text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> download and read data into numpy <END_TASK> <USER_TASK:> Description: def read_data(label, image): """ download and read data into numpy """
base_url = 'http://yann.lecun.com/exdb/mnist/' with gzip.open(download_file(base_url+label, os.path.join('data',label))) as flbl: magic, num = struct.unpack(">II", flbl.read(8)) label = np.fromstring(flbl.read(), dtype=np.int8) with gzip.open(download_file(base_url+image, os.path.join('data',image)), 'rb') as fimg: magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16)) image = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(label), rows, cols) return (label, image)
<SYSTEM_TASK:> check input imdbs, make sure they have same classes <END_TASK> <USER_TASK:> Description: def _check_classes(self): """ check input imdbs, make sure they have same classes """
try: self.classes = self.imdbs[0].classes self.num_classes = len(self.classes) except AttributeError: # fine, if no classes is provided pass if self.num_classes > 0: for db in self.imdbs: assert self.classes == db.classes, "Multiple imdb must have same classes"
<SYSTEM_TASK:> get total number of images, init indices <END_TASK> <USER_TASK:> Description: def _load_image_set_index(self, shuffle): """ get total number of images, init indices Parameters ---------- shuffle : bool whether to shuffle the initial indices """
self.num_images = 0 for db in self.imdbs: self.num_images += db.num_images indices = list(range(self.num_images)) if shuffle: random.shuffle(indices) return indices
<SYSTEM_TASK:> given index, find out sub-db and sub-index <END_TASK> <USER_TASK:> Description: def _locate_index(self, index): """ given index, find out sub-db and sub-index Parameters ---------- index : int index of a specific image Returns ---------- a tuple (sub-db, sub-index) """
assert index >= 0 and index < self.num_images, "index out of range" pos = self.image_set_index[index] for k, v in enumerate(self.imdbs): if pos >= v.num_images: pos -= v.num_images else: return (k, pos)
<SYSTEM_TASK:> Callback to checkpoint Module to prefix every epoch. <END_TASK> <USER_TASK:> Description: def module_checkpoint(mod, prefix, period=1, save_optimizer_states=False): """Callback to checkpoint Module to prefix every epoch. Parameters ---------- mod : subclass of BaseModule The module to checkpoint. prefix : str The file prefix for this checkpoint. period : int How many epochs to wait before checkpointing. Defaults to 1. save_optimizer_states : bool Indicates whether or not to save optimizer states for continued training. Returns ------- callback : function The callback function that can be passed as iter_end_callback to fit. """
period = int(max(1, period)) # pylint: disable=unused-argument def _callback(iter_no, sym=None, arg=None, aux=None): """The checkpoint function.""" if (iter_no + 1) % period == 0: mod.save_checkpoint(prefix, iter_no + 1, save_optimizer_states) return _callback
<SYSTEM_TASK:> Callback to log the training evaluation result every period. <END_TASK> <USER_TASK:> Description: def log_train_metric(period, auto_reset=False): """Callback to log the training evaluation result every period. Parameters ---------- period : int The number of batch to log the training evaluation metric. auto_reset : bool Reset the metric after each log. Returns ------- callback : function The callback function that can be passed as iter_epoch_callback to fit. """
def _callback(param): """The checkpoint function.""" if param.nbatch % period == 0 and param.eval_metric is not None: name_value = param.eval_metric.get_name_value() for name, value in name_value: logging.info('Iter[%d] Batch[%d] Train-%s=%f', param.epoch, param.nbatch, name, value) if auto_reset: param.eval_metric.reset_local() return _callback
<SYSTEM_TASK:> install callback to executor. <END_TASK> <USER_TASK:> Description: def install(self, exe): """install callback to executor. Supports installing to multiple exes. Parameters ---------- exe : mx.executor.Executor The Executor (returned by symbol.bind) to install to. """
exe.set_monitor_callback(self.stat_helper, self.monitor_all) self.exes.append(exe)
<SYSTEM_TASK:> Start collecting stats for current batch. <END_TASK> <USER_TASK:> Description: def tic(self): """Start collecting stats for current batch. Call before calling forward."""
if self.step % self.interval == 0: for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() self.queue = [] self.activated = True self.step += 1
<SYSTEM_TASK:> End collecting for current batch and return results. <END_TASK> <USER_TASK:> Description: def toc(self): """End collecting for current batch and return results. Call after computation of current batch. Returns ------- res : list of """
if not self.activated: return [] for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() for exe in self.exes: for name, array in zip(exe._symbol.list_arguments(), exe.arg_arrays): if self.re_prog.match(name): self.queue.append((self.step, name, self.stat_func(array))) for name, array in zip(exe._symbol.list_auxiliary_states(), exe.aux_arrays): if self.re_prog.match(name): self.queue.append((self.step, name, self.stat_func(array))) self.activated = False res = [] if self.sort: self.queue.sort(key=lambda x: x[1]) for n, k, v_list in self.queue: if isinstance(v_list, NDArray): v_list = [v_list] assert isinstance(v_list, list) s = '' for v in v_list: assert isinstance(v, NDArray) if v.shape == (1,): s += str(v.asscalar()) + '\t' else: s += str(v.asnumpy()) + '\t' res.append((n, k, s)) self.queue = [] return res
<SYSTEM_TASK:> End collecting and print results. <END_TASK> <USER_TASK:> Description: def toc_print(self): """End collecting and print results."""
res = self.toc() for n, k, v in res: logging.info('Batch: {:7d} {:30s} {:s}'.format(n, k, v))
<SYSTEM_TASK:> Expand the pending files in the current stage. <END_TASK> <USER_TASK:> Description: def expand(x, pending, stage): """ Expand the pending files in the current stage. Parameters ---------- x: str The file to expand. pending : str The list of pending files to expand. stage: str The current stage for file expansion, used for matching the prefix of files. """
if x in history and x not in ['mshadow/mshadow/expr_scalar-inl.h']: # MULTIPLE includes return if x in pending: #print('loop found: {} in {}'.format(x, pending)) return whtspace = ' ' * expand.treeDepth expand.fileCount += 1 comment = u"//=====[{:3d}] STAGE:{:>4} {}EXPANDING: {} =====\n\n".format(expand.fileCount, stage, whtspace, x) out.write(comment.encode('ascii')) print(comment) with open(x, 'rb') as x_h: for line in x_h.readlines(): uline = line.decode('utf-8') if '#define DMLC_LOG_STACK_TRACE 1' in uline.strip(): # Do not enable stacktrace logging continue if uline.find('#include') < 0: out.write(line) continue if uline.strip().find('#include') > 0: print(uline) continue m = re1.search(uline) if not m: m = re2.search(uline) if m: path = m.groups()[0] else: m = re3.search(uline) if m: path = 'execinfo.h' else: print(uline + ' not found') continue h = path.strip('./') if "../3rdparty/" not in path else path if h.endswith('complex.h') and x.endswith('openblas_config.h'): source = '' elif h.startswith('ps/'): source = '../3rdparty/ps-lite/include/' + h else: source = find_source(h, x, stage) if not source: if (h not in blacklist and h not in sysheaders and 'mkl' not in h and 'nnpack' not in h and 'tensorrt' not in h and not h.endswith('.cuh')): sysheaders.append(h) else: expand.treeDepth += 1 expand(source, pending + [x], stage) expand.treeDepth -= 1 out.write(u"//===== EXPANDED : {} =====\n\n".format(x).encode('ascii')) history.add(x)
<SYSTEM_TASK:> Load embedding vectors from the pre-trained token embedding file. <END_TASK> <USER_TASK:> Description: def _load_embedding(self, pretrained_file_path, elem_delim, init_unknown_vec, encoding='utf8'): """Load embedding vectors from the pre-trained token embedding file. For every unknown token, if its representation `self.unknown_token` is encountered in the pre-trained token embedding file, index 0 of `self.idx_to_vec` maps to the pre-trained token embedding vector loaded from the file; otherwise, index 0 of `self.idx_to_vec` maps to the text embedding vector initialized by `init_unknown_vec`. If a token is encountered multiple times in the pre-trained text embedding file, only the first-encountered token embedding vector will be loaded and the rest will be skipped. """
pretrained_file_path = os.path.expanduser(pretrained_file_path) if not os.path.isfile(pretrained_file_path): raise ValueError('`pretrained_file_path` must be a valid path to ' 'the pre-trained token embedding file.') logging.info('Loading pre-trained token embedding vectors from %s', pretrained_file_path) vec_len = None all_elems = [] tokens = set() loaded_unknown_vec = None line_num = 0 with io.open(pretrained_file_path, 'r', encoding=encoding) as f: for line in f: line_num += 1 elems = line.rstrip().split(elem_delim) assert len(elems) > 1, 'At line %d of the pre-trained text embedding file: the ' \ 'data format of the pre-trained token embedding file %s ' \ 'is unexpected.' % (line_num, pretrained_file_path) token, elems = elems[0], [float(i) for i in elems[1:]] if token == self.unknown_token and loaded_unknown_vec is None: loaded_unknown_vec = elems tokens.add(self.unknown_token) elif token in tokens: warnings.warn('At line %d of the pre-trained token embedding file: the ' 'embedding vector for token %s has been loaded and a duplicate ' 'embedding for the same token is seen and skipped.' % (line_num, token)) elif len(elems) == 1: warnings.warn('At line %d of the pre-trained text embedding file: token %s ' 'with 1-dimensional vector %s is likely a header and is ' 'skipped.' % (line_num, token, elems)) else: if vec_len is None: vec_len = len(elems) # Reserve a vector slot for the unknown token at the very beggining because # the unknown index is 0. all_elems.extend([0] * vec_len) else: assert len(elems) == vec_len, \ 'At line %d of the pre-trained token embedding file: the dimension ' \ 'of token %s is %d but the dimension of previous tokens is %d. ' \ 'Dimensions of all the tokens must be the same.' \ % (line_num, token, len(elems), vec_len) all_elems.extend(elems) self._idx_to_token.append(token) self._token_to_idx[token] = len(self._idx_to_token) - 1 tokens.add(token) self._vec_len = vec_len self._idx_to_vec = nd.array(all_elems).reshape((-1, self.vec_len)) if loaded_unknown_vec is None: self._idx_to_vec[C.UNKNOWN_IDX] = init_unknown_vec(shape=self.vec_len) else: self._idx_to_vec[C.UNKNOWN_IDX] = nd.array(loaded_unknown_vec)
<SYSTEM_TASK:> Sets the mapping between token indices and token embedding vectors. <END_TASK> <USER_TASK:> Description: def _set_idx_to_vec_by_embeddings(self, token_embeddings, vocab_len, vocab_idx_to_token): """Sets the mapping between token indices and token embedding vectors. Parameters ---------- token_embeddings : instance or list `mxnet.contrib.text.embedding._TokenEmbedding` One or multiple pre-trained token embeddings to load. If it is a list of multiple embeddings, these embedding vectors will be concatenated for each token. vocab_len : int Length of vocabulary whose tokens are indexed in the token embedding. vocab_idx_to_token: list of str A list of indexed tokens in the vocabulary. These tokens are indexed in the token embedding. """
new_vec_len = sum(embed.vec_len for embed in token_embeddings) new_idx_to_vec = nd.zeros(shape=(vocab_len, new_vec_len)) col_start = 0 # Concatenate all the embedding vectors in token_embeddings. for embed in token_embeddings: col_end = col_start + embed.vec_len # Cancatenate vectors of the unknown token. new_idx_to_vec[0, col_start:col_end] = embed.idx_to_vec[0] new_idx_to_vec[1:, col_start:col_end] = embed.get_vecs_by_tokens(vocab_idx_to_token[1:]) col_start = col_end self._vec_len = new_vec_len self._idx_to_vec = new_idx_to_vec
<SYSTEM_TASK:> Look up embedding vectors of tokens. <END_TASK> <USER_TASK:> Description: def get_vecs_by_tokens(self, tokens, lower_case_backup=False): """Look up embedding vectors of tokens. Parameters ---------- tokens : str or list of strs A token or a list of tokens. lower_case_backup : bool, default False If False, each token in the original case will be looked up; if True, each token in the original case will be looked up first, if not found in the keys of the property `token_to_idx`, the token in the lower case will be looked up. Returns ------- mxnet.ndarray.NDArray: The embedding vector(s) of the token(s). According to numpy conventions, if `tokens` is a string, returns a 1-D NDArray of shape `self.vec_len`; if `tokens` is a list of strings, returns a 2-D NDArray of shape=(len(tokens), self.vec_len). """
to_reduce = False if not isinstance(tokens, list): tokens = [tokens] to_reduce = True if not lower_case_backup: indices = [self.token_to_idx.get(token, C.UNKNOWN_IDX) for token in tokens] else: indices = [self.token_to_idx[token] if token in self.token_to_idx else self.token_to_idx.get(token.lower(), C.UNKNOWN_IDX) for token in tokens] vecs = nd.Embedding(nd.array(indices), self.idx_to_vec, self.idx_to_vec.shape[0], self.idx_to_vec.shape[1]) return vecs[0] if to_reduce else vecs
<SYSTEM_TASK:> Updates embedding vectors for tokens. <END_TASK> <USER_TASK:> Description: def update_token_vectors(self, tokens, new_vectors): """Updates embedding vectors for tokens. Parameters ---------- tokens : str or a list of strs A token or a list of tokens whose embedding vector are to be updated. new_vectors : mxnet.ndarray.NDArray An NDArray to be assigned to the embedding vectors of `tokens`. Its length must be equal to the number of `tokens` and its width must be equal to the dimension of embeddings of the glossary. If `tokens` is a singleton, it must be 1-D or 2-D. If `tokens` is a list of multiple strings, it must be 2-D. """
assert self.idx_to_vec is not None, 'The property `idx_to_vec` has not been properly set.' if not isinstance(tokens, list) or len(tokens) == 1: assert isinstance(new_vectors, nd.NDArray) and len(new_vectors.shape) in [1, 2], \ '`new_vectors` must be a 1-D or 2-D NDArray if `tokens` is a singleton.' if not isinstance(tokens, list): tokens = [tokens] if len(new_vectors.shape) == 1: new_vectors = new_vectors.expand_dims(0) else: assert isinstance(new_vectors, nd.NDArray) and len(new_vectors.shape) == 2, \ '`new_vectors` must be a 2-D NDArray if `tokens` is a list of multiple strings.' assert new_vectors.shape == (len(tokens), self.vec_len), \ 'The length of new_vectors must be equal to the number of tokens and the width of' \ 'new_vectors must be equal to the dimension of embeddings of the glossary.' indices = [] for token in tokens: if token in self.token_to_idx: indices.append(self.token_to_idx[token]) else: raise ValueError('Token %s is unknown. To update the embedding vector for an ' 'unknown token, please specify it explicitly as the ' '`unknown_token` %s in `tokens`. This is to avoid unintended ' 'updates.' % (token, self.idx_to_token[C.UNKNOWN_IDX])) self._idx_to_vec[nd.array(indices)] = new_vectors
<SYSTEM_TASK:> Checks if a pre-trained token embedding file name is valid. <END_TASK> <USER_TASK:> Description: def _check_pretrained_file_names(cls, pretrained_file_name): """Checks if a pre-trained token embedding file name is valid. Parameters ---------- pretrained_file_name : str The pre-trained token embedding file. """
embedding_name = cls.__name__.lower() if pretrained_file_name not in cls.pretrained_file_name_sha1: raise KeyError('Cannot find pretrained file %s for token embedding %s. Valid ' 'pretrained files for embedding %s: %s' % (pretrained_file_name, embedding_name, embedding_name, ', '.join(cls.pretrained_file_name_sha1.keys())))
<SYSTEM_TASK:> Generate the implementation of step HMC <END_TASK> <USER_TASK:> Description: def step_HMC(exe, exe_params, exe_grads, label_key, noise_precision, prior_precision, L=10, eps=1E-6): """Generate the implementation of step HMC"""
init_params = {k: v.copyto(v.context) for k, v in exe_params.items()} end_params = {k: v.copyto(v.context) for k, v in exe_params.items()} init_momentums = {k: mx.random.normal(0, 1, v.shape) for k, v in init_params.items()} end_momentums = {k: v.copyto(v.context) for k, v in init_momentums.items()} init_potential = calc_potential(exe, init_params, label_key, noise_precision, prior_precision) # 0. Calculate Initial Energy and Kinetic init_kinetic = sum([nd.sum(nd.square(momentum)) / 2.0 for momentum in init_momentums.values()]).asscalar() # 1. Make a half step for momentum at the beginning exe.copy_params_from(end_params) exe.forward(is_train=True) exe.backward() for k, v in exe_grads.items(): v.wait_to_read() for k, momentum in end_momentums.items(): momentum[:] = momentum - (eps / 2) * exe_grads[k] # 2. Alternate full steps for position and momentum for i in range(L): # 2.1 Full step for position for k, param in exe_params.items(): param[:] = param + eps * end_momentums[k] # 2.2 Full step for the momentum, except at the end of trajectory we perform a half step exe.forward(is_train=True) exe.backward() for v in exe_grads.values(): v.wait_to_read() if i != L - 1: for k, momentum in end_momentums.items(): momentum[:] = momentum - eps * exe_grads[k] else: for k, momentum in end_momentums.items(): # We should reverse the sign of the momentum at the end momentum[:] = -(momentum - eps / 2.0 * exe_grads[k]) copy_param(exe, end_params) # 3. Calculate acceptance ratio and accept/reject the move end_potential = calc_potential(exe, end_params, label_key, noise_precision, prior_precision) end_kinetic = sum([nd.sum(nd.square(momentum)) / 2.0 for momentum in end_momentums.values()]).asscalar() # print init_potential, init_kinetic, end_potential, end_kinetic r = numpy.random.rand(1) if r < numpy.exp(-(end_potential + end_kinetic) + (init_potential + init_kinetic)): exe.copy_params_from(end_params) return end_params, 1 else: exe.copy_params_from(init_params) return init_params, 0
<SYSTEM_TASK:> Generate the implementation of HMC <END_TASK> <USER_TASK:> Description: def HMC(sym, data_inputs, X, Y, X_test, Y_test, sample_num, initializer=None, noise_precision=1 / 9.0, prior_precision=0.1, learning_rate=1E-6, L=10, dev=mx.gpu()): """Generate the implementation of HMC"""
label_key = list(set(data_inputs.keys()) - set(['data']))[0] exe, exe_params, exe_grads, _ = get_executor(sym, dev, data_inputs, initializer) exe.arg_dict['data'][:] = X exe.arg_dict[label_key][:] = Y sample_pool = [] accept_num = 0 start = time.time() for i in range(sample_num): sample_params, is_accept = step_HMC(exe, exe_params, exe_grads, label_key, noise_precision, prior_precision, L, learning_rate) accept_num += is_accept if (i + 1) % 10 == 0: sample_pool.append(sample_params) if (i + 1) % 100000 == 0: end = time.time() print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start), "MSE:", sample_test_regression(exe, X=X_test, Y=Y_test, sample_pool=sample_pool, minibatch_size=Y.shape[0], save_path='regression_HMC.txt')) start = time.time() exe.copy_params_from(sample_params) print('accept ratio', accept_num / float(sample_num)) return sample_pool
<SYSTEM_TASK:> Generate the implementation of SGD <END_TASK> <USER_TASK:> Description: def SGD(sym, data_inputs, X, Y, X_test, Y_test, total_iter_num, lr=None, lr_scheduler=None, prior_precision=1, out_grad_f=None, initializer=None, minibatch_size=100, dev=mx.gpu()): """Generate the implementation of SGD"""
if out_grad_f is None: label_key = list(set(data_inputs.keys()) - set(['data']))[0] exe, params, params_grad, _ = get_executor(sym, dev, data_inputs, initializer) optimizer = mx.optimizer.create('sgd', learning_rate=lr, rescale_grad=X.shape[0] / minibatch_size, lr_scheduler=lr_scheduler, wd=prior_precision) updater = mx.optimizer.get_updater(optimizer) start = time.time() for i in range(total_iter_num): indices = numpy.random.randint(X.shape[0], size=minibatch_size) X_batch = X[indices] Y_batch = Y[indices] exe.arg_dict['data'][:] = X_batch if out_grad_f is None: exe.arg_dict[label_key][:] = Y_batch exe.forward(is_train=True) exe.backward() else: exe.forward(is_train=True) exe.backward(out_grad_f(exe.outputs, nd.array(Y_batch, ctx=dev))) for k in params: updater(k, params_grad[k], params[k]) if (i + 1) % 500 == 0: end = time.time() print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start)) sample_test_acc(exe, X=X_test, Y=Y_test, label_num=10, minibatch_size=100) start = time.time() return exe, params, params_grad
<SYSTEM_TASK:> Generate the implementation of SGLD <END_TASK> <USER_TASK:> Description: def SGLD(sym, X, Y, X_test, Y_test, total_iter_num, data_inputs=None, learning_rate=None, lr_scheduler=None, prior_precision=1, out_grad_f=None, initializer=None, minibatch_size=100, thin_interval=100, burn_in_iter_num=1000, task='classification', dev=mx.gpu()): """Generate the implementation of SGLD"""
if out_grad_f is None: label_key = list(set(data_inputs.keys()) - set(['data']))[0] exe, params, params_grad, _ = get_executor(sym, dev, data_inputs, initializer) optimizer = mx.optimizer.create('sgld', learning_rate=learning_rate, rescale_grad=X.shape[0] / minibatch_size, lr_scheduler=lr_scheduler, wd=prior_precision) updater = mx.optimizer.get_updater(optimizer) sample_pool = [] start = time.time() for i in range(total_iter_num): indices = numpy.random.randint(X.shape[0], size=minibatch_size) X_batch = X[indices] Y_batch = Y[indices] exe.arg_dict['data'][:] = X_batch if out_grad_f is None: exe.arg_dict[label_key][:] = Y_batch exe.forward(is_train=True) exe.backward() else: exe.forward(is_train=True) exe.backward(out_grad_f(exe.outputs, nd.array(Y_batch, ctx=dev))) for k in params: updater(k, params_grad[k], params[k]) if i < burn_in_iter_num: continue else: if (i - burn_in_iter_num) % thin_interval == 0: if optimizer.lr_scheduler is not None: lr = optimizer.lr_scheduler(optimizer.num_update) else: lr = learning_rate sample_pool.append([lr, copy_param(exe)]) if (i + 1) % 100000 == 0: end = time.time() if task == 'classification': print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start)) test_correct, test_total, test_acc = \ sample_test_acc(exe, sample_pool=sample_pool, X=X_test, Y=Y_test, label_num=10, minibatch_size=minibatch_size) print("Test %d/%d=%f" % (test_correct, test_total, test_acc)) else: print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start), "MSE:", sample_test_regression(exe=exe, sample_pool=sample_pool, X=X_test, Y=Y_test, minibatch_size=minibatch_size, save_path='regression_SGLD.txt')) start = time.time() return exe, sample_pool
<SYSTEM_TASK:> Get a list of architectures given our dockerfiles <END_TASK> <USER_TASK:> Description: def get_platforms(path: str = get_dockerfiles_path()) -> List[str]: """Get a list of architectures given our dockerfiles"""
dockerfiles = glob.glob(os.path.join(path, "Dockerfile.*")) dockerfiles = list(filter(lambda x: x[-1] != '~', dockerfiles)) files = list(map(lambda x: re.sub(r"Dockerfile.(.*)", r"\1", x), dockerfiles)) platforms = list(map(lambda x: os.path.split(x)[1], sorted(files))) return platforms
<SYSTEM_TASK:> Imports tagged container from the given docker registry <END_TASK> <USER_TASK:> Description: def load_docker_cache(tag, docker_registry) -> None: """Imports tagged container from the given docker registry"""
if docker_registry: # noinspection PyBroadException try: import docker_cache logging.info('Docker cache download is enabled from registry %s', docker_registry) docker_cache.load_docker_cache(registry=docker_registry, docker_tag=tag) except Exception: logging.exception('Unable to retrieve Docker cache. Continue without...') else: logging.info('Distributed docker cache disabled')
<SYSTEM_TASK:> Load data into sliced arrays. <END_TASK> <USER_TASK:> Description: def _load_data(batch, targets, major_axis): """Load data into sliced arrays."""
if isinstance(batch, list): new_batch = [] for i in range(len(targets)): new_batch.append([b.data[i] for b in batch]) new_targets = [[dst for _, dst in d_target] for d_target in targets] _load_general(new_batch, new_targets, major_axis) else: _load_general(batch.data, targets, major_axis)
<SYSTEM_TASK:> Merge outputs that lives on multiple context into one, so that they look <END_TASK> <USER_TASK:> Description: def _merge_multi_context(outputs, major_axis): """Merge outputs that lives on multiple context into one, so that they look like living on one context. """
rets = [] for tensors, axis in zip(outputs, major_axis): if axis >= 0: # pylint: disable=no-member,protected-access if len(tensors) == 1: rets.append(tensors[0]) else: # Concatenate if necessary rets.append(nd.concat(*[tensor.as_in_context(tensors[0].context) for tensor in tensors], dim=axis)) # pylint: enable=no-member,protected-access else: # negative axis means the there is no batch_size axis, and all the # results should be the same on each device. We simply take the # first one, without checking they are actually the same rets.append(tensors[0]) return rets
<SYSTEM_TASK:> Prepare the group2contexts, will duplicate the context <END_TASK> <USER_TASK:> Description: def _prepare_group2ctxs(group2ctxs, ctx_len): """Prepare the group2contexts, will duplicate the context if some ctx_group map to only one context. """
if group2ctxs is None: return [None] * ctx_len elif isinstance(group2ctxs, list): assert(len(group2ctxs) == ctx_len), "length of group2ctxs\ should be %d" % ctx_len return group2ctxs elif isinstance(group2ctxs, dict): ret = [{} for i in range(ctx_len)] for k, v in group2ctxs.items(): ctxs = None if isinstance(v, ctx.Context): ctxs = [v] * ctx_len else: if len(v) == 1: ctxs = v * ctx_len else: assert(len(v) == ctx_len), "length of group2ctxs[%s]\ should be %d or 1" % (k, ctx_len) ctxs = v for i in range(ctx_len): ret[i][k] = ctxs[i] return ret else: assert(False), "group2ctxs should be list of dict of str to context,\ or dict of str to context or list of context" return False
<SYSTEM_TASK:> Decide the slices for each context according to the workload. <END_TASK> <USER_TASK:> Description: def decide_slices(self, data_shapes): """Decide the slices for each context according to the workload. Parameters ---------- data_shapes : list list of (name, shape) specifying the shapes for the input data or label. """
assert len(data_shapes) > 0 major_axis = [DataDesc.get_batch_axis(x.layout) for x in data_shapes] for (name, shape), axis in zip(data_shapes, major_axis): if axis == -1: continue batch_size = shape[axis] if self.batch_size is not None: assert batch_size == self.batch_size, ("all data must have the same batch size: " + ("batch_size = %d, but " % self.batch_size) + ("%s has shape %s" % (name, shape))) else: self.batch_size = batch_size self.slices = _split_input_slice(self.batch_size, self.workload) return major_axis
<SYSTEM_TASK:> Bind executors on their respective devices. <END_TASK> <USER_TASK:> Description: def bind_exec(self, data_shapes, label_shapes, shared_group=None, reshape=False): """Bind executors on their respective devices. Parameters ---------- data_shapes : list label_shapes : list shared_group : DataParallelExecutorGroup reshape : bool """
assert reshape or not self.execs self.batch_size = None # calculate workload and bind executors self.data_layouts = self.decide_slices(data_shapes) if label_shapes is not None: # call it to make sure labels has the same batch size as data self.label_layouts = self.decide_slices(label_shapes) for i in range(len(self.contexts)): data_shapes_i = self._sliced_shape(data_shapes, i, self.data_layouts) if label_shapes is not None: label_shapes_i = self._sliced_shape(label_shapes, i, self.label_layouts) else: label_shapes_i = [] if reshape: self.execs[i] = self._default_execs[i].reshape( allow_up_sizing=True, **dict(data_shapes_i + label_shapes_i)) else: self.execs.append(self._bind_ith_exec(i, data_shapes_i, label_shapes_i, shared_group)) self.data_shapes = data_shapes self.label_shapes = label_shapes self.data_names = [i.name for i in self.data_shapes] if label_shapes is not None: self.label_names = [i.name for i in self.label_shapes] self._collect_arrays()
<SYSTEM_TASK:> Reshape executors. <END_TASK> <USER_TASK:> Description: def reshape(self, data_shapes, label_shapes): """Reshape executors. Parameters ---------- data_shapes : list label_shapes : list """
if data_shapes == self.data_shapes and label_shapes == self.label_shapes: return if self._default_execs is None: self._default_execs = [i for i in self.execs] self.bind_exec(data_shapes, label_shapes, reshape=True)
<SYSTEM_TASK:> Assign, i.e. copy parameters to all the executors. <END_TASK> <USER_TASK:> Description: def set_params(self, arg_params, aux_params, allow_extra=False): """Assign, i.e. copy parameters to all the executors. Parameters ---------- arg_params : dict A dictionary of name to `NDArray` parameter mapping. aux_params : dict A dictionary of name to `NDArray` auxiliary variable mapping. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. """
for exec_ in self.execs: exec_.copy_params_from(arg_params, aux_params, allow_extra_params=allow_extra)
<SYSTEM_TASK:> Copy data from each executor to `arg_params` and `aux_params`. <END_TASK> <USER_TASK:> Description: def get_params(self, arg_params, aux_params): """ Copy data from each executor to `arg_params` and `aux_params`. Parameters ---------- arg_params : list of NDArray Target parameter arrays. aux_params : list of NDArray Target aux arrays. Notes ----- - This function will inplace update the NDArrays in arg_params and aux_params. """
for name, block in zip(self.param_names, self.param_arrays): weight = sum(w.copyto(ctx.cpu()) for w in block) / len(block) weight.astype(arg_params[name].dtype).copyto(arg_params[name]) for name, block in zip(self.aux_names, self.aux_arrays): weight = sum(w.copyto(ctx.cpu()) for w in block) / len(block) weight.astype(aux_params[name].dtype).copyto(aux_params[name])
<SYSTEM_TASK:> Split `data_batch` according to workload and run forward on each devices. <END_TASK> <USER_TASK:> Description: def forward(self, data_batch, is_train=None): """Split `data_batch` according to workload and run forward on each devices. Parameters ---------- data_batch : DataBatch Or could be any object implementing similar interface. is_train : bool The hint for the backend, indicating whether we are during training phase. Default is `None`, then the value `self.for_training` will be used. Returns ------- """
_load_data(data_batch, self.data_arrays, self.data_layouts) if is_train is None: is_train = self.for_training if isinstance(data_batch, list): if self.label_arrays is not None and data_batch is not None and data_batch[0].label: _load_label(data_batch, self.label_arrays, self.label_layouts) else: if self.label_arrays is not None and data_batch.label: _load_label(data_batch, self.label_arrays, self.label_layouts) for exec_ in self.execs: exec_.forward(is_train=is_train)
<SYSTEM_TASK:> Get the shapes of the outputs. <END_TASK> <USER_TASK:> Description: def get_output_shapes(self): """Get the shapes of the outputs."""
outputs = self.execs[0].outputs shapes = [out.shape for out in outputs] concat_shapes = [] for key, the_shape, axis in zip(self.symbol.list_outputs(), shapes, self.output_layouts): the_shape = list(the_shape) if axis >= 0: the_shape[axis] = self.batch_size concat_shapes.append((key, tuple(the_shape))) return concat_shapes
<SYSTEM_TASK:> Get outputs of the previous forward computation. <END_TASK> <USER_TASK:> Description: def get_outputs(self, merge_multi_context=True, begin=0, end=None): """Get outputs of the previous forward computation. If begin or end is specified, return [begin, end)-th outputs, otherwise return all outputs. Parameters ---------- merge_multi_context : bool Default is `True`. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A `True` value indicate that we should merge the collected results so that they look like from a single executor. begin : int starting index of returned outputs in all outputs end : int or None ending index (excluded) of returned outputs. Returns ------- If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are `NDArray`. """
if end is None: end = self.num_outputs outputs = [[exec_.outputs[i] for exec_ in self.execs] for i in range(begin, end)] if merge_multi_context: outputs = _merge_multi_context(outputs, self.output_layouts) return outputs
<SYSTEM_TASK:> Set value for states. Only one of states & value can be specified. <END_TASK> <USER_TASK:> Description: def set_states(self, states=None, value=None): """Set value for states. Only one of states & value can be specified. Parameters ---------- states : list of list of NDArrays source states arrays formatted like [[state1_dev1, state1_dev2], [state2_dev1, state2_dev2]]. value : number a single scalar value for all state arrays. """
if states is not None: assert value is None, "Only one of states & value can be specified." _load_general(states, self.state_arrays, (0,)*len(states)) else: assert value is not None, "At least one of states & value must be specified." assert states is None, "Only one of states & value can be specified." for d_dst in self.state_arrays: for dst in d_dst: dst[:] = value
<SYSTEM_TASK:> Get the gradients with respect to the inputs of the module. <END_TASK> <USER_TASK:> Description: def get_input_grads(self, merge_multi_context=True): """Get the gradients with respect to the inputs of the module. Parameters ---------- merge_multi_context : bool Defaults to ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A `True` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- If `merge_multi_context` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output elements are `NDArray`. """
assert self.inputs_need_grad if merge_multi_context: return _merge_multi_context(self.input_grad_arrays, self.data_layouts) return self.input_grad_arrays
<SYSTEM_TASK:> Run backward on all devices. A backward should be called after <END_TASK> <USER_TASK:> Description: def backward(self, out_grads=None): """Run backward on all devices. A backward should be called after a call to the forward function. Backward cannot be called unless ``self.for_training`` is ``True``. Parameters ---------- out_grads : NDArray or list of NDArray, optional Gradient on the outputs to be propagated back. This parameter is only needed when bind is called on outputs that are not a loss function. """
assert self.for_training, 're-bind with for_training=True to run backward' if out_grads is None: out_grads = [] for i, (exec_, islice) in enumerate(zip(self.execs, self.slices)): out_grads_slice = [] for grad, axis in zip(out_grads, self.output_layouts): if axis >= 0: # pylint: disable=no-member og_my_slice = nd.slice_axis(grad, axis=axis, begin=islice.start, end=islice.stop) out_grads_slice.append(og_my_slice.as_in_context(self.contexts[i])) # pylint: enable=no-member else: out_grads_slice.append(grad.copyto(self.contexts[i])) exec_.backward(out_grads=out_grads_slice)
<SYSTEM_TASK:> Accumulate the performance according to `eval_metric` on all devices <END_TASK> <USER_TASK:> Description: def update_metric(self, eval_metric, labels, pre_sliced): """Accumulate the performance according to `eval_metric` on all devices by comparing outputs from [begin, end) to labels. By default use all outputs. Parameters ---------- eval_metric : EvalMetric The metric used for evaluation. labels : list of NDArray Typically comes from `label` of a `DataBatch`. pre_sliced : bool Whether labels are already sliced. begin : int Starting index of used outputs. end : int or None Ending index of used outputs. """
for current_exec, (texec, islice) in enumerate(zip(self.execs, self.slices)): if not pre_sliced: labels_slice = [] for label, axis in zip(labels, self.label_layouts): if axis == 0: # slicing NDArray along axis 0 can avoid copying labels_slice.append(label[islice]) elif axis > 0: # pylint: disable=no-member label_my_slice = nd.slice_axis(label, axis=axis, begin=islice.start, end=islice.stop).as_in_context(label.context) # pylint: enable=no-member labels_slice.append(label_my_slice) else: labels_slice.append(label) else: labels_slice = labels[current_exec] labels_ = OrderedDict(zip(self.label_names, labels_slice)) preds = OrderedDict(zip(self.output_names, texec.outputs)) eval_metric.update_dict(labels_, preds)
<SYSTEM_TASK:> Internal utility function to bind the i-th executor. <END_TASK> <USER_TASK:> Description: def _bind_ith_exec(self, i, data_shapes, label_shapes, shared_group): """Internal utility function to bind the i-th executor. This function utilizes simple_bind python interface. """
shared_exec = None if shared_group is None else shared_group.execs[i] context = self.contexts[i] shared_data_arrays = self.shared_data_arrays[i] input_shapes = dict(data_shapes) if label_shapes is not None: input_shapes.update(dict(label_shapes)) input_types = {x.name: x.dtype for x in data_shapes} if label_shapes is not None: input_types.update({x.name: x.dtype for x in label_shapes}) group2ctx = self.group2ctxs[i] executor = self.symbol.simple_bind(ctx=context, grad_req=self.grad_req, type_dict=input_types, shared_arg_names=self.param_names, shared_exec=shared_exec, group2ctx=group2ctx, shared_buffer=shared_data_arrays, **input_shapes) self._total_exec_bytes += int(executor.debug_str().split('\n')[-3].split()[1]) return executor
<SYSTEM_TASK:> Get the sliced shapes for the i-th executor. <END_TASK> <USER_TASK:> Description: def _sliced_shape(self, shapes, i, major_axis): """Get the sliced shapes for the i-th executor. Parameters ---------- shapes : list of (str, tuple) The original (name, shape) pairs. i : int Which executor we are dealing with. """
sliced_shapes = [] for desc, axis in zip(shapes, major_axis): shape = list(desc.shape) if axis >= 0: shape[axis] = self.slices[i].stop - self.slices[i].start sliced_shapes.append(DataDesc(desc.name, tuple(shape), desc.dtype, desc.layout)) return sliced_shapes
<SYSTEM_TASK:> Get the canonical name for a symbol. <END_TASK> <USER_TASK:> Description: def get(self, name, hint): """Get the canonical name for a symbol. This is the default implementation. If the user specifies a name, the user-specified name will be used. When user does not specify a name, we automatically generate a name based on the hint string. Parameters ---------- name : str or None The name specified by the user. hint : str A hint string, which can be used to generate name. Returns ------- full_name : str A canonical name for the symbol. """
if name: return name if hint not in self._counter: self._counter[hint] = 0 name = '%s%d' % (hint, self._counter[hint]) self._counter[hint] += 1 return name
<SYSTEM_TASK:> same as mx.model.load_checkpoint, but do not load symnet and will convert context <END_TASK> <USER_TASK:> Description: def load_param(params, ctx=None): """same as mx.model.load_checkpoint, but do not load symnet and will convert context"""
if ctx is None: ctx = mx.cpu() save_dict = mx.nd.load(params) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v.as_in_context(ctx) if tp == 'aux': aux_params[name] = v.as_in_context(ctx) return arg_params, aux_params
<SYSTEM_TASK:> Deprecated. Please use cell.unroll instead <END_TASK> <USER_TASK:> Description: def rnn_unroll(cell, length, inputs=None, begin_state=None, input_prefix='', layout='NTC'): """Deprecated. Please use cell.unroll instead"""
warnings.warn('rnn_unroll is deprecated. Please call cell.unroll directly.') return cell.unroll(length=length, inputs=inputs, begin_state=begin_state, input_prefix=input_prefix, layout=layout)
<SYSTEM_TASK:> Save checkpoint for model using RNN cells. <END_TASK> <USER_TASK:> Description: def save_rnn_checkpoint(cells, prefix, epoch, symbol, arg_params, aux_params): """Save checkpoint for model using RNN cells. Unpacks weight before saving. Parameters ---------- cells : mxnet.rnn.RNNCell or list of RNNCells The RNN cells used by this symbol. prefix : str Prefix of model name. epoch : int The epoch number of the model. symbol : Symbol The input symbol arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """
if isinstance(cells, BaseRNNCell): cells = [cells] for cell in cells: arg_params = cell.unpack_weights(arg_params) save_checkpoint(prefix, epoch, symbol, arg_params, aux_params)
<SYSTEM_TASK:> Load model checkpoint from file. <END_TASK> <USER_TASK:> Description: def load_rnn_checkpoint(cells, prefix, epoch): """Load model checkpoint from file. Pack weights after loading. Parameters ---------- cells : mxnet.rnn.RNNCell or list of RNNCells The RNN cells used by this symbol. prefix : str Prefix of model name. epoch : int Epoch number of model we would like to load. Returns ------- symbol : Symbol The symbol configuration of computation network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - symbol will be loaded from ``prefix-symbol.json``. - parameters will be loaded from ``prefix-epoch.params``. """
sym, arg, aux = load_checkpoint(prefix, epoch) if isinstance(cells, BaseRNNCell): cells = [cells] for cell in cells: arg = cell.pack_weights(arg) return sym, arg, aux
<SYSTEM_TASK:> Make a callback to checkpoint Module to prefix every epoch. <END_TASK> <USER_TASK:> Description: def do_rnn_checkpoint(cells, prefix, period=1): """Make a callback to checkpoint Module to prefix every epoch. unpacks weights used by cells before saving. Parameters ---------- cells : mxnet.rnn.RNNCell or list of RNNCells The RNN cells used by this symbol. prefix : str The file prefix to checkpoint to period : int How many epochs to wait before checkpointing. Default is 1. Returns ------- callback : function The callback function that can be passed as iter_end_callback to fit. """
period = int(max(1, period)) # pylint: disable=unused-argument def _callback(iter_no, sym=None, arg=None, aux=None): """The checkpoint function.""" if (iter_no + 1) % period == 0: save_rnn_checkpoint(cells, prefix, iter_no+1, sym, arg, aux) return _callback
<SYSTEM_TASK:> Activates or deactivates `HybridBlock` s recursively. Has no effect on <END_TASK> <USER_TASK:> Description: def hybridize(self, active=True, **kwargs): """Activates or deactivates `HybridBlock` s recursively. Has no effect on non-hybrid children. Parameters ---------- active : bool, default True Whether to turn hybrid on or off. **kwargs : string Additional flags for hybridized operator. """
if self._children and all(isinstance(c, HybridBlock) for c in self._children.values()): warnings.warn( "All children of this Sequential layer '%s' are HybridBlocks. Consider " "using HybridSequential for the best performance."%self.prefix, stacklevel=2) super(Sequential, self).hybridize(active, **kwargs)
<SYSTEM_TASK:> Reads image specified by path into numpy.ndarray <END_TASK> <USER_TASK:> Description: def read_img(path): """ Reads image specified by path into numpy.ndarray"""
img = cv2.resize(cv2.imread(path, 0), (80, 30)).astype(np.float32) / 255 img = np.expand_dims(img.transpose(1, 0), 0) return img
<SYSTEM_TASK:> Returns a tuple of names and zero arrays for LSTM init states <END_TASK> <USER_TASK:> Description: def lstm_init_states(batch_size): """ Returns a tuple of names and zero arrays for LSTM init states"""
hp = Hyperparams() init_shapes = lstm.init_states(batch_size=batch_size, num_lstm_layer=hp.num_lstm_layer, num_hidden=hp.num_hidden) init_names = [s[0] for s in init_shapes] init_arrays = [mx.nd.zeros(x[1]) for x in init_shapes] return init_names, init_arrays
<SYSTEM_TASK:> Loads the model from checkpoint specified by prefix and epoch, binds it <END_TASK> <USER_TASK:> Description: def load_module(prefix, epoch, data_names, data_shapes): """Loads the model from checkpoint specified by prefix and epoch, binds it to an executor, and sets its parameters and returns a mx.mod.Module """
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) # We don't need CTC loss for prediction, just a simple softmax will suffice. # We get the output of the layer just before the loss layer ('pred_fc') and add softmax on top pred_fc = sym.get_internals()['pred_fc_output'] sym = mx.sym.softmax(data=pred_fc) mod = mx.mod.Module(symbol=sym, context=mx.cpu(), data_names=data_names, label_names=None) mod.bind(for_training=False, data_shapes=data_shapes) mod.set_params(arg_params, aux_params, allow_missing=False) return mod
<SYSTEM_TASK:> Load libary by searching possible path. <END_TASK> <USER_TASK:> Description: def _load_lib(): """Load libary by searching possible path."""
lib_path = _find_lib_path() lib = ctypes.cdll.LoadLibrary(lib_path[0]) # DMatrix functions lib.MXGetLastError.restype = ctypes.c_char_p return lib
<SYSTEM_TASK:> Load ndarray file and return as list of numpy array. <END_TASK> <USER_TASK:> Description: def load_ndarray_file(nd_bytes): """Load ndarray file and return as list of numpy array. Parameters ---------- nd_bytes : str or bytes The internal ndarray bytes Returns ------- out : dict of str to numpy array or list of numpy array The output list or dict, depending on whether the saved type is list or dict. """
handle = NDListHandle() olen = mx_uint() nd_bytes = bytearray(nd_bytes) ptr = (ctypes.c_char * len(nd_bytes)).from_buffer(nd_bytes) _check_call(_LIB.MXNDListCreate( ptr, len(nd_bytes), ctypes.byref(handle), ctypes.byref(olen))) keys = [] arrs = [] for i in range(olen.value): key = ctypes.c_char_p() cptr = mx_float_p() pdata = ctypes.POINTER(mx_uint)() ndim = mx_uint() _check_call(_LIB.MXNDListGet( handle, mx_uint(i), ctypes.byref(key), ctypes.byref(cptr), ctypes.byref(pdata), ctypes.byref(ndim))) shape = tuple(pdata[:ndim.value]) dbuffer = (mx_float * np.prod(shape)).from_address(ctypes.addressof(cptr.contents)) ret = np.frombuffer(dbuffer, dtype=np.float32).reshape(shape) ret = np.array(ret, dtype=np.float32) keys.append(py_str(key.value)) arrs.append(ret) _check_call(_LIB.MXNDListFree(handle)) if len(keys) == 0 or len(keys[0]) == 0: return arrs else: return {keys[i] : arrs[i] for i in range(len(keys))}
<SYSTEM_TASK:> Perform forward to get the output. <END_TASK> <USER_TASK:> Description: def forward(self, **kwargs): """Perform forward to get the output. Parameters ---------- **kwargs Keyword arguments of input variable name to data. Examples -------- >>> predictor.forward(data=mydata) >>> out = predictor.get_output(0) """
for k, v in kwargs.items(): if not isinstance(v, np.ndarray): raise ValueError("Expect numpy ndarray as input") v = np.asarray(v, dtype=np.float32, order='C') _check_call(_LIB.MXPredSetInput( self.handle, c_str(k), v.ctypes.data_as(mx_float_p), mx_uint(v.size))) _check_call(_LIB.MXPredForward(self.handle))
<SYSTEM_TASK:> Change the input shape of the predictor. <END_TASK> <USER_TASK:> Description: def reshape(self, input_shapes): """Change the input shape of the predictor. Parameters ---------- input_shapes : dict of str to tuple The new shape of input data. Examples -------- >>> predictor.reshape({'data':data_shape_tuple}) """
indptr = [0] sdata = [] keys = [] for k, v in input_shapes.items(): if not isinstance(v, tuple): raise ValueError("Expect input_shapes to be dict str->tuple") keys.append(c_str(k)) sdata.extend(v) indptr.append(len(sdata)) new_handle = PredictorHandle() _check_call(_LIB.MXPredReshape( mx_uint(len(indptr) - 1), c_array(ctypes.c_char_p, keys), c_array(mx_uint, indptr), c_array(mx_uint, sdata), self.handle, ctypes.byref(new_handle))) _check_call(_LIB.MXPredFree(self.handle)) self.handle = new_handle
<SYSTEM_TASK:> Get the index-th output. <END_TASK> <USER_TASK:> Description: def get_output(self, index): """Get the index-th output. Parameters ---------- index : int The index of output. Returns ------- out : numpy array. The output array. """
pdata = ctypes.POINTER(mx_uint)() ndim = mx_uint() _check_call(_LIB.MXPredGetOutputShape( self.handle, index, ctypes.byref(pdata), ctypes.byref(ndim))) shape = tuple(pdata[:ndim.value]) data = np.empty(shape, dtype=np.float32) _check_call(_LIB.MXPredGetOutput( self.handle, mx_uint(index), data.ctypes.data_as(mx_float_p), mx_uint(data.size))) return data
<SYSTEM_TASK:> Begin an episode of a game instance. We can play the game for a maximum of <END_TASK> <USER_TASK:> Description: def begin_episode(self, max_episode_step=DEFAULT_MAX_EPISODE_STEP): """ Begin an episode of a game instance. We can play the game for a maximum of `max_episode_step` and after that, we are forced to restart """
if self.episode_step > self.max_episode_step or self.ale.game_over(): self.start() else: for i in range(self.screen_buffer_length): self.ale.act(0) self.ale.getScreenGrayscale(self.screen_buffer[i % self.screen_buffer_length, :, :]) self.max_episode_step = max_episode_step self.start_lives = self.ale.lives() self.episode_reward = 0 self.episode_step = 0
<SYSTEM_TASK:> Unrolls the recurrent cell for one time step. <END_TASK> <USER_TASK:> Description: def forward(self, inputs, states): """Unrolls the recurrent cell for one time step. Parameters ---------- inputs : sym.Variable Input symbol, 2D, of shape (batch_size * num_units). states : list of sym.Variable RNN state from previous step or the output of begin_state(). Returns ------- output : Symbol Symbol corresponding to the output from the RNN when unrolling for a single time step. states : list of Symbol The new state of this RNN after this unrolling. The type of this symbol is same as the output of `begin_state()`. This can be used as an input state to the next time step of this RNN. See Also -------- begin_state: This function can provide the states for the first time step. unroll: This function unrolls an RNN for a given number of (>=1) time steps. """
# pylint: disable= arguments-differ self._counter += 1 return super(RecurrentCell, self).forward(inputs, states)
<SYSTEM_TASK:> Check that all input names are in symbol's arguments. <END_TASK> <USER_TASK:> Description: def _check_input_names(symbol, names, typename, throw): """Check that all input names are in symbol's arguments."""
args = symbol.list_arguments() for name in names: if name in args: continue candidates = [arg for arg in args if not arg.endswith('_weight') and not arg.endswith('_bias') and not arg.endswith('_gamma') and not arg.endswith('_beta')] msg = "\033[91mYou created Module with Module(..., %s_names=%s) but " \ "input with name '%s' is not found in symbol.list_arguments(). " \ "Did you mean one of:\n\t%s\033[0m"%( typename, str(names), name, '\n\t'.join(candidates)) if throw: raise ValueError(msg) else: warnings.warn(msg)
<SYSTEM_TASK:> Check that input names matches input data descriptors. <END_TASK> <USER_TASK:> Description: def _check_names_match(data_names, data_shapes, name, throw): """Check that input names matches input data descriptors."""
actual = [x[0] for x in data_shapes] if sorted(data_names) != sorted(actual): msg = "Data provided by %s_shapes don't match names specified by %s_names (%s vs. %s)"%( name, name, str(data_shapes), str(data_names)) if throw: raise ValueError(msg) else: warnings.warn(msg)
<SYSTEM_TASK:> parse data_attrs into DataDesc format and check that names match <END_TASK> <USER_TASK:> Description: def _parse_data_desc(data_names, label_names, data_shapes, label_shapes): """parse data_attrs into DataDesc format and check that names match"""
data_shapes = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in data_shapes] _check_names_match(data_names, data_shapes, 'data', True) if label_shapes is not None: label_shapes = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in label_shapes] _check_names_match(label_names, label_shapes, 'label', False) else: _check_names_match(label_names, [], 'label', False) return data_shapes, label_shapes
<SYSTEM_TASK:> A convenient function that calls both ``forward`` and ``backward``. <END_TASK> <USER_TASK:> Description: def forward_backward(self, data_batch): """A convenient function that calls both ``forward`` and ``backward``."""
self.forward(data_batch, is_train=True) self.backward()
<SYSTEM_TASK:> Runs prediction on ``eval_data`` and evaluates the performance according to <END_TASK> <USER_TASK:> Description: def score(self, eval_data, eval_metric, num_batch=None, batch_end_callback=None, score_end_callback=None, reset=True, epoch=0, sparse_row_id_fn=None): """Runs prediction on ``eval_data`` and evaluates the performance according to the given ``eval_metric``. Checkout `Module Tutorial <http://mxnet.io/tutorials/basic/module.html>`_ to see a end-to-end use-case. Parameters ---------- eval_data : DataIter Evaluation data to run prediction on. eval_metric : EvalMetric or list of EvalMetrics Evaluation metric to use. num_batch : int Number of batches to run. Defaults to ``None``, indicating run until the `DataIter` finishes. batch_end_callback : function Could also be a list of functions. reset : bool Defaults to ``True``. Indicates whether we should reset `eval_data` before starting evaluating. epoch : int Defaults to 0. For compatibility, this will be passed to callbacks (if any). During training, this will correspond to the training epoch number. sparse_row_id_fn : A callback function The function takes `data_batch` as an input and returns a dict of str -> NDArray. The resulting dict is used for pulling row_sparse parameters from the kvstore, where the str key is the name of the param, and the value is the row id of the param to pull. Examples -------- >>> # An example of using score for prediction. >>> # Evaluate accuracy on val_dataiter >>> metric = mx.metric.Accuracy() >>> mod.score(val_dataiter, metric) >>> mod.score(val_dataiter, ['mse', 'acc']) """
assert self.binded and self.params_initialized if reset: eval_data.reset() if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) eval_metric.reset() actual_num_batch = 0 for nbatch, eval_batch in enumerate(eval_data): if num_batch is not None and nbatch == num_batch: break self.prepare(eval_batch, sparse_row_id_fn=sparse_row_id_fn) self.forward(eval_batch, is_train=False) if isinstance(eval_batch, list): self.update_metric(eval_metric, [eb.label for eb in eval_batch], pre_sliced=True) else: self.update_metric(eval_metric, eval_batch.label) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=nbatch, eval_metric=eval_metric, locals=locals()) for callback in _as_list(batch_end_callback): callback(batch_end_params) actual_num_batch += 1 if score_end_callback: params = BatchEndParam(epoch=epoch, nbatch=actual_num_batch, eval_metric=eval_metric, locals=locals()) for callback in _as_list(score_end_callback): callback(params) return eval_metric.get_name_value()
<SYSTEM_TASK:> Iterates over predictions. <END_TASK> <USER_TASK:> Description: def iter_predict(self, eval_data, num_batch=None, reset=True, sparse_row_id_fn=None): """Iterates over predictions. Examples -------- >>> for pred, i_batch, batch in module.iter_predict(eval_data): ... # pred is a list of outputs from the module ... # i_batch is a integer ... # batch is the data batch from the data iterator Parameters ---------- eval_data : DataIter Evaluation data to run prediction on. num_batch : int Default is ``None``, indicating running all the batches in the data iterator. reset : bool Default is ``True``, indicating whether we should reset the data iter before start doing prediction. sparse_row_id_fn : A callback function The function takes `data_batch` as an input and returns a dict of str -> NDArray. The resulting dict is used for pulling row_sparse parameters from the kvstore, where the str key is the name of the param, and the value is the row id of the param to pull. """
assert self.binded and self.params_initialized if reset: eval_data.reset() for nbatch, eval_batch in enumerate(eval_data): if num_batch is not None and nbatch == num_batch: break self.prepare(eval_batch, sparse_row_id_fn=sparse_row_id_fn) self.forward(eval_batch, is_train=False) pad = eval_batch.pad outputs = [out[0:out.shape[0]-pad] for out in self.get_outputs()] yield (outputs, nbatch, eval_batch)
<SYSTEM_TASK:> Runs prediction and collects the outputs. <END_TASK> <USER_TASK:> Description: def predict(self, eval_data, num_batch=None, merge_batches=True, reset=True, always_output_list=False, sparse_row_id_fn=None): """Runs prediction and collects the outputs. When `merge_batches` is ``True`` (by default), the return value will be a list ``[out1, out2, out3]``, where each element is formed by concatenating the outputs for all the mini-batches. When `always_output_list` is ``False`` (as by default), then in the case of a single output, `out1` is returned instead of ``[out1]``. When `merge_batches` is ``False``, the return value will be a nested list like ``[[out1_batch1, out2_batch1], [out1_batch2], ...]``. This mode is useful because in some cases (e.g. bucketing), the module does not necessarily produce the same number of outputs. The objects in the results have type `NDArray`. If you need to work with a numpy array, just call ``.asnumpy()`` on each `NDArray`. Parameters ---------- eval_data : DataIter or NDArray or numpy array Evaluation data to run prediction on. num_batch : int Defaults to ``None``, indicates running all the batches in the data iterator. merge_batches : bool Defaults to ``True``, see above for return values. reset : bool Defaults to ``True``, indicates whether we should reset the data iter before doing prediction. always_output_list : bool Defaults to ``False``, see above for return values. sparse_row_id_fn : A callback function The function takes `data_batch` as an input and returns a dict of str -> NDArray. The resulting dict is used for pulling row_sparse parameters from the kvstore, where the str key is the name of the param, and the value is the row id of the param to pull. Returns ------- list of NDArray or list of list of NDArray Prediction results. Examples -------- >>> # An example of using `predict` for prediction. >>> # Predict on the first 10 batches of val_dataiter >>> mod.predict(eval_data=val_dataiter, num_batch=10) """
assert self.binded and self.params_initialized if isinstance(eval_data, (ndarray.NDArray, np.ndarray)): if isinstance(eval_data, np.ndarray): eval_data = ndarray.array(eval_data) self.forward(DataBatch([eval_data])) return self.get_outputs()[0] if not isinstance(eval_data, DataIter): raise ValueError('eval_data must be of type NDArray or DataIter') if reset: eval_data.reset() output_list = [] for nbatch, eval_batch in enumerate(eval_data): if num_batch is not None and nbatch == num_batch: break self.prepare(eval_batch, sparse_row_id_fn=sparse_row_id_fn) self.forward(eval_batch, is_train=False) pad = eval_batch.pad outputs = [out[0:out.shape[0]-pad].copy() for out in self.get_outputs()] output_list.append(outputs) if len(output_list) == 0: return output_list if merge_batches: num_outputs = len(output_list[0]) for out in output_list: assert len(out) == num_outputs, \ 'Cannot merge batches, as num of outputs is not the same ' + \ 'in mini-batches. Maybe bucketing is used?' output_list2 = [ndarray.concatenate([out[i] for out in output_list]) for i in range(num_outputs)] if num_outputs == 1 and not always_output_list: return output_list2[0] return output_list2 return output_list
<SYSTEM_TASK:> Loads model parameters from file. <END_TASK> <USER_TASK:> Description: def load_params(self, fname): """Loads model parameters from file. Parameters ---------- fname : str Path to input param file. Examples -------- >>> # An example of loading module parameters. >>> mod.load_params('myfile') """
save_dict = ndarray.load(fname) arg_params = {} aux_params = {} for k, value in save_dict.items(): arg_type, name = k.split(':', 1) if arg_type == 'arg': arg_params[name] = value elif arg_type == 'aux': aux_params[name] = value else: raise ValueError("Invalid param file " + fname) self.set_params(arg_params, aux_params)
<SYSTEM_TASK:> Find MXNet included header files. <END_TASK> <USER_TASK:> Description: def find_include_path(): """Find MXNet included header files. Returns ------- incl_path : string Path to the header files. """
incl_from_env = os.environ.get('MXNET_INCLUDE_PATH') if incl_from_env: if os.path.isdir(incl_from_env): if not os.path.isabs(incl_from_env): logging.warning("MXNET_INCLUDE_PATH should be an absolute path, instead of: %s", incl_from_env) else: return incl_from_env else: logging.warning("MXNET_INCLUDE_PATH '%s' doesn't exist", incl_from_env) curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) # include path in pip package pip_incl_path = os.path.join(curr_path, 'include/') if os.path.isdir(pip_incl_path): return pip_incl_path else: # include path if build from source src_incl_path = os.path.join(curr_path, '../../include/') if os.path.isdir(src_incl_path): return src_incl_path else: raise RuntimeError('Cannot find the MXNet include path in either ' + pip_incl_path + ' or ' + src_incl_path + '\n')
<SYSTEM_TASK:> Generate a greyscale captcha image representing number string <END_TASK> <USER_TASK:> Description: def image(self, captcha_str): """Generate a greyscale captcha image representing number string Parameters ---------- captcha_str: str string a characters for captcha image Returns ------- numpy.ndarray Generated greyscale image in np.ndarray float type with values normalized to [0, 1] """
img = self.captcha.generate(captcha_str) img = np.fromstring(img.getvalue(), dtype='uint8') img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.h, self.w)) img = img.transpose(1, 0) img = np.multiply(img, 1 / 255.0) return img
<SYSTEM_TASK:> Registers a new optimizer. <END_TASK> <USER_TASK:> Description: def register(klass): """Registers a new optimizer. Once an optimizer is registered, we can create an instance of this optimizer with `create_optimizer` later. Examples -------- >>> @mx.optimizer.Optimizer.register ... class MyOptimizer(mx.optimizer.Optimizer): ... pass >>> optim = mx.optimizer.Optimizer.create_optimizer('MyOptimizer') >>> print(type(optim)) <class '__main__.MyOptimizer'> """
assert(isinstance(klass, type)) name = klass.__name__.lower() if name in Optimizer.opt_registry: warnings.warn('WARNING: New optimizer %s.%s is overriding ' 'existing optimizer %s.%s' % (klass.__module__, klass.__name__, Optimizer.opt_registry[name].__module__, Optimizer.opt_registry[name].__name__)) Optimizer.opt_registry[name] = klass return klass
<SYSTEM_TASK:> Instantiates an optimizer with a given name and kwargs. <END_TASK> <USER_TASK:> Description: def create_optimizer(name, **kwargs): """Instantiates an optimizer with a given name and kwargs. .. note:: We can use the alias `create` for ``Optimizer.create_optimizer``. Parameters ---------- name: str Name of the optimizer. Should be the name of a subclass of Optimizer. Case insensitive. kwargs: dict Parameters for the optimizer. Returns ------- Optimizer An instantiated optimizer. Examples -------- >>> sgd = mx.optimizer.Optimizer.create_optimizer('sgd') >>> type(sgd) <class 'mxnet.optimizer.SGD'> >>> adam = mx.optimizer.create('adam', learning_rate=.1) >>> type(adam) <class 'mxnet.optimizer.Adam'> """
if name.lower() in Optimizer.opt_registry: return Optimizer.opt_registry[name.lower()](**kwargs) else: raise ValueError('Cannot find optimizer %s' % name)
<SYSTEM_TASK:> Creates auxiliary state for a given weight, including FP32 high <END_TASK> <USER_TASK:> Description: def create_state_multi_precision(self, index, weight): """Creates auxiliary state for a given weight, including FP32 high precision copy if original weight is FP16. This method is provided to perform automatic mixed precision training for optimizers that do not support it themselves. Parameters ---------- index : int An unique index to identify the weight. weight : NDArray The weight. Returns ------- state : any obj The state associated with the weight. """
weight_master_copy = None if self.multi_precision and weight.dtype == numpy.float16: weight_master_copy = weight.astype(numpy.float32) return (weight_master_copy,) + (self.create_state(index, weight_master_copy),) if weight.dtype == numpy.float16 and not self.multi_precision: warnings.warn("Accumulating with float16 in optimizer can lead to " "poor accuracy or slow convergence. " "Consider using multi_precision=True option of the " "optimizer") return self.create_state(index, weight)
<SYSTEM_TASK:> Updates the given parameter using the corresponding gradient and state. <END_TASK> <USER_TASK:> Description: def update_multi_precision(self, index, weight, grad, state): """Updates the given parameter using the corresponding gradient and state. Mixed precision version. Parameters ---------- index : int The unique index of the parameter into the individual learning rates and weight decays. Learning rates and weight decay may be set via `set_lr_mult()` and `set_wd_mult()`, respectively. weight : NDArray The parameter to be updated. grad : NDArray The gradient of the objective with respect to this parameter. state : any obj The state returned by `create_state()`. """
if self.multi_precision and weight.dtype == numpy.float16: # Wrapper for mixed precision weight_master_copy = state[0] original_state = state[1] grad32 = grad.astype(numpy.float32) self.update(index, weight_master_copy, grad32, original_state) cast(weight_master_copy, dtype=weight.dtype, out=weight) else: self.update(index, weight, grad, state)
<SYSTEM_TASK:> Sets an individual learning rate multiplier for each parameter. <END_TASK> <USER_TASK:> Description: def set_lr_mult(self, args_lr_mult): """Sets an individual learning rate multiplier for each parameter. If you specify a learning rate multiplier for a parameter, then the learning rate for the parameter will be set as the product of the global learning rate `self.lr` and its multiplier. .. note:: The default learning rate multiplier of a `Variable` can be set with `lr_mult` argument in the constructor. Parameters ---------- args_lr_mult : dict of str/int to float For each of its key-value entries, the learning rate multipler for the parameter specified in the key will be set as the given value. You can specify the parameter with either its name or its index. If you use the name, you should pass `sym` in the constructor, and the name you specified in the key of `args_lr_mult` should match the name of the parameter in `sym`. If you use the index, it should correspond to the index of the parameter used in the `update` method. Specifying a parameter by its index is only supported for backward compatibility, and we recommend to use the name instead. """
self.lr_mult = {} if self.sym_info: attr, arg_names = self.sym_info for name in arg_names: if name in attr and '__lr_mult__' in attr[name]: self.lr_mult[name] = float(attr[name]['__lr_mult__']) self.lr_mult.update(args_lr_mult)
<SYSTEM_TASK:> Sets an individual weight decay multiplier for each parameter. <END_TASK> <USER_TASK:> Description: def set_wd_mult(self, args_wd_mult): """Sets an individual weight decay multiplier for each parameter. By default, if `param_idx2name` was provided in the constructor, the weight decay multipler is set as 0 for all parameters whose name don't end with ``_weight`` or ``_gamma``. .. note:: The default weight decay multiplier for a `Variable` can be set with its `wd_mult` argument in the constructor. Parameters ---------- args_wd_mult : dict of string/int to float For each of its key-value entries, the weight decay multipler for the parameter specified in the key will be set as the given value. You can specify the parameter with either its name or its index. If you use the name, you should pass `sym` in the constructor, and the name you specified in the key of `args_lr_mult` should match the name of the parameter in `sym`. If you use the index, it should correspond to the index of the parameter used in the `update` method. Specifying a parameter by its index is only supported for backward compatibility, and we recommend to use the name instead. """
self.wd_mult = {} for n in self.idx2name.values(): if not (n.endswith('_weight') or n.endswith('_gamma')): self.wd_mult[n] = 0.0 if self.sym_info: attr, arg_names = self.sym_info for name in arg_names: if name in attr and '__wd_mult__' in attr[name]: self.wd_mult[name] = float(attr[name]['__wd_mult__']) self.wd_mult.update(args_wd_mult)
<SYSTEM_TASK:> Sets the number of the currently handled device. <END_TASK> <USER_TASK:> Description: def _set_current_context(self, device_id): """Sets the number of the currently handled device. Parameters ---------- device_id : int The number of current device. """
if device_id not in self._all_index_update_counts: self._all_index_update_counts[device_id] = {} self._index_update_count = self._all_index_update_counts[device_id]
<SYSTEM_TASK:> Gets the learning rates given the indices of the weights. <END_TASK> <USER_TASK:> Description: def _get_lrs(self, indices): """Gets the learning rates given the indices of the weights. Parameters ---------- indices : list of int Indices corresponding to weights. Returns ------- lrs : list of float Learning rates for those indices. """
if self.lr_scheduler is not None: lr = self.lr_scheduler(self.num_update) else: lr = self.lr lrs = [lr for _ in indices] for i, index in enumerate(indices): if index in self.param_dict: lrs[i] *= self.param_dict[index].lr_mult elif index in self.lr_mult: lrs[i] *= self.lr_mult[index] elif index in self.idx2name: lrs[i] *= self.lr_mult.get(self.idx2name[index], 1.0) return lrs
<SYSTEM_TASK:> Gets updater states. <END_TASK> <USER_TASK:> Description: def get_states(self, dump_optimizer=False): """Gets updater states. Parameters ---------- dump_optimizer : bool, default False Whether to also save the optimizer itself. This would also save optimizer information such as learning rate and weight decay schedules. """
return pickle.dumps((self.states, self.optimizer) if dump_optimizer else self.states)
<SYSTEM_TASK:> Read from frames <END_TASK> <USER_TASK:> Description: def from_frames(self, path): """ Read from frames """
frames_path = sorted([os.path.join(path, x) for x in os.listdir(path)]) frames = [ndimage.imread(frame_path) for frame_path in frames_path] self.handle_type(frames) return self
<SYSTEM_TASK:> Read from videos <END_TASK> <USER_TASK:> Description: def from_video(self, path): """ Read from videos """
frames = self.get_video_frames(path) self.handle_type(frames) return self
<SYSTEM_TASK:> Preprocess from frames using face detector <END_TASK> <USER_TASK:> Description: def process_frames_face(self, frames): """ Preprocess from frames using face detector """
detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(self.face_predictor_path) mouth_frames = self.get_frames_mouth(detector, predictor, frames) self.face = np.array(frames) self.mouth = np.array(mouth_frames) if mouth_frames[0] is not None: self.set_data(mouth_frames)
<SYSTEM_TASK:> Preprocess from frames using mouth detector <END_TASK> <USER_TASK:> Description: def process_frames_mouth(self, frames): """ Preprocess from frames using mouth detector """
self.face = np.array(frames) self.mouth = np.array(frames) self.set_data(frames)
<SYSTEM_TASK:> Get frames using mouth crop <END_TASK> <USER_TASK:> Description: def get_frames_mouth(self, detector, predictor, frames): """ Get frames using mouth crop """
mouth_width = 100 mouth_height = 50 horizontal_pad = 0.19 normalize_ratio = None mouth_frames = [] for frame in frames: dets = detector(frame, 1) shape = None for det in dets: shape = predictor(frame, det) i = -1 if shape is None: # Detector doesn't detect face, just return None return [None] mouth_points = [] for part in shape.parts(): i += 1 if i < 48: # Only take mouth region continue mouth_points.append((part.x, part.y)) np_mouth_points = np.array(mouth_points) mouth_centroid = np.mean(np_mouth_points[:, -2:], axis=0) if normalize_ratio is None: mouth_left = np.min(np_mouth_points[:, :-1]) * (1.0 - horizontal_pad) mouth_right = np.max(np_mouth_points[:, :-1]) * (1.0 + horizontal_pad) normalize_ratio = mouth_width / float(mouth_right - mouth_left) new_img_shape = (int(frame.shape[0] * normalize_ratio), int(frame.shape[1] * normalize_ratio)) resized_img = imresize(frame, new_img_shape) mouth_centroid_norm = mouth_centroid * normalize_ratio mouth_l = int(mouth_centroid_norm[0] - mouth_width / 2) mouth_r = int(mouth_centroid_norm[0] + mouth_width / 2) mouth_t = int(mouth_centroid_norm[1] - mouth_height / 2) mouth_b = int(mouth_centroid_norm[1] + mouth_height / 2) mouth_crop_image = resized_img[mouth_t:mouth_b, mouth_l:mouth_r] mouth_frames.append(mouth_crop_image) return mouth_frames
<SYSTEM_TASK:> Not necessary in practice <END_TASK> <USER_TASK:> Description: def imagenet_clamp_batch(batch, low, high): """ Not necessary in practice """
F.clip(batch[:,0,:,:],low-123.680, high-123.680) F.clip(batch[:,1,:,:],low-116.779, high-116.779) F.clip(batch[:,2,:,:],low-103.939, high-103.939)
<SYSTEM_TASK:> Function to evaluate accuracy of any data iterator passed to it as an argument <END_TASK> <USER_TASK:> Description: def evaluate_accuracy(data_iterator, net): """Function to evaluate accuracy of any data iterator passed to it as an argument"""
acc = mx.metric.Accuracy() for data, label in data_iterator: output = net(data) predictions = nd.argmax(output, axis=1) predictions = predictions.reshape((-1, 1)) acc.update(preds=predictions, labels=label) return acc.get()[1]
<SYSTEM_TASK:> Set size limit on bulk execution. <END_TASK> <USER_TASK:> Description: def set_bulk_size(size): """Set size limit on bulk execution. Bulk execution bundles many operators to run together. This can improve performance when running a lot of small operators sequentially. Parameters ---------- size : int Maximum number of operators that can be bundled in a bulk. Returns ------- int Previous bulk size. """
prev = ctypes.c_int() check_call(_LIB.MXEngineSetBulkSize( ctypes.c_int(size), ctypes.byref(prev))) return prev.value
<SYSTEM_TASK:> calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars <END_TASK> <USER_TASK:> Description: def applyLM(parentBeam, childBeam, classes, lm): """ calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars """
if lm and not childBeam.lmApplied: c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char c2 = classes[childBeam.labeling[-1]] # second char lmFactor = 0.01 # influence of language model bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence childBeam.lmApplied = True
<SYSTEM_TASK:> add beam if it does not yet exist <END_TASK> <USER_TASK:> Description: def addBeam(beamState, labeling): """ add beam if it does not yet exist """
if labeling not in beamState.entries: beamState.entries[labeling] = BeamEntry()
<SYSTEM_TASK:> beam search as described by the paper of Hwang et al. and the paper of Graves et al. <END_TASK> <USER_TASK:> Description: def ctcBeamSearch(mat, classes, lm, k, beamWidth): """ beam search as described by the paper of Hwang et al. and the paper of Graves et al. """
blankIdx = len(classes) maxT, maxC = mat.shape # initialise beam state last = BeamState() labeling = () last.entries[labeling] = BeamEntry() last.entries[labeling].prBlank = 1 last.entries[labeling].prTotal = 1 # go over all time-steps for t in range(maxT): curr = BeamState() # get beam-labelings of best beams bestLabelings = last.sort()[0:beamWidth] # go over best beams for labeling in bestLabelings: # probability of paths ending with a non-blank prNonBlank = 0 # in case of non-empty beam if labeling: # probability of paths with repeated last char at the end try: prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]] except FloatingPointError: prNonBlank = 0 # probability of paths ending with a blank prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx] # add beam at current time-step if needed addBeam(curr, labeling) # fill in data curr.entries[labeling].labeling = labeling curr.entries[labeling].prNonBlank += prNonBlank curr.entries[labeling].prBlank += prBlank curr.entries[labeling].prTotal += prBlank + prNonBlank curr.entries[labeling].prText = last.entries[labeling].prText # beam-labeling not changed, therefore also LM score unchanged from curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling # extend current beam-labeling for c in range(maxC - 1): # add new char to current beam-labeling newLabeling = labeling + (c,) # if new labeling contains duplicate char at the end, only consider paths ending with a blank if labeling and labeling[-1] == c: prNonBlank = mat[t, c] * last.entries[labeling].prBlank else: prNonBlank = mat[t, c] * last.entries[labeling].prTotal # add beam at current time-step if needed addBeam(curr, newLabeling) # fill in data curr.entries[newLabeling].labeling = newLabeling curr.entries[newLabeling].prNonBlank += prNonBlank curr.entries[newLabeling].prTotal += prNonBlank # apply LM applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm) # set new beam state last = curr # normalise LM scores according to beam-labeling-length last.norm() # sort by probability bestLabelings = last.sort()[:k] # get most probable labeling output = [] for bestLabeling in bestLabelings: # map labels to chars res = '' for l in bestLabeling: res += classes[l] output.append(res) return output
<SYSTEM_TASK:> return beam-labelings, sorted by probability <END_TASK> <USER_TASK:> Description: def sort(self): """ return beam-labelings, sorted by probability """
beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) return [x.labeling for x in sortedBeams]
<SYSTEM_TASK:> the localisation network in lenet-stn, it will increase acc about more than 1%, <END_TASK> <USER_TASK:> Description: def get_loc(data, attr={'lr_mult':'0.01'}): """ the localisation network in lenet-stn, it will increase acc about more than 1%, when num-epoch >=15 """
loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2)) loc = mx.symbol.Activation(data = loc, act_type='relu') loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type='max') loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1)) loc = mx.symbol.Activation(data = loc, act_type='relu') loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type='avg') loc = mx.symbol.Flatten(data=loc) loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr) return loc
<SYSTEM_TASK:> wrapper for initialize a detector <END_TASK> <USER_TASK:> Description: def get_detector(net, prefix, epoch, data_shape, mean_pixels, ctx, num_class, nms_thresh=0.5, force_nms=True, nms_topk=400): """ wrapper for initialize a detector Parameters: ---------- net : str test network name prefix : str load model prefix epoch : int load model epoch data_shape : int resize image shape mean_pixels : tuple (float, float, float) mean pixel values (R, G, B) ctx : mx.ctx running context, mx.cpu() or mx.gpu(?) num_class : int number of classes nms_thresh : float non-maximum suppression threshold force_nms : bool force suppress different categories """
if net is not None: if isinstance(data_shape, tuple): data_shape = data_shape[0] net = get_symbol(net, data_shape, num_classes=num_class, nms_thresh=nms_thresh, force_nms=force_nms, nms_topk=nms_topk) detector = Detector(net, prefix, epoch, data_shape, mean_pixels, ctx=ctx) return detector
<SYSTEM_TASK:> Parse string to tuple or int <END_TASK> <USER_TASK:> Description: def parse_data_shape(data_shape_str): """Parse string to tuple or int"""
ds = data_shape_str.strip().split(',') if len(ds) == 1: data_shape = (int(ds[0]), int(ds[0])) elif len(ds) == 2: data_shape = (int(ds[0]), int(ds[1])) else: raise ValueError("Unexpected data_shape: %s", data_shape_str) return data_shape
<SYSTEM_TASK:> A lenet style net, takes difference of each frame as input. <END_TASK> <USER_TASK:> Description: def get_lenet(): """ A lenet style net, takes difference of each frame as input. """
source = mx.sym.Variable("data") source = (source - 128) * (1.0/128) frames = mx.sym.SliceChannel(source, num_outputs=30) diffs = [frames[i+1] - frames[i] for i in range(29)] source = mx.sym.Concat(*diffs) net = mx.sym.Convolution(source, kernel=(5, 5), num_filter=40) net = mx.sym.BatchNorm(net, fix_gamma=True) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(net, pool_type="max", kernel=(2,2), stride=(2,2)) net = mx.sym.Convolution(net, kernel=(3, 3), num_filter=40) net = mx.sym.BatchNorm(net, fix_gamma=True) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(net, pool_type="max", kernel=(2,2), stride=(2,2)) # first fullc flatten = mx.symbol.Flatten(net) flatten = mx.symbol.Dropout(flatten) fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=600) # Name the final layer as softmax so it auto matches the naming of data iterator # Otherwise we can also change the provide_data in the data iter return mx.symbol.LogisticRegressionOutput(data=fc1, name='softmax')
<SYSTEM_TASK:> Run encoding to encode the label into the CDF target. <END_TASK> <USER_TASK:> Description: def encode_label(label_data): """Run encoding to encode the label into the CDF target. """
systole = label_data[:, 1] diastole = label_data[:, 2] systole_encode = np.array([ (x < np.arange(600)) for x in systole ], dtype=np.uint8) diastole_encode = np.array([ (x < np.arange(600)) for x in diastole ], dtype=np.uint8) return systole_encode, diastole_encode
<SYSTEM_TASK:> Run a for loop with user-defined computation over NDArrays on dimension 0. <END_TASK> <USER_TASK:> Description: def foreach(body, data, init_states): """Run a for loop with user-defined computation over NDArrays on dimension 0. This operator simulates a for loop and body has the computation for an iteration of the for loop. It runs the computation in body on each slice from the input NDArrays. body takes two arguments as input and outputs a tuple of two elements, as illustrated below:: out, states = body(data1, states) data1 can be either an NDArray or a list of NDArrays. If data is an NDArray, data1 is an NDArray. Otherwise, data1 is a list of NDArrays and has the same size as data. states is a list of NDArrays and have the same size as init_states. Similarly, out can be either an NDArray or a list of NDArrays, which are concatenated as the first output of foreach; states from the last execution of body are the second output of foreach. The computation done by this operator is equivalent to the pseudo code below when the input data is NDArray:: states = init_states outs = [] for i in data.shape[0]: s = data[i] out, states = body(s, states) outs.append(out) outs = stack(*outs) Parameters ---------- body : a Python function. Define computation in an iteration. data: an NDArray or a list of NDArrays. The input data. init_states: an NDArray or nested lists of NDArrays. The initial values of the loop states. name: string. The name of the operator. Returns ------- outputs: an NDArray or nested lists of NDArrays. The output data concatenated from the output of all iterations. states: an NDArray or nested lists of NDArrays. The loop states in the last iteration. Examples -------- >>> step = lambda data, states: (data + states[0], [states[0] * 2]) >>> data = mx.nd.random.uniform(shape=(2, 10)) >>> states = [mx.nd.random.uniform(shape=(10))] >>> outs, states = mx.nd.contrib.foreach(step, data, states) """
def check_input(inputs, in_type, msg): is_NDArray_or_list = True if isinstance(inputs, list): for i in inputs: if not isinstance(i, in_type): is_NDArray_or_list = False break else: is_NDArray_or_list = isinstance(inputs, in_type) assert is_NDArray_or_list, msg flatten, _ = _flatten(data, "foreach input") check_input(flatten, ndarray.NDArray, "data should be an NDArray or a nested list of NDArrays") flatten, _ = _flatten(init_states, "foreach states") check_input(flatten, ndarray.NDArray, "init_states should be an NDArray or a nested list of NDArrays") not_data_list = isinstance(data, ndarray.NDArray) num_iters = data.shape[0] if not_data_list else data[0].shape[0] states = init_states outputs = [] for i in range(num_iters): if not_data_list: eles = data[i] else: eles = [d[i] for d in data] outs, states = body(eles, states) outs, out_fmt = _flatten(outs, "foreach output") outputs.append(outs) outputs = zip(*outputs) tmp_outputs = [] for out in outputs: tmp_outputs.append(ndarray.op.stack(*out)) outputs = tmp_outputs outputs, _ = _regroup(outputs, out_fmt) return (outputs, states)
<SYSTEM_TASK:> Performs an element-wise check to determine if the NDArray contains an infinite element <END_TASK> <USER_TASK:> Description: def isfinite(data): """Performs an element-wise check to determine if the NDArray contains an infinite element or not. Parameters ---------- input : NDArray An N-D NDArray. Returns ------- output: NDArray The output NDarray, with same shape as input, where 1 indicates the array element is finite i.e. not equal to positive or negative infinity and 0 in places where it is positive or negative infinity. Examples -------- >>> data = mx.nd.array([np.inf, -np.inf, np.NINF, -1]) >>> output = mx.nd.contrib.isfinite(data) >>> output [0. 0. 0. 1.] <NDArray 4 @cpu(0)> """
is_data_not_nan = data == data is_data_not_infinite = data.abs() != np.inf return ndarray.logical_and(is_data_not_infinite, is_data_not_nan)
<SYSTEM_TASK:> Get distance matrix given a matrix. Used in testing. <END_TASK> <USER_TASK:> Description: def get_distance_matrix(x): """Get distance matrix given a matrix. Used in testing."""
square = nd.sum(x ** 2.0, axis=1, keepdims=True) distance_square = square + square.transpose() - (2.0 * nd.dot(x, x.transpose())) return nd.sqrt(distance_square)
<SYSTEM_TASK:> Evaluate embeddings based on Recall@k. <END_TASK> <USER_TASK:> Description: def evaluate_emb(emb, labels): """Evaluate embeddings based on Recall@k."""
d_mat = get_distance_matrix(emb) d_mat = d_mat.asnumpy() labels = labels.asnumpy() names = [] accs = [] for k in [1, 2, 4, 8, 16]: names.append('Recall@%d' % k) correct, cnt = 0.0, 0.0 for i in range(emb.shape[0]): d_mat[i, i] = 1e10 nns = argpartition(d_mat[i], k)[:k] if any(labels[i] == labels[nn] for nn in nns): correct += 1 cnt += 1 accs.append(correct/cnt) return names, accs
<SYSTEM_TASK:> Get learning rate based on schedule. <END_TASK> <USER_TASK:> Description: def get_lr(lr, epoch, steps, factor): """Get learning rate based on schedule."""
for s in steps: if epoch >= s: lr *= factor return lr
<SYSTEM_TASK:> Adds Symbol.contrib.ctc_loss on top of pred symbol and returns the resulting symbol <END_TASK> <USER_TASK:> Description: def _add_warp_ctc_loss(pred, seq_len, num_label, label): """ Adds Symbol.contrib.ctc_loss on top of pred symbol and returns the resulting symbol """
label = mx.sym.Reshape(data=label, shape=(-1,)) label = mx.sym.Cast(data=label, dtype='int32') return mx.sym.WarpCTC(data=pred, label=label, label_length=num_label, input_length=seq_len)
<SYSTEM_TASK:> Adds Symbol.WapCTC on top of pred symbol and returns the resulting symbol <END_TASK> <USER_TASK:> Description: def _add_mxnet_ctc_loss(pred, seq_len, label): """ Adds Symbol.WapCTC on top of pred symbol and returns the resulting symbol """
pred_ctc = mx.sym.Reshape(data=pred, shape=(-4, seq_len, -1, 0)) loss = mx.sym.contrib.ctc_loss(data=pred_ctc, label=label) ctc_loss = mx.sym.MakeLoss(loss) softmax_class = mx.symbol.SoftmaxActivation(data=pred) softmax_loss = mx.sym.MakeLoss(softmax_class) softmax_loss = mx.sym.BlockGrad(softmax_loss) return mx.sym.Group([softmax_loss, ctc_loss])
<SYSTEM_TASK:> Adds CTC loss on top of pred symbol and returns the resulting symbol <END_TASK> <USER_TASK:> Description: def _add_ctc_loss(pred, seq_len, num_label, loss_type): """ Adds CTC loss on top of pred symbol and returns the resulting symbol """
label = mx.sym.Variable('label') if loss_type == 'warpctc': print("Using WarpCTC Loss") sm = _add_warp_ctc_loss(pred, seq_len, num_label, label) else: print("Using MXNet CTC Loss") assert loss_type == 'ctc' sm = _add_mxnet_ctc_loss(pred, seq_len, label) return sm