text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Return the path of the revrand data dir.
<END_TASK>
<USER_TASK:>
Description:
def get_data_home(data_home=None):
"""
Return the path of the revrand data dir.
This folder is used by some large dataset loaders to avoid
downloading the data several times.
By default the data dir is set to a folder named 'revrand_data'
in the user home folder.
Alternatively, it can be set by the 'REVRAND_DATA' environment
variable or programmatically by giving an explicit folder path. The
'~' symbol is expanded to the user home folder.
If the folder does not already exist, it is automatically created.
""" |
data_home_default = Path(__file__).ancestor(3).child('demos',
'_revrand_data')
if data_home is None:
data_home = os.environ.get('REVRAND_DATA', data_home_default)
if not os.path.exists(data_home):
os.makedirs(data_home)
return data_home |
<SYSTEM_TASK:>
Fetch the SARCOS dataset from the internet and parse appropriately into
<END_TASK>
<USER_TASK:>
Description:
def fetch_gpml_sarcos_data(transpose_data=True, data_home=None):
"""
Fetch the SARCOS dataset from the internet and parse appropriately into
python arrays
>>> gpml_sarcos = fetch_gpml_sarcos_data()
>>> gpml_sarcos.train.data.shape
(44484, 21)
>>> gpml_sarcos.train.targets.shape
(44484,)
>>> gpml_sarcos.train.targets.round(2) # doctest: +ELLIPSIS
array([ 50.29, 44.1 , 37.35, ..., 22.7 , 17.13, 6.52])
>>> gpml_sarcos.test.data.shape
(4449, 21)
>>> gpml_sarcos.test.targets.shape
(4449,)
""" |
train_src_url = "http://www.gaussianprocess.org/gpml/data/sarcos_inv.mat"
test_src_url = ("http://www.gaussianprocess.org/gpml/data/sarcos_inv_test"
".mat")
data_home = get_data_home(data_home=data_home)
train_filename = os.path.join(data_home, 'sarcos_inv.mat')
test_filename = os.path.join(data_home, 'sarcos_inv_test.mat')
if not os.path.exists(train_filename):
urllib.request.urlretrieve(train_src_url, train_filename)
if not os.path.exists(test_filename):
urllib.request.urlretrieve(test_src_url, test_filename)
train_data = loadmat(train_filename).get('sarcos_inv')
test_data = loadmat(test_filename).get('sarcos_inv_test')
train_bunch = Bunch(data=train_data[:, :21],
targets=train_data[:, 21])
test_bunch = Bunch(data=test_data[:, :21],
targets=test_data[:, 21])
return Bunch(train=train_bunch, test=test_bunch) |
<SYSTEM_TASK:>
Fetch the USPS handwritten digits dataset from the internet and parse
<END_TASK>
<USER_TASK:>
Description:
def fetch_gpml_usps_resampled_data(transpose_data=True, data_home=None):
"""
Fetch the USPS handwritten digits dataset from the internet and parse
appropriately into python arrays
>>> usps_resampled = fetch_gpml_usps_resampled_data()
>>> usps_resampled.train.targets.shape
(4649,)
>>> usps_resampled.train.targets # doctest: +ELLIPSIS
array([6, 0, 1, ..., 9, 2, 7])
>>> usps_resampled.train.data.shape
(4649, 256)
>>> np.all(-1 <= usps_resampled.train.data)
True
>>> np.all(usps_resampled.train.data < 1)
True
>>> usps_resampled.test.targets.shape
(4649,)
>>> usps_resampled.test.data.shape
(4649, 256)
>>> usps_resampled = fetch_gpml_usps_resampled_data(transpose_data=False)
>>> usps_resampled.train.data.shape
(256, 4649)
""" |
data_home = get_data_home(data_home=data_home)
data_filename = os.path.join(data_home,
'usps_resampled/usps_resampled.mat')
if not os.path.exists(data_filename):
r = requests.get('http://www.gaussianprocess.org/gpml/data/'
'usps_resampled.tar.bz2')
with tarfile.open(fileobj=BytesIO(r.content)) as tar_infile:
tar_infile.extract('usps_resampled/usps_resampled.mat',
path=data_home)
matlab_dict = loadmat(data_filename)
train_data = matlab_dict['train_patterns']
test_data = matlab_dict['test_patterns']
if transpose_data:
train_data = train_data.T
test_data = test_data.T
train_targets = matlab_dict['train_labels'].T
train_targets = np.argwhere(train_targets == 1)[:, 1]
test_targets = matlab_dict['test_labels'].T
test_targets = np.argwhere(test_targets == 1)[:, 1]
train_bunch = Bunch(data=train_data,
targets=train_targets)
test_bunch = Bunch(data=test_data,
targets=test_targets)
return Bunch(train=train_bunch, test=test_bunch) |
<SYSTEM_TASK:>
Parse a DJANGO_COLORS environment variable to produce the system palette
<END_TASK>
<USER_TASK:>
Description:
def parse_color_setting(config_string):
"""Parse a DJANGO_COLORS environment variable to produce the system palette
The general form of a pallete definition is:
"palette;role=fg;role=fg/bg;role=fg,option,option;role=fg/bg,option,option"
where:
palette is a named palette; one of 'light', 'dark', or 'nocolor'.
role is a named style used by Django
fg is a background color.
bg is a background color.
option is a display options.
Specifying a named palette is the same as manually specifying the individual
definitions for each role. Any individual definitions following the pallete
definition will augment the base palette definition.
Valid roles:
'error', 'notice', 'sql_field', 'sql_coltype', 'sql_keyword', 'sql_table',
'http_info', 'http_success', 'http_redirect', 'http_bad_request',
'http_not_found', 'http_server_error'
Valid colors:
'black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white'
Valid options:
'bold', 'underscore', 'blink', 'reverse', 'conceal'
""" |
if not config_string:
return PALETTES[DEFAULT_PALETTE]
# Split the color configuration into parts
parts = config_string.lower().split(';')
palette = PALETTES[NOCOLOR_PALETTE].copy()
for part in parts:
if part in PALETTES:
# A default palette has been specified
palette.update(PALETTES[part])
elif '=' in part:
# Process a palette defining string
definition = {}
# Break the definition into the role,
# plus the list of specific instructions.
# The role must be in upper case
role, instructions = part.split('=')
role = role.upper()
styles = instructions.split(',')
styles.reverse()
# The first instruction can contain a slash
# to break apart fg/bg.
colors = styles.pop().split('/')
colors.reverse()
fg = colors.pop()
if fg in color_names:
definition['fg'] = fg
if colors and colors[-1] in color_names:
definition['bg'] = colors[-1]
# All remaining instructions are options
opts = tuple(s for s in styles if s in opt_dict.keys())
if opts:
definition['opts'] = opts
# The nocolor palette has all available roles.
# Use that palette as the basis for determining
# if the role is valid.
if role in PALETTES[NOCOLOR_PALETTE] and definition:
palette[role] = definition
# If there are no colors specified, return the empty palette.
if palette == PALETTES[NOCOLOR_PALETTE]:
return None
return palette |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def couple(f, g):
r"""
Compose a function thate returns two arguments.
Given a pair of functions that take the same arguments, return a
single function that returns a pair consisting of the return values
of each function.
Notes
-----
Equivalent to::
lambda f, g: lambda *args, **kwargs: (f(*args, **kwargs),
g(*args, **kwargs))
Examples
--------
>>> f = lambda x: 2*x**3
>>> df = lambda x: 6*x**2
>>> f_new = couple(f, df)
>>> f_new(5)
(250, 150)
""" |
def coupled(*args, **kwargs):
return f(*args, **kwargs), g(*args, **kwargs)
return coupled |
<SYSTEM_TASK:>
Inverse operation of couple.
<END_TASK>
<USER_TASK:>
Description:
def decouple(fn):
"""
Inverse operation of couple.
Create two functions of one argument and one return from a function that
takes two arguments and has two returns
Examples
--------
>>> h = lambda x: (2*x**3, 6*x**2)
>>> f, g = decouple(h)
>>> f(5)
250
>>> g(5)
150
""" |
def fst(*args, **kwargs):
return fn(*args, **kwargs)[0]
def snd(*args, **kwargs):
return fn(*args, **kwargs)[1]
return fst, snd |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def nwise(iterable, n):
r"""
Sliding window iterator.
Iterator that acts like a sliding window of size `n`; slides over
some iterable `n` items at a time. If iterable has `m` elements,
this function will return an iterator over `m-n+1` tuples.
Parameters
----------
iterable : iterable
An iterable object.
n : int
Window size.
Returns
-------
iterator of tuples.
Iterator of size `n` tuples
Notes
-----
First `n` iterators are created::
iters = tee(iterable, n)
Next, iterator `i` is advanced `i` times::
for i, it in enumerate(iters):
for _ in range(i):
next(it, None)
Finally, the iterators are zipped back up again::
return zip(*iters)
Examples
--------
>>> a = [2, 5, 7, 4, 2, 8, 6]
>>> list(nwise(a, n=3))
[(2, 5, 7), (5, 7, 4), (7, 4, 2), (4, 2, 8), (2, 8, 6)]
>>> pairwise = partial(nwise, n=2)
>>> list(pairwise(a))
[(2, 5), (5, 7), (7, 4), (4, 2), (2, 8), (8, 6)]
>>> list(nwise(a, n=1))
[(2,), (5,), (7,), (4,), (2,), (8,), (6,)]
>>> list(nwise(a, n=7))
[(2, 5, 7, 4, 2, 8, 6)]
.. todo::
These should probably raise `ValueError`...
>>> list(nwise(a, 8))
[]
>>> list(nwise(a, 9))
[]
A sliding window of size `n` over a list of `m` elements
gives `m-n+1` windows
>>> len(a) - len(list(nwise(a, 2))) == 1
True
>>> len(a) - len(list(nwise(a, 3))) == 2
True
>>> len(a) - len(list(nwise(a, 7))) == 6
True
""" |
iters = tee(iterable, n)
for i, it in enumerate(iters):
for _ in range(i):
next(it, None)
return zip(*iters) |
<SYSTEM_TASK:>
Reshape, but also return scalars or empty lists.
<END_TASK>
<USER_TASK:>
Description:
def scalar_reshape(a, newshape, order='C'):
"""
Reshape, but also return scalars or empty lists.
Identical to `numpy.reshape` except in the case where `newshape` is
the empty tuple, in which case we return a scalar instead of a
0-dimensional array.
Examples
--------
>>> a = np.arange(6)
>>> np.array_equal(np.reshape(a, (3, 2)), scalar_reshape(a, (3, 2)))
True
>>> scalar_reshape(np.array([3.14]), newshape=())
3.14
>>> scalar_reshape(np.array([2.71]), newshape=(1,))
array([ 2.71])
>>> scalar_reshape(np.array([]), newshape=(0,))
[]
""" |
if newshape == ():
return np.asscalar(a)
if newshape == (0,):
return []
return np.reshape(a, newshape, order) |
<SYSTEM_TASK:>
Flatten a potentially recursive list of multidimensional objects.
<END_TASK>
<USER_TASK:>
Description:
def flatten(arys, returns_shapes=True, hstack=np.hstack, ravel=np.ravel,
shape=np.shape):
"""
Flatten a potentially recursive list of multidimensional objects.
.. note::
Not to be confused with `np.ndarray.flatten()` (a more befitting
might be `chain` or `stack` or maybe something else entirely
since this function is more than either `concatenate` or
`np.flatten` itself. Rather, it is the composition of the former
with the latter.
Parameters
----------
arys : list of objects
One or more input arrays of possibly heterogenous shapes and
sizes.
returns_shapes : bool, optional
Default is `True`. If `True`, the tuple `(flattened, shapes)` is
returned, otherwise only `flattened` is returned.
hstack : callable, optional
a function that implements horizontal stacking
ravel : callable, optional
a function that flattens the object
shape : callable, optional
a function that returns the shape of the object
Returns
-------
flattened,[shapes] : {1dobject, list of tuples}
Return the flat (1d) object resulting from the concatenation of
flattened multidimensional objects. When `returns_shapes` is `True`,
return a list of tuples containing also the shapes of each array as the
second element.
See Also
--------
revrand.utils.unflatten : its inverse
Examples
--------
>>> a = 9
>>> b = np.array([4, 7, 4, 5, 2])
>>> c = np.array([[7, 3, 1],
... [2, 6, 6]])
>>> d = np.array([[[6, 5, 5],
... [1, 6, 9]],
... [[3, 9, 1],
... [9, 4, 1]]])
>>> flatten([a, b, c, d]) # doctest: +NORMALIZE_WHITESPACE
(array([9, 4, 7, 4, 5, 2, 7, 3, 1, 2, 6, 6, 6, 5, 5, 1, 6, 9, 3, 9,
1, 9, 4, 1]), [(), (5,), (2, 3), (2, 2, 3)])
Note that scalars and 0-dimensional arrays are treated differently
from 1-dimensional singleton arrays.
>>> flatten([3.14, np.array(2.71), np.array([1.61])])
... # doctest: +NORMALIZE_WHITESPACE
(array([ 3.14, 2.71, 1.61]), [(), (), (1,)])
>>> flatten([a, b, c, d], returns_shapes=False)
... # doctest: +NORMALIZE_WHITESPACE
array([9, 4, 7, 4, 5, 2, 7, 3, 1, 2, 6, 6, 6, 5, 5, 1, 6, 9, 3, 9,
1, 9, 4, 1])
>>> w, x, y, z = unflatten(*flatten([a, b, c, d]))
>>> w == a
True
>>> np.array_equal(x, b)
True
>>> np.array_equal(y, c)
True
>>> np.array_equal(z, d)
True
>>> flatten([3.14, [np.array(2.71), np.array([1.61])]])
... # doctest: +NORMALIZE_WHITESPACE
(array([ 3.14, 2.71, 1.61]), [(), [(), (1,)]])
""" |
if issequence(arys) and len(arys) > 0:
flat = partial(flatten,
returns_shapes=True,
hstack=hstack,
ravel=ravel,
shape=shape
)
flat_arys, shapes = zip(*map(flat, arys))
flat_ary = hstack(flat_arys)
shapes = list(shapes)
else:
flat_ary = ravel(arys)
shapes = shape(arys)
return (flat_ary, shapes) if returns_shapes else flat_ary |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def unflatten(ary, shapes, reshape=scalar_reshape):
r"""
Inverse opertation of flatten.
Given a flat (1d) array, and a list of shapes (represented as tuples),
return a list of ndarrays with the specified shapes.
Parameters
----------
ary : a 1d array
A flat (1d) array.
shapes : list of tuples
A list of ndarray shapes (tuple of array dimensions)
Returns
-------
list of ndarrays
A list of ndarrays with the specified shapes.
See Also
--------
revrand.utils.flatten : its inverse
Notes
-----
Equivalent to::
lambda ary, shapes, order='C': \
map(partial(custom_reshape, order=order),
np.hsplit(ary, np.cumsum(map(partial(np.prod, dtype=int),
shapes))), shapes)
Examples
--------
>>> a = np.array([7, 4, 5, 8, 9, 1, 4, 2, 5, 3, 4, 3])
>>> list(unflatten(a, [(1,), (1,), (4,), (2, 3)]))
... # doctest: +NORMALIZE_WHITESPACE
[array([7]), array([4]), array([5, 8, 9, 1]), array([[4, 2, 5],
[3, 4, 3]])]
>>> list(unflatten(a, [(), (1,), (4,), (2, 3)]))
... # doctest: +NORMALIZE_WHITESPACE
[7, array([4]), array([5, 8, 9, 1]), array([[4, 2, 5], [3, 4, 3]])]
>>> list(unflatten(a, [(), (1,), (3,), (2, 3)]))
... # doctest: +NORMALIZE_WHITESPACE
[7, array([4]), array([5, 8, 9]), array([[1, 4, 2], [5, 3, 4]])]
>>> list(unflatten(a, [(), (1,), (5,), (2, 3)]))
... # doctest: +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: total size of new array must be unchanged
>>> flatten(list(unflatten(a, [(), (1,), (4,), (2, 3)])))
... # doctest: +NORMALIZE_WHITESPACE
(array([7, 4, 5, 8, 9, 1, 4, 2, 5, 3, 4, 3]),
[(), (1,), (4,), (2, 3)])
>>> list(unflatten(a, [[(1,), (1,)], (4,), (2, 3)]))
... # doctest: +NORMALIZE_WHITESPACE
[[array([7]), array([4])], array([5, 8, 9, 1]), array([[4, 2, 5],
[3, 4, 3]])]
>>> flatten(list(unflatten(a, [(), (1,), [(4,), (2, 3)]])))
... # doctest: +NORMALIZE_WHITESPACE
(array([7, 4, 5, 8, 9, 1, 4, 2, 5, 3, 4, 3]),
[(), (1,), [(4,), (2, 3)]])
""" |
if isinstance(shapes, list):
sizes = list(map(sumprod, shapes))
ends = np.cumsum(sizes)
begs = np.concatenate(([0], ends[:-1]))
struct_arys = [unflatten(ary[b:e], s, reshape=reshape)
for b, e, s in zip(begs, ends, shapes)]
return struct_arys
else:
struct_ary = reshape(ary, shapes)
return struct_ary |
<SYSTEM_TASK:>
Product of tuple, or sum of products of lists of tuples.
<END_TASK>
<USER_TASK:>
Description:
def sumprod(seq):
"""
Product of tuple, or sum of products of lists of tuples.
Parameters
----------
seq : tuple or list
Returns
-------
int :
the product of input tuples, or the sum of products of lists of tuples,
recursively.
Examples
--------
>>> tup = (1, 2, 3)
>>> sumprod(tup)
6
>>> lis = [(1, 2, 3), (2, 2)]
>>> sumprod(lis)
10
>>> lis = [(1, 2, 3), [(2, 1), (3,)]]
>>> sumprod(lis)
11
""" |
if isinstance(seq, tuple):
# important to make sure dtype is int
# since prod on empty tuple is a float (1.0)
return np.prod(seq, dtype=int)
else:
return np.sum((sumprod(s) for s in seq), dtype=int) |
<SYSTEM_TASK:>
Apply a function of a potentially nested list of lists.
<END_TASK>
<USER_TASK:>
Description:
def map_recursive(fn, iterable, output_type=None):
"""
Apply a function of a potentially nested list of lists.
Parameters
----------
fn : callable
The function to apply to each element (and sub elements) in iterable
iterable : iterable
An iterable, sequence, sequence of sequences etc. :code:`fn` will be
applied to each element in each list.
output_type : callable, optional
if None, a map with sub-maps in the same structure as :code:`iterable`
will be returned, otherwise the callable will be applied to each
sequence (i.e. :code:`list` will return lists of lists etc).
Returns
-------
map or iterable type :
if :code:`output_type` is None, a map with sub-maps in the same
structure as :code:`iterable` will be returned, otherwise the callable
will be applied to each sequence (i.e. :code:`list` will return lists
of lists etc).
Examples
--------
>>> seq = [1, 2, [3, 4, [5, 6]], 7]
>>> map_recursive(lambda x: x > 4, seq, output_type=list)
[False, False, [False, False, [True, True]], True]
>>> map_recursive(lambda x: 2 * x, seq, output_type=tuple)
(2, 4, (6, 8, (10, 12)), 14)
""" |
def applyormap(it):
if issequence(it):
return map_recursive(fn, it, output_type)
else:
return fn(it)
applied = map(applyormap, iterable)
return output_type(applied) if output_type else applied |
<SYSTEM_TASK:>
Decorator for adding partial application functionality to a basis object.
<END_TASK>
<USER_TASK:>
Description:
def slice_init(func):
"""
Decorator for adding partial application functionality to a basis object.
This will add an "apply_ind" argument to a basis object initialiser that
can be used to apply the basis function to only the dimensions specified in
apply_ind. E.g.,
>>> X = np.ones((100, 20))
>>> base = LinearBasis(onescol=False, apply_ind=slice(0, 10))
>>> base.transform(X).shape
(100, 10)
""" |
@wraps(func)
def new_init(self, *args, **kwargs):
apply_ind = kwargs.pop('apply_ind', None)
if np.isscalar(apply_ind):
apply_ind = [apply_ind]
func(self, *args, **kwargs)
self.apply_ind = apply_ind
return new_init |
<SYSTEM_TASK:>
Decorator for implementing partial application.
<END_TASK>
<USER_TASK:>
Description:
def slice_transform(func, self, X, *vargs, **kwargs):
"""
Decorator for implementing partial application.
This must decorate the ``transform`` and ``grad`` methods of basis objects
if the ``slice_init`` decorator was used.
""" |
X = X if self.apply_ind is None else X[:, self.apply_ind]
return func(self, X, *vargs, **kwargs) |
<SYSTEM_TASK:>
Apply a function that takes a gradient matrix to a sequence of 2 or 3
<END_TASK>
<USER_TASK:>
Description:
def apply_grad(fun, grad):
"""
Apply a function that takes a gradient matrix to a sequence of 2 or 3
dimensional gradients.
This is partucularly useful when the gradient of a basis concatenation
object is quite complex, eg.
>>> X = np.random.randn(100, 3)
>>> y = np.random.randn(100)
>>> N, d = X.shape
>>> base = RandomRBF(Xdim=d, nbases=5) + RandomRBF(Xdim=d, nbases=5,
... lenscale=Parameter(np.ones(d), Positive()))
>>> Phi = base.transform(X, 1., np.ones(d))
>>> dffun = lambda dPhi: y.dot(Phi).dot(dPhi.T).dot(y)
>>> df = apply_grad(dffun, base.grad(X, 1., np.ones(d)))
>>> np.isscalar(df[0])
True
>>> df[1].shape
(3,)
Parameters
----------
fun: callable
the function too apply to the (2d) gradient.
grad: ndarray or generator
the gradient of the basis function (output of base.grad).
Returns
-------
scalar, ndarray or sequence:
the result of applying fun(grad) for a structured grad.
""" |
if issequence(grad):
fgrad = [apply_grad(fun, g) for g in grad]
return fgrad if len(fgrad) != 1 else fgrad[0]
elif len(grad) == 0:
return []
elif (grad.ndim == 1) or (grad.ndim == 2):
return fun(grad)
elif grad.ndim == 3:
return np.array([fun(grad[:, :, i]) for i in range(grad.shape[2])])
else:
raise ValueError("Only up to 3d gradients allowed!") |
<SYSTEM_TASK:>
Get the output dimensionality of this basis.
<END_TASK>
<USER_TASK:>
Description:
def get_dim(self, X):
"""
Get the output dimensionality of this basis.
This makes a cheap call to transform with the initial parameter values
to ascertain the dimensionality of the output features.
Parameters
----------
X : ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
Returns
-------
int :
The dimensionality of the basis.
""" |
# Cache
if not hasattr(self, '_D'):
self._D = self.transform(X[[0]], *self.params_values()).shape[1]
return self._D |
<SYSTEM_TASK:>
Get a list of the ``Parameter`` values if they have a value.
<END_TASK>
<USER_TASK:>
Description:
def params_values(self):
"""
Get a list of the ``Parameter`` values if they have a value.
This does not include the basis regularizer.
""" |
return [p.value for p in atleast_list(self.params) if p.has_value] |
<SYSTEM_TASK:>
Apply the RBF to X.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, lenscale=None):
"""
Apply the RBF to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X). If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, D) where D is number of RBF centres.
""" |
N, d = X.shape
lenscale = self._check_dim(d, lenscale)
den = (2 * lenscale**2)
return np.exp(- cdist(X / den, self.C / den, 'sqeuclidean')) |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, lenscale=None):
r"""
Apply the sigmoid basis function to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: float
the length scale (scalar) of the RBFs to apply to X. If not input,
this uses the value of the initial length scale.
Returns
-------
ndarray:
of shape (N, D) where D is number of centres.
""" |
N, d = X.shape
lenscale = self._check_dim(d, lenscale)
return expit(cdist(X / lenscale, self.C / lenscale, 'euclidean')) |
<SYSTEM_TASK:>
Apply the random basis to X.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, lenscale=None):
"""
Apply the random basis to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X). If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, 2*nbases) where nbases is number of random bases to
use, given in the constructor.
""" |
N, D = X.shape
lenscale = self._check_dim(D, lenscale)[:, np.newaxis]
WX = np.dot(X, self.W / lenscale)
return np.hstack((np.cos(WX), np.sin(WX))) / np.sqrt(self.n) |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def grad(self, X, lenscale=None):
r"""
Get the gradients of this basis w.r.t.\ the length scales.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X). If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, 2*nbases[, d]) where d is number of lenscales (if not
ARD, i.e. scalar lenscale, this is just a 2D array). This is
:math:`\partial \Phi(\mathbf{X}) / \partial \mathbf{l}`
""" |
N, D = X.shape
lenscale = self._check_dim(D, lenscale)[:, np.newaxis]
WX = np.dot(X, self.W / lenscale)
sinWX = - np.sin(WX)
cosWX = np.cos(WX)
dPhi = []
for i, l in enumerate(lenscale):
dWX = np.outer(X[:, i], - self.W[i, :] / l**2)
dPhi.append(np.hstack((dWX * sinWX, dWX * cosWX)) /
np.sqrt(self.n))
return np.dstack(dPhi) if len(lenscale) != 1 else dPhi[0] |
<SYSTEM_TASK:>
Apply the Fast Food RBF basis to X.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, lenscale=None):
"""
Apply the Fast Food RBF basis to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
lenscale: scalar or ndarray, optional
scalar or array of shape (d,) length scales (one for each dimension
of X).If not input, this uses the value of the initial length
scale.
Returns
-------
ndarray:
of shape (N, 2*nbases) where nbases is number of random bases to
use, given in the constructor (to nearest larger two power).
""" |
lenscale = self._check_dim(X.shape[1], lenscale)
VX = self._makeVX(X / lenscale)
Phi = np.hstack((np.cos(VX), np.sin(VX))) / np.sqrt(self.n)
return Phi |
<SYSTEM_TASK:>
Apply the spectral mixture component basis to X.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, mean=None, lenscale=None):
"""
Apply the spectral mixture component basis to X.
Parameters
----------
X: ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
mean: ndarray, optional
array of shape (d,) frequency means (one for each dimension of X).
If not input, this uses the value of the initial mean.
lenscale: ndarray, optional
array of shape (d,) length scales (one for each dimension of X). If
not input, this uses the value of the initial length scale.
Returns
-------
ndarray:
of shape (N, 4*nbases) where nbases is number of random bases to
use, given in the constructor (to nearest larger two power).
""" |
mean = self._check_dim(X.shape[1], mean, paramind=0)
lenscale = self._check_dim(X.shape[1], lenscale, paramind=1)
VX = self._makeVX(X / lenscale)
mX = X.dot(mean)[:, np.newaxis]
Phi = np.hstack((np.cos(VX + mX), np.sin(VX + mX),
np.cos(VX - mX), np.sin(VX - mX))) / \
np.sqrt(2 * self.n)
return Phi |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def grad(self, X, mean=None, lenscale=None):
r"""
Get the gradients of this basis w.r.t.\ the mean and length scales.
Parameters
----------
x: ndarray
(n, d) array of observations where n is the number of samples, and
d is the dimensionality of x.
mean: ndarray, optional
array of shape (d,) frequency means (one for each dimension of X).
If not input, this uses the value of the initial mean.
lenscale: ndarray, optional
array of shape (d,) length scales (one for each dimension of X). If
not input, this uses the value of the initial length scale.
Returns
-------
ndarray:
shape (n, 4*nbases) where nbases is number of random rbf bases,
again to the nearest larger two power. This is
:math:`\partial \phi(\mathbf{x}) / \partial \boldsymbol\mu`
ndarray:
shape (n, 4*nbases) where nbases is number of random rbf bases,
again to the nearest larger two power. This is
:math:`\partial \phi(\mathbf{x}) / \partial \mathbf{l}`
""" |
d = X.shape[1]
mean = self._check_dim(d, mean, paramind=0)
lenscale = self._check_dim(d, lenscale, paramind=1)
VX = self._makeVX(X / lenscale)
mX = X.dot(mean)[:, np.newaxis]
sinVXpmX = - np.sin(VX + mX)
sinVXmmX = - np.sin(VX - mX)
cosVXpmX = np.cos(VX + mX)
cosVXmmX = np.cos(VX - mX)
dPhi_len = []
dPhi_mean = []
for i, l in enumerate(lenscale):
# Means
dmX = X[:, [i]]
dPhi_mean.append(np.hstack((dmX * sinVXpmX, dmX * cosVXpmX,
-dmX * sinVXmmX, -dmX * cosVXmmX)) /
np.sqrt(2 * self.n))
# Lenscales
indlen = np.zeros(d)
indlen[i] = 1. / l**2
dVX = - self._makeVX(X * indlen) # FIXME make this more efficient?
dPhi_len.append(np.hstack((dVX * sinVXpmX, dVX * cosVXpmX,
dVX * sinVXmmX, dVX * cosVXmmX)) /
np.sqrt(2 * self.n))
dPhi_mean = np.dstack(dPhi_mean) if d != 1 else dPhi_mean[0]
dPhi_len = np.dstack(dPhi_len) if d != 1 else dPhi_len[0]
return dPhi_mean, dPhi_len |
<SYSTEM_TASK:>
Return the basis function applied to X.
<END_TASK>
<USER_TASK:>
Description:
def transform(self, X, *params):
"""
Return the basis function applied to X.
I.e. Phi(X, params), where params can also optionally be used and
learned.
Parameters
----------
X : ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
*params : optional
parameter aguments, these are the parameters of the concatenated
bases `in the order` they were concatenated.
Returns
-------
ndarray :
of shape (N, D) where D is the number of basis functions.
""" |
Phi = []
args = list(params)
for base in self.bases:
phi, args = base._transform_popargs(X, *args)
Phi.append(phi)
return np.hstack(Phi) |
<SYSTEM_TASK:>
Return the gradient of the basis function for each parameter.
<END_TASK>
<USER_TASK:>
Description:
def grad(self, X, *params):
"""
Return the gradient of the basis function for each parameter.
Parameters
----------
X : ndarray
(N, d) array of observations where N is the number of samples, and
d is the dimensionality of X.
*params : optional
parameter aguments, these are the parameters of the concatenated
bases `in the order` they were concatenated.
Returns
-------
list or ndarray :
this will be a list of ndarrays if there are multiple parameters,
or just an ndarray if there is a single parameter. The ndarrays can
have more than two dimensions (i.e. tensors of rank > 2), depending
on the dimensions of the basis function parameters. If there are
*no* parameters, ``[]`` is returned.
""" |
# Establish a few dimensions
N = X.shape[0]
D = self.get_dim(X)
endinds = self.__base_locations(X) # for the Padding indices
args = list(params)
# Generate structured gradients with appropriate zero padding
def make_dPhi(i, g):
# Pad the gradient with respect to the total basis dimensionality
dPhi_dim = (N, D) if g.ndim < 3 else (N, D, g.shape[2])
dPhi = np.zeros(dPhi_dim)
dPhi[:, endinds[i]:endinds[i + 1]] = g
return dPhi
# Get gradients from each basis
for i, base in enumerate(self.bases):
# evaluate gradient and deal with multiple parameter gradients by
# keeping track of the basis index
g, args, sargs = base._grad_popargs(X, *args)
for gg in atleast_tuple(g):
if len(gg) == 0:
continue
yield make_dPhi(i, gg) |
<SYSTEM_TASK:>
Return a list of all of the ``Parameter`` objects.
<END_TASK>
<USER_TASK:>
Description:
def params(self):
"""
Return a list of all of the ``Parameter`` objects.
Or a just a single ``Parameter`` is there is only one, and single empty
``Parameter`` if there are no parameters.
""" |
paramlist = [b.params for b in self.bases if b.params.has_value]
if len(paramlist) == 0:
return Parameter()
else:
return paramlist if len(paramlist) > 1 else paramlist[0] |
<SYSTEM_TASK:>
Returns unified diff between given ``filenode_old`` and ``filenode_new``.
<END_TASK>
<USER_TASK:>
Description:
def get_udiff(filenode_old, filenode_new, show_whitespace=True):
"""
Returns unified diff between given ``filenode_old`` and ``filenode_new``.
""" |
try:
filenode_old_date = filenode_old.changeset.date
except NodeError:
filenode_old_date = None
try:
filenode_new_date = filenode_new.changeset.date
except NodeError:
filenode_new_date = None
for filenode in (filenode_old, filenode_new):
if not isinstance(filenode, FileNode):
raise VCSError("Given object should be FileNode object, not %s"
% filenode.__class__)
if filenode_old_date and filenode_new_date:
if not filenode_old_date < filenode_new_date:
logging.debug("Generating udiff for filenodes with not increasing "
"dates")
vcs_udiff = unified_diff(filenode_old.content.splitlines(True),
filenode_new.content.splitlines(True),
filenode_old.name,
filenode_new.name,
filenode_old_date,
filenode_old_date)
return vcs_udiff |
<SYSTEM_TASK:>
Returns git style diff between given ``filenode_old`` and ``filenode_new``.
<END_TASK>
<USER_TASK:>
Description:
def get_gitdiff(filenode_old, filenode_new, ignore_whitespace=True):
"""
Returns git style diff between given ``filenode_old`` and ``filenode_new``.
:param ignore_whitespace: ignore whitespaces in diff
""" |
for filenode in (filenode_old, filenode_new):
if not isinstance(filenode, FileNode):
raise VCSError("Given object should be FileNode object, not %s"
% filenode.__class__)
old_raw_id = getattr(filenode_old.changeset, 'raw_id', '0' * 40)
new_raw_id = getattr(filenode_new.changeset, 'raw_id', '0' * 40)
repo = filenode_new.changeset.repository
vcs_gitdiff = repo.get_diff(old_raw_id, new_raw_id, filenode_new.path,
ignore_whitespace)
return vcs_gitdiff |
<SYSTEM_TASK:>
make a fresh copy of generator, we should not iterate thru
<END_TASK>
<USER_TASK:>
Description:
def copy_iterator(self):
"""
make a fresh copy of generator, we should not iterate thru
an original as it's needed for repeating operations on
this instance of DiffProcessor
""" |
self.__udiff, iterator_copy = itertools.tee(self.__udiff)
return iterator_copy |
<SYSTEM_TASK:>
Extract the filename and revision hint from a line.
<END_TASK>
<USER_TASK:>
Description:
def _extract_rev(self, line1, line2):
"""
Extract the filename and revision hint from a line.
""" |
try:
if line1.startswith('--- ') and line2.startswith('+++ '):
l1 = line1[4:].split(None, 1)
old_filename = l1[0].lstrip('a/') if len(l1) >= 1 else None
old_rev = l1[1] if len(l1) == 2 else 'old'
l2 = line2[4:].split(None, 1)
new_filename = l2[0].lstrip('b/') if len(l1) >= 1 else None
new_rev = l2[1] if len(l2) == 2 else 'new'
filename = old_filename if (old_filename !=
'dev/null') else new_filename
return filename, new_rev, old_rev
except (ValueError, IndexError):
pass
return None, None, None |
<SYSTEM_TASK:>
Parse the diff an return data for the template.
<END_TASK>
<USER_TASK:>
Description:
def _parse_udiff(self):
"""
Parse the diff an return data for the template.
""" |
lineiter = self.lines
files = []
try:
line = lineiter.next()
# skip first context
skipfirst = True
while 1:
# continue until we found the old file
if not line.startswith('--- '):
line = lineiter.next()
continue
chunks = []
filename, old_rev, new_rev = \
self._extract_rev(line, lineiter.next())
files.append({
'filename': filename,
'old_revision': old_rev,
'new_revision': new_rev,
'chunks': chunks
})
line = lineiter.next()
while line:
match = self._chunk_re.match(line)
if not match:
break
lines = []
chunks.append(lines)
old_line, old_end, new_line, new_end = \
[int(x or 1) for x in match.groups()[:-1]]
old_line -= 1
new_line -= 1
context = len(match.groups()) == 5
old_end += old_line
new_end += new_line
if context:
if not skipfirst:
lines.append({
'old_lineno': '...',
'new_lineno': '...',
'action': 'context',
'line': line,
})
else:
skipfirst = False
line = lineiter.next()
while old_line < old_end or new_line < new_end:
if line:
command, line = line[0], line[1:]
else:
command = ' '
affects_old = affects_new = False
# ignore those if we don't expect them
if command in '#@':
continue
elif command == '+':
affects_new = True
action = 'add'
elif command == '-':
affects_old = True
action = 'del'
else:
affects_old = affects_new = True
action = 'unmod'
old_line += affects_old
new_line += affects_new
lines.append({
'old_lineno': affects_old and old_line or '',
'new_lineno': affects_new and new_line or '',
'action': action,
'line': line
})
line = lineiter.next()
except StopIteration:
pass
# highlight inline changes
for file in files:
for chunk in chunks:
lineiter = iter(chunk)
#first = True
try:
while 1:
line = lineiter.next()
if line['action'] != 'unmod':
nextline = lineiter.next()
if nextline['action'] == 'unmod' or \
nextline['action'] == line['action']:
continue
self.differ(line, nextline)
except StopIteration:
pass
return files |
<SYSTEM_TASK:>
Make a string safe for including in an id attribute.
<END_TASK>
<USER_TASK:>
Description:
def _safe_id(self, idstring):
"""Make a string safe for including in an id attribute.
The HTML spec says that id attributes 'must begin with
a letter ([A-Za-z]) and may be followed by any number
of letters, digits ([0-9]), hyphens ("-"), underscores
("_"), colons (":"), and periods (".")'. These regexps
are slightly over-zealous, in that they remove colons
and periods unnecessarily.
Whitespace is transformed into underscores, and then
anything which is not a hyphen or a character that
matches \w (alphanumerics and underscore) is removed.
""" |
# Transform all whitespace to underscore
idstring = re.sub(r'\s', "_", '%s' % idstring)
# Remove everything that is not a hyphen or a member of \w
idstring = re.sub(r'(?!-)\W', "", idstring).lower()
return idstring |
<SYSTEM_TASK:>
Returns raw string as udiff
<END_TASK>
<USER_TASK:>
Description:
def raw_diff(self):
"""
Returns raw string as udiff
""" |
udiff_copy = self.copy_iterator()
if self.__format == 'gitdiff':
udiff_copy = self._parse_gitdiff(udiff_copy)
return u''.join(udiff_copy) |
<SYSTEM_TASK:>
Log-sum-exp trick for matrix X for summation along a specified axis.
<END_TASK>
<USER_TASK:>
Description:
def logsumexp(X, axis=0):
"""
Log-sum-exp trick for matrix X for summation along a specified axis.
This performs the following operation in a stable fashion,
.. math::
\log \sum^K_{k=1} \exp\{x_k\}
Parameters
----------
X: ndarray
2D array of shape (N, D) to apply the log-sum-exp trick.
axis: int, optional
Axis to apply the summation along (works the same as axis in
numpy.sum).
Returns
-------
lseX: ndarray
results of applying the log-sum-exp trick, this will be shape (D,)
if :code:`axis=0` or shape (N,) if :code:`axis=1`.
""" |
mx = X.max(axis=axis)
if (X.ndim > 1):
mx = np.atleast_2d(mx).T if axis == 1 else np.atleast_2d(mx)
return np.log(np.exp(X - mx).sum(axis=axis)) + np.ravel(mx) |
<SYSTEM_TASK:>
Pass X through a softmax function in a numerically stable way using the
<END_TASK>
<USER_TASK:>
Description:
def softmax(X, axis=0):
"""
Pass X through a softmax function in a numerically stable way using the
log-sum-exp trick.
This transformation is:
.. math::
\\frac{\exp\{X_k\}}{\sum^K_{j=1} \exp\{X_j\}}
and is appliedx to each row/column, `k`, of X.
Parameters
----------
X: ndarray
2D array of shape (N, D) to apply the log-sum-exp trick.
axis: int, optional
Axis to apply the summation along (works the same as axis in
numpy.sum).
Returns
-------
smX: ndarray
results of applying the log-sum-exp trick, this will be shape
(N, D), and each row will sum to 1 if :code:`axis=1` or each column
will sum to 1 if :code:`axis=0`.
""" |
if axis == 1:
return np.exp(X - logsumexp(X, axis=1)[:, np.newaxis])
elif axis == 0:
return np.exp(X - logsumexp(X, axis=0))
else:
raise ValueError("This only works on 2D arrays for now.") |
<SYSTEM_TASK:>
Checks if credit card number fits the visa format.
<END_TASK>
<USER_TASK:>
Description:
def is_visa(n):
"""Checks if credit card number fits the visa format.""" |
n, length = str(n), len(str(n))
if length >= 13 and length <= 16:
if n[0] == '4':
return True
return False |
<SYSTEM_TASK:>
Checks if credit card number fits the visa electron format.
<END_TASK>
<USER_TASK:>
Description:
def is_visa_electron(n):
"""Checks if credit card number fits the visa electron format.""" |
n, length = str(n), len(str(n))
form = ['026', '508', '844', '913', '917']
if length == 16:
if n[0] == '4':
if ''.join(n[1:4]) in form or ''.join(n[1:6]) == '17500':
return True
return False |
<SYSTEM_TASK:>
Checks if credit card number fits the mastercard format.
<END_TASK>
<USER_TASK:>
Description:
def is_mastercard(n):
"""Checks if credit card number fits the mastercard format.""" |
n, length = str(n), len(str(n))
if length >= 16 and length <= 19:
if ''.join(n[:2]) in strings_between(51, 56):
return True
return False |
<SYSTEM_TASK:>
Checks if credit card number fits the american express format.
<END_TASK>
<USER_TASK:>
Description:
def is_amex(n):
"""Checks if credit card number fits the american express format.""" |
n, length = str(n), len(str(n))
if length == 15:
if n[0] == '3' and (n[1] == '4' or n[1] == '7'):
return True
return False |
<SYSTEM_TASK:>
Checks if credit card number fits the discover card format.
<END_TASK>
<USER_TASK:>
Description:
def is_discover(n):
"""Checks if credit card number fits the discover card format.""" |
n, length = str(n), len(str(n))
if length == 16:
if n[0] == '6':
if ''.join(n[1:4]) == '011' or n[1] == '5':
return True
elif n[1] == '4' and n[2] in strings_between(4, 10):
return True
elif ''.join(n[1:6]) in strings_between(22126, 22926):
return True
return False |
<SYSTEM_TASK:>
Gets a list of the formats a credit card number fits.
<END_TASK>
<USER_TASK:>
Description:
def get_format(n):
"""Gets a list of the formats a credit card number fits.""" |
formats = []
if is_visa(n):
formats.append('visa')
if is_visa_electron(n):
formats.append('visa electron')
if is_mastercard(n):
formats.append('mastercard')
if is_amex(n):
formats.append('amex')
if is_maestro(n):
formats.append('maestro')
if is_discover(n):
formats.append('discover')
return formats |
<SYSTEM_TASK:>
Return full name of member
<END_TASK>
<USER_TASK:>
Description:
def full_name(self):
"""Return full name of member""" |
if self.prefix is not None:
return '.'.join([self.prefix, self.member])
return self.member |
<SYSTEM_TASK:>
Parse signature declartion string
<END_TASK>
<USER_TASK:>
Description:
def parse_signature(cls, signature):
"""Parse signature declartion string
Uses :py:attr:`signature_pattern` to parse out pieces of constraint
signatures. Pattern should provide the following named groups:
prefix
Object prefix, such as a namespace
member
Object member name
arguments
Declaration arguments, if this is a callable constraint
:param signature: construct signature
:type signature: string
""" |
assert cls.signature_pattern is not None
pattern = re.compile(cls.signature_pattern, re.VERBOSE)
match = pattern.match(signature)
if match:
groups = match.groupdict()
arguments = None
if 'arguments' in groups and groups['arguments'] is not None:
arguments = re.split(r'\,\s+', groups['arguments'])
return DotNetSignature(
prefix=groups.get('prefix', None),
member=groups.get('member', None),
arguments=arguments
)
raise ValueError('Could not parse signature: {0}'.format(signature)) |
<SYSTEM_TASK:>
Parses out pieces from construct signatures
<END_TASK>
<USER_TASK:>
Description:
def handle_signature(self, sig, signode):
"""Parses out pieces from construct signatures
Parses out prefix and argument list from construct definition. This is
assuming that the .NET languages this will support will be in a common
format, such as::
Namespace.Class.method(argument, argument, ...)
The namespace and class will be determined by the nesting of rST
directives.
Returns
Altered :py:data:`signode` with attributes corrected for rST
nesting/etc
""" |
try:
sig = self.parse_signature(sig.strip())
except ValueError:
self.env.warn(self.env.docname,
'Parsing signature failed: "{}"'.format(sig),
self.lineno)
raise
prefix = self.env.ref_context.get('dn:prefix', None)
if prefix is not None:
sig.prefix = prefix
signode['object'] = sig.member
signode['prefix'] = sig.prefix
signode['fullname'] = sig.full_name()
# Prefix modifiers
if self.display_prefix:
signode += addnodes.desc_annotation(self.display_prefix,
self.display_prefix)
for prefix in ['public', 'protected', 'static']:
if prefix in self.options:
signode += addnodes.desc_annotation(prefix + ' ',
prefix + ' ')
# Show prefix only on shorter declarations
if sig.prefix is not None and not self.has_arguments:
signode += addnodes.desc_addname(sig.prefix + '.', sig.prefix + '.')
signode += addnodes.desc_name(sig.member, sig.member)
if self.has_arguments:
if not sig.arguments:
signode += addnodes.desc_parameterlist()
else:
# TODO replace this
_pseudo_parse_arglist(signode, ', '.join(sig.arguments))
if isinstance(self, DotNetObjectNested):
return sig.full_name(), sig.full_name()
return sig.full_name(), sig.prefix |
<SYSTEM_TASK:>
Add objects to the domain list of objects
<END_TASK>
<USER_TASK:>
Description:
def add_target_and_index(self, name, sig, signode):
"""Add objects to the domain list of objects
This uses the directive short name along with the full object name to
create objects and nodes that are type and name unique.
""" |
full_name = name[0]
target_name = '{0}-{1}'.format(self.short_name, full_name)
if target_name not in self.state.document.ids:
signode['names'].append(target_name)
signode['ids'].append(target_name)
signode['first'] = not self.names
self.state.document.note_explicit_target(signode)
# Update domain objects
objects = self.env.domaindata['dn']['objects']
try:
found_obj = objects[full_name]
(found_doc, found_type) = found_obj
self.state_machine.reporter.warning(
('duplicate object definition of {obj_type} {obj_name}'
'other instance in {path}'
.format(obj_type=found_type, obj_name=full_name,
path=self.env.doc2path(found_doc))),
line=self.lineno)
except KeyError:
pass
finally:
objects[full_name] = (self.env.docname, self.objtype)
index_text = self.get_index_text(None, name)
if index_text:
entry = ('single', index_text, full_name, '')
if SPHINX_VERSION_14:
entry = ('single', index_text, full_name, '', None)
self.indexnode['entries'].append(entry) |
<SYSTEM_TASK:>
Produce index text by directive attributes
<END_TASK>
<USER_TASK:>
Description:
def get_index_text(self, prefix, name_obj):
"""Produce index text by directive attributes""" |
(name, _) = name_obj
msg = '{name} ({obj_type})'
parts = {
'name': name,
'prefix': prefix,
'obj_type': self.long_name,
}
try:
(obj_ns, obj_name) = name.rsplit('.', 1)
parts['name'] = obj_name
parts['namespace'] = obj_ns
msg = '{name} ({namespace} {obj_type})'
except ValueError:
pass
return msg.format(**parts) |
<SYSTEM_TASK:>
If element is considered hidden, drop the desc_signature node
<END_TASK>
<USER_TASK:>
Description:
def run(self):
"""If element is considered hidden, drop the desc_signature node
The default handling of signatures by :py:cls:`ObjectDescription`
returns a list of nodes with the signature nodes. We are going to remove
them if this is a hidden declaration.
""" |
nodes = super(DotNetObjectNested, self).run()
if 'hidden' in self.options:
for node in nodes:
if isinstance(node, addnodes.desc):
for (m, child) in enumerate(node.children):
if isinstance(child, addnodes.desc_signature):
node.children.pop(m)
return nodes |
<SYSTEM_TASK:>
Build up prefix history for nested elements
<END_TASK>
<USER_TASK:>
Description:
def before_content(self):
"""Build up prefix history for nested elements
The following keys are used in :py:attr:`self.env.ref_context`:
dn:prefixes
Stores the prefix history. With each nested element, we add the
prefix to a list of prefixes. When we exit that object's nesting
level, :py:meth:`after_content` is triggered and the prefix is
removed from the end of the list.
dn:prefix
Current prefix. This should reflect the last element in the
prefix history
""" |
super(DotNetObjectNested, self).before_content()
if self.names:
(_, prefix) = self.names.pop()
try:
self.env.ref_context['dn:prefixes'].append(prefix)
except (AttributeError, KeyError):
self.env.ref_context['dn:prefixes'] = [prefix]
finally:
self.env.ref_context['dn:prefix'] = prefix |
<SYSTEM_TASK:>
This handles some special cases for reference links in .NET
<END_TASK>
<USER_TASK:>
Description:
def process_link(self, env, refnode, has_explicit_title, title, target):
"""This handles some special cases for reference links in .NET
First, the standard Sphinx reference syntax of ``:ref:`Title<Link>```,
where a reference to ``Link`` is created with title ``Title``, causes
problems for the generic .NET syntax of ``:dn:cls:`FooBar<T>```. So, here
we assume that ``<T>`` was the generic declaration, and fix the
reference.
This also uses :py:cls:`AnyXRefRole` to add `ref_context` onto the
refnode. Add data there that you need it on refnodes.
This method also resolves special reference operators ``~`` and ``.``
""" |
result = super(DotNetXRefRole, self).process_link(env, refnode,
has_explicit_title,
title, target)
(title, target) = result
if not has_explicit_title:
# If the first character is a tilde, don't display the parent name
title = title.lstrip('.')
target = target.lstrip('~')
if title[0:1] == '~':
title = title[1:]
dot = title.rfind('.')
if dot != -1:
title = title[dot + 1:]
else:
if title != target:
target = title = '{title}<{target}>'.format(title=title,
target=target)
return title, target |
<SYSTEM_TASK:>
Find object reference
<END_TASK>
<USER_TASK:>
Description:
def find_obj(self, env, prefix, name, obj_type, searchorder=0):
"""Find object reference
:param env: Build environment
:param prefix: Object prefix
:param name: Object name
:param obj_type: Object type
:param searchorder: Search for exact match
""" |
# Skip parens
if name[-2:] == '()':
name = name[:-2]
if not name:
return []
object_types = list(self.object_types)
if obj_type is not None:
object_types = self.objtypes_for_role(obj_type)
objects = self.data['objects']
newname = None
fullname = name
if prefix is not None:
fullname = '.'.join([prefix, name])
if searchorder == 1:
if prefix and fullname in objects and objects[fullname][1] in object_types:
newname = fullname
elif name in objects and objects[name][1] in object_types:
newname = name
else:
try:
matches = [obj_name for obj_name in objects
if obj_name.endswith('.' + name)]
newname = matches.pop()
except IndexError:
pass
else:
if name in objects:
newname = name
elif prefix and fullname in objects:
newname = fullname
if newname is None:
return None
return newname, objects.get(newname, (None, None)) |
<SYSTEM_TASK:>
Look for any references, without object type
<END_TASK>
<USER_TASK:>
Description:
def resolve_any_xref(self, env, fromdocname, builder, target,
node, contnode):
"""Look for any references, without object type
This always searches in "refspecific" mode
""" |
prefix = node.get('dn:prefix')
results = []
match = self.find_obj(env, prefix, target, None, 1)
if match is not None:
(name, obj) = match
results.append(('dn:' + self.role_for_objtype(obj[1]),
make_refnode(builder, fromdocname, obj[0], name, contnode,
name)))
return results |
<SYSTEM_TASK:>
Create an image of type.
<END_TASK>
<USER_TASK:>
Description:
def create(self, width, height):
"""Create an image of type.
Parameters
----------
width: `int`
Image width.
height: `int`
Image height.
Returns
-------
`PIL.Image.Image`
""" |
return Image.new(self.mode, (width, height)) |
<SYSTEM_TASK:>
Merge image channels.
<END_TASK>
<USER_TASK:>
Description:
def merge(self, imgs):
"""Merge image channels.
Parameters
----------
imgs : `list` of `PIL.Image.Image`
Returns
-------
`PIL.Image.Image`
Raises
------
ValueError
If image channel list is empty.
""" |
if not imgs:
raise ValueError('empty channel list')
if len(imgs) == 1:
return imgs[0]
return Image.merge(self.mode, imgs) |
<SYSTEM_TASK:>
a helper to inspect a link and see if we should keep the link boundary
<END_TASK>
<USER_TASK:>
Description:
def detect_keep_boundary(start, end, namespaces):
"""a helper to inspect a link and see if we should keep the link boundary
""" |
result_start, result_end = False, False
parent_start = start.getparent()
parent_end = end.getparent()
if parent_start.tag == "{%s}p" % namespaces['text']:
# more than one child in the containing paragraph ?
# we keep the boundary
result_start = len(parent_start.getchildren()) > 1
if parent_end.tag == "{%s}p" % namespaces['text']:
# more than one child in the containing paragraph ?
# we keep the boundary
result_end = len(parent_end.getchildren()) > 1
return result_start, result_end |
<SYSTEM_TASK:>
create proper namespaces for our document
<END_TASK>
<USER_TASK:>
Description:
def __prepare_namespaces(self):
"""create proper namespaces for our document
""" |
# create needed namespaces
self.namespaces = dict(
text="urn:text",
draw="urn:draw",
table="urn:table",
office="urn:office",
xlink="urn:xlink",
svg="urn:svg",
manifest="urn:manifest",
)
# copy namespaces from original docs
for tree_root in self.tree_roots:
self.namespaces.update(tree_root.nsmap)
# remove any "root" namespace as lxml.xpath do not support them
self.namespaces.pop(None, None)
# declare the genshi namespace
self.namespaces['py'] = GENSHI_URI
# declare our own namespace
self.namespaces['py3o'] = PY3O_URI |
<SYSTEM_TASK:>
Public method to help report engine to find all instructions
<END_TASK>
<USER_TASK:>
Description:
def get_user_instructions(self):
""" Public method to help report engine to find all instructions
""" |
res = []
# TODO: Check if instructions can be stored in other content_trees
for e in get_instructions(self.content_trees[0], self.namespaces):
childs = e.getchildren()
if childs:
res.extend([c.text for c in childs])
else:
res.append(e.text)
return res |
<SYSTEM_TASK:>
Public method to get the mapping of all
<END_TASK>
<USER_TASK:>
Description:
def get_user_instructions_mapping(self):
""" Public method to get the mapping of all
variables defined in the template
""" |
instructions = self.get_user_instructions()
user_variables = self.get_user_variables()
# For now we just want for loops
instructions = [i for i in instructions
if i.startswith('for') or i == '/for']
# Now we call the decoder to get variable mapping from instructions
d = Decoder()
res = []
for_insts = {}
tmp = res
# Create a hierarchie with for loops
for i in instructions:
if i == '/for':
tmp = tmp.parent
else:
# Decode the instruction:
# inst.values() -> forloop variable
# inst.keys() -> forloop iterable
var, it = d.decode_py3o_instruction(i)
# we keep all inst in a dict
for_insts[var] = it
# get the variable defined inside the for loop
for_vars = [v for v in user_variables if v.split('.')[0] == var]
# create a new ForList for the forloop and add it to the
# children or list
new_list = ForList(it, var)
if isinstance(tmp, list):
# We have a root for loop
res.append(new_list)
tmp = res[-1]
tmp.parent = res
else:
tmp.add_child(new_list)
tmp = new_list
# Add the attributes to our new child
for v in for_vars:
tmp.add_attr(v)
# Insert global variable in a second list
user_vars = [v for v in user_variables
if not v.split('.')[0] in for_insts.keys()]
return res, user_vars |
<SYSTEM_TASK:>
transform a py3o link into a proper Genshi statement
<END_TASK>
<USER_TASK:>
Description:
def handle_link(self, link, py3o_base, closing_link):
"""transform a py3o link into a proper Genshi statement
rebase a py3o link at a proper place in the tree
to be ready for Genshi replacement
""" |
# OLD open office version
if link.text is not None and link.text.strip():
if not link.text == py3o_base:
msg = "url and text do not match in '%s'" % link.text
raise TemplateException(msg)
# new open office version
elif len(link):
if not link[0].text == py3o_base:
msg = "url and text do not match in '%s'" % link.text
raise TemplateException(msg)
else:
raise TemplateException("Link text not found")
# find out if the instruction is inside a table
parent = link.getparent()
keep_start_boundary = False
keep_end_boundary = False
if parent.getparent() is not None and parent.getparent().tag == (
"{%s}table-cell" % self.namespaces['table']
):
# we are in a table
opening_paragraph = parent
opening_cell = opening_paragraph.getparent()
# same for closing
closing_paragraph = closing_link.getparent()
closing_cell = closing_paragraph.getparent()
if opening_cell == closing_cell:
# block is fully in a single cell
opening_row = opening_paragraph
closing_row = closing_paragraph
else:
opening_row = opening_cell.getparent()
closing_row = closing_cell.getparent()
elif parent.tag == "{%s}p" % self.namespaces['text']:
# if we are using text we want to keep start/end nodes
keep_start_boundary, keep_end_boundary = detect_keep_boundary(
link, closing_link, self.namespaces
)
# we are in a text paragraph
opening_row = parent
closing_row = closing_link.getparent()
else:
raise NotImplementedError(
"We handle urls in tables or text paragraph only"
)
# max split is one
instruction, instruction_value = py3o_base.split("=", 1)
instruction_value = instruction_value.strip('"')
attribs = dict()
attribs['{%s}strip' % GENSHI_URI] = 'True'
attribs['{%s}%s' % (GENSHI_URI, instruction)] = instruction_value
genshi_node = lxml.etree.Element(
'span',
attrib=attribs,
nsmap={'py': GENSHI_URI},
)
link.getparent().remove(link)
closing_link.getparent().remove(closing_link)
try:
move_siblings(
opening_row, closing_row, genshi_node,
keep_start_boundary=keep_start_boundary,
keep_end_boundary=keep_end_boundary,
)
except ValueError as e:
log.exception(e)
raise TemplateException("Could not move siblings for '%s'" %
py3o_base) |
<SYSTEM_TASK:>
a public method to help report engines to introspect
<END_TASK>
<USER_TASK:>
Description:
def get_user_variables(self):
"""a public method to help report engines to introspect
a template and find what data it needs and how it will be
used
returns a list of user variable names without starting 'py3o.'""" |
# TODO: Check if some user fields are stored in other content_trees
return [
e.get('{%s}name' % e.nsmap.get('text'))[5:]
for e in get_user_fields(self.content_trees[0], self.namespaces)
] |
<SYSTEM_TASK:>
Replace user-type text fields that start with "py3o." with genshi
<END_TASK>
<USER_TASK:>
Description:
def __prepare_usertexts(self):
"""Replace user-type text fields that start with "py3o." with genshi
instructions.
""" |
field_expr = "//text:user-field-get[starts-with(@text:name, 'py3o.')]"
for content_tree in self.content_trees:
for userfield in content_tree.xpath(
field_expr,
namespaces=self.namespaces
):
parent = userfield.getparent()
value = userfield.attrib[
'{%s}name' % self.namespaces['text']
][5:]
value_type = self.field_info[value]['value_type']
# we try to override global var type with local settings
value_type_attr = '{%s}value-type' % self.namespaces['office']
rec = 0
parent_node = parent
# special case for float which has a value info on top level
# overriding local value
found_node = False
while rec <= 5:
if parent_node is None:
break
# find an ancestor with an office:value-type attribute
# this is the case when you are inside a table
if value_type_attr in parent_node.attrib:
value_type = parent_node.attrib[value_type_attr]
found_node = True
break
rec += 1
parent_node = parent_node.getparent()
if value_type == 'float':
value_attr = '{%s}value' % self.namespaces['office']
rec = 0
if found_node:
parent_node.attrib[value_attr] = "${%s}" % value
else:
parent_node = userfield
while rec <= 7:
if parent_node is None:
break
if value_attr in parent_node.attrib:
parent_node.attrib[value_attr] = "${%s}" % value
break
rec += 1
parent_node = parent_node.getparent()
value = "format_float(%s)" % value
if value_type == 'percentage':
del parent_node.attrib[value_attr]
value = "format_percentage(%s)" % value
parent_node.attrib[value_type_attr] = "string"
attribs = dict()
attribs['{%s}strip' % GENSHI_URI] = 'True'
attribs['{%s}content' % GENSHI_URI] = value
genshi_node = lxml.etree.Element(
'span',
attrib=attribs,
nsmap={'py': GENSHI_URI}
)
if userfield.tail:
genshi_node.tail = userfield.tail
parent.replace(userfield, genshi_node) |
<SYSTEM_TASK:>
Add entries for py3o images into the manifest file.
<END_TASK>
<USER_TASK:>
Description:
def __add_images_to_manifest(self):
"""Add entries for py3o images into the manifest file.""" |
xpath_expr = "//manifest:manifest[1]"
for content_tree in self.content_trees:
# Find manifest:manifest tags.
manifest_e = content_tree.xpath(
xpath_expr,
namespaces=self.namespaces
)
if not manifest_e:
continue
for identifier in self.images.keys():
# Add a manifest:file-entry tag.
lxml.etree.SubElement(
manifest_e[0],
'{%s}file-entry' % self.namespaces['manifest'],
attrib={
'{%s}full-path' % self.namespaces['manifest']: (
PY3O_IMAGE_PREFIX + identifier
),
'{%s}media-type' % self.namespaces['manifest']: '',
}
) |
<SYSTEM_TASK:>
prepare the flows without saving to file
<END_TASK>
<USER_TASK:>
Description:
def render_tree(self, data):
"""prepare the flows without saving to file
this method has been decoupled from render_flow to allow better
unit testing
""" |
# TODO: find a way to make this localization aware...
# because ATM it formats texts using French style numbers...
# best way would be to let the user inject its own vars...
# but this would not work on fusion servers...
# so we must find a way to localize this a bit... or remove it and
# consider our caller must pre - render its variables to the desired
# locale...?
new_data = dict(
decimal=decimal,
format_float=(
lambda val: (
isinstance(
val, decimal.Decimal
) or isinstance(
val, float
)
) and str(val).replace('.', ',') or val
),
format_percentage=(
lambda val: ("%0.2f %%" % val).replace('.', ',')
)
)
# Soft page breaks are hints for applications for rendering a page
# break. Soft page breaks in for loops may compromise the paragraph
# formatting especially the margins. Open-/LibreOffice will regenerate
# the page breaks when displaying the document. Therefore it is save to
# remove them.
self.remove_soft_breaks()
# first we need to transform the py3o template into a valid
# Genshi template.
starting_tags, closing_tags = self.handle_instructions(
self.content_trees,
self.namespaces
)
parents = [tag[0].getparent() for tag in starting_tags]
linknum = len(parents)
parentnum = len(set(parents))
if not linknum == parentnum:
raise TemplateException(
"Every py3o link instruction should be on its own line"
)
for link, py3o_base in starting_tags:
self.handle_link(
link,
py3o_base,
closing_tags[id(link)]
)
self.__prepare_userfield_decl()
self.__prepare_usertexts()
self.__replace_image_links()
self.__add_images_to_manifest()
for fnum, content_tree in enumerate(self.content_trees):
content = lxml.etree.tostring(content_tree.getroot())
if self.ignore_undefined_variables:
template = MarkupTemplate(content, lookup='lenient')
else:
template = MarkupTemplate(content)
# then we need to render the genshi template itself by
# providing the data to genshi
template_dict = {}
template_dict.update(data.items())
template_dict.update(new_data.items())
self.output_streams.append(
(
self.templated_files[fnum],
template.generate(**template_dict)
)
) |
<SYSTEM_TASK:>
render the OpenDocument with the user data
<END_TASK>
<USER_TASK:>
Description:
def render_flow(self, data):
"""render the OpenDocument with the user data
@param data: the input stream of user data. This should be a dictionary
mapping, keys being the values accessible to your report.
@type data: dictionary
""" |
self.render_tree(data)
# then reconstruct a new ODT document with the generated content
for status in self.__save_output():
yield status |
<SYSTEM_TASK:>
Set data for an image mentioned in the template.
<END_TASK>
<USER_TASK:>
Description:
def set_image_path(self, identifier, path):
"""Set data for an image mentioned in the template.
@param identifier: Identifier of the image; refer to the image in the
template by setting "py3o.[identifier]" as the name of that image.
@type identifier: string
@param path: Image path on the file system
@type path: string
""" |
f = open(path, 'rb')
self.set_image_data(identifier, f.read())
f.close() |
<SYSTEM_TASK:>
Saves the output into a native OOo document format.
<END_TASK>
<USER_TASK:>
Description:
def __save_output(self):
"""Saves the output into a native OOo document format.
""" |
out = zipfile.ZipFile(self.outputfilename, 'w')
for info_zip in self.infile.infolist():
if info_zip.filename in self.templated_files:
# Template file - we have edited these.
# get a temp file
streamout = open(get_secure_filename(), "w+b")
fname, output_stream = self.output_streams[
self.templated_files.index(info_zip.filename)
]
transformer = get_list_transformer(self.namespaces)
remapped_stream = output_stream | transformer
# write the whole stream to it
for chunk in remapped_stream.serialize():
streamout.write(chunk.encode('utf-8'))
yield True
# close the temp file to flush all data and make sure we get
# it back when writing to the zip archive.
streamout.close()
# write the full file to archive
out.write(streamout.name, fname)
# remove temp file
os.unlink(streamout.name)
else:
# Copy other files straight from the source archive.
out.writestr(info_zip, self.infile.read(info_zip.filename))
# Save images in the "Pictures" sub-directory of the archive.
for identifier, data in self.images.items():
out.writestr(PY3O_IMAGE_PREFIX + identifier, data)
# close the zipfile before leaving
out.close()
yield True |
<SYSTEM_TASK:>
returns the check digit of the card number.
<END_TASK>
<USER_TASK:>
Description:
def get_check_digit(unchecked):
"""returns the check digit of the card number.""" |
digits = digits_of(unchecked)
checksum = sum(even_digits(unchecked)) + sum([
sum(digits_of(2 * d)) for d in odd_digits(unchecked)])
return 9 * checksum % 10 |
<SYSTEM_TASK:>
determines whether the card number is valid.
<END_TASK>
<USER_TASK:>
Description:
def is_valid(number):
"""determines whether the card number is valid.""" |
n = str(number)
if not n.isdigit():
return False
return int(n[-1]) == get_check_digit(n[:-1]) |
<SYSTEM_TASK:>
Generates random and valid card number which is returned as a string.
<END_TASK>
<USER_TASK:>
Description:
def generate(length):
"""Generates random and valid card number which is returned as a string.""" |
if not isinstance(length, int) or length < 2:
raise TypeError('length must be a positive integer greater than 1.')
# first digit cannot be 0
digits = [random.randint(1, 9)]
for i in range(length-2):
digits.append(random.randint(0, 9))
digits.append(get_check_digit(''.join(map(str, digits))))
return ''.join(map(str, digits)) |
<SYSTEM_TASK:>
Reversed spiral generator.
<END_TASK>
<USER_TASK:>
Description:
def _rspiral(width, height):
"""Reversed spiral generator.
Parameters
----------
width : `int`
Spiral width.
height : `int`
Spiral height.
Returns
-------
`generator` of (`int`, `int`)
Points.
""" |
x0 = 0
y0 = 0
x1 = width - 1
y1 = height - 1
while x0 < x1 and y0 < y1:
for x in range(x0, x1):
yield x, y0
for y in range(y0, y1):
yield x1, y
for x in range(x1, x0, -1):
yield x, y1
for y in range(y1, y0, -1):
yield x0, y
x0 += 1
y0 += 1
x1 -= 1
y1 -= 1
if x0 == x1:
for y in range(y0, y1 + 1):
yield x0, y
elif y0 == y1:
for x in range(x0, x1 + 1):
yield x, y0 |
<SYSTEM_TASK:>
Spiral generator.
<END_TASK>
<USER_TASK:>
Description:
def _spiral(width, height):
"""Spiral generator.
Parameters
----------
width : `int`
Spiral width.
height : `int`
Spiral height.
Returns
-------
`generator` of (`int`, `int`)
Points.
""" |
if width == 1:
for y in range(height - 1, -1, -1):
yield 0, y
return
if height == 1:
for x in range(width - 1, -1, -1):
yield x, 0
return
if width <= height:
x0 = width // 2
if width % 2:
for y in range(height - 1 - x0, x0 - 1, -1):
yield x0, y
x0 -= 1
y0 = x0
else:
y0 = height // 2
if height % 2:
for x in range(width - 1 - y0, y0 - 1, -1):
yield x, y0
y0 -= 1
x0 = y0
while x0 >= 0:
x1 = width - x0 - 1
y1 = height - y0 - 1
for y in range(y0 + 1, y1):
yield x0, y
for x in range(x0, x1):
yield x, y1
for y in range(y1, y0, -1):
yield x1, y
for x in range(x1, x0 - 1, -1):
yield x, y0
x0 -= 1
y0 -= 1 |
<SYSTEM_TASK:>
Get point coordinates in next block.
<END_TASK>
<USER_TASK:>
Description:
def get_point_in_block(cls, x, y, block_idx, block_size):
"""Get point coordinates in next block.
Parameters
----------
x : `int`
X coordinate in current block.
y : `int`
Y coordinate in current block.
block_index : `int`
Current block index in next block.
block_size : `int`
Current block size.
Raises
------
IndexError
If block index is out of range.
Returns
-------
(`int`, `int`)
Point coordinates.
""" |
if block_idx == 0:
return y, x
if block_idx == 1:
return x, y + block_size
if block_idx == 2:
return x + block_size, y + block_size
if block_idx == 3:
x, y = block_size - 1 - y, block_size - 1 - x
return x + block_size, y
raise IndexError('block index out of range: %d' % block_idx) |
<SYSTEM_TASK:>
Get curve point coordinates by index.
<END_TASK>
<USER_TASK:>
Description:
def get_point(cls, idx, size):
"""Get curve point coordinates by index.
Parameters
----------
idx : `int`
Point index.
size : `int`
Curve size.
Returns
-------
(`int`, `int`)
Point coordinates.
""" |
x, y = cls.POSITION[idx % 4]
idx //= 4
block_size = 2
while block_size < size:
block_idx = idx % 4
x, y = cls.get_point_in_block(x, y, block_idx, block_size)
idx //= 4
block_size *= 2
return x, y |
<SYSTEM_TASK:>
Recursive function that fills up the dictionary
<END_TASK>
<USER_TASK:>
Description:
def __recur_to_dict(forlist, data_dict, res):
"""Recursive function that fills up the dictionary
""" |
# First we go through all attrs from the ForList and add respective
# keys on the dict.
for a in forlist.attrs:
a_list = a.split('.')
if len(a_list) == 1:
res = data_dict[a_list[0]]
return res
if a_list[0] in data_dict:
tmp = res
for i in a_list[1:-1]:
if not i in tmp:
tmp[i] = {}
tmp = tmp[i]
if len(a_list) == 1:
tmp[a_list[0]] = data_dict[a_list[0]]
else:
tmp[a_list[-1]] = reduce(
getattr,
a_list[1:],
data_dict[a_list[0]]
)
# Then create a list for all children,
# modify the datadict to fit the new child
# and call myself
for c in forlist.childs:
it = c.name.split('.')
res[it[-1]] = []
for i, val in enumerate(
reduce(getattr, it[1:], data_dict[it[0]])
):
new_data_dict = {c.var_from: val}
if len(res[it[-1]]) <= i:
res[it[-1]].append({})
res[it[-1]] = ForList.__recur_to_dict(
c, new_data_dict, res[it[-1]][i]
)
return res |
<SYSTEM_TASK:>
Construct a dict object from a list of ForList object
<END_TASK>
<USER_TASK:>
Description:
def to_dict(for_lists, global_vars, data_dict):
""" Construct a dict object from a list of ForList object
:param for_lists: list of for_list
:param global_vars: list of global vars to add
:param data_dict: data from an orm-like object (with dot notation)
:return: a dict representation of the ForList objects
""" |
res = {}
# The first level is a little bit special
# Manage global variables
for a in global_vars:
a_list = a.split('.')
tmp = res
for i in a_list[:-1]:
if not i in tmp:
tmp[i] = {}
tmp = tmp[i]
tmp[a_list[-1]] = reduce(getattr, a_list[1:], data_dict[a_list[0]])
# Then manage for lists recursively
for for_list in for_lists:
it = for_list.name.split('.')
tmp = res
for i in it[:-1]:
if not i in tmp:
tmp[i] = {}
tmp = tmp[i]
if not it[-1] in tmp:
tmp[it[-1]] = []
tmp = tmp[it[-1]]
if not it[0] in data_dict:
continue
if len(it) == 1:
loop = enumerate(data_dict[it[0]])
else:
loop = enumerate(reduce(getattr, it[-1:], data_dict[it[0]]))
for i, val in loop:
new_data_dict = {for_list.var_from: val}
# We append a new dict only if we need
if len(tmp) <= i:
tmp.append({})
# Call myself with new context, and get result
tmp[i] = ForList.__recur_to_dict(
for_list, new_data_dict, tmp[i]
)
return res |
<SYSTEM_TASK:>
Nothing hilariously hidden here, logs a user out. Strip this out if your
<END_TASK>
<USER_TASK:>
Description:
def logout(request, redirect_url=settings.LOGOUT_REDIRECT_URL):
"""
Nothing hilariously hidden here, logs a user out. Strip this out if your
application already has hooks to handle this.
""" |
django_logout(request)
return HttpResponseRedirect(request.build_absolute_uri(redirect_url)) |
<SYSTEM_TASK:>
The view function that initiates the entire handshake.
<END_TASK>
<USER_TASK:>
Description:
def begin_auth(request):
"""The view function that initiates the entire handshake.
For the most part, this is 100% drag and drop.
""" |
# Instantiate Twython with the first leg of our trip.
twitter = Twython(settings.TWITTER_KEY, settings.TWITTER_SECRET)
# Request an authorization url to send the user to...
callback_url = request.build_absolute_uri(reverse('twython_django_oauth.views.thanks'))
auth_props = twitter.get_authentication_tokens(callback_url)
# Then send them over there, durh.
request.session['request_token'] = auth_props
request.session['next_url'] = request.GET.get('next',None)
return HttpResponseRedirect(auth_props['auth_url']) |
<SYSTEM_TASK:>
A user gets redirected here after hitting Twitter and authorizing your app to use their data.
<END_TASK>
<USER_TASK:>
Description:
def thanks(request, redirect_url=settings.LOGIN_REDIRECT_URL):
"""A user gets redirected here after hitting Twitter and authorizing your app to use their data.
This is the view that stores the tokens you want
for querying data. Pay attention to this.
""" |
# Now that we've got the magic tokens back from Twitter, we need to exchange
# for permanent ones and store them...
oauth_token = request.session['request_token']['oauth_token']
oauth_token_secret = request.session['request_token']['oauth_token_secret']
twitter = Twython(settings.TWITTER_KEY, settings.TWITTER_SECRET,
oauth_token, oauth_token_secret)
# Retrieve the tokens we want...
authorized_tokens = twitter.get_authorized_tokens(request.GET['oauth_verifier'])
# If they already exist, grab them, login and redirect to a page displaying stuff.
try:
user = User.objects.get(username=authorized_tokens['screen_name'])
except User.DoesNotExist:
# We mock a creation here; no email, password is just the token, etc.
user = User.objects.create_user(authorized_tokens['screen_name'], "[email protected]", authorized_tokens['oauth_token_secret'])
profile = TwitterProfile()
profile.user = user
profile.oauth_token = authorized_tokens['oauth_token']
profile.oauth_secret = authorized_tokens['oauth_token_secret']
profile.save()
user = authenticate(
username=authorized_tokens['screen_name'],
password=authorized_tokens['oauth_token_secret']
)
login(request, user)
redirect_url = request.session.get('next_url', redirect_url)
HttpResponseRedirect(redirect_url) |
<SYSTEM_TASK:>
Generate image pixels.
<END_TASK>
<USER_TASK:>
Description:
def _imgdata(self, width, height,
state_size=None, start='', dataset=''):
"""Generate image pixels.
Parameters
----------
width : `int`
Image width.
height : `int`
Image height.
state_size : `int` or `None`, optional
State size to use for generation (default: `None`).
start : `str`, optional
Initial state (default: '').
dataset : `str`, optional
Dataset key prefix (default: '').
Raises
------
RuntimeError
If generator is empty.
Returns
-------
`generator` of `int`
Pixel generator.
""" |
size = width * height
if size > 0 and start:
yield state_to_pixel(start)
size -= 1
while size > 0:
prev_size = size
pixels = self.generate(state_size, start, dataset)
pixels = islice(pixels, 0, size)
for pixel in pixels:
yield state_to_pixel(pixel)
size -= 1
if prev_size == size:
if start:
yield from repeat(state_to_pixel(start), size)
else:
raise RuntimeError('empty generator') |
<SYSTEM_TASK:>
Generate a channel.
<END_TASK>
<USER_TASK:>
Description:
def _channel(self, width, height, state_sizes,
start_level, start_image, dataset):
"""Generate a channel.
Parameters
----------
width : `int`
Image width.
height : `int`
Image height.
state_sizes : `list` of (`int` or `None`)
Level state sizes.
start_level : `int`
Initial level.
start_image : `PIL.Image` or `None`
Initial level image.
dataset : `str`
Dataset key prefix.
Returns
-------
`PIL.Image`
Generated image.
""" |
ret = start_image
for level, state_size in enumerate(state_sizes, start_level + 1):
key = dataset + level_dataset(level)
if start_image is not None:
scale = self.scanner.level_scale[level - 1]
width *= scale
height *= scale
ret = self.imgtype.create_channel(width, height)
if start_image is None:
tr = self.scanner.traversal[0](width, height, ends=False)
data = self._imgdata(width, height, state_size, '', key)
self._write_imgdata(ret, data, tr)
else:
tr = self.scanner.traversal[0](
start_image.size[0],
start_image.size[1],
ends=False
)
for xy in tr:
start = pixel_to_state(start_image.getpixel(xy))
data = self._imgdata(scale, scale, state_size, start, key)
blk = self.scanner.traversal[level](scale, scale, False)
x, y = xy
x *= scale
y *= scale
self._write_imgdata(ret, data, blk, x, y)
start_image = ret
return ret |
<SYSTEM_TASK:>
Flatten a ``Parameter``.
<END_TASK>
<USER_TASK:>
Description:
def ravel(parameter, random_state=None):
"""
Flatten a ``Parameter``.
Parameters
----------
parameter: Parameter
A ``Parameter`` object
Returns
-------
flatvalue: ndarray
a flattened array of shape ``(prod(parameter.shape),)``
flatbounds: list
a list of bound tuples of length ``prod(parameter.shape)``
""" |
flatvalue = np.ravel(parameter.rvs(random_state=random_state))
flatbounds = [parameter.bounds
for _ in range(np.prod(parameter.shape, dtype=int))]
return flatvalue, flatbounds |
<SYSTEM_TASK:>
Horizontally stack a sequence of value bounds pairs.
<END_TASK>
<USER_TASK:>
Description:
def hstack(tup):
"""
Horizontally stack a sequence of value bounds pairs.
Parameters
----------
tup: sequence
a sequence of value, ``Bound`` pairs
Returns
-------
value: ndarray
a horizontally concatenated array1d
bounds:
a list of Bounds
""" |
vals, bounds = zip(*tup)
stackvalue = np.hstack(vals)
stackbounds = list(chain(*bounds))
return stackvalue, stackbounds |
<SYSTEM_TASK:>
Check a value falls within a bound.
<END_TASK>
<USER_TASK:>
Description:
def check(self, value):
"""
Check a value falls within a bound.
Parameters
----------
value : scalar or ndarray
value to test
Returns
-------
bool:
If all values fall within bounds
Example
-------
>>> bnd = Bound(1, 2)
>>> bnd.check(1.5)
True
>>> bnd.check(3)
False
>>> bnd.check(np.ones(10))
True
>>> bnd.check(np.array([1, 3, 1.5]))
False
""" |
if self.lower:
if np.any(value < self.lower):
return False
if self.upper:
if np.any(value > self.upper):
return False
return True |
<SYSTEM_TASK:>
Clip a value to a bound.
<END_TASK>
<USER_TASK:>
Description:
def clip(self, value):
"""
Clip a value to a bound.
Parameters
----------
value : scalar or ndarray
value to clip
Returns
-------
scalar or ndarray :
of the same shape as value, bit with each element clipped to fall
within the specified bounds
Example
-------
>>> bnd = Bound(1, 2)
>>> bnd.clip(1.5)
1.5
>>> bnd.clip(3)
2
>>> bnd.clip(np.array([1, 3, 1.5]))
array([ 1. , 2. , 1.5])
>>> bnd = Bound(None, None)
>>> bnd.clip(np.array([1, 3, 1.5]))
array([ 1. , 3. , 1.5])
""" |
if not self.lower and not self.upper:
return value
return np.clip(value, self.lower, self.upper) |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def rvs(self, random_state=None):
r"""
Draw a random value from this Parameter's distribution.
If ``value`` was not initialised with a ``scipy.stats`` object, then
the scalar/ndarray value is returned.
Parameters
----------
random_state : None, int or RandomState, optional
random seed
Returns
-------
ndarray :
of size ``self.shape``, a random draw from the distribution, or
``self.value`` if not initialised with a ``scipy.stats`` object.
Note
----
Random draws are *clipped* to the bounds, and so it is up to the user
to input a sensible sampling distribution!
""" |
# No sampling distibution
if self.dist is None:
return self.value
# Unconstrained samples
rs = check_random_state(random_state)
samples = self.dist.rvs(size=self.shape, random_state=rs)
# Bound the samples
samples = self.bounds.clip(samples)
return samples |
<SYSTEM_TASK:>
Creates missing ``Tree`` objects for the given path.
<END_TASK>
<USER_TASK:>
Description:
def _get_missing_trees(self, path, root_tree):
"""
Creates missing ``Tree`` objects for the given path.
:param path: path given as a string. It may be a path to a file node
(i.e. ``foo/bar/baz.txt``) or directory path - in that case it must
end with slash (i.e. ``foo/bar/``).
:param root_tree: ``dulwich.objects.Tree`` object from which we start
traversing (should be commit's root tree)
""" |
dirpath = posixpath.split(path)[0]
dirs = dirpath.split('/')
if not dirs or dirs == ['']:
return []
def get_tree_for_dir(tree, dirname):
for name, mode, id in tree.iteritems():
if name == dirname:
obj = self.repository._repo[id]
if isinstance(obj, objects.Tree):
return obj
else:
raise RepositoryError("Cannot create directory %s "
"at tree %s as path is occupied and is not a "
"Tree" % (dirname, tree))
return None
trees = []
parent = root_tree
for dirname in dirs:
tree = get_tree_for_dir(parent, dirname)
if tree is None:
tree = objects.Tree()
dirmode = 040000
parent.add(dirmode, dirname, tree.id)
parent = tree
# Always append tree
trees.append(tree)
return trees |
<SYSTEM_TASK:>
Convert a value to a list.
<END_TASK>
<USER_TASK:>
Description:
def to_list(x):
"""Convert a value to a list.
Parameters
----------
x
Value.
Returns
-------
`list`
Examples
--------
>>> to_list(0)
[0]
>>> to_list({'x': 0})
[{'x': 0}]
>>> to_list(x ** 2 for x in range(3))
[0, 1, 4]
>>> x = [1, 2, 3]
>>> to_list(x)
[1, 2, 3]
>>> _ is x
True
""" |
if isinstance(x, list):
return x
if not isinstance(x, dict):
try:
return list(x)
except TypeError:
pass
return [x] |
<SYSTEM_TASK:>
Convert a value to a list of specified length.
<END_TASK>
<USER_TASK:>
Description:
def fill(xs, length, copy=False):
"""Convert a value to a list of specified length.
If the input is too short, fill it with its last element.
Parameters
----------
xs
Input list or value.
length : `int`
Output list length.
copy : `bool`, optional
Deep copy the last element to fill the list (default: False).
Returns
-------
`list`
Raises
------
ValueError
If `xs` is empty and `length` > 0
Examples
--------
>>> fill(0, 3)
[0, 0, 0]
>>> fill((x ** 2 for x in range(3)), 1)
[0]
>>> x = [{'x': 0}, {'x': 1}]
>>> y = fill(x, 4)
>>> y
[{'x': 0}, {'x': 1}, {'x': 1}, {'x': 1}]
>>> y[2] is y[1]
True
>>> y[3] is y[2]
True
>>> y = fill(x, 4, True)
>>> y
[{'x': 0}, {'x': 1}, {'x': 1}, {'x': 1}]
>>> y[2] is y[1]
False
>>> y[3] is y[2]
False
""" |
if isinstance(xs, list) and len(xs) == length:
return xs
if length <= 0:
return []
try:
xs = list(islice(xs, 0, length))
if not xs:
raise ValueError('empty input')
except TypeError:
xs = [xs]
if len(xs) < length:
if copy:
last = xs[-1]
xs.extend(deepcopy(last) for _ in range(length - len(xs)))
else:
xs.extend(islice(repeat(xs[-1]), 0, length - len(xs)))
return xs |
<SYSTEM_TASK:>
Get int enum value.
<END_TASK>
<USER_TASK:>
Description:
def int_enum(cls, val):
"""Get int enum value.
Parameters
----------
cls : `type`
Int enum class.
val : `int` or `str`
Name or value.
Returns
-------
`IntEnum`
Raises
------
ValueError
""" |
if isinstance(val, str):
val = val.upper()
try:
return getattr(cls, val)
except AttributeError:
raise ValueError('{0}.{1}'.format(cls, val))
return cls(val) |
<SYSTEM_TASK:>
Create or load an object if necessary.
<END_TASK>
<USER_TASK:>
Description:
def load(obj, cls, default_factory):
"""Create or load an object if necessary.
Parameters
----------
obj : `object` or `dict` or `None`
cls : `type`
default_factory : `function`
Returns
-------
`object`
""" |
if obj is None:
return default_factory()
if isinstance(obj, dict):
return cls.load(obj)
return obj |
<SYSTEM_TASK:>
Add classes to the group.
<END_TASK>
<USER_TASK:>
Description:
def add_class(cls, *args):
"""Add classes to the group.
Parameters
----------
*args : `type`
Classes to add.
""" |
for cls2 in args:
cls.classes[cls2.__name__] = cls2 |
<SYSTEM_TASK:>
Remove classes from the group.
<END_TASK>
<USER_TASK:>
Description:
def remove_class(cls, *args):
"""Remove classes from the group.
Parameters
----------
*args : `type`
Classes to remove.
""" |
for cls2 in args:
try:
del cls.classes[cls2.__name__]
except KeyError:
pass |
<SYSTEM_TASK:>
Create an object from JSON data.
<END_TASK>
<USER_TASK:>
Description:
def load(cls, data):
"""Create an object from JSON data.
Parameters
----------
data : `dict`
JSON data.
Returns
----------
`object`
Created object.
Raises
------
KeyError
If `data` does not have the '__class__' key
or the necessary class is not in the class group.
""" |
ret = cls.classes[data['__class__']]
data_cls = data['__class__']
del data['__class__']
try:
ret = ret(**data)
finally:
data['__class__'] = data_cls
return ret |
<SYSTEM_TASK:>
Sets the oauth_client attribute
<END_TASK>
<USER_TASK:>
Description:
def set_oauth_client(self, consumer_key, consumer_secret):
"""Sets the oauth_client attribute
""" |
self.oauth_client = oauth1.Client(consumer_key, consumer_secret) |
<SYSTEM_TASK:>
Prepare the request body and headers
<END_TASK>
<USER_TASK:>
Description:
def prepare_request(self, method, url, body=''):
"""Prepare the request body and headers
:returns: headers of the signed request
""" |
headers = {
'Content-type': 'application/json',
}
# Note: we don't pass body to sign() since it's only for bodies that
# are form-urlencoded. Similarly, we don't care about the body that
# sign() returns.
uri, signed_headers, signed_body = self.oauth_client.sign(
url, http_method=method, headers=headers)
if body:
if method == 'GET':
body = urllib.urlencode(body)
else:
body = json.dumps(body)
headers.update(signed_headers)
return {"headers": headers, "data": body} |
<SYSTEM_TASK:>
Extract error reason from the response. It might be either
<END_TASK>
<USER_TASK:>
Description:
def _get_error_reason(response):
"""Extract error reason from the response. It might be either
the 'reason' or the entire response
""" |
try:
body = response.json()
if body and 'reason' in body:
return body['reason']
except ValueError:
pass
return response.content |
<SYSTEM_TASK:>
Prepare the headers, encode data, call API and provide
<END_TASK>
<USER_TASK:>
Description:
def fetch(self, method, url, data=None, expected_status_code=None):
"""Prepare the headers, encode data, call API and provide
data it returns
""" |
kwargs = self.prepare_request(method, url, data)
log.debug(json.dumps(kwargs))
response = getattr(requests, method.lower())(url, **kwargs)
log.debug(json.dumps(response.content))
if response.status_code >= 400:
response.raise_for_status()
if (expected_status_code
and response.status_code != expected_status_code):
raise NotExpectedStatusCode(self._get_error_reason(response))
return response |
<SYSTEM_TASK:>
Return json decoded data from fetch
<END_TASK>
<USER_TASK:>
Description:
def fetch_json(self, method, url, data=None, expected_status_code=None):
"""Return json decoded data from fetch
""" |
return self.fetch(method, url, data, expected_status_code).json() |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def structured_minimizer(minimizer):
r"""
Allow an optimizer to accept nested sequences of Parameters to optimize.
This decorator can intepret the :code:`Parameter` objects in `btypes.py`,
and can accept nested sequences of *any* structure of these objects to
optimise!
It can also optionally evaluate *random starts* (i.e. random starting
candidates) if the parameter objects have been initialised with
distributions. For this, two additional parameters are exposed in the
:code:`minimizer` interface.
Parameters
----------
fun : callable
objective function that takes in arbitrary ndarrays, floats or nested
sequences of these.
parameters : (nested) sequences of Parameter objects
Initial guess of the parameters of the objective function
nstarts : int, optional
The number random starting candidates for optimisation to evaluate.
This will only happen for :code:`nstarts > 0` and if at least one
:code:`Parameter` object is random.
random_state : None, int or RandomState, optional
random seed
Examples
--------
>>> from scipy.optimize import minimize as sp_min
>>> from ..btypes import Parameter, Bound
Define a cost function that returns a pair. The first element is the cost
value and the second element is the gradient represented by a tuple. Even
if the cost is a function of a single variable, the gradient must be a
tuple containing one element.
>>> def cost(w, lambda_):
... sq_norm = w.T.dot(w)
... return .5 * lambda_ * sq_norm, (lambda_ * w, .5 * sq_norm)
Augment the Scipy optimizer to take structured inputs
>>> new_min = structured_minimizer(sp_min)
Constant Initial values
>>> w_0 = Parameter(np.array([.5, .1, .2]), Bound())
>>> lambda_0 = Parameter(.25, Bound())
>>> res = new_min(cost, (w_0, lambda_0), method='L-BFGS-B', jac=True)
>>> res_w, res_lambda = res.x
Random Initial values
>>> from scipy.stats import norm, gamma
>>> w_0 = Parameter(norm(), Bound(), shape=(3,))
>>> lambda_0 = Parameter(gamma(a=1), Bound())
>>> res = new_min(cost, (w_0, lambda_0), method='L-BFGS-B', jac=True,
... nstarts=100, random_state=None)
>>> res_w, res_lambda = res.x
""" |
@wraps(minimizer)
def new_minimizer(fun, parameters, jac=True, args=(), nstarts=0,
random_state=None, **minimizer_kwargs):
(array1d, fbounds), shapes = flatten(
parameters,
hstack=bt.hstack,
shape=bt.shape,
ravel=partial(bt.ravel, random_state=random_state)
)
# Find best random starting candidate if we are doing random starts
if nstarts > 0:
array1d = _random_starts(
fun=fun,
parameters=parameters,
jac=jac,
args=args,
nstarts=nstarts,
random_state=random_state
)
# Wrap function calls to work with wrapped minimizer
flatten_args_dec = flatten_args(shapes)
new_fun = flatten_args_dec(fun)
# Wrap gradient calls to work with wrapped minimizer
if callable(jac):
new_jac = flatten_args_dec(jac)
else:
new_jac = jac
if bool(jac):
new_fun = flatten_func_grad(new_fun)
result = minimizer(new_fun, array1d, jac=new_jac, args=args,
bounds=fbounds, **minimizer_kwargs)
result['x'] = tuple(unflatten(result['x'], shapes))
if bool(jac):
result['jac'] = tuple(unflatten(result['jac'], shapes))
return result
return new_minimizer |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def structured_sgd(sgd):
r"""
Allow an SGD to accept nested sequences of Parameters to optimize.
This decorator can intepret the :code:`Parameter` objects in `btypes.py`,
and can accept nested sequences of *any* structure of these objects to
optimise!
It can also optionally evaluate *random starts* (i.e. random starting
candidates) if the parameter objects have been initialised with
distributions. For this, an additional parameter is exposed in the
:code:`minimizer` interface.
Parameters
----------
fun : callable
objective function that takes in arbitrary ndarrays, floats or nested
sequences of these.
parameters : (nested) sequences of Parameter objects
Initial guess of the parameters of the objective function
nstarts : int, optional
The number random starting candidates for optimisation to evaluate.
This will only happen for :code:`nstarts > 0` and if at least one
:code:`Parameter` object is random.
Examples
--------
>>> from ..optimize import sgd
>>> from ..btypes import Parameter, Bound
Define a cost function that returns a pair. The first element is the cost
value and the second element is the gradient represented by a sequence.
Even if the cost is a function of a single variable, the gradient must be a
sequence containing one element.
>>> def cost(w, lambda_, data):
... N = len(data)
... y, X = data[:, 0], data[:, 1:]
... y_est = X.dot(w)
... ww = w.T.dot(w)
... obj = (y - y_est).sum() / N + lambda_ * ww
... gradw = - 2 * X.T.dot(y - y_est) / N + 2 * lambda_ * w
... gradl = ww
... return obj, [gradw, gradl]
Augment the SGD optimizer to take structured inputs
>>> new_sgd = structured_sgd(sgd)
Data
>>> y = np.linspace(1, 10, 100) + np.random.randn(100) + 1
>>> X = np.array([np.ones(100), np.linspace(1, 100, 100)]).T
>>> data = np.hstack((y[:, np.newaxis], X))
Constant Initial values
>>> w_0 = Parameter(np.array([1., 1.]), Bound())
>>> lambda_0 = Parameter(.25, Bound())
>>> res = new_sgd(cost, [w_0, lambda_0], data, batch_size=10,
... eval_obj=True)
>>> res_w, res_lambda = res.x
Random Initial values
>>> from scipy.stats import norm, gamma
>>> w_0 = Parameter(norm(), Bound(), shape=(2,))
>>> lambda_0 = Parameter(gamma(1.), Bound())
>>> res = new_sgd(cost, [w_0, lambda_0], data, batch_size=10,
... eval_obj=True, nstarts=100)
>>> res_w, res_lambda = res.x
""" |
@wraps(sgd)
def new_sgd(fun,
parameters,
data,
eval_obj=False,
batch_size=10,
args=(),
random_state=None,
nstarts=100,
**sgd_kwargs):
(array1d, fbounds), shapes = flatten(parameters,
hstack=bt.hstack,
shape=bt.shape,
ravel=bt.ravel
)
flatten_args_dec = flatten_args(shapes)
new_fun = flatten_args_dec(fun)
# Find best random starting candidate if we are doing random starts
if eval_obj and nstarts > 0:
data_gen = gen_batch(data, batch_size, random_state=random_state)
array1d = _random_starts(
fun=fun,
parameters=parameters,
jac=True,
args=args,
data_gen=data_gen,
nstarts=nstarts,
random_state=random_state
)
if bool(eval_obj):
new_fun = flatten_func_grad(new_fun)
else:
new_fun = flatten_grad(new_fun)
result = sgd(new_fun, array1d, data=data, bounds=fbounds, args=args,
eval_obj=eval_obj, random_state=random_state,
**sgd_kwargs)
result['x'] = tuple(unflatten(result['x'], shapes))
return result
return new_sgd |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.