text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Create pool based on RaidGroupParameter. <END_TASK> <USER_TASK:> Description: def create_pool(self, name, raid_groups, description=None, **kwargs): """Create pool based on RaidGroupParameter. :param name: pool name :param raid_groups: a list of *RaidGroupParameter* :param description: pool description :param alert_threshold: Threshold at which the system will generate alerts about the free space in the pool, specified as a percentage. :param is_harvest_enabled: True - Enable pool harvesting for the pool. False - Disable pool harvesting for the pool. :param is_snap_harvest_enabled: True - Enable snapshot harvesting for the pool. False - Disable snapshot harvesting for the pool. :param pool_harvest_high_threshold: Pool used space high threshold at which the system will automatically starts to delete snapshots in the pool :param pool_harvest_low_threshold: Pool used space low threshold under which the system will automatically stop deletion of snapshots in the pool :param snap_harvest_high_threshold: Snapshot used space high threshold at which the system automatically starts to delete snapshots in the pool :param snap_harvest_low_threshold: Snapshot used space low threshold below which the system will stop automatically deleting snapshots in the pool :param is_fast_cache_enabled: True - FAST Cache will be enabled for this pool. False - FAST Cache will be disabled for this pool. :param is_fastvp_enabled: True - Enable scheduled data relocations for the pool. False - Disable scheduled data relocations for the pool. :param pool_type: StoragePoolTypeEnum.TRADITIONAL - Create traditional pool. StoragePoolTypeEnum.DYNAMIC - Create dynamic pool. (default) """
return UnityPool.create(self._cli, name=name, description=description, raid_groups=raid_groups, **kwargs)
<SYSTEM_TASK:> Returns ports list can be used by File <END_TASK> <USER_TASK:> Description: def get_file_port(self): """Returns ports list can be used by File File ports includes ethernet ports and link aggregation ports. """
eths = self.get_ethernet_port(bond=False) las = self.get_link_aggregation() return eths + las
<SYSTEM_TASK:> Return a Pandas Series of every file for chosen SuperMAG data <END_TASK> <USER_TASK:> Description: def list_files(tag='', sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen SuperMAG data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are 'indices', 'all', 'stations', and '' (for just magnetometer measurements). (default='') sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files """
if format_str is None and data_path is not None: file_base = 'supermag_magnetometer' if tag == "indices" or tag == "all": file_base += '_all' # Can't just download indices if tag == "indices": psplit = path.split(data_path[:-1]) data_path = path.join(psplit[0], "all", "") if tag == "stations": min_fmt = '_'.join([file_base, '{year:4d}.???']) doff = pds.DateOffset(years=1) else: min_fmt = '_'.join([file_base, '{year:4d}{month:02d}{day:02d}.???']) doff = pds.DateOffset(days=1) files = pysat.Files.from_os(data_path=data_path, format_str=min_fmt) # station files are once per year but we need to # create the illusion there is a file per year if not files.empty: files = files.sort_index() if tag == "stations": orig_files = files.copy() new_files = [] # Assigns the validity of each station file to be 1 year for orig in orig_files.iteritems(): files.ix[orig[0] + doff - pds.DateOffset(days=1)] = orig[1] files = files.sort_index() new_files.append(files.ix[orig[0]: orig[0] + doff - \ pds.DateOffset(days=1)].asfreq('D', method='pad')) files = pds.concat(new_files) files = files.dropna() files = files.sort_index() # add the date to the filename files = files + '_' + files.index.strftime('%Y-%m-%d') return files elif format_str is None: estr = 'A directory must be passed to the loading routine for SuperMAG' raise ValueError (estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str)
<SYSTEM_TASK:> Load data from a comma separated SuperMAG file <END_TASK> <USER_TASK:> Description: def load_csv_data(fname, tag): """Load data from a comma separated SuperMAG file Parameters ------------ fname : (str) CSV SuperMAG file name tag : (str) Denotes type of file to load. Accepted types are 'indices', 'all', 'stations', and '' (for just magnetometer measurements). Returns -------- data : (pandas.DataFrame) Pandas DataFrame """
import re if tag == "stations": # Because there may be multiple operators, the default pandas reader # cannot be used. ddict = dict() dkeys = list() date_list = list() # Open and read the file with open(fname, "r") as fopen: dtime = pds.datetime.strptime(fname.split("_")[-1].split(".")[0], "%Y") for fline in fopen.readlines(): sline = [ll for ll in re.split(r'[,\n]+', fline) if len(ll) > 0] if len(ddict.items()) == 0: for kk in sline: kk = re.sub("-", "_", kk) ddict[kk] = list() dkeys.append(kk) else: date_list.append(dtime) for i,ll in enumerate(sline): if i >= 1 and i <= 4: ddict[dkeys[i]].append(float(ll)) elif i == 6: ddict[dkeys[i]].append(int(ll)) elif i < len(dkeys): ddict[dkeys[i]].append(ll) else: ddict[dkeys[-1]][-1] += " {:s}".format(ll) # Create a data frame for this file data = pds.DataFrame(ddict, index=date_list, columns=ddict.keys()) else: # Define the date parser def parse_smag_date(dd): return pysat.datetime.strptime(dd, "%Y-%m-%d %H:%M:%S") # Load the file into a data frame data = pds.read_csv(fname, parse_dates={'datetime':[0]}, date_parser=parse_smag_date, index_col='datetime') return data
<SYSTEM_TASK:> Format the list of baseline information from the loaded files into a <END_TASK> <USER_TASK:> Description: def format_baseline_list(baseline_list): """Format the list of baseline information from the loaded files into a cohesive, informative string Parameters ------------ baseline_list : (list) List of strings specifying the baseline information for each SuperMAG file Returns --------- base_string : (str) Single string containing the relevent data """
uniq_base = dict() uniq_delta = dict() for bline in baseline_list: bsplit = bline.split() bdate = " ".join(bsplit[2:]) if bsplit[0] not in uniq_base.keys(): uniq_base[bsplit[0]] = "" if bsplit[1] not in uniq_delta.keys(): uniq_delta[bsplit[1]] = "" uniq_base[bsplit[0]] += "{:s}, ".format(bdate) uniq_delta[bsplit[1]] += "{:s}, ".format(bdate) if len(uniq_base.items()) == 1: base_string = "Baseline {:s}".format(list(uniq_base.keys())[0]) else: base_string = "Baseline " for i,kk in enumerate(uniq_base.keys()): if i == 1: base_string += "{:s}: {:s}".format(kk, uniq_base[kk][:-2]) else: base_string += " {:s}: {:s}".format(kk, uniq_base[kk][:-2]) else: base_string += "unknown" if len(uniq_delta.items()) == 1: base_string += "\nDelta {:s}".format(list(uniq_delta.keys())[0]) else: base_string += "\nDelta " for i,kk in enumerate(uniq_delta.keys()): if i == 1: base_string += "{:s}: {:s}".format(kk, uniq_delta[kk][:-2]) else: base_string += " {:s}: {:s}".format(kk, uniq_delta[kk][:-2]) else: base_string += "unknown" return base_string
<SYSTEM_TASK:> Append data from multiple files for the same time period <END_TASK> <USER_TASK:> Description: def append_ascii_data(file_strings, tag): """ Append data from multiple files for the same time period Parameters ----------- file_strings : array-like Lists or arrays of strings, where each string contains one file of data tag : string String denoting the type of file to load, accepted values are 'indices', 'all', 'stations', and None (for only magnetometer data) Returns ------- out_string : string String with all data, ready for output to a file """
import re # Start with data from the first list element out_lines = file_strings[0].split('\n') iparam = -1 # Index for the parameter line ihead = -1 # Index for the last header line idates = list() # Indices for the date lines date_list = list() # List of dates num_stations = list() # Number of stations for each date line ind_num = 2 if tag in ['all', 'indices', ''] else 0 # ind_num = 2 if tag == '' else ind_num # Find the index information for the data for i,line in enumerate(out_lines): if line == "Selected parameters:": iparam = i + 1 elif line.count("=") == len(line) and len(line) > 2: ihead = i break # Find the time indices and number of stations for each date line i = ihead + 1 while i < len(out_lines) - 1: idates.append(i) lsplit = re.split('\t+', out_lines[i]) dtime = pds.datetime.strptime(" ".join(lsplit[0:-1]), "%Y %m %d %H %M %S") date_list.append(dtime) num_stations.append(int(lsplit[-1])) i += num_stations[-1] + 1 + ind_num idates = np.array(idates) # Initialize a list of station names station_names = list() # Cycle through each additional set of file strings for ff in range(len(file_strings)-1): file_lines = file_strings[ff+1].split('\n') # Find the index information for the data head = True snum = 0 for i,line in enumerate(file_lines): if head: if line.count("=") == len(line) and len(line) > 2: head = False elif len(line) > 0: lsplit = re.split('\t+', line) if snum == 0: dtime = pds.datetime.strptime(" ".join(lsplit[0:-1]), "%Y %m %d %H %M %S") try: idate = date_list.index(dtime) except: # SuperMAG outputs date lines regardless of the # number of stations. These files shouldn't be # appended together. raise ValueError("Unexpected date ", dtime) snum = int(lsplit[-1]) onum = num_stations[idate] inum = ind_num # Adjust reference data for new number of station lines idates[idate+1:] += snum num_stations[idate] += snum # Adjust date line for new number of station lines oline = "{:s}\t{:d}".format( \ dtime.strftime("%Y\t%m\t%d\t%H\t%M\t%S"), num_stations[idate]) out_lines[idates[idate]] = oline else: if inum > 0: inum -= 1 else: # Insert the station line to the end of the date section onum += 1 snum -= 1 out_lines.insert(idates[idate]+onum, line) # Save the station name to update the parameter line if not lsplit[0] in station_names: station_names.append(lsplit[0]) # Update the parameter line out_lines[iparam] += "," + ",".join(station_names) # Join the output lines into a single string out_string = "\n".join(out_lines) return out_string
<SYSTEM_TASK:> Append data from multiple csv files for the same time period <END_TASK> <USER_TASK:> Description: def append_csv_data(file_strings): """ Append data from multiple csv files for the same time period Parameters ----------- file_strings : array-like Lists or arrays of strings, where each string contains one file of data Returns ------- out_string : string String with all data, ready for output to a file """
# Start with data from the first list element out_lines = list() head_line = None # Cycle through the lists of file strings, creating a list of line strings for fstrings in file_strings: file_lines = fstrings.split('\n') # Remove and save the header line head_line = file_lines.pop(0) # Save the data lines out_lines.extend(file_lines) # Sort the output lines by date and station (first two columns) in place out_lines.sort() # Remove all zero-length lines from front, add one to back, and add header i = 0 while len(out_lines[i]) == 0: out_lines.pop(i) out_lines.insert(0, head_line) out_lines.append('') # Join the output lines into a single string out_string = "\n".join(out_lines) return out_string
<SYSTEM_TASK:> Produce a fake list of files spanning a year <END_TASK> <USER_TASK:> Description: def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Produce a fake list of files spanning a year"""
index = pds.date_range(pysat.datetime(2017,12,1), pysat.datetime(2018,12,1)) # file list is effectively just the date in string format - '%D' works only in Mac. '%x' workins in both Windows and Mac names = [ data_path+date.strftime('%Y-%m-%d')+'.nofile' for date in index] return pysat.Series(names, index=index)
<SYSTEM_TASK:> Enable console logging. <END_TASK> <USER_TASK:> Description: def enable_log(level=logging.DEBUG): """Enable console logging. This is a utils method for try run with storops. :param level: log level, default to DEBUG """
logger = logging.getLogger(__name__) logger.setLevel(level) if not logger.handlers: logger.info('enabling logging to console.') logger.addHandler(logging.StreamHandler(sys.stdout))
<SYSTEM_TASK:> round the number to the multiple of 60 <END_TASK> <USER_TASK:> Description: def round_60(value): """ round the number to the multiple of 60 Say a random value is represented by: 60 * n + r n is an integer and r is an integer between 0 and 60. if r < 30, the result is 60 * n. otherwise, the result is 60 * (n + 1) The use of this function is that the counter refreshment on VNX is always 1 minute. So the delta time between samples of counters must be the multiple of 60. :param value: the value to be rounded. :return: result """
t = 60 if value is not None: r = value % t if r > t / 2: ret = value + (t - r) else: ret = value - r else: ret = NaN return ret
<SYSTEM_TASK:> calculate the utilization <END_TASK> <USER_TASK:> Description: def utilization(prev, curr, counters): """ calculate the utilization delta_busy = curr.busy - prev.busy delta_idle = curr.idle - prev.idle utilization = delta_busy / (delta_busy + delta_idle) :param prev: previous resource :param curr: current resource :param counters: list of two, busy ticks and idle ticks :return: value, NaN if invalid. """
busy_prop, idle_prop = counters pb = getattr(prev, busy_prop) pi = getattr(prev, idle_prop) cb = getattr(curr, busy_prop) ci = getattr(curr, idle_prop) db = minus(cb, pb) di = minus(ci, pi) return mul(div(db, add(db, di)), 100)
<SYSTEM_TASK:> calculate the delta per second of one counter <END_TASK> <USER_TASK:> Description: def delta_ps(prev, curr, counters): """ calculate the delta per second of one counter formula: (curr - prev) / delta_time :param prev: previous resource :param curr: current resource :param counters: the counter to do delta and per second, one only :return: value, NaN if invalid. """
counter = get_counter(counters) pv = getattr(prev, counter) cv = getattr(curr, counter) return minus(cv, pv)
<SYSTEM_TASK:> calculate the io size based on bandwidth and throughput <END_TASK> <USER_TASK:> Description: def io_size_kb(prev, curr, counters): """ calculate the io size based on bandwidth and throughput formula: average_io_size = bandwidth / throughput :param prev: prev resource, not used :param curr: current resource :param counters: two stats, bandwidth in MB and throughput count :return: value, NaN if invalid """
bw_stats, io_stats = counters size_mb = div(getattr(curr, bw_stats), getattr(curr, io_stats)) return mul(size_mb, 1024)
<SYSTEM_TASK:> Assign all external science instrument methods to Instrument object. <END_TASK> <USER_TASK:> Description: def _assign_funcs(self, by_name=False, inst_module=None): """Assign all external science instrument methods to Instrument object. """
import importlib # set defaults self._list_rtn = self._pass_func self._load_rtn = self._pass_func self._default_rtn = self._pass_func self._clean_rtn = self._pass_func self._init_rtn = self._pass_func self._download_rtn = self._pass_func # default params self.directory_format = None self.file_format = None self.multi_file_day = False self.orbit_info = None if by_name: # look for code with filename name, any errors passed up inst = importlib.import_module(''.join(('.', self.platform, '_', self.name)), package='pysat.instruments') elif inst_module is not None: # user supplied an object with relevant instrument routines inst = inst_module else: # no module or name info, default pass functions assigned return try: self._load_rtn = inst.load self._list_rtn = inst.list_files self._download_rtn = inst.download except AttributeError: estr = 'A load, file_list, and download routine are required for ' raise AttributeError('{:s}every instrument.'.format(estr)) try: self._default_rtn = inst.default except AttributeError: pass try: self._init_rtn = inst.init except AttributeError: pass try: self._clean_rtn = inst.clean except AttributeError: pass # look for instrument default parameters try: self.directory_format = inst.directory_format except AttributeError: pass try: self.multi_file_day = inst.multi_file_day except AttributeError: pass try: self.orbit_info = inst.orbit_info except AttributeError: pass return
<SYSTEM_TASK:> Load data for an instrument on given date or fid, dependng upon input. <END_TASK> <USER_TASK:> Description: def _load_data(self, date=None, fid=None): """ Load data for an instrument on given date or fid, dependng upon input. Parameters ------------ date : (dt.datetime.date object or NoneType) file date fid : (int or NoneType) filename index value Returns -------- data : (pds.DataFrame) pysat data meta : (pysat.Meta) pysat meta data """
if fid is not None: # get filename based off of index value fname = self.files[fid:fid+1] elif date is not None: fname = self.files[date: date+pds.DateOffset(days=1)] else: raise ValueError('Must supply either a date or file id number.') if len(fname) > 0: load_fname = [os.path.join(self.files.data_path, f) for f in fname] data, mdata = self._load_rtn(load_fname, tag=self.tag, sat_id=self.sat_id, **self.kwargs) # ensure units and name are named consistently in new Meta # object as specified by user upon Instrument instantiation mdata.accept_default_labels(self) else: data = DataFrame(None) mdata = _meta.Meta(units_label=self.units_label, name_label=self.name_label, notes_label = self.notes_label, desc_label = self.desc_label, plot_label = self.plot_label, axis_label = self.axis_label, scale_label = self.scale_label, min_label = self.min_label, max_label = self.max_label, fill_label=self.fill_label) output_str = '{platform} {name} {tag} {sat_id}' output_str = output_str.format(platform=self.platform, name=self.name, tag=self.tag, sat_id=self.sat_id) if not data.empty: if not isinstance(data, DataFrame): raise TypeError(' '.join(('Data returned by instrument load', 'routine must be a pandas.DataFrame'))) if not isinstance(mdata, _meta.Meta): raise TypeError('Metadata returned must be a pysat.Meta object') if date is not None: output_str = ' '.join(('Returning', output_str, 'data for', date.strftime('%x'))) else: if len(fname) == 1: # this check was zero output_str = ' '.join(('Returning', output_str, 'data from', fname[0])) else: output_str = ' '.join(('Returning', output_str, 'data from', fname[0], '::', fname[-1])) else: # no data signal output_str = ' '.join(('No', output_str, 'data for', date.strftime('%m/%d/%y'))) # remove extra spaces, if any output_str = " ".join(output_str.split()) print (output_str) return data, mdata
<SYSTEM_TASK:> Support file writing by determiniing data type and other options <END_TASK> <USER_TASK:> Description: def _get_data_info(self, data, file_format): """Support file writing by determiniing data type and other options Parameters ---------- data : pandas object Data to be written file_format : basestring String indicating netCDF3 or netCDF4 Returns ------- data_flag, datetime_flag, old_format """
# get type of data data_type = data.dtype # check if older file_format # if file_format[:7] == 'NETCDF3': if file_format != 'NETCDF4': old_format = True else: old_format = False # check for object type if data_type != np.dtype('O'): # simple data, not an object # no 64bit ints in netCDF3 if (data_type == np.int64) & old_format: data = data.astype(np.int32) data_type = np.int32 if data_type == np.dtype('<M8[ns]'): if not old_format: data_type = np.int64 else: data_type = np.float datetime_flag = True else: datetime_flag = False else: # dealing with a more complicated object # iterate over elements until we hit something that is something, # and not NaN data_type = type(data.iloc[0]) for i in np.arange(len(data)): if len(data.iloc[i]) > 0: data_type = type(data.iloc[i]) if not isinstance(data_type, np.float): break datetime_flag = False return data, data_type, datetime_flag
<SYSTEM_TASK:> Converter for alu hlu map <END_TASK> <USER_TASK:> Description: def to_alu_hlu_map(input_str): """Converter for alu hlu map Convert following input into a alu -> hlu map: Sample input: ``` HLU Number ALU Number ---------- ---------- 0 12 1 23 ``` ALU stands for array LUN number hlu stands for host LUN number :param input_str: raw input from naviseccli :return: alu -> hlu map """
ret = {} if input_str is not None: pattern = re.compile(r'(\d+)\s*(\d+)') for line in input_str.split('\n'): line = line.strip() if len(line) == 0: continue matched = re.search(pattern, line) if matched is None or len(matched.groups()) < 2: continue else: hlu = matched.group(1) alu = matched.group(2) ret[int(alu)] = int(hlu) return ret
<SYSTEM_TASK:> Convert following input to disk indices <END_TASK> <USER_TASK:> Description: def to_disk_indices(value): """Convert following input to disk indices Sample input: ``` Disks: Bus 0 Enclosure 0 Disk 9 Bus 1 Enclosure 0 Disk 12 Bus 1 Enclosure 0 Disk 9 Bus 0 Enclosure 0 Disk 4 Bus 0 Enclosure 0 Disk 7 ``` :param value: disk list :return: disk indices in list """
ret = [] p = re.compile(r'Bus\s+(\w+)\s+Enclosure\s+(\w+)\s+Disk\s+(\w+)') if value is not None: for line in value.split('\n'): line = line.strip() if len(line) == 0: continue matched = re.search(p, line) if matched is None or len(matched.groups()) < 3: continue else: ret.append('{}_{}_{}'.format(*matched.groups())) return ret
<SYSTEM_TASK:> ipv4 cidr prefix to net mask <END_TASK> <USER_TASK:> Description: def ipv4_prefix_to_mask(prefix): """ ipv4 cidr prefix to net mask :param prefix: cidr prefix , rang in (0, 32) :type prefix: int :return: dot separated ipv4 net mask code, eg: 255.255.255.0 :rtype: str """
if prefix > 32 or prefix < 0: raise ValueError("invalid cidr prefix for ipv4") else: mask = ((1 << 32) - 1) ^ ((1 << (32 - prefix)) - 1) eight_ones = 255 # 0b11111111 mask_str = '' for i in range(0, 4): mask_str = str(mask & eight_ones) + mask_str mask = mask >> 8 if i != 3: mask_str = '.' + mask_str return mask_str
<SYSTEM_TASK:> ipv6 cidr prefix to net mask <END_TASK> <USER_TASK:> Description: def ipv6_prefix_to_mask(prefix): """ ipv6 cidr prefix to net mask :param prefix: cidr prefix, rang in (0, 128) :type prefix: int :return: comma separated ipv6 net mask code, eg: ffff:ffff:ffff:ffff:0000:0000:0000:0000 :rtype: str """
if prefix > 128 or prefix < 0: raise ValueError("invalid cidr prefix for ipv6") else: mask = ((1 << 128) - 1) ^ ((1 << (128 - prefix)) - 1) f = 15 # 0xf or 0b1111 hex_mask_str = '' for i in range(0, 32): hex_mask_str = format((mask & f), 'x') + hex_mask_str mask = mask >> 4 if i != 31 and i & 3 == 3: hex_mask_str = ':' + hex_mask_str return hex_mask_str
<SYSTEM_TASK:> expand the LUN to a new size <END_TASK> <USER_TASK:> Description: def expand(self, new_size): """ expand the LUN to a new size :param new_size: new size in bytes. :return: the old size """
ret = self.size_total resp = self.modify(size=new_size) resp.raise_if_err() return ret
<SYSTEM_TASK:> Creates a replication session with a existing lun as destination. <END_TASK> <USER_TASK:> Description: def replicate(self, dst_lun_id, max_time_out_of_sync, replication_name=None, replicate_existing_snaps=None, remote_system=None): """ Creates a replication session with a existing lun as destination. :param dst_lun_id: destination lun id. :param max_time_out_of_sync: maximum time to wait before syncing the source and destination. Value `-1` means the automatic sync is not performed. `0` means it is a sync replication. :param replication_name: replication name. :param replicate_existing_snaps: whether to replicate existing snaps. :param remote_system: `UnityRemoteSystem` object. The remote system to which the replication is being configured. When not specified, it defaults to local system. :return: created replication session. """
return UnityReplicationSession.create( self._cli, self.get_id(), dst_lun_id, max_time_out_of_sync, name=replication_name, replicate_existing_snaps=replicate_existing_snaps, remote_system=remote_system)
<SYSTEM_TASK:> Creates a replication session with destination lun provisioning. <END_TASK> <USER_TASK:> Description: def replicate_with_dst_resource_provisioning(self, max_time_out_of_sync, dst_pool_id, dst_lun_name=None, remote_system=None, replication_name=None, dst_size=None, dst_sp=None, is_dst_thin=None, dst_tiering_policy=None, is_dst_compression=None): """ Creates a replication session with destination lun provisioning. :param max_time_out_of_sync: maximum time to wait before syncing the source and destination. Value `-1` means the automatic sync is not performed. `0` means it is a sync replication. :param dst_pool_id: id of pool to allocate destination lun. :param dst_lun_name: destination lun name. :param remote_system: `UnityRemoteSystem` object. The remote system to which the replication is being configured. When not specified, it defaults to local system. :param replication_name: replication name. :param dst_size: destination lun size. :param dst_sp: `NodeEnum` value. Default storage processor of destination lun. :param is_dst_thin: indicates whether destination lun is thin or not. :param dst_tiering_policy: `TieringPolicyEnum` value. Tiering policy of destination lun. :param is_dst_compression: indicates whether destination lun is compression enabled or not. :return: created replication session. """
dst_size = self.size_total if dst_size is None else dst_size dst_resource = UnityResourceConfig.to_embedded( name=dst_lun_name, pool_id=dst_pool_id, size=dst_size, default_sp=dst_sp, tiering_policy=dst_tiering_policy, is_thin_enabled=is_dst_thin, is_compression_enabled=is_dst_compression) return UnityReplicationSession.create_with_dst_resource_provisioning( self._cli, self.get_id(), dst_resource, max_time_out_of_sync, remote_system=remote_system, name=replication_name)
<SYSTEM_TASK:> Returns the link aggregation object or the ethernet port object. <END_TASK> <USER_TASK:> Description: def get_physical_port(self): """Returns the link aggregation object or the ethernet port object."""
obj = None if self.is_link_aggregation(): obj = UnityLinkAggregation.get(self._cli, self.get_id()) else: obj = UnityEthernetPort.get(self._cli, self.get_id()) return obj
<SYSTEM_TASK:> Constructs an embeded object of `UnityResourceConfig`. <END_TASK> <USER_TASK:> Description: def to_embedded(pool_id=None, is_thin_enabled=None, is_deduplication_enabled=None, is_compression_enabled=None, is_backup_only=None, size=None, tiering_policy=None, request_id=None, src_id=None, name=None, default_sp=None, replication_resource_type=None): """ Constructs an embeded object of `UnityResourceConfig`. :param pool_id: storage pool of the resource. :param is_thin_enabled: is thin type or not. :param is_deduplication_enabled: is deduplication enabled or not. :param is_compression_enabled: is in-line compression (ILC) enabled or not. :param is_backup_only: is backup only or not. :param size: size of the resource. :param tiering_policy: `TieringPolicyEnum` value. Tiering policy for the resource. :param request_id: unique request ID for the configuration. :param src_id: storage resource if it already exists. :param name: name of the storage resource. :param default_sp: `NodeEnum` value. Default storage processor for the resource. :param replication_resource_type: `ReplicationEndpointResourceTypeEnum` value. Replication resource type. :return: """
return {'poolId': pool_id, 'isThinEnabled': is_thin_enabled, 'isDeduplicationEnabled': is_deduplication_enabled, 'isCompressionEnabled': is_compression_enabled, 'isBackupOnly': is_backup_only, 'size': size, 'tieringPolicy': tiering_policy, 'requestId': request_id, 'srcId': src_id, 'name': name, 'defaultSP': default_sp, 'replicationResourceType': replication_resource_type}
<SYSTEM_TASK:> Creates a replication session. <END_TASK> <USER_TASK:> Description: def create(cls, cli, src_resource_id, dst_resource_id, max_time_out_of_sync, name=None, members=None, auto_initiate=None, hourly_snap_replication_policy=None, daily_snap_replication_policy=None, replicate_existing_snaps=None, remote_system=None, src_spa_interface=None, src_spb_interface=None, dst_spa_interface=None, dst_spb_interface=None): """ Creates a replication session. :param cli: the rest cli. :param src_resource_id: id of the replication source, could be lun/fs/cg. :param dst_resource_id: id of the replication destination. :param max_time_out_of_sync: maximum time to wait before syncing the source and destination. Value `-1` means the automatic sync is not performed. `0` means it is a sync replication. :param name: name of the replication. :param members: list of `UnityLunMemberReplication` object. If `src_resource` is cg, `lunMemberReplication` list need to pass in to this parameter as member lun pairing between source and destination cg. :param auto_initiate: indicates whether to perform the first replication sync automatically. True - perform the first replication sync automatically. False - perform the first replication sync manually. :param hourly_snap_replication_policy: `UnitySnapReplicationPolicy` object. The policy for replicating hourly scheduled snaps of the source resource. :param daily_snap_replication_policy: `UnitySnapReplicationPolicy` object. The policy for replicating daily scheduled snaps of the source resource. :param replicate_existing_snaps: indicates whether or not to replicate snapshots already existing on the resource. :param remote_system: `UnityRemoteSystem` object. The remote system of remote replication. :param src_spa_interface: `UnityRemoteInterface` object. The replication interface for source SPA. :param src_spb_interface: `UnityRemoteInterface` object. The replication interface for source SPB. :param dst_spa_interface: `UnityRemoteInterface` object. The replication interface for destination SPA. :param dst_spb_interface: `UnityRemoteInterface` object. The replication interface for destination SPB. :return: the newly created replication session. """
req_body = cli.make_body( srcResourceId=src_resource_id, dstResourceId=dst_resource_id, maxTimeOutOfSync=max_time_out_of_sync, members=members, autoInitiate=auto_initiate, name=name, hourlySnapReplicationPolicy=hourly_snap_replication_policy, dailySnapReplicationPolicy=daily_snap_replication_policy, replicateExistingSnaps=replicate_existing_snaps, remoteSystem=remote_system, srcSPAInterface=src_spa_interface, srcSPBInterface=src_spb_interface, dstSPAInterface=dst_spa_interface, dstSPBInterface=dst_spb_interface) resp = cli.post(cls().resource_class, **req_body) resp.raise_if_err() return cls.get(cli, resp.resource_id)
<SYSTEM_TASK:> Create a replication session along with destination resource <END_TASK> <USER_TASK:> Description: def create_with_dst_resource_provisioning( cls, cli, src_resource_id, dst_resource_config, max_time_out_of_sync, name=None, remote_system=None, src_spa_interface=None, src_spb_interface=None, dst_spa_interface=None, dst_spb_interface=None, dst_resource_element_configs=None, auto_initiate=None, hourly_snap_replication_policy=None, daily_snap_replication_policy=None, replicate_existing_snaps=None): """ Create a replication session along with destination resource provisioning. :param cli: the rest cli. :param src_resource_id: id of the replication source, could be lun/fs/cg. :param dst_resource_config: `UnityResourceConfig` object. The user chosen config for destination resource provisioning. `pool_id` and `size` are required for creation. :param max_time_out_of_sync: maximum time to wait before syncing the source and destination. Value `-1` means the automatic sync is not performed. `0` means it is a sync replication. :param name: name of the replication. :param remote_system: `UnityRemoteSystem` object. The remote system to which the replication is being configured. When not specified, it defaults to local system. :param src_spa_interface: `UnityRemoteInterface` object. The replication interface for source SPA. :param src_spb_interface: `UnityRemoteInterface` object. The replication interface for source SPB. :param dst_spa_interface: `UnityRemoteInterface` object. The replication interface for destination SPA. :param dst_spb_interface: `UnityRemoteInterface` object. The replication interface for destination SPB. :param dst_resource_element_configs: List of `UnityResourceConfig` objects. The user chose config for each of the member element of the destination resource. :param auto_initiate: indicates whether to perform the first replication sync automatically. True - perform the first replication sync automatically. False - perform the first replication sync manually. :param hourly_snap_replication_policy: `UnitySnapReplicationPolicy` object. The policy for replicating hourly scheduled snaps of the source resource. :param daily_snap_replication_policy: `UnitySnapReplicationPolicy` object. The policy for replicating daily scheduled snaps of the source resource. :param replicate_existing_snaps: indicates whether or not to replicate snapshots already existing on the resource. :return: the newly created replication session. """
req_body = cli.make_body( srcResourceId=src_resource_id, dstResourceConfig=dst_resource_config, maxTimeOutOfSync=max_time_out_of_sync, name=name, remoteSystem=remote_system, srcSPAInterface=src_spa_interface, srcSPBInterface=src_spb_interface, dstSPAInterface=dst_spa_interface, dstSPBInterface=dst_spb_interface, dstResourceElementConfigs=dst_resource_element_configs, autoInitiate=auto_initiate, hourlySnapReplicationPolicy=hourly_snap_replication_policy, dailySnapReplicationPolicy=daily_snap_replication_policy, replicateExistingSnaps=replicate_existing_snaps) resp = cli.type_action( cls().resource_class, 'createReplicationSessionWDestResProvisioning', **req_body) resp.raise_if_err() # response is like: # "content": { # "id": { # "id": "42949676351_FNM00150600267_xxxx" # } session_resp = resp.first_content['id'] return cls.get(cli, _id=session_resp['id'])
<SYSTEM_TASK:> Modifies properties of a replication session. <END_TASK> <USER_TASK:> Description: def modify(self, max_time_out_of_sync=None, name=None, hourly_snap_replication_policy=None, daily_snap_replication_policy=None, src_spa_interface=None, src_spb_interface=None, dst_spa_interface=None, dst_spb_interface=None): """ Modifies properties of a replication session. :param max_time_out_of_sync: same as the one in `create` method. :param name: same as the one in `create` method. :param hourly_snap_replication_policy: same as the one in `create` method. :param daily_snap_replication_policy: same as the one in `create` method. :param src_spa_interface: same as the one in `create` method. :param src_spb_interface: same as the one in `create` method. :param dst_spa_interface: same as the one in `create` method. :param dst_spb_interface: same as the one in `create` method. """
req_body = self._cli.make_body( maxTimeOutOfSync=max_time_out_of_sync, name=name, hourlySnapReplicationPolicy=hourly_snap_replication_policy, dailySnapReplicationPolicy=daily_snap_replication_policy, srcSPAInterface=src_spa_interface, srcSPBInterface=src_spb_interface, dstSPAInterface=dst_spa_interface, dstSPBInterface=dst_spb_interface) resp = self.action('modify', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Resumes a replication session. <END_TASK> <USER_TASK:> Description: def resume(self, force_full_copy=None, src_spa_interface=None, src_spb_interface=None, dst_spa_interface=None, dst_spb_interface=None): """ Resumes a replication session. This can be applied on replication session when it's operational status is reported as Failed over, or Paused. :param force_full_copy: needed when replication session goes out of sync due to a fault. True - replicate all data. False - replicate changed data only. :param src_spa_interface: same as the one in `create` method. :param src_spb_interface: same as the one in `create` method. :param dst_spa_interface: same as the one in `create` method. :param dst_spb_interface: same as the one in `create` method. """
req_body = self._cli.make_body(forceFullCopy=force_full_copy, srcSPAInterface=src_spa_interface, srcSPBInterface=src_spb_interface, dstSPAInterface=dst_spa_interface, dstSPBInterface=dst_spb_interface) resp = self.action('resume', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Fails over a replication session. <END_TASK> <USER_TASK:> Description: def failover(self, sync=None, force=None): """ Fails over a replication session. :param sync: True - sync the source and destination resources before failing over the asynchronous replication session or keep them in sync after failing over the synchronous replication session. False - don't sync. :param force: True - skip pre-checks on file system(s) replication sessions of a NAS server when a replication failover is issued from the source NAS server. False - don't skip pre-checks. """
req_body = self._cli.make_body(sync=sync, force=force) resp = self.action('failover', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Fails back a replication session. <END_TASK> <USER_TASK:> Description: def failback(self, force_full_copy=None): """ Fails back a replication session. This can be applied on a replication session that is failed over. Fail back will synchronize the changes done to original destination back to original source site and will restore the original direction of session. :param force_full_copy: indicates whether to sync back all data from the destination SP to the source SP during the failback session. True - Sync back all data. False - Sync back changed data only. """
req_body = self._cli.make_body(forceFullCopy=force_full_copy) resp = self.action('failback', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Prepares data structure for breaking data into orbits. Not intended <END_TASK> <USER_TASK:> Description: def _calcOrbits(self): """Prepares data structure for breaking data into orbits. Not intended for end user."""
# if the breaks between orbit have not been defined, define them # also, store the data so that grabbing different orbits does not # require reloads of whole dataset if len(self._orbit_breaks) == 0: # determine orbit breaks self._detBreaks() # store a copy of data self._fullDayData = self.sat.data.copy() # set current orbit counter to zero (default) self._current = 0
<SYSTEM_TASK:> Determine where breaks in a polar orbiting satellite orbit occur. <END_TASK> <USER_TASK:> Description: def _polarBreaks(self): """Determine where breaks in a polar orbiting satellite orbit occur. Looks for sign changes in latitude (magnetic or geographic) as well as breaks in UT. """
if self.orbit_index is None: raise ValueError('Orbit properties must be defined at ' + 'pysat.Instrument object instantiation.' + 'See Instrument docs.') else: try: self.sat[self.orbit_index] except ValueError: raise ValueError('Provided orbit index does not appear to ' + 'exist in loaded data') # determine where orbit index goes from positive to negative pos = (self.sat[self.orbit_index] >= 0) npos = -pos change = (pos.values[:-1] & npos.values[1:]) | (npos.values[:-1] & pos.values[1:]) ind, = np.where(change) ind += 1 ut_diff = Series(self.sat.data.index).diff() ut_ind, = np.where(ut_diff / self.orbit_period > 0.95) if len(ut_ind) > 0: ind = np.hstack((ind, ut_ind)) ind = np.sort(ind) ind = np.unique(ind) # print 'Time Gap' # create orbitbreak index, ensure first element is always 0 if ind[0] != 0: ind = np.hstack((np.array([0]), ind)) # number of orbits num_orbits = len(ind) # set index of orbit breaks self._orbit_breaks = ind # set number of orbits for the day self.num = num_orbits
<SYSTEM_TASK:> Determine where orbital breaks in a dataset with orbit numbers occur. <END_TASK> <USER_TASK:> Description: def _orbitNumberBreaks(self): """Determine where orbital breaks in a dataset with orbit numbers occur. Looks for changes in unique values. """
if self.orbit_index is None: raise ValueError('Orbit properties must be defined at ' + 'pysat.Instrument object instantiation.' + 'See Instrument docs.') else: try: self.sat[self.orbit_index] except ValueError: raise ValueError('Provided orbit index does not appear to ' + 'exist in loaded data') # determine where the orbit index changes from one value to the next uniq_vals = self.sat[self.orbit_index].unique() orbit_index = [] for val in uniq_vals: idx, = np.where(val == self.sat[self.orbit_index].values) orbit_index.append(idx[0]) # create orbitbreak index, ensure first element is always 0 if orbit_index[0] != 0: ind = np.hstack((np.array([0]), orbit_index)) else: ind = orbit_index # number of orbits num_orbits = len(ind) # set index of orbit breaks self._orbit_breaks = ind # set number of orbits for the day self.num = num_orbits
<SYSTEM_TASK:> Basic parser to deal with date format of the Kp file. <END_TASK> <USER_TASK:> Description: def _parse(yr, mo, day): """ Basic parser to deal with date format of the Kp file. """
yr = '20'+yr yr = int(yr) mo = int(mo) day = int(day) return pds.datetime(yr, mo, day)
<SYSTEM_TASK:> Routine to download Kp index data <END_TASK> <USER_TASK:> Description: def download(date_array, tag, sat_id, data_path, user=None, password=None): """Routine to download Kp index data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) Returns -------- Void : (NoneType) data downloaded to disk, if available. Notes ----- Called by pysat. Not intended for direct use by user. """
import ftplib from ftplib import FTP import sys ftp = FTP('ftp.gfz-potsdam.de') # connect to host, default port ftp.login() # user anonymous, passwd anonymous@ ftp.cwd('/pub/home/obs/kp-ap/tab') for date in date_array: fname = 'kp{year:02d}{month:02d}.tab' fname = fname.format(year=(date.year - date.year//100*100), month=date.month) local_fname = fname saved_fname = os.path.join(data_path,local_fname) try: print('Downloading file for '+date.strftime('%D')) sys.stdout.flush() ftp.retrbinary('RETR '+fname, open(saved_fname,'wb').write) except ftplib.error_perm as exception: # if exception[0][0:3] != '550': if str(exception.args[0]).split(" ", 1)[0] != '550': raise else: os.remove(saved_fname) print('File not available for '+date.strftime('%D')) ftp.close() return
<SYSTEM_TASK:> find converter function reference by name <END_TASK> <USER_TASK:> Description: def _get_converter(self, converter_str): """find converter function reference by name find converter by name, converter name follows this convention: Class.method or: method The first type of converter class/function must be available in current module. The second type of converter must be available in `__builtin__` (or `builtins` in python3) module. :param converter_str: string representation of the converter func :return: function reference """
ret = None if converter_str is not None: converter_desc_list = converter_str.split('.') if len(converter_desc_list) == 1: converter = converter_desc_list[0] # default to `converter` ret = getattr(cvt, converter, None) if ret is None: # try module converter ret = self.get_converter(converter) if ret is None: ret = self.get_resource_clz_by_name(converter) if ret is None: ret = self.get_enum_by_name(converter) if ret is None: # try parser config ret = self.get(converter) if ret is None and converter_str is not None: raise ValueError( 'Specified converter not supported: {}'.format( converter_str)) return ret
<SYSTEM_TASK:> scp the local file to remote folder. <END_TASK> <USER_TASK:> Description: def copy_file_to_remote(self, local_path, remote_path): """scp the local file to remote folder. :param local_path: local path :param remote_path: remote path """
sftp_client = self.transport.open_sftp_client() LOG.debug('Copy the local file to remote. ' 'Source=%(src)s. Target=%(target)s.' % {'src': local_path, 'target': remote_path}) try: sftp_client.put(local_path, remote_path) except Exception as ex: LOG.error('Failed to copy the local file to remote. ' 'Reason: %s.' % six.text_type(ex)) raise SFtpExecutionError(err=ex)
<SYSTEM_TASK:> Fetch remote File. <END_TASK> <USER_TASK:> Description: def get_remote_file(self, remote_path, local_path): """Fetch remote File. :param remote_path: remote path :param local_path: local path """
sftp_client = self.transport.open_sftp_client() LOG.debug('Get the remote file. ' 'Source=%(src)s. Target=%(target)s.' % {'src': remote_path, 'target': local_path}) try: sftp_client.get(remote_path, local_path) except Exception as ex: LOG.error('Failed to secure copy. Reason: %s.' % six.text_type(ex)) raise SFtpExecutionError(err=ex)
<SYSTEM_TASK:> Closes the ssh connection. <END_TASK> <USER_TASK:> Description: def close(self): """Closes the ssh connection."""
if 'isLive' in self.__dict__ and self.isLive: self.transport.close() self.isLive = False
<SYSTEM_TASK:> indicate the return value is a xml api request <END_TASK> <USER_TASK:> Description: def xml_request(check_object=False, check_invalid_data_mover=False): """ indicate the return value is a xml api request :param check_invalid_data_mover: :param check_object: :return: the response of this request """
def decorator(f): @functools.wraps(f) def func_wrapper(self, *argv, **kwargs): request = f(self, *argv, **kwargs) return self.request( request, check_object=check_object, check_invalid_data_mover=check_invalid_data_mover) return func_wrapper return decorator
<SYSTEM_TASK:> indicate it's a command of nas command run with ssh <END_TASK> <USER_TASK:> Description: def nas_command(f): """ indicate it's a command of nas command run with ssh :param f: function that returns the command in list :return: command execution result """
@functools.wraps(f) def func_wrapper(self, *argv, **kwargs): commands = f(self, *argv, **kwargs) return self.ssh_execute(['env', 'NAS_DB=/nas'] + commands) return func_wrapper
<SYSTEM_TASK:> Restore the snapshot to the associated storage resource. <END_TASK> <USER_TASK:> Description: def restore(self, backup=None, delete_backup=False): """Restore the snapshot to the associated storage resource. :param backup: name of the backup snapshot :param delete_backup: Whether to delete the backup snap after a successful restore. """
resp = self._cli.action(self.resource_class, self.get_id(), 'restore', copyName=backup) resp.raise_if_err() backup = resp.first_content['backup'] backup_snap = UnitySnap(_id=backup['id'], cli=self._cli) if delete_backup: log.info("Deleting the backup snap {} as the restoration " "succeeded.".format(backup['id'])) backup_snap.delete() return backup_snap
<SYSTEM_TASK:> Deletes the snapshot. <END_TASK> <USER_TASK:> Description: def delete(self, async_mode=False, even_attached=False): """Deletes the snapshot. :param async_mode: whether to delete the snapshot in async mode. :param even_attached: whether to delete the snapshot even it is attached to hosts. """
try: return super(UnitySnap, self).delete(async_mode=async_mode) except UnityDeleteAttachedSnapError: if even_attached: log.debug("Force delete the snapshot even if it is attached. " "First detach the snapshot from hosts, then delete " "again.") # Currently `detach_from` doesn't process `host` parameter. # It always detaches the snapshot from all hosts. So pass in # `None` here. self.detach_from(None) return super(UnitySnap, self).delete(async_mode=async_mode) else: raise
<SYSTEM_TASK:> Flat the virtual ports. <END_TASK> <USER_TASK:> Description: def _flat_vports(self, connection_port): """Flat the virtual ports."""
vports = [] for vport in connection_port.virtual_ports: self._set_child_props(connection_port, vport) vports.append(vport) return vports
<SYSTEM_TASK:> This method won't count the snaps in "destroying" state! <END_TASK> <USER_TASK:> Description: def has_snap(self): """ This method won't count the snaps in "destroying" state! :return: false if no snaps or all snaps are destroying. """
return len(list(filter(lambda s: s.state != SnapStateEnum.DESTROYING, self.snapshots))) > 0
<SYSTEM_TASK:> Return a 2D average of data_label over a season and label1, label2. <END_TASK> <USER_TASK:> Description: def median2D(const, bin1, label1, bin2, label2, data_label, returnData=False): """Return a 2D average of data_label over a season and label1, label2. Parameters ---------- const: Constellation or Instrument bin#: [min, max, number of bins] label#: string identifies data product for bin# data_label: list-like contains strings identifying data product(s) to be averaged Returns ------- median : dictionary 2D median accessed by data_label as a function of label1 and label2 over the season delineated by bounds of passed instrument objects. Also includes 'count' and 'avg_abs_dev' as well as the values of the bin edges in 'bin_x' and 'bin_y'. """
# const is either an Instrument or a Constellation, and we want to # iterate over it. # If it's a Constellation, then we can do that as is, but if it's # an Instrument, we just have to put that Instrument into something # that will yeild that Instrument, like a list. if isinstance(const, pysat.Instrument): const = [const] elif not isinstance(const, pysat.Constellation): raise ValueError("Parameter must be an Instrument or a Constellation.") # create bins #// seems to create the boundaries used for sorting into bins binx = np.linspace(bin1[0], bin1[1], bin1[2]+1) biny = np.linspace(bin2[0], bin2[1], bin2[2]+1) #// how many bins are used numx = len(binx)-1 numy = len(biny)-1 #// how many different data products numz = len(data_label) # create array to store all values before taking median #// the indices of the bins/data products? used for looping. yarr = np.arange(numy) xarr = np.arange(numx) zarr = np.arange(numz) #// 3d array: stores the data that is sorted into each bin? - in a deque ans = [ [ [collections.deque() for i in xarr] for j in yarr] for k in zarr] for inst in const: # do loop to iterate over instrument season #// probably iterates by date but that all depends on the #// configuration of that particular instrument. #// either way, it iterates over the instrument, loading successive #// data between start and end bounds for inst in inst: # collect data in bins for averaging if len(inst.data) != 0: #// sort the data into bins (x) based on label 1 #// (stores bin indexes in xind) xind = np.digitize(inst.data[label1], binx)-1 #// for each possible x index for xi in xarr: #// get the indicies of those pieces of data in that bin xindex, = np.where(xind==xi) if len(xindex) > 0: #// look up the data along y (label2) at that set of indicies (a given x) yData = inst.data.iloc[xindex] #// digitize that, to sort data into bins along y (label2) (get bin indexes) yind = np.digitize(yData[label2], biny)-1 #// for each possible y index for yj in yarr: #// select data with this y index (and we already filtered for this x index) yindex, = np.where(yind==yj) if len(yindex) > 0: #// for each data product label zk for zk in zarr: #// take the data (already filtered by x); filter it by y and #// select the data product, put it in a list, and extend the deque ans[zk][yj][xi].extend( yData.ix[yindex,data_label[zk]].tolist() ) return _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr, numx, numy, numz, returnData)
<SYSTEM_TASK:> get the list of resource list to collect based on clz list <END_TASK> <USER_TASK:> Description: def get_rsc_list_2(self, rsc_clz_list=None): """get the list of resource list to collect based on clz list :param rsc_clz_list: the list of classes to collect :return: filtered list of resource list, like [VNXLunList(), VNXDiskList()] """
rsc_list_2 = self._default_rsc_list_with_perf_stats() if rsc_clz_list is None: rsc_clz_list = ResourceList.get_rsc_clz_list(rsc_list_2) return [rsc_list for rsc_list in rsc_list_2 if rsc_list.get_resource_class() in rsc_clz_list]
<SYSTEM_TASK:> cosmic data load routine, called by pysat <END_TASK> <USER_TASK:> Description: def load(cosmicFiles, tag=None, sat_id=None): """ cosmic data load routine, called by pysat """
import netCDF4 num = len(cosmicFiles) # make sure there are files to read if num != 0: # call separate load_files routine, segemented for possible # multiprocessor load, not included and only benefits about 20% output = pysat.DataFrame(load_files(cosmicFiles, tag=tag, sat_id=sat_id)) output.index = pysat.utils.create_datetime_index(year=output.year, month=output.month, day=output.day, uts=output.hour*3600.+output.minute*60.+output.second) # make sure UTS strictly increasing output.sort_index(inplace=True) # use the first available file to pick out meta information meta = pysat.Meta() ind = 0 repeat = True while repeat: try: data = netCDF4.Dataset(cosmicFiles[ind]) ncattrsList = data.ncattrs() for d in ncattrsList: meta[d] = {'units':'', 'long_name':d} keys = data.variables.keys() for key in keys: meta[key] = {'units':data.variables[key].units, 'long_name':data.variables[key].long_name} repeat = False except RuntimeError: # file was empty, try the next one by incrementing ind ind+=1 return output, meta else: # no data return pysat.DataFrame(None), pysat.Meta()
<SYSTEM_TASK:> Routine to return DMSP IVM data cleaned to the specified level <END_TASK> <USER_TASK:> Description: def clean(self): """Routine to return DMSP IVM data cleaned to the specified level 'Clean' enforces that both RPA and DM flags are <= 1 'Dusty' <= 2 'Dirty' <= 3 'None' None Routine is called by pysat, and not by the end user directly. Parameters ----------- inst : (pysat.Instrument) Instrument class object, whose attribute clean_level is used to return the desired level of data selectivity. Returns -------- Void : (NoneType) data in inst is modified in-place. Notes -------- Supports 'clean', 'dusty', 'dirty' """
if self.clean_level == 'clean': idx, = np.where((self['rpa_flag_ut'] <= 1) & (self['idm_flag_ut'] <= 1)) elif self.clean_level == 'dusty': idx, = np.where((self['rpa_flag_ut'] <= 2) & (self['idm_flag_ut'] <= 2)) elif self.clean_level == 'dirty': idx, = np.where((self['rpa_flag_ut'] <= 3) & (self['idm_flag_ut'] <= 3)) else: idx = [] # downselect data based upon cleaning conditions above self.data = self[idx] return
<SYSTEM_TASK:> Modifies a remote system for remote replication. <END_TASK> <USER_TASK:> Description: def modify(self, management_address=None, username=None, password=None, connection_type=None): """ Modifies a remote system for remote replication. :param management_address: same as the one in `create` method. :param username: username for accessing the remote system. :param password: password for accessing the remote system. :param connection_type: same as the one in `create` method. """
req_body = self._cli.make_body( managementAddress=management_address, username=username, password=password, connectionType=connection_type) resp = self.action('modify', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Verifies and update the remote system settings. <END_TASK> <USER_TASK:> Description: def verify(self, connection_type=None): """ Verifies and update the remote system settings. :param connection_type: same as the one in `create` method. """
req_body = self._cli.make_body(connectionType=connection_type) resp = self.action('verify', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Modifies a replication interface. <END_TASK> <USER_TASK:> Description: def modify(self, sp=None, ip_port=None, ip_address=None, netmask=None, v6_prefix_length=None, gateway=None, vlan_id=None): """ Modifies a replication interface. :param sp: same as the one in `create` method. :param ip_port: same as the one in `create` method. :param ip_address: same as the one in `create` method. :param netmask: same as the one in `create` method. :param v6_prefix_length: same as the one in `create` method. :param gateway: same as the one in `create` method. :param vlan_id: same as the one in `create` method. """
req_body = self._cli.make_body(sp=sp, ipPort=ip_port, ipAddress=ip_address, netmask=netmask, v6PrefixLength=v6_prefix_length, gateway=gateway, vlanId=vlan_id) resp = self.action('modify', **req_body) resp.raise_if_err() return resp
<SYSTEM_TASK:> Add a function to custom processing queue. <END_TASK> <USER_TASK:> Description: def add(self, function, kind='add', at_pos='end',*args, **kwargs): """Add a function to custom processing queue. Custom functions are applied automatically to associated pysat instrument whenever instrument.load command called. Parameters ---------- function : string or function object name of function or function object to be added to queue kind : {'add', 'modify', 'pass} add Adds data returned from function to instrument object. A copy of pysat instrument object supplied to routine. modify pysat instrument object supplied to routine. Any and all changes to object are retained. pass A copy of pysat object is passed to function. No data is accepted from return. at_pos : string or int insert at position. (default, insert at end). args : extra arguments extra arguments are passed to the custom function (once) kwargs : extra keyword arguments extra keyword args are passed to the custom function (once) Note ---- Allowed `add` function returns: - {'data' : pandas Series/DataFrame/array_like, 'units' : string/array_like of strings, 'long_name' : string/array_like of strings, 'name' : string/array_like of strings (iff data array_like)} - pandas DataFrame, names of columns are used - pandas Series, .name required - (string/list of strings, numpy array/list of arrays) """
if isinstance(function, str): # convert string to function object function=eval(function) if (at_pos == 'end') | (at_pos == len(self._functions)): # store function object self._functions.append(function) self._args.append(args) self._kwargs.append(kwargs) self._kind.append(kind.lower()) elif at_pos < len(self._functions): # user picked a specific location to insert self._functions.insert(at_pos, function) self._args.insert(at_pos, args) self._kwargs.insert(at_pos, kwargs) self._kind.insert(at_pos, kind) else: raise TypeError('Must enter an index between 0 and %i' % len(self._functions))
<SYSTEM_TASK:> Apply all of the custom functions to the satellite data object. <END_TASK> <USER_TASK:> Description: def _apply_all(self, sat): """ Apply all of the custom functions to the satellite data object. """
if len(self._functions) > 0: for func, arg, kwarg, kind in zip(self._functions, self._args, self._kwargs, self._kind): if len(sat.data) > 0: if kind == 'add': # apply custom functions that add data to the # instrument object tempd = sat.copy() newData = func(tempd, *arg, **kwarg) del tempd # process different types of data returned by the # function if a dict is returned, data in 'data' if isinstance(newData,dict): # if DataFrame returned, add Frame to existing frame if isinstance(newData['data'], pds.DataFrame): sat[newData['data'].columns] = newData # if a series is returned, add it as a column elif isinstance(newData['data'], pds.Series): # look for name attached to series first if newData['data'].name is not None: sat[newData['data'].name] = newData # look if name is provided as part of dict # returned from function elif 'name' in newData.keys(): name = newData.pop('name') sat[name] = newData # couldn't find name information else: raise ValueError('Must assign a name to ' + 'Series or return a ' + '"name" in dictionary.') # some kind of iterable was returned elif hasattr(newData['data'], '__iter__'): # look for name in returned dict if 'name' in newData.keys(): name = newData.pop('name') sat[name] = newData else: raise ValueError('Must include "name" in ' + 'returned dictionary.') # bare DataFrame is returned elif isinstance(newData, pds.DataFrame): sat[newData.columns] = newData # bare Series is returned, name must be attached to # Series elif isinstance(newData, pds.Series): sat[newData.name] = newData # some kind of iterable returned, # presuming (name, data) # or ([name1,...], [data1,...]) elif hasattr(newData, '__iter__'): # falling back to older behavior # unpack tuple/list that was returned newName = newData[0] newData = newData[1] if len(newData)>0: # doesn't really check ensure data, there could # be multiple empty arrays returned, [[],[]] if isinstance(newName, str): # one item to add sat[newName] = newData else: # multiple items for name, data in zip(newName, newData): if len(data)>0: # fixes up the incomplete check # from before sat[name] = data else: raise ValueError("kernel doesn't know what to do " + "with returned data.") # modifying loaded data if kind == 'modify': t = func(sat,*arg,**kwarg) if t is not None: raise ValueError('Modify functions should not ' + 'return any information via ' + 'return. Information may only be' + ' propagated back by modifying ' + 'supplied pysat object.') # pass function (function runs, no data allowed back) if kind == 'pass': tempd = sat.copy() t = func(tempd,*arg,**kwarg) del tempd if t is not None: raise ValueError('Pass functions should not ' + 'return any information via ' + 'return.')
<SYSTEM_TASK:> Download SuperDARN data from Virginia Tech organized for loading by pysat. <END_TASK> <USER_TASK:> Description: def download(date_array, tag, sat_id, data_path, user=None, password=None): """ Download SuperDARN data from Virginia Tech organized for loading by pysat. """
import sys import os import pysftp import davitpy if user is None: user = os.environ['DBREADUSER'] if password is None: password = os.environ['DBREADPASS'] with pysftp.Connection( os.environ['VTDB'], username=user, password=password) as sftp: for date in date_array: myDir = '/data/'+date.strftime("%Y")+'/grdex/'+tag+'/' fname = date.strftime("%Y%m%d")+'.' + tag + '.grdex' local_fname = fname+'.bz2' saved_fname = os.path.join(data_path,local_fname) full_fname = os.path.join(data_path,fname) try: print('Downloading file for '+date.strftime('%D')) sys.stdout.flush() sftp.get(myDir+local_fname, saved_fname) os.system('bunzip2 -c '+saved_fname+' > '+ full_fname) os.system('rm ' + saved_fname) except IOError: print('File not available for '+date.strftime('%D')) return
<SYSTEM_TASK:> filter self to the required number of disks with same size and type <END_TASK> <USER_TASK:> Description: def same_disks(self, count=2): """ filter self to the required number of disks with same size and type Select the disks with the same type and same size. If not enough disks available, set self to empty. :param count: number of disks to retrieve :return: disk list """
ret = self if len(self) > 0: type_counter = Counter(self.drive_type) drive_type, counts = type_counter.most_common()[0] self.set_drive_type(drive_type) if len(self) > 0: size_counter = Counter(self.capacity) size, counts = size_counter.most_common()[0] self.set_capacity(size) if len(self) >= count: indices = self.index[:count] self.set_indices(indices) else: self.set_indices('N/A') return ret
<SYSTEM_TASK:> Sets boundaries for all instruments in constellation <END_TASK> <USER_TASK:> Description: def set_bounds(self, start, stop): """ Sets boundaries for all instruments in constellation """
for instrument in self.instruments: instrument.bounds = (start, stop)
<SYSTEM_TASK:> Register a function to modify data of member Instruments. <END_TASK> <USER_TASK:> Description: def data_mod(self, *args, **kwargs): """ Register a function to modify data of member Instruments. The function is not partially applied to modify member data. When the Constellation receives a function call to register a function for data modification, it passes the call to each instrument and registers it in the instrument's pysat.Custom queue. (Wraps pysat.Custom.add; documentation of that function is reproduced here.) Parameters ---------- function : string or function object name of function or function object to be added to queue kind : {'add, 'modify', 'pass'} add Adds data returned from fuction to instrument object. modify pysat instrument object supplied to routine. Any and all changes to object are retained. pass A copy of pysat object is passed to function. No data is accepted from return. at_pos : string or int insert at position. (default, insert at end). args : extra arguments Note ---- Allowed `add` function returns: - {'data' : pandas Series/DataFrame/array_like, 'units' : string/array_like of strings, 'long_name' : string/array_like of strings, 'name' : string/array_like of strings (iff data array_like)} - pandas DataFrame, names of columns are used - pandas Series, .name required - (string/list of strings, numpy array/list of arrays) """
for instrument in self.instruments: instrument.custom.add(*args, **kwargs)
<SYSTEM_TASK:> Load instrument data into instrument object.data <END_TASK> <USER_TASK:> Description: def load(self, *args, **kwargs): """ Load instrument data into instrument object.data (Wraps pysat.Instrument.load; documentation of that function is reproduced here.) Parameters --------- yr : integer Year for desired data doy : integer day of year data : datetime object date to load fname : 'string' filename to be loaded verifyPad : boolean if true, padding data not removed (debug purposes) """
for instrument in self.instruments: instrument.load(*args, **kwargs)
<SYSTEM_TASK:> Combines signals from multiple instruments within <END_TASK> <USER_TASK:> Description: def add(self, bounds1, label1, bounds2, label2, bin3, label3, data_label): """ Combines signals from multiple instruments within given bounds. Parameters ---------- bounds1 : (min, max) Bounds for selecting data on the axis of label1 Data points with label1 in [min, max) will be considered. label1 : string Data label for bounds1 to act on. bounds2 : (min, max) Bounds for selecting data on the axis of label2 Data points with label1 in [min, max) will be considered. label2 : string Data label for bounds2 to act on. bin3 : (min, max, #bins) Min and max bounds and number of bins for third axis. label3 : string Data label for third axis. data_label : array of strings Data label(s) for data product(s) to be averaged. Returns ------- median : dictionary Dictionary indexed by data label, each value of which is a dictionary with keys 'median', 'count', 'avg_abs_dev', and 'bin' (the values of the bin edges.) """
# TODO Update for 2.7 compatability. if isinstance(data_label, str): data_label = [data_label, ] elif not isinstance(data_label, collections.Sequence): raise ValueError("Please pass data_label as a string or " "collection of strings.") # Modeled after pysat.ssnl.median2D # Make bin boundaries. # y: values at label3 # z: *data_labels biny = np.linspace(bin3[0], bin3[1], bin3[2]+1) numy = len(biny)-1 numz = len(data_label) # Ranges yarr, zarr = map(np.arange, (numy, numz)) # Store data here. ans = [[[collections.deque()] for j in yarr] for k in zarr] # Filter data by bounds and bin it. # Idiom for loading all of the data in an instrument's bounds. for inst in self: for inst in inst: if len(inst.data) != 0: # Select indicies for each piece of data we're interest in. # Not all of this data is in bounds on label3 but we'll # sort this later. min1, max1 = bounds1 min2, max2 = bounds2 data1 = inst.data[label1] data2 = inst.data[label2] in_bounds, = np.where((min1 <= data1) & (data1 < max1) & (min2 <= data2) & (data2 < max2)) # Grab the data in bounds on data1, data2. data_considered = inst.data.iloc[in_bounds] y_indexes = np.digitize(data_considered[label3], biny) - 1 # Iterate over the bins along y for yj in yarr: # Indicies of data in this bin yindex, = np.where(y_indexes == yj) # If there's data in this bin if len(yindex) > 0: # For each data label, add the points. for zk in zarr: ans[zk][yj][0].extend( data_considered.ix[yindex, data_label[zk]].tolist()) # Now for the averaging. # Let's, try .. packing the answers for the 2d function. numx = 1 xarr = np.arange(numx) binx = None # TODO modify output out_2d = _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr, numx, numy, numz) # Transform output output = {} for i, label in enumerate(data_label): median = [r[0] for r in out_2d[label]['median']] count = [r[0] for r in out_2d[label]['count']] dev = [r[0] for r in out_2d[label]['avg_abs_dev']] output[label] = {'median': median, 'count': count, 'avg_abs_dev': dev, 'bin': out_2d[label]['bin_y']} return output
<SYSTEM_TASK:> Calculates the difference in signals from multiple <END_TASK> <USER_TASK:> Description: def difference(self, instrument1, instrument2, bounds, data_labels, cost_function): """ Calculates the difference in signals from multiple instruments within the given bounds. Parameters ---------- instrument1 : Instrument Information must already be loaded into the instrument. instrument2 : Instrument Information must already be loaded into the instrument. bounds : list of tuples in the form (inst1_label, inst2_label, min, max, max_difference) inst1_label are inst2_label are labels for the data in instrument1 and instrument2 min and max are bounds on the data considered max_difference is the maximum difference between two points for the difference to be calculated data_labels : list of tuples of data labels The first key is used to access data in s1 and the second data in s2. cost_function : function function that operates on two rows of the instrument data. used to determine the distance between two points for finding closest points Returns ------- data_df: pandas DataFrame Each row has a point from instrument1, with the keys preceded by '1_', and a point within bounds on that point from instrument2 with the keys preceded by '2_', and the difference between the instruments' data for all the labels in data_labels Created as part of a Spring 2018 UTDesign project. """
""" Draft Pseudocode ---------------- Check integrity of inputs. Let STD_LABELS be the constant tuple: ("time", "lat", "long", "alt") Note: modify so that user can override labels for time, lat, long, data for each satelite. // We only care about the data currently loaded into each object. Let start be the later of the datetime of the first piece of data loaded into s1, the first piece of data loaded into s2, and the user supplied start bound. Let end be the later of the datetime of the first piece of data loaded into s1, the first piece of data loaded into s2, and the user supplied end bound. If start is after end, raise an error. // Let data be the 2D array of deques holding each piece // of data, sorted into bins by lat/long/alt. Let s1_data (resp s2_data) be data from s1.data, s2.data filtered by user-provided lat/long/alt bounds, time bounds calculated. Let data be a dictionary of lists with the keys [ dl1 for dl1, dl2 in data_labels ] + STD_LABELS + [ lb+"2" for lb in STD_LABELS ] For each piece of data s1_point in s1_data: # Hopefully np.where is very good, because this # runs O(n) times. # We could try reusing selections, maybe, if needed. # This would probably involve binning. Let s2_near be the data from s2.data within certain bounds on lat/long/alt/time using 8 statements to numpy.where. We can probably get those defaults from the user or handy constants / config? # We could try a different algorithm for closest pairs # of points. Let distance be the numpy array representing the distance between s1_point and each point in s2_near. # S: Difference for others: change this line. For each of those, calculate the spatial difference from the s1 using lat/long/alt. If s2_near is empty; break loop. Let s2_nearest be the point in s2_near corresponding to the lowest distance. Append to data: a point, indexed by the time from s1_point, containing the following data: # note Let n be the length of data["time"]. For each key in data: Assert len(data[key]) == n End for. # Create data row to pass to pandas. Let row be an empty dict. For dl1, dl2 in data_labels: Append s1_point[dl1] - s2_nearest[dl2] to data[dl1]. For key in STD_LABELS: Append s1_point[translate[key]] to data[key] key = key+"2" Append s2_nearest[translate[key]] to data[key] Let data_df be a pandas dataframe created from the data in data. return { 'data': data_df, 'start':start, 'end':end } """ labels = [dl1 for dl1, dl2 in data_labels] + ['1_'+b[0] for b in bounds] + ['2_'+b[1] for b in bounds] + ['dist'] data = {label: [] for label in labels} # Apply bounds inst1 = instrument1.data inst2 = instrument2.data for b in bounds: label1 = b[0] label2 = b[1] low = b[2] high = b[3] data1 = inst1[label1] ind1 = np.where((data1 >= low) & (data1 < high)) inst1 = inst1.iloc[ind1] data2 = inst2[label2] ind2 = np.where((data2 >= low) & (data2 < high)) inst2 = inst2.iloc[ind2] for i, s1_point in inst1.iterrows(): # Gets points in instrument2 within the given bounds s2_near = instrument2.data for b in bounds: label1 = b[0] label2 = b[1] s1_val = s1_point[label1] max_dist = b[4] minbound = s1_val - max_dist maxbound = s1_val + max_dist data2 = s2_near[label2] indices = np.where((data2 >= minbound) & (data2 < maxbound)) s2_near = s2_near.iloc[indices] # Finds nearest point to s1_point in s2_near s2_nearest = None min_dist = float('NaN') for j, s2_point in s2_near.iterrows(): dist = cost_function(s1_point, s2_point) if dist < min_dist or min_dist != min_dist: min_dist = dist s2_nearest = s2_point data['dist'].append(min_dist) # Append difference to data dict for dl1, dl2 in data_labels: if s2_nearest is not None: data[dl1].append(s1_point[dl1] - s2_nearest[dl2]) else: data[dl1].append(float('NaN')) # Append the rest of the row for b in bounds: label1 = b[0] label2 = b[1] data['1_'+label1].append(s1_point[label1]) if s2_nearest is not None: data['2_'+label2].append(s2_nearest[label2]) else: data['2_'+label2].append(float('NaN')) data_df = pds.DataFrame(data=data) return data_df
<SYSTEM_TASK:> Input Series of numbers, Series, or DataFrames repackaged <END_TASK> <USER_TASK:> Description: def computational_form(data): """ Input Series of numbers, Series, or DataFrames repackaged for calculation. Parameters ---------- data : pandas.Series Series of numbers, Series, DataFrames Returns ------- pandas.Series, DataFrame, or Panel repacked data, aligned by indices, ready for calculation """
if isinstance(data.iloc[0], DataFrame): dslice = Panel.from_dict(dict([(i,data.iloc[i]) for i in xrange(len(data))])) elif isinstance(data.iloc[0], Series): dslice = DataFrame(data.tolist()) dslice.index = data.index else: dslice = data return dslice
<SYSTEM_TASK:> Set the top level directory pysat uses to look for data and reload. <END_TASK> <USER_TASK:> Description: def set_data_dir(path=None, store=None): """ Set the top level directory pysat uses to look for data and reload. Parameters ---------- path : string valid path to directory pysat uses to look for data store : bool if True, store data directory for future runs """
import sys import os import pysat if sys.version_info[0] >= 3: if sys.version_info[1] < 4: import imp re_load = imp.reload else: import importlib re_load = importlib.reload else: re_load = reload if store is None: store = True if os.path.isdir(path): if store: with open(os.path.join(os.path.expanduser('~'), '.pysat', 'data_path.txt'), 'w') as f: f.write(path) pysat.data_dir = path pysat._files = re_load(pysat._files) pysat._instrument = re_load(pysat._instrument) else: raise ValueError('Path %s does not lead to a valid directory.' % path)
<SYSTEM_TASK:> Return a tuple of year, day of year for a supplied datetime object. <END_TASK> <USER_TASK:> Description: def getyrdoy(date): """Return a tuple of year, day of year for a supplied datetime object."""
try: doy = date.toordinal()-datetime(date.year,1,1).toordinal()+1 except AttributeError: raise AttributeError("Must supply a pandas datetime object or " + "equivalent") else: return date.year, doy
<SYSTEM_TASK:> Return array of datetime objects using input frequency from start to stop <END_TASK> <USER_TASK:> Description: def season_date_range(start, stop, freq='D'): """ Return array of datetime objects using input frequency from start to stop Supports single datetime object or list, tuple, ndarray of start and stop dates. freq codes correspond to pandas date_range codes, D daily, M monthly, S secondly """
if hasattr(start, '__iter__'): # missing check for datetime season = pds.date_range(start[0], stop[0], freq=freq) for (sta,stp) in zip(start[1:], stop[1:]): season = season.append(pds.date_range(sta, stp, freq=freq)) else: season = pds.date_range(start, stop, freq=freq) return season
<SYSTEM_TASK:> Create a timeseries index using supplied year, month, day, and ut in <END_TASK> <USER_TASK:> Description: def create_datetime_index(year=None, month=None, day=None, uts=None): """Create a timeseries index using supplied year, month, day, and ut in seconds. Parameters ---------- year : array_like of ints month : array_like of ints or None day : array_like of ints for day (default) or day of year (use month=None) uts : array_like of floats Returns ------- Pandas timeseries index. Note ---- Leap seconds have no meaning here. """
# need a timeseries index for storing satellite data in pandas but # creating a datetime object for everything is too slow # so I calculate the number of nanoseconds elapsed since first sample, # and create timeseries index from that. # Factor of 20 improvement compared to previous method, # which itself was an order of magnitude faster than datetime. #get list of unique year, and month if not hasattr(year, '__iter__'): raise ValueError('Must provide an iterable for all inputs.') if len(year) == 0: raise ValueError('Length of array must be larger than 0.') year = year.astype(int) if month is None: month = np.ones(len(year), dtype=int) else: month = month.astype(int) if uts is None: uts = np.zeros(len(year)) if day is None: day = np.ones(len(year)) day = day.astype(int) # track changes in seconds uts_del = uts.copy().astype(float) # determine where there are changes in year and month that need to be # accounted for _,idx = np.unique(year*100.+month, return_index=True) # create another index array for faster algorithm below idx2 = np.hstack((idx,len(year)+1)) # computes UTC seconds offset for each unique set of year and month for _idx,_idx2 in zip(idx[1:],idx2[2:]): temp = (datetime(year[_idx],month[_idx],1) - datetime(year[0],month[0],1)) uts_del[_idx:_idx2] += temp.total_seconds() # add in UTC seconds for days, ignores existence of leap seconds uts_del += (day-1)*86400 # add in seconds since unix epoch to first day uts_del += (datetime(year[0],month[0],1)-datetime(1970,1,1)).total_seconds() # going to use routine that defaults to nanseconds for epoch uts_del *= 1E9 return pds.to_datetime(uts_del)
<SYSTEM_TASK:> NaN insensitive version of scipy's circular mean routine <END_TASK> <USER_TASK:> Description: def nan_circmean(samples, high=2.0*np.pi, low=0.0, axis=None): """NaN insensitive version of scipy's circular mean routine Parameters ----------- samples : array_like Input array low : float or int Lower boundary for circular standard deviation range (default=0) high: float or int Upper boundary for circular standard deviation range (default=2 pi) axis : int or NoneType Axis along which standard deviations are computed. The default is to compute the standard deviation of the flattened array Returns -------- circmean : float Circular mean """
samples = np.asarray(samples) samples = samples[~np.isnan(samples)] if samples.size == 0: return np.nan # Ensure the samples are in radians ang = (samples - low) * 2.0 * np.pi / (high - low) # Calculate the means of the sine and cosine, as well as the length # of their unit vector ssum = np.sin(ang).sum(axis=axis) csum = np.cos(ang).sum(axis=axis) res = np.arctan2(ssum, csum) # Bring the range of the result between 0 and 2 pi mask = res < 0.0 if mask.ndim > 0: res[mask] += 2.0 * np.pi elif mask: res += 2.0 * np.pi # Calculate the circular standard deviation circmean = res * (high - low) / (2.0 * np.pi) + low return circmean
<SYSTEM_TASK:> NaN insensitive version of scipy's circular standard deviation routine <END_TASK> <USER_TASK:> Description: def nan_circstd(samples, high=2.0*np.pi, low=0.0, axis=None): """NaN insensitive version of scipy's circular standard deviation routine Parameters ----------- samples : array_like Input array low : float or int Lower boundary for circular standard deviation range (default=0) high: float or int Upper boundary for circular standard deviation range (default=2 pi) axis : int or NoneType Axis along which standard deviations are computed. The default is to compute the standard deviation of the flattened array Returns -------- circstd : float Circular standard deviation """
samples = np.asarray(samples) samples = samples[~np.isnan(samples)] if samples.size == 0: return np.nan # Ensure the samples are in radians ang = (samples - low) * 2.0 * np.pi / (high - low) # Calculate the means of the sine and cosine, as well as the length # of their unit vector smean = np.sin(ang).mean(axis=axis) cmean = np.cos(ang).mean(axis=axis) rmean = np.sqrt(smean**2 + cmean**2) # Calculate the circular standard deviation circstd = (high - low) * np.sqrt(-2.0 * np.log(rmean)) / (2.0 * np.pi) return circstd
<SYSTEM_TASK:> Default routine to be applied when loading data. Removes redundant naming <END_TASK> <USER_TASK:> Description: def default(inst): """Default routine to be applied when loading data. Removes redundant naming """
import pysat.instruments.icon_ivm as icivm inst.tag = 'level_2' icivm.remove_icon_names(inst, target='ICON_L2_EUV_Daytime_OP_')
<SYSTEM_TASK:> Return a copy of the resource with same raw data <END_TASK> <USER_TASK:> Description: def shadow_copy(self): """ Return a copy of the resource with same raw data :return: copy of the resource """
ret = self.__class__() if not self._is_updated(): # before copy, make sure source is updated. self.update() ret._parsed_resource = self._parsed_resource return ret
<SYSTEM_TASK:> Loads data using pysat.utils.load_netcdf4 . <END_TASK> <USER_TASK:> Description: def load(fnames, tag=None, sat_id=None, **kwargs): """Loads data using pysat.utils.load_netcdf4 . This routine is called as needed by pysat. It is not intended for direct user interaction. Parameters ---------- fnames : array-like iterable of filename strings, full path, to data files to be loaded. This input is nominally provided by pysat itself. tag : string tag name used to identify particular data set to be loaded. This input is nominally provided by pysat itself. sat_id : string Satellite ID used to identify particular data set to be loaded. This input is nominally provided by pysat itself. **kwargs : extra keywords Passthrough for additional keyword arguments specified when instantiating an Instrument object. These additional keywords are passed through to this routine by pysat. Returns ------- data, metadata Data and Metadata are formatted for pysat. Data is a pandas DataFrame while metadata is a pysat.Meta instance. Note ---- Any additional keyword arguments passed to pysat.Instrument upon instantiation are passed along to this routine and through to the load_netcdf4 call. Examples -------- :: inst = pysat.Instrument('sport', 'ivm') inst.load(2019,1) # create quick Instrument object for a new, random netCDF4 file # define filename template string to identify files # this is normally done by instrument code, but in this case # there is no built in pysat instrument support # presumes files are named default_2019-01-01.NC format_str = 'default_{year:04d}-{month:02d}-{day:02d}.NC' inst = pysat.Instrument('netcdf', 'pandas', custom_kwarg='test' data_path='./', format_str=format_str) inst.load(2019,1) """
return pysat.utils.load_netcdf4(fnames, **kwargs)
<SYSTEM_TASK:> Produce a list of files corresponding to format_str located at data_path. <END_TASK> <USER_TASK:> Description: def list_files(tag=None, sat_id=None, data_path=None, format_str=None): """Produce a list of files corresponding to format_str located at data_path. This routine is invoked by pysat and is not intended for direct use by the end user. Multiple data levels may be supported via the 'tag' and 'sat_id' input strings. Parameters ---------- tag : string ('') tag name used to identify particular data set to be loaded. This input is nominally provided by pysat itself. sat_id : string ('') Satellite ID used to identify particular data set to be loaded. This input is nominally provided by pysat itself. data_path : string Full path to directory containing files to be loaded. This is provided by pysat. The user may specify their own data path at Instrument instantiation and it will appear here. format_str : string (None) String template used to parse the datasets filenames. If a user supplies a template string at Instrument instantiation then it will appear here, otherwise defaults to None. Returns ------- pandas.Series Series of filename strings, including the path, indexed by datetime. Examples -------- :: If a filename is SPORT_L2_IVM_2019-01-01_v01r0000.NC then the template is 'SPORT_L2_IVM_{year:04d}-{month:02d}-{day:02d}_v{version:02d}r{revision:04d}.NC' Note ---- The returned Series should not have any duplicate datetimes. If there are multiple versions of a file the most recent version should be kept and the rest discarded. This routine uses the pysat.Files.from_os constructor, thus the returned files are up to pysat specifications. Normally the format_str for each supported tag and sat_id is defined within this routine. However, as this is a generic routine, those definitions can't be made here. This method could be used in an instrument specific module where the list_files routine in the new package defines the format_str based upon inputs, then calls this routine passing both data_path and format_str. Alternately, the list_files routine in nasa_cdaweb_methods may also be used and has more built in functionality. Supported tages and format strings may be defined within the new instrument module and passed as arguments to nasa_cdaweb_methods.list_files . For an example on using this routine, see pysat/instrument/cnofs_ivm.py or cnofs_vefi, cnofs_plp, omni_hro, timed_see, etc. """
return pysat.Files.from_os(data_path=data_path, format_str=format_str)
<SYSTEM_TASK:> indicate it's a command of naviseccli <END_TASK> <USER_TASK:> Description: def command(f): """ indicate it's a command of naviseccli :param f: function that returns the command in list :return: command execution result """
@functools.wraps(f) def func_wrapper(self, *argv, **kwargs): if 'ip' in kwargs: ip = kwargs['ip'] del kwargs['ip'] else: ip = None commands = _get_commands(f, self, *argv, **kwargs) return self.execute(commands, ip=ip) return func_wrapper
<SYSTEM_TASK:> indicate it's a command need to be called on both SP <END_TASK> <USER_TASK:> Description: def duel_command(f): """ indicate it's a command need to be called on both SP :param f: function that returns the command in list :return: command execution result on both sps (tuple of 2) """
@functools.wraps(f) def func_wrapper(self, *argv, **kwargs): commands = _get_commands(f, self, *argv, **kwargs) return self.execute_dual(commands) return func_wrapper
<SYSTEM_TASK:> Return new size accounting for the metadata. <END_TASK> <USER_TASK:> Description: def supplement_filesystem(old_size, user_cap=False): """Return new size accounting for the metadata."""
new_size = old_size if user_cap: if old_size <= _GiB_to_Byte(1.5): new_size = _GiB_to_Byte(3) else: new_size += _GiB_to_Byte(1.5) return int(new_size)
<SYSTEM_TASK:> synchronize on obj if obj is supplied. <END_TASK> <USER_TASK:> Description: def synchronized(cls, obj=None): """ synchronize on obj if obj is supplied. :param obj: the obj to lock on. if none, lock to the function :return: return of the func. """
def get_key(f, o): if o is None: key = hash(f) else: key = hash(o) return key def get_lock(f, o): key = get_key(f, o) if key not in cls.lock_map: with cls.lock_map_lock: if key not in cls.lock_map: cls.lock_map[key] = _init_lock() return cls.lock_map[key] def wrap(f): @functools.wraps(f) def new_func(*args, **kw): with get_lock(f, obj): return f(*args, **kw) return new_func return wrap
<SYSTEM_TASK:> Internal decorator to define an criteria compare operations. <END_TASK> <USER_TASK:> Description: def _support_op(*args): """Internal decorator to define an criteria compare operations."""
def inner(func): for one_arg in args: _op_mapping_[one_arg] = func return func return inner
<SYSTEM_TASK:> Routine to return VEFI data cleaned to the specified level <END_TASK> <USER_TASK:> Description: def clean(inst): """Routine to return VEFI data cleaned to the specified level Parameters ----------- inst : (pysat.Instrument) Instrument class object, whose attribute clean_level is used to return the desired level of data selectivity. Returns -------- Void : (NoneType) data in inst is modified in-place. Notes -------- 'dusty' or 'clean' removes data when interpolation flag is set to 1 """
if (inst.clean_level == 'dusty') | (inst.clean_level == 'clean'): idx, = np.where(inst['B_flag'] == 0) inst.data = inst[idx, :] return None
<SYSTEM_TASK:> Removes leading text on ICON project variable names <END_TASK> <USER_TASK:> Description: def remove_icon_names(inst, target=None): """Removes leading text on ICON project variable names Parameters ---------- inst : pysat.Instrument ICON associated pysat.Instrument object target : str Leading string to remove. If none supplied, ICON project standards are used to identify and remove leading text Returns ------- None Modifies Instrument object in place """
if target is None: lev = inst.tag if lev == 'level_2': lev = 'L2' elif lev == 'level_0': lev = 'L0' elif lev == 'level_0p': lev = 'L0P' elif lev == 'level_1.5': lev = 'L1-5' elif lev == 'level_1': lev = 'L1' else: raise ValueError('Uknown ICON data level') # get instrument code sid = inst.sat_id.lower() if sid == 'a': sid = 'IVM_A' elif sid == 'b': sid = 'IVM_B' else: raise ValueError('Unknown ICON satellite ID') prepend_str = '_'.join(('ICON', lev, sid)) + '_' else: prepend_str = target inst.data.rename(columns=lambda x: x.split(prepend_str)[-1], inplace=True) inst.meta.data.rename(index=lambda x: x.split(prepend_str)[-1], inplace=True) orig_keys = inst.meta.keys_nD() for key in orig_keys: new_key = key.split(prepend_str)[-1] new_meta = inst.meta.pop(key) new_meta.data.rename(index=lambda x: x.split(prepend_str)[-1], inplace=True) inst.meta[new_key] = new_meta return
<SYSTEM_TASK:> OMNI data is time-shifted to bow shock. Time shifted again <END_TASK> <USER_TASK:> Description: def time_shift_to_magnetic_poles(inst): """ OMNI data is time-shifted to bow shock. Time shifted again to intersections with magnetic pole. Parameters ----------- inst : Instrument class object Instrument with OMNI HRO data Notes --------- Time shift calculated using distance to bow shock nose (BSN) and velocity of solar wind along x-direction. Warnings -------- Use at own risk. """
# need to fill in Vx to get an estimate of what is going on inst['Vx'] = inst['Vx'].interpolate('nearest') inst['Vx'] = inst['Vx'].fillna(method='backfill') inst['Vx'] = inst['Vx'].fillna(method='pad') inst['BSN_x'] = inst['BSN_x'].interpolate('nearest') inst['BSN_x'] = inst['BSN_x'].fillna(method='backfill') inst['BSN_x'] = inst['BSN_x'].fillna(method='pad') # make sure there are no gaps larger than a minute inst.data = inst.data.resample('1T').interpolate('time') time_x = inst['BSN_x']*6371.2/-inst['Vx'] idx, = np.where(np.isnan(time_x)) if len(idx) > 0: print (time_x[idx]) print (time_x) time_x_offset = [pds.DateOffset(seconds = time) for time in time_x.astype(int)] new_index=[] for i, time in enumerate(time_x_offset): new_index.append(inst.data.index[i] + time) inst.data.index = new_index inst.data = inst.data.sort_index() return
<SYSTEM_TASK:> Calculate IMF steadiness using clock angle standard deviation and <END_TASK> <USER_TASK:> Description: def calculate_imf_steadiness(inst, steady_window=15, min_window_frac=0.75, max_clock_angle_std=90.0/np.pi, max_bmag_cv=0.5): """ Calculate IMF steadiness using clock angle standard deviation and the coefficient of variation of the IMF magnitude in the GSM Y-Z plane Parameters ----------- inst : pysat.Instrument Instrument with OMNI HRO data steady_window : int Window for calculating running statistical moments in min (default=15) min_window_frac : float Minimum fraction of points in a window for steadiness to be calculated (default=0.75) max_clock_angle_std : float Maximum standard deviation of the clock angle in degrees (default=22.5) max_bmag_cv : float Maximum coefficient of variation of the IMF magnitude in the GSM Y-Z plane (default=0.5) """
# We are not going to interpolate through missing values sample_rate = int(inst.tag[0]) max_wnum = np.floor(steady_window / sample_rate) if max_wnum != steady_window / sample_rate: steady_window = max_wnum * sample_rate print("WARNING: sample rate is not a factor of the statistical window") print("new statistical window is {:.1f}".format(steady_window)) min_wnum = int(np.ceil(max_wnum * min_window_frac)) # Calculate the running coefficient of variation of the BYZ magnitude byz_mean = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True, window=steady_window).mean() byz_std = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True, window=steady_window).std() inst['BYZ_CV'] = pds.Series(byz_std / byz_mean, index=inst.data.index) # Calculate the running circular standard deviation of the clock angle circ_kwargs = {'high':360.0, 'low':0.0} ca = inst['clock_angle'][~np.isnan(inst['clock_angle'])] ca_std = inst['clock_angle'].rolling(min_periods=min_wnum, window=steady_window, \ center=True).apply(pysat.utils.nan_circstd, kwargs=circ_kwargs) inst['clock_angle_std'] = pds.Series(ca_std, index=inst.data.index) # Determine how long the clock angle and IMF magnitude are steady imf_steady = np.zeros(shape=inst.data.index.shape) steady = False for i,cv in enumerate(inst.data['BYZ_CV']): if steady: del_min = int((inst.data.index[i] - inst.data.index[i-1]).total_seconds() / 60.0) if np.isnan(cv) or np.isnan(ca_std[i]) or del_min > sample_rate: # Reset the steadiness flag if fill values are encountered, or # if an entry is missing steady = False if cv <= max_bmag_cv and ca_std[i] <= max_clock_angle_std: # Steadiness conditions have been met if steady: imf_steady[i] = imf_steady[i-1] imf_steady[i] += sample_rate steady = True inst['IMF_Steady'] = pds.Series(imf_steady, index=inst.data.index) return
<SYSTEM_TASK:> clear all ace entries of the share <END_TASK> <USER_TASK:> Description: def clear_access(self, white_list=None): """ clear all ace entries of the share :param white_list: list of username whose access entry won't be cleared :return: sid list of ace entries removed successfully """
access_entries = self.get_ace_list() sid_list = access_entries.sid_list if white_list: sid_white_list = [UnityAclUser.get_sid(self._cli, user, self.cifs_server.domain) for user in white_list] sid_list = list(set(sid_list) - set(sid_white_list)) resp = self.delete_ace(sid=sid_list) resp.raise_if_err() return sid_list
<SYSTEM_TASK:> delete ACE for the share <END_TASK> <USER_TASK:> Description: def delete_ace(self, domain=None, user=None, sid=None): """ delete ACE for the share delete ACE for the share. User could either supply the domain and username or the sid of the user. :param domain: domain of the user :param user: username :param sid: sid of the user or sid list of the user :return: REST API response """
if sid is None: if domain is None: domain = self.cifs_server.domain sid = UnityAclUser.get_sid(self._cli, user=user, domain=domain) if isinstance(sid, six.string_types): sid = [sid] ace_list = [self._make_remove_ace_entry(s) for s in sid] resp = self.action("setACEs", cifsShareACEs=ace_list) resp.raise_if_err() return resp
<SYSTEM_TASK:> Aggregator for ioclass_luns and ioclass_snapshots. <END_TASK> <USER_TASK:> Description: def luns(self): """Aggregator for ioclass_luns and ioclass_snapshots."""
lun_list, smp_list = [], [] if self.ioclass_luns: lun_list = map(lambda l: VNXLun(lun_id=l.lun_id, name=l.name, cli=self._cli), self.ioclass_luns) if self.ioclass_snapshots: smp_list = map(lambda smp: VNXLun(name=smp.name, cli=self._cli), self.ioclass_snapshots) return list(lun_list) + list(smp_list)
<SYSTEM_TASK:> Returns policy which contains this ioclass. <END_TASK> <USER_TASK:> Description: def policy(self): """Returns policy which contains this ioclass."""
policies = VNXIOPolicy.get(cli=self._cli) ret = None for policy in policies: contained = policy.ioclasses.name if self._get_name() in contained: ret = VNXIOPolicy.get(name=policy.name, cli=self._cli) break return ret
<SYSTEM_TASK:> Overwrite the current properties for a VNX ioclass. <END_TASK> <USER_TASK:> Description: def modify(self, new_name=None, iotype=None, lun_ids=None, smp_names=None, ctrlmethod=None, minsize=None, maxsize=None): """Overwrite the current properties for a VNX ioclass. :param new_name: new name for the ioclass :param iotype: can be 'rw', 'r' or 'w' :param lun_ids: list of LUN IDs :param smp_names: list of Snapshot Mount Point names :param ctrlmethod: the new CtrlMethod :param minsize: minimal size in kb :param maxsize: maximum size in kb """
if not any([new_name, iotype, lun_ids, smp_names, ctrlmethod]): raise ValueError('Cannot apply modification, please specify ' 'parameters to modify.') def _do_modify(): out = self._cli.modify_ioclass( self._get_name(), new_name, iotype, lun_ids, smp_names, ctrlmethod, minsize, maxsize) ex.raise_if_err(out, default=ex.VNXIOClassError) try: _do_modify() except ex.VNXIOCLassRunningError: with restart_policy(self.policy): _do_modify() return VNXIOClass(new_name if new_name else self._get_name(), self._cli)
<SYSTEM_TASK:> A wrapper for modify method. <END_TASK> <USER_TASK:> Description: def add_lun(self, luns): """A wrapper for modify method. .. note:: This API only append luns to existing luns. """
curr_lun_ids, curr_smp_names = self._get_current_names() luns = normalize_lun(luns, self._cli) new_ids, new_smps = convert_lun(luns) if new_ids: curr_lun_ids.extend(new_ids) if new_smps: curr_smp_names.extend(new_smps) return self.modify(lun_ids=curr_lun_ids, smp_names=curr_smp_names)
<SYSTEM_TASK:> Add one VNXIOClass instance to policy. <END_TASK> <USER_TASK:> Description: def add_class(self, ioclass): """Add one VNXIOClass instance to policy. .. note: due to the limitation of VNX, need to stop the policy first. """
current_ioclasses = self.ioclasses if ioclass.name in current_ioclasses.name: return current_ioclasses.append(ioclass) self.modify(new_ioclasses=current_ioclasses)
<SYSTEM_TASK:> Remove VNXIOClass instance from policy. <END_TASK> <USER_TASK:> Description: def remove_class(self, ioclass): """Remove VNXIOClass instance from policy."""
current_ioclasses = self.ioclasses new_ioclasses = filter(lambda x: x.name != ioclass.name, current_ioclasses) self.modify(new_ioclasses=new_ioclasses)
<SYSTEM_TASK:> Replaces the exiting LUNs to lun_list. <END_TASK> <USER_TASK:> Description: def replace_lun(self, *lun_list): """Replaces the exiting LUNs to lun_list."""
lun_add = self._prepare_luns_add(lun_list) lun_remove = self._prepare_luns_remove(lun_list, False) return self.modify(lun_add=lun_add, lun_remove=lun_remove)
<SYSTEM_TASK:> Updates the LUNs in CG, adding the ones in `add_luns` and removing <END_TASK> <USER_TASK:> Description: def update_lun(self, add_luns=None, remove_luns=None): """Updates the LUNs in CG, adding the ones in `add_luns` and removing the ones in `remove_luns`"""
if not add_luns and not remove_luns: log.debug("Empty add_luns and remove_luns passed in, " "skip update_lun.") return RESP_OK lun_add = self._prepare_luns_add(add_luns) lun_remove = self._prepare_luns_remove(remove_luns, True) return self.modify(lun_add=lun_add, lun_remove=lun_remove)
<SYSTEM_TASK:> Routine to return FPMU data cleaned to the specified level <END_TASK> <USER_TASK:> Description: def clean(inst): """Routine to return FPMU data cleaned to the specified level Parameters ----------- inst : (pysat.Instrument) Instrument class object, whose attribute clean_level is used to return the desired level of data selectivity. Returns -------- Void : (NoneType) data in inst is modified in-place. Notes -------- No cleaning currently available for FPMU """
inst.data.replace(-999., np.nan, inplace=True) # Te inst.data.replace(-9.9999998e+30, np.nan, inplace=True) #Ni return None
<SYSTEM_TASK:> Attaches info returned by instrument list_files routine to <END_TASK> <USER_TASK:> Description: def _attach_files(self, files_info): """Attaches info returned by instrument list_files routine to Instrument object. """
if not files_info.empty: if (len(files_info.index.unique()) != len(files_info)): estr = 'WARNING! Duplicate datetimes in provided file ' estr = '{:s}information.\nKeeping one of each '.format(estr) estr = '{:s}of the duplicates, dropping the rest.'.format(estr) print(estr) print(files_info.index.get_duplicates()) idx = np.unique(files_info.index, return_index=True) files_info = files_info.ix[idx[1]] #raise ValueError('List of files must have unique datetimes.') self.files = files_info.sort_index() date = files_info.index[0] self.start_date = pds.datetime(date.year, date.month, date.day) date = files_info.index[-1] self.stop_date = pds.datetime(date.year, date.month, date.day) else: self.start_date = None self.stop_date = None # convert to object type # necessary if Series is empty, enables == checks with strings self.files = files_info.astype(np.dtype('O'))
<SYSTEM_TASK:> Store currently loaded filelist for instrument onto filesystem <END_TASK> <USER_TASK:> Description: def _store(self): """Store currently loaded filelist for instrument onto filesystem"""
name = self.stored_file_name # check if current file data is different than stored file list # if so, move file list to previous file list, store current to file # if not, do nothing stored_files = self._load() if len(stored_files) != len(self.files): # # of items is different, things are new new_flag = True elif len(stored_files) == len(self.files): # # of items equal, check specifically for equality if stored_files.eq(self.files).all(): new_flag = False else: # not equal, there are new files new_flag = True if new_flag: if self.write_to_disk: stored_files.to_csv(os.path.join(self.home_path, 'previous_'+name), date_format='%Y-%m-%d %H:%M:%S.%f') self.files.to_csv(os.path.join(self.home_path, name), date_format='%Y-%m-%d %H:%M:%S.%f') else: self._previous_file_list = stored_files self._current_file_list = self.files.copy() return
<SYSTEM_TASK:> Load stored filelist and return as Pandas Series <END_TASK> <USER_TASK:> Description: def _load(self, prev_version=False): """Load stored filelist and return as Pandas Series Parameters ---------- prev_version : boolean if True, will load previous version of file list Returns ------- pandas.Series Full path file names are indexed by datetime Series is empty if there is no file list to load """
fname = self.stored_file_name if prev_version: fname = os.path.join(self.home_path, 'previous_'+fname) else: fname = os.path.join(self.home_path, fname) if os.path.isfile(fname) and (os.path.getsize(fname) > 0): if self.write_to_disk: return pds.read_csv(fname, index_col=0, parse_dates=True, squeeze=True, header=None) else: # grab files from memory if prev_version: return self._previous_file_list else: return self._current_file_list else: return pds.Series([], dtype='a')
<SYSTEM_TASK:> Remove the data directory path from filenames <END_TASK> <USER_TASK:> Description: def _remove_data_dir_path(self, inp=None): # import string """Remove the data directory path from filenames"""
# need to add a check in here to make sure data_dir path is actually in # the filename if inp is not None: split_str = os.path.join(self.data_path, '') return inp.apply(lambda x: x.split(split_str)[-1])
<SYSTEM_TASK:> Concats two metadata objects together. <END_TASK> <USER_TASK:> Description: def concat(self, other, strict=False): """Concats two metadata objects together. Parameters ---------- other : Meta Meta object to be concatenated strict : bool if True, ensure there are no duplicate variable names Notes ----- Uses units and name label of self if other is different Returns ------- Meta Concatenated object """
mdata = self.copy() # checks if strict: for key in other.keys(): if key in mdata: raise RuntimeError('Duplicated keys (variable names) ' + 'across Meta objects in keys().') for key in other.keys_nD(): if key in mdata: raise RuntimeError('Duplicated keys (variable names) across ' 'Meta objects in keys_nD().') # make sure labels between the two objects are the same other_updated = self.apply_default_labels(other) # concat 1D metadata in data frames to copy of # current metadata # <<<<<<< ho_meta_fix for key in other_updated.keys(): mdata.data.loc[key] = other.data.loc[key] # add together higher order data for key in other_updated.keys_nD(): mdata.ho_data[key] = other.ho_data[key] # ======= # for key in other_updated.keys(): # mdata[key] = other_updated[key] # # add together higher order data # for key in other_updated.keys_nD(): # mdata[key] = other_updated[key] return mdata
<SYSTEM_TASK:> Remove and return metadata about variable <END_TASK> <USER_TASK:> Description: def pop(self, name): """Remove and return metadata about variable Parameters ---------- name : str variable name Returns ------- pandas.Series Series of metadata for variable """
# check if present if name in self: # get case preserved name for variable new_name = self.var_case_name(name) # check if 1D or nD if new_name in self.keys(): output = self[new_name] self.data.drop(new_name, inplace=True, axis=0) else: output = self.ho_data.pop(new_name) return output else: raise KeyError('Key not present in metadata variables')
<SYSTEM_TASK:> Transfer non-standard attributes in Meta to Instrument object. <END_TASK> <USER_TASK:> Description: def transfer_attributes_to_instrument(self, inst, strict_names=False): """Transfer non-standard attributes in Meta to Instrument object. Pysat's load_netCDF and similar routines are only able to attach netCDF4 attributes to a Meta object. This routine identifies these attributes and removes them from the Meta object. Intent is to support simple transfers to the pysat.Instrument object. Will not transfer names that conflict with pysat default attributes. Parameters ---------- inst : pysat.Instrument Instrument object to transfer attributes to strict_names : boolean (False) If True, produces an error if the Instrument object already has an attribute with the same name to be copied. Returns ------- None pysat.Instrument object modified in place with new attributes """
# base Instrument attributes banned = inst._base_attr # get base attribute set, and attributes attached to instance base_attrb = self._base_attr this_attrb = dir(self) # collect these attributes into a dict adict = {} transfer_key = [] for key in this_attrb: if key not in banned: if key not in base_attrb: # don't store _ leading attributes if key[0] != '_': adict[key] = self.__getattribute__(key) transfer_key.append(key) # store any non-standard attributes in Instrument # get list of instrument objects attributes first # to check if a duplicate inst_attr = dir(inst) for key in transfer_key: if key not in banned: if key not in inst_attr: inst.__setattr__(key, adict[key]) else: if not strict_names: # new_name = 'pysat_attr_'+key inst.__setattr__(key, adict[key]) else: raise RuntimeError('Attribute ' + key + 'attached to Meta object can not be ' + 'transferred as it already exists' + ' in the Instrument object.')