text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Extract images from an MNIST file into a numpy array. <END_TASK> <USER_TASK:> Description: def _extract_mnist_images(filename, num_images): """Extract images from an MNIST file into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels]. """
with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(_MNIST_IMAGE_SIZE * _MNIST_IMAGE_SIZE * num_images) data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, _MNIST_IMAGE_SIZE, _MNIST_IMAGE_SIZE, 1) return data
<SYSTEM_TASK:> Extract labels from an MNIST file into integers. <END_TASK> <USER_TASK:> Description: def _extract_mnist_labels(filename, num_labels): """Extract labels from an MNIST file into integers. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A int64 numpy array of shape [num_labels] """
with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(num_labels) labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) return labels
<SYSTEM_TASK:> Download all FashionMNIST files to directory unless they are there. <END_TASK> <USER_TASK:> Description: def _get_fashion_mnist(directory): """Download all FashionMNIST files to directory unless they are there."""
# Fashion mnist files have the same names as MNIST. # We must choose a separate name (by adding 'fashion-' prefix) in the tmp_dir. for filename in [ _MNIST_TRAIN_DATA_FILENAME, _MNIST_TRAIN_LABELS_FILENAME, _MNIST_TEST_DATA_FILENAME, _MNIST_TEST_LABELS_FILENAME ]: generator_utils.maybe_download(directory, _FASHION_MNIST_LOCAL_FILE_PREFIX + filename, _FASHION_MNIST_URL + filename)
<SYSTEM_TASK:> Image generator for FashionMNIST. <END_TASK> <USER_TASK:> Description: def fashion_mnist_generator(tmp_dir, training, how_many, start_from=0): """Image generator for FashionMNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """
_get_fashion_mnist(tmp_dir) d = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_DATA_FILENAME if training else _MNIST_TEST_DATA_FILENAME) l = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_LABELS_FILENAME if training else _MNIST_TEST_LABELS_FILENAME) return mnist_common_generator(tmp_dir, training, how_many, d, l, start_from)
<SYSTEM_TASK:> Generates synthetic timeseries using input parameters. <END_TASK> <USER_TASK:> Description: def generate_data(timeseries_length, timeseries_params): """Generates synthetic timeseries using input parameters. Each generated timeseries has timeseries_length data points. Parameters for each timeseries are specified by timeseries_params. Args: timeseries_length: Number of data points to generate for each timeseries. timeseries_params: Parameters used to generate the timeseries. The following parameters need to be specified for each timeseries: m = Slope of the timeseries used to compute the timeseries trend. b = y-intercept of the timeseries used to compute the timeseries trend. A = Timeseries amplitude used to compute timeseries period. freqcoeff = Frequency coefficient used to compute timeseries period. rndA = Random amplitude used to inject noise into the timeseries. fn = Base timeseries function (np.cos or np.sin). Example params for two timeseries. [{"m": 0.006, "b": 300.0, "A":50.0, "freqcoeff":1500.0, "rndA":15.0, "fn": np.sin}, {"m": 0.000, "b": 500.0, "A":35.0, "freqcoeff":3500.0, "rndA":25.0, "fn": np.cos}] Returns: Multi-timeseries (list of list). """
x = range(timeseries_length) multi_timeseries = [] for p in timeseries_params: # Trend y1 = [p["m"] * i + p["b"] for i in x] # Period y2 = [p["A"] * p["fn"](i / p["freqcoeff"]) for i in x] # Noise y3 = np.random.normal(0, p["rndA"], timeseries_length).tolist() # Sum of Trend, Period and Noise. Replace negative values with zero. y = [max(a + b + c, 0) for a, b, c in zip(y1, y2, y3)] multi_timeseries.append(y) return multi_timeseries
<SYSTEM_TASK:> Basic 2-frame conv model with stochastic discrete latent. <END_TASK> <USER_TASK:> Description: def next_frame_basic_stochastic_discrete(): """Basic 2-frame conv model with stochastic discrete latent."""
hparams = basic_deterministic_params.next_frame_sampling() hparams.batch_size = 4 hparams.video_num_target_frames = 6 hparams.scheduled_sampling_mode = "prob_inverse_lin" hparams.scheduled_sampling_decay_steps = 40000 hparams.scheduled_sampling_max_prob = 1.0 hparams.dropout = 0.15 hparams.filter_double_steps = 3 hparams.hidden_size = 96 hparams.learning_rate_constant = 0.002 hparams.learning_rate_warmup_steps = 2000 hparams.learning_rate_schedule = "linear_warmup * constant" hparams.concat_internal_states = True hparams.video_modality_loss_cutoff = 0.03 hparams.add_hparam("bottleneck_bits", 128) hparams.add_hparam("bottleneck_noise", 0.1) hparams.add_hparam("discretize_warmup_steps", 40000) hparams.add_hparam("latent_rnn_warmup_steps", 40000) hparams.add_hparam("latent_rnn_max_sampling", 0.5) hparams.add_hparam("latent_use_max_probability", 0.8) hparams.add_hparam("full_latent_tower", False) hparams.add_hparam("latent_predictor_state_size", 128) hparams.add_hparam("latent_predictor_temperature", 1.0) hparams.add_hparam("complex_addn", True) hparams.add_hparam("recurrent_state_size", 64) return hparams
<SYSTEM_TASK:> Next frame stochastic discrete tuning grid. <END_TASK> <USER_TASK:> Description: def next_frame_stochastic_discrete_range(rhp): """Next frame stochastic discrete tuning grid."""
rhp.set_float("learning_rate_constant", 0.001, 0.01) rhp.set_float("dropout", 0.2, 0.6) rhp.set_int("filter_double_steps", 3, 5) rhp.set_discrete("hidden_size", [64, 96, 128]) rhp.set_discrete("bottleneck_bits", [32, 64, 128, 256]) rhp.set_discrete("video_num_target_frames", [4]) rhp.set_float("bottleneck_noise", 0.0, 0.2)
<SYSTEM_TASK:> Get a structure of shapes for a structure of nested arrays. <END_TASK> <USER_TASK:> Description: def shapes(x): """Get a structure of shapes for a structure of nested arrays."""
def shape(x): try: return x.shape except Exception: # pylint: disable=broad-except return [] return nested_map(x, shape)
<SYSTEM_TASK:> Get a structure of sizes for a structure of nested arrays. <END_TASK> <USER_TASK:> Description: def sizes(x): """Get a structure of sizes for a structure of nested arrays."""
def size(x): try: return x.size except Exception: # pylint: disable=broad-except return 0 return nested_map(x, size)
<SYSTEM_TASK:> Find the frame with the caller on the stack. <END_TASK> <USER_TASK:> Description: def _find_frame(stack, start=0): """Find the frame with the caller on the stack."""
# We want to find the first place where the layer was called # that is *not* an __init__ function of an inheriting layer. frame = inspect.getframeinfo(stack[start][0]) # If we are in an init, move on. if frame.function == '__init__': return _find_frame(stack, start + 1) return frame
<SYSTEM_TASK:> Shorten file path in error lines for more readable tracebacks. <END_TASK> <USER_TASK:> Description: def _shorten_file_path(line): """Shorten file path in error lines for more readable tracebacks."""
start = line.lower().find('file') if start < 0: return line first_quote = line.find('"', start) if first_quote < 0: return line second_quote = line.find('"', first_quote + 1) if second_quote < 0: return line path = line[first_quote + 1:second_quote] new_path = '/'.join(path.split('/')[-3:]) return line[:first_quote] + '[...]/' + new_path + line[second_quote + 1:]
<SYSTEM_TASK:> Cleaned-up form of traceback. <END_TASK> <USER_TASK:> Description: def _short_traceback(skip=3): """Cleaned-up form of traceback."""
counter, res = 0, [] # Skipping 3 lines by default: the top (useless) and self-call. lines = traceback.format_exc().splitlines()[skip:] for l in lines: res.append(_shorten_file_path(l)) if counter % 2 == 1: res.append('') counter += 1 # If we see a LayerError, the traceback has already been processed. if l.startswith('LayerError'): # Skip 4 back except last as these are internal base-layer calls. res = res[:-4] + [res[-1]] res += lines[counter:] break return '\n'.join(res)
<SYSTEM_TASK:> Initialize the layer given an input shape and rng. <END_TASK> <USER_TASK:> Description: def initialize(self, input_shape, rng): """Initialize the layer given an input shape and rng. Returns new_parameters(input_shape, rng) on the first call and () on any subsequent call, as the layer is already initialized. This is used for networks that share parameters, so the layer only produces them once. Note that all arguments and return values can be tuples or dictionaries or arbitraty nested structures composed of tuples and dictionaries. Args: input_shape: a tuple representing the shape of the input. rng: random number generator. Returns: Newly created parameters on the first call and () on all subsequent calls. """
try: # Re-using this layer, no new parameters. if not self._first_init: return () # First call of this layer, create parameters. self._first_init = False self._params = self.new_parameters(input_shape, rng) return self._params except Exception: name, trace = self.__class__.__name__, _short_traceback() raise LayerError(name, 'initialize', self._caller, input_shape, trace)
<SYSTEM_TASK:> Generates WikipediaArticles from GCS that are part of shard shard_id. <END_TASK> <USER_TASK:> Description: def _wiki_articles(shard_id, wikis_dir=None): """Generates WikipediaArticles from GCS that are part of shard shard_id."""
if not wikis_dir: wikis_dir = WIKI_CONTENT_DIR with tf.Graph().as_default(): dataset = tf.data.TFRecordDataset( cc_utils.readahead( os.path.join(wikis_dir, WIKI_CONTENT_FILE % shard_id)), buffer_size=16 * 1000 * 1000) def _parse_example(ex_ser): """Parse serialized Example containing Wikipedia article content.""" features = { "url": tf.VarLenFeature(tf.string), "title": tf.VarLenFeature(tf.string), "section_titles": tf.VarLenFeature(tf.string), "section_texts": tf.VarLenFeature(tf.string), } ex = tf.parse_single_example(ex_ser, features) for k in ex.keys(): ex[k] = ex[k].values ex["url"] = ex["url"][0] ex["title"] = ex["title"][0] return ex dataset = dataset.map(_parse_example, num_parallel_calls=32) dataset = dataset.prefetch(100) record_it = dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: while True: try: ex = sess.run(record_it) except tf.errors.OutOfRangeError: break sections = [ WikipediaSection(title=text_encoder.to_unicode(title), text=text_encoder.to_unicode(text)) for title, text in zip(ex["section_titles"], ex["section_texts"]) ] yield WikipediaArticle( url=text_encoder.to_unicode(ex["url"]), title=text_encoder.to_unicode(ex["title"]), sections=sections)
<SYSTEM_TASK:> Rank and return reference paragraphs by tf-idf score on title tokens. <END_TASK> <USER_TASK:> Description: def rank_reference_paragraphs(wiki_title, references_content, normalize=True): """Rank and return reference paragraphs by tf-idf score on title tokens."""
normalized_title = _normalize_text(wiki_title) title_tokens = _tokens_to_score( set(tokenizer.encode(text_encoder.native_to_unicode(normalized_title)))) ref_paragraph_info = [] doc_counts = collections.defaultdict(int) for ref in references_content: for paragraph in ref.split("\n"): normalized_paragraph = _normalize_text(paragraph) if cc_utils.filter_paragraph(normalized_paragraph): # Skip paragraph continue counts = _token_counts(normalized_paragraph, title_tokens) for token in title_tokens: if counts[token]: doc_counts[token] += 1 content = normalized_paragraph if normalize else paragraph info = {"content": content, "counts": counts} ref_paragraph_info.append(info) for info in ref_paragraph_info: score = 0. for token in title_tokens: term_frequency = info["counts"][token] inv_doc_frequency = ( float(len(ref_paragraph_info)) / max(doc_counts[token], 1)) score += term_frequency * math.log(inv_doc_frequency) info["score"] = score ref_paragraph_info.sort(key=lambda el: el["score"], reverse=True) return [info["content"] for info in ref_paragraph_info]
<SYSTEM_TASK:> Encodes sections with vocab. Returns ids and section boundaries. <END_TASK> <USER_TASK:> Description: def _encode_wiki_sections(sections, vocab): """Encodes sections with vocab. Returns ids and section boundaries."""
ids = [] section_boundaries = [] for i, section in enumerate(sections): if i > 0: # Skip including article title ids.extend(vocab.encode(_format_title(_normalize_text(section.title)))) ids.extend(vocab.encode(_normalize_text(section.text))) section_boundaries.append(len(ids)) return ids, section_boundaries
<SYSTEM_TASK:> Extract references from WET files into sharded output files. <END_TASK> <USER_TASK:> Description: def extract_references_from_wets(wet_files, metadata_dir, out_dir, tmp_dir=None): """Extract references from WET files into sharded output files."""
# Setup output files shard_files = make_ref_shard_files(out_dir) num_refs = 0 for i, wet_file in enumerate(wet_files): num_refs_in_wet = 0 tf.logging.info("Processing file %d", i) # Read metadata file metadata_fname = os.path.join( metadata_dir, os.path.basename(wet_file)) + cc_utils.METADTA_SUFFIX with tf.gfile.Open(cc_utils.readahead(metadata_fname)) as f: wet_metadata = json.loads(f.read()) if not wet_metadata: # No references in this WET file continue if wet_file.startswith("http"): # download if not tmp_dir: tmp_dir = tempfile.gettempdir() record_gen = cc_utils.wet_records_from_url(wet_file, tmp_dir) else: # local record_gen = cc_utils.wet_records_from_file_obj( cc_utils.gzip_memfile(wet_file), take_ownership=True) for wet_record in record_gen: shard_ids = wet_metadata.get(wet_record.url) if not shard_ids: # URL not in dataset continue # Serialize and write out ex = _make_example_from_record(wet_record) ex_str = ex.SerializeToString() for shard_id in shard_ids: shard_files[shard_id].write(ex_str) num_refs += 1 num_refs_in_wet += 1 tf.logging.info("Wrote out %d references for this WET", num_refs_in_wet) tf.logging.info("Wrote out %d references total", num_refs) # Cleanup for shard_file in shard_files: shard_file.close()
<SYSTEM_TASK:> Extract pages from an xml dump. <END_TASK> <USER_TASK:> Description: def _dump_to_pages(dump): """Extract pages from an xml dump. Args: dump: a unicode string Returns: a list of unicode strings """
pos = 0 ret = [] start_tag = u"<page>\n" end_tag = u"</page>\n" while True: start_pos = dump.find(start_tag, pos) if start_pos == -1: break start_pos += len(start_tag) end_pos = dump.find(end_tag, start_pos) if end_pos == -1: break ret.append(dump[start_pos:end_pos]) pos = end_pos + len(end_tag) return ret
<SYSTEM_TASK:> Extract the text from a page. <END_TASK> <USER_TASK:> Description: def _page_to_text(page): """Extract the text from a page. Args: page: a unicode string Returns: a unicode string """
# text start tag looks like "<text ..otherstuff>" start_pos = page.find(u"<text") assert start_pos != -1 end_tag_pos = page.find(u">", start_pos) assert end_tag_pos != -1 end_tag_pos += len(u">") end_pos = page.find(u"</text>") if end_pos == -1: return u"" return page[end_tag_pos:end_pos]
<SYSTEM_TASK:> Remove everything found between instances of start_string and end_string. <END_TASK> <USER_TASK:> Description: def _find_and_replace(text, start_string, end_string, replace_fn): """Remove everything found between instances of start_string and end_string. Replace each such instance with replace_fn(removed_text) e.g. _find_and_replace(u"the [[fat]] cat [[sat]]", u"[[", u"]]", lambda x: x) = u"the fat cat sat" Args: text: a unicode string start_string: a unicode string end_string: a unicode string replace_fn: a unary function from unicode string to unicode string Returns: a string """
ret = u"" current_pos = 0 while True: start_pos = text.find(start_string, current_pos) if start_pos == -1: ret += text[current_pos:] break ret += text[current_pos:start_pos] end_pos = text.find(end_string, start_pos + len(start_string)) if end_pos == -1: break ret += replace_fn(text[start_pos + len(start_string):end_pos]) current_pos = end_pos + len(end_string) return ret
<SYSTEM_TASK:> Prepare question encoder. <END_TASK> <USER_TASK:> Description: def prepare_question_encoder(inputs, hparams): """Prepare question encoder. Args: inputs: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention """
encoder_input = inputs # Usual case - not a packed dataset. encoder_padding = common_attention.embedding_to_padding(encoder_input) ignore_padding = common_attention.attention_bias_ignore_padding( encoder_padding) encoder_self_attention_bias = ignore_padding if hparams.pos == "timing": encoder_input = common_attention.add_timing_signal_1d(encoder_input) elif hparams.pos == "emb": encoder_input = common_attention.add_positional_embedding( encoder_input, hparams.max_length, "inputs_positional_embedding", None) return (encoder_input, encoder_self_attention_bias)
<SYSTEM_TASK:> Prepare encoder. <END_TASK> <USER_TASK:> Description: def prepare_image_question_encoder(image_feat, question, hparams): """Prepare encoder. Args: image_feat: a Tensor. question: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention """
encoder_input = tf.concat([image_feat, question], axis=1) encoder_padding = common_attention.embedding_to_padding(encoder_input) ignore_padding = common_attention.attention_bias_ignore_padding( encoder_padding) encoder_self_attention_bias = ignore_padding encoder_decoder_attention_bias = ignore_padding # Usual case - not a packed dataset. if hparams.pos == "timing": question = common_attention.add_timing_signal_1d(question) elif hparams.pos == "emb": question = common_attention.add_positional_embedding( question, hparams.max_length, "inputs_positional_embedding", None) encoder_input = tf.concat([image_feat, question], axis=1) return (encoder_input, encoder_self_attention_bias, encoder_decoder_attention_bias)
<SYSTEM_TASK:> A batching scheme based on model hyperparameters. <END_TASK> <USER_TASK:> Description: def batching_scheme(batch_size, max_length, min_length_bucket, length_bucket_step, drop_long_sequences=False, shard_multiplier=1, length_multiplier=1, min_length=0): """A batching scheme based on model hyperparameters. Every batch contains a number of sequences divisible by `shard_multiplier`. Args: batch_size: int, total number of tokens in a batch. max_length: int, sequences longer than this will be skipped. Defaults to batch_size. min_length_bucket: int length_bucket_step: float greater than 1.0 drop_long_sequences: bool, if True, then sequences longer than `max_length` are dropped. This prevents generating batches with more than the usual number of tokens, which can cause out-of-memory errors. shard_multiplier: an integer increasing the batch_size to suit splitting across datashards. length_multiplier: an integer multiplier that is used to increase the batch sizes and sequence length tolerance. min_length: int, sequences shorter than this will be skipped. Returns: A dictionary with parameters that can be passed to input_pipeline: * boundaries: list of bucket boundaries * batch_sizes: list of batch sizes for each length bucket * max_length: int, maximum length of an example Raises: ValueError: If min_length > max_length """
max_length = max_length or batch_size if max_length < min_length: raise ValueError("max_length must be greater or equal to min_length") boundaries = _bucket_boundaries(max_length, min_length_bucket, length_bucket_step) boundaries = [boundary * length_multiplier for boundary in boundaries] max_length *= length_multiplier batch_sizes = [ max(1, batch_size // length) for length in boundaries + [max_length] ] max_batch_size = max(batch_sizes) # Since the Datasets API only allows a single constant for window_size, # and it needs divide all bucket_batch_sizes, we pick a highly-composite # window size and then round down all batch sizes to divisors of that window # size, so that a window can always be divided evenly into batches. # TODO(noam): remove this when Dataset API improves. highly_composite_numbers = [ 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600, 4324320, 6486480, 7207200, 8648640, 10810800, 14414400, 17297280, 21621600, 32432400, 36756720, 43243200, 61261200, 73513440, 110270160 ] window_size = max( [i for i in highly_composite_numbers if i <= 3 * max_batch_size]) divisors = [i for i in range(1, window_size + 1) if window_size % i == 0] batch_sizes = [max([d for d in divisors if d <= bs]) for bs in batch_sizes] window_size *= shard_multiplier batch_sizes = [bs * shard_multiplier for bs in batch_sizes] # The Datasets API splits one window into multiple batches, which # produces runs of many consecutive batches of the same size. This # is bad for training. To solve this, we will shuffle the batches # using a queue which must be several times as large as the maximum # number of batches per window. max_batches_per_window = window_size // min(batch_sizes) shuffle_queue_size = max_batches_per_window * 3 ret = { "boundaries": boundaries, "batch_sizes": batch_sizes, "min_length": min_length, "max_length": (max_length if drop_long_sequences else 10**9), "shuffle_queue_size": shuffle_queue_size, } return ret
<SYSTEM_TASK:> Wrapper around _batching_scheme with hparams. <END_TASK> <USER_TASK:> Description: def hparams_to_batching_scheme(hparams, drop_long_sequences=False, shard_multiplier=1, length_multiplier=1): """Wrapper around _batching_scheme with hparams."""
return batching_scheme( batch_size=hparams.batch_size, min_length=hparams.min_length, max_length=hparams.max_length, min_length_bucket=hparams.min_length_bucket, length_bucket_step=hparams.length_bucket_step, drop_long_sequences=drop_long_sequences, shard_multiplier=shard_multiplier, length_multiplier=length_multiplier)
<SYSTEM_TASK:> Set the right shapes for the features. <END_TASK> <USER_TASK:> Description: def standardize_shapes(features, batch_size=None): """Set the right shapes for the features."""
for fname in ["inputs", "targets"]: if fname not in features: continue f = features[fname] while len(f.get_shape()) < 4: f = tf.expand_dims(f, axis=-1) features[fname] = f if batch_size: # Ensure batch size is set on all features for _, t in six.iteritems(features): shape = t.get_shape().as_list() shape[0] = batch_size t.set_shape(t.get_shape().merge_with(shape)) # Assert shapes are fully known t.get_shape().assert_is_fully_defined() return features
<SYSTEM_TASK:> Pad batch dim of features to nearest multiple of batch_multiple. <END_TASK> <USER_TASK:> Description: def pad_batch(features, batch_multiple): """Pad batch dim of features to nearest multiple of batch_multiple."""
feature = list(features.items())[0][1] batch_size = tf.shape(feature)[0] mod = batch_size % batch_multiple has_mod = tf.cast(tf.cast(mod, tf.bool), tf.int32) batch_padding = batch_multiple * has_mod - mod padded_features = {} for k, feature in features.items(): rank = len(feature.shape) paddings = [[0, 0] for _ in range(rank)] paddings[0][1] = batch_padding padded_feature = tf.pad(feature, paddings) padded_features[k] = padded_feature return padded_features
<SYSTEM_TASK:> Generate start and end indices per outfile. <END_TASK> <USER_TASK:> Description: def generate_shard_args(outfiles, num_examples): """Generate start and end indices per outfile."""
num_shards = len(outfiles) num_examples_per_shard = num_examples // num_shards start_idxs = [i * num_examples_per_shard for i in range(num_shards)] end_idxs = list(start_idxs) end_idxs.pop(0) end_idxs.append(num_examples) return zip(start_idxs, end_idxs, outfiles)
<SYSTEM_TASK:> Convert single h5 record to an example dict. <END_TASK> <USER_TASK:> Description: def to_example_dict(encoder, inputs, mask, outputs): """Convert single h5 record to an example dict."""
# Inputs bases = [] input_ids = [] last_idx = -1 for row in np.argwhere(inputs): idx, base_id = row idx, base_id = int(idx), int(base_id) assert idx > last_idx # if not, means 2 True values in 1 row # Some rows are all False. Those rows are mapped to UNK_ID. while idx != last_idx + 1: bases.append(encoder.UNK) last_idx += 1 bases.append(encoder.BASES[base_id]) last_idx = idx assert len(inputs) == len(bases) input_ids = encoder.encode(bases) input_ids.append(text_encoder.EOS_ID) # Targets: mask and output targets_mask = [float(v) for v in mask] # The output is (n, m); store targets_shape so that it can be reshaped # properly on the other end. targets = [float(v) for v in outputs.flatten()] targets_shape = [int(dim) for dim in outputs.shape] assert mask.shape[0] == outputs.shape[0] example_keys = ["inputs", "targets_mask", "targets", "targets_shape"] ex_dict = dict( zip(example_keys, [input_ids, targets_mask, targets, targets_shape])) return ex_dict
<SYSTEM_TASK:> Linearly interpolate between two tensors at coeff. <END_TASK> <USER_TASK:> Description: def linear_interpolate(tensor1, tensor2, coeffs): """Linearly interpolate between two tensors at coeff. Args: tensor1: 4-D Tensor, shape=(NHWC) tensor2: 4-D Tensor, shape=(NHWC) coeffs: list of floats. Returns: interp_latents: 5-D Tensor, with interp_latents[i] representing interpolations at coeffs[i]. shape=(len(coeffs), NHWC) """
interp_tensors = [] for coeff in coeffs: interp_tensor = tensor1 + coeff * (tensor2 - tensor1) interp_tensors.append(interp_tensor) return tf.concat(interp_tensors, axis=0)
<SYSTEM_TASK:> Linearly interpolate channel at "rank" between two tensors. <END_TASK> <USER_TASK:> Description: def linear_interpolate_rank(tensor1, tensor2, coeffs, rank=1): """Linearly interpolate channel at "rank" between two tensors. The channels are ranked according to their L2 norm between tensor1[channel] and tensor2[channel]. Args: tensor1: 4-D Tensor, NHWC tensor2: 4-D Tensor, NHWC coeffs: list of floats. rank: integer. Returns: interp_latents: list of interpolated 4-D Tensors, shape=(NHWC) """
# sum across space, max across channels. _, _, _, num_channels = common_layers.shape_list(tensor1) diff_sq_sum = tf.reduce_sum((tensor1 - tensor2)**2, axis=(0, 1, 2)) _, feature_ranks = tf.math.top_k(diff_sq_sum, k=rank) feature_rank = feature_ranks[-1] channel_inds = tf.range(num_channels, dtype=tf.int32) channel_mask = tf.equal(channel_inds, feature_rank) ones_t = tf.ones(num_channels, dtype=tf.float32) zeros_t = tf.zeros(num_channels, dtype=tf.float32) interp_tensors = [] for coeff in coeffs: curr_coeff = tf.where(channel_mask, coeff * ones_t, zeros_t) interp_tensor = tensor1 + curr_coeff * (tensor2 - tensor1) interp_tensors.append(interp_tensor) return tf.concat(interp_tensors, axis=0)
<SYSTEM_TASK:> Returns a single or list of conditional latents at level 'level'. <END_TASK> <USER_TASK:> Description: def get_cond_latents_at_level(cond_latents, level, hparams): """Returns a single or list of conditional latents at level 'level'."""
if cond_latents: if hparams.latent_dist_encoder in ["conv_net", "conv3d_net"]: return [cond_latent[level] for cond_latent in cond_latents] elif hparams.latent_dist_encoder in ["pointwise", "conv_lstm"]: return cond_latents[level]
<SYSTEM_TASK:> Wrapper for data-dependent initialization. <END_TASK> <USER_TASK:> Description: def get_variable_ddi(name, shape, initial_value, dtype=tf.float32, init=False, trainable=True): """Wrapper for data-dependent initialization."""
# If init is a tf bool: w is assigned dynamically at runtime. # If init is a python bool: then w is determined during graph construction. w = tf.get_variable(name, shape, dtype, None, trainable=trainable) if isinstance(init, bool): if init: return assign(w, initial_value) return w else: return tf.cond(init, lambda: assign(w, initial_value), lambda: w)
<SYSTEM_TASK:> Dropout x with dropout_rate = rate. <END_TASK> <USER_TASK:> Description: def get_dropout(x, rate=0.0, init=True): """Dropout x with dropout_rate = rate. Apply zero dropout during init or prediction time. Args: x: 4-D Tensor, shape=(NHWC). rate: Dropout rate. init: Initialization. Returns: x: activations after dropout. """
if init or rate == 0: return x return tf.layers.dropout(x, rate=rate, training=True)
<SYSTEM_TASK:> Applies actnorm to each time-step independently. <END_TASK> <USER_TASK:> Description: def actnorm_3d(name, x, logscale_factor=3.): """Applies actnorm to each time-step independently. There are a total of 2*n_channels*n_steps parameters learnt. Args: name: variable scope. x: 5-D Tensor, (NTHWC) logscale_factor: Increases the learning rate of the scale by logscale_factor. Returns: x: 5-D Tensor, (NTHWC) with the per-timestep, per-channel normalization. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = tf.unstack(x, axis=1) x_normed = [] for ind, x_step in enumerate(x): x_step, _ = actnorm("actnorm_%d" % ind, x_step, logscale_factor=logscale_factor) x_normed.append(x_step) return tf.stack(x_normed, axis=1), None
<SYSTEM_TASK:> Add a bias to x. <END_TASK> <USER_TASK:> Description: def actnorm_center(name, x, reverse=False, init=False): """Add a bias to x. Initialize such that the output of the first minibatch is zero centered per channel. Args: name: scope x: 2-D or 4-D Tensor. reverse: Forward or backward operation. init: data-dependent initialization. Returns: x_center: (x + b), if reverse is True and (x - b) otherwise. """
shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): assert len(shape) == 2 or len(shape) == 4 if len(shape) == 2: x_mean = tf.reduce_mean(x, [0], keepdims=True) b = get_variable_ddi("b", (1, shape[1]), initial_value=-x_mean, init=init) elif len(shape) == 4: x_mean = tf.reduce_mean(x, [0, 1, 2], keepdims=True) b = get_variable_ddi( "b", (1, 1, 1, shape[3]), initial_value=-x_mean, init=init) if not reverse: x += b else: x -= b return x
<SYSTEM_TASK:> Per-channel scaling of x. <END_TASK> <USER_TASK:> Description: def actnorm_scale(name, x, logscale_factor=3., reverse=False, init=False): """Per-channel scaling of x."""
x_shape = common_layers.shape_list(x) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): # Variance initialization logic. assert len(x_shape) == 2 or len(x_shape) == 4 if len(x_shape) == 2: x_var = tf.reduce_mean(x**2, [0], keepdims=True) logdet_factor = 1 var_shape = (1, x_shape[1]) elif len(x_shape) == 4: x_var = tf.reduce_mean(x**2, [0, 1, 2], keepdims=True) logdet_factor = x_shape[1]*x_shape[2] var_shape = (1, 1, 1, x_shape[3]) init_value = tf.log(1.0 / (tf.sqrt(x_var) + 1e-6)) / logscale_factor logs = get_variable_ddi("logs", var_shape, initial_value=init_value, init=init) logs = logs * logscale_factor # Function and reverse function. if not reverse: x = x * tf.exp(logs) else: x = x * tf.exp(-logs) # Objective calculation, h * w * sum(log|s|) dlogdet = tf.reduce_sum(logs) * logdet_factor if reverse: dlogdet *= -1 return x, dlogdet
<SYSTEM_TASK:> 1X1 convolution on x. <END_TASK> <USER_TASK:> Description: def invertible_1x1_conv(name, x, reverse=False): """1X1 convolution on x. The 1X1 convolution is parametrized as P*L*(U + sign(s)*exp(log(s))) where 1. P is a permutation matrix. 2. L is a lower triangular matrix with diagonal entries unity. 3. U is a upper triangular matrix where the diagonal entries zero. 4. s is a vector. sign(s) and P are fixed and the remaining are optimized. P, L, U and s are initialized by the PLU decomposition of a random rotation matrix. Args: name: scope x: Input Tensor. reverse: whether the pass is from z -> x or x -> z. Returns: x_conv: x after a 1X1 convolution is applied on x. objective: sum(log(s)) """
_, height, width, channels = common_layers.shape_list(x) w_shape = [channels, channels] # Random rotation-matrix Q random_matrix = np.random.rand(channels, channels) np_w = scipy.linalg.qr(random_matrix)[0].astype("float32") # Initialize P,L,U and s from the LU decomposition of a random rotation matrix np_p, np_l, np_u = scipy.linalg.lu(np_w) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): p = tf.get_variable("P", initializer=np_p, trainable=False) l = tf.get_variable("L", initializer=np_l) sign_s = tf.get_variable( "sign_S", initializer=np_sign_s, trainable=False) log_s = tf.get_variable("log_S", initializer=np_log_s) u = tf.get_variable("U", initializer=np_u) # W = P * L * (U + sign_s * exp(log_s)) l_mask = np.tril(np.ones([channels, channels], dtype=np.float32), -1) l = l * l_mask + tf.eye(channels, channels) u = u * np.transpose(l_mask) + tf.diag(sign_s * tf.exp(log_s)) w = tf.matmul(p, tf.matmul(l, u)) # If height or width cannot be statically determined then they end up as # tf.int32 tensors, which cannot be directly multiplied with a floating # point tensor without a cast. objective = tf.reduce_sum(log_s) * tf.cast(height * width, log_s.dtype) if not reverse: w = tf.reshape(w, [1, 1] + w_shape) x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format="NHWC") else: # TODO(b/111271662): Remove when supported. def tpu_inv(m): """tf.linalg.inv workaround until it is supported on TPU.""" q, r = tf.linalg.qr(m) return tf.linalg.triangular_solve(r, tf.transpose(q), lower=False) w_inv = tf.reshape(tpu_inv(w), [1, 1]+w_shape) x = tf.nn.conv2d( x, w_inv, [1, 1, 1, 1], "SAME", data_format="NHWC") objective *= -1 return x, objective
<SYSTEM_TASK:> Pad x and concatenates an edge bias across the depth of x. <END_TASK> <USER_TASK:> Description: def add_edge_bias(x, filter_size): """Pad x and concatenates an edge bias across the depth of x. The edge bias can be thought of as a binary feature which is unity when the filter is being convolved over an edge and zero otherwise. Args: x: Input tensor, shape (NHWC) filter_size: filter_size to determine padding. Returns: x_pad: Input tensor, shape (NHW(c+1)) """
x_shape = common_layers.shape_list(x) if filter_size[0] == 1 and filter_size[1] == 1: return x a = (filter_size[0] - 1) // 2 # vertical padding size b = (filter_size[1] - 1) // 2 # horizontal padding size padding = [[0, 0], [a, a], [b, b], [0, 0]] x_bias = tf.zeros(x_shape[:-1] + [1]) x = tf.pad(x, padding) x_pad = tf.pad(x_bias, padding, constant_values=1) return tf.concat([x, x_pad], axis=3)
<SYSTEM_TASK:> Pad left across time and pad valid across the spatial components. <END_TASK> <USER_TASK:> Description: def time_pad(x, filter_size, dilations): """Pad left across time and pad valid across the spatial components. Also concats a binary feature that indicates if a feature is padded or not. Args: x: 5-D Tensor, (NTHWC) filter_size: list of ints dilations: list of ints, dilations - 1 specifies the number of holes between two filter elements. Returns: x_pad: 5-D Tensor. """
x_shape = common_layers.shape_list(x) if filter_size == [1, 1, 1]: return x _, h, w = filter_size eff_h = h + (h - 1)*(dilations[2] - 1) eff_w = w + (w - 1)*(dilations[3] - 1) a = (eff_h - 1) // 2 # vertical padding size b = (eff_w - 1) // 2 # horizontal padding size c = filter_size[0] - 1 # pad across edges. padding = [[0, 0], [c, 0], [a, a], [b, b], [0, 0]] # concat a binary feature across channels to indicate a padding. # 1 indicates that the feature is a padding. x_bias = tf.zeros(x_shape[:-1] + [1]) x_bias = tf.pad(x_bias, padding, constant_values=1) x_pad = tf.pad(x, padding) x_pad = tf.concat((x_bias, x_pad), axis=-1) return x_pad
<SYSTEM_TASK:> Convolutional layer with edge bias padding and optional actnorm. <END_TASK> <USER_TASK:> Description: def conv(name, x, output_channels, filter_size=None, stride=None, logscale_factor=3.0, apply_actnorm=True, conv_init="default", dilations=None): """Convolutional layer with edge bias padding and optional actnorm. If x is 5-dimensional, actnorm is applied independently across every time-step. Args: name: variable scope. x: 4-D Tensor or 5-D Tensor of shape NHWC or NTHWC output_channels: Number of output channels. filter_size: list of ints, if None [3, 3] and [2, 3, 3] are defaults for 4-D and 5-D input tensors respectively. stride: list of ints, default stride: 1 logscale_factor: see actnorm for parameter meaning. apply_actnorm: if apply_actnorm the activations of the first minibatch have zero mean and unit variance. Else, there is no scaling applied. conv_init: default or zeros. default is a normal distribution with 0.05 std. dilations: List of integers, apply dilations. Returns: x: actnorm(conv2d(x)) Raises: ValueError: if init is set to "zeros" and apply_actnorm is set to True. """
if conv_init == "zeros" and apply_actnorm: raise ValueError("apply_actnorm is unstable when init is set to zeros.") x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] # set filter_size, stride and in_channels if is_2d: if filter_size is None: filter_size = [3, 3] if stride is None: stride = [1, 1] if dilations is None: dilations = [1, 1, 1, 1] actnorm_func = actnorm x = add_edge_bias(x, filter_size=filter_size) conv_filter = tf.nn.conv2d else: if filter_size is None: if num_steps == 1: filter_size = [1, 3, 3] else: filter_size = [2, 3, 3] if stride is None: stride = [1, 1, 1] if dilations is None: dilations = [1, 1, 1, 1, 1] actnorm_func = actnorm_3d x = time_pad(x, filter_size=filter_size, dilations=dilations) conv_filter = tf.nn.conv3d in_channels = common_layers.shape_list(x)[-1] filter_shape = filter_size + [in_channels, output_channels] stride_shape = [1] + stride + [1] with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if conv_init == "default": initializer = default_initializer() elif conv_init == "zeros": initializer = tf.zeros_initializer() w = tf.get_variable("W", filter_shape, tf.float32, initializer=initializer) x = conv_filter(x, w, stride_shape, padding="VALID", dilations=dilations) if apply_actnorm: x, _ = actnorm_func("actnorm", x, logscale_factor=logscale_factor) else: x += tf.get_variable("b", [1, 1, 1, output_channels], initializer=tf.zeros_initializer()) logs = tf.get_variable("logs", [1, output_channels], initializer=tf.zeros_initializer()) x *= tf.exp(logs * logscale_factor) return x
<SYSTEM_TASK:> 2 layer conv block used in the affine coupling layer. <END_TASK> <USER_TASK:> Description: def conv_block(name, x, mid_channels, dilations=None, activation="relu", dropout=0.0): """2 layer conv block used in the affine coupling layer. Args: name: variable scope. x: 4-D or 5-D Tensor. mid_channels: Output channels of the second layer. dilations: Optional, list of integers. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: Dropout probability. Returns: x: 4-D Tensor: Output activations. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) is_2d = len(x_shape) == 4 num_steps = x_shape[1] if is_2d: first_filter = [3, 3] second_filter = [1, 1] else: # special case when number of steps equal 1 to avoid # padding. if num_steps == 1: first_filter = [1, 3, 3] else: first_filter = [2, 3, 3] second_filter = [1, 1, 1] # Edge Padding + conv2d + actnorm + relu: # [output: 512 channels] x = conv("1_1", x, output_channels=mid_channels, filter_size=first_filter, dilations=dilations) x = tf.nn.relu(x) x = get_dropout(x, rate=dropout) # Padding + conv2d + actnorm + activation. # [input, output: 512 channels] if activation == "relu": x = conv("1_2", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.relu(x) elif activation == "gatu": # x = tanh(w1*x) * sigm(w2*x) x_tanh = conv("1_tanh", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x_sigm = conv("1_sigm", x, output_channels=mid_channels, filter_size=second_filter, dilations=dilations) x = tf.nn.tanh(x_tanh) * tf.nn.sigmoid(x_sigm) x = get_dropout(x, rate=dropout) return x
<SYSTEM_TASK:> Dilated convolutional stack. <END_TASK> <USER_TASK:> Description: def dilated_conv_stack(name, x, mid_channels, output_channels, dilation_rates, activation="relu", dropout=0.0): """Dilated convolutional stack. Features at different rates are computed independently using a 3 layer convolutional stack and added. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer in the conv stack. output_channels: Number of output channels of the last layer. dilation_rates: A list of dilation rates. activation: Can be either "relu" or "gatu" dropout: dropout. Returns: output: 5-D Tensor. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output = 0.0 for dil_ind, dil_rate in enumerate(dilation_rates): # TODO(mechcoder) try (concat across channels + 1x1) modulo memory issues. curr_out = conv_stack("dil_%d" % dil_ind, x, mid_channels=mid_channels, output_channels=output_channels, dilations=dil_rate, activation=activation, dropout=dropout) output += curr_out return output
<SYSTEM_TASK:> 3-layer convolutional stack. <END_TASK> <USER_TASK:> Description: def conv_stack(name, x, mid_channels, output_channels, dilations=None, activation="relu", dropout=0.0): """3-layer convolutional stack. Args: name: variable scope. x: 5-D Tensor. mid_channels: Number of output channels of the first layer. output_channels: Number of output channels. dilations: Dilations to apply in the first 3x3 layer and the last 3x3 layer. By default, apply no dilations. activation: relu or gatu. If relu, the second layer is relu(W*x) If gatu, the second layer is tanh(W1*x) * sigmoid(W2*x) dropout: float, 0.0 Returns: output: output of 3 layer conv network. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x = conv_block("conv_block", x, mid_channels=mid_channels, dilations=dilations, activation=activation, dropout=dropout) # Final layer. x = conv("zeros", x, apply_actnorm=False, conv_init="zeros", output_channels=output_channels, dilations=dilations) return x
<SYSTEM_TASK:> Reversible additive coupling layer. <END_TASK> <USER_TASK:> Description: def additive_coupling(name, x, mid_channels=512, reverse=False, activation="relu", dropout=0.0): """Reversible additive coupling layer. Args: name: variable scope. x: 4-D Tensor, shape=(NHWC). mid_channels: number of channels in the coupling layer. reverse: Forward or reverse operation. activation: "relu" or "gatu" dropout: default, 0.0 Returns: output: 4-D Tensor, shape=(NHWC) objective: 0.0 """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): output_channels = common_layers.shape_list(x)[-1] // 2 x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) z1 = x1 shift = conv_stack("nn", x1, mid_channels, output_channels=output_channels, activation=activation, dropout=dropout) if not reverse: z2 = x2 + shift else: z2 = x2 - shift return tf.concat([z1, z2], axis=3), 0.0
<SYSTEM_TASK:> Reversible affine coupling layer. <END_TASK> <USER_TASK:> Description: def affine_coupling(name, x, mid_channels=512, activation="relu", reverse=False, dropout=0.0): """Reversible affine coupling layer. Args: name: variable scope. x: 4-D Tensor. mid_channels: number of channels in the coupling layer. activation: Can be either "relu" or "gatu". reverse: Forward or reverse operation. dropout: default, 0.0 Returns: output: x shifted and scaled by an affine transformation. objective: log-determinant of the jacobian """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) x1, x2 = tf.split(x, num_or_size_splits=2, axis=-1) # scale, shift = NN(x1) # If reverse: # z2 = scale * (x2 + shift) # Else: # z2 = (x2 / scale) - shift z1 = x1 log_scale_and_shift = conv_stack( "nn", x1, mid_channels, x_shape[-1], activation=activation, dropout=dropout) shift = log_scale_and_shift[:, :, :, 0::2] scale = tf.nn.sigmoid(log_scale_and_shift[:, :, :, 1::2] + 2.0) if not reverse: z2 = (x2 + shift) * scale else: z2 = x2 / scale - shift objective = tf.reduce_sum(tf.log(scale), axis=[1, 2, 3]) if reverse: objective *= -1 return tf.concat([z1, z2], axis=3), objective
<SYSTEM_TASK:> Block-wise spatial squeezing of x to increase the number of channels. <END_TASK> <USER_TASK:> Description: def squeeze(name, x, factor=2, reverse=True): """Block-wise spatial squeezing of x to increase the number of channels. Args: name: Used for variable scoping. x: 4-D Tensor of shape (batch_size X H X W X C) factor: Factor by which the spatial dimensions should be squeezed. reverse: Squueze or unsqueeze operation. Returns: x: 4-D Tensor of shape (batch_size X (H//factor) X (W//factor) X (cXfactor^2). If reverse is True, then it is factor = (1 / factor) """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): shape = common_layers.shape_list(x) if factor == 1: return x height = int(shape[1]) width = int(shape[2]) n_channels = int(shape[3]) if not reverse: assert height % factor == 0 and width % factor == 0 x = tf.reshape(x, [-1, height//factor, factor, width//factor, factor, n_channels]) x = tf.transpose(x, [0, 1, 3, 5, 2, 4]) x = tf.reshape(x, [-1, height//factor, width // factor, n_channels*factor*factor]) else: x = tf.reshape( x, (-1, height, width, int(n_channels/factor**2), factor, factor)) x = tf.transpose(x, [0, 1, 4, 2, 5, 3]) x = tf.reshape(x, (-1, int(height*factor), int(width*factor), int(n_channels/factor**2))) return x
<SYSTEM_TASK:> Get a list of valid dilation rates. <END_TASK> <USER_TASK:> Description: def get_dilation_rates(hparams, width): """Get a list of valid dilation rates. Args: hparams: HParams. width: spatial dimension. Ensures that the effective filter size is not larger than the spatial dimension. Returns: allowed_dilations: A list of dilation rates. """
# dil_rate=1 means no dilation. allowed_dilations = [[1]*5] apply_dilations = hparams.get("latent_apply_dilations", False) dilation_rates = hparams.get("latent_dilation_rates", [1, 3]) if apply_dilations: for rate in dilation_rates: # k + (k - 1) * rate but k is harcoded to be 3 everywhere. filter_size = 3 + 2 * rate if filter_size <= width: curr_dilation = [1, 1, rate+1, rate+1, 1] allowed_dilations.append(curr_dilation) return allowed_dilations
<SYSTEM_TASK:> Network that maps a time-indexed list of 3-D latents to a gaussian. <END_TASK> <USER_TASK:> Description: def temporal_latent_to_dist(name, x, hparams, output_channels=None): """Network that maps a time-indexed list of 3-D latents to a gaussian. Args: name: variable scope. x: List of 4-D Tensors indexed by time, (NHWC) hparams: tf.contrib.training.Hparams. output_channels: int, Number of channels of the output gaussian mean. Returns: dist: tfp.distributions.Normal """
_, _, width, _, res_channels = common_layers.shape_list(x) if output_channels is None: output_channels = res_channels dilation_rates = get_dilation_rates(hparams, width) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = x for i in range(hparams.latent_encoder_depth): if hparams.latent_apply_dilations: h2 = dilated_conv_stack("dil_latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, dilation_rates=dilation_rates, activation=hparams.latent_activation, dropout=hparams.latent_dropout) else: h2 = conv_stack("latent_3d_res_%d" % i, h, mid_channels=hparams.latent_encoder_width, output_channels=res_channels, activation=hparams.latent_activation, dropout=hparams.latent_dropout) h += h2 # take last activation that should capture all context since padding is # on left. h = h[:, -1, :, :, :] h = conv("res_final", h, apply_actnorm=False, conv_init="zeros", output_channels=2*output_channels, filter_size=[1, 1]) mean, log_scale = h[:, :, :, 0::2], h[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
<SYSTEM_TASK:> A 3x3 convolution mapping x to a standard normal distribution at init. <END_TASK> <USER_TASK:> Description: def single_conv_dist(name, x, output_channels=None): """A 3x3 convolution mapping x to a standard normal distribution at init. Args: name: variable scope. x: 4-D Tensor. output_channels: number of channels of the mean and std. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] mean_log_scale = conv("conv2d", x, output_channels=2*output_channels, conv_init="zeros", apply_actnorm=False) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tf.distributions.Normal(mean, tf.exp(log_scale))
<SYSTEM_TASK:> Map latent to the mean and log-scale of a Gaussian. <END_TASK> <USER_TASK:> Description: def latent_to_dist(name, x, hparams, output_channels=None): """Map latent to the mean and log-scale of a Gaussian. Args: name: variable scope. x: 4-D Tensor of shape (NHWC) hparams: HParams. latent_architecture - can be "single_conv", "glow_nn" or "glow_resnet", default = single_conv latent_encoder_depth - int, depth of architecture, valid if latent_architecture is "glow_nn" or "glow_resnet". latent_pre_output_channels - 512, valid only when latent_architecture is "glow_nn". latent_encoder_width - 512, maximum width of the network output_channels: int, number of output channels of the mean (and std). if not provided, set it to be the output channels of x. Returns: dist: instance of tfp.distributions.Normal Raises: ValueError: If architecture not in ["single_conv", "glow_nn"] """
architecture = hparams.get("latent_architecture", "single_conv") depth = hparams.get("latent_encoder_depth", 1) pre_output_channels = hparams.get("latent_pre_output_channels", 512) width = hparams.get("latent_encoder_width", 512) with tf.variable_scope(name, reuse=tf.AUTO_REUSE): x_shape = common_layers.shape_list(x) if output_channels is None: output_channels = x_shape[-1] if architecture == "single_conv": return single_conv_dist("single_conv", x, output_channels) if architecture == "glow_nn": mean_log_scale = x for layer in range(1, depth + 1): mid_channels = pre_output_channels // 2**(depth - layer) mean_log_scale = conv_block("glow_nn_%d" % layer, mean_log_scale, mid_channels=mid_channels) mean_log_scale = conv("glow_nn_zeros", mean_log_scale, filter_size=[3, 3], stride=[1, 1], output_channels=2*output_channels, apply_actnorm=False, conv_init="zeros") elif architecture == "glow_resnet": h = x for layer in range(depth): h3 = conv_stack("latent_resnet_%d" % layer, h, mid_channels=width, output_channels=x_shape[-1], dropout=hparams.coupling_dropout) h += h3 mean_log_scale = conv("glow_res_final", h, conv_init="zeros", output_channels=2*output_channels, apply_actnorm=False) else: raise ValueError("expected architecture to be single_conv or glow_nn " "got %s" % architecture) mean = mean_log_scale[:, :, :, 0::2] log_scale = mean_log_scale[:, :, :, 1::2] return tfp.distributions.Normal(mean, tf.exp(log_scale))
<SYSTEM_TASK:> Adds isotropic gaussian-noise to each latent. <END_TASK> <USER_TASK:> Description: def noise_op(latents, hparams): """Adds isotropic gaussian-noise to each latent. Args: latents: 4-D or 5-D tensor, shape=(NTHWC) or (NHWC). hparams: HParams. Returns: latents: latents with isotropic gaussian noise appended. """
if hparams.latent_noise == 0 or hparams.mode != tf.estimator.ModeKeys.TRAIN: return latents latent_shape = common_layers.shape_list(latents) return latents + tf.random_normal(latent_shape, stddev=hparams.latent_noise)
<SYSTEM_TASK:> Merge level_dist and latent_dist. <END_TASK> <USER_TASK:> Description: def merge_level_and_latent_dist(level_dist, latent_dist, merge_std="prev_level"): """Merge level_dist and latent_dist. new_dist ~ N(level_dist.mean + latent_dis.mean, std) where std is determined according to merge_std. Args: level_dist: instance of tfp.distributions.Normal latent_dist: instance of tfp.distributions.Normal merge_std: can be "prev_level", "prev_step" or "normal". Returns: merged_dist: instance of tfp.distributions.Normal """
level_mean, level_std = level_dist.loc, level_dist.scale latent_mean, latent_std = latent_dist.loc, latent_dist.scale new_mean = level_mean + latent_mean if merge_std == "normal": z_shape = common_layers.shape_list(latent_mean) log_scale = tf.get_variable( "merge_std", shape=z_shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) scale = tf.exp(log_scale * 3.0) elif merge_std == "prev_level": scale = level_std elif merge_std == "prev_step": scale = latent_std return tfp.distributions.Normal(loc=new_mean, scale=scale)
<SYSTEM_TASK:> Returns a conditional prior for each level. <END_TASK> <USER_TASK:> Description: def level_cond_prior(prior_dist, z, latent, hparams, state): """Returns a conditional prior for each level. Args: prior_dist: Distribution conditioned on the previous levels. z: Tensor, output of the previous levels. latent: Tensor or a list of tensors to condition the latent_distribution. hparams: next_frame_glow hparams. state: Current LSTM state. Used only if hparams.latent_dist_encoder is a lstm. Raises: ValueError: If hparams.latent_dist_encoder is "pointwise" and if the shape of latent is different from z. """
latent_dist_encoder = hparams.get("latent_dist_encoder", None) latent_skip = hparams.get("latent_skip", False) if latent_dist_encoder == "pointwise": last_latent = latent merge_std = hparams.level_scale latent_shape = common_layers.shape_list(latent) z_shape = common_layers.shape_list(z) if latent_shape != z_shape: raise ValueError("Expected latent_shape to be %s, got %s" % (latent_shape, z_shape)) latent_dist = scale_gaussian_prior( "latent_prior", latent, logscale_factor=3.0) cond_dist = merge_level_and_latent_dist(prior_dist, latent_dist, merge_std=merge_std) elif latent_dist_encoder == "conv_net": output_channels = common_layers.shape_list(z)[-1] last_latent = latent[-1] latent_stack = tf.concat([prior_dist.loc] + latent, axis=-1) latent_stack = noise_op(latent_stack, hparams) cond_dist = latent_to_dist( "latent_stack", latent_stack, hparams=hparams, output_channels=output_channels) elif latent_dist_encoder == "conv3d_net": last_latent = latent[-1] output_channels = common_layers.shape_list(last_latent)[-1] num_steps = len(latent) # Stack across time. cond_latents = tf.stack(latent, axis=1) # Concat latents from previous levels across channels. prev_latents = tf.tile(tf.expand_dims(prior_dist.loc, axis=1), [1, num_steps, 1, 1, 1]) cond_latents = tf.concat((cond_latents, prev_latents), axis=-1) cond_latents = noise_op(cond_latents, hparams) cond_dist = temporal_latent_to_dist( "latent_stack", cond_latents, hparams, output_channels=output_channels) elif latent_dist_encoder == "conv_lstm": last_latent = latent output_channels = common_layers.shape_list(z)[-1] latent_stack = tf.concat((prior_dist.loc, latent), axis=-1) latent_stack = noise_op(latent_stack, hparams) _, state = common_video.conv_lstm_2d( latent_stack, state, hparams.latent_encoder_width, kernel_size=3, name="conv_lstm") cond_dist = single_conv_dist( "state_to_dist", state.h, output_channels=output_channels) if latent_skip: new_mean = cond_dist.loc + last_latent cond_dist = tfp.distributions.Normal(new_mean, cond_dist.scale) return cond_dist.loc, cond_dist.scale, state
<SYSTEM_TASK:> One step of glow generative flow. <END_TASK> <USER_TASK:> Description: def revnet_step(name, x, hparams, reverse=True): """One step of glow generative flow. Actnorm + invertible 1X1 conv + affine_coupling. Args: name: used for variable scope. x: input hparams: coupling_width is the only hparam that is being used in this function. reverse: forward or reverse pass. Returns: z: Output of one step of reversible flow. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if hparams.coupling == "additive": coupling_layer = functools.partial( additive_coupling, name="additive", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) else: coupling_layer = functools.partial( affine_coupling, name="affine", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) ops = [ functools.partial(actnorm, name="actnorm", reverse=reverse), functools.partial(invertible_1x1_conv, name="invertible", reverse=reverse), coupling_layer] if reverse: ops = ops[::-1] objective = 0.0 for op in ops: x, curr_obj = op(x=x) objective += curr_obj return x, objective
<SYSTEM_TASK:> hparams.depth' steps of generative flow. <END_TASK> <USER_TASK:> Description: def revnet(name, x, hparams, reverse=True): """'hparams.depth' steps of generative flow. Args: name: variable scope for the revnet block. x: 4-D Tensor, shape=(NHWC). hparams: HParams. reverse: bool, forward or backward pass. Returns: x: 4-D Tensor, shape=(NHWC). objective: float. """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): steps = np.arange(hparams.depth) if reverse: steps = steps[::-1] objective = 0.0 for step in steps: x, curr_obj = revnet_step( "revnet_step_%d" % step, x, hparams, reverse=reverse) objective += curr_obj return x, objective
<SYSTEM_TASK:> Unconditional prior distribution. <END_TASK> <USER_TASK:> Description: def top_prior(name, z_shape, learn_prior="normal", temperature=1.0): """Unconditional prior distribution. Args: name: variable scope z_shape: Shape of the mean / scale of the prior distribution. learn_prior: Possible options are "normal" and "single_conv". If set to "single_conv", the gaussian is parametrized by a single convolutional layer whose input are an array of zeros and initialized such that the mean and std are zero and one. If set to "normal", the prior is just a Gaussian with zero mean and unit variance. temperature: Temperature with which to sample from the Gaussian. Returns: objective: 1-D Tensor shape=(batch_size,) summed across spatial components. Raises: ValueError: If learn_prior not in "normal" or "single_conv" """
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = tf.zeros(z_shape, dtype=tf.float32) if learn_prior == "normal": prior_dist = tfp.distributions.Normal(h, tf.exp(h)) elif learn_prior == "single_conv": prior_dist = single_conv_dist("top_learn_prior", h) else: raise ValueError("Expected learn_prior to be normal or single_conv " "got %s" % learn_prior) return TemperedNormal(prior_dist.loc, prior_dist.scale, temperature)
<SYSTEM_TASK:> A custom getter function for float32 parameters and bfloat16 activations. <END_TASK> <USER_TASK:> Description: def bfloat16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """
requested_dtype = kwargs["dtype"] if requested_dtype == tf.bfloat16: kwargs["dtype"] = tf.float32 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
<SYSTEM_TASK:> A custom getter function for float32 parameters and float16 activations. <END_TASK> <USER_TASK:> Description: def float16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and float16 activations. This function ensures the following: 1. All variables requested with type fp16 are stored as type fp32. 2. All variables requested with type fp32 are returned as type fp16. See https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/ #training_tensorflow for more information on this strategy. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """
requested_dtype = kwargs["dtype"] if requested_dtype == tf.float16: kwargs["dtype"] = tf.float32 if requested_dtype == tf.float32: requested_dtype = tf.float16 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
<SYSTEM_TASK:> Simulate quantization to num_bits bits, with externally-stored scale. <END_TASK> <USER_TASK:> Description: def simulated_quantize(x, num_bits, noise): """Simulate quantization to num_bits bits, with externally-stored scale. num_bits is the number of bits used to store each value. noise is a float32 Tensor containing values in [0, 1). Each value in noise should take different values across different steps, approximating a uniform distribution over [0, 1). In the case of replicated TPU training, noise should be identical across replicas in order to keep the parameters identical across replicas. The natural choice for noise would be tf.random_uniform(), but this is not possible for TPU, since there is currently no way to seed the different cores to produce identical values across replicas. Instead we use noise_from_step_num() (see below). The quantization scheme is as follows: Compute the maximum absolute value by row (call this max_abs). Store this either in an auxiliary variable or in an extra column. Divide the parameters by (max_abs / (2^(num_bits-1)-1)). This gives a float32 value in the range [-2^(num_bits-1)-1, 2^(num_bits-1)-1] Unbiased randomized roundoff by adding noise and rounding down. This produces a signed integer with num_bits bits which can then be stored. Args: x: a float32 Tensor num_bits: an integer between 1 and 22 noise: a float Tensor broadcastable to the shape of x. Returns: a float32 Tensor """
shape = x.get_shape().as_list() if not (len(shape) >= 2 and shape[-1] > 1): return x max_abs = tf.reduce_max(tf.abs(x), -1, keepdims=True) + 1e-9 max_int = 2 ** (num_bits - 1) - 1 scale = max_abs / max_int x /= scale x = tf.floor(x + noise) # dequantize before storing (since this is a simulation) x *= scale return x
<SYSTEM_TASK:> Round-off x to cand1 or to cand2 in an unbiased way. <END_TASK> <USER_TASK:> Description: def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2): """Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor. """
cand1_f = tf.to_float(cand1) cand2_f = tf.to_float(cand2) step_size = cand2_f - cand1_f fpart = (x - cand1_f) / step_size ret = tf.where(tf.greater(fpart, noise), cand2, cand1) return ret
<SYSTEM_TASK:> Convert a float32 to a bfloat16 using randomized roundoff. <END_TASK> <USER_TASK:> Description: def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """
x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
<SYSTEM_TASK:> A custom getter that uses the encoding for bfloat16 and float32 vars. <END_TASK> <USER_TASK:> Description: def custom_getter(self, activation_dtype=tf.bfloat16): """A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function. """
def getter_fn(getter, *args, **kwargs): requested_dtype = kwargs["dtype"] if requested_dtype in (tf.bfloat16, tf.float32): kwargs["dtype"] = tf.bfloat16 kwargs["initializer"] = _EncodingInitializer( kwargs["initializer"], self) ret = self._decode_with_identity_gradient(getter(*args, **kwargs)) return tf.cast(ret, activation_dtype) return getter(*args, **kwargs) return getter_fn
<SYSTEM_TASK:> Loads videos from files. <END_TASK> <USER_TASK:> Description: def load_videos(template, video_length, frame_shape): """Loads videos from files. Args: template: template string for listing the image files. video_length: length of the video. frame_shape: shape of each frame. Returns: dataset: the tf dataset frame by frame. dataset_len: number of the items which is the number of image files. Raises: ValueError: if no files found. """
filenames = tf.gfile.Glob(template) if not filenames: raise ValueError("no files found.") filenames = sorted(filenames) dataset_len = len(filenames) filenames = tf.constant(filenames) dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.apply(tf.data.experimental.map_and_batch( lambda filename: load_image_map_function(filename, frame_shape), video_length, drop_remainder=True)) return dataset, dataset_len
<SYSTEM_TASK:> Compute the PSNR and SSIM. <END_TASK> <USER_TASK:> Description: def psnr_and_ssim(output, target): """Compute the PSNR and SSIM. Args: output: 4-D Tensor, shape=(num_frames, height, width, num_channels) target: 4-D Tensor, shape=(num_frames, height, width, num_channels) Returns: psnr: 1-D Tensor, shape=(num_frames,) ssim: 1-D Tensor, shape=(num_frames,) """
output = tf.cast(output, dtype=tf.int32) target = tf.cast(target, dtype=tf.int32) psnr = tf.image.psnr(output, target, max_val=255) ssim = tf.image.ssim(output, target, max_val=255) return psnr, ssim
<SYSTEM_TASK:> Extracts the best-decode from the metrics according to reduce_func. <END_TASK> <USER_TASK:> Description: def reduce_to_best_decode(metrics, reduce_func): """Extracts the best-decode from the metrics according to reduce_func. Args: metrics: 3-D numpy array, shape=(num_decodes, num_samples, num_frames) reduce_func: callable, np.argmax or np.argmin. Returns: best_metrics: 2-D numpy array, shape=(num_samples, num_frames). best_decode_ind: 1-D numpy array, shape=(num_samples,) """
num_videos = metrics.shape[1] # Take mean of the metric across the frames to approximate the video # closest to the ground truth. mean_across_frames = np.mean(metrics, axis=-1) # For every sample, use the decode that has a maximum mean-metric. best_decode_ind = reduce_func(mean_across_frames, axis=0) best_metrics = metrics[best_decode_ind, np.arange(num_videos), :] return best_metrics, best_decode_ind
<SYSTEM_TASK:> Computes statistics of metrics across multiple decodings. <END_TASK> <USER_TASK:> Description: def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings. Args: all_results: dict of 3-D numpy arrays. Each array has shape=(num_decodes, num_samples, num_frames). Returns: statistics: dict of 1-D numpy arrays, shape=(num_frames). First the statistic (max/mean/std) is computed across the decodes, then the mean is taken across num_samples. decode_inds: dict of 1-D numpy arrays, shape=(num_samples,) Each element represents the index of the decode corresponding to the best statistic. """
statistics = {} decode_inds = {} all_metrics = all_results.keys() for key in all_metrics: values = all_results[key] statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) min_stats, min_decode_ind = reduce_to_best_decode(values, np.argmin) statistics[key + "_MIN"] = min_stats decode_inds[key + "_MIN_DECODE"] = min_decode_ind max_stats, max_decode_ind = reduce_to_best_decode(values, np.argmax) statistics[key + "_MAX"] = max_stats decode_inds[key + "_MAX_DECODE"] = max_decode_ind # Computes mean of each statistic across the dataset. for key in statistics: statistics[key] = np.mean(statistics[key], axis=0) return statistics, decode_inds
<SYSTEM_TASK:> Computes metrics from predictions. <END_TASK> <USER_TASK:> Description: def compute_video_metrics_from_predictions(predictions, decode_hparams): """Computes metrics from predictions. Args: predictions: list of list of dicts. outer length: num_decodes, inner_length: num_samples decode_hparams: Decode hparams. instance of HParams. Returns: statistics: dict of Tensors, key being the metric with each Tensor having the shape (num_samples, num_frames). """
all_results = {} ssim_all_decodes, psnr_all_decodes = [], [] for single_decode in predictions: args = get_zipped_dataset_from_predictions(single_decode) psnr_single, ssim_single = compute_one_decoding_video_metrics(*args) psnr_all_decodes.append(psnr_single) ssim_all_decodes.append(ssim_single) psnr_all_decodes = np.array(psnr_all_decodes) ssim_all_decodes = np.array(ssim_all_decodes) all_results.update({"PSNR": psnr_all_decodes, "SSIM": ssim_all_decodes}) return compute_all_metrics_statistics(all_results)
<SYSTEM_TASK:> Compute and saves the video metrics. <END_TASK> <USER_TASK:> Description: def compute_and_save_video_metrics( output_dirs, problem_name, video_length, frame_shape): """Compute and saves the video metrics."""
statistics, all_results = compute_video_metrics_from_png_files( output_dirs, problem_name, video_length, frame_shape) for results, output_dir in zip(all_results, output_dirs): save_results(results, output_dir, problem_name) parent_dir = os.path.join(output_dirs[0], os.pardir) final_dir = os.path.join(parent_dir, "decode") tf.gfile.MakeDirs(parent_dir) save_results(statistics, final_dir, problem_name)
<SYSTEM_TASK:> Sample batch with specified mix of groundtruth and generated data points. <END_TASK> <USER_TASK:> Description: def scheduled_sample_count(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Sample batch with specified mix of groundtruth and generated data points. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: number of ground-truth examples to include in batch. Returns: New batch with num_ground_truth sampled from ground_truth_x and the rest from generated_x. """
num_ground_truth = scheduled_sample_var idx = tf.random_shuffle(tf.range(batch_size)) ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth)) generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size)) ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx) generated_examps = tf.gather(generated_x, generated_idx) output = tf.dynamic_stitch([ground_truth_idx, generated_idx], [ground_truth_examps, generated_examps]) # if batch size is known set it. if isinstance(batch_size, int): output.set_shape([batch_size] + common_layers.shape_list(output)[1:]) return output
<SYSTEM_TASK:> Injects the additional input into the layer. <END_TASK> <USER_TASK:> Description: def inject_additional_input(layer, inputs, name, mode="concat"): """Injects the additional input into the layer. Args: layer: layer that the input should be injected to. inputs: inputs to be injected. name: TF scope name. mode: how the infor should be added to the layer: "concat" concats as additional channels. "multiplicative" broadcasts inputs and multiply them to the channels. "multi_additive" broadcasts inputs and multiply and add to the channels. Returns: updated layer. Raises: ValueError: in case of unknown mode. """
layer_shape = common_layers.shape_list(layer) input_shape = common_layers.shape_list(inputs) zeros_mask = tf.zeros(layer_shape, dtype=tf.float32) if mode == "concat": emb = encode_to_shape(inputs, layer_shape, name) layer = tf.concat(values=[layer, emb], axis=-1) elif mode == "multiplicative": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mask = tf.layers.dense(input_reshaped, filters, name=name) input_broad = input_mask + zeros_mask layer *= input_broad elif mode == "multi_additive": filters = layer_shape[-1] input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]]) input_mul = tf.layers.dense(input_reshaped, filters, name=name + "_mul") layer *= tf.nn.sigmoid(input_mul) input_add = tf.layers.dense(input_reshaped, filters, name=name + "_add") layer += input_add else: raise ValueError("Unknown injection mode: %s" % mode) return layer
<SYSTEM_TASK:> Probability based scheduled sampling. <END_TASK> <USER_TASK:> Description: def scheduled_sample_prob(ground_truth_x, generated_x, batch_size, scheduled_sample_var): """Probability based scheduled sampling. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size scheduled_sample_var: probability of choosing from ground_truth. Returns: New batch with randomly selected data points. """
probability_threshold = scheduled_sample_var probability_of_generated = tf.random_uniform([batch_size]) return tf.where(probability_of_generated > probability_threshold, generated_x, ground_truth_x)
<SYSTEM_TASK:> Apply dynamic neural advection to previous image. <END_TASK> <USER_TASK:> Description: def dna_transformation(prev_image, dna_input, dna_kernel_size, relu_shift): """Apply dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. dna_input: hidden lyaer to be used for computing DNA transformation. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """
# Construct translated images. prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]]) image_height = int(prev_image.get_shape()[1]) image_width = int(prev_image.get_shape()[2]) inputs = [] for xkern in range(dna_kernel_size): for ykern in range(dna_kernel_size): inputs.append( tf.expand_dims( tf.slice(prev_image_pad, [0, xkern, ykern, 0], [-1, image_height, image_width, -1]), [3])) inputs = tf.concat(axis=3, values=inputs) # Normalize channels to 1. kernel = tf.nn.relu(dna_input - relu_shift) + relu_shift kernel = tf.expand_dims( kernel / tf.reduce_sum(kernel, [3], keep_dims=True), [4]) return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
<SYSTEM_TASK:> Apply convolutional dynamic neural advection to previous image. <END_TASK> <USER_TASK:> Description: def cdna_transformation(prev_image, cdna_input, num_masks, color_channels, dna_kernel_size, relu_shift): """Apply convolutional dynamic neural advection to previous image. Args: prev_image: previous image to be transformed. cdna_input: hidden lyaer to be used for computing CDNA kernels. num_masks: number of masks and hence the number of CDNA transformations. color_channels: the number of color channels in the images. dna_kernel_size: dna kernel size. relu_shift: shift for ReLU function. Returns: List of images transformed by the predicted CDNA kernels. """
batch_size = tf.shape(cdna_input)[0] height = int(prev_image.get_shape()[1]) width = int(prev_image.get_shape()[2]) # Predict kernels using linear function of last hidden layer. cdna_kerns = tfl.dense( cdna_input, dna_kernel_size * dna_kernel_size * num_masks, name="cdna_params", activation=None) # Reshape and normalize. cdna_kerns = tf.reshape( cdna_kerns, [batch_size, dna_kernel_size, dna_kernel_size, 1, num_masks]) cdna_kerns = (tf.nn.relu(cdna_kerns - relu_shift) + relu_shift) norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True) cdna_kerns /= norm_factor # Treat the color channel dimension as the batch dimension since the same # transformation is applied to each color channel. # Treat the batch dimension as the channel dimension so that # depthwise_conv2d can apply a different transformation to each sample. cdna_kerns = tf.transpose(cdna_kerns, [1, 2, 0, 4, 3]) cdna_kerns = tf.reshape( cdna_kerns, [dna_kernel_size, dna_kernel_size, batch_size, num_masks]) # Swap the batch and channel dimensions. prev_image = tf.transpose(prev_image, [3, 1, 2, 0]) # Transform image. transformed = tf.nn.depthwise_conv2d( prev_image, cdna_kerns, [1, 1, 1, 1], "SAME") # Transpose the dimensions to where they belong. transformed = tf.reshape( transformed, [color_channels, height, width, batch_size, num_masks]) transformed = tf.transpose(transformed, [3, 1, 2, 0, 4]) transformed = tf.unstack(transformed, axis=-1) return transformed
<SYSTEM_TASK:> A layer of VGG network with batch norm. <END_TASK> <USER_TASK:> Description: def vgg_layer(inputs, nout, kernel_size=3, activation=tf.nn.leaky_relu, padding="SAME", is_training=True, has_batchnorm=False, scope=None): """A layer of VGG network with batch norm. Args: inputs: image tensor nout: number of output channels kernel_size: size of the kernel activation: activation function padding: padding of the image is_training: whether it is training mode or not has_batchnorm: whether batchnorm is applied or not scope: variable scope of the op Returns: net: output of layer """
with tf.variable_scope(scope): net = tfl.conv2d(inputs, nout, kernel_size=kernel_size, padding=padding, activation=None, name="conv") if has_batchnorm: net = tfl.batch_normalization(net, training=is_training, name="bn") net = activation(net) return net
<SYSTEM_TASK:> Tile latent and concatenate to image across depth. <END_TASK> <USER_TASK:> Description: def tile_and_concat(image, latent, concat_latent=True): """Tile latent and concatenate to image across depth. Args: image: 4-D Tensor, (batch_size X height X width X channels) latent: 2-D Tensor, (batch_size X latent_dims) concat_latent: If set to False, the image is returned as is. Returns: concat_latent: 4-D Tensor, (batch_size X height X width X channels+1) latent tiled and concatenated to the image across the channels. """
if not concat_latent: return image image_shape = common_layers.shape_list(image) latent_shape = common_layers.shape_list(latent) height, width = image_shape[1], image_shape[2] latent_dims = latent_shape[1] height_multiples = height // latent_dims pad = height - (height_multiples * latent_dims) latent = tf.reshape(latent, (-1, latent_dims, 1, 1)) latent = tf.tile(latent, (1, height_multiples, width, 1)) latent = tf.pad(latent, [[0, 0], [pad // 2, pad // 2], [0, 0], [0, 0]]) return tf.concat([image, latent], axis=-1)
<SYSTEM_TASK:> Encodes numpy images into gif string. <END_TASK> <USER_TASK:> Description: def _encode_gif(images, fps): """Encodes numpy images into gif string. Args: images: A 4-D `uint8` `np.array` (or a list of 3-D images) of shape `[time, height, width, channels]` where `channels` is 1 or 3. fps: frames per second of the animation Returns: The encoded gif string. Raises: IOError: If the ffmpeg command returns an error. """
writer = WholeVideoWriter(fps) writer.write_multi(images) return writer.finish()
<SYSTEM_TASK:> Tries to encode images with ffmpeg to check if it works. <END_TASK> <USER_TASK:> Description: def ffmpeg_works(): """Tries to encode images with ffmpeg to check if it works."""
images = np.zeros((2, 32, 32, 3), dtype=np.uint8) try: _encode_gif(images, 2) return True except (IOError, OSError): return False
<SYSTEM_TASK:> Builds convolutional latent tower for stochastic model. <END_TASK> <USER_TASK:> Description: def conv_latent_tower(images, time_axis, latent_channels=1, min_logvar=-5, is_training=False, random_latent=False, tiny_mode=False, small_mode=False): """Builds convolutional latent tower for stochastic model. At training time this tower generates a latent distribution (mean and std) conditioned on the entire video. This latent variable will be fed to the main tower as an extra variable to be used for future frames prediction. At inference time, the tower is disabled and only returns latents sampled from N(0,1). If the multi_latent flag is on, a different latent for every timestep would be generated. Args: images: tensor of ground truth image sequences time_axis: the time axis in images tensor latent_channels: number of latent channels min_logvar: minimum value for log_var is_training: whether or not it is training mode random_latent: whether or not generate random latents tiny_mode: whether or not it is tiny_mode. tiny_mode sets the number of conv channels to 1 at each layer. useful for testing the integration tests. small_mode: whether or not it is small_mode. small mode is the same model with less conv and lstm layers and also lower number of channels. suitable for videos with less complexity and testing. Returns: latent_mean: predicted latent mean latent_logvar: predicted latent log variance """
conv_size = tinyify([32, 64, 64], tiny_mode, small_mode) with tf.variable_scope("latent", reuse=tf.AUTO_REUSE): images = tf.to_float(images) images = tf.unstack(images, axis=time_axis) images = tf.concat(images, axis=3) x = images x = common_layers.make_even_size(x) x = tfl.conv2d(x, conv_size[0], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv1") x = tfcl.layer_norm(x) if not small_mode: x = tfl.conv2d(x, conv_size[1], [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_conv2") x = tfcl.layer_norm(x) x = tfl.conv2d(x, conv_size[2], [3, 3], strides=(1, 1), padding="SAME", activation=tf.nn.relu, name="latent_conv3") x = tfcl.layer_norm(x) nc = latent_channels mean = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=None, name="latent_mean") logv = tfl.conv2d(x, nc, [3, 3], strides=(2, 2), padding="SAME", activation=tf.nn.relu, name="latent_std") logvar = logv + min_logvar # No latent tower at inference time, just standard gaussian. if not is_training: return tf.zeros_like(mean), tf.zeros_like(logvar) # No latent in the first phase ret_mean, ret_logvar = tf.cond( random_latent, lambda: (tf.zeros_like(mean), tf.zeros_like(logvar)), lambda: (mean, logvar)) return ret_mean, ret_logvar
<SYSTEM_TASK:> For every video, extract a random consecutive patch of num_frames. <END_TASK> <USER_TASK:> Description: def extract_random_video_patch(videos, num_frames=-1): """For every video, extract a random consecutive patch of num_frames. Args: videos: 5-D Tensor, (NTHWC) num_frames: Integer, if -1 then the entire video is returned. Returns: video_patch: 5-D Tensor, (NTHWC) with T = num_frames. Raises: ValueError: If num_frames is greater than the number of total frames in the video. """
if num_frames == -1: return videos batch_size, num_total_frames, h, w, c = common_layers.shape_list(videos) if num_total_frames < num_frames: raise ValueError("Expected num_frames <= %d, got %d" % (num_total_frames, num_frames)) # Randomly choose start_inds for each video. frame_start = tf.random_uniform( shape=(batch_size,), minval=0, maxval=num_total_frames - num_frames + 1, dtype=tf.int32) # [start[0], start[0] + 1, ... start[0] + num_frames - 1] + ... # [start[batch_size-1], ... start[batch_size-1] + num_frames - 1] range_inds = tf.expand_dims(tf.range(num_frames), axis=0) frame_inds = range_inds + tf.expand_dims(frame_start, axis=1) frame_inds = tf.reshape(frame_inds, [-1]) # [0]*num_frames + [1]*num_frames + ... [batch_size-1]*num_frames batch_inds = tf.expand_dims(tf.range(batch_size), axis=1) batch_inds = tf.tile(batch_inds, [1, num_frames]) batch_inds = tf.reshape(batch_inds, [-1]) gather_inds = tf.stack((batch_inds, frame_inds), axis=1) video_patches = tf.gather_nd(videos, gather_inds) return tf.reshape(video_patches, (batch_size, num_frames, h, w, c))
<SYSTEM_TASK:> Writes multiple video frames. <END_TASK> <USER_TASK:> Description: def write_multi(self, frames, encoded_frames=None): """Writes multiple video frames."""
if encoded_frames is None: # Infinite iterator. encoded_frames = iter(lambda: None, 1) for (frame, encoded_frame) in zip(frames, encoded_frames): self.write(frame, encoded_frame)
<SYSTEM_TASK:> Initializes ffmpeg to write frames. <END_TASK> <USER_TASK:> Description: def __init_ffmpeg(self, image_shape): """Initializes ffmpeg to write frames."""
import itertools # pylint: disable=g-import-not-at-top from subprocess import Popen, PIPE # pylint: disable=g-import-not-at-top,g-multiple-import,g-importing-member ffmpeg = "ffmpeg" height, width, channels = image_shape self.cmd = [ ffmpeg, "-y", "-f", "rawvideo", "-vcodec", "rawvideo", "-r", "%.02f" % self.fps, "-s", "%dx%d" % (width, height), "-pix_fmt", {1: "gray", 3: "rgb24"}[channels], "-i", "-", "-filter_complex", "[0:v]split[x][z];[x]fifo[w];[z]palettegen,fifo[y];" "[w][y]paletteuse,fifo", "-r", "%.02f" % self.fps, "-f", self.file_format, "-qscale", "0", "-" ] self.proc = Popen( self.cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1 ) (self._out_thread, self._err_thread) = itertools.starmap( self._start_reader_thread, [ (self.proc.stdout, self._out_chunks), (self.proc.stderr, self._err_chunks) ] )
<SYSTEM_TASK:> Starts a thread for reading output from FFMPEG. <END_TASK> <USER_TASK:> Description: def _start_reader_thread(self, stream, chunks): """Starts a thread for reading output from FFMPEG. The thread reads consecutive chunks from the stream and saves them in the given list. Args: stream: output stream of the FFMPEG process. chunks: list to save output chunks to. Returns: Thread """
import io # pylint: disable=g-import-not-at-top import threading # pylint: disable=g-import-not-at-top def target(): while True: chunk = stream.read(io.DEFAULT_BUFFER_SIZE) if not chunk: break chunks.append(chunk) thread = threading.Thread(target=target) thread.start() return thread
<SYSTEM_TASK:> Finishes transconding and returns the video. <END_TASK> <USER_TASK:> Description: def finish(self): """Finishes transconding and returns the video. Returns: bytes Raises: IOError: in case of transcoding error. """
if self.proc is None: return None self.proc.stdin.close() for thread in (self._out_thread, self._err_thread): thread.join() (out, err) = [ b"".join(chunks) for chunks in (self._out_chunks, self._err_chunks) ] self.proc.stdout.close() self.proc.stderr.close() if self.proc.returncode: err = "\n".join([" ".join(self.cmd), err.decode("utf8")]) raise IOError(err) del self.proc self.proc = None return out
<SYSTEM_TASK:> Validates flags are set to acceptable values. <END_TASK> <USER_TASK:> Description: def validate_flags(): """Validates flags are set to acceptable values."""
if FLAGS.cloud_mlengine_model_name: assert not FLAGS.server assert not FLAGS.servable_name else: assert FLAGS.server assert FLAGS.servable_name
<SYSTEM_TASK:> Convnet that encodes inputs into mean and std of a gaussian. <END_TASK> <USER_TASK:> Description: def encoder(self, inputs, n_layers=3): """Convnet that encodes inputs into mean and std of a gaussian. Args: inputs: 5-D Tensor, shape (batch_size, num_frames, width, height, channels) n_layers: Number of layers. Returns: z_mu: Mean of the latent gaussians. z_log_var: log(var) of the latent gaussians. Raises: ValueError: If inputs is not a 5-D tensor or not float32. """
latent_dims = self.hparams.z_dim shape_as_list = inputs.shape.as_list() if len(shape_as_list) != 5: raise ValueError("Expected inputs to be a 5-D, got %d" % len(shape_as_list)) if inputs.dtype != tf.float32: raise ValueError("Expected dtype tf.float32, got %s" % inputs.dtype) # Flatten (N,T,W,H,C) into (NT,W,H,C) batch_size, _ = shape_as_list[:2] inputs = tf.reshape(inputs, [-1] + list(inputs.shape)[2:]) n_filters = 64 rectified = None # Applies 3 layer conv-net with padding, instance normalization # and leaky relu as per the encoder in # https://github.com/alexlee-gk/video_prediction padding = [[0, 0], [1, 1], [1, 1], [0, 0]] for i in range(n_layers): with tf.variable_scope("layer_%d" % (i + 1)): n_filters *= 2**i if i: padded = tf.pad(rectified, padding) else: padded = tf.pad(inputs, padding) convolved = tf.layers.conv2d(padded, filters=n_filters, kernel_size=4, strides=2, padding="VALID") normalized = tf.contrib.layers.instance_norm(convolved) rectified = tf.nn.leaky_relu(normalized, alpha=0.2) # Mean pooling across all spatial dimensions. pooled = tf.nn.avg_pool( rectified, [1] + rectified.shape[1:3].as_list() + [1], strides=[1, 1, 1, 1], padding="VALID") squeezed = tf.squeeze(pooled, [1, 2]) # Down-project and output the mean and log of the standard deviation of # the latents. with tf.variable_scope("z_mu"): z_mu = tf.layers.dense(squeezed, latent_dims) with tf.variable_scope("z_log_sigma_sq"): z_log_var = tf.layers.dense(squeezed, latent_dims) z_log_var = tf.clip_by_value(z_log_var, -10, 10) # Reshape to (batch_size X num_frames X latent_dims) z_mu = tf.reshape(z_mu, (batch_size, -1, latent_dims)) z_log_var = tf.reshape( z_log_var, (batch_size, -1, latent_dims)) return z_mu, z_log_var
<SYSTEM_TASK:> Get expected fully connected shape after a series of convolutions. <END_TASK> <USER_TASK:> Description: def get_fc_dimensions(self, strides, kernel_sizes): """Get expected fully connected shape after a series of convolutions."""
output_height, output_width, _ = self.hparams.problem.frame_shape output_steps = self.hparams.video_num_target_frames output_shape = np.array([output_steps, output_height, output_width]) for curr_stride, kernel_size in zip(strides, kernel_sizes): output_shape = self.expected_output_shape( output_shape, np.array(curr_stride), 1, kernel_size) return np.prod(output_shape) * self.hparams.num_discriminator_filters * 8
<SYSTEM_TASK:> 3-D SNGAN discriminator. <END_TASK> <USER_TASK:> Description: def discriminator(self, frames): """3-D SNGAN discriminator. Args: frames: a list of batch-major tensors indexed by time. Returns: logits: 1-D Tensor with shape=batch_size. Positive logits imply that the discriminator thinks that it belongs to the true class. """
ndf = self.hparams.num_discriminator_filters frames = tf.stack(frames) # Switch from time-major axis to batch-major axis. frames = common_video.swap_time_and_batch_axes(frames) # 3-D Conv-net mapping inputs to activations. num_outputs = [ndf, ndf*2, ndf*2, ndf*4, ndf*4, ndf*8, ndf*8] kernel_sizes = [3, 4, 3, 4, 3, 4, 3] strides = [[1, 1, 1], [1, 2, 2], [1, 1, 1], [1, 2, 2], [1, 1, 1], [2, 2, 2], [1, 1, 1]] names = ["video_sn_conv0_0", "video_sn_conv0_1", "video_sn_conv1_0", "video_sn_conv1_1", "video_sn_conv2_0", "video_sn_conv2_1", "video_sn_conv3_0"] iterable = zip(num_outputs, kernel_sizes, strides, names) activations = frames for num_filters, kernel_size, stride, name in iterable: activations = self.pad_conv3d_lrelu(activations, num_filters, kernel_size, stride, name) num_fc_dimensions = self.get_fc_dimensions(strides, kernel_sizes) activations = tf.reshape(activations, (-1, num_fc_dimensions)) return tf.squeeze(tf.layers.dense(activations, 1))
<SYSTEM_TASK:> Performs the discriminator step in computing the GAN loss. <END_TASK> <USER_TASK:> Description: def d_step(self, true_frames, gen_frames): """Performs the discriminator step in computing the GAN loss. Applies stop-gradient to the generated frames while computing the discriminator loss to make sure that the gradients are not back-propagated to the generator. This makes sure that only the discriminator is updated. Args: true_frames: True outputs gen_frames: Generated frames. Returns: d_loss: Loss component due to the discriminator. """
hparam_to_disc_loss = { "least_squares": gan_losses.least_squares_discriminator_loss, "cross_entropy": gan_losses.modified_discriminator_loss, "wasserstein": gan_losses.wasserstein_discriminator_loss} # Concat across batch-axis. _, batch_size, _, _, _ = common_layers.shape_list(true_frames) all_frames = tf.concat( [true_frames, tf.stop_gradient(gen_frames)], axis=1) all_logits = self.discriminator(all_frames) true_logits, fake_logits_stop = \ all_logits[:batch_size], all_logits[batch_size:] mean_true_logits = tf.reduce_mean(true_logits) tf.summary.scalar("mean_true_logits", mean_true_logits) mean_fake_logits_stop = tf.reduce_mean(fake_logits_stop) tf.summary.scalar("mean_fake_logits_stop", mean_fake_logits_stop) discriminator_loss_func = hparam_to_disc_loss[self.hparams.gan_loss] gan_d_loss = discriminator_loss_func( discriminator_real_outputs=true_logits, discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_d_loss, true_logits, fake_logits_stop
<SYSTEM_TASK:> Performs the generator step in computing the GAN loss. <END_TASK> <USER_TASK:> Description: def g_step(self, gen_frames, fake_logits_stop): """Performs the generator step in computing the GAN loss. Args: gen_frames: Generated frames fake_logits_stop: Logits corresponding to the generated frames as per the discriminator. Assumed to have a stop-gradient term. Returns: gan_g_loss_pos_d: Loss. gan_g_loss_neg_d: -gan_g_loss_pos_d but with a stop gradient on generator. """
hparam_to_gen_loss = { "least_squares": gan_losses.least_squares_generator_loss, "cross_entropy": gan_losses.modified_generator_loss, "wasserstein": gan_losses.wasserstein_generator_loss } fake_logits = self.discriminator(gen_frames) mean_fake_logits = tf.reduce_mean(fake_logits) tf.summary.scalar("mean_fake_logits", mean_fake_logits) # Generator loss. # Using gan_g_loss_pos_d updates the discriminator as well. # To avoid this add gan_g_loss_neg_d = -gan_g_loss_pos_d # but with stop gradient on the generator. # This makes sure that the net gradient on the discriminator is zero and # net-gradient on the generator is just due to the gan_g_loss_pos_d. generator_loss_func = hparam_to_gen_loss[self.hparams.gan_loss] gan_g_loss_pos_d = generator_loss_func( discriminator_gen_outputs=fake_logits, add_summaries=True) gan_g_loss_neg_d = -generator_loss_func( discriminator_gen_outputs=fake_logits_stop, add_summaries=True) return gan_g_loss_pos_d, gan_g_loss_neg_d
<SYSTEM_TASK:> Get the discriminator + generator loss at every step. <END_TASK> <USER_TASK:> Description: def get_gan_loss(self, true_frames, gen_frames, name): """Get the discriminator + generator loss at every step. This performs an 1:1 update of the discriminator and generator at every step. Args: true_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be ground truth. gen_frames: 5-D Tensor of shape (num_steps, batch_size, H, W, C) Assumed to be fake. name: discriminator scope. Returns: loss: 0-D Tensor, with d_loss + g_loss """
# D - STEP with tf.variable_scope("%s_discriminator" % name, reuse=tf.AUTO_REUSE): gan_d_loss, _, fake_logits_stop = self.d_step( true_frames, gen_frames) # G - STEP with tf.variable_scope("%s_discriminator" % name, reuse=True): gan_g_loss_pos_d, gan_g_loss_neg_d = self.g_step( gen_frames, fake_logits_stop) gan_g_loss = gan_g_loss_pos_d + gan_g_loss_neg_d tf.summary.scalar("gan_loss_%s" % name, gan_g_loss_pos_d + gan_d_loss) if self.hparams.gan_optimization == "joint": gan_loss = gan_g_loss + gan_d_loss else: curr_step = self.get_iteration_num() gan_loss = tf.cond( tf.logical_not(curr_step % 2 == 0), lambda: gan_g_loss, lambda: gan_d_loss) return gan_loss
<SYSTEM_TASK:> Pad, apply 3-D convolution and leaky relu. <END_TASK> <USER_TASK:> Description: def pad_conv3d_lrelu(self, activations, n_filters, kernel_size, strides, scope): """Pad, apply 3-D convolution and leaky relu."""
padding = [[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]] # tf.nn.conv3d accepts a list of 5 values for strides # with first and last value equal to 1 if isinstance(strides, numbers.Integral): strides = [strides] * 3 strides = [1] + strides + [1] # Filter_shape = [K, K, K, num_input, num_output] filter_shape = ( [kernel_size]*3 + activations.shape[-1:].as_list() + [n_filters]) with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): conv_filter = tf.get_variable( "conv_filter", shape=filter_shape, initializer=tf.truncated_normal_initializer(stddev=0.02)) if self.hparams.use_spectral_norm: conv_filter, assign_op = common_layers.apply_spectral_norm(conv_filter) if self.is_training: tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, assign_op) padded = tf.pad(activations, padding) convolved = tf.nn.conv3d( padded, conv_filter, strides=strides, padding="VALID") rectified = tf.nn.leaky_relu(convolved, alpha=0.2) return rectified
<SYSTEM_TASK:> Prune the weights of a model and evaluate. <END_TASK> <USER_TASK:> Description: def sparsify(sess, eval_model, pruning_strategy, pruning_params): """Prune the weights of a model and evaluate."""
weights = tf.trainable_variables() def should_prune(name): """Whether to prune a weight or not.""" in_whitelist = not pruning_params.white_list or any( e in name for e in pruning_params.white_list) in_blacklist = any(e in name for e in pruning_params.black_list) if pruning_params.white_list and not in_whitelist: return False elif in_blacklist: return False return True weights = [w for w in weights if should_prune(w.name)] tf.logging.info("Pruning weights: %s" % weights) unpruned_weights = sess.run(weights) reset_op = tf.no_op() for w, ow in zip(weights, unpruned_weights): op = tf.assign(w, ow) reset_op = tf.group(reset_op, op) for sparsity in pruning_params.sparsities: set_weights_op = tf.no_op() for w in weights: op = tf.assign(w, pruning_strategy(w, sparsity)) set_weights_op = tf.group(set_weights_op, op) sess.run(set_weights_op) acc = eval_model() tf.logging.info("\tPruning to sparsity = %f: acc = %f" % (sparsity, acc)) sess.run(reset_op)
<SYSTEM_TASK:> Parameters based on the original PPO paper. <END_TASK> <USER_TASK:> Description: def ppo_original_params(): """Parameters based on the original PPO paper."""
hparams = ppo_atari_base() hparams.learning_rate_constant = 2.5e-4 hparams.gae_gamma = 0.99 hparams.gae_lambda = 0.95 hparams.clipping_coef = 0.1 hparams.value_loss_coef = 1 hparams.entropy_loss_coef = 0.01 hparams.eval_every_epochs = 200 hparams.dropout_ppo = 0.1 # The parameters below are modified to accommodate short epoch_length (which # is needed for model based rollouts). hparams.epoch_length = 50 hparams.optimization_batch_size = 20 return hparams
<SYSTEM_TASK:> Atari parameters with stochastic discrete world model as policy. <END_TASK> <USER_TASK:> Description: def ppo_original_world_model_stochastic_discrete(): """Atari parameters with stochastic discrete world model as policy."""
hparams = ppo_original_params() hparams.policy_network = "next_frame_basic_stochastic_discrete" hparams_keys = hparams.values().keys() video_hparams = basic_stochastic.next_frame_basic_stochastic_discrete() for (name, value) in six.iteritems(video_hparams.values()): if name in hparams_keys: hparams.set_hparam(name, value) else: hparams.add_hparam(name, value) # To avoid OOM. Probably way to small. hparams.optimization_batch_size = 1 hparams.weight_decay = 0 return hparams
<SYSTEM_TASK:> Returns a function creating a simulated env, in or out of graph. <END_TASK> <USER_TASK:> Description: def make_simulated_env_fn(**env_kwargs): """Returns a function creating a simulated env, in or out of graph. Args: **env_kwargs: kwargs to pass to the simulated env constructor. Returns: Function in_graph -> env. """
def env_fn(in_graph): class_ = SimulatedBatchEnv if in_graph else SimulatedBatchGymEnv return class_(**env_kwargs) return env_fn
<SYSTEM_TASK:> Extracts simulated env kwargs from real_env and loop hparams. <END_TASK> <USER_TASK:> Description: def make_simulated_env_kwargs(real_env, hparams, **extra_kwargs): """Extracts simulated env kwargs from real_env and loop hparams."""
objs_and_attrs = [ (real_env, [ "reward_range", "observation_space", "action_space", "frame_height", "frame_width" ]), (hparams, ["frame_stack_size", "intrinsic_reward_scale"]) ] kwargs = { attr: getattr(obj, attr) # pylint: disable=g-complex-comprehension for (obj, attrs) in objs_and_attrs for attr in attrs } kwargs["model_name"] = hparams.generative_model kwargs["model_hparams"] = trainer_lib.create_hparams( hparams.generative_model_params ) if hparams.wm_policy_param_sharing: kwargs["model_hparams"].optimizer_zero_grads = True kwargs.update(extra_kwargs) return kwargs
<SYSTEM_TASK:> Base set of hparams for model-free PPO. <END_TASK> <USER_TASK:> Description: def rlmf_tictactoe(): """Base set of hparams for model-free PPO."""
hparams = rlmf_original() hparams.game = "tictactoe" hparams.rl_env_name = "T2TEnv-TicTacToeEnv-v0" # Since we don't have any no-op actions, otherwise we have to have an # attribute called `get_action_meanings`. hparams.eval_max_num_noops = 0 hparams.max_num_noops = 0 hparams.rl_should_derive_observation_space = False hparams.policy_network = "feed_forward_categorical_policy" hparams.base_algo_params = "ppo_ttt_params" # Number of last observations to feed to the agent hparams.frame_stack_size = 1 return hparams
<SYSTEM_TASK:> Tiny set of hparams for model-free PPO. <END_TASK> <USER_TASK:> Description: def rlmf_tiny(): """Tiny set of hparams for model-free PPO."""
hparams = rlmf_original() hparams = hparams.override_from_dict(rlmf_tiny_overrides()) hparams.batch_size = 2 hparams.base_algo_params = "ppo_original_tiny" hparams.add_hparam("ppo_epochs_num", 3) hparams.add_hparam("ppo_epoch_length", 2) return hparams
<SYSTEM_TASK:> Eval set of hparams for model-free PPO. <END_TASK> <USER_TASK:> Description: def rlmf_eval(): """Eval set of hparams for model-free PPO."""
hparams = rlmf_original() hparams.batch_size = 8 hparams.eval_sampling_temps = [0.0, 0.5, 1.0] hparams.eval_rl_env_max_episode_steps = -1 hparams.add_hparam("ppo_epoch_length", 128) hparams.add_hparam("ppo_optimization_batch_size", 32) hparams.add_hparam("ppo_epochs_num", 10000) hparams.add_hparam("ppo_eval_every_epochs", 500) hparams.add_hparam("attempt", 0) hparams.add_hparam("moe_loss_coef", 0) return hparams
<SYSTEM_TASK:> Get lr minimizing the surrogate. <END_TASK> <USER_TASK:> Description: def _get_lr_tensor(self): """Get lr minimizing the surrogate. Returns: The lr_t. """
lr = tf.squared_difference(1.0, tf.sqrt(self._mu)) / self._h_min return lr