text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Fits trapezoid model to provided ts,fs <END_TASK> <USER_TASK:> Description: def fit_traptransit(ts,fs,p0): """ Fits trapezoid model to provided ts,fs """
pfit,success = leastsq(traptransit_resid,p0,args=(ts,fs)) if success not in [1,2,3,4]: raise NoFitError #logging.debug('success = {}'.format(success)) return pfit
<SYSTEM_TASK:> Replaces the contents of a file with its decrypted counterpart, storing the <END_TASK> <USER_TASK:> Description: def backup(path, password_file=None): """ Replaces the contents of a file with its decrypted counterpart, storing the original encrypted version and a hash of the file contents for later retrieval. """
vault = VaultLib(get_vault_password(password_file)) with open(path, 'r') as f: encrypted_data = f.read() # Normally we'd just try and catch the exception, but the # exception raised here is not very specific (just # `AnsibleError`), so this feels safer to avoid suppressing # other things that might go wrong. if vault.is_encrypted(encrypted_data): decrypted_data = vault.decrypt(encrypted_data) # Create atk vault files atk_path = os.path.join(ATK_VAULT, path) mkdir_p(atk_path) # ... encrypted with open(os.path.join(atk_path, 'encrypted'), 'wb') as f: f.write(encrypted_data) # ... hash with open(os.path.join(atk_path, 'hash'), 'wb') as f: f.write(hashlib.sha1(decrypted_data).hexdigest()) # Replace encrypted file with decrypted one with open(path, 'wb') as f: f.write(decrypted_data)
<SYSTEM_TASK:> Retrieves a file from the atk vault and restores it to its original <END_TASK> <USER_TASK:> Description: def restore(path, password_file=None): """ Retrieves a file from the atk vault and restores it to its original location, re-encrypting it if it has changed. :param path: path to original file """
vault = VaultLib(get_vault_password(password_file)) atk_path = os.path.join(ATK_VAULT, path) # Load stored data with open(os.path.join(atk_path, 'encrypted'), 'rb') as f: old_data = f.read() with open(os.path.join(atk_path, 'hash'), 'rb') as f: old_hash = f.read() # Load new data with open(path, 'rb') as f: new_data = f.read() new_hash = hashlib.sha1(new_data).hexdigest() # Determine whether to re-encrypt if old_hash != new_hash: new_data = vault.encrypt(new_data) else: new_data = old_data # Update file with open(path, 'wb') as f: f.write(new_data) # Clean atk vault os.remove(os.path.join(atk_path, 'encrypted')) os.remove(os.path.join(atk_path, 'hash'))
<SYSTEM_TASK:> Appends stars from another StarPopulations, in place. <END_TASK> <USER_TASK:> Description: def append(self, other): """Appends stars from another StarPopulations, in place. :param other: Another :class:`StarPopulation`; must have same columns as ``self``. """
if not isinstance(other,StarPopulation): raise TypeError('Only StarPopulation objects can be appended to a StarPopulation.') if not np.all(self.stars.columns == other.stars.columns): raise ValueError('Two populations must have same columns to combine them.') if len(self.constraints) > 0: logging.warning('All constraints are cleared when appending another population.') self.stars = pd.concat((self.stars, other.stars)) if self.orbpop is not None and other.orbpop is not None: self.orbpop = self.orbpop + other.orbpop
<SYSTEM_TASK:> Bandpasses for which StarPopulation has magnitude data <END_TASK> <USER_TASK:> Description: def bands(self): """ Bandpasses for which StarPopulation has magnitude data """
bands = [] for c in self.stars.columns: if re.search('_mag',c): bands.append(c) return bands
<SYSTEM_TASK:> Boolean array showing which stars pass all distribution constraints. <END_TASK> <USER_TASK:> Description: def distok(self): """ Boolean array showing which stars pass all distribution constraints. A "distribution constraint" is a constraint that affects the distribution of stars, rather than just the number. """
ok = np.ones(len(self.stars)).astype(bool) for name in self.constraints: c = self.constraints[name] if c.name not in self.distribution_skip: ok &= c.ok return ok
<SYSTEM_TASK:> Boolean array showing which stars pass all count constraints. <END_TASK> <USER_TASK:> Description: def countok(self): """ Boolean array showing which stars pass all count constraints. A "count constraint" is a constraint that affects the number of stars. """
ok = np.ones(len(self.stars)).astype(bool) for name in self.constraints: c = self.constraints[name] if c.name not in self.selectfrac_skip: ok &= c.ok return ok
<SYSTEM_TASK:> Makes a 2d density histogram of two given properties <END_TASK> <USER_TASK:> Description: def prophist2d(self,propx,propy, mask=None, logx=False,logy=False, fig=None,selected=False,**kwargs): """Makes a 2d density histogram of two given properties :param propx,propy: Names of properties to histogram. Must be names of columns in ``self.stars`` table. :param mask: (optional) Boolean mask (``True`` is good) to say which indices to plot. Must be same length as ``self.stars``. :param logx,logy: (optional) Whether to plot the log10 of x and/or y properties. :param fig: (optional) Argument passed to :func:`plotutils.setfig`. :param selected: (optional) If ``True``, then only the "selected" stars (that is, stars obeying all distribution constraints attached to this object) will be plotted. In this case, ``mask`` will be ignored. :param kwargs: Additional keyword arguments passed to :func:`plotutils.plot2dhist`. """
if mask is not None: inds = np.where(mask)[0] else: if selected: inds = self.selected.index else: inds = self.stars.index if selected: xvals = self.selected[propx].iloc[inds].values yvals = self.selected[propy].iloc[inds].values else: if mask is None: mask = np.ones_like(self.stars.index) xvals = self.stars[mask][propx].values yvals = self.stars[mask][propy].values #forward-hack for EclipsePopulations... #TODO: reorganize. if propx=='depth' and hasattr(self,'depth'): xvals = self.depth.iloc[inds].values if propy=='depth' and hasattr(self,'depth'): yvals = self.depth.iloc[inds].values if logx: xvals = np.log10(xvals) if logy: yvals = np.log10(yvals) plot2dhist(xvals,yvals,fig=fig,**kwargs) plt.xlabel(propx) plt.ylabel(propy)
<SYSTEM_TASK:> Plots a 1-d histogram of desired property. <END_TASK> <USER_TASK:> Description: def prophist(self,prop,fig=None,log=False, mask=None, selected=False,**kwargs): """Plots a 1-d histogram of desired property. :param prop: Name of property to plot. Must be column of ``self.stars``. :param fig: (optional) Argument for :func:`plotutils.setfig` :param log: (optional) Whether to plot the histogram of log10 of the property. :param mask: (optional) Boolean array (length of ``self.stars``) to say which indices to plot (``True`` is good). :param selected: (optional) If ``True``, then only the "selected" stars (that is, stars obeying all distribution constraints attached to this object) will be plotted. In this case, ``mask`` will be ignored. :param **kwargs: Additional keyword arguments passed to :func:`plt.hist`. """
setfig(fig) inds = None if mask is not None: inds = np.where(mask)[0] elif inds is None: if selected: #inds = np.arange(len(self.selected)) inds = self.selected.index else: #inds = np.arange(len(self.stars)) inds = self.stars.index if selected: vals = self.selected[prop].values#.iloc[inds] #invalidates mask? else: vals = self.stars[prop].iloc[inds].values if prop=='depth' and hasattr(self,'depth'): vals *= self.dilution_factor[inds] if log: h = plt.hist(np.log10(vals),**kwargs) else: h = plt.hist(vals,**kwargs) plt.xlabel(prop)
<SYSTEM_TASK:> Returns information about effect of constraints on population. <END_TASK> <USER_TASK:> Description: def constraint_stats(self,primarylist=None): """Returns information about effect of constraints on population. :param primarylist: List of constraint names that you want specific information on (i.e., not blended within "multiple constraints".) :return: ``dict`` of what percentage of population is ruled out by each constraint, including a "multiple constraints" entry. """
if primarylist is None: primarylist = [] n = len(self.stars) primaryOK = np.ones(n).astype(bool) tot_reject = np.zeros(n) for name in self.constraints: if name in self.selectfrac_skip: continue c = self.constraints[name] if name in primarylist: primaryOK &= c.ok tot_reject += ~c.ok primary_rejected = ~primaryOK secondary_rejected = tot_reject - primary_rejected lone_reject = {} for name in self.constraints: if name in primarylist or name in self.selectfrac_skip: continue c = self.constraints[name] lone_reject[name] = ((secondary_rejected==1) & (~primary_rejected) & (~c.ok)).sum()/float(n) mult_rejected = (secondary_rejected > 1) & (~primary_rejected) not_rejected = ~(tot_reject.astype(bool)) primary_reject_pct = primary_rejected.sum()/float(n) mult_reject_pct = mult_rejected.sum()/float(n) not_reject_pct = not_rejected.sum()/float(n) tot = 0 results = {} results['pri'] = primary_reject_pct tot += primary_reject_pct for name in lone_reject: results[name] = lone_reject[name] tot += lone_reject[name] results['multiple constraints'] = mult_reject_pct tot += mult_reject_pct results['remaining'] = not_reject_pct tot += not_reject_pct if tot != 1: logging.warning('total adds up to: %.2f (%s)' % (tot,self.model)) return results
<SYSTEM_TASK:> Makes piechart illustrating constraints on population <END_TASK> <USER_TASK:> Description: def constraint_piechart(self,primarylist=None, fig=None,title='',colordict=None, legend=True,nolabels=False): """Makes piechart illustrating constraints on population :param primarylist: (optional) List of most import constraints to show (see :func:`StarPopulation.constraint_stats`) :param fig: (optional) Passed to :func:`plotutils.setfig`. :param title: (optional) Title for pie chart :param colordict: (optional) Dictionary describing colors (keys are constraint names). :param legend: (optional) ``bool`` indicating whether to display a legend. :param nolabels: (optional) If ``True``, then leave out legend labels. """
setfig(fig,figsize=(6,6)) stats = self.constraint_stats(primarylist=primarylist) if primarylist is None: primarylist = [] if len(primarylist)==1: primaryname = primarylist[0] else: primaryname = '' for name in primarylist: primaryname += '%s,' % name primaryname = primaryname[:-1] fracs = [] labels = [] explode = [] colors = [] fracs.append(stats['remaining']*100) labels.append('remaining') explode.append(0.05) colors.append('b') if 'pri' in stats and stats['pri']>=0.005: fracs.append(stats['pri']*100) labels.append(primaryname) explode.append(0) if colordict is not None: colors.append(colordict[primaryname]) for name in stats: if name == 'pri' or \ name == 'multiple constraints' or \ name == 'remaining': continue fracs.append(stats[name]*100) labels.append(name) explode.append(0) if colordict is not None: colors.append(colordict[name]) if stats['multiple constraints'] >= 0.005: fracs.append(stats['multiple constraints']*100) labels.append('multiple constraints') explode.append(0) colors.append('w') autopct = '%1.1f%%' if nolabels: labels = None if legend: legendlabels = [] for i,l in enumerate(labels): legendlabels.append('%s (%.1f%%)' % (l,fracs[i])) labels = None autopct = '' if colordict is None: plt.pie(fracs,labels=labels,autopct=autopct,explode=explode) else: plt.pie(fracs,labels=labels,autopct=autopct,explode=explode, colors=colors) if legend: plt.legend(legendlabels,bbox_to_anchor=(-0.05,0), loc='lower left',prop={'size':10}) plt.title(title)
<SYSTEM_TASK:> Constraints applied to the population. <END_TASK> <USER_TASK:> Description: def constraints(self): """ Constraints applied to the population. """
try: return self._constraints except AttributeError: self._constraints = ConstraintDict() return self._constraints
<SYSTEM_TASK:> Constraints applied to the population, but temporarily removed. <END_TASK> <USER_TASK:> Description: def hidden_constraints(self): """ Constraints applied to the population, but temporarily removed. """
try: return self._hidden_constraints except AttributeError: self._hidden_constraints = ConstraintDict() return self._hidden_constraints
<SYSTEM_TASK:> Apply a constraint to the population <END_TASK> <USER_TASK:> Description: def apply_constraint(self,constraint,selectfrac_skip=False, distribution_skip=False,overwrite=False): """Apply a constraint to the population :param constraint: Constraint to apply. :type constraint: :class:`Constraint` :param selectfrac_skip: (optional) If ``True``, then this constraint will not be considered towards diminishing the """
#grab properties constraints = self.constraints my_selectfrac_skip = self.selectfrac_skip my_distribution_skip = self.distribution_skip if constraint.name in constraints and not overwrite: logging.warning('constraint already applied: {}'.format(constraint.name)) return constraints[constraint.name] = constraint if selectfrac_skip: my_selectfrac_skip.append(constraint.name) if distribution_skip: my_distribution_skip.append(constraint.name) #forward-looking for EclipsePopulation if hasattr(self, '_make_kde'): self._make_kde() self.constraints = constraints self.selectfrac_skip = my_selectfrac_skip self.distribution_skip = my_distribution_skip
<SYSTEM_TASK:> Re-apply constraint that had been removed <END_TASK> <USER_TASK:> Description: def replace_constraint(self,name,selectfrac_skip=False,distribution_skip=False): """ Re-apply constraint that had been removed :param name: Name of constraint to replace :param selectfrac_skip,distribution_skip: (optional) Same as :func:`StarPopulation.apply_constraint` """
hidden_constraints = self.hidden_constraints if name in hidden_constraints: c = hidden_constraints[name] self.apply_constraint(c,selectfrac_skip=selectfrac_skip, distribution_skip=distribution_skip) del hidden_constraints[name] else: logging.warning('Constraint {} not available for replacement.'.format(name)) self.hidden_constraints = hidden_constraints
<SYSTEM_TASK:> Apply constraint that constrains property. <END_TASK> <USER_TASK:> Description: def constrain_property(self,prop,lo=-np.inf,hi=np.inf, measurement=None,thresh=3, selectfrac_skip=False,distribution_skip=False): """Apply constraint that constrains property. :param prop: Name of property. Must be column in ``self.stars``. :type prop: ``str`` :param lo,hi: (optional) Low and high allowed values for ``prop``. Defaults to ``-np.inf`` and ``np.inf`` to allow for defining only lower or upper limits if desired. :param measurement: (optional) Value and error of measurement in form ``(value, error)``. :param thresh: (optional) Number of "sigma" to allow for measurement constraint. :param selectfrac_skip,distribution_skip: Passed to :func:`StarPopulation.apply_constraint`. """
if prop in self.constraints: logging.info('re-doing {} constraint'.format(prop)) self.remove_constraint(prop) if measurement is not None: val,dval = measurement self.apply_constraint(MeasurementConstraint(getattr(self.stars,prop), val,dval,name=prop, thresh=thresh), selectfrac_skip=selectfrac_skip, distribution_skip=distribution_skip) else: self.apply_constraint(RangeConstraint(getattr(self.stars,prop), lo=lo,hi=hi,name=prop), selectfrac_skip=selectfrac_skip, distribution_skip=distribution_skip)
<SYSTEM_TASK:> Constrains change in RV to be less than limit over time dt. <END_TASK> <USER_TASK:> Description: def apply_trend_constraint(self, limit, dt, distribution_skip=False, **kwargs): """ Constrains change in RV to be less than limit over time dt. Only works if ``dRV`` and ``Plong`` attributes are defined for population. :param limit: Radial velocity limit on trend. Must be :class:`astropy.units.Quantity` object, or else interpreted as m/s. :param dt: Time baseline of RV observations. Must be :class:`astropy.units.Quantity` object; else interpreted as days. :param distribution_skip: This is by default ``True``. *To be honest, I'm not exactly sure why. Might be important, might not (don't remember).* :param **kwargs: Additional keyword arguments passed to :func:`StarPopulation.apply_constraint`. """
if type(limit) != Quantity: limit = limit * u.m/u.s if type(dt) != Quantity: dt = dt * u.day dRVs = np.absolute(self.dRV(dt)) c1 = UpperLimit(dRVs, limit) c2 = LowerLimit(self.Plong, dt*4) self.apply_constraint(JointConstraintOr(c1,c2,name='RV monitoring', Ps=self.Plong,dRVs=dRVs), distribution_skip=distribution_skip, **kwargs)
<SYSTEM_TASK:> Apply contrast-curve constraint to population. <END_TASK> <USER_TASK:> Description: def apply_cc(self, cc, distribution_skip=False, **kwargs): """ Apply contrast-curve constraint to population. Only works if object has ``Rsky``, ``dmag`` attributes :param cc: Contrast curve. :type cc: :class:`ContrastCurveConstraint` :param distribution_skip: This is by default ``True``. *To be honest, I'm not exactly sure why. Might be important, might not (don't remember).* :param **kwargs: Additional keyword arguments passed to :func:`StarPopulation.apply_constraint`. """
rs = self.Rsky.to('arcsec').value dmags = self.dmag(cc.band) self.apply_constraint(ContrastCurveConstraint(rs,dmags,cc,name=cc.name), distribution_skip=distribution_skip, **kwargs)
<SYSTEM_TASK:> Applies "velocity contrast curve" to population. <END_TASK> <USER_TASK:> Description: def apply_vcc(self, vcc, distribution_skip=False, **kwargs): """ Applies "velocity contrast curve" to population. That is, the constraint that comes from not seeing two sets of spectral lines in a high resolution spectrum. Only works if population has ``dmag`` and ``RV`` attributes. :param vcc: Velocity contrast curve; dmag vs. delta-RV. :type cc: :class:`VelocityContrastCurveConstraint` :param distribution_skip: This is by default ``True``. *To be honest, I'm not exactly sure why. Might be important, might not (don't remember).* :param **kwargs: Additional keyword arguments passed to :func:`StarPopulation.apply_constraint`. """
rvs = self.RV.value dmags = self.dmag(vcc.band) self.apply_constraint(VelocityContrastCurveConstraint(rvs,dmags,vcc, name='secondary spectrum'), distribution_skip=distribution_skip, **kwargs)
<SYSTEM_TASK:> Adds a constraint that rejects everything with Rsky > maxrad <END_TASK> <USER_TASK:> Description: def set_maxrad(self,maxrad, distribution_skip=True): """ Adds a constraint that rejects everything with Rsky > maxrad Requires ``Rsky`` attribute, which should always have units. :param maxrad: The maximum angular value of Rsky. :type maxrad: :class:`astropy.units.Quantity` :param distribution_skip: This is by default ``True``. *To be honest, I'm not exactly sure why. Might be important, might not (don't remember).* """
self.maxrad = maxrad self.apply_constraint(UpperLimit(self.Rsky,maxrad, name='Max Rsky'), overwrite=True, distribution_skip=distribution_skip)
<SYSTEM_TASK:> A DataFrame representing all constraints, hidden or not <END_TASK> <USER_TASK:> Description: def constraint_df(self): """ A DataFrame representing all constraints, hidden or not """
df = pd.DataFrame() for name,c in self.constraints.items(): df[name] = c.ok for name,c in self.hidden_constraints.items(): df[name] = c.ok return df
<SYSTEM_TASK:> Saves to HDF5 file. <END_TASK> <USER_TASK:> Description: def save_hdf(self,filename,path='',properties=None, overwrite=False, append=False): """Saves to HDF5 file. Subclasses should be sure to define ``_properties`` attribute to ensure that all correct attributes get saved. Load a saved population with :func:`StarPopulation.load_hdf`. Example usage:: >>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation >>> pop = Raghavan_BinaryPopulation(1., n=1000) >>> pop.save_hdf('test.h5') >>> pop2 = StarPopulation.load_hdf('test.h5') >>> pop == pop2 True >>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5') >>> pop3 == pop2 True :param filename: Name of HDF file. :param path: (optional) Path within HDF file to save object. :param properties: (optional) Names of any properties (in addition to those defined in ``_properties`` attribute) that you wish to save. (This is an old keyword, and should probably be removed. Feel free to ignore it.) :param overwrite: (optional) Whether to overwrite file if it already exists. If ``True``, then any existing file will be deleted before object is saved. Use ``append`` if you don't wish this to happen. :param append: (optional) If ``True``, then if the file exists, then only the particular path in the file will get written/overwritten. If ``False`` and both file and path exist, then an ``IOError`` will be raised. If ``False`` and file exists but not path, then no error will be raised. """
if os.path.exists(filename): with pd.HDFStore(filename) as store: if path in store: if overwrite: os.remove(filename) elif not append: raise IOError('{} in {} exists. '.format(path,filename) + 'Set either overwrite or append option.') if properties is None: properties = {} for prop in self._properties: properties[prop] = getattr(self, prop) self.stars.to_hdf(filename,'{}/stars'.format(path)) self.constraint_df.to_hdf(filename,'{}/constraints'.format(path)) if self.orbpop is not None: self.orbpop.save_hdf(filename, path=path+'/orbpop') with pd.HDFStore(filename) as store: attrs = store.get_storer('{}/stars'.format(path)).attrs attrs.selectfrac_skip = self.selectfrac_skip attrs.distribution_skip = self.distribution_skip attrs.name = self.name attrs.poptype = type(self) attrs.properties = properties
<SYSTEM_TASK:> Loads StarPopulation from .h5 file <END_TASK> <USER_TASK:> Description: def load_hdf(cls, filename, path=''): """Loads StarPopulation from .h5 file Correct properties should be restored to object, and object will be original type that was saved. Complement to :func:`StarPopulation.save_hdf`. Example usage:: >>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation >>> pop = Raghavan_BinaryPopulation(1., n=1000) >>> pop.save_hdf('test.h5') >>> pop2 = StarPopulation.load_hdf('test.h5') >>> pop == pop2 True >>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5') >>> pop3 == pop2 True :param filename: HDF file with saved :class:`StarPopulation`. :param path: Path within HDF file. :return: :class:`StarPopulation` or appropriate subclass; whatever was saved with :func:`StarPopulation.save_hdf`. """
stars = pd.read_hdf(filename,path+'/stars') constraint_df = pd.read_hdf(filename,path+'/constraints') with pd.HDFStore(filename) as store: has_orbpop = '{}/orbpop/df'.format(path) in store has_triple_orbpop = '{}/orbpop/long/df'.format(path) in store attrs = store.get_storer('{}/stars'.format(path)).attrs poptype = attrs.poptype new = poptype() #if poptype != type(self): # raise TypeError('Saved population is {}. Please instantiate proper class before loading.'.format(poptype)) distribution_skip = attrs.distribution_skip selectfrac_skip = attrs.selectfrac_skip name = attrs.name for kw,val in attrs.properties.items(): setattr(new, kw, val) #load orbpop if there orbpop = None if has_orbpop: orbpop = OrbitPopulation.load_hdf(filename, path=path+'/orbpop') elif has_triple_orbpop: orbpop = TripleOrbitPopulation.load_hdf(filename, path=path+'/orbpop') new.stars = stars new.orbpop = orbpop for n in constraint_df.columns: mask = np.array(constraint_df[n]) c = Constraint(mask,name=n) sel_skip = n in selectfrac_skip dist_skip = n in distribution_skip new.apply_constraint(c,selectfrac_skip=sel_skip, distribution_skip=dist_skip) return new
<SYSTEM_TASK:> Difference in magnitude between primary and secondary stars <END_TASK> <USER_TASK:> Description: def dmag(self,band): """ Difference in magnitude between primary and secondary stars :param band: Photometric bandpass. """
mag2 = self.stars['{}_mag_B'.format(band)] mag1 = self.stars['{}_mag_A'.format(band)] return mag2-mag1
<SYSTEM_TASK:> Distribution of projected separations <END_TASK> <USER_TASK:> Description: def rsky_distribution(self,rmax=None,smooth=0.1,nbins=100): """ Distribution of projected separations Returns a :class:`simpledists.Hist_Distribution` object. :param rmax: (optional) Maximum radius to calculate distribution. :param dr: (optional) Bin width for histogram :param smooth: (optional) Smoothing parameter for :class:`simpledists.Hist_Distribution` :param nbins: (optional) Number of bins for histogram :return: :class:`simpledists.Hist_Distribution` describing Rsky distribution """
if rmax is None: if hasattr(self,'maxrad'): rmax = self.maxrad else: rmax = np.percentile(self.Rsky,99) dist = dists.Hist_Distribution(self.Rsky.value,bins=nbins,maxval=rmax,smooth=smooth) return dist
<SYSTEM_TASK:> Function that generates population. <END_TASK> <USER_TASK:> Description: def generate(self, M, age=9.6, feh=0.0, ichrone='mist', n=1e4, bands=None, **kwargs): """ Function that generates population. Called by ``__init__`` if ``M`` is passed. """
ichrone = get_ichrone(ichrone, bands=bands) if np.size(M) > 1: n = np.size(M) else: n = int(n) M2 = M * self.q_fn(n, qmin=np.maximum(self.qmin,self.minmass/M)) P = self.P_fn(n) ecc = self.ecc_fn(n,P) mass = np.ascontiguousarray(np.ones(n)*M) mass2 = np.ascontiguousarray(M2) age = np.ascontiguousarray(age) feh = np.ascontiguousarray(feh) pri = ichrone(mass, age, feh, return_df=True, bands=bands) sec = ichrone(mass2, age, feh, return_df=True, bands=bands) BinaryPopulation.__init__(self, primary=pri, secondary=sec, period=P, ecc=ecc, **kwargs) return self
<SYSTEM_TASK:> Difference in magnitudes between fainter and brighter components in band. <END_TASK> <USER_TASK:> Description: def dmag(self, band): """ Difference in magnitudes between fainter and brighter components in band. :param band: Photometric bandpass. """
m1 = self.stars['{}_mag_A'.format(band)] m2 = addmags(self.stars['{}_mag_B'.format(band)], self.stars['{}_mag_C'.format(band)]) return np.abs(m2-m1)
<SYSTEM_TASK:> Returns dRV of star A, if A is brighter than B+C, or of star B if B+C is brighter <END_TASK> <USER_TASK:> Description: def dRV(self, dt, band='g'): """Returns dRV of star A, if A is brighter than B+C, or of star B if B+C is brighter """
return (self.orbpop.dRV_1(dt)*self.A_brighter(band) + self.orbpop.dRV_2(dt)*self.BC_brighter(band))
<SYSTEM_TASK:> Triple fraction of stars following given query <END_TASK> <USER_TASK:> Description: def triple_fraction(self,query='mass_A > 0', unc=False): """ Triple fraction of stars following given query """
subdf = self.stars.query(query) ntriples = ((subdf['mass_B'] > 0) & (subdf['mass_C'] > 0)).sum() frac = ntriples/len(subdf) if unc: return frac, frac/np.sqrt(ntriples) else: return frac
<SYSTEM_TASK:> Magnitude difference between primary star and BG stars <END_TASK> <USER_TASK:> Description: def dmag(self,band): """ Magnitude difference between primary star and BG stars """
if self.mags is None: raise ValueError('dmag is not defined because primary mags are not defined for this population.') return self.stars['{}_mag'.format(band)] - self.mags[band]
<SYSTEM_TASK:> I receive data+hash, check for a match, confirm or not <END_TASK> <USER_TASK:> Description: def receive(self): """I receive data+hash, check for a match, confirm or not confirm to the sender, and return the data payload. """
def _receive(input_message): self.data = input_message[:-64] _hash = input_message[-64:] if h.sha256(self.data).hexdigest() == _hash: self._w.send_message('Confirmed!') else: self._w.send_message('Not Confirmed!') yield self.start_tor() self._w = wormhole.create(u'axotor', RENDEZVOUS_RELAY, self._reactor, tor=self._tor, timing=self._timing) self._w.set_code(self._code) yield self._w.get_message().addCallback(_receive) yield self._w.close() self._reactor.stop() return
<SYSTEM_TASK:> Update screen if necessary and release the lock so receiveThread can run <END_TASK> <USER_TASK:> Description: def validator(ch): """ Update screen if necessary and release the lock so receiveThread can run """
global screen_needs_update try: if screen_needs_update: curses.doupdate() screen_needs_update = False return ch finally: winlock.release() sleep(0.01) # let receiveThread in if necessary winlock.acquire()
<SYSTEM_TASK:> Returns copy of constraint, with mask rearranged according to indices <END_TASK> <USER_TASK:> Description: def resample(self, inds): """Returns copy of constraint, with mask rearranged according to indices """
new = copy.deepcopy(self) for arr in self.arrays: x = getattr(new, arr) setattr(new, arr, x[inds]) return new
<SYSTEM_TASK:> Saves PopulationSet and TransitSignal. <END_TASK> <USER_TASK:> Description: def save(self, overwrite=True): """ Saves PopulationSet and TransitSignal. Shouldn't need to use this if you're using :func:`FPPCalculation.from_ini`. Saves :class`PopulationSet` to ``[folder]/popset.h5]`` and :class:`TransitSignal` to ``[folder]/trsig.pkl``. :param overwrite: (optional) Whether to overwrite existing files. """
self.save_popset(overwrite=overwrite) self.save_signal()
<SYSTEM_TASK:> Loads PopulationSet from folder <END_TASK> <USER_TASK:> Description: def load(cls, folder): """ Loads PopulationSet from folder ``popset.h5`` and ``trsig.pkl`` must exist in folder. :param folder: Folder from which to load. """
popset = PopulationSet.load_hdf(os.path.join(folder,'popset.h5')) sigfile = os.path.join(folder,'trsig.pkl') with open(sigfile, 'rb') as f: trsig = pickle.load(f) return cls(trsig, popset, folder=folder)
<SYSTEM_TASK:> Make FPP diagnostic plots <END_TASK> <USER_TASK:> Description: def FPPplots(self, folder=None, format='png', tag=None, **kwargs): """ Make FPP diagnostic plots Makes likelihood "fuzz plot" for each model, a FPP summary figure, a plot of the :class:`TransitSignal`, and writes a ``results.txt`` file. :param folder: (optional) Destination folder for plots/``results.txt``. Default is ``self.folder``. :param format: (optional) Desired format of figures. e.g. ``png``, ``pdf``... :param tag: (optional) If this is provided (string), then filenames will have ``_[tag]`` appended to the filename, before the extension. :param **kwargs: Additional keyword arguments passed to :func:`PopulationSet.lhoodplots`. """
if folder is None: folder = self.folder self.write_results(folder=folder) self.lhoodplots(folder=folder,figformat=format,tag=tag,**kwargs) self.FPPsummary(folder=folder,saveplot=True,figformat=format,tag=tag) self.plotsignal(folder=folder,saveplot=True,figformat=format)
<SYSTEM_TASK:> Writes text file of calculation summary. <END_TASK> <USER_TASK:> Description: def write_results(self,folder=None, filename='results.txt', to_file=True): """ Writes text file of calculation summary. :param folder: (optional) Folder to which to write ``results.txt``. :param filename: Filename to write. Default=``results.txt``. :param to_file: If True, then writes file. Otherwise just return header, line. :returns: Header string, line """
if folder is None: folder = self.folder if to_file: fout = open(os.path.join(folder,filename), 'w') header = '' for m in self.popset.shortmodelnames: header += 'lhood_{0} L_{0} pr_{0} '.format(m) header += 'fpV fp FPP' if to_file: fout.write('{} \n'.format(header)) Ls = {} Ltot = 0 lhoods = {} for model in self.popset.modelnames: lhoods[model] = self.lhood(model) Ls[model] = self.prior(model)*lhoods[model] Ltot += Ls[model] line = '' for model in self.popset.modelnames: line += '%.2e %.2e %.2e ' % (lhoods[model], Ls[model], Ls[model]/Ltot) line += '%.3g %.3f %.2e' % (self.fpV(),self.priorfactors['fp_specific'],self.FPP()) if to_file: fout.write(line+'\n') fout.close() return header, line
<SYSTEM_TASK:> Max secondary depth based on model-shift secondary test from Jeff Coughlin <END_TASK> <USER_TASK:> Description: def modelshift_weaksec(koi): """ Max secondary depth based on model-shift secondary test from Jeff Coughlin secondary metric: mod_depth_sec_dv * (1 + 3*mod_fred_dv / mod_sig_sec_dv) """
num = KOIDATA.ix[ku.koiname(koi), 'koi_tce_plnt_num'] if np.isnan(num): num = 1 kid = KOIDATA.ix[ku.koiname(koi), 'kepid'] tce = '{:09.0f}-{:02.0f}'.format(kid,num) #return largest depth between DV detrending and alternate detrending try: r = ROBOVETDATA.ix[tce] except KeyError: raise NoWeakSecondaryError(koi) depth_dv = r['mod_depth_sec_dv'] * (1 + 3*r['mod_fred_dv'] / r['mod_sig_sec_dv']) depth_alt = r['mod_depth_sec_alt'] * (1 + 3*r['mod_fred_alt'] / r['mod_sig_sec_alt']) logging.debug(r[['mod_depth_sec_dv','mod_fred_dv','mod_sig_sec_dv']]) logging.debug(r[['mod_depth_sec_alt','mod_fred_alt','mod_sig_sec_alt']]) if np.isnan(depth_dv) and np.isnan(depth_alt): #return weaksec_vv2(koi) raise NoWeakSecondaryError(koi) elif np.isnan(depth_dv): return depth_alt elif np.isnan(depth_alt): return depth_dv else: return max(depth_dv, depth_alt)
<SYSTEM_TASK:> Returns true if provenance of property is SPE or AST <END_TASK> <USER_TASK:> Description: def use_property(kepid, prop): """Returns true if provenance of property is SPE or AST """
try: prov = kicu.DATA.ix[kepid, '{}_prov'.format(prop)] return any([prov.startswith(s) for s in ['SPE', 'AST']]) except KeyError: raise MissingStellarError('{} not in stellar table?'.format(kepid))
<SYSTEM_TASK:> returns config object for given KOI <END_TASK> <USER_TASK:> Description: def fpp_config(koi, **kwargs): """returns config object for given KOI """
folder = os.path.join(KOI_FPPDIR, ku.koiname(koi)) if not os.path.exists(folder): os.makedirs(folder) config = ConfigObj(os.path.join(folder,'fpp.ini')) koi = ku.koiname(koi) rowefit = jrowe_fit(koi) config['name'] = koi ra,dec = ku.radec(koi) config['ra'] = ra config['dec'] = dec config['rprs'] = rowefit.ix['RD1','val'] config['period'] = rowefit.ix['PE1', 'val'] config['starfield'] = kepler_starfield_file(koi) for kw,val in kwargs.items(): config[kw] = val config['constraints'] = {} config['constraints']['maxrad'] = default_r_exclusion(koi) try: config['constraints']['secthresh'] = pipeline_weaksec(koi) except NoWeakSecondaryError: pass return config
<SYSTEM_TASK:> Applies default secthresh & exclusion radius constraints <END_TASK> <USER_TASK:> Description: def apply_default_constraints(self): """Applies default secthresh & exclusion radius constraints """
try: self.apply_secthresh(pipeline_weaksec(self.koi)) except NoWeakSecondaryError: logging.warning('No secondary eclipse threshold set for {}'.format(self.koi)) self.set_maxrad(default_r_exclusion(self.koi))
<SYSTEM_TASK:> Returns the SHA for the original file that was changed in a diff part. <END_TASK> <USER_TASK:> Description: def get_old_sha(diff_part): """ Returns the SHA for the original file that was changed in a diff part. """
r = re.compile(r'index ([a-fA-F\d]*)') return r.search(diff_part).groups()[0]
<SYSTEM_TASK:> Returns the filename for the original file that was changed in a diff part. <END_TASK> <USER_TASK:> Description: def get_old_filename(diff_part): """ Returns the filename for the original file that was changed in a diff part. """
regexps = ( # e.g. "+++ a/foo/bar" r'^--- a/(.*)', # e.g. "+++ /dev/null" r'^\-\-\- (.*)', ) for regexp in regexps: r = re.compile(regexp, re.MULTILINE) match = r.search(diff_part) if match is not None: return match.groups()[0] raise MalformedGitDiff("No old filename in diff part found. " "Examined diff part: {}".format(diff_part))
<SYSTEM_TASK:> Returns the filename for the updated file in a diff part. <END_TASK> <USER_TASK:> Description: def get_new_filename(diff_part): """ Returns the filename for the updated file in a diff part. """
regexps = ( # e.g. "+++ b/foo/bar" r'^\+\+\+ b/(.*)', # e.g. "+++ /dev/null" r'^\+\+\+ (.*)', ) for regexp in regexps: r = re.compile(regexp, re.MULTILINE) match = r.search(diff_part) if match is not None: return match.groups()[0] raise MalformedGitDiff("No new filename in diff part found. " "Examined diff part: {}".format(diff_part))
<SYSTEM_TASK:> Returns a tuple of old content and new content. <END_TASK> <USER_TASK:> Description: def get_contents(diff_part): """ Returns a tuple of old content and new content. """
old_sha = get_old_sha(diff_part) old_filename = get_old_filename(diff_part) old_contents = get_old_contents(old_sha, old_filename) new_filename = get_new_filename(diff_part) new_contents = get_new_contents(new_filename) return old_contents, new_contents
<SYSTEM_TASK:> Returns a dictionary resulting from reading a likelihood cachefile <END_TASK> <USER_TASK:> Description: def _loadcache(cachefile): """ Returns a dictionary resulting from reading a likelihood cachefile """
cache = {} if os.path.exists(cachefile): with open(cachefile) as f: for line in f: line = line.split() if len(line) == 2: try: cache[int(line[0])] = float(line[1]) except: pass return cache
<SYSTEM_TASK:> Fit trapezoid shape to each eclipse in population <END_TASK> <USER_TASK:> Description: def fit_trapezoids(self, MAfn=None, msg=None, use_pbar=True, **kwargs): """ Fit trapezoid shape to each eclipse in population For each instance in the population, first the correct, physical Mandel-Agol transit shape is simulated, and then this curve is fit with a trapezoid model :param MAfn: :class:`transit_basic.MAInterpolationFunction` object. If not passed, then one with default parameters will be created. :param msg: Message to be displayed for progressbar output. :param **kwargs: Additional keyword arguments passed to :func:`fitebs.fitebs`. """
logging.info('Fitting trapezoid models for {}...'.format(self.model)) if msg is None: msg = '{}: '.format(self.model) n = len(self.stars) deps, durs, slopes = (np.zeros(n), np.zeros(n), np.zeros(n)) secs = np.zeros(n, dtype=bool) dsec = np.zeros(n) if use_pbar and pbar_ok: widgets = [msg+'fitting shape parameters for %i systems: ' % n,Percentage(), ' ',Bar(marker=RotatingMarker()),' ',ETA()] pbar = ProgressBar(widgets=widgets,maxval=n) pbar.start() for i in range(n): logging.debug('Fitting star {}'.format(i)) pri = (self.stars['dpri'][i] > self.stars['dsec'][i] or np.isnan(self.stars['dsec'][i])) sec = not pri secs[i] = sec if sec: dsec[i] = self.stars['dpri'][i] else: dsec[i] = self.stars['dsec'][i] try: trap_pars = self.eclipse_trapfit(i, secondary=sec, **kwargs) except NoEclipseError: logging.error('No eclipse registered for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) except NoFitError: logging.error('Fit did not converge for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) except KeyboardInterrupt: raise except: logging.error('Unknown error for star {}'.format(i)) trap_pars = (np.nan, np.nan, np.nan) if use_pbar and pbar_ok: pbar.update(i) durs[i], deps[i], slopes[i] = trap_pars logging.info('Done.') self.stars['depth'] = deps self.stars['duration'] = durs self.stars['slope'] = slopes self.stars['secdepth'] = dsec self.stars['secondary'] = secs self._make_kde()
<SYSTEM_TASK:> Array of eclipse probabilities. <END_TASK> <USER_TASK:> Description: def eclipseprob(self): """ Array of eclipse probabilities. """
#TODO: incorporate eccentricity/omega for exact calculation? s = self.stars return ((s['radius_1'] + s['radius_2'])*RSUN / (semimajor(s['P'],s['mass_1'] + s['mass_2'])*AU))
<SYSTEM_TASK:> Constrain the observed secondary depth to be less than a given value <END_TASK> <USER_TASK:> Description: def constrain_secdepth(self, thresh): """ Constrain the observed secondary depth to be less than a given value :param thresh: Maximum allowed fractional depth for diluted secondary eclipse depth """
self.apply_constraint(UpperLimit(self.secondary_depth, thresh, name='secondary depth'))
<SYSTEM_TASK:> Model prior for particular model. <END_TASK> <USER_TASK:> Description: def prior(self): """ Model prior for particular model. Product of eclipse probability (``self.prob``), the fraction of scenario that is allowed by the various constraints (``self.selectfrac``), and all additional factors in ``self.priorfactors``. """
prior = self.prob * self.selectfrac for f in self.priorfactors: prior *= self.priorfactors[f] return prior
<SYSTEM_TASK:> Adds given values to priorfactors <END_TASK> <USER_TASK:> Description: def add_priorfactor(self,**kwargs): """Adds given values to priorfactors If given keyword exists already, error will be raised to use :func:`EclipsePopulation.change_prior` instead. """
for kw in kwargs: if kw in self.priorfactors: logging.error('%s already in prior factors for %s. use change_prior function instead.' % (kw,self.model)) continue else: self.priorfactors[kw] = kwargs[kw] logging.info('%s added to prior factors for %s' % (kw,self.model))
<SYSTEM_TASK:> Changes existing priorfactors. <END_TASK> <USER_TASK:> Description: def change_prior(self, **kwargs): """ Changes existing priorfactors. If given keyword isn't already in priorfactors, then will be ignored. """
for kw in kwargs: if kw in self.priorfactors: self.priorfactors[kw] = kwargs[kw] logging.info('{0} changed to {1} for {2} model'.format(kw,kwargs[kw], self.model))
<SYSTEM_TASK:> Evaluate KDE at given points. <END_TASK> <USER_TASK:> Description: def _density(self, logd, dur, slope): """ Evaluate KDE at given points. Prepares data according to whether sklearn or scipy KDE in use. :param log, dur, slope: Trapezoidal shape parameters. """
if self.sklearn_kde: #TODO: fix preprocessing pts = np.array([(logd - self.mean_logdepth)/self.std_logdepth, (dur - self.mean_dur)/self.std_dur, (slope - self.mean_slope)/self.std_slope]) return self.kde.score_samples(pts) else: return self.kde(np.array([logd, dur, slope]))
<SYSTEM_TASK:> Returns likelihood of transit signal <END_TASK> <USER_TASK:> Description: def lhood(self, trsig, recalc=False, cachefile=None): """Returns likelihood of transit signal Returns sum of ``trsig`` MCMC samples evaluated at ``self.kde``. :param trsig: :class:`vespa.TransitSignal` object. :param recalc: (optional) Whether to recalculate likelihood (if calculation is cached). :param cachefile: (optional) File that holds likelihood calculation cache. """
if not hasattr(self,'kde'): self._make_kde() if cachefile is None: cachefile = self.lhoodcachefile if cachefile is None: cachefile = 'lhoodcache.dat' lhoodcache = _loadcache(cachefile) key = hashcombine(self, trsig) if key in lhoodcache and not recalc: return lhoodcache[key] if self.is_ruled_out: return 0 N = trsig.kde.dataset.shape[1] lh = self.kde(trsig.kde.dataset).sum() / N with open(cachefile, 'a') as fout: fout.write('%i %g\n' % (key, lh)) return lh
<SYSTEM_TASK:> Loads EclipsePopulation from HDF file <END_TASK> <USER_TASK:> Description: def load_hdf(cls, filename, path=''): #perhaps this doesn't need to be written? """ Loads EclipsePopulation from HDF file Also runs :func:`EclipsePopulation._make_kde` if it can. :param filename: HDF file :param path: (optional) Path within HDF file """
new = StarPopulation.load_hdf(filename, path=path) #setup lazy loading of starmodel if present try: with pd.HDFStore(filename) as store: if '{}/starmodel'.format(path) in store: new._starmodel = None new._starmodel_file = filename new._starmodel_path = '{}/starmodel'.format(path) except: pass try: new._make_kde() except NoTrapfitError: logging.warning('Trapezoid fit not done.') return new
<SYSTEM_TASK:> Unique list of constraints among all populations in set. <END_TASK> <USER_TASK:> Description: def constraints(self): """ Unique list of constraints among all populations in set. """
cs = [] for pop in self.poplist: cs += [c for c in pop.constraints] return list(set(cs))
<SYSTEM_TASK:> Removes population from PopulationSet <END_TASK> <USER_TASK:> Description: def remove_population(self,pop): """Removes population from PopulationSet """
iremove=None for i in range(len(self.poplist)): if self.modelnames[i]==self.poplist[i].model: iremove=i if iremove is not None: self.modelnames.pop(i) self.shortmodelnames.pop(i) self.poplist.pop(i)
<SYSTEM_TASK:> Dictionary holding colors that correspond to constraints. <END_TASK> <USER_TASK:> Description: def colordict(self): """ Dictionary holding colors that correspond to constraints. """
d = {} i=0 n = len(self.constraints) for c in self.constraints: #self.colordict[c] = colors[i % 6] d[c] = cm.jet(1.*i/n) i+=1 return d
<SYSTEM_TASK:> Combinartion of priorfactors from all populations <END_TASK> <USER_TASK:> Description: def priorfactors(self): """Combinartion of priorfactors from all populations """
priorfactors = {} for pop in self.poplist: for f in pop.priorfactors: if f in priorfactors: if pop.priorfactors[f] != priorfactors[f]: raise ValueError('prior factor %s is inconsistent!' % f) else: priorfactors[f] = pop.priorfactors[f] return priorfactors
<SYSTEM_TASK:> Applies constraint corresponding to measuring transit in different band <END_TASK> <USER_TASK:> Description: def apply_multicolor_transit(self,band,depth): """ Applies constraint corresponding to measuring transit in different band This is not implemented yet. """
if '{} band transit'.format(band) not in self.constraints: self.constraints.append('{} band transit'.format(band)) for pop in self.poplist: pop.apply_multicolor_transit(band,depth)
<SYSTEM_TASK:> Sets max allowed radius in populations. <END_TASK> <USER_TASK:> Description: def set_maxrad(self,newrad): """ Sets max allowed radius in populations. Doesn't operate via the :class:`stars.Constraint` protocol; rather just rescales the sky positions for the background objects and recalculates sky area, etc. """
if not isinstance(newrad, Quantity): newrad = newrad * u.arcsec #if 'Rsky' not in self.constraints: # self.constraints.append('Rsky') for pop in self.poplist: if not pop.is_specific: try: pop.maxrad = newrad except AttributeError: pass
<SYSTEM_TASK:> Applies a constraint that sets the maximum brightness for non-target star <END_TASK> <USER_TASK:> Description: def apply_dmaglim(self,dmaglim=None): """ Applies a constraint that sets the maximum brightness for non-target star :func:`stars.StarPopulation.set_dmaglim` not yet implemented. """
raise NotImplementedError if 'bright blend limit' not in self.constraints: self.constraints.append('bright blend limit') for pop in self.poplist: if not hasattr(pop,'dmaglim') or pop.is_specific: continue if dmaglim is None: dmag = pop.dmaglim else: dmag = dmaglim pop.set_dmaglim(dmag) self.dmaglim = dmaglim
<SYSTEM_TASK:> Applies constraint corresponding to RV trend non-detection to each population <END_TASK> <USER_TASK:> Description: def apply_trend_constraint(self, limit, dt, **kwargs): """ Applies constraint corresponding to RV trend non-detection to each population See :func:`stars.StarPopulation.apply_trend_constraint`; all arguments passed to that function for each population. """
if 'RV monitoring' not in self.constraints: self.constraints.append('RV monitoring') for pop in self.poplist: if not hasattr(pop,'dRV'): continue pop.apply_trend_constraint(limit, dt, **kwargs) self.trend_limit = limit self.trend_dt = dt
<SYSTEM_TASK:> Applies secondary depth constraint to each population <END_TASK> <USER_TASK:> Description: def apply_secthresh(self, secthresh, **kwargs): """Applies secondary depth constraint to each population See :func:`EclipsePopulation.apply_secthresh`; all arguments passed to that function for each population. """
if 'secondary depth' not in self.constraints: self.constraints.append('secondary depth') for pop in self.poplist: if not isinstance(pop, EclipsePopulation_Px2): pop.apply_secthresh(secthresh, **kwargs) self.secthresh = secthresh
<SYSTEM_TASK:> Constrains property for each population <END_TASK> <USER_TASK:> Description: def constrain_property(self,prop,**kwargs): """ Constrains property for each population See :func:`vespa.stars.StarPopulation.constrain_property`; all arguments passed to that function for each population. """
if prop not in self.constraints: self.constraints.append(prop) for pop in self.poplist: try: pop.constrain_property(prop,**kwargs) except AttributeError: logging.info('%s model does not have property stars.%s (constraint not applied)' % (pop.model,prop))
<SYSTEM_TASK:> Replaces removed constraint in each population. <END_TASK> <USER_TASK:> Description: def replace_constraint(self,name,**kwargs): """ Replaces removed constraint in each population. See :func:`vespa.stars.StarPopulation.replace_constraint` """
for pop in self.poplist: pop.replace_constraint(name,**kwargs) if name not in self.constraints: self.constraints.append(name)
<SYSTEM_TASK:> Removes constraint from each population <END_TASK> <USER_TASK:> Description: def remove_constraint(self,*names): """ Removes constraint from each population See :func:`vespa.stars.StarPopulation.remove_constraint """
for name in names: for pop in self.poplist: if name in pop.constraints: pop.remove_constraint(name) else: logging.info('%s model does not have %s constraint' % (pop.model,name)) if name in self.constraints: self.constraints.remove(name)
<SYSTEM_TASK:> Applies contrast curve constraint to each population <END_TASK> <USER_TASK:> Description: def apply_cc(self, cc, **kwargs): """ Applies contrast curve constraint to each population See :func:`vespa.stars.StarPopulation.apply_cc`; all arguments passed to that function for each population. """
if type(cc)==type(''): pass if cc.name not in self.constraints: self.constraints.append(cc.name) for pop in self.poplist: if not pop.is_specific: try: pop.apply_cc(cc, **kwargs) except AttributeError: logging.info('%s cc not applied to %s model' % (cc.name,pop.model))
<SYSTEM_TASK:> Applies velocity contrast curve constraint to each population <END_TASK> <USER_TASK:> Description: def apply_vcc(self,vcc): """ Applies velocity contrast curve constraint to each population See :func:`vespa.stars.StarPopulation.apply_vcc`; all arguments passed to that function for each population. """
if 'secondary spectrum' not in self.constraints: self.constraints.append('secondary spectrum') for pop in self.poplist: if not pop.is_specific: try: pop.apply_vcc(vcc) except: logging.info('VCC constraint not applied to %s model' % (pop.model))
<SYSTEM_TASK:> Runs get_trilegal perl script; optionally saves output into .h5 file <END_TASK> <USER_TASK:> Description: def get_trilegal(filename,ra,dec,folder='.', galactic=False, filterset='kepler_2mass',area=1,maglim=27,binaries=False, trilegal_version='1.6',sigma_AV=0.1,convert_h5=True): """Runs get_trilegal perl script; optionally saves output into .h5 file Depends on a perl script provided by L. Girardi; calls the web form simulation, downloads the file, and (optionally) converts to HDF format. Uses A_V at infinity from :func:`utils.get_AV_infinity`. .. note:: Would be desirable to re-write the get_trilegal script all in python. :param filename: Desired output filename. If extension not provided, it will be added. :param ra,dec: Coordinates (ecliptic) for line-of-sight simulation. :param folder: (optional) Folder to which to save file. *Acknowledged, file control in this function is a bit wonky.* :param filterset: (optional) Filter set for which to call TRILEGAL. :param area: (optional) Area of TRILEGAL simulation [sq. deg] :param maglim: (optional) Limiting magnitude in first mag (by default will be Kepler band) If want to limit in different band, then you have to got directly to the ``get_trilegal`` perl script. :param binaries: (optional) Whether to have TRILEGAL include binary stars. Default ``False``. :param trilegal_version: (optional) Default ``'1.6'``. :param sigma_AV: (optional) Fractional spread in A_V along the line of sight. :param convert_h5: (optional) If true, text file downloaded from TRILEGAL will be converted into a ``pandas.DataFrame`` stored in an HDF file, with ``'df'`` path. """
if galactic: l, b = ra, dec else: try: c = SkyCoord(ra,dec) except UnitsError: c = SkyCoord(ra,dec,unit='deg') l,b = (c.galactic.l.value,c.galactic.b.value) if os.path.isabs(filename): folder = '' if not re.search('\.dat$',filename): outfile = '{}/{}.dat'.format(folder,filename) else: outfile = '{}/{}'.format(folder,filename) AV = get_AV_infinity(l,b,frame='galactic') #cmd = 'get_trilegal %s %f %f %f %i %.3f %.2f %s 1 %.1f %s' % (trilegal_version,l,b, # area,binaries,AV,sigma_AV, # filterset,maglim,outfile) #sp.Popen(cmd,shell=True).wait() trilegal_webcall(trilegal_version,l,b,area,binaries,AV,sigma_AV,filterset,maglim,outfile) if convert_h5: df = pd.read_table(outfile, sep='\s+', skipfooter=1, engine='python') df = df.rename(columns={'#Gc':'Gc'}) for col in df.columns: if col not in NONMAG_COLS: df.rename(columns={col:'{}_mag'.format(col)},inplace=True) if not re.search('\.h5$', filename): h5file = '{}/{}.h5'.format(folder,filename) else: h5file = '{}/{}'.format(folder,filename) df.to_hdf(h5file,'df') with pd.HDFStore(h5file) as store: attrs = store.get_storer('df').attrs attrs.trilegal_args = {'version':trilegal_version, 'ra':ra, 'dec':dec, 'l':l,'b':b,'area':area, 'AV':AV, 'sigma_AV':sigma_AV, 'filterset':filterset, 'maglim':maglim, 'binaries':binaries} os.remove(outfile)
<SYSTEM_TASK:> Wrapper to set logging parameters for output <END_TASK> <USER_TASK:> Description: def log_wrapper(self): """ Wrapper to set logging parameters for output """
log = logging.getLogger('client.py') # Set the log format and log level try: debug = self.params["debug"] log.setLevel(logging.DEBUG) except KeyError: log.setLevel(logging.INFO) # Set the log format. stream = logging.StreamHandler() logformat = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%b %d %H:%M:%S') stream.setFormatter(logformat) log.addHandler(stream) return log
<SYSTEM_TASK:> Encode uint128 setid as stripped b32encoded string <END_TASK> <USER_TASK:> Description: def encode_setid(uint128): """Encode uint128 setid as stripped b32encoded string"""
hi, lo = divmod(uint128, 2**64) return b32encode(struct.pack('<QQ', lo, hi))[:-6].lower()
<SYSTEM_TASK:> Returns an image with reduced opacity. Converts image to RGBA if needs. <END_TASK> <USER_TASK:> Description: def _reduce_opacity(self, watermark, opacity): """ Returns an image with reduced opacity. Converts image to RGBA if needs. Simple watermark.opacity(65535 - int(65535 * opacity) would not work for images with the Opacity channel (RGBA images). So we have to convert RGB or any other type to RGBA in this case """
if watermark.type() != ImageType.TrueColorMatteType: watermark.type(ImageType.TrueColorMatteType) depth = 255 - int(255 * opacity) watermark.quantumOperator(ChannelType.OpacityChannel, QuOp.MaxQuantumOp, depth)
<SYSTEM_TASK:> Cleanup listing relations <END_TASK> <USER_TASK:> Description: def cleanup_relations(self): """Cleanup listing relations"""
collections = self.collections for relation in [x for col in collections.values() for x in col.model.relations.values()]: db.session.query(relation)\ .filter(~relation.listing.any())\ .delete(synchronize_session=False) db.session.commit()
<SYSTEM_TASK:> Cleanup unused tags and discarded datasets. <END_TASK> <USER_TASK:> Description: def marvcli_cleanup(ctx, discarded, unused_tags): """Cleanup unused tags and discarded datasets."""
if not any([discarded, unused_tags]): click.echo(ctx.get_help()) ctx.exit(1) site = create_app().site if discarded: site.cleanup_discarded() if unused_tags: site.cleanup_tags() site.cleanup_relations()
<SYSTEM_TASK:> Run development webserver. <END_TASK> <USER_TASK:> Description: def marvcli_develop_server(port, public): """Run development webserver. ATTENTION: By default it is only served on localhost. To run it within a container and access it from the outside, you need to forward the port and tell it to listen on all IPs instead of only localhost. """
from flask_cors import CORS app = create_app(push=False) app.site.load_for_web() CORS(app) class IPDBMiddleware(object): def __init__(self, app): self.app = app def __call__(self, environ, start_response): from ipdb import launch_ipdb_on_exception with launch_ipdb_on_exception(): appiter = self.app(environ, start_response) for item in appiter: yield item app.debug = True if IPDB: app.wsgi_app = IPDBMiddleware(app.wsgi_app) app.run(use_debugger=False, use_reloader=False, host=('0.0.0.0' if public else '127.0.0.1'), port=port, threaded=False) else: app.run(host=('0.0.0.0' if public else '127.0.0.1'), port=port, reloader_type='watchdog', threaded=False)
<SYSTEM_TASK:> Mark DATASETS to be discarded or discard associated data. <END_TASK> <USER_TASK:> Description: def marvcli_discard(datasets, all_nodes, nodes, tags, comments, confirm): """Mark DATASETS to be discarded or discard associated data. Without any options the specified datasets are marked to be discarded via `marv cleanup --discarded`. Use `marv undiscard` to undo this operation. Otherwise, selected data associated with the specified datasets is discarded right away. """
mark_discarded = not any([all_nodes, nodes, tags, comments]) site = create_app().site setids = parse_setids(datasets) if tags or comments: if confirm: msg = ' and '.join(filter(None, ['tags' if tags else None, 'comments' if comments else None])) click.echo('About to delete {}'.format(msg)) click.confirm('This cannot be undone. Do you want to continue?', abort=True) ids = [x[0] for x in db.session.query(Dataset.id).filter(Dataset.setid.in_(setids))] if tags: where = dataset_tag.c.dataset_id.in_(ids) stmt = dataset_tag.delete().where(where) db.session.execute(stmt) if comments: comment_table = Comment.__table__ where = comment_table.c.dataset_id.in_(ids) stmt = comment_table.delete().where(where) db.session.execute(stmt) if nodes or all_nodes: storedir = site.config.marv.storedir for setid in setids: setdir = os.path.join(storedir, setid) # TODO: see where we are getting with dep tree tables if mark_discarded: dataset = Dataset.__table__ stmt = dataset.update()\ .where(dataset.c.setid.in_(setids))\ .values(discarded=True) db.session.execute(stmt) db.session.commit()
<SYSTEM_TASK:> Restore previously dumped database <END_TASK> <USER_TASK:> Description: def marvcli_restore(file): """Restore previously dumped database"""
data = json.load(file) site = create_app().site site.restore_database(**data)
<SYSTEM_TASK:> Query datasets. <END_TASK> <USER_TASK:> Description: def marvcli_query(ctx, list_tags, collections, discarded, outdated, path, tags, null): """Query datasets. Use --collection=* to list all datasets across all collections. """
if not any([collections, discarded, list_tags, outdated, path, tags]): click.echo(ctx.get_help()) ctx.exit(1) sep = '\x00' if null else '\n' site = create_app().site if '*' in collections: collections = None else: for col in collections: if col not in site.collections: ctx.fail('Unknown collection: {}'.format(col)) if list_tags: tags = site.listtags(collections) if tags: click.echo(sep.join(tags), nl=not null) else: click.echo('no tags', err=True) return setids = site.query(collections, discarded, outdated, path, tags) if setids: sep = '\x00' if null else '\n' click.echo(sep.join(setids), nl=not null)
<SYSTEM_TASK:> Add or remove tags to datasets <END_TASK> <USER_TASK:> Description: def marvcli_tag(ctx, add, remove, datasets): """Add or remove tags to datasets"""
if not any([add, remove]) or not datasets: click.echo(ctx.get_help()) ctx.exit(1) app = create_app() setids = parse_setids(datasets) app.site.tag(setids, add, remove)
<SYSTEM_TASK:> Add comment as user for one or more datasets <END_TASK> <USER_TASK:> Description: def marvcli_comment_add(user, message, datasets): """Add comment as user for one or more datasets"""
app = create_app() try: db.session.query(User).filter(User.name==user).one() except NoResultFound: click.echo("ERROR: No such user '{}'".format(user), err=True) sys.exit(1) ids = parse_setids(datasets, dbids=True) app.site.comment(user, message, ids)
<SYSTEM_TASK:> Lists comments for datasets. <END_TASK> <USER_TASK:> Description: def marvcli_comment_list(datasets): """Lists comments for datasets. Output: setid comment_id date time author message """
app = create_app() ids = parse_setids(datasets, dbids=True) comments = db.session.query(Comment)\ .options(db.joinedload(Comment.dataset))\ .filter(Comment.dataset_id.in_(ids)) for comment in sorted(comments, key=lambda x: (x.dataset._setid, x.id)): print(comment.dataset.setid, comment.id, datetime.datetime.fromtimestamp(int(comment.time_added / 1000)), comment.author, repr(comment.text))
<SYSTEM_TASK:> Remove comments. <END_TASK> <USER_TASK:> Description: def marvcli_comment_rm(ids): """Remove comments. Remove comments by id as given in second column of: marv comment list """
app = create_app() db.session.query(Comment)\ .filter(Comment.id.in_(ids))\ .delete(synchronize_session=False) db.session.commit()
<SYSTEM_TASK:> Wrapper for ``_watermark`` <END_TASK> <USER_TASK:> Description: def watermark(self, image, options): """ Wrapper for ``_watermark`` Takes care of all the options handling. """
watermark_img = options.get("watermark", settings.THUMBNAIL_WATERMARK) if not watermark_img: raise AttributeError("No THUMBNAIL_WATERMARK defined or set on tag.") watermark_path = find(watermark_img) if not watermark_path: raise RuntimeError("Could not find the configured watermark file.") if not os.path.isfile(watermark_path): raise RuntimeError("Set watermark does not point to a file.") if "cropbox" not in options: options["cropbox"] = None if "watermark_alpha" not in options: options["watermark_alpha"] = settings.THUMBNAIL_WATERMARK_OPACITY mark_sizes = options.get("watermark_size", settings.THUMBNAIL_WATERMARK_SIZE) if mark_sizes: try: options["watermark_size"] = parse_geometry( mark_sizes, self.get_image_ratio(image, options) ) except TypeError as e: raise TypeError( "Please, update sorl-thumbnail package version to >= 11.12b. %s" % e ) else: options["watermark_size"] = False if "watermark_pos" not in options: options["watermark_pos"] = settings.THUMBNAIL_WATERMARK_POSITION return self._watermark( image, watermark_path, options["watermark_alpha"], options["watermark_size"], options["watermark_pos"], )
<SYSTEM_TASK:> Functions available for listing columns and filters. <END_TASK> <USER_TASK:> Description: def make_funcs(dataset, setdir, store): """Functions available for listing columns and filters."""
return { 'cat': lambda *lists: [x for lst in lists for x in lst], 'comments': lambda: None, 'detail_route': detail_route, 'format': lambda fmt, *args: fmt.format(*args), 'get': partial(getnode, dataset, setdir, store), 'join': lambda sep, *args: sep.join([x for x in args if x]), 'len': len, 'link': (lambda href, title, target=None: {'href': href or "", 'title': title or "", 'target': '_blank' if target is None else target}), 'list': lambda *x: filter(None, list(x)), 'max': max, 'min': min, 'status': lambda: ['#STATUS#'], 'sum': sum, 'tags': lambda: ['#TAGS#'], 'trace': print_trace, }
<SYSTEM_TASK:> Functions available for listing summary fields. <END_TASK> <USER_TASK:> Description: def make_summary_funcs(rows, ids): """Functions available for listing summary fields."""
return { 'len': len, 'list': lambda *x: filter(None, list(x)), 'max': max, 'min': min, 'rows': partial(summary_rows, rows, ids), 'sum': sum, 'trace': print_trace }
<SYSTEM_TASK:> Create read-only property that caches its function's value <END_TASK> <USER_TASK:> Description: def cached_property(func): """Create read-only property that caches its function's value"""
@functools.wraps(func) def cached_func(self): cacheattr = '_{}'.format(func.func_name) try: return getattr(self, cacheattr) except AttributeError: value = func(self) setattr(self, cacheattr, value) return value return property(cached_func)
<SYSTEM_TASK:> Create a stream for publishing messages. <END_TASK> <USER_TASK:> Description: def create_stream(name, **header): """Create a stream for publishing messages. All keyword arguments will be used to form the header. """
assert isinstance(name, basestring), name return CreateStream(parent=None, name=name, group=False, header=header)
<SYSTEM_TASK:> Pulls next message for handle. <END_TASK> <USER_TASK:> Description: def pull(handle, enumerate=False): """Pulls next message for handle. Args: handle: A :class:`.stream.Handle` or GroupHandle. enumerate (bool): boolean to indicate whether a tuple ``(idx, msg)`` should be returned, not unlike Python's enumerate(). Returns: A :class:`Pull` task to be yielded. Marv will send the corresponding message as soon as it is available. For groups this message will be a handle to a member of the group. Members of groups are either streams or groups. Examples: Pulling (enumerated) message from stream:: msg = yield marv.pull(stream) idx, msg = yield marv.pull(stream, enumerate=True) Pulling stream from group and message from stream:: stream = yield marv.pull(group) # a group of streams msg = yield marv.pull(stream) """
assert isinstance(handle, Handle), handle return Pull(handle, enumerate)
<SYSTEM_TASK:> Extract first image of input stream to jpg file. <END_TASK> <USER_TASK:> Description: def image(cam): """Extract first image of input stream to jpg file. Args: cam: Input stream of raw rosbag messages. Returns: File instance for first image of input stream. """
# Set output stream title and pull first message yield marv.set_header(title=cam.topic) msg = yield marv.pull(cam) if msg is None: return # Deserialize raw ros message pytype = get_message_type(cam) rosmsg = pytype() rosmsg.deserialize(msg.data) # Write image to jpeg and push it to output stream name = '{}.jpg'.format(cam.topic.replace('/', ':')[1:]) imgfile = yield marv.make_file(name) img = imgmsg_to_cv2(rosmsg, "rgb8") cv2.imwrite(imgfile.path, img, (cv2.IMWRITE_JPEG_QUALITY, 60)) yield marv.push(imgfile)
<SYSTEM_TASK:> Create detail section with one image. <END_TASK> <USER_TASK:> Description: def image_section(image, title): """Create detail section with one image. Args: title (str): Title to be displayed for detail section. image: marv image file. Returns One detail section. """
# pull first image img = yield marv.pull(image) if img is None: return # create image widget and section containing it widget = {'title': image.title, 'image': {'src': img.relpath}} section = {'title': title, 'widgets': [widget]} yield marv.push(section)
<SYSTEM_TASK:> Extract images from input stream to jpg files. <END_TASK> <USER_TASK:> Description: def images(cam): """Extract images from input stream to jpg files. Args: cam: Input stream of raw rosbag messages. Returns: File instances for images of input stream. """
# Set output stream title and pull first message yield marv.set_header(title=cam.topic) # Fetch and process first 20 image messages name_template = '%s-{}.jpg' % cam.topic.replace('/', ':')[1:] while True: idx, msg = yield marv.pull(cam, enumerate=True) if msg is None or idx >= 20: break # Deserialize raw ros message pytype = get_message_type(cam) rosmsg = pytype() rosmsg.deserialize(msg.data) # Write image to jpeg and push it to output stream img = imgmsg_to_cv2(rosmsg, "rgb8") name = name_template.format(idx) imgfile = yield marv.make_file(name) cv2.imwrite(imgfile.path, img) yield marv.push(imgfile)
<SYSTEM_TASK:> Create detail section with gallery. <END_TASK> <USER_TASK:> Description: def gallery_section(images, title): """Create detail section with gallery. Args: title (str): Title to be displayed for detail section. images: stream of marv image files Returns One detail section. """
# pull all images imgs = [] while True: img = yield marv.pull(images) if img is None: break imgs.append({'src': img.relpath}) if not imgs: return # create gallery widget and section containing it widget = {'title': images.title, 'gallery': {'images': imgs}} section = {'title': title, 'widgets': [widget]} yield marv.push(section)
<SYSTEM_TASK:> Set a name on a validator callable. <END_TASK> <USER_TASK:> Description: def name(name, validator=None): """ Set a name on a validator callable. Useful for user-friendly reporting when using lambdas to populate the [`Invalid.expected`](#invalid) field: ```python from good import Schema, name Schema(lambda x: int(x))('a') #-> Invalid: invalid literal for int(): expected <lambda>(), got Schema(name('int()', lambda x: int(x))('a') #-> Invalid: invalid literal for int(): expected int(), got a ``` Note that it is only useful with lambdas, since function name is used if available: see notes on [Schema Callables](#callables). :param name: Name to assign on the validator callable :type name: unicode :param validator: Validator callable. If not provided -- a decorator is returned instead: ```python from good import name @name(u'int()') def int(v): return int(v) ``` :type validator: callable :return: The same validator callable :rtype: callable """
# Decorator mode if validator is None: def decorator(f): f.name = name return f return decorator # Direct mode validator.name = name return validator
<SYSTEM_TASK:> Validator factory which call a single method on the string. <END_TASK> <USER_TASK:> Description: def stringmethod(func): """ Validator factory which call a single method on the string. """
method_name = func() @wraps(func) def factory(): def validator(v): if not isinstance(v, six.string_types): raise Invalid(_(u'Not a string'), get_type_name(six.text_type), get_type_name(type(v))) return getattr(v, method_name)() return validator return factory
<SYSTEM_TASK:> Parse %z offset into `timedelta` <END_TASK> <USER_TASK:> Description: def parse_z(cls, offset): """ Parse %z offset into `timedelta` """
assert len(offset) == 5, 'Invalid offset string format, must be "+HHMM"' return timedelta(hours=int(offset[:3]), minutes=int(offset[0] + offset[3:]))
<SYSTEM_TASK:> Format `timedelta` into %z <END_TASK> <USER_TASK:> Description: def format_z(cls, offset): """ Format `timedelta` into %z """
sec = offset.total_seconds() return '{s}{h:02d}{m:02d}'.format(s='-' if sec<0 else '+', h=abs(int(sec/3600)), m=int((sec%3600)/60))
<SYSTEM_TASK:> Parse a datetime string using the provided format. <END_TASK> <USER_TASK:> Description: def strptime(cls, value, format): """ Parse a datetime string using the provided format. This also emulates `%z` support on Python 2. :param value: Datetime string :type value: str :param format: Format to use for parsing :type format: str :rtype: datetime :raises ValueError: Invalid format :raises TypeError: Invalid input type """
# Simplest case: direct parsing if cls.python_supports_z or '%z' not in format: return datetime.strptime(value, format) else: # %z emulation case assert format[-2:] == '%z', 'For performance, %z is only supported at the end of the string' # Parse dt = datetime.strptime(value[:-5], format[:-2]) # cutoff '%z' and '+0000' tz = FixedOffset(value[-5:]) # parse %z into tzinfo # Localize return dt.replace(tzinfo=tz)
<SYSTEM_TASK:> Generate a random type and samples for it. <END_TASK> <USER_TASK:> Description: def generate_random_type(valid): """ Generate a random type and samples for it. :param valid: Generate valid samples? :type valid: bool :return: type, sample-generator :rtype: type, generator """
type = choice(['int', 'str']) r = lambda: randrange(-1000000000, 1000000000) if type == 'int': return int, (r() if valid else str(r()) for i in itertools.count()) elif type == 'str': return str, (str(r()) if valid else r() for i in itertools.count()) else: raise AssertionError('!')
<SYSTEM_TASK:> Generate a random plain schema, and a sample generation function. <END_TASK> <USER_TASK:> Description: def generate_random_schema(valid): """ Generate a random plain schema, and a sample generation function. :param valid: Generate valid samples? :type valid: bool :returns: schema, sample-generator :rtype: *, generator """
schema_type = choice(['literal', 'type']) if schema_type == 'literal': type, gen = generate_random_type(valid) value = next(gen) return value, (value if valid else None for i in itertools.count()) elif schema_type == 'type': return generate_random_type(valid) else: raise AssertionError('!')