text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Prints a table used for Fisher's exact test. Adds row, column, and grand <END_TASK> <USER_TASK:> Description: def print_2x2_table(table, row_labels, col_labels, fmt="%d"): """ Prints a table used for Fisher's exact test. Adds row, column, and grand totals. :param table: The four cells of a 2x2 table: [r1c1, r1c2, r2c1, r2c2] :param row_labels: A length-2 list of row names :param col_labels: A length-2 list of column names """
grand = sum(table) # Separate table into components and get row/col sums t11, t12, t21, t22 = table # Row sums, col sums, and grand total r1 = t11 + t12 r2 = t21 + t22 c1 = t11 + t21 c2 = t12 + t22 # Re-cast everything as the appropriate format t11, t12, t21, t22, c1, c2, r1, r2, grand = [ fmt % i for i in [t11, t12, t21, t22, c1, c2, r1, r2, grand]] # Construct rows and columns the long way... rows = [ [""] + col_labels + ['total'], [row_labels[0], t11, t12, r1], [row_labels[1], t21, t22, r2], ['total', c1, c2, grand], ] cols = [ [row[0] for row in rows], [col_labels[0], t11, t21, c1], [col_labels[1], t12, t22, c2], ['total', r1, r2, grand], ] # Get max column width for each column; need this for nice justification widths = [] for col in cols: widths.append(max(len(i) for i in col)) # ReST-formatted header sep = ['=' * i for i in widths] # Construct the table one row at a time with nice justification s = [] s.append(' '.join(sep)) s.append(' '.join(i.ljust(j) for i, j in zip(rows[0], widths))) s.append(' '.join(sep)) for row in rows[1:]: s.append(' '.join(i.ljust(j) for i, j in zip(row, widths))) s.append(' '.join(sep) + '\n') return "\n".join(s)
<SYSTEM_TASK:> given a table, print the percentages rather than the totals <END_TASK> <USER_TASK:> Description: def print_row_perc_table(table, row_labels, col_labels): """ given a table, print the percentages rather than the totals """
r1c1, r1c2, r2c1, r2c2 = map(float, table) row1 = r1c1 + r1c2 row2 = r2c1 + r2c2 blocks = [ (r1c1, row1), (r1c2, row1), (r2c1, row2), (r2c2, row2)] new_table = [] for cell, row in blocks: try: x = cell / row except ZeroDivisionError: x = 0 new_table.append(x) s = print_2x2_table(new_table, row_labels, col_labels, fmt="%.2f") s = s.splitlines(True) del s[5] return ''.join(s)
<SYSTEM_TASK:> given a table, print the cols as percentages <END_TASK> <USER_TASK:> Description: def print_col_perc_table(table, row_labels, col_labels): """ given a table, print the cols as percentages """
r1c1, r1c2, r2c1, r2c2 = map(float, table) col1 = r1c1 + r2c1 col2 = r1c2 + r2c2 blocks = [ (r1c1, col1), (r1c2, col2), (r2c1, col1), (r2c2, col2)] new_table = [] for cell, row in blocks: try: x = cell / row except ZeroDivisionError: x = 0 new_table.append(x) s = print_2x2_table(new_table, row_labels, col_labels, fmt="%.2f") s = s.splitlines(False) last_space = s[0].rindex(" ") new_s = [i[:last_space] for i in s] return '\n'.join(new_s)
<SYSTEM_TASK:> Draw ``tree`` to the terminal <END_TASK> <USER_TASK:> Description: def draw(self, tree, bar_desc=None, save_cursor=True, flush=True): """Draw ``tree`` to the terminal :type tree: dict :param tree: ``tree`` should be a tree representing a hierarchy; each key should be a string describing that hierarchy level and value should also be ``dict`` except for leaves which should be ``BarDescriptors``. See ``BarDescriptor`` for a tree example. :type bar_desc: BarDescriptor|NoneType :param bar_desc: For describing non-leaf bars in that will be drawn from ``tree``; certain attributes such as ``value`` and ``kwargs["max_value"]`` will of course be overridden if provided. :type flush: bool :param flush: If this is set, output written will be flushed :type save_cursor: bool :param save_cursor: If this is set, cursor location will be saved before drawing; this will OVERWRITE a previous save, so be sure to set this accordingly (to your needs). """
if save_cursor: self.cursor.save() tree = deepcopy(tree) # TODO: Automatically collapse hierarchy so something # will always be displayable (well, unless the top-level) # contains too many to display lines_required = self.lines_required(tree) ensure(lines_required <= self.cursor.term.height, LengthOverflowError, "Terminal is not long ({} rows) enough to fit all bars " "({} rows).".format(self.cursor.term.height, lines_required)) bar_desc = BarDescriptor(type=Bar) if not bar_desc else bar_desc self._calculate_values(tree, bar_desc) self._draw(tree) if flush: self.cursor.flush()
<SYSTEM_TASK:> Clear lines in terminal below current cursor position as required <END_TASK> <USER_TASK:> Description: def make_room(self, tree): """Clear lines in terminal below current cursor position as required This is important to do before drawing to ensure sufficient room at the bottom of your terminal. :type tree: dict :param tree: tree as described in ``BarDescriptor`` """
lines_req = self.lines_required(tree) self.cursor.clear_lines(lines_req)
<SYSTEM_TASK:> Calculate number of lines required to draw ``tree`` <END_TASK> <USER_TASK:> Description: def lines_required(self, tree, count=0): """Calculate number of lines required to draw ``tree``"""
if all([ isinstance(tree, dict), type(tree) != BarDescriptor ]): return sum(self.lines_required(v, count=count) for v in tree.values()) + 2 elif isinstance(tree, BarDescriptor): if tree.get("kwargs", {}).get("title_pos") in ["left", "right"]: return 1 else: return 2
<SYSTEM_TASK:> Calculate values for drawing bars of non-leafs in ``tree`` <END_TASK> <USER_TASK:> Description: def _calculate_values(self, tree, bar_d): """Calculate values for drawing bars of non-leafs in ``tree`` Recurses through ``tree``, replaces ``dict``s with ``(BarDescriptor, dict)`` so ``ProgressTree._draw`` can use the ``BarDescriptor``s to draw the tree """
if all([ isinstance(tree, dict), type(tree) != BarDescriptor ]): # Calculate value and max_value max_val = 0 value = 0 for k in tree: # Get descriptor by recursing bar_desc = self._calculate_values(tree[k], bar_d) # Reassign to tuple of (new descriptor, tree below) tree[k] = (bar_desc, tree[k]) value += bar_desc["value"].value max_val += bar_desc.get("kwargs", {}).get("max_value", 100) # Merge in values from ``bar_d`` before returning descriptor kwargs = merge_dicts( [bar_d.get("kwargs", {}), dict(max_value=max_val)], deepcopy=True ) ret_d = merge_dicts( [bar_d, dict(value=Value(floor(value)), kwargs=kwargs)], deepcopy=True ) return BarDescriptor(ret_d) elif isinstance(tree, BarDescriptor): return tree else: raise TypeError("Unexpected type {}".format(type(tree)))
<SYSTEM_TASK:> Recurse through ``tree`` and draw all nodes <END_TASK> <USER_TASK:> Description: def _draw(self, tree, indent=0): """Recurse through ``tree`` and draw all nodes"""
if all([ isinstance(tree, dict), type(tree) != BarDescriptor ]): for k, v in sorted(tree.items()): bar_desc, subdict = v[0], v[1] args = [self.cursor.term] + bar_desc.get("args", []) kwargs = dict(title_pos="above", indent=indent, title=k) kwargs.update(bar_desc.get("kwargs", {})) b = Bar(*args, **kwargs) b.draw(value=bar_desc["value"].value, flush=False) self._draw(subdict, indent=indent + self.indent)
<SYSTEM_TASK:> Returns the features and NumPy arrays that were saved with <END_TASK> <USER_TASK:> Description: def load_features_and_arrays(prefix, mmap_mode='r'): """ Returns the features and NumPy arrays that were saved with save_features_and_arrays. Parameters ---------- prefix : str Path to where data are saved mmap_mode : {None, 'r+', 'r', 'w+', 'c'} Mode in which to memory-map the file. See np.load for details. """
features = pybedtools.BedTool(prefix + '.features') arrays = np.load(prefix + '.npz', mmap_mode=mmap_mode) return features, arrays
<SYSTEM_TASK:> Saves NumPy arrays of processed data, along with the features that <END_TASK> <USER_TASK:> Description: def save_features_and_arrays(features, arrays, prefix, compressed=False, link_features=False, overwrite=False): """ Saves NumPy arrays of processed data, along with the features that correspond to each row, to files for later use. Two files will be saved, both starting with `prefix`: prefix.features : a file of features. If GFF features were provided, this will be in GFF format, if BED features were provided it will be in BED format, and so on. prefix.npz : A NumPy .npz file. Parameters ---------- arrays : dict of NumPy arrays Rows in each array should correspond to `features`. This dictionary is passed to np.savez features : iterable of Feature-like objects This is usually the same features that were used to create the array in the first place. link_features : bool If True, then assume that `features` is either a pybedtools.BedTool pointing to a file, or a filename. In this case, instead of making a copy, a symlink will be created to the original features. This helps save disk space. prefix : str Path to where data will be saved. compressed : bool If True, saves arrays using np.savez_compressed rather than np.savez. This will save disk space, but will be slower when accessing the data later. """
if link_features: if isinstance(features, pybedtools.BedTool): assert isinstance(features.fn, basestring) features_filename = features.fn else: assert isinstance(features, basestring) features_filename = features if overwrite: force_flag = '-f' else: force_flag = '' cmds = [ 'ln', '-s', force_flag, os.path.abspath(features_filename), prefix + '.features'] os.system(' '.join(cmds)) else: pybedtools.BedTool(features).saveas(prefix + '.features') if compressed: np.savez_compressed( prefix, **arrays) else: np.savez(prefix, **arrays)
<SYSTEM_TASK:> Command that prints all device information. <END_TASK> <USER_TASK:> Description: def list_all(fritz, args): """Command that prints all device information."""
devices = fritz.get_devices() for device in devices: print('#' * 30) print('name=%s' % device.name) print(' ain=%s' % device.ain) print(' id=%s' % device.identifier) print(' productname=%s' % device.productname) print(' manufacturer=%s' % device.manufacturer) print(" present=%s" % device.present) print(" lock=%s" % device.lock) print(" devicelock=%s" % device.device_lock) if device.present is False: continue if device.has_switch: print(" Switch:") print(" switch_state=%s" % device.switch_state) if device.has_switch: print(" Powermeter:") print(" power=%s" % device.power) print(" energy=%s" % device.energy) print(" voltage=%s" % device.voltage) if device.has_temperature_sensor: print(" Temperature:") print(" temperature=%s" % device.temperature) print(" offset=%s" % device.offset) if device.has_thermostat: print(" Thermostat:") print(" battery_low=%s" % device.battery_low) print(" battery_level=%s" % device.battery_level) print(" actual=%s" % device.actual_temperature) print(" target=%s" % device.target_temperature) print(" comfort=%s" % device.comfort_temperature) print(" eco=%s" % device.eco_temperature) print(" window=%s" % device.window_open) print(" summer=%s" % device.summer_active) print(" holiday=%s" % device.holiday_active) if device.has_alarm: print(" Alert:") print(" alert=%s" % device.alert_state)
<SYSTEM_TASK:> Command that prints the device statistics. <END_TASK> <USER_TASK:> Description: def device_statistics(fritz, args): """Command that prints the device statistics."""
stats = fritz.get_device_statistics(args.ain) print(stats)
<SYSTEM_TASK:> Split an interval into `n` roughly equal portions <END_TASK> <USER_TASK:> Description: def split_feature(f, n): """ Split an interval into `n` roughly equal portions """
if not isinstance(n, int): raise ValueError('n must be an integer') orig_feature = copy(f) step = (f.stop - f.start) / n for i in range(f.start, f.stop, step): f = copy(orig_feature) start = i stop = min(i + step, orig_feature.stop) f.start = start f.stop = stop yield f if stop == orig_feature.stop: break
<SYSTEM_TASK:> If string, then convert to an interval; otherwise just return the input <END_TASK> <USER_TASK:> Description: def tointerval(s): """ If string, then convert to an interval; otherwise just return the input """
if isinstance(s, basestring): m = coord_re.search(s) if m.group('strand'): return pybedtools.create_interval_from_list([ m.group('chrom'), m.group('start'), m.group('stop'), '.', '0', m.group('strand')]) else: return pybedtools.create_interval_from_list([ m.group('chrom'), m.group('start'), m.group('stop'), ]) return s
<SYSTEM_TASK:> Get maximum width of progress bar <END_TASK> <USER_TASK:> Description: def max_width(self): """Get maximum width of progress bar :rtype: int :returns: Maximum column width of progress bar """
value, unit = float(self._width_str[:-1]), self._width_str[-1] ensure(unit in ["c", "%"], ValueError, "Width unit must be either 'c' or '%'") if unit == "c": ensure(value <= self.columns, ValueError, "Terminal only has {} columns, cannot draw " "bar of size {}.".format(self.columns, value)) retval = value else: # unit == "%" ensure(0 < value <= 100, ValueError, "value=={} does not satisfy 0 < value <= 100".format(value)) dec = value / 100 retval = dec * self.columns return floor(retval)
<SYSTEM_TASK:> Check if ``term`` supports ``colors`` <END_TASK> <USER_TASK:> Description: def _supports_colors(term, raise_err, colors): """Check if ``term`` supports ``colors`` :raises ColorUnsupportedError: This is raised if ``raise_err`` is ``False`` and a color in ``colors`` is unsupported by ``term`` :type raise_err: bool :param raise_err: Set to ``False`` to return a ``bool`` indicating color support rather than raising ColorUnsupportedError :type colors: [str, ...] """
for color in colors: try: if isinstance(color, str): req_colors = 16 if "bright" in color else 8 ensure(term.number_of_colors >= req_colors, ColorUnsupportedError, "{} is unsupported by your terminal.".format(color)) elif isinstance(color, int): ensure(term.number_of_colors >= color, ColorUnsupportedError, "{} is unsupported by your terminal.".format(color)) except ColorUnsupportedError as e: if raise_err: raise e else: return False else: return True
<SYSTEM_TASK:> Get string-coloring callable <END_TASK> <USER_TASK:> Description: def _get_format_callable(term, color, back_color): """Get string-coloring callable Get callable for string output using ``color`` on ``back_color`` on ``term`` :param term: blessings.Terminal instance :param color: Color that callable will color the string it's passed :param back_color: Back color for the string :returns: callable(s: str) -> str """
if isinstance(color, str): ensure( any(isinstance(back_color, t) for t in [str, type(None)]), TypeError, "back_color must be a str or NoneType" ) if back_color: return getattr(term, "_".join( [color, "on", back_color] )) elif back_color is None: return getattr(term, color) elif isinstance(color, int): return term.on_color(color) else: raise TypeError("Invalid type {} for color".format( type(color) ))
<SYSTEM_TASK:> Draw the progress bar <END_TASK> <USER_TASK:> Description: def draw(self, value, newline=True, flush=True): """Draw the progress bar :type value: int :param value: Progress value relative to ``self.max_value`` :type newline: bool :param newline: If this is set, a newline will be written after drawing """
# This is essentially winch-handling without having # to do winch-handling; cleanly redrawing on winch is difficult # and out of the intended scope of this class; we *can* # however, adjust the next draw to be proper by re-measuring # the terminal since the code is mostly written dynamically # and many attributes and dynamically calculated properties. self._measure_terminal() # To avoid zero division, set amount_complete to 100% if max_value has been stupidly set to 0 amount_complete = 1.0 if self.max_value == 0 else value / self.max_value fill_amount = int(floor(amount_complete * self.max_width)) empty_amount = self.max_width - fill_amount # e.g., '10/20' if 'fraction' or '50%' if 'percentage' amount_complete_str = ( u"{}/{}".format(value, self.max_value) if self._num_rep == "fraction" else u"{}%".format(int(floor(amount_complete * 100))) ) # Write title if supposed to be above if self._title_pos == "above": title_str = u"{}{}\n".format( " " * self._indent, self.title, ) self._write(title_str, ignore_overflow=True) # Construct just the progress bar bar_str = u''.join([ u(self.filled(self._filled_char * fill_amount)), u(self.empty(self._empty_char * empty_amount)), ]) # Wrap with start and end character bar_str = u"{}{}{}".format(self.start_char, bar_str, self.end_char) # Add on title if supposed to be on left or right if self._title_pos == "left": bar_str = u"{} {}".format(self.title, bar_str) elif self._title_pos == "right": bar_str = u"{} {}".format(bar_str, self.title) # Add indent bar_str = u''.join([" " * self._indent, bar_str]) # Add complete percentage or fraction bar_str = u"{} {}".format(bar_str, amount_complete_str) # Set back to normal after printing bar_str = u"{}{}".format(bar_str, self.term.normal) # Finally, write the completed bar_str self._write(bar_str, s_length=self.full_line_width) # Write title if supposed to be below if self._title_pos == "below": title_str = u"\n{}{}".format( " " * self._indent, self.title, ) self._write(title_str, ignore_overflow=True) # Newline to wrap up if newline: self.cursor.newline() if flush: self.cursor.flush()
<SYSTEM_TASK:> Get the value from a text node. <END_TASK> <USER_TASK:> Description: def get_text(nodelist): """Get the value from a text node."""
value = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: value.append(node.data) return ''.join(value)
<SYSTEM_TASK:> Send a request with parameters. <END_TASK> <USER_TASK:> Description: def _request(self, url, params=None, timeout=10): """Send a request with parameters."""
rsp = self._session.get(url, params=params, timeout=timeout) rsp.raise_for_status() return rsp.text.strip()
<SYSTEM_TASK:> Send a login request with paramerters. <END_TASK> <USER_TASK:> Description: def _login_request(self, username=None, secret=None): """Send a login request with paramerters."""
url = 'http://' + self._host + '/login_sid.lua' params = {} if username: params['username'] = username if secret: params['response'] = secret plain = self._request(url, params) dom = xml.dom.minidom.parseString(plain) sid = get_text(dom.getElementsByTagName('SID')[0].childNodes) challenge = get_text( dom.getElementsByTagName('Challenge')[0].childNodes) return (sid, challenge)
<SYSTEM_TASK:> Get the DOM elements for the device list. <END_TASK> <USER_TASK:> Description: def get_device_elements(self): """Get the DOM elements for the device list."""
plain = self._aha_request('getdevicelistinfos') dom = xml.dom.minidom.parseString(plain) _LOGGER.debug(dom) return dom.getElementsByTagName("device")
<SYSTEM_TASK:> Get the DOM element for the specified device. <END_TASK> <USER_TASK:> Description: def get_device_element(self, ain): """Get the DOM element for the specified device."""
elements = self.get_device_elements() for element in elements: if element.getAttribute('identifier') == ain: return element return None
<SYSTEM_TASK:> Get the list of all known devices. <END_TASK> <USER_TASK:> Description: def get_devices(self): """Get the list of all known devices."""
devices = [] for element in self.get_device_elements(): device = FritzhomeDevice(self, node=element) devices.append(device) return devices
<SYSTEM_TASK:> Returns a device specified by the AIN. <END_TASK> <USER_TASK:> Description: def get_device_by_ain(self, ain): """Returns a device specified by the AIN."""
devices = self.get_devices() for device in devices: if device.ain == ain: return device
<SYSTEM_TASK:> Get the thermostate state. <END_TASK> <USER_TASK:> Description: def get_hkr_state(self): """Get the thermostate state."""
self.update() try: return { 126.5: 'off', 127.0: 'on', self.eco_temperature: 'eco', self.comfort_temperature: 'comfort' }[self.target_temperature] except KeyError: return 'manual'
<SYSTEM_TASK:> Set the state of the thermostat. <END_TASK> <USER_TASK:> Description: def set_hkr_state(self, state): """Set the state of the thermostat. Possible values for state are: 'on', 'off', 'comfort', 'eco'. """
try: value = { 'off': 0, 'on': 100, 'eco': self.eco_temperature, 'comfort': self.comfort_temperature }[state] except KeyError: return self.set_target_temperature(value)
<SYSTEM_TASK:> Writes ``s`` to the terminal output stream <END_TASK> <USER_TASK:> Description: def write(self, s): """Writes ``s`` to the terminal output stream Writes can be disabled by setting the environment variable `PROGRESSIVE_NOWRITE` to `'True'` """
should_write_s = os.getenv('PROGRESSIVE_NOWRITE') != "True" if should_write_s: self._stream.write(s)
<SYSTEM_TASK:> Saves current cursor position, so that it can be restored later <END_TASK> <USER_TASK:> Description: def save(self): """Saves current cursor position, so that it can be restored later"""
self.write(self.term.save) self._saved = True
<SYSTEM_TASK:> Effects a newline by moving the cursor down and clearing <END_TASK> <USER_TASK:> Description: def newline(self): """Effects a newline by moving the cursor down and clearing"""
self.write(self.term.move_down) self.write(self.term.clear_bol)
<SYSTEM_TASK:> Attach a gffutils.FeatureDB for access to features. <END_TASK> <USER_TASK:> Description: def attach_db(self, db): """ Attach a gffutils.FeatureDB for access to features. Useful if you want to attach a db after this instance has already been created. Parameters ---------- db : gffutils.FeatureDB """
if db is not None: if isinstance(db, basestring): db = gffutils.FeatureDB(db) if not isinstance(db, gffutils.FeatureDB): raise ValueError( "`db` must be a filename or a gffutils.FeatureDB") self._kwargs['db'] = db self.db = db
<SYSTEM_TASK:> Generator of features. <END_TASK> <USER_TASK:> Description: def features(self, ignore_unknown=False): """ Generator of features. If a gffutils.FeatureDB is attached, returns a pybedtools.Interval for every feature in the dataframe's index. Parameters ---------- ignore_unknown : bool If True, silently ignores features that are not found in the db. """
if not self.db: raise ValueError("Please attach a gffutils.FeatureDB") for i in self.data.index: try: yield gffutils.helpers.asinterval(self.db[i]) except gffutils.FeatureNotFoundError: if ignore_unknown: continue else: raise gffutils.FeatureNotFoundError('%s not found' % i)
<SYSTEM_TASK:> Returns a copy that only has rows corresponding to feature names in x. <END_TASK> <USER_TASK:> Description: def reindex_to(self, x, attribute="Name"): """ Returns a copy that only has rows corresponding to feature names in x. Parameters ---------- x : str or pybedtools.BedTool BED, GFF, GTF, or VCF where the "Name" field (that is, the value returned by feature['Name']) or any arbitrary attribute attribute : str Attribute containing the name of the feature to use as the index. """
names = [i[attribute] for i in x] new = self.copy() new.data = new.data.reindex(names) return new
<SYSTEM_TASK:> Radviz plot. <END_TASK> <USER_TASK:> Description: def radviz(self, column_names, transforms=dict(), **kwargs): """ Radviz plot. Useful for exploratory visualization, a radviz plot can show multivariate data in 2D. Conceptually, the variables (here, specified in `column_names`) are distributed evenly around the unit circle. Then each point (here, each row in the dataframe) is attached to each variable by a spring, where the stiffness of the spring is proportional to the value of corresponding variable. The final position of a point represents the equilibrium position with all springs pulling on it. In practice, each variable is normalized to 0-1 (by subtracting the mean and dividing by the range). This is a very exploratory plot. The order of `column_names` will affect the results, so it's best to try a couple different orderings. For other caveats, see [1]. Additional kwargs are passed to self.scatter, so subsetting, callbacks, and other configuration can be performed using options for that method (e.g., `genes_to_highlight` is particularly useful). Parameters ---------- column_names : list Which columns of the dataframe to consider. The columns provided should only include numeric data, and they should not contain any NaN, inf, or -inf values. transforms : dict Dictionary mapping column names to transformations that will be applied just for the radviz plot. For example, np.log1p is a useful function. If a column name is not in this dictionary, it will be used as-is. ax : matplotlib.Axes If not None, then plot the radviz on this axes. If None, then a new figure will be created. kwargs : dict Additional arguments are passed to self.scatter. Note that not all possible kwargs for self.scatter are necessarily useful for a radviz plot (for example, margninal histograms would not be meaningful). Notes ----- This method adds two new variables to self.data: "radviz_x" and "radviz_y". It then calls the self.scatter method, using these new variables. The data transformation was adapted from the pandas.tools.plotting.radviz function. References ---------- [1] Hoffman,P.E. et al. (1997) DNA visual and analytic data mining. In the Proceedings of the IEEE Visualization. Phoenix, AZ, pp. 437-441. [2] http://www.agocg.ac.uk/reports/visual/casestud/brunsdon/radviz.htm [3] http://pandas.pydata.org/pandas-docs/stable/visualization.html\ #radviz """
# make a copy of data x = self.data[column_names].copy() for k, v in transforms.items(): x[k] = v(x[k]) def normalize(series): mn = min(series) mx = max(series) return (series - mn) / (mx - mn) df = x.apply(normalize) to_plot = [] n = len(column_names) s = np.array([(np.cos(t), np.sin(t)) for t in [2.0 * np.pi * (i / float(n)) for i in range(n)]]) for i in range(len(x)): row = df.irow(i).values row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1) to_plot.append((s * row_).sum(axis=0) / row.sum()) x_, y_ = zip(*to_plot) self.data['radviz_x'] = x_ self.data['radviz_y'] = y_ ax = self.scatter('radviz_x', 'radviz_y', **kwargs) ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor='none')) for xy, name in zip(s, column_names): ax.add_patch(patches.Circle(xy, radius=0.025, facecolor='gray')) if xy[0] < 0.0 and xy[1] < 0.0: ax.text(xy[0] - 0.025, xy[1] - 0.025, name, ha='right', va='top', size='small') elif xy[0] < 0.0 and xy[1] >= 0.0: ax.text(xy[0] - 0.025, xy[1] + 0.025, name, ha='right', va='bottom', size='small') elif xy[0] >= 0.0 and xy[1] < 0.0: ax.text(xy[0] + 0.025, xy[1] - 0.025, name, ha='left', va='top', size='small') elif xy[0] >= 0.0 and xy[1] >= 0.0: ax.text(xy[0] + 0.025, xy[1] + 0.025, name, ha='left', va='bottom', size='small') ax.axis('equal') return ax
<SYSTEM_TASK:> Remove features not found in the `gffutils.FeatureDB`. This will <END_TASK> <USER_TASK:> Description: def strip_unknown_features(self): """ Remove features not found in the `gffutils.FeatureDB`. This will typically include 'ambiguous', 'no_feature', etc, but can also be useful if the database was created from a different one than was used to create the table. """
if not self.db: return self ind = [] for i, gene_id in enumerate(self.data.index): try: self.db[gene_id] ind.append(i) except gffutils.FeatureNotFoundError: pass ind = np.array(ind) return self.__class__(self.data.ix[ind], **self._kwargs)
<SYSTEM_TASK:> Returns a boolean index of genes that have a peak nearby. <END_TASK> <USER_TASK:> Description: def genes_with_peak(self, peaks, transform_func=None, split=False, intersect_kwargs=None, id_attribute='ID', *args, **kwargs): """ Returns a boolean index of genes that have a peak nearby. Parameters ---------- peaks : string or pybedtools.BedTool If string, then assume it's a filename to a BED/GFF/GTF file of intervals; otherwise use the pybedtools.BedTool object directly. transform_func : callable This function will be applied to each gene object returned by self.features(). Additional args and kwargs are passed to `transform_func`. For example, if you're looking for peaks within 1kb upstream of TSSs, then pybedtools.featurefuncs.TSS would be a useful `transform_func`, and you could supply additional kwargs of `upstream=1000` and `downstream=0`. This function can return iterables of features, too. For example, you might want to look for peaks falling within the exons of a gene. In this case, `transform_func` should return an iterable of pybedtools.Interval objects. The only requirement is that the `name` field of any feature matches the index of the dataframe. intersect_kwargs : dict kwargs passed to pybedtools.BedTool.intersect. id_attribute : str The attribute in the GTF or GFF file that contains the id of the gene. For meaningful results to be returned, a gene's ID be also found in the index of the dataframe. For GFF files, typically you'd use `id_attribute="ID"`. For GTF files, you'd typically use `id_attribute="gene_id"`. """
def _transform_func(x): """ In order to support transform funcs that return a single feature or an iterable of features, we need to wrap it """ result = transform_func(x) if isinstance(result, pybedtools.Interval): result = [result] for i in result: if i: yield result intersect_kwargs = intersect_kwargs or {} if not self._cached_features: self._cached_features = pybedtools\ .BedTool(self.features())\ .saveas() if transform_func: if split: features = self._cached_features\ .split(_transform_func, *args, **kwargs) else: features = self._cached_features\ .each(transform_func, *args, **kwargs) else: features = self._cached_features hits = list(set([i[id_attribute] for i in features.intersect( peaks, **intersect_kwargs)])) return self.data.index.isin(hits)
<SYSTEM_TASK:> Create a BED file with padj encoded as color <END_TASK> <USER_TASK:> Description: def colormapped_bedfile(self, genome, cmap=None): """ Create a BED file with padj encoded as color Features will be colored according to adjusted pval (phred transformed). Downregulated features have the sign flipped. Parameters ---------- cmap : matplotlib colormap Default is matplotlib.cm.RdBu_r Notes ----- Requires a FeatureDB to be attached. """
if self.db is None: raise ValueError("FeatureDB required") db = gffutils.FeatureDB(self.db) def scored_feature_generator(d): for i in range(len(d)): try: feature = db[d.ix[i]] except gffutils.FeatureNotFoundError: raise gffutils.FeatureNotFoundError(d.ix[i]) score = -10 * np.log10(d.padj[i]) lfc = d.log2FoldChange[i] if np.isnan(lfc): score = 0 if lfc < 0: score *= -1 feature.score = str(score) feature = extend_fields( gff2bed(gffutils.helpers.asinterval(feature)), 9) fields = feature.fields[:] fields[6] = fields[1] fields[7] = fields[2] fields.append(str(d.padj[i])) fields.append(str(d.pval[i])) fields.append('%.3f' % d.log2FoldChange[i]) fields.append('%.3f' % d.baseMeanB[i]) fields.append('%.3f' % d.baseMeanB[i]) yield pybedtools.create_interval_from_list(fields) x = pybedtools.BedTool(scored_feature_generator(self)).saveas() norm = x.colormap_normalize() if cmap is None: cmap = cm.RdBu_r cmap = colormap_adjust.cmap_center_point_adjust( cmap, [norm.vmin, norm.vmax], 0) def score_zeroer(f): f.score = '0' return f return x.each(add_color, cmap=cmap, norm=norm)\ .sort()\ .each(score_zeroer)\ .truncate_to_chrom(genome)\ .saveas()
<SYSTEM_TASK:> Returns an array of genes in `genelist`, using `bins` bins. <END_TASK> <USER_TASK:> Description: def _array_parallel(fn, cls, genelist, chunksize=250, processes=1, **kwargs): """ Returns an array of genes in `genelist`, using `bins` bins. `genelist` is a list of pybedtools.Interval objects Splits `genelist` into pieces of size `chunksize`, creating an array for each chunk and merging ret A chunksize of 25-100 seems to work well on 8 cores. """
pool = multiprocessing.Pool(processes) chunks = list(chunker(genelist, chunksize)) # pool.map can only pass a single argument to the mapped function, so you # need this trick for passing multiple arguments; idea from # http://stackoverflow.com/questions/5442910/ # python-multiprocessing-pool-map-for-multiple-arguments # results = pool.map( func=_array_star, iterable=itertools.izip( itertools.repeat(fn), itertools.repeat(cls), chunks, itertools.repeat(kwargs))) pool.close() pool.join() return results
<SYSTEM_TASK:> Unpacks the tuple `args` and calls _array. Needed to pass multiple args to <END_TASK> <USER_TASK:> Description: def _array_star(args): """ Unpacks the tuple `args` and calls _array. Needed to pass multiple args to a pool.map-ed function """
fn, cls, genelist, kwargs = args return _array(fn, cls, genelist, **kwargs)
<SYSTEM_TASK:> Bin data for bigwig and save to disk. <END_TASK> <USER_TASK:> Description: def to_npz(self, bigwig, metric='mean0', outdir=None): """ Bin data for bigwig and save to disk. The .npz file will have the pattern {outdir}/{bigwig}.{chrom}.{windowsize}.{metric}.npz and will have two arrays, x (genomic coordinates of midpoints of each window) and y (metric for each window). It can be loaded like this:: d = np.load(filename, mmap_mode='r') bigwig : str or BigWigSignal object BigWig data that will be used to create the array metric : 'covered', 'sum', 'mean0', 'mean' Metric to store in array, as reported by bigWigAverageOverBed: * "covered": the number of bases covered by the bigWig. * "sum": sum of values over all bases covered * "mean0": average over bases with non-covered bases counted as zeros * mean: average over just the covered bases outdir : str or None Where to store output filenames. If None, store the file in the same directory as the bigwig file. """
if isinstance(bigwig, _genomic_signal.BigWigSignal): bigwig = bigwig.fn if outdir is None: outdir = os.path.dirname(bigwig) basename = os.path.basename(bigwig) windowsize = self.windowsize outfiles = [] for chrom in self.chroms: tmp_output = pybedtools.BedTool._tmp() windows = self.make_windows(chrom) outfile = os.path.join( outdir, '{basename}.{chrom}.{windowsize}.{metric}'.format(**locals()) + '.npz') cmds = [ 'bigWigAverageOverBed', bigwig, windows, tmp_output] os.system(' '.join(cmds)) names = ['name', 'size', 'covered', 'sum', 'mean0', 'mean'] df = pandas.read_table(tmp_output, names=names) x = df.size.cumsum() - df.size / 2 y = df[metric] np.savez(outfile, x=x, y=y) outfiles.append(outfile) del x, y, df return outfiles
<SYSTEM_TASK:> Compares two genomic signal objects and outputs results as a bedGraph file. <END_TASK> <USER_TASK:> Description: def compare(signal1, signal2, features, outfn, comparefunc=np.subtract, batchsize=5000, array_kwargs=None, verbose=False): """ Compares two genomic signal objects and outputs results as a bedGraph file. Can be used for entire genome-wide comparisons due to its parallel nature. Typical usage would be to create genome-wide windows of equal size to provide as `features`:: windowsize = 10000 features = pybedtools.BedTool().window_maker( genome='hg19', w=windowsize) You will usually want to choose bins for the array based on the final resolution you would like. Say you would like 10-bp bins in the final bedGraph; using the example above you would use array_kwargs={'bins': windowsize/10}. Or, for single-bp resolution (beware: file will be large), use {'bins': windowsize}. Here's how it works. This function: * Takes `batchsize` features at a time from `features` * Constructs normalized (RPMMR) arrays in parallel for each input genomic signal object for those `batchsize` features * Applies `comparefunc` (np.subtract by default) to the arrays to get a "compared" (e.g., difference matrix by default) for the `batchsize` features. * For each row in this matrix, it outputs each nonzero column as a bedGraph format line in `outfn` `comparefunc` is a function with the signature:: def f(x, y): return z where `x` and `y` will be arrays for `signal1` and `signal2` (normalized to RPMMR) and `z` is a new array. By default this is np.subtract, but another common `comparefunc` might be a log2-fold-change function:: def lfc(x, y): return np.log2(x / y) :param signal1: A genomic_signal object :param signal2: Another genomic_signal object :param features: An iterable of pybedtools.Interval objects. A list will be created for every `batchsize` features, so you need enough memory for this. :param comparefunc: Function to use to compare arrays (default is np.subtract) :param outfn: String filename to write bedGraph file :param batchsize: Number of features (each with length `windowsize` bp) to process at a time :param array_kwargs: Kwargs passed directly to genomic_signal.array. Needs `processes` and `chunksize` if you want parallel processing :param verbose: Be noisy """
fout = open(outfn, 'w') fout.write('track type=bedGraph\n') i = 0 this_batch = [] for feature in features: if i <= batchsize: this_batch.append(feature) i += 1 continue if verbose: print 'working on batch of %s' % batchsize sys.stdout.flush() arr1 = signal1.array(this_batch, **array_kwargs).astype(float) arr2 = signal2.array(this_batch, **array_kwargs).astype(float) arr1 /= signal1.million_mapped_reads() arr2 /= signal2.million_mapped_reads() compared = comparefunc(arr1, arr2) for feature, row in itertools.izip(this_batch, compared): start = feature.start bins = len(row) binsize = len(feature) / len(row) # Quickly move on if nothing here. speed increase prob best for # sparse data if sum(row) == 0: continue for j in range(0, len(row)): score = row[j] stop = start + binsize if score != 0: fout.write('\t'.join([ feature.chrom, str(start), str(stop), str(score)]) + '\n') start = start + binsize this_batch = [] i = 0 fout.close()
<SYSTEM_TASK:> Create h5py File object with cache specification <END_TASK> <USER_TASK:> Description: def File(name, mode='a', chunk_cache_mem_size=1024**2, w0=0.75, n_cache_chunks=None, **kwds): """Create h5py File object with cache specification This function is basically just a wrapper around the usual h5py.File constructor, but accepts two additional keywords: Parameters ---------- name : str mode : str **kwds : dict (as keywords) Standard h5py.File arguments, passed to its constructor chunk_cache_mem_size : int Number of bytes to use for the chunk cache. Defaults to 1024**2 (1MB), which is also the default for h5py.File -- though it cannot be changed through the standard interface. w0 : float between 0.0 and 1.0 Eviction parameter. Defaults to 0.75. "If the application will access the same data more than once, w0 should be set closer to 0, and if the application does not, w0 should be set closer to 1." --- <https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/> n_cache_chunks : int Number of chunks to be kept in cache at a time. Defaults to the (smallest integer greater than) the square root of the number of elements that can fit into memory. This is just used for the number of slots (nslots) maintained in the cache metadata, so it can be set larger than needed with little cost. """
import sys import numpy as np import h5py name = name.encode(sys.getfilesystemencoding()) open(name, mode).close() # Just make sure the file exists if mode in [m+b for m in ['w', 'w+', 'r+', 'a', 'a+'] for b in ['', 'b']]: mode = h5py.h5f.ACC_RDWR else: mode = h5py.h5f.ACC_RDONLY if 'dtype' in kwds: bytes_per_object = np.dtype(kwds['dtype']).itemsize else: bytes_per_object = np.dtype(np.float).itemsize # assume float as most likely if not n_cache_chunks: n_cache_chunks = int(np.ceil(np.sqrt(chunk_cache_mem_size / bytes_per_object))) nslots = _find_next_prime(100 * n_cache_chunks) propfaid = h5py.h5p.create(h5py.h5p.FILE_ACCESS) settings = list(propfaid.get_cache()) settings[1:] = (nslots, chunk_cache_mem_size, w0) propfaid.set_cache(*settings) return h5py.File(h5py.h5f.open(name, flags=mode, fapl=propfaid), **kwds)
<SYSTEM_TASK:> Save data from a Chipseq object. <END_TASK> <USER_TASK:> Description: def save(c, prefix, relative_paths=True): """ Save data from a Chipseq object. Parameters ---------- c : Chipseq object Chipseq object, most likely after calling the `diffed_array` method prefix : str Prefix, including any leading directory paths, to save the data. relative_paths : bool If True (default), then the path names in the `prefix.info` file will be relative to `prefix`. Otherwise, they will be absolute. The following files will be created: :prefix.intervals: A BED file (or GFF, GTF, or VCF as appropriate) of the features used for the array :prefix.info: A YAML-format file indicating the IP and control BAM files, any array kwargs, the database filename, and any minibrowser local coverage args. These are all needed to reconstruct a new Chipseq object. Path names will be relative to `prefix`. :prefix.npz: A NumPy .npz file with keys 'diffed_array', 'ip_array', and 'control_array' """
dirname = os.path.dirname(prefix) pybedtools.BedTool(c.features).saveas(prefix + '.intervals') def usepath(f): if relative_paths: return os.path.relpath(f, start=dirname) else: return os.path.abspath(f) with open(prefix + '.info', 'w') as fout: info = { 'ip_bam': usepath(c.ip.fn), 'control_bam': usepath(c.control.fn), 'array_kwargs': c.array_kwargs, 'dbfn': usepath(c.dbfn), 'browser_local_coverage_kwargs': c.browser_local_coverage_kwargs, 'relative_paths': relative_paths, } fout.write(yaml.dump(info, default_flow_style=False)) np.savez( prefix, diffed_array=c.diffed_array, ip_array=c.ip_array, control_array=c.control_array )
<SYSTEM_TASK:> Streamlined version of matplotlib's `xcorr`, without the plots. <END_TASK> <USER_TASK:> Description: def xcorr(x, y, maxlags): """ Streamlined version of matplotlib's `xcorr`, without the plots. :param x, y: NumPy arrays to cross-correlate :param maxlags: Max number of lags; result will be `2*maxlags+1` in length """
xlen = len(x) ylen = len(y) assert xlen == ylen c = np.correlate(x, y, mode=2) # normalize c /= np.sqrt(np.dot(x, x) * np.dot(y, y)) lags = np.arange(-maxlags, maxlags + 1) c = c[xlen - 1 - maxlags:xlen + maxlags] return c
<SYSTEM_TASK:> Plot the scaled ChIP-seq data. <END_TASK> <USER_TASK:> Description: def plot(self, x, row_order=None, imshow_kwargs=None, strip=True): """ Plot the scaled ChIP-seq data. :param x: X-axis to use (e.g, for TSS +/- 1kb with 100 bins, this would be `np.linspace(-1000, 1000, 100)`) :param row_order: Array-like object containing row order -- typically the result of an `np.argsort` call. :param strip: Include axes along the left side with points that can be clicked to spawn a minibrowser for that feature. """
nrows = self.diffed_array.shape[0] if row_order is None: row_order = np.arange(nrows) extent = (min(x), max(x), 0, nrows) axes_info = metaseq.plotutils.matrix_and_line_shell(strip=strip) fig, matrix_ax, line_ax, strip_ax, cbar_ax = axes_info _imshow_kwargs = dict( aspect='auto', extent=extent, interpolation='nearest') if imshow_kwargs: _imshow_kwargs.update(imshow_kwargs) if 'cmap' not in _imshow_kwargs: _imshow_kwargs['cmap'] = metaseq.colormap_adjust.smart_colormap( self.diffed_array.min(), self.diffed_array.max() ) mappable = matrix_ax.imshow( self.diffed_array[row_order], **_imshow_kwargs) plt.colorbar(mappable, cbar_ax) line_ax.plot(x, self.diffed_array.mean(axis=0)) if strip_ax: line, = strip_ax.plot(np.zeros((nrows,)), np.arange(nrows) + 0.5, **self._strip_kwargs) line.features = self.features line.ind = row_order matrix_ax.axis('tight') if strip_ax: strip_ax.xaxis.set_visible(False) matrix_ax.yaxis.set_visible(False) matrix_ax.xaxis.set_visible(False) if self.db: self.minibrowser = GeneChipseqMiniBrowser( [self.ip, self.control], db=self.db, plotting_kwargs=self.browser_plotting_kwargs, local_coverage_kwargs=self.browser_local_coverage_kwargs) else: self.minibrowser = SignalChipseqMiniBrowser( [self.ip, self.control], plotting_kwargs=self.browser_plotting_kwargs, local_coverage_kwargs=self.browser_local_coverage_kwargs) fig.canvas.mpl_connect('pick_event', self.callback) self.fig = fig self.axes = { 'matrix_ax': matrix_ax, 'strip_ax': strip_ax, 'line_ax': line_ax, 'cbar_ax': cbar_ax }
<SYSTEM_TASK:> Callback function to spawn a mini-browser when a feature is clicked. <END_TASK> <USER_TASK:> Description: def callback(self, event): """ Callback function to spawn a mini-browser when a feature is clicked. """
artist = event.artist ind = artist.ind limit = 5 browser = True if len(event.ind) > limit: print "more than %s genes selected; not spawning browsers" % limit browser = False for i in event.ind: feature = artist.features[ind[i]] print feature, if browser: self.minibrowser.plot(feature)
<SYSTEM_TASK:> Remove all the registered observers for the given event name. <END_TASK> <USER_TASK:> Description: def remove(self, event=None): """ Remove all the registered observers for the given event name. Arguments: event (str): event name to remove. """
observers = self._pool.get(event) if observers: self._pool[event] = []
<SYSTEM_TASK:> Triggers event observers for the given event name, <END_TASK> <USER_TASK:> Description: def trigger(self, event, *args, **kw): """ Triggers event observers for the given event name, passing custom variadic arguments. """
observers = self._pool.get(event) # If no observers registered for the event, do no-op if not observers or len(observers) == 0: return None # Trigger observers coroutines in FIFO sequentially for fn in observers: # Review: perhaps this should not wait yield from fn(*args, **kw)
<SYSTEM_TASK:> Repeatedly call `coro` coroutine function until `coro_test` returns `True`. <END_TASK> <USER_TASK:> Description: def until(coro, coro_test, assert_coro=None, *args, **kw): """ Repeatedly call `coro` coroutine function until `coro_test` returns `True`. This function is the inverse of `paco.whilst()`. This function is a coroutine. Arguments: coro (coroutinefunction): coroutine function to execute. coro_test (coroutinefunction): coroutine function to test. assert_coro (coroutinefunction): optional assertion coroutine used to determine if the test passed or not. *args (mixed): optional variadic arguments to pass to `coro` function. Raises: TypeError: if input arguments are invalid. Returns: list: result values returned by `coro`. Usage:: calls = 0 async def task(): nonlocal calls calls += 1 return calls async def calls_gt_4(): return calls > 4 await paco.until(task, calls_gt_4) # => [1, 2, 3, 4, 5] """
@asyncio.coroutine def assert_coro(value): return not value return (yield from whilst(coro, coro_test, assert_coro=assert_coro, *args, **kw))
<SYSTEM_TASK:> Creates a function that accepts one or more arguments of a function and <END_TASK> <USER_TASK:> Description: def curry(arity_or_fn=None, ignore_kwargs=False, evaluator=None, *args, **kw): """ Creates a function that accepts one or more arguments of a function and either invokes func returning its result if at least arity number of arguments have been provided, or returns a function that accepts the remaining function arguments until the function arity is satisfied. This function is overloaded: you can pass a function or coroutine function as first argument or an `int` indicating the explicit function arity. Function arity can be inferred via function signature or explicitly passed via `arity_or_fn` param. You can optionally ignore keyword based arguments as well passsing the `ignore_kwargs` param with `True` value. This function can be used as decorator. Arguments: arity_or_fn (int|function|coroutinefunction): function arity to curry or function to curry. ignore_kwargs (bool): ignore keyword arguments as arity to satisfy during curry. evaluator (function): use a custom arity evaluator function. *args (mixed): mixed variadic arguments for partial function application. *kwargs (mixed): keyword variadic arguments for partial function application. Raises: TypeError: if function is not a function or a coroutine function. Returns: function or coroutinefunction: function will be returned until all the function arity is satisfied, where a coroutine function will be returned instead. Usage:: # Function signature inferred function arity @paco.curry async def task(x, y, z=0): return x * y + z await task(4)(4)(z=8) # => 24 # User defined function arity @paco.curry(4) async def task(x, y, *args, **kw): return x * y + args[0] * args[1] await task(4)(4)(8)(8) # => 80 # Ignore keyword arguments from arity @paco.curry(ignore_kwargs=True) async def task(x, y, z=0): return x * y await task(4)(4) # => 16 """
def isvalidarg(x): return all([ x.kind != x.VAR_KEYWORD, x.kind != x.VAR_POSITIONAL, any([ not ignore_kwargs, ignore_kwargs and x.default == x.empty ]) ]) def params(fn): return inspect.signature(fn).parameters.values() def infer_arity(fn): return len([x for x in params(fn) if isvalidarg(x)]) def merge_args(acc, args, kw): _args, _kw = acc _args = _args + args _kw = _kw or {} _kw.update(kw) return _args, _kw def currier(arity, acc, fn, *args, **kw): """ Function either continues curring of the arguments or executes function if desired arguments have being collected. If function curried is variadic then execution without arguments will finish curring and trigger the function """ # Merge call arguments with accumulated ones _args, _kw = merge_args(acc, args, kw) # Get current function call accumulated arity current_arity = len(args) # Count keyword params as arity to satisfy, if required if not ignore_kwargs: current_arity += len(kw) # Decrease function arity to satisfy arity -= current_arity # Use user-defined custom arity evaluator strategy, if present currify = evaluator and evaluator(acc, fn) # If arity is not satisfied, return recursive partial function if currify is not False and arity > 0: return functools.partial(currier, arity, (_args, _kw), fn) # If arity is satisfied, instanciate coroutine and return it return fn(*_args, **_kw) def wrapper(fn, *args, **kw): if not iscallable(fn): raise TypeError('paco: first argument must a coroutine function, ' 'a function or a method.') # Infer function arity, if required arity = (arity_or_fn if isinstance(arity_or_fn, int) else infer_arity(fn)) # Wraps function as coroutine function, if needed. fn = wraps(fn) if isfunc(fn) else fn # Otherwise return recursive currier function return currier(arity, (args, kw), fn, *args, **kw) if arity > 0 else fn # Return currier function or decorator wrapper return (wrapper(arity_or_fn, *args, **kw) if iscallable(arity_or_fn) else wrapper)
<SYSTEM_TASK:> Creates a coroutine function based on the composition of the passed <END_TASK> <USER_TASK:> Description: def compose(*coros): """ Creates a coroutine function based on the composition of the passed coroutine functions. Each function consumes the yielded result of the coroutine that follows. Composing coroutine functions f(), g(), and h() would produce the result of f(g(h())). Arguments: *coros (coroutinefunction): variadic coroutine functions to compose. Raises: RuntimeError: if cannot execute a coroutine function. Returns: coroutinefunction Usage:: async def sum_1(num): return num + 1 async def mul_2(num): return num * 2 coro = paco.compose(sum_1, mul_2, sum_1) await coro(2) # => 7 """
# Make list to inherit built-in type methods coros = list(coros) @asyncio.coroutine def reducer(acc, coro): return (yield from coro(acc)) @asyncio.coroutine def wrapper(acc): return (yield from reduce(reducer, coros, initializer=acc, right=True)) return wrapper
<SYSTEM_TASK:> Prompts user for API keys, adds them in an .ini file stored in the same <END_TASK> <USER_TASK:> Description: def add_config(): """ Prompts user for API keys, adds them in an .ini file stored in the same location as that of the script """
genius_key = input('Enter Genius key : ') bing_key = input('Enter Bing key : ') CONFIG['keys']['bing_key'] = bing_key CONFIG['keys']['genius_key'] = genius_key with open(config_path, 'w') as configfile: CONFIG.write(configfile)
<SYSTEM_TASK:> Return a binary string containing the raw HID report descriptor. <END_TASK> <USER_TASK:> Description: def getRawReportDescriptor(self): """ Return a binary string containing the raw HID report descriptor. """
descriptor = _hidraw_report_descriptor() size = ctypes.c_uint() self._ioctl(_HIDIOCGRDESCSIZE, size, True) descriptor.size = size self._ioctl(_HIDIOCGRDESC, descriptor, True) return ''.join(chr(x) for x in descriptor.value[:size.value])
<SYSTEM_TASK:> Returns device name as an unicode object. <END_TASK> <USER_TASK:> Description: def getName(self, length=512): """ Returns device name as an unicode object. """
name = ctypes.create_string_buffer(length) self._ioctl(_HIDIOCGRAWNAME(length), name, True) return name.value.decode('UTF-8')
<SYSTEM_TASK:> Returns device physical address as a string. <END_TASK> <USER_TASK:> Description: def getPhysicalAddress(self, length=512): """ Returns device physical address as a string. See hidraw documentation for value signification, as it depends on device's bus type. """
name = ctypes.create_string_buffer(length) self._ioctl(_HIDIOCGRAWPHYS(length), name, True) return name.value
<SYSTEM_TASK:> Returns `True` if every element in a given iterable satisfies the coroutine <END_TASK> <USER_TASK:> Description: def every(coro, iterable, limit=1, loop=None): """ Returns `True` if every element in a given iterable satisfies the coroutine asynchronous test. If any iteratee coroutine call returns `False`, the process is inmediately stopped, and `False` will be returned. You can increase the concurrency limit for a fast race condition scenario. This function is a coroutine. This function can be composed in a pipeline chain with ``|`` operator. Arguments: coro (coroutine function): coroutine function to call with values to reduce. iterable (iterable): an iterable collection yielding coroutines functions. limit (int): max concurrency execution limit. Use ``0`` for no limit. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if input arguments are not valid. Returns: bool: `True` if all the values passes the test, otherwise `False`. Usage:: async def gt_10(num): return num > 10 await paco.every(gt_10, [1, 2, 3, 11]) # => False await paco.every(gt_10, [11, 12, 13]) # => True """
assert_corofunction(coro=coro) assert_iter(iterable=iterable) # Reduced accumulator value passes = True # Handle empty iterables if len(iterable) == 0: return passes # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop) # Tester function to guarantee the file is canceled. @asyncio.coroutine def tester(element): nonlocal passes if not passes: return None if not (yield from coro(element)): # Flag as not test passed passes = False # Force ignoring pending coroutines pool.cancel() # Iterate and attach coroutine for defer scheduling for element in iterable: pool.add(partial(tester, element)) # Wait until all coroutines finish yield from pool.run() return passes
<SYSTEM_TASK:> Return a future aggregating results from the given coroutine objects <END_TASK> <USER_TASK:> Description: def gather(*coros_or_futures, limit=0, loop=None, timeout=None, preserve_order=False, return_exceptions=False): """ Return a future aggregating results from the given coroutine objects with a concurrency execution limit. If all the tasks are done successfully, the returned future’s result is the list of results (in the order of the original sequence, not necessarily the order of results arrival). If return_exceptions is `True`, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future. All futures must share the same event loop. This functions is mostly compatible with Python standard ``asyncio.gather``, but providing ordered results and concurrency control flow. This function is a coroutine. Arguments: *coros_or_futures (coroutines|list): an iterable collection yielding coroutines functions or futures. limit (int): max concurrency limit. Use ``0`` for no limit. timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. preserve_order (bool): preserves results order. return_exceptions (bool): returns exceptions as valid results. loop (asyncio.BaseEventLoop): optional event loop to use. Returns: list: coroutines returned results. Usage:: async def sum(x, y): return x + y await paco.gather( sum(1, 2), sum(None, 'str'), return_exceptions=True) # => [3, TypeError("unsupported operand type(s) for +: 'NoneType' and 'str'")] # noqa """
# If no coroutines to schedule, return empty list (as Python stdlib) if len(coros_or_futures) == 0: return [] # Support iterable as first argument for better interoperability if len(coros_or_futures) == 1 and isiter(coros_or_futures[0]): coros_or_futures = coros_or_futures[0] # Pre-initialize results results = [None] * len(coros_or_futures) if preserve_order else [] # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop) # Iterate and attach coroutine for defer scheduling for index, coro in enumerate(coros_or_futures): # Validate coroutine object if asyncio.iscoroutinefunction(coro): coro = coro() if not asyncio.iscoroutine(coro): raise TypeError( 'paco: only coroutines or coroutine functions allowed') # Add coroutine to the executor pool pool.add(collect(coro, index, results, preserve_order=preserve_order, return_exceptions=return_exceptions)) # Wait until all the tasks finishes yield from pool.run(timeout=timeout, return_exceptions=return_exceptions) # Returns aggregated results return results
<SYSTEM_TASK:> Wraps a given coroutine function, that when executed, if it takes more <END_TASK> <USER_TASK:> Description: def timeout(coro, timeout=None, loop=None): """ Wraps a given coroutine function, that when executed, if it takes more than the given timeout in seconds to execute, it will be canceled and raise an `asyncio.TimeoutError`. This function is equivalent to Python standard `asyncio.wait_for()` function. This function can be used as decorator. Arguments: coro (coroutinefunction|coroutine): coroutine to wrap. timeout (int|float): max wait timeout in seconds. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if coro argument is not a coroutine function. Returns: coroutinefunction: wrapper coroutine function. Usage:: await paco.timeout(coro, timeout=10) """
@asyncio.coroutine def _timeout(coro): return (yield from asyncio.wait_for(coro, timeout, loop=loop)) @asyncio.coroutine def wrapper(*args, **kw): return (yield from _timeout(coro(*args, **kw))) return _timeout(coro) if asyncio.iscoroutine(coro) else wrapper
<SYSTEM_TASK:> Runs coroutines from a given iterable concurrently without waiting until <END_TASK> <USER_TASK:> Description: def race(iterable, loop=None, timeout=None, *args, **kw): """ Runs coroutines from a given iterable concurrently without waiting until the previous one has completed. Once any of the tasks completes, the main coroutine is immediately resolved, yielding the first resolved value. All coroutines will be executed in the same loop. This function is a coroutine. Arguments: iterable (iterable): an iterable collection yielding coroutines functions or coroutine objects. *args (mixed): mixed variadic arguments to pass to coroutines. loop (asyncio.BaseEventLoop): optional event loop to use. timeout (int|float): timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. *args (mixed): optional variadic argument to pass to coroutine function, if provided. Raises: TypeError: if ``iterable`` argument is not iterable. asyncio.TimoutError: if wait timeout is exceeded. Returns: filtered values (list): ordered list of resultant values. Usage:: async def coro1(): await asyncio.sleep(2) return 1 async def coro2(): return 2 async def coro3(): await asyncio.sleep(1) return 3 await paco.race([coro1, coro2, coro3]) # => 2 """
assert_iter(iterable=iterable) # Store coros and internal state coros = [] resolved = False result = None # Resolve first yielded data from coroutine and stop pending ones @asyncio.coroutine def resolver(index, coro): nonlocal result nonlocal resolved value = yield from coro if not resolved: resolved = True # Flag as not test passed result = value # Force canceling pending coroutines for _index, future in enumerate(coros): if _index != index: future.cancel() # Iterate and attach coroutine for defer scheduling for index, coro in enumerate(iterable): # Validate yielded object isfunction = asyncio.iscoroutinefunction(coro) if not isfunction and not asyncio.iscoroutine(coro): raise TypeError( 'paco: coro must be a coroutine or coroutine function') # Init coroutine function, if required if isfunction: coro = coro(*args, **kw) # Store future tasks coros.append(ensure_future(resolver(index, coro))) # Run coroutines concurrently yield from asyncio.wait(coros, timeout=timeout, loop=loop) return result
<SYSTEM_TASK:> Overload a given callable object to be used with ``|`` operator <END_TASK> <USER_TASK:> Description: def overload(fn): """ Overload a given callable object to be used with ``|`` operator overloading. This is especially used for composing a pipeline of transformation over a single data set. Arguments: fn (function): target function to decorate. Raises: TypeError: if function or coroutine function is not provided. Returns: function: decorated function """
if not isfunction(fn): raise TypeError('paco: fn must be a callable object') spec = getargspec(fn) args = spec.args if not spec.varargs and (len(args) < 2 or args[1] != 'iterable'): raise ValueError('paco: invalid function signature or arity') @functools.wraps(fn) def decorator(*args, **kw): # Check function arity if len(args) < 2: return PipeOverloader(fn, args, kw) # Otherwise, behave like a normal wrapper return fn(*args, **kw) return decorator
<SYSTEM_TASK:> Helper function to consume a synchronous or asynchronous generator. <END_TASK> <USER_TASK:> Description: def consume(generator): # pragma: no cover """ Helper function to consume a synchronous or asynchronous generator. Arguments: generator (generator|asyncgenerator): generator to consume. Returns: list """
# If synchronous generator, just consume and return as list if hasattr(generator, '__next__'): return list(generator) if not PY_35: raise RuntimeError( 'paco: asynchronous iterator protocol not supported') # If asynchronous generator, consume it generator protocol manually buf = [] while True: try: buf.append((yield from generator.__anext__())) except StopAsyncIteration: # noqa break return buf
<SYSTEM_TASK:> Returns `True` if the given value is a function or method object. <END_TASK> <USER_TASK:> Description: def isfunc(x): """ Returns `True` if the given value is a function or method object. Arguments: x (mixed): value to check. Returns: bool """
return any([ inspect.isfunction(x) and not asyncio.iscoroutinefunction(x), inspect.ismethod(x) and not asyncio.iscoroutinefunction(x) ])
<SYSTEM_TASK:> Asserts if a given values are a coroutine function. <END_TASK> <USER_TASK:> Description: def assert_corofunction(**kw): """ Asserts if a given values are a coroutine function. Arguments: **kw (mixed): value to check if it is an iterable. Raises: TypeError: if assertion fails. """
for name, value in kw.items(): if not asyncio.iscoroutinefunction(value): raise TypeError( 'paco: {} must be a coroutine function'.format(name))
<SYSTEM_TASK:> Asserts if a given values implements a valid iterable interface. <END_TASK> <USER_TASK:> Description: def assert_iter(**kw): """ Asserts if a given values implements a valid iterable interface. Arguments: **kw (mixed): value to check if it is an iterable. Raises: TypeError: if assertion fails. """
for name, value in kw.items(): if not isiter(value): raise TypeError( 'paco: {} must be an iterable object'.format(name))
<SYSTEM_TASK:> Schedules the execution of a coroutine function every `x` amount of <END_TASK> <USER_TASK:> Description: def interval(coro, interval=1, times=None, loop=None): """ Schedules the execution of a coroutine function every `x` amount of seconds. The function returns an `asyncio.Task`, which implements also an `asyncio.Future` interface, allowing the user to cancel the execution cycle. This function can be used as decorator. Arguments: coro (coroutinefunction): coroutine function to defer. interval (int/float): number of seconds to repeat the coroutine execution. times (int): optional maximum time of executions. Infinite by default. loop (asyncio.BaseEventLoop, optional): loop to run. Defaults to asyncio.get_event_loop(). Raises: TypeError: if coro argument is not a coroutine function. Returns: future (asyncio.Task): coroutine wrapped as task future. Useful for cancellation and state checking. Usage:: # Usage as function future = paco.interval(coro, 1) # Cancel it after a while... await asyncio.sleep(5) future.cancel() # Usage as decorator @paco.interval(10) async def metrics(): await send_metrics() future = await metrics() """
assert_corofunction(coro=coro) # Store maximum allowed number of calls times = int(times or 0) or float('inf') @asyncio.coroutine def schedule(times, *args, **kw): while times > 0: # Decrement times counter times -= 1 # Schedule coroutine yield from coro(*args, **kw) yield from asyncio.sleep(interval) def wrapper(*args, **kw): return ensure_future(schedule(times, *args, **kw), loop=loop) return wrapper
<SYSTEM_TASK:> Add a grammar rules to _self.rules_, _self.rule2func_, <END_TASK> <USER_TASK:> Description: def addRule(self, doc, func, _preprocess=True): """Add a grammar rules to _self.rules_, _self.rule2func_, and _self.rule2name_ Comments, lines starting with # and blank lines are stripped from doc. We also allow limited form of * and + when there it is of the RHS has a single item, e.g. stmts ::= stmt+ """
fn = func # remove blanks lines and comment lines, e.g. lines starting with "#" doc = os.linesep.join([s for s in doc.splitlines() if s and not re.match("^\s*#", s)]) rules = doc.split() index = [] for i in range(len(rules)): if rules[i] == '::=': index.append(i-1) index.append(len(rules)) for i in range(len(index)-1): lhs = rules[index[i]] rhs = rules[index[i]+2:index[i+1]] rule = (lhs, tuple(rhs)) if _preprocess: rule, fn = self.preprocess(rule, func) # Handle a stripped-down form of *, +, and ?: # allow only one nonterminal on the right-hand side if len(rule[1]) == 1: if rule[1][0] == rule[0]: raise TypeError("Complete recursive rule %s" % rule2str(rule)) repeat = rule[1][-1][-1] if repeat in ('*', '+', '?'): nt = rule[1][-1][:-1] if repeat == '?': new_rule_pair = [rule[0], list((nt,))] self.optional_nt.add(rule[0]) else: self.list_like_nt.add(rule[0]) new_rule_pair = [rule[0], [rule[0]] + list((nt,))] new_rule = rule2str(new_rule_pair) self.addRule(new_rule, func, _preprocess) if repeat == '+': second_rule_pair = (lhs, (nt,)) else: second_rule_pair = (lhs, tuple()) new_rule = rule2str(second_rule_pair) self.addRule(new_rule, func, _preprocess) continue if lhs in self.rules: if rule in self.rules[lhs]: if 'dups' in self.debug and self.debug['dups']: self.duplicate_rule(rule) continue self.rules[lhs].append(rule) else: self.rules[lhs] = [ rule ] self.rule2func[rule] = fn self.rule2name[rule] = func.__name__[2:] self.ruleschanged = True # Note: In empty rules, i.e. len(rule[1] == 0, we don't # call reductions on explicitly. Instead it is computed # implicitly. if self.profile_info is not None and len(rule[1]) > 0: rule_str = self.reduce_string(rule) if rule_str not in self.profile_info: self.profile_info[rule_str] = 0 pass return
<SYSTEM_TASK:> Remove a grammar rules from _self.rules_, _self.rule2func_, <END_TASK> <USER_TASK:> Description: def remove_rules(self, doc): """Remove a grammar rules from _self.rules_, _self.rule2func_, and _self.rule2name_ """
# remove blanks lines and comment lines, e.g. lines starting with "#" doc = os.linesep.join([s for s in doc.splitlines() if s and not re.match("^\s*#", s)]) rules = doc.split() index = [] for i in range(len(rules)): if rules[i] == '::=': index.append(i-1) index.append(len(rules)) for i in range(len(index)-1): lhs = rules[index[i]] rhs = rules[index[i]+2:index[i+1]] rule = (lhs, tuple(rhs)) if lhs not in self.rules: return if rule in self.rules[lhs]: self.rules[lhs].remove(rule) del self.rule2func[rule] del self.rule2name[rule] self.ruleschanged = True # If we are profiling, remove this rule from that as well if self.profile_info is not None and len(rule[1]) > 0: rule_str = self.reduce_string(rule) if rule_str and rule_str in self.profile_info: del self.profile_info[rule_str] pass pass pass return
<SYSTEM_TASK:> Show the stacks of completed symbols. <END_TASK> <USER_TASK:> Description: def errorstack(self, tokens, i, full=False): """Show the stacks of completed symbols. We get this by inspecting the current transitions possible and from that extracting the set of states we are in, and from there we look at the set of symbols before the "dot". If full is True, we show the entire rule with the dot placement. Otherwise just the rule up to the dot. """
print("\n-- Stacks of completed symbols:") states = [s for s in self.edges.values() if s] # States now has the set of states we are in state_stack = set() for state in states: # Find rules which can follow, but keep only # the part before the dot for rule, dot in self.states[state].items: lhs, rhs = rule if dot > 0: if full: state_stack.add( "%s ::= %s . %s" % (lhs, ' '.join(rhs[:dot]), ' '.join(rhs[dot:]))) else: state_stack.add( "%s ::= %s" % (lhs, ' '.join(rhs[:dot]))) pass pass pass for stack in sorted(state_stack): print(stack)
<SYSTEM_TASK:> This is the main entry point from outside. <END_TASK> <USER_TASK:> Description: def parse(self, tokens, debug=None): """This is the main entry point from outside. Passing in a debug dictionary changes the default debug setting. """
self.tokens = tokens if debug: self.debug = debug sets = [ [(1, 0), (2, 0)] ] self.links = {} if self.ruleschanged: self.computeNull() self.newrules = {} self.new2old = {} self.makeNewRules() self.ruleschanged = False self.edges, self.cores = {}, {} self.states = { 0: self.makeState0() } self.makeState(0, self._BOF) for i in range(len(tokens)): sets.append([]) if sets[i] == []: break self.makeSet(tokens, sets, i) else: sets.append([]) self.makeSet(None, sets, len(tokens)) finalitem = (self.finalState(tokens), 0) if finalitem not in sets[-2]: if len(tokens) > 0: if self.debug.get('errorstack', False): self.errorstack(tokens, i-1, str(self.debug['errorstack']) == 'full') self.error(tokens, i-1) else: self.error(None, None) if self.profile_info is not None: self.dump_profile_info() return self.buildTree(self._START, finalitem, tokens, len(sets)-2)
<SYSTEM_TASK:> Bump count of the number of times _rule_ was used <END_TASK> <USER_TASK:> Description: def profile_rule(self, rule): """Bump count of the number of times _rule_ was used"""
rule_str = self.reduce_string(rule) if rule_str not in self.profile_info: self.profile_info[rule_str] = 1 else: self.profile_info[rule_str] += 1
<SYSTEM_TASK:> Show the accumulated results of how many times each rule was used <END_TASK> <USER_TASK:> Description: def get_profile_info(self): """Show the accumulated results of how many times each rule was used"""
return sorted(self.profile_info.items(), key=lambda kv: kv[1], reverse=False) return
<SYSTEM_TASK:> Partial function implementation designed <END_TASK> <USER_TASK:> Description: def partial(coro, *args, **kw): """ Partial function implementation designed for coroutines, allowing variadic input arguments. This function can be used as decorator. arguments: coro (coroutinefunction): coroutine function to wrap. *args (mixed): mixed variadic arguments for partial application. Raises: TypeError: if ``coro`` is not a coroutine function. Returns: coroutinefunction Usage:: async def pow(x, y): return x ** y pow_2 = paco.partial(pow, 2) await pow_2(4) # => 16 """
assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(*_args, **_kw): call_args = args + _args kw.update(_kw) return (yield from coro(*call_args, **kw)) return wrapper
<SYSTEM_TASK:> evaluate simple expression <END_TASK> <USER_TASK:> Description: def eval_expr(expr_str, show_tokens=False, showast=False, showgrammar=False, compile_mode='exec'): """ evaluate simple expression """
parser_debug = {'rules': False, 'transition': False, 'reduce': showgrammar, 'errorstack': True, 'context': True } parsed = parse_expr(expr_str, show_tokens=show_tokens, parser_debug=parser_debug) if showast: print(parsed) assert parsed == 'expr', 'Should have parsed grammar start' evaluator = ExprEvaluator() # What we've been waiting for: Generate source from AST! return evaluator.traverse(parsed)
<SYSTEM_TASK:> Concurrently maps values yielded from an iterable, passing then <END_TASK> <USER_TASK:> Description: def map(coro, iterable, limit=0, loop=None, timeout=None, return_exceptions=False, *args, **kw): """ Concurrently maps values yielded from an iterable, passing then into an asynchronous coroutine function. Mapped values will be returned as list. Items order will be preserved based on origin iterable order. Concurrency level can be configurable via ``limit`` param. This function is the asynchronous equivalent port Python built-in `map()` function. This function is a coroutine. This function can be composed in a pipeline chain with ``|`` operator. Arguments: coro (coroutinefunction): map coroutine function to use. iterable (iterable|asynchronousiterable): an iterable collection yielding coroutines functions. limit (int): max concurrency limit. Use ``0`` for no limit. loop (asyncio.BaseEventLoop): optional event loop to use. timeout (int|float): timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. return_exceptions (bool): returns exceptions as valid results. *args (mixed): optional variadic arguments to be passed to the coroutine map function. Returns: list: ordered list of values yielded by coroutines Usage:: async def mul_2(num): return num * 2 await paco.map(mul_2, [1, 2, 3, 4, 5]) # => [2, 4, 6, 8, 10] """
# Call each iterable but collecting yielded values return (yield from each(coro, iterable, limit=limit, loop=loop, timeout=timeout, collect=True, return_exceptions=return_exceptions))
<SYSTEM_TASK:> Generic decorator for coroutines helper functions allowing <END_TASK> <USER_TASK:> Description: def decorate(fn): """ Generic decorator for coroutines helper functions allowing multiple variadic initialization arguments. This function is intended to be used internally. Arguments: fn (function): target function to decorate. Raises: TypeError: if function or coroutine function is not provided. Returns: function: decorated function. """
if not isfunction(fn): raise TypeError('paco: fn must be a callable object') @functools.wraps(fn) def decorator(*args, **kw): # If coroutine object is passed for arg in args: if iscoro_or_corofunc(arg): return fn(*args, **kw) # Explicit argument must be at least a coroutine if len(args) and args[0] is None: raise TypeError('paco: first argument cannot be empty') def wrapper(coro, *_args, **_kw): # coro must be a valid type if not iscoro_or_corofunc(coro): raise TypeError('paco: first argument must be a ' 'coroutine or coroutine function') # Merge call arguments _args = ((coro,) + (args + _args)) kw.update(_kw) # Trigger original decorated function return fn(*_args, **kw) return wrapper return decorator
<SYSTEM_TASK:> Creates a throttled coroutine function that only invokes <END_TASK> <USER_TASK:> Description: def throttle(coro, limit=1, timeframe=1, return_value=None, raise_exception=False): """ Creates a throttled coroutine function that only invokes ``coro`` at most once per every time frame of seconds or milliseconds. Provide options to indicate whether func should be invoked on the leading and/or trailing edge of the wait timeout. Subsequent calls to the throttled coroutine return the result of the last coroutine invocation. This function can be used as decorator. Arguments: coro (coroutinefunction): coroutine function to wrap with throttle strategy. limit (int): number of coroutine allowed execution in the given time frame. timeframe (int|float): throttle limit time frame in seconds. return_value (mixed): optional return if the throttle limit is reached. Returns the latest returned value by default. raise_exception (bool): raise exception if throttle limit is reached. Raises: RuntimeError: if cannot throttle limit reached (optional). Returns: coroutinefunction Usage:: async def mul_2(num): return num * 2 # Use as simple wrapper throttled = paco.throttle(mul_2, limit=1, timeframe=2) await throttled(2) # => 4 await throttled(3) # ignored! # => 4 await asyncio.sleep(2) await throttled(3) # executed! # => 6 # Use as decorator @paco.throttle(limit=1, timeframe=2) async def mul_2(num): return num * 2 await mul_2(2) # => 4 await mul_2(3) # ignored! # => 4 await asyncio.sleep(2) await mul_2(3) # executed! # => 6 """
assert_corofunction(coro=coro) # Store execution limits limit = max(int(limit), 1) remaning = limit # Turn seconds in milliseconds timeframe = timeframe * 1000 # Keep call state last_call = now() # Cache latest retuned result result = None def stop(): if raise_exception: raise RuntimeError('paco: coroutine throttle limit exceeded') if return_value: return return_value return result def elapsed(): return now() - last_call @asyncio.coroutine def wrapper(*args, **kw): nonlocal result nonlocal remaning nonlocal last_call if elapsed() > timeframe: # Reset reamining calls counter remaning = limit # Update last call time last_call = now() elif elapsed() < timeframe and remaning <= 0: return stop() # Decrease remaining limit remaning -= 1 # Schedule coroutine passing arguments and cache result result = yield from coro(*args, **kw) return result return wrapper
<SYSTEM_TASK:> Repeatedly call `coro` coroutine function while `coro_test` returns `True`. <END_TASK> <USER_TASK:> Description: def whilst(coro, coro_test, assert_coro=None, *args, **kw): """ Repeatedly call `coro` coroutine function while `coro_test` returns `True`. This function is the inverse of `paco.until()`. This function is a coroutine. Arguments: coro (coroutinefunction): coroutine function to execute. coro_test (coroutinefunction): coroutine function to test. assert_coro (coroutinefunction): optional assertion coroutine used to determine if the test passed or not. *args (mixed): optional variadic arguments to pass to `coro` function. Raises: TypeError: if input arguments are invalid. Returns: list: result values returned by `coro`. Usage:: calls = 0 async def task(): nonlocal calls calls += 1 return calls async def calls_lt_4(): return calls > 4 await paco.until(task, calls_lt_4) # => [1, 2, 3, 4, 5] """
assert_corofunction(coro=coro, coro_test=coro_test) # Store yielded values by coroutine results = [] # Set assertion coroutine assert_coro = assert_coro or assert_true # Execute coroutine until a certain while (yield from assert_coro((yield from coro_test()))): results.append((yield from coro(*args, **kw))) return results
<SYSTEM_TASK:> Load a CSV from a file path. <END_TASK> <USER_TASK:> Description: def load_csv(ctx, model, path, header=None, header_exclude=None, **fmtparams): """Load a CSV from a file path. :param ctx: Anthem context :param model: Odoo model name or model klass from env :param path: absolute or relative path to CSV file. If a relative path is given you must provide a value for `ODOO_DATA_PATH` in your environment or set `--odoo-data-path` option. :param header: whitelist of CSV columns to load :param header_exclude: blacklist of CSV columns to not load :param fmtparams: keyword params for `csv_unireader` Usage example:: from pkg_resources import Requirement, resource_string req = Requirement.parse('my-project') load_csv(ctx, ctx.env['res.users'], resource_string(req, 'data/users.csv'), delimiter=',') """
if not os.path.isabs(path): if ctx.options.odoo_data_path: path = os.path.join(ctx.options.odoo_data_path, path) else: raise AnthemError( 'Got a relative path. ' 'Please, provide a value for `ODOO_DATA_PATH` ' 'in your environment or set `--odoo-data-path` option.' ) with open(path, 'rb') as data: load_csv_stream(ctx, model, data, header=header, header_exclude=header_exclude, **fmtparams)
<SYSTEM_TASK:> Load a CSV from a stream. <END_TASK> <USER_TASK:> Description: def load_csv_stream(ctx, model, data, header=None, header_exclude=None, **fmtparams): """Load a CSV from a stream. :param ctx: current anthem context :param model: model name as string or model klass :param data: csv data to load :param header: csv fieldnames whitelist :param header_exclude: csv fieldnames blacklist Usage example:: from pkg_resources import Requirement, resource_stream req = Requirement.parse('my-project') load_csv_stream(ctx, ctx.env['res.users'], resource_stream(req, 'data/users.csv'), delimiter=',') """
_header, _rows = read_csv(data, **fmtparams) header = header if header else _header if _rows: # check if passed header contains all the fields if header != _header and not header_exclude: # if not, we exclude the rest of the fields header_exclude = [x for x in _header if x not in header] if header_exclude: # exclude fields from header as well as respective values header = [x for x in header if x not in header_exclude] # we must loop trough all the rows too to pop values # since odoo import works only w/ reader and not w/ dictreader pop_idxs = [_header.index(x) for x in header_exclude] rows = [] for i, row in enumerate(_rows): rows.append( [x for j, x in enumerate(row) if j not in pop_idxs] ) else: rows = list(_rows) if rows: load_rows(ctx, model, header, rows)
<SYSTEM_TASK:> formats python2 statements <END_TASK> <USER_TASK:> Description: def format_python2_stmts(python_stmts, show_tokens=False, showast=False, showgrammar=False, compile_mode='exec'): """ formats python2 statements """
parser_debug = {'rules': False, 'transition': False, 'reduce': showgrammar, 'errorstack': True, 'context': True, 'dups': True } parsed = parse_python2(python_stmts, show_tokens=show_tokens, parser_debug=parser_debug) assert parsed == 'file_input', 'Should have parsed grammar start' formatter = Python2Formatter() if showast: print(parsed) # What we've been waiting for: Generate source from AST! python2_formatted_str = formatter.traverse(parsed) return python2_formatted_str
<SYSTEM_TASK:> Add extra information about request handler and its params <END_TASK> <USER_TASK:> Description: def document(info=None, input=None, output=None): """ Add extra information about request handler and its params """
def wrapper(func): if info is not None: setattr(func, "_swg_info", info) if input is not None: setattr(func, "_swg_input", input) if output is not None: setattr(func, "_swg_output", output) return func return wrapper
<SYSTEM_TASK:> A thunk is a subroutine that is created, often automatically, to assist <END_TASK> <USER_TASK:> Description: def thunk(coro): """ A thunk is a subroutine that is created, often automatically, to assist a call to another subroutine. Creates a thunk coroutine which returns coroutine function that accepts no arguments and when invoked it schedules the wrapper coroutine and returns the final result. See Wikipedia page for more information about Thunk subroutines: https://en.wikipedia.org/wiki/Thunk Arguments: value (coroutinefunction): wrapped coroutine function to invoke. Returns: coroutinefunction Usage:: async def task(): return 'foo' coro = paco.thunk(task) await coro() # => 'foo' await coro() # => 'foo' """
assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(): return (yield from coro()) return wrapper
<SYSTEM_TASK:> Apply function of two arguments cumulatively to the items of sequence, <END_TASK> <USER_TASK:> Description: def reduce(coro, iterable, initializer=None, limit=1, right=False, loop=None): """ Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce the sequence to a single value. Reduction will be executed sequentially without concurrency, so passed values would be in order. This function is the asynchronous coroutine equivalent to Python standard `functools.reduce()` function. This function is a coroutine. This function can be composed in a pipeline chain with ``|`` operator. Arguments: coro (coroutine function): reducer coroutine binary function. iterable (iterable|asynchronousiterable): an iterable collection yielding coroutines functions. initializer (mixed): initial accumulator value used in the first reduction call. limit (int): max iteration concurrency limit. Use ``0`` for no limit. right (bool): reduce iterable from right to left. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if input arguments are not valid. Returns: mixed: accumulated final reduced value. Usage:: async def reducer(acc, num): return acc + num await paco.reduce(reducer, [1, 2, 3, 4, 5], initializer=0) # => 15 """
assert_corofunction(coro=coro) assert_iter(iterable=iterable) # Reduced accumulator value acc = initializer # If interable is empty, just return the initializer value if len(iterable) == 0: return initializer # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop) # Reducer partial function for deferred coroutine execution def reducer(element): @asyncio.coroutine def wrapper(): nonlocal acc acc = yield from coro(acc, element) return wrapper # Support right reduction if right: iterable.reverse() # Iterate and attach coroutine for defer scheduling for element in iterable: pool.add(reducer(element)) # Wait until all coroutines finish yield from pool.run(ignore_empty=True) # Returns final reduced value return acc
<SYSTEM_TASK:> Wraps a given coroutine function to be executed only a certain amount <END_TASK> <USER_TASK:> Description: def times(coro, limit=1, raise_exception=False, return_value=None): """ Wraps a given coroutine function to be executed only a certain amount of times. If the execution limit is exceeded, the last execution return value will be returned as result. You can optionally define a custom return value on exceeded via `return_value` param. This function can be used as decorator. arguments: coro (coroutinefunction): coroutine function to wrap. limit (int): max limit of coroutine executions. raise_exception (bool): raise exception if execution times exceeded. return_value (mixed): value to return when execution times exceeded. Raises: TypeError: if coro argument is not a coroutine function. RuntimeError: if max execution excedeed (optional). Returns: coroutinefunction Usage:: async def mul_2(num): return num * 2 timed = paco.times(mul_2, 3) await timed(2) # => 4 await timed(3) # => 6 await timed(4) # => 8 await timed(5) # ignored! # => 8 """
assert_corofunction(coro=coro) # Store call times limit = max(limit, 1) times = limit # Store result from last execution result = None @asyncio.coroutine def wrapper(*args, **kw): nonlocal limit nonlocal result # Check execution limit if limit == 0: if raise_exception: raise RuntimeError(ExceptionMessage.format(times)) if return_value: return return_value return result # Decreases counter limit -= 1 # If return_value is present, do not memoize result if return_value: return (yield from coro(*args, **kw)) # Schedule coroutine and memoize result result = yield from coro(*args, **kw) return result return wrapper
<SYSTEM_TASK:> Decorator to show a description of the running function <END_TASK> <USER_TASK:> Description: def log(func=None, name=None, timing=True, timestamp=False): """ Decorator to show a description of the running function By default, it outputs the first line of the docstring. If the docstring is empty, it displays the name of the function. Alternatively, if a ``name`` is specified, it will display that only. It can be called as ``@log`` or as ``@log(name='abc, timing=True, timestamp=True)``. """
# support to be called as @log or as @log(name='') if func is None: return functools.partial(log, name=name, timing=timing, timestamp=timestamp) @functools.wraps(func) def decorated(*args, **kwargs): assert len(args) > 0 and hasattr(args[0], 'log'), \ "The first argument of the decorated function must be a Context" ctx = args[0] message = name if message is None: if func.__doc__: message = func.__doc__.splitlines()[0].strip() if message is None: message = func.__name__ with ctx.log(message, timing=timing, timestamp=timestamp): return func(*args, **kwargs) return decorated
<SYSTEM_TASK:> Returns a coroutine function that when called, always returns <END_TASK> <USER_TASK:> Description: def constant(value, delay=None): """ Returns a coroutine function that when called, always returns the provided value. This function has an alias: `paco.identity`. Arguments: value (mixed): value to constantly return when coroutine is called. delay (int/float): optional return value delay in seconds. Returns: coroutinefunction Usage:: coro = paco.constant('foo') await coro() # => 'foo' await coro() # => 'foo' """
@asyncio.coroutine def coro(): if delay: yield from asyncio.sleep(delay) return value return coro
<SYSTEM_TASK:> Make an iterator that drops elements from the iterable as long as the <END_TASK> <USER_TASK:> Description: def dropwhile(coro, iterable, loop=None): """ Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every element. Note, the iterator does not produce any output until the predicate first becomes false, so it may have a lengthy start-up time. This function is pretty much equivalent to Python standard `itertools.dropwhile()`, but designed to be used with async coroutines. This function is a coroutine. This function can be composed in a pipeline chain with ``|`` operator. Arguments: coro (coroutine function): coroutine function to call with values to reduce. iterable (iterable|asynchronousiterable): an iterable collection yielding coroutines functions. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if coro argument is not a coroutine function. Returns: filtered values (list): ordered list of resultant values. Usage:: async def filter(num): return num < 4 await paco.dropwhile(filter, [1, 2, 3, 4, 5, 1]) # => [4, 5, 1] """
drop = False @asyncio.coroutine def assert_fn(element): nonlocal drop if element and not drop: return False if not element and not drop: drop = True return True if drop else element @asyncio.coroutine def filter_fn(element): return (yield from coro(element)) return (yield from filter(filter_fn, iterable, assert_fn=assert_fn, limit=1, loop=loop))
<SYSTEM_TASK:> Create or update a record matching xmlid with values <END_TASK> <USER_TASK:> Description: def create_or_update(ctx, model, xmlid, values): """ Create or update a record matching xmlid with values """
if isinstance(model, basestring): model = ctx.env[model] record = ctx.env.ref(xmlid, raise_if_not_found=False) if record: record.update(values) else: record = model.create(values) add_xmlid(ctx, record, xmlid) return record
<SYSTEM_TASK:> Make sure we get a record instance even if we pass an xmlid. <END_TASK> <USER_TASK:> Description: def safe_record(ctx, item): """Make sure we get a record instance even if we pass an xmlid."""
if isinstance(item, basestring): return ctx.env.ref(item) return item
<SYSTEM_TASK:> Context manager to switch current company. <END_TASK> <USER_TASK:> Description: def switch_company(ctx, company): """Context manager to switch current company. Accepts both company record and xmlid. """
current_company = ctx.env.user.company_id ctx.env.user.company_id = safe_record(ctx, company) yield ctx ctx.env.user.company_id = current_company
<SYSTEM_TASK:> Creates a continuation coroutine function with some arguments <END_TASK> <USER_TASK:> Description: def apply(coro, *args, **kw): """ Creates a continuation coroutine function with some arguments already applied. Useful as a shorthand when combined with other control flow functions. Any arguments passed to the returned function are added to the arguments originally passed to apply. This is similar to `paco.partial()`. This function can be used as decorator. arguments: coro (coroutinefunction): coroutine function to wrap. *args (mixed): mixed variadic arguments for partial application. *kwargs (mixed): mixed variadic keyword arguments for partial application. Raises: TypeError: if coro argument is not a coroutine function. Returns: coroutinefunction: wrapped coroutine function. Usage:: async def hello(name, mark='!'): print('Hello, {name}{mark}'.format(name=name, mark=mark)) hello_mike = paco.apply(hello, 'Mike') await hello_mike() # => Hello, Mike! hello_mike = paco.apply(hello, 'Mike', mark='?') await hello_mike() # => Hello, Mike? """
assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(*_args, **_kw): # Explicitely ignore wrapper arguments return (yield from coro(*args, **kw)) return wrapper
<SYSTEM_TASK:> Convenient shortcut alias to ``loop.run_until_complete``. <END_TASK> <USER_TASK:> Description: def run(coro, loop=None): """ Convenient shortcut alias to ``loop.run_until_complete``. Arguments: coro (coroutine): coroutine object to schedule. loop (asyncio.BaseEventLoop): optional event loop to use. Defaults to: ``asyncio.get_event_loop()``. Returns: mixed: returned value by coroutine. Usage:: async def mul_2(num): return num * 2 paco.run(mul_2(4)) # => 8 """
loop = loop or asyncio.get_event_loop() return loop.run_until_complete(coro)
<SYSTEM_TASK:> Wait for the Futures and coroutine objects given by the sequence <END_TASK> <USER_TASK:> Description: def wait(*coros_or_futures, limit=0, timeout=None, loop=None, return_exceptions=False, return_when='ALL_COMPLETED'): """ Wait for the Futures and coroutine objects given by the sequence futures to complete, with optional concurrency limit. Coroutines will be wrapped in Tasks. ``timeout`` can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. If ``return_exceptions`` is True, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future. ``return_when`` indicates when this function should return. It must be one of the following constants of the concurrent.futures module. All futures must share the same event loop. This functions is mostly compatible with Python standard ``asyncio.wait()``. Arguments: *coros_or_futures (iter|list): an iterable collection yielding coroutines functions. limit (int): optional concurrency execution limit. Use ``0`` for no limit. timeout (int/float): maximum number of seconds to wait before returning. return_exceptions (bool): exceptions in the tasks are treated the same as successful results, instead of raising them. return_when (str): indicates when this function should return. loop (asyncio.BaseEventLoop): optional event loop to use. *args (mixed): optional variadic argument to pass to the coroutines function. Returns: tuple: Returns two sets of Future: (done, pending). Raises: TypeError: in case of invalid coroutine object. ValueError: in case of empty set of coroutines or futures. TimeoutError: if execution takes more than expected. Usage:: async def sum(x, y): return x + y done, pending = await paco.wait( sum(1, 2), sum(3, 4)) [task.result() for task in done] # => [3, 7] """
# Support iterable as first argument for better interoperability if len(coros_or_futures) == 1 and isiter(coros_or_futures[0]): coros_or_futures = coros_or_futures[0] # If no coroutines to schedule, return empty list # Mimics asyncio behaviour. if len(coros_or_futures) == 0: raise ValueError('paco: set of coroutines/futures is empty') # Create concurrent executor pool = ConcurrentExecutor(limit=limit, loop=loop, coros=coros_or_futures) # Wait until all the tasks finishes return (yield from pool.run(timeout=timeout, return_when=return_when, return_exceptions=return_exceptions))
<SYSTEM_TASK:> Run the given coroutine functions in series, each one <END_TASK> <USER_TASK:> Description: def series(*coros_or_futures, timeout=None, loop=None, return_exceptions=False): """ Run the given coroutine functions in series, each one running once the previous execution has completed. If any coroutines raises an exception, no more coroutines are executed. Otherwise, the coroutines returned values will be returned as `list`. ``timeout`` can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time. If ``return_exceptions`` is True, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future. All futures must share the same event loop. This functions is basically the sequential execution version of ``asyncio.gather()``. Interface compatible with ``asyncio.gather()``. This function is a coroutine. Arguments: *coros_or_futures (iter|list): an iterable collection yielding coroutines functions. timeout (int/float): maximum number of seconds to wait before returning. return_exceptions (bool): exceptions in the tasks are treated the same as successful results, instead of raising them. loop (asyncio.BaseEventLoop): optional event loop to use. *args (mixed): optional variadic argument to pass to the coroutines function. Returns: list: coroutines returned results. Raises: TypeError: in case of invalid coroutine object. ValueError: in case of empty set of coroutines or futures. TimeoutError: if execution takes more than expected. Usage:: async def sum(x, y): return x + y await paco.series( sum(1, 2), sum(2, 3), sum(3, 4)) # => [3, 5, 7] """
return (yield from gather(*coros_or_futures, loop=loop, limit=1, timeout=timeout, return_exceptions=return_exceptions))
<SYSTEM_TASK:> Executes the coroutine function ``x`` number of times, <END_TASK> <USER_TASK:> Description: def repeat(coro, times=1, step=1, limit=1, loop=None): """ Executes the coroutine function ``x`` number of times, and accumulates results in order as you would use with ``map``. Execution concurrency is configurable using ``limit`` param. This function is a coroutine. Arguments: coro (coroutinefunction): coroutine function to schedule. times (int): number of times to execute the coroutine. step (int): increment iteration step, as with ``range()``. limit (int): concurrency execution limit. Defaults to 10. loop (asyncio.BaseEventLoop): optional event loop to use. Raises: TypeError: if coro is not a coroutine function. Returns: list: accumulated yielded values returned by coroutine. Usage:: async def mul_2(num): return num * 2 await paco.repeat(mul_2, times=5) # => [2, 4, 6, 8, 10] """
assert_corofunction(coro=coro) # Iterate and attach coroutine for defer scheduling times = max(int(times), 1) iterable = range(1, times + 1, step) # Run iterable times return (yield from map(coro, iterable, limit=limit, loop=loop))
<SYSTEM_TASK:> Wrap a given coroutine function that is restricted to one execution. <END_TASK> <USER_TASK:> Description: def once(coro, raise_exception=False, return_value=None): """ Wrap a given coroutine function that is restricted to one execution. Repeated calls to the coroutine function will return the value of the first invocation. This function can be used as decorator. arguments: coro (coroutinefunction): coroutine function to wrap. raise_exception (bool): raise exception if execution times exceeded. return_value (mixed): value to return when execution times exceeded, instead of the memoized one from last invocation. Raises: TypeError: if coro argument is not a coroutine function. Returns: coroutinefunction Usage:: async def mul_2(num): return num * 2 once = paco.once(mul_2) await once(2) # => 4 await once(3) # => 4 once = paco.once(mul_2, return_value='exceeded') await once(2) # => 4 await once(3) # => 'exceeded' """
return times(coro, limit=1, return_value=return_value, raise_exception=raise_exception)
<SYSTEM_TASK:> Returns a coroutine function wrapper that will defer the given coroutine <END_TASK> <USER_TASK:> Description: def defer(coro, delay=1): """ Returns a coroutine function wrapper that will defer the given coroutine execution for a certain amount of seconds in a non-blocking way. This function can be used as decorator. Arguments: coro (coroutinefunction): coroutine function to defer. delay (int/float): number of seconds to defer execution. Raises: TypeError: if coro argument is not a coroutine function. Returns: filtered values (list): ordered list of resultant values. Usage:: # Usage as function await paco.defer(coro, delay=1) await paco.defer(coro, delay=0.5) # Usage as decorator @paco.defer(delay=1) async def mul_2(num): return num * 2 await mul_2(2) # => 4 """
assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(*args, **kw): # Wait until we're done yield from asyncio.sleep(delay) return (yield from coro(*args, **kw)) return wrapper
<SYSTEM_TASK:> Executes a given coroutine and optionally catches exceptions, returning <END_TASK> <USER_TASK:> Description: def safe_run(coro, return_exceptions=False): """ Executes a given coroutine and optionally catches exceptions, returning them as value. This function is intended to be used internally. """
try: result = yield from coro except Exception as err: if return_exceptions: result = err else: raise err return result
<SYSTEM_TASK:> Collect is used internally to execute coroutines and collect the returned <END_TASK> <USER_TASK:> Description: def collect(coro, index, results, preserve_order=False, return_exceptions=False): """ Collect is used internally to execute coroutines and collect the returned value. This function is intended to be used internally. """
result = yield from safe_run(coro, return_exceptions=return_exceptions) if preserve_order: results[index] = result else: results.append(result)
<SYSTEM_TASK:> Resets the executer scheduler internal state. <END_TASK> <USER_TASK:> Description: def reset(self): """ Resets the executer scheduler internal state. Raises: RuntimeError: is the executor is still running. """
if self.running: raise RuntimeError('paco: executor is still running') self.pool.clear() self.observer.clear() self.semaphore = asyncio.Semaphore(self.limit, loop=self.loop)