text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Merge two ranges with step == 1.
<END_TASK>
<USER_TASK:>
Description:
def merge(a, b):
"""Merge two ranges with step == 1.
Parameters
----------
a : range
The first range.
b : range
The second range.
""" |
_check_steps(a, b)
return range(min(a.start, b.start), max(a.stop, b.stop)) |
<SYSTEM_TASK:>
Return any ranges that intersect.
<END_TASK>
<USER_TASK:>
Description:
def intersecting_ranges(ranges):
"""Return any ranges that intersect.
Parameters
----------
ranges : iterable[ranges]
A sequence of ranges to check for intersections.
Returns
-------
intersections : iterable[ranges]
A sequence of all of the ranges that intersected in ``ranges``.
Examples
--------
>>> ranges = [range(0, 1), range(2, 5), range(4, 7)]
>>> list(intersecting_ranges(ranges))
[range(2, 5), range(4, 7)]
>>> ranges = [range(0, 1), range(2, 3)]
>>> list(intersecting_ranges(ranges))
[]
>>> ranges = [range(0, 1), range(1, 2)]
>>> list(intersecting_ranges(ranges))
[range(0, 1), range(1, 2)]
""" |
ranges = sorted(ranges, key=op.attrgetter('start'))
return sorted_diff(ranges, group_ranges(ranges)) |
<SYSTEM_TASK:>
Returns a handle to data file.
<END_TASK>
<USER_TASK:>
Description:
def get_data_filepath(name, environ=None):
"""
Returns a handle to data file.
Creates containing directory, if needed.
""" |
dr = data_root(environ)
if not os.path.exists(dr):
os.makedirs(dr)
return os.path.join(dr, name) |
<SYSTEM_TASK:>
Does `series_or_df` have data on or before first_date and on or after
<END_TASK>
<USER_TASK:>
Description:
def has_data_for_dates(series_or_df, first_date, last_date):
"""
Does `series_or_df` have data on or before first_date and on or after
last_date?
""" |
dts = series_or_df.index
if not isinstance(dts, pd.DatetimeIndex):
raise TypeError("Expected a DatetimeIndex, but got %s." % type(dts))
first, last = dts[[0, -1]]
return (first <= first_date) and (last >= last_date) |
<SYSTEM_TASK:>
Load benchmark returns and treasury yield curves for the given calendar and
<END_TASK>
<USER_TASK:>
Description:
def load_market_data(trading_day=None, trading_days=None, bm_symbol='SPY',
environ=None):
"""
Load benchmark returns and treasury yield curves for the given calendar and
benchmark symbol.
Benchmarks are downloaded as a Series from IEX Trading. Treasury curves
are US Treasury Bond rates and are downloaded from 'www.federalreserve.gov'
by default. For Canadian exchanges, a loader for Canadian bonds from the
Bank of Canada is also available.
Results downloaded from the internet are cached in
~/.zipline/data. Subsequent loads will attempt to read from the cached
files before falling back to redownload.
Parameters
----------
trading_day : pandas.CustomBusinessDay, optional
A trading_day used to determine the latest day for which we
expect to have data. Defaults to an NYSE trading day.
trading_days : pd.DatetimeIndex, optional
A calendar of trading days. Also used for determining what cached
dates we should expect to have cached. Defaults to the NYSE calendar.
bm_symbol : str, optional
Symbol for the benchmark index to load. Defaults to 'SPY', the ticker
for the S&P 500, provided by IEX Trading.
Returns
-------
(benchmark_returns, treasury_curves) : (pd.Series, pd.DataFrame)
Notes
-----
Both return values are DatetimeIndexed with values dated to midnight in UTC
of each stored date. The columns of `treasury_curves` are:
'1month', '3month', '6month',
'1year','2year','3year','5year','7year','10year','20year','30year'
""" |
if trading_day is None:
trading_day = get_calendar('XNYS').day
if trading_days is None:
trading_days = get_calendar('XNYS').all_sessions
first_date = trading_days[0]
now = pd.Timestamp.utcnow()
# we will fill missing benchmark data through latest trading date
last_date = trading_days[trading_days.get_loc(now, method='ffill')]
br = ensure_benchmark_data(
bm_symbol,
first_date,
last_date,
now,
# We need the trading_day to figure out the close prior to the first
# date so that we can compute returns for the first date.
trading_day,
environ,
)
tc = ensure_treasury_data(
bm_symbol,
first_date,
last_date,
now,
environ,
)
# combine dt indices and reindex using ffill then bfill
all_dt = br.index.union(tc.index)
br = br.reindex(all_dt, method='ffill').fillna(method='bfill')
tc = tc.reindex(all_dt, method='ffill').fillna(method='bfill')
benchmark_returns = br[br.index.slice_indexer(first_date, last_date)]
treasury_curves = tc[tc.index.slice_indexer(first_date, last_date)]
return benchmark_returns, treasury_curves |
<SYSTEM_TASK:>
Ensure we have benchmark data for `symbol` from `first_date` to `last_date`
<END_TASK>
<USER_TASK:>
Description:
def ensure_benchmark_data(symbol, first_date, last_date, now, trading_day,
environ=None):
"""
Ensure we have benchmark data for `symbol` from `first_date` to `last_date`
Parameters
----------
symbol : str
The symbol for the benchmark to load.
first_date : pd.Timestamp
First required date for the cache.
last_date : pd.Timestamp
Last required date for the cache.
now : pd.Timestamp
The current time. This is used to prevent repeated attempts to
re-download data that isn't available due to scheduling quirks or other
failures.
trading_day : pd.CustomBusinessDay
A trading day delta. Used to find the day before first_date so we can
get the close of the day prior to first_date.
We attempt to download data unless we already have data stored at the data
cache for `symbol` whose first entry is before or on `first_date` and whose
last entry is on or after `last_date`.
If we perform a download and the cache criteria are not satisfied, we wait
at least one hour before attempting a redownload. This is determined by
comparing the current time to the result of os.path.getmtime on the cache
path.
""" |
filename = get_benchmark_filename(symbol)
data = _load_cached_data(filename, first_date, last_date, now, 'benchmark',
environ)
if data is not None:
return data
# If no cached data was found or it was missing any dates then download the
# necessary data.
logger.info(
('Downloading benchmark data for {symbol!r} '
'from {first_date} to {last_date}'),
symbol=symbol,
first_date=first_date - trading_day,
last_date=last_date
)
try:
data = get_benchmark_returns(symbol)
data.to_csv(get_data_filepath(filename, environ))
except (OSError, IOError, HTTPError):
logger.exception('Failed to cache the new benchmark returns')
raise
if not has_data_for_dates(data, first_date, last_date):
logger.warn(
("Still don't have expected benchmark data for {symbol!r} "
"from {first_date} to {last_date} after redownload!"),
symbol=symbol,
first_date=first_date - trading_day,
last_date=last_date
)
return data |
<SYSTEM_TASK:>
Ensure we have treasury data from treasury module associated with
<END_TASK>
<USER_TASK:>
Description:
def ensure_treasury_data(symbol, first_date, last_date, now, environ=None):
"""
Ensure we have treasury data from treasury module associated with
`symbol`.
Parameters
----------
symbol : str
Benchmark symbol for which we're loading associated treasury curves.
first_date : pd.Timestamp
First date required to be in the cache.
last_date : pd.Timestamp
Last date required to be in the cache.
now : pd.Timestamp
The current time. This is used to prevent repeated attempts to
re-download data that isn't available due to scheduling quirks or other
failures.
We attempt to download data unless we already have data stored in the cache
for `module_name` whose first entry is before or on `first_date` and whose
last entry is on or after `last_date`.
If we perform a download and the cache criteria are not satisfied, we wait
at least one hour before attempting a redownload. This is determined by
comparing the current time to the result of os.path.getmtime on the cache
path.
""" |
loader_module, filename, source = INDEX_MAPPING.get(
symbol, INDEX_MAPPING['SPY'],
)
first_date = max(first_date, loader_module.earliest_possible_date())
data = _load_cached_data(filename, first_date, last_date, now, 'treasury',
environ)
if data is not None:
return data
# If no cached data was found or it was missing any dates then download the
# necessary data.
logger.info(
('Downloading treasury data for {symbol!r} '
'from {first_date} to {last_date}'),
symbol=symbol,
first_date=first_date,
last_date=last_date
)
try:
data = loader_module.get_treasury_data(first_date, last_date)
data.to_csv(get_data_filepath(filename, environ))
except (OSError, IOError, HTTPError):
logger.exception('failed to cache treasury data')
if not has_data_for_dates(data, first_date, last_date):
logger.warn(
("Still don't have expected treasury data for {symbol!r} "
"from {first_date} to {last_date} after redownload!"),
symbol=symbol,
first_date=first_date,
last_date=last_date
)
return data |
<SYSTEM_TASK:>
Specialize a term if it's loadable.
<END_TASK>
<USER_TASK:>
Description:
def maybe_specialize(term, domain):
"""Specialize a term if it's loadable.
""" |
if isinstance(term, LoadableTerm):
return term.specialize(domain)
return term |
<SYSTEM_TASK:>
Add a term and all its children to ``graph``.
<END_TASK>
<USER_TASK:>
Description:
def _add_to_graph(self, term, parents):
"""
Add a term and all its children to ``graph``.
``parents`` is the set of all the parents of ``term` that we've added
so far. It is only used to detect dependency cycles.
""" |
if self._frozen:
raise ValueError(
"Can't mutate %s after construction." % type(self).__name__
)
# If we've seen this node already as a parent of the current traversal,
# it means we have an unsatisifiable dependency. This should only be
# possible if the term's inputs are mutated after construction.
if term in parents:
raise CyclicDependency(term)
parents.add(term)
self.graph.add_node(term)
for dependency in term.dependencies:
self._add_to_graph(dependency, parents)
self.graph.add_edge(dependency, term)
parents.remove(term) |
<SYSTEM_TASK:>
Return a topologically-sorted iterator over the terms in ``self`` which
<END_TASK>
<USER_TASK:>
Description:
def execution_order(self, refcounts):
"""
Return a topologically-sorted iterator over the terms in ``self`` which
need to be computed.
""" |
return iter(nx.topological_sort(
self.graph.subgraph(
{term for term, refcount in refcounts.items() if refcount > 0},
),
)) |
<SYSTEM_TASK:>
Calculate initial refcounts for execution of this graph.
<END_TASK>
<USER_TASK:>
Description:
def initial_refcounts(self, initial_terms):
"""
Calculate initial refcounts for execution of this graph.
Parameters
----------
initial_terms : iterable[Term]
An iterable of terms that were pre-computed before graph execution.
Each node starts with a refcount equal to its outdegree, and output
nodes get one extra reference to ensure that they're still in the graph
at the end of execution.
""" |
refcounts = self.graph.out_degree()
for t in self.outputs.values():
refcounts[t] += 1
for t in initial_terms:
self._decref_dependencies_recursive(t, refcounts, set())
return refcounts |
<SYSTEM_TASK:>
Decrement terms recursively.
<END_TASK>
<USER_TASK:>
Description:
def _decref_dependencies_recursive(self, term, refcounts, garbage):
"""
Decrement terms recursively.
Notes
-----
This should only be used to build the initial workspace, after that we
should use:
:meth:`~zipline.pipeline.graph.TermGraph.decref_dependencies`
""" |
# Edges are tuple of (from, to).
for parent, _ in self.graph.in_edges([term]):
refcounts[parent] -= 1
# No one else depends on this term. Remove it from the
# workspace to conserve memory.
if refcounts[parent] == 0:
garbage.add(parent)
self._decref_dependencies_recursive(parent, refcounts, garbage) |
<SYSTEM_TASK:>
Decrement in-edges for ``term`` after computation.
<END_TASK>
<USER_TASK:>
Description:
def decref_dependencies(self, term, refcounts):
"""
Decrement in-edges for ``term`` after computation.
Parameters
----------
term : zipline.pipeline.Term
The term whose parents should be decref'ed.
refcounts : dict[Term -> int]
Dictionary of refcounts.
Return
------
garbage : set[Term]
Terms whose refcounts hit zero after decrefing.
""" |
garbage = set()
# Edges are tuple of (from, to).
for parent, _ in self.graph.in_edges([term]):
refcounts[parent] -= 1
# No one else depends on this term. Remove it from the
# workspace to conserve memory.
if refcounts[parent] == 0:
garbage.add(parent)
return garbage |
<SYSTEM_TASK:>
Ensure that we're going to compute at least N extra rows of `term`.
<END_TASK>
<USER_TASK:>
Description:
def _ensure_extra_rows(self, term, N):
"""
Ensure that we're going to compute at least N extra rows of `term`.
""" |
attrs = self.graph.node[term]
attrs['extra_rows'] = max(N, attrs.get('extra_rows', 0)) |
<SYSTEM_TASK:>
Load mask and mask row labels for term.
<END_TASK>
<USER_TASK:>
Description:
def mask_and_dates_for_term(self,
term,
root_mask_term,
workspace,
all_dates):
"""
Load mask and mask row labels for term.
Parameters
----------
term : Term
The term to load the mask and labels for.
root_mask_term : Term
The term that represents the root asset exists mask.
workspace : dict[Term, any]
The values that have been computed for each term.
all_dates : pd.DatetimeIndex
All of the dates that are being computed for in the pipeline.
Returns
-------
mask : np.ndarray
The correct mask for this term.
dates : np.ndarray
The slice of dates for this term.
""" |
mask = term.mask
mask_offset = self.extra_rows[mask] - self.extra_rows[term]
# This offset is computed against root_mask_term because that is what
# determines the shape of the top-level dates array.
dates_offset = (
self.extra_rows[root_mask_term] - self.extra_rows[term]
)
return workspace[mask][mask_offset:], all_dates[dates_offset:] |
<SYSTEM_TASK:>
Make sure that we've specialized all loadable terms in the graph.
<END_TASK>
<USER_TASK:>
Description:
def _assert_all_loadable_terms_specialized_to(self, domain):
"""Make sure that we've specialized all loadable terms in the graph.
""" |
for term in self.graph.node:
if isinstance(term, LoadableTerm):
assert term.domain is domain |
<SYSTEM_TASK:>
Read a requirements.txt file, expressed as a path relative to Zipline root.
<END_TASK>
<USER_TASK:>
Description:
def read_requirements(path,
strict_bounds,
conda_format=False,
filter_names=None):
"""
Read a requirements.txt file, expressed as a path relative to Zipline root.
Returns requirements with the pinned versions as lower bounds
if `strict_bounds` is falsey.
""" |
real_path = join(dirname(abspath(__file__)), path)
with open(real_path) as f:
reqs = _filter_requirements(f.readlines(), filter_names=filter_names,
filter_sys_version=not conda_format)
if not strict_bounds:
reqs = map(_with_bounds, reqs)
if conda_format:
reqs = map(_conda_format, reqs)
return list(reqs) |
<SYSTEM_TASK:>
Normalize a time. If the time is tz-naive, assume it is UTC.
<END_TASK>
<USER_TASK:>
Description:
def ensure_utc(time, tz='UTC'):
"""
Normalize a time. If the time is tz-naive, assume it is UTC.
""" |
if not time.tzinfo:
time = time.replace(tzinfo=pytz.timezone(tz))
return time.replace(tzinfo=pytz.utc) |
<SYSTEM_TASK:>
Builds the offset argument for event rules.
<END_TASK>
<USER_TASK:>
Description:
def _build_offset(offset, kwargs, default):
"""
Builds the offset argument for event rules.
""" |
if offset is None:
if not kwargs:
return default # use the default.
else:
return _td_check(datetime.timedelta(**kwargs))
elif kwargs:
raise ValueError('Cannot pass kwargs and an offset')
elif isinstance(offset, datetime.timedelta):
return _td_check(offset)
else:
raise TypeError("Must pass 'hours' and/or 'minutes' as keywords") |
<SYSTEM_TASK:>
Builds the date argument for event rules.
<END_TASK>
<USER_TASK:>
Description:
def _build_date(date, kwargs):
"""
Builds the date argument for event rules.
""" |
if date is None:
if not kwargs:
raise ValueError('Must pass a date or kwargs')
else:
return datetime.date(**kwargs)
elif kwargs:
raise ValueError('Cannot pass kwargs and a date')
else:
return date |
<SYSTEM_TASK:>
Builds the time argument for event rules.
<END_TASK>
<USER_TASK:>
Description:
def _build_time(time, kwargs):
"""
Builds the time argument for event rules.
""" |
tz = kwargs.pop('tz', 'UTC')
if time:
if kwargs:
raise ValueError('Cannot pass kwargs and a time')
else:
return ensure_utc(time, tz)
elif not kwargs:
raise ValueError('Must pass a time or kwargs')
else:
return datetime.time(**kwargs) |
<SYSTEM_TASK:>
A preprocessor that coerces integral floats to ints.
<END_TASK>
<USER_TASK:>
Description:
def lossless_float_to_int(funcname, func, argname, arg):
"""
A preprocessor that coerces integral floats to ints.
Receipt of non-integral floats raises a TypeError.
""" |
if not isinstance(arg, float):
return arg
arg_as_int = int(arg)
if arg == arg_as_int:
warnings.warn(
"{f} expected an int for argument {name!r}, but got float {arg}."
" Coercing to int.".format(
f=funcname,
name=argname,
arg=arg,
),
)
return arg_as_int
raise TypeError(arg) |
<SYSTEM_TASK:>
Adds an event to the manager.
<END_TASK>
<USER_TASK:>
Description:
def add_event(self, event, prepend=False):
"""
Adds an event to the manager.
""" |
if prepend:
self._events.insert(0, event)
else:
self._events.append(event) |
<SYSTEM_TASK:>
Calls the callable only when the rule is triggered.
<END_TASK>
<USER_TASK:>
Description:
def handle_data(self, context, data, dt):
"""
Calls the callable only when the rule is triggered.
""" |
if self.rule.should_trigger(dt):
self.callback(context, data) |
<SYSTEM_TASK:>
Composes the two rules with a lazy composer.
<END_TASK>
<USER_TASK:>
Description:
def should_trigger(self, dt):
"""
Composes the two rules with a lazy composer.
""" |
return self.composer(
self.first.should_trigger,
self.second.should_trigger,
dt
) |
<SYSTEM_TASK:>
Drops any record where a value would not fit into a uint32.
<END_TASK>
<USER_TASK:>
Description:
def winsorise_uint32(df, invalid_data_behavior, column, *columns):
"""Drops any record where a value would not fit into a uint32.
Parameters
----------
df : pd.DataFrame
The dataframe to winsorise.
invalid_data_behavior : {'warn', 'raise', 'ignore'}
What to do when data is outside the bounds of a uint32.
*columns : iterable[str]
The names of the columns to check.
Returns
-------
truncated : pd.DataFrame
``df`` with values that do not fit into a uint32 zeroed out.
""" |
columns = list((column,) + columns)
mask = df[columns] > UINT32_MAX
if invalid_data_behavior != 'ignore':
mask |= df[columns].isnull()
else:
# we are not going to generate a warning or error for this so just use
# nan_to_num
df[columns] = np.nan_to_num(df[columns])
mv = mask.values
if mv.any():
if invalid_data_behavior == 'raise':
raise ValueError(
'%d values out of bounds for uint32: %r' % (
mv.sum(), df[mask.any(axis=1)],
),
)
if invalid_data_behavior == 'warn':
warnings.warn(
'Ignoring %d values because they are out of bounds for'
' uint32: %r' % (
mv.sum(), df[mask.any(axis=1)],
),
stacklevel=3, # one extra frame for `expect_element`
)
df[mask] = 0
return df |
<SYSTEM_TASK:>
Read CSVs as DataFrames from our asset map.
<END_TASK>
<USER_TASK:>
Description:
def write_csvs(self,
asset_map,
show_progress=False,
invalid_data_behavior='warn'):
"""Read CSVs as DataFrames from our asset map.
Parameters
----------
asset_map : dict[int -> str]
A mapping from asset id to file path with the CSV data for that
asset
show_progress : bool
Whether or not to show a progress bar while writing.
invalid_data_behavior : {'warn', 'raise', 'ignore'}
What to do when data is encountered that is outside the range of
a uint32.
""" |
read = partial(
read_csv,
parse_dates=['day'],
index_col='day',
dtype=self._csv_dtypes,
)
return self.write(
((asset, read(path)) for asset, path in iteritems(asset_map)),
assets=viewkeys(asset_map),
show_progress=show_progress,
invalid_data_behavior=invalid_data_behavior,
) |
<SYSTEM_TASK:>
Compute the raw row indices to load for each asset on a query for the
<END_TASK>
<USER_TASK:>
Description:
def _compute_slices(self, start_idx, end_idx, assets):
"""
Compute the raw row indices to load for each asset on a query for the
given dates after applying a shift.
Parameters
----------
start_idx : int
Index of first date for which we want data.
end_idx : int
Index of last date for which we want data.
assets : pandas.Int64Index
Assets for which we want to compute row indices
Returns
-------
A 3-tuple of (first_rows, last_rows, offsets):
first_rows : np.array[intp]
Array with length == len(assets) containing the index of the first
row to load for each asset in `assets`.
last_rows : np.array[intp]
Array with length == len(assets) containing the index of the last
row to load for each asset in `assets`.
offset : np.array[intp]
Array with length == (len(asset) containing the index in a buffer
of length `dates` corresponding to the first row of each asset.
The value of offset[i] will be 0 if asset[i] existed at the start
of a query. Otherwise, offset[i] will be equal to the number of
entries in `dates` for which the asset did not yet exist.
""" |
# The core implementation of the logic here is implemented in Cython
# for efficiency.
return _compute_row_slices(
self._first_rows,
self._last_rows,
self._calendar_offsets,
start_idx,
end_idx,
assets,
) |
<SYSTEM_TASK:>
Get the colname from daily_bar_table and read all of it into memory,
<END_TASK>
<USER_TASK:>
Description:
def _spot_col(self, colname):
"""
Get the colname from daily_bar_table and read all of it into memory,
caching the result.
Parameters
----------
colname : string
A name of a OHLCV carray in the daily_bar_table
Returns
-------
array (uint32)
Full read array of the carray in the daily_bar_table with the
given colname.
""" |
try:
col = self._spot_cols[colname]
except KeyError:
col = self._spot_cols[colname] = self._table[colname]
return col |
<SYSTEM_TASK:>
Construct and store a PipelineEngine from loader.
<END_TASK>
<USER_TASK:>
Description:
def init_engine(self, get_loader):
"""
Construct and store a PipelineEngine from loader.
If get_loader is None, constructs an ExplodingPipelineEngine
""" |
if get_loader is not None:
self.engine = SimplePipelineEngine(
get_loader,
self.asset_finder,
self.default_pipeline_domain(self.trading_calendar),
)
else:
self.engine = ExplodingPipelineEngine() |
<SYSTEM_TASK:>
Call self._initialize with `self` made available to Zipline API
<END_TASK>
<USER_TASK:>
Description:
def initialize(self, *args, **kwargs):
"""
Call self._initialize with `self` made available to Zipline API
functions.
""" |
with ZiplineAPI(self):
self._initialize(self, *args, **kwargs) |
<SYSTEM_TASK:>
If the clock property is not set, then create one based on frequency.
<END_TASK>
<USER_TASK:>
Description:
def _create_clock(self):
"""
If the clock property is not set, then create one based on frequency.
""" |
trading_o_and_c = self.trading_calendar.schedule.ix[
self.sim_params.sessions]
market_closes = trading_o_and_c['market_close']
minutely_emission = False
if self.sim_params.data_frequency == 'minute':
market_opens = trading_o_and_c['market_open']
minutely_emission = self.sim_params.emission_rate == "minute"
# The calendar's execution times are the minutes over which we
# actually want to run the clock. Typically the execution times
# simply adhere to the market open and close times. In the case of
# the futures calendar, for example, we only want to simulate over
# a subset of the full 24 hour calendar, so the execution times
# dictate a market open time of 6:31am US/Eastern and a close of
# 5:00pm US/Eastern.
execution_opens = \
self.trading_calendar.execution_time_from_open(market_opens)
execution_closes = \
self.trading_calendar.execution_time_from_close(market_closes)
else:
# in daily mode, we want to have one bar per session, timestamped
# as the last minute of the session.
execution_closes = \
self.trading_calendar.execution_time_from_close(market_closes)
execution_opens = execution_closes
# FIXME generalize these values
before_trading_start_minutes = days_at_time(
self.sim_params.sessions,
time(8, 45),
"US/Eastern"
)
return MinuteSimulationClock(
self.sim_params.sessions,
execution_opens,
execution_closes,
before_trading_start_minutes,
minute_emission=minutely_emission,
) |
<SYSTEM_TASK:>
Compute any pipelines attached with eager=True.
<END_TASK>
<USER_TASK:>
Description:
def compute_eager_pipelines(self):
"""
Compute any pipelines attached with eager=True.
""" |
for name, pipe in self._pipelines.items():
if pipe.eager:
self.pipeline_output(name) |
<SYSTEM_TASK:>
If there is a capital change for a given dt, this means the the change
<END_TASK>
<USER_TASK:>
Description:
def calculate_capital_changes(self, dt, emission_rate, is_interday,
portfolio_value_adjustment=0.0):
"""
If there is a capital change for a given dt, this means the the change
occurs before `handle_data` on the given dt. In the case of the
change being a target value, the change will be computed on the
portfolio value according to prices at the given dt
`portfolio_value_adjustment`, if specified, will be removed from the
portfolio_value of the cumulative performance when calculating deltas
from target capital changes.
""" |
try:
capital_change = self.capital_changes[dt]
except KeyError:
return
self._sync_last_sale_prices()
if capital_change['type'] == 'target':
target = capital_change['value']
capital_change_amount = (
target -
(
self.portfolio.portfolio_value -
portfolio_value_adjustment
)
)
log.info('Processing capital change to target %s at %s. Capital '
'change delta is %s' % (target, dt,
capital_change_amount))
elif capital_change['type'] == 'delta':
target = None
capital_change_amount = capital_change['value']
log.info('Processing capital change of delta %s at %s'
% (capital_change_amount, dt))
else:
log.error("Capital change %s does not indicate a valid type "
"('target' or 'delta')" % capital_change)
return
self.capital_change_deltas.update({dt: capital_change_amount})
self.metrics_tracker.capital_change(capital_change_amount)
yield {
'capital_change':
{'date': dt,
'type': 'cash',
'target': target,
'delta': capital_change_amount}
} |
<SYSTEM_TASK:>
Query the execution environment.
<END_TASK>
<USER_TASK:>
Description:
def get_environment(self, field='platform'):
"""Query the execution environment.
Parameters
----------
field : {'platform', 'arena', 'data_frequency',
'start', 'end', 'capital_base', 'platform', '*'}
The field to query. The options have the following meanings:
arena : str
The arena from the simulation parameters. This will normally
be ``'backtest'`` but some systems may use this distinguish
live trading from backtesting.
data_frequency : {'daily', 'minute'}
data_frequency tells the algorithm if it is running with
daily data or minute data.
start : datetime
The start date for the simulation.
end : datetime
The end date for the simulation.
capital_base : float
The starting capital for the simulation.
platform : str
The platform that the code is running on. By default this
will be the string 'zipline'. This can allow algorithms to
know if they are running on the Quantopian platform instead.
* : dict[str -> any]
Returns all of the fields in a dictionary.
Returns
-------
val : any
The value for the field queried. See above for more information.
Raises
------
ValueError
Raised when ``field`` is not a valid option.
""" |
env = {
'arena': self.sim_params.arena,
'data_frequency': self.sim_params.data_frequency,
'start': self.sim_params.first_open,
'end': self.sim_params.last_close,
'capital_base': self.sim_params.capital_base,
'platform': self._platform
}
if field == '*':
return env
else:
try:
return env[field]
except KeyError:
raise ValueError(
'%r is not a valid field for get_environment' % field,
) |
<SYSTEM_TASK:>
Fetch a csv from a remote url and register the data so that it is
<END_TASK>
<USER_TASK:>
Description:
def fetch_csv(self,
url,
pre_func=None,
post_func=None,
date_column='date',
date_format=None,
timezone=pytz.utc.zone,
symbol=None,
mask=True,
symbol_column=None,
special_params_checker=None,
country_code=None,
**kwargs):
"""Fetch a csv from a remote url and register the data so that it is
queryable from the ``data`` object.
Parameters
----------
url : str
The url of the csv file to load.
pre_func : callable[pd.DataFrame -> pd.DataFrame], optional
A callback to allow preprocessing the raw data returned from
fetch_csv before dates are paresed or symbols are mapped.
post_func : callable[pd.DataFrame -> pd.DataFrame], optional
A callback to allow postprocessing of the data after dates and
symbols have been mapped.
date_column : str, optional
The name of the column in the preprocessed dataframe containing
datetime information to map the data.
date_format : str, optional
The format of the dates in the ``date_column``. If not provided
``fetch_csv`` will attempt to infer the format. For information
about the format of this string, see :func:`pandas.read_csv`.
timezone : tzinfo or str, optional
The timezone for the datetime in the ``date_column``.
symbol : str, optional
If the data is about a new asset or index then this string will
be the name used to identify the values in ``data``. For example,
one may use ``fetch_csv`` to load data for VIX, then this field
could be the string ``'VIX'``.
mask : bool, optional
Drop any rows which cannot be symbol mapped.
symbol_column : str
If the data is attaching some new attribute to each asset then this
argument is the name of the column in the preprocessed dataframe
containing the symbols. This will be used along with the date
information to map the sids in the asset finder.
country_code : str, optional
Country code to use to disambiguate symbol lookups.
**kwargs
Forwarded to :func:`pandas.read_csv`.
Returns
-------
csv_data_source : zipline.sources.requests_csv.PandasRequestsCSV
A requests source that will pull data from the url specified.
""" |
if country_code is None:
country_code = self.default_fetch_csv_country_code(
self.trading_calendar,
)
# Show all the logs every time fetcher is used.
csv_data_source = PandasRequestsCSV(
url,
pre_func,
post_func,
self.asset_finder,
self.trading_calendar.day,
self.sim_params.start_session,
self.sim_params.end_session,
date_column,
date_format,
timezone,
symbol,
mask,
symbol_column,
data_frequency=self.data_frequency,
country_code=country_code,
special_params_checker=special_params_checker,
**kwargs
)
# ingest this into dataportal
self.data_portal.handle_extra_source(csv_data_source.df,
self.sim_params)
return csv_data_source |
<SYSTEM_TASK:>
Adds an event to the algorithm's EventManager.
<END_TASK>
<USER_TASK:>
Description:
def add_event(self, rule, callback):
"""Adds an event to the algorithm's EventManager.
Parameters
----------
rule : EventRule
The rule for when the callback should be triggered.
callback : callable[(context, data) -> None]
The function to execute when the rule is triggered.
""" |
self.event_manager.add_event(
zipline.utils.events.Event(rule, callback),
) |
<SYSTEM_TASK:>
Schedules a function to be called according to some timed rules.
<END_TASK>
<USER_TASK:>
Description:
def schedule_function(self,
func,
date_rule=None,
time_rule=None,
half_days=True,
calendar=None):
"""Schedules a function to be called according to some timed rules.
Parameters
----------
func : callable[(context, data) -> None]
The function to execute when the rule is triggered.
date_rule : EventRule, optional
The rule for the dates to execute this function.
time_rule : EventRule, optional
The rule for the times to execute this function.
half_days : bool, optional
Should this rule fire on half days?
calendar : Sentinel, optional
Calendar used to reconcile date and time rules.
See Also
--------
:class:`zipline.api.date_rules`
:class:`zipline.api.time_rules`
""" |
# When the user calls schedule_function(func, <time_rule>), assume that
# the user meant to specify a time rule but no date rule, instead of
# a date rule and no time rule as the signature suggests
if isinstance(date_rule, (AfterOpen, BeforeClose)) and not time_rule:
warnings.warn('Got a time rule for the second positional argument '
'date_rule. You should use keyword argument '
'time_rule= when calling schedule_function without '
'specifying a date_rule', stacklevel=3)
date_rule = date_rule or date_rules.every_day()
time_rule = ((time_rule or time_rules.every_minute())
if self.sim_params.data_frequency == 'minute' else
# If we are in daily mode the time_rule is ignored.
time_rules.every_minute())
# Check the type of the algorithm's schedule before pulling calendar
# Note that the ExchangeTradingSchedule is currently the only
# TradingSchedule class, so this is unlikely to be hit
if calendar is None:
cal = self.trading_calendar
elif calendar is calendars.US_EQUITIES:
cal = get_calendar('XNYS')
elif calendar is calendars.US_FUTURES:
cal = get_calendar('us_futures')
else:
raise ScheduleFunctionInvalidCalendar(
given_calendar=calendar,
allowed_calendars=(
'[calendars.US_EQUITIES, calendars.US_FUTURES]'
),
)
self.add_event(
make_eventrule(date_rule, time_rule, cal, half_days),
func,
) |
<SYSTEM_TASK:>
Create a specifier for a continuous contract.
<END_TASK>
<USER_TASK:>
Description:
def continuous_future(self,
root_symbol_str,
offset=0,
roll='volume',
adjustment='mul'):
"""Create a specifier for a continuous contract.
Parameters
----------
root_symbol_str : str
The root symbol for the future chain.
offset : int, optional
The distance from the primary contract. Default is 0.
roll_style : str, optional
How rolls are determined. Default is 'volume'.
adjustment : str, optional
Method for adjusting lookback prices between rolls. Options are
'mul', 'add', and None. Default is 'mul'.
Returns
-------
continuous_future : ContinuousFuture
The continuous future specifier.
""" |
return self.asset_finder.create_continuous_future(
root_symbol_str,
offset,
roll,
adjustment,
) |
<SYSTEM_TASK:>
Lookup an Equity by its ticker symbol.
<END_TASK>
<USER_TASK:>
Description:
def symbol(self, symbol_str, country_code=None):
"""Lookup an Equity by its ticker symbol.
Parameters
----------
symbol_str : str
The ticker symbol for the equity to lookup.
country_code : str or None, optional
A country to limit symbol searches to.
Returns
-------
equity : Equity
The equity that held the ticker symbol on the current
symbol lookup date.
Raises
------
SymbolNotFound
Raised when the symbols was not held on the current lookup date.
See Also
--------
:func:`zipline.api.set_symbol_lookup_date`
""" |
# If the user has not set the symbol lookup date,
# use the end_session as the date for symbol->sid resolution.
_lookup_date = self._symbol_lookup_date \
if self._symbol_lookup_date is not None \
else self.sim_params.end_session
return self.asset_finder.lookup_symbol(
symbol_str,
as_of_date=_lookup_date,
country_code=country_code,
) |
<SYSTEM_TASK:>
Lookup multuple Equities as a list.
<END_TASK>
<USER_TASK:>
Description:
def symbols(self, *args, **kwargs):
"""Lookup multuple Equities as a list.
Parameters
----------
*args : iterable[str]
The ticker symbols to lookup.
country_code : str or None, optional
A country to limit symbol searches to.
Returns
-------
equities : list[Equity]
The equities that held the given ticker symbols on the current
symbol lookup date.
Raises
------
SymbolNotFound
Raised when one of the symbols was not held on the current
lookup date.
See Also
--------
:func:`zipline.api.set_symbol_lookup_date`
""" |
return [self.symbol(identifier, **kwargs) for identifier in args] |
<SYSTEM_TASK:>
Helper method for validating parameters to the order API function.
<END_TASK>
<USER_TASK:>
Description:
def validate_order_params(self,
asset,
amount,
limit_price,
stop_price,
style):
"""
Helper method for validating parameters to the order API function.
Raises an UnsupportedOrderParameters if invalid arguments are found.
""" |
if not self.initialized:
raise OrderDuringInitialize(
msg="order() can only be called from within handle_data()"
)
if style:
if limit_price:
raise UnsupportedOrderParameters(
msg="Passing both limit_price and style is not supported."
)
if stop_price:
raise UnsupportedOrderParameters(
msg="Passing both stop_price and style is not supported."
)
for control in self.trading_controls:
control.validate(asset,
amount,
self.portfolio,
self.get_datetime(),
self.trading_client.current_data) |
<SYSTEM_TASK:>
Helper method for converting deprecated limit_price and stop_price
<END_TASK>
<USER_TASK:>
Description:
def __convert_order_params_for_blotter(asset,
limit_price,
stop_price,
style):
"""
Helper method for converting deprecated limit_price and stop_price
arguments into ExecutionStyle instances.
This function assumes that either style == None or (limit_price,
stop_price) == (None, None).
""" |
if style:
assert (limit_price, stop_price) == (None, None)
return style
if limit_price and stop_price:
return StopLimitOrder(limit_price, stop_price, asset=asset)
if limit_price:
return LimitOrder(limit_price, asset=asset)
if stop_price:
return StopOrder(stop_price, asset=asset)
else:
return MarketOrder() |
<SYSTEM_TASK:>
Place an order by desired value rather than desired number of
<END_TASK>
<USER_TASK:>
Description:
def order_value(self,
asset,
value,
limit_price=None,
stop_price=None,
style=None):
"""Place an order by desired value rather than desired number of
shares.
Parameters
----------
asset : Asset
The asset that this order is for.
value : float
If the requested asset exists, the requested value is
divided by its price to imply the number of shares to transact.
If the Asset being ordered is a Future, the 'value' calculated
is actually the exposure, as Futures have no 'value'.
value > 0 :: Buy/Cover
value < 0 :: Sell/Short
limit_price : float, optional
The limit price for the order.
stop_price : float, optional
The stop price for the order.
style : ExecutionStyle
The execution style for the order.
Returns
-------
order_id : str
The unique identifier for this order.
Notes
-----
See :func:`zipline.api.order` for more information about
``limit_price``, ``stop_price``, and ``style``
See Also
--------
:class:`zipline.finance.execution.ExecutionStyle`
:func:`zipline.api.order`
:func:`zipline.api.order_percent`
""" |
if not self._can_order_asset(asset):
return None
amount = self._calculate_order_value_amount(asset, value)
return self.order(asset, amount,
limit_price=limit_price,
stop_price=stop_price,
style=style) |
<SYSTEM_TASK:>
Sync the last sale prices on the metrics tracker to a given
<END_TASK>
<USER_TASK:>
Description:
def _sync_last_sale_prices(self, dt=None):
"""Sync the last sale prices on the metrics tracker to a given
datetime.
Parameters
----------
dt : datetime
The time to sync the prices to.
Notes
-----
This call is cached by the datetime. Repeated calls in the same bar
are cheap.
""" |
if dt is None:
dt = self.datetime
if dt != self._last_sync_time:
self.metrics_tracker.sync_last_sale_prices(
dt,
self.data_portal,
)
self._last_sync_time = dt |
<SYSTEM_TASK:>
Callback triggered by the simulation loop whenever the current dt
<END_TASK>
<USER_TASK:>
Description:
def on_dt_changed(self, dt):
"""
Callback triggered by the simulation loop whenever the current dt
changes.
Any logic that should happen exactly once at the start of each datetime
group should happen here.
""" |
self.datetime = dt
self.blotter.set_date(dt) |
<SYSTEM_TASK:>
Returns the current simulation datetime.
<END_TASK>
<USER_TASK:>
Description:
def get_datetime(self, tz=None):
"""
Returns the current simulation datetime.
Parameters
----------
tz : tzinfo or str, optional
The timezone to return the datetime in. This defaults to utc.
Returns
-------
dt : datetime
The current simulation datetime converted to ``tz``.
""" |
dt = self.datetime
assert dt.tzinfo == pytz.utc, "Algorithm should have a utc datetime"
if tz is not None:
dt = dt.astimezone(tz)
return dt |
<SYSTEM_TASK:>
Sets the order cancellation policy for the simulation.
<END_TASK>
<USER_TASK:>
Description:
def set_cancel_policy(self, cancel_policy):
"""Sets the order cancellation policy for the simulation.
Parameters
----------
cancel_policy : CancelPolicy
The cancellation policy to use.
See Also
--------
:class:`zipline.api.EODCancel`
:class:`zipline.api.NeverCancel`
""" |
if not isinstance(cancel_policy, CancelPolicy):
raise UnsupportedCancelPolicy()
if self.initialized:
raise SetCancelPolicyPostInit()
self.blotter.cancel_policy = cancel_policy |
<SYSTEM_TASK:>
Place an order in the specified asset corresponding to the given
<END_TASK>
<USER_TASK:>
Description:
def order_percent(self,
asset,
percent,
limit_price=None,
stop_price=None,
style=None):
"""Place an order in the specified asset corresponding to the given
percent of the current portfolio value.
Parameters
----------
asset : Asset
The asset that this order is for.
percent : float
The percentage of the portfolio value to allocate to ``asset``.
This is specified as a decimal, for example: 0.50 means 50%.
limit_price : float, optional
The limit price for the order.
stop_price : float, optional
The stop price for the order.
style : ExecutionStyle
The execution style for the order.
Returns
-------
order_id : str
The unique identifier for this order.
Notes
-----
See :func:`zipline.api.order` for more information about
``limit_price``, ``stop_price``, and ``style``
See Also
--------
:class:`zipline.finance.execution.ExecutionStyle`
:func:`zipline.api.order`
:func:`zipline.api.order_value`
""" |
if not self._can_order_asset(asset):
return None
amount = self._calculate_order_percent_amount(asset, percent)
return self.order(asset, amount,
limit_price=limit_price,
stop_price=stop_price,
style=style) |
<SYSTEM_TASK:>
Place an order to adjust a position to a target number of shares. If
<END_TASK>
<USER_TASK:>
Description:
def order_target(self,
asset,
target,
limit_price=None,
stop_price=None,
style=None):
"""Place an order to adjust a position to a target number of shares. If
the position doesn't already exist, this is equivalent to placing a new
order. If the position does exist, this is equivalent to placing an
order for the difference between the target number of shares and the
current number of shares.
Parameters
----------
asset : Asset
The asset that this order is for.
target : int
The desired number of shares of ``asset``.
limit_price : float, optional
The limit price for the order.
stop_price : float, optional
The stop price for the order.
style : ExecutionStyle
The execution style for the order.
Returns
-------
order_id : str
The unique identifier for this order.
Notes
-----
``order_target`` does not take into account any open orders. For
example:
.. code-block:: python
order_target(sid(0), 10)
order_target(sid(0), 10)
This code will result in 20 shares of ``sid(0)`` because the first
call to ``order_target`` will not have been filled when the second
``order_target`` call is made.
See :func:`zipline.api.order` for more information about
``limit_price``, ``stop_price``, and ``style``
See Also
--------
:class:`zipline.finance.execution.ExecutionStyle`
:func:`zipline.api.order`
:func:`zipline.api.order_target_percent`
:func:`zipline.api.order_target_value`
""" |
if not self._can_order_asset(asset):
return None
amount = self._calculate_order_target_amount(asset, target)
return self.order(asset, amount,
limit_price=limit_price,
stop_price=stop_price,
style=style) |
<SYSTEM_TASK:>
Place an order to adjust a position to a target value. If
<END_TASK>
<USER_TASK:>
Description:
def order_target_value(self,
asset,
target,
limit_price=None,
stop_price=None,
style=None):
"""Place an order to adjust a position to a target value. If
the position doesn't already exist, this is equivalent to placing a new
order. If the position does exist, this is equivalent to placing an
order for the difference between the target value and the
current value.
If the Asset being ordered is a Future, the 'target value' calculated
is actually the target exposure, as Futures have no 'value'.
Parameters
----------
asset : Asset
The asset that this order is for.
target : float
The desired total value of ``asset``.
limit_price : float, optional
The limit price for the order.
stop_price : float, optional
The stop price for the order.
style : ExecutionStyle
The execution style for the order.
Returns
-------
order_id : str
The unique identifier for this order.
Notes
-----
``order_target_value`` does not take into account any open orders. For
example:
.. code-block:: python
order_target_value(sid(0), 10)
order_target_value(sid(0), 10)
This code will result in 20 dollars of ``sid(0)`` because the first
call to ``order_target_value`` will not have been filled when the
second ``order_target_value`` call is made.
See :func:`zipline.api.order` for more information about
``limit_price``, ``stop_price``, and ``style``
See Also
--------
:class:`zipline.finance.execution.ExecutionStyle`
:func:`zipline.api.order`
:func:`zipline.api.order_target`
:func:`zipline.api.order_target_percent`
""" |
if not self._can_order_asset(asset):
return None
target_amount = self._calculate_order_value_amount(asset, target)
amount = self._calculate_order_target_amount(asset, target_amount)
return self.order(asset, amount,
limit_price=limit_price,
stop_price=stop_price,
style=style) |
<SYSTEM_TASK:>
Place an order to adjust a position to a target percent of the
<END_TASK>
<USER_TASK:>
Description:
def order_target_percent(self, asset, target,
limit_price=None, stop_price=None, style=None):
"""Place an order to adjust a position to a target percent of the
current portfolio value. If the position doesn't already exist, this is
equivalent to placing a new order. If the position does exist, this is
equivalent to placing an order for the difference between the target
percent and the current percent.
Parameters
----------
asset : Asset
The asset that this order is for.
target : float
The desired percentage of the portfolio value to allocate to
``asset``. This is specified as a decimal, for example:
0.50 means 50%.
limit_price : float, optional
The limit price for the order.
stop_price : float, optional
The stop price for the order.
style : ExecutionStyle
The execution style for the order.
Returns
-------
order_id : str
The unique identifier for this order.
Notes
-----
``order_target_value`` does not take into account any open orders. For
example:
.. code-block:: python
order_target_percent(sid(0), 10)
order_target_percent(sid(0), 10)
This code will result in 20% of the portfolio being allocated to sid(0)
because the first call to ``order_target_percent`` will not have been
filled when the second ``order_target_percent`` call is made.
See :func:`zipline.api.order` for more information about
``limit_price``, ``stop_price``, and ``style``
See Also
--------
:class:`zipline.finance.execution.ExecutionStyle`
:func:`zipline.api.order`
:func:`zipline.api.order_target`
:func:`zipline.api.order_target_value`
""" |
if not self._can_order_asset(asset):
return None
amount = self._calculate_order_target_percent_amount(asset, target)
return self.order(asset, amount,
limit_price=limit_price,
stop_price=stop_price,
style=style) |
<SYSTEM_TASK:>
Place a batch market order for multiple assets.
<END_TASK>
<USER_TASK:>
Description:
def batch_market_order(self, share_counts):
"""Place a batch market order for multiple assets.
Parameters
----------
share_counts : pd.Series[Asset -> int]
Map from asset to number of shares to order for that asset.
Returns
-------
order_ids : pd.Index[str]
Index of ids for newly-created orders.
""" |
style = MarketOrder()
order_args = [
(asset, amount, style)
for (asset, amount) in iteritems(share_counts)
if amount
]
return self.blotter.batch_order(order_args) |
<SYSTEM_TASK:>
Retrieve all of the current open orders.
<END_TASK>
<USER_TASK:>
Description:
def get_open_orders(self, asset=None):
"""Retrieve all of the current open orders.
Parameters
----------
asset : Asset
If passed and not None, return only the open orders for the given
asset instead of all open orders.
Returns
-------
open_orders : dict[list[Order]] or list[Order]
If no asset is passed this will return a dict mapping Assets
to a list containing all the open orders for the asset.
If an asset is passed then this will return a list of the open
orders for this asset.
""" |
if asset is None:
return {
key: [order.to_api_obj() for order in orders]
for key, orders in iteritems(self.blotter.open_orders)
if orders
}
if asset in self.blotter.open_orders:
orders = self.blotter.open_orders[asset]
return [order.to_api_obj() for order in orders]
return [] |
<SYSTEM_TASK:>
Lookup an order based on the order id returned from one of the
<END_TASK>
<USER_TASK:>
Description:
def get_order(self, order_id):
"""Lookup an order based on the order id returned from one of the
order functions.
Parameters
----------
order_id : str
The unique identifier for the order.
Returns
-------
order : Order
The order object.
""" |
if order_id in self.blotter.orders:
return self.blotter.orders[order_id].to_api_obj() |
<SYSTEM_TASK:>
Cancel an open order.
<END_TASK>
<USER_TASK:>
Description:
def cancel_order(self, order_param):
"""Cancel an open order.
Parameters
----------
order_param : str or Order
The order_id or order object to cancel.
""" |
order_id = order_param
if isinstance(order_param, zipline.protocol.Order):
order_id = order_param.id
self.blotter.cancel(order_id) |
<SYSTEM_TASK:>
Register a new AccountControl to be checked on each bar.
<END_TASK>
<USER_TASK:>
Description:
def register_account_control(self, control):
"""
Register a new AccountControl to be checked on each bar.
""" |
if self.initialized:
raise RegisterAccountControlPostInit()
self.account_controls.append(control) |
<SYSTEM_TASK:>
Set a limit on the minimum leverage of the algorithm.
<END_TASK>
<USER_TASK:>
Description:
def set_min_leverage(self, min_leverage, grace_period):
"""Set a limit on the minimum leverage of the algorithm.
Parameters
----------
min_leverage : float
The minimum leverage for the algorithm.
grace_period : pd.Timedelta
The offset from the start date used to enforce a minimum leverage.
""" |
deadline = self.sim_params.start_session + grace_period
control = MinLeverage(min_leverage, deadline)
self.register_account_control(control) |
<SYSTEM_TASK:>
Register a new TradingControl to be checked prior to order calls.
<END_TASK>
<USER_TASK:>
Description:
def register_trading_control(self, control):
"""
Register a new TradingControl to be checked prior to order calls.
""" |
if self.initialized:
raise RegisterTradingControlPostInit()
self.trading_controls.append(control) |
<SYSTEM_TASK:>
Set a limit on the number of orders that can be placed in a single
<END_TASK>
<USER_TASK:>
Description:
def set_max_order_count(self, max_count, on_error='fail'):
"""Set a limit on the number of orders that can be placed in a single
day.
Parameters
----------
max_count : int
The maximum number of orders that can be placed on any single day.
""" |
control = MaxOrderCount(on_error, max_count)
self.register_trading_control(control) |
<SYSTEM_TASK:>
Register a pipeline to be computed at the start of each day.
<END_TASK>
<USER_TASK:>
Description:
def attach_pipeline(self, pipeline, name, chunks=None, eager=True):
"""Register a pipeline to be computed at the start of each day.
Parameters
----------
pipeline : Pipeline
The pipeline to have computed.
name : str
The name of the pipeline.
chunks : int or iterator, optional
The number of days to compute pipeline results for. Increasing
this number will make it longer to get the first results but
may improve the total runtime of the simulation. If an iterator
is passed, we will run in chunks based on values of the iterator.
Default is True.
eager : bool, optional
Whether or not to compute this pipeline prior to
before_trading_start.
Returns
-------
pipeline : Pipeline
Returns the pipeline that was attached unchanged.
See Also
--------
:func:`zipline.api.pipeline_output`
""" |
if chunks is None:
# Make the first chunk smaller to get more immediate results:
# (one week, then every half year)
chunks = chain([5], repeat(126))
elif isinstance(chunks, int):
chunks = repeat(chunks)
if name in self._pipelines:
raise DuplicatePipelineName(name=name)
self._pipelines[name] = AttachedPipeline(pipeline, iter(chunks), eager)
# Return the pipeline to allow expressions like
# p = attach_pipeline(Pipeline(), 'name')
return pipeline |
<SYSTEM_TASK:>
Compute `pipeline`, providing values for at least `start_date`.
<END_TASK>
<USER_TASK:>
Description:
def run_pipeline(self, pipeline, start_session, chunksize):
"""
Compute `pipeline`, providing values for at least `start_date`.
Produces a DataFrame containing data for days between `start_date` and
`end_date`, where `end_date` is defined by:
`end_date = min(start_date + chunksize trading days,
simulation_end)`
Returns
-------
(data, valid_until) : tuple (pd.DataFrame, pd.Timestamp)
See Also
--------
PipelineEngine.run_pipeline
""" |
sessions = self.trading_calendar.all_sessions
# Load data starting from the previous trading day...
start_date_loc = sessions.get_loc(start_session)
# ...continuing until either the day before the simulation end, or
# until chunksize days of data have been loaded.
sim_end_session = self.sim_params.end_session
end_loc = min(
start_date_loc + chunksize,
sessions.get_loc(sim_end_session)
)
end_session = sessions[end_loc]
return \
self.engine.run_pipeline(pipeline, start_session, end_session), \
end_session |
<SYSTEM_TASK:>
Checks for the presence of an extra to the argument list. Raises expections
<END_TASK>
<USER_TASK:>
Description:
def _expect_extra(expected, present, exc_unexpected, exc_missing, exc_args):
"""
Checks for the presence of an extra to the argument list. Raises expections
if this is unexpected or if it is missing and expected.
""" |
if present:
if not expected:
raise exc_unexpected(*exc_args)
elif expected and expected is not Argument.ignore:
raise exc_missing(*exc_args) |
<SYSTEM_TASK:>
An asset is restricted for all dts if it is in the static list.
<END_TASK>
<USER_TASK:>
Description:
def is_restricted(self, assets, dt):
"""
An asset is restricted for all dts if it is in the static list.
""" |
if isinstance(assets, Asset):
return assets in self._restricted_set
return pd.Series(
index=pd.Index(assets),
data=vectorized_is_element(assets, self._restricted_set)
) |
<SYSTEM_TASK:>
Returns whether or not an asset or iterable of assets is restricted
<END_TASK>
<USER_TASK:>
Description:
def is_restricted(self, assets, dt):
"""
Returns whether or not an asset or iterable of assets is restricted
on a dt.
""" |
if isinstance(assets, Asset):
return self._is_restricted_for_asset(assets, dt)
is_restricted = partial(self._is_restricted_for_asset, dt=dt)
return pd.Series(
index=pd.Index(assets),
data=vectorize(is_restricted, otypes=[bool])(assets)
) |
<SYSTEM_TASK:>
Returns a cash payment based on the dividends that should be paid out
<END_TASK>
<USER_TASK:>
Description:
def pay_dividends(self, next_trading_day):
"""
Returns a cash payment based on the dividends that should be paid out
according to the accumulated bookkeeping of earned, unpaid, and stock
dividends.
""" |
net_cash_payment = 0.0
try:
payments = self._unpaid_dividends[next_trading_day]
# Mark these dividends as paid by dropping them from our unpaid
del self._unpaid_dividends[next_trading_day]
except KeyError:
payments = []
# representing the fact that we're required to reimburse the owner of
# the stock for any dividends paid while borrowing.
for payment in payments:
net_cash_payment += payment['amount']
# Add stock for any stock dividends paid. Again, the values here may
# be negative in the case of short positions.
try:
stock_payments = self._unpaid_stock_dividends[next_trading_day]
except KeyError:
stock_payments = []
for stock_payment in stock_payments:
payment_asset = stock_payment['payment_asset']
share_count = stock_payment['share_count']
# note we create a Position for stock dividend if we don't
# already own the asset
if payment_asset in self.positions:
position = self.positions[payment_asset]
else:
position = self.positions[payment_asset] = Position(
payment_asset,
)
position.amount += share_count
return net_cash_payment |
<SYSTEM_TASK:>
The current status of the positions.
<END_TASK>
<USER_TASK:>
Description:
def stats(self):
"""The current status of the positions.
Returns
-------
stats : PositionStats
The current stats position stats.
Notes
-----
This is cached, repeated access will not recompute the stats until
the stats may have changed.
""" |
if self._dirty_stats:
calculate_position_tracker_stats(self.positions, self._stats)
self._dirty_stats = False
return self._stats |
<SYSTEM_TASK:>
Add a transaction to ledger, updating the current state as needed.
<END_TASK>
<USER_TASK:>
Description:
def process_transaction(self, transaction):
"""Add a transaction to ledger, updating the current state as needed.
Parameters
----------
transaction : zp.Transaction
The transaction to execute.
""" |
asset = transaction.asset
if isinstance(asset, Future):
try:
old_price = self._payout_last_sale_prices[asset]
except KeyError:
self._payout_last_sale_prices[asset] = transaction.price
else:
position = self.position_tracker.positions[asset]
amount = position.amount
price = transaction.price
self._cash_flow(
self._calculate_payout(
asset.price_multiplier,
amount,
old_price,
price,
),
)
if amount + transaction.amount == 0:
del self._payout_last_sale_prices[asset]
else:
self._payout_last_sale_prices[asset] = price
else:
self._cash_flow(-(transaction.price * transaction.amount))
self.position_tracker.execute_transaction(transaction)
# we only ever want the dict form from now on
transaction_dict = transaction.to_dict()
try:
self._processed_transactions[transaction.dt].append(
transaction_dict,
)
except KeyError:
self._processed_transactions[transaction.dt] = [transaction_dict] |
<SYSTEM_TASK:>
Keep track of an order that was placed.
<END_TASK>
<USER_TASK:>
Description:
def process_order(self, order):
"""Keep track of an order that was placed.
Parameters
----------
order : zp.Order
The order to record.
""" |
try:
dt_orders = self._orders_by_modified[order.dt]
except KeyError:
self._orders_by_modified[order.dt] = OrderedDict([
(order.id, order),
])
self._orders_by_id[order.id] = order
else:
self._orders_by_id[order.id] = dt_orders[order.id] = order
# to preserve the order of the orders by modified date
move_to_end(dt_orders, order.id, last=True)
move_to_end(self._orders_by_id, order.id, last=True) |
<SYSTEM_TASK:>
Process the commission.
<END_TASK>
<USER_TASK:>
Description:
def process_commission(self, commission):
"""Process the commission.
Parameters
----------
commission : zp.Event
The commission being paid.
""" |
asset = commission['asset']
cost = commission['cost']
self.position_tracker.handle_commission(asset, cost)
self._cash_flow(-cost) |
<SYSTEM_TASK:>
Process dividends for the next session.
<END_TASK>
<USER_TASK:>
Description:
def process_dividends(self, next_session, asset_finder, adjustment_reader):
"""Process dividends for the next session.
This will earn us any dividends whose ex-date is the next session as
well as paying out any dividends whose pay-date is the next session
""" |
position_tracker = self.position_tracker
# Earn dividends whose ex_date is the next trading day. We need to
# check if we own any of these stocks so we know to pay them out when
# the pay date comes.
held_sids = set(position_tracker.positions)
if held_sids:
cash_dividends = adjustment_reader.get_dividends_with_ex_date(
held_sids,
next_session,
asset_finder
)
stock_dividends = (
adjustment_reader.get_stock_dividends_with_ex_date(
held_sids,
next_session,
asset_finder
)
)
# Earning a dividend just marks that we need to get paid out on
# the dividend's pay-date. This does not affect our cash yet.
position_tracker.earn_dividends(
cash_dividends,
stock_dividends,
)
# Pay out the dividends whose pay-date is the next session. This does
# affect out cash.
self._cash_flow(
position_tracker.pay_dividends(
next_session,
),
) |
<SYSTEM_TASK:>
Retrieve the dict-form of all of the transactions in a given bar or
<END_TASK>
<USER_TASK:>
Description:
def transactions(self, dt=None):
"""Retrieve the dict-form of all of the transactions in a given bar or
for the whole simulation.
Parameters
----------
dt : pd.Timestamp or None, optional
The particular datetime to look up transactions for. If not passed,
or None is explicitly passed, all of the transactions will be
returned.
Returns
-------
transactions : list[dict]
The transaction information.
""" |
if dt is None:
# flatten the by-day transactions
return [
txn
for by_day in itervalues(self._processed_transactions)
for txn in by_day
]
return self._processed_transactions.get(dt, []) |
<SYSTEM_TASK:>
Retrieve the dict-form of all of the orders in a given bar or for
<END_TASK>
<USER_TASK:>
Description:
def orders(self, dt=None):
"""Retrieve the dict-form of all of the orders in a given bar or for
the whole simulation.
Parameters
----------
dt : pd.Timestamp or None, optional
The particular datetime to look up order for. If not passed, or
None is explicitly passed, all of the orders will be returned.
Returns
-------
orders : list[dict]
The order information.
""" |
if dt is None:
# orders by id is already flattened
return [o.to_dict() for o in itervalues(self._orders_by_id)]
return [
o.to_dict()
for o in itervalues(self._orders_by_modified.get(dt, {}))
] |
<SYSTEM_TASK:>
Force a computation of the current portfolio state.
<END_TASK>
<USER_TASK:>
Description:
def update_portfolio(self):
"""Force a computation of the current portfolio state.
""" |
if not self._dirty_portfolio:
return
portfolio = self._portfolio
pt = self.position_tracker
portfolio.positions = pt.get_positions()
position_stats = pt.stats
portfolio.positions_value = position_value = (
position_stats.net_value
)
portfolio.positions_exposure = position_stats.net_exposure
self._cash_flow(self._get_payout_total(pt.positions))
start_value = portfolio.portfolio_value
# update the new starting value
portfolio.portfolio_value = end_value = portfolio.cash + position_value
pnl = end_value - start_value
if start_value != 0:
returns = pnl / start_value
else:
returns = 0.0
portfolio.pnl += pnl
portfolio.returns = (
(1 + portfolio.returns) *
(1 + returns) -
1
)
# the portfolio has been fully synced
self._dirty_portfolio = False |
<SYSTEM_TASK:>
Creates or returns a dataset from a blaze expression.
<END_TASK>
<USER_TASK:>
Description:
def new_dataset(expr, missing_values, domain):
"""
Creates or returns a dataset from a blaze expression.
Parameters
----------
expr : Expr
The blaze expression representing the values.
missing_values : frozenset((name, value) pairs
Association pairs column name and missing_value for that column.
This needs to be a frozenset rather than a dict or tuple of tuples
because we want a collection that's unordered but still hashable.
domain : zipline.pipeline.domain.Domain
Domain of the dataset to be created.
Returns
-------
ds : type
A new dataset type.
Notes
-----
This function is memoized. repeated calls with the same inputs will return
the same type.
""" |
missing_values = dict(missing_values)
class_dict = {'ndim': 2 if SID_FIELD_NAME in expr.fields else 1}
for name, type_ in expr.dshape.measure.fields:
# Don't generate a column for sid or timestamp, since they're
# implicitly the labels if the arrays that will be passed to pipeline
# Terms.
if name in (SID_FIELD_NAME, TS_FIELD_NAME):
continue
type_ = datashape_type_to_numpy(type_)
if can_represent_dtype(type_):
col = Column(
type_,
missing_values.get(name, NotSpecified),
)
else:
col = NonPipelineField(name, type_)
class_dict[name] = col
if 'domain' in class_dict:
raise ValueError("Got a column named 'domain' in new_dataset(). "
"'domain' is reserved.")
class_dict['domain'] = domain
name = expr._name
if name is None:
name = next(_new_names)
# unicode is a name error in py3 but the branch is only hit
# when we are in python 2.
if PY2 and isinstance(name, unicode): # pragma: no cover # noqa
name = name.encode('utf-8')
return type(name, (DataSet,), class_dict) |
<SYSTEM_TASK:>
Validate that the expression and resources passed match up.
<END_TASK>
<USER_TASK:>
Description:
def _check_resources(name, expr, resources):
"""Validate that the expression and resources passed match up.
Parameters
----------
name : str
The name of the argument we are checking.
expr : Expr
The potentially bound expr.
resources
The explicitly passed resources to compute expr.
Raises
------
ValueError
If the resources do not match for an expression.
""" |
if expr is None:
return
bound = expr._resources()
if not bound and resources is None:
raise ValueError('no resources provided to compute %s' % name)
if bound and resources:
raise ValueError(
'explicit and implicit resources provided to compute %s' % name,
) |
<SYSTEM_TASK:>
Check that a field is a datetime inside some measure.
<END_TASK>
<USER_TASK:>
Description:
def _check_datetime_field(name, measure):
"""Check that a field is a datetime inside some measure.
Parameters
----------
name : str
The name of the field to check.
measure : Record
The record to check the field of.
Raises
------
TypeError
If the field is not a datetime inside ``measure``.
""" |
if not isinstance(measure[name], (Date, DateTime)):
raise TypeError(
"'{name}' field must be a '{dt}', not: '{dshape}'".format(
name=name,
dt=DateTime(),
dshape=measure[name],
),
) |
<SYSTEM_TASK:>
Find the correct metadata expression for the expression.
<END_TASK>
<USER_TASK:>
Description:
def _get_metadata(field, expr, metadata_expr, no_metadata_rule):
"""Find the correct metadata expression for the expression.
Parameters
----------
field : {'deltas', 'checkpoints'}
The kind of metadata expr to lookup.
expr : Expr
The baseline expression.
metadata_expr : Expr, 'auto', or None
The metadata argument. If this is 'auto', then the metadata table will
be searched for by walking up the expression tree. If this cannot be
reflected, then an action will be taken based on the
``no_metadata_rule``.
no_metadata_rule : {'warn', 'raise', 'ignore'}
How to handle the case where the metadata_expr='auto' but no expr
could be found.
Returns
-------
metadata : Expr or None
The deltas or metadata table to use.
""" |
if isinstance(metadata_expr, bz.Expr) or metadata_expr is None:
return metadata_expr
try:
return expr._child['_'.join(((expr._name or ''), field))]
except (ValueError, AttributeError):
if no_metadata_rule == 'raise':
raise ValueError(
"no %s table could be reflected for %s" % (field, expr)
)
elif no_metadata_rule == 'warn':
warnings.warn(NoMetaDataWarning(expr, field), stacklevel=4)
return None |
<SYSTEM_TASK:>
Verify that the baseline and deltas expressions have a timestamp field.
<END_TASK>
<USER_TASK:>
Description:
def _ensure_timestamp_field(dataset_expr, deltas, checkpoints):
"""Verify that the baseline and deltas expressions have a timestamp field.
If there is not a ``TS_FIELD_NAME`` on either of the expressions, it will
be copied from the ``AD_FIELD_NAME``. If one is provided, then we will
verify that it is the correct dshape.
Parameters
----------
dataset_expr : Expr
The baseline expression.
deltas : Expr or None
The deltas expression if any was provided.
checkpoints : Expr or None
The checkpoints expression if any was provided.
Returns
-------
dataset_expr, deltas : Expr
The new baseline and deltas expressions to use.
""" |
measure = dataset_expr.dshape.measure
if TS_FIELD_NAME not in measure.names:
dataset_expr = bz.transform(
dataset_expr,
**{TS_FIELD_NAME: dataset_expr[AD_FIELD_NAME]}
)
deltas = _ad_as_ts(deltas)
checkpoints = _ad_as_ts(checkpoints)
else:
_check_datetime_field(TS_FIELD_NAME, measure)
return dataset_expr, deltas, checkpoints |
<SYSTEM_TASK:>
Bind a Blaze expression to resources.
<END_TASK>
<USER_TASK:>
Description:
def bind_expression_to_resources(expr, resources):
"""
Bind a Blaze expression to resources.
Parameters
----------
expr : bz.Expr
The expression to which we want to bind resources.
resources : dict[bz.Symbol -> any]
Mapping from the loadable terms of ``expr`` to actual data resources.
Returns
-------
bound_expr : bz.Expr
``expr`` with bound resources.
""" |
# bind the resources into the expression
if resources is None:
resources = {}
# _subs stands for substitute. It's not actually private, blaze just
# prefixes symbol-manipulation methods with underscores to prevent
# collisions with data column names.
return expr._subs({
k: bz.data(v, dshape=k.dshape) for k, v in iteritems(resources)
}) |
<SYSTEM_TASK:>
Computes a lower bound and a DataFrame checkpoints.
<END_TASK>
<USER_TASK:>
Description:
def get_materialized_checkpoints(checkpoints, colnames, lower_dt, odo_kwargs):
"""
Computes a lower bound and a DataFrame checkpoints.
Parameters
----------
checkpoints : Expr
Bound blaze expression for a checkpoints table from which to get a
computed lower bound.
colnames : iterable of str
The names of the columns for which checkpoints should be computed.
lower_dt : pd.Timestamp
The lower date being queried for that serves as an upper bound for
checkpoints.
odo_kwargs : dict, optional
The extra keyword arguments to pass to ``odo``.
""" |
if checkpoints is not None:
ts = checkpoints[TS_FIELD_NAME]
checkpoints_ts = odo(
ts[ts < lower_dt].max(),
pd.Timestamp,
**odo_kwargs
)
if pd.isnull(checkpoints_ts):
# We don't have a checkpoint for before our start date so just
# don't constrain the lower date.
materialized_checkpoints = pd.DataFrame(columns=colnames)
lower = None
else:
materialized_checkpoints = odo(
checkpoints[ts == checkpoints_ts][colnames],
pd.DataFrame,
**odo_kwargs
)
lower = checkpoints_ts
else:
materialized_checkpoints = pd.DataFrame(columns=colnames)
lower = None # we don't have a good lower date constraint
return lower, materialized_checkpoints |
<SYSTEM_TASK:>
Query a blaze expression in a given time range properly forward filling
<END_TASK>
<USER_TASK:>
Description:
def ffill_query_in_range(expr,
lower,
upper,
checkpoints=None,
odo_kwargs=None,
ts_field=TS_FIELD_NAME):
"""Query a blaze expression in a given time range properly forward filling
from values that fall before the lower date.
Parameters
----------
expr : Expr
Bound blaze expression.
lower : datetime
The lower date to query for.
upper : datetime
The upper date to query for.
checkpoints : Expr, optional
Bound blaze expression for a checkpoints table from which to get a
computed lower bound.
odo_kwargs : dict, optional
The extra keyword arguments to pass to ``odo``.
ts_field : str, optional
The name of the timestamp field in the given blaze expression.
Returns
-------
raw : pd.DataFrame
A strict dataframe for the data in the given date range. This may
start before the requested start date if a value is needed to ffill.
""" |
odo_kwargs = odo_kwargs or {}
computed_lower, materialized_checkpoints = get_materialized_checkpoints(
checkpoints,
expr.fields,
lower,
odo_kwargs,
)
pred = expr[ts_field] <= upper
if computed_lower is not None:
# only constrain the lower date if we computed a new lower date
pred &= expr[ts_field] >= computed_lower
raw = pd.concat(
(
materialized_checkpoints,
odo(
expr[pred],
pd.DataFrame,
**odo_kwargs
),
),
ignore_index=True,
)
raw.loc[:, ts_field] = raw.loc[:, ts_field].astype('datetime64[ns]')
return raw |
<SYSTEM_TASK:>
Explicitly map a datset to a collection of blaze expressions.
<END_TASK>
<USER_TASK:>
Description:
def register_dataset(self,
dataset,
expr,
deltas=None,
checkpoints=None,
odo_kwargs=None):
"""Explicitly map a datset to a collection of blaze expressions.
Parameters
----------
dataset : DataSet
The pipeline dataset to map to the given expressions.
expr : Expr
The baseline values.
deltas : Expr, optional
The deltas for the data.
checkpoints : Expr, optional
The forward fill checkpoints for the data.
odo_kwargs : dict, optional
The keyword arguments to forward to the odo calls internally.
See Also
--------
:func:`zipline.pipeline.loaders.blaze.from_blaze`
""" |
expr_data = ExprData(
expr,
deltas,
checkpoints,
odo_kwargs,
)
for column in dataset.columns:
self._table_expressions[column] = expr_data |
<SYSTEM_TASK:>
Explicitly map a single bound column to a collection of blaze
<END_TASK>
<USER_TASK:>
Description:
def register_column(self,
column,
expr,
deltas=None,
checkpoints=None,
odo_kwargs=None):
"""Explicitly map a single bound column to a collection of blaze
expressions. The expressions need to have ``timestamp`` and ``as_of``
columns.
Parameters
----------
column : BoundColumn
The pipeline dataset to map to the given expressions.
expr : Expr
The baseline values.
deltas : Expr, optional
The deltas for the data.
checkpoints : Expr, optional
The forward fill checkpoints for the data.
odo_kwargs : dict, optional
The keyword arguments to forward to the odo calls internally.
See Also
--------
:func:`zipline.pipeline.loaders.blaze.from_blaze`
""" |
self._table_expressions[column] = ExprData(
expr,
deltas,
checkpoints,
odo_kwargs,
) |
<SYSTEM_TASK:>
Given a dict of mappings where the values are lists of
<END_TASK>
<USER_TASK:>
Description:
def merge_ownership_periods(mappings):
"""
Given a dict of mappings where the values are lists of
OwnershipPeriod objects, returns a dict with the same structure with
new OwnershipPeriod objects adjusted so that the periods have no
gaps.
Orders the periods chronologically, and pushes forward the end date
of each period to match the start date of the following period. The
end date of the last period pushed forward to the max Timestamp.
""" |
return valmap(
lambda v: tuple(
OwnershipPeriod(
a.start,
b.start,
a.sid,
a.value,
) for a, b in sliding_window(
2,
concatv(
sorted(v),
# concat with a fake ownership object to make the last
# end date be max timestamp
[OwnershipPeriod(
pd.Timestamp.max.tz_localize('utc'),
None,
None,
None,
)],
),
)
),
mappings,
) |
<SYSTEM_TASK:>
Builds a dict mapping to lists of OwnershipPeriods, from a db table.
<END_TASK>
<USER_TASK:>
Description:
def build_ownership_map(table, key_from_row, value_from_row):
"""
Builds a dict mapping to lists of OwnershipPeriods, from a db table.
""" |
return _build_ownership_map_from_rows(
sa.select(table.c).execute().fetchall(),
key_from_row,
value_from_row,
) |
<SYSTEM_TASK:>
Builds a dict mapping group keys to maps of keys to to lists of
<END_TASK>
<USER_TASK:>
Description:
def build_grouped_ownership_map(table,
key_from_row,
value_from_row,
group_key):
"""
Builds a dict mapping group keys to maps of keys to to lists of
OwnershipPeriods, from a db table.
""" |
grouped_rows = groupby(
group_key,
sa.select(table.c).execute().fetchall(),
)
return {
key: _build_ownership_map_from_rows(
rows,
key_from_row,
value_from_row,
)
for key, rows in grouped_rows.items()
} |
<SYSTEM_TASK:>
Filter out kwargs from a dictionary.
<END_TASK>
<USER_TASK:>
Description:
def _filter_kwargs(names, dict_):
"""Filter out kwargs from a dictionary.
Parameters
----------
names : set[str]
The names to select from ``dict_``.
dict_ : dict[str, any]
The dictionary to select from.
Returns
-------
kwargs : dict[str, any]
``dict_`` where the keys intersect with ``names`` and the values are
not None.
""" |
return {k: v for k, v in dict_.items() if k in names and v is not None} |
<SYSTEM_TASK:>
Takes in a dict of Asset init args and converts dates to pd.Timestamps
<END_TASK>
<USER_TASK:>
Description:
def _convert_asset_timestamp_fields(dict_):
"""
Takes in a dict of Asset init args and converts dates to pd.Timestamps
""" |
for key in _asset_timestamp_fields & viewkeys(dict_):
value = pd.Timestamp(dict_[key], tz='UTC')
dict_[key] = None if isnull(value) else value
return dict_ |
<SYSTEM_TASK:>
Whether or not `asset` was active at the time corresponding to
<END_TASK>
<USER_TASK:>
Description:
def was_active(reference_date_value, asset):
"""
Whether or not `asset` was active at the time corresponding to
`reference_date_value`.
Parameters
----------
reference_date_value : int
Date, represented as nanoseconds since EPOCH, for which we want to know
if `asset` was alive. This is generally the result of accessing the
`value` attribute of a pandas Timestamp.
asset : Asset
The asset object to check.
Returns
-------
was_active : bool
Whether or not the `asset` existed at the specified time.
""" |
return (
asset.start_date.value
<= reference_date_value
<= asset.end_date.value
) |
<SYSTEM_TASK:>
Retrieve asset types for a list of sids.
<END_TASK>
<USER_TASK:>
Description:
def lookup_asset_types(self, sids):
"""
Retrieve asset types for a list of sids.
Parameters
----------
sids : list[int]
Returns
-------
types : dict[sid -> str or None]
Asset types for the provided sids.
""" |
found = {}
missing = set()
for sid in sids:
try:
found[sid] = self._asset_type_cache[sid]
except KeyError:
missing.add(sid)
if not missing:
return found
router_cols = self.asset_router.c
for assets in group_into_chunks(missing):
query = sa.select((router_cols.sid, router_cols.asset_type)).where(
self.asset_router.c.sid.in_(map(int, assets))
)
for sid, type_ in query.execute().fetchall():
missing.remove(sid)
found[sid] = self._asset_type_cache[sid] = type_
for sid in missing:
found[sid] = self._asset_type_cache[sid] = None
return found |
<SYSTEM_TASK:>
Retrieve the most recent symbol for a set of sids.
<END_TASK>
<USER_TASK:>
Description:
def _select_most_recent_symbols_chunk(self, sid_group):
"""Retrieve the most recent symbol for a set of sids.
Parameters
----------
sid_group : iterable[int]
The sids to lookup. The length of this sequence must be less than
or equal to SQLITE_MAX_VARIABLE_NUMBER because the sids will be
passed in as sql bind params.
Returns
-------
sel : Selectable
The sqlalchemy selectable that will query for the most recent
symbol for each sid.
Notes
-----
This is implemented as an inner select of the columns of interest
ordered by the end date of the (sid, symbol) mapping. We then group
that inner select on the sid with no aggregations to select the last
row per group which gives us the most recently active symbol for all
of the sids.
""" |
cols = self.equity_symbol_mappings.c
# These are the columns we actually want.
data_cols = (cols.sid,) + tuple(cols[name] for name in symbol_columns)
# Also select the max of end_date so that all non-grouped fields take
# on the value associated with the max end_date. The SQLite docs say
# this:
#
# When the min() or max() aggregate functions are used in an aggregate
# query, all bare columns in the result set take values from the input
# row which also contains the minimum or maximum. Only the built-in
# min() and max() functions work this way.
#
# See https://www.sqlite.org/lang_select.html#resultset, for more info.
to_select = data_cols + (sa.func.max(cols.end_date),)
return sa.select(
to_select,
).where(
cols.sid.in_(map(int, sid_group))
).group_by(
cols.sid,
) |
<SYSTEM_TASK:>
Internal function for loading assets from a table.
<END_TASK>
<USER_TASK:>
Description:
def _retrieve_assets(self, sids, asset_tbl, asset_type):
"""
Internal function for loading assets from a table.
This should be the only method of `AssetFinder` that writes Assets into
self._asset_cache.
Parameters
---------
sids : iterable of int
Asset ids to look up.
asset_tbl : sqlalchemy.Table
Table from which to query assets.
asset_type : type
Type of asset to be constructed.
Returns
-------
assets : dict[int -> Asset]
Dict mapping requested sids to the retrieved assets.
""" |
# Fastpath for empty request.
if not sids:
return {}
cache = self._asset_cache
hits = {}
querying_equities = issubclass(asset_type, Equity)
filter_kwargs = (
_filter_equity_kwargs
if querying_equities else
_filter_future_kwargs
)
rows = self._retrieve_asset_dicts(sids, asset_tbl, querying_equities)
for row in rows:
sid = row['sid']
asset = asset_type(**filter_kwargs(row))
hits[sid] = cache[sid] = asset
# If we get here, it means something in our code thought that a
# particular sid was an equity/future and called this function with a
# concrete type, but we couldn't actually resolve the asset. This is
# an error in our code, not a user-input error.
misses = tuple(set(sids) - viewkeys(hits))
if misses:
if querying_equities:
raise EquitiesNotFound(sids=misses)
else:
raise FutureContractsNotFound(sids=misses)
return hits |
<SYSTEM_TASK:>
Resolve a symbol to an asset object without fuzzy matching.
<END_TASK>
<USER_TASK:>
Description:
def _lookup_symbol_strict(self,
ownership_map,
multi_country,
symbol,
as_of_date):
"""
Resolve a symbol to an asset object without fuzzy matching.
Parameters
----------
ownership_map : dict[(str, str), list[OwnershipPeriod]]
The mapping from split symbols to ownership periods.
multi_country : bool
Does this mapping span multiple countries?
symbol : str
The symbol to look up.
as_of_date : datetime or None
If multiple assets have held this sid, which day should the
resolution be checked against? If this value is None and multiple
sids have held the ticker, then a MultipleSymbolsFound error will
be raised.
Returns
-------
asset : Asset
The asset that held the given symbol.
Raises
------
SymbolNotFound
Raised when the symbol or symbol as_of_date pair do not map to
any assets.
MultipleSymbolsFound
Raised when multiple assets held the symbol. This happens if
multiple assets held the symbol at disjoint times and
``as_of_date`` is None, or if multiple assets held the symbol at
the same time and``multi_country`` is True.
Notes
-----
The resolution algorithm is as follows:
- Split the symbol into the company and share class component.
- Do a dictionary lookup of the
``(company_symbol, share_class_symbol)`` in the provided ownership
map.
- If there is no entry in the dictionary, we don't know about this
symbol so raise a ``SymbolNotFound`` error.
- If ``as_of_date`` is None:
- If more there is more than one owner, raise
``MultipleSymbolsFound``
- Otherwise, because the list mapped to a symbol cannot be empty,
return the single asset.
- Iterate through all of the owners:
- If the ``as_of_date`` is between the start and end of the ownership
period:
- If multi_country is False, return the found asset.
- Otherwise, put the asset in a list.
- At the end of the loop, if there are no candidate assets, raise a
``SymbolNotFound``.
- If there is exactly one candidate, return it.
- Othewise, raise ``MultipleSymbolsFound`` because the ticker is not
unique across countries.
""" |
# split the symbol into the components, if there are no
# company/share class parts then share_class_symbol will be empty
company_symbol, share_class_symbol = split_delimited_symbol(symbol)
try:
owners = ownership_map[company_symbol, share_class_symbol]
assert owners, 'empty owners list for %r' % symbol
except KeyError:
# no equity has ever held this symbol
raise SymbolNotFound(symbol=symbol)
if not as_of_date:
# exactly one equity has ever held this symbol, we may resolve
# without the date
if len(owners) == 1:
return self.retrieve_asset(owners[0].sid)
options = {self.retrieve_asset(owner.sid) for owner in owners}
if multi_country:
country_codes = map(attrgetter('country_code'), options)
if len(set(country_codes)) > 1:
raise SameSymbolUsedAcrossCountries(
symbol=symbol,
options=dict(zip(country_codes, options))
)
# more than one equity has held this ticker, this
# is ambiguous without the date
raise MultipleSymbolsFound(symbol=symbol, options=options)
options = []
country_codes = []
for start, end, sid, _ in owners:
if start <= as_of_date < end:
# find the equity that owned it on the given asof date
asset = self.retrieve_asset(sid)
# if this asset owned the symbol on this asof date and we are
# only searching one country, return that asset
if not multi_country:
return asset
else:
options.append(asset)
country_codes.append(asset.country_code)
if not options:
# no equity held the ticker on the given asof date
raise SymbolNotFound(symbol=symbol)
# if there is one valid option given the asof date, return that option
if len(options) == 1:
return options[0]
# if there's more than one option given the asof date, a country code
# must be passed to resolve the symbol to an asset
raise SameSymbolUsedAcrossCountries(
symbol=symbol,
options=dict(zip(country_codes, options))
) |
<SYSTEM_TASK:>
Lookup an equity by symbol.
<END_TASK>
<USER_TASK:>
Description:
def lookup_symbol(self,
symbol,
as_of_date,
fuzzy=False,
country_code=None):
"""Lookup an equity by symbol.
Parameters
----------
symbol : str
The ticker symbol to resolve.
as_of_date : datetime or None
Look up the last owner of this symbol as of this datetime.
If ``as_of_date`` is None, then this can only resolve the equity
if exactly one equity has ever owned the ticker.
fuzzy : bool, optional
Should fuzzy symbol matching be used? Fuzzy symbol matching
attempts to resolve differences in representations for
shareclasses. For example, some people may represent the ``A``
shareclass of ``BRK`` as ``BRK.A``, where others could write
``BRK_A``.
country_code : str or None, optional
The country to limit searches to. If not provided, the search will
span all countries which increases the likelihood of an ambiguous
lookup.
Returns
-------
equity : Equity
The equity that held ``symbol`` on the given ``as_of_date``, or the
only equity to hold ``symbol`` if ``as_of_date`` is None.
Raises
------
SymbolNotFound
Raised when no equity has ever held the given symbol.
MultipleSymbolsFound
Raised when no ``as_of_date`` is given and more than one equity
has held ``symbol``. This is also raised when ``fuzzy=True`` and
there are multiple candidates for the given ``symbol`` on the
``as_of_date``. Also raised when no ``country_code`` is given and
the symbol is ambiguous across multiple countries.
""" |
if symbol is None:
raise TypeError("Cannot lookup asset for symbol of None for "
"as of date %s." % as_of_date)
if fuzzy:
f = self._lookup_symbol_fuzzy
mapping = self._choose_fuzzy_symbol_ownership_map(country_code)
else:
f = self._lookup_symbol_strict
mapping = self._choose_symbol_ownership_map(country_code)
if mapping is None:
raise SymbolNotFound(symbol=symbol)
return f(
mapping,
country_code is None,
symbol,
as_of_date,
) |
<SYSTEM_TASK:>
Lookup a list of equities by symbol.
<END_TASK>
<USER_TASK:>
Description:
def lookup_symbols(self,
symbols,
as_of_date,
fuzzy=False,
country_code=None):
"""
Lookup a list of equities by symbol.
Equivalent to::
[finder.lookup_symbol(s, as_of, fuzzy) for s in symbols]
but potentially faster because repeated lookups are memoized.
Parameters
----------
symbols : sequence[str]
Sequence of ticker symbols to resolve.
as_of_date : pd.Timestamp
Forwarded to ``lookup_symbol``.
fuzzy : bool, optional
Forwarded to ``lookup_symbol``.
country_code : str or None, optional
The country to limit searches to. If not provided, the search will
span all countries which increases the likelihood of an ambiguous
lookup.
Returns
-------
equities : list[Equity]
""" |
if not symbols:
return []
multi_country = country_code is None
if fuzzy:
f = self._lookup_symbol_fuzzy
mapping = self._choose_fuzzy_symbol_ownership_map(country_code)
else:
f = self._lookup_symbol_strict
mapping = self._choose_symbol_ownership_map(country_code)
if mapping is None:
raise SymbolNotFound(symbol=symbols[0])
memo = {}
out = []
append_output = out.append
for sym in symbols:
if sym in memo:
append_output(memo[sym])
else:
equity = memo[sym] = f(
mapping,
multi_country,
sym,
as_of_date,
)
append_output(equity)
return out |
<SYSTEM_TASK:>
Lookup a future contract by symbol.
<END_TASK>
<USER_TASK:>
Description:
def lookup_future_symbol(self, symbol):
"""Lookup a future contract by symbol.
Parameters
----------
symbol : str
The symbol of the desired contract.
Returns
-------
future : Future
The future contract referenced by ``symbol``.
Raises
------
SymbolNotFound
Raised when no contract named 'symbol' is found.
""" |
data = self._select_asset_by_symbol(self.futures_contracts, symbol)\
.execute().fetchone()
# If no data found, raise an exception
if not data:
raise SymbolNotFound(symbol=symbol)
return self.retrieve_asset(data['sid']) |
<SYSTEM_TASK:>
Get the value of a supplementary field for an asset.
<END_TASK>
<USER_TASK:>
Description:
def get_supplementary_field(self, sid, field_name, as_of_date):
"""Get the value of a supplementary field for an asset.
Parameters
----------
sid : int
The sid of the asset to query.
field_name : str
Name of the supplementary field.
as_of_date : pd.Timestamp, None
The last known value on this date is returned. If None, a
value is returned only if we've only ever had one value for
this sid. If None and we've had multiple values,
MultipleValuesFoundForSid is raised.
Raises
------
NoValueForSid
If we have no values for this asset, or no values was known
on this as_of_date.
MultipleValuesFoundForSid
If we have had multiple values for this asset over time, and
None was passed for as_of_date.
""" |
try:
periods = self.equity_supplementary_map_by_sid[
field_name,
sid,
]
assert periods, 'empty periods list for %r' % (field_name, sid)
except KeyError:
raise NoValueForSid(field=field_name, sid=sid)
if not as_of_date:
if len(periods) > 1:
# This equity has held more than one value, this is ambigious
# without the date
raise MultipleValuesFoundForSid(
field=field_name,
sid=sid,
options={p.value for p in periods},
)
# this equity has only ever held this value, we may resolve
# without the date
return periods[0].value
for start, end, _, value in periods:
if start <= as_of_date < end:
return value
# Could not find a value for this sid on the as_of_date.
raise NoValueForSid(field=field_name, sid=sid) |
<SYSTEM_TASK:>
Convert asset_convertible to an asset.
<END_TASK>
<USER_TASK:>
Description:
def _lookup_generic_scalar(self,
obj,
as_of_date,
country_code,
matches,
missing):
"""
Convert asset_convertible to an asset.
On success, append to matches.
On failure, append to missing.
""" |
result = self._lookup_generic_scalar_helper(
obj, as_of_date, country_code,
)
if result is not None:
matches.append(result)
else:
missing.append(obj) |
<SYSTEM_TASK:>
Convert an object into an Asset or sequence of Assets.
<END_TASK>
<USER_TASK:>
Description:
def lookup_generic(self, obj, as_of_date, country_code):
"""
Convert an object into an Asset or sequence of Assets.
This method exists primarily as a convenience for implementing
user-facing APIs that can handle multiple kinds of input. It should
not be used for internal code where we already know the expected types
of our inputs.
Parameters
----------
obj : int, str, Asset, ContinuousFuture, or iterable
The object to be converted into one or more Assets.
Integers are interpreted as sids. Strings are interpreted as
tickers. Assets and ContinuousFutures are returned unchanged.
as_of_date : pd.Timestamp or None
Timestamp to use to disambiguate ticker lookups. Has the same
semantics as in `lookup_symbol`.
country_code : str or None
ISO-3166 country code to use to disambiguate ticker lookups. Has
the same semantics as in `lookup_symbol`.
Returns
-------
matches, missing : tuple
``matches`` is the result of the conversion. ``missing`` is a list
containing any values that couldn't be resolved. If ``obj`` is not
an iterable, ``missing`` will be an empty list.
""" |
matches = []
missing = []
# Interpret input as scalar.
if isinstance(obj, (AssetConvertible, ContinuousFuture)):
self._lookup_generic_scalar(
obj=obj,
as_of_date=as_of_date,
country_code=country_code,
matches=matches,
missing=missing,
)
try:
return matches[0], missing
except IndexError:
if hasattr(obj, '__int__'):
raise SidsNotFound(sids=[obj])
else:
raise SymbolNotFound(symbol=obj)
# Interpret input as iterable.
try:
iterator = iter(obj)
except TypeError:
raise NotAssetConvertible(
"Input was not a AssetConvertible "
"or iterable of AssetConvertible."
)
for obj in iterator:
self._lookup_generic_scalar(
obj=obj,
as_of_date=as_of_date,
country_code=country_code,
matches=matches,
missing=missing,
)
return matches, missing |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.