text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Convert sexegessimal RA string into a float in degrees. <END_TASK> <USER_TASK:> Description: def dec2dec(dec): """ Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees. """
d = dec.replace(':', ' ').split() if len(d) == 2: d.append(0.0) if d[0].startswith('-') or float(d[0]) < 0: return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0 return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
<SYSTEM_TASK:> Convert decimal degrees into a sexagessimal string in degrees. <END_TASK> <USER_TASK:> Description: def dec2dms(x): """ Convert decimal degrees into a sexagessimal string in degrees. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format [+-]DD:MM:SS.SS or XX:XX:XX.XX if x is not finite. """
if not np.isfinite(x): return 'XX:XX:XX.XX' if x < 0: sign = '-' else: sign = '+' x = abs(x) d = int(math.floor(x)) m = int(math.floor((x - d) * 60)) s = float(( (x - d) * 60 - m) * 60) return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)
<SYSTEM_TASK:> Convert decimal degrees into a sexagessimal string in hours. <END_TASK> <USER_TASK:> Description: def dec2hms(x): """ Convert decimal degrees into a sexagessimal string in hours. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format HH:MM:SS.SS or XX:XX:XX.XX if x is not finite. """
if not np.isfinite(x): return 'XX:XX:XX.XX' # wrap negative RA's if x < 0: x += 360 x /= 15.0 h = int(x) x = (x - h) * 60 m = int(x) s = (x - m) * 60 return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)
<SYSTEM_TASK:> Created a masked version of file, using a region. <END_TASK> <USER_TASK:> Description: def mask_file(regionfile, infile, outfile, negate=False): """ Created a masked version of file, using a region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The image will be masked according to this region. infile : str Input FITS image. outfile : str Output FITS image. negate : bool If True then pixels *outside* the region are masked. Default = False. See Also -------- :func:`AegeanTools.MIMAS.mask_plane` """
# Check that the input file is accessible and then open it if not os.path.exists(infile): raise AssertionError("Cannot locate fits file {0}".format(infile)) im = pyfits.open(infile) if not os.path.exists(regionfile): raise AssertionError("Cannot locate region file {0}".format(regionfile)) region = Region.load(regionfile) try: wcs = pywcs.WCS(im[0].header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(im[0].header), naxis=2) if len(im[0].data.shape) > 2: data = np.squeeze(im[0].data) else: data = im[0].data print(data.shape) if len(data.shape) == 3: for plane in range(data.shape[0]): mask_plane(data[plane], wcs, region, negate) else: mask_plane(data, wcs, region, negate) im[0].data = data im.writeto(outfile, overwrite=True) logging.info("Wrote {0}".format(outfile)) return
<SYSTEM_TASK:> Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box <END_TASK> <USER_TASK:> Description: def box2poly(line): """ Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box Parameters ---------- line : str A string containing a DS9 region command for a box. Returns ------- poly : [ra, dec, ...] The corners of the box in clockwise order from top left. """
words = re.split('[(\s,)]', line) ra = words[1] dec = words[2] width = words[3] height = words[4] if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) width = Angle(float(width[:-1])/2, unit=u.arcsecond) # strip the " height = Angle(float(height[:-1])/2, unit=u.arcsecond) # strip the " center = SkyCoord(ra, dec) tl = center.ra.degree+width.degree, center.dec.degree+height.degree tr = center.ra.degree-width.degree, center.dec.degree+height.degree bl = center.ra.degree+width.degree, center.dec.degree-height.degree br = center.ra.degree-width.degree, center.dec.degree-height.degree return np.ravel([tl, tr, br, bl]).tolist()
<SYSTEM_TASK:> Parse a string that describes a circle in ds9 format. <END_TASK> <USER_TASK:> Description: def circle2circle(line): """ Parse a string that describes a circle in ds9 format. Parameters ---------- line : str A string containing a DS9 region command for a circle. Returns ------- circle : [ra, dec, radius] The center and radius of the circle. """
words = re.split('[(,\s)]', line) ra = words[1] dec = words[2] radius = words[3][:-1] # strip the " if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) radius = Angle(radius, unit=u.arcsecond) return [ra.degree, dec.degree, radius.degree]
<SYSTEM_TASK:> Parse a string of text containing a DS9 description of a polygon. <END_TASK> <USER_TASK:> Description: def poly2poly(line): """ Parse a string of text containing a DS9 description of a polygon. This function works but is not very robust due to the constraints of healpy. Parameters ---------- line : str A string containing a DS9 region command for a polygon. Returns ------- poly : [ra, dec, ...] The coordinates of the polygon. """
words = re.split('[(\s,)]', line) ras = np.array(words[1::2]) decs = np.array(words[2::2]) coords = [] for ra, dec in zip(ras, decs): if ra.strip() == '' or dec.strip() == '': continue if ":" in ra: pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree)) else: pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree)) # only add this point if it is some distance from the previous one coords.extend([pos.ra.degree, pos.dec.degree]) return coords
<SYSTEM_TASK:> Return a region that is the combination of those specified in the container. <END_TASK> <USER_TASK:> Description: def combine_regions(container): """ Return a region that is the combination of those specified in the container. The container is typically a results instance that comes from argparse. Order of construction is: add regions, subtract regions, add circles, subtract circles, add polygons, subtract polygons. Parameters ---------- container : :class:`AegeanTools.MIMAS.Dummy` The regions to be combined. Returns ------- region : :class:`AegeanTools.regions.Region` The constructed region. """
# create empty region region = Region(container.maxdepth) # add/rem all the regions from files for r in container.add_region: logging.info("adding region from {0}".format(r)) r2 = Region.load(r[0]) region.union(r2) for r in container.rem_region: logging.info("removing region from {0}".format(r)) r2 = Region.load(r[0]) region.without(r2) # add circles if len(container.include_circles) > 0: for c in container.include_circles: circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) region.add_circles(ras, decs, radii) # remove circles if len(container.exclude_circles) > 0: for c in container.exclude_circles: r2 = Region(container.maxdepth) circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) r2.add_circles(ras, decs, radii) region.without(r2) # add polygons if len(container.include_polygons) > 0: for p in container.include_polygons: poly = np.radians(np.array(p)) poly = poly.reshape((poly.shape[0]//2, 2)) region.add_poly(poly) # remove polygons if len(container.exclude_polygons) > 0: for p in container.include_polygons: poly = np.array(np.radians(p)) r2 = Region(container.maxdepth) r2.add_poly(poly) region.without(r2) return region
<SYSTEM_TASK:> Construct a region which is the intersection of all regions described in the given <END_TASK> <USER_TASK:> Description: def intersect_regions(flist): """ Construct a region which is the intersection of all regions described in the given list of file names. Parameters ---------- flist : list A list of region filenames. Returns ------- region : :class:`AegeanTools.regions.Region` The intersection of all regions, possibly empty. """
if len(flist) < 2: raise Exception("Require at least two regions to perform intersection") a = Region.load(flist[0]) for b in [Region.load(f) for f in flist[1:]]: a.intersect(b) return a
<SYSTEM_TASK:> Save the given region to a file <END_TASK> <USER_TASK:> Description: def save_region(region, filename): """ Save the given region to a file Parameters ---------- region : :class:`AegeanTools.regions.Region` A region. filename : str Output file name. """
region.save(filename) logging.info("Wrote {0}".format(filename)) return
<SYSTEM_TASK:> Set the image data. <END_TASK> <USER_TASK:> Description: def set_pixels(self, pixels): """ Set the image data. Will not work if the new image has a different shape than the current image. Parameters ---------- pixels : numpy.ndarray New image data Returns ------- None """
if not (pixels.shape == self._pixels.shape): raise AssertionError("Shape mismatch between pixels supplied {0} and existing image pixels {1}".format(pixels.shape,self._pixels.shape)) self._pixels = pixels # reset this so that it is calculated next time the function is called self._rms = None return
<SYSTEM_TASK:> Get the sky coordinates for a given image pixel. <END_TASK> <USER_TASK:> Description: def pix2sky(self, pixel): """ Get the sky coordinates for a given image pixel. Parameters ---------- pixel : (float, float) Image coordinates. Returns ------- ra,dec : float Sky coordinates (degrees) """
pixbox = numpy.array([pixel, pixel]) skybox = self.wcs.all_pix2world(pixbox, 1) return [float(skybox[0][0]), float(skybox[0][1])]
<SYSTEM_TASK:> Open a file, read contents, return a list of all the sources in that file. <END_TASK> <USER_TASK:> Description: def load_sources(filename): """ Open a file, read contents, return a list of all the sources in that file. @param filename: @return: list of OutputSource objects """
catalog = catalogs.table_to_source_list(catalogs.load_table(filename)) logging.info("read {0} sources from {1}".format(len(catalog), filename)) return catalog
<SYSTEM_TASK:> Convert a telescope name into a latitude <END_TASK> <USER_TASK:> Description: def scope2lat(telescope): """ Convert a telescope name into a latitude returns None when the telescope is unknown. Parameters ---------- telescope : str Acronym (name) of telescope, eg MWA. Returns ------- lat : float The latitude of the telescope. Notes ----- These values were taken from wikipedia so have varying precision/accuracy """
scopes = {'MWA': -26.703319, "ATCA": -30.3128, "VLA": 34.0790, "LOFAR": 52.9088, "KAT7": -30.721, "MEERKAT": -30.721, "PAPER": -30.7224, "GMRT": 19.096516666667, "OOTY": 11.383404, "ASKAP": -26.7, "MOST": -35.3707, "PARKES": -32.999944, "WSRT": 52.914722, "AMILA": 52.16977, "AMISA": 52.164303, "ATA": 40.817, "CHIME": 49.321, "CARMA": 37.28044, "DRAO": 49.321, "GBT": 38.433056, "LWA": 34.07, "ALMA": -23.019283, "FAST": 25.6525 } if telescope.upper() in scopes: return scopes[telescope.upper()] else: log = logging.getLogger("Aegean") log.warn("Telescope {0} is unknown".format(telescope)) log.warn("integrated fluxes may be incorrect") return None
<SYSTEM_TASK:> Determine how many cores we are able to use. <END_TASK> <USER_TASK:> Description: def check_cores(cores): """ Determine how many cores we are able to use. Return 1 if we are not able to make a queue via pprocess. Parameters ---------- cores : int The number of cores that are requested. Returns ------- cores : int The number of cores available. """
cores = min(multiprocessing.cpu_count(), cores) if six.PY3: log = logging.getLogger("Aegean") log.info("Multi-cores not supported in python 3+, using one core") return 1 try: queue = pprocess.Queue(limit=cores, reuse=1) except: # TODO: figure out what error is being thrown cores = 1 else: try: _ = queue.manage(pprocess.MakeReusable(fix_shape)) except: cores = 1 return cores
<SYSTEM_TASK:> Generator function. <END_TASK> <USER_TASK:> Description: def _gen_flood_wrap(self, data, rmsimg, innerclip, outerclip=None, domask=False): """ Generator function. Segment an image into islands and return one island at a time. Needs to work for entire image, and also for components within an island. Parameters ---------- data : 2d-array Image array. rmsimg : 2d-array Noise image. innerclip, outerclip :float Seed (inner) and flood (outer) clipping values. domask : bool If True then look for a region mask in globals, only return islands that are within the region. Default = False. Yields ------ data_box : 2d-array A island of sources with subthreshold values masked. xmin, xmax, ymin, ymax : int The corners of the data_box within the initial data array. """
if outerclip is None: outerclip = innerclip # compute SNR image (data has already been background subtracted) snr = abs(data) / rmsimg # mask of pixles that are above the outerclip a = snr >= outerclip # segmentation a la scipy l, n = label(a) f = find_objects(l) if n == 0: self.log.debug("There are no pixels above the clipping limit") return self.log.debug("{1} Found {0} islands total above flood limit".format(n, data.shape)) # Yield values as before, though they are not sorted by flux for i in range(n): xmin, xmax = f[i][0].start, f[i][0].stop ymin, ymax = f[i][1].start, f[i][1].stop if np.any(snr[xmin:xmax, ymin:ymax] > innerclip): # obey inner clip constraint # self.log.info("{1} Island {0} is above the inner clip limit".format(i, data.shape)) data_box = copy.copy(data[xmin:xmax, ymin:ymax]) # copy so that we don't blank the master data data_box[np.where( snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan # blank pixels that are outside the outerclip data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan # blank out other summits # check if there are any pixels left unmasked if not np.any(np.isfinite(data_box)): # self.log.info("{1} Island {0} has no non-masked pixels".format(i,data.shape)) continue if domask and (self.global_data.region is not None): y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip) # convert indices of this sub region to indices in the greater image yx = list(zip(y + ymin, x + xmin)) ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1).transpose() mask = self.global_data.region.sky_within(ra, dec, degin=True) # if there are no un-masked pixels within the region then we skip this island. if not np.any(mask): continue self.log.debug("Mask {0}".format(mask)) # self.log.info("{1} Island {0} will be fit".format(i, data.shape)) yield data_box, xmin, xmax, ymin, ymax
<SYSTEM_TASK:> Generate and save the background and RMS maps as FITS files. <END_TASK> <USER_TASK:> Description: def save_background_files(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, rms=None, bkg=None, cores=1, outbase=None): """ Generate and save the background and RMS maps as FITS files. They are saved in the current directly as aegean-background.fits and aegean-rms.fits. Parameters ---------- image_filename : str or HDUList Input image. hdu_index : int If fits file has more than one hdu, it can be specified here. Default = 0. bkgin, rmsin : str or HDUList Background and noise image filename or HDUList beam : :class:`AegeanTools.fits_image.Beam` Beam object representing the synthsized beam. Will replace what is in the FITS header. rms, bkg : float A float that represents a constant rms/bkg level for the entire image. Default = None, which causes the rms/bkg to be loaded or calculated. cores : int Number of cores to use if different from what is autodetected. outbase : str Basename for output files. """
self.log.info("Saving background / RMS maps") # load image, and load/create background/rms images self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores, do_curve=True) img = self.global_data.img bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype) # mask these arrays have the same mask the same as the data mask = np.where(np.isnan(self.global_data.data_pix)) bkgimg[mask] = np.NaN rmsimg[mask] = np.NaN curve[mask] = np.NaN # Generate the new FITS files by copying the existing HDU and assigning new data. # This gives the new files the same WCS projection and other header fields. new_hdu = img.hdu # Set the ORIGIN to indicate Aegean made this file new_hdu.header["ORIGIN"] = "Aegean {0}-({1})".format(__version__, __date__) for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in new_hdu.header: del new_hdu.header[c] if outbase is None: outbase, _ = os.path.splitext(os.path.basename(image_filename)) noise_out = outbase + '_rms.fits' background_out = outbase + '_bkg.fits' curve_out = outbase + '_crv.fits' snr_out = outbase + '_snr.fits' new_hdu.data = bkgimg new_hdu.writeto(background_out, overwrite=True) self.log.info("Wrote {0}".format(background_out)) new_hdu.data = rmsimg new_hdu.writeto(noise_out, overwrite=True) self.log.info("Wrote {0}".format(noise_out)) new_hdu.data = curve new_hdu.writeto(curve_out, overwrite=True) self.log.info("Wrote {0}".format(curve_out)) new_hdu.data = self.global_data.data_pix / rmsimg new_hdu.writeto(snr_out, overwrite=True) self.log.info("Wrote {0}".format(snr_out)) return
<SYSTEM_TASK:> Save the image data. <END_TASK> <USER_TASK:> Description: def save_image(self, outname): """ Save the image data. This is probably only useful if the image data has been blanked. Parameters ---------- outname : str Name for the output file. """
hdu = self.global_data.img.hdu hdu.data = self.global_data.img._pixels hdu.header["ORIGIN"] = "Aegean {0}-({1})".format(__version__, __date__) # delete some axes that we aren't going to need for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in hdu.header: del hdu.header[c] hdu.writeto(outname, overwrite=True) self.log.info("Wrote {0}".format(outname)) return
<SYSTEM_TASK:> Execute fitting on a list of islands <END_TASK> <USER_TASK:> Description: def _fit_islands(self, islands): """ Execute fitting on a list of islands This function just wraps around fit_island, so that when we do multiprocesing a single process will fit multiple islands before returning results. Parameters ---------- islands : list of :class:`AegeanTools.models.IslandFittingData` The islands to be fit. Returns ------- sources : list The sources that were fit. """
self.log.debug("Fitting group of {0} islands".format(len(islands))) sources = [] for island in islands: res = self._fit_island(island) sources.extend(res) return sources
<SYSTEM_TASK:> Determine whether a list of files are of a recognizable output type. <END_TASK> <USER_TASK:> Description: def check_table_formats(files): """ Determine whether a list of files are of a recognizable output type. Parameters ---------- files : str A list of file names Returns ------- result : bool True if *all* the file names are supported """
cont = True formats = get_table_formats() for t in files.split(','): _, ext = os.path.splitext(t) ext = ext[1:].lower() if ext not in formats: cont = False log.warn("Format not supported for {0} ({1})".format(t, ext)) if not cont: log.error("Invalid table format specified.") return cont
<SYSTEM_TASK:> Print a list of all the file formats that are supported for writing. <END_TASK> <USER_TASK:> Description: def show_formats(): """ Print a list of all the file formats that are supported for writing. The file formats are determined by their extensions. Returns ------- None """
fmts = { "ann": "Kvis annotation", "reg": "DS9 regions file", "fits": "FITS Binary Table", "csv": "Comma separated values", "tab": "tabe separated values", "tex": "LaTeX table format", "html": "HTML table", "vot": "VO-Table", "xml": "VO-Table", "db": "Sqlite3 database", "sqlite": "Sqlite3 database"} supported = get_table_formats() print("Extension | Description | Supported?") for k in sorted(fmts.keys()): print("{0:10s} {1:24s} {2}".format(k, fmts[k], k in supported)) return
<SYSTEM_TASK:> Load a table from a given file. <END_TASK> <USER_TASK:> Description: def load_table(filename): """ Load a table from a given file. Supports csv, tab, tex, vo, vot, xml, fits, and hdf5. Parameters ---------- filename : str File to read Returns ------- table : Table Table of data. """
supported = get_table_formats() fmt = os.path.splitext(filename)[-1][1:].lower() # extension sans '.' if fmt in ['csv', 'tab', 'tex'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = ascii.read(filename) elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported: log.info("Reading file {0}".format(filename)) t = Table.read(filename) else: log.error("Table format not recognized or supported") log.error("{0} [{1}]".format(filename, fmt)) raise Exception("Table format not recognized or supported") return t
<SYSTEM_TASK:> Write a table to a file. <END_TASK> <USER_TASK:> Description: def write_table(table, filename): """ Write a table to a file. Parameters ---------- table : Table Table to be written filename : str Destination for saving table. Returns ------- None """
try: if os.path.exists(filename): os.remove(filename) table.write(filename) log.info("Wrote {0}".format(filename)) except Exception as e: if "Format could not be identified" not in e.message: raise e else: fmt = os.path.splitext(filename)[-1][1:].lower() # extension sans '.' raise Exception("Cannot auto-determine format for {0}".format(fmt)) return
<SYSTEM_TASK:> Convert a table of data into a list of sources. <END_TASK> <USER_TASK:> Description: def table_to_source_list(table, src_type=OutputSource): """ Convert a table of data into a list of sources. A single table must have consistent source types given by src_type. src_type should be one of :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Parameters ---------- table : Table Table of sources src_type : class Sources must be of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. Returns ------- sources : list A list of objects of the given type. """
source_list = [] if table is None: return source_list for row in table: # Initialise our object src = src_type() # look for the columns required by our source object for param in src_type.names: if param in table.colnames: # copy the value to our object val = row[param] # hack around float32's broken-ness if isinstance(val, np.float32): val = np.float64(val) setattr(src, param, val) # save this object to our list of sources source_list.append(src) return source_list
<SYSTEM_TASK:> Convert a table into a FITSTable and then write to disk. <END_TASK> <USER_TASK:> Description: def writeFITSTable(filename, table): """ Convert a table into a FITSTable and then write to disk. Parameters ---------- filename : str Filename to write. table : Table Table to write. Returns ------- None Notes ----- Due to a bug in numpy, `int32` and `float32` are converted to `int64` and `float64` before writing. """
def FITSTableType(val): """ Return the FITSTable type corresponding to each named parameter in obj """ if isinstance(val, bool): types = "L" elif isinstance(val, (int, np.int64, np.int32)): types = "J" elif isinstance(val, (float, np.float64, np.float32)): types = "E" elif isinstance(val, six.string_types): types = "{0}A".format(len(val)) else: log.warning("Column {0} is of unknown type {1}".format(val, type(val))) log.warning("Using 5A") types = "5A" return types cols = [] for name in table.colnames: cols.append(fits.Column(name=name, format=FITSTableType(table[name][0]), array=table[name])) cols = fits.ColDefs(cols) tbhdu = fits.BinTableHDU.from_columns(cols) for k in table.meta: tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k])) tbhdu.writeto(filename, overwrite=True)
<SYSTEM_TASK:> Write an output file in ds9 .reg format that outlines the boundaries of each island. <END_TASK> <USER_TASK:> Description: def writeIslandContours(filename, catalog, fmt='reg'): """ Write an output file in ds9 .reg format that outlines the boundaries of each island. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' is supported (default) Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandBoxes` """
if fmt != 'reg': log.warning("Format {0} not yet supported".format(fmt)) log.warning("not writing anything") return out = open(filename, 'w') print("#Aegean island contours", file=out) print("#AegeanTools.catalogs version {0}-({1})".format(__version__, __date__), file=out) line_fmt = 'image;line({0},{1},{2},{3})' text_fmt = 'fk5; text({0},{1}) # text={{{2}}}' mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow' x_fmt = 'image; point({1},{0}) # point=x' for c in catalog: contour = c.contour if len(contour) > 1: for p1, p2 in zip(contour[:-1], contour[1:]): print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5, p2[0] + 0.5), file=out) print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] + 0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out) # comment out lines that have invalid ra/dec (WCS problems) if np.nan in [c.ra, c.dec]: print('#', end=' ', file=out) # some islands may not have anchors because they don't have any contours if len(c.max_angular_size_anchors) == 4: print(text_fmt.format(c.ra, c.dec, c.island), file=out) print(mas_fmt.format(*[a + 0.5 for a in c.max_angular_size_anchors]), file=out) for p1, p2 in c.pix_mask: # DS9 uses 1-based instead of 0-based indexing print(x_fmt.format(p1 + 1, p2 + 1), file=out) out.close() return
<SYSTEM_TASK:> Write an output file in ds9 .reg, or kvis .ann format that contains bounding boxes for all the islands. <END_TASK> <USER_TASK:> Description: def writeIslandBoxes(filename, catalog, fmt): """ Write an output file in ds9 .reg, or kvis .ann format that contains bounding boxes for all the islands. Parameters ---------- filename : str Filename to write. catalog : list List of sources. Only those of type :class:`AegeanTools.models.IslandSource` will have contours drawn. fmt : str Output format type. Currently only 'reg' and 'ann' are supported. Default = 'reg'. Returns ------- None See Also -------- :func:`AegeanTools.catalogs.writeIslandContours` """
if fmt not in ['reg', 'ann']: log.warning("Format not supported for island boxes{0}".format(fmt)) return # fmt not supported out = open(filename, 'w') print("#Aegean Islands", file=out) print("#Aegean version {0}-({1})".format(__version__, __date__), file=out) if fmt == 'reg': print("IMAGE", file=out) box_fmt = 'box({0},{1},{2},{3}) #{4}' else: print("COORD P", file=out) box_fmt = 'box P {0} {1} {2} {3} #{4}' for c in catalog: # x/y swap for pyfits/numpy translation ymin, ymax, xmin, xmax = c.extent # +1 for array/image offset xcen = (xmin + xmax) / 2.0 + 1 # + 0.5 in each direction to make lines run 'between' DS9 pixels xwidth = xmax - xmin + 1 ycen = (ymin + ymax) / 2.0 + 1 ywidth = ymax - ymin + 1 print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out) out.close() return
<SYSTEM_TASK:> Output an sqlite3 database containing one table for each source type <END_TASK> <USER_TASK:> Description: def writeDB(filename, catalog, meta=None): """ Output an sqlite3 database containing one table for each source type Parameters ---------- filename : str Output filename catalog : list List of sources of type :class:`AegeanTools.models.OutputSource`, :class:`AegeanTools.models.SimpleSource`, or :class:`AegeanTools.models.IslandSource`. meta : dict Meta data to be written to table `meta` Returns ------- None """
def sqlTypes(obj, names): """ Return the sql type corresponding to each named parameter in obj """ types = [] for n in names: val = getattr(obj, n) if isinstance(val, bool): types.append("BOOL") elif isinstance(val, (int, np.int64, np.int32)): types.append("INT") elif isinstance(val, (float, np.float64, np.float32)): # float32 is bugged and claims not to be a float types.append("FLOAT") elif isinstance(val, six.string_types): types.append("VARCHAR") else: log.warning("Column {0} is of unknown type {1}".format(n, type(n))) log.warning("Using VARCHAR") types.append("VARCHAR") return types if os.path.exists(filename): log.warning("overwriting {0}".format(filename)) os.remove(filename) conn = sqlite3.connect(filename) db = conn.cursor() # determine the column names by inspecting the catalog class for t, tn in zip(classify_catalog(catalog), ["components", "islands", "simples"]): if len(t) < 1: continue #don't write empty tables col_names = t[0].names col_types = sqlTypes(t[0], col_names) stmnt = ','.join(["{0} {1}".format(a, b) for a, b in zip(col_names, col_types)]) db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt)) stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join(col_names), ','.join(['?' for i in col_names])) # expend the iterators that are created by python 3+ data = list(map(nulls, list(r.as_list() for r in t))) db.executemany(stmnt, data) log.info("Created table {0}".format(tn)) # metadata add some meta data db.execute("CREATE TABLE meta (key VARCHAR, val VARCHAR)") for k in meta: db.execute("INSERT INTO meta (key, val) VALUES (?,?)", (k, meta[k])) conn.commit() log.info(db.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()) conn.close() log.info("Wrote file {0}".format(filename)) return
<SYSTEM_TASK:> Calculate the normalised distance between two sources. <END_TASK> <USER_TASK:> Description: def norm_dist(src1, src2): """ Calculate the normalised distance between two sources. Sources are elliptical Gaussians. The normalised distance is calculated as the GCD distance between the centers, divided by quadrature sum of the radius of each ellipse along a line joining the two ellipses. For ellipses that touch at a single point, the normalized distance will be 1/sqrt(2). Parameters ---------- src1, src2 : object The two positions to compare. Objects must have the following parameters: (ra, dec, a, b, pa). Returns ------- dist: float The normalised distance. """
if np.all(src1 == src2): return 0 dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec) # degrees # the angle between the ellipse centers phi = bear(src1.ra, src1.dec, src2.ra, src2.dec) # Degrees # Calculate the radius of each ellipse along a line that joins their centers. r1 = src1.a*src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1.pa)), src1.b * np.cos(np.radians(phi - src1.pa))) r2 = src2.a*src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi - src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa))) R = dist / (np.hypot(r1, r2) / 3600) return R
<SYSTEM_TASK:> Great circle distance between two sources. <END_TASK> <USER_TASK:> Description: def sky_dist(src1, src2): """ Great circle distance between two sources. A check is made to determine if the two sources are the same object, in this case the distance is zero. Parameters ---------- src1, src2 : object Two sources to check. Objects must have parameters (ra,dec) in degrees. Returns ------- distance : float The distance between the two sources. See Also -------- :func:`AegeanTools.angle_tools.gcd` """
if np.all(src1 == src2): return 0 return gcd(src1.ra, src1.dec, src2.ra, src2.dec)
<SYSTEM_TASK:> Do a pairwise comparison of all sources and determine if they have a normalized distance within <END_TASK> <USER_TASK:> Description: def pairwise_ellpitical_binary(sources, eps, far=None): """ Do a pairwise comparison of all sources and determine if they have a normalized distance within eps. Form this into a matrix of shape NxN. Parameters ---------- sources : list A list of sources (objects with parameters: ra,dec,a,b,pa) eps : float Normalised distance constraint. far : float If sources have a dec that differs by more than this amount then they are considered to be not matched. This is a short-cut around performing GCD calculations. Returns ------- prob : numpy.ndarray A 2d array of True/False. See Also -------- :func:`AegeanTools.cluster.norm_dist` """
if far is None: far = max(a.a/3600 for a in sources) l = len(sources) distances = np.zeros((l, l), dtype=bool) for i in range(l): for j in range(i, l): if i == j: distances[i, j] = False continue src1 = sources[i] src2 = sources[j] if src2.dec - src1.dec > far: break if abs(src2.ra - src1.ra)*np.cos(np.radians(src1.dec)) > far: continue distances[i, j] = norm_dist(src1, src2) > eps distances[j, i] = distances[i, j] return distances
<SYSTEM_TASK:> Regroup the islands of a catalog according to their normalised distance. <END_TASK> <USER_TASK:> Description: def regroup_vectorized(srccat, eps, far=None, dist=norm_dist): """ Regroup the islands of a catalog according to their normalised distance. Assumes srccat is recarray-like for efficiency. Return a list of island groups. Parameters ---------- srccat : np.rec.arry or pd.DataFrame Should have the following fields[units]: ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any] eps : float maximum normalised distance within which sources are considered to be grouped far : float (degrees) sources that are further than this distance apart will not be grouped, and will not be tested. Default = 0.5. dist : func a function that calculates the distance between a source and each element of an array of sources. Default = :func:`AegeanTools.cluster.norm_dist` Returns ------- islands : list of lists Each island contians integer indices for members from srccat (in descending dec order). """
if far is None: far = 0.5 # 10*max(a.a/3600 for a in srccat) # most negative declination first # XXX: kind='mergesort' ensures stable sorting for determinism. # Do we need this? order = np.argsort(srccat.dec, kind='mergesort')[::-1] # TODO: is it better to store groups as arrays even if appends are more # costly? groups = [[order[0]]] for idx in order[1:]: rec = srccat[idx] # TODO: Find out if groups are big enough for this to give us a speed # gain. If not, get distance to all entries in groups above # decmin simultaneously. decmin = rec.dec - far for group in reversed(groups): # when an island's largest (last) declination is smaller than # decmin, we don't need to look at any more islands if srccat.dec[group[-1]] < decmin: # new group groups.append([idx]) rafar = far / np.cos(np.radians(rec.dec)) group_recs = np.take(srccat, group, mode='clip') group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar] if len(group_recs) and dist(rec, group_recs).min() < eps: group.append(idx) break else: # new group groups.append([idx]) # TODO?: a more numpy-like interface would return only an array providing # the mapping: # group_idx = np.empty(len(srccat), dtype=int) # for i, group in enumerate(groups): # group_idx[group] = i # return group_idx return groups
<SYSTEM_TASK:> Load a file from disk and return an HDUList <END_TASK> <USER_TASK:> Description: def load_file_or_hdu(filename): """ Load a file from disk and return an HDUList If filename is already an HDUList return that instead Parameters ---------- filename : str or HDUList File or HDU to be loaded Returns ------- hdulist : HDUList """
if isinstance(filename, fits.HDUList): hdulist = filename else: hdulist = fits.open(filename, ignore_missing_end=True) return hdulist
<SYSTEM_TASK:> Compress a file using decimation. <END_TASK> <USER_TASK:> Description: def compress(datafile, factor, outfile=None): """ Compress a file using decimation. Parameters ---------- datafile : str or HDUList Input data to be loaded. (HDUList will be modified if passed). factor : int Decimation factor. outfile : str File to be written. Default = None, which means don't write a file. Returns ------- hdulist : HDUList A decimated HDUList See Also -------- :func:`AegeanTools.fits_interp.expand` """
if not (factor > 0 and isinstance(factor, int)): logging.error("factor must be a positive integer") return None hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = np.squeeze(hdulist[0].data) cx, cy = data.shape[0], data.shape[1] nx = cx // factor ny = cy // factor # check to see if we will have some residual data points lcx = cx % factor lcy = cy % factor if lcx > 0: nx += 1 if lcy > 0: ny += 1 # decimate the data new_data = np.empty((nx + 1, ny + 1)) new_data[:nx, :ny] = data[::factor, ::factor] # copy the last row/col across new_data[-1, :ny] = data[-1, ::factor] new_data[:nx, -1] = data[::factor, -1] new_data[-1, -1] = data[-1, -1] # TODO: Figure out what to do when CD2_1 and CD1_2 are non-zero if 'CDELT1' in header: header['CDELT1'] *= factor elif 'CD1_1' in header: header['CD1_1'] *= factor else: logging.error("Error: Can't find CDELT1 or CD1_1") return None if 'CDELT2' in header: header['CDELT2'] *= factor elif "CD2_2" in header: header['CD2_2'] *= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None # Move the reference pixel so that the WCS is correct header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor # Update the header so that we can do the correct interpolation later on header['BN_CFAC'] = (factor, "Compression factor (grid size) used by BANE") header['BN_NPX1'] = (header['NAXIS1'], 'original NAXIS1 value') header['BN_NPX2'] = (header['NAXIS2'], 'original NAXIS2 value') header['BN_RPX1'] = (lcx, 'Residual on axis 1') header['BN_RPX2'] = (lcy, 'Residual on axis 2') header['HISTORY'] = "Compressed by a factor of {0}".format(factor) # save the changes hdulist[0].data = np.array(new_data, dtype=np.float32) hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info("Wrote: {0}".format(outfile)) return hdulist
<SYSTEM_TASK:> Expand and interpolate the given data file using the given method. <END_TASK> <USER_TASK:> Description: def expand(datafile, outfile=None): """ Expand and interpolate the given data file using the given method. Datafile can be a filename or an HDUList It is assumed that the file has been compressed and that there are `BN_?` keywords in the fits header that describe how the compression was done. Parameters ---------- datafile : str or HDUList filename or HDUList of file to work on outfile : str filename to write to (default = None) Returns ------- hdulist : HDUList HDUList of the expanded data. See Also -------- :func:`AegeanTools.fits_interp.compress` """
hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = hdulist[0].data # Check for the required key words, only expand if they exist if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2', 'BN_RPX1', 'BN_RPX2']): return hdulist factor = header['BN_CFAC'] (gx, gy) = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']] # fix the last column of the grid to account for residuals lcx = header['BN_RPX2'] lcy = header['BN_RPX1'] rows = (np.arange(data.shape[0]) + int(lcx/factor))*factor cols = (np.arange(data.shape[1]) + int(lcy/factor))*factor # Do the interpolation hdulist[0].data = np.array(RegularGridInterpolator((rows,cols), data)((gx, gy)), dtype=np.float32) # update the fits keywords so that the WCS is correct header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1 header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1 if 'CDELT1' in header: header['CDELT1'] /= factor elif 'CD1_1' in header: header['CD1_1'] /= factor else: logging.error("Error: Can't find CD1_1 or CDELT1") return None if 'CDELT2' in header: header['CDELT2'] /= factor elif "CD2_2" in header: header['CD2_2'] /= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None header['HISTORY'] = 'Expanded by factor {0}'.format(factor) # don't need these any more so delete them. del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header['BN_RPX1'], header['BN_RPX2'] hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info("Wrote: {0}".format(outfile)) return hdulist
<SYSTEM_TASK:> Strip and make a string case insensitive and ensure it is either 'true' or 'false'. <END_TASK> <USER_TASK:> Description: def change_autocommit_mode(self, switch): """ Strip and make a string case insensitive and ensure it is either 'true' or 'false'. If neither, prompt user for either value. When 'true', return True, and when 'false' return False. """
parsed_switch = switch.strip().lower() if not parsed_switch in ['true', 'false']: self.send_response( self.iopub_socket, 'stream', { 'name': 'stderr', 'text': 'autocommit must be true or false.\n\n' } ) switch_bool = (parsed_switch == 'true') committed = self.switch_autocommit(switch_bool) message = ( 'committed current transaction & ' if committed else '' + 'switched autocommit mode to ' + str(self._autocommit) ) self.send_response( self.iopub_socket, 'stream', { 'name': 'stderr', 'text': message, } )
<SYSTEM_TASK:> Deconstruct the field for Django 1.7+ migrations. <END_TASK> <USER_TASK:> Description: def deconstruct(self): """ Deconstruct the field for Django 1.7+ migrations. """
name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct() kwargs.update({ #'key': self.cipher_key, 'cipher': self.cipher_name, 'charset': self.charset, 'check_armor': self.check_armor, 'versioned': self.versioned, }) return name, path, args, kwargs
<SYSTEM_TASK:> Better than excluding everything that is not needed, <END_TASK> <USER_TASK:> Description: def find_packages_by_root_package(where): """Better than excluding everything that is not needed, collect only what is needed. """
root_package = os.path.basename(where) packages = [ "%s.%s" % (root_package, sub_package) for sub_package in find_packages(where)] packages.insert(0, root_package) return packages
<SYSTEM_TASK:> click_ is a framework to simplify writing composable commands for <END_TASK> <USER_TASK:> Description: def make_long_description(marker=None, intro=None): """ click_ is a framework to simplify writing composable commands for command-line tools. This package extends the click_ functionality by adding support for commands that use configuration files. .. _click: https://click.pocoo.org/ EXAMPLE: A configuration file, like: .. code-block:: INI # -- FILE: foo.ini [foo] flag = yes name = Alice and Bob numbers = 1 4 9 16 25 filenames = foo/xxx.txt bar/baz/zzz.txt [person.alice] name = Alice birthyear = 1995 [person.bob] name = Bob birthyear = 2001 can be processed with: .. code-block:: python # EXAMPLE: """
if intro is None: intro = inspect.getdoc(make_long_description) with open("README.rst", "r") as infile: line = infile.readline() while not line.strip().startswith(marker): line = infile.readline() # -- COLLECT REMAINING: Usage example contents = infile.read() text = intro +"\n" + contents return text
<SYSTEM_TASK:> Pops a message for a subscribed client. <END_TASK> <USER_TASK:> Description: def pubsub_pop_message(self, deadline=None): """Pops a message for a subscribed client. Args: deadline (int): max number of seconds to wait (None => no timeout) Returns: Future with the popped message as result (or None if timeout or ConnectionError object in case of connection errors or ClientError object if you are not subscribed) """
if not self.subscribed: excep = ClientError("you must subscribe before using " "pubsub_pop_message") raise tornado.gen.Return(excep) reply = None try: reply = self._reply_list.pop(0) raise tornado.gen.Return(reply) except IndexError: pass if deadline is not None: td = timedelta(seconds=deadline) yield self._condition.wait(timeout=td) else: yield self._condition.wait() try: reply = self._reply_list.pop(0) except IndexError: pass raise tornado.gen.Return(reply)
<SYSTEM_TASK:> This is a helper function to recover the coordinates of regions that have <END_TASK> <USER_TASK:> Description: def _get_flat_ids(assigned): """ This is a helper function to recover the coordinates of regions that have been labeled within an image. This function efficiently computes the coordinate of all regions and returns the information in a memory-efficient manner. Parameters ----------- assigned : ndarray[ndim=2, dtype=int] The labeled image. For example, the result of calling scipy.ndimage.label on a binary image Returns -------- I : ndarray[ndim=1, dtype=int] Array of 1d coordinate indices of all regions in the image region_ids : ndarray[shape=[n_features + 1], dtype=int] Indexing array used to separate the coordinates of the different regions. For example, region k has xy coordinates of xy[region_ids[k]:region_ids[k+1], :] labels : ndarray[ndim=1, dtype=int] The labels of the regions in the image corresponding to the coordinates For example, assigned.ravel()[I[k]] == labels[k] """
# MPU optimization: # Let's segment the regions and store in a sparse format # First, let's use where once to find all the information we want ids_labels = np.arange(len(assigned.ravel()), 'int64') I = ids_labels[assigned.ravel().astype(bool)] labels = assigned.ravel()[I] # Now sort these arrays by the label to figure out where to segment sort_id = np.argsort(labels) labels = labels[sort_id] I = I[sort_id] # this should be of size n_features-1 region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1 # This should be of size n_features + 1 region_ids = np.concatenate(([0], region_ids, [len(labels)])) return [I, region_ids, labels]
<SYSTEM_TASK:> This function gives the magnitude and direction of the slope based on <END_TASK> <USER_TASK:> Description: def _calc_direction(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2): """ This function gives the magnitude and direction of the slope based on Tarboton's D_\infty method. This is a helper-function to _tarboton_slopes_directions """
data0 = data[slc0] data1 = data[slc1] data2 = data[slc2] s1 = (data0 - data1) / d1 s2 = (data1 - data2) / d2 s1_2 = s1**2 sd = (data0 - data2) / np.sqrt(d1**2 + d2**2) r = np.arctan2(s2, s1) rad2 = s1_2 + s2**2 # Handle special cases # should be on diagonal b_s1_lte0 = s1 <= 0 b_s2_lte0 = s2 <= 0 b_s1_gt0 = s1 > 0 b_s2_gt0 = s2 > 0 I1 = (b_s1_lte0 & b_s2_gt0) | (r > theta) if I1.any(): rad2[I1] = sd[I1] ** 2 r[I1] = theta.repeat(I1.shape[1], 1)[I1] I2 = (b_s1_gt0 & b_s2_lte0) | (r < 0) # should be on straight section if I2.any(): rad2[I2] = s1_2[I2] r[I2] = 0 I3 = b_s1_lte0 & (b_s2_lte0 | (b_s2_gt0 & (sd <= 0))) # upslope or flat rad2[I3] = -1 I4 = rad2 > mag[slc0] if I4.any(): mag[slc0][I4] = rad2[I4] direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi/2 return mag, direction
<SYSTEM_TASK:> Assigns data on the i'th tile to the data 'field' of the 'side' <END_TASK> <USER_TASK:> Description: def set_i(self, i, data, field, side): """ Assigns data on the i'th tile to the data 'field' of the 'side' edge of that tile """
edge = self.get_i(i, side) setattr(edge, field, data[edge.slice])
<SYSTEM_TASK:> Assign data on the 'key' tile to all the edges <END_TASK> <USER_TASK:> Description: def set_sides(self, key, data, field, local=False): """ Assign data on the 'key' tile to all the edges """
for side in ['left', 'right', 'top', 'bottom']: self.set(key, data, field, side, local)
<SYSTEM_TASK:> Assign data from the 'key' tile to the edge on the <END_TASK> <USER_TASK:> Description: def set_neighbor_data(self, neighbor_side, data, key, field): """ Assign data from the 'key' tile to the edge on the neighboring tile which is on the 'neighbor_side' of the 'key' tile. The data is assigned to the 'field' attribute of the neihboring tile's edge. """
i = self.keys[key] found = False sides = [] if 'left' in neighbor_side: if i % self.n_cols == 0: return None i -= 1 sides.append('right') found = True if 'right' in neighbor_side: if i % self.n_cols == self.n_cols - 1: return None i += 1 sides.append('left') found = True if 'top' in neighbor_side: sides.append('bottom') i -= self.n_cols found = True if 'bottom' in neighbor_side: sides.append('top') i += self.n_cols found = True if not found: print "Side '%s' not found" % neighbor_side # Check if i is in range if i < 0 or i >= self.n_chunks: return None # Otherwise, set the data for side in sides: self.set_i(i, data, field, side)
<SYSTEM_TASK:> Given they 'key' tile's data, assigns this information to all <END_TASK> <USER_TASK:> Description: def set_all_neighbors_data(self, data, done, key): """ Given they 'key' tile's data, assigns this information to all neighboring tiles """
# The order of this for loop is important because the topleft gets # it's data from the left neighbor, which should have already been # updated... for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright', 'bottomleft', 'bottomright']: self.set_neighbor_data(side, data, key, 'data') # self.set_neighbor_data(side, todo, key, 'todo') self.set_neighbor_data(side, done, key, 'done')
<SYSTEM_TASK:> Calculate and record the number of edge pixels left to do on each tile <END_TASK> <USER_TASK:> Description: def fill_n_todo(self): """ Calculate and record the number of edge pixels left to do on each tile """
left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right.ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo])
<SYSTEM_TASK:> Calculate and record the number of edge pixels that are done one each <END_TASK> <USER_TASK:> Description: def fill_n_done(self): """ Calculate and record the number of edge pixels that are done one each tile. """
left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right.ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done])
<SYSTEM_TASK:> Calculate the percentage of edge pixels that would be done if the tile <END_TASK> <USER_TASK:> Description: def fill_percent_done(self): """ Calculate the percentage of edge pixels that would be done if the tile was reprocessed. This is done for each tile. """
left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.percent_done.ravel()[i] = \ np.sum([left.ravel()[i].percent_done, right.ravel()[i].percent_done, top.ravel()[i].percent_done, bottom.ravel()[i].percent_done]) self.percent_done.ravel()[i] /= \ np.sum([left.ravel()[i].percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel()[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])
<SYSTEM_TASK:> Fixes the shape of the data fields on edges. Left edges should be <END_TASK> <USER_TASK:> Description: def fix_shapes(self): """ Fixes the shape of the data fields on edges. Left edges should be column vectors, and top edges should be row vectors, for example. """
for i in xrange(self.n_chunks): for side in ['left', 'right', 'top', 'bottom']: edge = getattr(self, side).ravel()[i] if side in ['left', 'right']: shp = [edge.todo.size, 1] else: shp = [1, edge.todo.size] edge.done = edge.done.reshape(shp) edge.data = edge.data.reshape(shp) edge.todo = edge.todo.reshape(shp)
<SYSTEM_TASK:> Determine which tile, when processed, would complete the largest <END_TASK> <USER_TASK:> Description: def find_best_candidate(self): """ Determine which tile, when processed, would complete the largest percentage of unresolved edge pixels. This is a heuristic function and does not give the optimal tile. """
self.fill_percent_done() i_b = np.argmax(self.percent_done.ravel()) if self.percent_done.ravel()[i_b] <= 0: return None # check for ties I = self.percent_done.ravel() == self.percent_done.ravel()[i_b] if I.sum() == 1: return i_b else: I2 = np.argmax(self.max_elev.ravel()[I]) return I.nonzero()[0][I2]
<SYSTEM_TASK:> Standard array saving routine <END_TASK> <USER_TASK:> Description: def save_array(self, array, name=None, partname=None, rootpath='.', raw=False, as_int=True): """ Standard array saving routine Parameters ----------- array : array Array to save to file name : str, optional Default 'array.tif'. Filename of array to save. Over-writes partname. partname : str, optional Part of the filename to save (with the coordinates appended) rootpath : str, optional Default '.'. Which directory to save file raw : bool, optional Default False. If true will save a .npz of the array. If false, will save a geotiff as_int : bool, optional Default True. If true will save array as an integer array ( excellent compression). If false will save as float array. """
if name is None and partname is not None: fnl_file = self.get_full_fn(partname, rootpath) tmp_file = os.path.join(rootpath, partname, self.get_fn(partname + '_tmp')) elif name is not None: fnl_file = name tmp_file = fnl_file + '_tmp.tiff' else: fnl_file = 'array.tif' if not raw: s_file = self.elev.clone_traits() s_file.raster_data = np.ma.masked_array(array) count = 10 while count > 0 and (s_file.raster_data.mask.sum() > 0 \ or np.isnan(s_file.raster_data).sum() > 0): s_file.inpaint() count -= 1 s_file.export_to_geotiff(tmp_file) if as_int: cmd = "gdalwarp -multi -wm 2000 -co BIGTIFF=YES -of GTiff -co compress=lzw -ot Int16 -co TILED=YES -wo OPTIMIZE_SIZE=YES -r near -t_srs %s %s %s" \ % (self.save_projection, tmp_file, fnl_file) else: cmd = "gdalwarp -multi -wm 2000 -co BIGTIFF=YES -of GTiff -co compress=lzw -co TILED=YES -wo OPTIMIZE_SIZE=YES -r near -t_srs %s %s %s" \ % (self.save_projection, tmp_file, fnl_file) print "<<"*4, cmd, ">>"*4 subprocess.call(cmd) os.remove(tmp_file) else: np.savez_compressed(fnl_file, array)
<SYSTEM_TASK:> Saves the upstream contributing area to a file <END_TASK> <USER_TASK:> Description: def save_uca(self, rootpath, raw=False, as_int=False): """ Saves the upstream contributing area to a file """
self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)
<SYSTEM_TASK:> Saves the topographic wetness index to a file <END_TASK> <USER_TASK:> Description: def save_twi(self, rootpath, raw=False, as_int=True): """ Saves the topographic wetness index to a file """
self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value=-9999) # self.twi = self.twi.filled() self.twi[self.flats] = 0 self.twi.mask[self.flats] = True # self.twi = self.flats self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)
<SYSTEM_TASK:> Saves the magnitude of the slope to a file <END_TASK> <USER_TASK:> Description: def save_slope(self, rootpath, raw=False, as_int=False): """ Saves the magnitude of the slope to a file """
self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)
<SYSTEM_TASK:> Saves the direction of the slope to a file <END_TASK> <USER_TASK:> Description: def save_direction(self, rootpath, raw=False, as_int=False): """ Saves the direction of the slope to a file """
self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)
<SYSTEM_TASK:> Saves TWI, UCA, magnitude and direction of slope to files. <END_TASK> <USER_TASK:> Description: def save_outputs(self, rootpath='.', raw=False): """Saves TWI, UCA, magnitude and direction of slope to files. """
self.save_twi(rootpath, raw) self.save_uca(rootpath, raw) self.save_slope(rootpath, raw) self.save_direction(rootpath, raw)
<SYSTEM_TASK:> Can only load files that were saved in the 'raw' format. <END_TASK> <USER_TASK:> Description: def load_array(self, fn, name): """ Can only load files that were saved in the 'raw' format. Loads previously computed field 'name' from file Valid names are 'mag', 'direction', 'uca', 'twi' """
if os.path.exists(fn + '.npz'): array = np.load(fn + '.npz') try: setattr(self, name, array['arr_0']) except Exception, e: print e finally: array.close() else: raise RuntimeError("File %s does not exist." % (fn + '.npz'))
<SYSTEM_TASK:> Assign data from a chunk to the full array. The data in overlap regions <END_TASK> <USER_TASK:> Description: def _assign_chunk(self, data, arr1, arr2, te, be, le, re, ovr, add=False): """ Assign data from a chunk to the full array. The data in overlap regions will not be assigned to the full array Parameters ----------- data : array Unused array (except for shape) that has size of full tile arr1 : array Full size array to which data will be assigned arr2 : array Chunk-sized array from which data will be assigned te : int Top edge id be : int Bottom edge id le : int Left edge id re : int Right edge id ovr : int The number of pixels in the overlap add : bool, optional Default False. If true, the data in arr2 will be added to arr1, otherwise data in arr2 will overwrite data in arr1 """
if te == 0: i1 = 0 else: i1 = ovr if be == data.shape[0]: i2 = 0 i2b = None else: i2 = -ovr i2b = -ovr if le == 0: j1 = 0 else: j1 = ovr if re == data.shape[1]: j2 = 0 j2b = None else: j2 = -ovr j2b = -ovr if add: arr1[te+i1:be+i2, le+j1:re+j2] += arr2[i1:i2b, j1:j2b] else: arr1[te+i1:be+i2, le+j1:re+j2] = arr2[i1:i2b, j1:j2b]
<SYSTEM_TASK:> Wrapper to pick between various algorithms <END_TASK> <USER_TASK:> Description: def _slopes_directions(self, data, dX, dY, method='tarboton'): """ Wrapper to pick between various algorithms """
# %% if method == 'tarboton': return self._tarboton_slopes_directions(data, dX, dY) elif method == 'central': return self._central_slopes_directions(data, dX, dY)
<SYSTEM_TASK:> Extend flats 1 square downstream <END_TASK> <USER_TASK:> Description: def _find_flats_edges(self, data, mag, direction): """ Extend flats 1 square downstream Flats on the downstream side of the flat might find a valid angle, but that doesn't mean that it's a correct angle. We have to find these and then set them equal to a flat """
i12 = np.arange(data.size).reshape(data.shape) flat = mag == FLAT_ID_INT flats, n = spndi.label(flat, structure=FLATS_KERNEL3) objs = spndi.find_objects(flats) f = flat.ravel() d = data.ravel() for i, _obj in enumerate(objs): region = flats[_obj] == i+1 I = i12[_obj][region] J = get_adjacent_index(I, data.shape, data.size) f[J] = d[J] == d[I[0]] flat = f.reshape(data.shape) return flat
<SYSTEM_TASK:> Does a single step of the upstream contributing area calculation. <END_TASK> <USER_TASK:> Description: def _drain_step(self, A, ids, area, done, edge_todo): """ Does a single step of the upstream contributing area calculation. Here the pixels in ids are drained downstream, the areas are updated and the next set of pixels to drain are determined for the next round. """
# Only drain to cells that have a contribution A_todo = A[:, ids.ravel()] colsum = np.array(A_todo.sum(1)).ravel() # Only touch cells that actually receive a contribution # during this stage ids_new = colsum != 0 # Is it possible that I may drain twice from my own cell? # -- No, I don't think so... # Is it possible that other cells may drain into me in # multiple iterations -- yes # Then say I check for when I'm done ensures that I don't drain until # everyone has drained into me area.ravel()[ids_new] += (A_todo[ids_new, :] * (area.ravel()[ids].ravel())) edge_todo.ravel()[ids_new] += (A_todo[ids_new, :] * (edge_todo.ravel()[ids].ravel())) # Figure out what's left to do. done.ravel()[ids] = True colsum = A * (~done.ravel()) ids = colsum == 0 # Figure out the new-undrained ids ids = ids & (~done.ravel()) return ids, area, done, edge_todo
<SYSTEM_TASK:> Calculates the adjacency of connectivity matrix. This matrix tells <END_TASK> <USER_TASK:> Description: def _mk_adjacency_matrix(self, section, proportion, flats, elev, mag, dX, dY): """ Calculates the adjacency of connectivity matrix. This matrix tells which pixels drain to which. For example, the pixel i, will recieve area from np.nonzero(A[i, :]) at the proportions given in A[i, :]. So, the row gives the pixel drain to, and the columns the pixels drained from. """
shp = section.shape mat_data = np.row_stack((proportion, 1 - proportion)) NN = np.prod(shp) i12 = np.arange(NN).reshape(shp) j1 = - np.ones_like(i12) j2 = - np.ones_like(i12) # make the connectivity for the non-flats/pits j1, j2 = self._mk_connectivity(section, i12, j1, j2) j = np.row_stack((j1, j2)) i = np.row_stack((i12, i12)) # connectivity for flats/pits if self.drain_pits: pit_i, pit_j, pit_prop, flats, mag = \ self._mk_connectivity_pits(i12, flats, elev, mag, dX, dY) j = np.concatenate([j.ravel(), pit_j]).astype('int64') i = np.concatenate([i.ravel(), pit_i]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), pit_prop]) elif self.drain_flats: j1, j2, mat_data, flat_i, flat_j, flat_prop = \ self._mk_connectivity_flats( i12, j1, j2, mat_data, flats, elev, mag) j = np.concatenate([j.ravel(), flat_j]).astype('int64') i = np.concatenate([i.ravel(), flat_j]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), flat_prop]) # This prevents no-data values, remove connections when not present, # and makes sure that floating point precision errors do not # create circular references where a lower elevation cell drains # to a higher elevation cell I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-8) \ & (elev.ravel()[j] <= elev.ravel()[i]) mat_data = mat_data[I] j = j[I] i = i[I] # %%Make the matrix and initialize # What is A? The row i area receives area contributions from the # entries in its columns. If all the entries in my columns have # drained, then I can drain. A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel()))), shape=(NN, NN)) normalize = np.array(A.sum(0) + 1e-16).squeeze() A = np.dot(A, sps.diags(1/normalize, 0)) return A
<SYSTEM_TASK:> Calculates the topographic wetness index and saves the result in <END_TASK> <USER_TASK:> Description: def calc_twi(self): """ Calculates the topographic wetness index and saves the result in self.twi. Returns ------- twi : array Array giving the topographic wetness index at each pixel """
if self.uca is None: self.calc_uca() gc.collect() # Just in case min_area = self.twi_min_area min_slope = self.twi_min_slope twi = self.uca.copy() if self.apply_twi_limits_on_uca: twi[twi > self.uca_saturation_limit * min_area] = \ self.uca_saturation_limit * min_area gc.collect() # Just in case twi = np.log((twi) / (self.mag + min_slope)) # apply the cap if self.apply_twi_limits: twi_sat_value = \ np.log(self.uca_saturation_limit * min_area / min_slope) twi[twi > twi_sat_value] = twi_sat_value # multiply by 10 for better integer resolution when storing self.twi = twi * 10 gc.collect() # Just in case return twi
<SYSTEM_TASK:> A debug function to plot the direction calculated in various ways. <END_TASK> <USER_TASK:> Description: def _plot_debug_slopes_directions(self): """ A debug function to plot the direction calculated in various ways. """
# %% from matplotlib.pyplot import matshow, colorbar, clim, title matshow(self.direction / np.pi * 180); colorbar(); clim(0, 360) title('Direction') mag2, direction2 = self._central_slopes_directions() matshow(direction2 / np.pi * 180.0); colorbar(); clim(0, 360) title('Direction (central difference)') matshow(self.mag); colorbar() title('Magnitude') matshow(mag2); colorbar(); title("Magnitude (Central difference)") # %% # Compare to Taudem filename = self.file_name os.chdir('testtiff') try: os.remove('test_ang.tif') os.remove('test_slp.tif') except: pass cmd = ('dinfflowdir -fel "%s" -ang "%s" -slp "%s"' % (os.path.split(filename)[-1], 'test_ang.tif', 'test_slp.tif')) taudem._run(cmd) td_file = GdalReader(file_name='test_ang.tif') td_ang, = td_file.raster_layers td_file2 = GdalReader(file_name='test_slp.tif') td_mag, = td_file2.raster_layers os.chdir('..') matshow(td_ang.raster_data / np.pi*180); clim(0, 360); colorbar() title('Taudem direction') matshow(td_mag.raster_data); colorbar() title('Taudem magnitude') matshow(self.data); colorbar() title('The test data (elevation)') diff = (td_ang.raster_data - self.direction) / np.pi * 180.0 diff[np.abs(diff) > 300] = np.nan matshow(diff); colorbar(); clim([-1, 1]) title('Taudem direction - calculated Direction') # normalize magnitudes mag2 = td_mag.raster_data mag2 /= np.nanmax(mag2) mag = self.mag.copy() mag /= np.nanmax(mag) matshow(mag - mag2); colorbar() title('Taudem magnitude - calculated magnitude') del td_file del td_file2 del td_ang del td_mag
<SYSTEM_TASK:> Cleanup generated document artifacts. <END_TASK> <USER_TASK:> Description: def clean(ctx, dry_run=False): """Cleanup generated document artifacts."""
basedir = ctx.sphinx.destdir or "build/docs" cleanup_dirs([basedir], dry_run=dry_run)
<SYSTEM_TASK:> Find the tile neighbors based on filenames <END_TASK> <USER_TASK:> Description: def find_neighbors(neighbors, coords, I, source_files, f, sides): """Find the tile neighbors based on filenames Parameters ----------- neighbors : dict Dictionary that stores the neighbors. Format is neighbors["source_file_name"]["side"] = "neighbor_source_file_name" coords : list List of coordinates determined from the filename. See :py:func:`utils.parse_fn` I : array Sort index. Different sorting schemes will speed up when neighbors are found source_files : list List of strings of source file names f : callable Function that determines if two tiles are neighbors based on their coordinates. f(c1, c2) returns True if tiles are neighbors sides : list List of 2 strings that give the "side" where tiles are neighbors. Returns ------- neighbors : dict Dictionary of neighbors Notes ------- For example, if Tile1 is to the left of Tile2, then neighbors['Tile1']['right'] = 'Tile2' neighbors['Tile2']['left'] = 'Tile1' """
for i, c1 in enumerate(coords): me = source_files[I[i]] # If the left neighbor has already been found... if neighbors[me][sides[0]] != '': continue # could try coords[i:] (+ fixes) for speed if it becomes a problem for j, c2 in enumerate(coords): if f(c1, c2): # then tiles are neighbors neighbors neigh = source_files[I[j]] neighbors[me][sides[0]] = neigh neighbors[neigh][sides[1]] = me break return neighbors
<SYSTEM_TASK:> From the elevation filename, we can figure out and load the data and <END_TASK> <USER_TASK:> Description: def set_neighbor_data(self, elev_fn, dem_proc, interp=None): """ From the elevation filename, we can figure out and load the data and done arrays. """
if interp is None: interp = self.build_interpolator(dem_proc) opp = {'top': 'bottom', 'left': 'right'} for key in self.neighbors[elev_fn].keys(): tile = self.neighbors[elev_fn][key] if tile == '': continue oppkey = key for me, neigh in opp.iteritems(): if me in key: oppkey = oppkey.replace(me, neigh) else: oppkey = oppkey.replace(neigh, me) opp_edge = self.neighbors[tile][oppkey] if opp_edge == '': continue interp.values = dem_proc.uca[::-1, :] # interp.values[:, 0] = np.ravel(dem_proc.uca) # for other interp. # for the top-left tile we have to set the bottom and right edges # of that tile, so two edges for those tiles for key_ed in oppkey.split('-'): self.edges[tile][key_ed].set_data('data', interp) interp.values = dem_proc.edge_done[::-1, :].astype(float) # interp.values[:, 0] = np.ravel(dem_proc.edge_done) for key_ed in oppkey.split('-'): self.edges[tile][key_ed].set_data('done', interp)
<SYSTEM_TASK:> Can figure out how to update the todo based on the elev filename <END_TASK> <USER_TASK:> Description: def update_edge_todo(self, elev_fn, dem_proc): """ Can figure out how to update the todo based on the elev filename """
for key in self.edges[elev_fn].keys(): self.edges[elev_fn][key].set_data('todo', data=dem_proc.edge_todo)
<SYSTEM_TASK:> After finishing a calculation, this will update the neighbors and the <END_TASK> <USER_TASK:> Description: def update_edges(self, elev_fn, dem_proc): """ After finishing a calculation, this will update the neighbors and the todo for that tile """
interp = self.build_interpolator(dem_proc) self.update_edge_todo(elev_fn, dem_proc) self.set_neighbor_data(elev_fn, dem_proc, interp)
<SYSTEM_TASK:> Creates the initialization data from the edge structure <END_TASK> <USER_TASK:> Description: def get_edge_init_data(self, fn, save_path=None): """ Creates the initialization data from the edge structure """
edge_init_data = {key: self.edges[fn][key].get('data') for key in self.edges[fn].keys()} edge_init_done = {key: self.edges[fn][key].get('done') for key in self.edges[fn].keys()} edge_init_todo = {key: self.edges[fn][key].get('todo') for key in self.edges[fn].keys()} return edge_init_data, edge_init_done, edge_init_todo
<SYSTEM_TASK:> Heuristically determines which tile should be recalculated based on <END_TASK> <USER_TASK:> Description: def find_best_candidate(self, elev_source_files=None): """ Heuristically determines which tile should be recalculated based on updated edge information. Presently does not check if that tile is locked, which could lead to a parallel thread closing while one thread continues to process tiles. """
self.fill_percent_done() i_b = np.argmax(self.percent_done.values()) if self.percent_done.values()[i_b] <= 0: return None # check for ties I = np.array(self.percent_done.values()) == \ self.percent_done.values()[i_b] if I.sum() == 1: pass # no ties else: I2 = np.argmax(np.array(self.max_elev.values())[I]) i_b = I.nonzero()[0][I2] # Make sure the apples are still apples assert(np.array(self.max_elev.keys())[I][I2] == np.array(self.percent_done.keys())[I][I2]) if elev_source_files is not None: fn = self.percent_done.keys()[i_b] lckfn = _get_lockfile_name(fn) if os.path.exists(lckfn): # another process is working on it # Find a different Candidate i_alt = np.argsort(self.percent_done.values())[::-1] for i in i_alt: fn = self.percent_done.keys()[i] lckfn = _get_lockfile_name(fn) if not os.path.exists(lckfn): break # Get and return the index i_b = elev_source_files.index(fn) return i_b
<SYSTEM_TASK:> Processes the hillshading <END_TASK> <USER_TASK:> Description: def process_command(self, command, save_name='custom', index=None): """ Processes the hillshading Parameters ----------- index : int/slice (optional) Default: None - process all tiles in source directory. Otherwise, will only process the index/indices of the files as listed in self.elev_source_files """
if index is not None: elev_source_files = [self.elev_source_files[index]] else: elev_source_files = self.elev_source_files save_root = os.path.join(self.save_path, save_name) if not os.path.exists(save_root): os.makedirs(save_root) for i, esfile in enumerate(elev_source_files): try: status = 'Success' # optimism # Check if file is locked lckfn = _get_lockfile_name(esfile) coords = parse_fn(esfile) fn = get_fn_from_coords(coords, save_name) fn = os.path.join(save_root, fn) if os.path.exists(lckfn): # another process is working on it print fn, 'is locked' status = 'locked' elif os.path.exists(fn): print fn, 'already exists' status = 'cached' else: # lock this tile print fn, '... calculating ', save_name fid = file(lckfn, 'w') fid.close() # Calculate the custom process for this tile status = command(esfile, fn) os.remove(lckfn) if index is None: self.custom_status[i] = status else: self.custom_status[index] = status except: lckfn = _get_lockfile_name(esfile) try: os.remove(lckfn) except: pass traceback.print_exc() print traceback.format_exc() if index is None: self.custom_status[i] = "Error " + traceback.format_exc() else: self.custom_status[index] = "Error " + traceback.format_exc()
<SYSTEM_TASK:> Given a list of file paths for elevation files, this function will rename <END_TASK> <USER_TASK:> Description: def rename_files(files, name=None): """ Given a list of file paths for elevation files, this function will rename those files to the format required by the pyDEM package. This assumes a .tif extension. Parameters ----------- files : list A list of strings of the paths to the elevation files that will be renamed name : str (optional) Default = None. A suffix to the filename. For example <filename>_suffix.tif Notes ------ The files are renamed in the same directory as the original file locations """
for fil in files: elev_file = GdalReader(file_name=fil) elev, = elev_file.raster_layers fn = get_fn(elev, name) del elev_file del elev fn = os.path.join(os.path.split(fil)[0], fn) os.rename(fil, fn) print "Renamed", fil, "to", fn
<SYSTEM_TASK:> This parses the file name and returns the coordinates of the tile <END_TASK> <USER_TASK:> Description: def parse_fn(fn): """ This parses the file name and returns the coordinates of the tile Parameters ----------- fn : str Filename of a GEOTIFF Returns -------- coords = [LLC.lat, LLC.lon, URC.lat, URC.lon] """
try: parts = os.path.splitext(os.path.split(fn)[-1])[0].replace('o', '.')\ .split('_')[:2] coords = [float(crds) for crds in re.split('[NSEW]', parts[0] + parts[1])[1:]] except: coords = [np.nan] * 4 return coords
<SYSTEM_TASK:> Determines the standard filename for a given GeoTIFF Layer. <END_TASK> <USER_TASK:> Description: def get_fn(elev, name=None): """ Determines the standard filename for a given GeoTIFF Layer. Parameters ----------- elev : GdalReader.raster_layer A raster layer from the GdalReader object. name : str (optional) An optional suffix to the filename. Returns ------- fn : str The standard <filename>_<name>.tif with suffix (if supplied) """
gcs = elev.grid_coordinates coords = [gcs.LLC.lat, gcs.LLC.lon, gcs.URC.lat, gcs.URC.lon] return get_fn_from_coords(coords, name)
<SYSTEM_TASK:> Given a set of coordinates, returns the standard filename. <END_TASK> <USER_TASK:> Description: def get_fn_from_coords(coords, name=None): """ Given a set of coordinates, returns the standard filename. Parameters ----------- coords : list [LLC.lat, LLC.lon, URC.lat, URC.lon] name : str (optional) An optional suffix to the filename. Returns ------- fn : str The standard <filename>_<name>.tif with suffix (if supplied) """
NS1 = ["S", "N"][coords[0] > 0] EW1 = ["W", "E"][coords[1] > 0] NS2 = ["S", "N"][coords[2] > 0] EW2 = ["W", "E"][coords[3] > 0] new_name = "%s%0.3g%s%0.3g_%s%0.3g%s%0.3g" % \ (NS1, coords[0], EW1, coords[1], NS2, coords[2], EW2, coords[3]) if name is not None: new_name += '_' + name return new_name.replace('.', 'o') + '.tif'
<SYSTEM_TASK:> Extracts the change in x and y coordinates from the geotiff file. Presently <END_TASK> <USER_TASK:> Description: def mk_dx_dy_from_geotif_layer(geotif): """ Extracts the change in x and y coordinates from the geotiff file. Presently only supports WGS-84 files. """
ELLIPSOID_MAP = {'WGS84': 'WGS-84'} ellipsoid = ELLIPSOID_MAP[geotif.grid_coordinates.wkt] d = distance(ellipsoid=ellipsoid) dx = geotif.grid_coordinates.x_axis dy = geotif.grid_coordinates.y_axis dX = np.zeros((dy.shape[0]-1)) for j in xrange(len(dX)): dX[j] = d.measure((dy[j+1], dx[1]), (dy[j+1], dx[0])) * 1000 # km2m dY = np.zeros((dy.shape[0]-1)) for i in xrange(len(dY)): dY[i] = d.measure((dy[i], 0), (dy[i+1], 0)) * 1000 # km2m return dX, dY
<SYSTEM_TASK:> Creates a new geotiff file objects using the WGS84 coordinate system, saves <END_TASK> <USER_TASK:> Description: def mk_geotiff_obj(raster, fn, bands=1, gdal_data_type=gdal.GDT_Float32, lat=[46, 45], lon=[-73, -72]): """ Creates a new geotiff file objects using the WGS84 coordinate system, saves it to disk, and returns a handle to the python file object and driver Parameters ------------ raster : array Numpy array of the raster data to be added to the object fn : str Name of the geotiff file bands : int (optional) See :py:func:`gdal.GetDriverByName('Gtiff').Create gdal_data : gdal.GDT_<type> Gdal data type (see gdal.GDT_...) lat : list northern lat, southern lat lon : list [western lon, eastern lon] """
NNi, NNj = raster.shape driver = gdal.GetDriverByName('GTiff') obj = driver.Create(fn, NNj, NNi, bands, gdal_data_type) pixel_height = -np.abs(lat[0] - lat[1]) / (NNi - 1.0) pixel_width = np.abs(lon[0] - lon[1]) / (NNj - 1.0) obj.SetGeoTransform([lon[0], pixel_width, 0, lat[0], 0, pixel_height]) srs = osr.SpatialReference() srs.SetWellKnownGeogCS('WGS84') obj.SetProjection(srs.ExportToWkt()) obj.GetRasterBand(1).WriteArray(raster) return obj, driver
<SYSTEM_TASK:> Sorts array "a" by columns i <END_TASK> <USER_TASK:> Description: def sortrows(a, i=0, index_out=False, recurse=True): """ Sorts array "a" by columns i Parameters ------------ a : np.ndarray array to be sorted i : int (optional) column to be sorted by, taken as 0 by default index_out : bool (optional) return the index I such that a(I) = sortrows(a,i). Default = False recurse : bool (optional) recursively sort by each of the columns. i.e. once column i is sort, we sort the smallest column number etc. True by default. Returns -------- a : np.ndarray The array 'a' sorted in descending order by column i I : np.ndarray (optional) The index such that a[I, :] = sortrows(a, i). Only return if index_out = True Examples --------- >>> a = array([[1,2],[3,1],[2,3]]) >>> b = sortrows(a,0) >>> b array([[1, 2], [2, 3], [3, 1]]) c, I = sortrows(a,1,True) >>> c array([[3, 1], [1, 2], [2, 3]]) >>> I array([1, 0, 2]) >>> a[I,:] - c array([[0, 0], [0, 0], [0, 0]]) """
I = np.argsort(a[:, i]) a = a[I, :] # We recursively call sortrows to make sure it is sorted best by every # column if recurse & (len(a[0]) > i + 1): for b in np.unique(a[:, i]): ids = a[:, i] == b colids = range(i) + range(i+1, len(a[0])) a[np.ix_(ids, colids)], I2 = sortrows(a[np.ix_(ids, colids)], 0, True, True) I[ids] = I[np.nonzero(ids)[0][I2]] if index_out: return a, I else: return a
<SYSTEM_TASK:> Get flattened indices for the border of the region I. <END_TASK> <USER_TASK:> Description: def get_border_index(I, shape, size): """ Get flattened indices for the border of the region I. Parameters ---------- I : np.ndarray(dtype=int) indices in the flattened region. size : int region size (technically computable from shape argument) shape : tuple(int, int) region shape Returns ------- J : np.ndarray(dtype=int) indices orthogonally and diagonally bordering I """
J = get_adjacent_index(I, shape, size) # instead of setdiff? # border = np.zeros(size) # border[J] = 1 # border[I] = 0 # J, = np.where(border) return np.setdiff1d(J, I)
<SYSTEM_TASK:> Get border of the region as a boolean array mask. <END_TASK> <USER_TASK:> Description: def get_border_mask(region): """ Get border of the region as a boolean array mask. Parameters ---------- region : np.ndarray(shape=(m, n), dtype=bool) mask of the region Returns ------- border : np.ndarray(shape=(m, n), dtype=bool) mask of the region border (not including region) """
# common special case (for efficiency) internal = region[1:-1, 1:-1] if internal.all() and internal.any(): return ~region I, = np.where(region.ravel()) J = get_adjacent_index(I, region.shape, region.size) border = np.zeros(region.size, dtype='bool') border[J] = 1 border[I] = 0 border = border.reshape(region.shape) return border
<SYSTEM_TASK:> Compute within-region distances from the src pixels. <END_TASK> <USER_TASK:> Description: def get_distance(region, src): """ Compute within-region distances from the src pixels. Parameters ---------- region : np.ndarray(shape=(m, n), dtype=bool) mask of the region src : np.ndarray(shape=(m, n), dtype=bool) mask of the source pixels to compute distances from. Returns ------- d : np.ndarray(shape=(m, n), dtype=float) approximate within-region distance from the nearest src pixel; (distances outside of the region are arbitrary). """
dmax = float(region.size) d = np.full(region.shape, dmax) d[src] = 0 for n in range(region.size): d_orth = minimum_filter(d, footprint=_ORTH2) + 1 d_diag = minimum_filter(d, (3, 3)) + _SQRT2 d_adj = np.minimum(d_orth[region], d_diag[region]) d[region] = np.minimum(d_adj, d[region]) if (d[region] < dmax).all(): break return d
<SYSTEM_TASK:> Grow a slice object by 1 in each direction without overreaching the list. <END_TASK> <USER_TASK:> Description: def grow_slice(slc, size): """ Grow a slice object by 1 in each direction without overreaching the list. Parameters ---------- slc: slice slice object to grow size: int list length Returns ------- slc: slice extended slice """
return slice(max(0, slc.start-1), min(size, slc.stop+1))
<SYSTEM_TASK:> Check if a 2d object is on the edge of the array. <END_TASK> <USER_TASK:> Description: def is_edge(obj, shape): """ Check if a 2d object is on the edge of the array. Parameters ---------- obj : tuple(slice, slice) Pair of slices (e.g. from scipy.ndimage.measurements.find_objects) shape : tuple(int, int) Array shape. Returns ------- b : boolean True if the object touches any edge of the array, else False. """
if obj[0].start == 0: return True if obj[1].start == 0: return True if obj[0].stop == shape[0]: return True if obj[1].stop == shape[1]: return True return False
<SYSTEM_TASK:> Pops a chunk of the given max size. <END_TASK> <USER_TASK:> Description: def pop_chunk(self, chunk_max_size): """Pops a chunk of the given max size. Optimized to avoid too much string copies. Args: chunk_max_size (int): max size of the returned chunk. Returns: string (bytes) with a size <= chunk_max_size. """
if self._total_length < chunk_max_size: # fastpath (the whole queue fit in a single chunk) res = self._tobytes() self.clear() return res first_iteration = True while True: try: data = self._deque.popleft() data_length = len(data) self._total_length -= data_length if first_iteration: # first iteration if data_length == chunk_max_size: # we are lucky ! return data elif data_length > chunk_max_size: # we have enough data at first iteration # => fast path optimization view = self._get_pointer_or_memoryview(data, data_length) self.appendleft(view[chunk_max_size:]) return view[:chunk_max_size] else: # no single iteration fast path optimization :-( # let's use a WriteBuffer to build the result chunk chunk_write_buffer = WriteBuffer() else: # not first iteration if chunk_write_buffer._total_length + data_length \ > chunk_max_size: view = self._get_pointer_or_memoryview(data, data_length) limit = chunk_max_size - \ chunk_write_buffer._total_length - data_length self.appendleft(view[limit:]) data = view[:limit] chunk_write_buffer.append(data) if chunk_write_buffer._total_length >= chunk_max_size: break except IndexError: # the buffer is empty (so no memoryview inside) self._has_view = False break first_iteration = False return chunk_write_buffer._tobytes()
<SYSTEM_TASK:> Return an absolute version of this path. This function works <END_TASK> <USER_TASK:> Description: def absolute(self): """Return an absolute version of this path. This function works even if the path doesn't point to anything. No normalization is done, i.e. all '.' and '..' will be kept along. Use resolve() to get the canonical path to a file. """
# XXX untested yet! if self.is_absolute(): return self # FIXME this must defer to the specific flavour (and, under Windows, # use nt._getfullpathname()) obj = self._from_parts([os.getcwd()] + self._parts, init=False) obj._init(template=self) return obj
<SYSTEM_TASK:> Whether this path is a symbolic link. <END_TASK> <USER_TASK:> Description: def is_symlink(self): """ Whether this path is a symbolic link. """
try: return S_ISLNK(self.lstat().st_mode) except OSError as e: if e.errno != ENOENT: raise # Path doesn't exist return False
<SYSTEM_TASK:> Whether this path is a block device. <END_TASK> <USER_TASK:> Description: def is_block_device(self): """ Whether this path is a block device. """
try: return S_ISBLK(self.stat().st_mode) except OSError as e: if e.errno != ENOENT: raise # Path doesn't exist or is a broken symlink # (see https://bitbucket.org/pitrou/pathlib/issue/12/) return False
<SYSTEM_TASK:> Whether this path is a character device. <END_TASK> <USER_TASK:> Description: def is_char_device(self): """ Whether this path is a character device. """
try: return S_ISCHR(self.stat().st_mode) except OSError as e: if e.errno != ENOENT: raise # Path doesn't exist or is a broken symlink # (see https://bitbucket.org/pitrou/pathlib/issue/12/) return False
<SYSTEM_TASK:> returns True if the GC's overlap. <END_TASK> <USER_TASK:> Description: def intersects(self, other_grid_coordinates): """ returns True if the GC's overlap. """
ogc = other_grid_coordinates # alias # for explanation: http://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other # Note the flipped y-coord in this coord system. ax1, ay1, ax2, ay2 = self.ULC.lon, self.ULC.lat, self.LRC.lon, self.LRC.lat bx1, by1, bx2, by2 = ogc.ULC.lon, ogc.ULC.lat, ogc.LRC.lon, ogc.LRC.lat if ((ax1 <= bx2) and (ax2 >= bx1) and (ay1 >= by2) and (ay2 <= by1)): return True else: return False
<SYSTEM_TASK:> Use pixel centers when appropriate. <END_TASK> <USER_TASK:> Description: def raster_to_projection_coords(self, pixel_x, pixel_y): """ Use pixel centers when appropriate. See documentation for the GDAL function GetGeoTransform for details. """
h_px_py = np.array([1, pixel_x, pixel_y]) gt = np.array([[1, 0, 0], self.geotransform[0:3], self.geotransform[3:6]]) arr = np.inner(gt, h_px_py) return arr[2], arr[1]
<SYSTEM_TASK:> Returns pixel centers. <END_TASK> <USER_TASK:> Description: def projection_to_raster_coords(self, lat, lon): """ Returns pixel centers. See documentation for the GDAL function GetGeoTransform for details. """
r_px_py = np.array([1, lon, lat]) tg = inv(np.array([[1, 0, 0], self.geotransform[0:3], self.geotransform[3:6]])) return np.inner(tg, r_px_py)[1:]
<SYSTEM_TASK:> Reprojects data in this layer to match that in the GridCoordinates <END_TASK> <USER_TASK:> Description: def reproject_to_grid_coordinates(self, grid_coordinates, interp=gdalconst.GRA_NearestNeighbour): """ Reprojects data in this layer to match that in the GridCoordinates object. """
source_dataset = self.grid_coordinates._as_gdal_dataset() dest_dataset = grid_coordinates._as_gdal_dataset() rb = source_dataset.GetRasterBand(1) rb.SetNoDataValue(NO_DATA_VALUE) rb.WriteArray(np.ma.filled(self.raster_data, NO_DATA_VALUE)) gdal.ReprojectImage(source_dataset, dest_dataset, source_dataset.GetProjection(), dest_dataset.GetProjection(), interp) dest_layer = self.clone_traits() dest_layer.grid_coordinates = grid_coordinates rb = dest_dataset.GetRasterBand(1) dest_layer.raster_data = np.ma.masked_values(rb.ReadAsArray(), NO_DATA_VALUE) return dest_layer
<SYSTEM_TASK:> Replace masked-out elements in an array using an iterative image inpainting algorithm. <END_TASK> <USER_TASK:> Description: def inpaint(self): """ Replace masked-out elements in an array using an iterative image inpainting algorithm. """
import inpaint filled = inpaint.replace_nans(np.ma.filled(self.raster_data, np.NAN).astype(np.float32), 3, 0.01, 2) self.raster_data = np.ma.masked_invalid(filled)
<SYSTEM_TASK:> Gets a connected Client object. <END_TASK> <USER_TASK:> Description: def get_connected_client(self): """Gets a connected Client object. If max_size is reached, this method will block until a new client object is available. Returns: A Future object with connected Client instance as a result (or ClientError if there was a connection problem) """
if self.__sem is not None: yield self.__sem.acquire() client = None newly_created, client = self._get_client_from_pool_or_make_it() if newly_created: res = yield client.connect() if not res: LOG.warning("can't connect to %s", client.title) raise tornado.gen.Return( ClientError("can't connect to %s" % client.title)) raise tornado.gen.Return(client)
<SYSTEM_TASK:> Returns a ContextManagerFuture to be yielded in a with statement. <END_TASK> <USER_TASK:> Description: def connected_client(self): """Returns a ContextManagerFuture to be yielded in a with statement. Returns: A ContextManagerFuture object. Examples: >>> with (yield pool.connected_client()) as client: # client is a connected tornadis.Client instance # it will be automatically released to the pool thanks to # the "with" keyword reply = yield client.call("PING") """
future = self.get_connected_client() cb = functools.partial(self._connected_client_release_cb, future) return ContextManagerFuture(future, cb)
<SYSTEM_TASK:> Releases a client object to the pool. <END_TASK> <USER_TASK:> Description: def release_client(self, client): """Releases a client object to the pool. Args: client: Client object. """
if isinstance(client, Client): if not self._is_expired_client(client): LOG.debug('Client is not expired. Adding back to pool') self.__pool.append(client) elif client.is_connected(): LOG.debug('Client is expired and connected. Disconnecting') client.disconnect() if self.__sem is not None: self.__sem.release()
<SYSTEM_TASK:> Disconnects all pooled client objects. <END_TASK> <USER_TASK:> Description: def destroy(self): """Disconnects all pooled client objects."""
while True: try: client = self.__pool.popleft() if isinstance(client, Client): client.disconnect() except IndexError: break
<SYSTEM_TASK:> Selects the parameters of a config section schema. <END_TASK> <USER_TASK:> Description: def select_params_from_section_schema(section_schema, param_class=Param, deep=False): """Selects the parameters of a config section schema. :param section_schema: Configuration file section schema to use. :return: Generator of params """
# pylint: disable=invalid-name for name, value in inspect.getmembers(section_schema): if name.startswith("__") or value is None: continue # pragma: no cover elif inspect.isclass(value) and deep: # -- CASE: class => SELF-CALL (recursively). # pylint: disable= bad-continuation cls = value for name, value in select_params_from_section_schema(cls, param_class=param_class, deep=True): yield (name, value) elif isinstance(value, param_class): yield (name, value)