 'mmol number' scraped is not an integer.
""" |
# If preferred mmol number is already known, return it
if code in mmols_numbers.keys():
mmol = mmols_numbers[code][1]
return mmol
elif is_obsolete(code):
raise ValueError('Obsolete PDB code {0}'.format(code))
# Otherwise, use requests to scrape the PDBE.
else:
url_string = "http://www.ebi.ac.uk/pdbe/entry/pdb/{0}/analysis".format(code)
r = requests.get(url_string)
if not r.ok:
raise IOError("Could not get to url {0}".format(url_string))
r_content = r.text
ass = re.findall('Assembly\s\d+\s\(preferred\)', r_content)
if len(ass) != 1:
# To catch a strange error in the pdbe where preferred assembly is not numbered. See for example
# http://www.ebi.ac.uk/pdbe/entry/pdb/7msi/analysis
ass = re.findall('Assembly\s+\(preferred\)', r_content)
if len(ass) == 1:
return 1
obs = re.findall('Entry has been obsoleted and replaced by another entry \(OBS\)', r_content)
if len(obs) == 1:
rep = re.findall('by entry <a href="/pdbe/entry/pdb/\w{4}', r_content)
if len(rep) == 1:
rep = rep[0][-4:]
raise IOError("{0} is obsolete and has been replaced by {1}.".format(code, rep))
raise ValueError("More than one match to preferred assembly")
mmol = ass[0].split()[1]
try:
mmol = int(mmol)
except TypeError:
raise TypeError("Unexpected match: non-integer mmol")
return mmol |
<SYSTEM_TASK:>
Get list of all PDB codes currently listed in the PDB.
<END_TASK>
<USER_TASK:>
Description:
def current_codes_from_pdb():
""" Get list of all PDB codes currently listed in the PDB.
Returns
-------
pdb_codes : list(str)
List of PDB codes (in lower case).
""" |
url = 'http://www.rcsb.org/pdb/rest/getCurrent'
r = requests.get(url)
if r.status_code == 200:
pdb_codes = [x.lower() for x in r.text.split('"') if len(x) == 4]
else:
print('Request for {0} failed with status code {1}'.format(url, r.status_code))
return
return pdb_codes |
<SYSTEM_TASK:>
Dict of filepaths for all mmol files associated with code.
<END_TASK>
<USER_TASK:>
Description:
def mmols(self):
""" Dict of filepaths for all mmol files associated with code.
Notes
-----
Downloads mmol files if not already present.
Returns
-------
mmols_dict : dict, or None.
Keys : int
mmol number
Values : str
Filepath for the corresponding mmol file.
""" |
mmols_dict = {}
mmol_dir = os.path.join(self.parent_dir, 'structures')
if not os.path.exists(mmol_dir):
os.makedirs(mmol_dir)
mmol_file_names = ['{0}_{1}.mmol'.format(self.code, i) for i in range(1, self.number_of_mmols + 1)]
mmol_files = [os.path.join(mmol_dir, x) for x in mmol_file_names]
for i, mmol_file in enumerate(mmol_files):
mmols_dict[i + 1] = mmol_file
# If file does not exist yet, download the mmol and write to mmol_file.
if not os.path.exists(mmol_file):
get_mmol(self.code, mmol_number=i + 1, outfile=mmol_file)
return mmols_dict |
<SYSTEM_TASK:>
Dict of filepaths for all dssp files associated with code.
<END_TASK>
<USER_TASK:>
Description:
def dssps(self):
""" Dict of filepaths for all dssp files associated with code.
Notes
-----
Runs dssp and stores writes output to files if not already present.
Also downloads mmol files if not already present.
Calls isambard.external_programs.dssp and so needs dssp to be installed.
Returns
-------
dssps_dict : dict, or None.
Keys : int
mmol number
Values : str
Filepath for the corresponding dssp file.
Raises
------
Warning
If any of the dssp files are empty.
""" |
dssps_dict = {}
dssp_dir = os.path.join(self.parent_dir, 'dssp')
if not os.path.exists(dssp_dir):
os.makedirs(dssp_dir)
for i, mmol_file in self.mmols.items():
dssp_file_name = '{0}.dssp'.format(os.path.basename(mmol_file))
dssp_file = os.path.join(dssp_dir, dssp_file_name)
if not os.path.exists(dssp_file):
dssp_out = run_dssp(pdb=mmol_file, path=True, outfile=dssp_file)
if len(dssp_out) == 0:
raise Warning("dssp file {0} is empty".format(dssp_file))
dssps_dict[i] = dssp_file
return dssps_dict |
<SYSTEM_TASK:>
Dict of filepaths for all fasta files associated with code.
<END_TASK>
<USER_TASK:>
Description:
def fastas(self, download=False):
""" Dict of filepaths for all fasta files associated with code.
Parameters
----------
download : bool
If True, downloads the fasta file from the PDB.
If False, uses the ampal Protein.fasta property
Defaults to False - this is definitely the recommended behaviour.
Notes
-----
Calls self.mmols, and so downloads mmol files if not already present.
See .fasta property of isambard.ampal.base_ampal.Protein for more information.
Returns
-------
fastas_dict : dict, or None.
Keys : int
mmol number
Values : str
Filepath for the corresponding fasta file.
""" |
fastas_dict = {}
fasta_dir = os.path.join(self.parent_dir, 'fasta')
if not os.path.exists(fasta_dir):
os.makedirs(fasta_dir)
for i, mmol_file in self.mmols.items():
mmol_name = os.path.basename(mmol_file)
fasta_file_name = '{0}.fasta'.format(mmol_name)
fasta_file = os.path.join(fasta_dir, fasta_file_name)
if not os.path.exists(fasta_file):
if download:
pdb_url = "http://www.rcsb.org/pdb/files/fasta.txt?structureIdList={0}".format(self.code.upper())
r = requests.get(pdb_url)
if r.status_code == 200:
fasta_string = r.text
else:
fasta_string = None
else:
a = convert_pdb_to_ampal(mmol_file)
# take first object if AmpalContainer (i.e. NMR structure).
if type(a) == AmpalContainer:
a = a[0]
fasta_string = a.fasta
with open(fasta_file, 'w') as foo:
foo.write(fasta_string)
fastas_dict[i] = fasta_file
return fastas_dict |
<SYSTEM_TASK:>
Filepath for mmcif file associated with code.
<END_TASK>
<USER_TASK:>
Description:
def mmcif(self):
""" Filepath for mmcif file associated with code.
Notes
-----
Downloads mmcif file if not already present.
Returns
-------
mmcif_file : str
Filepath for the mmcif file.
""" |
mmcif_dir = os.path.join(self.parent_dir, 'mmcif')
if not os.path.exists(mmcif_dir):
os.makedirs(mmcif_dir)
mmcif_file_name = '{0}.cif'.format(self.code)
mmcif_file = os.path.join(mmcif_dir, mmcif_file_name)
if not os.path.exists(mmcif_file):
get_mmcif(code=self.code, outfile=mmcif_file)
return mmcif_file |
<SYSTEM_TASK:>
Returns the number of categories in `categories`.
<END_TASK>
<USER_TASK:>
Description:
def category_count(self):
"""Returns the number of categories in `categories`.""" |
category_dict = self.categories
count_dict = {category: len(
category_dict[category]) for category in category_dict}
return count_dict |
<SYSTEM_TASK:>
Returns the molecular weight of the polypeptide sequence.
<END_TASK>
<USER_TASK:>
Description:
def sequence_molecular_weight(seq):
"""Returns the molecular weight of the polypeptide sequence.
Notes
-----
Units = Daltons
Parameters
----------
seq : str
Sequence of amino acids.
""" |
if 'X' in seq:
warnings.warn(_nc_warning_str, NoncanonicalWarning)
return sum(
[residue_mwt[aa] * n for aa, n in Counter(seq).items()]) + water_mass |
<SYSTEM_TASK:>
Returns the molar extinction coefficient of the sequence at 280 nm.
<END_TASK>
<USER_TASK:>
Description:
def sequence_molar_extinction_280(seq):
"""Returns the molar extinction coefficient of the sequence at 280 nm.
Notes
-----
Units = M/cm
Parameters
----------
seq : str
Sequence of amino acids.
""" |
if 'X' in seq:
warnings.warn(_nc_warning_str, NoncanonicalWarning)
return sum([residue_ext_280[aa] * n for aa, n in Counter(seq).items()]) |
<SYSTEM_TASK:>
Calculates the partial charge of the amino acid.
<END_TASK>
<USER_TASK:>
Description:
def partial_charge(aa, pH):
"""Calculates the partial charge of the amino acid.
Parameters
----------
aa : str
Amino acid single-letter code.
pH : float
pH of interest.
""" |
difference = pH - residue_pka[aa]
if residue_charge[aa] > 0:
difference *= -1
ratio = (10 ** difference) / (1 + 10 ** difference)
return ratio |
<SYSTEM_TASK:>
Calculates the total charge of the input polypeptide sequence.
<END_TASK>
<USER_TASK:>
Description:
def sequence_charge(seq, pH=7.4):
"""Calculates the total charge of the input polypeptide sequence.
Parameters
----------
seq : str
Sequence of amino acids.
pH : float
pH of interest.
""" |
if 'X' in seq:
warnings.warn(_nc_warning_str, NoncanonicalWarning)
adj_protein_charge = sum(
[partial_charge(aa, pH) * residue_charge[aa] * n
for aa, n in Counter(seq).items()])
adj_protein_charge += (
partial_charge('N-term', pH) * residue_charge['N-term'])
adj_protein_charge += (
partial_charge('C-term', pH) * residue_charge['C-term'])
return adj_protein_charge |
<SYSTEM_TASK:>
Calculates the charge for pH 1-13.
<END_TASK>
<USER_TASK:>
Description:
def charge_series(seq, granularity=0.1):
"""Calculates the charge for pH 1-13.
Parameters
----------
seq : str
Sequence of amino acids.
granularity : float, optional
Granularity of pH values i.e. if 0.1 pH = [1.0, 1.1, 1.2...]
""" |
if 'X' in seq:
warnings.warn(_nc_warning_str, NoncanonicalWarning)
ph_range = numpy.arange(1, 13, granularity)
charge_at_ph = [sequence_charge(seq, ph) for ph in ph_range]
return ph_range, charge_at_ph |
<SYSTEM_TASK:>
Calculates the isoelectric point of the sequence for ph 1-13.
<END_TASK>
<USER_TASK:>
Description:
def sequence_isoelectric_point(seq, granularity=0.1):
"""Calculates the isoelectric point of the sequence for ph 1-13.
Parameters
----------
seq : str
Sequence of amino acids.
granularity : float, optional
Granularity of pH values i.e. if 0.1 pH = [1.0, 1.1, 1.2...]
""" |
if 'X' in seq:
warnings.warn(_nc_warning_str, NoncanonicalWarning)
ph_range, charge_at_ph = charge_series(seq, granularity)
abs_charge_at_ph = [abs(ch) for ch in charge_at_ph]
pi_index = min(enumerate(abs_charge_at_ph), key=lambda x: x[1])[0]
return ph_range[pi_index] |
<SYSTEM_TASK:>
Calculates sidechain dihedral angles for a residue
<END_TASK>
<USER_TASK:>
Description:
def measure_sidechain_torsion_angles(residue, verbose=True):
"""Calculates sidechain dihedral angles for a residue
Parameters
----------
residue : [ampal.Residue]
`Residue` object.
verbose : bool, optional
If `true`, tells you when a residue does not have any known
dihedral angles to measure.
Returns
-------
chi_angles: [float]
Length depends on residue type, in range [-pi, pi]
[0] = chi1 [if applicable]
[1] = chi2 [if applicable]
[2] = chi3 [if applicable]
[3] = chi4 [if applicable]
""" |
chi_angles = []
aa = residue.mol_code
if aa not in side_chain_dihedrals:
if verbose:
print("Amino acid {} has no known side-chain dihedral".format(aa))
else:
for set_atoms in side_chain_dihedrals[aa]:
required_for_dihedral = set_atoms[0:4]
try:
angle = dihedral(
residue[required_for_dihedral[0]]._vector,
residue[required_for_dihedral[1]]._vector,
residue[required_for_dihedral[2]]._vector,
residue[required_for_dihedral[3]]._vector)
chi_angles.append(angle)
except KeyError as k:
print("{0} atom missing from residue {1} {2} "
"- can't assign dihedral".format(
k, residue.mol_code, residue.id))
chi_angles.append(None)
return chi_angles |
<SYSTEM_TASK:>
Calculates the dihedral angles for a list of backbone atoms.
<END_TASK>
<USER_TASK:>
Description:
def measure_torsion_angles(residues):
"""Calculates the dihedral angles for a list of backbone atoms.
Parameters
----------
residues : [ampal.Residue]
List of `Residue` objects.
Returns
-------
torsion_angles : (float, float, float)
One triple for each residue, containing torsion angles in
the range [-pi, pi].
[0] omega
[1] phi
[2] psi
For the first residue, omega and phi are not defined. For
the final residue, psi is not defined.
Raises
------
ValueError
If the number of input residues is less than 2.
""" |
if len(residues) < 2:
torsion_angles = [(None, None, None)] * len(residues)
else:
torsion_angles = []
for i in range(len(residues)):
if i == 0:
res1 = residues[i]
res2 = residues[i + 1]
omega = None
phi = None
try:
psi = dihedral(
res1['N']._vector, res1['CA']._vector,
res1['C']._vector, res2['N']._vector)
except KeyError as k:
print("{0} atom missing - can't assign psi".format(k))
psi = None
torsion_angles.append((omega, phi, psi))
elif i == len(residues) - 1:
res1 = residues[i - 1]
res2 = residues[i]
try:
omega = dihedral(
res1['CA']._vector, res1['C']._vector,
res2['N']._vector, res2['CA']._vector)
except KeyError as k:
print("{0} atom missing - can't assign omega".format(k))
omega = None
try:
phi = dihedral(
res1['C']._vector, res2['N']._vector,
res2['CA']._vector, res2['C']._vector)
except KeyError as k:
print("{0} atom missing - can't assign phi".format(k))
phi = None
psi = None
torsion_angles.append((omega, phi, psi))
else:
res1 = residues[i - 1]
res2 = residues[i]
res3 = residues[i + 1]
try:
omega = dihedral(
res1['CA']._vector, res1['C']._vector,
res2['N']._vector, res2['CA']._vector)
except KeyError as k:
print("{0} atom missing - can't assign omega".format(k))
omega = None
try:
phi = dihedral(
res1['C']._vector, res2['N']._vector,
res2['CA']._vector, res2['C']._vector)
except KeyError as k:
print("{0} atom missing - can't assign phi".format(k))
phi = None
try:
psi = dihedral(
res2['N']._vector, res2['CA']._vector,
res2['C']._vector, res3['N']._vector)
except KeyError as k:
print("{0} atom missing - can't assign psi".format(k))
psi = None
torsion_angles.append((omega, phi, psi))
return torsion_angles |
<SYSTEM_TASK:>
Returns local parameters for an oligomeric assembly.
<END_TASK>
<USER_TASK:>
Description:
def cc_to_local_params(pitch, radius, oligo):
"""Returns local parameters for an oligomeric assembly.
Parameters
----------
pitch : float
Pitch of assembly
radius : float
Radius of assembly
oligo : int
Oligomeric state of assembly
Returns
-------
pitchloc : float
Local pitch of assembly (between 2 adjacent component helices)
rloc : float
Local radius of assembly
alphaloc : float
Local pitch-angle of assembly
""" |
rloc = numpy.sin(numpy.pi / oligo) * radius
alpha = numpy.arctan((2 * numpy.pi * radius) / pitch)
alphaloc = numpy.cos((numpy.pi / 2) - ((numpy.pi) / oligo)) * alpha
pitchloc = (2 * numpy.pi * rloc) / numpy.tan(alphaloc)
return pitchloc, rloc, numpy.rad2deg(alphaloc) |
<SYSTEM_TASK:>
The number of residues per turn at each Monomer in the Polymer.
<END_TASK>
<USER_TASK:>
Description:
def residues_per_turn(p):
""" The number of residues per turn at each Monomer in the Polymer.
Notes
-----
Each element of the returned list is the number of residues
per turn, at a point on the Polymer primitive. Calculated using
the relative positions of the CA atoms and the primitive of the
Polymer. Element i is the calculated from the dihedral angle using
the CA atoms of the Monomers with indices [i, i+1] and the
corresponding atoms of the primitive. The final value is None.
Parameters
----------
p : ampal.Polypeptide
`Polypeptide` from which residues per turn will be calculated.
Returns
-------
rpts : [float]
Residue per turn values.
""" |
cas = p.get_reference_coords()
prim_cas = p.primitive.coordinates
dhs = [abs(dihedral(cas[i], prim_cas[i], prim_cas[i + 1], cas[i + 1]))
for i in range(len(prim_cas) - 1)]
rpts = [360.0 / dh for dh in dhs]
rpts.append(None)
return rpts |
<SYSTEM_TASK:>
Returns distances between the primitive of a Polymer and a reference_axis.
<END_TASK>
<USER_TASK:>
Description:
def polymer_to_reference_axis_distances(p, reference_axis, tag=True, reference_axis_name='ref_axis'):
"""Returns distances between the primitive of a Polymer and a reference_axis.
Notes
-----
Distances are calculated between each point of the Polymer primitive
and the corresponding point in reference_axis. In the special case
of the helical barrel, if the Polymer is a helix and the reference_axis
represents the centre of the barrel, then this function returns the
radius of the barrel at each point on the helix primitive. The points
of the primitive and the reference_axis are run through in the same
order, so take care with the relative orientation of the reference
axis when defining it.
Parameters
----------
p : ampal.Polymer
reference_axis : list(numpy.array or tuple or list)
Length of reference_axis must equal length of the Polymer.
Each element of reference_axis represents a point in R^3.
tag : bool, optional
If True, tags the Chain with the reference axis coordinates
and each Residue with its distance to the ref axis.
Distances are stored at the Residue level, but refer to
distances from the CA atom.
reference_axis_name : str, optional
Used to name the keys in tags at Chain and Residue level.
Returns
-------
distances : list(float)
Distance values between corresponding points on the
reference axis and the `Polymer` `Primitive`.
Raises
------
ValueError
If the Polymer and the reference_axis have unequal length.
""" |
if not len(p) == len(reference_axis):
raise ValueError(
"The reference axis must contain the same number of points "
"as the Polymer primitive.")
prim_cas = p.primitive.coordinates
ref_points = reference_axis.coordinates
distances = [distance(prim_cas[i], ref_points[i])
for i in range(len(prim_cas))]
if tag:
p.tags[reference_axis_name] = reference_axis
monomer_tag_name = 'distance_to_{0}'.format(reference_axis_name)
for m, d in zip(p._monomers, distances):
m.tags[monomer_tag_name] = d
return distances |
<SYSTEM_TASK:>
Returns the Crick angle for each CA atom in the `Polymer`.
<END_TASK>
<USER_TASK:>
Description:
def crick_angles(p, reference_axis, tag=True, reference_axis_name='ref_axis'):
"""Returns the Crick angle for each CA atom in the `Polymer`.
Notes
-----
The final value is in the returned list is `None`, since the angle
calculation requires pairs of points on both the primitive and
reference_axis.
Parameters
----------
p : ampal.Polymer
Reference `Polymer`.
reference_axis : list(numpy.array or tuple or list)
Length of reference_axis must equal length of the Polymer.
Each element of reference_axis represents a point in R^3.
tag : bool, optional
If `True`, tags the `Polymer` with the reference axis coordinates
and each Residue with its Crick angle. Crick angles are stored
at the Residue level, but are calculated using the CA atom.
reference_axis_name : str, optional
Used to name the keys in tags at Chain and Residue level.
Returns
-------
cr_angles : list(float)
The crick angles in degrees for each CA atom of the Polymer.
Raises
------
ValueError
If the Polymer and the reference_axis have unequal length.
""" |
if not len(p) == len(reference_axis):
raise ValueError(
"The reference axis must contain the same number of points"
" as the Polymer primitive.")
prim_cas = p.primitive.coordinates
p_cas = p.get_reference_coords()
ref_points = reference_axis.coordinates
cr_angles = [
dihedral(ref_points[i], prim_cas[i], prim_cas[i + 1], p_cas[i])
for i in range(len(prim_cas) - 1)]
cr_angles.append(None)
if tag:
p.tags[reference_axis_name] = reference_axis
monomer_tag_name = 'crick_angle_{0}'.format(reference_axis_name)
for m, c in zip(p._monomers, cr_angles):
m.tags[monomer_tag_name] = c
return cr_angles |
<SYSTEM_TASK:>
Alpha angle calculated using points on the primitive of helix and axis.
<END_TASK>
<USER_TASK:>
Description:
def alpha_angles(p, reference_axis, tag=True, reference_axis_name='ref_axis'):
"""Alpha angle calculated using points on the primitive of helix and axis.
Notes
-----
The final value is None, since the angle calculation requires pairs
of points along the primitive and axis. This is a generalisation
of the calculation used to measure the tilt of a helix in a
coiled-coil with respect to the central axis of the coiled coil.
Parameters
----------
p : ampal.Polymer
Reference `Polymer`.
reference_axis : list(numpy.array or tuple or list)
Length of reference_axis must equal length of the Polymer.
Each element of reference_axis represents a point in R^3.
tag : bool, optional
If `True`, tags the Chain with the reference axis coordinates
and each Residue with its alpha angle. Alpha angles are stored
at the Residue level, but are calculated using the CA atom.
reference_axis_name : str, optional
Used to name the keys in tags at Chain and Residue level.
Returns
-------
alphas : list of float
The alpha angle for the Polymer at each point of its primitive,
in degrees.
Raises
------
ValueError
If the Polymer and the reference_axis have unequal length.
""" |
if not len(p) == len(reference_axis):
raise ValueError(
"The reference axis must contain the same number of points "
"as the Polymer primitive.")
prim_cas = p.primitive.coordinates
ref_points = reference_axis.coordinates
alphas = [abs(dihedral(ref_points[i + 1], ref_points[i], prim_cas[i], prim_cas[i + 1]))
for i in range(len(prim_cas) - 1)]
alphas.append(None)
if tag:
p.tags[reference_axis_name] = reference_axis
monomer_tag_name = 'alpha_angle_{0}'.format(reference_axis_name)
for m, a in zip(p._monomers, alphas):
m.tags[monomer_tag_name] = a
return alphas |
<SYSTEM_TASK:>
Average coordinates from a set of primitives calculated from Chains.
<END_TASK>
<USER_TASK:>
Description:
def reference_axis_from_chains(chains):
"""Average coordinates from a set of primitives calculated from Chains.
Parameters
----------
chains : list(Chain)
Returns
-------
reference_axis : numpy.array
The averaged (x, y, z) coordinates of the primitives for
the list of Chains. In the case of a coiled coil barrel,
this would give the central axis for calculating e.g. Crick
angles.
Raises
------
ValueError :
If the Chains are not all of the same length.
""" |
if not len(set([len(x) for x in chains])) == 1:
raise ValueError("All chains must be of the same length")
# First array in coords is the primitive coordinates of the first chain.
# The orientation of the first chain orients the reference_axis.
coords = [numpy.array(chains[0].primitive.coordinates)]
orient_vector = polypeptide_vector(chains[0])
# Append the coordinates for the remaining chains, reversing the
# direction in antiparallel arrangements.
for i, c in enumerate(chains[1:]):
if is_acute(polypeptide_vector(c), orient_vector):
coords.append(numpy.array(c.primitive.coordinates))
else:
coords.append(numpy.flipud(numpy.array(c.primitive.coordinates)))
# Average across the x, y and z coordinates to get the reference_axis
# coordinates
reference_axis = numpy.mean(numpy.array(coords), axis=0)
return Primitive.from_coordinates(reference_axis) |
<SYSTEM_TASK:>
Flips reference axis if direction opposes the direction of the `Polymer`.
<END_TASK>
<USER_TASK:>
Description:
def flip_reference_axis_if_antiparallel(
p, reference_axis, start_index=0, end_index=-1):
"""Flips reference axis if direction opposes the direction of the `Polymer`.
Notes
-----
If the angle between the vector for the Polymer and the vector
for the reference_axis is > 90 degrees, then the reference axis
is reversed. This is useful to run before running
polymer_to_reference_axis_distances, crick_angles, or alpha_angles.
For more information on the start and end indices, see chain_vector.
Parameters
----------
p : ampal.Polymer
Reference `Polymer`.
reference_axis : list(numpy.array or tuple or list)
Length of reference_axis must equal length of the Polymer.
Each element of reference_axis represents a point in R^3.
start_index : int, optional
Default is 0 (start at the N-terminus of the Polymer)
end_index : int, optional
Default is -1 (start at the C-terminus of the Polymer)
Returns
-------
reference_axis : list(numpy.array or tuple or list)
""" |
p_vector = polypeptide_vector(
p, start_index=start_index, end_index=end_index)
if is_acute(p_vector,
reference_axis[end_index] - reference_axis[start_index]):
reference_axis = numpy.flipud(reference_axis)
return reference_axis |
<SYSTEM_TASK:>
Calculates running average of cas_coords with a fixed averaging window_length.
<END_TASK>
<USER_TASK:>
Description:
def make_primitive(cas_coords, window_length=3):
"""Calculates running average of cas_coords with a fixed averaging window_length.
Parameters
----------
cas_coords : list(numpy.array or float or tuple)
Each element of the list must have length 3.
window_length : int, optional
The number of coordinate sets to average each time.
Returns
-------
s_primitive : list(numpy.array)
Each array has length 3.
Raises
------
ValueError
If the length of cas_coords is smaller than the window_length.
""" |
if len(cas_coords) >= window_length:
primitive = []
count = 0
for _ in cas_coords[:-(window_length - 1)]:
group = cas_coords[count:count + window_length]
average_x = sum([x[0] for x in group]) / window_length
average_y = sum([y[1] for y in group]) / window_length
average_z = sum([z[2] for z in group]) / window_length
primitive.append(numpy.array([average_x, average_y, average_z]))
count += 1
else:
raise ValueError(
'A primitive cannot be generated for {0} atoms using a (too large) '
'averaging window_length of {1}.'.format(
len(cas_coords), window_length))
return primitive |
<SYSTEM_TASK:>
Generates smoothed primitive from a list of coordinates.
<END_TASK>
<USER_TASK:>
Description:
def make_primitive_smoothed(cas_coords, smoothing_level=2):
""" Generates smoothed primitive from a list of coordinates.
Parameters
----------
cas_coords : list(numpy.array or float or tuple)
Each element of the list must have length 3.
smoothing_level : int, optional
Number of times to run the averaging.
Returns
-------
s_primitive : list(numpy.array)
Each array has length 3.
Raises
------
ValueError
If the smoothing level is too great compared to the length
of cas_coords.
""" |
try:
s_primitive = make_primitive(cas_coords)
for x in range(smoothing_level):
s_primitive = make_primitive(s_primitive)
except ValueError:
raise ValueError(
'Smoothing level {0} too high, try reducing the number of rounds'
' or give a longer Chain (curent length = {1}).'.format(
smoothing_level, len(cas_coords)))
return s_primitive |
<SYSTEM_TASK:>
Generates smoothed helix primitives and extrapolates lost ends.
<END_TASK>
<USER_TASK:>
Description:
def make_primitive_extrapolate_ends(cas_coords, smoothing_level=2):
"""Generates smoothed helix primitives and extrapolates lost ends.
Notes
-----
From an input list of CA coordinates, the running average is
calculated to form a primitive. The smoothing_level dictates how
many times to calculate the running average. A higher
smoothing_level generates a 'smoother' primitive - i.e. the
points on the primitive more closely fit a smooth curve in R^3.
Each time the smoothing level is increased by 1, a point is lost
from either end of the primitive. To correct for this, the primitive
is extrapolated at the ends to approximate the lost values. There
is a trade-off then between the smoothness of the primitive and
its accuracy at the ends.
Parameters
----------
cas_coords : list(numpy.array or float or tuple)
Each element of the list must have length 3.
smoothing_level : int
Number of times to run the averaging.
Returns
-------
final_primitive : list(numpy.array)
Each array has length 3.
""" |
try:
smoothed_primitive = make_primitive_smoothed(
cas_coords, smoothing_level=smoothing_level)
except ValueError:
smoothed_primitive = make_primitive_smoothed(
cas_coords, smoothing_level=smoothing_level - 1)
# if returned smoothed primitive is too short, lower the smoothing
# level and try again.
if len(smoothed_primitive) < 3:
smoothed_primitive = make_primitive_smoothed(
cas_coords, smoothing_level=smoothing_level - 1)
final_primitive = []
for ca in cas_coords:
prim_dists = [distance(ca, p) for p in smoothed_primitive]
closest_indices = sorted([x[0] for x in sorted(
enumerate(prim_dists), key=lambda k: k[1])[:3]])
a, b, c = [smoothed_primitive[x] for x in closest_indices]
ab_foot = find_foot(a, b, ca)
bc_foot = find_foot(b, c, ca)
ca_foot = (ab_foot + bc_foot) / 2
final_primitive.append(ca_foot)
return final_primitive |
<SYSTEM_TASK:>
Extends an `AmpalContainer` with another `AmpalContainer`.
<END_TASK>
<USER_TASK:>
Description:
def extend(self, ampal_container):
"""Extends an `AmpalContainer` with another `AmpalContainer`.""" |
if isinstance(ampal_container, AmpalContainer):
self._ampal_objects.extend(ampal_container)
else:
raise TypeError(
'Only AmpalContainer objects may be merged with '
'an AmpalContainer.')
return |
<SYSTEM_TASK:>
Compiles the PDB strings for each state into a single file.
<END_TASK>
<USER_TASK:>
Description:
def pdb(self):
"""Compiles the PDB strings for each state into a single file.""" |
header_title = '{:<80}\n'.format('HEADER {}'.format(self.id))
data_type = '{:<80}\n'.format('EXPDTA ISAMBARD Model')
pdb_strs = []
for ampal in self:
if isinstance(ampal, Assembly):
pdb_str = ampal.make_pdb(header=False, footer=False)
else:
pdb_str = ampal.make_pdb()
pdb_strs.append(pdb_str)
merged_strs = 'ENDMDL\n'.join(pdb_strs) + 'ENDMDL\n'
merged_pdb = ''.join([header_title, data_type, merged_strs])
return merged_pdb |
<SYSTEM_TASK:>
Sorts the `AmpalContainer` by a tag on the component objects.
<END_TASK>
<USER_TASK:>
Description:
def sort_by_tag(self, tag):
"""Sorts the `AmpalContainer` by a tag on the component objects.
Parameters
----------
tag : str
Key of tag used for sorting.
""" |
return AmpalContainer(sorted(self, key=lambda x: x.tags[tag])) |
<SYSTEM_TASK:>
Adds a `Polymer` to the `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def append(self, item):
"""Adds a `Polymer` to the `Assembly`.
Raises
------
TypeError
Raised if other is any type other than `Polymer`.
""" |
if isinstance(item, Polymer):
self._molecules.append(item)
else:
raise TypeError(
'Only Polymer objects can be appended to an Assembly.')
return |
<SYSTEM_TASK:>
Extends the `Assembly` with the contents of another `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def extend(self, assembly):
"""Extends the `Assembly` with the contents of another `Assembly`.
Raises
------
TypeError
Raised if other is any type other than `Assembly`.
""" |
if isinstance(assembly, Assembly):
self._molecules.extend(assembly)
else:
raise TypeError(
'Only Assembly objects may be merged with an Assembly.')
return |
<SYSTEM_TASK:>
Retrieves all the `Monomers` from the `Assembly` object.
<END_TASK>
<USER_TASK:>
Description:
def get_monomers(self, ligands=True, pseudo_group=False):
"""Retrieves all the `Monomers` from the `Assembly` object.
Parameters
----------
ligands : bool, optional
If `true`, will include ligand `Monomers`.
pseudo_group : bool, optional
If `True`, will include pseudo atoms.
""" |
base_filters = dict(ligands=ligands, pseudo_group=pseudo_group)
restricted_mol_types = [x[0] for x in base_filters.items() if not x[1]]
in_groups = [x for x in self.filter_mol_types(restricted_mol_types)]
monomers = itertools.chain(
*(p.get_monomers(ligands=ligands) for p in in_groups))
return monomers |
<SYSTEM_TASK:>
Retrieves all ligands from the `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def get_ligands(self, solvent=True):
"""Retrieves all ligands from the `Assembly`.
Parameters
----------
solvent : bool, optional
If `True`, solvent molecules will be included.
""" |
if solvent:
ligand_list = [x for x in self.get_monomers()
if isinstance(x, Ligand)]
else:
ligand_list = [x for x in self.get_monomers() if isinstance(
x, Ligand) and not x.is_solvent]
return LigandGroup(monomers=ligand_list) |
<SYSTEM_TASK:>
Flat list of all the `Atoms` in the `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def get_atoms(self, ligands=True, pseudo_group=False, inc_alt_states=False):
""" Flat list of all the `Atoms` in the `Assembly`.
Parameters
----------
ligands : bool, optional
Include ligand `Atoms`.
pseudo_group : bool, optional
Include pseudo_group `Atoms`.
inc_alt_states : bool, optional
Include alternate sidechain conformations.
Returns
-------
atoms : itertools.chain
All the `Atoms` as a iterator.
""" |
atoms = itertools.chain(
*(list(m.get_atoms(inc_alt_states=inc_alt_states))
for m in self.get_monomers(ligands=ligands,
pseudo_group=pseudo_group)))
return atoms |
<SYSTEM_TASK:>
Returns all atoms in AMPAL object within `cut-off` distance from the `point`.
<END_TASK>
<USER_TASK:>
Description:
def is_within(self, cutoff_dist, point, ligands=True):
"""Returns all atoms in AMPAL object within `cut-off` distance from the `point`.""" |
return find_atoms_within_distance(self.get_atoms(ligands=ligands), cutoff_dist, point) |
<SYSTEM_TASK:>
Relabels the component Polymers either in alphabetical order or using a list of labels.
<END_TASK>
<USER_TASK:>
Description:
def relabel_polymers(self, labels=None):
"""Relabels the component Polymers either in alphabetical order or using a list of labels.
Parameters
----------
labels : list, optional
A list of new labels.
Raises
------
ValueError
Raised if the number of labels does not match the number of component Polymer objects.
""" |
if labels:
if len(self._molecules) == len(labels):
for polymer, label in zip(self._molecules, labels):
polymer.id = label
else:
raise ValueError('Number of polymers ({}) and number of labels ({}) must be equal.'.format(
len(self._molecules), len(labels)))
else:
for i, polymer in enumerate(self._molecules):
polymer.id = chr(i + 65)
return |
<SYSTEM_TASK:>
Relabels all Atoms in numerical order, offset by the start parameter.
<END_TASK>
<USER_TASK:>
Description:
def relabel_atoms(self, start=1):
"""Relabels all Atoms in numerical order, offset by the start parameter.
Parameters
----------
start : int, optional
Defines an offset for the labelling.
""" |
counter = start
for atom in self.get_atoms(ligands=True):
atom.id = counter
counter += 1
return |
<SYSTEM_TASK:>
Generates a PDB string for the Assembly.
<END_TASK>
<USER_TASK:>
Description:
def make_pdb(self, ligands=True, alt_states=False, pseudo_group=False, header=True, footer=True):
"""Generates a PDB string for the Assembly.
Parameters
----------
ligands : bool, optional
If `True`, will include ligands in the output.
alt_states : bool, optional
If `True`, will include alternate conformations in the output.
pseudo_group : bool, optional
If `True`, will include pseudo atoms in the output.
header : bool, optional
If `True` will write a header for output.
footer : bool, optional
If `True` will write a footer for output.
Returns
-------
pdb_str : str
String of the pdb for the Assembly. Generated by collating
Polymer().pdb calls for the component Polymers.
""" |
base_filters = dict(ligands=ligands, pseudo_group=pseudo_group)
restricted_mol_types = [x[0] for x in base_filters.items() if not x[1]]
in_groups = [x for x in self.filter_mol_types(restricted_mol_types)]
pdb_header = 'HEADER {:<80}\n'.format(
'ISAMBARD Model {}'.format(self.id)) if header else ''
pdb_body = ''.join([x.make_pdb(
alt_states=alt_states, inc_ligands=ligands) + '{:<80}\n'.format('TER') for x in in_groups])
pdb_footer = '{:<80}\n'.format('END') if footer else ''
pdb_str = ''.join([pdb_header, pdb_body, pdb_footer])
return pdb_str |
<SYSTEM_TASK:>
Generates a new `Assembly` containing only the backbone atoms.
<END_TASK>
<USER_TASK:>
Description:
def backbone(self):
"""Generates a new `Assembly` containing only the backbone atoms.
Notes
-----
Metadata is not currently preserved from the parent object.
Sequence data is retained, but only the main chain atoms are
retained.
Returns
-------
bb_assembly : ampal.Protein
`Assembly` containing only the backbone atoms of the original
`Assembly`.
""" |
bb_molecules = [
p.backbone for p in self._molecules if hasattr(p, 'backbone')]
bb_assembly = Assembly(bb_molecules, assembly_id=self.id)
return bb_assembly |
<SYSTEM_TASK:>
Generates a new `Assembly` containing the primitives of each Polymer.
<END_TASK>
<USER_TASK:>
Description:
def primitives(self):
"""Generates a new `Assembly` containing the primitives of each Polymer.
Notes
-----
Metadata is not currently preserved from the parent object.
Returns
-------
prim_assembly : ampal.Protein
`Assembly` containing only the primitives of the `Polymers`
in the original `Assembly`.
""" |
prim_molecules = [
p.primitive for p in self._molecules if hasattr(p, 'primitive')]
prim_assembly = Assembly(molecules=prim_molecules, assembly_id=self.id)
return prim_assembly |
<SYSTEM_TASK:>
Returns the sequence of each `Polymer` in the `Assembly` as a list.
<END_TASK>
<USER_TASK:>
Description:
def sequences(self):
"""Returns the sequence of each `Polymer` in the `Assembly` as a list.
Returns
-------
sequences : [str]
List of sequences.
""" |
seqs = [x.sequence for x in self._molecules if hasattr(x, 'sequence')]
return seqs |
<SYSTEM_TASK:>
Generates a FASTA string for the `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def fasta(self):
"""Generates a FASTA string for the `Assembly`.
Notes
-----
Explanation of FASTA format: https://en.wikipedia.org/wiki/FASTA_format
Recommendation that all lines of text be shorter than 80
characters is adhered to. Format of PDBID|CHAIN|SEQUENCE is
consistent with files downloaded from the PDB. Uppercase
PDBID used for consistency with files downloaded from the PDB.
Useful for feeding into cdhit and then running sequence clustering.
Returns
-------
fasta_str : str
String of the fasta file for the `Assembly`.
""" |
fasta_str = ''
max_line_length = 79
for p in self._molecules:
if hasattr(p, 'sequence'):
fasta_str += '>{0}:{1}|PDBID|CHAIN|SEQUENCE\n'.format(
self.id.upper(), p.id)
seq = p.sequence
split_seq = [seq[i: i + max_line_length]
for i in range(0, len(seq), max_line_length)]
for seq_part in split_seq:
fasta_str += '{0}\n'.format(seq_part)
return fasta_str |
<SYSTEM_TASK:>
Calculates the interaction energy of the AMPAL object.
<END_TASK>
<USER_TASK:>
Description:
def get_interaction_energy(self, assign_ff=True, ff=None, mol2=False,
force_ff_assign=False):
"""Calculates the interaction energy of the AMPAL object.
Parameters
----------
assign_ff: bool, optional
If true the force field will be updated if required.
ff: BuffForceField, optional
The force field to be used for scoring.
mol2: bool, optional
If true, mol2 style labels will also be used.
force_ff_assign: bool, optional
If true, the force field will be completely reassigned,
ignoring the cached parameters.
Returns
-------
buff_score: buff.BUFFScore
A BUFFScore object with information about each of the
interactions and the `Atoms` involved.
Raises
------
AttributeError
Raise if a component molecule does not have an `update_ff`
method.
""" |
if not ff:
ff = global_settings['buff']['force_field']
if assign_ff:
for molecule in self._molecules:
if hasattr(molecule, 'update_ff'):
molecule.update_ff(
ff, mol2=mol2, force_ff_assign=force_ff_assign)
else:
raise AttributeError(
'The following molecule does not have a update_ff'
'method:\n{}\nIf this is a custom molecule type it'
'should inherit from BaseAmpal:'.format(molecule))
interactions = find_inter_ampal(self, ff.distance_cutoff)
buff_score = score_interactions(interactions, ff)
return buff_score |
<SYSTEM_TASK:>
Packs a new sequence onto each Polymer in the Assembly using Scwrl4.
<END_TASK>
<USER_TASK:>
Description:
def pack_new_sequences(self, sequences):
"""Packs a new sequence onto each Polymer in the Assembly using Scwrl4.
Notes
-----
The Scwrl packing score is saved in `Assembly.tags['scwrl_score']`
for reference.
Scwrl must be available to call. Check by running
`isambard.external_programs.scwrl.test_scwrl`. If Scwrl is not
available, please follow instruction here to add it:
https://github.com/woolfson-group/isambard#external-programs
For more information on Scwrl see [1].
References
----------
.. [1] Krivov GG, Shapovalov MV, and Dunbrack Jr RL (2009) "Improved
prediction of protein side-chain conformations with SCWRL4.",
Proteins.
Parameters
----------
sequences : [str]
A list of strings containing the amino acid sequence of each
corresponding `Polymer`. These must be the same length as the
`Polymer`.
Raises
------
ValueError
Raised if the sequence length does not match the number of
monomers in the `Polymer`.
""" |
from ampal.pdb_parser import convert_pdb_to_ampal
assembly_bb = self.backbone
total_seq_len = sum([len(x) for x in sequences])
total_aa_len = sum([len(x) for x in assembly_bb])
if total_seq_len != total_aa_len:
raise ValueError('Total sequence length ({}) does not match '
'total Polymer length ({}).'.format(
total_seq_len, total_aa_len))
scwrl_out = pack_sidechains(self.backbone.pdb, ''.join(sequences))
if scwrl_out is None:
return
else:
packed_structure, scwrl_score = scwrl_out
new_assembly = convert_pdb_to_ampal(packed_structure, path=False)
self._molecules = new_assembly._molecules[:]
self.assign_force_field(global_settings[u'buff'][u'force_field'])
self.tags['scwrl_score'] = scwrl_score
return |
<SYSTEM_TASK:>
Repacks the side chains of all Polymers in the Assembly.
<END_TASK>
<USER_TASK:>
Description:
def repack_all(self):
"""Repacks the side chains of all Polymers in the Assembly.""" |
non_na_sequences = [s for s in self.sequences if ' ' not in s]
self.pack_new_sequences(non_na_sequences)
return |
<SYSTEM_TASK:>
Tags each `Monomer` in the `Assembly` with it's secondary structure.
<END_TASK>
<USER_TASK:>
Description:
def tag_secondary_structure(self, force=False):
"""Tags each `Monomer` in the `Assembly` with it's secondary structure.
Notes
-----
DSSP must be available to call. Check by running
`isambard.external_programs.dssp.test_dssp`. If DSSP is not
available, please follow instruction here to add it:
https://github.com/woolfson-group/isambard#external-programs
For more information on DSSP see [1].
References
----------
.. [1] Kabsch W, Sander C (1983) "Dictionary of protein
secondary structure: pattern recognition of hydrogen-bonded
and geometrical features", Biopolymers, 22, 2577-637.
Parameters
----------
force : bool, optional
If True the tag will be run even if `Monomers` are already tagged
""" |
for polymer in self._molecules:
if polymer.molecule_type == 'protein':
polymer.tag_secondary_structure(force=force)
return |
<SYSTEM_TASK:>
Tags each `Monomer` in the Assembly with its solvent accessibility.
<END_TASK>
<USER_TASK:>
Description:
def tag_dssp_solvent_accessibility(self, force=False):
"""Tags each `Monomer` in the Assembly with its solvent accessibility.
Notes
-----
For more about DSSP's solvent accessibilty metric, see:
http://swift.cmbi.ru.nl/gv/dssp/HTML/descrip.html#ACC
DSSP must be available to call. Check by running
`isambard.external_programs.dssp.test_dssp`. If DSSP is not
available, please follow instruction here to add it:
https://github.com/woolfson-group/isambard#external-programs
For more information on DSSP see [1].
References
----------
.. [1] Kabsch W, Sander C (1983) "Dictionary of protein
secondary structure: pattern recognition of hydrogen-bonded
and geometrical features", Biopolymers, 22, 2577-637.
Parameters
----------
force : bool, optional
If True the tag will be run even if Monomers are already tagged
""" |
for polymer in self._molecules:
polymer.tag_dssp_solvent_accessibility(force=force)
return |
<SYSTEM_TASK:>
Tags each `Monomer` in the `Assembly` with its torsion angles.
<END_TASK>
<USER_TASK:>
Description:
def tag_torsion_angles(self, force=False):
"""Tags each `Monomer` in the `Assembly` with its torsion angles.
Parameters
----------
force : bool, optional
If `True`, the tag will be run even if `Monomers` are already
tagged.
""" |
for polymer in self._molecules:
if polymer.molecule_type == 'protein':
polymer.tag_torsion_angles(force=force)
return |
<SYSTEM_TASK:>
Tags each `Monomer` in the `Assembly` with its helical geometry.
<END_TASK>
<USER_TASK:>
Description:
def tag_ca_geometry(self, force=False, reference_axis=None,
reference_axis_name='ref_axis'):
"""Tags each `Monomer` in the `Assembly` with its helical geometry.
Parameters
----------
force : bool, optional
If True the tag will be run even if `Monomers` are already tagged.
reference_axis : list(numpy.array or tuple or list), optional
Coordinates to feed to geometry functions that depend on
having a reference axis.
reference_axis_name : str, optional
Used to name the keys in tags at `Chain` and `Residue` level.
""" |
for polymer in self._molecules:
if polymer.molecule_type == 'protein':
polymer.tag_ca_geometry(
force=force, reference_axis=reference_axis,
reference_axis_name=reference_axis_name)
return |
<SYSTEM_TASK:>
Tags each Atom in the Assembly with its unique_id.
<END_TASK>
<USER_TASK:>
Description:
def tag_atoms_unique_ids(self, force=False):
""" Tags each Atom in the Assembly with its unique_id.
Notes
-----
The unique_id for each atom is a tuple (a double). `unique_id[0]`
is the unique_id for its parent `Monomer` (see `Monomer.unique_id`
for more information). `unique_id[1]` is the atom_type in the
`Assembly` as a string, e.g. 'CA', 'CD2'.
Parameters
----------
force : bool, optional
If True the tag will be run even if Atoms are already tagged.
If False, only runs if at least one Atom is not tagged.
""" |
tagged = ['unique_id' in x.tags.keys() for x in self.get_atoms()]
if (not all(tagged)) or force:
for m in self.get_monomers():
for atom_type, atom in m.atoms.items():
atom.tags['unique_id'] = (m.unique_id, atom_type)
return |
<SYSTEM_TASK:>
Converts a pro residue to a hydroxypro residue.
<END_TASK>
<USER_TASK:>
Description:
def convert_pro_to_hyp(pro):
"""Converts a pro residue to a hydroxypro residue.
All metadata associated with the original pro will be lost i.e. tags.
As a consequence, it is advisable to relabel all atoms in the structure
in order to make them contiguous.
Parameters
----------
pro: ampal.Residue
The proline residue to be mutated to hydroxyproline.
Examples
--------
We can create a collagen model using isambard and convert every third
residue to hydroxyproline:
>>> import isambard
>>> col = isambard.specifications.CoiledCoil.tropocollagen(aa=21)
>>> col.pack_new_sequences(['GPPGPPGPPGPPGPPGPPGPP']*3)
>>> to_convert = [
... res for (i, res) in enumerate(col.get_monomers())
... if not (i + 1) % 3]
>>> for pro in to_convert:
... isambard.ampal.non_canonical.convert_pro_to_hyp(pro)
>>> col.sequences
['GPXGPXGPXGPXGPXGPXGPX', 'GPXGPXGPXGPXGPXGPXGPX', 'GPXGPXGPXGPXGPXGPXGPX']
""" |
with open(str(REF_PATH / 'hydroxyproline_ref_1bkv_0_6.pickle'), 'rb') as inf:
hyp_ref = pickle.load(inf)
align_nab(hyp_ref, pro)
to_remove = ['CB', 'CG', 'CD']
for (label, atom) in pro.atoms.items():
if atom.element == 'H':
to_remove.append(label)
for label in to_remove:
del pro.atoms[label]
for key, val in hyp_ref.atoms.items():
if key not in pro.atoms.keys():
pro.atoms[key] = val
pro.mol_code = 'HYP'
pro.mol_letter = 'X'
pro.is_hetero = True
pro.tags = {}
pro.states = {'A': pro.atoms}
pro.active_state = 'A'
for atom in pro.get_atoms():
atom.ampal_parent = pro
atom.tags = {'bfactor': 1.0, 'charge': ' ',
'occupancy': 1.0, 'state': 'A'}
return |
<SYSTEM_TASK:>
Aligns the N-CA and CA-CB vector of the target monomer.
<END_TASK>
<USER_TASK:>
Description:
def align_nab(tar, ref):
"""Aligns the N-CA and CA-CB vector of the target monomer.
Parameters
----------
tar: ampal.Residue
The residue that will be aligned to the reference.
ref: ampal.Residue
The reference residue for the alignment.
""" |
rot_trans_1 = find_transformations(
tar['N'].array, tar['CA'].array, ref['N'].array, ref['CA'].array)
apply_trans_rot(tar, *rot_trans_1)
rot_ang_ca_cb = dihedral(tar['CB'], ref['CA'], ref['N'], ref['CB'])
tar.rotate(rot_ang_ca_cb, ref['N'].array - ref['CA'].array, ref['N'].array)
return |
<SYSTEM_TASK:>
Applies a translation and rotation to an AMPAL object.
<END_TASK>
<USER_TASK:>
Description:
def apply_trans_rot(ampal, translation, angle, axis, point, radians=False):
"""Applies a translation and rotation to an AMPAL object.""" |
if not numpy.isclose(angle, 0.0):
ampal.rotate(angle=angle, axis=axis, point=point, radians=radians)
ampal.translate(vector=translation)
return |
<SYSTEM_TASK:>
Returns an `Assembly` of regions tagged as secondary structure.
<END_TASK>
<USER_TASK:>
Description:
def find_ss_regions_polymer(polymer, ss):
"""Returns an `Assembly` of regions tagged as secondary structure.
Parameters
----------
polymer : Polypeptide
`Polymer` object to be searched secondary structure regions.
ss : list
List of secondary structure tags to be separate i.e. ['H']
would return helices, ['H', 'E'] would return helices
and strands.
Returns
-------
fragments : Assembly
`Assembly` containing a `Polymer` for each region of specified
secondary structure.
""" |
if isinstance(ss, str):
ss = [ss[:]]
tag_key = 'secondary_structure'
monomers = [x for x in polymer if tag_key in x.tags.keys()]
if len(monomers) == 0:
return Assembly()
if (len(ss) == 1) and (all([m.tags[tag_key] == ss[0] for m in monomers])):
return Assembly(polymer)
previous_monomer = None
fragment = Polypeptide(ampal_parent=polymer)
fragments = Assembly()
poly_id = 0
for monomer in monomers:
current_monomer = monomer.tags[tag_key]
if (current_monomer == previous_monomer) or (not previous_monomer):
fragment.append(monomer)
else:
if previous_monomer in ss:
fragment.tags[tag_key] = monomer.tags[tag_key]
fragment.id = chr(poly_id + 65)
fragments.append(fragment)
poly_id += 1
fragment = Polypeptide(ampal_parent=polymer)
fragment.append(monomer)
previous_monomer = monomer.tags[tag_key]
return fragments |
<SYSTEM_TASK:>
Takes a flat list of atomic coordinates and converts it to a `Polymer`.
<END_TASK>
<USER_TASK:>
Description:
def flat_list_to_polymer(atom_list, atom_group_s=4):
"""Takes a flat list of atomic coordinates and converts it to a `Polymer`.
Parameters
----------
atom_list : [Atom]
Flat list of coordinates.
atom_group_s : int, optional
Size of atom groups.
Returns
-------
polymer : Polypeptide
`Polymer` object containing atom coords converted `Monomers`.
Raises
------
ValueError
Raised if `atom_group_s` != 4 or 5
""" |
atom_labels = ['N', 'CA', 'C', 'O', 'CB']
atom_elements = ['N', 'C', 'C', 'O', 'C']
atoms_coords = [atom_list[x:x + atom_group_s]
for x in range(0, len(atom_list), atom_group_s)]
atoms = [[Atom(x[0], x[1]) for x in zip(y, atom_elements)]
for y in atoms_coords]
if atom_group_s == 5:
monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'ALA')
for x in atoms]
elif atom_group_s == 4:
monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'GLY')
for x in atoms]
else:
raise ValueError(
'Parameter atom_group_s must be 4 or 5 so atoms can be labeled correctly.')
polymer = Polypeptide(monomers=monomers)
return polymer |
<SYSTEM_TASK:>
Returns a new `Polymer` containing only the backbone atoms.
<END_TASK>
<USER_TASK:>
Description:
def backbone(self):
"""Returns a new `Polymer` containing only the backbone atoms.
Notes
-----
Metadata is not currently preserved from the parent object.
Sequence data is retained, but only the main chain atoms are retained.
Returns
-------
bb_poly : Polypeptide
Polymer containing only the backbone atoms of the original
Polymer.
""" |
bb_poly = Polypeptide([x.backbone for x in self._monomers], self.id)
return bb_poly |
<SYSTEM_TASK:>
Packs a new sequence onto the polymer using Scwrl4.
<END_TASK>
<USER_TASK:>
Description:
def pack_new_sequence(self, sequence):
"""Packs a new sequence onto the polymer using Scwrl4.
Parameters
----------
sequence : str
String containing the amino acid sequence. This must
be the same length as the Polymer
Raises
------
ValueError
Raised if the sequence length does not match the
number of monomers in the Polymer.
""" |
# This import is here to prevent a circular import.
from ampal.pdb_parser import convert_pdb_to_ampal
polymer_bb = self.backbone
if len(sequence) != len(polymer_bb):
raise ValueError(
'Sequence length ({}) does not match Polymer length ({}).'.format(
len(sequence), len(polymer_bb)))
scwrl_out = pack_sidechains(self.backbone.pdb, sequence)
if scwrl_out is None:
return
else:
packed_structure, scwrl_score = scwrl_out
new_assembly = convert_pdb_to_ampal(packed_structure, path=False)
self._monomers = new_assembly[0]._monomers[:]
self.tags['scwrl_score'] = scwrl_score
self.assign_force_field(global_settings['buff']['force_field'])
return |
<SYSTEM_TASK:>
Returns the sequence of the `Polymer` as a string.
<END_TASK>
<USER_TASK:>
Description:
def sequence(self):
"""Returns the sequence of the `Polymer` as a string.
Returns
-------
sequence : str
String of the `Residue` sequence of the `Polypeptide`.
""" |
seq = [x.mol_letter for x in self._monomers]
return ''.join(seq) |
<SYSTEM_TASK:>
Dictionary containing backbone bond lengths as lists of floats.
<END_TASK>
<USER_TASK:>
Description:
def backbone_bond_lengths(self):
"""Dictionary containing backbone bond lengths as lists of floats.
Returns
-------
bond_lengths : dict
Keys are `n_ca`, `ca_c`, `c_o` and `c_n`, referring to the
N-CA, CA-C, C=O and C-N bonds respectively. Values are
lists of floats : the bond lengths in Angstroms.
The lists of n_ca, ca_c and c_o are of length k for
a Polypeptide containing k Residues. The list of c_n bonds
is of length k-1 for a Polypeptide containing k Residues
(C-N formed between successive `Residue` pairs).
""" |
bond_lengths = dict(
n_ca=[distance(r['N'], r['CA'])
for r in self.get_monomers(ligands=False)],
ca_c=[distance(r['CA'], r['C'])
for r in self.get_monomers(ligands=False)],
c_o=[distance(r['C'], r['O'])
for r in self.get_monomers(ligands=False)],
c_n=[distance(r1['C'], r2['N']) for r1, r2 in [
(self[i], self[i + 1]) for i in range(len(self) - 1)]],
)
return bond_lengths |
<SYSTEM_TASK:>
Dictionary containing backbone bond angles as lists of floats.
<END_TASK>
<USER_TASK:>
Description:
def backbone_bond_angles(self):
"""Dictionary containing backbone bond angles as lists of floats.
Returns
-------
bond_angles : dict
Keys are `n_ca_c`, `ca_c_o`, `ca_c_n` and `c_n_ca`, referring
to the N-CA-C, CA-C=O, CA-C-N and C-N-CA angles respectively.
Values are lists of floats : the bond angles in degrees.
The lists of n_ca_c, ca_c_o are of length k for a `Polypeptide`
containing k `Residues`. The list of ca_c_n and c_n_ca are of
length k-1 for a `Polypeptide` containing k `Residues` (These
angles are across the peptide bond, and are therefore formed
between successive `Residue` pairs).
""" |
bond_angles = dict(
n_ca_c=[angle_between_vectors(r['N'] - r['CA'], r['C'] - r['CA'])
for r in self.get_monomers(ligands=False)],
ca_c_o=[angle_between_vectors(r['CA'] - r['C'], r['O'] - r['C'])
for r in self.get_monomers(ligands=False)],
ca_c_n=[angle_between_vectors(r1['CA'] - r1['C'], r2['N'] - r1['C'])
for r1, r2 in [(self[i], self[i + 1]) for i in range(len(self) - 1)]],
c_n_ca=[angle_between_vectors(r1['C'] - r2['N'], r2['CA'] - r2['N'])
for r1, r2 in [(self[i], self[i + 1]) for i in range(len(self) - 1)]],
)
return bond_angles |
<SYSTEM_TASK:>
Tags each `Residue` of the `Polypeptide` with secondary structure.
<END_TASK>
<USER_TASK:>
Description:
def tag_secondary_structure(self, force=False):
"""Tags each `Residue` of the `Polypeptide` with secondary structure.
Notes
-----
DSSP must be available to call. Check by running
`isambard.external_programs.dssp.test_dssp`. If DSSP is not
available, please follow instruction here to add it:
https://github.com/woolfson-group/isambard#external-programs
For more information on DSSP see [1].
References
----------
.. [1] Kabsch W, Sander C (1983) "Dictionary of protein
secondary structure: pattern recognition of hydrogen-bonded
and geometrical features", Biopolymers, 22, 2577-637.
Parameters
----------
force : bool, optional
If `True` the tag will be run even if `Residues` are
already tagged.
""" |
tagged = ['secondary_structure' in x.tags.keys()
for x in self._monomers]
if (not all(tagged)) or force:
dssp_out = run_dssp(self.pdb, path=False)
if dssp_out is None:
return
dssp_ss_list = extract_all_ss_dssp(dssp_out, path=False)
for monomer, dssp_ss in zip(self._monomers, dssp_ss_list):
monomer.tags['secondary_structure'] = dssp_ss[1]
return |
<SYSTEM_TASK:>
Tags `Residues` wirh relative residue solvent accessibility.
<END_TASK>
<USER_TASK:>
Description:
def tag_residue_solvent_accessibility(self, tag_type=False, tag_total=False,
force=False, include_hetatms=False):
"""Tags `Residues` wirh relative residue solvent accessibility.
Notes
-----
THIS FUNCTIONALITY REQUIRES NACESS.
This function tags the Monomer with the *relative* RSA of
the *whole side chain*, i.e. column 2 of the .rsa file that
NACCESS writes.
References
----------
.. [1] Hubbard,S.J. & Thornton, J.M. (1993), 'NACCESS',
Computer Program, Department of Biochemistry and Molecular
Biology, University College London.
Parameters
----------
force : bool, optional
If `True`, the ta will be run even if `Residues` are
already tagged.
tag_type : str, optional
Specifies the name of the tag. Defaults to
'residue_solvent_accessibility'. Useful for specifying more
than one tag, e.g. if the Polymer is part of an Assembly.
tag_total : bool, optional
If True then the total rsa of the Polymer will be tagged
in the 'total accessibility' tag.
include_hetatms:bool, optional
If true then NACCESS will run with the -h flag and will
include heteroatom solvent accessibility where it can.
Helpful if your file has MSE residues that you don't
convert to MET, but best check if they are there
before using the flag.
""" |
if tag_type:
tag_type = tag_type
else:
tag_type = 'residue_solvent_accessibility'
tagged = [tag_type in x.tags.keys() for x in self._monomers]
if (not all(tagged)) or force:
naccess_rsa_list, total = extract_residue_accessibility(run_naccess(
self.pdb, mode='rsa', path=False,
include_hetatms=include_hetatms), path=False, get_total=tag_total)
for monomer, naccess_rsa in zip(self._monomers, naccess_rsa_list):
monomer.tags[tag_type] = naccess_rsa
if tag_total:
self.tags['total_polymer_accessibility'] = total
return |
<SYSTEM_TASK:>
Tags each `Residues` Polymer with its solvent accessibility.
<END_TASK>
<USER_TASK:>
Description:
def tag_dssp_solvent_accessibility(self, force=False):
"""Tags each `Residues` Polymer with its solvent accessibility.
Notes
-----
For more about DSSP's solvent accessibilty metric, see:
http://swift.cmbi.ru.nl/gv/dssp/HTML/descrip.html#ACC
References
----------
.. [1] Kabsch W, Sander C (1983) "Dictionary of protein
secondary structure: pattern recognition of hydrogen-bonded
and geometrical features", Biopolymers, 22, 2577-637.
Parameters
----------
force : bool, optional
If `True` the tag will be run even if `Residues` are
already tagged.
""" |
tagged = ['dssp_acc' in x.tags.keys() for x in self._monomers]
if (not all(tagged)) or force:
dssp_out = run_dssp(self.pdb, path=False)
if dssp_out is None:
return
dssp_acc_list = extract_solvent_accessibility_dssp(
dssp_out, path=False)
for monomer, dssp_acc in zip(self._monomers, dssp_acc_list):
monomer.tags['dssp_acc'] = dssp_acc[-1]
return |
<SYSTEM_TASK:>
Tags each monomer with side-chain dihedral angles
<END_TASK>
<USER_TASK:>
Description:
def tag_sidechain_dihedrals(self, force=False):
"""Tags each monomer with side-chain dihedral angles
force: bool, optional
If `True` the tag will be run even if `Residues` are
already tagged.
""" |
tagged = ['chi_angles' in x.tags.keys() for x in self._monomers]
if (not all(tagged)) or force:
for monomer in self._monomers:
chi_angles = measure_sidechain_torsion_angles(
monomer, verbose=False)
monomer.tags['chi_angles'] = chi_angles
return |
<SYSTEM_TASK:>
Tags each Monomer of the Polymer with its omega, phi and psi torsion angle.
<END_TASK>
<USER_TASK:>
Description:
def tag_torsion_angles(self, force=False):
"""Tags each Monomer of the Polymer with its omega, phi and psi torsion angle.
Parameters
----------
force : bool, optional
If `True` the tag will be run even if `Residues` are
already tagged.
""" |
tagged = ['omega' in x.tags.keys() for x in self._monomers]
if (not all(tagged)) or force:
tas = measure_torsion_angles(self._monomers)
for monomer, (omega, phi, psi) in zip(self._monomers, tas):
monomer.tags['omega'] = omega
monomer.tags['phi'] = phi
monomer.tags['psi'] = psi
monomer.tags['tas'] = (omega, phi, psi)
return |
<SYSTEM_TASK:>
Tags each `Residue` with rise_per_residue, radius_of_curvature and residues_per_turn.
<END_TASK>
<USER_TASK:>
Description:
def tag_ca_geometry(self, force=False, reference_axis=None,
reference_axis_name='ref_axis'):
"""Tags each `Residue` with rise_per_residue, radius_of_curvature and residues_per_turn.
Parameters
----------
force : bool, optional
If `True` the tag will be run even if `Residues` are already
tagged.
reference_axis : list(numpy.array or tuple or list), optional
Coordinates to feed to geometry functions that depend on
having a reference axis.
reference_axis_name : str, optional
Used to name the keys in tags at `Polypeptide` and `Residue` level.
""" |
tagged = ['rise_per_residue' in x.tags.keys() for x in self._monomers]
if (not all(tagged)) or force:
# Assign tags None if Polymer is too short to have a primitive.
if len(self) < 7:
rprs = [None] * len(self)
rocs = [None] * len(self)
rpts = [None] * len(self)
else:
rprs = self.rise_per_residue()
rocs = self.radii_of_curvature()
rpts = residues_per_turn(self)
for monomer, rpr, roc, rpt in zip(self._monomers, rprs, rocs, rpts):
monomer.tags['rise_per_residue'] = rpr
monomer.tags['radius_of_curvature'] = roc
monomer.tags['residues_per_turn'] = rpt
# Functions that require a reference_axis.
if (reference_axis is not None) and (len(reference_axis) == len(self)):
# Set up arguments to pass to functions.
ref_axis_args = dict(p=self,
reference_axis=reference_axis,
tag=True,
reference_axis_name=reference_axis_name)
# Run the functions.
polymer_to_reference_axis_distances(**ref_axis_args)
crick_angles(**ref_axis_args)
alpha_angles(**ref_axis_args)
return |
<SYSTEM_TASK:>
True if all backbone bonds are within atol Angstroms of the expected distance.
<END_TASK>
<USER_TASK:>
Description:
def valid_backbone_bond_lengths(self, atol=0.1):
"""True if all backbone bonds are within atol Angstroms of the expected distance.
Notes
-----
Ideal bond lengths taken from [1].
References
----------
.. [1] Schulz, G. E, and R. Heiner Schirmer. Principles Of
Protein Structure. New York: Springer-Verlag, 1979.
Parameters
----------
atol : float, optional
Tolerance value in Angstoms for the absolute deviation
away from ideal backbone bond lengths.
""" |
bond_lengths = self.backbone_bond_lengths
a1 = numpy.allclose(bond_lengths['n_ca'],
[ideal_backbone_bond_lengths['n_ca']] * len(self),
atol=atol)
a2 = numpy.allclose(bond_lengths['ca_c'],
[ideal_backbone_bond_lengths['ca_c']] * len(self),
atol=atol)
a3 = numpy.allclose(bond_lengths['c_o'],
[ideal_backbone_bond_lengths['c_o']] * len(self),
atol=atol)
a4 = numpy.allclose(bond_lengths['c_n'],
[ideal_backbone_bond_lengths['c_n']] *
(len(self) - 1),
atol=atol)
return all([a1, a2, a3, a4]) |
<SYSTEM_TASK:>
True if all backbone bond angles are within atol degrees of their expected values.
<END_TASK>
<USER_TASK:>
Description:
def valid_backbone_bond_angles(self, atol=20):
"""True if all backbone bond angles are within atol degrees of their expected values.
Notes
-----
Ideal bond angles taken from [1].
References
----------
.. [1] Schulz, G. E, and R. Heiner Schirmer. Principles Of
Protein Structure. New York: Springer-Verlag, 1979.
Parameters
----------
atol : float, optional
Tolerance value in degrees for the absolute deviation
away from ideal backbone bond angles.
""" |
bond_angles = self.backbone_bond_angles
omegas = [x[0] for x in measure_torsion_angles(self)]
trans = ['trans' if (omega is None) or (
abs(omega) >= 90) else 'cis' for omega in omegas]
ideal_n_ca_c = [ideal_backbone_bond_angles[x]['n_ca_c'] for x in trans]
ideal_ca_c_o = [ideal_backbone_bond_angles[trans[i + 1]]
['ca_c_o'] for i in range(len(trans) - 1)]
ideal_ca_c_o.append(ideal_backbone_bond_angles['trans']['ca_c_o'])
ideal_ca_c_n = [ideal_backbone_bond_angles[x]['ca_c_n']
for x in trans[1:]]
ideal_c_n_ca = [ideal_backbone_bond_angles[x]['c_n_ca']
for x in trans[1:]]
a1 = numpy.allclose(bond_angles['n_ca_c'], [ideal_n_ca_c], atol=atol)
a2 = numpy.allclose(bond_angles['ca_c_o'], [ideal_ca_c_o], atol=atol)
a3 = numpy.allclose(bond_angles['ca_c_n'], [ideal_ca_c_n], atol=atol)
a4 = numpy.allclose(bond_angles['c_n_ca'], [ideal_c_n_ca], atol=atol)
return all([a1, a2, a3, a4]) |
<SYSTEM_TASK:>
Returns a new `Residue` containing only the backbone atoms.
<END_TASK>
<USER_TASK:>
Description:
def backbone(self):
"""Returns a new `Residue` containing only the backbone atoms.
Returns
-------
bb_monomer : Residue
`Residue` containing only the backbone atoms of the original
`Monomer`.
Raises
------
IndexError
Raise if the `atoms` dict does not contain the backbone
atoms (N, CA, C, O).
""" |
try:
backbone = OrderedDict([('N', self.atoms['N']),
('CA', self.atoms['CA']),
('C', self.atoms['C']),
('O', self.atoms['O'])])
except KeyError:
missing_atoms = filter(lambda x: x not in self.atoms.keys(),
('N', 'CA', 'C', 'O')
)
raise KeyError('Error in residue {} {} {}, missing ({}) atoms. '
'`atoms` must be an `OrderedDict` with coordinates '
'defined for the backbone (N, CA, C, O) atoms.'
.format(self.ampal_parent.id, self.mol_code,
self.id, ', '.join(missing_atoms)))
bb_monomer = Residue(backbone, self.mol_code, monomer_id=self.id,
insertion_code=self.insertion_code,
is_hetero=self.is_hetero)
return bb_monomer |
<SYSTEM_TASK:>
Generates a tuple that uniquely identifies a `Monomer` in an `Assembly`.
<END_TASK>
<USER_TASK:>
Description:
def unique_id(self):
"""Generates a tuple that uniquely identifies a `Monomer` in an `Assembly`.
Notes
-----
The unique_id will uniquely identify each monomer within a polymer.
If each polymer in an assembly has a distinct id, it will uniquely
identify each monomer within the assembly.
The hetero-flag is defined as in Biopython as a string that is
either a single whitespace in the case of a non-hetero atom,
or 'H_' plus the name of the hetero-residue (e.g. 'H_GLC' in
the case of a glucose molecule), or 'W' in the case of a water
molecule.
For more information, see the Biopython documentation or this
Biopython wiki page:
http://biopython.org/wiki/The_Biopython_Structural_Bioinformatics_FAQ
Returns
-------
unique_id : tuple
unique_id[0] is the polymer_id unique_id[1] is a triple
of the hetero-flag, the monomer id (residue number) and the
insertion code.
""" |
if self.is_hetero:
if self.mol_code == 'HOH':
hetero_flag = 'W'
else:
hetero_flag = 'H_{0}'.format(self.mol_code)
else:
hetero_flag = ' '
return self.ampal_parent.id, (hetero_flag, self.id, self.insertion_code) |
<SYSTEM_TASK:>
Finds `Residues` with any atom within the cutoff distance of side-chain.
<END_TASK>
<USER_TASK:>
Description:
def side_chain_environment(self, cutoff=4, include_neighbours=True,
inter_chain=True, include_ligands=False, include_solvent=False):
"""Finds `Residues` with any atom within the cutoff distance of side-chain.
Notes
-----
Includes the parent residue in the list.
Parameters
----------
cutoff : float, optional
Maximum inter-atom distance for residue to be included.
Defaults to 4.
include_neighbours : bool, optional
If `false`, does not return `Residue` at i-1, i+1 positions
in same chain as `Residue`.
inter_chain : bool, optional
If `false`, only includes nearby `Residue` in the same chain
as the `Residue`.
include_ligands : bool, optional
If `true`, `Residue` classed as ligands but not identified as
solvent will be included in the environment.
include_solvent : bool, optional
If `true`, Monomers classed as categorised as solvent
will be included in the environment.
Returns
-------
sc_environment : list
List of monomers within cutoff distance of side-chain.
""" |
if self.mol_code == 'GLY':
return [self]
side_chain_dict = {x: {y: self.states[x][y]
for y in self.states[x] if self.states[x][y] in
self.side_chain} for x in self.states}
side_chain_monomer = Monomer(
atoms=side_chain_dict, monomer_id=self.id,
ampal_parent=self.ampal_parent)
sc_environment = side_chain_monomer.environment(
cutoff=cutoff, include_ligands=include_ligands,
include_neighbours=include_neighbours,
include_solvent=include_solvent, inter_chain=inter_chain)
return sc_environment |
<SYSTEM_TASK:>
Loads settings file containing paths to dependencies and other optional configuration elements.
<END_TASK>
<USER_TASK:>
Description:
def load_global_settings():
"""Loads settings file containing paths to dependencies and other optional configuration elements.""" |
with open(settings_path, 'r') as settings_f:
global global_settings
settings_json = json.loads(settings_f.read())
if global_settings is None:
global_settings = settings_json
global_settings[u'package_path'] = package_dir
else:
for k, v in settings_json.items():
if type(v) == dict:
global_settings[k].update(v)
else:
global_settings[k] = v |
<SYSTEM_TASK:>
Builds a `HelixPair` using the defined attributes.
<END_TASK>
<USER_TASK:>
Description:
def build(self):
"""Builds a `HelixPair` using the defined attributes.""" |
for i in range(2):
self._molecules.append(
self.make_helix(self.aas[i], self.axis_distances[i],
self.z_shifts[i], self.phis[i], self.splays[i],
self.off_plane[i]))
return |
<SYSTEM_TASK:>
Builds a helix for a given set of parameters.
<END_TASK>
<USER_TASK:>
Description:
def make_helix(aa, axis_distance, z_shift, phi, splay, off_plane):
"""Builds a helix for a given set of parameters.""" |
start = numpy.array([axis_distance, 0 + z_shift, 0])
end = numpy.array([axis_distance, (aa * 1.52) + z_shift, 0])
mid = (start + end) / 2
helix = Helix.from_start_and_end(start, end, aa=aa)
helix.rotate(splay, (0, 0, 1), mid)
helix.rotate(off_plane, (1, 0, 0), mid)
helix.rotate(phi, helix.axis.unit_tangent, helix.helix_start)
return helix |
<SYSTEM_TASK:>
Builds a Solenoid using the defined attributes.
<END_TASK>
<USER_TASK:>
Description:
def build(self):
"""Builds a Solenoid using the defined attributes.""" |
self._molecules = []
if self.handedness == 'l':
handedness = -1
else:
handedness = 1
rot_ang = self.rot_ang * handedness
for i in range(self.num_of_repeats):
dup_unit = copy.deepcopy(self.repeat_unit)
z = (self.rise * i) * numpy.array([0, 0, 1])
dup_unit.translate(z)
dup_unit.rotate(rot_ang * i, [0, 0, 1])
self.extend(dup_unit)
self.relabel_all()
return |
<SYSTEM_TASK:>
Generates a helical `Polynucleotide` that is built along an axis.
<END_TASK>
<USER_TASK:>
Description:
def from_start_and_end(cls, start, end, sequence, helix_type='b_dna',
phos_3_prime=False):
"""Generates a helical `Polynucleotide` that is built along an axis.
Parameters
----------
start: [float, float, float]
Start of the build axis.
end: [float, float, float]
End of build axis.
sequence: str
The nucleotide sequence of the nucleic acid.
helix_type: str
The type of nucleic acid helix to generate.
phos_3_prime: bool
If false the 5' and the 3' phosphor will be omitted.
""" |
start = numpy.array(start)
end = numpy.array(end)
instance = cls(sequence, helix_type=helix_type,
phos_3_prime=phos_3_prime)
instance.move_to(start=start, end=end)
return instance |
<SYSTEM_TASK:>
Moves the `Polynucleotide` to lie on the `start` and `end` vector.
<END_TASK>
<USER_TASK:>
Description:
def move_to(self, start, end):
"""Moves the `Polynucleotide` to lie on the `start` and `end` vector.
Parameters
----------
start : 3D Vector (tuple or list or numpy.array)
The coordinate of the start of the helix primitive.
end : 3D Vector (tuple or list or numpy.array)
The coordinate of the end of the helix primitive.
Raises
------
ValueError
Raised if `start` and `end` are very close together.
""" |
start = numpy.array(start)
end = numpy.array(end)
if numpy.allclose(start, end):
raise ValueError('start and end must NOT be identical')
translation, angle, axis, point = find_transformations(
self.helix_start, self.helix_end, start, end)
if not numpy.isclose(angle, 0.0):
self.rotate(angle=angle, axis=axis, point=point, radians=False)
self.translate(vector=translation)
return |
<SYSTEM_TASK:>
Attempts to fit a heptad repeat to a set of Crick angles.
<END_TASK>
<USER_TASK:>
Description:
def fit_heptad_register(crangles):
"""Attempts to fit a heptad repeat to a set of Crick angles.
Parameters
----------
crangles: [float]
A list of average Crick angles for the coiled coil.
Returns
-------
fit_data: [(float, float, float)]
Sorted list of fits for each heptad position.
""" |
crangles = [x if x > 0 else 360 + x for x in crangles]
hept_p = [x * (360.0 / 7.0) + ((360.0 / 7.0) / 2.0) for x in range(7)]
ideal_crangs = [
hept_p[0],
hept_p[2],
hept_p[4],
hept_p[6],
hept_p[1],
hept_p[3],
hept_p[5]
]
full_hept = len(crangles) // 7
ideal_crang_list = ideal_crangs * (full_hept + 2) # This is dirty, too long but trimmed with zip
fitting = []
for i in range(7):
ang_pairs = zip(crangles, ideal_crang_list[i:])
ang_diffs = [abs(y - x) for x, y in ang_pairs]
fitting.append((i, numpy.mean(ang_diffs), numpy.std(ang_diffs)))
return sorted(fitting, key=lambda x: x[1]) |
<SYSTEM_TASK:>
Extracts the tagged coiled-coil parameters for each layer.
<END_TASK>
<USER_TASK:>
Description:
def gather_layer_info(self):
"""Extracts the tagged coiled-coil parameters for each layer.""" |
for i in range(len(self.cc[0])):
layer_radii = [x[i].tags['distance_to_ref_axis'] for x in self.cc]
self.radii_layers.append(layer_radii)
layer_alpha = [x[i].tags['alpha_angle_ref_axis'] for x in self.cc]
self.alpha_layers.append(layer_alpha)
layer_ca = [x[i].tags['crick_angle_ref_axis'] for x in self.cc]
self.ca_layers.append(layer_ca)
return |
<SYSTEM_TASK:>
Takes a group of equal length lists and averages them across each index.
<END_TASK>
<USER_TASK:>
Description:
def calc_average_parameters(parameter_layers):
"""Takes a group of equal length lists and averages them across each index.
Returns
-------
mean_layers: [float]
List of values averaged by index
overall_mean: float
Mean of the averaged values.
""" |
mean_layers = [numpy.mean(x) if x[0] else 0 for x in parameter_layers]
overall_mean = numpy.mean([x for x in mean_layers if x])
return mean_layers, overall_mean |
<SYSTEM_TASK:>
Returns the calculated register of the coiled coil and the fit quality.
<END_TASK>
<USER_TASK:>
Description:
def heptad_register(self):
"""Returns the calculated register of the coiled coil and the fit quality.""" |
base_reg = 'abcdefg'
exp_base = base_reg * (self.cc_len//7+2)
ave_ca_layers = self.calc_average_parameters(self.ca_layers)[0][:-1]
reg_fit = fit_heptad_register(ave_ca_layers)
hep_pos = reg_fit[0][0]
return exp_base[hep_pos:hep_pos+self.cc_len], reg_fit[0][1:] |
<SYSTEM_TASK:>
Generates a report on the coiled coil parameters.
<END_TASK>
<USER_TASK:>
Description:
def generate_report(self):
"""Generates a report on the coiled coil parameters.
Returns
-------
report: str
A string detailing the register and parameters of the coiled coil.
""" |
# Find register
lines = ['Register Assignment\n-------------------']
register, fit = self.heptad_register()
lines.append('{}\n{}\n'.format(register, '\n'.join(self.cc.sequences)))
lines.append('Fit Quality - Mean Angular Discrepancy = {:3.2f} (Std Dev = {:3.2f})\n'.format(*fit))
# Find coiled coil parameters
lines.append('Coiled Coil Parameters\n----------------------')
layer_info = (self.radii_layers, self.alpha_layers, self.ca_layers)
r_layer_aves, a_layer_aves, c_layer_aves = [self.calc_average_parameters(x) for x in layer_info]
start_line = ['Res#'.rjust(5), 'Radius'.rjust(9), 'Alpha'.rjust(9), 'CrAngle'.rjust(9)]
lines.append(''.join(start_line))
for i in range(len(r_layer_aves[0])):
residue = '{:>5}'.format(i+1)
average_r = '{:+3.3f}'.format(r_layer_aves[0][i]).rjust(9)
average_a = '{:+3.3f}'.format(a_layer_aves[0][i]).rjust(9)
average_c = '{:+3.3f}'.format(c_layer_aves[0][i]).rjust(9)
line = [residue, average_r, average_a, average_c]
lines.append(''.join(line))
# Average for assembly
lines.append('-'*32)
residue = ' Ave'
average_r = '{:+3.3f}'.format(r_layer_aves[1]).rjust(9)
average_a = '{:+3.3f}'.format(a_layer_aves[1]).rjust(9)
average_c = '{:+3.3f}'.format(c_layer_aves[1]).rjust(9)
line = [residue, average_r, average_a, average_c]
lines.append(''.join(line))
# Std dev
residue = 'Std D'
std_d_r = '{:+3.3f}'.format(numpy.std(r_layer_aves[0])).rjust(9)
std_d_a = '{:+3.3f}'.format(numpy.std(a_layer_aves[0][:-1])).rjust(9)
std_d_c = '{:+3.3f}'.format(numpy.std(c_layer_aves[0][:-1])).rjust(9)
line = [residue, std_d_r, std_d_a, std_d_c]
lines.append(''.join(line))
return '\n'.join(lines) |
<SYSTEM_TASK:>
Creates optimizer with default build and BUFF interaction eval.
<END_TASK>
<USER_TASK:>
Description:
def buff_interaction_eval(cls, specification, sequences, parameters,
**kwargs):
"""Creates optimizer with default build and BUFF interaction eval.
Notes
-----
Any keyword arguments will be propagated down to BaseOptimizer.
Parameters
----------
specification : ampal.assembly.specification
Any assembly level specification.
sequences : [str]
A list of sequences, one for each polymer.
parameters : [base_ev_opt.Parameter]
A list of `Parameter` objects in the same order as the
function signature expects.
""" |
instance = cls(specification,
sequences,
parameters,
build_fn=default_build,
eval_fn=buff_interaction_eval,
**kwargs)
return instance |
<SYSTEM_TASK:>
Creates optimizer with default build and RMSD eval.
<END_TASK>
<USER_TASK:>
Description:
def rmsd_eval(cls, specification, sequences, parameters, reference_ampal,
**kwargs):
"""Creates optimizer with default build and RMSD eval.
Notes
-----
Any keyword arguments will be propagated down to BaseOptimizer.
RMSD eval is restricted to a single core only, due to restrictions
on closure pickling.
Parameters
----------
specification : ampal.assembly.specification
Any assembly level specification.
sequences : [str]
A list of sequences, one for each polymer.
parameters : [base_ev_opt.Parameter]
A list of `Parameter` objects in the same order as the
function signature expects.
reference_ampal : ampal.Assembly
The target structure of the optimisation.
""" |
eval_fn = make_rmsd_eval(reference_ampal)
instance = cls(specification,
sequences,
parameters,
build_fn=default_build,
eval_fn=eval_fn,
mp_disabled=True,
**kwargs)
return instance |
<SYSTEM_TASK:>
Converts a deap individual into a full list of parameters.
<END_TASK>
<USER_TASK:>
Description:
def parse_individual(self, individual):
"""Converts a deap individual into a full list of parameters.
Parameters
----------
individual: deap individual from optimization
Details vary according to type of optimization, but
parameters within deap individual are always between -1
and 1. This function converts them into the values used to
actually build the model
Returns
-------
fullpars: list
Full parameter list for model building.
""" |
scaled_ind = []
for i in range(len(self.value_means)):
scaled_ind.append(self.value_means[i] + (
individual[i] * self.value_ranges[i]))
fullpars = list(self.arrangement)
for k in range(len(self.variable_parameters)):
for j in range(len(fullpars)):
if fullpars[j] == self.variable_parameters[k]:
fullpars[j] = scaled_ind[k]
return fullpars |
<SYSTEM_TASK:>
Runs the optimizer.
<END_TASK>
<USER_TASK:>
Description:
def run_opt(self, pop_size, generations, cores=1, plot=False, log=False,
log_path=None, run_id=None, store_params=True, **kwargs):
"""Runs the optimizer.
Parameters
----------
pop_size: int
Size of the population each generation.
generation: int
Number of generations in optimisation.
cores: int, optional
Number of CPU cores used to run the optimisation.
If the 'mp_disabled' keyword is passed to the
optimizer, this will be ignored and one core will
be used.
plot: bool, optional
If true, matplotlib will be used to plot information
about the minimisation.
log: bool, optional
If true, a log file describing the optimisation will
be created. By default it will be written to the
current directory and named according to the time the
minimisation finished. This can be manually specified
by passing the 'output_path' and 'run_id' keyword
arguments.
log_path : str
Path to write output file.
run_id : str
An identifier used as the name of your log file.
store_params: bool, optional
If true, the parameters for each model created during
the optimisation will be stored. This can be used to
create funnel data later on.
""" |
self._cores = cores
self._store_params = store_params
self.parameter_log = []
self._model_count = 0
self.halloffame = tools.HallOfFame(1)
self.stats = tools.Statistics(lambda thing: thing.fitness.values)
self.stats.register("avg", numpy.mean)
self.stats.register("std", numpy.std)
self.stats.register("min", numpy.min)
self.stats.register("max", numpy.max)
self.logbook = tools.Logbook()
self.logbook.header = ["gen", "evals"] + self.stats.fields
start_time = datetime.datetime.now()
self._initialize_pop(pop_size)
for g in range(generations):
self._update_pop(pop_size)
self.halloffame.update(self.population)
self.logbook.record(gen=g, evals=self._evals,
**self.stats.compile(self.population))
print(self.logbook.stream)
end_time = datetime.datetime.now()
time_taken = end_time - start_time
print("Evaluated {} models in total in {}".format(
self._model_count, time_taken))
print("Best fitness is {0}".format(self.halloffame[0].fitness))
print("Best parameters are {0}".format(self.parse_individual(
self.halloffame[0])))
for i, entry in enumerate(self.halloffame[0]):
if entry > 0.95:
print(
"Warning! Parameter {0} is at or near maximum allowed "
"value\n".format(i + 1))
elif entry < -0.95:
print(
"Warning! Parameter {0} is at or near minimum allowed "
"value\n".format(i + 1))
if log:
self.log_results(output_path=output_path, run_id=run_id)
if plot:
print('----Minimisation plot:')
plt.figure(figsize=(5, 5))
plt.plot(range(len(self.logbook.select('min'))),
self.logbook.select('min'))
plt.xlabel('Iteration', fontsize=20)
plt.ylabel('Score', fontsize=20)
return |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.