text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Opens a txt file at the given path where user can add and save notes. <END_TASK> <USER_TASK:> Description: def add_note(path, filename="note.txt"): """Opens a txt file at the given path where user can add and save notes. Args: path (str): Directory where note will be saved. filename (str): Name of note. Defaults to "note.txt" """
path = os.path.expanduser(path) assert os.path.isdir(path), "{} is not a valid directory.".format(path) filepath = os.path.join(path, filename) exists = os.path.isfile(filepath) try: subprocess.call([EDITOR, filepath]) except Exception as exc: logger.error("Editing note failed!") raise exc if exists: print("Note updated at:", filepath) else: print("Note created at:", filepath)
<SYSTEM_TASK:> Rest API to query the job info, with the given job_id. <END_TASK> <USER_TASK:> Description: def query_job(request): """Rest API to query the job info, with the given job_id. The url pattern should be like this: curl http://<server>:<port>/query_job?job_id=<job_id> The response may be: { "running_trials": 0, "start_time": "2018-07-19 20:49:40", "current_round": 1, "failed_trials": 0, "best_trial_id": "2067R2ZD", "name": "asynchyperband_test", "job_id": "asynchyperband_test", "user": "Grady", "type": "RAY TUNE", "total_trials": 4, "end_time": "2018-07-19 20:50:10", "progress": 100, "success_trials": 4 } """
job_id = request.GET.get("job_id") jobs = JobRecord.objects.filter(job_id=job_id) trials = TrialRecord.objects.filter(job_id=job_id) total_num = len(trials) running_num = sum(t.trial_status == Trial.RUNNING for t in trials) success_num = sum(t.trial_status == Trial.TERMINATED for t in trials) failed_num = sum(t.trial_status == Trial.ERROR for t in trials) if total_num == 0: progress = 0 else: progress = int(float(success_num) / total_num * 100) if len(jobs) == 0: resp = "Unkonwn job id %s.\n" % job_id else: job = jobs[0] result = { "job_id": job.job_id, "name": job.name, "user": job.user, "type": job.type, "start_time": job.start_time, "end_time": job.end_time, "success_trials": success_num, "failed_trials": failed_num, "running_trials": running_num, "total_trials": total_num, "best_trial_id": job.best_trial_id, "progress": progress } resp = json.dumps(result) return HttpResponse(resp, content_type="application/json;charset=utf-8")
<SYSTEM_TASK:> Rest API to query the trial info, with the given trial_id. <END_TASK> <USER_TASK:> Description: def query_trial(request): """Rest API to query the trial info, with the given trial_id. The url pattern should be like this: curl http://<server>:<port>/query_trial?trial_id=<trial_id> The response may be: { "app_url": "None", "trial_status": "TERMINATED", "params": {'a': 1, 'b': 2}, "job_id": "asynchyperband_test", "end_time": "2018-07-19 20:49:44", "start_time": "2018-07-19 20:49:40", "trial_id": "2067R2ZD", } """
trial_id = request.GET.get("trial_id") trials = TrialRecord.objects \ .filter(trial_id=trial_id) \ .order_by("-start_time") if len(trials) == 0: resp = "Unkonwn trial id %s.\n" % trials else: trial = trials[0] result = { "trial_id": trial.trial_id, "job_id": trial.job_id, "trial_status": trial.trial_status, "start_time": trial.start_time, "end_time": trial.end_time, "params": trial.params } resp = json.dumps(result) return HttpResponse(resp, content_type="application/json;charset=utf-8")
<SYSTEM_TASK:> Callback for early stopping. <END_TASK> <USER_TASK:> Description: def on_trial_result(self, trial_runner, trial, result): """Callback for early stopping. This stopping rule stops a running trial if the trial's best objective value by step `t` is strictly worse than the median of the running averages of all completed trials' objectives reported up to step `t`. """
if trial in self._stopped_trials: assert not self._hard_stop return TrialScheduler.CONTINUE # fall back to FIFO time = result[self._time_attr] self._results[trial].append(result) median_result = self._get_median_result(time) best_result = self._best_result(trial) if self._verbose: logger.info("Trial {} best res={} vs median res={} at t={}".format( trial, best_result, median_result, time)) if best_result < median_result and time > self._grace_period: if self._verbose: logger.info("MedianStoppingRule: " "early stopping {}".format(trial)) self._stopped_trials.add(trial) if self._hard_stop: return TrialScheduler.STOP else: return TrialScheduler.PAUSE else: return TrialScheduler.CONTINUE
<SYSTEM_TASK:> Marks trial as completed if it is paused and has previously ran. <END_TASK> <USER_TASK:> Description: def on_trial_remove(self, trial_runner, trial): """Marks trial as completed if it is paused and has previously ran."""
if trial.status is Trial.PAUSED and trial in self._results: self._completed_trials.add(trial)
<SYSTEM_TASK:> Build a Trial instance from a json string. <END_TASK> <USER_TASK:> Description: def from_json(cls, json_info): """Build a Trial instance from a json string."""
if json_info is None: return None return TrialRecord( trial_id=json_info["trial_id"], job_id=json_info["job_id"], trial_status=json_info["status"], start_time=json_info["start_time"], params=json_info["params"])
<SYSTEM_TASK:> Given a rollout, compute its value targets and the advantage. <END_TASK> <USER_TASK:> Description: def compute_advantages(rollout, last_r, gamma=0.9, lambda_=1.0, use_gae=True): """Given a rollout, compute its value targets and the advantage. Args: rollout (SampleBatch): SampleBatch of a single trajectory last_r (float): Value estimation for last observation gamma (float): Discount factor. lambda_ (float): Parameter for GAE use_gae (bool): Using Generalized Advantage Estamation Returns: SampleBatch (SampleBatch): Object with experience from rollout and processed rewards. """
traj = {} trajsize = len(rollout[SampleBatch.ACTIONS]) for key in rollout: traj[key] = np.stack(rollout[key]) if use_gae: assert SampleBatch.VF_PREDS in rollout, "Values not found!" vpred_t = np.concatenate( [rollout[SampleBatch.VF_PREDS], np.array([last_r])]) delta_t = ( traj[SampleBatch.REWARDS] + gamma * vpred_t[1:] - vpred_t[:-1]) # This formula for the advantage comes # "Generalized Advantage Estimation": https://arxiv.org/abs/1506.02438 traj[Postprocessing.ADVANTAGES] = discount(delta_t, gamma * lambda_) traj[Postprocessing.VALUE_TARGETS] = ( traj[Postprocessing.ADVANTAGES] + traj[SampleBatch.VF_PREDS]).copy().astype(np.float32) else: rewards_plus_v = np.concatenate( [rollout[SampleBatch.REWARDS], np.array([last_r])]) traj[Postprocessing.ADVANTAGES] = discount(rewards_plus_v, gamma)[:-1] # TODO(ekl): support using a critic without GAE traj[Postprocessing.VALUE_TARGETS] = np.zeros_like( traj[Postprocessing.ADVANTAGES]) traj[Postprocessing.ADVANTAGES] = traj[ Postprocessing.ADVANTAGES].copy().astype(np.float32) assert all(val.shape[0] == trajsize for val in traj.values()), \ "Rollout stacked incorrectly!" return SampleBatch(traj)
<SYSTEM_TASK:> Handle an xray heartbeat batch message from Redis. <END_TASK> <USER_TASK:> Description: def xray_heartbeat_batch_handler(self, unused_channel, data): """Handle an xray heartbeat batch message from Redis."""
gcs_entries = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry( data, 0) heartbeat_data = gcs_entries.Entries(0) message = (ray.gcs_utils.HeartbeatBatchTableData. GetRootAsHeartbeatBatchTableData(heartbeat_data, 0)) for j in range(message.BatchLength()): heartbeat_message = message.Batch(j) num_resources = heartbeat_message.ResourcesAvailableLabelLength() static_resources = {} dynamic_resources = {} for i in range(num_resources): dyn = heartbeat_message.ResourcesAvailableLabel(i) static = heartbeat_message.ResourcesTotalLabel(i) dynamic_resources[dyn] = ( heartbeat_message.ResourcesAvailableCapacity(i)) static_resources[static] = ( heartbeat_message.ResourcesTotalCapacity(i)) # Update the load metrics for this raylet. client_id = ray.utils.binary_to_hex(heartbeat_message.ClientId()) ip = self.raylet_id_to_ip_map.get(client_id) if ip: self.load_metrics.update(ip, static_resources, dynamic_resources) else: logger.warning( "Monitor: " "could not find ip for client {}".format(client_id))
<SYSTEM_TASK:> Handle a notification that a driver has been removed. <END_TASK> <USER_TASK:> Description: def xray_driver_removed_handler(self, unused_channel, data): """Handle a notification that a driver has been removed. Args: unused_channel: The message channel. data: The message data. """
gcs_entries = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry( data, 0) driver_data = gcs_entries.Entries(0) message = ray.gcs_utils.DriverTableData.GetRootAsDriverTableData( driver_data, 0) driver_id = message.DriverId() logger.info("Monitor: " "XRay Driver {} has been removed.".format( binary_to_hex(driver_id))) self._xray_clean_up_entries_for_driver(driver_id)
<SYSTEM_TASK:> Process all messages ready in the subscription channels. <END_TASK> <USER_TASK:> Description: def process_messages(self, max_messages=10000): """Process all messages ready in the subscription channels. This reads messages from the subscription channels and calls the appropriate handlers until there are no messages left. Args: max_messages: The maximum number of messages to process before returning. """
subscribe_clients = [self.primary_subscribe_client] for subscribe_client in subscribe_clients: for _ in range(max_messages): message = subscribe_client.get_message() if message is None: # Continue on to the next subscribe client. break # Parse the message. channel = message["channel"] data = message["data"] # Determine the appropriate message handler. if channel == ray.gcs_utils.XRAY_HEARTBEAT_BATCH_CHANNEL: # Similar functionality as raylet info channel message_handler = self.xray_heartbeat_batch_handler elif channel == ray.gcs_utils.XRAY_DRIVER_CHANNEL: # Handles driver death. message_handler = self.xray_driver_removed_handler else: raise Exception("This code should be unreachable.") # Call the handler. message_handler(channel, data)
<SYSTEM_TASK:> Run the monitor. <END_TASK> <USER_TASK:> Description: def run(self): """Run the monitor. This function loops forever, checking for messages about dead database clients and cleaning up state accordingly. """
# Initialize the subscription channel. self.subscribe(ray.gcs_utils.XRAY_HEARTBEAT_BATCH_CHANNEL) self.subscribe(ray.gcs_utils.XRAY_DRIVER_CHANNEL) # TODO(rkn): If there were any dead clients at startup, we should clean # up the associated state in the state tables. # Handle messages from the subscription channels. while True: # Update the mapping from raylet client ID to IP address. # This is only used to update the load metrics for the autoscaler. self.update_raylet_map() # Process autoscaling actions if self.autoscaler: self.autoscaler.update() self._maybe_flush_gcs() # Process a round of messages. self.process_messages() # Wait for a heartbeat interval before processing the next round of # messages. time.sleep(ray._config.heartbeat_timeout_milliseconds() * 1e-3)
<SYSTEM_TASK:> View for the home page. <END_TASK> <USER_TASK:> Description: def index(request): """View for the home page."""
recent_jobs = JobRecord.objects.order_by("-start_time")[0:100] recent_trials = TrialRecord.objects.order_by("-start_time")[0:500] total_num = len(recent_trials) running_num = sum(t.trial_status == Trial.RUNNING for t in recent_trials) success_num = sum( t.trial_status == Trial.TERMINATED for t in recent_trials) failed_num = sum(t.trial_status == Trial.ERROR for t in recent_trials) job_records = [] for recent_job in recent_jobs: job_records.append(get_job_info(recent_job)) context = { "log_dir": AUTOMLBOARD_LOG_DIR, "reload_interval": AUTOMLBOARD_RELOAD_INTERVAL, "recent_jobs": job_records, "job_num": len(job_records), "trial_num": total_num, "running_num": running_num, "success_num": success_num, "failed_num": failed_num } return render(request, "index.html", context)
<SYSTEM_TASK:> View for a single job. <END_TASK> <USER_TASK:> Description: def job(request): """View for a single job."""
job_id = request.GET.get("job_id") recent_jobs = JobRecord.objects.order_by("-start_time")[0:100] recent_trials = TrialRecord.objects \ .filter(job_id=job_id) \ .order_by("-start_time") trial_records = [] for recent_trial in recent_trials: trial_records.append(get_trial_info(recent_trial)) current_job = JobRecord.objects \ .filter(job_id=job_id) \ .order_by("-start_time")[0] if len(trial_records) > 0: param_keys = trial_records[0]["params"].keys() else: param_keys = [] # TODO: support custom metrics here metric_keys = ["episode_reward", "accuracy", "loss"] context = { "current_job": get_job_info(current_job), "recent_jobs": recent_jobs, "recent_trials": trial_records, "param_keys": param_keys, "param_num": len(param_keys), "metric_keys": metric_keys, "metric_num": len(metric_keys) } return render(request, "job.html", context)
<SYSTEM_TASK:> View for a single trial. <END_TASK> <USER_TASK:> Description: def trial(request): """View for a single trial."""
job_id = request.GET.get("job_id") trial_id = request.GET.get("trial_id") recent_trials = TrialRecord.objects \ .filter(job_id=job_id) \ .order_by("-start_time") recent_results = ResultRecord.objects \ .filter(trial_id=trial_id) \ .order_by("-date")[0:2000] current_trial = TrialRecord.objects \ .filter(trial_id=trial_id) \ .order_by("-start_time")[0] context = { "job_id": job_id, "trial_id": trial_id, "current_trial": current_trial, "recent_results": recent_results, "recent_trials": recent_trials } return render(request, "trial.html", context)
<SYSTEM_TASK:> Get job information for current job. <END_TASK> <USER_TASK:> Description: def get_job_info(current_job): """Get job information for current job."""
trials = TrialRecord.objects.filter(job_id=current_job.job_id) total_num = len(trials) running_num = sum(t.trial_status == Trial.RUNNING for t in trials) success_num = sum(t.trial_status == Trial.TERMINATED for t in trials) failed_num = sum(t.trial_status == Trial.ERROR for t in trials) if total_num == 0: progress = 0 else: progress = int(float(success_num) / total_num * 100) winner = get_winner(trials) job_info = { "job_id": current_job.job_id, "job_name": current_job.name, "user": current_job.user, "type": current_job.type, "start_time": current_job.start_time, "end_time": current_job.end_time, "total_num": total_num, "running_num": running_num, "success_num": success_num, "failed_num": failed_num, "best_trial_id": current_job.best_trial_id, "progress": progress, "winner": winner } return job_info
<SYSTEM_TASK:> Get job information for current trial. <END_TASK> <USER_TASK:> Description: def get_trial_info(current_trial): """Get job information for current trial."""
if current_trial.end_time and ("_" in current_trial.end_time): # end time is parsed from result.json and the format # is like: yyyy-mm-dd_hh-MM-ss, which will be converted # to yyyy-mm-dd hh:MM:ss here time_obj = datetime.datetime.strptime(current_trial.end_time, "%Y-%m-%d_%H-%M-%S") end_time = time_obj.strftime("%Y-%m-%d %H:%M:%S") else: end_time = current_trial.end_time if current_trial.metrics: metrics = eval(current_trial.metrics) else: metrics = None trial_info = { "trial_id": current_trial.trial_id, "job_id": current_trial.job_id, "trial_status": current_trial.trial_status, "start_time": current_trial.start_time, "end_time": end_time, "params": eval(current_trial.params.encode("utf-8")), "metrics": metrics } return trial_info
<SYSTEM_TASK:> Get winner trial of a job. <END_TASK> <USER_TASK:> Description: def get_winner(trials): """Get winner trial of a job."""
winner = {} # TODO: sort_key should be customized here sort_key = "accuracy" if trials and len(trials) > 0: first_metrics = get_trial_info(trials[0])["metrics"] if first_metrics and not first_metrics.get("accuracy", None): sort_key = "episode_reward" max_metric = float("-Inf") for t in trials: metrics = get_trial_info(t).get("metrics", None) if metrics and metrics.get(sort_key, None): current_metric = float(metrics[sort_key]) if current_metric > max_metric: winner["trial_id"] = t.trial_id winner["metric"] = sort_key + ": " + str(current_metric) max_metric = current_metric return winner
<SYSTEM_TASK:> Converts configuration to a command line argument format. <END_TASK> <USER_TASK:> Description: def to_argv(config): """Converts configuration to a command line argument format."""
argv = [] for k, v in config.items(): if "-" in k: raise ValueError("Use '_' instead of '-' in `{}`".format(k)) if v is None: continue if not isinstance(v, bool) or v: # for argparse flags argv.append("--{}".format(k.replace("_", "-"))) if isinstance(v, string_types): argv.append(v) elif isinstance(v, bool): pass else: argv.append(json.dumps(v, cls=_SafeFallbackEncoder)) return argv
<SYSTEM_TASK:> Creates a Trial object from parsing the spec. <END_TASK> <USER_TASK:> Description: def create_trial_from_spec(spec, output_path, parser, **trial_kwargs): """Creates a Trial object from parsing the spec. Arguments: spec (dict): A resolved experiment specification. Arguments should The args here should correspond to the command line flags in ray.tune.config_parser. output_path (str); A specific output path within the local_dir. Typically the name of the experiment. parser (ArgumentParser): An argument parser object from make_parser. trial_kwargs: Extra keyword arguments used in instantiating the Trial. Returns: A trial object with corresponding parameters to the specification. """
try: args = parser.parse_args(to_argv(spec)) except SystemExit: raise TuneError("Error parsing args, see above message", spec) if "resources_per_trial" in spec: trial_kwargs["resources"] = json_to_resources( spec["resources_per_trial"]) return Trial( # Submitting trial via server in py2.7 creates Unicode, which does not # convert to string in a straightforward manner. trainable_name=spec["run"], # json.load leads to str -> unicode in py2.7 config=spec.get("config", {}), local_dir=os.path.join(args.local_dir, output_path), # json.load leads to str -> unicode in py2.7 stopping_criterion=spec.get("stop", {}), checkpoint_freq=args.checkpoint_freq, checkpoint_at_end=args.checkpoint_at_end, keep_checkpoints_num=args.keep_checkpoints_num, checkpoint_score_attr=args.checkpoint_score_attr, export_formats=spec.get("export_formats", []), # str(None) doesn't create None restore_path=spec.get("restore"), upload_dir=args.upload_dir, trial_name_creator=spec.get("trial_name_creator"), loggers=spec.get("loggers"), # str(None) doesn't create None sync_function=spec.get("sync_function"), max_failures=args.max_failures, **trial_kwargs)
<SYSTEM_TASK:> Poll for compute zone operation until finished. <END_TASK> <USER_TASK:> Description: def wait_for_compute_zone_operation(compute, project_name, operation, zone): """Poll for compute zone operation until finished."""
logger.info("wait_for_compute_zone_operation: " "Waiting for operation {} to finish...".format( operation["name"])) for _ in range(MAX_POLLS): result = compute.zoneOperations().get( project=project_name, operation=operation["name"], zone=zone).execute() if "error" in result: raise Exception(result["error"]) if result["status"] == "DONE": logger.info("wait_for_compute_zone_operation: " "Operation {} finished.".format(operation["name"])) break time.sleep(POLL_INTERVAL) return result
<SYSTEM_TASK:> Return the task id associated to the generic source of the signal. <END_TASK> <USER_TASK:> Description: def _get_task_id(source): """Return the task id associated to the generic source of the signal. Args: source: source of the signal, it can be either an object id returned by a task, a task id, or an actor handle. Returns: - If source is an object id, return id of task which creted object. - If source is an actor handle, return id of actor's task creator. - If source is a task id, return same task id. """
if type(source) is ray.actor.ActorHandle: return source._ray_actor_id else: if type(source) is ray.TaskID: return source else: return ray._raylet.compute_task_id(source)
<SYSTEM_TASK:> Get all outstanding signals from sources. <END_TASK> <USER_TASK:> Description: def receive(sources, timeout=None): """Get all outstanding signals from sources. A source can be either (1) an object ID returned by the task (we want to receive signals from), or (2) an actor handle. When invoked by the same entity E (where E can be an actor, task or driver), for each source S in sources, this function returns all signals generated by S since the last receive() was invoked by E on S. If this is the first call on S, this function returns all past signals generated by S so far. Note that different actors, tasks or drivers that call receive() on the same source S will get independent copies of the signals generated by S. Args: sources: List of sources from which the caller waits for signals. A source is either an object ID returned by a task (in this case the object ID is used to identify that task), or an actor handle. If the user passes the IDs of multiple objects returned by the same task, this function returns a copy of the signals generated by that task for each object ID. timeout: Maximum time (in seconds) this function waits to get a signal from a source in sources. If None, the timeout is infinite. Returns: A list of pairs (S, sig), where S is a source in the sources argument, and sig is a signal generated by S since the last time receive() was called on S. Thus, for each S in sources, the return list can contain zero or multiple entries. """
# If None, initialize the timeout to a huge value (i.e., over 30,000 years # in this case) to "approximate" infinity. if timeout is None: timeout = 10**12 if timeout < 0: raise ValueError("The 'timeout' argument cannot be less than 0.") if not hasattr(ray.worker.global_worker, "signal_counters"): ray.worker.global_worker.signal_counters = defaultdict(lambda: b"0") signal_counters = ray.worker.global_worker.signal_counters # Map the ID of each source task to the source itself. task_id_to_sources = defaultdict(lambda: []) for s in sources: task_id_to_sources[_get_task_id(s).hex()].append(s) # Construct the redis query. query = "XREAD BLOCK " # Multiply by 1000x since timeout is in sec and redis expects ms. query += str(1000 * timeout) query += " STREAMS " query += " ".join([task_id for task_id in task_id_to_sources]) query += " " query += " ".join([ ray.utils.decode(signal_counters[ray.utils.hex_to_binary(task_id)]) for task_id in task_id_to_sources ]) answers = ray.worker.global_worker.redis_client.execute_command(query) if not answers: return [] results = [] # Decoding is a little bit involved. Iterate through all the answers: for i, answer in enumerate(answers): # Make sure the answer corresponds to a source, s, in sources. task_id = ray.utils.decode(answer[0]) task_source_list = task_id_to_sources[task_id] # The list of results for source s is stored in answer[1] for r in answer[1]: for s in task_source_list: if r[1][1].decode("ascii") == ACTOR_DIED_STR: results.append((s, ActorDiedSignal())) else: # Now it gets tricky: r[0] is the redis internal sequence # id signal_counters[ray.utils.hex_to_binary(task_id)] = r[0] # r[1] contains a list with elements (key, value), in our # case we only have one key "signal" and the value is the # signal. signal = cloudpickle.loads( ray.utils.hex_to_binary(r[1][1])) results.append((s, signal)) return results
<SYSTEM_TASK:> Reset the worker state associated with any signals that this worker <END_TASK> <USER_TASK:> Description: def reset(): """ Reset the worker state associated with any signals that this worker has received so far. If the worker calls receive() on a source next, it will get all the signals generated by that source starting with index = 1. """
if hasattr(ray.worker.global_worker, "signal_counters"): ray.worker.global_worker.signal_counters = defaultdict(lambda: b"0")
<SYSTEM_TASK:> Returns True if this is the "first" call for a given key. <END_TASK> <USER_TASK:> Description: def log_once(key): """Returns True if this is the "first" call for a given key. Various logging settings can adjust the definition of "first". Example: >>> if log_once("some_key"): ... logger.info("Some verbose logging statement") """
global _last_logged if _disabled: return False elif key not in _logged: _logged.add(key) _last_logged = time.time() return True elif _periodic_log and time.time() - _last_logged > 60.0: _logged.clear() _last_logged = time.time() return False else: return False
<SYSTEM_TASK:> Get a single or a collection of remote objects from the object store. <END_TASK> <USER_TASK:> Description: def get(object_ids): """Get a single or a collection of remote objects from the object store. This method is identical to `ray.get` except it adds support for tuples, ndarrays and dictionaries. Args: object_ids: Object ID of the object to get, a list, tuple, ndarray of object IDs to get or a dict of {key: object ID}. Returns: A Python object, a list of Python objects or a dict of {key: object}. """
if isinstance(object_ids, (tuple, np.ndarray)): return ray.get(list(object_ids)) elif isinstance(object_ids, dict): keys_to_get = [ k for k, v in object_ids.items() if isinstance(v, ray.ObjectID) ] ids_to_get = [ v for k, v in object_ids.items() if isinstance(v, ray.ObjectID) ] values = ray.get(ids_to_get) result = object_ids.copy() for key, value in zip(keys_to_get, values): result[key] = value return result else: return ray.get(object_ids)
<SYSTEM_TASK:> User notification for deprecated parameter. <END_TASK> <USER_TASK:> Description: def _raise_deprecation_note(deprecated, replacement, soft=False): """User notification for deprecated parameter. Arguments: deprecated (str): Deprecated parameter. replacement (str): Replacement parameter to use instead. soft (bool): Fatal if True. """
error_msg = ("`{deprecated}` is deprecated. Please use `{replacement}`. " "`{deprecated}` will be removed in future versions of " "Ray.".format(deprecated=deprecated, replacement=replacement)) if soft: logger.warning(error_msg) else: raise DeprecationWarning(error_msg)
<SYSTEM_TASK:> Produces a list of Experiment objects. <END_TASK> <USER_TASK:> Description: def convert_to_experiment_list(experiments): """Produces a list of Experiment objects. Converts input from dict, single experiment, or list of experiments to list of experiments. If input is None, will return an empty list. Arguments: experiments (Experiment | list | dict): Experiments to run. Returns: List of experiments. """
exp_list = experiments # Transform list if necessary if experiments is None: exp_list = [] elif isinstance(experiments, Experiment): exp_list = [experiments] elif type(experiments) is dict: exp_list = [ Experiment.from_json(name, spec) for name, spec in experiments.items() ] # Validate exp_list if (type(exp_list) is list and all(isinstance(exp, Experiment) for exp in exp_list)): if len(exp_list) > 1: logger.warning("All experiments will be " "using the same SearchAlgorithm.") else: raise TuneError("Invalid argument: {}".format(experiments)) return exp_list
<SYSTEM_TASK:> Generates an Experiment object from JSON. <END_TASK> <USER_TASK:> Description: def from_json(cls, name, spec): """Generates an Experiment object from JSON. Args: name (str): Name of Experiment. spec (dict): JSON configuration of experiment. """
if "run" not in spec: raise TuneError("No trainable specified!") # Special case the `env` param for RLlib by automatically # moving it into the `config` section. if "env" in spec: spec["config"] = spec.get("config", {}) spec["config"]["env"] = spec["env"] del spec["env"] spec = copy.deepcopy(spec) run_value = spec.pop("run") try: exp = cls(name, run_value, **spec) except TypeError: raise TuneError("Improper argument from JSON: {}.".format(spec)) return exp
<SYSTEM_TASK:> Registers Trainable or Function at runtime. <END_TASK> <USER_TASK:> Description: def _register_if_needed(cls, run_object): """Registers Trainable or Function at runtime. Assumes already registered if run_object is a string. Does not register lambdas because they could be part of variant generation. Also, does not inspect interface of given run_object. Arguments: run_object (str|function|class): Trainable to run. If string, assumes it is an ID and does not modify it. Otherwise, returns a string corresponding to the run_object name. Returns: A string representing the trainable identifier. """
if isinstance(run_object, six.string_types): return run_object elif isinstance(run_object, types.FunctionType): if run_object.__name__ == "<lambda>": logger.warning( "Not auto-registering lambdas - resolving as variant.") return run_object else: name = run_object.__name__ register_trainable(name, run_object) return name elif isinstance(run_object, type): name = run_object.__name__ register_trainable(name, run_object) return name else: raise TuneError("Improper 'run' - not string nor trainable.")
<SYSTEM_TASK:> Perform a QR decomposition of a tall-skinny matrix. <END_TASK> <USER_TASK:> Description: def tsqr(a): """Perform a QR decomposition of a tall-skinny matrix. Args: a: A distributed matrix with shape MxN (suppose K = min(M, N)). Returns: A tuple of q (a DistArray) and r (a numpy array) satisfying the following. - If q_full = ray.get(DistArray, q).assemble(), then q_full.shape == (M, K). - np.allclose(np.dot(q_full.T, q_full), np.eye(K)) == True. - If r_val = ray.get(np.ndarray, r), then r_val.shape == (K, N). - np.allclose(r, np.triu(r)) == True. """
if len(a.shape) != 2: raise Exception("tsqr requires len(a.shape) == 2, but a.shape is " "{}".format(a.shape)) if a.num_blocks[1] != 1: raise Exception("tsqr requires a.num_blocks[1] == 1, but a.num_blocks " "is {}".format(a.num_blocks)) num_blocks = a.num_blocks[0] K = int(np.ceil(np.log2(num_blocks))) + 1 q_tree = np.empty((num_blocks, K), dtype=object) current_rs = [] for i in range(num_blocks): block = a.objectids[i, 0] q, r = ra.linalg.qr.remote(block) q_tree[i, 0] = q current_rs.append(r) for j in range(1, K): new_rs = [] for i in range(int(np.ceil(1.0 * len(current_rs) / 2))): stacked_rs = ra.vstack.remote(*current_rs[(2 * i):(2 * i + 2)]) q, r = ra.linalg.qr.remote(stacked_rs) q_tree[i, j] = q new_rs.append(r) current_rs = new_rs assert len(current_rs) == 1, "len(current_rs) = " + str(len(current_rs)) # handle the special case in which the whole DistArray "a" fits in one # block and has fewer rows than columns, this is a bit ugly so think about # how to remove it if a.shape[0] >= a.shape[1]: q_shape = a.shape else: q_shape = [a.shape[0], a.shape[0]] q_num_blocks = core.DistArray.compute_num_blocks(q_shape) q_objectids = np.empty(q_num_blocks, dtype=object) q_result = core.DistArray(q_shape, q_objectids) # reconstruct output for i in range(num_blocks): q_block_current = q_tree[i, 0] ith_index = i for j in range(1, K): if np.mod(ith_index, 2) == 0: lower = [0, 0] upper = [a.shape[1], core.BLOCK_SIZE] else: lower = [a.shape[1], 0] upper = [2 * a.shape[1], core.BLOCK_SIZE] ith_index //= 2 q_block_current = ra.dot.remote( q_block_current, ra.subarray.remote(q_tree[ith_index, j], lower, upper)) q_result.objectids[i] = q_block_current r = current_rs[0] return q_result, ray.get(r)
<SYSTEM_TASK:> Perform a modified LU decomposition of a matrix. <END_TASK> <USER_TASK:> Description: def modified_lu(q): """Perform a modified LU decomposition of a matrix. This takes a matrix q with orthonormal columns, returns l, u, s such that q - s = l * u. Args: q: A two dimensional orthonormal matrix q. Returns: A tuple of a lower triangular matrix l, an upper triangular matrix u, and a a vector representing a diagonal matrix s such that q - s = l * u. """
q = q.assemble() m, b = q.shape[0], q.shape[1] S = np.zeros(b) q_work = np.copy(q) for i in range(b): S[i] = -1 * np.sign(q_work[i, i]) q_work[i, i] -= S[i] # Scale ith column of L by diagonal element. q_work[(i + 1):m, i] /= q_work[i, i] # Perform Schur complement update. q_work[(i + 1):m, (i + 1):b] -= np.outer(q_work[(i + 1):m, i], q_work[i, (i + 1):b]) L = np.tril(q_work) for i in range(b): L[i, i] = 1 U = np.triu(q_work)[:b, :] # TODO(rkn): Get rid of the put below. return ray.get(core.numpy_to_dist.remote(ray.put(L))), U, S
<SYSTEM_TASK:> Provides a natural representation for string for nice sorting. <END_TASK> <USER_TASK:> Description: def _naturalize(string): """Provides a natural representation for string for nice sorting."""
splits = re.split("([0-9]+)", string) return [int(text) if text.isdigit() else text.lower() for text in splits]
<SYSTEM_TASK:> Returns path to most recently modified checkpoint. <END_TASK> <USER_TASK:> Description: def _find_newest_ckpt(ckpt_dir): """Returns path to most recently modified checkpoint."""
full_paths = [ os.path.join(ckpt_dir, fname) for fname in os.listdir(ckpt_dir) if fname.startswith("experiment_state") and fname.endswith(".json") ] return max(full_paths)
<SYSTEM_TASK:> Saves execution state to `self._metadata_checkpoint_dir`. <END_TASK> <USER_TASK:> Description: def checkpoint(self): """Saves execution state to `self._metadata_checkpoint_dir`. Overwrites the current session checkpoint, which starts when self is instantiated. """
if not self._metadata_checkpoint_dir: return metadata_checkpoint_dir = self._metadata_checkpoint_dir if not os.path.exists(metadata_checkpoint_dir): os.makedirs(metadata_checkpoint_dir) runner_state = { "checkpoints": list( self.trial_executor.get_checkpoints().values()), "runner_data": self.__getstate__(), "timestamp": time.time() } tmp_file_name = os.path.join(metadata_checkpoint_dir, ".tmp_checkpoint") with open(tmp_file_name, "w") as f: json.dump(runner_state, f, indent=2, cls=_TuneFunctionEncoder) os.rename( tmp_file_name, os.path.join(metadata_checkpoint_dir, TrialRunner.CKPT_FILE_TMPL.format(self._session_str))) return metadata_checkpoint_dir
<SYSTEM_TASK:> Restores all checkpointed trials from previous run. <END_TASK> <USER_TASK:> Description: def restore(cls, metadata_checkpoint_dir, search_alg=None, scheduler=None, trial_executor=None): """Restores all checkpointed trials from previous run. Requires user to manually re-register their objects. Also stops all ongoing trials. Args: metadata_checkpoint_dir (str): Path to metadata checkpoints. search_alg (SearchAlgorithm): Search Algorithm. Defaults to BasicVariantGenerator. scheduler (TrialScheduler): Scheduler for executing the experiment. trial_executor (TrialExecutor): Manage the execution of trials. Returns: runner (TrialRunner): A TrialRunner to resume experiments from. """
newest_ckpt_path = _find_newest_ckpt(metadata_checkpoint_dir) with open(newest_ckpt_path, "r") as f: runner_state = json.load(f, cls=_TuneFunctionDecoder) logger.warning("".join([ "Attempting to resume experiment from {}. ".format( metadata_checkpoint_dir), "This feature is experimental, " "and may not work with all search algorithms. ", "This will ignore any new changes to the specification." ])) from ray.tune.suggest import BasicVariantGenerator runner = TrialRunner( search_alg or BasicVariantGenerator(), scheduler=scheduler, trial_executor=trial_executor) runner.__setstate__(runner_state["runner_data"]) trials = [] for trial_cp in runner_state["checkpoints"]: new_trial = Trial(trial_cp["trainable_name"]) new_trial.__setstate__(trial_cp) trials += [new_trial] for trial in sorted( trials, key=lambda t: t.last_update_time, reverse=True): runner.add_trial(trial) return runner
<SYSTEM_TASK:> Returns whether all trials have finished running. <END_TASK> <USER_TASK:> Description: def is_finished(self): """Returns whether all trials have finished running."""
if self._total_time > self._global_time_limit: logger.warning("Exceeded global time limit {} / {}".format( self._total_time, self._global_time_limit)) return True trials_done = all(trial.is_finished() for trial in self._trials) return trials_done and self._search_alg.is_finished()
<SYSTEM_TASK:> Runs one step of the trial event loop. <END_TASK> <USER_TASK:> Description: def step(self): """Runs one step of the trial event loop. Callers should typically run this method repeatedly in a loop. They may inspect or modify the runner's state in between calls to step(). """
if self.is_finished(): raise TuneError("Called step when all trials finished?") with warn_if_slow("on_step_begin"): self.trial_executor.on_step_begin() next_trial = self._get_next_trial() # blocking if next_trial is not None: with warn_if_slow("start_trial"): self.trial_executor.start_trial(next_trial) elif self.trial_executor.get_running_trials(): self._process_events() # blocking else: for trial in self._trials: if trial.status == Trial.PENDING: if not self.has_resources(trial.resources): raise TuneError( ("Insufficient cluster resources to launch trial: " "trial requested {} but the cluster has only {}. " "Pass `queue_trials=True` in " "ray.tune.run() or on the command " "line to queue trials until the cluster scales " "up. {}").format( trial.resources.summary_string(), self.trial_executor.resource_string(), trial._get_trainable_cls().resource_help( trial.config))) elif trial.status == Trial.PAUSED: raise TuneError( "There are paused trials, but no more pending " "trials with sufficient resources.") try: with warn_if_slow("experiment_checkpoint"): self.checkpoint() except Exception: logger.exception("Trial Runner checkpointing failed.") self._iteration += 1 if self._server: with warn_if_slow("server"): self._process_requests() if self.is_finished(): self._server.shutdown() with warn_if_slow("on_step_end"): self.trial_executor.on_step_end()
<SYSTEM_TASK:> Adds a new trial to this TrialRunner. <END_TASK> <USER_TASK:> Description: def add_trial(self, trial): """Adds a new trial to this TrialRunner. Trials may be added at any time. Args: trial (Trial): Trial to queue. """
trial.set_verbose(self._verbose) self._trials.append(trial) with warn_if_slow("scheduler.on_trial_add"): self._scheduler_alg.on_trial_add(self, trial) self.trial_executor.try_checkpoint_metadata(trial)
<SYSTEM_TASK:> Replenishes queue. <END_TASK> <USER_TASK:> Description: def _get_next_trial(self): """Replenishes queue. Blocks if all trials queued have finished, but search algorithm is still not finished. """
trials_done = all(trial.is_finished() for trial in self._trials) wait_for_trial = trials_done and not self._search_alg.is_finished() self._update_trial_queue(blocking=wait_for_trial) with warn_if_slow("choose_trial_to_run"): trial = self._scheduler_alg.choose_trial_to_run(self) return trial
<SYSTEM_TASK:> Checkpoints trial based off trial.last_result. <END_TASK> <USER_TASK:> Description: def _checkpoint_trial_if_needed(self, trial): """Checkpoints trial based off trial.last_result."""
if trial.should_checkpoint(): # Save trial runtime if possible if hasattr(trial, "runner") and trial.runner: self.trial_executor.save(trial, storage=Checkpoint.DISK) self.trial_executor.try_checkpoint_metadata(trial)
<SYSTEM_TASK:> Tries to recover trial. <END_TASK> <USER_TASK:> Description: def _try_recover(self, trial, error_msg): """Tries to recover trial. Notifies SearchAlgorithm and Scheduler if failure to recover. Args: trial (Trial): Trial to recover. error_msg (str): Error message from prior to invoking this method. """
try: self.trial_executor.stop_trial( trial, error=error_msg is not None, error_msg=error_msg, stop_logger=False) trial.result_logger.flush() if self.trial_executor.has_resources(trial.resources): logger.info("Attempting to recover" " trial state from last checkpoint.") self.trial_executor.start_trial(trial) if trial.status == Trial.ERROR: raise RuntimeError("Trial did not start correctly.") else: logger.debug("Notifying Scheduler and requeueing trial.") self._requeue_trial(trial) except Exception: logger.exception("Error recovering trial from checkpoint, abort.") self._scheduler_alg.on_trial_error(self, trial) self._search_alg.on_trial_complete(trial.trial_id, error=True)
<SYSTEM_TASK:> Notification to TrialScheduler and requeue trial. <END_TASK> <USER_TASK:> Description: def _requeue_trial(self, trial): """Notification to TrialScheduler and requeue trial. This does not notify the SearchAlgorithm because the function evaluation is still in progress. """
self._scheduler_alg.on_trial_error(self, trial) self.trial_executor.set_status(trial, Trial.PENDING) with warn_if_slow("scheduler.on_trial_add"): self._scheduler_alg.on_trial_add(self, trial)
<SYSTEM_TASK:> Adds next trials to queue if possible. <END_TASK> <USER_TASK:> Description: def _update_trial_queue(self, blocking=False, timeout=600): """Adds next trials to queue if possible. Note that the timeout is currently unexposed to the user. Args: blocking (bool): Blocks until either a trial is available or is_finished (timeout or search algorithm finishes). timeout (int): Seconds before blocking times out. """
trials = self._search_alg.next_trials() if blocking and not trials: start = time.time() # Checking `is_finished` instead of _search_alg.is_finished # is fine because blocking only occurs if all trials are # finished and search_algorithm is not yet finished while (not trials and not self.is_finished() and time.time() - start < timeout): logger.info("Blocking for next trial...") trials = self._search_alg.next_trials() time.sleep(1) for trial in trials: self.add_trial(trial)
<SYSTEM_TASK:> Stops trial. <END_TASK> <USER_TASK:> Description: def stop_trial(self, trial): """Stops trial. Trials may be stopped at any time. If trial is in state PENDING or PAUSED, calls `on_trial_remove` for scheduler and `on_trial_complete(..., early_terminated=True) for search_alg. Otherwise waits for result for the trial and calls `on_trial_complete` for scheduler and search_alg if RUNNING. """
error = False error_msg = None if trial.status in [Trial.ERROR, Trial.TERMINATED]: return elif trial.status in [Trial.PENDING, Trial.PAUSED]: self._scheduler_alg.on_trial_remove(self, trial) self._search_alg.on_trial_complete( trial.trial_id, early_terminated=True) elif trial.status is Trial.RUNNING: try: result = self.trial_executor.fetch_result(trial) trial.update_last_result(result, terminate=True) self._scheduler_alg.on_trial_complete(self, trial, result) self._search_alg.on_trial_complete( trial.trial_id, result=result) except Exception: error_msg = traceback.format_exc() logger.exception("Error processing event.") self._scheduler_alg.on_trial_error(self, trial) self._search_alg.on_trial_complete(trial.trial_id, error=True) error = True self.trial_executor.stop_trial(trial, error=error, error_msg=error_msg)
<SYSTEM_TASK:> Helper function for running examples <END_TASK> <USER_TASK:> Description: def run_func(func, *args, **kwargs): """Helper function for running examples"""
ray.init() func = ray.remote(func) # NOTE: kwargs not allowed for now result = ray.get(func.remote(*args)) # Inspect the stack to get calling example caller = inspect.stack()[1][3] print("%s: %s" % (caller, str(result))) return result
<SYSTEM_TASK:> Cython simple class <END_TASK> <USER_TASK:> Description: def example6(): """Cython simple class"""
ray.init() cls = ray.remote(cyth.simple_class) a1 = cls.remote() a2 = cls.remote() result1 = ray.get(a1.increment.remote()) result2 = ray.get(a2.increment.remote()) print(result1, result2)
<SYSTEM_TASK:> Rewrites the given trajectory fragments to encode n-step rewards. <END_TASK> <USER_TASK:> Description: def _adjust_nstep(n_step, gamma, obs, actions, rewards, new_obs, dones): """Rewrites the given trajectory fragments to encode n-step rewards. reward[i] = ( reward[i] * gamma**0 + reward[i+1] * gamma**1 + ... + reward[i+n_step-1] * gamma**(n_step-1)) The ith new_obs is also adjusted to point to the (i+n_step-1)'th new obs. At the end of the trajectory, n is truncated to fit in the traj length. """
assert not any(dones[:-1]), "Unexpected done in middle of trajectory" traj_length = len(rewards) for i in range(traj_length): for j in range(1, n_step): if i + j < traj_length: new_obs[i] = new_obs[i + j] dones[i] = dones[i + j] rewards[i] += gamma**j * rewards[i + j]
<SYSTEM_TASK:> Minimized `objective` using `optimizer` w.r.t. variables in <END_TASK> <USER_TASK:> Description: def _minimize_and_clip(optimizer, objective, var_list, clip_val=10): """Minimized `objective` using `optimizer` w.r.t. variables in `var_list` while ensure the norm of the gradients for each variable is clipped to `clip_val` """
gradients = optimizer.compute_gradients(objective, var_list=var_list) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, clip_val), var) return gradients
<SYSTEM_TASK:> Get variables inside a scope <END_TASK> <USER_TASK:> Description: def _scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """
return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.VARIABLES, scope=scope if isinstance(scope, str) else scope.name)
<SYSTEM_TASK:> Returns a custom getter that this class's methods must be called <END_TASK> <USER_TASK:> Description: def get_custom_getter(self): """Returns a custom getter that this class's methods must be called All methods of this class must be called under a variable scope that was passed this custom getter. Example: ```python network = ConvNetBuilder(...) with tf.variable_scope("cg", custom_getter=network.get_custom_getter()): network.conv(...) # Call more methods of network here ``` Currently, this custom getter only does anything if self.use_tf_layers is True. In that case, it causes variables to be stored as dtype self.variable_type, then casted to the requested dtype, instead of directly storing the variable as the requested dtype. """
def inner_custom_getter(getter, *args, **kwargs): if not self.use_tf_layers: return getter(*args, **kwargs) requested_dtype = kwargs["dtype"] if not (requested_dtype == tf.float32 and self.variable_dtype == tf.float16): kwargs["dtype"] = self.variable_dtype var = getter(*args, **kwargs) if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var return inner_custom_getter
<SYSTEM_TASK:> Context that construct cnn in the auxiliary arm. <END_TASK> <USER_TASK:> Description: def switch_to_aux_top_layer(self): """Context that construct cnn in the auxiliary arm."""
if self.aux_top_layer is None: raise RuntimeError("Empty auxiliary top layer in the network.") saved_top_layer = self.top_layer saved_top_size = self.top_size self.top_layer = self.aux_top_layer self.top_size = self.aux_top_size yield self.aux_top_layer = self.top_layer self.aux_top_size = self.top_size self.top_layer = saved_top_layer self.top_size = saved_top_size
<SYSTEM_TASK:> Construct a pooling layer. <END_TASK> <USER_TASK:> Description: def _pool(self, pool_name, pool_function, k_height, k_width, d_height, d_width, mode, input_layer, num_channels_in): """Construct a pooling layer."""
if input_layer is None: input_layer = self.top_layer else: self.top_size = num_channels_in name = pool_name + str(self.counts[pool_name]) self.counts[pool_name] += 1 if self.use_tf_layers: pool = pool_function( input_layer, [k_height, k_width], [d_height, d_width], padding=mode, data_format=self.channel_pos, name=name) else: if self.data_format == "NHWC": ksize = [1, k_height, k_width, 1] strides = [1, d_height, d_width, 1] else: ksize = [1, 1, k_height, k_width] strides = [1, 1, d_height, d_width] pool = tf.nn.max_pool( input_layer, ksize, strides, padding=mode, data_format=self.data_format, name=name) self.top_layer = pool return pool
<SYSTEM_TASK:> Construct an average pooling layer. <END_TASK> <USER_TASK:> Description: def apool(self, k_height, k_width, d_height=2, d_width=2, mode="VALID", input_layer=None, num_channels_in=None): """Construct an average pooling layer."""
return self._pool("apool", pooling_layers.average_pooling2d, k_height, k_width, d_height, d_width, mode, input_layer, num_channels_in)
<SYSTEM_TASK:> Batch normalization on `input_layer` without tf.layers. <END_TASK> <USER_TASK:> Description: def _batch_norm_without_layers(self, input_layer, decay, use_scale, epsilon): """Batch normalization on `input_layer` without tf.layers."""
shape = input_layer.shape num_channels = shape[3] if self.data_format == "NHWC" else shape[1] beta = self.get_variable( "beta", [num_channels], tf.float32, tf.float32, initializer=tf.zeros_initializer()) if use_scale: gamma = self.get_variable( "gamma", [num_channels], tf.float32, tf.float32, initializer=tf.ones_initializer()) else: gamma = tf.constant(1.0, tf.float32, [num_channels]) moving_mean = tf.get_variable( "moving_mean", [num_channels], tf.float32, initializer=tf.zeros_initializer(), trainable=False) moving_variance = tf.get_variable( "moving_variance", [num_channels], tf.float32, initializer=tf.ones_initializer(), trainable=False) if self.phase_train: bn, batch_mean, batch_variance = tf.nn.fused_batch_norm( input_layer, gamma, beta, epsilon=epsilon, data_format=self.data_format, is_training=True) mean_update = moving_averages.assign_moving_average( moving_mean, batch_mean, decay=decay, zero_debias=False) variance_update = moving_averages.assign_moving_average( moving_variance, batch_variance, decay=decay, zero_debias=False) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_update) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, variance_update) else: bn, _, _ = tf.nn.fused_batch_norm( input_layer, gamma, beta, mean=moving_mean, variance=moving_variance, epsilon=epsilon, data_format=self.data_format, is_training=False) return bn
<SYSTEM_TASK:> Adds a local response normalization layer. <END_TASK> <USER_TASK:> Description: def lrn(self, depth_radius, bias, alpha, beta): """Adds a local response normalization layer."""
name = "lrn" + str(self.counts["lrn"]) self.counts["lrn"] += 1 self.top_layer = tf.nn.lrn( self.top_layer, depth_radius, bias, alpha, beta, name=name) return self.top_layer
<SYSTEM_TASK:> Fetch the value of a binary key. <END_TASK> <USER_TASK:> Description: def _internal_kv_get(key): """Fetch the value of a binary key."""
worker = ray.worker.get_global_worker() if worker.mode == ray.worker.LOCAL_MODE: return _local.get(key) return worker.redis_client.hget(key, "value")
<SYSTEM_TASK:> Globally associates a value with a given binary key. <END_TASK> <USER_TASK:> Description: def _internal_kv_put(key, value, overwrite=False): """Globally associates a value with a given binary key. This only has an effect if the key does not already have a value. Returns: already_exists (bool): whether the value already exists. """
worker = ray.worker.get_global_worker() if worker.mode == ray.worker.LOCAL_MODE: exists = key in _local if not exists or overwrite: _local[key] = value return exists if overwrite: updated = worker.redis_client.hset(key, "value", value) else: updated = worker.redis_client.hsetnx(key, "value", value) return updated == 0
<SYSTEM_TASK:> Deferred init so that we can pass in previously created workers. <END_TASK> <USER_TASK:> Description: def init(self, aggregators): """Deferred init so that we can pass in previously created workers."""
assert len(aggregators) == self.num_aggregation_workers, aggregators if len(self.remote_evaluators) < self.num_aggregation_workers: raise ValueError( "The number of aggregation workers should not exceed the " "number of total evaluation workers ({} vs {})".format( self.num_aggregation_workers, len(self.remote_evaluators))) assigned_evaluators = collections.defaultdict(list) for i, ev in enumerate(self.remote_evaluators): assigned_evaluators[i % self.num_aggregation_workers].append(ev) self.workers = aggregators for i, worker in enumerate(self.workers): worker.init.remote( self.broadcasted_weights, assigned_evaluators[i], self.max_sample_requests_in_flight_per_worker, self.replay_proportion, self.replay_buffer_num_slots, self.train_batch_size, self.sample_batch_size) self.agg_tasks = TaskPool() for agg in self.workers: agg.set_weights.remote(self.broadcasted_weights) self.agg_tasks.add(agg, agg.get_train_batches.remote()) self.initialized = True
<SYSTEM_TASK:> Free a list of IDs from object stores. <END_TASK> <USER_TASK:> Description: def free(object_ids, local_only=False, delete_creating_tasks=False): """Free a list of IDs from object stores. This function is a low-level API which should be used in restricted scenarios. If local_only is false, the request will be send to all object stores. This method will not return any value to indicate whether the deletion is successful or not. This function is an instruction to object store. If the some of the objects are in use, object stores will delete them later when the ref count is down to 0. Args: object_ids (List[ObjectID]): List of object IDs to delete. local_only (bool): Whether only deleting the list of objects in local object store or all object stores. delete_creating_tasks (bool): Whether also delete the object creating tasks. """
worker = ray.worker.get_global_worker() if ray.worker._mode() == ray.worker.LOCAL_MODE: return if isinstance(object_ids, ray.ObjectID): object_ids = [object_ids] if not isinstance(object_ids, list): raise TypeError("free() expects a list of ObjectID, got {}".format( type(object_ids))) # Make sure that the values are object IDs. for object_id in object_ids: if not isinstance(object_id, ray.ObjectID): raise TypeError("Attempting to call `free` on the value {}, " "which is not an ray.ObjectID.".format(object_id)) worker.check_connected() with profiling.profile("ray.free"): if len(object_ids) == 0: return worker.raylet_client.free_objects(object_ids, local_only, delete_creating_tasks)
<SYSTEM_TASK:> Start the collector worker thread. <END_TASK> <USER_TASK:> Description: def run(self): """Start the collector worker thread. If running in standalone mode, the current thread will wait until the collector thread ends. """
self.collector.start() if self.standalone: self.collector.join()
<SYSTEM_TASK:> Run the main event loop for collector thread. <END_TASK> <USER_TASK:> Description: def run(self): """Run the main event loop for collector thread. In each round the collector traverse the results log directory and reload trial information from the status files. """
self._initialize() self._do_collect() while not self._is_finished: time.sleep(self._reload_interval) self._do_collect() self.logger.info("Collector stopped.")
<SYSTEM_TASK:> Initialize collector worker thread, Log path will be checked first. <END_TASK> <USER_TASK:> Description: def _initialize(self): """Initialize collector worker thread, Log path will be checked first. Records in DB backend will be cleared. """
if not os.path.exists(self._logdir): raise CollectorError("Log directory %s not exists" % self._logdir) self.logger.info("Collector started, taking %s as parent directory" "for all job logs." % self._logdir) # clear old records JobRecord.objects.filter().delete() TrialRecord.objects.filter().delete() ResultRecord.objects.filter().delete()
<SYSTEM_TASK:> Load information of the job with the given job name. <END_TASK> <USER_TASK:> Description: def sync_job_info(self, job_name): """Load information of the job with the given job name. 1. Traverse each experiment sub-directory and sync information for each trial. 2. Create or update the job information, together with the job meta file. Args: job_name (str) name of the Tune experiment """
job_path = os.path.join(self._logdir, job_name) if job_name not in self._monitored_jobs: self._create_job_info(job_path) self._monitored_jobs.add(job_name) else: self._update_job_info(job_path) expr_dirs = filter(lambda d: os.path.isdir(os.path.join(job_path, d)), os.listdir(job_path)) for expr_dir_name in expr_dirs: self.sync_trial_info(job_path, expr_dir_name) self._update_job_info(job_path)
<SYSTEM_TASK:> Load information of the trial from the given experiment directory. <END_TASK> <USER_TASK:> Description: def sync_trial_info(self, job_path, expr_dir_name): """Load information of the trial from the given experiment directory. Create or update the trial information, together with the trial meta file. Args: job_path(str) expr_dir_name(str) """
expr_name = expr_dir_name[-8:] expr_path = os.path.join(job_path, expr_dir_name) if expr_name not in self._monitored_trials: self._create_trial_info(expr_path) self._monitored_trials.add(expr_name) else: self._update_trial_info(expr_path)
<SYSTEM_TASK:> Create information for given job. <END_TASK> <USER_TASK:> Description: def _create_job_info(self, job_dir): """Create information for given job. Meta file will be loaded if exists, and the job information will be saved in db backend. Args: job_dir (str): Directory path of the job. """
meta = self._build_job_meta(job_dir) self.logger.debug("Create job: %s" % meta) job_record = JobRecord.from_json(meta) job_record.save()
<SYSTEM_TASK:> Update information for given job. <END_TASK> <USER_TASK:> Description: def _update_job_info(cls, job_dir): """Update information for given job. Meta file will be loaded if exists, and the job information in in db backend will be updated. Args: job_dir (str): Directory path of the job. Return: Updated dict of job meta info """
meta_file = os.path.join(job_dir, JOB_META_FILE) meta = parse_json(meta_file) if meta: logging.debug("Update job info for %s" % meta["job_id"]) JobRecord.objects \ .filter(job_id=meta["job_id"]) \ .update(end_time=timestamp2date(meta["end_time"]))
<SYSTEM_TASK:> Create information for given trial. <END_TASK> <USER_TASK:> Description: def _create_trial_info(self, expr_dir): """Create information for given trial. Meta file will be loaded if exists, and the trial information will be saved in db backend. Args: expr_dir (str): Directory path of the experiment. """
meta = self._build_trial_meta(expr_dir) self.logger.debug("Create trial for %s" % meta) trial_record = TrialRecord.from_json(meta) trial_record.save()
<SYSTEM_TASK:> Update information for given trial. <END_TASK> <USER_TASK:> Description: def _update_trial_info(self, expr_dir): """Update information for given trial. Meta file will be loaded if exists, and the trial information in db backend will be updated. Args: expr_dir(str) """
trial_id = expr_dir[-8:] meta_file = os.path.join(expr_dir, EXPR_META_FILE) meta = parse_json(meta_file) result_file = os.path.join(expr_dir, EXPR_RESULT_FILE) offset = self._result_offsets.get(trial_id, 0) results, new_offset = parse_multiple_json(result_file, offset) self._add_results(results, trial_id) self._result_offsets[trial_id] = new_offset if meta: TrialRecord.objects \ .filter(trial_id=trial_id) \ .update(trial_status=meta["status"], end_time=timestamp2date(meta.get("end_time", None))) elif len(results) > 0: metrics = { "episode_reward": results[-1].get("episode_reward_mean", None), "accuracy": results[-1].get("mean_accuracy", None), "loss": results[-1].get("loss", None) } if results[-1].get("done"): TrialRecord.objects \ .filter(trial_id=trial_id) \ .update(trial_status="TERMINATED", end_time=results[-1].get("date", None), metrics=str(metrics)) else: TrialRecord.objects \ .filter(trial_id=trial_id) \ .update(metrics=str(metrics))
<SYSTEM_TASK:> Build meta file for job. <END_TASK> <USER_TASK:> Description: def _build_job_meta(cls, job_dir): """Build meta file for job. Args: job_dir (str): Directory path of the job. Return: A dict of job meta info. """
meta_file = os.path.join(job_dir, JOB_META_FILE) meta = parse_json(meta_file) if not meta: job_name = job_dir.split("/")[-1] user = os.environ.get("USER", None) meta = { "job_id": job_name, "job_name": job_name, "user": user, "type": "ray", "start_time": os.path.getctime(job_dir), "end_time": None, "best_trial_id": None, } if meta.get("start_time", None): meta["start_time"] = timestamp2date(meta["start_time"]) return meta
<SYSTEM_TASK:> Build meta file for trial. <END_TASK> <USER_TASK:> Description: def _build_trial_meta(cls, expr_dir): """Build meta file for trial. Args: expr_dir (str): Directory path of the experiment. Return: A dict of trial meta info. """
meta_file = os.path.join(expr_dir, EXPR_META_FILE) meta = parse_json(meta_file) if not meta: job_id = expr_dir.split("/")[-2] trial_id = expr_dir[-8:] params = parse_json(os.path.join(expr_dir, EXPR_PARARM_FILE)) meta = { "trial_id": trial_id, "job_id": job_id, "status": "RUNNING", "type": "TUNE", "start_time": os.path.getctime(expr_dir), "end_time": None, "progress_offset": 0, "result_offset": 0, "params": params } if not meta.get("start_time", None): meta["start_time"] = os.path.getctime(expr_dir) if isinstance(meta["start_time"], float): meta["start_time"] = timestamp2date(meta["start_time"]) if meta.get("end_time", None): meta["end_time"] = timestamp2date(meta["end_time"]) meta["params"] = parse_json(os.path.join(expr_dir, EXPR_PARARM_FILE)) return meta
<SYSTEM_TASK:> Add a list of results into db. <END_TASK> <USER_TASK:> Description: def _add_results(self, results, trial_id): """Add a list of results into db. Args: results (list): A list of json results. trial_id (str): Id of the trial. """
for result in results: self.logger.debug("Appending result: %s" % result) result["trial_id"] = trial_id result_record = ResultRecord.from_json(result) result_record.save()
<SYSTEM_TASK:> Adds a time dimension to padded inputs. <END_TASK> <USER_TASK:> Description: def add_time_dimension(padded_inputs, seq_lens): """Adds a time dimension to padded inputs. Arguments: padded_inputs (Tensor): a padded batch of sequences. That is, for seq_lens=[1, 2, 2], then inputs=[A, *, B, B, C, C], where A, B, C are sequence elements and * denotes padding. seq_lens (Tensor): the sequence lengths within the input batch, suitable for passing to tf.nn.dynamic_rnn(). Returns: Reshaped tensor of shape [NUM_SEQUENCES, MAX_SEQ_LEN, ...]. """
# Sequence lengths have to be specified for LSTM batch inputs. The # input batch must be padded to the max seq length given here. That is, # batch_size == len(seq_lens) * max(seq_lens) padded_batch_size = tf.shape(padded_inputs)[0] max_seq_len = padded_batch_size // tf.shape(seq_lens)[0] # Dynamically reshape the padded batch to introduce a time dimension. new_batch_size = padded_batch_size // max_seq_len new_shape = ([new_batch_size, max_seq_len] + padded_inputs.get_shape().as_list()[1:]) return tf.reshape(padded_inputs, new_shape)
<SYSTEM_TASK:> Truncate and pad experiences into fixed-length sequences. <END_TASK> <USER_TASK:> Description: def chop_into_sequences(episode_ids, unroll_ids, agent_indices, feature_columns, state_columns, max_seq_len, dynamic_max=True, _extra_padding=0): """Truncate and pad experiences into fixed-length sequences. Arguments: episode_ids (list): List of episode ids for each step. unroll_ids (list): List of identifiers for the sample batch. This is used to make sure sequences are cut between sample batches. agent_indices (list): List of agent ids for each step. Note that this has to be combined with episode_ids for uniqueness. feature_columns (list): List of arrays containing features. state_columns (list): List of arrays containing LSTM state values. max_seq_len (int): Max length of sequences before truncation. dynamic_max (bool): Whether to dynamically shrink the max seq len. For example, if max len is 20 and the actual max seq len in the data is 7, it will be shrunk to 7. _extra_padding (int): Add extra padding to the end of sequences. Returns: f_pad (list): Padded feature columns. These will be of shape [NUM_SEQUENCES * MAX_SEQ_LEN, ...]. s_init (list): Initial states for each sequence, of shape [NUM_SEQUENCES, ...]. seq_lens (list): List of sequence lengths, of shape [NUM_SEQUENCES]. Examples: >>> f_pad, s_init, seq_lens = chop_into_sequences( episode_ids=[1, 1, 5, 5, 5, 5], unroll_ids=[4, 4, 4, 4, 4, 4], agent_indices=[0, 0, 0, 0, 0, 0], feature_columns=[[4, 4, 8, 8, 8, 8], [1, 1, 0, 1, 1, 0]], state_columns=[[4, 5, 4, 5, 5, 5]], max_seq_len=3) >>> print(f_pad) [[4, 4, 0, 8, 8, 8, 8, 0, 0], [1, 1, 0, 0, 1, 1, 0, 0, 0]] >>> print(s_init) [[4, 4, 5]] >>> print(seq_lens) [2, 3, 1] """
prev_id = None seq_lens = [] seq_len = 0 unique_ids = np.add( np.add(episode_ids, agent_indices), np.array(unroll_ids) << 32) for uid in unique_ids: if (prev_id is not None and uid != prev_id) or \ seq_len >= max_seq_len: seq_lens.append(seq_len) seq_len = 0 seq_len += 1 prev_id = uid if seq_len: seq_lens.append(seq_len) assert sum(seq_lens) == len(unique_ids) # Dynamically shrink max len as needed to optimize memory usage if dynamic_max: max_seq_len = max(seq_lens) + _extra_padding feature_sequences = [] for f in feature_columns: f = np.array(f) f_pad = np.zeros((len(seq_lens) * max_seq_len, ) + np.shape(f)[1:]) seq_base = 0 i = 0 for l in seq_lens: for seq_offset in range(l): f_pad[seq_base + seq_offset] = f[i] i += 1 seq_base += max_seq_len assert i == len(unique_ids), f feature_sequences.append(f_pad) initial_states = [] for s in state_columns: s = np.array(s) s_init = [] i = 0 for l in seq_lens: s_init.append(s[i]) i += l initial_states.append(np.array(s_init)) return feature_sequences, initial_states, np.array(seq_lens)
<SYSTEM_TASK:> Return a config perturbed as specified. <END_TASK> <USER_TASK:> Description: def explore(config, mutations, resample_probability, custom_explore_fn): """Return a config perturbed as specified. Args: config (dict): Original hyperparameter configuration. mutations (dict): Specification of mutations to perform as documented in the PopulationBasedTraining scheduler. resample_probability (float): Probability of allowing resampling of a particular variable. custom_explore_fn (func): Custom explore fn applied after built-in config perturbations are. """
new_config = copy.deepcopy(config) for key, distribution in mutations.items(): if isinstance(distribution, dict): new_config.update({ key: explore(config[key], mutations[key], resample_probability, None) }) elif isinstance(distribution, list): if random.random() < resample_probability or \ config[key] not in distribution: new_config[key] = random.choice(distribution) elif random.random() > 0.5: new_config[key] = distribution[max( 0, distribution.index(config[key]) - 1)] else: new_config[key] = distribution[min( len(distribution) - 1, distribution.index(config[key]) + 1)] else: if random.random() < resample_probability: new_config[key] = distribution() elif random.random() > 0.5: new_config[key] = config[key] * 1.2 else: new_config[key] = config[key] * 0.8 if type(config[key]) is int: new_config[key] = int(new_config[key]) if custom_explore_fn: new_config = custom_explore_fn(new_config) assert new_config is not None, \ "Custom explore fn failed to return new config" logger.info("[explore] perturbed config from {} -> {}".format( config, new_config)) return new_config
<SYSTEM_TASK:> Appends perturbed params to the trial name to show in the console. <END_TASK> <USER_TASK:> Description: def make_experiment_tag(orig_tag, config, mutations): """Appends perturbed params to the trial name to show in the console."""
resolved_vars = {} for k in mutations.keys(): resolved_vars[("config", k)] = config[k] return "{}@perturbed[{}]".format(orig_tag, format_vars(resolved_vars))
<SYSTEM_TASK:> Transfers perturbed state from trial_to_clone -> trial. <END_TASK> <USER_TASK:> Description: def _exploit(self, trial_executor, trial, trial_to_clone): """Transfers perturbed state from trial_to_clone -> trial. If specified, also logs the updated hyperparam state."""
trial_state = self._trial_state[trial] new_state = self._trial_state[trial_to_clone] if not new_state.last_checkpoint: logger.info("[pbt]: no checkpoint for trial." " Skip exploit for Trial {}".format(trial)) return new_config = explore(trial_to_clone.config, self._hyperparam_mutations, self._resample_probability, self._custom_explore_fn) logger.info("[exploit] transferring weights from trial " "{} (score {}) -> {} (score {})".format( trial_to_clone, new_state.last_score, trial, trial_state.last_score)) if self._log_config: self._log_config_on_step(trial_state, new_state, trial, trial_to_clone, new_config) new_tag = make_experiment_tag(trial_state.orig_tag, new_config, self._hyperparam_mutations) reset_successful = trial_executor.reset_trial(trial, new_config, new_tag) if reset_successful: trial_executor.restore( trial, Checkpoint.from_object(new_state.last_checkpoint)) else: trial_executor.stop_trial(trial, stop_logger=False) trial.config = new_config trial.experiment_tag = new_tag trial_executor.start_trial( trial, Checkpoint.from_object(new_state.last_checkpoint)) self._num_perturbations += 1 # Transfer over the last perturbation time as well trial_state.last_perturbation_time = new_state.last_perturbation_time
<SYSTEM_TASK:> Returns trials in the lower and upper `quantile` of the population. <END_TASK> <USER_TASK:> Description: def _quantiles(self): """Returns trials in the lower and upper `quantile` of the population. If there is not enough data to compute this, returns empty lists."""
trials = [] for trial, state in self._trial_state.items(): if state.last_score is not None and not trial.is_finished(): trials.append(trial) trials.sort(key=lambda t: self._trial_state[t].last_score) if len(trials) <= 1: return [], [] else: return (trials[:int(math.ceil(len(trials) * PBT_QUANTILE))], trials[int(math.floor(-len(trials) * PBT_QUANTILE)):])
<SYSTEM_TASK:> Process the flattened inputs. <END_TASK> <USER_TASK:> Description: def _build_layers(self, inputs, num_outputs, options): """Process the flattened inputs. Note that dict inputs will be flattened into a vector. To define a model that processes the components separately, use _build_layers_v2(). """
hiddens = options.get("fcnet_hiddens") activation = get_activation_fn(options.get("fcnet_activation")) with tf.name_scope("fc_net"): i = 1 last_layer = inputs for size in hiddens: label = "fc{}".format(i) last_layer = slim.fully_connected( last_layer, size, weights_initializer=normc_initializer(1.0), activation_fn=activation, scope=label) i += 1 label = "fc_out" output = slim.fully_connected( last_layer, num_outputs, weights_initializer=normc_initializer(0.01), activation_fn=None, scope=label) return output, last_layer
<SYSTEM_TASK:> Returns the given config dict merged with a base agent conf. <END_TASK> <USER_TASK:> Description: def with_base_config(base_config, extra_config): """Returns the given config dict merged with a base agent conf."""
config = copy.deepcopy(base_config) config.update(extra_config) return config
<SYSTEM_TASK:> Returns the class of a known agent given its name. <END_TASK> <USER_TASK:> Description: def get_agent_class(alg): """Returns the class of a known agent given its name."""
try: return _get_agent_class(alg) except ImportError: from ray.rllib.agents.mock import _agent_import_failed return _agent_import_failed(traceback.format_exc())
<SYSTEM_TASK:> Return the first IP address for an ethernet interface on the system. <END_TASK> <USER_TASK:> Description: def determine_ip_address(): """Return the first IP address for an ethernet interface on the system."""
addrs = [ x.address for k, v in psutil.net_if_addrs().items() if k[0] == "e" for x in v if x.family == AddressFamily.AF_INET ] return addrs[0]
<SYSTEM_TASK:> Throws an exception if Ray cannot serialize this class efficiently. <END_TASK> <USER_TASK:> Description: def check_serializable(cls): """Throws an exception if Ray cannot serialize this class efficiently. Args: cls (type): The class to be serialized. Raises: Exception: An exception is raised if Ray cannot serialize this class efficiently. """
if is_named_tuple(cls): # This case works. return if not hasattr(cls, "__new__"): print("The class {} does not have a '__new__' attribute and is " "probably an old-stye class. Please make it a new-style class " "by inheriting from 'object'.") raise RayNotDictionarySerializable("The class {} does not have a " "'__new__' attribute and is " "probably an old-style class. We " "do not support this. Please make " "it a new-style class by " "inheriting from 'object'." .format(cls)) try: obj = cls.__new__(cls) except Exception: raise RayNotDictionarySerializable("The class {} has overridden " "'__new__', so Ray may not be able " "to serialize it efficiently." .format(cls)) if not hasattr(obj, "__dict__"): raise RayNotDictionarySerializable("Objects of the class {} do not " "have a '__dict__' attribute, so " "Ray cannot serialize it " "efficiently.".format(cls)) if hasattr(obj, "__slots__"): raise RayNotDictionarySerializable("The class {} uses '__slots__', so " "Ray may not be able to serialize " "it efficiently.".format(cls))
<SYSTEM_TASK:> Return True if cls is a namedtuple and False otherwise. <END_TASK> <USER_TASK:> Description: def is_named_tuple(cls): """Return True if cls is a namedtuple and False otherwise."""
b = cls.__bases__ if len(b) != 1 or b[0] != tuple: return False f = getattr(cls, "_fields", None) if not isinstance(f, tuple): return False return all(type(n) == str for n in f)
<SYSTEM_TASK:> Register a trainable function or class. <END_TASK> <USER_TASK:> Description: def register_trainable(name, trainable): """Register a trainable function or class. Args: name (str): Name to register. trainable (obj): Function or tune.Trainable class. Functions must take (config, status_reporter) as arguments and will be automatically converted into a class during registration. """
from ray.tune.trainable import Trainable from ray.tune.function_runner import wrap_function if isinstance(trainable, type): logger.debug("Detected class for trainable.") elif isinstance(trainable, FunctionType): logger.debug("Detected function for trainable.") trainable = wrap_function(trainable) elif callable(trainable): logger.warning( "Detected unknown callable for trainable. Converting to class.") trainable = wrap_function(trainable) if not issubclass(trainable, Trainable): raise TypeError("Second argument must be convertable to Trainable", trainable) _global_registry.register(TRAINABLE_CLASS, name, trainable)
<SYSTEM_TASK:> Register a custom environment for use with RLlib. <END_TASK> <USER_TASK:> Description: def register_env(name, env_creator): """Register a custom environment for use with RLlib. Args: name (str): Name to register. env_creator (obj): Function that creates an env. """
if not isinstance(env_creator, FunctionType): raise TypeError("Second argument must be a function.", env_creator) _global_registry.register(ENV_CREATOR, name, env_creator)
<SYSTEM_TASK:> Return optimization stats reported from the policy graph. <END_TASK> <USER_TASK:> Description: def get_learner_stats(grad_info): """Return optimization stats reported from the policy graph. Example: >>> grad_info = evaluator.learn_on_batch(samples) >>> print(get_stats(grad_info)) {"vf_loss": ..., "policy_loss": ...} """
if LEARNER_STATS_KEY in grad_info: return grad_info[LEARNER_STATS_KEY] multiagent_stats = {} for k, v in grad_info.items(): if type(v) is dict: if LEARNER_STATS_KEY in v: multiagent_stats[k] = v[LEARNER_STATS_KEY] return multiagent_stats
<SYSTEM_TASK:> Gathers episode metrics from PolicyEvaluator instances. <END_TASK> <USER_TASK:> Description: def collect_metrics(local_evaluator=None, remote_evaluators=[], timeout_seconds=180): """Gathers episode metrics from PolicyEvaluator instances."""
episodes, num_dropped = collect_episodes( local_evaluator, remote_evaluators, timeout_seconds=timeout_seconds) metrics = summarize_episodes(episodes, episodes, num_dropped) return metrics
<SYSTEM_TASK:> Gathers new episodes metrics tuples from the given evaluators. <END_TASK> <USER_TASK:> Description: def collect_episodes(local_evaluator=None, remote_evaluators=[], timeout_seconds=180): """Gathers new episodes metrics tuples from the given evaluators."""
pending = [ a.apply.remote(lambda ev: ev.get_metrics()) for a in remote_evaluators ] collected, _ = ray.wait( pending, num_returns=len(pending), timeout=timeout_seconds * 1.0) num_metric_batches_dropped = len(pending) - len(collected) if pending and len(collected) == 0: raise ValueError( "Timed out waiting for metrics from workers. You can configure " "this timeout with `collect_metrics_timeout`.") metric_lists = ray_get_and_free(collected) if local_evaluator: metric_lists.append(local_evaluator.get_metrics()) episodes = [] for metrics in metric_lists: episodes.extend(metrics) return episodes, num_metric_batches_dropped
<SYSTEM_TASK:> Divides metrics data into true rollouts vs off-policy estimates. <END_TASK> <USER_TASK:> Description: def _partition(episodes): """Divides metrics data into true rollouts vs off-policy estimates."""
from ray.rllib.evaluation.sampler import RolloutMetrics rollouts, estimates = [], [] for e in episodes: if isinstance(e, RolloutMetrics): rollouts.append(e) elif isinstance(e, OffPolicyEstimate): estimates.append(e) else: raise ValueError("Unknown metric type: {}".format(e)) return rollouts, estimates
<SYSTEM_TASK:> Sets status and checkpoints metadata if needed. <END_TASK> <USER_TASK:> Description: def set_status(self, trial, status): """Sets status and checkpoints metadata if needed. Only checkpoints metadata if trial status is a terminal condition. PENDING, PAUSED, and RUNNING switches have checkpoints taken care of in the TrialRunner. Args: trial (Trial): Trial to checkpoint. status (Trial.status): Status to set trial to. """
trial.status = status if status in [Trial.TERMINATED, Trial.ERROR]: self.try_checkpoint_metadata(trial)
<SYSTEM_TASK:> Checkpoints metadata. <END_TASK> <USER_TASK:> Description: def try_checkpoint_metadata(self, trial): """Checkpoints metadata. Args: trial (Trial): Trial to checkpoint. """
if trial._checkpoint.storage == Checkpoint.MEMORY: logger.debug("Not saving data for trial w/ memory checkpoint.") return try: logger.debug("Saving trial metadata.") self._cached_trial_state[trial.trial_id] = trial.__getstate__() except Exception: logger.exception("Error checkpointing trial metadata.")
<SYSTEM_TASK:> Sets PAUSED trial to pending to allow scheduler to start. <END_TASK> <USER_TASK:> Description: def unpause_trial(self, trial): """Sets PAUSED trial to pending to allow scheduler to start."""
assert trial.status == Trial.PAUSED, trial.status self.set_status(trial, Trial.PENDING)
<SYSTEM_TASK:> Resumes PAUSED trials. This is a blocking call. <END_TASK> <USER_TASK:> Description: def resume_trial(self, trial): """Resumes PAUSED trials. This is a blocking call."""
assert trial.status == Trial.PAUSED, trial.status self.start_trial(trial)
<SYSTEM_TASK:> Passes the result to Nevergrad unless early terminated or errored. <END_TASK> <USER_TASK:> Description: def on_trial_complete(self, trial_id, result=None, error=False, early_terminated=False): """Passes the result to Nevergrad unless early terminated or errored. The result is internally negated when interacting with Nevergrad so that Nevergrad Optimizers can "maximize" this value, as it minimizes on default. """
ng_trial_info = self._live_trial_mapping.pop(trial_id) if result: self._nevergrad_opt.tell(ng_trial_info, -result[self._reward_attr])
<SYSTEM_TASK:> Process the given export key from redis. <END_TASK> <USER_TASK:> Description: def _process_key(self, key): """Process the given export key from redis."""
# Handle the driver case first. if self.mode != ray.WORKER_MODE: if key.startswith(b"FunctionsToRun"): with profiling.profile("fetch_and_run_function"): self.fetch_and_execute_function_to_run(key) # Return because FunctionsToRun are the only things that # the driver should import. return if key.startswith(b"RemoteFunction"): with profiling.profile("register_remote_function"): (self.worker.function_actor_manager. fetch_and_register_remote_function(key)) elif key.startswith(b"FunctionsToRun"): with profiling.profile("fetch_and_run_function"): self.fetch_and_execute_function_to_run(key) elif key.startswith(b"ActorClass"): # Keep track of the fact that this actor class has been # exported so that we know it is safe to turn this worker # into an actor of that class. self.worker.function_actor_manager.imported_actor_classes.add(key) # TODO(rkn): We may need to bring back the case of # fetching actor classes here. else: raise Exception("This code should be unreachable.")
<SYSTEM_TASK:> Run on arbitrary function on the worker. <END_TASK> <USER_TASK:> Description: def fetch_and_execute_function_to_run(self, key): """Run on arbitrary function on the worker."""
(driver_id, serialized_function, run_on_other_drivers) = self.redis_client.hmget( key, ["driver_id", "function", "run_on_other_drivers"]) if (utils.decode(run_on_other_drivers) == "False" and self.worker.mode == ray.SCRIPT_MODE and driver_id != self.worker.task_driver_id.binary()): return try: # Deserialize the function. function = pickle.loads(serialized_function) # Run the function. function({"worker": self.worker}) except Exception: # If an exception was thrown when the function was run, we record # the traceback and notify the scheduler of the failure. traceback_str = traceback.format_exc() # Log the error message. utils.push_error_to_driver( self.worker, ray_constants.FUNCTION_TO_RUN_PUSH_ERROR, traceback_str, driver_id=ray.DriverID(driver_id))
<SYSTEM_TASK:> Called to clip actions to the specified range of this policy. <END_TASK> <USER_TASK:> Description: def clip_action(action, space): """Called to clip actions to the specified range of this policy. Arguments: action: Single action. space: Action space the actions should be present in. Returns: Clipped batch of actions. """
if isinstance(space, gym.spaces.Box): return np.clip(action, space.low, space.high) elif isinstance(space, gym.spaces.Tuple): if type(action) not in (tuple, list): raise ValueError("Expected tuple space for actions {}: {}".format( action, space)) out = [] for a, s in zip(action, space.spaces): out.append(clip_action(a, s)) return out else: return action
<SYSTEM_TASK:> Passes the result to skopt unless early terminated or errored. <END_TASK> <USER_TASK:> Description: def on_trial_complete(self, trial_id, result=None, error=False, early_terminated=False): """Passes the result to skopt unless early terminated or errored. The result is internally negated when interacting with Skopt so that Skopt Optimizers can "maximize" this value, as it minimizes on default. """
skopt_trial_info = self._live_trial_mapping.pop(trial_id) if result: self._skopt_opt.tell(skopt_trial_info, -result[self._reward_attr])
<SYSTEM_TASK:> Convert a hostname to a numerical IP addresses in an address. <END_TASK> <USER_TASK:> Description: def address_to_ip(address): """Convert a hostname to a numerical IP addresses in an address. This should be a no-op if address already contains an actual numerical IP address. Args: address: This can be either a string containing a hostname (or an IP address) and a port or it can be just an IP address. Returns: The same address but with the hostname replaced by a numerical IP address. """
address_parts = address.split(":") ip_address = socket.gethostbyname(address_parts[0]) # Make sure localhost isn't resolved to the loopback ip if ip_address == "127.0.0.1": ip_address = get_node_ip_address() return ":".join([ip_address] + address_parts[1:])
<SYSTEM_TASK:> Determine the IP address of the local node. <END_TASK> <USER_TASK:> Description: def get_node_ip_address(address="8.8.8.8:53"): """Determine the IP address of the local node. Args: address (str): The IP address and port of any known live service on the network you care about. Returns: The IP address of the current node. """
ip_address, port = address.split(":") s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # This command will raise an exception if there is no internet # connection. s.connect((ip_address, int(port))) node_ip_address = s.getsockname()[0] except Exception as e: node_ip_address = "127.0.0.1" # [Errno 101] Network is unreachable if e.errno == 101: try: # try get node ip address from host name host_name = socket.getfqdn(socket.gethostname()) node_ip_address = socket.gethostbyname(host_name) except Exception: pass finally: s.close() return node_ip_address