text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Take values according to indexer and return them as a block.bb <END_TASK> <USER_TASK:> Description: def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """
# algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if self.is_sparse: values = self.get_values() if fill_tuple is None: fill_value = self.fill_value new_values = algos.take_nd(values, indexer, axis=axis, allow_fill=False, fill_value=fill_value) else: fill_value = fill_tuple[0] new_values = algos.take_nd(values, indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = libinternals.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs)
<SYSTEM_TASK:> return block for the diff of the values <END_TASK> <USER_TASK:> Description: def diff(self, n, axis=1): """ return block for the diff of the values """
new_values = algos.diff(self.values, n, axis=axis) return [self.make_block(values=new_values)]
<SYSTEM_TASK:> shift the block by periods, possibly upcast <END_TASK> <USER_TASK:> Description: def shift(self, periods, axis=0, fill_value=None): """ shift the block by periods, possibly upcast """
# convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values)]
<SYSTEM_TASK:> Return a list of unstacked blocks of self <END_TASK> <USER_TASK:> Description: def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock.unstack fill_value : int Only used in ExtensionBlock.unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """
unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask
<SYSTEM_TASK:> compute the quantiles of the <END_TASK> <USER_TASK:> Description: def quantile(self, qs, interpolation='linear', axis=0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """
if self.is_datetimetz: # TODO: cleanup this special case. # We need to operate on i8 values for datetimetz # but `Block.get_values()` returns an ndarray of objects # right now. We need an API for "values to do numeric-like ops on" values = self.values.asi8 # TODO: NonConsolidatableMixin shape # Usual shape inconsistencies for ExtensionBlocks if self.ndim > 1: values = values[None, :] else: values = self.get_values() values, _ = self._try_coerce_args(values, values) is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: if self.ndim == 1: result = self._na_value else: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat(np.array([self.fill_value] * len(qs)), len(values)).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 # TODO: Why self.values and not values? mask = np.asarray(isna(self.values)) result = nanpercentile(values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=self.ndim, interpolation=interpolation) result = np.array(result, copy=False) if self.ndim > 1: result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = getattr(result, 'ndim', None) or 0 result = self._try_coerce_result(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim)
<SYSTEM_TASK:> putmask the data to the block; we must be a single block and not <END_TASK> <USER_TASK:> Description: def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """
inplace = validate_bool_kwarg(inplace, 'inplace') # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values new_values, new = self._try_coerce_args(new_values, new) if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new new_values = self._try_coerce_result(new_values) return [self.make_block(values=new_values)]
<SYSTEM_TASK:> Get the placement, values, and mask for a Block unstack. <END_TASK> <USER_TASK:> Description: def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """
# shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask
<SYSTEM_TASK:> Set the value inplace, returning a same-typed block. <END_TASK> <USER_TASK:> Description: def setitem(self, indexer, value): """Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """
if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self
<SYSTEM_TASK:> Take values according to indexer and return them as a block. <END_TASK> <USER_TASK:> Description: def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """
if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) if self.ndim == 1 and new_mgr_locs is None: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs)
<SYSTEM_TASK:> Shift the block by `periods`. <END_TASK> <USER_TASK:> Description: def shift(self, periods: int, axis: libinternals.BlockPlacement = 0, fill_value: Any = None) -> List['ExtensionBlock']: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """
return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim) ]
<SYSTEM_TASK:> these automatically copy, so copy=True has no effect <END_TASK> <USER_TASK:> Description: def _astype(self, dtype, **kwargs): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """
dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if getattr(values, 'tz', None) is None: values = DatetimeIndex(values).tz_localize('UTC') values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super()._astype(dtype=dtype, **kwargs)
<SYSTEM_TASK:> Coerce values and other to dtype 'i8'. NaN and NaT convert to <END_TASK> <USER_TASK:> Description: def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, base-type other """
values = values.view('i8') if isinstance(other, bool): raise TypeError elif is_null_datetimelike(other): other = tslibs.iNaT elif isinstance(other, (datetime, np.datetime64, date)): other = self._box_func(other) if getattr(other, 'tz') is not None: raise TypeError("cannot coerce a Timestamp with a tz on a " "naive Block") other = other.asm8.view('i8') elif hasattr(other, 'dtype') and is_datetime64_dtype(other): other = other.astype('i8', copy=False).view('i8') else: # coercion issues # let higher levels handle raise TypeError(other) return values, other
<SYSTEM_TASK:> Returns an ndarray of values. <END_TASK> <USER_TASK:> Description: def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """
values = self.values if is_object_dtype(dtype): values = values._box_values(values._data) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values
<SYSTEM_TASK:> localize and return i8 for the values <END_TASK> <USER_TASK:> Description: def _try_coerce_args(self, values, other): """ localize and return i8 for the values Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, base-type other """
# asi8 is a view, needs copy values = _block_shape(values.view("i8"), ndim=self.ndim) if isinstance(other, ABCSeries): other = self._holder(other) if isinstance(other, bool): raise TypeError elif is_datetime64_dtype(other): # add the tz back other = self._holder(other, dtype=self.dtype) elif is_null_datetimelike(other): other = tslibs.iNaT elif isinstance(other, self._holder): if other.tz != self.values.tz: raise ValueError("incompatible or non tz-aware value") other = _block_shape(other.asi8, ndim=self.ndim) elif isinstance(other, (np.datetime64, datetime, date)): other = tslibs.Timestamp(other) tz = getattr(other, 'tz', None) # test we can have an equal time zone if tz is None or str(tz) != str(self.values.tz): raise ValueError("incompatible or non tz-aware value") other = other.value else: raise TypeError(other) return values, other
<SYSTEM_TASK:> 1st discrete difference <END_TASK> <USER_TASK:> Description: def diff(self, n, axis=0): """1st discrete difference Parameters ---------- n : int, number of periods to diff axis : int, axis to diff upon. default 0 Return ------ A list with a new TimeDeltaBlock. Note ---- The arguments here are mimicking shift so they are called correctly by apply. """
if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype('timedelta64[ns]') return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)]
<SYSTEM_TASK:> Coerce values and other to int64, with null values converted to <END_TASK> <USER_TASK:> Description: def _try_coerce_args(self, values, other): """ Coerce values and other to int64, with null values converted to iNaT. values is always ndarray-like, other may not be Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, base-type other """
values = values.view('i8') if isinstance(other, bool): raise TypeError elif is_null_datetimelike(other): other = tslibs.iNaT elif isinstance(other, (timedelta, np.timedelta64)): other = Timedelta(other).value elif hasattr(other, 'dtype') and is_timedelta64_dtype(other): other = other.astype('i8', copy=False).view('i8') else: # coercion issues # let higher levels handle raise TypeError(other) return values, other
<SYSTEM_TASK:> Replace elements by the given value. <END_TASK> <USER_TASK:> Description: def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """
inplace = validate_bool_kwarg(inplace, 'inplace') # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(by_item=True, numeric=False) return block
<SYSTEM_TASK:> converts a style_dict to an xlsxwriter format dict <END_TASK> <USER_TASK:> Description: def convert(cls, style_dict, num_format_str=None): """ converts a style_dict to an xlsxwriter format dict Parameters ---------- style_dict : style dictionary to convert num_format_str : optional number format string """
# Create a XlsxWriter format object. props = {} if num_format_str is not None: props['num_format'] = num_format_str if style_dict is None: return props if 'borders' in style_dict: style_dict = style_dict.copy() style_dict['border'] = style_dict.pop('borders') for style_group_key, style_group in style_dict.items(): for src, dst in cls.STYLE_MAPPING.get(style_group_key, []): # src is a sequence of keys into a nested dict # dst is a flat key if dst in props: continue v = style_group for k in src: try: v = v[k] except (KeyError, TypeError): break else: props[dst] = v if isinstance(props.get('pattern'), str): # TODO: support other fill patterns props['pattern'] = 0 if props['pattern'] == 'none' else 1 for k in ['border', 'top', 'right', 'bottom', 'left']: if isinstance(props.get(k), str): try: props[k] = ['none', 'thin', 'medium', 'dashed', 'dotted', 'thick', 'double', 'hair', 'mediumDashed', 'dashDot', 'mediumDashDot', 'dashDotDot', 'mediumDashDotDot', 'slantDashDot'].index(props[k]) except ValueError: props[k] = 2 if isinstance(props.get('font_script'), str): props['font_script'] = ['baseline', 'superscript', 'subscript'].index(props['font_script']) if isinstance(props.get('underline'), str): props['underline'] = {'none': 0, 'single': 1, 'double': 2, 'singleAccounting': 33, 'doubleAccounting': 34}[props['underline']] return props
<SYSTEM_TASK:> Unstack an ExtensionArray-backed Series. <END_TASK> <USER_TASK:> Description: def _unstack_extension_series(series, level, fill_value): """ Unstack an ExtensionArray-backed Series. The ExtensionDtype is preserved. Parameters ---------- series : Series A Series with an ExtensionArray for values level : Any The level name or number. fill_value : Any The user-level (not physical storage) fill value to use for missing values introduced by the reshape. Passed to ``series.values.take``. Returns ------- DataFrame Each column of the DataFrame will have the same dtype as the input Series. """
# Implementation note: the basic idea is to # 1. Do a regular unstack on a dummy array of integers # 2. Followup with a columnwise take. # We use the dummy take to discover newly-created missing values # introduced by the reshape. from pandas.core.reshape.concat import concat dummy_arr = np.arange(len(series)) # fill_value=-1, since we will do a series.values.take later result = _Unstacker(dummy_arr, series.index, level=level, fill_value=-1).get_result() out = [] values = extract_array(series, extract_numpy=False) for col, indices in result.iteritems(): out.append(Series(values.take(indices.values, allow_fill=True, fill_value=fill_value), name=col, index=result.index)) return concat(out, axis='columns', copy=False, keys=result.columns)
<SYSTEM_TASK:> Convert DataFrame to Series with multi-level Index. Columns become the <END_TASK> <USER_TASK:> Description: def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """
def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = _factorize_from_iterable(index) return categories, codes N, K = frame.shape # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_codes = [lab.repeat(K) for lab in frame.index.codes] clev, clab = factorize(frame.columns) new_levels.append(clev) new_codes.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) codes = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex(levels=levels, codes=codes, names=[frame.index.name, frame.columns.name], verify_integrity=False) if frame._is_homogeneous_type: # For homogeneous EAs, frame.values will coerce to object. So # we concatenate instead. dtypes = list(frame.dtypes.values) dtype = dtypes[0] if is_extension_array_dtype(dtype): arr = dtype.construct_array_type() new_values = arr._concat_same_type([ col._values for _, col in frame.iteritems() ]) new_values = _reorder_for_extension_array_stack(new_values, N, K) else: # homogeneous, non-EA new_values = frame.values.ravel() else: # non-homogeneous new_values = frame.values.ravel() if dropna: mask = notna(new_values) new_values = new_values[mask] new_index = new_index[mask] return frame._constructor_sliced(new_values, index=new_index)
<SYSTEM_TASK:> Construct 1-0 dummy variables corresponding to designated axis <END_TASK> <USER_TASK:> Description: def make_axis_dummies(frame, axis='minor', transform=None): """ Construct 1-0 dummy variables corresponding to designated axis labels Parameters ---------- frame : DataFrame axis : {'major', 'minor'}, default 'minor' transform : function, default None Function to apply to axis labels first. For example, to get "day of week" dummies in a time series regression you might call:: make_axis_dummies(panel, axis='major', transform=lambda d: d.weekday()) Returns ------- dummies : DataFrame Column names taken from chosen axis """
numbers = {'major': 0, 'minor': 1} num = numbers.get(axis, axis) items = frame.index.levels[num] codes = frame.index.codes[num] if transform is not None: mapped_items = items.map(transform) codes, items = _factorize_from_iterable(mapped_items.take(codes)) values = np.eye(len(items), dtype=float) values = values.take(codes, axis=0) return DataFrame(values, columns=items, index=frame.index)
<SYSTEM_TASK:> Re-orders the values when stacking multiple extension-arrays. <END_TASK> <USER_TASK:> Description: def _reorder_for_extension_array_stack(arr, n_rows, n_columns): """ Re-orders the values when stacking multiple extension-arrays. The indirect stacking method used for EAs requires a followup take to get the order correct. Parameters ---------- arr : ExtensionArray n_rows, n_columns : int The number of rows and columns in the original DataFrame. Returns ------- taken : ExtensionArray The original `arr` with elements re-ordered appropriately Examples -------- >>> arr = np.array(['a', 'b', 'c', 'd', 'e', 'f']) >>> _reorder_for_extension_array_stack(arr, 2, 3) array(['a', 'c', 'e', 'b', 'd', 'f'], dtype='<U1') >>> _reorder_for_extension_array_stack(arr, 3, 2) array(['a', 'd', 'b', 'e', 'c', 'f'], dtype='<U1') """
# final take to get the order correct. # idx is an indexer like # [c0r0, c1r0, c2r0, ..., # c0r1, c1r1, c2r1, ...] idx = np.arange(n_rows * n_columns).reshape(n_columns, n_rows).T.ravel() return arr.take(idx)
<SYSTEM_TASK:> Parse a vector of float values representing IBM 8 byte floats into <END_TASK> <USER_TASK:> Description: def _parse_float_vec(vec): """ Parse a vector of float values representing IBM 8 byte floats into native 8 byte floats. """
dtype = np.dtype('>u4,>u4') vec1 = vec.view(dtype=dtype) xport1 = vec1['f0'] xport2 = vec1['f1'] # Start by setting first half of ieee number to first half of IBM # number sans exponent ieee1 = xport1 & 0x00ffffff # The fraction bit to the left of the binary point in the ieee # format was set and the number was shifted 0, 1, 2, or 3 # places. This will tell us how to adjust the ibm exponent to be a # power of 2 ieee exponent and how to shift the fraction bits to # restore the correct magnitude. shift = np.zeros(len(vec), dtype=np.uint8) shift[np.where(xport1 & 0x00200000)] = 1 shift[np.where(xport1 & 0x00400000)] = 2 shift[np.where(xport1 & 0x00800000)] = 3 # shift the ieee number down the correct number of places then # set the second half of the ieee number to be the second half # of the ibm number shifted appropriately, ored with the bits # from the first half that would have been shifted in if we # could shift a double. All we are worried about are the low # order 3 bits of the first half since we're only shifting by # 1, 2, or 3. ieee1 >>= shift ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift))) # clear the 1 bit to the left of the binary point ieee1 &= 0xffefffff # set the exponent of the ieee number to be the actual exponent # plus the shift count + 1023. Or this into the first half of the # ieee number. The ibm exponent is excess 64 but is adjusted by 65 # since during conversion to ibm format the exponent is # incremented by 1 and the fraction bits left 4 positions to the # right of the radix point. (had to add >> 24 because C treats & # 0x7f as 0x7f000000 and Python doesn't) ieee1 |= ((((((xport1 >> 24) & 0x7f) - 65) << 2) + shift + 1023) << 20) | (xport1 & 0x80000000) ieee = np.empty((len(ieee1),), dtype='>u4,>u4') ieee['f0'] = ieee1 ieee['f1'] = ieee2 ieee = ieee.view(dtype='>f8') ieee = ieee.astype('f8') return ieee
<SYSTEM_TASK:> Get number of records in file. <END_TASK> <USER_TASK:> Description: def _record_count(self): """ Get number of records in file. This is maybe suboptimal because we have to seek to the end of the file. Side effect: returns file position to record_start. """
self.filepath_or_buffer.seek(0, 2) total_records_length = (self.filepath_or_buffer.tell() - self.record_start) if total_records_length % 80 != 0: warnings.warn("xport file may be corrupted") if self.record_length > 80: self.filepath_or_buffer.seek(self.record_start) return total_records_length // self.record_length self.filepath_or_buffer.seek(-80, 2) last_card = self.filepath_or_buffer.read(80) last_card = np.frombuffer(last_card, dtype=np.uint64) # 8 byte blank ix = np.flatnonzero(last_card == 2314885530818453536) if len(ix) == 0: tail_pad = 0 else: tail_pad = 8 * len(ix) self.filepath_or_buffer.seek(self.record_start) return (total_records_length - tail_pad) // self.record_length
<SYSTEM_TASK:> Reads lines from Xport file and returns as dataframe <END_TASK> <USER_TASK:> Description: def get_chunk(self, size=None): """ Reads lines from Xport file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """
if size is None: size = self._chunksize return self.read(nrows=size)
<SYSTEM_TASK:> raise a helpful message about our construction <END_TASK> <USER_TASK:> Description: def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """
passed = tuple(map(int, [tot_items] + list(block_shape))) # Correcting the user facing error message during dataframe construction if len(passed) <= 2: passed = passed[::-1] implied = tuple(len(ax) for ax in axes) # Correcting the user facing error message during dataframe construction if len(implied) <= 2: implied = implied[::-1] if passed == implied and e is not None: raise e if block_shape[0] == 0: raise ValueError("Empty data passed with indices specified.") raise ValueError("Shape of passed values is {0}, indices imply {1}".format( passed, implied))
<SYSTEM_TASK:> return a single array of a block that has a single dtype; if dtype is <END_TASK> <USER_TASK:> Description: def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """
values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block]
<SYSTEM_TASK:> return an array of blocks that potentially have different dtypes <END_TASK> <USER_TASK:> Description: def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """
# group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays(list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks
<SYSTEM_TASK:> Merge blocks having same dtype, exclude non-consolidating blocks <END_TASK> <USER_TASK:> Description: def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """
# sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) new_blocks = _extend_blocks(merged_blocks, new_blocks) return new_blocks
<SYSTEM_TASK:> Compare two array_like inputs of the same shape or two scalar values <END_TASK> <USER_TASK:> Description: def _compare_or_regex_search(a, b, regex=False): """ Compare two array_like inputs of the same shape or two scalar values Calls operator.eq or re.search, depending on regex argument. If regex is True, perform an element-wise regex matching. Parameters ---------- a : array_like or scalar b : array_like or scalar regex : bool, default False Returns ------- mask : array_like of bool """
if not regex: op = lambda x: operator.eq(x, b) else: op = np.vectorize(lambda x: bool(re.search(b, x)) if isinstance(x, str) else False) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) # numpy deprecation warning to have i8 vs integer comparisons if is_datetimelike_v_numeric(a, b): result = False # numpy deprecation warning if comparing numeric vs string-like elif is_numeric_v_string_like(a, b): result = False else: result = op(a) if is_scalar(result) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype={dtype})'.format(dtype=a.dtype) if is_b_array: type_names[1] = 'ndarray(dtype={dtype})'.format(dtype=b.dtype) raise TypeError( "Cannot compare types {a!r} and {b!r}".format(a=type_names[0], b=type_names[1])) return result
<SYSTEM_TASK:> If two indices overlap, add suffixes to overlapping entries. <END_TASK> <USER_TASK:> Description: def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """
to_rename = left.intersection(right) if len(to_rename) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: ' '{rename}'.format(rename=to_rename)) def renamer(x, suffix): """Rename the left and right indices. If there is overlap, and suffix is not None, add suffix, otherwise, leave it as-is. Parameters ---------- x : original column name suffix : str or None Returns ------- x : renamed column name """ if x in to_rename and suffix is not None: return '{x}{suffix}'.format(x=x, suffix=suffix) return x lrenamer = partial(renamer, suffix=lsuffix) rrenamer = partial(renamer, suffix=rsuffix) return (_transform_index(left, lrenamer), _transform_index(right, rrenamer))
<SYSTEM_TASK:> Apply function to all values found in index. <END_TASK> <USER_TASK:> Description: def _transform_index(index, func, level=None): """ Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified. """
if isinstance(index, MultiIndex): if level is not None: items = [tuple(func(y) if i == level else y for i, y in enumerate(x)) for x in index] else: items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name, tupleize_cols=False)
<SYSTEM_TASK:> Concatenate block managers into one. <END_TASK> <USER_TASK:> Description: def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """
concat_plans = [get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers] concat_plan = combine_concat_plans(concat_plans, concat_axis) blocks = [] for placement, join_units in concat_plan: if len(join_units) == 1 and not join_units[0].indexers: b = join_units[0].block values = b.values if copy: values = values.copy() elif not copy: values = values.view() b = b.make_block_same_class(values, placement=placement) elif is_uniform_join_units(join_units): b = join_units[0].block.concat_same_type( [ju.block for ju in join_units], placement=placement) else: b = make_block( concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement) blocks.append(b) return BlockManager(blocks, axes)
<SYSTEM_TASK:> return an empty BlockManager with the items axis of len 0 <END_TASK> <USER_TASK:> Description: def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """
if axes is None: axes = [ensure_index([])] + [ensure_index(a) for a in self.axes[1:]] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes)
<SYSTEM_TASK:> Rename one of axes. <END_TASK> <USER_TASK:> Description: def rename_axis(self, mapper, axis, copy=True, level=None): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True level : int, default None """
obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) return obj
<SYSTEM_TASK:> return a dict of the counts of the function in BlockManager <END_TASK> <USER_TASK:> Description: def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """
self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts
<SYSTEM_TASK:> iterate over the blocks, collect and create a new block manager <END_TASK> <USER_TASK:> Description: def apply(self, f, axes=None, filter=None, do_integrity_check=False, consolidate=True, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check consolidate: boolean, default True. Join together blocks having same dtype Returns ------- Block Manager (new object) """
result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if consolidate: self._consolidate_inplace() if f == 'where': align_copy = True if kwargs.get('align', True): align_keys = ['other', 'cond'] else: align_keys = ['cond'] elif f == 'putmask': align_copy = False if kwargs.get('align', True): align_keys = ['new', 'mask'] else: align_keys = ['mask'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ['value'] else: align_keys = [] # TODO(EA): may interfere with ExtensionBlock.setitem for blocks # with a .values attribute. aligned_args = {k: kwargs[k] for k in align_keys if hasattr(kwargs[k], 'values') and not isinstance(kwargs[k], ABCExtensionArray)} for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = getattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindex(b_items, axis=axis, copy=align_copy) applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm
<SYSTEM_TASK:> Iterate over blocks applying quantile reduction. <END_TASK> <USER_TASK:> Description: def quantile(self, axis=0, consolidate=True, transposed=False, interpolation='linear', qs=None, numeric_only=None): """ Iterate over blocks applying quantile reduction. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- axis: reduction axis, default 0 consolidate: boolean, default True. Join together blocks having same dtype transposed: boolean, default False we are holding transposed data interpolation : type of interpolation, default 'linear' qs : a scalar or list of the quantiles to be computed numeric_only : ignored Returns ------- Block Manager (new object) """
# Series dispatches to DataFrame for quantile, which allows us to # simplify some of the code here and in the blocks assert self.ndim >= 2 if consolidate: self._consolidate_inplace() def get_axe(block, qs, axes): from pandas import Float64Index if is_list_like(qs): ax = Float64Index(qs) elif block.ndim == 1: ax = Float64Index([qs]) else: ax = axes[0] return ax axes, blocks = [], [] for b in self.blocks: block = b.quantile(axis=axis, qs=qs, interpolation=interpolation) axe = get_axe(b, qs, axes=self.axes) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = {b.ndim for b in blocks} assert 0 not in ndim, ndim if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate( [ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [b.make_block(b.values.T, placement=np.arange(b.shape[1]) ) for b in blocks] return self.__class__(blocks, new_axes) # single block, i.e. ndim == {1} values = _concat._concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( [make_block(values, ndim=1, placement=np.arange(len(values)))], axes[0])
<SYSTEM_TASK:> do a list replace <END_TASK> <USER_TASK:> Description: def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """
inplace = validate_bool_kwarg(inplace, 'inplace') # figure out our mask a-priori to avoid repeated replacements values = self.as_array() def comp(s, regex=False): """ Generate a bool array by perform an equality check, or perform an element-wise regular expression matching """ if isna(s): return isna(values) if hasattr(s, 'asm8'): return _compare_or_regex_search(maybe_convert_objects(values), getattr(s, 'asm8'), regex) return _compare_or_regex_search(values, s, regex) masks = [comp(s, regex) for i, s in enumerate(src_list)] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: m = masks[i][b.mgr_locs.indexer] convert = i == src_len result = b._replace_coerce(mask=m, to_replace=s, value=d, inplace=inplace, convert=convert, regex=regex) if m.any(): new_rb = _extend_blocks(result, new_rb) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm
<SYSTEM_TASK:> return a new manager with the blocks <END_TASK> <USER_TASK:> Description: def combine(self, blocks, copy=True): """ return a new manager with the blocks """
if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return self.__class__(new_blocks, axes, do_integrity_check=False)
<SYSTEM_TASK:> Make deep or shallow copy of BlockManager <END_TASK> <USER_TASK:> Description: def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """
# this preserves the notion of view copying of axes if deep: if deep == 'all': copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply('copy', axes=new_axes, deep=deep, do_integrity_check=False)
<SYSTEM_TASK:> Convert the blockmanager data into an numpy array. <END_TASK> <USER_TASK:> Description: def as_array(self, transpose=False, items=None): """Convert the blockmanager data into an numpy array. Parameters ---------- transpose : boolean, default False If True, transpose the return array items : list of strings or None Names of block items that will be included in the returned array. ``None`` means that all block items will be used Returns ------- arr : ndarray """
if len(self.blocks) == 0: arr = np.empty(self.shape, dtype=float) return arr.transpose() if transpose else arr if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block and mgr.blocks[0].is_datetimetz: # TODO(Block.get_values): Make DatetimeTZBlock.get_values # always be object dtype. Some callers seem to want the # DatetimeArray (previously DTI) arr = mgr.blocks[0].get_values(dtype=object) elif self._is_single_block or not self.is_mixed_type: arr = np.asarray(mgr.blocks[0].get_values()) else: arr = mgr._interleave() return arr.transpose() if transpose else arr
<SYSTEM_TASK:> Return ndarray from blocks with specified item order <END_TASK> <USER_TASK:> Description: def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """
from pandas.core.dtypes.common import is_sparse dtype = _interleaved_dtype(self.blocks) # TODO: https://github.com/pandas-dev/pandas/issues/22791 # Give EAs some input on what happens here. Sparse needs this. if is_sparse(dtype): dtype = dtype.subtype elif is_extension_array_dtype(dtype): dtype = 'object' result = np.empty(self.shape, dtype=dtype) itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError('Some items were not contained in blocks') return result
<SYSTEM_TASK:> get a cross sectional for a given location in the <END_TASK> <USER_TASK:> Description: def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """
if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) if is_extension_array_dtype(dtype): # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.iget((i, loc))) if is_extension_array_dtype(dtype): result = dtype.construct_array_type()._from_sequence( result, dtype=dtype ) return result
<SYSTEM_TASK:> Join together blocks having same dtype <END_TASK> <USER_TASK:> Description: def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """
if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm
<SYSTEM_TASK:> Return the data as a SingleBlockManager if fastpath=True and possible <END_TASK> <USER_TASK:> Description: def iget(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """
block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) if not fastpath or not block._box_to_block_values or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( [block.make_block_same_class(values, placement=slice(0, len(values)), ndim=1)], self.axes[1])
<SYSTEM_TASK:> Insert item at selected position. <END_TASK> <USER_TASK:> Description: def insert(self, loc, item, value, allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """
if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert {}, already exists'.format(item)) if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster, let's use it if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace()
<SYSTEM_TASK:> Conform block manager to new index. <END_TASK> <USER_TASK:> Description: def reindex_axis(self, new_index, axis, method=None, limit=None, fill_value=None, copy=True): """ Conform block manager to new index. """
new_index = ensure_index(new_index) new_index, indexer = self.axes[axis].reindex(new_index, method=method, limit=limit) return self.reindex_indexer(new_index, indexer, axis=axis, fill_value=fill_value, copy=copy)
<SYSTEM_TASK:> Take items along any axis. <END_TASK> <USER_TASK:> Description: def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """
self._consolidate_inplace() indexer = (np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if isinstance(indexer, slice) else np.asanyarray(indexer, dtype='int64')) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception('Indices must be nonzero and less than ' 'the axis length') new_labels = self.axes[axis].take(indexer) return self.reindex_indexer(new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True)
<SYSTEM_TASK:> Return a blockmanager with all blocks unstacked. <END_TASK> <USER_TASK:> Description: def unstack(self, unstacker_func, fill_value): """Return a blockmanager with all blocks unstacked. Parameters ---------- unstacker_func : callable A (partially-applied) ``pd.core.reshape._Unstacker`` class. fill_value : Any fill_value for newly introduced missing values. Returns ------- unstacked : BlockManager """
n_rows = self.shape[-1] dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items) new_columns = dummy.get_new_columns() new_index = dummy.get_new_index() new_blocks = [] columns_mask = [] for blk in self.blocks: blocks, mask = blk._unstack( partial(unstacker_func, value_columns=self.items[blk.mgr_locs.indexer]), new_columns, n_rows, fill_value ) new_blocks.extend(blocks) columns_mask.extend(mask) new_columns = new_columns[columns_mask] bm = BlockManager(new_blocks, [new_columns, new_index]) return bm
<SYSTEM_TASK:> Delete single item from SingleBlockManager. <END_TASK> <USER_TASK:> Description: def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """
loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc)
<SYSTEM_TASK:> Concatenate a list of SingleBlockManagers into a single <END_TASK> <USER_TASK:> Description: def concat(self, to_concat, new_axis): """ Concatenate a list of SingleBlockManagers into a single SingleBlockManager. Used for pd.concat of Series objects with axis=0. Parameters ---------- to_concat : list of SingleBlockManagers new_axis : Index of the result Returns ------- SingleBlockManager """
non_empties = [x for x in to_concat if len(x) > 0] # check if all series are of the same block type: if len(non_empties) > 0: blocks = [obj.blocks[0] for obj in non_empties] if len({b.dtype for b in blocks}) == 1: new_block = blocks[0].concat_same_type(blocks) else: values = [x.values for x in blocks] values = _concat._concat_compat(values) new_block = make_block( values, placement=slice(0, len(values), 1)) else: values = [x._block.values for x in to_concat] values = _concat._concat_compat(values) new_block = make_block( values, placement=slice(0, len(values), 1)) mgr = SingleBlockManager(new_block, new_axis) return mgr
<SYSTEM_TASK:> Construct SparseSeries from array. <END_TASK> <USER_TASK:> Description: def from_array(cls, arr, index=None, name=None, copy=False, fill_value=None, fastpath=False): """Construct SparseSeries from array. .. deprecated:: 0.23.0 Use the pd.SparseSeries(..) constructor instead. """
warnings.warn("'from_array' is deprecated and will be removed in a " "future version. Please use the pd.SparseSeries(..) " "constructor instead.", FutureWarning, stacklevel=2) return cls(arr, index=index, name=name, copy=copy, fill_value=fill_value, fastpath=fastpath)
<SYSTEM_TASK:> return my self as a sparse array, do not copy by default <END_TASK> <USER_TASK:> Description: def as_sparse_array(self, kind=None, fill_value=None, copy=False): """ return my self as a sparse array, do not copy by default """
if fill_value is None: fill_value = self.fill_value if kind is None: kind = self.kind return SparseArray(self.values, sparse_index=self.sp_index, fill_value=fill_value, kind=kind, copy=copy)
<SYSTEM_TASK:> perform a reduction operation <END_TASK> <USER_TASK:> Description: def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform a reduction operation """
return op(self.get_values(), skipna=skipna, **kwds)
<SYSTEM_TASK:> Return the i-th value or values in the SparseSeries by location <END_TASK> <USER_TASK:> Description: def _ixs(self, i, axis=0): """ Return the i-th value or values in the SparseSeries by location Parameters ---------- i : int, slice, or sequence of integers Returns ------- value : scalar (int) or Series (slice, sequence) """
label = self.index[i] if isinstance(label, Index): return self.take(i, axis=axis) else: return self._get_val_at(i)
<SYSTEM_TASK:> Return an object with absolute value taken. Only applicable to objects <END_TASK> <USER_TASK:> Description: def abs(self): """ Return an object with absolute value taken. Only applicable to objects that are all numeric Returns ------- abs: same type as caller """
return self._constructor(np.abs(self.values), index=self.index).__finalize__(self)
<SYSTEM_TASK:> Returns value occupying requested label, default to specified <END_TASK> <USER_TASK:> Description: def get(self, label, default=None): """ Returns value occupying requested label, default to specified missing value if not present. Analogous to dict.get Parameters ---------- label : object Label value looking for default : object, optional Value to return if label not in index Returns ------- y : scalar """
if label in self.index: loc = self.index.get_loc(label) return self._get_val_at(loc) else: return default
<SYSTEM_TASK:> Retrieve single value at passed index label <END_TASK> <USER_TASK:> Description: def get_value(self, label, takeable=False): """ Retrieve single value at passed index label .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : label takeable : interpret the index as indexers, default False Returns ------- value : scalar value """
warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(label, takeable=takeable)
<SYSTEM_TASK:> Quickly set single value at passed label. If label is not contained, a <END_TASK> <USER_TASK:> Description: def set_value(self, label, value, takeable=False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Notes ----- This method *always* returns a new object. It is not particularly efficient but is provided for API compatibility with Series Returns ------- series : SparseSeries """
warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(label, value, takeable=takeable)
<SYSTEM_TASK:> Make a copy of the SparseSeries. Only the actual sparse values need to <END_TASK> <USER_TASK:> Description: def copy(self, deep=True): """ Make a copy of the SparseSeries. Only the actual sparse values need to be copied """
# TODO: https://github.com/pandas-dev/pandas/issues/22314 # We skip the block manager till that is resolved. new_data = self.values.copy(deep=deep) return self._constructor(new_data, sparse_index=self.sp_index, fill_value=self.fill_value, index=self.index.copy(), name=self.name).__finalize__(self)
<SYSTEM_TASK:> Analogous to Series.dropna. If fill_value=NaN, returns a dense Series <END_TASK> <USER_TASK:> Description: def dropna(self, axis=0, inplace=False, **kwargs): """ Analogous to Series.dropna. If fill_value=NaN, returns a dense Series """
# TODO: make more efficient # Validate axis self._get_axis_number(axis or 0) dense_valid = self.to_dense().dropna() if inplace: raise NotImplementedError("Cannot perform inplace dropna" " operations on a SparseSeries") if isna(self.fill_value): return dense_valid else: dense_valid = dense_valid[dense_valid != self.fill_value] return dense_valid.to_sparse(fill_value=self.fill_value)
<SYSTEM_TASK:> Combine Series values, choosing the calling Series's values <END_TASK> <USER_TASK:> Description: def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Result index will be the union of the two indexes Parameters ---------- other : Series Returns ------- y : Series """
if isinstance(other, SparseSeries): other = other.to_dense() dense_combined = self.to_dense().combine_first(other) return dense_combined.to_sparse(fill_value=self.fill_value)
<SYSTEM_TASK:> Create a cache of unique dates from an array of dates <END_TASK> <USER_TASK:> Description: def _maybe_cache(arg, format, cache, convert_listlike): """ Create a cache of unique dates from an array of dates Parameters ---------- arg : integer, float, string, datetime, list, tuple, 1-d array, Series format : string Strftime format to parse time cache : boolean True attempts to create a cache of converted values convert_listlike : function Conversion function to apply on dates Returns ------- cache_array : Series Cache of converted, unique dates. Can be empty """
from pandas import Series cache_array = Series() if cache: # Perform a quicker unique check from pandas import Index unique_dates = Index(arg).unique() if len(unique_dates) < len(arg): cache_dates = convert_listlike(unique_dates.to_numpy(), True, format) cache_array = Series(cache_dates, index=unique_dates) return cache_array
<SYSTEM_TASK:> Convert array of dates with a cache and box the result <END_TASK> <USER_TASK:> Description: def _convert_and_box_cache(arg, cache_array, box, errors, name=None): """ Convert array of dates with a cache and box the result Parameters ---------- arg : integer, float, string, datetime, list, tuple, 1-d array, Series cache_array : Series Cache of converted, unique dates box : boolean True boxes result as an Index-like, False returns an ndarray errors : string 'ignore' plus box=True will convert result to Index name : string, default None Name for a DatetimeIndex Returns ------- result : datetime of converted dates Returns: - Index-like if box=True - ndarray if box=False """
from pandas import Series, DatetimeIndex, Index result = Series(arg).map(cache_array) if box: if errors == 'ignore': return Index(result, name=name) else: return DatetimeIndex(result, name=name) return result.values
<SYSTEM_TASK:> Return results from array_strptime if a %z or %Z directive was passed. <END_TASK> <USER_TASK:> Description: def _return_parsed_timezone_results(result, timezones, box, tz, name): """ Return results from array_strptime if a %z or %Z directive was passed. Parameters ---------- result : ndarray int64 date representations of the dates timezones : ndarray pytz timezone objects box : boolean True boxes result as an Index-like, False returns an ndarray tz : object None or pytz timezone object name : string, default None Name for a DatetimeIndex Returns ------- tz_result : ndarray of parsed dates with timezone Returns: - Index-like if box=True - ndarray of Timestamps if box=False """
if tz is not None: raise ValueError("Cannot pass a tz argument when " "parsing strings with timezone " "information.") tz_results = np.array([Timestamp(res).tz_localize(zone) for res, zone in zip(result, timezones)]) if box: from pandas import Index return Index(tz_results, name=name) return tz_results
<SYSTEM_TASK:> Helper function for to_datetime. <END_TASK> <USER_TASK:> Description: def _adjust_to_origin(arg, origin, unit): """ Helper function for to_datetime. Adjust input argument to the specified origin Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be adjusted origin : 'julian' or Timestamp origin offset for the arg unit : string passed unit from to_datetime, must be 'D' Returns ------- ndarray or scalar of adjusted date(s) """
if origin == 'julian': original = arg j0 = Timestamp(0).to_julian_date() if unit != 'D': raise ValueError("unit must be 'D' for origin='julian'") try: arg = arg - j0 except TypeError: raise ValueError("incompatible 'arg' type for given " "'origin'='julian'") # premptively check this for a nice range j_max = Timestamp.max.to_julian_date() - j0 j_min = Timestamp.min.to_julian_date() - j0 if np.any(arg > j_max) or np.any(arg < j_min): raise tslibs.OutOfBoundsDatetime( "{original} is Out of Bounds for " "origin='julian'".format(original=original)) else: # arg must be numeric if not ((is_scalar(arg) and (is_integer(arg) or is_float(arg))) or is_numeric_dtype(np.asarray(arg))): raise ValueError( "'{arg}' is not compatible with origin='{origin}'; " "it must be numeric with a unit specified ".format( arg=arg, origin=origin)) # we are going to offset back to unix / epoch time try: offset = Timestamp(origin) except tslibs.OutOfBoundsDatetime: raise tslibs.OutOfBoundsDatetime( "origin {origin} is Out of Bounds".format(origin=origin)) except ValueError: raise ValueError("origin {origin} cannot be converted " "to a Timestamp".format(origin=origin)) if offset.tz is not None: raise ValueError( "origin offset {} must be tz-naive".format(offset)) offset -= Timestamp(0) # convert the offset to the unit of the arg # this should be lossless in terms of precision offset = offset // tslibs.Timedelta(1, unit=unit) # scalars & ndarray-like can handle the addition if is_list_like(arg) and not isinstance( arg, (ABCSeries, ABCIndexClass, np.ndarray)): arg = np.asarray(arg) arg = arg + offset return arg
<SYSTEM_TASK:> Convert argument to datetime. <END_TASK> <USER_TASK:> Description: def to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=False): """ Convert argument to datetime. Parameters ---------- arg : integer, float, string, datetime, list, tuple, 1-d array, Series .. versionadded:: 0.18.1 or DataFrame/dict-like errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaT - If 'ignore', then invalid parsing will return the input dayfirst : boolean, default False Specify a date parse order if `arg` is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior). yearfirst : boolean, default False Specify a date parse order if `arg` is str or its list-likes. - If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12. - If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil). Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil behavior). .. versionadded:: 0.16.1 utc : boolean, default None Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well). box : boolean, default True - If True returns a DatetimeIndex or Index-like object - If False returns ndarray of values. .. deprecated:: 0.25.0 Use :meth:`.to_numpy` or :meth:`Timestamp.to_datetime64` instead to get an ndarray of values or numpy.datetime64, respectively. format : string, default None strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse all the way up to nanoseconds. See strftime documentation for more information on choices: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior exact : boolean, True by default - If True, require an exact format match. - If False, allow the format to match anywhere in the target string. unit : string, default 'ns' unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit='ms' and origin='unix' (the default), this would calculate the number of milliseconds to the unix epoch start. infer_datetime_format : boolean, default False If True and no `format` is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. origin : scalar, default is 'unix' Define the reference date. The numeric values would be parsed as number of units (defined by `unit`) since this reference date. - If 'unix' (or POSIX) time; origin is set to 1970-01-01. - If 'julian', unit must be 'D', and origin is set to beginning of Julian Calendar. Julian day number 0 is assigned to the day starting at noon on January 1, 4713 BC. - If Timestamp convertible, origin is set to Timestamp identified by origin. .. versionadded:: 0.20.0 cache : boolean, default False If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. .. versionadded:: 0.23.0 Returns ------- ret : datetime if parsing succeeded. Return type depends on input: - list-like: DatetimeIndex - Series: Series of datetime64 dtype - scalar: Timestamp In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or corresponding array/Series). See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_timedelta : Convert argument to timedelta. Examples -------- Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same >>> df = pd.DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] If a date does not meet the `timestamp limitations <http://pandas.pydata.org/pandas-docs/stable/timeseries.html #timeseries-timestamp-limits>`_, passing errors='ignore' will return the original input instead of raising any exception. Passing errors='coerce' will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-parseable dates) to NaT. >>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore') datetime.datetime(1300, 1, 1, 0, 0) >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format. >>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000) >>> s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object >>> %timeit pd.to_datetime(s,infer_datetime_format=True) 100 loops, best of 3: 10.4 ms per loop >>> %timeit pd.to_datetime(s,infer_datetime_format=False) 1 loop, best of 3: 471 ms per loop Using a unix epoch time >>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') .. warning:: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type. Using a non-unix epoch origin >>> pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01')) 0 1960-01-02 1 1960-01-03 2 1960-01-04 """
if arg is None: return None if origin != 'unix': arg = _adjust_to_origin(arg, origin, unit) tz = 'utc' if utc else None convert_listlike = partial(_convert_listlike_datetimes, tz=tz, unit=unit, dayfirst=dayfirst, yearfirst=yearfirst, errors=errors, exact=exact, infer_datetime_format=infer_datetime_format) if isinstance(arg, Timestamp): result = arg if tz is not None: if arg.tz is not None: result = result.tz_convert(tz) else: result = result.tz_localize(tz) elif isinstance(arg, ABCSeries): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = arg.map(cache_array) else: values = convert_listlike(arg._values, True, format) result = arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)): result = _assemble_from_unit_mappings(arg, errors, box, tz) elif isinstance(arg, ABCIndexClass): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = _convert_and_box_cache(arg, cache_array, box, errors, name=arg.name) else: convert_listlike = partial(convert_listlike, name=arg.name) result = convert_listlike(arg, box, format) elif is_list_like(arg): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = _convert_and_box_cache(arg, cache_array, box, errors) else: result = convert_listlike(arg, box, format) else: result = convert_listlike(np.array([arg]), box, format)[0] return result
<SYSTEM_TASK:> Return a new function that emits a deprecation warning on use. <END_TASK> <USER_TASK:> Description: def deprecate(name, alternative, version, alt_name=None, klass=None, stacklevel=2, msg=None): """ Return a new function that emits a deprecation warning on use. To use this method for a deprecated function, another function `alternative` with the same signature must exist. The deprecated function will emit a deprecation warning, and in the docstring it will contain the deprecation directive with the provided version so it can be detected for future removal. Parameters ---------- name : str Name of function to deprecate. alternative : func Function to use instead. version : str Version of pandas in which the method has been deprecated. alt_name : str, optional Name to use in preference of alternative.__name__. klass : Warning, default FutureWarning stacklevel : int, default 2 msg : str The message to display in the warning. Default is '{name} is deprecated. Use {alt_name} instead.' """
alt_name = alt_name or alternative.__name__ klass = klass or FutureWarning warning_msg = msg or '{} is deprecated, use {} instead'.format(name, alt_name) @wraps(alternative) def wrapper(*args, **kwargs): warnings.warn(warning_msg, klass, stacklevel=stacklevel) return alternative(*args, **kwargs) # adding deprecated directive to the docstring msg = msg or 'Use `{alt_name}` instead.'.format(alt_name=alt_name) doc_error_msg = ('deprecate needs a correctly formatted docstring in ' 'the target function (should have a one liner short ' 'summary, and opening quotes should be in their own ' 'line). Found:\n{}'.format(alternative.__doc__)) # when python is running in optimized mode (i.e. `-OO`), docstrings are # removed, so we check that a docstring with correct formatting is used # but we allow empty docstrings if alternative.__doc__: if alternative.__doc__.count('\n') < 3: raise AssertionError(doc_error_msg) empty1, summary, empty2, doc = alternative.__doc__.split('\n', 3) if empty1 or empty2 and not summary: raise AssertionError(doc_error_msg) wrapper.__doc__ = dedent(""" {summary} .. deprecated:: {depr_version} {depr_msg} {rest_of_docstring}""").format(summary=summary.strip(), depr_version=version, depr_msg=msg, rest_of_docstring=dedent(doc)) return wrapper
<SYSTEM_TASK:> Decorator to deprecate a keyword argument of a function. <END_TASK> <USER_TASK:> Description: def deprecate_kwarg(old_arg_name, new_arg_name, mapping=None, stacklevel=2): """ Decorator to deprecate a keyword argument of a function. Parameters ---------- old_arg_name : str Name of argument in function to deprecate new_arg_name : str or None Name of preferred argument in function. Use None to raise warning that ``old_arg_name`` keyword is deprecated. mapping : dict or callable If mapping is present, use it to translate old arguments to new arguments. A callable must do its own value checking; values not found in a dict will be forwarded unchanged. Examples -------- The following deprecates 'cols', using 'columns' instead >>> @deprecate_kwarg(old_arg_name='cols', new_arg_name='columns') ... def f(columns=''): ... print(columns) ... >>> f(columns='should work ok') should work ok >>> f(cols='should raise warning') FutureWarning: cols is deprecated, use columns instead warnings.warn(msg, FutureWarning) should raise warning >>> f(cols='should error', columns="can\'t pass do both") TypeError: Can only specify 'cols' or 'columns', not both >>> @deprecate_kwarg('old', 'new', {'yes': True, 'no': False}) ... def f(new=False): ... print('yes!' if new else 'no!') ... >>> f(old='yes') FutureWarning: old='yes' is deprecated, use new=True instead warnings.warn(msg, FutureWarning) yes! To raise a warning that a keyword will be removed entirely in the future >>> @deprecate_kwarg(old_arg_name='cols', new_arg_name=None) ... def f(cols='', another_param=''): ... print(cols) ... >>> f(cols='should raise warning') FutureWarning: the 'cols' keyword is deprecated and will be removed in a future version please takes steps to stop use of 'cols' should raise warning >>> f(another_param='should not raise warning') should not raise warning >>> f(cols='should raise warning', another_param='') FutureWarning: the 'cols' keyword is deprecated and will be removed in a future version please takes steps to stop use of 'cols' should raise warning """
if mapping is not None and not hasattr(mapping, 'get') and \ not callable(mapping): raise TypeError("mapping from old to new argument values " "must be dict or callable!") def _deprecate_kwarg(func): @wraps(func) def wrapper(*args, **kwargs): old_arg_value = kwargs.pop(old_arg_name, None) if new_arg_name is None and old_arg_value is not None: msg = ( "the '{old_name}' keyword is deprecated and will be " "removed in a future version. " "Please take steps to stop the use of '{old_name}'" ).format(old_name=old_arg_name) warnings.warn(msg, FutureWarning, stacklevel=stacklevel) kwargs[old_arg_name] = old_arg_value return func(*args, **kwargs) if old_arg_value is not None: if mapping is not None: if hasattr(mapping, 'get'): new_arg_value = mapping.get(old_arg_value, old_arg_value) else: new_arg_value = mapping(old_arg_value) msg = ("the {old_name}={old_val!r} keyword is deprecated, " "use {new_name}={new_val!r} instead" ).format(old_name=old_arg_name, old_val=old_arg_value, new_name=new_arg_name, new_val=new_arg_value) else: new_arg_value = old_arg_value msg = ("the '{old_name}' keyword is deprecated, " "use '{new_name}' instead" ).format(old_name=old_arg_name, new_name=new_arg_name) warnings.warn(msg, FutureWarning, stacklevel=stacklevel) if kwargs.get(new_arg_name, None) is not None: msg = ("Can only specify '{old_name}' or '{new_name}', " "not both").format(old_name=old_arg_name, new_name=new_arg_name) raise TypeError(msg) else: kwargs[new_arg_name] = new_arg_value return func(*args, **kwargs) return wrapper return _deprecate_kwarg
<SYSTEM_TASK:> Returns a tuple containing the paramenter list with defaults <END_TASK> <USER_TASK:> Description: def make_signature(func): """ Returns a tuple containing the paramenter list with defaults and parameter list. Examples -------- >>> def f(a, b, c=2): >>> return a * b * c >>> print(make_signature(f)) (['a', 'b', 'c=2'], ['a', 'b', 'c']) """
spec = inspect.getfullargspec(func) if spec.defaults is None: n_wo_defaults = len(spec.args) defaults = ('',) * n_wo_defaults else: n_wo_defaults = len(spec.args) - len(spec.defaults) defaults = ('',) * n_wo_defaults + tuple(spec.defaults) args = [] for var, default in zip(spec.args, defaults): args.append(var if default == '' else var + '=' + repr(default)) if spec.varargs: args.append('*' + spec.varargs) if spec.varkw: args.append('**' + spec.varkw) return args, spec.args
<SYSTEM_TASK:> Returns the indices that would sort the index and its <END_TASK> <USER_TASK:> Description: def argsort(self, *args, **kwargs): """ Returns the indices that would sort the index and its underlying data. Returns ------- argsorted : numpy array See Also -------- numpy.ndarray.argsort """
nv.validate_argsort(args, kwargs) if self._step > 0: return np.arange(len(self)) else: return np.arange(len(self) - 1, -1, -1)
<SYSTEM_TASK:> Returns the smallest element greater than or equal to the limit <END_TASK> <USER_TASK:> Description: def _min_fitting_element(self, lower_limit): """Returns the smallest element greater than or equal to the limit"""
no_steps = -(-(lower_limit - self._start) // abs(self._step)) return self._start + abs(self._step) * no_steps
<SYSTEM_TASK:> Returns the largest element smaller than or equal to the limit <END_TASK> <USER_TASK:> Description: def _max_fitting_element(self, upper_limit): """Returns the largest element smaller than or equal to the limit"""
no_steps = (upper_limit - self._start) // abs(self._step) return self._start + abs(self._step) * no_steps
<SYSTEM_TASK:> Form the union of two Index objects and sorts if possible <END_TASK> <USER_TASK:> Description: def union(self, other, sort=None): """ Form the union of two Index objects and sorts if possible Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort resulting index. ``sort=None`` returns a mononotically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not. ``sort=False`` always returns an unsorted ``Int64Index`` .. versionadded:: 0.25.0 Returns ------- union : Index """
self._assert_can_do_setop(other) if len(other) == 0 or self.equals(other) or len(self) == 0: return super().union(other, sort=sort) if isinstance(other, RangeIndex) and sort is None: start_s, step_s = self._start, self._step end_s = self._start + self._step * (len(self) - 1) start_o, step_o = other._start, other._step end_o = other._start + other._step * (len(other) - 1) if self._step < 0: start_s, step_s, end_s = end_s, -step_s, start_s if other._step < 0: start_o, step_o, end_o = end_o, -step_o, start_o if len(self) == 1 and len(other) == 1: step_s = step_o = abs(self._start - other._start) elif len(self) == 1: step_s = step_o elif len(other) == 1: step_o = step_s start_r = min(start_s, start_o) end_r = max(end_s, end_o) if step_o == step_s: if ((start_s - start_o) % step_s == 0 and (start_s - end_o) <= step_s and (start_o - end_s) <= step_s): return RangeIndex(start_r, end_r + step_s, step_s) if ((step_s % 2 == 0) and (abs(start_s - start_o) <= step_s / 2) and (abs(end_s - end_o) <= step_s / 2)): return RangeIndex(start_r, end_r + step_s / 2, step_s / 2) elif step_o % step_s == 0: if ((start_o - start_s) % step_s == 0 and (start_o + step_s >= start_s) and (end_o - step_s <= end_s)): return RangeIndex(start_r, end_r + step_s, step_s) elif step_s % step_o == 0: if ((start_s - start_o) % step_o == 0 and (start_s + step_o >= start_o) and (end_s - step_o <= end_o)): return RangeIndex(start_r, end_r + step_o, step_o) return self._int64index.union(other, sort=sort)
<SYSTEM_TASK:> add in numeric methods, specialized to RangeIndex <END_TASK> <USER_TASK:> Description: def _add_numeric_methods_binary(cls): """ add in numeric methods, specialized to RangeIndex """
def _make_evaluate_binop(op, step=False): """ Parameters ---------- op : callable that accepts 2 parms perform the binary op step : callable, optional, default to False op to apply to the step parm if not None if False, use the existing step """ def _evaluate_numeric_binop(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to TimedeltaIndex implementation return NotImplemented elif isinstance(other, (timedelta, np.timedelta64)): # GH#19333 is_integer evaluated True on timedelta64, # so we need to catch these explicitly return op(self._int64index, other) elif is_timedelta64_dtype(other): # Must be an np.ndarray; GH#22390 return op(self._int64index, other) other = self._validate_for_numeric_binop(other, op) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) left, right = self, other try: # apply if we have an override if step: with np.errstate(all='ignore'): rstep = step(left._step, right) # we don't have a representable op # so return a base index if not is_integer(rstep) or not rstep: raise ValueError else: rstep = left._step with np.errstate(all='ignore'): rstart = op(left._start, right) rstop = op(left._stop, right) result = RangeIndex(rstart, rstop, rstep, **attrs) # for compat with numpy / Int64Index # even if we can represent as a RangeIndex, return # as a Float64Index if we have float-like descriptors if not all(is_integer(x) for x in [rstart, rstop, rstep]): result = result.astype('float64') return result except (ValueError, TypeError, ZeroDivisionError): # Defer to Int64Index implementation return op(self._int64index, other) # TODO: Do attrs get handled reliably? name = '__{name}__'.format(name=op.__name__) return compat.set_function_name(_evaluate_numeric_binop, name, cls) cls.__add__ = _make_evaluate_binop(operator.add) cls.__radd__ = _make_evaluate_binop(ops.radd) cls.__sub__ = _make_evaluate_binop(operator.sub) cls.__rsub__ = _make_evaluate_binop(ops.rsub) cls.__mul__ = _make_evaluate_binop(operator.mul, step=operator.mul) cls.__rmul__ = _make_evaluate_binop(ops.rmul, step=ops.rmul) cls.__truediv__ = _make_evaluate_binop(operator.truediv, step=operator.truediv) cls.__rtruediv__ = _make_evaluate_binop(ops.rtruediv, step=ops.rtruediv)
<SYSTEM_TASK:> Glues together two sets of strings using the amount of space requested. <END_TASK> <USER_TASK:> Description: def adjoin(space, *lists, **kwargs): """ Glues together two sets of strings using the amount of space requested. The idea is to prettify. ---------- space : int number of spaces for padding lists : str list of str which being joined strlen : callable function used to calculate the length of each str. Needed for unicode handling. justfunc : callable function used to justify str. Needed for unicode handling. """
strlen = kwargs.pop('strlen', len) justfunc = kwargs.pop('justfunc', justify) out_lines = [] newLists = [] lengths = [max(map(strlen, x)) + space for x in lists[:-1]] # not the last one lengths.append(max(map(len, lists[-1]))) maxLen = max(map(len, lists)) for i, lst in enumerate(lists): nl = justfunc(lst, lengths[i], mode='left') nl.extend([' ' * lengths[i]] * (maxLen - len(lst))) newLists.append(nl) toJoin = zip(*newLists) for lines in toJoin: out_lines.append(_join_unicode(lines)) return _join_unicode(out_lines, sep='\n')
<SYSTEM_TASK:> Load data from Google BigQuery. <END_TASK> <USER_TASK:> Description: def read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, auth_local_webserver=False, dialect=None, location=None, configuration=None, credentials=None, use_bqstorage_api=None, private_key=None, verbose=None): """ Load data from Google BigQuery. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- query : str SQL-Like Query to return data values. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. index_col : str, optional Name of result column to use for index in results DataFrame. col_order : list(str), optional List of BigQuery column names in the desired order for results DataFrame. reauth : boolean, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. auth_local_webserver : boolean, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. dialect : str, default 'legacy' Note: The default value is changing to 'standard' in a future verion. SQL syntax dialect to use. Value can be one of: ``'legacy'`` Use BigQuery's legacy SQL dialect. For more information see `BigQuery Legacy SQL Reference <https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__. ``'standard'`` Use BigQuery's standard SQL, which is compliant with the SQL 2011 standard. For more information see `BigQuery Standard SQL Reference <https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__. .. versionchanged:: 0.24.0 location : str, optional Location where the query job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of any datasets used in the query. *New in version 0.5.0 of pandas-gbq*. configuration : dict, optional Query config parameters for job processing. For example: configuration = {'query': {'useQueryCache': False}} For more information see `BigQuery REST API Reference <https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 use_bqstorage_api : bool, default False Use the `BigQuery Storage API <https://cloud.google.com/bigquery/docs/reference/storage/>`__ to download query results quickly, but at an increased cost. To use this API, first `enable it in the Cloud Console <https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__. You must also have the `bigquery.readsessions.create <https://cloud.google.com/bigquery/docs/access-control#roles>`__ permission on the project you are billing queries to. This feature requires version 0.10.0 or later of the ``pandas-gbq`` package. It also requires the ``google-cloud-bigquery-storage`` and ``fastavro`` packages. .. versionadded:: 0.25.0 private_key : str, deprecated Deprecated in pandas-gbq version 0.8.0. Use the ``credentials`` parameter and :func:`google.oauth2.service_account.Credentials.from_service_account_info` or :func:`google.oauth2.service_account.Credentials.from_service_account_file` instead. Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host). verbose : None, deprecated Deprecated in pandas-gbq version 0.4.0. Use the `logging module to adjust verbosity instead <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__. Returns ------- df: DataFrame DataFrame representing results of query. See Also -------- pandas_gbq.read_gbq : This function in the pandas-gbq library. DataFrame.to_gbq : Write a DataFrame to Google BigQuery. """
pandas_gbq = _try_import() kwargs = {} # START: new kwargs. Don't populate unless explicitly set. if use_bqstorage_api is not None: kwargs["use_bqstorage_api"] = use_bqstorage_api # END: new kwargs # START: deprecated kwargs. Don't populate unless explicitly set. if verbose is not None: kwargs["verbose"] = verbose if private_key is not None: kwargs["private_key"] = private_key # END: deprecated kwargs return pandas_gbq.read_gbq( query, project_id=project_id, index_col=index_col, col_order=col_order, reauth=reauth, auth_local_webserver=auth_local_webserver, dialect=dialect, location=location, configuration=configuration, credentials=credentials, **kwargs)
<SYSTEM_TASK:> Generate a matplotlib plot of Andrews curves, for visualising clusters of <END_TASK> <USER_TASK:> Description: def andrews_curves(frame, class_column, ax=None, samples=200, color=None, colormap=None, **kwds): """ Generate a matplotlib plot of Andrews curves, for visualising clusters of multivariate data. Andrews curves have the functional form: f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) + x_4 sin(2t) + x_5 cos(2t) + ... Where x coefficients correspond to the values of each dimension and t is linearly spaced between -pi and +pi. Each row of frame then corresponds to a single curve. Parameters ---------- frame : DataFrame Data to be plotted, preferably normalized to (0.0, 1.0) class_column : Name of the column containing class names ax : matplotlib axes object, default None samples : Number of points to plot in each curve color : list or tuple, optional Colors to use for the different classes colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. kwds : keywords Options to pass to matplotlib plotting method Returns ------- class:`matplotlip.axis.Axes` """
from math import sqrt, pi import matplotlib.pyplot as plt def function(amplitudes): def f(t): x1 = amplitudes[0] result = x1 / sqrt(2.0) # Take the rest of the coefficients and resize them # appropriately. Take a copy of amplitudes as otherwise numpy # deletes the element from amplitudes itself. coeffs = np.delete(np.copy(amplitudes), 0) coeffs.resize(int((coeffs.size + 1) / 2), 2) # Generate the harmonics and arguments for the sin and cos # functions. harmonics = np.arange(0, coeffs.shape[0]) + 1 trig_args = np.outer(harmonics, t) result += np.sum(coeffs[:, 0, np.newaxis] * np.sin(trig_args) + coeffs[:, 1, np.newaxis] * np.cos(trig_args), axis=0) return result return f n = len(frame) class_col = frame[class_column] classes = frame[class_column].drop_duplicates() df = frame.drop(class_column, axis=1) t = np.linspace(-pi, pi, samples) used_legends = set() color_values = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) colors = dict(zip(classes, color_values)) if ax is None: ax = plt.gca(xlim=(-pi, pi)) for i in range(n): row = df.iloc[i].values f = function(row) y = f(t) kls = class_col.iat[i] label = pprint_thing(kls) if label not in used_legends: used_legends.add(label) ax.plot(t, y, color=colors[kls], label=label, **kwds) else: ax.plot(t, y, color=colors[kls], **kwds) ax.legend(loc='upper right') ax.grid() return ax
<SYSTEM_TASK:> Bootstrap plot on mean, median and mid-range statistics. <END_TASK> <USER_TASK:> Description: def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds): """ Bootstrap plot on mean, median and mid-range statistics. The bootstrap plot is used to estimate the uncertainty of a statistic by relaying on random sampling with replacement [1]_. This function will generate bootstrapping plots for mean, median and mid-range statistics for the given number of samples of the given size. .. [1] "Bootstrapping (statistics)" in \ https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29 Parameters ---------- series : pandas.Series Pandas Series from where to get the samplings for the bootstrapping. fig : matplotlib.figure.Figure, default None If given, it will use the `fig` reference for plotting instead of creating a new one with default parameters. size : int, default 50 Number of data points to consider during each sampling. It must be greater or equal than the length of the `series`. samples : int, default 500 Number of times the bootstrap procedure is performed. **kwds : Options to pass to matplotlib plotting method. Returns ------- matplotlib.figure.Figure Matplotlib figure. See Also -------- DataFrame.plot : Basic plotting for DataFrame objects. Series.plot : Basic plotting for Series objects. Examples -------- .. plot:: :context: close-figs >>> s = pd.Series(np.random.uniform(size=100)) >>> fig = pd.plotting.bootstrap_plot(s) # doctest: +SKIP """
import random import matplotlib.pyplot as plt # random.sample(ndarray, int) fails on python 3.3, sigh data = list(series.values) samplings = [random.sample(data, size) for _ in range(samples)] means = np.array([np.mean(sampling) for sampling in samplings]) medians = np.array([np.median(sampling) for sampling in samplings]) midranges = np.array([(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]) if fig is None: fig = plt.figure() x = lrange(samples) axes = [] ax1 = fig.add_subplot(2, 3, 1) ax1.set_xlabel("Sample") axes.append(ax1) ax1.plot(x, means, **kwds) ax2 = fig.add_subplot(2, 3, 2) ax2.set_xlabel("Sample") axes.append(ax2) ax2.plot(x, medians, **kwds) ax3 = fig.add_subplot(2, 3, 3) ax3.set_xlabel("Sample") axes.append(ax3) ax3.plot(x, midranges, **kwds) ax4 = fig.add_subplot(2, 3, 4) ax4.set_xlabel("Mean") axes.append(ax4) ax4.hist(means, **kwds) ax5 = fig.add_subplot(2, 3, 5) ax5.set_xlabel("Median") axes.append(ax5) ax5.hist(medians, **kwds) ax6 = fig.add_subplot(2, 3, 6) ax6.set_xlabel("Midrange") axes.append(ax6) ax6.hist(midranges, **kwds) for axis in axes: plt.setp(axis.get_xticklabels(), fontsize=8) plt.setp(axis.get_yticklabels(), fontsize=8) return fig
<SYSTEM_TASK:> Autocorrelation plot for time series. <END_TASK> <USER_TASK:> Description: def autocorrelation_plot(series, ax=None, **kwds): """ Autocorrelation plot for time series. Parameters: ----------- series: Time series ax: Matplotlib axis object, optional kwds : keywords Options to pass to matplotlib plotting method Returns: ----------- class:`matplotlib.axis.Axes` """
import matplotlib.pyplot as plt n = len(series) data = np.asarray(series) if ax is None: ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0)) mean = np.mean(data) c0 = np.sum((data - mean) ** 2) / float(n) def r(h): return ((data[:n - h] - mean) * (data[h:] - mean)).sum() / float(n) / c0 x = np.arange(n) + 1 y = lmap(r, x) z95 = 1.959963984540054 z99 = 2.5758293035489004 ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey') ax.axhline(y=z95 / np.sqrt(n), color='grey') ax.axhline(y=0.0, color='black') ax.axhline(y=-z95 / np.sqrt(n), color='grey') ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey') ax.set_xlabel("Lag") ax.set_ylabel("Autocorrelation") ax.plot(x, y, **kwds) if 'label' in kwds: ax.legend() ax.grid() return ax
<SYSTEM_TASK:> Check a sequence of terms for instances of PandasObject. <END_TASK> <USER_TASK:> Description: def _any_pandas_objects(terms): """Check a sequence of terms for instances of PandasObject."""
return any(isinstance(term.value, pd.core.generic.PandasObject) for term in terms)
<SYSTEM_TASK:> Plots a Series on the given Matplotlib axes or the current axes <END_TASK> <USER_TASK:> Description: def tsplot(series, plotf, ax=None, **kwargs): import warnings """ Plots a Series on the given Matplotlib axes or the current axes Parameters ---------- axes : Axes series : Series Notes _____ Supports same kwargs as Axes.plot .. deprecated:: 0.23.0 Use Series.plot() instead """
warnings.warn("'tsplot' is deprecated and will be removed in a " "future version. Please use Series.plot() instead.", FutureWarning, stacklevel=2) # Used inferred freq is possible, need a test case for inferred if ax is None: import matplotlib.pyplot as plt ax = plt.gca() freq, series = _maybe_resample(series, ax, kwargs) # Set ax with freq info _decorate_axes(ax, freq, kwargs) ax._plot_data.append((series, plotf, kwargs)) lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq, series.index) return lines
<SYSTEM_TASK:> Initialize axes for time-series plotting <END_TASK> <USER_TASK:> Description: def _decorate_axes(ax, freq, kwargs): """Initialize axes for time-series plotting"""
if not hasattr(ax, '_plot_data'): ax._plot_data = [] ax.freq = freq xaxis = ax.get_xaxis() xaxis.freq = freq if not hasattr(ax, 'legendlabels'): ax.legendlabels = [kwargs.get('label', None)] else: ax.legendlabels.append(kwargs.get('label', None)) ax.view_interval = None ax.date_axis_info = None
<SYSTEM_TASK:> Whether all the columns in a DataFrame have the same type. <END_TASK> <USER_TASK:> Description: def _is_homogeneous_type(self): """ Whether all the columns in a DataFrame have the same type. Returns ------- bool Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """
if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type
<SYSTEM_TASK:> Iterate over DataFrame rows as namedtuples. <END_TASK> <USER_TASK:> Description: def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Yields ------- collections.namedtuple Yields a namedtuple for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.iteritems : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """
arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor if name is not None and len(self.columns) + index < 256: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays)
<SYSTEM_TASK:> Compute the matrix mutiplication between the DataFrame and other. <END_TASK> <USER_TASK:> Description: def dot(self, other): """ Compute the matrix mutiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 """
if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if (len(common) > len(self.columns) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError('Dot product shape mismatch, ' '{s} vs {r}'.format(s=lvals.shape, r=rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=left.index, columns=other.columns) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError('unsupported type: {oth}'.format(oth=type(other)))
<SYSTEM_TASK:> Construct DataFrame from dict of array-like or dicts. <END_TASK> <USER_TASK:> Description: def from_dict(cls, data, orient='columns', dtype=None, columns=None): """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """
index = None orient = orient.lower() if orient == 'index': if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == 'columns': if columns is not None: raise ValueError("cannot use columns parameter with " "orient='columns'") else: # pragma: no cover raise ValueError('only recognize index or columns for orient') return cls(data, index=index, columns=columns, dtype=dtype)
<SYSTEM_TASK:> Convert the DataFrame to a NumPy array. <END_TASK> <USER_TASK:> Description: def to_numpy(self, dtype=None, copy=False): """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogenous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """
result = np.array(self.values, dtype=dtype, copy=copy) return result
<SYSTEM_TASK:> Convert the DataFrame to a dictionary. <END_TASK> <USER_TASK:> Description: def to_dict(self, orient='dict', into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """
if not self.columns.is_unique: warnings.warn("DataFrame columns are not unique, some " "columns will be omitted.", UserWarning, stacklevel=2) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith('d'): return into_c( (k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith('l'): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith('sp'): return into_c((('index', self.index.tolist()), ('columns', self.columns.tolist()), ('data', [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ]))) elif orient.lower().startswith('s'): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith('r'): columns = self.columns.tolist() rows = (dict(zip(columns, row)) for row in self.itertuples(index=False, name=None)) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows] elif orient.lower().startswith('i'): if not self.index.is_unique: raise ValueError( "DataFrame index must be unique for orient='index'." ) return into_c((t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None)) else: raise ValueError("orient '{o}' not understood".format(o=orient))
<SYSTEM_TASK:> Convert DataFrame to a NumPy record array. <END_TASK> <USER_TASK:> Description: def to_records(self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None): """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. convert_datetime64 : bool, default None .. deprecated:: 0.23.0 Whether to convert the index to datetime.datetime if it is a DatetimeIndex. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = "<S{}".format(df.index.str.len().max()) >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """
if convert_datetime64 is not None: warnings.warn("The 'convert_datetime64' parameter is " "deprecated and will be removed in a future " "version", FutureWarning, stacklevel=2) if index: if is_datetime64_any_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = lmap(np.array, zip(*self.index.values)) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c].get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = 'level_%d' % count count += 1 elif index_names[0] is None: index_names = ['index'] names = lmap(str, index_names) + lmap(str, self.columns) else: arrays = [self[c].get_values() for c in self.columns] names = lmap(str, self.columns) index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = ("Invalid dtype {dtype} specified for " "{element} {name}").format(dtype=dtype_mapping, element=element, name=name) raise ValueError(msg) return np.rec.fromarrays( arrays, dtype={'names': names, 'formats': formats} )
<SYSTEM_TASK:> Construct a DataFrame from a list of tuples. <END_TASK> <USER_TASK:> Description: def from_items(cls, items, columns=None, orient='columns'): """ Construct a DataFrame from a list of tuples. .. deprecated:: 0.23.0 `from_items` is deprecated and will be removed in a future version. Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>` instead. :meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>` may be used to preserve the key order. Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- DataFrame """
warnings.warn("from_items is deprecated. Please use " "DataFrame.from_dict(dict(items), ...) instead. " "DataFrame.from_dict(OrderedDict(items)) may be used to " "preserve the key order.", FutureWarning, stacklevel=2) keys, values = lzip(*items) if orient == 'columns': if columns is not None: columns = ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(ensure_index(keys)): raise ValueError('With non-unique item names, passed ' 'columns must be identical') arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = ensure_index(keys) arrays = values # GH 17312 # Provide more informative error msg when scalar values passed try: return cls._from_arrays(arrays, columns, None) except ValueError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') elif orient == 'index': if columns is None: raise TypeError("Must pass columns with orient='index'") keys = ensure_index(keys) # GH 17312 # Provide more informative error msg when scalar values passed try: arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) except TypeError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'")
<SYSTEM_TASK:> Convert to SparseDataFrame. <END_TASK> <USER_TASK:> Description: def to_sparse(self, fill_value=None, kind='block'): """ Convert to SparseDataFrame. Implement the sparse version of the DataFrame meaning that any data matching a specific value it's omitted in the representation. The sparse DataFrame allows for a more efficient storage. Parameters ---------- fill_value : float, default None The specific value that should be omitted in the representation. kind : {'block', 'integer'}, default 'block' The kind of the SparseIndex tracking where data is not equal to the fill value: - 'block' tracks only the locations and sizes of blocks of data. - 'integer' keeps an array with all the locations of the data. In most cases 'block' is recommended, since it's more memory efficient. Returns ------- SparseDataFrame The sparse representation of the DataFrame. See Also -------- DataFrame.to_dense : Converts the DataFrame back to the its dense form. Examples -------- >>> df = pd.DataFrame([(np.nan, np.nan), ... (1., np.nan), ... (np.nan, 1.)]) >>> df 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(df) <class 'pandas.core.frame.DataFrame'> >>> sdf = df.to_sparse() >>> sdf 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(sdf) <class 'pandas.core.sparse.frame.SparseDataFrame'> """
from pandas.core.sparse.api import SparseDataFrame return SparseDataFrame(self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value)
<SYSTEM_TASK:> Export DataFrame object to Stata dta format. <END_TASK> <USER_TASK:> Description: def to_stata(self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- fname : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. .. versionadded:: 0.19.0 version : {114, 117}, default 114 Version to use in the output dta file. Version 114 can be used read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 114 limits string variables to 244 characters or fewer while 117 allows strings with lengths up to 2,000,000 characters. .. versionadded:: 0.23.0 convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters .. versionadded:: 0.19.0 See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """
kwargs = {} if version not in (114, 117): raise ValueError('Only formats 114 and 117 supported.') if version == 114: if convert_strl is not None: raise ValueError('strl support is only available when using ' 'format 117') from pandas.io.stata import StataWriter as statawriter else: from pandas.io.stata import StataWriter117 as statawriter kwargs['convert_strl'] = convert_strl writer = statawriter(fname, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs) writer.write_file()
<SYSTEM_TASK:> Write out the binary feather-format for DataFrames. <END_TASK> <USER_TASK:> Description: def to_feather(self, fname): """ Write out the binary feather-format for DataFrames. .. versionadded:: 0.20.0 Parameters ---------- fname : str string file path """
from pandas.io.feather_format import to_feather to_feather(self, fname)
<SYSTEM_TASK:> Write a DataFrame to the binary parquet format. <END_TASK> <USER_TASK:> Description: def to_parquet(self, fname, engine='auto', compression='snappy', index=None, partition_cols=None, **kwargs): """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- fname : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 0.24.0 engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, the behavior depends on the chosen engine. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset Columns are partitioned in the order they are given .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """
from pandas.io.parquet import to_parquet to_parquet(self, fname, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs)
<SYSTEM_TASK:> Return the memory usage of each column in bytes. <END_TASK> <USER_TASK:> Description: def memory_usage(self, index=True, deep=False): """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 80 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 80 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5168 """
result = Series([c.memory_usage(index=False, deep=deep) for col, c in self.iteritems()], index=self.columns) if index: result = Series(self.index.memory_usage(deep=deep), index=['Index']).append(result) return result
<SYSTEM_TASK:> Transpose index and columns. <END_TASK> <USER_TASK:> Description: def transpose(self, *args, **kwargs): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- copy : bool, default False If True, the underlying data is copied. Otherwise (default), no copy is made if possible. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """
nv.validate_transpose(args, dict()) return super().transpose(1, 0, **kwargs)
<SYSTEM_TASK:> Quickly retrieve single value at passed column and index. <END_TASK> <USER_TASK:> Description: def get_value(self, index, col, takeable=False): """ Quickly retrieve single value at passed column and index. .. deprecated:: 0.21.0 Use .at[] or .iat[] accessors instead. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """
warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(index, col, takeable=takeable)
<SYSTEM_TASK:> Put single value at passed column and index. <END_TASK> <USER_TASK:> Description: def set_value(self, index, col, value, takeable=False): """ Put single value at passed column and index. .. deprecated:: 0.21.0 Use .at[] or .iat[] accessors instead. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """
warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(index, col, value, takeable=takeable)