text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
rotates a 2d array to a multiple of 90 deg.
<END_TASK>
<USER_TASK:>
Description:
def rotateImage(image, angle):
"""
rotates a 2d array to a multiple of 90 deg.
0 = default
1 = 90 deg. cw
2 = 180 deg.
3 = 90 deg. ccw
""" |
image = [list(row) for row in image]
for n in range(angle % 4):
image = list(zip(*image[::-1]))
return image |
<SYSTEM_TASK:>
Returns True if sprite is touching any other sprite.
<END_TASK>
<USER_TASK:>
Description:
def overlaps(self, canvas, exclude=[]):
"""
Returns True if sprite is touching any other sprite.
""" |
try:
exclude = list(exclude)
except TypeError:
exclude = [exclude]
exclude.append(self)
for selfY, row in enumerate(self.image.image()):
for selfX, pixel in enumerate(row):
canvasPixelOn = canvas.testPixel(
(selfX + self.position[0], selfY + self.position[1]),
excludedSprites=exclude
)
if pixel and canvasPixelOn:
return True
return False |
<SYSTEM_TASK:>
Returns a list of the sides of the sprite
<END_TASK>
<USER_TASK:>
Description:
def onEdge(self, canvas):
"""
Returns a list of the sides of the sprite
which are touching the edge of the canvas.
0 = Bottom
1 = Left
2 = Top
3 = Right
""" |
sides = []
if int(self.position[0]) <= 0:
sides.append(1)
if (int(self.position[0]) + self.image.width) >= canvas.width:
sides.append(3)
if int(self.position[1]) <= 0:
sides.append(2)
if (int(self.position[1]) + self.image.height) >= canvas.height:
sides.append(0)
return sides |
<SYSTEM_TASK:>
Property decorator that facilitates writing properties for values from a remote device.
<END_TASK>
<USER_TASK:>
Description:
def remote_property(name, get_command, set_command, field_name, doc=None):
"""Property decorator that facilitates writing properties for values from a remote device.
Arguments:
name: The field name to use on the local object to store the cached property.
get_command: A function that returns the remote value of the property.
set_command: A function that accepts a new value for the property and sets it remotely.
field_name: The name of the field to retrieve from the response message to get operations.
""" |
def getter(self):
try:
return getattr(self, name)
except AttributeError:
value = getattr(self.sendCommand(get_command()), field_name)
setattr(self, name, value)
return value
def setter(self, value):
setattr(self, name, value)
self.sendCommand(set_command(value))
return property(getter, setter, doc=doc) |
<SYSTEM_TASK:>
Sends a Command object to the MCP2210 and returns its response.
<END_TASK>
<USER_TASK:>
Description:
def sendCommand(self, command):
"""Sends a Command object to the MCP2210 and returns its response.
Arguments:
A commands.Command instance
Returns:
A commands.Response instance, or raises a CommandException on error.
""" |
command_data = [ord(x) for x in buffer(command)]
self.hid.write(command_data)
response_data = ''.join(chr(x) for x in self.hid.read(64))
response = command.RESPONSE.from_buffer_copy(response_data)
if response.status != 0:
raise CommandException(response.status)
return response |
<SYSTEM_TASK:>
Transfers data over SPI.
<END_TASK>
<USER_TASK:>
Description:
def transfer(self, data):
"""Transfers data over SPI.
Arguments:
data: The data to transfer.
Returns:
The data returned by the SPI device.
""" |
settings = self.transfer_settings
settings.spi_tx_size = len(data)
self.transfer_settings = settings
response = ''
for i in range(0, len(data), 60):
response += self.sendCommand(commands.SPITransferCommand(data[i:i + 60])).data
time.sleep(0.01)
while len(response) < len(data):
response += self.sendCommand(commands.SPITransferCommand('')).data
return ''.join(response) |
<SYSTEM_TASK:>
Limited serialization for shipping plain data. Do not use for models
<END_TASK>
<USER_TASK:>
Description:
def render_json_response(self, context_dict, status=200):
"""
Limited serialization for shipping plain data. Do not use for models
or other complex or custom objects.
""" |
json_context = json.dumps(
context_dict,
cls=DjangoJSONEncoder,
**self.get_json_dumps_kwargs()
).encode(u'utf-8')
return HttpResponse(
json_context,
content_type=self.get_content_type(),
status=status
) |
<SYSTEM_TASK:>
If the request is ajax, save the form and return a json response.
<END_TASK>
<USER_TASK:>
Description:
def form_valid(self, form):
"""
If the request is ajax, save the form and return a json response.
Otherwise return super as expected.
""" |
self.object = form.save(commit=False)
self.pre_save()
self.object.save()
if hasattr(form, 'save_m2m'):
form.save_m2m()
self.post_save()
if self.request.is_ajax():
return self.render_json_response(self.get_success_result())
return HttpResponseRedirect(self.get_success_url()) |
<SYSTEM_TASK:>
We have errors in the form. If ajax, return them as json.
<END_TASK>
<USER_TASK:>
Description:
def form_invalid(self, form):
"""
We have errors in the form. If ajax, return them as json.
Otherwise, proceed as normal.
""" |
if self.request.is_ajax():
return self.render_json_response(self.get_error_result(form))
return super(AjaxFormMixin, self).form_invalid(form) |
<SYSTEM_TASK:>
Computes a 1D simple moving average along the given axis.
<END_TASK>
<USER_TASK:>
Description:
def sma(array, window_size, axis=-1, mode='reflect', **kwargs):
"""
Computes a 1D simple moving average along the given axis.
Parameters
----------
array : ndarray
Array on which to perform the convolution.
window_size: int
Width of the simple moving average window in indices.
axis : int, optional
Axis along which to perform the moving average
mode : {‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to ‘constant’. Default is ‘reflect’.
kwargs : optional
Other arguments to pass to `scipy.ndimage.filters.convolve1d`
Returns
-------
sma : ndarray
Simple moving average of the given array with the specified window size
along the requested axis.
Raises
------
TypeError:
If window_size or axis are not integers.
""" |
kwargs['axis'] = axis
kwargs['mode'] = mode
if not isinstance(window_size, int):
raise TypeError('window_size must be an integer')
if not isinstance(kwargs['axis'], int):
raise TypeError('axis must be an integer')
return convolve1d(array, np.repeat(1.0, window_size)/window_size, **kwargs) |
<SYSTEM_TASK:>
Builds the URL for elevations API services based on the data given
<END_TASK>
<USER_TASK:>
Description:
def build_url(self):
"""Builds the URL for elevations API services based on the data given
by the user.
Returns:
url (str): URL for the elevations API services
""" |
url = '{protocol}/{url}/{rest}/{version}/{restapi}/{rscpath}/' \
'{query}'.format(protocol=self.schema.protocol,
url=self.schema.main_url,
rest=self.schema.rest,
version=self.schema.version,
restapi=self.schema.restApi,
rscpath=self.schema.resourcePath,
query=self.schema.query)
return url.replace('/None/', '/') |
<SYSTEM_TASK:>
Retrieves zoomlevel from the output response
<END_TASK>
<USER_TASK:>
Description:
def zoomlevel(self):
"""Retrieves zoomlevel from the output response
Returns:
zoomlevel (namedtuple): A namedtuple of zoomlevel from the output
response
""" |
resources = self.get_resource()
zoomlevel = namedtuple('zoomlevel', 'zoomLevel')
try:
return [zoomlevel(resource['zoomLevel'])
for resource in resources]
except TypeError:
try:
if isinstance(resources['ElevationData'], dict):
return zoomlevel(resources['ElevationData']['ZoomLevel'])
except KeyError:
try:
if isinstance(resources['SeaLevelData'], dict):
zoom = resources['SeaLevelData']['ZoomLevel']
return zoomlevel(zoom)
except KeyError:
print(KeyError) |
<SYSTEM_TASK:>
Writes output to a JSON file with the given file name
<END_TASK>
<USER_TASK:>
Description:
def to_json_file(self, path, file_name=None):
"""Writes output to a JSON file with the given file name""" |
if bool(path) and os.path.isdir(path):
self.write_to_json(path, file_name)
else:
self.write_to_json(os.getcwd(), file_name) |
<SYSTEM_TASK:>
Gets data from the built url
<END_TASK>
<USER_TASK:>
Description:
def get_data(self):
"""Gets data from the built url""" |
url = self.build_url()
self.locationApiData = requests.get(url)
if not self.locationApiData.status_code == 200:
raise self.locationApiData.raise_for_status() |
<SYSTEM_TASK:>
Updates the compaction options for the given model if necessary.
<END_TASK>
<USER_TASK:>
Description:
def update_compaction(model):
"""Updates the compaction options for the given model if necessary.
:param model: The model to update.
:return: `True`, if the compaction options were modified in Cassandra,
`False` otherwise.
:rtype: bool
""" |
logger.debug("Checking %s for compaction differences", model)
table = get_table_settings(model)
existing_options = table.options.copy()
existing_compaction_strategy = existing_options['compaction_strategy_class']
existing_options = json.loads(existing_options['compaction_strategy_options'])
desired_options = get_compaction_options(model)
desired_compact_strategy = desired_options.get('class', SizeTieredCompactionStrategy)
desired_options.pop('class', None)
do_update = False
if desired_compact_strategy not in existing_compaction_strategy:
do_update = True
for k, v in desired_options.items():
val = existing_options.pop(k, None)
if val != v:
do_update = True
# check compaction_strategy_options
if do_update:
options = get_compaction_options(model)
# jsonify
options = json.dumps(options).replace('"', "'")
cf_name = model.column_family_name()
query = "ALTER TABLE {} with compaction = {}".format(cf_name, options)
logger.debug(query)
execute(query)
return True
return False |
<SYSTEM_TASK:>
Records the hosts and connects to one of them
<END_TASK>
<USER_TASK:>
Description:
def setup(
hosts,
default_keyspace,
consistency=ConsistencyLevel.ONE,
lazy_connect=False,
retry_connect=False,
**kwargs):
"""
Records the hosts and connects to one of them
:param hosts: list of hosts, see http://datastax.github.io/python-driver/api/cassandra/cluster.html
:type hosts: list
:param default_keyspace: The default keyspace to use
:type default_keyspace: str
:param consistency: The global consistency level
:type consistency: int
:param lazy_connect: True if should not connect until first use
:type lazy_connect: bool
:param retry_connect: bool
:param retry_connect: True if we should retry to connect even if there was a connection failure initially
""" |
global cluster, session, default_consistency_level, lazy_connect_args
if 'username' in kwargs or 'password' in kwargs:
raise CQLEngineException("Username & Password are now handled by using the native driver's auth_provider")
if not default_keyspace:
raise UndefinedKeyspaceException()
from cqlengine import models
models.DEFAULT_KEYSPACE = default_keyspace
default_consistency_level = consistency
if lazy_connect:
kwargs['default_keyspace'] = default_keyspace
kwargs['consistency'] = consistency
kwargs['lazy_connect'] = False
kwargs['retry_connect'] = retry_connect
lazy_connect_args = (hosts, kwargs)
return
cluster = Cluster(hosts, **kwargs)
try:
session = cluster.connect()
except NoHostAvailable:
if retry_connect:
kwargs['default_keyspace'] = default_keyspace
kwargs['consistency'] = consistency
kwargs['lazy_connect'] = False
kwargs['retry_connect'] = retry_connect
lazy_connect_args = (hosts, kwargs)
raise
session.row_factory = dict_factory |
<SYSTEM_TASK:>
Returns a cleaned and validated value. Raises a ValidationError
<END_TASK>
<USER_TASK:>
Description:
def validate(self, value):
"""
Returns a cleaned and validated value. Raises a ValidationError
if there's a problem
""" |
if value is None:
if self.required:
raise ValidationError('{} - None values are not allowed'.format(self.column_name or self.db_field))
return value |
<SYSTEM_TASK:>
generates a UUID for a given datetime
<END_TASK>
<USER_TASK:>
Description:
def from_datetime(self, dt):
"""
generates a UUID for a given datetime
:param dt: datetime
:type dt: datetime
:return:
""" |
global _last_timestamp
epoch = datetime(1970, 1, 1, tzinfo=dt.tzinfo)
offset = epoch.tzinfo.utcoffset(epoch).total_seconds() if epoch.tzinfo else 0
timestamp = (dt - epoch).total_seconds() - offset
node = None
clock_seq = None
nanoseconds = int(timestamp * 1e9)
timestamp = int(nanoseconds // 100) + 0x01b21dd213814000
if clock_seq is None:
import random
clock_seq = random.randrange(1 << 14) # instead of stable storage
time_low = timestamp & 0xffffffff
time_mid = (timestamp >> 32) & 0xffff
time_hi_version = (timestamp >> 48) & 0x0fff
clock_seq_low = clock_seq & 0xff
clock_seq_hi_variant = (clock_seq >> 8) & 0x3f
if node is None:
node = getnode()
return pyUUID(fields=(time_low, time_mid, time_hi_version,
clock_seq_hi_variant, clock_seq_low, node), version=1) |
<SYSTEM_TASK:>
Called by the save function to check if this should be
<END_TASK>
<USER_TASK:>
Description:
def _can_update(self):
"""
Called by the save function to check if this should be
persisted with update or insert
:return:
""" |
if not self._is_persisted: return False
pks = self._primary_keys.keys()
return all([not self._values[k].changed for k in self._primary_keys]) |
<SYSTEM_TASK:>
Deletes this instance
<END_TASK>
<USER_TASK:>
Description:
def delete(self):
""" Deletes this instance """ |
self.__dmlquery__(self.__class__, self,
batch=self._batch,
timestamp=self._timestamp,
consistency=self.__consistency__,
timeout=self._timeout).delete() |
<SYSTEM_TASK:>
Adds WHERE arguments to the queryset, returning a new queryset
<END_TASK>
<USER_TASK:>
Description:
def filter(self, *args, **kwargs):
"""
Adds WHERE arguments to the queryset, returning a new queryset
#TODO: show examples
:rtype: AbstractQuerySet
""" |
#add arguments to the where clause filters
if len([x for x in kwargs.values() if x is None]):
raise CQLEngineException("None values on filter are not allowed")
clone = copy.deepcopy(self)
for operator in args:
if not isinstance(operator, WhereClause):
raise QueryException('{} is not a valid query operator'.format(operator))
clone._where.append(operator)
for arg, val in kwargs.items():
col_name, col_op = self._parse_filter_arg(arg)
quote_field = True
#resolve column and operator
try:
column = self.model._get_column(col_name)
except KeyError:
if col_name == 'pk__token':
if not isinstance(val, Token):
raise QueryException("Virtual column 'pk__token' may only be compared to Token() values")
column = columns._PartitionKeysToken(self.model)
quote_field = False
else:
raise QueryException("Can't resolve column name: '{}'".format(col_name))
if isinstance(val, Token):
if col_name != 'pk__token':
raise QueryException("Token() values may only be compared to the 'pk__token' virtual column")
partition_columns = column.partition_columns
if len(partition_columns) != len(val.value):
raise QueryException(
'Token() received {} arguments but model has {} partition keys'.format(
len(val.value), len(partition_columns)))
val.set_columns(partition_columns)
#get query operator, or use equals if not supplied
operator_class = BaseWhereOperator.get_operator(col_op or 'EQ')
operator = operator_class()
if isinstance(operator, InOperator):
if not isinstance(val, (list, tuple)):
raise QueryException('IN queries must use a list/tuple value')
query_val = [column.to_database(v) for v in val]
elif isinstance(val, BaseQueryFunction):
query_val = val
else:
query_val = column.to_database(val)
clone._where.append(WhereClause(column.db_field_name, operator, query_val, quote_field=quote_field))
return clone |
<SYSTEM_TASK:>
orders the result set.
<END_TASK>
<USER_TASK:>
Description:
def order_by(self, *colnames):
"""
orders the result set.
ordering can only use clustering columns.
Default order is ascending, prepend a '-' to the column name for descending
""" |
if len(colnames) == 0:
clone = copy.deepcopy(self)
clone._order = []
return clone
conditions = []
for colname in colnames:
conditions.append('"{}" {}'.format(*self._get_ordering_condition(colname)))
clone = copy.deepcopy(self)
clone._order.extend(conditions)
return clone |
<SYSTEM_TASK:>
Returns the number of rows matched by this query
<END_TASK>
<USER_TASK:>
Description:
def count(self):
""" Returns the number of rows matched by this query """ |
if self._batch:
raise CQLEngineException("Only inserts, updates, and deletes are available in batch mode")
if self._result_cache is None:
query = self._select_query()
query.count = True
result = self._execute(query)
return result[0]['count']
else:
return len(self._result_cache) |
<SYSTEM_TASK:>
Sets the limit on the number of results returned
<END_TASK>
<USER_TASK:>
Description:
def limit(self, v):
"""
Sets the limit on the number of results returned
CQL has a default limit of 10,000
""" |
if not (v is None or isinstance(v, six.integer_types)):
raise TypeError
if v == self._limit:
return self
if v < 0:
raise QueryException("Negative limit is not allowed")
clone = copy.deepcopy(self)
clone._limit = v
return clone |
<SYSTEM_TASK:>
Updates the rows in this queryset
<END_TASK>
<USER_TASK:>
Description:
def update(self, **values):
""" Updates the rows in this queryset """ |
if not values:
return
nulled_columns = set()
us = UpdateStatement(self.column_family_name, where=self._where, ttl=self._ttl,
timestamp=self._timestamp, transactions=self._transaction)
for name, val in values.items():
col_name, col_op = self._parse_filter_arg(name)
col = self.model._columns.get(col_name)
# check for nonexistant columns
if col is None:
raise ValidationError("{}.{} has no column named: {}".format(self.__module__, self.model.__name__, col_name))
# check for primary key update attempts
if col.is_primary_key:
raise ValidationError("Cannot apply update to primary key '{}' for {}.{}".format(col_name, self.__module__, self.model.__name__))
# we should not provide default values in this use case.
val = col.validate(val)
if val is None:
nulled_columns.add(col_name)
continue
# add the update statements
if isinstance(col, Counter):
# TODO: implement counter updates
raise NotImplementedError
elif isinstance(col, (List, Set, Map)):
if isinstance(col, List):
klass = ListUpdateClause
elif isinstance(col, Set):
klass = SetUpdateClause
elif isinstance(col, Map):
klass = MapUpdateClause
else:
raise RuntimeError
us.add_assignment_clause(klass(col_name, col.to_database(val), operation=col_op))
else:
us.add_assignment_clause(AssignmentClause(
col_name, col.to_database(val)))
if us.assignments:
self._execute(us)
if nulled_columns:
ds = DeleteStatement(self.column_family_name, fields=nulled_columns, where=self._where)
self._execute(ds) |
<SYSTEM_TASK:>
Handle format request
<END_TASK>
<USER_TASK:>
Description:
def handle(client, request):
"""
Handle format request
request struct:
{
'data': 'data_need_format',
'formaters': [
{
'name': 'formater_name',
'config': {} # None or dict
},
... # formaters
]
}
if no formaters, use autopep8 formater and it's default config
""" |
formaters = request.get('formaters', None)
if not formaters:
formaters = [{'name': 'autopep8'}]
logging.debug('formaters: ' + json.dumps(formaters, indent=4))
data = request.get('data', None)
if not isinstance(data, str):
return send(client, 'invalid data', None)
max_line_length = None
for formater in formaters:
max_line_length = formater.get('config', {}).get('max_line_length')
if max_line_length:
break
for formater in formaters:
name = formater.get('name', None)
config = formater.get('config', {})
if name not in FORMATERS:
return send(client, 'formater {} not support'.format(name), None)
formater = FORMATERS[name]
if formater is None:
return send(client, 'formater {} not installed'.format(name), None)
if name == 'isort' and max_line_length:
config.setdefault('line_length', max_line_length)
data = formater(data, **config)
return send(client, None, data) |
<SYSTEM_TASK:>
A quadratic tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutQuad(n):
"""A quadratic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
if n < 0.5:
return 2 * n**2
else:
n = n * 2 - 1
return -0.5 * (n*(n-2) - 1) |
<SYSTEM_TASK:>
A cubic tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutCubic(n):
"""A cubic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = 2 * n
if n < 1:
return 0.5 * n**3
else:
n = n - 2
return 0.5 * (n**3 + 2) |
<SYSTEM_TASK:>
A quartic tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutQuart(n):
"""A quartic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = 2 * n
if n < 1:
return 0.5 * n**4
else:
n = n - 2
return -0.5 * (n**4 - 2) |
<SYSTEM_TASK:>
A quintic tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutQuint(n):
"""A quintic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = 2 * n
if n < 1:
return 0.5 * n**5
else:
n = n - 2
return 0.5 * (n**5 + 2) |
<SYSTEM_TASK:>
An exponential tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutExpo(n):
"""An exponential tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
if n == 0:
return 0
elif n == 1:
return 1
else:
n = n * 2
if n < 1:
return 0.5 * 2**(10 * (n - 1))
else:
n -= 1
# 0.5 * (-() + 2)
return 0.5 * (-1 * (2 ** (-10 * n)) + 2) |
<SYSTEM_TASK:>
A circular tween function that accelerates, reaches the midpoint, and then decelerates.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutCirc(n):
"""A circular tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = n * 2
if n < 1:
return -0.5 * (math.sqrt(1 - n**2) - 1)
else:
n = n - 2
return 0.5 * (math.sqrt(1 - n**2) + 1) |
<SYSTEM_TASK:>
An elastic tween function that begins with an increasing wobble and then snaps into the destination.
<END_TASK>
<USER_TASK:>
Description:
def easeInElastic(n, amplitude=1, period=0.3):
"""An elastic tween function that begins with an increasing wobble and then snaps into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
return 1 - easeOutElastic(1-n, amplitude=amplitude, period=period) |
<SYSTEM_TASK:>
An elastic tween function that overshoots the destination and then "rubber bands" into the destination.
<END_TASK>
<USER_TASK:>
Description:
def easeOutElastic(n, amplitude=1, period=0.3):
"""An elastic tween function that overshoots the destination and then "rubber bands" into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
if amplitude < 1:
amplitude = 1
s = period / 4
else:
s = period / (2 * math.pi) * math.asin(1 / amplitude)
return amplitude * 2**(-10*n) * math.sin((n-s)*(2*math.pi / period)) + 1 |
<SYSTEM_TASK:>
An elastic tween function wobbles towards the midpoint.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutElastic(n, amplitude=1, period=0.5):
"""An elastic tween function wobbles towards the midpoint.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n *= 2
if n < 1:
return easeInElastic(n, amplitude=amplitude, period=period) / 2
else:
return easeOutElastic(n-1, amplitude=amplitude, period=period) / 2 + 0.5 |
<SYSTEM_TASK:>
A tween function that backs up first at the start and then goes to the destination.
<END_TASK>
<USER_TASK:>
Description:
def easeInBack(n, s=1.70158):
"""A tween function that backs up first at the start and then goes to the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
return n * n * ((s + 1) * n - s) |
<SYSTEM_TASK:>
A tween function that overshoots the destination a little and then backs into the destination.
<END_TASK>
<USER_TASK:>
Description:
def easeOutBack(n, s=1.70158):
"""A tween function that overshoots the destination a little and then backs into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = n - 1
return n * n * ((s + 1) * n + s) + 1 |
<SYSTEM_TASK:>
A "back-in" tween function that overshoots both the start and destination.
<END_TASK>
<USER_TASK:>
Description:
def easeInOutBack(n, s=1.70158):
"""A "back-in" tween function that overshoots both the start and destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
n = n * 2
if n < 1:
s *= 1.525
return 0.5 * (n * n * ((s + 1) * n - s))
else:
n -= 2
s *= 1.525
return 0.5 * (n * n * ((s + 1) * n + s) + 2) |
<SYSTEM_TASK:>
A bouncing tween function that hits the destination and then bounces to rest.
<END_TASK>
<USER_TASK:>
Description:
def easeOutBounce(n):
"""A bouncing tween function that hits the destination and then bounces to rest.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
""" |
_checkRange(n)
if n < (1/2.75):
return 7.5625 * n * n
elif n < (2/2.75):
n -= (1.5/2.75)
return 7.5625 * n * n + 0.75
elif n < (2.5/2.75):
n -= (2.25/2.75)
return 7.5625 * n * n + 0.9375
else:
n -= (2.65/2.75)
return 7.5625 * n * n + 0.984375 |
<SYSTEM_TASK:>
Find all objects related to instances of ``queryset`` that should also be deleted.
<END_TASK>
<USER_TASK:>
Description:
def get_deleted_objects(self, request, queryset):
"""
Find all objects related to instances of ``queryset`` that should also be deleted.
Returns
- to_delete - a nested list of strings suitable for display in the template with the ``unordered_list`` filter.
- model_count - statistics for models of all deleted instances
- perms_needed - list of names for all instances which can not be deleted because of not enough rights
- protected - list of names for all objects protected for deletion because of reference type
""" |
collector = NestedObjects(using=queryset.db)
collector.collect(queryset)
model_perms_needed = set()
object_perms_needed = set()
STRONG_DELETION_CONTROL = getattr(settings, 'ACCESS_STRONG_DELETION_CONTROL', False)
def format_callback(obj):
has_admin = obj.__class__ in self.admin_site._registry
opts = obj._meta
no_edit_link = '%s: %s' % (capfirst(opts.verbose_name),
force_text(obj))
# Trying to get admin change URL
admin_url = None
try:
admin_url = reverse('%s:%s_%s_change'
% (self.admin_site.name,
opts.app_label,
opts.model_name),
None, (quote(obj._get_pk_val()),))
except NoReverseMatch:
# Change url doesn't exist -- don't display link to edit
pass
# Collecting forbidden subobjects, compatible with Django or forced by the option
if STRONG_DELETION_CONTROL or has_admin:
if not obj.__class__._meta.auto_created:
manager = AccessManager(obj.__class__)
# filter out forbidden items
if manager.check_deleteable(obj.__class__, request) is False:
model_perms_needed.add(opts.verbose_name)
if not manager.apply_deleteable(obj.__class__._default_manager.filter(pk=obj.pk), request):
object_perms_needed.add(obj)
if admin_url:
# Display a link to the admin page.
return format_html('{}: <a href="{}">{}</a>',
capfirst(opts.verbose_name),
admin_url,
obj)
else:
# Don't display link to edit, because it either has no
# admin or is edited inline.
return no_edit_link
to_delete = collector.nested(format_callback)
protected = [format_callback(obj) for obj in collector.protected]
protected = set([format_callback(obj) for obj in object_perms_needed]).union(protected)
model_count = {model._meta.verbose_name_plural: len(objs) for model, objs in collector.model_objs.items()}
return to_delete, model_count, model_perms_needed, protected |
<SYSTEM_TASK:>
Returns plugin or plugin point class from given ``plugin_name`` string.
<END_TASK>
<USER_TASK:>
Description:
def get_plugin_from_string(plugin_name):
"""
Returns plugin or plugin point class from given ``plugin_name`` string.
Example of ``plugin_name``::
'my_app.MyPlugin'
""" |
modulename, classname = plugin_name.rsplit('.', 1)
module = import_module(modulename)
return getattr(module, classname) |
<SYSTEM_TASK:>
Generate distributions's Propbability Distribution Function
<END_TASK>
<USER_TASK:>
Description:
def make_pdf(dist, params, size=10000):
"""Generate distributions's Propbability Distribution Function """ |
# Separate parts of parameters
arg = params[:-2]
loc = params[-2]
scale = params[-1]
# Get sane start and end points of distribution
start = dist.ppf(0.01, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.01, loc=loc, scale=scale)
end = dist.ppf(0.99, *arg, loc=loc, scale=scale) if arg else dist.ppf(0.99, loc=loc, scale=scale)
# Build PDF and turn into pandas Series
x = np.linspace(start, end, size)
y = dist.pdf(x, loc=loc, scale=scale, *arg)
pdf = pd.Series(y, x)
return pdf |
<SYSTEM_TASK:>
Correctly convert the given query and parameters into a full query+query
<END_TASK>
<USER_TASK:>
Description:
def urlencode(query, params):
"""
Correctly convert the given query and parameters into a full query+query
string, ensuring the order of the params.
""" |
return query + '?' + "&".join(key+'='+quote_plus(str(value))
for key, value in params) |
<SYSTEM_TASK:>
Returns model instance of plugin point or plugin, depending from which
<END_TASK>
<USER_TASK:>
Description:
def get_model(cls, name=None, status=ENABLED):
"""
Returns model instance of plugin point or plugin, depending from which
class this methos is called.
Example::
plugin_model_instance = MyPlugin.get_model()
plugin_model_instance = MyPluginPoint.get_model('plugin-name')
plugin_point_model_instance = MyPluginPoint.get_model()
""" |
ppath = cls.get_pythonpath()
if is_plugin_point(cls):
if name is not None:
kwargs = {}
if status is not None:
kwargs['status'] = status
return Plugin.objects.get(point__pythonpath=ppath,
name=name, **kwargs)
else:
return PluginPointModel.objects.get(pythonpath=ppath)
else:
return Plugin.objects.get(pythonpath=ppath) |
<SYSTEM_TASK:>
Returns plugin point model instance. Only used from plugin classes.
<END_TASK>
<USER_TASK:>
Description:
def get_point_model(cls):
"""
Returns plugin point model instance. Only used from plugin classes.
""" |
if is_plugin_point(cls):
raise Exception(_('This method is only available to plugin '
'classes.'))
else:
return PluginPointModel.objects.\
get(plugin__pythonpath=cls.get_pythonpath()) |
<SYSTEM_TASK:>
Returns all plugin instances of plugin point, passing all args and
<END_TASK>
<USER_TASK:>
Description:
def get_plugins(cls):
"""
Returns all plugin instances of plugin point, passing all args and
kwargs to plugin constructor.
""" |
# Django >= 1.9 changed something with the migration logic causing
# plugins to be executed before the corresponding database tables
# exist. This method will only return something if the database
# tables have already been created.
# XXX: I don't fully understand the issue and there should be
# another way but this appears to work fine.
if django_version >= (1, 9) and \
not db_table_exists(Plugin._meta.db_table):
raise StopIteration
if is_plugin_point(cls):
for plugin_model in cls.get_plugins_qs():
yield plugin_model.get_plugin()
else:
raise Exception(_('This method is only available to plugin point '
'classes.')) |
<SYSTEM_TASK:>
Coerce argument to unicode, if it's not already.
<END_TASK>
<USER_TASK:>
Description:
def safeunicode(arg, *args, **kwargs):
"""Coerce argument to unicode, if it's not already.""" |
return arg if isinstance(arg, unicode) else unicode(arg, *args, **kwargs) |
<SYSTEM_TASK:>
Returns energy data from 1960 to 2014 across various factors.
<END_TASK>
<USER_TASK:>
Description:
def get_reports():
"""
Returns energy data from 1960 to 2014 across various factors.
""" |
if False:
# If there was a Test version of this method, it would go here. But alas.
pass
else:
rows = _Constants._DATABASE.execute("SELECT data FROM energy".format(
hardware=_Constants._HARDWARE))
data = [r[0] for r in rows]
data = [_Auxiliary._byteify(_json.loads(r)) for r in data]
return _Auxiliary._byteify(data) |
<SYSTEM_TASK:>
Iterate over all registered plugins or plugin points and prepare to add
<END_TASK>
<USER_TASK:>
Description:
def available(self, src, dst, model):
"""
Iterate over all registered plugins or plugin points and prepare to add
them to database.
""" |
for name, point in six.iteritems(src):
inst = dst.pop(name, None)
if inst is None:
self.print_(1, "Registering %s for %s" % (model.__name__,
name))
inst = model(pythonpath=name)
if inst.status == REMOVED:
self.print_(1, "Updating %s for %s" % (model.__name__, name))
# re-enable a previously removed plugin point and its plugins
inst.status = ENABLED
yield point, inst |
<SYSTEM_TASK:>
Mark all missing plugins, that exists in database, but are not
<END_TASK>
<USER_TASK:>
Description:
def missing(self, dst):
"""
Mark all missing plugins, that exists in database, but are not
registered.
""" |
for inst in six.itervalues(dst):
if inst.status != REMOVED:
inst.status = REMOVED
inst.save() |
<SYSTEM_TASK:>
Synchronize all registered plugins and plugin points to database.
<END_TASK>
<USER_TASK:>
Description:
def all(self):
"""
Synchronize all registered plugins and plugin points to database.
""" |
# Django >= 1.9 changed something with the migration logic causing
# plugins to be executed before the corresponding database tables
# exist. This method will only return something if the database
# tables have already been created.
# XXX: I don't fully understand the issue and there should be
# another way but this appears to work fine.
if django_version >= (1, 9) and (
not db_table_exists(Plugin._meta.db_table) or
not db_table_exists(PluginPoint._meta.db_table)):
return
self.points() |
<SYSTEM_TASK:>
Returns weather reports from the dataset.
<END_TASK>
<USER_TASK:>
Description:
def get_weather(test=False):
"""
Returns weather reports from the dataset.
""" |
if _Constants._TEST or test:
rows = _Constants._DATABASE.execute("SELECT data FROM weather LIMIT {hardware}".format(
hardware=_Constants._HARDWARE))
data = [r[0] for r in rows]
data = [_Auxiliary._byteify(_json.loads(r)) for r in data]
return _Auxiliary._byteify(data)
else:
rows = _Constants._DATABASE.execute("SELECT data FROM weather".format(
hardware=_Constants._HARDWARE))
data = [r[0] for r in rows]
data = [_Auxiliary._byteify(_json.loads(r)) for r in data]
return _Auxiliary._byteify(data) |
<SYSTEM_TASK:>
Return a string describing the probable encoding of a file.
<END_TASK>
<USER_TASK:>
Description:
def description_of(file, name='stdin'):
"""Return a string describing the probable encoding of a file.""" |
u = UniversalDetector()
for line in file:
u.feed(line)
u.close()
result = u.result
if result['encoding']:
return '%s: %s with confidence %s' % (name,
result['encoding'],
result['confidence'])
else:
return '%s: no result' % name |
<SYSTEM_TASK:>
Decorator that wraps instance methods to prepend the instance's filename
<END_TASK>
<USER_TASK:>
Description:
def prepend_name_prefix(func):
"""
Decorator that wraps instance methods to prepend the instance's filename
prefix to the beginning of the referenced filename. Must only be used on
instance methods where the first parameter after `self` is `name` or a
comparable parameter of a different name.
""" |
@wraps(func)
def prepend_prefix(self, name, *args, **kwargs):
name = self.name_prefix + name
return func(self, name, *args, **kwargs)
return prepend_prefix |
<SYSTEM_TASK:>
Gets the appropriate piece of chalk for the logging level
<END_TASK>
<USER_TASK:>
Description:
def get_chalk(level):
"""Gets the appropriate piece of chalk for the logging level
""" |
if level >= logging.ERROR:
_chalk = chalk.red
elif level >= logging.WARNING:
_chalk = chalk.yellow
elif level >= logging.INFO:
_chalk = chalk.blue
elif level >= logging.DEBUG:
_chalk = chalk.green
else:
_chalk = chalk.white
return _chalk |
<SYSTEM_TASK:>
Attempts to convert given object to a string object
<END_TASK>
<USER_TASK:>
Description:
def to_str(obj):
"""Attempts to convert given object to a string object
""" |
if not isinstance(obj, str) and PY3 and isinstance(obj, bytes):
obj = obj.decode('utf-8')
return obj if isinstance(obj, string_types) else str(obj) |
<SYSTEM_TASK:>
Helper method to validate and map values used in the instantiation of
<END_TASK>
<USER_TASK:>
Description:
def get_color(self, value):
"""Helper method to validate and map values used in the instantiation of
of the Color object to the correct unicode value.
""" |
if value in COLOR_SET:
value = COLOR_MAP[value]
else:
try:
value = int(value)
if value >= 8:
raise ValueError()
except ValueError as exc:
raise ValueError(
'Colors should either a member of: {} or a positive '
'integer below 8'.format(', '.join(COLOR_NAMES))
)
return '{}{}'.format(self.PREFIX, value) |
<SYSTEM_TASK:>
This method creates new shuffled file.
<END_TASK>
<USER_TASK:>
Description:
def shuffle(self, overwrite=False):
"""
This method creates new shuffled file.
""" |
if overwrite:
shuffled = self.path
else:
shuffled = FileAPI.add_ext_name(self.path, "_shuffled")
lines = open(self.path).readlines()
random.shuffle(lines)
open(shuffled, "w").writelines(lines)
self.path = shuffled |
<SYSTEM_TASK:>
Use count_reads on multiple files and store result in dict.
<END_TASK>
<USER_TASK:>
Description:
def multiple_files_count_reads_in_windows(bed_files, args):
# type: (Iterable[str], Namespace) -> OrderedDict[str, List[pd.DataFrame]]
"""Use count_reads on multiple files and store result in dict.
Untested since does the same thing as count reads.""" |
bed_windows = OrderedDict() # type: OrderedDict[str, List[pd.DataFrame]]
for bed_file in bed_files:
logging.info("Binning " + bed_file)
if ".bedpe" in bed_file:
chromosome_dfs = count_reads_in_windows_paired_end(bed_file, args)
else:
chromosome_dfs = count_reads_in_windows(bed_file, args)
bed_windows[bed_file] = chromosome_dfs
return bed_windows |
<SYSTEM_TASK:>
Merge lists of chromosome bin df chromosome-wise.
<END_TASK>
<USER_TASK:>
Description:
def _merge_files(windows, nb_cpu):
# type: (Iterable[pd.DataFrame], int) -> pd.DataFrame
"""Merge lists of chromosome bin df chromosome-wise.
windows is an OrderedDict where the keys are files, the values are lists of
dfs, one per chromosome.
Returns a list of dataframes, one per chromosome, with the collective count
per bin for all files.
TODO: is it faster to merge all in one command?
""" |
# windows is a list of chromosome dfs per file
windows = iter(windows) # can iterate over because it is odict_values
merged = next(windows)
# if there is only one file, the merging is skipped since the windows is used up
for chromosome_dfs in windows:
# merge_same_files merges the chromosome files in parallel
merged = merge_same_files(merged, chromosome_dfs, nb_cpu)
return merged |
<SYSTEM_TASK:>
Round values as in Python 2, for Python 3 compatibility.
<END_TASK>
<USER_TASK:>
Description:
def py2round(value):
"""Round values as in Python 2, for Python 3 compatibility.
All x.5 values are rounded away from zero.
In Python 3, this has changed to avoid bias: when x is even,
rounding is towards zero, when x is odd, rounding is away
from zero. Thus, in Python 3, round(2.5) results in 2,
round(3.5) is 4.
Python 3 also returns an int; Python 2 returns a float.
""" |
if value > 0:
return float(floor(float(value)+0.5))
else:
return float(ceil(float(value)-0.5)) |
<SYSTEM_TASK:>
Convert equivalent discrete intervals to different representations.
<END_TASK>
<USER_TASK:>
Description:
def canonicalize(interval, lower_inc=True, upper_inc=False):
"""
Convert equivalent discrete intervals to different representations.
""" |
if not interval.discrete:
raise TypeError('Only discrete ranges can be canonicalized')
if interval.empty:
return interval
lower, lower_inc = canonicalize_lower(interval, lower_inc)
upper, upper_inc = canonicalize_upper(interval, upper_inc)
return interval.__class__(
[lower, upper],
lower_inc=lower_inc,
upper_inc=upper_inc,
) |
<SYSTEM_TASK:>
Return the greatest lower bound for given intervals.
<END_TASK>
<USER_TASK:>
Description:
def glb(self, other):
"""
Return the greatest lower bound for given intervals.
:param other: AbstractInterval instance
""" |
return self.__class__(
[
min(self.lower, other.lower),
min(self.upper, other.upper)
],
lower_inc=self.lower_inc if self < other else other.lower_inc,
upper_inc=self.upper_inc if self > other else other.upper_inc,
) |
<SYSTEM_TASK:>
Return the least upper bound for given intervals.
<END_TASK>
<USER_TASK:>
Description:
def lub(self, other):
"""
Return the least upper bound for given intervals.
:param other: AbstractInterval instance
""" |
return self.__class__(
[
max(self.lower, other.lower),
max(self.upper, other.upper),
],
lower_inc=self.lower_inc if self < other else other.lower_inc,
upper_inc=self.upper_inc if self > other else other.upper_inc,
) |
<SYSTEM_TASK:>
Computes the minimum number of tags required in window for an island to be enriched.
<END_TASK>
<USER_TASK:>
Description:
def compute_enriched_threshold(average_window_readcount):
# type: (float) -> int
"""
Computes the minimum number of tags required in window for an island to be enriched.
""" |
current_threshold, survival_function = 0, 1
for current_threshold in count(start=0, step=1):
survival_function -= poisson.pmf(current_threshold,
average_window_readcount)
if survival_function <= WINDOW_P_VALUE:
break
island_enriched_threshold = current_threshold + 1
return island_enriched_threshold |
<SYSTEM_TASK:>
Computes logfactorial regularly for tractable numbers, uses Ramanujans approximation otherwise.
<END_TASK>
<USER_TASK:>
Description:
def _factln(num):
# type: (int) -> float
"""
Computes logfactorial regularly for tractable numbers, uses Ramanujans approximation otherwise.
""" |
if num < 20:
log_factorial = log(factorial(num))
else:
log_factorial = num * log(num) - num + log(num * (1 + 4 * num * (
1 + 2 * num))) / 6.0 + log(pi) / 2
return log_factorial |
<SYSTEM_TASK:>
Add enriched bins based on bed files.
<END_TASK>
<USER_TASK:>
Description:
def add_new_enriched_bins_matrixes(region_files, dfs, bin_size):
"""Add enriched bins based on bed files.
There is no way to find the correspondence between region file and matrix
file, but it does not matter.""" |
dfs = _remove_epic_enriched(dfs)
names = ["Enriched_" + os.path.basename(r) for r in region_files]
regions = region_files_to_bins(region_files, names, bin_size)
new_dfs = OrderedDict()
assert len(regions.columns) == len(dfs)
for region, (n, df) in zip(regions, dfs.items()):
region_col = regions[region]
df = df.join(region_col, how="outer").fillna(0)
new_dfs[n] = df
return new_dfs |
<SYSTEM_TASK:>
Merges data from the two strands into strand-agnostic counts.
<END_TASK>
<USER_TASK:>
Description:
def merge_chromosome_dfs(df_tuple):
# type: (Tuple[pd.DataFrame, pd.DataFrame]) -> pd.DataFrame
"""Merges data from the two strands into strand-agnostic counts.""" |
plus_df, minus_df = df_tuple
index_cols = "Chromosome Bin".split()
count_column = plus_df.columns[0]
if plus_df.empty:
return return_other(minus_df, count_column, index_cols)
if minus_df.empty:
return return_other(plus_df, count_column, index_cols)
# sum duplicate bins
# TODO: why are there duplicate bins here in the first place?
plus_df = plus_df.groupby(index_cols).sum()
minus_df = minus_df.groupby(index_cols).sum()
# first sum the two bins from each strand
df = pd.concat([plus_df, minus_df], axis=1).fillna(0).sum(axis=1)
df = df.reset_index().sort_values(by="Bin")
df.columns = ["Chromosome", "Bin", count_column]
df = df.sort_values(["Chromosome", "Bin"])
df[["Bin", count_column]] = df[["Bin", count_column]].astype(int32)
df = df[[count_column, "Chromosome", "Bin"]]
return df.reset_index(drop=True) |
<SYSTEM_TASK:>
Can probably be heavily optimized.
<END_TASK>
<USER_TASK:>
Description:
def add_to_island_expectations_dict(average_window_readcount,
current_max_scaled_score,
island_eligibility_threshold,
island_expectations, gap_contribution):
# type: ( float, int, float, Dict[int, float], float) -> Dict[int, float]
"""Can probably be heavily optimized.
Time required to run can be seen from logging info.""" |
scaled_score = current_max_scaled_score + E_VALUE
for index in range(current_max_scaled_score + 1, scaled_score + 1):
island_expectation = 0.0
i = island_eligibility_threshold #i is the number of tags in the added window
current_island = int(round(index - compute_window_score(
i, average_window_readcount) / BIN_SIZE))
while (current_island >= 0):
if current_island in island_expectations:
island_expectation += _poisson(
i, average_window_readcount) * island_expectations[
current_island]
i += 1
current_island = int(round(index - compute_window_score(
i, average_window_readcount) / BIN_SIZE))
island_expectation *= gap_contribution
if island_expectation:
island_expectations[index] = island_expectation
return island_expectations |
<SYSTEM_TASK:>
Finds the enriched bins in a df.
<END_TASK>
<USER_TASK:>
Description:
def get_island_bins(df, window_size, genome, args):
# type: (pd.DataFrame, int, str, Namespace) -> Dict[str, Set[int]]
"""Finds the enriched bins in a df.""" |
# need these chromos because the df might not have islands in all chromos
chromosomes = natsorted(list(args.chromosome_sizes))
chromosome_island_bins = {} # type: Dict[str, Set[int]]
df_copy = df.reset_index(drop=False)
for chromosome in chromosomes:
cdf = df_copy.loc[df_copy.Chromosome == chromosome]
if cdf.empty:
chromosome_island_bins[chromosome] = set()
else:
island_starts_ends = zip(cdf.Start.values.tolist(),
cdf.End.values.tolist())
island_bins = chain(*[range(
int(start), int(end), window_size)
for start, end in island_starts_ends])
chromosome_island_bins[chromosome] = set(island_bins)
return chromosome_island_bins |
<SYSTEM_TASK:>
Creates genome size dict from string containing data.
<END_TASK>
<USER_TASK:>
Description:
def create_genome_size_dict(genome):
# type: (str) -> Dict[str,int]
"""Creates genome size dict from string containing data.""" |
size_file = get_genome_size_file(genome)
size_lines = open(size_file).readlines()
size_dict = {}
for line in size_lines:
genome, length = line.split()
size_dict[genome] = int(length)
return size_dict |
<SYSTEM_TASK:>
What does island_expectations do?
<END_TASK>
<USER_TASK:>
Description:
def compute_score_threshold(average_window_readcount,
island_enriched_threshold,
gap_contribution, boundary_contribution,
genome_length_in_bins):
# type: (float, int, float, float, float) -> float
"""
What does island_expectations do?
""" |
required_p_value = poisson.pmf(island_enriched_threshold,
average_window_readcount)
prob = boundary_contribution * required_p_value
score = -log(required_p_value)
current_scaled_score = int(round(score / BIN_SIZE))
island_expectations_d = {} # type: Dict[int, float]
island_expectations_d[current_scaled_score] = prob * genome_length_in_bins
island_expectations_d[
0] = boundary_contribution * genome_length_in_bins / gap_contribution
current_max_scaled_score = current_scaled_score
interval = int(1 / BIN_SIZE)
partial_cumu = 0.0
logging.info("Finding the score required to consider an island enriched.")
while (partial_cumu > E_VALUE_THRESHOLD or partial_cumu < 1e-100):
current_scaled_score += interval
current_max_scaled_score = current_scaled_score - interval
# logging.debug(island_expectations_d)
if current_scaled_score > current_max_scaled_score:
# logging.debug(island_expectations_d)
island_expectations_d = add_to_island_expectations_dict(
average_window_readcount, current_max_scaled_score,
island_enriched_threshold, island_expectations_d,
gap_contribution)
partial_cumu = 0.0001
current_max_scaled_score += 1000
if max(island_expectations_d) > interval:
partial_cumu = sum(
[val
for idx, val in island_expectations_d.items()
if idx > current_max_scaled_score - interval])
else:
partial_cumu = sum(island_expectations_d.values())
logging.debug("Computing cumulative distribution.")
score_threshold = generate_cumulative_dist(island_expectations_d,
current_max_scaled_score + 1)
logging.info("Enriched score threshold for islands: " + str(
score_threshold))
return score_threshold |
<SYSTEM_TASK:>
Estimate length of reads based on 10000 first.
<END_TASK>
<USER_TASK:>
Description:
def find_readlength(args):
# type: (Namespace) -> int
"""Estimate length of reads based on 10000 first.""" |
try:
bed_file = args.treatment[0]
except AttributeError:
bed_file = args.infiles[0]
filereader = "cat "
if bed_file.endswith(".gz") and search("linux", platform, IGNORECASE):
filereader = "zcat "
elif bed_file.endswith(".gz") and search("darwin", platform, IGNORECASE):
filereader = "gzcat "
elif bed_file.endswith(".bz2"):
filereader = "bzgrep "
command = filereader + "{} | head -10000".format(bed_file)
output = check_output(command, shell=True)
df = pd.read_table(
BytesIO(output),
header=None,
usecols=[1, 2],
sep="\t",
names=["Start", "End"])
readlengths = df.End - df.Start
mean_readlength = readlengths.mean()
median_readlength = readlengths.median()
max_readlength = readlengths.max()
min_readlength = readlengths.min()
logging.info((
"Used first 10000 reads of {} to estimate a median read length of {}\n"
"Mean readlength: {}, max readlength: {}, min readlength: {}.").format(
bed_file, median_readlength, mean_readlength, max_readlength,
min_readlength))
return median_readlength |
<SYSTEM_TASK:>
Find the predefined readlength closest to the estimated readlength.
<END_TASK>
<USER_TASK:>
Description:
def get_closest_readlength(estimated_readlength):
# type: (int) -> int
"""Find the predefined readlength closest to the estimated readlength.
In the case of a tie, choose the shortest readlength.""" |
readlengths = [36, 50, 75, 100]
differences = [abs(r - estimated_readlength) for r in readlengths]
min_difference = min(differences)
index_of_min_difference = [i
for i, d in enumerate(differences)
if d == min_difference][0]
return readlengths[index_of_min_difference] |
<SYSTEM_TASK:>
Parses the supplied output and returns the version string.
<END_TASK>
<USER_TASK:>
Description:
def parse_version(output):
"""
Parses the supplied output and returns the version string.
:param output: A string containing the output of running snort.
:returns: Version string for the version of snort run. None if not found.
""" |
for x in output.splitlines():
match = VERSION_PATTERN.match(x)
if match:
return match.group('version').strip()
return None |
<SYSTEM_TASK:>
Parses the supplied output and yields any alerts.
<END_TASK>
<USER_TASK:>
Description:
def parse_alert(output):
"""
Parses the supplied output and yields any alerts.
Example alert format:
01/28/14-22:26:04.885446 [**] [1:1917:11] INDICATOR-SCAN UPnP service discover attempt [**] [Classification: Detection of a Network Scan] [Priority: 3] {UDP} 10.1.1.132:58650 -> 239.255.255.250:1900
:param output: A string containing the output of running snort
:returns: Generator of snort alert dicts
""" |
for x in output.splitlines():
match = ALERT_PATTERN.match(x)
if match:
rec = {'timestamp': datetime.strptime(match.group('timestamp'),
'%m/%d/%y-%H:%M:%S.%f'),
'sid': int(match.group('sid')),
'revision': int(match.group('revision')),
'priority': int(match.group('priority')),
'message': match.group('message'),
'source': match.group('src'),
'destination': match.group('dest'),
'protocol': match.group('protocol'),
}
if match.group('classtype'):
rec['classtype'] = match.group('classtype')
yield rec |
<SYSTEM_TASK:>
Runs snort against the supplied pcap.
<END_TASK>
<USER_TASK:>
Description:
def run(self, pcap):
"""
Runs snort against the supplied pcap.
:param pcap: Filepath to pcap file to scan
:returns: tuple of version, list of alerts
""" |
proc = Popen(self._snort_cmd(pcap), stdout=PIPE,
stderr=PIPE, universal_newlines=True)
stdout, stderr = proc.communicate()
if proc.returncode != 0:
raise Exception("\n".join(["Execution failed return code: {0}" \
.format(proc.returncode), stderr or ""]))
return (parse_version(stderr),
[ x for x in parse_alert(stdout) ]) |
<SYSTEM_TASK:>
Runs suricata against the supplied pcap.
<END_TASK>
<USER_TASK:>
Description:
def run(self, pcap):
"""
Runs suricata against the supplied pcap.
:param pcap: Filepath to pcap file to scan
:returns: tuple of version, list of alerts
""" |
tmpdir = None
try:
tmpdir = tempfile.mkdtemp(prefix='tmpsuri')
proc = Popen(self._suri_cmd(pcap, tmpdir), stdout=PIPE,
stderr=PIPE, universal_newlines=True)
stdout, stderr = proc.communicate()
if proc.returncode != 0:
raise Exception("\n".join(["Execution failed return code: {0}" \
.format(proc.returncode), stderr or ""]))
with open(os.path.join(tmpdir, 'fast.log')) as tmp:
return (parse_version(stdout),
[ x for x in parse_alert(tmp.read()) ])
finally:
if tmpdir:
shutil.rmtree(tmpdir) |
<SYSTEM_TASK:>
Run IDS across the supplied file.
<END_TASK>
<USER_TASK:>
Description:
def analyse_pcap(infile, filename):
"""
Run IDS across the supplied file.
:param infile: File like object containing pcap data.
:param filename: Filename of the submitted file.
:returns: Dictionary of analysis results.
""" |
tmp = tempfile.NamedTemporaryFile(suffix=".pcap", delete=False)
m = hashlib.md5()
results = {'filename': filename,
'status': 'Failed',
'apiversion': __version__,
}
try:
size = 0
while True:
buf = infile.read(16384)
if not buf: break
tmp.write(buf)
size += len(buf)
m.update(buf)
tmp.close()
results['md5'] = m.hexdigest()
results['filesize'] = size
results.update(runner.run(tmp.name))
except OSError as ex:
results['stderr'] = str(ex)
finally:
os.remove(tmp.name)
return results |
<SYSTEM_TASK:>
Blocking POST handler for file submission.
<END_TASK>
<USER_TASK:>
Description:
def api_submit():
"""
Blocking POST handler for file submission.
Runs snort on supplied file and returns results as json text.
""" |
data = request.files.file
response.content_type = 'application/json'
if not data or not hasattr(data, 'file'):
return json.dumps({"status": "Failed", "stderr": "Missing form params"})
return json.dumps(analyse_pcap(data.file, data.filename), default=jsondate, indent=4) |
<SYSTEM_TASK:>
Simple test for pcap magic bytes in supplied file.
<END_TASK>
<USER_TASK:>
Description:
def is_pcap(pcap):
"""
Simple test for pcap magic bytes in supplied file.
:param pcap: File path to Pcap file to check
:returns: True if content is pcap (magic bytes present), otherwise False.
""" |
with open(pcap, 'rb') as tmp:
header = tmp.read(4)
# check for both big/little endian
if header == b"\xa1\xb2\xc3\xd4" or \
header == b"\xd4\xc3\xb2\xa1":
return True
return False |
<SYSTEM_TASK:>
Runs the specified IDS runner.
<END_TASK>
<USER_TASK:>
Description:
def _run_ids(runner, pcap):
"""
Runs the specified IDS runner.
:param runner: Runner instance to use
:param pcap: File path to pcap for analysis
:returns: dict of run metadata/alerts
""" |
run = {'name': runner.conf.get('name'),
'module': runner.conf.get('module'),
'ruleset': runner.conf.get('ruleset', 'default'),
'status': STATUS_FAILED,
}
try:
run_start = datetime.now()
version, alerts = runner.run(pcap)
run['version'] = version or 'Unknown'
run['status'] = STATUS_SUCCESS
run['alerts'] = alerts
except Exception as ex:
run['error'] = str(ex)
finally:
run['duration'] = duration(run_start)
return run |
<SYSTEM_TASK:>
Runs all configured IDS instances against the supplied pcap.
<END_TASK>
<USER_TASK:>
Description:
def run(pcap):
"""
Runs all configured IDS instances against the supplied pcap.
:param pcap: File path to pcap file to analyse
:returns: Dict with details and results of run/s
""" |
start = datetime.now()
errors = []
status = STATUS_FAILED
analyses = []
pool = ThreadPool(MAX_THREADS)
try:
if not is_pcap(pcap):
raise Exception("Not a valid pcap file")
runners = []
for conf in Config().modules.values():
runner = registry.get(conf['module'])
if not runner:
raise Exception("No module named: '{0}' found registered"
.format(conf['module']))
runners.append(runner(conf))
# launch via worker pool
analyses = [ pool.apply_async(_run_ids, (runner, pcap)) for runner in runners ]
analyses = [ x.get() for x in analyses ]
# were all runs successful?
if all([ x['status'] == STATUS_SUCCESS for x in analyses ]):
status = STATUS_SUCCESS
# propagate any errors to the main list
for run in [ x for x in analyses if x['status'] != STATUS_SUCCESS ]:
errors.append("Failed to run {0}: {1}".format(run['name'], run['error']))
except Exception as ex:
errors.append(str(ex))
return {'start': start,
'duration': duration(start),
'status': status,
'analyses': analyses,
'errors': errors,
} |
<SYSTEM_TASK:>
Same as breadcrumb but label is not escaped.
<END_TASK>
<USER_TASK:>
Description:
def breadcrumb_safe(context, label, viewname, *args, **kwargs):
"""
Same as breadcrumb but label is not escaped.
""" |
append_breadcrumb(context, _(label), viewname, args, kwargs)
return '' |
<SYSTEM_TASK:>
Same as breadcrumb but label is not translated.
<END_TASK>
<USER_TASK:>
Description:
def breadcrumb_raw(context, label, viewname, *args, **kwargs):
"""
Same as breadcrumb but label is not translated.
""" |
append_breadcrumb(context, escape(label), viewname, args, kwargs)
return '' |
<SYSTEM_TASK:>
Same as breadcrumb but label is not escaped and translated.
<END_TASK>
<USER_TASK:>
Description:
def breadcrumb_raw_safe(context, label, viewname, *args, **kwargs):
"""
Same as breadcrumb but label is not escaped and translated.
""" |
append_breadcrumb(context, label, viewname, args, kwargs)
return '' |
<SYSTEM_TASK:>
Find the symbol of the specified name inside the module or raise an
<END_TASK>
<USER_TASK:>
Description:
def _find_symbol(self, module, name, fallback=None):
"""
Find the symbol of the specified name inside the module or raise an
exception.
""" |
if not hasattr(module, name) and fallback:
return self._find_symbol(module, fallback, None)
return getattr(module, name) |
<SYSTEM_TASK:>
Store the incoming activation, apply the activation function and store
<END_TASK>
<USER_TASK:>
Description:
def apply(self, incoming):
"""
Store the incoming activation, apply the activation function and store
the result as outgoing activation.
""" |
assert len(incoming) == self.size
self.incoming = incoming
outgoing = self.activation(self.incoming)
assert len(outgoing) == self.size
self.outgoing = outgoing |
<SYSTEM_TASK:>
The derivative of the activation function at the current state.
<END_TASK>
<USER_TASK:>
Description:
def delta(self, above):
"""
The derivative of the activation function at the current state.
""" |
return self.activation.delta(self.incoming, self.outgoing, above) |
<SYSTEM_TASK:>
Evaluate the network with alternative weights on the input data and
<END_TASK>
<USER_TASK:>
Description:
def feed(self, weights, data):
"""
Evaluate the network with alternative weights on the input data and
return the output activation.
""" |
assert len(data) == self.layers[0].size
self.layers[0].apply(data)
# Propagate trough the remaining layers.
connections = zip(self.layers[:-1], weights, self.layers[1:])
for previous, weight, current in connections:
incoming = self.forward(weight, previous.outgoing)
current.apply(incoming)
# Return the activations of the output layer.
return self.layers[-1].outgoing |
<SYSTEM_TASK:>
Define model and initialize weights.
<END_TASK>
<USER_TASK:>
Description:
def _init_network(self):
"""Define model and initialize weights.""" |
self.network = Network(self.problem.layers)
self.weights = Matrices(self.network.shapes)
if self.load:
loaded = np.load(self.load)
assert loaded.shape == self.weights.shape, (
'weights to load must match problem definition')
self.weights.flat = loaded
else:
self.weights.flat = np.random.normal(
self.problem.weight_mean, self.problem.weight_scale,
len(self.weights.flat)) |
<SYSTEM_TASK:>
Classes needed during training.
<END_TASK>
<USER_TASK:>
Description:
def _init_training(self):
# pylint: disable=redefined-variable-type
"""Classes needed during training.""" |
if self.check:
self.backprop = CheckedBackprop(self.network, self.problem.cost)
else:
self.backprop = BatchBackprop(self.network, self.problem.cost)
self.momentum = Momentum()
self.decent = GradientDecent()
self.decay = WeightDecay()
self.tying = WeightTying(*self.problem.weight_tying)
self.weights = self.tying(self.weights) |
<SYSTEM_TASK:>
Given a loop over batches of an iterable and an operation that should
<END_TASK>
<USER_TASK:>
Description:
def _every(times, step_size, index):
"""
Given a loop over batches of an iterable and an operation that should
be performed every few elements. Determine whether the operation should
be called for the current index.
""" |
current = index * step_size
step = current // times * times
reached = current >= step
overshot = current >= step + step_size
return current and reached and not overshot |
<SYSTEM_TASK:>
Parse a single kraken-report entry and return a dictionary of taxa for its
<END_TASK>
<USER_TASK:>
Description:
def parse_tax_lvl(entry, tax_lvl_depth=[]):
"""
Parse a single kraken-report entry and return a dictionary of taxa for its
named ranks.
:type entry: dict
:param entry: attributes of a single kraken-report row.
:type tax_lvl_depth: list
:param tax_lvl_depth: running record of taxon levels encountered in
previous calls.
""" |
# How deep in the hierarchy are we currently? Each two spaces of
# indentation is one level deeper. Also parse the scientific name at this
# level.
depth_and_name = re.match('^( *)(.*)', entry['sci_name'])
depth = len(depth_and_name.group(1))//2
name = depth_and_name.group(2)
# Remove the previous levels so we're one higher than the level of the new
# taxon. (This also works if we're just starting out or are going deeper.)
del tax_lvl_depth[depth:]
# Append the new taxon.
tax_lvl_depth.append((entry['rank'], name))
# Create a tax_lvl dict for the named ranks.
tax_lvl = {x[0]: x[1] for x in tax_lvl_depth if x[0] in ranks}
return(tax_lvl) |
<SYSTEM_TASK:>
Parse a single output file from the kraken-report tool. Return a list
<END_TASK>
<USER_TASK:>
Description:
def parse_kraken_report(kdata, max_rank, min_rank):
"""
Parse a single output file from the kraken-report tool. Return a list
of counts at each of the acceptable taxonomic levels, and a list of
NCBI IDs and a formatted string representing their taxonomic hierarchies.
:type kdata: str
:param kdata: Contents of the kraken report file.
""" |
# map between NCBI taxonomy IDs and the string rep. of the hierarchy
taxa = OrderedDict()
# the master collection of read counts (keyed on NCBI ID)
counts = OrderedDict()
# current rank
r = 0
max_rank_idx = ranks.index(max_rank)
min_rank_idx = ranks.index(min_rank)
for entry in kdata:
erank = entry['rank'].strip()
# print("erank: "+erank)
if erank in ranks:
r = ranks.index(erank)
# update running tally of ranks
tax_lvl = parse_tax_lvl(entry)
# record the reads assigned to this taxon level, and record the taxonomy string with the NCBI ID
if erank in ranks and min_rank_idx >= ranks.index(entry['rank']) >= max_rank_idx:
taxon_reads = int(entry["taxon_reads"])
clade_reads = int(entry["clade_reads"])
if taxon_reads > 0 or (clade_reads > 0 and entry['rank'] == min_rank):
taxa[entry['ncbi_tax']] = tax_fmt(tax_lvl, r)
if entry['rank'] == min_rank:
counts[entry['ncbi_tax']] = clade_reads
else:
counts[entry['ncbi_tax']] = taxon_reads
# print(" Counting {} reads at {}".format(counts[entry['ncbi_tax']], '; '.join(taxa[entry['ncbi_tax']])))
#TODO: handle subspecies
#if erank == '-' and min_rank == "SS" and last_entry_indent < curr_indent:
# pass
return counts, taxa |
<SYSTEM_TASK:>
Parse all kraken-report data files into sample counts dict
<END_TASK>
<USER_TASK:>
Description:
def process_samples(kraken_reports_fp, max_rank, min_rank):
"""
Parse all kraken-report data files into sample counts dict
and store global taxon id -> taxonomy data
""" |
taxa = OrderedDict()
sample_counts = OrderedDict()
for krep_fp in kraken_reports_fp:
if not osp.isfile(krep_fp):
raise RuntimeError("ERROR: File '{}' not found.".format(krep_fp))
# use the kraken report filename as the sample ID
sample_id = osp.splitext(osp.split(krep_fp)[1])[0]
with open(krep_fp, "rt") as kf:
try:
kdr = csv.DictReader(kf, fieldnames=field_names,
delimiter="\t")
kdata = [entry for entry in kdr][1:]
except OSError as oe:
raise RuntimeError("ERROR: {}".format(oe))
scounts, staxa = parse_kraken_report(kdata, max_rank=max_rank,
min_rank=min_rank)
# update master records
taxa.update(staxa)
sample_counts[sample_id] = scounts
return sample_counts, taxa |
<SYSTEM_TASK:>
Create a BIOM table from sample counts and taxonomy metadata.
<END_TASK>
<USER_TASK:>
Description:
def create_biom_table(sample_counts, taxa):
"""
Create a BIOM table from sample counts and taxonomy metadata.
:type sample_counts: dict
:param sample_counts: A dictionary of dictionaries with the first level
keyed on sample ID, and the second level keyed on
taxon ID with counts as values.
:type taxa: dict
:param taxa: A mapping between the taxon IDs from sample_counts to the
full representation of the taxonomy string. The values in
this dict will be used as metadata in the BIOM table.
:rtype: biom.Table
:return: A BIOM table containing the per-sample taxon counts and full
taxonomy identifiers as metadata for each taxon.
""" |
data = [[0 if taxid not in sample_counts[sid] else sample_counts[sid][taxid]
for sid in sample_counts]
for taxid in taxa]
data = np.array(data, dtype=int)
tax_meta = [{'taxonomy': taxa[taxid]} for taxid in taxa]
gen_str = "kraken-biom v{} ({})".format(__version__, __url__)
return Table(data, list(taxa), list(sample_counts), tax_meta,
type="OTU table", create_date=str(dt.now().isoformat()),
generated_by=gen_str, input_is_dense=True) |
<SYSTEM_TASK:>
Write the BIOM table to a file.
<END_TASK>
<USER_TASK:>
Description:
def write_biom(biomT, output_fp, fmt="hdf5", gzip=False):
"""
Write the BIOM table to a file.
:type biomT: biom.table.Table
:param biomT: A BIOM table containing the per-sample OTU counts and metadata
to be written out to file.
:type output_fp str
:param output_fp: Path to the BIOM-format file that will be written.
:type fmt: str
:param fmt: One of: hdf5, json, tsv. The BIOM version the table will be
output (2.x, 1.0, 'classic').
""" |
opener = open
mode = 'w'
if gzip and fmt != "hdf5":
if not output_fp.endswith(".gz"):
output_fp += ".gz"
opener = gzip_open
mode = 'wt'
# HDF5 BIOM files are gzipped by default
if fmt == "hdf5":
opener = h5py.File
with opener(output_fp, mode) as biom_f:
if fmt == "json":
biomT.to_json(biomT.generated_by, direct_io=biom_f)
elif fmt == "tsv":
biom_f.write(biomT.to_tsv())
else:
biomT.to_hdf5(biom_f, biomT.generated_by)
return output_fp |
<SYSTEM_TASK:>
Write out a file containing only the list of OTU IDs from the kraken data.
<END_TASK>
<USER_TASK:>
Description:
def write_otu_file(otu_ids, fp):
"""
Write out a file containing only the list of OTU IDs from the kraken data.
One line per ID.
:type otu_ids: list or iterable
:param otu_ids: The OTU identifiers that will be written to file.
:type fp: str
:param fp: The path to the output file.
""" |
fpdir = osp.split(fp)[0]
if not fpdir == "" and not osp.isdir(fpdir):
raise RuntimeError("Specified path does not exist: {}".format(fpdir))
with open(fp, 'wt') as outf:
outf.write('\n'.join(otu_ids)) |
<SYSTEM_TASK:>
Performs predictions blending using the trained weights.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X):
"""Performs predictions blending using the trained weights.
Args:
X (array-like): Predictions of different models.
Returns: dict with blended predictions (key is 'y_pred').
""" |
assert np.shape(X)[0] == len(self._weights), (
'BlendingOptimizer: Number of models to blend its predictions and weights does not match: '
'n_models={}, weights_len={}'.format(np.shape(X)[0], len(self._weights)))
blended_predictions = np.average(np.power(X, self._power),
weights=self._weights,
axis=0) ** (1.0 / self._power)
return {'y_pred': blended_predictions} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.