Unnamed: 0
int64
0
16k
text_prompt
stringlengths
110
62.1k
code_prompt
stringlengths
37
152k
9,700
Given the following text description, write Python code to implement the functionality described below step by step Description: Critical Radii Step1: As always, let's do imports and initialize a logger and a new Bundle. Step2: Detached Systems Detached systems are the default case for default_binary. The requiv_max parameter is constrained to show the maximum value for requiv before the system will begin overflowing at periastron. Step3: We can see that the default system is well within this critical value by printing all radii and critical radii. Step4: If we increase 'requiv' past the critical point, we'll receive a warning from the logger and would get an error if attempting to call b.run_compute().
Python Code: #!pip install -I "phoebe>=2.4,<2.5" Explanation: Critical Radii: Detached Systems Setup Let's first make sure we have the latest version of PHOEBE 2.4 installed (uncomment this line if running in an online notebook session such as colab). End of explanation import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() Explanation: As always, let's do imports and initialize a logger and a new Bundle. End of explanation b['requiv_max@component@primary'] b['requiv_max@constraint@primary'] Explanation: Detached Systems Detached systems are the default case for default_binary. The requiv_max parameter is constrained to show the maximum value for requiv before the system will begin overflowing at periastron. End of explanation print(b.filter(qualifier='requiv*', context='component')) Explanation: We can see that the default system is well within this critical value by printing all radii and critical radii. End of explanation b['requiv@primary'] = 2.2 print(b.run_checks()) Explanation: If we increase 'requiv' past the critical point, we'll receive a warning from the logger and would get an error if attempting to call b.run_compute(). End of explanation
9,701
Given the following text description, write Python code to implement the functionality described below step by step Description: Clustering with K-means In the unsupervised setting, one of the most straightforward tasks we can perform is to find groups of data instances which are similar between each other. We call such groups of data points clusters. We position ourselves in the setting where we have access to a dataset $D$ that consists of instances $x \in \mathbb{R}^n$. For example, if our instances have two features $x_1$ and $x_2$ we are in the $\mathbb{R}^2$ space. For simplicity and visualization purposes in this session, we assume our data to be 2-dimensional. That said, the method (as well as the implementation) generalizes to more dimensions in a straightforward way. $k$-Means is one of the most popular and representative "clustering" algorithms. $k$-means stores $k$ centroids, that is points in the $n$-dimensional space which are then used to define clusters. A point is considered to be in a particular cluster if it is closer to that cluster's centroid than any other centroid. The optimization algorithm The most common algorithm uses an iterative refinement technique. $k$-means is a ubiquitous case of the Expectation Maximization algorithm for clustering; it is also referred to as Lloyd's algorithm. Given an initial set of $k$ centroids $m_1(1), \ldots, m_k(1)$ , the algorithm proceeds by alternating between two steps Step1: Visualisation with PCA Wikipedia Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. The number of distinct principal components is equal to the smaller of the number of original variables or the number of observations minus one. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. Basically we will only use PCA for a visualisation purpose. Our goal is to get a 2D visualisation of a 5717-dimensional dataset. Just keep in mind that PCA relies on the assumption that the data are linearly separable, but it's not always the case! TO DO Step2: Running K-means We are now ready to run Kmeans! To this end, we will use the implementation given by scikit learn. As for the previous session, we first initialise the algorithm then fit it to our data. TO DO Step3: Initialisation Step4: How to set k ? The Elbow method The Elbow method is a method of interpretation and validation of consistency within cluster analysis designed to help finding the appropriate number of clusters in a dataset. This method looks at the percentage of variance explained as a function of the number of clusters. One should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. If one plots the percentage of variance explained by the clusters against the number of clusters the first clusters will add much information (explain a lot of variance), but at some point the marginal gain in explained variance will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the "elbow criterion" Step6: Gap Statistic The Gap Statistic was developped by reasearchers from stanford, and relies on the variation of the within-cluster variation. To have more details, you To compute it we will use the implementation of https Step7: What about mixture model ? In the probabilistic framework of mixture models, we assume that the data are generated according to a mixture of probability density functions, with cluster-specific parameters. $$ p(x,\theta) = \sum_k \pi_k f(x,\theta_k)$$ where, $\pi_k$ can be interpreted as the proportion of each cluster and $\theta_k$ is the set of parameters. For instance, in the case of a Gaussian mixture we have $\theta_k = (\mu_k,\sigma_k)$. Then, the goal is to estimate the set of parameters $\theta_k$ and to compute the partition of the objects which is assumed to a hidden variable of the model.
Python Code: import pandas as pd import numpy as np df = pd.read_csv('NAm2.txt', sep=" ") print(df.head()) print(df.shape) # List of populations/tribes tribes = df.Pop.unique() country = df.Country.unique() print(tribes) print(country) # The features that we need for clustering starts from the 9th one # Subset of the dataframe df_micro = df.iloc[0:494,8:5717] df_micro.shape Explanation: Clustering with K-means In the unsupervised setting, one of the most straightforward tasks we can perform is to find groups of data instances which are similar between each other. We call such groups of data points clusters. We position ourselves in the setting where we have access to a dataset $D$ that consists of instances $x \in \mathbb{R}^n$. For example, if our instances have two features $x_1$ and $x_2$ we are in the $\mathbb{R}^2$ space. For simplicity and visualization purposes in this session, we assume our data to be 2-dimensional. That said, the method (as well as the implementation) generalizes to more dimensions in a straightforward way. $k$-Means is one of the most popular and representative "clustering" algorithms. $k$-means stores $k$ centroids, that is points in the $n$-dimensional space which are then used to define clusters. A point is considered to be in a particular cluster if it is closer to that cluster's centroid than any other centroid. The optimization algorithm The most common algorithm uses an iterative refinement technique. $k$-means is a ubiquitous case of the Expectation Maximization algorithm for clustering; it is also referred to as Lloyd's algorithm. Given an initial set of $k$ centroids $m_1(1), \ldots, m_k(1)$ , the algorithm proceeds by alternating between two steps: Assignment step: Assign each observation to the cluster whose mean yields the least within-cluster sum of squares (WCSS). Since the sum of squares is the squared Euclidean distance, this is intuitively the "nearest" mean. Update step: Calculate the new means to be the centroids of the observations in the new clusters. Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster sum of squares (WCSS) objective. The algorithm has converged when the assignments no longer change. Since both steps optimize the WCSS objective, and there only exists a finite number of such partitionings, the algorithm must converge to a (local) optimum. There is no guarantee that the global optimum is found using this algorithm. The algorithm is often presented as assigning objects to the nearest cluster by distance. The standard algorithm aims at minimizing the WCSS objective, and thus assigns by "least sum of squares", which is exactly equivalent to assigning by the smallest Euclidean distance. Using a different distance function other than (squared) Euclidean distance may stop the algorithm from converging. Illustration of training To make it easier to understand, the figure belows illustrates the process. The figure depicts the k-means algorithm (Images courtesy of Michael Jordan and adapted from http://stanford.edu/~cpiech/cs221/handouts/kmeans.html). The training examples are shown as dots, and the cluster centroids are shown as crosses. (a) the dataset, (b) random initial cluster centroids -- one may initialize the algorithm using data points as centroids also, (c-f) illustration of running two iterations of k-means. In each iteration, we assign each training example to the closest cluster centroid (shown by "painting" the training examples the same color as the cluster centroid to which is assigned); then we move each cluster centroid to the mean of the points assigned to it. Today Our goal today, is to run K-means on a real dataset. This dataset was first created to study genetic diversity accross America and consists of 494 individuals coming from 27 different tribes (across 10 countries). These individuals are described by their genetic profil in terms of micro-satellites. In addition we have information about the precise location of the tribes, given by the latitude and longitude features. TO DO : Import the data * import the data NAm2.txt using pandas dataframe that you will name df. * print the first line of df and its dimension * Create two lists containing the name of the tribes (Pop) and the country (Country). -> see unique() from pandas Pre-processing * create a subset of df by only keeping genetic features. This new dataframe is name df_micro. * do you need to scale the data? End of explanation from sklearn.decomposition import PCA pca = PCA(n_components=2) Y_sklearn = pca.fit(df_micro) projected = pca.fit_transform(df_micro) import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10, 6) plt.scatter(projected[:, 0], projected[:, 1], c=df.Pop.astype('category').cat.codes, edgecolor='none', alpha=0.5, cmap=plt.cm.get_cmap('nipy_spectral', 10)) plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar(); Explanation: Visualisation with PCA Wikipedia Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. The number of distinct principal components is equal to the smaller of the number of original variables or the number of observations minus one. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. Basically we will only use PCA for a visualisation purpose. Our goal is to get a 2D visualisation of a 5717-dimensional dataset. Just keep in mind that PCA relies on the assumption that the data are linearly separable, but it's not always the case! TO DO : execute the following code! End of explanation from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=10) res = kmeans.fit(df_micro) labels = res.labels_ res.cluster_centers_ plt.scatter(projected[:, 0], projected[:, 1], c=labels, edgecolor='none', alpha=0.5, cmap=plt.cm.get_cmap('nipy_spectral', 10)) plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar(); Explanation: Running K-means We are now ready to run Kmeans! To this end, we will use the implementation given by scikit learn. As for the previous session, we first initialise the algorithm then fit it to our data. TO DO : * run Kmeans and set the number of clusters to 10 * describe the obtained labels (distribution of objects among them) * print the obtained centroids * use the pca plot to visualise the labels obtained with Kmeans. To this end, you just need to change the parameters c in the previous scatter plot and to replace the current one with the obtained labels. End of explanation from sklearn import metrics # 1 random initisalition kmeans = KMeans(n_clusters=10, init='random') res = kmeans.fit(df_micro) label_1 = res.labels_ centroids_1 = res.cluster_centers_ kmeans = KMeans(n_clusters=10, init='random') res = kmeans.fit(df_micro) label_2 = res.labels_ centroids_2 = res.cluster_centers_ metrics.adjusted_rand_score(label_1, label_2) # 50 random initialisations kmeans = KMeans(n_clusters=10, init='random', n_init=50) res = kmeans.fit(df_micro) label_1 = res.labels_ centroids_1 = res.cluster_centers_ kmeans = KMeans(n_clusters=10, init='random',n_init=50) res = kmeans.fit(df_micro) label_2 = res.labels_ centroids_2 = res.cluster_centers_ metrics.adjusted_rand_score(label_1, label_2) # 50 initisalition and improve strategy kmeans = KMeans(n_clusters=10, init='k-means++', n_init=50) res = kmeans.fit(df_micro) label_1 = res.labels_ centroids_1 = res.cluster_centers_ kmeans = KMeans(n_clusters=10, init='k-means++',n_init=50) res = kmeans.fit(df_micro) label_2 = res.labels_ centroids_2 = res.cluster_centers_ metrics.adjusted_rand_score(label_1, label_2) Explanation: Initialisation : be careful! The initialisation step requires the to set the number of clusters K. To this end, one can either use a priori information and set it manually but there also exists several approach to determine it, including for instance, the Elbow method and the Gap Statistic. In addition one need to initialise the centroid. Commonly used initialization methods are Forgy and Random Partition. The Forgy method randomly chooses $k$ observations from the data set and uses them as the initial means. The Random Partition method first randomly assigns a cluster to each observation and then proceeds to the update step, thus computing the initial mean to be the centroid of the cluster's randomly assigned points. The Forgy method tends to spread the initial means out, while Random Partition places all of them close to the center of the data set. For expectation maximization and standard k-means algorithms, the Forgy method of initialization is preferable. TO DO : * run Kmeans twice (with K=10 to speed up things) on the df_micro data with random intialisations then compare the obtained labels from both runs with the adjusted rand index from the metric library (available in sklearn). same than before but this time set the number of initialisation to 50. swith the initialisation method to Kmeans++ and run previous experiments once again End of explanation cluster_range = range(1,50) cluster_errors = [] for num_clusters in cluster_range: clust = KMeans(n_clusters=num_clusters, random_state=0, n_init=10) clust.fit(df_micro) cluster_errors.append(clust.inertia_) clusters_df = pd.DataFrame( { "num_clusters":cluster_range, "cluster_errors": cluster_errors } ) clusters_df[0:10] plt.figure(figsize=(12,6)) plt.plot( clusters_df.num_clusters, clusters_df.cluster_errors, marker = "o" ) Explanation: How to set k ? The Elbow method The Elbow method is a method of interpretation and validation of consistency within cluster analysis designed to help finding the appropriate number of clusters in a dataset. This method looks at the percentage of variance explained as a function of the number of clusters. One should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. If one plots the percentage of variance explained by the clusters against the number of clusters the first clusters will add much information (explain a lot of variance), but at some point the marginal gain in explained variance will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the "elbow criterion" End of explanation def optimalK(data, nrefs=3, maxClusters=15): Calculates KMeans optimal K using Gap Statistic from Tibshirani, Walther, Hastie Params: data: ndarry of shape (n_samples, n_features) nrefs: number of sample reference datasets to create maxClusters: Maximum number of clusters to test for Returns: (gaps, optimalK) gaps = np.zeros((len(range(1, maxClusters)),)) resultsdf = pd.DataFrame({'clusterCount':[], 'gap':[]}) for gap_index, k in enumerate(range(1, maxClusters)): # Holder for reference dispersion results refDisps = np.zeros(nrefs) # For n references, generate random sample and perform kmeans getting resulting dispersion of each loop for i in range(nrefs): # Create new random reference set randomReference = np.random.random_sample(size=data.shape) # Fit to it km = KMeans(k) km.fit(randomReference) refDisp = km.inertia_ refDisps[i] = refDisp # Fit cluster to original data and create dispersion km = KMeans(k) km.fit(data) origDisp = km.inertia_ # Calculate gap statistic gap = np.log(np.mean(refDisps)) - np.log(origDisp) # Assign this loop's gap statistic to gaps gaps[gap_index] = gap resultsdf = resultsdf.append({'clusterCount':k, 'gap':gap}, ignore_index=True) return (gaps.argmax() + 1, resultsdf) # Plus 1 because index of 0 means 1 cluster is optimal, index 2 = 3 clusters are optimal k, gapdf = optimalK(df_micro, nrefs=5, maxClusters=30) print ('Optimal k is: ', k) plt.plot(gapdf.clusterCount, gapdf.gap, linewidth=3) plt.scatter(gapdf[gapdf.clusterCount == k].clusterCount, gapdf[gapdf.clusterCount == k].gap, s=250, c='r') plt.xlabel('Cluster Count') plt.ylabel('Gap Value') plt.title('Gap Values by Cluster Count') plt.show() Explanation: Gap Statistic The Gap Statistic was developped by reasearchers from stanford, and relies on the variation of the within-cluster variation. To have more details, you To compute it we will use the implementation of https://github.com/milesgranger/gap_statistic TO DO * Install the library gap statistic * Run the optimalK function on df_micro with a maximum number of clusters set to 30 End of explanation # 1 run of the Gaussian mixture models from sklearn import mixture gmm = mixture.GaussianMixture(n_components=10).fit(df_micro) labels_gmm = gmm.predict(df_micro) Explanation: What about mixture model ? In the probabilistic framework of mixture models, we assume that the data are generated according to a mixture of probability density functions, with cluster-specific parameters. $$ p(x,\theta) = \sum_k \pi_k f(x,\theta_k)$$ where, $\pi_k$ can be interpreted as the proportion of each cluster and $\theta_k$ is the set of parameters. For instance, in the case of a Gaussian mixture we have $\theta_k = (\mu_k,\sigma_k)$. Then, the goal is to estimate the set of parameters $\theta_k$ and to compute the partition of the objects which is assumed to a hidden variable of the model. End of explanation
9,702
Given the following text description, write Python code to implement the functionality described below step by step Description: Training a machine learning model with scikit-learn From the video series Step1: scikit-learn 4-step modeling pattern Step 1 Step2: Step 2 Step3: Name of the object does not matter Can specify tuning parameters (aka "hyperparameters") during this step All parameters not specified are set to their defaults Step4: Step 3 Step5: Step 4 Step6: Returns a NumPy array Can predict for multiple observations at once Step7: Using a different value for K Step8: Using a different classification model
Python Code: # import load_iris function from datasets module from sklearn.datasets import load_iris # save "bunch" object containing iris dataset and its attributes iris = load_iris() # store feature matrix in "X" X = iris.data # store response vector in "y" y = iris.target # print the shapes of X and y print X.shape print y.shape Explanation: Training a machine learning model with scikit-learn From the video series: Introduction to machine learning with scikit-learn jupyter notebook 04_model_training.ipynb Agenda What is the K-nearest neighbors classification model? What are the four steps for model training and prediction in scikit-learn? How can I apply this pattern to other machine learning models? K-nearest neighbors (KNN) classification Pick a value for K. Search for the K observations in the training data that are "nearest" to the measurements of the unknown iris. Use the most popular response value from the K nearest neighbors as the predicted response value for the unknown iris. Example training data KNN classification map (K=1) KNN classification map (K=5) Image Credits: Data3classes, Map1NN, Map5NN by Agor153. Licensed under CC BY-SA 3.0 Loading the data End of explanation from sklearn.neighbors import KNeighborsClassifier Explanation: scikit-learn 4-step modeling pattern Step 1: Import the class you plan to use End of explanation knn = KNeighborsClassifier(n_neighbors=1) Explanation: Step 2: "Instantiate" the "estimator" "Estimator" is scikit-learn's term for model "Instantiate" means "make an instance of" End of explanation print knn Explanation: Name of the object does not matter Can specify tuning parameters (aka "hyperparameters") during this step All parameters not specified are set to their defaults End of explanation knn.fit(X, y) Explanation: Step 3: Fit the model with data (aka "model training") Model is learning the relationship between X and y Occurs in-place End of explanation print(knn.predict([[3, 5, 4, 2]])) Explanation: Step 4: Predict the response for a new observation New observations are called "out-of-sample" data Uses the information it learned during the model training process End of explanation X_new = [[3, 5, 4, 2], [5, 4, 3, 2]] knn.predict(X_new) Explanation: Returns a NumPy array Can predict for multiple observations at once End of explanation # instantiate the model (using the value K=5) knn = KNeighborsClassifier(n_neighbors=5) # fit the model with data knn.fit(X, y) # predict the response for new observations knn.predict(X_new) Explanation: Using a different value for K End of explanation # import the class from sklearn.linear_model import LogisticRegression # instantiate the model (using the default parameters) logreg = LogisticRegression() # fit the model with data logreg.fit(X, y) # predict the response for new observations logreg.predict(X_new) Explanation: Using a different classification model End of explanation
9,703
Given the following text description, write Python code to implement the functionality described below step by step Description: 통계적 사고 (2판) 연습문제 (thinkstats2.com, think-stat.xwmooc.org)<br> Allen Downey / 이광춘(xwMOOC) Step1: <tt>birthord</tt>에 대한 빈도수를 출력하고 codebook 게시된 결과값과 비교하시오. Step2: <tt>prglngth</tt>에 대한 빈도수를 출력하고 codebook 게시된 결과값과 비교하시오. Step3: <tt>agepreg</tt>에 대한 빈도수를 출력하고 codebook에 게시된 결과값과 비교하시오. 이 데이터를 살펴보고, 응답자에 대한 존경과 맥락을 고려해서 데이터에 접근하는에 필요한 의무에 관해서 저자가 언급한 논평을 기억하라. Step4: 평균 출생체중(birthweight)을 계산하시오. Step5: 킬로그램으로 출생체중 정보를 담는 <tt>totalwgt_kg</tt>로 불리는 새로운 칼럼을 생성하라. 평균도 계산하시오. 새로운 칼럼을 생성할 때, 점표기법이 아닌 딕셔너리 구문을 사용하는 것을 기억하라. Step6: 코드북(codebook)을 살펴보고 책에서 언급된 것이 아닌 본인이 관심있는 변수를 찾아내라. 그리고 그 변수의 빈도수, 평균, 다른 통계량을 계산하시오. Step7: 부울 시리즈(boolean Series)를 생성하시오. Step8: 부울 시리즈를 사용해서 정상출산 임신에 대한 레코드를 선택하시오. Step9: <tt>birthwgt_lb</tt> 변수에 0 에서 5 파운드(0과 5도 모두 포함) 사이 정상출산 빈도수를 계산하시오. 결과는 1125 가 되어야만 된다. Step10: <tt>birthwgt_lb</tt> 변수에 9 에서 95 파운드(9과 95도 모두 포함) 사이 정상출산 빈도수를 계산하시오. 결과는 798 가 되어야만 된다. Step11: <tt>birthord</tt> 변수를 사용해서, 첫번째 아이와 첫째가 아닌 아이에 대한 레코드를 선택하시오. 첫번째 아이와 첫째가 아닌 아이는 얼마나 되는가? Step12: 첫번째 아이와 첫째가 아닌 아이에 대한 평균 체중을 계산하시오. Step13: 변수 <tt>prglngth</tt>으로 첫째 아이와 첫째가 아닌 아이에 대한 평균임신기간을 계산하시오. 시간으로 표시된, 평균에 차이를 계산하시오.
Python Code: import nsfg df = nsfg.ReadFemPreg() df Explanation: 통계적 사고 (2판) 연습문제 (thinkstats2.com, think-stat.xwmooc.org)<br> Allen Downey / 이광춘(xwMOOC) End of explanation df.birthord.value_counts().sort_index() Explanation: <tt>birthord</tt>에 대한 빈도수를 출력하고 codebook 게시된 결과값과 비교하시오. End of explanation df.prglngth.value_counts().sort_index() Explanation: <tt>prglngth</tt>에 대한 빈도수를 출력하고 codebook 게시된 결과값과 비교하시오. End of explanation df.agepreg.value_counts().sort_index() Explanation: <tt>agepreg</tt>에 대한 빈도수를 출력하고 codebook에 게시된 결과값과 비교하시오. 이 데이터를 살펴보고, 응답자에 대한 존경과 맥락을 고려해서 데이터에 접근하는에 필요한 의무에 관해서 저자가 언급한 논평을 기억하라. End of explanation df.totalwgt_lb.mean() Explanation: 평균 출생체중(birthweight)을 계산하시오. End of explanation df['totalwgt_kg'] = df.totalwgt_lb / 2.2 df.totalwgt_kg.mean() Explanation: 킬로그램으로 출생체중 정보를 담는 <tt>totalwgt_kg</tt>로 불리는 새로운 칼럼을 생성하라. 평균도 계산하시오. 새로운 칼럼을 생성할 때, 점표기법이 아닌 딕셔너리 구문을 사용하는 것을 기억하라. End of explanation df.columns Explanation: 코드북(codebook)을 살펴보고 책에서 언급된 것이 아닌 본인이 관심있는 변수를 찾아내라. 그리고 그 변수의 빈도수, 평균, 다른 통계량을 계산하시오. End of explanation print('Count:', df.npostsmk.value_counts().sort_index()) ## 임신기간동안 흡연 print('Mean:', df.npostsmk.mean()) Explanation: 부울 시리즈(boolean Series)를 생성하시오. End of explanation live = df[df.outcome == 1] len(live) Explanation: 부울 시리즈를 사용해서 정상출산 임신에 대한 레코드를 선택하시오. End of explanation len(live[(live.birthwgt_lb >= 0) & (live.birthwgt_lb <= 5)]) Explanation: <tt>birthwgt_lb</tt> 변수에 0 에서 5 파운드(0과 5도 모두 포함) 사이 정상출산 빈도수를 계산하시오. 결과는 1125 가 되어야만 된다. End of explanation len(live[(live.birthwgt_lb >=9)&(live.birthwgt_lb <=95)]) Explanation: <tt>birthwgt_lb</tt> 변수에 9 에서 95 파운드(9과 95도 모두 포함) 사이 정상출산 빈도수를 계산하시오. 결과는 798 가 되어야만 된다. End of explanation firsts = df[df.birthord==1] others = df[df.birthord>1] len(firsts), len(others) Explanation: <tt>birthord</tt> 변수를 사용해서, 첫번째 아이와 첫째가 아닌 아이에 대한 레코드를 선택하시오. 첫번째 아이와 첫째가 아닌 아이는 얼마나 되는가? End of explanation firsts.totalwgt_lb.mean() others.totalwgt_lb.mean() Explanation: 첫번째 아이와 첫째가 아닌 아이에 대한 평균 체중을 계산하시오. End of explanation print('Firsts Mean: ', firsts.prglngth.mean()) print('Others Mean: ', others.prglngth.mean()) print('Diff: ', firsts.prglngth.mean()-others.prglngth.mean()) Explanation: 변수 <tt>prglngth</tt>으로 첫째 아이와 첫째가 아닌 아이에 대한 평균임신기간을 계산하시오. 시간으로 표시된, 평균에 차이를 계산하시오. End of explanation
9,704
Given the following text description, write Python code to implement the functionality described below step by step Description: Examples of @map_e, @fmap_e and map_element This notebook had examples of map from IoTPy/IoTPy/agent_types/op.py You can create an agent that maps an input stream to an output stream using map_element, or the decorators @map_e or @fmap_e. Note Step1: Specify streams <b>x = Stream('x')</b> <br> specifies a stream x called 'x'. Specify terminating function that is wrapped to create non-terminating agent <b>def f(v) Step2: Example illustrating the decorator @map_e The undecorated function f takes a single argument and returns a single value. The decorated function f has two arguments, an in_stream and an out_stream, and may have additional keyword arguments. Step3: Example illustrating the decorator @fmap_e This is the functional form of @map_e The output stream y doesn't have to be declared. f(x) creates and returns a stream. Step4: Building Networks of Agents by Connecting Output Streams to Input Streams You can build networks of agents by connecting the output stream of agents to input streams of agents as shown in the next example. Step5: A Network of Agents is an Agent You can use functions, in the usual way, to specify a function consisting of a network of agents. This function is itself a persistent agent Step6: Function Composition of Agents You can use fmap_e for a functional form, e.g., g(f(x)) in the exampe below. Step7: Keyword arguments of an Agent (Note Step8: State of an Agent The agent saves its state between successive calls to its wrapped function. In the next example, the function f has two arguments, an input element and the state. The function may have additional keyword arguments. The function returns an output element and the next state. The initial state is specified in the call to map_element. In this example, the initial state is 0 because of the call map_element(func=f, in_stream=x, out_stream=y, state=0). Note that the call to map_element must have the keyword argument 'state'. Example Step9: Example of decorator @map_e with state Step10: Example of function composition using decorator @fmap_e Step11: Agents with both State and Keyword Arguments The function that is encapsulated can have both state and additional keyword arguments. Note that the call to map_element must have keyword arguments 'state' and the additional keywords. In the following example the call to map_element specifies the initial state (state=0) and the value of the keyword argument (POWER=2). Step12: Saving the State of an Agent in an Argument of the Function In the following example, the state of the agent is stored in a dict, s. The output of the example is the Fibonacci sequence. In this example, s[0] is the next output of the sequence and s[1] is the element following s[0]. Step13: Storing the State and Arguments of an Agent in a Class The next example shows how you can save the state and arguments in a class. In this example, the state is running_sum which is the sum of the values read on the input stream, and multiplicand is an argument.
Python Code: import os import sys sys.path.append("../") from IoTPy.core.stream import Stream, run from IoTPy.agent_types.op import map_element from IoTPy.helper_functions.recent_values import recent_values Explanation: Examples of @map_e, @fmap_e and map_element This notebook had examples of map from IoTPy/IoTPy/agent_types/op.py You can create an agent that maps an input stream to an output stream using map_element, or the decorators @map_e or @fmap_e. Note: The function map_element and the decorators @map_e and @fmap_e are essentially equivalent. Use the form that you find convenient. End of explanation def simple_example_of_map_element(): # Specify encapsulated functions def f(v): return v+10 # Specify streams x = Stream('x') y = Stream('y') # Create agent with input stream x and output stream y. map_element(func=f, in_stream=x, out_stream=y) # y[n] = f(x[n]) # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) simple_example_of_map_element() Explanation: Specify streams <b>x = Stream('x')</b> <br> specifies a stream x called 'x'. Specify terminating function that is wrapped to create non-terminating agent <b>def f(v): return 2 * v </b> <br> takes a single input argument, <i>v</i> returns a single value --- <i>2*v</i> and terminates. Create a non-terminating agent that wraps f and reads stream x and extends stream y. <b>y[n] = f(x[n]), all n</b> <br> <b>map_element(func=f, in_stream=x, out_stream=y)</b> Example of map_element End of explanation from IoTPy.agent_types.basics import map_e def simple_example_of_map_e(): # Decorate terminating function to specify non-terminating agent. @map_e def f(v): return v + 10 # Specify streams x = Stream(name='x') y = Stream(name='y') # Create agent with input stream x and output stream y f(in_stream=x, out_stream=y) # y[n] = x[n]+10 # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) simple_example_of_map_e() Explanation: Example illustrating the decorator @map_e The undecorated function f takes a single argument and returns a single value. The decorated function f has two arguments, an in_stream and an out_stream, and may have additional keyword arguments. End of explanation from IoTPy.agent_types.basics import fmap_e def simple_example_of_fmap_e(): # Specify streams x = Stream('x') # Decorate terminating function to specify non-terminating agent. @fmap_e def f(v): return v+10 # Create agent with input stream x and output stream y y=f(x) # y[n] = x[n]+10 # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) simple_example_of_fmap_e() Explanation: Example illustrating the decorator @fmap_e This is the functional form of @map_e The output stream y doesn't have to be declared. f(x) creates and returns a stream. End of explanation def example_of_concatentation_with_map_element(): # Specify streams. x = Stream('x') y = Stream('y') w = Stream('w') # Specify encapsulated functions def f(v): return v+10 def g(w): return w*2 # Create agent with input stream x and output stream w. map_element(func=f, in_stream=x, out_stream=w) # y[n] = x[n]+10 # Create agent with input stream w and output stream y map_element(func=g, in_stream=w, out_stream=y) # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_concatentation_with_map_element() Explanation: Building Networks of Agents by Connecting Output Streams to Input Streams You can build networks of agents by connecting the output stream of agents to input streams of agents as shown in the next example. End of explanation def example_of_network_of_agents_is_an_agent(): # Specify an agent h with is a network of two agents # h has an input stream x, and an output stream y. def h(x, y): # Specify encapsulated functions local to h def f(v): return v+10 def g(w): return w*2 # Specify an internal stream of h w = Stream('w') # Specify agents local to h map_element(f, x, w) map_element(g, w, y) # Specify streams. x = Stream('x') y = Stream('y') # Create agent h which is a network of agents h(x, y) # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_network_of_agents_is_an_agent() Explanation: A Network of Agents is an Agent You can use functions, in the usual way, to specify a function consisting of a network of agents. This function is itself a persistent agent: It reads its input streams and extends its output streams. In the example below, we specify an agent h with two parameters, x and y, where x is an input stream and y is an output stream. Agent h is composed of two agents --- map_element(f, x, w) and map_element(g, w, y). End of explanation def example_of_concatenating_fmap_e(): # Specify streams x = Stream('x') # Decorate terminating function to specify non-terminating agent. @fmap_e def f(v): return v+10 @fmap_e def g(w): return w * 2 # Create agent with input stream x and output stream y y=g(f(x)) # y[n] = (v+10)*2 # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_concatenating_fmap_e() Explanation: Function Composition of Agents You can use fmap_e for a functional form, e.g., g(f(x)) in the exampe below. End of explanation def example_of_keyword_arg_with_map_element(): # Specify streams x = Stream('x') y = Stream('y') # Specify encapsulated functions # This function operates on a variable v and has an # additional argument ADDEND which will be a keyword # argument to specify the agent. def add_constant(v, ADDEND): return v + ADDEND # Specify agents with keyword arguments map_element(func=add_constant, in_stream=x, out_stream=y, ADDEND=10) # y[n] = x[n] + 10 # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_keyword_arg_with_map_element() def example_of_keyword_arg_with_map_e(): # Specify streams x = Stream('x') y = Stream('y') # Decorate terminating function to specify non-terminating agent. @map_e def add_constant(v, ADDEND): return v + ADDEND # Create agent with input stream x and output stream y with keyword # argument add_constant(in_stream=x, out_stream=y, ADDEND=10) # y[n] = x[n] + 10 # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_keyword_arg_with_map_e() Explanation: Keyword arguments of an Agent (Note: You can also use a class to store keyword arguments and the state.) In the example below, the function add_constant has two parameters, v and ADDEND where v is an element of the input stream of the agent and ADDEND is a keyword parameter. The function returns a single value which is an element of the output stream of the agent. The call to map_element must have the keyword parameter, ADDEND. End of explanation def example_of_state_with_map_element(): # Specify encapsulated functions def f(input_element, state): next_output = input_element - state next_state = input_element return next_output, next_state # Specify streams x = Stream(name='x') y = Stream(name='y') # Create agents with input stream x and output stream y # and initial state of 0 map_element(func=f, in_stream=x, out_stream=y, state=0) # state[0] = 0, state[n+1] = x[n] # y[0] = x[0], y[n+1] = x[n+1] - x[n] # Put test values in the input streams. x.extend([10, 20, 40, 80]) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_map_element() Explanation: State of an Agent The agent saves its state between successive calls to its wrapped function. In the next example, the function f has two arguments, an input element and the state. The function may have additional keyword arguments. The function returns an output element and the next state. The initial state is specified in the call to map_element. In this example, the initial state is 0 because of the call map_element(func=f, in_stream=x, out_stream=y, state=0). Note that the call to map_element must have the keyword argument 'state'. Example: map_element with state End of explanation def example_of_state_with_map_e(): # Decorate encapsulated functions @map_e def f(input_element, state): next_output = input_element - state next_state = input_element return next_output, next_state # Specify streams x = Stream(name='x') y = Stream(name='y') # Create agents with input stream x and output stream y # and initial state of 0 f(in_stream=x, out_stream=y, state=0) # state[0] = 0, state[n+1] = x[n] - state[n] # y[0] = x[0], y[n+1] = x[n+1] - x[n] # Put test values in the input streams. x.extend([10, 20, 40, 80]) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_map_e() Explanation: Example of decorator @map_e with state End of explanation def example_of_state_with_concatenation_of_fmap_e(): # Decorate encapsulated functions @fmap_e def f(input_element, state): next_output = input_element - state next_state = input_element return next_output, next_state @fmap_e def g(v): return v*2 # Specify streams x = Stream('x') # Create agents with input stream x and output stream y # and initial state of 0 # Example of function composition y = g(f(x, state=0)) # state[0] = 0, state[n+1] = x[n] - state[n] # y[0] = x[0], y[n+1] = x[n+1] - x[n] # Put test values in the input streams. x.extend([10, 20, 40, 80]) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_concatenation_of_fmap_e() Explanation: Example of function composition using decorator @fmap_e End of explanation def example_of_state_with_keyword_arg_with_map_element(): # Specify streams x = Stream(name='x') y = Stream(name='y') # Specify encapsulated functions def f(input_element, state, POWER): next_output = input_element**POWER + state next_state = input_element + state return next_output, next_state # Create agents with input stream x and output stream y # and initial state of 0, and keyword arg POWER with value 2. map_element(func=f, in_stream=x, out_stream=y, state=0, POWER=2) # state[0] = 0, state[n+1] = x[0] + ... + x[n] # y[0] = x[0]**2, y[n+1] = x[n+1]**2 + state[n] # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_keyword_arg_with_map_element() def example_of_state_with_keyword_arg_with_map_e(): # Specify streams x = Stream(name='x') y = Stream(name='y') # Decorate encapsulated functions @map_e def f(input_element, state, POWER): next_output = input_element**POWER + state next_state = input_element + state return next_output, next_state # Create agents with input stream x and output stream y # and initial state of 0, and keyword arg POWER with value 2. f(in_stream=x, out_stream=y, state=0, POWER=2) # state[0] = 0, state[n+1] = x[0] + ... + x[n] # y[0] = x[0]**2, y[n+1] = x[n+1]**2 + state[n] # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_keyword_arg_with_map_e() def example_of_state_with_keyword_arg_with_fmap_e(): # Specify streams x = Stream('x') # Decorate encapsulated functions @fmap_e def f(input_element, state, POWER): next_output = input_element**POWER + state next_state = input_element + state return next_output, next_state # Create agents with input stream x and output stream y # and initial state of 0, and keyword arg POWER with value 2. y = f(x, state=0, POWER=2) # state[0] = 0, state[n+1] = x[0] + ... + x[n] # y[0] = x[0]**2, y[n+1] = x[n+1]**2 + state[n] # Put test values in the input streams. x.extend(list(range(5))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) example_of_state_with_keyword_arg_with_fmap_e() Explanation: Agents with both State and Keyword Arguments The function that is encapsulated can have both state and additional keyword arguments. Note that the call to map_element must have keyword arguments 'state' and the additional keywords. In the following example the call to map_element specifies the initial state (state=0) and the value of the keyword argument (POWER=2). End of explanation def example_of_saving_state_in_argument(): # Specify streams x = Stream('x') y = Stream('y') s = {'a':0, 'b':1} # Specify encapsulated functions def f(v, s): final, prefinal = s['a'], s['b'] post_final = final + prefinal # In the next state: prefinal becomes final # final becomes next_output s['a'], s['b'] = post_final, final return final # Create agent with input stream x and output stream y and # keyword argument s map_element(f, x, y, s=s) # Put test values in the input stream. # The values of x aren't relevant in this example # because they merely drive the next step of the agent. x.extend(list(range(10))) # Execute a step run() # Look at recent values of streams. print ('recent values of stream y are') print (recent_values(y)) assert recent_values(y) == [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] example_of_saving_state_in_argument() Explanation: Saving the State of an Agent in an Argument of the Function In the following example, the state of the agent is stored in a dict, s. The output of the example is the Fibonacci sequence. In this example, s[0] is the next output of the sequence and s[1] is the element following s[0]. End of explanation def example_class_to_save_state_and_args(): class example(object): def __init__(self, multiplicand): self.multiplicand = multiplicand self.running_sum = 0 def step(self, v): result = v * self.multiplicand + self.running_sum self.running_sum += v return result x = Stream() y = Stream() eg = example(multiplicand=2) map_element(func=eg.step, in_stream=x, out_stream=y) x.extend(list(range(5))) run() print ('recent values of stream y are') print (recent_values(y)) example_class_to_save_state_and_args() from IoTPy.agent_types.op import filter_element def examples_filter_element(): x = Stream('x') #---------------------------------------------------------------- # Filter to only have even numbers #---------------------------------------------------------------- even = Stream() filter_element(func=lambda v: not v%2, in_stream=x, out_stream=even) # Example: If x = [0, 1, 2, 3, ... ] then y is [0, 2, 4, ...] #---------------------------------------------------------------- # Filter to only have odd numbers #---------------------------------------------------------------- odd = Stream() filter_element(func=lambda v: v%2, in_stream=x, out_stream=odd) #---------------------------------------------------------------- # Filter to only have negative numbers #---------------------------------------------------------------- neg = Stream('negative') filter_element(func=lambda v: v < 0, in_stream=x, out_stream=neg) #---------------------------------------------------------------- # Filter to only have non_negativenumbers #---------------------------------------------------------------- non_neg = Stream('non_negative') filter_element(func=lambda v: v >= 0, in_stream=x, out_stream=non_neg) #---------------------------------------------------------------- # filter_element with state and no additional arguments #---------------------------------------------------------------- def less_than_n(v, state): next_output_element = (v <= state) next_state = state+1 return next_output_element, next_state y = Stream('y') less = Stream() filter_element(func=less_than_n, in_stream=y, out_stream=less, state=0) # State on j-th step is j. # less_than_n(v, state) returns (v < j) on the j-th step. # less filters out all elements v for which v > j # So if y is [1, 5, 0, 2, 6, 3] then since states are [ 0, 1, 2, 3, 4,..] # then since not(y[0] <= 0), not(y[1] <= 1), # y[2] <= 2, y[3] <=3, .... the sequence of outputs of the function # less_than_v are [(False, 0), (False, 1), (True, 2), (True, 3), ...]. So # the output stream contains y[2], y[3], ... or [0, 2, ...] #---------------------------------------------------------------- # filter_element with state and with additional keyword arguments #---------------------------------------------------------------- # The keyword argument is addend. def less_than_n_plus_addend(v, state, addend): # return pair: boolean filter, next state return v <= state+addend, state+1 z = Stream('z') less_addend = Stream() filter_element(func=less_than_n_plus_addend, in_stream=z, out_stream=less_addend, state=0, addend=3) # State on j-th step is j. # Stream less contains z[j] if and only if z[j] <= j+3 # For example, if z = [2, 3, 3, 4, 10, 15, 7, .....] then the # output stream is [2, 3, 3, 4, 7, ...] #---------------------------------------------------------------- # filter out numbers above the threshold #---------------------------------------------------------------- def threshold(v, threshold): return v > threshold above_threshold = Stream('above threshold') filter_element(func=threshold, in_stream=x, out_stream=above_threshold, threshold=0) # Put data into input streams and run. DATA_x = list(range(-5, 5, 1)) x.extend(DATA_x) DATA_y = [1, 5, 0, 2, 6, 3] y.extend(DATA_y) DATA_z = [2, 3, 3, 4, 10, 15, 7] z.extend(DATA_z) run() # Inspect output assert recent_values(even) == [-4, -2, 0, 2, 4] assert recent_values(odd) == [-5, -3, -1, 1, 3] assert recent_values(non_neg) == [0, 1, 2, 3, 4] assert recent_values(neg) == [-5, -4, -3, -2, -1] assert recent_values(less) == [0, 2, 3] assert recent_values(less_addend) == [2, 3, 3, 4, 7] assert recent_values(above_threshold) == [1, 2, 3, 4] print (recent_values(even)) print (recent_values(odd)) print (recent_values(non_neg)) print (recent_values(neg)) print (recent_values(less)) print (recent_values(less_addend)) print (recent_values(above_threshold)) examples_filter_element() Explanation: Storing the State and Arguments of an Agent in a Class The next example shows how you can save the state and arguments in a class. In this example, the state is running_sum which is the sum of the values read on the input stream, and multiplicand is an argument. End of explanation
9,705
Given the following text description, write Python code to implement the functionality described below step by step Description: <header class="w3-container w3-teal"> <img src="images/utfsm.png" alt="" align="left"/> <img src="images/inf.png" alt="" align="right"/> </header> <br/><br/><br/><br/><br/> IWI131 Programación de Computadores Sebastián Flores http Step1: Procesamiento de texto Tabulación El string \t corresponde a un único carácter, que representa una tabulación. Step2: Procesamiento de texto Importante Step3: Procesamiento de texto Separar un string Para separar un string tenemos 2 opciones Step4: Procesamiento de texto Unir una lista de strings Para unir una lista de strings es necesario utilizar el método join Step5: Unir una lista de strings Observación Step6: Procesamiento de texto Unir una secuencia de valores (no strings) v2 También es posible utilizar map que aplica genera una nueva lista aplicando a cada elemento de la lista original la función pasada como argumento. Step7: Procesamiento de texto Interpolación de valores por posición Step8: Procesamiento de texto Interpolación de valores por nombre Step9: Procesamiento de texto Mayusculas y Minúsculas Para cambiar la capitalización de un string, es posible utilizar los siguientes métodos Step10: Procesamiento de texto Ejemplo de Motivación Queremos conocer cuales son las palabras más comunes en un idioma. Para eso, necesitamos saber cuantas veces aparece cada palabra en una frase. Desarrolle una función contar_palabras que al ser aplicada sobre un string, entregue un diccionario con las palabras y la cantidad de veces que aparece en la frase. Omita espacios y signos de puntuación y exclamación. t = 'El sobre, en el aula, esta sobre el pupitre.' contar_palabras(t) {'el' Step11: Procesamiento de texto Motivación Step12: Procesamiento de texto Ejercicio 2 Escriba un programa que tenga el siguiente comportamiento Step13: Procesamiento de texto Procesamiento de ADN Una cadena de ADN es una secuencia de bases nitrogenadas llamadas adenina, citosina, timina y guanina. En un programa, una cadena se representa como un string de caracteres 'a', 'c', 't' y 'g'. A cada cadena, le corresponde una cadena complementaria, que se obtiene intercambiando las adeninas con las timinas, y las citosinas con las guaninas Step14: Procesamiento de ADN 1.1 Solución Secuencia aleatoria v1 Step15: Procesamiento de ADN 1.1 Solución Secuencia aleatoria v2 Step16: Procesamiento de texto Procesamiento de ADN Step17: Procesamiento de texto Solución Secuencia complementaria v1 Step18: Procesamiento de texto Solución Secuencia complementaria v2 Step19: Procesamiento de texto Solución Secuencia complementaria v3
Python Code: print len("\n") a1 = 'casa\narbol\npatio' print a1 print len(a1) a2 = '''casa arbol patio''' print a2 print len(a2) print a1==a2 b = 'a\nb\nc' print b print len(b) Explanation: <header class="w3-container w3-teal"> <img src="images/utfsm.png" alt="" align="left"/> <img src="images/inf.png" alt="" align="right"/> </header> <br/><br/><br/><br/><br/> IWI131 Programación de Computadores Sebastián Flores http://progra.usm.cl/ https://www.github.com/usantamaria/iwi131 Fechas Actividad 05: Miércoles 6 Enero 2016 (8:00). Certamen 3: Viernes 8 Enero 2016 (15:30). Certamen Recuperativo: Lunes 18 Enero 2016 (8:00). Clases Mie 23 Dic 2016: Procesamiento de Texto. Lun 28 Dic 2016: Escribir y leer archivos. Mie 30 Dic 2016: Ejercicios tipo certamen. Lun 04 Ene 2016: Ejercicios tipo certamen. Mie 06 Ene 2016: Actividad 5. Consejo: Baje el libro del curso, lea, aprenda y practique. ¿Qué contenido aprenderemos? Procesamiento de texto ¿Porqué aprenderemos ese contenido? Procesamiento de texto Habilidad crucial para resolver una gran variedad de problemas. Motivación Queremos conocer cuales son las palabras más comunes en un idioma. Para eso, necesitamos saber cuantas veces aparece cada palabra en una frase. Desarrolle una función contar_palabras que al ser aplicada sobre un string, entregue un diccionario con las palabras y la cantidad de veces que aparece en la frase. Omita espacios y signos de puntuación y exclamación. t = 'El sobre, en el aula, esta sobre el pupitre.' contar_palabras(t) {'el': 3, 'en': 1, 'esta': 1, 'aula': 1, 'sobre': 2, 'pupitre': 1} ¿Cómo realizaría usted esta difícil tarea? Consejos El procesamiento de texto utiliza: Reconocimiento de patrones: usted debe reconocer que patrones se repiten y puede explotar para procesar el texto. Utilización de funciones específicas: el tipo de dato string posee una rica colección de métodos que debe manejar para simplificar la tarea de procesamiento de texto. Recuerde que todo string es inmutable, por lo que al aplicar diversas funciones se obtiene siempre un nuevo string. Procesamiento de texto Salto de línea El string \n corresponde a un único carácter, que representa el salto de línea. End of explanation print len("\t") a = 'casa\n\tarbol\n\tpatio' print a b = 'a\tb\tc' print b print len(b) Explanation: Procesamiento de texto Tabulación El string \t corresponde a un único carácter, que representa una tabulación. End of explanation palabra = 'cara' palabra2 = palabra.replace('r', 's') print palabra print palabra2 print palabra2.replace('ca', 'pa') print palabra2.replace('a', 'e', 1) print palabra2.replace('c', '').replace('a', 'o') # Encadenamiento de metodos print palabra Explanation: Procesamiento de texto Importante: \n y \t aparecen frecuentemente cuando analicemos archivos leídos del disco duro. Procesamiento de texto Reemplazar secciones de un string La función mi_string.replace(s1, s2) busca cada ocurrencia del substring s1 en mi_string, y lo reemplaza por s2. La función mi_string.replace(s1, s2,n) busca las primeras n ocurrencias del substring s1 en mi_string, y lo reemplaza por s2. La función mi_string.replace(s1, s2) regresa un nuevo string, el string original no es modificado. End of explanation oracion = 'taca taca' print list(oracion) print set(oracion) print oracion.split() print oracion.split("a") print oracion.split("t") print oracion.split("ac") Explanation: Procesamiento de texto Separar un string Para separar un string tenemos 2 opciones: * Separar en caracteres, utilizando list(mi_string), que genera una lista con los carácteres de mi_string en orden. * Separar en palabras, utilizando mi_string.split(s), que generar una lista de "palabras" que han sido separadas por el string s. El string s no estará en ninguno de los substrings de la lista. Por defecto, s es el caracter espacio " ". End of explanation mi_lista = ['Ex', 'umbra', 'in', 'solem'] print ' '.join(mi_lista) print ''.join(mi_lista) print ' -> '.join(mi_lista) mi_conjunto = {'Ex', 'umbra', 'in', 'solem'} print mi_conjunto print ' '.join(mi_conjunto) print ''.join(mi_conjunto) print ' -> '.join(mi_conjunto) Explanation: Procesamiento de texto Unir una lista de strings Para unir una lista de strings es necesario utilizar el método join: Python s.join(lista_de_strings) Regresa un único string donde los elementos del string han sido "pegados" utilizando el string s. End of explanation lista_de_strings = ["1", "2", "3"] print ", ".join(lista_de_strings) lista_de_ints = [1, 2, 3] print ", ".join(lista_de_ints) lista_de_ints = range(10) lista_de_strings = [] for x in lista_de_ints: lista_de_strings.append(str(x)) print ", ".join(lista_de_strings) Explanation: Unir una lista de strings Observación: join funciona sólo sobre una lista de strings. Si quiere pegar números, debe convertirlos a strings antes. End of explanation numeros = range(10) print numeros def f(x): return 2.*x + 1./(x+1) print map(str, numeros) print map(float, numeros) print map(f, numeros) print ', '.join(map(str, numeros)) # print "-"join("1,2,3,4".split(",")) Explanation: Procesamiento de texto Unir una secuencia de valores (no strings) v2 También es posible utilizar map que aplica genera una nueva lista aplicando a cada elemento de la lista original la función pasada como argumento. End of explanation s = 'Soy {0} y vivo en {1} {2}' print s.format('Perico', 'Valparaiso') print s.format('Erika', 'Berlin') print s.format('Wang Dawei', 'Beijing') Explanation: Procesamiento de texto Interpolación de valores por posición End of explanation s = '{nombre} estudia en la {u}' # Datos pueden pasarse ordenados print s.format(nombre='Perico', u='UTFSM') print s.format(nombre='Fulana', u='PUCV') # También es posible cambiar el orden print s.format(u='UPLA', nombre='Yayita') # O con magia (conocimiento avanzado) d = {"nombre":"Mago Merlin", "u":"Camelot University"} print s.format(**d) Explanation: Procesamiento de texto Interpolación de valores por nombre End of explanation palabra = '1. raMo de ProGra' print palabra.upper() print palabra.lower() print palabra.swapcase() print palabra.capitalize() Explanation: Procesamiento de texto Mayusculas y Minúsculas Para cambiar la capitalización de un string, es posible utilizar los siguientes métodos: .upper(): TODO EN MAYUSCULA. .lower(): todo en minuscula .swapcase(): cambia el order que tenia la capitalización. .capitalize(): Coloca únicamente mayuscula en la primera letra del string. End of explanation def contar_palabras(s): return s t = 'El sobre, en el aula, esta sobre el pupitre.' contar_palabras(t) Explanation: Procesamiento de texto Ejemplo de Motivación Queremos conocer cuales son las palabras más comunes en un idioma. Para eso, necesitamos saber cuantas veces aparece cada palabra en una frase. Desarrolle una función contar_palabras que al ser aplicada sobre un string, entregue un diccionario con las palabras y la cantidad de veces que aparece en la frase. Omita espacios y signos de puntuación y exclamación. t = 'El sobre, en el aula, esta sobre el pupitre.' contar_palabras(t) {'el': 3, 'en': 1, 'esta': 1, 'aula': 1, 'sobre': 2, 'pupitre': 1} ¿Cómo realizaría ahora usted esta difícil tarea? Procesamiento de texto Consejos Subdividir en tareas menores: * ¿Cómo sacar los simbolos indeseados? * ¿Cómo separar las palabras? * ¿Cómo contar las palabras? End of explanation def contar_palabras(s): s = s.lower() for signo in [",",".",";","!","?","'",'"']: s = s.replace(signo,"") palabras = s.split() contador = {} for palabra_sucia in palabras: palabra = palabra_sucia if palabra in contador: contador[palabra] += 1 # Aumentamos else: contador[palabra] = 1 # Inicializamos return contador t = 'El sobre, en el aula, !! Esta sobre el pupitre.' contar_palabras(t) Explanation: Procesamiento de texto Motivación: Solución INPUT: t = 'El sobre, en el aula, esta sobre el pupitre.' contar_palabras(t) OUTPUT: {'el': 3, 'en': 1, 'esta': 1, 'aula': 1, 'sobre': 2, 'pupitre': 1} End of explanation # Solución Alumnos # Solución # Guardar datos N = int(raw_input("Numero de alumnos: ")) notas_alumnos = [] for i in range(N): nombre = raw_input("Nombre alumno {0}:".format(i+1)) nombre_pila = nombre.split(" ")[0] notas_str = raw_input("Ingrese las notas de {0}: ".format(nombre_pila)) notas_int = [] for nota in notas_str.split(" "): notas_int.append(int(nota)) promedio = sum(notas_int)/float(len(notas_int)) notas_alumnos.append( (nombre_pila, promedio) ) # Imprimir promedios for nombre, promedio in notas_alumnos: print "El promedio de {0} es {1:.2f}".format(nombre, promedio) Explanation: Procesamiento de texto Ejercicio 2 Escriba un programa que tenga el siguiente comportamiento: INPUT: Numero de alumnos: 3 Nombre alumno 1: Isaac Newton Ingrese las notas de Isaac: 98 94 77 Nombre alumno 2: Nikola Tesla Ingrese las notas de Nikola: 100 68 94 88 Nombre alumno 3: Albert Einstein Ingrese las notas de Albert: 83 85 OUTPUT: El promedio de Isaac es 89.67 El promedio de Nikola es 87.50 El promedio de Albert es 84.00 Procesamiento de texto Ejercicio 2: Análisis ¿Cuáles son las tareas necesarias? Procesamiento de texto Ejercicio 1: Solución Las tareas a realizar son: * Leer número de alumnos * Para cada alumno, leer nombre y notas. * Procesar notas para obtener el promedio. * Almacenar nombre y notas. * Separar nombre de apellido. * Imprimir resultados apropiadamente. End of explanation # Definicion de funcion from random import choice def cadena_al_azar(n): bases_n='' for i in range(n): base=choice('atgc') bases_n+=base return bases_n # Casos de uso print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) Explanation: Procesamiento de texto Procesamiento de ADN Una cadena de ADN es una secuencia de bases nitrogenadas llamadas adenina, citosina, timina y guanina. En un programa, una cadena se representa como un string de caracteres 'a', 'c', 't' y 'g'. A cada cadena, le corresponde una cadena complementaria, que se obtiene intercambiando las adeninas con las timinas, y las citosinas con las guaninas: cadena = 'cagcccatgaggcagggtg' complemento = 'gtcgggtactccgtcccac' Procesamiento de ADN 1.1 Procesamiento de ADN: Secuencia aleatoria Escriba la función cadena_al_azar(n) que genere una cadena aleatoria de ADN de largo n: Ejemplo de uso: cadena_al_azar(10) puede regresar 'acgtccgcct', 'tgttcgcatt', etc. Pista: from random import choice choice('atcg') regresa al azar una de las letras de "atcg" Procesamiento de ADN 1.1 Secuencia aleatoria: Análisis ¿Que tareas son necesarias? End of explanation from random import choice # Definicion de funcion def cadena_al_azar(n): adn = "" for i in range(n): adn += choice("acgt") return adn # Casos de uso print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) Explanation: Procesamiento de ADN 1.1 Solución Secuencia aleatoria v1 End of explanation from random import choice # Definicion de funcion def cadena_al_azar(n): bases = [] for i in range(n): bases.append(choice("acgt")) adn = "".join(bases) return adn # Casos de uso print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(1) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) print cadena_al_azar(10) Explanation: Procesamiento de ADN 1.1 Solución Secuencia aleatoria v2 End of explanation # Solucion estudiantes def cadena_(n): adn = "" for i in range(n): adn += choice("acgt") return adn Explanation: Procesamiento de texto Procesamiento de ADN: Secuencia complementaria Escriba la función complementaria(s) que regrese la cadena complementaria de c: el complementario de "a" es "t" (y viceversa), y el complementario de "c" es "g" (y viceversa). Python cadena = 'cagcccatgaggcagggtg' print complementaria(cadena) 'gtcgggtactccgtcccac' Procesamiento de texto Procesamiento de ADN: Secuencia complementaria ¿Tareas? End of explanation def complementaria(adn): rna = "" for base in adn: if base=="a": rna += "t" elif base=="t": rna += "a" elif base=="c": rna += "g" else: rna += "c" return rna adn = cadena_al_azar(20) print adn print complementaria(adn) Explanation: Procesamiento de texto Solución Secuencia complementaria v1 End of explanation def complementaria(adn): pares = {"a":"t", "t":"a", "c":"g", "g":"c"} rna = "" for base in adn: rna += pares[base] return rna adn = cadena_al_azar(20) print adn print complementaria(adn) Explanation: Procesamiento de texto Solución Secuencia complementaria v2 End of explanation def complementaria(adn): rna = adn.replace("a","T").replace("t","A").replace("c","G").replace("g","C") return rna.lower() adn = cadena_al_azar(20) print adn print complementaria(adn) Explanation: Procesamiento de texto Solución Secuencia complementaria v3 End of explanation
9,706
Given the following text description, write Python code to implement the functionality described below step by step Description: Learning This notebook serves as supporting material for topics covered in Chapter 18 - Learning from Examples , Chapter 19 - Knowledge in Learning, Chapter 20 - Learning Probabilistic Models from the book Artificial Intelligence Step1: Contents Review Explanations of learning module Practical Machine Learning Task MNIST handwritten digits classification Loading and Visualising digits data kNN classifier Review Native implementation from Learning module Faster implementation using NumPy Overfitting and how to avoid it Train-Test split Crossvalidation Regularisation Sub-sampling Fine tuning parameters to get better results Introduction to Scikit-Learn Email spam detector Review In this notebook, we learn about agents that can improve their behavior through diligent study of their own experiences. An agent is learning if it improves its performance on future tasks after making observations about the world. There are three types of feedback that determine the three main types of learning Step2: The function load_MNIST() loads MNIST data from files saved in aima-data/MNIST. It returns four numpy arrays that we are gonna use to train & classify hand-written digits in various learning approaches. Step3: Check the shape of these NumPy arrays to make sure we have loaded the database correctly. Each 28x28 pixel image is flattened to 784x1 array and we should have 60,000 of them in training data. Similarly we should have 10,000 of those 784x1 arrays in testing data. Step4: Visualizing MNIST digits data To get a better understanding of the dataset, let's visualize some random images for each class from training & testing datasets. Step5: Let's have a look at average of all the images of training and testing data. Step6: k-Nearest Neighbours (kNN) classifier Review k-Nearest Neighbors algorithm is a non-parametric method used for classification and regression. We are gonna use this to classify MNIST handwritten digits. More about kNN on Scholarpedia. Let's see how kNN works with a simple plot shown in the above picture. There are two classes named Class A yellow color dots and Class B violet color dots. Every point in this plot has two features i.e. (X<sub>2</sub>, X<sub>1</sub>) values of that particular point which we used to plot. Now, let's say we have a new point, a red star and we want to know which class this red star belongs. Solving this problem by predicting the class of this new red star is out current classification problem. We have co-ordinates (we call them features in ML) of this red star and we need to predict its class using kNN algorithm. In this algorithm, the value of k is arbitary. k is one of the hyper parameters for kNN algorithm. We choose this number based on our dataset and choosing a particular number is known as hyper parameter tuning/optimising. We learn more about this in coming topics. Let's put k = 3. It means you need to find 3-Nearest Neighbors of this red star and classify this new point into majority class. Observe that smaller circle which containg 3 points other that test point (red star). As there are two violet points, which is majority, we predict the class of red star as violet- Class B. Similarly if we put k = 5, you can observe that there are 4 yellow points, which is majority. So, we classify our test point as yellow- Class A. In practical tasks, we iterate through a bunch of values for k (like [1, 2, 5, 10, 20, 50, 100]) and see how it performs and select the best one. Native implementations from Learning module Let's classify MNIST data in this method. Similar to these points, our images in MNIST data also have features. These points have two features as (2, 3) which represents co-ordinates of the point in 2-dimentional plane. Our images have 28x28 pixel values and we treat them as features for this particular task. Next couple of cells help you understand some useful definitions from learning module. Step7: class DataSet explanation goes here Step8: Nearest NeighborLearner explanation goes here Now, let us convert this raw data into Dataset.examples to run our NearestNeighborLearner(dataset, k=1) defined in learning.py. Every image is represented by 784 numbers (28x28 pixels) and we append them with its label or class to make them work with our implementations in learning module. Step9: Now, we will initialize DataSet with our training examples. Call NearestNeighbor Learner on this dataset. Predict the class of a test image. Step10: Choose a number from 0 to 9999 for test_img_choice and we are going to predict the class of that test image. Step11: To make sure that the output we got is correct, let's plot that image along with its label. Step12: Hurray! We've got it correct. Don't worry if our algorithm predicted a wrong class. With this techinique we have only ~97% accuracy on this dataset. Let's try with a different test image and hope we get it this time. You might have recognized that our algorithm took ~20 seconds to predict a single image. How would we even predict all 10,000 test images? Yeah, the implementations we have in our learning module are not optimized to run on this particular dataset. We will have an optimised version below in NumPy which is nearly ~50-100 times faster than our native implementation. Faster implementation using NumPy Here we calculate manhattan distance between two images faster than our native implementation. Which in turn make predicting labels for test images far efficient. Step13: Let's print the shapes of data to make sure everything's on track. Step14: Let us predict the classes of first 100 test images. Step15: Let's compare the performances of both implementations. It took 20 Secs. to predict one image using our native implementations and 17 Secs. to predict 100 images in faster implementations. That's 110 times faster. Now, test the accuracy of our predictions Step16: Introduction to Scikit-Learn In this section we will solve this MNIST problem using Scikit-Learn. Learn more about Scikit-Learn here. As we are using this library, we don't need to define our own functions (kNN or Support Vector Machines aka SVMs) to classify digits. Let's start by importing necessary modules for kNN and SVM.
Python Code: from learning import * Explanation: Learning This notebook serves as supporting material for topics covered in Chapter 18 - Learning from Examples , Chapter 19 - Knowledge in Learning, Chapter 20 - Learning Probabilistic Models from the book Artificial Intelligence: A Modern Approach. This notebook uses implementations from learning.py. Let's start by importing everything from learning module. End of explanation import os, struct import array import numpy as np import matplotlib.pyplot as plt from collections import Counter %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' def load_MNIST(path="aima-data/MNIST"): "helper function to load MNIST data" train_img_file = open(os.path.join(path, "train-images-idx3-ubyte"), "rb") train_lbl_file = open(os.path.join(path, "train-labels-idx1-ubyte"), "rb") test_img_file = open(os.path.join(path, "t10k-images-idx3-ubyte"), "rb") test_lbl_file = open(os.path.join(path, 't10k-labels-idx1-ubyte'), "rb") magic_nr, tr_size, tr_rows, tr_cols = struct.unpack(">IIII", train_img_file.read(16)) tr_img = array.array("B", train_img_file.read()) train_img_file.close() magic_nr, tr_size = struct.unpack(">II", train_lbl_file.read(8)) tr_lbl = array.array("b", train_lbl_file.read()) train_lbl_file.close() magic_nr, te_size, te_rows, te_cols = struct.unpack(">IIII", test_img_file.read(16)) te_img = array.array("B", test_img_file.read()) test_img_file.close() magic_nr, te_size = struct.unpack(">II", test_lbl_file.read(8)) te_lbl = array.array("b", test_lbl_file.read()) test_lbl_file.close() # print(len(tr_img), len(tr_lbl), tr_size) # print(len(te_img), len(te_lbl), te_size) train_img = np.zeros((tr_size, tr_rows*tr_cols), dtype=np.int16) train_lbl = np.zeros((tr_size,), dtype=np.int8) for i in range(tr_size): train_img[i] = np.array(tr_img[i*tr_rows*tr_cols : (i+1)*tr_rows*tr_cols]).reshape((tr_rows*te_cols)) train_lbl[i] = tr_lbl[i] test_img = np.zeros((te_size, te_rows*te_cols), dtype=np.int16) test_lbl = np.zeros((te_size,), dtype=np.int8) for i in range(te_size): test_img[i] = np.array(te_img[i*te_rows*te_cols : (i+1)*te_rows*te_cols]).reshape((te_rows*te_cols)) test_lbl[i] = te_lbl[i] return(train_img, train_lbl, test_img, test_lbl) Explanation: Contents Review Explanations of learning module Practical Machine Learning Task MNIST handwritten digits classification Loading and Visualising digits data kNN classifier Review Native implementation from Learning module Faster implementation using NumPy Overfitting and how to avoid it Train-Test split Crossvalidation Regularisation Sub-sampling Fine tuning parameters to get better results Introduction to Scikit-Learn Email spam detector Review In this notebook, we learn about agents that can improve their behavior through diligent study of their own experiences. An agent is learning if it improves its performance on future tasks after making observations about the world. There are three types of feedback that determine the three main types of learning: Supervised Learning: In Supervised Learning the agent observeses some example input-output pairs and learns a function that maps from input to output. Example: Let's think of an agent to classify images containing cats or dogs. If we provide an image containing a cat or a dog, this agent should output a string "cat" or "dog" for that particular image. To teach this agent, we will give a lot of input-output pairs like {cat image-"cat"}, {dog image-"dog"} to the agent. The agent then learns a function that maps from an input image to one of those strings. Unsupervised Learning: In Unsupervised Learning the agent learns patterns in the input even though no explicit feedback is supplied. The most common type is clustering: detecting potential useful clusters of input examples. Example: A taxi agent would develop a concept of good traffic days and bad traffic days without ever being given labeled examples. Reinforcement Learning: In Reinforcement Learning the agent learns from a series of reinforcements—rewards or punishments. Example: Let's talk about an agent to play the popular Atari game—Pong. We will reward a point for every correct move and deduct a point for every wrong move from the agent. Eventually, the agent will figure out its actions prior to reinforcement were most responsible for it. Explanations of learning module goes here Practical Machine Learning Task MNIST handwritten digits calssification The MNIST database, available from this page is a large database of handwritten digits that is commonly used for training & testing/validating in Machine learning. The dataset has 60,000 training images each of size 28x28 pixels with labels and 10,000 testing images of size 28x28 pixels with labels. In this section, we will use this database to compare performances of these different learning algorithms: * kNN (k-Nearest Neighbour) classifier * Single-hidden-layer Neural Network classifier * SVMs (Support Vector Machines) It is estimates that humans have an error rate of about 0.2% on this problem. Let's see how our algorithms perform! Loading MNIST digits data Let's start by loading MNIST data into numpy arrays. End of explanation train_img, train_lbl, test_img, test_lbl = load_MNIST() Explanation: The function load_MNIST() loads MNIST data from files saved in aima-data/MNIST. It returns four numpy arrays that we are gonna use to train & classify hand-written digits in various learning approaches. End of explanation print("Training images size:", train_img.shape) print("Training labels size:", train_lbl.shape) print("Testing images size:", test_img.shape) print("Training labels size:", test_lbl.shape) Explanation: Check the shape of these NumPy arrays to make sure we have loaded the database correctly. Each 28x28 pixel image is flattened to 784x1 array and we should have 60,000 of them in training data. Similarly we should have 10,000 of those 784x1 arrays in testing data. End of explanation classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] num_classes = len(classes) def show_MNIST(dataset, samples=8): if dataset == "training": labels = train_lbl images = train_img elif dataset == "testing": labels = test_lbl images = test_img else: raise ValueError("dataset must be 'testing' or 'training'!") for y, cls in enumerate(classes): idxs = np.nonzero([i == y for i in labels]) idxs = np.random.choice(idxs[0], samples, replace=False) for i , idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples, num_classes, plt_idx) plt.imshow(images[idx].reshape((28, 28))) plt.axis("off") if i == 0: plt.title(cls) plt.show() # takes 5-10 secs. to execute the cell show_MNIST("training") # takes 5-10 secs. to execute the cell show_MNIST("testing") Explanation: Visualizing MNIST digits data To get a better understanding of the dataset, let's visualize some random images for each class from training & testing datasets. End of explanation classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] num_classes = len(classes) def show_ave_MNIST(dataset): if dataset == "training": print("Average of all images in training dataset.") labels = train_lbl images = train_img elif dataset == "testing": print("Average of all images in testing dataset.") labels = test_lbl images = test_img else: raise ValueError("dataset must be 'testing' or 'training'!") for y, cls in enumerate(classes): idxs = np.nonzero([i == y for i in labels]) print("Digit", y, ":", len(idxs[0]), "images.") ave_img = np.mean(np.vstack([images[i] for i in idxs[0]]), axis = 0) # print(ave_img.shape) plt.subplot(1, num_classes, y+1) plt.imshow(ave_img.reshape((28, 28))) plt.axis("off") plt.title(cls) plt.show() show_ave_MNIST("training") show_ave_MNIST("testing") Explanation: Let's have a look at average of all the images of training and testing data. End of explanation %psource DataSet Explanation: k-Nearest Neighbours (kNN) classifier Review k-Nearest Neighbors algorithm is a non-parametric method used for classification and regression. We are gonna use this to classify MNIST handwritten digits. More about kNN on Scholarpedia. Let's see how kNN works with a simple plot shown in the above picture. There are two classes named Class A yellow color dots and Class B violet color dots. Every point in this plot has two features i.e. (X<sub>2</sub>, X<sub>1</sub>) values of that particular point which we used to plot. Now, let's say we have a new point, a red star and we want to know which class this red star belongs. Solving this problem by predicting the class of this new red star is out current classification problem. We have co-ordinates (we call them features in ML) of this red star and we need to predict its class using kNN algorithm. In this algorithm, the value of k is arbitary. k is one of the hyper parameters for kNN algorithm. We choose this number based on our dataset and choosing a particular number is known as hyper parameter tuning/optimising. We learn more about this in coming topics. Let's put k = 3. It means you need to find 3-Nearest Neighbors of this red star and classify this new point into majority class. Observe that smaller circle which containg 3 points other that test point (red star). As there are two violet points, which is majority, we predict the class of red star as violet- Class B. Similarly if we put k = 5, you can observe that there are 4 yellow points, which is majority. So, we classify our test point as yellow- Class A. In practical tasks, we iterate through a bunch of values for k (like [1, 2, 5, 10, 20, 50, 100]) and see how it performs and select the best one. Native implementations from Learning module Let's classify MNIST data in this method. Similar to these points, our images in MNIST data also have features. These points have two features as (2, 3) which represents co-ordinates of the point in 2-dimentional plane. Our images have 28x28 pixel values and we treat them as features for this particular task. Next couple of cells help you understand some useful definitions from learning module. End of explanation %psource NearestNeighborLearner Explanation: class DataSet explanation goes here End of explanation print(train_img.shape, train_lbl.shape) temp_train_lbl = train_lbl.reshape((60000,1)) training_examples = np.hstack((train_img, temp_train_lbl)) print(training_examples.shape) Explanation: Nearest NeighborLearner explanation goes here Now, let us convert this raw data into Dataset.examples to run our NearestNeighborLearner(dataset, k=1) defined in learning.py. Every image is represented by 784 numbers (28x28 pixels) and we append them with its label or class to make them work with our implementations in learning module. End of explanation # takes ~8 Secs. to execute this cell MNIST_DataSet = DataSet(examples=training_examples, distance=manhattan_distance) kNN_Learner = NearestNeighborLearner(MNIST_DataSet) Explanation: Now, we will initialize DataSet with our training examples. Call NearestNeighbor Learner on this dataset. Predict the class of a test image. End of explanation # takes ~20 Secs. to execute this cell test_img_choice = 2311 predicted_class = kNN_Learner(test_img[test_img_choice]) print("Predicted class of test image:", predicted_class) Explanation: Choose a number from 0 to 9999 for test_img_choice and we are going to predict the class of that test image. End of explanation print("Actual class of test image:", test_lbl[test_img_choice]) plt.imshow(test_img[test_img_choice].reshape((28,28))) Explanation: To make sure that the output we got is correct, let's plot that image along with its label. End of explanation class kNN_learner: "Simple kNN learner with manhattan distance" def __init__(self): pass def train(self, train_img, train_lbl): self.train_img = train_img self.train_lbl = train_lbl def predict_labels(self, test_img, k=1, distance="manhattan"): if distance == "manhattan": distances = self.compute_manhattan_distances(test_img) num_test = distances.shape[0] predictions = np.zeros(num_test, dtype=np.uint8) for i in range(num_test): k_best_labels = self.train_lbl[np.argsort(distances[i])].flatten()[:k] predictions[i] = mode(k_best_labels) return predictions def compute_manhattan_distances(self, test_img): num_test = test_img.shape[0] num_train = self.train_img.shape[0] # print(num_test, num_train) dists = np.zeros((num_test, num_train)) for i in range(num_test): dists[i] = np.sum(abs(self.train_img - test_img[i]), axis = 1) return(dists) Explanation: Hurray! We've got it correct. Don't worry if our algorithm predicted a wrong class. With this techinique we have only ~97% accuracy on this dataset. Let's try with a different test image and hope we get it this time. You might have recognized that our algorithm took ~20 seconds to predict a single image. How would we even predict all 10,000 test images? Yeah, the implementations we have in our learning module are not optimized to run on this particular dataset. We will have an optimised version below in NumPy which is nearly ~50-100 times faster than our native implementation. Faster implementation using NumPy Here we calculate manhattan distance between two images faster than our native implementation. Which in turn make predicting labels for test images far efficient. End of explanation print("Training images size:", train_img.shape) print("Training labels size:", train_lbl.shape) print("Testing images size:", test_img.shape) print("Training labels size:", test_lbl.shape) learner = kNN_learner() learner.train(train_img, train_lbl) Explanation: Let's print the shapes of data to make sure everything's on track. End of explanation # takes ~17 Secs. to execute this cell num_test = 100 predictions = learner.predict_labels(test_img[:num_test], k=3) Explanation: Let us predict the classes of first 100 test images. End of explanation # print(predictions) # print(test_lbl[:num_test]) num_correct = np.sum([predictions == test_lbl[:num_test]]) num_accuracy = (float(num_correct) / num_test) * 100 print("Accuracy of predictions:", num_accuracy, "%") Explanation: Let's compare the performances of both implementations. It took 20 Secs. to predict one image using our native implementations and 17 Secs. to predict 100 images in faster implementations. That's 110 times faster. Now, test the accuracy of our predictions: End of explanation from sklearn.neighbors import NearestNeighbors from sklearn import svm # takes ~3 mins to execute the cell SVMclf = svm.LinearSVC() SVMclf.fit(train_img, train_lbl) predictions = SVMclf.predict(test_img) num_correct = np.sum(predictions == test_lbl) num_accuracy = (float(num_correct)/len(test_lbl)) * 100 print("Accuracy of predictions:", num_accuracy, "%") Explanation: Introduction to Scikit-Learn In this section we will solve this MNIST problem using Scikit-Learn. Learn more about Scikit-Learn here. As we are using this library, we don't need to define our own functions (kNN or Support Vector Machines aka SVMs) to classify digits. Let's start by importing necessary modules for kNN and SVM. End of explanation
9,707
Given the following text description, write Python code to implement the functionality described below step by step Description: INS-GPS Integration This notebook shows an idealized example of loose INS-GPS integration. Creating a trajectory and generating inertial readings First we need to generate a trajectory. To keep things simple we generate sort of a random walk trajectory by summing random displacements. Step1: Assume that each step is done in 10 seconds and define time stamps Step2: Add displacements to initial latitude and longitude Step3: We also append 20 minutes of INS being at rest Step4: Set pitch and roll angles to zeros Step5: Sensor sampling period is set to 0.1 Step6: Run the simulation routine which will interpolate the trajectory and generate inertial readings Step7: The final trajectory is drawn below, the initial point is marked with a cross. Step8: Integrating ideal data Just to check that everything is correct we want to integrate the generated gyro and accel readings. Step9: First we apply coning and sculling corrections Step10: And the run the integration. Step11: Compute integration error using a convenience function Step12: We see that attitude and velocity errors are vanishingly small. The position errors are less than 3 meters during 3 hours of operations, which is completely negligible compared to errors of even the most accurate INS. Step13: Integrating "real" data Now we will run the navigation using inertial sensors with errors. The error will be a sum of a random bias and additive white noise. We define magnitudes typical for moderately accurate navigation grade sensors. Step14: Compute biases as a random constants. To avoid a "bad case" in this example we generated biases uniformly within $[-2 \sigma, 2 \sigma]$. Step15: Now we apply errors to inertial readings Step16: Compute coning and sculling corrections Step17: An INS operation have to start with the self alignment. We devote 15 minutes of the initial rest for it Step18: Split the readings into alignment and navigation parts Step19: Compare estimated attitude angles with the true angles. Step20: Assume that the initial position is known with the accuracy typical to GPS receivers Step21: Assume that it is known that the navigation starts at rest ans set initial velocities to 0 Step22: Now we can run the integration Step23: We see that even with very accurate gyros pure INS performance is not that good. Step24: Aiding from GPS Now we will use idealize GPS position observations for INS errors estimation and correction. We assume that GPS is available every second and use known exact values of latitude and longitude Step25: We will use an idealized model that GPS observations contain only additive normal errors with a standard deviation of 10 meters (note that in reality errors in outputs from GPS receivers behave much worse). Step26: To use GPS measurements in a navigation Kalman filter we wrap this data into a special object Step27: Also define gyro and accelerometer models using parameters defined above Step28: Now we can run a navigation Kalman filter which will blend INS and GPS data. In this example INS errors didn't grow very large, thus we can use a feedforward filter. Step29: We create a filter by passing sampling period and computed trajectory. To initialize the covariance matrix we pass standard deviations of the initial errors. Currently the covariance matrix is initialized as diagonal, even though it can be done more rigorously, i.e consider correlations between sensor biases and attitude errors. But my view is that a reliable filter should not depend on such fine details, otherwise it is likely to fail in real conditions. So for the sake of simplicity it is implemented like this for now (can be changed later). Theoretical attitude accuracy (sd values) from static gyrocompassing in our case is Step30: We run the filter and pass available measurements to it. The return value is the INS trajectory corrected by estimated errors. Step31: Now we want to investigate errors in the filtered trajectory. Step32: Obviously performance in terms of position and velocity accuracy is very good, but this is sort of expected because GPS provides coordinates directly. Attitude angle errors are generally decreasing as well, but the picture is less clear. We want to plot their standard deviation bounds estimated by the filter as well. Step33: The return value of FeedforwardFilter contains attributes err, sd, gyro_err, gyro_sd, accel_err, accel_sd for estimated trajectory errors and inertial sensor states and their standard deviations. Below we plot true errors for heading, pitch and roll with their 1-sigma bounds provided by the filter. Generally we see that the filter's performance is adequate. It can be measured more precisely by Monte-Carlo simulation, but this will not be included in this example. Step34: Also it is interesting to assess the filter's sensor bias estimation. Plots below show $\pm \sigma$ bands of gyro bias estimates, the straight line depicts the true value. We see that estimation of gyro biases is quite successful. Step35: Below the same done for accelerometer biases. Horizontal accelerometer biases are less observable on the given trajectory than gyro biases, and the vertical bias is not observable at all because pitch and roll are held zero.
Python Code: from pyins import sim from pyins.coord import perturb_ll def generate_trajectory(n_points, min_step, max_step, angle_spread, random_state=0): rng = np.random.RandomState(random_state) xy = [np.zeros(2)] angle = rng.uniform(2 * np.pi) heading = [90 - angle] angle_spread = np.deg2rad(angle_spread) for i in range(n_points - 1): step = rng.uniform(min_step, max_step) xy.append(xy[-1] + step * np.array([np.cos(angle), np.sin(angle)])) angle += rng.uniform(-angle_spread, angle_spread) heading.append(90 - angle) return np.asarray(xy), np.asarray(heading) xy, h = generate_trajectory(1000, 70, 100, 20, random_state=1) Explanation: INS-GPS Integration This notebook shows an idealized example of loose INS-GPS integration. Creating a trajectory and generating inertial readings First we need to generate a trajectory. To keep things simple we generate sort of a random walk trajectory by summing random displacements. End of explanation t = np.arange(1000) * 10 Explanation: Assume that each step is done in 10 seconds and define time stamps: End of explanation lat0 = 58 lon0 = 56 lat, lon = perturb_ll(lat0, lon0, xy[:, 1], xy[:, 0]) Explanation: Add displacements to initial latitude and longitude: End of explanation t = np.hstack((-1200, t)) lat = np.hstack((lat[0], lat)) lon = np.hstack((lon[0], lon)) h = np.hstack((h[0], h)) Explanation: We also append 20 minutes of INS being at rest: End of explanation p = np.zeros_like(h) r = np.zeros_like(h) Explanation: Set pitch and roll angles to zeros: End of explanation dt = 0.1 Explanation: Sensor sampling period is set to 0.1: End of explanation traj_ref, gyro, accel = sim.from_position(dt, lat, lon, t, h=h, p=p, r=r) Explanation: Run the simulation routine which will interpolate the trajectory and generate inertial readings: End of explanation plt.plot(traj_ref.lon, traj_ref.lat) plt.plot(traj_ref.lon[0], traj_ref.lat[0], 'kx', markersize=12) plt.xlabel("lon, deg") plt.ylabel("lat, deg") Explanation: The final trajectory is drawn below, the initial point is marked with a cross. End of explanation from pyins.integrate import coning_sculling, integrate from pyins.filt import traj_diff Explanation: Integrating ideal data Just to check that everything is correct we want to integrate the generated gyro and accel readings. End of explanation theta, dv = coning_sculling(gyro, accel) Explanation: First we apply coning and sculling corrections: End of explanation traj_ideal = integrate(dt, *traj_ref.iloc[0], theta, dv) Explanation: And the run the integration. End of explanation err_ideal = traj_diff(traj_ideal, traj_ref) def plot_errors(dt, err, step=1000): plt.figure(figsize=(15, 10)) plt.subplot(331) err = err.iloc[::step] t = err.index * dt / 3600 plt.plot(t, err.lat, label='lat') plt.xlabel("time, h") plt.ylabel("m") plt.legend(loc='best') plt.subplot(334) plt.plot(t, err.lon, label='lon') plt.xlabel("time, h") plt.ylabel("m") plt.legend(loc='best') plt.subplot(332) plt.plot(t, err.VE, label='VE') plt.xlabel("time, h") plt.ylabel("m/s") plt.legend(loc='best') plt.subplot(335) plt.plot(t, err.VN, label='VN') plt.xlabel("time, h") plt.ylabel("m/s") plt.legend(loc='best') plt.subplot(333) plt.plot(t, err.h, label='heading') plt.xlabel("time, h") plt.ylabel("deg") plt.legend(loc='best') plt.subplot(336) plt.plot(t, err.p, label='pitch') plt.xlabel("time, h") plt.ylabel("deg") plt.legend(loc='best') plt.subplot(339) plt.plot(t, err.r, label='roll') plt.xlabel("time, h") plt.ylabel("deg") plt.legend(loc='best') plt.tight_layout() Explanation: Compute integration error using a convenience function: End of explanation plot_errors(dt, err_ideal) Explanation: We see that attitude and velocity errors are vanishingly small. The position errors are less than 3 meters during 3 hours of operations, which is completely negligible compared to errors of even the most accurate INS. End of explanation gyro_bias_sd = np.deg2rad(0.05) / 3600 # 0.05 d/h accel_bias_sd = 5e-3 gyro_bias_sd gyro_noise = 1e-6 # rad / s^0.5 accel_noise = 3e-4 # m / s^1.5 Explanation: Integrating "real" data Now we will run the navigation using inertial sensors with errors. The error will be a sum of a random bias and additive white noise. We define magnitudes typical for moderately accurate navigation grade sensors. End of explanation np.random.seed(1) gyro_bias = gyro_bias_sd * np.random.uniform(-2, 2, 3) accel_bias = accel_bias_sd * np.random.uniform(-2, 2, 3) gyro_bias, accel_bias from pyins import earth Explanation: Compute biases as a random constants. To avoid a "bad case" in this example we generated biases uniformly within $[-2 \sigma, 2 \sigma]$. End of explanation gyro_e = gyro + gyro_bias * dt + gyro_noise * np.random.randn(*gyro.shape) * dt**0.5 accel_e = accel + accel_bias * dt + accel_noise * np.random.randn(*accel.shape) * dt**0.5 Explanation: Now we apply errors to inertial readings: End of explanation theta, dv = coning_sculling(gyro_e, accel_e) Explanation: Compute coning and sculling corrections: End of explanation t_align = 15 * 60 align_samples = int(t_align / dt) Explanation: An INS operation have to start with the self alignment. We devote 15 minutes of the initial rest for it: End of explanation theta_align = theta[:align_samples] theta_nav = theta[align_samples:] dv_align = dv[:align_samples] dv_nav = dv[align_samples:] from pyins.align import align_wahba (h0, p0, r0), P_align = align_wahba(dt, theta_align, dv_align, 58) Explanation: Split the readings into alignment and navigation parts: End of explanation h0 - traj_ref.h.loc[align_samples], p0 - traj_ref.p.loc[align_samples], r0 - traj_ref.r.loc[align_samples] Explanation: Compare estimated attitude angles with the true angles. End of explanation lat0, lon0 = perturb_ll(traj_ref.lat.loc[align_samples], traj_ref.lon.loc[align_samples], 10 * np.random.randn(1), 10 * np.random.randn(1)) Explanation: Assume that the initial position is known with the accuracy typical to GPS receivers: End of explanation VE0 = 0 VN0 = 0 Explanation: Assume that it is known that the navigation starts at rest ans set initial velocities to 0: End of explanation traj_real = integrate(dt, lat0, lon0, VE0, VN0, h0, p0, r0, theta_nav, dv_nav, stamp=align_samples) traj_error = traj_diff(traj_real, traj_ref) Explanation: Now we can run the integration: End of explanation plot_errors(dt, traj_error) Explanation: We see that even with very accurate gyros pure INS performance is not that good. End of explanation gps_data = pd.DataFrame(index=traj_ref.index[::10]) gps_data['lat'] = traj_ref.lat[::10] gps_data['lon'] = traj_ref.lon[::10] Explanation: Aiding from GPS Now we will use idealize GPS position observations for INS errors estimation and correction. We assume that GPS is available every second and use known exact values of latitude and longitude: End of explanation gps_pos_sd = 10 gps_data['lat'], gps_data['lon'] = perturb_ll(gps_data.lat, gps_data.lon, gps_pos_sd * np.random.randn(*gps_data.lat.shape), gps_pos_sd * np.random.randn(*gps_data.lon.shape)) Explanation: We will use an idealized model that GPS observations contain only additive normal errors with a standard deviation of 10 meters (note that in reality errors in outputs from GPS receivers behave much worse). End of explanation from pyins.filt import LatLonObs gps_obs = LatLonObs(gps_data, gps_pos_sd) Explanation: To use GPS measurements in a navigation Kalman filter we wrap this data into a special object: End of explanation from pyins.filt import InertialSensor gyro_model = InertialSensor(bias=gyro_bias_sd, noise=gyro_noise) accel_model = InertialSensor(bias=accel_bias_sd, noise=accel_noise) Explanation: Also define gyro and accelerometer models using parameters defined above: End of explanation from pyins.filt import FeedforwardFilter Explanation: Now we can run a navigation Kalman filter which will blend INS and GPS data. In this example INS errors didn't grow very large, thus we can use a feedforward filter. End of explanation ff_filt = FeedforwardFilter(dt, traj_real, pos_sd=10, vel_sd=0.1, azimuth_sd=0.5, level_sd=0.05, gyro_model=gyro_model, accel_model=accel_model) Explanation: We create a filter by passing sampling period and computed trajectory. To initialize the covariance matrix we pass standard deviations of the initial errors. Currently the covariance matrix is initialized as diagonal, even though it can be done more rigorously, i.e consider correlations between sensor biases and attitude errors. But my view is that a reliable filter should not depend on such fine details, otherwise it is likely to fail in real conditions. So for the sake of simplicity it is implemented like this for now (can be changed later). Theoretical attitude accuracy (sd values) from static gyrocompassing in our case is: 0.35 deg for heading (azimuth_sd) and 0.03 deg for pitch and roll (level_sd). Here we set values slightly higher to account for a non-perfect alignment: End of explanation ff_res = ff_filt.run(observations=[gps_obs]) Explanation: We run the filter and pass available measurements to it. The return value is the INS trajectory corrected by estimated errors. End of explanation filt_error = traj_diff(ff_res.traj, traj_ref) Explanation: Now we want to investigate errors in the filtered trajectory. End of explanation plot_errors(dt, filt_error, step=10) Explanation: Obviously performance in terms of position and velocity accuracy is very good, but this is sort of expected because GPS provides coordinates directly. Attitude angle errors are generally decreasing as well, but the picture is less clear. We want to plot their standard deviation bounds estimated by the filter as well. End of explanation plt.figure(figsize=(15, 5)) t_plot = filt_error.index * dt / 3600 plt.subplot(131) plt.plot(t_plot, filt_error.h, 'b') plt.plot(t_plot, ff_res.sd.h, 'b--') plt.plot(t_plot, -ff_res.sd.h, 'b--') plt.xlabel("time, h") plt.ylabel("deg") plt.title("heading error") plt.subplot(132) plt.plot(t_plot, filt_error.p, 'b') plt.plot(t_plot, ff_res.sd.p, 'b--') plt.plot(t_plot, -ff_res.sd.p, 'b--') plt.xlabel("time, h") plt.ylabel("deg") plt.title("pitch error") plt.subplot(133) plt.plot(t_plot, filt_error.r, 'b') plt.plot(t_plot, ff_res.sd.r, 'b--') plt.plot(t_plot, -ff_res.sd.r, 'b--') plt.xlabel("time, h") plt.ylabel("deg") plt.title("roll error") plt.tight_layout() Explanation: The return value of FeedforwardFilter contains attributes err, sd, gyro_err, gyro_sd, accel_err, accel_sd for estimated trajectory errors and inertial sensor states and their standard deviations. Below we plot true errors for heading, pitch and roll with their 1-sigma bounds provided by the filter. Generally we see that the filter's performance is adequate. It can be measured more precisely by Monte-Carlo simulation, but this will not be included in this example. End of explanation plt.figure(figsize=(15, 5)) t_plot = filt_error.index[::10] * dt / 3600 gyro_err = ff_res.gyro_err.iloc[::10] gyro_sd = ff_res.gyro_sd.iloc[::10] plt.subplot(131) plt.plot(t_plot, gyro_err.BIAS_1 + gyro_sd.BIAS_1, 'b') plt.plot(t_plot, gyro_err.BIAS_1 - gyro_sd.BIAS_1, 'b') plt.hlines(gyro_bias[0], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Gyro 1 bias") plt.subplot(132) plt.plot(t_plot, gyro_err.BIAS_2 + gyro_sd.BIAS_2, 'b') plt.plot(t_plot, gyro_err.BIAS_2 - gyro_sd.BIAS_2, 'b') plt.hlines(gyro_bias[1], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Gyro 2 bias") plt.subplot(133) plt.plot(t_plot, gyro_err.BIAS_3 + gyro_sd.BIAS_3, 'b') plt.plot(t_plot, gyro_err.BIAS_3 - gyro_sd.BIAS_3, 'b') plt.hlines(gyro_bias[2], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Gyro 3 bias") plt.tight_layout() Explanation: Also it is interesting to assess the filter's sensor bias estimation. Plots below show $\pm \sigma$ bands of gyro bias estimates, the straight line depicts the true value. We see that estimation of gyro biases is quite successful. End of explanation plt.figure(figsize=(15, 5)) t_plot = filt_error.index[::10] * dt / 3600 accel_err = ff_res.accel_err.iloc[::10] accel_sd = ff_res.accel_sd.iloc[::10] plt.subplot(131) plt.plot(t_plot, accel_err.BIAS_1 + accel_sd.BIAS_1, 'b') plt.plot(t_plot, accel_err.BIAS_1 - accel_sd.BIAS_1, 'b') plt.hlines(accel_bias[0], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Accel 1 bias") plt.subplot(132) plt.plot(t_plot, accel_err.BIAS_2 + accel_sd.BIAS_2, 'b') plt.plot(t_plot, accel_err.BIAS_2 - accel_sd.BIAS_2, 'b') plt.hlines(accel_bias[1], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Accel 2 bias") plt.subplot(133) plt.plot(t_plot, accel_err.BIAS_3 + accel_sd.BIAS_3, 'b') plt.plot(t_plot, accel_err.BIAS_3 - accel_sd.BIAS_3, 'b') plt.hlines(accel_bias[2], *plt.xlim()) plt.xlabel("time, h") plt.ylabel("rad/s") plt.title("Accel 3 bias") plt.tight_layout() Explanation: Below the same done for accelerometer biases. Horizontal accelerometer biases are less observable on the given trajectory than gyro biases, and the vertical bias is not observable at all because pitch and roll are held zero. End of explanation
9,708
Given the following text description, write Python code to implement the functionality described below step by step Description: Tufte A Jupyter notebook with examples of how to use tufte. Introduction Currently, there are four supported plot types Step1: tufte plots can take inputs of several types Step2: You'll notice that the default Tufte line style includes circle markers with gaps between line segments. You are also able to specify the figure size directly to the line function. There are several other differences. We'll create another plot below as an example. Step3: First, we use Tufte's range-frame concept, which aims to make the frame (axis) lines "effective data-communicating element[s]" by showing the minimum and maximum values in each axis. This way, the tick labels are more informative. In this example, the range of the outcome variable is 96.9 units (407.1 - 310.2). Similarly, this data covers the years 1967 through 1977, inclusive. The range-frame is applied to both axes for line and scatter plots. Step4: You'll also notice that tufte.scatter() returns figure and axis objects. This is true for all tufte plots. With this, we can add a title to the figure and a label to the x-axis, for example. tufte plots are meant to be able to interact with matplotlib functions and methods. When you need to create a bar plot, do the following. Step5: A feature of the bar() function is the ability for x-axis labels to auto-rotate. We can see this when we change the one of the labels. Step6: Tufte's boxplot is, perhaps, the most radical redesign of an existing plot. His approach is to maximize data-ink, the "non-erasable core of a graphic," by removing unnecessary elements. The boxplot removes boxes (which is why we refer to it as bplot()) and caps and simply shows a dot between two lines. This plot currently only takes a list, np.ndarray, or pd.DataFrame. Let's create a DataFrame. Step7: The dot represents the median and the lines correspond to the top and bottom 25% of the data. The empty space between the lines is the interquartile range. Issues Range-Frame You may have noticed&mdash;if you cloned this repo and ran the notebook&mdash;that the range-frame feature isn;t perfect. It is possible, for example, for a minimum or maximum value to be too close to an existing tick label, causing overlap. Additionally, in cases where the data in a given dimension (x or y) contains float values, the tick labels are converted to float. (This isn't the issue.)
Python Code: %matplotlib inline import string import random from collections import defaultdict import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import tufte Explanation: Tufte A Jupyter notebook with examples of how to use tufte. Introduction Currently, there are four supported plot types: * bar * boxplot * line * scatter The designs are based on Edward R. Tufte's designs in The Visual Display of Quantitative Information. This module is built on top of matplotlib, which means that it's possible to use those functions or methods in conjunction with tufte plots. In addition, an effort has been made to keep most changes to matplotlibrc properties contained within the module. That is, we try not to make global changes that will affect other plots. Use Let's start by importing several libraries. End of explanation tufte.line(range(3), range(3), figsize=(5, 5)) Explanation: tufte plots can take inputs of several types: list, np.ndarray, pd.Series, and, in some cases, pd.DataFrame. To create a line plot, do the following. (Note: if you'd like higher resolution plots, use mpl.rc('savefig', dpi=200).) End of explanation x = range(1967, 1977 + 1) y = [310.2, 330, 375, 385, 385.6, 395, 387.5, 380, 392, 407.1, 380] tufte.line(x, y, figsize=(8, 4)) Explanation: You'll notice that the default Tufte line style includes circle markers with gaps between line segments. You are also able to specify the figure size directly to the line function. There are several other differences. We'll create another plot below as an example. End of explanation np.random.seed(8675309) fig, ax = tufte.scatter(np.random.randint(5, 95, 100), np.random.randint(1000, 1234, 100), figsize=(8, 4)) plt.title('Title') ax.set_xlabel('x-axis') Explanation: First, we use Tufte's range-frame concept, which aims to make the frame (axis) lines "effective data-communicating element[s]" by showing the minimum and maximum values in each axis. This way, the tick labels are more informative. In this example, the range of the outcome variable is 96.9 units (407.1 - 310.2). Similarly, this data covers the years 1967 through 1977, inclusive. The range-frame is applied to both axes for line and scatter plots. End of explanation np.random.seed(8675309) tufte.bar(range(10), np.random.randint(1, 25, 10), label=['First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Seventh', 'Eight', 'Ninth', 'Tenth'], figsize=(8, 4)) Explanation: You'll also notice that tufte.scatter() returns figure and axis objects. This is true for all tufte plots. With this, we can add a title to the figure and a label to the x-axis, for example. tufte plots are meant to be able to interact with matplotlib functions and methods. When you need to create a bar plot, do the following. End of explanation np.random.seed(8675309) tufte.bar(range(10), np.random.randint(1, 25, 10), label=['First', 'Second', 'Third', 'Fourth', 'Fifth', 'Sixth', 'Lucky 7th', 'Eight', 'Ninth', 'Tenth'], figsize=(8, 4)) Explanation: A feature of the bar() function is the ability for x-axis labels to auto-rotate. We can see this when we change the one of the labels. End of explanation n_cols = 10 # Must be less than or equal to 26 size = 100 letters = string.ascii_lowercase df_dict = defaultdict(list) for c in letters[:n_cols]: df_dict[c] = np.random.randint(random.randint(25, 50), random.randint(75, 100), size) df = pd.DataFrame(df_dict) tufte.bplot(df, figsize=(8, 4)) Explanation: Tufte's boxplot is, perhaps, the most radical redesign of an existing plot. His approach is to maximize data-ink, the "non-erasable core of a graphic," by removing unnecessary elements. The boxplot removes boxes (which is why we refer to it as bplot()) and caps and simply shows a dot between two lines. This plot currently only takes a list, np.ndarray, or pd.DataFrame. Let's create a DataFrame. End of explanation np.random.seed(8675309) tufte.scatter(np.random.randn(100), np.random.randn(100), figsize=(8, 4)) Explanation: The dot represents the median and the lines correspond to the top and bottom 25% of the data. The empty space between the lines is the interquartile range. Issues Range-Frame You may have noticed&mdash;if you cloned this repo and ran the notebook&mdash;that the range-frame feature isn;t perfect. It is possible, for example, for a minimum or maximum value to be too close to an existing tick label, causing overlap. Additionally, in cases where the data in a given dimension (x or y) contains float values, the tick labels are converted to float. (This isn't the issue.) End of explanation
9,709
Given the following text description, write Python code to implement the functionality described below step by step Description: Step2: Image_Augmentation The following function takes the 8bit grayscale images that we are using and performs a series of affine transformations to the images. There are vertical and horizontal flips along with rotations of 90, 270, 15, 30, and 45 degrees. Also included is a function for generating the rotations. Image augmentation needs to be performed before runnin the VGG_Prep function. When calling the Image_Augmentation function setting the various flags to True will cause the transformation to be performed. Step4: VGG_Prep The following function takes the 8bit grayscale images that we are using and converts them to 8bit rgb while at the same time changing the pixles to a scale of 0 to 255. These image parameters are required by the VGG_16 model. Step5: VGG_16 Bottleneck The following function leverages Daniel's image loader function and performs the following Step6: Running the model on the Train, Test, and Validation Data 1) The first test is on the rescaled and squared off images maintaining aspect ratio without the artifacts removed. Step7: Train Top Model This function takes the bottleneck features from the bottleneck function and applies a shallow CNN to these features to classify the images. The function needs to be pointed at the locations of the training and test features along with the training and test labels. You can use the epoch and batch size variables to control the number of images to show to the model and the number of training epochs. The model save variabler alows for saving of the final model weights. Step8: Confusion Matrix The function below takes a data set that has been run through the VGG16 model, the corresponding labels, and a pre-trained weights file and creates a confusion matrix using Daniel's helper function. Step9: Running the Top Model The following runs the top model classifier on the bottleneck features. Step10: Running the Top Model on the Fully Augmented Data In this run we will be using the bottleneck features from taking the training data and augmenting it with the followin transformations; Vertical Flip, Horizontal Flip, 90 and 270 degree rotation, and 15, 30, and 45 degree rotation in both directions. Step11: Running the Top Model at 224x224 In this next experiment we run the model with transformations on the data at a size of 224x224 Step12: Generating the Confusion Matrix for the Balanced 224x224 Run Step13: 224x224 With Flips Step14: Thresholded Images at 224x224 with no Augmentations Step15: 224x224 DDSM - Two Categories Attempting to learn the difference between normal annd abnormal. Step16: 224x224 DDSM Thresholded Images - Two Categories
Python Code: # Function for rotating the image files. def Image_Rotate(img, angle): Rotates a given image the requested angle. Returns the rotated image. rows,cols = img.shape M = cv2.getRotationMatrix2D((cols/2,rows/2), angle, 1) return(cv2.warpAffine(img,M,(cols,rows))) # Function for augmenting the images def Image_Augment(X, Y, vflip=False, hflip=False, major_rotate=False, minor_rotate=False): :param X np.array of images Y np.array of labels vflip, hflip, major_rotate, minor_rotate set to True to perform the augmentations :return The set of augmented iages and their corresponding labels if len(X) != len(Y): print('Data and Label arrays not of the same length.') n = vflip + hflip + 2*major_rotate + 6*minor_rotate augmented = np.zeros([len(X) + n*len(X), X.shape[1], X.shape[2]]) label = np.zeros([len(Y) + n*len(Y), 1]) count = 0 for i in range(0, len(X)): augmented[count] = X[i] label[count] = Y[i] count += 1 if vflip: aug = cv2.flip(X[i], 0) augmented[count] = aug label[count] = Y[i] count += 1 if hflip: aug = cv2.flip(X[i], 1) augmented[count] = aug label[count] = Y[i] count +=1 if major_rotate: angles = [90, 270] for angle in angles: aug = Image_Rotate(X[i], angle) augmented[count] = aug label[count] = Y[i] count += 1 if minor_rotate: angles = [-45,-30,-15,15,30,45] for angle in angles: aug = Image_Rotate(X[i], angle) augmented[count] = aug label[count] = Y[i] count += 1 return(augmented, label) Explanation: Image_Augmentation The following function takes the 8bit grayscale images that we are using and performs a series of affine transformations to the images. There are vertical and horizontal flips along with rotations of 90, 270, 15, 30, and 45 degrees. Also included is a function for generating the rotations. Image augmentation needs to be performed before runnin the VGG_Prep function. When calling the Image_Augmentation function setting the various flags to True will cause the transformation to be performed. End of explanation def VGG_Prep(img_data): :param img_data: training or test images of shape [#images, height, width] :return: the array transformed to the correct shape for the VGG network shape = [#images, height, width, 3] transforms to rgb and reshapes images = np.zeros([len(img_data), img_data.shape[1], img_data.shape[2], 3]) for i in range(0, len(img_data)): im = 255 - (img_data[i] * 255) # Orginal imagnet images were not rescaled im = color.gray2rgb(im) images[i] = im return(images) Explanation: VGG_Prep The following function takes the 8bit grayscale images that we are using and converts them to 8bit rgb while at the same time changing the pixles to a scale of 0 to 255. These image parameters are required by the VGG_16 model. End of explanation def vgg16_bottleneck(trainPath, testPath, imagePath, modelPath, size, balance = True, verbose = True, verboseFreq = 50, valPath = 'None', transform = False, binary = False): categories = bc.bcNormVsAbnormNumerics() # Loading data metaTr, metaTr2, mCountsTr = bc.load_training_metadata(trainPath, balance, verbose) lenTrain = len(metaTr) X_train, Y_train = bc.load_data(trainPath, imagePath, maxData = lenTrain, categories=categories, verboseFreq = verboseFreq, imgResize=size, normalVsAbnormal=binary) metaTest, meataT2, mCountsT = bc.load_training_metadata(testPath, balance, verbose) lenTest = len(metaTest) X_test, Y_test = bc.load_data(testPath, imagePath, maxData = lenTrain, categories=categories, verboseFreq = verboseFreq, imgResize=size, normalVsAbnormal=binary) if transform: print('Transforming the Training Data') X_train, Y_train = Image_Augment(X=X_train, Y=Y_train, hflip=True, vflip=True, minor_rotate=False, major_rotate=False) print('Preparing the Training Data for the VGG_16 Model.') X_train = VGG_Prep(X_train) print('Preparing the Test Data for the VGG_16 Model') X_test = VGG_Prep(X_test) print('Loading the VGG_16 Model') model = applications.VGG16(include_top=False, weights='imagenet') # Generating the bottleneck features for the training data print('Evaluating the VGG_16 Model on the Training Data') bottleneck_features_train = model.predict(X_train) # Saving the bottleneck features for the training data featuresTrain = os.path.join(modelPath, 'bottleneck_features_train.npy') labelsTrain = os.path.join(modelPath, 'labels_train.npy') print('Saving the Training Data Bottleneck Features.') np.save(open(featuresTrain, 'wb'), bottleneck_features_train) np.save(open(labelsTrain, 'wb'), Y_train) # Generating the bottleneck features for the test data print('Evaluating the VGG_16 Model on the Test Data') bottleneck_features_test = model.predict(X_test) # Saving the bottleneck features for the test data featuresTest = os.path.join(modelPath, 'bottleneck_features_test.npy') labelsTest = os.path.join(modelPath, 'labels_test.npy') print('Saving the Test Data Bottleneck Feaures.') np.save(open(featuresTest, 'wb'), bottleneck_features_test) np.save(open(labelsTest, 'wb'), Y_test) if valPath != 'None': metaVal, metaV2, mCountsV = bc.load_training_metadata(valPath, verbose = verbose, balanceViaRemoval = False) lenVal = len(metaVal) X_val, Y_val = bc.load_data(valPath, imagePath, maxData = lenVal, verboseFreq = verboseFreq, imgResize=size) X_val = VGG_Prep(X_val) # Generating the bottleneck features for the test data print('Evaluating the VGG_16 Model on the Validataion Data') bottleneck_features_val = model.predict(X_val) # Saving the bottleneck features for the test data featuresVal = os.path.join(modelPath, 'bottleneck_features_validation.npy') labelsVal = os.path.join(modelPath, 'labels_validation.npy') print('Saving the Validation Data Bottleneck Features.') np.save(open(featuresVal, 'wb'), bottleneck_features_val) np.save(open(labelsVal, 'wb'), Y_val) Explanation: VGG_16 Bottleneck The following function leverages Daniel's image loader function and performs the following: 1. Loads in the images using the train, test, and validation csv files. 2. Prepares the images using the VGG_Prep function 3. Loads the VGG_16 model with the cassification layers removed. 4. Runs each of the images for the training, test, and validation sets (if included) through the model. 5. Saves out .npy files containing the bottleneck features from the VGG_16 model predictions and the corresponding labels. End of explanation # global variables for loading the data imagePath = '../images/threshold/DDSM/' trainDataPath = '../images/ddsm/ddsm_train.csv' testDataPath = '../images/ddsm/ddsm_test.csv' valDataPath = '../images/ddsm/ddsm_val.csv' imgResize = (224, 224) # can go up to (224, 224) modelPath = '../model/' vgg16_bottleneck(trainDataPath, testDataPath, imagePath, modelPath, imgResize, balance = True, verbose = True, verboseFreq = 50, valPath = valDataPath, transform = False, binary = True) class LossHistory(cb.Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): batch_loss = logs.get('loss') self.losses.append(batch_loss) Explanation: Running the model on the Train, Test, and Validation Data 1) The first test is on the rescaled and squared off images maintaining aspect ratio without the artifacts removed. End of explanation def train_top_model(train_feats, train_lab, test_feats, test_lab, model_path, model_save, epoch = 50, batch = 64): train_bottleneck = os.path.join(model_path, train_feats) train_labels = os.path.join(model_path, train_lab) test_bottleneck = os.path.join(model_path, test_feats) test_labels = os.path.join(model_path, test_lab) history = LossHistory() X_train = np.load(train_bottleneck) Y_train = np.load(train_labels) #Y_train = np_utils.to_categorical(Y_train, nb_classes=3) Y_train = np_utils.to_categorical(Y_train, nb_classes=2) X_test = np.load(test_bottleneck) Y_test = np.load(test_labels) #Y_test = np_utils.to_categorical(Y_test, nb_classes=3) Y_test = np_utils.to_categorical(Y_test, nb_classes=2) print(X_train.shape) noise = 0.01 model = Sequential() model.add( GaussianNoise(noise, input_shape=X_train.shape[1:])) model.add(Flatten(input_shape=X_train.shape[1:])) model.add(Dropout(0.7)) model.add( Dense(256, activation = 'relu') ) model.add(Dropout(0.5)) #model.add(Dense(3)) model.add(Dense(2)) model.add(Activation('softmax')) #loss = 'categorical_crossentropy' model.compile(optimizer='adadelta', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, Y_train, nb_epoch=epoch, batch_size=batch, callbacks=[history], validation_data=(X_test, Y_test), verbose=2) score = model.evaluate(X_test, Y_test, batch_size=16, verbose=0) print "Network's test score [loss, accuracy]: {0}".format(score) model.save_weights(os.path.join(model_path, model_save)) Explanation: Train Top Model This function takes the bottleneck features from the bottleneck function and applies a shallow CNN to these features to classify the images. The function needs to be pointed at the locations of the training and test features along with the training and test labels. You can use the epoch and batch size variables to control the number of images to show to the model and the number of training epochs. The model save variabler alows for saving of the final model weights. End of explanation def cf_Matrix(data, label, weights, path, save): data = os.path.join(path, data) label = os.path.join(path, label) categories = bc.bcNormVsAbnormNumerics() X = np.load(data) Y = np.load(label) #Y = np_utils.to_categorical(Y, nb_classes=3) # Loading and preping the model model = Sequential() model.add(Flatten(input_shape=X.shape[1:])) model.add(Dropout(0.7)) model.add(Dense(256)) model.add(Activation('relu'), constraint= maxnorm(3.)) model.add(Dropout(0.5)) #model.add(Dense(3)) model.add(Dense(2)) model.add(Activation('softmax')) model.load_weights(os.path.join('../model/', weights)) # try Adadelta and Adam model.compile(optimizer='adadelta', loss='categorical_crossentropy', metrics=['accuracy']) predictOutput = model.predict(X, batch_size=64, verbose=2) #numBC = bc.numericBC() numBC = bc.reverseDict(categories) predClasses = [] for i in range(len(predictOutput)): arPred = np.array(predictOutput[i]) predictionProb = arPred.max() predictionNdx = arPred.argmax() predClassName = numBC[predictionNdx] predClasses.append(predictionNdx) # Use sklearn's helper method to generate the confusion matrix cnf_matrix = skm.confusion_matrix(Y, predClasses) # Ploting the confusion matrix class_names = numBC.values() np.set_printoptions(precision=2) fileCfMatrix = '../figures/confusion_matrix-' + save + '.png' plt.figure() bc.plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, \n' + save) plt.savefig(fileCfMatrix) plt.show() Explanation: Confusion Matrix The function below takes a data set that has been run through the VGG16 model, the corresponding labels, and a pre-trained weights file and creates a confusion matrix using Daniel's helper function. End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'bottleneck_features_train.npy' train_labels = 'labels_train.npy' test_bottleneck = 'bottleneck_features_test.npy' test_labels = 'labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'top_weights02.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) feats_loc = '150_test_val/bottleneck_features_test.npy' feats_labs = '150_test_val/labels_test.npy' weight = 'balanced150run2/top_weights02.h5' saveFile = 'balanced150' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: Running the Top Model The following runs the top model classifier on the bottleneck features. End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'bottleneck_features_150fulltrans_train.npy' train_labels = 'labels_150fulltrans_train.npy' test_bottleneck = 'bottleneck_features_test.npy' test_labels = 'labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'top_weights_150fulltrans.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) feats_loc = '150_test_val/bottleneck_features_test.npy' feats_labs = '150_test_val/labels_test.npy' weight = 'balanced150FullTrans/top_weights_150fulltrans.h5' saveFile = 'balanced150FullTrans' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: Running the Top Model on the Fully Augmented Data In this run we will be using the bottleneck features from taking the training data and augmenting it with the followin transformations; Vertical Flip, Horizontal Flip, 90 and 270 degree rotation, and 15, 30, and 45 degree rotation in both directions. End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'bottleneck_features_train_224.npy' train_labels = 'labels_train_224.npy' test_bottleneck = 'bottleneck_features_test.npy' test_labels = 'labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'top_weights_224.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) Explanation: Running the Top Model at 224x224 In this next experiment we run the model with transformations on the data at a size of 224x224 End of explanation feats_loc = '224_test_val/bottleneck_features_test.npy' feats_labs = '224_test_val/labels_test.npy' weight = 'balanced224/top_weights_224.h5' saveFile = 'balanced224' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: Generating the Confusion Matrix for the Balanced 224x224 Run End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'Balanced224flips/bottleneck_features_train_224flip.npy' train_labels = 'Balanced224flips/labels_train_224flip.npy' test_bottleneck = '224_test_val/bottleneck_features_test.npy' test_labels = '224_test_val/labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'Balanced224flips/top_weights_224flip.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) feats_loc = '224_test_val/bottleneck_features_test.npy' feats_labs = '224_test_val/labels_test.npy' weight = 'balanced224flips/top_weights_224flip.h5' saveFile = 'balanced224flip' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: 224x224 With Flips End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'bottleneck_features_train_224th.npy' train_labels = 'labels_train_224th.npy' test_bottleneck = 'bottleneck_features_test.npy' test_labels = 'labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'top_weights_224th.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) feats_loc = '224_threshold/bottleneck_features_test.npy' feats_labs = '224_threshold/labels_test.npy' weight = 'balanced224Threshold/top_weights_224th.h5' saveFile = 'balanced224Threshold' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: Thresholded Images at 224x224 with no Augmentations End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'Balanced224Binary/bottleneck_features_train_224twoclass.npy' train_labels = 'Balanced224Binary/labels_train_224twoclass.npy' test_bottleneck = '224_binary/bottleneck_features_test.npy' test_labels = '224_binary/labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'Balanced224Binary/top_weights_224twoclass.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path, epoch = 100) feats_loc = '224_binary/bottleneck_features_test.npy' feats_labs = '224_binary/labels_test.npy' weight = 'balanced224Binary/top_weights_224twoclass.h5' saveFile = 'balanced224Twoclass' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: 224x224 DDSM - Two Categories Attempting to learn the difference between normal annd abnormal. End of explanation # Locations for the bottleneck and labels files that we need modelPath = '../model/' train_bottleneck = 'bottleneck_features_train_224th_twoclass.npy' train_labels = 'labels_train_224th_twoclass.npy' test_bottleneck = 'bottleneck_features_test.npy' test_labels = 'labels_test.npy' validation_bottleneck = 'bottleneck_features_valdation.npy' validation_label = 'labels_validation.npy' top_model_weights_path = 'top_weights_224th_twoclass.h5' train_top_model(train_feats=train_bottleneck, train_lab=train_labels, test_feats=test_bottleneck, test_lab=test_labels, model_path=modelPath, model_save=top_model_weights_path) feats_loc = '224_binary/bottleneck_features_test.npy' feats_labs = '224_binary/labels_test.npy' weight = 'balanced224Th_Binary/top_weights_224th_twoclass.h5' saveFile = 'balanced224Th_Twoclass' cf_Matrix(data=feats_loc, label=feats_labs, weights=weight, path=modelPath, save=saveFile) Explanation: 224x224 DDSM Thresholded Images - Two Categories End of explanation
9,710
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2020 The TensorFlow Authors. Step1: BERT Question Answer with TensorFlow Lite Model Maker <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https Step2: Import the required packages. Step3: The "End-to-End Overview" demonstrates a simple end-to-end example. The following sections walk through the example step by step to show more detail. Choose a model_spec that represents a model for question answer Each model_spec object represents a specific model for question answer. The Model Maker currently supports MobileBERT and BERT-Base models. Supported Model | Name of model_spec | Model Description --- | --- | --- MobileBERT | 'mobilebert_qa' | 4.3x smaller and 5.5x faster than BERT-Base while achieving competitive results, suitable for on-device scenario. MobileBERT-SQuAD | 'mobilebert_qa_squad' | Same model architecture as MobileBERT model and the initial model is already retrained on SQuAD1.1. BERT-Base | 'bert_qa' | Standard BERT model that widely used in NLP tasks. In this tutorial, MobileBERT-SQuAD is used as an example. Since the model is already retrained on SQuAD1.1, it could coverage faster for question answer task. Step4: Load Input Data Specific to an On-device ML App and Preprocess the Data The TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples. In this tutorial, you will use a subset of this dataset to learn how to use the Model Maker library. To load the data, convert the TriviaQA dataset to the SQuAD1.1 format by running the converter Python script with --sample_size=8000 and a set of web data. Modify the conversion code a little bit by Step5: You can also train the MobileBERT model with your own dataset. If you are running this notebook on Colab, upload your data by using the left sidebar. <img src="https Step6: Customize the TensorFlow Model Create a custom question answer model based on the loaded data. The create function comprises the following steps Step7: Have a look at the detailed model structure. Step8: Evaluate the Customized Model Evaluate the model on the validation data and get a dict of metrics including f1 score and exact match etc. Note that metrics are different for SQuAD1.1 and SQuAD2.0. Step9: Export to TensorFlow Lite Model Convert the existing model to TensorFlow Lite model format that you can later use in an on-device ML application. Since MobileBERT is too big for on-device applications, use dynamic range quantization on the model to compress MobileBERT by 4x with the minimal loss of performance. First, define the quantization configuration Step10: Export the quantized TFLite model according to the quantization config with metadata. The default TFLite model filename is model.tflite. Step11: You can use the TensorFlow Lite model file in the bert_qa reference app using BertQuestionAnswerer API in TensorFlow Lite Task Library by downloading it from the left sidebar on Colab. The allowed export formats can be one or a list of the following Step12: You can also evaluate the tflite model with the evaluate_tflite method. This step is expected to take a long time. Step13: Advanced Usage The create function is the critical part of this library in which the model_spec parameter defines the model specification. The BertQAModelSpec class is currently supported. There are 2 models
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2020 The TensorFlow Authors. End of explanation !pip install tflite-model-maker Explanation: BERT Question Answer with TensorFlow Lite Model Maker <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/lite/tutorials/model_maker_question_answer"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/tensorflow/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a> </td> </table> The TensorFlow Lite Model Maker library simplifies the process of adapting and converting a TensorFlow model to particular input data when deploying this model for on-device ML applications. This notebook shows an end-to-end example that utilizes the Model Maker library to illustrate the adaptation and conversion of a commonly-used question answer model for question answer task. Introduction to BERT Question Answer Task The supported task in this library is extractive question answer task, which means given a passage and a question, the answer is the span in the passage. The image below shows an example for question answer. <p align="center"><img src="https://storage.googleapis.com/download.tensorflow.org/models/tflite/screenshots/model_maker_squad_showcase.png" width="500"></p> <p align="center"> <em>Answers are spans in the passage (image credit: <a href="https://rajpurkar.github.io/mlx/qa-and-squad/">SQuAD blog</a>) </em> </p> As for the model of question answer task, the inputs should be the passage and question pair that are already preprocessed, the outputs should be the start logits and end logits for each token in the passage. The size of input could be set and adjusted according to the length of passage and question. End-to-End Overview The following code snippet demonstrates how to get the model within a few lines of code. The overall process includes 5 steps: (1) choose a model, (2) load data, (3) retrain the model, (4) evaluate, and (5) export it to TensorFlow Lite format. ```python Chooses a model specification that represents the model. spec = model_spec.get('mobilebert_qa') Gets the training data and validation data. train_data = QuestionAnswerDataLoader.from_squad(train_data_path, spec, is_training=True) validation_data = QuestionAnswerDataLoader.from_squad(validation_data_path, spec, is_training=False) Fine-tunes the model. model = question_answer.create(train_data, model_spec=spec) Gets the evaluation result. metric = model.evaluate(validation_data) Exports the model to the TensorFlow Lite format with metadata in the export directory. model.export(export_dir) ``` The following sections explain the code in more detail. Prerequisites To run this example, install the required packages, including the Model Maker package from the GitHub repo. End of explanation import numpy as np import os import tensorflow as tf assert tf.__version__.startswith('2') from tflite_model_maker import configs from tflite_model_maker import ExportFormat from tflite_model_maker import model_spec from tflite_model_maker import question_answer from tflite_model_maker import QuestionAnswerDataLoader Explanation: Import the required packages. End of explanation spec = model_spec.get('mobilebert_qa_squad') Explanation: The "End-to-End Overview" demonstrates a simple end-to-end example. The following sections walk through the example step by step to show more detail. Choose a model_spec that represents a model for question answer Each model_spec object represents a specific model for question answer. The Model Maker currently supports MobileBERT and BERT-Base models. Supported Model | Name of model_spec | Model Description --- | --- | --- MobileBERT | 'mobilebert_qa' | 4.3x smaller and 5.5x faster than BERT-Base while achieving competitive results, suitable for on-device scenario. MobileBERT-SQuAD | 'mobilebert_qa_squad' | Same model architecture as MobileBERT model and the initial model is already retrained on SQuAD1.1. BERT-Base | 'bert_qa' | Standard BERT model that widely used in NLP tasks. In this tutorial, MobileBERT-SQuAD is used as an example. Since the model is already retrained on SQuAD1.1, it could coverage faster for question answer task. End of explanation train_data_path = tf.keras.utils.get_file( fname='triviaqa-web-train-8000.json', origin='https://storage.googleapis.com/download.tensorflow.org/models/tflite/dataset/triviaqa-web-train-8000.json') validation_data_path = tf.keras.utils.get_file( fname='triviaqa-verified-web-dev.json', origin='https://storage.googleapis.com/download.tensorflow.org/models/tflite/dataset/triviaqa-verified-web-dev.json') Explanation: Load Input Data Specific to an On-device ML App and Preprocess the Data The TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples. In this tutorial, you will use a subset of this dataset to learn how to use the Model Maker library. To load the data, convert the TriviaQA dataset to the SQuAD1.1 format by running the converter Python script with --sample_size=8000 and a set of web data. Modify the conversion code a little bit by: * Skipping the samples that couldn't find any answer in the context document; * Getting the original answer in the context without uppercase or lowercase. Download the archived version of the already converted dataset. End of explanation train_data = QuestionAnswerDataLoader.from_squad(train_data_path, spec, is_training=True) validation_data = QuestionAnswerDataLoader.from_squad(validation_data_path, spec, is_training=False) Explanation: You can also train the MobileBERT model with your own dataset. If you are running this notebook on Colab, upload your data by using the left sidebar. <img src="https://storage.googleapis.com/download.tensorflow.org/models/tflite/screenshots/model_maker_question_answer.png" alt="Upload File" width="800" hspace="100"> If you prefer not to upload your data to the cloud, you can also run the library offline by following the guide. Use the QuestionAnswerDataLoader.from_squad method to load and preprocess the SQuAD format data according to a specific model_spec. You can use either SQuAD2.0 or SQuAD1.1 formats. Setting parameter version_2_with_negative as True means the formats is SQuAD2.0. Otherwise, the format is SQuAD1.1. By default, version_2_with_negative is False. End of explanation model = question_answer.create(train_data, model_spec=spec) Explanation: Customize the TensorFlow Model Create a custom question answer model based on the loaded data. The create function comprises the following steps: Creates the model for question answer according to model_spec. Train the question answer model. The default epochs and the default batch size are set according to two variables default_training_epochs and default_batch_size in the model_spec object. End of explanation model.summary() Explanation: Have a look at the detailed model structure. End of explanation model.evaluate(validation_data) Explanation: Evaluate the Customized Model Evaluate the model on the validation data and get a dict of metrics including f1 score and exact match etc. Note that metrics are different for SQuAD1.1 and SQuAD2.0. End of explanation config = configs.QuantizationConfig.create_dynamic_range_quantization(optimizations=[tf.lite.Optimize.OPTIMIZE_FOR_LATENCY]) config._experimental_new_quantizer = True Explanation: Export to TensorFlow Lite Model Convert the existing model to TensorFlow Lite model format that you can later use in an on-device ML application. Since MobileBERT is too big for on-device applications, use dynamic range quantization on the model to compress MobileBERT by 4x with the minimal loss of performance. First, define the quantization configuration: End of explanation model.export(export_dir='.', quantization_config=config) Explanation: Export the quantized TFLite model according to the quantization config with metadata. The default TFLite model filename is model.tflite. End of explanation model.export(export_dir='.', export_format=ExportFormat.VOCAB) Explanation: You can use the TensorFlow Lite model file in the bert_qa reference app using BertQuestionAnswerer API in TensorFlow Lite Task Library by downloading it from the left sidebar on Colab. The allowed export formats can be one or a list of the following: ExportFormat.TFLITE ExportFormat.VOCAB ExportFormat.SAVED_MODEL By default, it just exports TensorFlow Lite model with metadata. You can also selectively export different files. For instance, exporting only the vocab file as follows: End of explanation model.evaluate_tflite('model.tflite', validation_data) Explanation: You can also evaluate the tflite model with the evaluate_tflite method. This step is expected to take a long time. End of explanation new_spec = model_spec.get('mobilebert_qa') new_spec.seq_len = 512 Explanation: Advanced Usage The create function is the critical part of this library in which the model_spec parameter defines the model specification. The BertQAModelSpec class is currently supported. There are 2 models: MobileBERT model, BERT-Base model. The create function comprises the following steps: Creates the model for question answer according to model_spec. Train the question answer model. This section describes several advanced topics, including adjusting the model, tuning the training hyperparameters etc. Adjust the model You can adjust the model infrastructure like parameters seq_len and query_len in the BertQAModelSpec class. Adjustable parameters for model: seq_len: Length of the passage to feed into the model. query_len: Length of the question to feed into the model. doc_stride: The stride when doing a sliding window approach to take chunks of the documents. initializer_range: The stdev of the truncated_normal_initializer for initializing all weight matrices. trainable: Boolean, whether pre-trained layer is trainable. Adjustable parameters for training pipeline: model_dir: The location of the model checkpoint files. If not set, temporary directory will be used. dropout_rate: The rate for dropout. learning_rate: The initial learning rate for Adam. predict_batch_size: Batch size for prediction. tpu: TPU address to connect to. Only used if using tpu. For example, you can train the model with a longer sequence length. If you change the model, you must first construct a new model_spec. End of explanation
9,711
Given the following text description, write Python code to implement the functionality described below step by step Description: Fractional optimization This notebook shows how to solve a simple concave fractional problem, in which the objective is to maximize the ratio of a nonnegative concave function and a positive convex function. Concave fractional problems are quasiconvex programs (QCPs). They can be specified using disciplined quasiconvex programming (DQCP), and hence can be solved using CVXPY. Step1: Our goal is to minimize the function $$\frac{\sqrt{x}}{\exp(x)}.$$ This function is not concave, but it is quasiconcave, as can be seen by inspecting its graph. Step2: The below code specifies and solves the QCP, using DQCP. The concave fraction function is DQCP-compliant, because the ratio atom is quasiconcave (actually, quasilinear), increasing in the numerator when the denominator is positive, and decreasing in the denominator when the numerator is nonnegative.
Python Code: !pip install --upgrade cvxpy import cvxpy as cp import numpy as np import matplotlib.pyplot as plt Explanation: Fractional optimization This notebook shows how to solve a simple concave fractional problem, in which the objective is to maximize the ratio of a nonnegative concave function and a positive convex function. Concave fractional problems are quasiconvex programs (QCPs). They can be specified using disciplined quasiconvex programming (DQCP), and hence can be solved using CVXPY. End of explanation plt.plot([np.sqrt(y) / np.exp(y) for y in np.linspace(0, 10)]) plt.show() Explanation: Our goal is to minimize the function $$\frac{\sqrt{x}}{\exp(x)}.$$ This function is not concave, but it is quasiconcave, as can be seen by inspecting its graph. End of explanation x = cp.Variable() concave_fractional_fn = cp.sqrt(x) / cp.exp(x) problem = cp.Problem(cp.Maximize(concave_fractional_fn)) assert problem.is_dqcp() problem.solve(qcp=True) x.value Explanation: The below code specifies and solves the QCP, using DQCP. The concave fraction function is DQCP-compliant, because the ratio atom is quasiconcave (actually, quasilinear), increasing in the numerator when the denominator is positive, and decreasing in the denominator when the numerator is nonnegative. End of explanation
9,712
Given the following text description, write Python code to implement the functionality described below step by step Description: Comparing MC and LHS methods for sampling from a uniform distribution This note compares the moments of the emperical uniform distribution sampled using Latin Hypercube sampling with Multi-Dimensional Uniformity (LHSMDU) with the NumPy random number generator with theoretical moments of a uniform distribution. Step1: Params Step2: Theoretical values Step3: Emperical mean ($\mu$) and standard deviation ($\sigma$) estimates Step4: Plotting mean estimates Step5: Plotting standard deviation estimates Step6: Across different number of samples Step7: Plotting mean estimates Step8: Plotting standard deviation estimates
Python Code: import numpy as np import lhsmdu import matplotlib.pyplot as plt def simpleaxis(axes, every=False): if not isinstance(axes, (list, np.ndarray)): axes = [axes] for ax in axes: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) if every: ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.set_title('') Explanation: Comparing MC and LHS methods for sampling from a uniform distribution This note compares the moments of the emperical uniform distribution sampled using Latin Hypercube sampling with Multi-Dimensional Uniformity (LHSMDU) with the NumPy random number generator with theoretical moments of a uniform distribution. End of explanation seed = 1 np.random.seed(seed) lhsmdu.setRandomSeed(seed) numDimensions = 2 numSamples = 100 numIterations = 100 Explanation: Params End of explanation theoretical_mean = 0.5 theoretical_std = np.sqrt(1./12) theoretical_skew = 0. Explanation: Theoretical values End of explanation mc_Mean, lhs_Mean = [], [] mc_Std, lhs_Std = [], [] for iterate in range(numIterations): a = np.random.random((numDimensions,numSamples)) b = lhsmdu.sample(numDimensions,numSamples) mc_Mean.append(np.mean(a)) lhs_Mean.append(np.mean(b)) mc_Std.append(np.std(a)) lhs_Std.append(np.std(b)) Explanation: Emperical mean ($\mu$) and standard deviation ($\sigma$) estimates End of explanation fig, ax = plt.subplots() ax.plot(range(numIterations), mc_Mean, 'ko', label='numpy') ax.plot(range(numIterations), lhs_Mean, 'o', c='orange', label='lhsmdu') ax.hlines(xmin=0, xmax=numIterations, y=theoretical_mean, linestyles='--', label='theoretical value', zorder=3) ax.set_xlabel("Iteration #") ax.set_ylabel("$\mu$") ax.legend(frameon=False) simpleaxis(ax) plt.show() Explanation: Plotting mean estimates End of explanation fig, ax = plt.subplots() ax.plot(range(numIterations), mc_Std, 'ko', label='numpy') ax.plot(range(numIterations), lhs_Std, 'o', c='orange', label='lhsmdu') ax.hlines(xmin=0, xmax=numIterations, y=theoretical_std, linestyles='--', label='theoretical value', zorder=3) ax.set_xlabel("Iteration #") ax.set_ylabel("$\sigma$") ax.legend(frameon=False) simpleaxis(ax) plt.show() Explanation: Plotting standard deviation estimates End of explanation mc_Std, lhs_Std = [], [] mc_Mean, lhs_Mean = [], [] numSamples = range(1,numIterations) for iterate in numSamples: a = np.random.random((numDimensions,iterate)) b = lhsmdu.sample(numDimensions,iterate) mc_Mean.append(np.mean(a)) lhs_Mean.append(np.mean(b)) mc_Std.append(np.std(a)) lhs_Std.append(np.std(b)) Explanation: Across different number of samples End of explanation fig, ax = plt.subplots() ax.plot(numSamples, mc_Mean, 'ko', label='numpy') ax.plot(numSamples, lhs_Mean, 'o', c='orange', label='lhsmdu') ax.hlines(xmin=0, xmax=numIterations, y=theoretical_mean, linestyles='--', label='theoretical value', zorder=3) ax.set_xlabel("Number of Samples") ax.set_ylabel("$\mu$") ax.legend(frameon=False) simpleaxis(ax) plt.show() Explanation: Plotting mean estimates End of explanation fig, ax = plt.subplots() ax.plot(numSamples, mc_Std, 'ko', label='numpy') ax.plot(numSamples, lhs_Std, 'o', c='orange', label='lhsmdu') ax.hlines(xmin=0, xmax=numIterations, y=theoretical_std, linestyles='--', label='theoretical value', zorder=3) ax.set_xlabel("Number of Samples") ax.set_ylabel("$\sigma$") ax.legend(frameon=False) simpleaxis(ax) plt.show() Explanation: Plotting standard deviation estimates End of explanation
9,713
Given the following text description, write Python code to implement the functionality described below step by step Description: Изразът 0 &lt;= seconds &lt;= 59 e булев и има стойност True или False. Step1: Т. е. горната функция е еквивалентна на Step2: когато 0 &lt;= seconds &lt;= 59 е True, и на Step3: когато 0 &lt;= seconds &lt;= 59 е False. По-лесният начин е функцията просто да върне като резултат стойността на булевия израз.
Python Code: seconds = 30 0 <= seconds <= 59 seconds = -1 0 <= seconds <= 59 Explanation: Изразът 0 &lt;= seconds &lt;= 59 e булев и има стойност True или False. End of explanation def valid_seconds(seconds): if True: return True else: return False Explanation: Т. е. горната функция е еквивалентна на: End of explanation def valid_seconds(seconds): if False: return True else: return False Explanation: когато 0 &lt;= seconds &lt;= 59 е True, и на: End of explanation def valid_seconds(seconds): return 0 <= seconds <= 59 valid_seconds(30) Explanation: когато 0 &lt;= seconds &lt;= 59 е False. По-лесният начин е функцията просто да върне като резултат стойността на булевия израз. End of explanation
9,714
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="http Step1: Note Step2: Include the input file that contains all input parameters needed for all components. This file can either be a Python dictionary or a text file that can be converted into a Python dictionary. If a text file is provided, it will be converted to a Python dictionary. Here we use an existing text file prepared for this exercise. Step3: Instantiate Landlab components to simulate corresponding attributes. In this example, we shall demonstrate the use of seasonal rainfall and PFT-specific potential evapotranspiration. The instantiated objects are Step4: Lets look at the initial organization of PFTs Step5: Specify an approximate number of years for the model to run. IMPORTANT Step6: Create empty arrays to store spatio-temporal data over multiple iterations. The captured data can be used for plotting model outputs. Step7: To reduce computational overhead, we shall create a lookup array for plant-specific PET values for each day of the year, and slope and aspect grid. Step8: Specify current_time (in years). current_time is the current time in the simulation. Step9: The loop below couples the components introduced above in a for loop until all "n" number of storms are generated. Time is advanced by the soil moisture object based on storm and interstorm durations that are estimated by the strom generator object. The ecohydrologic model is run on each storm whereas cellular automaton vegetation component is run once every year. Note Step10: Time_Consumed is an optional variable that gives information about computer running time Step11: Save the outputs using numpy.save(). These files have '.nc' extension, which can be loaded using numpy.load(). Step12: Lets look at outputs. Plots of the cellular field of PFT at specified year step can be found below where Step13: If you run this model for around 900 years, you will observe patterns of PFTs. For example, you will find more trees on north facing slopes and mostly shrubs and grass on south facing slopes, as shown below
Python Code: from __future__ import print_function %matplotlib inline import time import numpy as np from landlab.io import read_esri_ascii from landlab import RasterModelGrid as rmg from landlab import load_params from Ecohyd_functions_DEM import ( Initialize_, Empty_arrays, Create_PET_lookup, Save_, Plot_, ) Explanation: <a href="http://landlab.github.io"><img style="float: left" src="../../landlab_header.png"></a> WARNING: This tutorial has not been updated to work with Landlab 2.0 and is thus not tested to verify that it will run. Tutorial For Cellular Automaton Vegetation Model Coupled With Ecohydrologic Model <hr> <small>For more Landlab tutorials, click here: <a href="https://landlab.readthedocs.io/en/v2_dev/user_guide/tutorials.html">https://landlab.readthedocs.io/en/v2_dev/user_guide/tutorials.html</a></small> <hr> This tutorial demonstrates implementation of the Cellular Automaton Tree-GRass-Shrub Simulator (CATGRaSS) [Zhou et al., 2013] on a digital elevation model (DEM). This model is built using components from the Landlab component library. CATGRaSS is a spatially explicit model of plant coexistence. It simulates local ecohydrologic dynamics (soil moisture, transpiration, biomass) and spatial evolution of tree, grass, and shrub Plant Functional Types (PFT) driven by rainfall and solar radiation. Each cell in the model grid can hold a single PFT or remain empty. Tree and shrub plants disperse seeds to their neighbors. Grass seeds are assumed to be available at each cell. Establishment of plants in empty cells is determined probabilistically based on water stress for each PFT. Plants with lower water stress have higher probability of establishment. Plant mortality is simulated probabilistically as a result of aging and drought stress. Fires and grazing will be added to this model soon. This model (driver) contains: - A local vegetation dynamics model that simulates storm and inter-storm water balance and ecohydrologic fluxes (ET, runoff), and plant biomass dynamics by coupling the following components: - PrecipitationDistribution - Radiation - PotentialEvapotranspiration - SoilMoisture - Vegetation A spatially explicit probabilistic cellular automaton component that simulates plant competition by tracking establishment and mortality of plants based on soil moisture stress: VegCA To run this Jupyter notebook, please make sure that the following files are in the same folder: - cellular_automaton_vegetation_DEM.ipynb (this notebook) - Inputs_Vegetation_CA.txt (Input parameters for the model) - Ecohyd_functions_DEM.py (Utility functions) [Ref: Zhou, X, E. Istanbulluoglu, and E.R. Vivoni. "Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexistence in a semiarid climate." Water Resources Research 49.5 (2013): 2872-2895] In this tutorial, we are going to work with a landscape in central New Mexico, USA, where aspect controls the organization of PFTs. The climate in this area is semi-arid with Mean Annual Precipitation (MAP) of 254 mm [Zhou et. al 2013]. We will do the following: - Import a landscape - Initialize the landscape with random distribution of PFTs - Run the coupled Ecohydrology and cellular automata plant competition model for 50 years - Visualize and examine outputs Let's walk through the code: Import the required libraries: End of explanation (grid, elevation) = read_esri_ascii("DEM_10m.asc") # Read the DEM grid1 = rmg((5, 4), xy_spacing=(5.0, 5.0)) # Representative grid Explanation: Note: 'Ecohyd_functions_DEM.py' is a utility script that contains 'functions', which instantiates components and manages inputs and outputs, and help keep this driver concise. Contents of 'Ecohyd_functions_DEM.py' can be a part of this driver (current file), however left out to keep driver concise. We will use two grids in this driver. One grid will represent the actual landscape or domain (e.g., created from a DEM). Another grid, with one cell for each of the plant functional types (PFTs), will be used to create Potential Evapotranspiration (PET) lookup tables. grid: This grid represents the actual landscape. Each cell can be occupied by a single PFT such as tree, shrub, grass, or can be empty (bare). In this example we assume that the elevation field and the vegetation field has the same resolution. grid1: This grid will be used to compute plant-specific PET at a point. Spatially distributed PET Lookup arrays (for all days of the year) will be created for each PFT based on these point values. Note: In this tutorial, the physical ecohydrological components and cellular automata plant competition will be run on grids with same resolution. To develop differential spatial resolutions for the two models, see the tutorial 'cellular_automaton_vegetation_flat.ipynb'. End of explanation InputFile = "Inputs_Vegetation_CA_DEM.txt" data = load_params(InputFile) # Creates dictionary that holds the inputs Explanation: Include the input file that contains all input parameters needed for all components. This file can either be a Python dictionary or a text file that can be converted into a Python dictionary. If a text file is provided, it will be converted to a Python dictionary. Here we use an existing text file prepared for this exercise. End of explanation PD_D, PD_W, Rad, Rad_PET, PET_Tree, PET_Shrub, PET_Grass, SM, VEG, vegca = Initialize_( data, grid, grid1, elevation ) Explanation: Instantiate Landlab components to simulate corresponding attributes. In this example, we shall demonstrate the use of seasonal rainfall and PFT-specific potential evapotranspiration. The instantiated objects are: - PD_D: object for dry season rainfall, - PD_W: object for wet season rainfall, - Rad: Radiation object computes radiation factor defined as the ratio of total shortwave radiation incident on a sloped surface to total shortwave radiation incident on a flat surface. - Rad_PET: Representative radiation object which is used only as an input for PET. - PET_PFT: Plant specific PET objects (we use a cosine function, fitted to calculated PET, as a function of Day Of the Year (DOY) to reduce computation overhead). This value is spatially distributed by using a radiation factor. - SM: Soil Moisture object simulates root-zone average soil moisture at each cell using inputs of potential evapotranspiration, live leaf area index, and vegetation cover. - VEG: Vegetation dynamics object simulates net primary productivity and biomass and thus leaf area index at each cell based on inputs of root-zone average soil moisture. - vegca: Cellular Automaton plant competition object. This object simulates the spatial dynamics of PFTs. It is run once every year at the end of the growing season. This object is initialized with a random cellular field of PFT. Each year, this object updates the field of PFTs based on probabilistic establishment and mortality rules employed at each cell of the modeled DEM. Note: Almost every component in Landlab is coded as a 'class' (to harness the advantages of object oriented programming). An 'object' is the instantiation of the 'class' (for more information, please refer any object oriented programming book). A 'field' refers to a Landlab field (please refer to the Landlab documentation to learn more about Landlab fields). Now let's instantiate all Landlab components that we are going to use for this tutorial: End of explanation import matplotlib.pyplot as plt import matplotlib as mpl cmap = mpl.colors.ListedColormap(["green", "red", "black", "white", "red", "black"]) bounds = [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) description = "green: grass; red: shrub; black: tree; white: bare" plt.figure(101) grid.imshow( "vegetation__plant_functional_type", at="cell", cmap=cmap, grid_units=("m", "m"), norm=norm, limits=[0, 5], allow_colorbar=False, ) plt.figtext(0.2, 0.0, description, weight="bold", fontsize=10) Explanation: Lets look at the initial organization of PFTs End of explanation n_years = 50 # Approx number of years for model to run # Calculate approximate number of storms per year fraction_wet = (data["doy__end_of_monsoon"] - data["doy__start_of_monsoon"]) / 365.0 fraction_dry = 1 - fraction_wet no_of_storms_wet = ( 8760 * (fraction_wet) / (data["mean_interstorm_wet"] + data["mean_storm_wet"]) ) no_of_storms_dry = ( 8760 * (fraction_dry) / (data["mean_interstorm_dry"] + data["mean_storm_dry"]) ) n = int(n_years * (no_of_storms_wet + no_of_storms_dry)) Explanation: Specify an approximate number of years for the model to run. IMPORTANT: This code in numerically extensive. It might take an hour or more to run this simulation for 300 years. It is suggested to run the simulation for 50 years which might take less than 7 minutes to execute. End of explanation P, Tb, Tr, Time, VegType, PET_, Rad_Factor, EP30, PET_threshold = Empty_arrays( n, n_years, grid, grid1 ) Explanation: Create empty arrays to store spatio-temporal data over multiple iterations. The captured data can be used for plotting model outputs. End of explanation Create_PET_lookup( Rad, PET_Tree, PET_Shrub, PET_Grass, PET_, Rad_Factor, EP30, Rad_PET, grid ) Explanation: To reduce computational overhead, we shall create a lookup array for plant-specific PET values for each day of the year, and slope and aspect grid. End of explanation # # Represent current time in years current_time = 0 # Start from first day of Jan # Keep track of run time for simulation—optional Start_time = time.clock() # Recording time taken for simulation # declaring few variables that will be used in storm loop time_check = 0.0 # Buffer to store current_time at previous storm yrs = 0 # Keep track of number of years passed WS = 0.0 # Buffer for Water Stress Tg = 365 # Growing season in days Explanation: Specify current_time (in years). current_time is the current time in the simulation. End of explanation # # Run storm Loop for i in range(0, n): # # Update objects # Calculate Day of Year (DOY) Julian = int(np.floor((current_time - np.floor(current_time)) * 365.0)) # Generate seasonal storms # for Dry season if Julian < data["doy__start_of_monsoon"] or Julian > data["doy__end_of_monsoon"]: PD_D.update() P[i] = PD_D.get_storm_depth() Tr[i] = PD_D.get_precipitation_event_duration() Tb[i] = PD_D.get_interstorm_event_duration() # Wet Season—Jul to Sep—NA Monsoon else: PD_W.update() P[i] = PD_W.get_storm_depth() Tr[i] = PD_W.get_precipitation_event_duration() Tb[i] = PD_W.get_interstorm_event_duration() # Spatially distribute PET and its 30-day-mean (analogous to degree day) grid["cell"]["surface__potential_evapotranspiration_rate"] = ( np.choose(grid["cell"]["vegetation__plant_functional_type"], PET_[Julian]) ) * Rad_Factor[Julian] grid["cell"]["surface__potential_evapotranspiration_30day_mean"] = ( np.choose(grid["cell"]["vegetation__plant_functional_type"], EP30[Julian]) ) * Rad_Factor[Julian] # Assign spatial rainfall data grid["cell"]["rainfall__daily_depth"] = P[i] * np.ones(grid.number_of_cells) # Update soil moisture component current_time = SM.update(current_time, Tr=Tr[i], Tb=Tb[i]) # Decide whether its growing season or not if Julian != 364: if EP30[Julian + 1, 0] > EP30[Julian, 0]: PET_threshold = 1 # 1 corresponds to ETThresholdup (begin growing season) else: PET_threshold = 0 # 0 corresponds to ETThresholddown (end growing season) # Update vegetation component VEG.update(PETthreshold_switch=PET_threshold, Tb=Tb[i], Tr=Tr[i]) # Update yearly cumulative water stress data WS += (grid["cell"]["vegetation__water_stress"]) * Tb[i] / 24.0 # Record time (optional) Time[i] = current_time # Cellular Automata if (current_time - time_check) >= 1.0: if yrs % 5 == 0: print("Elapsed time = {time} years".format(time=yrs)) VegType[yrs] = grid["cell"]["vegetation__plant_functional_type"] grid["cell"]["vegetation__cumulative_water_stress"] = WS / Tg vegca.update() SM.initialize() VEG.initialize() time_check = current_time WS = 0 yrs += 1 VegType[yrs] = grid["cell"]["vegetation__plant_functional_type"] Explanation: The loop below couples the components introduced above in a for loop until all "n" number of storms are generated. Time is advanced by the soil moisture object based on storm and interstorm durations that are estimated by the strom generator object. The ecohydrologic model is run on each storm whereas cellular automaton vegetation component is run once every year. Note: This loop might take around 10 minutes (depending on your computer) to run for a 50 year simulation. Ignore any warnings you might see. End of explanation Final_time = time.clock() Time_Consumed = (Final_time - Start_time) / 60.0 # in minutes print("Time_consumed = {time} minutes".format(time=Time_Consumed)) Explanation: Time_Consumed is an optional variable that gives information about computer running time End of explanation # # Saving sim = "VegCA_DEM_26Jul16_" # Save_(sim, Tb, Tr, P, VegType, yrs, Time_Consumed, Time) Explanation: Save the outputs using numpy.save(). These files have '.nc' extension, which can be loaded using numpy.load(). End of explanation Plot_(grid, VegType, yrs, yr_step=10) Explanation: Lets look at outputs. Plots of the cellular field of PFT at specified year step can be found below where: GRASS = Green; SHRUB = Red; TREE = Black; BARE = White; At the end, percentage cover for each PFT is plotted with respect to time. End of explanation from IPython.display import Image Image(filename="presentation.png") Explanation: If you run this model for around 900 years, you will observe patterns of PFTs. For example, you will find more trees on north facing slopes and mostly shrubs and grass on south facing slopes, as shown below: End of explanation
9,715
Given the following text description, write Python code to implement the functionality described below step by step Description: TensorFlow Tutorial #02 Convolutional Neural Network by Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube Introduction The previous tutorial showed that a simple linear model had about 91% classification accuracy for recognizing hand-written digits in the MNIST data-set. In this tutorial we will implement a simple Convolutional Neural Network in TensorFlow which has a classification accuracy of about 99%, or more if you make some of the suggested exercises. Convolutional Networks work by moving small filters across the input image. This means the filters are re-used for recognizing patterns throughout the entire input image. This makes the Convolutional Networks much more powerful than Fully-Connected networks with the same number of variables. This in turn makes the Convolutional Networks faster to train. You should be familiar with basic linear algebra, Python and the Jupyter Notebook editor. Beginners to TensorFlow may also want to study the first tutorial before proceeding to this one. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. Step1: The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled so the image resolution is decreased from 28x28 to 14x14. These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are down-sampled again to 7x7 pixels. The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image. The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low. These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook. Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Convolutional Layer The following chart shows the basic idea of processing an image in the first convolutional layer. The input image depicts the number 7 and four copies of the image are shown here, so we can see more clearly how the filter is being moved to different positions of the image. For each position of the filter, the dot-product is being calculated between the filter and the image pixels under the filter, which results in a single pixel in the output image. So moving the filter across the entire input image results in a new image being generated. The red filter-weights means that the filter has a positive reaction to black pixels in the input image, while blue pixels means the filter has a negative reaction to black pixels. In this case it appears that the filter recognizes the horizontal line of the 7-digit, as can be seen from its stronger reaction to that line in the output image. Step2: The step-size for moving the filter across the input is called the stride. There is a stride for moving the filter horizontally (x-axis) and another stride for moving vertically (y-axis). In the source-code below, the stride is set to 1 in both directions, which means the filter starts in the upper left corner of the input image and is being moved 1 pixel to the right in each step. When the filter reaches the end of the image to the right, then the filter is moved back to the left side and 1 pixel down the image. This continues until the filter has reached the lower right corner of the input image and the entire output image has been generated. When the filter reaches the end of the right-side as well as the bottom of the input image, then it can be padded with zeroes (white pixels). This causes the output image to be of the exact same dimension as the input image. Furthermore, the output of the convolution may be passed through a so-called Rectified Linear Unit (ReLU), which merely ensures that the output is positive because negative values are set to zero. The output may also be down-sampled by so-called max-pooling, which considers small windows of 2x2 pixels and only keeps the largest of those pixels. This halves the resolution of the input image e.g. from 28x28 to 14x14 pixels. Note that the second convolutional layer is more complicated because it takes 16 input channels. We want a separate filter for each input channel, so we need 16 filters instead of just one. Furthermore, we want 36 output channels from the second convolutional layer, so in total we need 16 x 36 = 576 filters for the second convolutional layer. It can be a bit challenging to understand how this works. Imports Step3: This was developed using TensorFlow v. 0.8.0 Step4: Configuration of Neural Network The configuration of the Convolutional Neural Network is defined here for convenience, so you can easily find and change these numbers and re-run the Notebook. Step5: Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. Step6: The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. Step7: The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. Step8: Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. Step9: Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. Step10: Plot a few images to see if data is correct Step11: TensorFlow Graph The entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time. TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives. TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs. A TensorFlow graph consists of the following parts which will be detailed below Step12: Helper-function for creating a new Convolutional Layer This function creates a new convolutional layer in the computational graph for TensorFlow. Nothing is actually calculated here, we are just adding the mathematical formulas to the TensorFlow graph. It is assumed that the input is a 4-dim tensor with the following dimensions Step13: Helper-function for flattening a layer A convolutional layer produces an output tensor with 4 dimensions. We will add fully-connected layers after the convolution layers, so we need to reduce the 4-dim tensor to 2-dim which can be used as input to the fully-connected layer. Step14: Helper-function for creating a new Fully-Connected Layer This function creates a new fully-connected layer in the computational graph for TensorFlow. Nothing is actually calculated here, we are just adding the mathematical formulas to the TensorFlow graph. It is assumed that the input is a 2-dim tensor of shape [num_images, num_inputs]. The output is a 2-dim tensor of shape [num_images, num_outputs]. Step15: Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below. First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional vector or matrix. The data-type is set to float32 and the shape is set to [None, img_size_flat], where None means that the tensor may hold an arbitrary number of images with each image being a vector of length img_size_flat. Step16: The convolutional layers expect x to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead [num_images, img_height, img_width, num_channels]. Note that img_height == img_width == img_size and num_images can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is Step17: Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable x. The shape of this placeholder variable is [None, num_classes] which means it may hold an arbitrary number of labels and each label is a vector of length num_classes which is 10 in this case. Step18: We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. Step19: Convolutional Layer 1 Create the first convolutional layer. It takes x_image as input and creates num_filters1 different filters, each having width and height equal to filter_size1. Finally we wish to down-sample the image so it is half the size by using 2x2 max-pooling. Step20: Check the shape of the tensor that will be output by the convolutional layer. It is (?, 14, 14, 16) which means that there is an arbitrary number of images (this is the ?), each image is 14 pixels wide and 14 pixels high, and there are 16 different channels, one channel for each of the filters. Step21: Convolutional Layer 2 Create the second convolutional layer, which takes as input the output from the first convolutional layer. The number of input channels corresponds to the number of filters in the first convolutional layer. Step22: Check the shape of the tensor that will be output from this convolutional layer. The shape is (?, 7, 7, 36) where the ? again means that there is an arbitrary number of images, with each image having width and height of 7 pixels, and there are 36 channels, one for each filter. Step23: Flatten Layer The convolutional layers output 4-dim tensors. We now wish to use these as input in a fully-connected network, which requires for the tensors to be reshaped or flattened to 2-dim tensors. Step24: Check that the tensors now have shape (?, 1764) which means there's an arbitrary number of images which have been flattened to vectors of length 1764 each. Note that 1764 = 7 x 7 x 36. Step25: Fully-Connected Layer 1 Add a fully-connected layer to the network. The input is the flattened layer from the previous convolution. The number of neurons or nodes in the fully-connected layer is fc_size. ReLU is used so we can learn non-linear relations. Step26: Check that the output of the fully-connected layer is a tensor with shape (?, 128) where the ? means there is an arbitrary number of images and fc_size == 128. Step27: Fully-Connected Layer 2 Add another fully-connected layer that outputs vectors of length 10 for determining which of the 10 classes the input image belongs to. Note that ReLU is not used in this layer. Step28: Predicted Class The second fully-connected layer estimates how likely it is that the input image belongs to each of the 10 classes. However, these estimates are a bit rough and difficult to interpret because the numbers may be very small or large, so we want to normalize them so that each element is limited between zero and one and the 10 elements sum to one. This is calculated using the so-called softmax function and the result is stored in y_pred. Step29: The class-number is the index of the largest element. Step30: Cost-function to be optimized To make the model better at classifying the input images, we must somehow change the variables for all the network layers. To do this we first need to know how well the model currently performs by comparing the predicted output of the model y_pred to the desired output y_true. The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the network layers. TensorFlow has a built-in function for calculating the cross-entropy. Note that the function calculates the softmax internally so we must use the output of layer_fc2 directly rather than y_pred which has already had the softmax applied. Step31: We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. Step32: Optimization Method Now that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the AdamOptimizer which is an advanced form of Gradient Descent. Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. Step33: Performance Measures We need a few more performance measures to display the progress to the user. This is a vector of booleans whether the predicted class equals the true class of each image. Step34: This calculates the classification accuracy by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then calculating the average of these numbers. Step35: TensorFlow Run Create TensorFlow session Once the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. Step36: Initialize variables The variables for weights and biases must be initialized before we start optimizing them. Step37: Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer. If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to perform more optimization iterations. Step38: Function for performing a number of optimization iterations so as to gradually improve the variables of the network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. Step39: Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. Step40: Helper-function to plot confusion matrix Step41: Helper-function for showing the performance Function for printing the classification accuracy on the test-set. It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function. Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. Step42: Performance before any optimization The accuracy on the test-set is very low because the model variables have only been initialized and not optimized at all, so it just classifies the images randomly. Step43: Performance after 1 optimization iteration The classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. Step44: Performance after 100 optimization iterations After 100 optimization iterations, the model has significantly improved its classification accuracy. Step45: Performance after 1000 optimization iterations After 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. Step46: Performance after 10,000 optimization iterations After 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. Step47: Visualization of Weights and Layers In trying to understand why the convolutional neural network can recognize handwritten digits, we will now visualize the weights of the convolutional filters and the resulting output images. Helper-function for plotting convolutional weights Step48: Helper-function for plotting the output of a convolutional layer Step49: Input Images Helper-function for plotting an image. Step50: Plot an image from the test-set which will be used as an example below. Step51: Plot another example image from the test-set. Step52: Convolution Layer 1 Now plot the filter-weights for the first convolutional layer. Note that positive weights are red and negative weights are blue. Step53: Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. Note that these images are down-sampled to 14 x 14 pixels which is half the resolution of the original input image. Step54: The following images are the results of applying the convolutional filters to the second image. Step55: It is difficult to see from these images what the purpose of the convolutional filters might be. It appears that they have merely created several variations of the input image, as if light was shining from different angles and casting shadows in the image. Convolution Layer 2 Now plot the filter-weights for the second convolutional layer. There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel. Note again that positive weights are red and negative weights are blue. Step56: There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. Step57: It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality. Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images. Note that these are down-sampled yet again to 7 x 7 pixels which is half the resolution of the images from the first conv-layer. Step58: And these are the results of applying the filter-weights to the second image. Step59: From these images, it looks like the second convolutional layer might detect lines and patterns in the input images, which are less sensitive to local variations in the original input images. These images are then flattened and input to the fully-connected layer, but that is not shown here. Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources.
Python Code: from IPython.display import Image Image('images/02_network_flowchart.png') Explanation: TensorFlow Tutorial #02 Convolutional Neural Network by Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube Introduction The previous tutorial showed that a simple linear model had about 91% classification accuracy for recognizing hand-written digits in the MNIST data-set. In this tutorial we will implement a simple Convolutional Neural Network in TensorFlow which has a classification accuracy of about 99%, or more if you make some of the suggested exercises. Convolutional Networks work by moving small filters across the input image. This means the filters are re-used for recognizing patterns throughout the entire input image. This makes the Convolutional Networks much more powerful than Fully-Connected networks with the same number of variables. This in turn makes the Convolutional Networks faster to train. You should be familiar with basic linear algebra, Python and the Jupyter Notebook editor. Beginners to TensorFlow may also want to study the first tutorial before proceeding to this one. Flowchart The following chart shows roughly how the data flows in the Convolutional Neural Network that is implemented below. End of explanation Image('images/02_convolution.png') Explanation: The input image is processed in the first convolutional layer using the filter-weights. This results in 16 new images, one for each filter in the convolutional layer. The images are also down-sampled so the image resolution is decreased from 28x28 to 14x14. These 16 smaller images are then processed in the second convolutional layer. We need filter-weights for each of these 16 channels, and we need filter-weights for each output channel of this layer. There are 36 output channels so there are a total of 16 x 36 = 576 filters in the second convolutional layer. The resulting images are down-sampled again to 7x7 pixels. The output of the second convolutional layer is 36 images of 7x7 pixels each. These are then flattened to a single vector of length 7 x 7 x 36 = 1764, which is used as the input to a fully-connected layer with 128 neurons (or elements). This feeds into another fully-connected layer with 10 neurons, one for each of the classes, which is used to determine the class of the image, that is, which number is depicted in the image. The convolutional filters are initially chosen at random, so the classification is done randomly. The error between the predicted and true class of the input image is measured as the so-called cross-entropy. The optimizer then automatically propagates this error back through the Convolutional Network using the chain-rule of differentiation and updates the filter-weights so as to improve the classification error. This is done iteratively thousands of times until the classification error is sufficiently low. These particular filter-weights and intermediate images are the results of one optimization run and may look different if you re-run this Notebook. Note that the computation in TensorFlow is actually done on a batch of images instead of a single image, which makes the computation more efficient. This means the flowchart actually has one more data-dimension when implemented in TensorFlow. Convolutional Layer The following chart shows the basic idea of processing an image in the first convolutional layer. The input image depicts the number 7 and four copies of the image are shown here, so we can see more clearly how the filter is being moved to different positions of the image. For each position of the filter, the dot-product is being calculated between the filter and the image pixels under the filter, which results in a single pixel in the output image. So moving the filter across the entire input image results in a new image being generated. The red filter-weights means that the filter has a positive reaction to black pixels in the input image, while blue pixels means the filter has a negative reaction to black pixels. In this case it appears that the filter recognizes the horizontal line of the 7-digit, as can be seen from its stronger reaction to that line in the output image. End of explanation %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn.metrics import confusion_matrix import time from datetime import timedelta import math Explanation: The step-size for moving the filter across the input is called the stride. There is a stride for moving the filter horizontally (x-axis) and another stride for moving vertically (y-axis). In the source-code below, the stride is set to 1 in both directions, which means the filter starts in the upper left corner of the input image and is being moved 1 pixel to the right in each step. When the filter reaches the end of the image to the right, then the filter is moved back to the left side and 1 pixel down the image. This continues until the filter has reached the lower right corner of the input image and the entire output image has been generated. When the filter reaches the end of the right-side as well as the bottom of the input image, then it can be padded with zeroes (white pixels). This causes the output image to be of the exact same dimension as the input image. Furthermore, the output of the convolution may be passed through a so-called Rectified Linear Unit (ReLU), which merely ensures that the output is positive because negative values are set to zero. The output may also be down-sampled by so-called max-pooling, which considers small windows of 2x2 pixels and only keeps the largest of those pixels. This halves the resolution of the input image e.g. from 28x28 to 14x14 pixels. Note that the second convolutional layer is more complicated because it takes 16 input channels. We want a separate filter for each input channel, so we need 16 filters instead of just one. Furthermore, we want 36 output channels from the second convolutional layer, so in total we need 16 x 36 = 576 filters for the second convolutional layer. It can be a bit challenging to understand how this works. Imports End of explanation tf.__version__ Explanation: This was developed using TensorFlow v. 0.8.0 End of explanation # Convolutional Layer 1. filter_size1 = 5 # Convolution filters are 5 x 5 pixels. num_filters1 = 16 # There are 16 of these filters. # Convolutional Layer 2. filter_size2 = 5 # Convolution filters are 5 x 5 pixels. num_filters2 = 36 # There are 36 of these filters. # Fully-connected layer. fc_size = 128 # Number of neurons in fully-connected layer. Explanation: Configuration of Neural Network The configuration of the Convolutional Neural Network is defined here for convenience, so you can easily find and change these numbers and re-run the Notebook. End of explanation from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/MNIST/', one_hot=True) Explanation: Load Data The MNIST data-set is about 12 MB and will be downloaded automatically if it is not located in the given path. End of explanation print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) Explanation: The MNIST data-set has now been loaded and consists of 70,000 images and associated labels (i.e. classifications of the images). The data-set is split into 3 mutually exclusive sub-sets. We will only use the training and test-sets in this tutorial. End of explanation data.test.cls = np.argmax(data.test.labels, axis=1) Explanation: The class-labels are One-Hot encoded, which means that each label is a vector with 10 elements, all of which are zero except for one element. The index of this one element is the class-number, that is, the digit shown in the associated image. We also need the class-numbers as integers for the test-set, so we calculate it now. End of explanation # We know that MNIST images are 28 pixels in each dimension. img_size = 28 # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * img_size # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, img_size) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 10 Explanation: Data Dimensions The data dimensions are used in several places in the source-code below. They are defined once so we can use these variables instead of numbers throughout the source-code below. End of explanation def plot_images(images, cls_true, cls_pred=None): assert len(images) == len(cls_true) == 9 # Create figure with 3x3 sub-plots. fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=0.3, wspace=0.3) for i, ax in enumerate(axes.flat): # Plot image. ax.imshow(images[i].reshape(img_shape), cmap='binary') # Show true and predicted classes. if cls_pred is None: xlabel = "True: {0}".format(cls_true[i]) else: xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i]) # Show the classes as the label on the x-axis. ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() Explanation: Helper-function for plotting images Function used to plot 9 images in a 3x3 grid, and writing the true and predicted classes below each image. End of explanation # Get the first images from the test-set. images = data.test.images[0:9] # Get the true classes for those images. cls_true = data.test.cls[0:9] # Plot the images and labels using our helper-function above. plot_images(images=images, cls_true=cls_true) Explanation: Plot a few images to see if data is correct End of explanation def new_weights(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) def new_biases(length): return tf.Variable(tf.constant(0.05, shape=[length])) Explanation: TensorFlow Graph The entire purpose of TensorFlow is to have a so-called computational graph that can be executed much more efficiently than if the same calculations were to be performed directly in Python. TensorFlow can be more efficient than NumPy because TensorFlow knows the entire computation graph that must be executed, while NumPy only knows the computation of a single mathematical operation at a time. TensorFlow can also automatically calculate the gradients that are needed to optimize the variables of the graph so as to make the model perform better. This is because the graph is a combination of simple mathematical expressions so the gradient of the entire graph can be calculated using the chain-rule for derivatives. TensorFlow can also take advantage of multi-core CPUs as well as GPUs - and Google has even built special chips just for TensorFlow which are called TPUs (Tensor Processing Units) and are even faster than GPUs. A TensorFlow graph consists of the following parts which will be detailed below: Placeholder variables used for inputting data to the graph. Variables that are going to be optimized so as to make the convolutional network perform better. The mathematical formulas for the convolutional network. A cost measure that can be used to guide the optimization of the variables. An optimization method which updates the variables. In addition, the TensorFlow graph may also contain various debugging statements e.g. for logging data to be displayed using TensorBoard, which is not covered in this tutorial. Helper-functions for creating new variables Functions for creating new TensorFlow variables in the given shape and initializing them with random values. Note that the initialization is not actually done at this point, it is merely being defined in the TensorFlow graph. End of explanation def new_conv_layer(input, # The previous layer. num_input_channels, # Num. channels in prev. layer. filter_size, # Width and height of each filter. num_filters, # Number of filters. use_pooling=True): # Use 2x2 max-pooling. # Shape of the filter-weights for the convolution. # This format is determined by the TensorFlow API. shape = [filter_size, filter_size, num_input_channels, num_filters] # Create new weights aka. filters with the given shape. weights = new_weights(shape=shape) # Create new biases, one for each filter. biases = new_biases(length=num_filters) # Create the TensorFlow operation for convolution. # Note the strides are set to 1 in all dimensions. # The first and last stride must always be 1, # because the first is for the image-number and # the last is for the input-channel. # But e.g. strides=[1, 2, 2, 1] would mean that the filter # is moved 2 pixels across the x- and y-axis of the image. # The padding is set to 'SAME' which means the input image # is padded with zeroes so the size of the output is the same. layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME') # Add the biases to the results of the convolution. # A bias-value is added to each filter-channel. layer += biases # Use pooling to down-sample the image resolution? if use_pooling: # This is 2x2 max-pooling, which means that we # consider 2x2 windows and select the largest value # in each window. Then we move 2 pixels to the next window. layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Rectified Linear Unit (ReLU). # It calculates max(x, 0) for each input pixel x. # This adds some non-linearity to the formula and allows us # to learn more complicated functions. layer = tf.nn.relu(layer) # Note that ReLU is normally executed before the pooling, # but since relu(max_pool(x)) == max_pool(relu(x)) we can # save 75% of the relu-operations by max-pooling first. # We return both the resulting layer and the filter-weights # because we will plot the weights later. return layer, weights Explanation: Helper-function for creating a new Convolutional Layer This function creates a new convolutional layer in the computational graph for TensorFlow. Nothing is actually calculated here, we are just adding the mathematical formulas to the TensorFlow graph. It is assumed that the input is a 4-dim tensor with the following dimensions: Image number. Y-axis of each image. X-axis of each image. Channels of each image. Note that the input channels may either be colour-channels, or it may be filter-channels if the input is produced from a previous convolutional layer. The output is another 4-dim tensor with the following dimensions: Image number, same as input. Y-axis of each image. If 2x2 pooling is used, then the height and width of the input images is divided by 2. X-axis of each image. Ditto. Channels produced by the convolutional filters. End of explanation def flatten_layer(layer): # Get the shape of the input layer. layer_shape = layer.get_shape() # The shape of the input layer is assumed to be: # layer_shape == [num_images, img_height, img_width, num_channels] # The number of features is: img_height * img_width * num_channels # We can use a function from TensorFlow to calculate this. num_features = layer_shape[1:4].num_elements() # Reshape the layer to [num_images, num_features]. # Note that we just set the size of the second dimension # to num_features and the size of the first dimension to -1 # which means the size in that dimension is calculated # so the total size of the tensor is unchanged from the reshaping. layer_flat = tf.reshape(layer, [-1, num_features]) # The shape of the flattened layer is now: # [num_images, img_height * img_width * num_channels] # Return both the flattened layer and the number of features. return layer_flat, num_features Explanation: Helper-function for flattening a layer A convolutional layer produces an output tensor with 4 dimensions. We will add fully-connected layers after the convolution layers, so we need to reduce the 4-dim tensor to 2-dim which can be used as input to the fully-connected layer. End of explanation def new_fc_layer(input, # The previous layer. num_inputs, # Num. inputs from prev. layer. num_outputs, # Num. outputs. use_relu=True): # Use Rectified Linear Unit (ReLU)? # Create new weights and biases. weights = new_weights(shape=[num_inputs, num_outputs]) biases = new_biases(length=num_outputs) # Calculate the layer as the matrix multiplication of # the input and weights, and then add the bias-values. layer = tf.matmul(input, weights) + biases # Use ReLU? if use_relu: layer = tf.nn.relu(layer) return layer Explanation: Helper-function for creating a new Fully-Connected Layer This function creates a new fully-connected layer in the computational graph for TensorFlow. Nothing is actually calculated here, we are just adding the mathematical formulas to the TensorFlow graph. It is assumed that the input is a 2-dim tensor of shape [num_images, num_inputs]. The output is a 2-dim tensor of shape [num_images, num_outputs]. End of explanation x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x') Explanation: Placeholder variables Placeholder variables serve as the input to the TensorFlow computational graph that we may change each time we execute the graph. We call this feeding the placeholder variables and it is demonstrated further below. First we define the placeholder variable for the input images. This allows us to change the images that are input to the TensorFlow graph. This is a so-called tensor, which just means that it is a multi-dimensional vector or matrix. The data-type is set to float32 and the shape is set to [None, img_size_flat], where None means that the tensor may hold an arbitrary number of images with each image being a vector of length img_size_flat. End of explanation x_image = tf.reshape(x, [-1, img_size, img_size, num_channels]) Explanation: The convolutional layers expect x to be encoded as a 4-dim tensor so we have to reshape it so its shape is instead [num_images, img_height, img_width, num_channels]. Note that img_height == img_width == img_size and num_images can be inferred automatically by using -1 for the size of the first dimension. So the reshape operation is: End of explanation y_true = tf.placeholder(tf.float32, shape=[None, 10], name='y_true') Explanation: Next we have the placeholder variable for the true labels associated with the images that were input in the placeholder variable x. The shape of this placeholder variable is [None, num_classes] which means it may hold an arbitrary number of labels and each label is a vector of length num_classes which is 10 in this case. End of explanation y_true_cls = tf.argmax(y_true, dimension=1) Explanation: We could also have a placeholder variable for the class-number, but we will instead calculate it using argmax. Note that this is a TensorFlow operator so nothing is calculated at this point. End of explanation layer_conv1, weights_conv1 = \ new_conv_layer(input=x_image, num_input_channels=num_channels, filter_size=filter_size1, num_filters=num_filters1, use_pooling=True) Explanation: Convolutional Layer 1 Create the first convolutional layer. It takes x_image as input and creates num_filters1 different filters, each having width and height equal to filter_size1. Finally we wish to down-sample the image so it is half the size by using 2x2 max-pooling. End of explanation layer_conv1 Explanation: Check the shape of the tensor that will be output by the convolutional layer. It is (?, 14, 14, 16) which means that there is an arbitrary number of images (this is the ?), each image is 14 pixels wide and 14 pixels high, and there are 16 different channels, one channel for each of the filters. End of explanation layer_conv2, weights_conv2 = \ new_conv_layer(input=layer_conv1, num_input_channels=num_filters1, filter_size=filter_size2, num_filters=num_filters2, use_pooling=True) Explanation: Convolutional Layer 2 Create the second convolutional layer, which takes as input the output from the first convolutional layer. The number of input channels corresponds to the number of filters in the first convolutional layer. End of explanation layer_conv2 Explanation: Check the shape of the tensor that will be output from this convolutional layer. The shape is (?, 7, 7, 36) where the ? again means that there is an arbitrary number of images, with each image having width and height of 7 pixels, and there are 36 channels, one for each filter. End of explanation layer_flat, num_features = flatten_layer(layer_conv2) Explanation: Flatten Layer The convolutional layers output 4-dim tensors. We now wish to use these as input in a fully-connected network, which requires for the tensors to be reshaped or flattened to 2-dim tensors. End of explanation layer_flat num_features Explanation: Check that the tensors now have shape (?, 1764) which means there's an arbitrary number of images which have been flattened to vectors of length 1764 each. Note that 1764 = 7 x 7 x 36. End of explanation layer_fc1 = new_fc_layer(input=layer_flat, num_inputs=num_features, num_outputs=fc_size, use_relu=True) Explanation: Fully-Connected Layer 1 Add a fully-connected layer to the network. The input is the flattened layer from the previous convolution. The number of neurons or nodes in the fully-connected layer is fc_size. ReLU is used so we can learn non-linear relations. End of explanation layer_fc1 Explanation: Check that the output of the fully-connected layer is a tensor with shape (?, 128) where the ? means there is an arbitrary number of images and fc_size == 128. End of explanation layer_fc2 = new_fc_layer(input=layer_fc1, num_inputs=fc_size, num_outputs=num_classes, use_relu=False) layer_fc2 Explanation: Fully-Connected Layer 2 Add another fully-connected layer that outputs vectors of length 10 for determining which of the 10 classes the input image belongs to. Note that ReLU is not used in this layer. End of explanation y_pred = tf.nn.softmax(layer_fc2) Explanation: Predicted Class The second fully-connected layer estimates how likely it is that the input image belongs to each of the 10 classes. However, these estimates are a bit rough and difficult to interpret because the numbers may be very small or large, so we want to normalize them so that each element is limited between zero and one and the 10 elements sum to one. This is calculated using the so-called softmax function and the result is stored in y_pred. End of explanation y_pred_cls = tf.argmax(y_pred, dimension=1) Explanation: The class-number is the index of the largest element. End of explanation cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true) Explanation: Cost-function to be optimized To make the model better at classifying the input images, we must somehow change the variables for all the network layers. To do this we first need to know how well the model currently performs by comparing the predicted output of the model y_pred to the desired output y_true. The cross-entropy is a performance measure used in classification. The cross-entropy is a continuous function that is always positive and if the predicted output of the model exactly matches the desired output then the cross-entropy equals zero. The goal of optimization is therefore to minimize the cross-entropy so it gets as close to zero as possible by changing the variables of the network layers. TensorFlow has a built-in function for calculating the cross-entropy. Note that the function calculates the softmax internally so we must use the output of layer_fc2 directly rather than y_pred which has already had the softmax applied. End of explanation cost = tf.reduce_mean(cross_entropy) Explanation: We have now calculated the cross-entropy for each of the image classifications so we have a measure of how well the model performs on each image individually. But in order to use the cross-entropy to guide the optimization of the model's variables we need a single scalar value, so we simply take the average of the cross-entropy for all the image classifications. End of explanation optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost) Explanation: Optimization Method Now that we have a cost measure that must be minimized, we can then create an optimizer. In this case it is the AdamOptimizer which is an advanced form of Gradient Descent. Note that optimization is not performed at this point. In fact, nothing is calculated at all, we just add the optimizer-object to the TensorFlow graph for later execution. End of explanation correct_prediction = tf.equal(y_pred_cls, y_true_cls) Explanation: Performance Measures We need a few more performance measures to display the progress to the user. This is a vector of booleans whether the predicted class equals the true class of each image. End of explanation accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) Explanation: This calculates the classification accuracy by first type-casting the vector of booleans to floats, so that False becomes 0 and True becomes 1, and then calculating the average of these numbers. End of explanation session = tf.Session() Explanation: TensorFlow Run Create TensorFlow session Once the TensorFlow graph has been created, we have to create a TensorFlow session which is used to execute the graph. End of explanation session.run(tf.initialize_all_variables()) Explanation: Initialize variables The variables for weights and biases must be initialized before we start optimizing them. End of explanation train_batch_size = 64 Explanation: Helper-function to perform optimization iterations There are 55,000 images in the training-set. It takes a long time to calculate the gradient of the model using all these images. We therefore only use a small batch of images in each iteration of the optimizer. If your computer crashes or becomes very slow because you run out of RAM, then you may try and lower this number, but you may then need to perform more optimization iterations. End of explanation # Counter for total number of iterations performed so far. total_iterations = 0 def optimize(num_iterations): # Ensure we update the global variable rather than a local copy. global total_iterations # Start-time used for printing time-usage below. start_time = time.time() for i in range(total_iterations, total_iterations + num_iterations): # Get a batch of training examples. # x_batch now holds a batch of images and # y_true_batch are the true labels for those images. x_batch, y_true_batch = data.train.next_batch(train_batch_size) # Put the batch into a dict with the proper names # for placeholder variables in the TensorFlow graph. feed_dict_train = {x: x_batch, y_true: y_true_batch} # Run the optimizer using this batch of training data. # TensorFlow assigns the variables in feed_dict_train # to the placeholder variables and then runs the optimizer. session.run(optimizer, feed_dict=feed_dict_train) # Print status every 100 iterations. if i % 100 == 0: # Calculate the accuracy on the training-set. acc = session.run(accuracy, feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i + 1, acc)) # Update the total number of iterations performed. total_iterations += num_iterations # Ending time. end_time = time.time() # Difference between start and end-times. time_dif = end_time - start_time # Print the time-usage. print("Time usage: " + str(timedelta(seconds=int(round(time_dif))))) Explanation: Function for performing a number of optimization iterations so as to gradually improve the variables of the network layers. In each iteration, a new batch of data is selected from the training-set and then TensorFlow executes the optimizer using those training samples. The progress is printed every 100 iterations. End of explanation def plot_example_errors(cls_pred, correct): # This function is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # correct is a boolean array whether the predicted class # is equal to the true class for each image in the test-set. # Negate the boolean array. incorrect = (correct == False) # Get the images from the test-set that have been # incorrectly classified. images = data.test.images[incorrect] # Get the predicted classes for those images. cls_pred = cls_pred[incorrect] # Get the true classes for those images. cls_true = data.test.cls[incorrect] # Plot the first 9 images. plot_images(images=images[0:9], cls_true=cls_true[0:9], cls_pred=cls_pred[0:9]) Explanation: Helper-function to plot example errors Function for plotting examples of images from the test-set that have been mis-classified. End of explanation def plot_confusion_matrix(cls_pred): # This is called from print_test_accuracy() below. # cls_pred is an array of the predicted class-number for # all images in the test-set. # Get the true classifications for the test-set. cls_true = data.test.cls # Get the confusion matrix using sklearn. cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) # Print the confusion matrix as text. print(cm) # Plot the confusion matrix as an image. plt.matshow(cm) # Make various adjustments to the plot. plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, range(num_classes)) plt.yticks(tick_marks, range(num_classes)) plt.xlabel('Predicted') plt.ylabel('True') # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() Explanation: Helper-function to plot confusion matrix End of explanation # Split the test-set into smaller batches of this size. test_batch_size = 256 def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False): # Number of images in the test-set. num_test = len(data.test.images) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_pred = np.zeros(shape=num_test, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i + test_batch_size, num_test) # Get the images from the test-set between index i and j. images = data.test.images[i:j, :] # Get the associated labels. labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict = {x: images, y_true: labels} # Calculate the predicted class using TensorFlow. cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Convenience variable for the true class-numbers of the test-set. cls_true = data.test.cls # Create a boolean array whether each image is correctly classified. correct = (cls_true == cls_pred) # Calculate the number of correctly classified images. # When summing a boolean array, False means 0 and True means 1. correct_sum = correct.sum() # Classification accuracy is the number of correctly classified # images divided by the total number of images in the test-set. acc = float(correct_sum) / num_test # Print the accuracy. msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})" print(msg.format(acc, correct_sum, num_test)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_example_errors(cls_pred=cls_pred, correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusion_matrix(cls_pred=cls_pred) Explanation: Helper-function for showing the performance Function for printing the classification accuracy on the test-set. It takes a while to compute the classification for all the images in the test-set, that's why the results are re-used by calling the above functions directly from this function, so the classifications don't have to be recalculated by each function. Note that this function can use a lot of computer memory, which is why the test-set is split into smaller batches. If you have little RAM in your computer and it crashes, then you can try and lower the batch-size. End of explanation print_test_accuracy() Explanation: Performance before any optimization The accuracy on the test-set is very low because the model variables have only been initialized and not optimized at all, so it just classifies the images randomly. End of explanation optimize(num_iterations=1) print_test_accuracy() Explanation: Performance after 1 optimization iteration The classification accuracy does not improve much from just 1 optimization iteration, because the learning-rate for the optimizer is set very low. End of explanation optimize(num_iterations=99) # We already performed 1 iteration above. print_test_accuracy(show_example_errors=True) Explanation: Performance after 100 optimization iterations After 100 optimization iterations, the model has significantly improved its classification accuracy. End of explanation optimize(num_iterations=900) # We performed 100 iterations above. print_test_accuracy(show_example_errors=True) Explanation: Performance after 1000 optimization iterations After 1000 optimization iterations, the model has greatly increased its accuracy on the test-set to more than 90%. End of explanation optimize(num_iterations=9000) # We performed 1000 iterations above. print_test_accuracy(show_example_errors=True, show_confusion_matrix=True) Explanation: Performance after 10,000 optimization iterations After 10,000 optimization iterations, the model has a classification accuracy on the test-set of about 99%. End of explanation def plot_conv_weights(weights, input_channel=0): # Assume weights are TensorFlow ops for 4-dim variables # e.g. weights_conv1 or weights_conv2. # Retrieve the values of the weight-variables from TensorFlow. # A feed-dict is not necessary because nothing is calculated. w = session.run(weights) # Get the lowest and highest values for the weights. # This is used to correct the colour intensity across # the images so they can be compared with each other. w_min = np.min(w) w_max = np.max(w) # Number of filters used in the conv. layer. num_filters = w.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot all the filter-weights. for i, ax in enumerate(axes.flat): # Only plot the valid filter-weights. if i<num_filters: # Get the weights for the i'th filter of the input channel. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = w[:, :, input_channel, i] # Plot image. ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() Explanation: Visualization of Weights and Layers In trying to understand why the convolutional neural network can recognize handwritten digits, we will now visualize the weights of the convolutional filters and the resulting output images. Helper-function for plotting convolutional weights End of explanation def plot_conv_layer(layer, image): # Assume layer is a TensorFlow op that outputs a 4-dim tensor # which is the output of a convolutional layer, # e.g. layer_conv1 or layer_conv2. # Create a feed-dict containing just one image. # Note that we don't need to feed y_true because it is # not used in this calculation. feed_dict = {x: [image]} # Calculate and retrieve the output values of the layer # when inputting that image. values = session.run(layer, feed_dict=feed_dict) # Number of filters used in the conv. layer. num_filters = values.shape[3] # Number of grids to plot. # Rounded-up, square-root of the number of filters. num_grids = math.ceil(math.sqrt(num_filters)) # Create figure with a grid of sub-plots. fig, axes = plt.subplots(num_grids, num_grids) # Plot the output images of all the filters. for i, ax in enumerate(axes.flat): # Only plot the images for valid filters. if i<num_filters: # Get the output image of using the i'th filter. # See new_conv_layer() for details on the format # of this 4-dim tensor. img = values[0, :, :, i] # Plot image. ax.imshow(img, interpolation='nearest', cmap='binary') # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) # Ensure the plot is shown correctly with multiple plots # in a single Notebook cell. plt.show() Explanation: Helper-function for plotting the output of a convolutional layer End of explanation def plot_image(image): plt.imshow(image.reshape(img_shape), interpolation='nearest', cmap='binary') plt.show() Explanation: Input Images Helper-function for plotting an image. End of explanation image1 = data.test.images[0] plot_image(image1) Explanation: Plot an image from the test-set which will be used as an example below. End of explanation image2 = data.test.images[13] plot_image(image2) Explanation: Plot another example image from the test-set. End of explanation plot_conv_weights(weights=weights_conv1) Explanation: Convolution Layer 1 Now plot the filter-weights for the first convolutional layer. Note that positive weights are red and negative weights are blue. End of explanation plot_conv_layer(layer=layer_conv1, image=image1) Explanation: Applying each of these convolutional filters to the first input image gives the following output images, which are then used as input to the second convolutional layer. Note that these images are down-sampled to 14 x 14 pixels which is half the resolution of the original input image. End of explanation plot_conv_layer(layer=layer_conv1, image=image2) Explanation: The following images are the results of applying the convolutional filters to the second image. End of explanation plot_conv_weights(weights=weights_conv2, input_channel=0) Explanation: It is difficult to see from these images what the purpose of the convolutional filters might be. It appears that they have merely created several variations of the input image, as if light was shining from different angles and casting shadows in the image. Convolution Layer 2 Now plot the filter-weights for the second convolutional layer. There are 16 output channels from the first conv-layer, which means there are 16 input channels to the second conv-layer. The second conv-layer has a set of filter-weights for each of its input channels. We start by plotting the filter-weigths for the first channel. Note again that positive weights are red and negative weights are blue. End of explanation plot_conv_weights(weights=weights_conv2, input_channel=1) Explanation: There are 16 input channels to the second convolutional layer, so we can make another 15 plots of filter-weights like this. We just make one more with the filter-weights for the second channel. End of explanation plot_conv_layer(layer=layer_conv2, image=image1) Explanation: It can be difficult to understand and keep track of how these filters are applied because of the high dimensionality. Applying these convolutional filters to the images that were ouput from the first conv-layer gives the following images. Note that these are down-sampled yet again to 7 x 7 pixels which is half the resolution of the images from the first conv-layer. End of explanation plot_conv_layer(layer=layer_conv2, image=image2) Explanation: And these are the results of applying the filter-weights to the second image. End of explanation # This has been commented out in case you want to modify and experiment # with the Notebook without having to restart it. # session.close() Explanation: From these images, it looks like the second convolutional layer might detect lines and patterns in the input images, which are less sensitive to local variations in the original input images. These images are then flattened and input to the fully-connected layer, but that is not shown here. Close TensorFlow Session We are now done using TensorFlow, so we close the session to release its resources. End of explanation
9,716
Given the following text description, write Python code to implement the functionality described below step by step Description: First, I made a mistake naming the data set! It's 2015 data, not 2014 data. But yes, still use 311-2014.csv. You can rename it. Importing and preparing your data Import your data, but only the first 200,000 rows. You'll also want to change the index to be a datetime based on the Created Date column - you'll want to check if it's already a datetime, and parse it if not. Step1: What was the most popular type of complaint, and how many times was it filed? Step2: Make a horizontal bar graph of the top 5 most frequent complaint types. Step3: Which borough has the most complaints per capita? Since it's only 5 boroughs, you can do the math manually. Step4: According to your selection of data, how many cases were filed in March? How about May? Step5: I'd like to see all of the 311 complaints called in on April 1st. Surprise! We couldn't do this in class, but it was just a limitation of our data set Step6: What was the most popular type of complaint on April 1st? What were the most popular three types of complaint on April 1st Step7: What month has the most reports filed? How many? Graph it. Step8: What week of the year has the most reports filed? How many? Graph the weekly complaints. Step9: Noise complaints are a big deal. Use .str.contains to select noise complaints, and make an chart of when they show up annually. Then make a chart about when they show up every day (cyclic). Step10: Which were the top five days of the year for filing complaints? How many on each of those days? Graph it. Step11: What hour of the day are the most complaints? Graph a day of complaints. Step12: One of the hours has an odd number of complaints. What are the most common complaints at that hour, and what are the most common complaints the hour before and after? Step13: So odd. What's the per-minute breakdown of complaints between 12am and 1am? You don't need to include 1am. Step14: Looks like midnight is a little bit of an outlier. Why might that be? Take the 5 most common agencies and graph the times they file reports at (all day, not just midnight). Step15: Graph those same agencies on an annual basis - make it weekly. When do people like to complain? When does the NYPD have an odd number of complaints? Step16: Maybe the NYPD deals with different issues at different times? Check the most popular complaints in July and August vs the month of May. Also check the most common complaints for the Housing Preservation Bureau (HPD) in winter vs. summer.
Python Code: #df = pd.read_csv('311-2010-2016.csv') # We select a list of columns for a better efficiency columns_list = ['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name', 'Complaint Type', 'Descriptor', 'Borough'] df = pd.read_csv('311-2015.csv', nrows=200000, usecols= columns_list) df['Created Date'].describe() def parse_date(str_date): return dateutil.parser.parse(str_date) df['created_datetime'] = df['Created Date'].apply(parse_date) df.index = df['created_datetime'] df.head(2) Explanation: First, I made a mistake naming the data set! It's 2015 data, not 2014 data. But yes, still use 311-2014.csv. You can rename it. Importing and preparing your data Import your data, but only the first 200,000 rows. You'll also want to change the index to be a datetime based on the Created Date column - you'll want to check if it's already a datetime, and parse it if not. End of explanation top_five_complaints = [] complaints_count = df['Complaint Type'].value_counts().head(5) for complaint_type, count in complaints_count.items(): top_five_complaints.append({"type": complaint_type, "count": count}) print("The most popular type of complaint is", top_five_complaints[0]['type'], "and it was filed", top_five_complaints[0]['count'], "times.") Explanation: What was the most popular type of complaint, and how many times was it filed? End of explanation top5_df = pd.DataFrame(top_five_complaints) top5_df.plot(kind='barh', x='type', y='count', label='Top 5 most frequent complaint types').invert_yaxis() fig = plt.gcf() fig.set_size_inches(18, 7, forward=True) plt.xlabel("Count") plt.ylabel("Type") Explanation: Make a horizontal bar graph of the top 5 most frequent complaint types. End of explanation boroughs_dict_count = df.groupby(by='Borough')['Unique Key'].agg(['count']).to_dict()['count'] boroughs_dict_pop = {'BRONX': 1438159, 'BROOKLYN': 2621793, 'MANHATTAN': 1636268, 'QUEENS': 2321580, 'STATEN ISLAND': 47327} complaints_per_capita = {} for borough, count in boroughs_dict_count.items(): if borough != 'Unspecified': complaints_per_capita[borough] = count/boroughs_dict_pop[borough] # print(borough.title(), "has", count/boroughs_dict_pop[borough], "complaints per capita.") most_complaints_per_capita = max(complaints_per_capita, key=lambda i: complaints_per_capita[i]) answer = "{} has the most complaints per capita, with {:.3f} complaints per capita.".format(most_complaints_per_capita.title(), complaints_per_capita[most_complaints_per_capita]) print(answer) Explanation: Which borough has the most complaints per capita? Since it's only 5 boroughs, you can do the math manually. End of explanation print(len(df['2015-03']), "cases were filed in March.") print(len(df['2015-05']), "cases were filed in May.") Explanation: According to your selection of data, how many cases were filed in March? How about May? End of explanation april_1 = df['2015-04-01'] april_1 Explanation: I'd like to see all of the 311 complaints called in on April 1st. Surprise! We couldn't do this in class, but it was just a limitation of our data set End of explanation print("The most popular three types of complaint on April 1st were:") c = 1 for value, count in april_1['Complaint Type'].value_counts().iteritems(): # zip type if c > 3: break print("{}) {} ({} complaints)".format(c, value, count)) c = c + 1 Explanation: What was the most popular type of complaint on April 1st? What were the most popular three types of complaint on April 1st End of explanation #mdata = df.resample('M').size() mdata = df.groupby([lambda x: x.month]).size() # this one also works if we want to merge multiple years months_list = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] print(months_list[mdata.idxmax()-1], "has the most reports filed, with", mdata.max(), "reports.") ax = mdata.plot(kind='bar') plt.xticks(list(range(0,12)), months_list) # or: ax.set_xticklabels(months_list) print('Reports filed per month:') Explanation: What month has the most reports filed? How many? Graph it. End of explanation wdata = df.groupby([lambda x: x.week]).size() wdata.plot(kind='bar') fig = plt.gcf() fig.set_size_inches(18, 7, forward=True) plt.rcParams.update({'font.size': 14}) plt.rc('ytick', labelsize=12) plt.ylabel('Complaints') plt.xlabel('Weeks of the year') Explanation: What week of the year has the most reports filed? How many? Graph the weekly complaints. End of explanation noise_df = df[df['Complaint Type'].str.contains('Noise')] data_annual = noise_df.resample('M').size() data_annual.plot(figsize=(12, 5), title="Noise complaints - Annual graph") plt.xlabel("") print("") data_cyclic = noise_df.groupby([lambda x: x.hour]).size() data_cyclic.plot(grid=True, title="Noise complaints - Cyclic graph") fig = plt.gcf() fig.set_size_inches(12, 5) hours = list(range(0, 24)) hours_str = [str(i) + "h" for i in hours] plt.xticks(hours, hours_str) print('') Explanation: Noise complaints are a big deal. Use .str.contains to select noise complaints, and make an chart of when they show up annually. Then make a chart about when they show up every day (cyclic). End of explanation ddata = df.groupby([lambda x: x.month, lambda x: x.day]).size() days_top5 = ddata.sort_values(ascending=False).head(5) days_top5_list = [] for day, count in days_top5.items(): day_str = months_list[day[0]-1] + " " + str(day[1]) print("-", day_str, "with", count, "complaints;") days_top5_list.append({"Day": day_str, "Count": count}) top5_df = pd.DataFrame(days_top5_list) top5_df.plot(kind='bar', x='Day', y='Count', legend=False) Explanation: Which were the top five days of the year for filing complaints? How many on each of those days? Graph it. End of explanation hdata = df.groupby([lambda x: x.hour]).size() print(hdata.idxmax(), "hour has the most reports filed, with", hdata.max(), "reports filed.") hdata.plot(title="A day of complaints", figsize=(12,5)) plt.xticks(hours, hours_str) print('') Explanation: What hour of the day are the most complaints? Graph a day of complaints. End of explanation # The odd number is midnight (very high peak) type_per_h = pd.DataFrame(df.groupby([lambda x: x.hour])['Complaint Type'].value_counts()) print("0h, Top Counts of", type_per_h['Complaint Type'][0].head(3)) print("\n23h, Top Counts of", type_per_h['Complaint Type'][23].head(3)) print("\n01h, Top Counts of", type_per_h['Complaint Type'][1].head(3)) Explanation: One of the hours has an odd number of complaints. What are the most common complaints at that hour, and what are the most common complaints the hour before and after? End of explanation df_midnight = df[df.index.hour==0] df_midnight = df_midnight.groupby(by=df_midnight.index.minute) df_midnight['Unique Key'].count().plot() Explanation: So odd. What's the per-minute breakdown of complaints between 12am and 1am? You don't need to include 1am. End of explanation common_agencies = list(df['Agency Name'].value_counts().head(5).keys()) for agency in common_agencies: df_agency = df[df['Agency Name'] == agency] hdata = df_agency.groupby([lambda x: x.hour]).size() hdata.plot(legend=True, figsize=(12,5)) plt.xticks(hours, hours_str) plt.legend(common_agencies) print('') Explanation: Looks like midnight is a little bit of an outlier. Why might that be? Take the 5 most common agencies and graph the times they file reports at (all day, not just midnight). End of explanation for agency in common_agencies: df_agency = df[df['Agency Name'] == agency] wdata = df_agency.groupby([lambda x: x.week]).size() wdata.plot(legend=True, figsize=(15,8)) plt.legend(common_agencies) print('') Explanation: Graph those same agencies on an annual basis - make it weekly. When do people like to complain? When does the NYPD have an odd number of complaints? End of explanation nypd = common_agencies[0] hpd = common_agencies[1] def complaints_for_agency(agency): return df[df['Agency Name'] == agency] print("NYPD July-August:\n" + str(complaints_for_agency(nypd)['2015-07':'2015-08']['Complaint Type'].value_counts().head(10))) print("\nNYPD May:\n" + str(complaints_for_agency(nypd)['2015-05']['Complaint Type'].value_counts().head(10))) print("\nHPD Winter:\n" + str(complaints_for_agency(hpd)['2015-06-21':'2015-09-20']['Complaint Type'].value_counts().head(10))) print("\nHPD Summer:\n" + str(complaints_for_agency(hpd)['2015-01-01':'2015-03-21']['Complaint Type'].value_counts().head(10))) Explanation: Maybe the NYPD deals with different issues at different times? Check the most popular complaints in July and August vs the month of May. Also check the most common complaints for the Housing Preservation Bureau (HPD) in winter vs. summer. End of explanation
9,717
Given the following text description, write Python code to implement the functionality described below step by step Description: Monte Carlo Methods Step1: Point to note Step2: Efficiency Note that the sum over all particles scales as $n^2$ where $n$ is the number of particles. As the number of steps the algorithm will need to take will also scale as $n$, this makes the number of calculations at least as bad as $n^3$. This is expensive; if you try the naive approach then you'll have difficulty using more than 50 particles in a moderate time. Instead we can note that, at each stage, the algorithm will move only one particle. Therefore, if we store not just the locations of the particles but also their pairwise separations, at each step we will only have to modify a small number of the separations. So we can store $r^2_{ij} = \vec{r}{ij} \cdot \vec{r}{ij}$ only, for $j > i$, and when perturbing particle $k$ we only need to update the separations $r^2_{ik}$ for $i<k$ and $r^2_{kj}$ for $k<j$. This should significantly reduce the number of calculations done in each step. In addition, note that for reasonable behaviour the acceptance rate should be $\sim 40\%$. This depends on the fractional perturbation distance $\Delta$; values $\sim 0.4$ are reasonable when $\rho \sim 0.1$, but values $\sim 0.02$ are reasonable when $\rho \sim 0.9$. Results Check that the energy has converged to a "constant" state. Plot a histogram of the energies to show that they follow the Boltzmann distribution.
Python Code: from IPython.core.display import HTML css_file = 'https://raw.githubusercontent.com/ngcm/training-public/master/ipython_notebook_styles/ngcmstyle.css' HTML(url=css_file) Explanation: Monte Carlo Methods: Lab 2 End of explanation p_JZG_T2 = [0.1776, 0.329, 0.489, 0.7, 1.071, 1.75, 3.028, 5.285, 9.12] Explanation: Point to note: an electronic copy of the Frenkel and Smit book is available through the library. This lab is based on case study 1 in chapter 3.4 of that book. Lennard-Jones fluids When computing the interactions between lots of bodies (atoms, molecules, planets, etc) we can either use the true potential or force between them, or we can approximate it with some potential (or force) that is easier (and usually cheaper) to calculate. The parameters of the potential can then be set to approximate the "real" features we're interested in. In computational chemistry, one such approximation is the Lennard-Jones potential. Given two bodies separated by a distance $r$, the potential generated by those two bodies is \begin{equation} U(r) = 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right]. \end{equation} Here $\varepsilon$ and $\sigma$ are parameters. When there are more than two bodies the total potential is the sum over all pairwise potentials. In principle this generates a potential between particles that are separated by huge distances. Instead it is typical to truncate the potential: to pick a cut-off distance so that any particles separated by more than that distance do not contribute, and to correct for those small contributions. Here we use a Lennard-Jones potential inside a box size $[0,L]^3$ with a cut-off $r_c = L/2$, with parameters set so that \begin{equation} U = \begin{cases} 4 \left[ \frac{1}{r^{12}} - \frac{1}{r^6} \right] & r < r_c \ 0 & r > r_c. \end{cases} \end{equation} Include tail corrections (that is, additional energy and pressure terms resulting from the particles outside the cutoff radius) as \begin{align} U^{\text{tail}} & = \frac{8 \pi \rho}{3} \left[ \frac{1}{3} \frac{1}{r_c^9} - \frac{1}{r_c^3} \right] \ p^{\text{tail}} & = \frac{16 \pi \rho^2}{3} \left[ \frac{2}{3} \frac{1}{r_c^9} - \frac{1}{r_c^3} \right]. \end{align} For each configuration we need to compute the pressure using $$ \begin{equation} p = \frac{\rho}{\beta} + \frac{\text{Virial}}{V} \end{equation} $$ where $$ \begin{equation} \text{Virial} = \sum_i \sum_{j > i} \vec{f}( \vec{r}{ij} ) \cdot \vec{r}{ij} \end{equation} $$ where, as usual, $\vec{r}{ij}$ is the separation between the atoms, $\vec{r}{ij} = \vec{r}_i - \vec{r}_j$, and the intermolecular force $\vec{f}$ is given by $$ \begin{align} \vec{f}(\vec{r}{ij}) &= - \nabla U \ & = \begin{cases} 24 \left[ 2 \frac{1}{r^{14}} - \frac{1}{r^8} \right] \vec{r}{ij} & r < r_c \ \vec{0} & r > r_c \end{cases} \end{align} $$ Note that in the reduced coordinates $\beta = T^{-1}$. Monte Carlo code We will be using an $NTV$ approach, keeping the number of particles fixed ($N = 100$), the temperature fixed ($T=2$) and the volume fixed (indirectly, via the density $\rho = N / V = N L^{-3}$; use $\rho = a/10$ for $a = 1, \dots, 9$, but start by just considering the $a=1, 2$ cases). You will need to take at least $10,000$ steps for the larger values of $a$; $20,000$ is better, but in all cases you should test with a smaller number of particles and steps ($1,000$ may be sufficient for small values of $a$). For reference we note the solutions, taken from Johnson, Zollweg and Gubbins for the pressures at $T=2$ are: End of explanation %matplotlib inline import numpy from scipy import constants from matplotlib import pyplot from mpl_toolkits.mplot3d.axes3d import Axes3D from matplotlib import rcParams rcParams['font.family'] = 'serif' rcParams['font.size'] = 16 rcParams['figure.figsize'] = (12,6) Explanation: Efficiency Note that the sum over all particles scales as $n^2$ where $n$ is the number of particles. As the number of steps the algorithm will need to take will also scale as $n$, this makes the number of calculations at least as bad as $n^3$. This is expensive; if you try the naive approach then you'll have difficulty using more than 50 particles in a moderate time. Instead we can note that, at each stage, the algorithm will move only one particle. Therefore, if we store not just the locations of the particles but also their pairwise separations, at each step we will only have to modify a small number of the separations. So we can store $r^2_{ij} = \vec{r}{ij} \cdot \vec{r}{ij}$ only, for $j > i$, and when perturbing particle $k$ we only need to update the separations $r^2_{ik}$ for $i<k$ and $r^2_{kj}$ for $k<j$. This should significantly reduce the number of calculations done in each step. In addition, note that for reasonable behaviour the acceptance rate should be $\sim 40\%$. This depends on the fractional perturbation distance $\Delta$; values $\sim 0.4$ are reasonable when $\rho \sim 0.1$, but values $\sim 0.02$ are reasonable when $\rho \sim 0.9$. Results Check that the energy has converged to a "constant" state. Plot a histogram of the energies to show that they follow the Boltzmann distribution. End of explanation
9,718
Given the following text description, write Python code to implement the functionality described below step by step Description: 层次聚类 Lab 在此 notebook 中,我们将使用 sklearn 对鸢尾花数据集执行层次聚类。该数据集包含 4 个维度/属性和 150 个样本。每个样本都标记为某种鸢尾花品种(共三种)。 在此练习中,我们将忽略标签和基于属性的聚类,并将不同层次聚类技巧的结果与实际标签进行比较,看看在这种情形下哪种技巧的效果最好。然后,我们将可视化生成的聚类层次。 1. 导入鸢尾花数据集 Step1: 查看数据集中的前 10 个样本 Step2: 2. 聚类 现在使用 sklearn 的 AgglomerativeClustering 进行层次聚类 Step3: 并且尝试完全连接法和平均连接法 练习: 通过完全连接法进行层次聚类,将预测的标签存储在变量 complete_pred 中 通过平均连接法进行层次聚类,将预测的标签存储在变量 avg_pred 中 Step4: 为了判断哪个聚类结果与样本的原始标签更匹配,我们可以使用 adjusted_rand_score,它是一个外部聚类有效性指标,分数在 -1 到 1 之间,1 表示两个聚类在对数据集中的样本进行分组时完全一样(无论每个聚类分配的标签如何)。 在这门课程的稍后部分会讨论聚类有效性指标。 Step5: 练习: 计算通过完全连接法和平均连接法得出的聚类的调整离差平方和(ward)分数 Step6: 哪个算法的调整兰德分数更高? Step7: 3. 标准化对聚类的影响 可以改进该聚类结果吗? 我们再看看数据集 Step8: 查看该数据集后,可以看出第四列的值比其他列要小,因此它的方差对聚类处理流程的影响更新(因为聚类是基于距离的)。我们对数据集进行标准化 ,使每个维度都位于 0 到 1 之间,以便在聚类流程中具有相等的权重。 方法是让每列减去最小值,然后除以范围。 sklearn 提供了一个叫做 preprocessing.normalize() 的实用工具,可以帮助我们完成这一步 Step9: 现在所有列都在 0 到 1 这一范围内了。这么转换之后对数据集进行聚类会形成更好的聚类吗?(与样本的原始标签更匹配) Step10: 4. 通过 scipy 进行谱系图可视化 我们来可视化分数最高的聚类结果。 为此,我们需要使用 Scipy 的 linkage 函数再次进行聚类,以便获取稍后用来可视化层次关系的连接矩阵 Step11: 使用 scipy 的 dendrogram 函数进行绘制 Step12: 5. 通过 Seaborn 的 clustermap 进行可视化 python 的 seaborn 绘制库可以绘制聚类图,它是一种更详细地可视化数据集的谱系图。它也会进行聚类,因此我们只需传入数据集和想要的连接类型,它将在后台使用 scipy 进行聚类
Python Code: from sklearn import datasets iris = datasets.load_iris() Explanation: 层次聚类 Lab 在此 notebook 中,我们将使用 sklearn 对鸢尾花数据集执行层次聚类。该数据集包含 4 个维度/属性和 150 个样本。每个样本都标记为某种鸢尾花品种(共三种)。 在此练习中,我们将忽略标签和基于属性的聚类,并将不同层次聚类技巧的结果与实际标签进行比较,看看在这种情形下哪种技巧的效果最好。然后,我们将可视化生成的聚类层次。 1. 导入鸢尾花数据集 End of explanation iris.data[:10] iris.target Explanation: 查看数据集中的前 10 个样本 End of explanation from sklearn.cluster import AgglomerativeClustering # Hierarchical clustering # Ward is the default linkage algorithm, so we'll start with that ward = AgglomerativeClustering(n_clusters=3) ward_pred = ward.fit_predict(iris.data) Explanation: 2. 聚类 现在使用 sklearn 的 AgglomerativeClustering 进行层次聚类 End of explanation # Hierarchical clustering using complete linkage # TODO: Create an instance of AgglomerativeClustering with the appropriate parameters complete = AgglomerativeClustering(n_clusters=3, linkage="complete") # Fit & predict # TODO: Make AgglomerativeClustering fit the dataset and predict the cluster labels complete_pred = complete.fit_predict(iris.data) # Hierarchical clustering using average linkage # TODO: Create an instance of AgglomerativeClustering with the appropriate parameters avg = AgglomerativeClustering(n_clusters=3, linkage="average") # Fit & predict # TODO: Make AgglomerativeClustering fit the dataset and predict the cluster labels avg_pred = avg.fit_predict(iris.data) Explanation: 并且尝试完全连接法和平均连接法 练习: 通过完全连接法进行层次聚类,将预测的标签存储在变量 complete_pred 中 通过平均连接法进行层次聚类,将预测的标签存储在变量 avg_pred 中 End of explanation from sklearn.metrics import adjusted_rand_score ward_ar_score = adjusted_rand_score(iris.target, ward_pred) Explanation: 为了判断哪个聚类结果与样本的原始标签更匹配,我们可以使用 adjusted_rand_score,它是一个外部聚类有效性指标,分数在 -1 到 1 之间,1 表示两个聚类在对数据集中的样本进行分组时完全一样(无论每个聚类分配的标签如何)。 在这门课程的稍后部分会讨论聚类有效性指标。 End of explanation # TODO: Calculated the adjusted Rand score for the complete linkage clustering labels complete_ar_score = adjusted_rand_score(iris.target, complete_pred) # TODO: Calculated the adjusted Rand score for the average linkage clustering labels avg_ar_score = adjusted_rand_score(iris.target, avg_pred) Explanation: 练习: 计算通过完全连接法和平均连接法得出的聚类的调整离差平方和(ward)分数 End of explanation print( "Scores: \nWard:", ward_ar_score,"\nComplete: ", complete_ar_score, "\nAverage: ", avg_ar_score) Explanation: 哪个算法的调整兰德分数更高? End of explanation iris.data[:15] Explanation: 3. 标准化对聚类的影响 可以改进该聚类结果吗? 我们再看看数据集 End of explanation from sklearn import preprocessing normalized_X = preprocessing.normalize(iris.data) normalized_X[:10] Explanation: 查看该数据集后,可以看出第四列的值比其他列要小,因此它的方差对聚类处理流程的影响更新(因为聚类是基于距离的)。我们对数据集进行标准化 ,使每个维度都位于 0 到 1 之间,以便在聚类流程中具有相等的权重。 方法是让每列减去最小值,然后除以范围。 sklearn 提供了一个叫做 preprocessing.normalize() 的实用工具,可以帮助我们完成这一步 End of explanation ward = AgglomerativeClustering(n_clusters=3) ward_pred = ward.fit_predict(normalized_X) complete = AgglomerativeClustering(n_clusters=3, linkage="complete") complete_pred = complete.fit_predict(normalized_X) avg = AgglomerativeClustering(n_clusters=3, linkage="average") avg_pred = avg.fit_predict(normalized_X) ward_ar_score = adjusted_rand_score(iris.target, ward_pred) complete_ar_score = adjusted_rand_score(iris.target, complete_pred) avg_ar_score = adjusted_rand_score(iris.target, avg_pred) print( "Scores: \nWard:", ward_ar_score,"\nComplete: ", complete_ar_score, "\nAverage: ", avg_ar_score) Explanation: 现在所有列都在 0 到 1 这一范围内了。这么转换之后对数据集进行聚类会形成更好的聚类吗?(与样本的原始标签更匹配) End of explanation # Import scipy's linkage function to conduct the clustering from scipy.cluster.hierarchy import linkage # Specify the linkage type. Scipy accepts 'ward', 'complete', 'average', as well as other values # Pick the one that resulted in the highest Adjusted Rand Score linkage_type = 'ward' linkage_matrix = linkage(normalized_X, linkage_type) Explanation: 4. 通过 scipy 进行谱系图可视化 我们来可视化分数最高的聚类结果。 为此,我们需要使用 Scipy 的 linkage 函数再次进行聚类,以便获取稍后用来可视化层次关系的连接矩阵 End of explanation from scipy.cluster.hierarchy import dendrogram import matplotlib.pyplot as plt plt.figure(figsize=(22,18)) # plot using 'dendrogram()' dendrogram(linkage_matrix) plt.show() Explanation: 使用 scipy 的 dendrogram 函数进行绘制 End of explanation import seaborn as sns sns.clustermap(normalized_X, figsize=(12,18), method=linkage_type, cmap='viridis') # Expand figsize to a value like (18, 50) if you want the sample labels to be readable # Draw back is that you'll need more scrolling to observe the dendrogram plt.show() Explanation: 5. 通过 Seaborn 的 clustermap 进行可视化 python 的 seaborn 绘制库可以绘制聚类图,它是一种更详细地可视化数据集的谱系图。它也会进行聚类,因此我们只需传入数据集和想要的连接类型,它将在后台使用 scipy 进行聚类 End of explanation
9,719
Given the following text description, write Python code to implement the functionality described below step by step Description: Decision Trees An introductory example of decision trees using data from this interactive visualization. This is an over-simplified example that doesn't use normalization as a pre-processing step, or cross validation as a mechanism for tuning the model. Set up Step1: Data Exploration Some basic exploratory analysis before creating a decision tree Step2: Build a decision tree using all variables Step3: Assess Model Fit Step4: Show the tree A little bit of a pain, though there are some alternatives to the documentation presented here. You may have to do the following Step5: Comparion to KNN Purely out of curiosity, how well does this model fit with KNN (for K=3)
Python Code: # Load packages import pandas as pd from sklearn import tree from __future__ import division from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier %matplotlib inline import matplotlib.pyplot as plt import numpy as np # Read data df = pd.read_csv('./data/housing-data.csv') Explanation: Decision Trees An introductory example of decision trees using data from this interactive visualization. This is an over-simplified example that doesn't use normalization as a pre-processing step, or cross validation as a mechanism for tuning the model. Set up End of explanation # What is the shape of our data? # What variables are present in the dataset? # What is the distribution of our outcome variable `in_sf`? # How does elevation vary for houses in/not-in sf (I suggest an overlapping histogram) Explanation: Data Exploration Some basic exploratory analysis before creating a decision tree End of explanation # Create variables to hold features and outcomes separately # Split data into testing and training sets # Create a classifier and fit your features to your outcome Explanation: Build a decision tree using all variables End of explanation # Generate a set of predictions for your test data # Calculate accuracy for our test set (percentage of the time that prediction == truth) # By comparison, how well do we predict in our training data? Explanation: Assess Model Fit End of explanation # Create tree diagram Explanation: Show the tree A little bit of a pain, though there are some alternatives to the documentation presented here. You may have to do the following: ``` Install graphviz in your terminal conda install graphviz ``` I then suggest the following solution: tree.export_graphviz(clf, out_file="mytree.dot") with open("mytree.dot") as f: dot_graph = f.read() graphviz.Source(dot_graph) End of explanation # Create a knn classifier # Fit our classifier to our training data # Predict on our test data and assess accuracy Explanation: Comparion to KNN Purely out of curiosity, how well does this model fit with KNN (for K=3) End of explanation
9,720
Given the following text description, write Python code to implement the functionality described below step by step Description: imports Step1: importing datasets Step2: pretty cleaned datasets ( Majority numbers, so dont forget to use gplearn (Genetic Programming Module) plus different feats on basis of +,-,*,/ Step3: Initial Processing Step4: gplearn Step5: Baseline RF Step6: todo define r^2 Wow, an r^2 of 0.9699 - that's great, right? Well, perhaps not... Possibly the most important idea in machine learning is that of having separate training & validation data sets Step7: It's Pathetic as We are Clearly Overfitting... Have a look at the RM(L)SE Scores and the Accuracy... They aree way too off... Step8: Single Tree Step9: Bagging Step10: The shape of this curve suggests that adding more trees isn't going to help us much Step11: OOF's Step12: RMSLE FOR VALID IS TOO HIGH, we need to change the randomness i guess
Python Code: %load_ext autoreload %autoreload 2 %matplotlib inline import time import xgboost as xgb import lightgbm as lgb # import category_encoders as cat_ed # import gc, mlcrate, glob # from gplearn.genetic import SymbolicTransformer, SymbolicRegressor from fastai.imports import * from fastai.structured import * from pandas_summary import DataFrameSummary # from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, RandomForestRegressor from IPython.display import display # from catboost import CatBoostClassifier # from scipy.cluster import hierarchy as hc # from collections import Counter # from sklearn import metrics # from sklearn.linear_model import LogisticRegression # from sklearn.model_selection import train_test_split # from sklearn.metrics import mean_squared_error # from sklearn.metrics import roc_auc_score, log_loss # from sklearn.model_selection import KFold, StratifiedKFold # from sklearn.model_selection import GridSearchCV # from sklearn.decomposition import PCA, TruncatedSVD, FastICA, FactorAnalysis # from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection # from sklearn.cluster import KMeans # from sklearn.metrics import accuracy_score, log_loss # from sklearn.neighbors import KNeighborsClassifier # from sklearn.tree import DecisionTreeClassifier # from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier # from sklearn.naive_bayes import GaussianNB # from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # from sklearn.neural_network import MLPClassifier # from sklearn.gaussian_process import GaussianProcessClassifier # from sklearn.gaussian_process.kernels import RBF # will ignore all warning from sklearn, seaborn etc.. def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn pd.option_context("display.max_rows", 1000); pd.option_context("display.max_columns", 1000); PATH = os.getcwd() PATH !dir {PATH} Explanation: imports End of explanation df_raw = pd.read_csv(f'{PATH}\\train_new_agg_feats.csv', low_memory=False,dtype='float32') df_test = pd.read_csv(f'{PATH}\\test_new_agg_feats.csv', low_memory=False, dtype='float32') def display_all(df): with pd.option_context("display.max_rows", 100): with pd.option_context("display.max_columns", 100): display(df) def make_submission(probs): sample = pd.read_csv(f'{PATH}\\sample_submission.csv') submit = sample.copy() submit['Upvotes'] = probs return submit df_raw.shape, df_raw.get_ftype_counts() Explanation: importing datasets End of explanation display_all(df_raw.isnull().sum().sort_index()/len(df_raw)) # df_raw['target'] = np.exp(target) - 1 # df_raw.to_csv(f'{PATH}\\train_new_agg_feats.csv', index=False) # df_test.to_csv(f'{PATH}\\test_new_agg_feats.csv', index=False) Explanation: pretty cleaned datasets ( Majority numbers, so dont forget to use gplearn (Genetic Programming Module) plus different feats on basis of +,-,*,/ End of explanation man_train_list = df_raw.Username.unique() man_test_list = df_test.Username.unique() man_not_in_test = set(man_train_list) - set(man_test_list) man_not_in_train = set(man_test_list) - set(man_train_list) df_raw.drop(index = df_raw.loc[list(man_not_in_test)].index, inplace=True) target = df_raw.target.values - 1 df_raw.drop('target', axis=1, inplace=True) Explanation: Initial Processing End of explanation function_set = ['add','sub','mul','div','sqrt','log','abs','neg','inv','min','max'] gp = SymbolicTransformer(generations=20,population_size=3000,n_jobs=-1,hall_of_fame=100,n_components=10,verbose=1,\ function_set=function_set,parsimony_coefficient=0.005,max_samples=0.9,random_state=123) gp.fit(df_raw, target) gp_feat_eng_train = gp.transform(df_raw) gp_feat_eng_test = gp.transform(df_test) ext_train = np.hstack((df_raw, gp_feat_eng_train)) ext_test = np.hstack((df_test, gp_feat_eng_test)) my_xgb = xgb.XGBRegressor(8,0.01,n_jobs=-1,colsample_bytree=0.9,gamma=0.5,silent=False) my_xgb.fit(ext_train, target) xgb_preds = my_xgb.predict(ext_test) xgb_preds submit = make_submission(xgb_preds) submit.to_csv(f'{PATH}\\xgb_v1.csv', index=None) min(xgb_preds), max(xgb_preds) sns.distplot(np.log(target + 1)) sns.distplot(np.log(xgb_preds + 1)) min(np.percentile(target,[90,91,92,93,94,95,96,97,98,99])), max(np.percentile(target,[90,91,92,93,94,95,96,97,98,99])) np.percentile(xgb_preds,[90,91,92,93,94,95,96,97,98,99]) np.where(xgb_preds>3313,3313,xgb_preds) min(np.where(xgb_preds>3313,3313,xgb_preds)), max(np.where(xgb_preds>3313,3313,xgb_preds)) xgb_preds_threshold = np.where(xgb_preds>3313,3313,xgb_preds) submit = make_submission(xgb_preds_threshold) submit.to_csv(f'{PATH}\\xgb_v2_thresholding_at_3133.csv', index=None) # temp1 = df_raw.groupby('Username').count().iloc[:,-1] # temp2 = df_test.groupby('Username').count().iloc[:,-1] # df_man = pd.concat([temp1,temp2], axis = 1, join = 'outer') # df_man.columns = ['train_count','test_count'] # df_man.head(2) # man_list = df_man['train_count'].sort_values(ascending = False).index # ixes = df_raw.Username.isin(man_list) # df10000 = df_raw[ixes][['Username','Tag']] # tags_dummies = pd.get_dummies(df10000.Tag) # df10000 = pd.concat([df10000,tags_dummies[['a', 'c', 'h', 'i', 'j', 'o', 'p', 'r', 's', 'x']]], axis = 1).drop('Tag', axis = 1) # # print("The contributors account for {} entries\n".format(len(df10000))) # # print(df10000.head(10)) # df10000.groupby('Username').count().sort_values(by = 'a', ascending = False).head() xyz = pd.concat([df_raw.groupby('Username').mean(),df_raw.groupby('Username').count()], axis = 1).iloc[:,:-5] xyz.columns = ['ID', 'Reputation', 'Answers', 'Views', 'Upvotes', 'count'] ############################################################################################# Mean Aggs unames = xyz.sort_values(by = 'count', ascending = False).reset_index()['Username'].values.astype('int64') count = xyz.sort_values(by = 'count', ascending = False).reset_index()['count'].values.astype('int64') answers = xyz.sort_values(by = 'count', ascending = False).reset_index()['Answers'].values.astype('int64') views = xyz.sort_values(by = 'count', ascending = False).reset_index()['Views'].values.astype('int64') repo = xyz.sort_values(by = 'count', ascending = False).reset_index()['Reputation'].values.astype('int64') d = {} for idx,k in enumerate(unames): d[k] = count[idx] df_raw['agg_count'] = df_raw['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = answers[idx] df_raw['agg_answers'] = df_raw['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = views[idx] df_raw['agg_views'] = df_raw['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = repo[idx] df_raw['agg_repo'] = df_raw['Username'].map(d) xyz = pd.concat([df_test.groupby('Username').mean(),df_test.groupby('Username').count()], axis = 1).iloc[:,:-4] xyz.columns = ['ID', 'Reputation', 'Answers', 'Views', 'count'] ########################################################################################## Mean Aggregates unames = xyz.sort_values(by = 'count', ascending = False).reset_index()['Username'].values.astype('int64') count = xyz.sort_values(by = 'count', ascending = False).reset_index()['count'].values.astype('int64') answers = xyz.sort_values(by = 'count', ascending = False).reset_index()['Answers'].values.astype('int64') views = xyz.sort_values(by = 'count', ascending = False).reset_index()['Views'].values.astype('int64') repo = xyz.sort_values(by = 'count', ascending = False).reset_index()['Reputation'].values.astype('int64') d = {} for idx,k in enumerate(unames): d[k] = count[idx] df_test['agg_count'] = df_test['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = answers[idx] df_test['agg_answers'] = df_test['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = views[idx] df_test['agg_views'] = df_test['Username'].map(d) d = {} for idx,k in enumerate(unames): d[k] = repo[idx] df_test['agg_repo'] = df_test['Username'].map(d) df_test.head(3) add_trans = ['Reputation', 'Answers', 'Username', 'Views', 'agg_count', 'agg_answers', 'agg_views', 'agg_repo'] for col in add_trans: df_raw[f'log_trans_{col}'.format(col)] = np.log(df_raw[col] + 1) #avoid log 0's if any df_test[f'log_trans_{col}'.format(col)] = np.log(df_test[col] + 1) #avoid log 0's if any df_raw['repo_per_Answers'] = df_raw['Reputation'] / (df_raw['Answers']+1) df_raw['repo_per_Views'] = df_raw['Reputation'] / df_raw['Views'] df_test['repo_per_Answers'] = df_test['Reputation'] / (df_test['Answers'] +1) df_test['repo_per_Views'] = df_test['Reputation'] / df_test['Views'] df_raw.shape, df_test.shape # gby = pd.concat([df10000.groupby('Username').mean(),df10000.groupby('Username').count()], axis = 1).iloc[:,:-9] # gby.columns = ['a', 'c', 'h', 'i', 'j', 'o', 'p', 'r', 's', 'x', 'count'] # gby.sort_values(by = 'count', ascending = False).head(3)[['a', 'c', 'h', 'i', 'j', 'o', 'p', 'r', 's', 'x', 'count']] # gby.sort_values(by = 'count', ascending = False).drop('count', axis = 1).plot(kind = 'bar', stacked = True, figsize = (15,6)) # plt.figure() # gby.sort_values(by = 'count', ascending = False)['count'].plot(kind = 'bar', figsize = (15,6)); # pd.concat([df_raw['Tag'].value_counts().sort_values(ascending=False),df_test['Tag'].value_counts().sort_values(ascending=False)],sort=False, axis =1,\ # keys=['Train_Stats', 'Test_Stats']) # gby.shape # gby['skill'] = gby['r']*1 + gby['o']*2 + gby['h']*3 + gby['s']*4 + gby['a']*5 + gby['i']*6 + gby['p']*7 + gby['j']*8 \ # + gby['c']*9 Explanation: gplearn End of explanation ##logging Remeber doing np.exp again df_raw.Upvotes = np.log(df_raw.Upvotes + 2) target = df_raw.Upvotes.values drop_cols = ['ID'] df_raw.drop(drop_cols+['Upvotes'],inplace=True,axis=1) df_test.drop(drop_cols,inplace=True,axis=1) sns.distplot(target) df_raw.Tag = df_raw.Tag.astype('category') train_cats(df_raw); apply_cats(df_test, df_raw); df_raw.Tag = df_raw.Tag.cat.codes df_test.Tag = df_test.Tag.cat.codes df_raw.fillna(0, inplace=True) df_test.fillna(0, inplace=True) m = RandomForestRegressor(n_jobs=-1) m.fit(df_raw, target) # print('Before -->>', df_raw.shape) # df_raw.drop(index = df_raw.loc[list(man_not_in_test)].index, inplace=True) # print('After -->>', df_raw.shape) m = RandomForestRegressor(n_jobs=-1) m.fit(df_raw, target) m.score(df_raw,target) Explanation: Baseline RF End of explanation from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(df_raw, target, test_size=0.2, random_state=42) def split_vals(a,n): return a[:n].copy(), a[n:].copy() n_valid = 30000 n_trn = len(df_raw)-n_valid raw_train, raw_valid = split_vals(df_raw, n_trn) X_train, X_valid = split_vals(df_raw, n_trn) y_train, y_valid = split_vals(target, n_trn) X_train.shape, y_train.shape, X_valid.shape def rmse(x,y): return math.sqrt(((x-y)**2).mean()) def print_score(m): res = ['RMSLE X_train', rmse(m.predict(X_train), y_train), '\n RMSLE X_valid', rmse(m.predict(X_valid), y_valid), '\n R**2 Train',m.score(X_train, y_train), '\n R**2 Valid', m.score(X_valid, y_valid)] if hasattr(m, 'oob_score_'): res.append(['\n OOB_Score', m.oob_score_]) print(res) m = RandomForestRegressor(n_jobs=-1) m.fit(X_train, y_train) print_score(m) Explanation: todo define r^2 Wow, an r^2 of 0.9699 - that's great, right? Well, perhaps not... Possibly the most important idea in machine learning is that of having separate training & validation data sets End of explanation m.fit(df,y) preds = np.exp(m.predict(df_test)).astype('int32') - 1; preds submit = make_submission(preds) submit.to_csv(f'{PATH}\\Adi_rf_08_58_31-07-2018.csv', index=False) submit.head(2) Explanation: It's Pathetic as We are Clearly Overfitting... Have a look at the RM(L)SE Scores and the Accuracy... They aree way too off... End of explanation m = RandomForestRegressor(n_estimators=1, max_depth=3, bootstrap=False, n_jobs=-1) m.fit(X_train, y_train) print_score(m) draw_tree(m.estimators_[0], df_raw, precision=3) m = RandomForestRegressor(n_estimators=1, bootstrap=False, n_jobs=-1) m.fit(X_train, y_train) print_score(m) Explanation: Single Tree End of explanation m = RandomForestRegressor(n_jobs=-1) m.fit(X_train, y_train) print_score(m) preds = np.stack([t.predict(X_valid) for t in m.estimators_]) preds[:,0], np.mean(preds[:,0]), y_valid[0] preds.shape plt.plot([metrics.r2_score(y_valid, np.mean(preds[:i+1], axis=0)) for i in range(10)]); Explanation: Bagging End of explanation m = RandomForestRegressor(n_estimators=20, n_jobs=-1) m.fit(X_train, y_train) print_score(m) m = RandomForestRegressor(n_estimators=40, n_jobs=-1) m.fit(X_train, y_train) print_score(m) m = RandomForestRegressor(n_estimators=80, n_jobs=-1) m.fit(X_train, y_train) print_score(m) Explanation: The shape of this curve suggests that adding more trees isn't going to help us much End of explanation m = RandomForestRegressor(n_estimators=40, n_jobs=-1, oob_score=True) m.fit(X_train, y_train) print_score(m) X_valid.shape, X_train.shape df_trn, y_trn, nas = proc_df(df_raw, 'Upvotes', max_n_cat=20) X_train, X_valid = split_vals(df_trn, n_trn) y_train, y_valid = split_vals(y_trn, n_trn) set_rf_samples(50000) m = RandomForestRegressor(n_jobs=-1, oob_score=True) %time m.fit(X_train, y_train) print_score(m) m = RandomForestRegressor(n_estimators=40, n_jobs=-1, oob_score=True) m.fit(X_train, y_train) print_score(m) reset_rf_samples() m = RandomForestRegressor(n_estimators=40, n_jobs=-1, oob_score=True) m.fit(X_train, y_train) print_score(m) X_train.shape m = RandomForestRegressor(n_estimators=40, min_samples_leaf=3, n_jobs=-1, oob_score=True) m.fit(X_train, y_train) print_score(m) Explanation: OOF's End of explanation fi = rf_feat_importance(m, df_trn); fi[:10] fi.plot('cols', 'imp', figsize=(10,6), legend=False); def plot_fi(fi): return fi.plot('cols', 'imp', 'barh', figsize=(12,7), legend=False) plot_fi(fi[:]); to_keep = fi[fi.imp>0.005].cols; len(to_keep) df_keep = df_raw[to_keep].copy() X_train, X_valid = split_vals(df_keep, n_trn) from scipy.cluster import hierarchy as hc corr = np.round(scipy.stats.spearmanr(df_keep).correlation, 4) corr_condensed = hc.distance.squareform(1-corr) z = hc.linkage(corr_condensed, method='average') fig = plt.figure(figsize=(16,10)) dendrogram = hc.dendrogram(z, labels=df_keep.columns, orientation='left', leaf_font_size=16) m = RandomForestRegressor(n_estimators=100, min_samples_leaf=3, max_features=0.5, n_jobs=-1, oob_score=True) m.fit(X_train, y_train) print_score(m) fi = rf_feat_importance(m, df_keep) plot_fi(fi); def get_oob(df): m = RandomForestRegressor(n_estimators=100, min_samples_leaf=5, max_features=0.6, n_jobs=-1, oob_score=True) x, _ = split_vals(df, n_trn) m.fit(x, y_train) return m.oob_score_ get_oob(df_keep) m preds = np.exp(m.predict(df_test[to_keep])) - 1; preds submit = make_submission(preds) submit.to_csv(f'{PATH}\\Adi_rf_08_58_31-07-2018.csv', index=False) submit.head(2) Explanation: RMSLE FOR VALID IS TOO HIGH, we need to change the randomness i guess End of explanation
9,721
Given the following text description, write Python code to implement the functionality described below step by step Description: Tuning query parameters for the MSMARCO Document dataset The following shows a principled, data-driven approach to tuning parameters of a basic query, such as field boosts, using the MSMARCO Document dataset. Step1: Baseline evaluation Let's look at a basic query that might be used to search documents that have multuple fields. This query uses the multi_match query of type cross_fields to search for query terms across the url, title, and body fields. Here's what the search template looks like that we'll be using Step2: Now we have a baseline score that we'll iterate towards improving. Getting started with tuning Step3: The first thing we notice is that there's really not much difference between the variants of minimum_should_match. There is however a very big difference between OR and AND operator. It's pretty clear that with the kinds of queries we get in this dataset (long-form, natural language questions), that OR is always better than AND. Based on this we're going to just assume that OR is always the better option and we'll continue to look for a good minimum_should_match. Let's do that in combination with tie_breaker now since those two parameters can have an impact on each other. We'll start simple again with a grid search over a limited number of parameter values for each, all of which are discrete values. With two dimensions and five parameter values each, we have a parameter space of size 25 and can test every possible value in a reasonable amount of time. Step4: Well that looks pretty good and we see some improvements on the training set. Let's evaluate on the development dataset now using the best parameters we've found so far. This will show us where we are relative to the baseline query. Step5: Definitely a good improvement and all we've done is optimize a few basic query parameters! Advanced tuning Step6: Great! It looks like we made an improvement over both the baseline and the preivous best parameters found. This example shows how important it is to not tune field boosts manually, as there is no intuitive relationship between the boost values of fields. Note that due to some randomness in executions of this process, re-running the optimization process may provide slightly different optimal boosts. Most importantly for field boost tuning in general, the relative value between the fields should be about the same. Exploring a parameter space Now that we see the results of a parameter tuning process we can actually look at the details to understand a little bit about the field boost parameter space in particlar. That is, for every combination of the three boost parameters that we tried, we can get a 3-dimensional space and look at what kind of relationships there are between the various dimensions in the parameter space. Here's a plot showing the three parameters and all the combinations that were attempted. Note that we invert the MRR score (multiple by -1) since the library we are relying (scikit-optimize) on wants to minimize a score, while MRR should be maximized. Step7: Experiment Step8: Ok, so not a big difference to the step-wise method we used above, but maybe it was a bit simpler to just throw in a huge parameter space. More iterations, smaller parameter space using hints from prior grid search Let's see if we can do even better by throwing more iterations into it, and by using a smaller search space for parameters that we already have a good range for minimum_should_match and tie_breaker, from the above grid search. This is kind of a hint and maybe not a fair comparison, but let's see if it makes any difference. We're not against using any prior knowledge to our advantage! Step9: Looks like we did about the same as the other methods in terms of MRR@100. In terms of simplicity though, this approach definitely wins as we can throw all the parameters in at once and not have to think too much about order and parameter dependencies. Random search Something we haven't tried yet is a fully random search. When initializing Bayesian optimization, we're doing a uniform random sample from the parameter space, then using those points to seed the process. A common approach is actually to just do all your search iterations with random parameters. Let's use the same parameter space and try out a fully random search with a lot of iterations and see what happens.
Python Code: %load_ext autoreload %autoreload 2 import importlib import os import sys from elasticsearch import Elasticsearch from skopt.plots import plot_objective # project library sys.path.insert(0, os.path.abspath('..')) import qopt importlib.reload(qopt) from qopt.notebooks import evaluate_mrr100_dev, optimize_query_mrr100 from qopt.optimize import Config # use a local Elasticsearch or Cloud instance (https://cloud.elastic.co/) # es = Elasticsearch('http://localhost:9200') es = Elasticsearch('http://35.234.93.126:9200') # set the parallelization parameter `max_concurrent_searches` for the Rank Evaluation API calls # max_concurrent_searches = 10 max_concurrent_searches = 30 index = 'msmarco-document' template_id = 'cross_fields' Explanation: Tuning query parameters for the MSMARCO Document dataset The following shows a principled, data-driven approach to tuning parameters of a basic query, such as field boosts, using the MSMARCO Document dataset. End of explanation %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params={ 'operator': 'OR', 'minimum_should_match': 50, # in percent/% 'tie_breaker': 0.0, 'url|boost': 1.0, 'title|boost': 1.0, 'body|boost': 1.0, }) Explanation: Baseline evaluation Let's look at a basic query that might be used to search documents that have multuple fields. This query uses the multi_match query of type cross_fields to search for query terms across the url, title, and body fields. Here's what the search template looks like that we'll be using: json { "query": { "multi_match": { "type": "cross_fields", "query": "{{query_string}}", "operator": "{{operator}}", "minimum_should_match": "{{minimum_should_match}}%", "tie_breaker": "{{tie_breaker}}", "fields": [ "url^{{url|boost}}", "title^{{title|boost}}", "body^{{body|boost}}" ] } } } First we'll run an evaluation on the "development" (or dev in MSMARCO terms) dataset using the standardized metric for MSMARCO, MRR@100. This will show us what our baseline is that we want to improve against. We'll use default values for all parameters in the template above. End of explanation %%time _ = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'grid', 'space': { 'operator': ['OR', 'AND'], 'minimum_should_match': [30, 40, 50, 60, 70], }, 'default': { 'tie_breaker': 0.0, 'url|boost': 1.0, 'title|boost': 1.0, 'body|boost': 1.0, } })) Explanation: Now we have a baseline score that we'll iterate towards improving. Getting started with tuning: low dimensionality and discrete parameter values There's a lot of parameters that we need to choose for this query. There's three boost parameters (one for each field) and then the operator, minimum_should_match, and tie_breaker parameters. We're going to break this up into steps and optimize using basic approaches first. Breaking things up like this allows us to tackle the problem in steps and avoids introducing a large amount of complexity and what is called a large parameter space. A parameter space is the total scope of all parameters combined, and all possible values of those parameters. If we have 3 parameters, we have a 3 dimensional space and each possible combination of parameters is what makes up the coordinates of that space. Let's start with just using all the default values but looking at the difference between the operator values ['OR', 'AND'] in combination with a few optoins for minimum_should_match, since these parameters sometimes have an effect together. Since we have just two dimensions and a few possible values each, the parameter space is very small. In this case it's operator:2 * minimum_should_match:5 = 10. That's pretty small and so we'll use a simple grid search that will test every possible combination of those parmeters, 10 tests in all. When we do this search over the parameters space, we'll use a different dataset to avoid overfitting (coming up with parameter values that work only on one dataset) and then do another evaluation on the dev dataset (as above) after finding what we think are the optimal parameter values in order to check our results. To make this process a bit faster (although less robust), we'll continue to use MRR@100 but with a training query dataset of just 1,000 queries compared to the over 3,000 in the development dataset. End of explanation %%time _, _, final_params_msmtb, _ = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'grid', 'space': { 'minimum_should_match': [30, 40, 50, 60, 70], 'tie_breaker': [0.0, 0.25, 0.5, 0.75, 1.0], }, 'default': { 'operator': 'OR', 'url|boost': 1.0, 'title|boost': 1.0, 'body|boost': 1.0, } })) Explanation: The first thing we notice is that there's really not much difference between the variants of minimum_should_match. There is however a very big difference between OR and AND operator. It's pretty clear that with the kinds of queries we get in this dataset (long-form, natural language questions), that OR is always better than AND. Based on this we're going to just assume that OR is always the better option and we'll continue to look for a good minimum_should_match. Let's do that in combination with tie_breaker now since those two parameters can have an impact on each other. We'll start simple again with a grid search over a limited number of parameter values for each, all of which are discrete values. With two dimensions and five parameter values each, we have a parameter space of size 25 and can test every possible value in a reasonable amount of time. End of explanation %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_msmtb) Explanation: Well that looks pretty good and we see some improvements on the training set. Let's evaluate on the development dataset now using the best parameters we've found so far. This will show us where we are relative to the baseline query. End of explanation final_params_msmtb %%time _, _, final_params_boosts, metadata_boosts = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'bayesian', 'num_iterations': 50, 'num_initial_points': 25, 'space': { 'url|boost': { 'low': 0.0, 'high': 10.0 }, 'title|boost': { 'low': 0.0, 'high': 10.0 }, 'body|boost': { 'low': 0.0, 'high': 10.0 }, }, 'default': final_params_msmtb, })) %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_boosts) Explanation: Definitely a good improvement and all we've done is optimize a few basic query parameters! Advanced tuning: high dimensionality and continuous parameter values So the question now is, can we improve this query further by tuning each of the field boosts? One of the difficulties with picking field boosts intuitively is that they are not necesarrily interpretable in relation to each other. That is, a weight of 2.0 on the title field does not mean that it is two times more important than the body field with a boost of 1.0. In order to find the best field boosts, we'll need to search over a parameter space that includes a continuous range from 0.0 to 10.0. We can't just use a grid search as we did above, testing each possible combination of the three field boosts, as an exhaustive search would require 1,000 evaluations if we test just at steps of 1 and no finer (10 steps per parameter, 3 parameters, makes 10 * 10 * 10 evaluations). Since the evaluation method is time consuming and a grid search over all combinations would be prohibitive, we'll use Bayesian optimization to pick the combinations of boosts. We're going to use a lot of iterations and probably more than necessary, but it'll be useful in a later step to plot the parameter space. Note that there are two iteration parameters that we need to set. First the num_iterations which controls the total numnber of iterations in the process. Second the num_initial_points is used to control the number of iterations that will randomly select parameter values from the parameter space, which are used to seed the Bayesian optimization process. That means the number of iterations that actually use Bayesian optimization (prior results used to select the next parameter values to try) is in fact num_iterations - num_initial_points. It's important to not set the num_initial_points too low or your Bayesian process may find the best parameters much more slowly (i.e. need more total num_iterations). Since we already found the optimal operator, minimum_should_match and tie_breaker parameters in the steps above, we'll bring those forward as default parameters that don't need to optimized any further. The current best parameters are as follows. End of explanation _ = plot_objective(metadata_boosts, sample_source='result') Explanation: Great! It looks like we made an improvement over both the baseline and the preivous best parameters found. This example shows how important it is to not tune field boosts manually, as there is no intuitive relationship between the boost values of fields. Note that due to some randomness in executions of this process, re-running the optimization process may provide slightly different optimal boosts. Most importantly for field boost tuning in general, the relative value between the fields should be about the same. Exploring a parameter space Now that we see the results of a parameter tuning process we can actually look at the details to understand a little bit about the field boost parameter space in particlar. That is, for every combination of the three boost parameters that we tried, we can get a 3-dimensional space and look at what kind of relationships there are between the various dimensions in the parameter space. Here's a plot showing the three parameters and all the combinations that were attempted. Note that we invert the MRR score (multiple by -1) since the library we are relying (scikit-optimize) on wants to minimize a score, while MRR should be maximized. End of explanation %%time _, _, final_params_boosts, metadata_boosts = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'bayesian', 'num_iterations': 75, 'num_initial_points': 30, 'space': { 'minimum_should_match': { 'low': 30, 'high': 70 }, 'tie_breaker': { 'low': 0.0, 'high': 1.0 }, 'url|boost': { 'low': 0.0, 'high': 10.0 }, 'title|boost': { 'low': 0.0, 'high': 10.0 }, 'body|boost': { 'low': 0.0, 'high': 10.0 }, }, 'default': { 'operator': 'OR', } }), verbose=False) _ = plot_objective(metadata_boosts, sample_source='result') %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_boosts) Explanation: Experiment: all-in-one tuning You might be wondering why bother doing the tuning step-wise, first searching through a few parameters, then moving onto the next set. When parameters are dependent on others, it might make sense to put all the parameters into a single, giant parameters space and try and optimize all at once. This is a more difficult optimization problem as the space is huge, but let's give it a shot and see what happens. Same number of iterations, same parameter space First we'll use the same number of total) iterations and combined parameter space as in the above steps. This is more of an apples-to-apples comparison then. However since we can easily search over continuous parameter spaces using Bayesian optimization techniques, we'll make it slightly harder but more complete by allowing for any value in our range of minimum_should_match and tie_breaker, instead of providing just the limited, discrete values as we did above (that was more for a grid search example than anything else). Note that in the following examples we supress progress output since we are using so many iterations. End of explanation %%time _, _, final_params_boosts, metadata_boosts = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'bayesian', 'num_iterations': 100, 'num_initial_points': 40, 'space': { 'minimum_should_match': { 'low': 40, 'high': 60 }, # 50 +/- 10 'tie_breaker': { 'low': 0.1, 'high': 0.4 }, # 0.25 +/- 0.15 'url|boost': { 'low': 0.0, 'high': 10.0 }, 'title|boost': { 'low': 0.0, 'high': 10.0 }, 'body|boost': { 'low': 0.0, 'high': 10.0 }, }, 'default': { 'operator': 'OR', } }), verbose=False) _ = plot_objective(metadata_boosts, sample_source='result') %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_boosts) Explanation: Ok, so not a big difference to the step-wise method we used above, but maybe it was a bit simpler to just throw in a huge parameter space. More iterations, smaller parameter space using hints from prior grid search Let's see if we can do even better by throwing more iterations into it, and by using a smaller search space for parameters that we already have a good range for minimum_should_match and tie_breaker, from the above grid search. This is kind of a hint and maybe not a fair comparison, but let's see if it makes any difference. We're not against using any prior knowledge to our advantage! End of explanation %%time _, _, final_params_boosts, metadata_boosts = optimize_query_mrr100(es, max_concurrent_searches, index, template_id, config_space=Config.parse({ 'method': 'random', 'num_iterations': 75, 'space': { 'minimum_should_match': { 'low': 30, 'high': 70 }, 'tie_breaker': { 'low': 0.0, 'high': 1.0 }, 'url|boost': { 'low': 0.0, 'high': 10.0 }, 'title|boost': { 'low': 0.0, 'high': 10.0 }, 'body|boost': { 'low': 0.0, 'high': 10.0 }, }, 'default': { 'operator': 'OR', } }), verbose=False) _ = plot_objective(metadata_boosts, sample_source='result') %%time _ = evaluate_mrr100_dev(es, max_concurrent_searches, index, template_id, params=final_params_boosts) Explanation: Looks like we did about the same as the other methods in terms of MRR@100. In terms of simplicity though, this approach definitely wins as we can throw all the parameters in at once and not have to think too much about order and parameter dependencies. Random search Something we haven't tried yet is a fully random search. When initializing Bayesian optimization, we're doing a uniform random sample from the parameter space, then using those points to seed the process. A common approach is actually to just do all your search iterations with random parameters. Let's use the same parameter space and try out a fully random search with a lot of iterations and see what happens. End of explanation
9,722
Given the following text description, write Python code to implement the functionality described below step by step Description: Reverse engineering a dynamic web page Initialization Import modules needed below. It is assumed a downloader.py module is in the working directory. Step1: First attempt Step2: Clearly nothing happened. That is because the data is not resident in the downloaded web page. The actual data is obtained in response to a GET request generated by JavaScript code in the web page and sent to the server. This is called AJAX for Asynchronous JavaScript and XML, a technology for client-server data transfer without reloading the whole HTML page. We can emulate JS by sending to the server an url just like the JS script would have sent, like this Step3: As expected we got the desired response. Notice that AJAX returns data in JSON format. The question is, how do we find that right JS-like url. <img src="https Step4: Hm, nothing. As expected, results are generated server-side by a JS request. Lets try again, this time using WebKit. To do that we must assemble a bunch of objects that act web browser-like Step5: Next create a container for web documents Step6: A local event loop is created next Step7: The loadFinished callback of the QWebView object is connected to the quit method of QEventLoop so that when the web page finishes loading the event loop will be stopped. The url to load must be wrapped in a QUrl object, which is passed to QWebView. Step8: The QWebView load method is asynchronous so that execution will immediately pass to the next line while the web page is still being loaded. However we want to wait until the web page is fully loaded, so loop.exec is called to start the event loop. We are almost done, a new web browser almost ready to rumble! Step9: After the web page has been completely loaded the event loop will exit and execution moves to the next line, where the resulting HTML can be extracted as usual Step10: This code was packed in the script webkit_render.py Cool, heh? <img src="https Step11: When this command is run an empty browser window will pop up. This is handy because with each command this window can be checked to see if Selenium worked as expected. So next we load a web page in the browser using the get() method Step12: Next we input country names in the Name box. To select it we use its ID, 'search_term'. Once it is found, use the send_keys() command to input data simulating actual key input. To select all countries use the '.' metacharacter. Step13: We want to get all countries in a single search. To achieve that we set the browser page to 1000, which is acomplished using JavaScript Step14: Next we select the Search button. To select it we use its ID, 'search'. Once it is found, we simulate clicking it with the method click(). Step15: We need to wait for AJAX to complete the request before using the results. That is done with a timeout Step16: Next we search for the desired element like before Step17: Then we create a list of countries by extracting the text from each link that was found Step18: Now we got that response. Before we leave, close the browser window we created.
Python Code: import os, json import lxml.html import cssselect import pprint from PyQt4.QtGui import * from PyQt4.QtCore import * from PyQt4.QtWebKit import * # go to working dir, where a module downloader.py should exist os.chdir(r'C:\Users\ps\Desktop\python\work\web scraping') from downloader import Downloader # script to download html page base = r'http://example.webscraping.com/' surl = r'http://example.webscraping.com/search' # url for example site's search page durl = r'http://example.webscraping.com/dynamic' # url for JavaScript example Explanation: Reverse engineering a dynamic web page Initialization Import modules needed below. It is assumed a downloader.py module is in the working directory. End of explanation D = Downloader() html = D(surl) tree = lxml.html.fromstring(html.decode('utf-8')) # must decode else errors happen tree.cssselect('div#results a') Explanation: First attempt: Just simple web scraping, downloading html page and searching for div results a End of explanation url = base + 'ajax/search.json?page=0&page_size=10&search_term=a' html = D(url) res = json.loads(html.decode('utf-8')) pprint.pprint(res) Explanation: Clearly nothing happened. That is because the data is not resident in the downloaded web page. The actual data is obtained in response to a GET request generated by JavaScript code in the web page and sent to the server. This is called AJAX for Asynchronous JavaScript and XML, a technology for client-server data transfer without reloading the whole HTML page. We can emulate JS by sending to the server an url just like the JS script would have sent, like this: End of explanation html = D(durl) tree = lxml.html.fromstring(html.decode('utf-8')) tree.cssselect('#result')[0].text_content() Explanation: As expected we got the desired response. Notice that AJAX returns data in JSON format. The question is, how do we find that right JS-like url. <img src="https://s-media-cache-ak0.pinimg.com/236x/ab/80/e9/ab80e9fc1f771001c8b48bddf74f92d2.jpg"> Using WebKit This is a web-rendering engine that executes JavaScript. We use it in order to simulate a legitimate web browser's JS request to the server and receive the correct response. First lets try to receive data from this new url in the traditional manner: End of explanation app = QApplication([]) Explanation: Hm, nothing. As expected, results are generated server-side by a JS request. Lets try again, this time using WebKit. To do that we must assemble a bunch of objects that act web browser-like: The Qt framework requires creation of a QApplication first, to initialize stuff. End of explanation webview = QWebView() Explanation: Next create a container for web documents: End of explanation loop = QEventLoop() Explanation: A local event loop is created next: End of explanation webview.loadFinished.connect(loop.quit) webview.load(QUrl(durl)) Explanation: The loadFinished callback of the QWebView object is connected to the quit method of QEventLoop so that when the web page finishes loading the event loop will be stopped. The url to load must be wrapped in a QUrl object, which is passed to QWebView. End of explanation loop.exec_() Explanation: The QWebView load method is asynchronous so that execution will immediately pass to the next line while the web page is still being loaded. However we want to wait until the web page is fully loaded, so loop.exec is called to start the event loop. We are almost done, a new web browser almost ready to rumble! End of explanation html = webview.page().mainFrame().toHtml() tree = lxml.html.fromstring(html) tree.cssselect('#result')[0].text_content() Explanation: After the web page has been completely loaded the event loop will exit and execution moves to the next line, where the resulting HTML can be extracted as usual: End of explanation from selenium import webdriver driver = webdriver.Firefox() Explanation: This code was packed in the script webkit_render.py Cool, heh? <img src="https://media3.giphy.com/media/MF1kR4YmC2Z20/200_s.gif"> Using Selenium The advantage of using WebKit is full control to customize the browser renderer to behave as we need it to. If such flexibility is not needed then Selenium is an alternative. Lets redo the previous example using Selenium and its API. The first step is connect it to the current web browser (Firefox is current in this example). End of explanation driver.get(surl) Explanation: When this command is run an empty browser window will pop up. This is handy because with each command this window can be checked to see if Selenium worked as expected. So next we load a web page in the browser using the get() method: End of explanation driver.find_element_by_id('search_term').send_keys('.') Explanation: Next we input country names in the Name box. To select it we use its ID, 'search_term'. Once it is found, use the send_keys() command to input data simulating actual key input. To select all countries use the '.' metacharacter. End of explanation js = "document.getElementById('page_size').options[1].text = '1000'" driver.execute_script(js) Explanation: We want to get all countries in a single search. To achieve that we set the browser page to 1000, which is acomplished using JavaScript: End of explanation driver.find_element_by_id('search').click() Explanation: Next we select the Search button. To select it we use its ID, 'search'. Once it is found, we simulate clicking it with the method click(). End of explanation driver.implicitly_wait(30) # 30 seconds Explanation: We need to wait for AJAX to complete the request before using the results. That is done with a timeout: End of explanation links = driver.find_elements_by_css_selector('#results a') Explanation: Next we search for the desired element like before: End of explanation countries = [link.text for link in links] pprint.pprint(countries) Explanation: Then we create a list of countries by extracting the text from each link that was found: End of explanation driver.close() Explanation: Now we got that response. Before we leave, close the browser window we created. End of explanation
9,723
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1> Feature Engineering </h1> In this notebook, you will learn how to incorporate feature engineering into your pipeline. <ul> <li> Working with feature columns </li> <li> Adding feature crosses in TensorFlow </li> <li> Reading data from BigQuery </li> <li> Creating datasets using Dataflow </li> <li> Using a wide-and-deep model </li> </ul> Step1: After doing a pip install, restart your kernel by selecting kernel from the menu and clicking Restart Kernel before proceeding further Step2: <h2> 1. Environment variables for project and bucket </h2> <li> Your project id is the *unique* string that identifies your project (not the project name). You can find this from the GCP Console dashboard's Home page. My dashboard reads Step4: <h2> 2. Specifying query to pull the data </h2> Let's pull out a few extra columns from the timestamp. Step5: Try the query above in https Step6: First, let's define a function for preprocessing the data Step7: Now, let's run pipeline locally. This takes upto <b>5 minutes</b>. You will see a message "Done" when it is done. Step8: 4. Run Beam pipeline on Cloud Dataflow Run pipeline on cloud on a larger sample size. Step9: The following step will take <b>15-20 minutes.</b> Monitor job progress on the Cloud Console, in the Dataflow section Step10: Once the job completes, observe the files created in Google Cloud Storage Step11: 5. Develop model with new inputs Download the first shard of the preprocessed data to enable local development. Step12: We have two new inputs in the INPUT_COLUMNS, three engineered features, and the estimator involves bucketization and feature crosses. Step13: Try out the new model on the local sample (this takes <b>5 minutes</b>) to make sure it works fine. Step14: You can use saved_model_cli to look at the exported signature. Note that the model doesn't need any of the engineered features as inputs. It will compute latdiff, londiff, euclidean from the provided inputs, thanks to the add_engineered call in the serving_input_fn. Step15: 5. Train on cloud This will take <b> 10-15 minutes </b> even though the prompt immediately returns after the job is submitted. Monitor job progress on the Cloud Console, in the AI Platform section and wait for the training job to complete. Step16: The RMSE is now 8.33249, an improvement over the 9.3 that we were getting ... of course, we won't know until we train/validate on a larger dataset. Still, this is promising. But before we do that, let's do hyper-parameter tuning. <b>Use the Cloud Console link to monitor the job and do NOT proceed until the job is done.</b> Step17: Optional Step18: <h2> 6. Hyper-parameter tune </h2> Look at <a href="hyperparam.ipynb">hyper-parameter tuning notebook</a> to decide what parameters to use for model. Based on that run, I ended up choosing Step19: The RMSE after training on the 2-million-row dataset is \$3.03. This graph shows the improvements so far ...
Python Code: %%bash sudo pip install httplib2==0.12.0 apache-beam[gcp]==2.16.0 Explanation: <h1> Feature Engineering </h1> In this notebook, you will learn how to incorporate feature engineering into your pipeline. <ul> <li> Working with feature columns </li> <li> Adding feature crosses in TensorFlow </li> <li> Reading data from BigQuery </li> <li> Creating datasets using Dataflow </li> <li> Using a wide-and-deep model </li> </ul> End of explanation import tensorflow as tf import apache_beam as beam import shutil print(tf.__version__) Explanation: After doing a pip install, restart your kernel by selecting kernel from the menu and clicking Restart Kernel before proceeding further End of explanation import os PROJECT = 'cloud-training-demos' # CHANGE THIS BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME. Use a regional bucket in the region you selected. REGION = 'us-central1' # Choose an available region for Cloud MLE from https://cloud.google.com/ml-engine/docs/regions. # for bash os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.8' ## ensure we're using python3 env os.environ['CLOUDSDK_PYTHON'] = 'python3' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ## ensure we predict locally with our current Python environment gcloud config set ml_engine/local_python `which python` Explanation: <h2> 1. Environment variables for project and bucket </h2> <li> Your project id is the *unique* string that identifies your project (not the project name). You can find this from the GCP Console dashboard's Home page. My dashboard reads: <b>Project ID:</b> cloud-training-demos </li> <li> Cloud training often involves saving and restoring model files. Therefore, we should <b>create a single-region bucket</b>. If you don't have a bucket already, I suggest that you create one from the GCP console (because it will dynamically check whether the bucket name you want is available) </li> </ol> <b>Change the cell below</b> to reflect your Project ID and bucket name. End of explanation def create_query(phase, EVERY_N): if EVERY_N == None: EVERY_N = 4 #use full dataset #select and pre-process fields base_query = SELECT (tolls_amount + fare_amount) AS fare_amount, DAYOFWEEK(pickup_datetime) AS dayofweek, HOUR(pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count*1.0 AS passengers, CONCAT(STRING(pickup_datetime), STRING(pickup_longitude), STRING(pickup_latitude), STRING(dropoff_latitude), STRING(dropoff_longitude)) AS key FROM [nyc-tlc:yellow.trips] WHERE trip_distance > 0 AND fare_amount >= 2.5 AND pickup_longitude > -78 AND pickup_longitude < -70 AND dropoff_longitude > -78 AND dropoff_longitude < -70 AND pickup_latitude > 37 AND pickup_latitude < 45 AND dropoff_latitude > 37 AND dropoff_latitude < 45 AND passenger_count > 0 #add subsampling criteria by modding with hashkey if phase == 'train': query = "{} AND ABS(HASH(pickup_datetime)) % {} < 2".format(base_query,EVERY_N) elif phase == 'valid': query = "{} AND ABS(HASH(pickup_datetime)) % {} == 2".format(base_query,EVERY_N) elif phase == 'test': query = "{} AND ABS(HASH(pickup_datetime)) % {} == 3".format(base_query,EVERY_N) return query print(create_query('valid', 100)) #example query using 1% of data Explanation: <h2> 2. Specifying query to pull the data </h2> Let's pull out a few extra columns from the timestamp. End of explanation %%bash if gsutil ls | grep -q gs://${BUCKET}/taxifare/ch4/taxi_preproc/; then gsutil -m rm -rf gs://$BUCKET/taxifare/ch4/taxi_preproc/ fi Explanation: Try the query above in https://bigquery.cloud.google.com/table/nyc-tlc:yellow.trips if you want to see what it does (ADD LIMIT 10 to the query!) <h2> 3. Preprocessing Dataflow job from BigQuery </h2> This code reads from BigQuery and saves the data as-is on Google Cloud Storage. We can do additional preprocessing and cleanup inside Dataflow, but then we'll have to remember to repeat that prepreprocessing during inference. It is better to use tf.transform which will do this book-keeping for you, or to do preprocessing within your TensorFlow model. We will look at this in future notebooks. For now, we are simply moving data from BigQuery to CSV using Dataflow. While we could read from BQ directly from TensorFlow (See: https://www.tensorflow.org/api_docs/python/tf/contrib/cloud/BigQueryReader), it is quite convenient to export to CSV and do the training off CSV. Let's use Dataflow to do this at scale. Because we are running this on the Cloud, you should go to the GCP Console (https://console.cloud.google.com/dataflow) to look at the status of the job. It will take several minutes for the preprocessing job to launch. End of explanation import datetime #### # Arguments: # -rowdict: Dictionary. The beam bigquery reader returns a PCollection in # which each row is represented as a python dictionary # Returns: # -rowstring: a comma separated string representation of the record with dayofweek # converted from int to string (e.g. 3 --> Tue) #### def to_csv(rowdict): days = ['null', 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'] CSV_COLUMNS = 'fare_amount,dayofweek,hourofday,pickuplon,pickuplat,dropofflon,dropofflat,passengers,key'.split(',') rowdict['dayofweek'] = days[rowdict['dayofweek']] rowstring = ','.join([str(rowdict[k]) for k in CSV_COLUMNS]) return rowstring #### # Arguments: # -EVERY_N: Integer. Sample one out of every N rows from the full dataset. # Larger values will yield smaller sample # -RUNNER: 'DirectRunner' or 'DataflowRunner'. Specfy to run the pipeline # locally or on Google Cloud respectively. # Side-effects: # -Creates and executes dataflow pipeline. # See https://beam.apache.org/documentation/programming-guide/#creating-a-pipeline #### def preprocess(EVERY_N, RUNNER): job_name = 'preprocess-taxifeatures' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/taxifare/ch4/taxi_preproc/'.format(BUCKET) #dictionary of pipeline options options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': 'preprocess-taxifeatures' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S'), 'project': PROJECT, 'runner': RUNNER } #instantiate PipelineOptions object using options dictionary opts = beam.pipeline.PipelineOptions(flags=[], **options) #instantantiate Pipeline object using PipelineOptions with beam.Pipeline(options=opts) as p: for phase in ['train', 'valid']: query = create_query(phase, EVERY_N) outfile = os.path.join(OUTPUT_DIR, '{}.csv'.format(phase)) ( p | 'read_{}'.format(phase) >> beam.io.Read(beam.io.BigQuerySource(query=query)) | 'tocsv_{}'.format(phase) >> beam.Map(to_csv) | 'write_{}'.format(phase) >> beam.io.Write(beam.io.WriteToText(outfile)) ) print("Done") Explanation: First, let's define a function for preprocessing the data End of explanation preprocess(50*10000, 'DirectRunner') %%bash gsutil ls gs://$BUCKET/taxifare/ch4/taxi_preproc/ Explanation: Now, let's run pipeline locally. This takes upto <b>5 minutes</b>. You will see a message "Done" when it is done. End of explanation %%bash if gsutil ls | grep -q gs://${BUCKET}/taxifare/ch4/taxi_preproc/; then gsutil -m rm -rf gs://$BUCKET/taxifare/ch4/taxi_preproc/ fi Explanation: 4. Run Beam pipeline on Cloud Dataflow Run pipeline on cloud on a larger sample size. End of explanation preprocess(50*100, 'DataflowRunner') #change first arg to None to preprocess full dataset Explanation: The following step will take <b>15-20 minutes.</b> Monitor job progress on the Cloud Console, in the Dataflow section End of explanation %%bash gsutil ls -l gs://$BUCKET/taxifare/ch4/taxi_preproc/ %%bash #print first 10 lines of first shard of train.csv gsutil cat "gs://$BUCKET/taxifare/ch4/taxi_preproc/train.csv-00000-of-*" | head Explanation: Once the job completes, observe the files created in Google Cloud Storage End of explanation %%bash if [ -d sample ]; then rm -rf sample fi mkdir sample gsutil cat "gs://$BUCKET/taxifare/ch4/taxi_preproc/train.csv-00000-of-*" > sample/train.csv gsutil cat "gs://$BUCKET/taxifare/ch4/taxi_preproc/valid.csv-00000-of-*" > sample/valid.csv Explanation: 5. Develop model with new inputs Download the first shard of the preprocessed data to enable local development. End of explanation %%bash grep -A 20 "INPUT_COLUMNS =" taxifare/trainer/model.py %%bash grep -A 50 "build_estimator" taxifare/trainer/model.py %%bash grep -A 15 "add_engineered(" taxifare/trainer/model.py Explanation: We have two new inputs in the INPUT_COLUMNS, three engineered features, and the estimator involves bucketization and feature crosses. End of explanation %%bash rm -rf taxifare.tar.gz taxi_trained export PYTHONPATH=${PYTHONPATH}:${PWD}/taxifare python -m trainer.task \ --train_data_paths=${PWD}/sample/train.csv \ --eval_data_paths=${PWD}/sample/valid.csv \ --output_dir=${PWD}/taxi_trained \ --train_steps=10 \ --job-dir=/tmp %%bash ls taxi_trained/export/exporter/ Explanation: Try out the new model on the local sample (this takes <b>5 minutes</b>) to make sure it works fine. End of explanation %%bash model_dir=$(ls ${PWD}/taxi_trained/export/exporter | tail -1) saved_model_cli show --dir ${PWD}/taxi_trained/export/exporter/${model_dir} --all %%writefile /tmp/test.json {"dayofweek": "Sun", "hourofday": 17, "pickuplon": -73.885262, "pickuplat": 40.773008, "dropofflon": -73.987232, "dropofflat": 40.732403, "passengers": 2} %%bash model_dir=$(ls ${PWD}/taxi_trained/export/exporter) gcloud ml-engine local predict \ --model-dir=${PWD}/taxi_trained/export/exporter/${model_dir} \ --json-instances=/tmp/test.json Explanation: You can use saved_model_cli to look at the exported signature. Note that the model doesn't need any of the engineered features as inputs. It will compute latdiff, londiff, euclidean from the provided inputs, thanks to the add_engineered call in the serving_input_fn. End of explanation %%bash OUTDIR=gs://${BUCKET}/taxifare/ch4/taxi_trained JOBNAME=lab4a_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ai-platform jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=${PWD}/taxifare/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC \ --runtime-version=$TFVERSION \ -- \ --train_data_paths="gs://$BUCKET/taxifare/ch4/taxi_preproc/train*" \ --eval_data_paths="gs://${BUCKET}/taxifare/ch4/taxi_preproc/valid*" \ --train_steps=5000 \ --output_dir=$OUTDIR Explanation: 5. Train on cloud This will take <b> 10-15 minutes </b> even though the prompt immediately returns after the job is submitted. Monitor job progress on the Cloud Console, in the AI Platform section and wait for the training job to complete. End of explanation %%bash gsutil ls gs://${BUCKET}/taxifare/ch4/taxi_trained/export/exporter | tail -1 %%bash model_dir=$(gsutil ls gs://${BUCKET}/taxifare/ch4/taxi_trained/export/exporter | tail -1) saved_model_cli show --dir ${model_dir} --all %%bash model_dir=$(gsutil ls gs://${BUCKET}/taxifare/ch4/taxi_trained/export/exporter | tail -1) gcloud ml-engine local predict \ --model-dir=${model_dir} \ --json-instances=/tmp/test.json Explanation: The RMSE is now 8.33249, an improvement over the 9.3 that we were getting ... of course, we won't know until we train/validate on a larger dataset. Still, this is promising. But before we do that, let's do hyper-parameter tuning. <b>Use the Cloud Console link to monitor the job and do NOT proceed until the job is done.</b> End of explanation %%bash MODEL_NAME="feateng" MODEL_VERSION="v1" MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/taxifare/ch4/taxi_trained/export/exporter | tail -1) echo "Run these commands one-by-one (the very first time, you'll create a model and then create a version)" #gcloud ai-platform versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ai-platform delete ${MODEL_NAME} gcloud ai-platform models create ${MODEL_NAME} --regions $REGION gcloud ai-platform versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version $TFVERSION %%bash gcloud ai-platform predict --model=feateng --version=v1 --json-instances=/tmp/test.json Explanation: Optional: deploy model to cloud End of explanation %%bash WARNING -- this uses significant resources and is optional. Remove this line to run the block. OUTDIR=gs://${BUCKET}/taxifare/feateng2m JOBNAME=lab4a_$(date -u +%y%m%d_%H%M%S) TIER=STANDARD_1 echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ai-platform jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=${PWD}/taxifare/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=$TIER \ --runtime-version=$TFVERSION \ -- \ --train_data_paths="gs://${BUCKET}/taxifare/train*" \ --eval_data_paths="gs://${BUCKET}/taxifare/valid*" \ --output_dir=$OUTDIR \ --train_steps=418168 \ --train_batch_size=512 --nbuckets=16 --hidden_units="64 64 64 8" Explanation: <h2> 6. Hyper-parameter tune </h2> Look at <a href="hyperparam.ipynb">hyper-parameter tuning notebook</a> to decide what parameters to use for model. Based on that run, I ended up choosing: <ol> <li> train_batch_size: 512 </li> <li> nbuckets: 16 </li> <li> hidden_units: "64 64 64 8" </li> </ol> This gives an RMSE of 5, a considerable improvement from the 8.3 we were getting earlier ... Let's try this over a larger dataset. Optional: Run Cloud training on 2 million row dataset This run uses as input 2 million rows and takes ~20 minutes with 10 workers (STANDARD_1 pricing tier). The model is exactly the same as above. The only changes are to the input (to use the larger dataset) and to the Cloud MLE tier (to use STANDARD_1 instead of BASIC -- STANDARD_1 is approximately 10x more powerful than BASIC). Because the Dataflow preprocessing takes about 15 minutes, we train here using CSV files in a public bucket. When doing distributed training, use train_steps instead of num_epochs. The distributed workers don't know how many rows there are, but we can calculate train_steps = num_rows * num_epochs / train_batch_size. In this case, we have 2141023 * 100 / 512 = 418168 train steps. End of explanation import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt df = pd.DataFrame({'Lab' : pd.Series(['1a', '2-3', '4a', '4b', '4c']), 'Method' : pd.Series(['Heuristic Benchmark', 'tf.learn', '+Feature Eng.', '+ Hyperparam', '+ 2m rows']), 'RMSE': pd.Series([8.026, 9.4, 8.3, 5.0, 3.03]) }) ax = sns.barplot(data = df, x = 'Method', y = 'RMSE') ax.set_ylabel('RMSE (dollars)') ax.set_xlabel('Labs/Methods') plt.plot(np.linspace(-20, 120, 1000), [5] * 1000, 'b'); %%bash gsutil -m mv gs://${BUCKET}/taxifare/ch4/ gs://${BUCKET}/taxifare/ch4_1m/ Explanation: The RMSE after training on the 2-million-row dataset is \$3.03. This graph shows the improvements so far ... End of explanation
9,724
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Land MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Description Is Required Step7: 1.4. Land Atmosphere Flux Exchanges Is Required Step8: 1.5. Atmospheric Coupling Treatment Is Required Step9: 1.6. Land Cover Is Required Step10: 1.7. Land Cover Change Is Required Step11: 1.8. Tiling Is Required Step12: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required Step13: 2.2. Water Is Required Step14: 2.3. Carbon Is Required Step15: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required Step16: 3.2. Time Step Is Required Step17: 3.3. Timestepping Method Is Required Step18: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required Step19: 4.2. Code Version Is Required Step20: 4.3. Code Languages Is Required Step21: 5. Grid Land surface grid 5.1. Overview Is Required Step22: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required Step23: 6.2. Matches Atmosphere Grid Is Required Step24: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required Step25: 7.2. Total Depth Is Required Step26: 8. Soil Land surface soil 8.1. Overview Is Required Step27: 8.2. Heat Water Coupling Is Required Step28: 8.3. Number Of Soil layers Is Required Step29: 8.4. Prognostic Variables Is Required Step30: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required Step31: 9.2. Structure Is Required Step32: 9.3. Texture Is Required Step33: 9.4. Organic Matter Is Required Step34: 9.5. Albedo Is Required Step35: 9.6. Water Table Is Required Step36: 9.7. Continuously Varying Soil Depth Is Required Step37: 9.8. Soil Depth Is Required Step38: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required Step39: 10.2. Functions Is Required Step40: 10.3. Direct Diffuse Is Required Step41: 10.4. Number Of Wavelength Bands Is Required Step42: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required Step43: 11.2. Time Step Is Required Step44: 11.3. Tiling Is Required Step45: 11.4. Vertical Discretisation Is Required Step46: 11.5. Number Of Ground Water Layers Is Required Step47: 11.6. Lateral Connectivity Is Required Step48: 11.7. Method Is Required Step49: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required Step50: 12.2. Ice Storage Method Is Required Step51: 12.3. Permafrost Is Required Step52: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required Step53: 13.2. Types Is Required Step54: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required Step55: 14.2. Time Step Is Required Step56: 14.3. Tiling Is Required Step57: 14.4. Vertical Discretisation Is Required Step58: 14.5. Heat Storage Is Required Step59: 14.6. Processes Is Required Step60: 15. Snow Land surface snow 15.1. Overview Is Required Step61: 15.2. Tiling Is Required Step62: 15.3. Number Of Snow Layers Is Required Step63: 15.4. Density Is Required Step64: 15.5. Water Equivalent Is Required Step65: 15.6. Heat Content Is Required Step66: 15.7. Temperature Is Required Step67: 15.8. Liquid Water Content Is Required Step68: 15.9. Snow Cover Fractions Is Required Step69: 15.10. Processes Is Required Step70: 15.11. Prognostic Variables Is Required Step71: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required Step72: 16.2. Functions Is Required Step73: 17. Vegetation Land surface vegetation 17.1. Overview Is Required Step74: 17.2. Time Step Is Required Step75: 17.3. Dynamic Vegetation Is Required Step76: 17.4. Tiling Is Required Step77: 17.5. Vegetation Representation Is Required Step78: 17.6. Vegetation Types Is Required Step79: 17.7. Biome Types Is Required Step80: 17.8. Vegetation Time Variation Is Required Step81: 17.9. Vegetation Map Is Required Step82: 17.10. Interception Is Required Step83: 17.11. Phenology Is Required Step84: 17.12. Phenology Description Is Required Step85: 17.13. Leaf Area Index Is Required Step86: 17.14. Leaf Area Index Description Is Required Step87: 17.15. Biomass Is Required Step88: 17.16. Biomass Description Is Required Step89: 17.17. Biogeography Is Required Step90: 17.18. Biogeography Description Is Required Step91: 17.19. Stomatal Resistance Is Required Step92: 17.20. Stomatal Resistance Description Is Required Step93: 17.21. Prognostic Variables Is Required Step94: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required Step95: 18.2. Tiling Is Required Step96: 18.3. Number Of Surface Temperatures Is Required Step97: 18.4. Evaporation Is Required Step98: 18.5. Processes Is Required Step99: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required Step100: 19.2. Tiling Is Required Step101: 19.3. Time Step Is Required Step102: 19.4. Anthropogenic Carbon Is Required Step103: 19.5. Prognostic Variables Is Required Step104: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required Step105: 20.2. Carbon Pools Is Required Step106: 20.3. Forest Stand Dynamics Is Required Step107: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required Step108: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required Step109: 22.2. Growth Respiration Is Required Step110: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required Step111: 23.2. Allocation Bins Is Required Step112: 23.3. Allocation Fractions Is Required Step113: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required Step114: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required Step115: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required Step116: 26.2. Carbon Pools Is Required Step117: 26.3. Decomposition Is Required Step118: 26.4. Method Is Required Step119: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required Step120: 27.2. Carbon Pools Is Required Step121: 27.3. Decomposition Is Required Step122: 27.4. Method Is Required Step123: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required Step124: 28.2. Emitted Greenhouse Gases Is Required Step125: 28.3. Decomposition Is Required Step126: 28.4. Impact On Soil Properties Is Required Step127: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required Step128: 29.2. Tiling Is Required Step129: 29.3. Time Step Is Required Step130: 29.4. Prognostic Variables Is Required Step131: 30. River Routing Land surface river routing 30.1. Overview Is Required Step132: 30.2. Tiling Is Required Step133: 30.3. Time Step Is Required Step134: 30.4. Grid Inherited From Land Surface Is Required Step135: 30.5. Grid Description Is Required Step136: 30.6. Number Of Reservoirs Is Required Step137: 30.7. Water Re Evaporation Is Required Step138: 30.8. Coupled To Atmosphere Is Required Step139: 30.9. Coupled To Land Is Required Step140: 30.10. Quantities Exchanged With Atmosphere Is Required Step141: 30.11. Basin Flow Direction Map Is Required Step142: 30.12. Flooding Is Required Step143: 30.13. Prognostic Variables Is Required Step144: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required Step145: 31.2. Quantities Transported Is Required Step146: 32. Lakes Land surface lakes 32.1. Overview Is Required Step147: 32.2. Coupling With Rivers Is Required Step148: 32.3. Time Step Is Required Step149: 32.4. Quantities Exchanged With Rivers Is Required Step150: 32.5. Vertical Grid Is Required Step151: 32.6. Prognostic Variables Is Required Step152: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required Step153: 33.2. Albedo Is Required Step154: 33.3. Dynamics Is Required Step155: 33.4. Dynamic Lake Extent Is Required Step156: 33.5. Endorheic Basins Is Required Step157: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bcc', 'bcc-esm1', 'land') Explanation: ES-DOC CMIP6 Model Properties - Land MIP Era: CMIP6 Institute: BCC Source ID: BCC-ESM1 Topic: Land Sub-Topics: Soil, Snow, Vegetation, Energy Balance, Carbon Cycle, Nitrogen Cycle, River Routing, Lakes. Properties: 154 (96 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:53:39 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of land surface model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of land surface model code (e.g. MOSES2.2) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.3. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the processes modelled (e.g. dymanic vegation, prognostic albedo, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_atmosphere_flux_exchanges') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "water" # "energy" # "carbon" # "nitrogen" # "phospherous" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.4. Land Atmosphere Flux Exchanges Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Fluxes exchanged with the atmopshere. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.atmospheric_coupling_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.5. Atmospheric Coupling Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of land surface coupling with the Atmosphere model component, which may be different for different quantities (e.g. dust: semi-implicit, water vapour: explicit) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bare soil" # "urban" # "lake" # "land ice" # "lake ice" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.6. Land Cover Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Types of land cover defined in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover_change') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.7. Land Cover Change Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how land cover change is managed (e.g. the use of net or gross transitions) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.8. Tiling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general tiling procedure used in the land surface (if any). Include treatment of physiography, land/sea, (dynamic) vegetation coverage and orography/roughness End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.energy') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how energy is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.water') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Water Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how water is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how carbon is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestep_dependent_on_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a time step dependent on the frequency of atmosphere coupling? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overall timestep of land surface model (i.e. time between calls) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestepping_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. Timestepping Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of time stepping method and associated time step(s) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Grid Land surface grid 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the grid in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the horizontal grid (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.2. Matches Atmosphere Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the horizontal grid match the atmosphere? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the vertical grid in the soil (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.total_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 7.2. Total Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The total depth of the soil (in metres) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Soil Land surface soil 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of soil in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_water_coupling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Heat Water Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the coupling between heat and water in the soil End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.number_of_soil layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 8.3. Number Of Soil layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the soil scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of soil map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil structure map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.texture') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Texture Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil texture map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.organic_matter') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.4. Organic Matter Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil organic matter map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.5. Albedo Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil albedo map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.water_table') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Water Table Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil water table map, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.continuously_varying_soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 9.7. Continuously Varying Soil Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the soil properties vary continuously with depth? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.8. Soil Depth Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil depth map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow free albedo prognostic? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "soil humidity" # "vegetation state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If prognostic, describe the dependancies on snow free albedo calculations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.direct_diffuse') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "distinction between direct and diffuse albedo" # "no distinction between direct and diffuse albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.3. Direct Diffuse Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, describe the distinction between direct and diffuse albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.number_of_wavelength_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.4. Number Of Wavelength Bands Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, enter the number of wavelength bands used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the soil hydrological model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river soil hydrology in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil hydrology tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.number_of_ground_water_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.5. Number Of Ground Water Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers that may contain water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.lateral_connectivity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "perfect connectivity" # "Darcian flow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.6. Lateral Connectivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe the lateral connectivity between tiles End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Bucket" # "Force-restore" # "Choisnel" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.7. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The hydrological dynamics scheme in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.number_of_ground_ice_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How many soil layers may contain ground ice End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.ice_storage_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Ice Storage Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of ice storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.permafrost') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Permafrost Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of permafrost, if any, within the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General describe how drainage is included in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Gravity drainage" # "Horton mechanism" # "topmodel-based" # "Dunne mechanism" # "Lateral subsurface flow" # "Baseflow from groundwater" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Different types of runoff represented by the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of how heat treatment properties are defined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of soil heat scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil heat treatment tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.heat_storage') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Force-restore" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.5. Heat Storage Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the method of heat storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "soil moisture freeze-thaw" # "coupling with snow temperature" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.6. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe processes included in the treatment of soil heat End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Snow Land surface snow 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of snow in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.number_of_snow_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.3. Number Of Snow Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of snow levels used in the land surface scheme/model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.density') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.4. Density Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow density End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.water_equivalent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.5. Water Equivalent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the snow water equivalent End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.heat_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.6. Heat Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the heat content of snow End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.temperature') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.7. Temperature Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow temperature End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.liquid_water_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.8. Liquid Water Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow liquid water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_cover_fractions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ground snow fraction" # "vegetation snow fraction" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.9. Snow Cover Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify cover fractions used in the surface snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "snow interception" # "snow melting" # "snow freezing" # "blowing snow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.10. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Snow related processes in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.11. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "prescribed" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of snow-covered land albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "snow age" # "snow density" # "snow grain type" # "aerosol deposition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N *If prognostic, * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17. Vegetation Land surface vegetation 17.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of vegetation in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of vegetation scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.dynamic_vegetation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.3. Dynamic Vegetation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there dynamic evolution of vegetation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.4. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vegetation tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation types" # "biome types" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.5. Vegetation Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Vegetation classification used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "broadleaf tree" # "needleleaf tree" # "C3 grass" # "C4 grass" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.6. Vegetation Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of vegetation types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biome_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "evergreen needleleaf forest" # "evergreen broadleaf forest" # "deciduous needleleaf forest" # "deciduous broadleaf forest" # "mixed forest" # "woodland" # "wooded grassland" # "closed shrubland" # "opne shrubland" # "grassland" # "cropland" # "wetlands" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.7. Biome Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of biome types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_time_variation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed (not varying)" # "prescribed (varying from files)" # "dynamical (varying from simulation)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.8. Vegetation Time Variation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How the vegetation fractions in each tile are varying with time End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.9. Vegetation Map Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If vegetation fractions are not dynamically updated , describe the vegetation map used (common name and reference, if possible) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.interception') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.10. Interception Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is vegetation interception of rainwater represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic (vegetation map)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.11. Phenology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.12. Phenology Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.13. Leaf Area Index Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.14. Leaf Area Index Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.15. Biomass Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Treatment of vegetation biomass * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.16. Biomass Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biomass End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.17. Biogeography Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.18. Biogeography Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "light" # "temperature" # "water availability" # "CO2" # "O3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.19. Stomatal Resistance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify what the vegetation stomatal resistance depends on End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.20. Stomatal Resistance Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation stomatal resistance End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.21. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the vegetation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of energy balance in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the energy balance tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.number_of_surface_temperatures') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.3. Number Of Surface Temperatures Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The maximum number of distinct surface temperatures in a grid cell (for example, each subgrid tile may have its own temperature) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "alpha" # "beta" # "combined" # "Monteith potential evaporation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.4. Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify the formulation method for land surface evaporation, from soil and vegetation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "transpiration" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.5. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe which processes are included in the energy balance scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of carbon cycle in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the carbon cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 19.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of carbon cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.anthropogenic_carbon') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "grand slam protocol" # "residence time" # "decay time" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19.4. Anthropogenic Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Describe the treament of the anthropogenic carbon pool End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.5. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the carbon scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.forest_stand_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.3. Forest Stand Dynamics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of forest stand dyanmics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.photosynthesis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for photosynthesis (e.g. type of photosynthesis, distinction between C3 and C4 grasses, Nitrogen depencence, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.maintainance_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for maintainence respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.growth_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Growth Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for growth respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the allocation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_bins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "leaves + stems + roots" # "leaves + stems + roots (leafy + woody)" # "leaves + fine roots + coarse roots + stems" # "whole plant (no distinction)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Allocation Bins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify distinct carbon bins used in allocation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_fractions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "function of vegetation type" # "function of plant allometry" # "explicitly calculated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.3. Allocation Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the fractions of allocation are calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.phenology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the phenology scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.mortality.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the mortality scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.is_permafrost_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is permafrost included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.emitted_greenhouse_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.2. Emitted Greenhouse Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the GHGs emitted End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.impact_on_soil_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.4. Impact On Soil Properties Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the impact of permafrost on soil properties End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the nitrogen cycle in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the notrogen cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 29.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of nitrogen cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the nitrogen scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30. River Routing Land surface river routing 30.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of river routing in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the river routing, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river routing scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_inherited_from_land_surface') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.4. Grid Inherited From Land Surface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the grid inherited from land surface? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.5. Grid Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of grid, if not inherited from land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.number_of_reservoirs') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.6. Number Of Reservoirs Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of reservoirs End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.water_re_evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "flood plains" # "irrigation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.7. Water Re Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N TODO End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.8. Coupled To Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Is river routing coupled to the atmosphere model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_land') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.9. Coupled To Land Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the coupling between land and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.quantities_exchanged_with_atmosphere') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.10. Quantities Exchanged With Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If couple to atmosphere, which quantities are exchanged between river routing and the atmosphere model components? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.basin_flow_direction_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "adapted for other periods" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.11. Basin Flow Direction Map Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of basin flow direction map is being used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.flooding') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.12. Flooding Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the representation of flooding, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.13. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the river routing End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.discharge_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "direct (large rivers)" # "diffuse" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify how rivers are discharged to the ocean End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.quantities_transported') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.2. Quantities Transported Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Quantities that are exchanged from river-routing to the ocean model component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32. Lakes Land surface lakes 32.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of lakes in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.coupling_with_rivers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 32.2. Coupling With Rivers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are lakes coupled to the river routing model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 32.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of lake scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.quantities_exchanged_with_rivers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.4. Quantities Exchanged With Rivers Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If coupling with rivers, which quantities are exchanged between the lakes and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.vertical_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.5. Vertical Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vertical grid of lakes End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.6. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the lake scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.ice_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is lake ice included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.2. Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of lake albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "No lake dynamics" # "vertical" # "horizontal" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.3. Dynamics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which dynamics of lakes are treated? horizontal, vertical, etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamic_lake_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.4. Dynamic Lake Extent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a dynamic lake extent scheme included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.endorheic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.5. Endorheic Basins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basins not flowing to ocean included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.wetlands.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of wetlands, if any End of explanation
9,725
Given the following text description, write Python code to implement the functionality described below step by step Description: Boundary Layer Solver This notebook will develop a numerical method for solving the boundary layer momentum integral equation using Pohlhausen velocity profiles. Momentum integral equation In the boundary layer portion of the course we derived the governing equations for a boundary layer using the concept of a velocity profile $$u = u_e(x) f(\eta), \quad \eta=\frac y{\delta(x)}$$ where $u_e$ is the local free stream velocity and $\delta$ is the boundary layer thickness. Note that $x$ is the distance along the wall from the leading edge and $y$ is the distance from the wall. This enables the development of the momentum integral equation $$ \frac 12 c_f = \frac{u_e'}{u_e}(\delta_1+2\delta_2)+\delta_2' $$ which balances the local wall friction with the change in the boundary layer profile. The tick mark indicates a derivative, ie $u_e'=\frac{du_e}{dx}$. The goal is to use the momentum equation to determine how the boundary layer develops, predicting the friction drag and the point of separation. The velocity $u_e$ (and $u_e'$) is considered to be prescribed by the potential flow solution, but there are still too many unknowns. We need to choose a profile to develop this further... Pohlhausen profile The Pohlhausen profile is used to describe a laminar velocity profile exposed to external pressure gradients. The profile is defined as $$ \frac u {u_e} = f(\eta) = P_F(\eta)+\lambda P_G(\eta) $$ where $\lambda$ is the shape factor, given by $$ \lambda = \frac {\delta^2}\nu u_e'$$ and the profile shapes are defined by $ P_F = 2\eta-2\eta^3+\eta^4 $ is the flat plate profile $ P_G = \frac\eta 6 (1-\eta)^3 $ is the modification for pressure gradients These can be easly defined using a set of python functions Step1: Change $\lambda$ below to see its effect on the profile shape. Step2: Quiz 1 What value of $\lambda$ denotes separated flow? $\lambda$<-12 $\lambda$=0 $\lambda$>12 Using the Pohlhausen profile, the various factors in the momentum integral equation are defined as $\frac{\delta_1}\delta = \int_0^1 (1-f) d\eta = \frac3{10}-\lambda\frac1{120}$ $\frac{\delta_2}\delta = \int_0^1 f(1-f) d\eta = \frac{37}{315}-\lambda\frac1{945}-\lambda^2\frac1{9072}$ $\frac 12 c_f Re_\delta =f'(0)= 2+\lambda\frac1{6}$ where $Re_\delta = \frac{u_e\delta}\nu$ is the local boundary layer Reynolds number. Step3: Note that these are all polynomial functions of $\lambda$. Since $u_e$ is given by potential flow and $\lambda = \frac {\delta^2}\nu u_e'$, the only unknown in the momentum equation is now $\delta(x)$! Stagnation point condition Now we need to write the momentum equation in terms of $\delta$ (and $\lambda$) and solve. This equation needs to be valid from the leading edge all the way to the point of separation. For any body with finite thickness the boundary layer will begin at the stagnation point at the front of the body. However, describing the boundary layer at a stagnation point is somewhat tricky. Quiz 2 Which relationships are true at a stagnation point? $u_e = 0$ $u_e' = 0$ $\delta/x << 1$ $c_f$ is singular That's no good - the momentum equation will be singular at the leading edge. We can avoid this problem by multiplying the whole equation by $Re_\delta$, leading to Step4: Using this definition, the momentum equation is $$ g_1(\lambda) = Re_\delta \delta_2'$$ Quiz 3 The equation above further simplifies at the stagnation point. Which is correct? $g_1 = 0$ $g_1 = Re_\delta$ $ \frac 12 c_f = 0$ Solving this equations will determine our initial condition $\lambda_0$. Using my vast google skills I found the bisect function in scipy.optimize which will solve for the root. Step5: With the value of $\lambda_0$ determined, the initial condition $\delta_0$ is simply $$ \delta_0 = \sqrt{\frac{\nu \lambda_0}{u_e'(x_0)}} $$ Pohlhausen momentum equation The only thing left to do is write $\delta_2'$ in terms of $\delta'$. Using $F=\frac{\delta_2}\delta$ we have $$ \delta_2' = \frac{d}{dx}(F\delta) $$ From the line plot above, we see that $F$ is nearly unchanged across the whole range of $\lambda$, so we will treat it as a constant. Therefore the complete Pohlhausen momentum equation is $$ g_1 = Re_\delta F \delta'$$ Isolating the derivative, we have $$ \delta'= \frac{g_1(\lambda)}{Re_\delta F(\lambda)} $$ Step6: Lets plot the functions of $\lambda$ to get a feel for how the boundary layer will develop. Step7: Quiz 4 What will happen if $\lambda>\lambda_0$? Flat plate boundary layer flow. The boundary layer will shrink. The Pohlausen equation will be singular. Ordinary differential equations The momentum equation above is an ordinary differentilal equation (ODE), having the form $$ \psi' = g(\psi(x),x) $$ where the derivative is only a function of the variable $\psi$ and one indepentant variable $x$. All ODEs have an important feature in common Step8: In this code we've made the integrand g a function of psi and the index i. Note that g_i_1=$g_{i+1}$ and we've passed $i+1$ as the index. We've also left the option for additional arguments to be passed to g as *args which is required for the boundary layer ODE. Before we get to that, lets test heun using $\psi'=\psi$ with $\psi_0=1$, since we know the solution is $\psi = e^x$ Step9: Looks good, only 1% error. Bonus Step10: where u_e, du_e, and nu are the extra arguments, needed to compute $Re_\delta$ and $\lambda$. Then we use this function and heun to march from the initial condition $\lambda_0,\delta_0$ along the boundary layer until we reach the point of separation at $\lambda<-12$ Step11: and we're done! Let's test it on the flow around a circle. In this case the boundary layer will march around the circle from $s=0,\ldots,R\pi$. Lets set the parameters $R=1$, $U_\infty=1$ and $Re_R=10^5$, such that $\nu=10^{-5}$. The tangential velocity around a circular cylinder using potential flow is simply $$u_e = 2\sin(s)$$ Now that we've defined march we can set-up and solve for the boundary layer in just a few lines of code Step12: Let plot the boundary layer thickness on the circle compared to the exact solution for a laminar flat plate boundary layer from Blausius. Step13: The circle solution is completely different due to the external pressure gradients. The boundary layer growth is stunted on the front body $\delta$ increases rapidly as the flow approaches the midbody The flow separates around $1.87$ radians $\approx 107^o$ This is in good agreement with Hoerner's Fluid-Dynamic Drag, which states that theoretical laminar separation occurs at ~$110^o$ for this case. Quiz 6 How does the separation point depend on $\nu$? Increasing $\nu$ delays separation Decreasing $\nu$ delays separation Chaning $\nu$ has no effect on separation We know analytically that $\delta$ scales as $\sqrt\nu$ (which you can double check using the code above), and therefore $\lambda=\frac{\delta^2}\nu u_e'$ doesn't depend on $\nu$ at all. Since the separation point is determined by $\lambda$, this is also independant of $\nu$. Fluids fundamental Step14: Please ignore the cell below. It just loads our style for the notebooks.
Python Code: import numpy def pohlF(eta): return 2*eta-2*eta**3+eta**4 def pohlG(eta): return eta/6*(1-eta)**3 from matplotlib import pyplot %matplotlib inline def pohlPlot(lam): pyplot.xlabel(r'$u/u_e$', fontsize=16) pyplot.axis([-0.1,1.1,0,1]) pyplot.ylabel(r'$y/\delta$', fontsize=16) eta = numpy.linspace(0.0,1.0,100) pyplot.plot(pohlF(eta),eta, lw=1, c='k', label=r'$P_F$') pyplot.plot(pohlF(eta)+lam*pohlG(eta),eta, lw=2, c='g', label=r'$P_F+\lambda P_G$') pyplot.legend(loc='upper left') Explanation: Boundary Layer Solver This notebook will develop a numerical method for solving the boundary layer momentum integral equation using Pohlhausen velocity profiles. Momentum integral equation In the boundary layer portion of the course we derived the governing equations for a boundary layer using the concept of a velocity profile $$u = u_e(x) f(\eta), \quad \eta=\frac y{\delta(x)}$$ where $u_e$ is the local free stream velocity and $\delta$ is the boundary layer thickness. Note that $x$ is the distance along the wall from the leading edge and $y$ is the distance from the wall. This enables the development of the momentum integral equation $$ \frac 12 c_f = \frac{u_e'}{u_e}(\delta_1+2\delta_2)+\delta_2' $$ which balances the local wall friction with the change in the boundary layer profile. The tick mark indicates a derivative, ie $u_e'=\frac{du_e}{dx}$. The goal is to use the momentum equation to determine how the boundary layer develops, predicting the friction drag and the point of separation. The velocity $u_e$ (and $u_e'$) is considered to be prescribed by the potential flow solution, but there are still too many unknowns. We need to choose a profile to develop this further... Pohlhausen profile The Pohlhausen profile is used to describe a laminar velocity profile exposed to external pressure gradients. The profile is defined as $$ \frac u {u_e} = f(\eta) = P_F(\eta)+\lambda P_G(\eta) $$ where $\lambda$ is the shape factor, given by $$ \lambda = \frac {\delta^2}\nu u_e'$$ and the profile shapes are defined by $ P_F = 2\eta-2\eta^3+\eta^4 $ is the flat plate profile $ P_G = \frac\eta 6 (1-\eta)^3 $ is the modification for pressure gradients These can be easly defined using a set of python functions End of explanation pohlPlot(lam=7) Explanation: Change $\lambda$ below to see its effect on the profile shape. End of explanation def disp_ratio(lam): return 3./10.-lam/120. def mom_ratio(lam): return 37./315.-lam/945.-lam**2/9072. def df_0(lam): return 2+lam/6. pyplot.xlabel(r'$\lambda$', fontsize=16) lam = numpy.linspace(-12,12,100) pyplot.plot(lam,disp_ratio(lam), lw=2, label=r'$\delta_1/\delta$') pyplot.plot(lam,mom_ratio(lam), lw=2, label=r'$\delta_2/\delta$') pyplot.plot(lam,df_0(lam)/10., lw=2, label=r'$c_f Re_\delta/20$') pyplot.legend(loc='upper right') Explanation: Quiz 1 What value of $\lambda$ denotes separated flow? $\lambda$<-12 $\lambda$=0 $\lambda$>12 Using the Pohlhausen profile, the various factors in the momentum integral equation are defined as $\frac{\delta_1}\delta = \int_0^1 (1-f) d\eta = \frac3{10}-\lambda\frac1{120}$ $\frac{\delta_2}\delta = \int_0^1 f(1-f) d\eta = \frac{37}{315}-\lambda\frac1{945}-\lambda^2\frac1{9072}$ $\frac 12 c_f Re_\delta =f'(0)= 2+\lambda\frac1{6}$ where $Re_\delta = \frac{u_e\delta}\nu$ is the local boundary layer Reynolds number. End of explanation def g_1(lam): return df_0(lam)-lam*(disp_ratio(lam)+2*mom_ratio(lam)) Explanation: Note that these are all polynomial functions of $\lambda$. Since $u_e$ is given by potential flow and $\lambda = \frac {\delta^2}\nu u_e'$, the only unknown in the momentum equation is now $\delta(x)$! Stagnation point condition Now we need to write the momentum equation in terms of $\delta$ (and $\lambda$) and solve. This equation needs to be valid from the leading edge all the way to the point of separation. For any body with finite thickness the boundary layer will begin at the stagnation point at the front of the body. However, describing the boundary layer at a stagnation point is somewhat tricky. Quiz 2 Which relationships are true at a stagnation point? $u_e = 0$ $u_e' = 0$ $\delta/x << 1$ $c_f$ is singular That's no good - the momentum equation will be singular at the leading edge. We can avoid this problem by multiplying the whole equation by $Re_\delta$, leading to: $$ \frac 12 c_f Re_\delta = \frac\delta\nu u_e' [\delta_1+2\delta_2]+Re_\delta \delta_2'$$ The first term on the RHS can be simplified by dividing the brackets by $\delta$ and mutiplying by $\delta$ outside out to produce the definition of $\lambda$. This lets us group the terms only dependant on $\lambda$ together to define $$ g_1(\lambda) = \frac 12 c_f Re_\delta - \lambda \left[\frac{\delta_1}{\delta}+2\frac{\delta_2}\delta\right]$$ End of explanation from scipy.optimize import bisect lam0 = bisect(g_1,-12,12) # use bisect method to find root between -12...12 print 'lambda_0 = ',lam0 Explanation: Using this definition, the momentum equation is $$ g_1(\lambda) = Re_\delta \delta_2'$$ Quiz 3 The equation above further simplifies at the stagnation point. Which is correct? $g_1 = 0$ $g_1 = Re_\delta$ $ \frac 12 c_f = 0$ Solving this equations will determine our initial condition $\lambda_0$. Using my vast google skills I found the bisect function in scipy.optimize which will solve for the root. End of explanation def ddx_delta(Re_d,lam): if Re_d==0: return 0 # Stagnation point condition return g_1(lam)/mom_ratio(lam)/Re_d # delta' Explanation: With the value of $\lambda_0$ determined, the initial condition $\delta_0$ is simply $$ \delta_0 = \sqrt{\frac{\nu \lambda_0}{u_e'(x_0)}} $$ Pohlhausen momentum equation The only thing left to do is write $\delta_2'$ in terms of $\delta'$. Using $F=\frac{\delta_2}\delta$ we have $$ \delta_2' = \frac{d}{dx}(F\delta) $$ From the line plot above, we see that $F$ is nearly unchanged across the whole range of $\lambda$, so we will treat it as a constant. Therefore the complete Pohlhausen momentum equation is $$ g_1 = Re_\delta F \delta'$$ Isolating the derivative, we have $$ \delta'= \frac{g_1(\lambda)}{Re_\delta F(\lambda)} $$ End of explanation pyplot.xlabel(r'$\lambda$', fontsize=16) pyplot.ylabel(r'$g_1/F$', fontsize=16) pyplot.plot(lam,ddx_delta(1,lam), lw=2) pyplot.scatter(lam0,0, s=100, c='r') pyplot.text(lam0,3, r'$\lambda_0$',fontsize=15) Explanation: Lets plot the functions of $\lambda$ to get a feel for how the boundary layer will develop. End of explanation def heun(g,psi_i,i,dx,*args): g_i = g(psi_i,i,*args) # integrand at i tilde_psi = psi_i+g_i*dx # predicted estimate at i+1 g_i_1 = g(tilde_psi,i+1,*args) # integrand at i+1 return psi_i+0.5*(g_i+g_i_1)*dx # corrected estimate Explanation: Quiz 4 What will happen if $\lambda>\lambda_0$? Flat plate boundary layer flow. The boundary layer will shrink. The Pohlausen equation will be singular. Ordinary differential equations The momentum equation above is an ordinary differentilal equation (ODE), having the form $$ \psi' = g(\psi(x),x) $$ where the derivative is only a function of the variable $\psi$ and one indepentant variable $x$. All ODEs have an important feature in common: Mathematics fundamental: ODEs Systems' whose evolution depends only on their current state This makes them easier to solve. If we integrate the ODE from $x_0$ to $x_1$ we have $$ \psi(x_1) = \psi_1= \psi_0+\int_{x_0}^{x_1} g(\psi(x),x) dx $$ which means all we need to solve for $\psi_1$ is the initial condition $\psi_0$ and an estimate the RHS integral. And once we have $\psi_1$, we can get $\psi_2$, etc. In general we have $$ \psi_{i+1}= \psi_i+\int_{x_i}^{x_{i+1}} g(\psi(x),x) dx \quad i=0,\ldots, N-1$$ This means the ODE can be solved by marching from $x=0$ to $x=L$. Compare this to the vortex panel method and its linear system of equations that needed to be solved simultaneously using matrices... This is easy. Numerical integration You've seen numerical ways to determine the area under a curve before, like the trapezioal rule $$ \int_{x_i}^{x_{i+1}} f(x) dx \approx \frac12[f(x_1)+f(x_{i+1})] \Delta x$$ where $\Delta x=x_{i+1}-x_1$ Quiz 5 What is the important difference between the integral above and the ODE integral? $\psi_{i+1}$ is unknown $g$ is unknown $g$ is nonlinear This means we have to split the numerical method into two steps. First we estimate the integral as $g(\psi_i,x_i)\Delta x$. This lets us predict an estimate of $\psi_{i+1}$ $$ \tilde\psi_{i+1}= \psi_i+ g(\psi_i,x_i)\Delta x $$ However, this one-sided estimate of the integral is very rough. In the next step we correct the prediction using the trapeziodal rule $$ \psi_{i+1}= \psi_i+ \frac12[g(\psi_i,x_i)+g(\tilde\psi_{i+1},x_{i+1})]\Delta x$$ This is often called the predictor/corrector method, or Heun's method. Let's code it up: End of explanation N = 20 # number of steps x = numpy.linspace(0,numpy.pi,N) # set up x array from 0..pi psi = numpy.full_like(x,1.) # psi array with phi0=1 def g_test(psi,i): return psi # define derivative function for i in range(N-1): # march! psi[i+1] = heun(g_test,psi[i],i,(x[i+1]-x[i])) pyplot.plot(x,psi) pyplot.plot(x,numpy.exp(x)) print 'exp(pi) ~ ', psi[N-1],', error = ',1-psi[N-1]/numpy.exp(numpy.pi) Explanation: In this code we've made the integrand g a function of psi and the index i. Note that g_i_1=$g_{i+1}$ and we've passed $i+1$ as the index. We've also left the option for additional arguments to be passed to g as *args which is required for the boundary layer ODE. Before we get to that, lets test heun using $\psi'=\psi$ with $\psi_0=1$, since we know the solution is $\psi = e^x$ End of explanation def g_pohl(delta_i,i,u_e,du_e,nu): Re_d = delta_i*u_e[i]/nu # compute local Reynolds number lam = delta_i**2*du_e[i]/nu # compute local lambda return ddx_delta(Re_d,lam) # get derivative Explanation: Looks good, only 1% error. Bonus: What is the error if we don't do the correction step? Boundary layer on a circle Returning to the boundary layer ODE, we first define a function which can be integrated by heun End of explanation def march(x,u_e,du_e,nu): delta0 = numpy.sqrt(lam0*nu/du_e[0]) # set delta0 delta = numpy.full_like(x,delta0) # delta array lam = numpy.full_like(x,lam0) # lambda array for i in range(len(x)-1): # march! delta[i+1] = heun(g_pohl,delta[i],i,x[i+1]-x[i], # integrate BL using... u_e,du_e,nu) # additional arguments lam[i+1] = delta[i+1]**2*du_e[i+1]/nu # compute lambda if abs(lam[i+1])>12: break # check stop condition return delta,lam,i # return with separation index Explanation: where u_e, du_e, and nu are the extra arguments, needed to compute $Re_\delta$ and $\lambda$. Then we use this function and heun to march from the initial condition $\lambda_0,\delta_0$ along the boundary layer until we reach the point of separation at $\lambda<-12$ End of explanation nu = 1e-4 # viscosity N = 32 # number of steps s = numpy.linspace(0,numpy.pi,N) # distance goes from 0..pi u_e = 2.*numpy.sin(s) # velocity du_e = 2.*numpy.cos(s) # gradient delta,lam,iSep = march(s,u_e,du_e,nu) # solve! Explanation: and we're done! Let's test it on the flow around a circle. In this case the boundary layer will march around the circle from $s=0,\ldots,R\pi$. Lets set the parameters $R=1$, $U_\infty=1$ and $Re_R=10^5$, such that $\nu=10^{-5}$. The tangential velocity around a circular cylinder using potential flow is simply $$u_e = 2\sin(s)$$ Now that we've defined march we can set-up and solve for the boundary layer in just a few lines of code: End of explanation pyplot.ylabel(r'$\delta/R$', fontsize=16) pyplot.xlabel(r'$s/R$', fontsize=16) pyplot.plot(s[:iSep+1],delta[:iSep+1],lw=2,label='Circle') pyplot.plot(s,s*5/numpy.sqrt(s/nu),lw=2,label='Flat plate') pyplot.legend(loc='upper left') pyplot.scatter(s[iSep],delta[iSep], s=100, c='r') pyplot.text(s[iSep]+0.1,delta[iSep],'separation between\n' +'%.2f' % s[iSep]+'<s<'+'%.2f' % s[iSep+1],fontsize=12) Explanation: Let plot the boundary layer thickness on the circle compared to the exact solution for a laminar flat plate boundary layer from Blausius. End of explanation # your code here Explanation: The circle solution is completely different due to the external pressure gradients. The boundary layer growth is stunted on the front body $\delta$ increases rapidly as the flow approaches the midbody The flow separates around $1.87$ radians $\approx 107^o$ This is in good agreement with Hoerner's Fluid-Dynamic Drag, which states that theoretical laminar separation occurs at ~$110^o$ for this case. Quiz 6 How does the separation point depend on $\nu$? Increasing $\nu$ delays separation Decreasing $\nu$ delays separation Chaning $\nu$ has no effect on separation We know analytically that $\delta$ scales as $\sqrt\nu$ (which you can double check using the code above), and therefore $\lambda=\frac{\delta^2}\nu u_e'$ doesn't depend on $\nu$ at all. Since the separation point is determined by $\lambda$, this is also independant of $\nu$. Fluids fundamental: Separation Point The point of laminar separation is independant of $Re$ This is not true of a turbulent boundary layer. Quiz 7 How can you compute the total friction drag coefficient $C_F$ on the circle? Use the flat plate estimate, I'm sure that will be fine... Compute $\tau_w=\frac 12 c_f \rho u_e^2 $ and integrate numerically Hint: numpy.trapz Your turn Determine $C_F=\frac {2F_F}{\rho U_\infty^2 S}$ , where $F_F = \int \tau_w s_x ds$ is the 2D friction drag and $S$ is the 2D surface area, and compare it to the flat plate solution: $1.33 Re^{-1/2}$. End of explanation from IPython.core.display import HTML def css_styling(): styles = open('../styles/custom.css', 'r').read() return HTML(styles) css_styling() Explanation: Please ignore the cell below. It just loads our style for the notebooks. End of explanation
9,726
Given the following text description, write Python code to implement the functionality described below step by step Description: Analyzing the NYC Subway Dataset Questions Overview This project consists of two parts. In Part 1 of the project, you should have completed the questions in Problem Sets 2, 3, and 4 in the Introduction to Data Science course. This document addresses part 2 of the project. Please use this document as a template and answer the following questions to explain your reasoning and conclusion behind your work in the problem sets. You will attach a document with your answers to these questions as part of your final project submission. Section 0. References Please include a list of references you have used for this project. Please be specific - for example, instead of including a general website such as stackoverflow.com, try to include a specific topic from Stackoverflow that you have found useful. http Step1: Section 1. Statistical Test 1.1 Which statistical test did you use to analyze the NYC subway data? Did you use a one-tail or a two-tail P value? What is the null hypothesis? What is your p-critical value? 1.2 Why is this statistical test applicable to the dataset? In particular, consider the assumptions that the test is making about the distribution of ridership in the two samples. 1.3 What results did you get from this statistical test? These should include the following numerical values Step2: A.2 Exploratory Data Analysis for Features a) Number of Riders over the Day Dependent on Rain Step3: b) Number of Riders over the Day Dependent on Weekday Step4: c) Number of Riders over the Day Dependent on Fog Step5: A.3 Test of Normal Distribution Step6: Based on the plot, the sample of entries does not seem normally distributed. Hence, the Mann-Whitney-Wilcoxon RankSum test (no assumptions about any underlying distributions) is conducted to test if the two samples of the number of entries in the NYC subway on rainy and non rainy days come from the same population
Python Code: import pandas as pd import pandasql as pdsql import datetime as dt import numpy as np import scipy as sc import scipy.stats import statsmodels.api as sm from sklearn.linear_model import SGDRegressor from ggplot import * %matplotlib inline Explanation: Analyzing the NYC Subway Dataset Questions Overview This project consists of two parts. In Part 1 of the project, you should have completed the questions in Problem Sets 2, 3, and 4 in the Introduction to Data Science course. This document addresses part 2 of the project. Please use this document as a template and answer the following questions to explain your reasoning and conclusion behind your work in the problem sets. You will attach a document with your answers to these questions as part of your final project submission. Section 0. References Please include a list of references you have used for this project. Please be specific - for example, instead of including a general website such as stackoverflow.com, try to include a specific topic from Stackoverflow that you have found useful. http://blog.yhathq.com/posts/facebook-ggplot-tutorial.html http://ggplot.yhathq.com/docs/index.html http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html End of explanation weather_data = pd.read_csv("turnstile_weather_v2.csv") weather_data["hour"] = weather_data["hour"].astype('category') weather_data["rain"] = (weather_data["rain"]+1).astype('category') weather_data["fog"] = (weather_data["fog"]+1).astype('category') weather_data.head(3) Explanation: Section 1. Statistical Test 1.1 Which statistical test did you use to analyze the NYC subway data? Did you use a one-tail or a two-tail P value? What is the null hypothesis? What is your p-critical value? 1.2 Why is this statistical test applicable to the dataset? In particular, consider the assumptions that the test is making about the distribution of ridership in the two samples. 1.3 What results did you get from this statistical test? These should include the following numerical values: p-values, as well as the means for each of the two samples under test. 1.4 What is the significance and interpretation of these results? Section 2. Linear Regression 2.1 What approach did you use to compute the coefficients theta and produce prediction for ENTRIESn_hourly in your regression model: OLS using Statsmodels or Scikit Learn Gradient descent using Scikit Learn Or something different? 2.2 What features (input variables) did you use in your model? Did you use any dummy variables as part of your features? 2.3 Why did you select these features in your model? We are looking for specific reasons that lead you to believe that the selected features will contribute to the predictive power of your model. Your reasons might be based on intuition. For example, response for fog might be: “I decided to use fog because I thought that when it is very foggy outside people might decide to use the subway more often.” Your reasons might also be based on data exploration and experimentation, for example: “I used feature X because as soon as I included it in my model, it drastically improved my R2 value.” 2.4 What are the parameters (also known as "coefficients" or "weights") of the non-dummy features in your linear regression model? 2.5 What is your model’s R2 (coefficients of determination) value? 2.6 What does this R2 value mean for the goodness of fit for your regression model? Do you think this linear model to predict ridership is appropriate for this dataset, given this R2 value? Section 3. Visualization Please include two visualizations that show the relationships between two or more variables in the NYC subway data. Remember to add appropriate titles and axes labels to your plots. Also, please add a short description below each figure commenting on the key insights depicted in the figure. 3.1 One visualization should contain two histograms: one of ENTRIESn_hourly for rainy days and one of ENTRIESn_hourly for non-rainy days. You can combine the two histograms in a single plot or you can use two separate plots. If you decide to use to two separate plots for the two histograms, please ensure that the x-axis limits for both of the plots are identical. It is much easier to compare the two in that case. For the histograms, you should have intervals representing the volume of ridership (value of ENTRIESn_hourly) on the x-axis and the frequency of occurrence on the y-axis. For example, each interval (along the x-axis), the height of the bar for this interval will represent the number of records (rows in our data) that have ENTRIESn_hourly that falls in this interval. Remember to increase the number of bins in the histogram (by having larger number of bars). The default bin width is not sufficient to capture the variability in the two samples. 3.2 One visualization can be more freeform. You should feel free to implement something that we discussed in class (e.g., scatter plots, line plots) or attempt to implement something more advanced if you'd like. Some suggestions are: Ridership by time-of-day Ridership by day-of-week Section 4. Conclusion Please address the following questions in detail. Your answers should be 1-2 paragraphs long. 4.1 From your analysis and interpretation of the data, do more people ride the NYC subway when it is raining or when it is not raining? 4.2 What analyses lead you to this conclusion? You should use results from both your statistical tests and your linear regression to support your analysis. Section 5. Reflection Please address the following questions in detail. Your answers should be 1-2 paragraphs long. 5.1 Please discuss potential shortcomings of the methods of your analysis, including: Dataset, Analysis, such as the linear regression model or statistical test 5.2 (Optional) Do you have any other insight about the dataset that you would like to share with us? Data Analysis and Source Code A.1 Import NYC Subway Data End of explanation p = ggplot(aes(x = 'rain', y='ENTRIESn_hourly', color = "meantempi"), data=weather_data) p + geom_point(position = "jitter", alpha = 0.7) + scale_y_continuous(limits = [0,45000]) + \ facet_wrap('hour') + ggtitle("Number of Riders over the Day Dependent on Rain") + theme_bw() Explanation: A.2 Exploratory Data Analysis for Features a) Number of Riders over the Day Dependent on Rain End of explanation p = ggplot(aes(x = 'rain', y='ENTRIESn_hourly', color = "meantempi"), data=weather_data) p + geom_point(position = "jitter", alpha = 0.7) + scale_y_continuous(limits = [0,45000]) + theme_bw() + \ facet_wrap('day_week', nrow = 4) + ggtitle("Number of Riders over the Week Dependent on Rain") Explanation: b) Number of Riders over the Day Dependent on Weekday End of explanation p = ggplot(aes(x = 'fog', y='ENTRIESn_hourly', color = "meantempi"), data=weather_data) p + geom_point(position = "jitter", alpha = 0.7) + scale_y_continuous(limits = [0,45000]) + \ facet_wrap('hour') + ggtitle("Number of Riders over the Day Dependent on Fog") + theme_bw() Explanation: c) Number of Riders over the Day Dependent on Fog End of explanation p = ggplot(aes(x = 'ENTRIESn_hourly', color = 'rain'), data=weather_data) p + geom_density(size = 3, alpha = 0.25) + theme_bw() + \ scale_x_continuous(limits = [-1000,5000]) + ggtitle("Number of Riders Dependent on Rain") Explanation: A.3 Test of Normal Distribution End of explanation no_rain = weather_data["ENTRIESn_hourly"][weather_data["rain"]==1].dropna() with_rain = weather_data["ENTRIESn_hourly"][weather_data["rain"]==2].dropna() print no_rain.head() print with_rain.head() without_rain_mean = np.mean(no_rain) with_rain_mean = np.mean(with_rain) print without_rain_mean print with_rain_mean U, p = sc.stats.mannwhitneyu(no_rain, with_rain) z, pval = sc.stats.ranksums(no_rain, with_rain) print U, p print z, pval Explanation: Based on the plot, the sample of entries does not seem normally distributed. Hence, the Mann-Whitney-Wilcoxon RankSum test (no assumptions about any underlying distributions) is conducted to test if the two samples of the number of entries in the NYC subway on rainy and non rainy days come from the same population: H0: The distribution of number of entries on rainy days $F_{rain}(x)$ is identical with the distribution on non rainy days $F_{no-rain}(x-a)$, hence a = 0 H1: The distributions are not the same, a $\neq$ 0 End of explanation
9,727
Given the following text description, write Python code to implement the functionality described below step by step Description: title Step1: In order to call one of the functions belonging to a particular module, you can use the . syntax. For example, numpy has a mean() function which will compute the arithmetic mean across an axis. If we wanted to call that function, we would simply write Step2: For those coming from R, this is the equivalent of something like dplyr Step3: Lists can be arbitrarily long and can store hold multiple types of data, although this isn't usually a good idea Step4: Similar to lists, the numpy module provides the ability to work with n-dimensional arrays for numerical data only. We can initialize an array full of zeros using the np.zeros() function Step5: If we want to work with numerical data that has two dimensions, we can create a matrix in a very similar way Step6: We won't be working much with numpy arrays directly today, but you should know that they are often a better option than lists when you are working with numerical data. Today, we will primarily be working with pandas dataframes. This object provides functionality that is very similar to dataframes in R. Let's start by converting our empty matrix into a dataframe. We can also give each of our columns more informative names Step7: Another way we can create a dataframe is by first creating a dictionary and then converting this to a dataframe. A dictionary is another type of data structure used by Python. Dictionaries consist of an unordered collection of key-value pairs. Keys are used to index the dictionary in order to access the values associated with that key. Let's start by making a simple dictionary with one key and one value Step8: If we index this dictionary using the name key, it will return the its value, which is a list of names Step9: We can also add new key-value pairs to this dictionary Step10: Similar to how we made a dataframe from our numpy array above, we can easily make a dataframe from this dictionary Step11: Reading Data into Python It's easy to introduce errors if you are entering data manually like above, and with a lot of data it would get tedious. Most of the time, you'll be reading data from an external file (.txt or .csv), or opening up an existing dataset in Python. Once you find the location of your files, what you do next will depend on the file format. Reminder about the os module This module provides a way to interface with the operating system we are running Python on (Windows, Mac, or Linux). Let's start by first loading this module Step12: It's always important to check where our working directory is when trying to read data into Python. Step13: You can access a list of everything (all files and directories) within your working directory using the os.listdir() function... Step14: ...as well as in the "Files" tab on the left-hand side of the JupyterLab window. What kind of file do you have? For .txt, .csv, or any kind of delimited (such as tab-delimited) file, you can use the pandas function read_table() Step15: If you know you have a .csv file, another common option is read_csv(), which has a default comma separator. Remember, all of these commands can have arguments that will help Python make sense of your data. To find out what arguments are possible, you can use the help() function like we did above to look at what read_table() does. To do this, just put whatever command you would like to learn about inside of help() (e.g. help(pd.read_table)). Remember that for functions associated with a particular module you will need to tell Python which module they come from using the . syntax. You can always also Google a function to quickly find this information. Inspecting your data Now that you have data, it's time to get some results! But wait! Are you sure this data is OK? Doing some basic steps to inspect your data now can save you lots of headaches later, and Python makes it really easy. Start by checking that you have the expected number of rows and columns in your data frame. You can do this by by asking Python Step16: Rename a variable Now that we've loaded our data into Python and have made sure it makes sense, we can start manipulating and cleaning it. Look back at your dataframe. What is the fifth variable? What does that even mean? Luckily, this is your study and you know that it's a personality questionnaire measuring neuroticism. Let's fix that name and make it more intuitive Step17: We can also rename multiple variables at once Step18: Adding a new column Often we'll want to add some new data into a dataframe. Step19: For those coming from R, the Python syntax for referencing columns as df["columnName"] is roughly equivalent to using R's $ operator. Removing Columns We can remove columns with the .drop() function Step20: Indexing a Dataframe Sometimes you might want to look at only a subset of the columns in a dataframe (for example, when there are many variables). Doing this with a pandas dataframe is relatively straightforward Step21: Using .loc and .iloc to index DataFrames If we want to pull out or manipulate specific pieces of dataframes, we can use the .loc[] and .iloc[] functions. With both functions, the data referenced is always formatted as [selection of rows, selection of columns]. .loc[] takes selections of rows from named columns. So, here we're asking for elements 0 Step22: We can also use conditional logic to select rows. Here, we ask for all elements in the Age column that are above 24 Step23: .iloc[] takes selections of rows and columns using numeric indices. Step24: Check for missing data One problem you may have is missing data. Sometimes this is something you already know about, but you should check your data frame anyway to make sure nothing got missed in a data entry error. For small datasets, you can do this visually, but for larger ones you can ask Python. Step25: In this case, the missing value is the Age value in row 38. You know you have this info somewhere on a paper form, so you go dig it up and want to replace it. Step26: Check for correct values Let's take a look at the Sex variable Step27: It looks like there are two categories here, but let's double check. We can use the unique() function to list all of the unique values in a column Step28: Here we see another data entry problem. At least one of the rows has a third category label that should really be another case of "Female". Let's replace this label using the replace() function Step29: Now let's look at some of the continuous variables. You can also look at these by indexing them individually, but sometimes it's easier to visualize. The hist() function, which creates histograms, is good here. Step30: Looks like we have a potential outlier on the Neuroticism score. This could be an entry error, but it could also be a real value that just happens to be really low. This is why data inspection is so important for later analysis — now that you know that the value is there, it's up to you to decide how to deal with it. Filtering data Let's say we have decided a prori to exclude outliers 3SD above or below the mean. We will first define these boundaries Step31: We can now use conditional indexing to exclude all rows with a Neuroticism score above or below these values Step32: The line above says Step33: Getting Ready for Analysis Now that we've gone through and cleaned up the problems, you can think ahead to how you'll want to use this data. Recoding variables Sometimes we want to treat categorical variables as factors, but sometimes we want to pretend they're numeric (as in a regression, when binary variables can be coded as 0 and 1). Right now, Condition is coded as a binary numeric variable, but that's not very informative, so you'd rather have the values be descriptive. Here, the function replace() is again useful Step34: Calculating new variables You may also want to recalculate or rescale some variables. For example, we can turn Neuroticism into a z-score, or calculate an average response across the four time points. To compute a z-score, we can use the zscore() function from the scipy.stats module Step35: To calculate the means across each day, we can use the mean() function from pandas on a dataframe that has been indexed to include only data from the four days Step36: Combining data from multiple sources Sometimes, data might be spread across multiple files, and you'll want to combine those for your analysis. For example, maybe this study had a follow-up survey on Day 30. Scores from that survey were entered into another spreadsheet, which only has the subject ID and that score. We want to include that score into our data. Step37: We can use the function merge() to combine the two dataframes. To make sure the data matches up, we use the on argument to specify that IDs should match. That way even if the data is in a different order, scores will match together correctly. Step38: Shaping data Finally, you may want to change the layout of your data. Right now, our dataframe is in "wide" format, which means that each row is a subject, and each observation gets its own column. For some analyses, you'll need to use "long" format, where each row is an observation, and columns specify things like Time and ID to differentiate the observations. For this, we can use the melt() function in pandas Step39: Wide → Long Step40: Long → Wide We can go back in the other direction by using the pivot_table() function in pandas Step41: Saving Your Work Once you've created a data cleaning script like this one, you'll have a record of all the edits you've made on the raw data, and you can recreate your cleaned data just by running the script again. However, it's often easier to save your cleaned data as its own file (never overwrite the raw data), so when you come back to do analysis you don't have to bother with all the cleaning steps. You can always save data frames as a .csv for easy sharing and viewing outside of Python.
Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_context("poster") sns.set(style="ticks",font="Arial",font_scale=2) Explanation: title: "Data Cleaning in Python" subtitle: "CU Psych Scientific Computing Workshop" weight: 1201 tags: ["core", "python"] Goals of this Lesson Students will learn: How to open various data types in Python How to check for missing or problematic data and address issues How to filter, rearrange and shape data in preparation for analysis Links to Files The files for all tutorials can be downloaded from the Columbia Psychology Scientific Computing GitHub page using these instructions. This particular file is located here: /content/tutorials/python/2-datacleaning/index.ipynb. A Quick Introduction to Python Scientific Computing Modules As a programming languge, Python can do quite a lot. For example, it is an extremely popular choice for GUI and web-based application development (Reddit, Google, Facebook), databases (Spotify, Netflix), and scientific computing (NASA, for example, but also us!). One reason that Python is so widely used is due to its extensive library of third-party modules. Let's start by briefly covering the most important modules for scientific computing, some (but not all) of which we'll be using today. Data Analysis NumPy: The fundamental package for scientific computing in Python. NumPy provides Python with most of the functionality of MATLAB. SciPy: Provides many user-friendly and efficient numerical routines such as routines for numerical integration, interpolation, optimization, linear algebra and statistics. Pandas: Provides high-performance, easy-to-use data structures and data analysis tools. Pandas provides Python with most of the functionality of R. Data Visualization Matplotlib: Python 2D plotting library which produces publication quality figures. The pyplot module provides a MATLAB-like interface and is what most people use. Seaborn: A Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. We'll now import a few of these modules using their standard abbreviations. End of explanation np.mean([2,4,6]) Explanation: In order to call one of the functions belonging to a particular module, you can use the . syntax. For example, numpy has a mean() function which will compute the arithmetic mean across an axis. If we wanted to call that function, we would simply write: End of explanation mylist = [1,2,3] mylist Explanation: For those coming from R, this is the equivalent of something like dplyr::filter(). Python is stricter than R about making sure you specify which library the function you are using comes from. Now that you're familiar with the basics of modules in Python, let's go ahead and move on to some data cleaning. Python Data Structures There are a few ways that data can be stored and manipulated in Python, some of which you've already covered. To review, the first and most basic is a list: End of explanation mylist2 = [1,"2",3.0, [4,5]] mylist2 Explanation: Lists can be arbitrarily long and can store hold multiple types of data, although this isn't usually a good idea: End of explanation myarray = np.zeros((10)) myarray Explanation: Similar to lists, the numpy module provides the ability to work with n-dimensional arrays for numerical data only. We can initialize an array full of zeros using the np.zeros() function: End of explanation mymatrix = np.zeros((10,2)) mymatrix Explanation: If we want to work with numerical data that has two dimensions, we can create a matrix in a very similar way: End of explanation mydataframe = pd.DataFrame(mymatrix,columns=["Height","Weight"]) mydataframe Explanation: We won't be working much with numpy arrays directly today, but you should know that they are often a better option than lists when you are working with numerical data. Today, we will primarily be working with pandas dataframes. This object provides functionality that is very similar to dataframes in R. Let's start by converting our empty matrix into a dataframe. We can also give each of our columns more informative names: End of explanation data = {'name':["Monica","Michelle","Paul","Ellen"]} data Explanation: Another way we can create a dataframe is by first creating a dictionary and then converting this to a dataframe. A dictionary is another type of data structure used by Python. Dictionaries consist of an unordered collection of key-value pairs. Keys are used to index the dictionary in order to access the values associated with that key. Let's start by making a simple dictionary with one key and one value: End of explanation data['name'] Explanation: If we index this dictionary using the name key, it will return the its value, which is a list of names: End of explanation data['score'] = [16,20,19,35] data['year'] = [2, 5, 2, 1] data Explanation: We can also add new key-value pairs to this dictionary: End of explanation dataframe = pd.DataFrame(data) dataframe Explanation: Similar to how we made a dataframe from our numpy array above, we can easily make a dataframe from this dictionary: End of explanation import os Explanation: Reading Data into Python It's easy to introduce errors if you are entering data manually like above, and with a lot of data it would get tedious. Most of the time, you'll be reading data from an external file (.txt or .csv), or opening up an existing dataset in Python. Once you find the location of your files, what you do next will depend on the file format. Reminder about the os module This module provides a way to interface with the operating system we are running Python on (Windows, Mac, or Linux). Let's start by first loading this module: End of explanation os.getcwd() Explanation: It's always important to check where our working directory is when trying to read data into Python. End of explanation os.listdir() Explanation: You can access a list of everything (all files and directories) within your working directory using the os.listdir() function... End of explanation #help(pd.read_table) mydata = pd.read_table("Study1.csv", sep=",") Explanation: ...as well as in the "Files" tab on the left-hand side of the JupyterLab window. What kind of file do you have? For .txt, .csv, or any kind of delimited (such as tab-delimited) file, you can use the pandas function read_table(): End of explanation # get the number of rows and columns mydata.shape # get the names of columns mydata.columns # take a peek at the first few rows mydata.head() Explanation: If you know you have a .csv file, another common option is read_csv(), which has a default comma separator. Remember, all of these commands can have arguments that will help Python make sense of your data. To find out what arguments are possible, you can use the help() function like we did above to look at what read_table() does. To do this, just put whatever command you would like to learn about inside of help() (e.g. help(pd.read_table)). Remember that for functions associated with a particular module you will need to tell Python which module they come from using the . syntax. You can always also Google a function to quickly find this information. Inspecting your data Now that you have data, it's time to get some results! But wait! Are you sure this data is OK? Doing some basic steps to inspect your data now can save you lots of headaches later, and Python makes it really easy. Start by checking that you have the expected number of rows and columns in your data frame. You can do this by by asking Python: End of explanation mydata = mydata.rename({'Personality':'Neuroticism'}, axis="columns") mydata.head() Explanation: Rename a variable Now that we've loaded our data into Python and have made sure it makes sense, we can start manipulating and cleaning it. Look back at your dataframe. What is the fifth variable? What does that even mean? Luckily, this is your study and you know that it's a personality questionnaire measuring neuroticism. Let's fix that name and make it more intuitive: End of explanation mydata = mydata.rename({'T1':'Day1', 'T2':'Day2', 'T3':'Day3', 'T4':'Day4'}, axis="columns") mydata.head() Explanation: We can also rename multiple variables at once: End of explanation # here we add a column where are the values are the same string mydata['studyName'] = 'study1' # here we add a column 'random' of 50 unique random numbers mydata['random'] = np.random.random(50) mydata.head() Explanation: Adding a new column Often we'll want to add some new data into a dataframe. End of explanation mydata = mydata.drop(['random', 'studyName'], axis = 1) Explanation: For those coming from R, the Python syntax for referencing columns as df["columnName"] is roughly equivalent to using R's $ operator. Removing Columns We can remove columns with the .drop() function End of explanation # indexing a single column ids = mydata[['ID']] ids.head() # indexing multiple columns mydata_subset = mydata[['ID','Age','Neuroticism']] mydata_subset.head() Explanation: Indexing a Dataframe Sometimes you might want to look at only a subset of the columns in a dataframe (for example, when there are many variables). Doing this with a pandas dataframe is relatively straightforward: End of explanation mydata.loc[0:2, ['Age']] Explanation: Using .loc and .iloc to index DataFrames If we want to pull out or manipulate specific pieces of dataframes, we can use the .loc[] and .iloc[] functions. With both functions, the data referenced is always formatted as [selection of rows, selection of columns]. .loc[] takes selections of rows from named columns. So, here we're asking for elements 0:2 from the Age column: End of explanation mydata.loc[mydata['Age'] > 24, ['Age']] Explanation: We can also use conditional logic to select rows. Here, we ask for all elements in the Age column that are above 24: End of explanation mydata.iloc[3:7, 1:4] Explanation: .iloc[] takes selections of rows and columns using numeric indices. End of explanation mydata.isnull() #mydata.isnull().values.any() Explanation: Check for missing data One problem you may have is missing data. Sometimes this is something you already know about, but you should check your data frame anyway to make sure nothing got missed in a data entry error. For small datasets, you can do this visually, but for larger ones you can ask Python. End of explanation # Verify that this row contains the missing data mydata.loc[mydata["ID"]==39] # Replace row, column with the value 30 mydata.loc[mydata["ID"]==39, "Age"] = 30 # Verify that the replacement worked mydata.loc[mydata["ID"]==39] Explanation: In this case, the missing value is the Age value in row 38. You know you have this info somewhere on a paper form, so you go dig it up and want to replace it. End of explanation mydata['Sex'].head() Explanation: Check for correct values Let's take a look at the Sex variable: End of explanation mydata["Sex"].unique() Explanation: It looks like there are two categories here, but let's double check. We can use the unique() function to list all of the unique values in a column: End of explanation mydata["Sex"] = mydata["Sex"].replace('Femle', 'Female') # Verify that the replacement worked mydata["Sex"].unique() Explanation: Here we see another data entry problem. At least one of the rows has a third category label that should really be another case of "Female". Let's replace this label using the replace() function: End of explanation mydata["Age"].hist(); mydata["Neuroticism"].hist(); Explanation: Now let's look at some of the continuous variables. You can also look at these by indexing them individually, but sometimes it's easier to visualize. The hist() function, which creates histograms, is good here. End of explanation upper = np.mean(mydata["Neuroticism"]) + 3*np.std(mydata["Neuroticism"]) lower = np.mean(mydata["Neuroticism"]) - 3*np.std(mydata["Neuroticism"]) Explanation: Looks like we have a potential outlier on the Neuroticism score. This could be an entry error, but it could also be a real value that just happens to be really low. This is why data inspection is so important for later analysis — now that you know that the value is there, it's up to you to decide how to deal with it. Filtering data Let's say we have decided a prori to exclude outliers 3SD above or below the mean. We will first define these boundaries: End of explanation mydata = mydata[(mydata["Neuroticism"] > lower) & (mydata["Neuroticism"] < upper)] Explanation: We can now use conditional indexing to exclude all rows with a Neuroticism score above or below these values: End of explanation # Verify that we excluded 1 outlier mydata.shape mydata["Neuroticism"].hist(); Explanation: The line above says: return only the Neuroticism values greater than the lower boundary and less than the upper boundary and then save it in the mydata variable. End of explanation mydata['ConditionF'] = mydata['Condition'].replace([0,1], ['Control','Treatment']) # Verify that your variable is now recoded as you'd like mydata[['Condition','ConditionF']].head() Explanation: Getting Ready for Analysis Now that we've gone through and cleaned up the problems, you can think ahead to how you'll want to use this data. Recoding variables Sometimes we want to treat categorical variables as factors, but sometimes we want to pretend they're numeric (as in a regression, when binary variables can be coded as 0 and 1). Right now, Condition is coded as a binary numeric variable, but that's not very informative, so you'd rather have the values be descriptive. Here, the function replace() is again useful: End of explanation from scipy.stats import zscore mydata['NeuroticismZ'] = zscore(mydata['Neuroticism']) mydata['NeuroticismZ'].hist(); Explanation: Calculating new variables You may also want to recalculate or rescale some variables. For example, we can turn Neuroticism into a z-score, or calculate an average response across the four time points. To compute a z-score, we can use the zscore() function from the scipy.stats module: End of explanation mydata['DayMean'] = mydata[['Day1','Day2','Day3','Day4']].mean(axis="columns") mydata['DayMean'].hist(); Explanation: To calculate the means across each day, we can use the mean() function from pandas on a dataframe that has been indexed to include only data from the four days: End of explanation # first load the followup dataset mydata2 = pd.read_csv("Study1_Followup.csv") Explanation: Combining data from multiple sources Sometimes, data might be spread across multiple files, and you'll want to combine those for your analysis. For example, maybe this study had a follow-up survey on Day 30. Scores from that survey were entered into another spreadsheet, which only has the subject ID and that score. We want to include that score into our data. End of explanation mydata = mydata.merge(mydata2,on="ID") mydata.head() Explanation: We can use the function merge() to combine the two dataframes. To make sure the data matches up, we use the on argument to specify that IDs should match. That way even if the data is in a different order, scores will match together correctly. End of explanation value_cols = ["Day1","Day2","Day3","Day4"] # columns we would like to convert to a single "long" column id_cols = list(mydata.columns) # columns we would like to stay in the same "wide" format for i in value_cols: id_cols.remove(i) Explanation: Shaping data Finally, you may want to change the layout of your data. Right now, our dataframe is in "wide" format, which means that each row is a subject, and each observation gets its own column. For some analyses, you'll need to use "long" format, where each row is an observation, and columns specify things like Time and ID to differentiate the observations. For this, we can use the melt() function in pandas: End of explanation mydata_Long = pd.melt(mydata,id_vars=id_cols,var_name="Time",value_vars=value_cols,value_name="Score") mydata_Long.head() Explanation: Wide → Long End of explanation mydata_Wide = mydata_Long.pivot_table(values="Score", index=id_cols, columns='Time').reset_index() mydata_Wide.columns.name = None mydata_Wide.head() Explanation: Long → Wide We can go back in the other direction by using the pivot_table() function in pandas: End of explanation # write data to a .csv mydata.to_csv("Study1_clean.csv",index = False) Explanation: Saving Your Work Once you've created a data cleaning script like this one, you'll have a record of all the edits you've made on the raw data, and you can recreate your cleaned data just by running the script again. However, it's often easier to save your cleaned data as its own file (never overwrite the raw data), so when you come back to do analysis you don't have to bother with all the cleaning steps. You can always save data frames as a .csv for easy sharing and viewing outside of Python. End of explanation
9,728
Given the following text description, write Python code to implement the functionality described below step by step Description: Compute Now that we have datasets added to our Bundle, our next step is to run the forward model and compute a synthetic model for each of these datasets. Setup Let's first make sure we have the latest version of PHOEBE 2.0 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: And we'll attach some dummy datasets. See Datasets for more details. Step3: Default Compute Options Any default Bundle already has a set of default compute options to run the backend for PHOEBE 2. In most cases, you can just edit the options in this default set of compte options. Step4: Adding Compute Options In other cases, we may want to manually add additional sets of compute options. This syntax should look very familiar by now, it takes a function (or the name of a recognized function in phoebe.parameters.compute) and then any kwargs to set in that ParameterSet. Let's say that we want to create two sets of compute options - in this example, we'll create one called 'preview' which will cut some corners to quickly get us a model, and one called 'detailed' which will get a much more precise model but likely take longer. As with other tags, the string you provide for the compute tag is up to you (so long as it doesn't raise an error because it conflicts with other tags). Step5: Editing Compute Options Backend-Specific Compute Options Most of the parameters in the compute options are specific to the backend being used. Here, of course, we're using the PHOEBE 2.0 backend - but for details on other backends see the Alternate Backends Tutorial. The PHOEBE 2.0 compute options are described in the tutorial on their relevant dataset types Step6: as you can see, there is a copy for both of our compute options ('preview' and 'detailed'). If we know which set of compute options we'll be using, or only want to enable/disable for a given set, then we can do that Step7: or to enable/disable a dataset for all sets of compute options, we can use the set_value_all method Step8: If the enabled parameter is missing for a set of compute options - it is likely that that particular backend does not support that dataset type. Running Compute Simplest Case run_compute takes arguments for the compute tag as well as the model tag for the resulting synthetic model(s). You do not need to provide the compute tag if only 0 or 1 set of compute options exist in the Bundle. If there are no compute options, the default PHOEBE 2.0 options will be added on your behalf and used. If there is a single set of compute options, those will be assumed. In our case, we have two compute options in the Bundle (with tags 'preview' and 'detailed') so we must provide an argument for compute. If you do not provide a tag for the model, one will be created for you called 'latest'. Note that any existing model with the same tag will immediately be overwritten once you call run_compute, so if you want to maintain the results from previous calls to run_compute, you must provide a NEW model tag. Step9: Storing Models Now let's compute models for three different 'versions' of parameters. By providing a model tag, we can keep the synthetics for each of these different runs in the bundle - which will be handy later on for plotting and comparing models. Step10: We will now have three new sets of synthetics which can be compared, plotted, or removed. Step11: Running Compute with Multiple Sets of Options So far we've seen how setting up different sets of compute options can be handy - 'preview' vs 'detailed', for example. But there could also be situations where you want to use different sets of options per dataset. Perhaps you have a high-precision follow-up light curve of an eclipse along with a lower-precision light curve over a longer time baseline. So here you'd want to run 'detailed' on the high-precision light curve, but 'preview' on the lower-precision light curve. You could of course call run_compute twice and create two separate models - but that isn't always convenient and will be a problem in the future when we want to fit data. Instead we can send a list of compute options to run_compute. A given dataset can only be enabled in up to 1 of the compute options we're sending to run_compute. So let's take care of that first (if we don't, we'd get an error when trying to call run_compute) Step12: We probably have the same problem with 'lc01', but just didn't get far enough to raise the error. So let's fix that as well Step13: So in this case, 'lc01' will be computed using the options in 'detailed' while 'orb01' will use the options in 'preview'. Step14: Accessing Synthetics from Models The synthetics can be accessed by their dataset and model tags. Step15: or of course through method access
Python Code: !pip install -I "phoebe>=2.0,<2.1" Explanation: Compute Now that we have datasets added to our Bundle, our next step is to run the forward model and compute a synthetic model for each of these datasets. Setup Let's first make sure we have the latest version of PHOEBE 2.0 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). End of explanation import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() Explanation: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. End of explanation b.add_dataset(phoebe.dataset.orb, times=np.linspace(0,10,10), dataset='orb01', component=['primary', 'secondary']) times, fluxes, sigmas = np.loadtxt('test.lc.in', unpack=True) # test.lc.in has 1000 datapoints... let's use every 10 just for brevity times, fluxes, sigmas = times[:10], fluxes[:10], sigmas[:10] b.add_dataset(phoebe.dataset.lc, times=times, fluxes=fluxes, sigmas=sigmas, dataset='lc01') Explanation: And we'll attach some dummy datasets. See Datasets for more details. End of explanation print b.computes print b.filter(context='compute') b.set_value('irrad_method', 'none') Explanation: Default Compute Options Any default Bundle already has a set of default compute options to run the backend for PHOEBE 2. In most cases, you can just edit the options in this default set of compte options. End of explanation b.add_compute(phoebe.compute.phoebe, compute='preview', irrad_method='none') print b['preview@compute'] b.add_compute('phoebe', compute='detailed', irrad_method='wilson') print b.get_compute('detailed') Explanation: Adding Compute Options In other cases, we may want to manually add additional sets of compute options. This syntax should look very familiar by now, it takes a function (or the name of a recognized function in phoebe.parameters.compute) and then any kwargs to set in that ParameterSet. Let's say that we want to create two sets of compute options - in this example, we'll create one called 'preview' which will cut some corners to quickly get us a model, and one called 'detailed' which will get a much more precise model but likely take longer. As with other tags, the string you provide for the compute tag is up to you (so long as it doesn't raise an error because it conflicts with other tags). End of explanation print b['enabled@lc01'] Explanation: Editing Compute Options Backend-Specific Compute Options Most of the parameters in the compute options are specific to the backend being used. Here, of course, we're using the PHOEBE 2.0 backend - but for details on other backends see the Alternate Backends Tutorial. The PHOEBE 2.0 compute options are described in the tutorial on their relevant dataset types: Orbits (orb) Meshes (mesh) Light Curves/Fluxes (lc) Radial Velocities (rv) Enabling/Disabling Datasets By default, synthetic models will be created for all datasets in the Bundle when run_compute is called. But you can disable a dataset to have run_compute ignore that dataset. This is handled by a BoolParameter with the qualifier 'enabled' - and has a copy that lives in each set of compute options Let's say we wanted to compute the orbit but not light curve - so we want to see enabled@lc01: End of explanation b['enabled@lc01@preview'] = False print b['enabled@lc01'] Explanation: as you can see, there is a copy for both of our compute options ('preview' and 'detailed'). If we know which set of compute options we'll be using, or only want to enable/disable for a given set, then we can do that: End of explanation b.set_value_all('enabled@lc01', False) print b['enabled@lc01'] Explanation: or to enable/disable a dataset for all sets of compute options, we can use the set_value_all method: End of explanation b.run_compute(compute='preview') b.models Explanation: If the enabled parameter is missing for a set of compute options - it is likely that that particular backend does not support that dataset type. Running Compute Simplest Case run_compute takes arguments for the compute tag as well as the model tag for the resulting synthetic model(s). You do not need to provide the compute tag if only 0 or 1 set of compute options exist in the Bundle. If there are no compute options, the default PHOEBE 2.0 options will be added on your behalf and used. If there is a single set of compute options, those will be assumed. In our case, we have two compute options in the Bundle (with tags 'preview' and 'detailed') so we must provide an argument for compute. If you do not provide a tag for the model, one will be created for you called 'latest'. Note that any existing model with the same tag will immediately be overwritten once you call run_compute, so if you want to maintain the results from previous calls to run_compute, you must provide a NEW model tag. End of explanation b.set_value('incl@orbit', 90) b.run_compute(compute='preview', model='run_with_incl_90') b.set_value('incl@orbit', 85) b.run_compute(compute='preview', model='run_with_incl_85') b.set_value('incl@orbit', 80) b.run_compute(compute='preview', model='run_with_incl_80') Explanation: Storing Models Now let's compute models for three different 'versions' of parameters. By providing a model tag, we can keep the synthetics for each of these different runs in the bundle - which will be handy later on for plotting and comparing models. End of explanation b.models Explanation: We will now have three new sets of synthetics which can be compared, plotted, or removed. End of explanation print b['enabled@orb01'] b.set_value_all('enabled@orb01@detailed', False) b.set_value_all('enabled@orb01@preview', True) print b['enabled@orb01'] Explanation: Running Compute with Multiple Sets of Options So far we've seen how setting up different sets of compute options can be handy - 'preview' vs 'detailed', for example. But there could also be situations where you want to use different sets of options per dataset. Perhaps you have a high-precision follow-up light curve of an eclipse along with a lower-precision light curve over a longer time baseline. So here you'd want to run 'detailed' on the high-precision light curve, but 'preview' on the lower-precision light curve. You could of course call run_compute twice and create two separate models - but that isn't always convenient and will be a problem in the future when we want to fit data. Instead we can send a list of compute options to run_compute. A given dataset can only be enabled in up to 1 of the compute options we're sending to run_compute. So let's take care of that first (if we don't, we'd get an error when trying to call run_compute): End of explanation print b['enabled@lc01'] b.set_value_all('enabled@lc01@detailed', True) b.set_value_all('enabled@lc01@preview', False) print b['enabled@lc01'] Explanation: We probably have the same problem with 'lc01', but just didn't get far enough to raise the error. So let's fix that as well End of explanation b.run_compute(compute=['detailed', 'preview'], model='multiplecompute') b.models Explanation: So in this case, 'lc01' will be computed using the options in 'detailed' while 'orb01' will use the options in 'preview'. End of explanation b['run_with_incl_90'] b['primary@run_with_incl_90'] b['x@primary@run_with_incl_90'] Explanation: Accessing Synthetics from Models The synthetics can be accessed by their dataset and model tags. End of explanation print b.get_value(qualifier='xs', dataset='orb01', component='primary', model='run_with_incl_90')[:10] Explanation: or of course through method access: End of explanation
9,729
Given the following text description, write Python code to implement the functionality described below step by step Description: Draw sample MNIST images from dataset Demonstrates how to sample and plot MNIST digits using tf.keras API. Using tf.keras.datasets, loading the MNIST data is just 1-line of code. After loading, the dataset is already grouped into train and test splits. Step1: Bar graph of train data We can see that the labels are almost uniformly distributed. Note that this is ideal. In some datasets, the distribution may be highly un-balanced. In such cases, the training is more challenging. Step2: The test data is also almost uniformly distributed. Step3: Random sample of data from train split Let us get and show 25 random samples from the train split.
Python Code: from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.keras.datasets import mnist import matplotlib.pyplot as plt # load dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() Explanation: Draw sample MNIST images from dataset Demonstrates how to sample and plot MNIST digits using tf.keras API. Using tf.keras.datasets, loading the MNIST data is just 1-line of code. After loading, the dataset is already grouped into train and test splits. End of explanation # count the number of unique train labels unique, counts = np.unique(y_train, return_counts=True) print("Train labels: ", dict(zip(unique, counts))) plt.bar(unique, counts) plt.xticks(unique, unique) plt.show() Explanation: Bar graph of train data We can see that the labels are almost uniformly distributed. Note that this is ideal. In some datasets, the distribution may be highly un-balanced. In such cases, the training is more challenging. End of explanation # count the number of unique test labels unique, counts = np.unique(y_test, return_counts=True) print("Test labels: ", dict(zip(unique, counts))) plt.bar(unique, counts, color='orange') plt.xticks(unique, unique) plt.show() Explanation: The test data is also almost uniformly distributed. End of explanation # sample 25 mnist digits from train dataset indexes = np.random.randint(0, x_train.shape[0], size=25) images = x_train[indexes] labels = y_train[indexes] # plot the 25 mnist digits plt.figure(figsize=(5,5)) for i in range(len(indexes)): plt.subplot(5, 5, i + 1) image = images[i] plt.imshow(image, cmap='gray') plt.axis('off') # plt.savefig("mnist-samples.png") plt.show() Explanation: Random sample of data from train split Let us get and show 25 random samples from the train split. End of explanation
9,730
Given the following text description, write Python code to implement the functionality described below step by step Description: QuTiP Example Step1: Plotting Support Step2: Jaynes-Cummings model, with the cavity as a non-Markovian bath As a simple example, we consider the Jaynes-Cummings mode, and the non-Markovian dynamics of the qubit when the cavity is traced out. In this example, the dynamical maps $\mathcal{E}_k$ are the reduced time-propagators for the qubit, after evolving and tracing out the cavity, i.e. $$ \mathcal{E}k \rho = {\rm tr}{\rm cav} \left[ {\rm e}^{\mathcal{L} t_k} \rho \otimes \rho_{0,{\rm cav}} \right], $$ where $\mathcal{L}$ is the Lindbladian for the dissipative JC model (defined below) and $\rho_{0,{\rm cav}}$ is the initial state of the cavity. Problem setup Step3: Exact timepropagators to learn from The function dynmap generates an exact timepropagator for the qubit $\mathcal{E}_{k}$ for a time $t_k$. <br> Step4: Exact time evolution using standard mesolve method Step5: Approximate solution using the Transfer Tensor Method for different learning times Step6: Visualize results Step7: Discussion The figure above illustrates how the transfer tensor method needs a sufficiently long set of learning times to get good results. The green dots show results for learning times $t_k=0,0.1,\dots,0.5$, which is clearly not sufficient. The red dots show results for $t_k=0,0.1,\dots,2.0$, which gives results that are in very good agreement with the exact solution. Epilouge
Python Code: import numpy as np import qutip as qt from qutip.ipynbtools import version_table import qutip.nonmarkov.transfertensor as ttm Explanation: QuTiP Example: The Transfer Tensor Method for Non-Markovian Open Quantum Systems Arne L. Grimsmo <br> Université de Sherbrooke <br> [email protected] $\newcommand{\ket}[1]{\left|#1\right\rangle}$ $\newcommand{\bra}[1]{\left\langle#1\right|}$ Introduction The "Transfer Tensor Method" was introduced by Cerrillo and Cao in Phys. Rev. Lett 112, 110401 (2014) (arXiv link), as a general method for evolving non-Markovian open quantum systems. The method takes as input a set of dynamical maps $\mathcal{E}_k$, such that $$ \rho(t_k) = \mathcal{E}_k \rho(0) $$ for an intial set of times $t_k$. This set of dynamical maps could be the result of experimental process tomography of they could be precomputed through some other (typically costly) method. The idea is that based on knowledge of these maps, one can try to exptrapolate the, in general non-Markovian, time-evolution to larger times, $t_n > t_k$. The method assumes that there is no explicit time-dependence in the total system-bath Hamiltonian. Preamble Imports End of explanation %matplotlib inline import matplotlib.pyplot as plt Explanation: Plotting Support End of explanation kappa = 1.0 # cavity decay rate wc = 0.0*kappa # cavity frequency wa = 0.0*kappa # qubit frequency g = 10.0*kappa # coupling strength N = 3 # size of cavity basis # intial state psi0c = qt.basis(N,0) rho0c = qt.ket2dm(psi0c) rho0a = qt.ket2dm(qt.basis(2,0)) rho0 = qt.tensor(rho0a,rho0c) rho0avec = qt.operator_to_vector(rho0a) # identity superoperator Id = qt.tensor(qt.qeye(2),qt.qeye(N)) E0 = qt.sprepost(Id,Id) # partial trace over the cavity, reprsented as a superoperator ptracesuper = qt.tensor_contract(E0,(1,3)) # intial state of the cavity, represented as a superoperator superrho0cav = qt.sprepost(qt.tensor(qt.qeye(2),psi0c), qt.tensor(qt.qeye(2),psi0c.dag())) # operators a = qt.tensor(qt.qeye(2), qt.destroy(N)) sm = qt.tensor(qt.sigmam(), qt.qeye(N)) sz = qt.tensor(qt.sigmaz(), qt.qeye(N)) # Hamiltonian H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag()) c_ops = [np.sqrt(kappa)*a] Explanation: Jaynes-Cummings model, with the cavity as a non-Markovian bath As a simple example, we consider the Jaynes-Cummings mode, and the non-Markovian dynamics of the qubit when the cavity is traced out. In this example, the dynamical maps $\mathcal{E}_k$ are the reduced time-propagators for the qubit, after evolving and tracing out the cavity, i.e. $$ \mathcal{E}k \rho = {\rm tr}{\rm cav} \left[ {\rm e}^{\mathcal{L} t_k} \rho \otimes \rho_{0,{\rm cav}} \right], $$ where $\mathcal{L}$ is the Lindbladian for the dissipative JC model (defined below) and $\rho_{0,{\rm cav}}$ is the initial state of the cavity. Problem setup End of explanation def dynmap(t): # reduced dynamical map for the qubit at time t Et = qt.mesolve(H, E0, [0.,t], c_ops, []).states[-1] return ptracesuper*(Et*superrho0cav) Explanation: Exact timepropagators to learn from The function dynmap generates an exact timepropagator for the qubit $\mathcal{E}_{k}$ for a time $t_k$. <br> End of explanation exacttimes = np.arange(0,5,0.01) exactsol = qt.mesolve(H, rho0, exacttimes, c_ops, []) Explanation: Exact time evolution using standard mesolve method End of explanation times = np.arange(0,5,0.1) # total extrapolation time ttmsols = [] maxlearningtimes = [0.5, 2.0] # maximal learning times for T in maxlearningtimes: learningtimes = np.arange(0,T,0.1) learningmaps = [dynmap(t) for t in learningtimes] # generate exact dynamical maps to learn from ttmsols.append(ttm.ttmsolve(learningmaps, rho0a, times)) # extrapolate using TTM Explanation: Approximate solution using the Transfer Tensor Method for different learning times End of explanation fig, ax = plt.subplots(figsize=(10,7)) ax.plot(exactsol.times, qt.expect(sz, exactsol.states),'-b',linewidth=3.0) style = ['og','or'] for i,ttmsol in enumerate(ttmsols): ax.plot(ttmsol.times, qt.expect(qt.sigmaz(), ttmsol.states),style[i],linewidth=1.5,) ax.legend(['exact',str(maxlearningtimes[0]),str(maxlearningtimes[1])]) ax.set_xlabel(r'$\kappa t$', fontsize=20) ax.set_ylabel(r'$\sigma_z$', fontsize=20) Explanation: Visualize results End of explanation version_table() Explanation: Discussion The figure above illustrates how the transfer tensor method needs a sufficiently long set of learning times to get good results. The green dots show results for learning times $t_k=0,0.1,\dots,0.5$, which is clearly not sufficient. The red dots show results for $t_k=0,0.1,\dots,2.0$, which gives results that are in very good agreement with the exact solution. Epilouge End of explanation
9,731
Given the following text description, write Python code to implement the functionality described below step by step Description: Profiling and Optimizing By C Hummels (Caltech) Step1: It can be hard to guess which code is going to operate faster just by looking at it because the interactions between software and computers can be extremely complex. The best way to optimize code is through using profilers to identify bottlenecks in your code and then attempt to address these problems through optimization. Let's give it a whirl. Problem 1) Using timeit We will begin our experience with profilers by using the time and timeit commands. time can be run on any size of program, but it returns coarse level time information on how long something took to run overall. There are a lot of small optimizations that can add up to a lot of time in real-world software. Let's look at a few of the non-obvious ones. Problem 1a What is the best way to join a bunch of strings into a larger string? There are several ways of doing this, but some are clearly superior to others. Let's use timeit to test things out. Below, in each of the cells after the string_list is defined, put a new code snippet using the following three methods for building a string Step2: Interesting! So it appears that the join method was the fastest by a factor of four or so. Good to keep that in mind for future use of strings! Problem 1b What about building big lists or list-like structures (like numpy arrays)? We now know how to construct lists in a variety of ways, so let's see which is fastest. Make a list of ascending perfect squares (i.e. 1, 4, 9, ...) for the first 1 million integers. Use these methods Step6: Whoa! We were able to see a >100x efficiency increase by just switching these methods slightly! Numpy arrays are awesome, but I'm sort of surprised that the lambda function won compared to native numpy. Problem 2) Deeper profiling with cProfile and line_profiler Problem 2a OK, so what about larger program? Here is a sorting algorithm that I wrote, which may possess some inefficiencies. But it is hard to know which bugs are causing the biggest problems (some actually aren't that big of a deal in the long term). Let's see if we can speed it up. First, take this code and copy it into a file called sort.py. Read through the code to make sure you understand it. Then, run it with the time command, and write down the total time it took to run. Step17: Problem 2b OK, now try running the cProfile module with it in order to produce some profiling statistics. You can do this by running
Python Code: import random import numpy as np from matplotlib import pyplot as plt Explanation: Profiling and Optimizing By C Hummels (Caltech) End of explanation string_list = ['the ', 'quick ', 'brown ', 'fox ', 'jumped ', 'over ', 'the ', 'lazy ', 'dog'] %%timeit output = "" # complete %%timeit # complete %%timeit output = "" # complete Explanation: It can be hard to guess which code is going to operate faster just by looking at it because the interactions between software and computers can be extremely complex. The best way to optimize code is through using profilers to identify bottlenecks in your code and then attempt to address these problems through optimization. Let's give it a whirl. Problem 1) Using timeit We will begin our experience with profilers by using the time and timeit commands. time can be run on any size of program, but it returns coarse level time information on how long something took to run overall. There are a lot of small optimizations that can add up to a lot of time in real-world software. Let's look at a few of the non-obvious ones. Problem 1a What is the best way to join a bunch of strings into a larger string? There are several ways of doing this, but some are clearly superior to others. Let's use timeit to test things out. Below, in each of the cells after the string_list is defined, put a new code snippet using the following three methods for building a string: --Use the builtin + operator to add strings together in an iterative way --Use the join method, as in "".join(list). --Iteratively add the strings from the list together using "%s %s" string composition. Guess which method you think will be fastest? Now test it out and see if you're right! End of explanation %%timeit output = [] # complete %%timeit # complete %%timeit # complete %%timeit # complete %%timeit map(lambda x:# complete Explanation: Interesting! So it appears that the join method was the fastest by a factor of four or so. Good to keep that in mind for future use of strings! Problem 1b What about building big lists or list-like structures (like numpy arrays)? We now know how to construct lists in a variety of ways, so let's see which is fastest. Make a list of ascending perfect squares (i.e. 1, 4, 9, ...) for the first 1 million integers. Use these methods: --Iteratively appending x**2 values on to an empty list --A for loop with the built in python range command --A for loop with the numpy arange command --Use the numpy arange command directly, and then take the square of it --Use map to map a lambda squaring function to a numpy array constructed with numpy arange Guess which method you think will be fastest? Now test it out and see if you're right! End of explanation # Sort version1 import random def create_random_list(n_elements): Create a list made up of random elements in random order random_list = [] for i in range(n_elements): random_list.append(random.random()) return random_list def find_minimum_index(random_list): Find the index of the minimum value in the list # current minimum min_value = 1 i = 0 # Find minimum in list for element in random_list: if element < min_value: min_value = element # Find value that matches minimum for element in random_list: if element == min_value: return i i += 1 def sort_list(random_list): Sort a list into ascending order output_list = [] for _ in range(len(random_list)): i = find_minimum_index(random_list) minimum = random_list[i] output_list.append(minimum) del random_list[i] return output_list if __name__ == '__main__': l = create_random_list(10000) o = sort_list(l) Explanation: Whoa! We were able to see a >100x efficiency increase by just switching these methods slightly! Numpy arrays are awesome, but I'm sort of surprised that the lambda function won compared to native numpy. Problem 2) Deeper profiling with cProfile and line_profiler Problem 2a OK, so what about larger program? Here is a sorting algorithm that I wrote, which may possess some inefficiencies. But it is hard to know which bugs are causing the biggest problems (some actually aren't that big of a deal in the long term). Let's see if we can speed it up. First, take this code and copy it into a file called sort.py. Read through the code to make sure you understand it. Then, run it with the time command, and write down the total time it took to run. End of explanation from matplotlib import pyplot as plt import numpy as np import random class Galaxy(): Galaxy class for simply representing a galaxy. def __init__(self, total_mass, cold_gas_mass, stellar_mass, age=0): self.total_mass = total_mass self.cold_gas_mass = cold_gas_mass self.stellar_mass = stellar_mass self.age = age self.SFR = 0 self.color = 'red' def __repr__(self): return "Galaxy (m_total = %.1g; m_cold = %.1g; m_stars = %.1g; age = %.1g; SFR = %0.2f)" % \ (self.total_mass, self.cold_gas_mass, self.stellar_mass, self.age, self.SFR) class EvolvingGalaxy(Galaxy): Galaxy class for representing a galaxy that can evolve over time. def current_state(self): Return a tuple of the galaxy's total_mass, cold_gas_mass, stellar_mass, age, and SFR return (self.total_mass, self.cold_gas_mass, self.stellar_mass, self.age, self.SFR) def calculate_star_formation_rate(self): Calculate the star formation rate by taking a random number between 0 and 1 normalized by the galaxy total mass / 1e12; Also updates the galaxy's color to blue if SFR > 0.01, otherwise color = red self.SFR = random.random() * (self.total_mass / 1e12) if self.SFR > 0.01: self.color = 'blue' else: self.color = 'red' def accrete_gas_from_IGM(self, time): Allow the galaxy to accrete cold gas from the IGM at a variable rate normalized to the galaxy's mass cold_gas_accreted = random.random() * 0.1 * time * (self.total_mass / 1e12) self.cold_gas_mass += cold_gas_accreted self.total_mass += cold_gas_accreted def form_stars(self, time): Form stars according to the current star formation rate and time available If unable cold gas, then shut off star formation if self.cold_gas_mass > self.SFR * time: self.cold_gas_mass -= self.SFR * time self.stellar_mass += self.SFR * time else: self.SFR = 0 self.color = 'red' def evolve(self, time): Evolve this galaxy forward for a period time if random.random() < 0.01: self.calculate_star_formation_rate() self.accrete_gas_from_IGM(time) self.form_stars(time) self.age += time class MovingGalaxy(EvolvingGalaxy): This galaxy can move over time in the x,y plane def __init__(self, total_mass, cold_gas_mass, stellar_mass, x_position, y_position, x_velocity, y_velocity, idnum, age=0): # Replace self with super to activate the superclass's methods super().__init__(total_mass, cold_gas_mass, stellar_mass) self.x_position = x_position self.y_position = y_position self.x_velocity = x_velocity self.y_velocity = y_velocity self.idnum = idnum def __repr__(self): return "Galaxy %i (x = %.0f; y = %.0f)" % (self.idnum, self.x_position, self.y_position) def move(self, time): self.x_position += self.x_velocity * time self.y_position += self.y_velocity * time def calculate_momentum(self): return (self.total_mass * self.x_velocity, self.total_mass * self.y_velocity) def evolve(self, time): self.move(time) super().evolve(time) def distance(galaxy1, galaxy2): x_diff = galaxy1.x_position - galaxy2.x_position y_diff = galaxy1.y_position - galaxy2.y_position return (x_diff**2 + y_diff**2)**0.5 class Universe(): def __init__(self): self.xrange = (0,100) self.yrange = (0,100) self.galaxies = [] self.added_galaxies = [] self.removed_galaxies = [] self.time = 0 pass def __repr__(self): out = 'Universe: t=%.2g\n' % self.time for galaxy in self.galaxies: out = "%s%s\n" % (out, galaxy) return out def add_galaxy(self, galaxy=None): if galaxy is None: stellar_mass = 10**(4*random.random()) * 1e6 cold_gas_mass = 10**(4*random.random()) * 1e6 total_mass = (cold_gas_mass + stellar_mass)*1e2 galaxy = MovingGalaxy(total_mass, cold_gas_mass, stellar_mass, x_position=random.random()*100, y_position=random.random()*100, x_velocity=random.uniform(-1,1)*1e-7, y_velocity=random.uniform(-1,1)*1e-7, idnum=len(self.galaxies)) self.galaxies.append(galaxy) def remove_galaxy(self, galaxy): if galaxy in self.galaxies: del self.galaxies[self.galaxies.index(galaxy)] def evolve(self, time): for galaxy in self.galaxies: galaxy.evolve(time) galaxy.x_position %= 100 galaxy.y_position %= 100 self.check_for_mergers() for galaxy in self.removed_galaxies: self.remove_galaxy(galaxy) for galaxy in self.added_galaxies: self.add_galaxy(galaxy) self.removed_galaxies = [] self.added_galaxies = [] self.time += time def merge_galaxies(self, galaxy1, galaxy2): print('Merging:\n%s\n%s' % (galaxy1, galaxy2)) x_mom1, y_mom1 = galaxy1.calculate_momentum() x_mom2, y_mom2 = galaxy2.calculate_momentum() new_total_mass = galaxy1.total_mass + galaxy2.total_mass new_galaxy = MovingGalaxy(total_mass = new_total_mass, cold_gas_mass = galaxy1.cold_gas_mass + galaxy2.cold_gas_mass, stellar_mass = galaxy1.stellar_mass + galaxy2.stellar_mass, x_position = galaxy1.x_position, y_position = galaxy1.y_position, x_velocity = (x_mom1 + x_mom2) / new_total_mass, y_velocity = (y_mom1 + y_mom2) / new_total_mass, idnum = galaxy1.idnum) self.added_galaxies.append(new_galaxy) self.removed_galaxies.append(galaxy1) self.removed_galaxies.append(galaxy2) def check_for_mergers(self): for i, galaxy1 in enumerate(self.galaxies): for j, galaxy2 in enumerate(self.galaxies[i+1:]): if distance(galaxy1, galaxy2) <= 2: self.merge_galaxies(galaxy1, galaxy2) def plot_state(self, frame_id): plt.clf() x = [galaxy.x_position for galaxy in self.galaxies] y = [galaxy.y_position for galaxy in self.galaxies] color = [galaxy.color for galaxy in self.galaxies] size = [galaxy.total_mass / 1e9 for galaxy in self.galaxies] plt.scatter(x,y, color=color, s=size) plt.xlim(uni.xrange) plt.ylim(uni.yrange) plt.savefig('frame%04i.png' % frame_id) if __name__ == '__main__': uni = Universe() n_timesteps = 2e2 n_galaxies = 25 for i in range(n_galaxies): uni.add_galaxy() for i in range(int(n_timesteps)): uni.evolve(2e9/n_timesteps) uni.plot_state(i) Explanation: Problem 2b OK, now try running the cProfile module with it in order to produce some profiling statistics. You can do this by running: python -m cProfile -o sort.prof sort.py This will produce an output profile file called sort.prof. You can do a variety of things with sort.prof, but you'll need a few programs to do this. First, install pyprof2html with: pip install pyprof2html. Then, try: pyprof2html sort.prof This will produce a html directory, and you can just open up the enclosed index.html file to bring it to your browser. You can see function by function, what is taking the most time! You can click on column headers to change which sorting occurs. Problem 2c But there are graphical ways of representing these data effectively. Download snakeviz, another means of viewing your profile data. You can do this with pip install snakeviz. And then open up the same file with snakeviz: snakeviz sort.prof This should bring up another graphical interface for analyzing the profile data. Switch to icicle mode, and explore the information a bit. Try to figure out where the "hot" sections of the code are. Namely, what is the most expensive function that is running in terms of time? Problem 2d OK, so if that's the most expensive, we better speed it up. We can investigate line-by-line how slow/fast things are, but we need another package for that called line_profiler. Go ahead and install this with pip install line_profiler. Go back to the source code file, and add a @profile line directly above the slow function. line_profiler automatically installed a file called kernprof to your $PYTHONPATH, which is used with the following format at the command line: kernprof.py -v -l your_script your_script_args Start up kernprof and we'll look at the slow function in our sort program! See if you can find where the slowdown is, based on the amount of time spent on a particular line. Can you fix this line to not be so inefficient? Hint: Remember the ways we discussed for optimizing code: In-place operations, string concatenations, vectorizing loops, list comprehensions, range vs arange, lambda functions, etc. Problem 2e Great! Now repeat these steps to improve your code: 1) Run code with cProfile 2) Record total time it took to run in this iteration. 3) Load up the profiler information in snakeviz or pyprof2html 4) Look for "hot" functions 5) Run kernprof with line_profiler to identify individual lines that may be slow 6) Make a modification to the code trying to address the problem 7) Go back to (1) until you're satisfied. You should be able to iterate on this until not one of the native functions is in the top 20 list of hot functions, the others being associated with loading numpy and such. If this is the case, there is more overhead being spent on loading the data than on your actual code--try increasing the number of elements in the sorting array. Problem 2f Here is a good test. Make a new code file where you swap out all of the sorting information and just run python's native list.sort() function. Profile this, look at total time spent running, and see how it compares with our version. Note any differences? What about if you use the np.sort() function? Problem 2g Look at the memory consumption of your optimized code versus the real list.sort() and numpy.sort() functions. You can do this by using the memory_profiler. You'll need to download it first with: pip install memory_profiler Now, you can look at the line by line memory consumption of a function, just like you did with line_profiler and kernprof. Again, you have to put the @profile decorator just before the function you want to profile, but then you run: python -m memory_profiler program.py Run this on your optimized code, and then on the true python list.sort() and the numpy.sort() and see who takes up the most memory. Why do you think that is? Problem 3) Profiling real code Problem 3a Below I have included the Moving Galaxy and Universe code, the challenge problem from Tuesday's session. First, glance over it, to make sure you know what it's doing for the most part. Then profile it and optimize it using the algorithm described above. What is the slowest general part of the runtime? Hint: If you comment that out, do things speed up? End of explanation
9,732
Given the following text description, write Python code to implement the functionality described below step by step Description: Build your own NER Tagger Named Entity Recognition (NER) , also known as entity chunking/extraction , is a popular technique used in information extraction to identify and segment the named entities and classify or categorize them under various predefined classes. There are various off the shelf solutions which offer capabilites to perform named entity extraction (some of which we discussed in the previous units). Yet there are times when the requirements are beyond the capabilities of off-the-shelf classifiers. In this notebook, we will go through an exercise to build our own NER using Conditional Random Fields. We would be utilizing sklearn_crfsuite to develop our NER. Load Dataset Named Entity Recognition is a sequence modeling problem at it's core. It is more related to classification class of problems where in we need a labeled dataset to train a classifier. There are various labeled datasets for NER class of problems. We would be utilizing a pre-processed version of GMB(Groningen Meaning Bank) corpus for this notebook. The preprocessed version is availble at the following link Step1: We have 47959 sentences that contain 35178 unique words. These sentences have a total of 42 unique POS tags and 17 unique NER tags in total. Tag Distribution The GMB dataset utilizes IOB tagging or Inside, Outside Beginning. IOB is a common tagging format for tagging tokens which we have discussed earlier. To refresh your memory Step2: Conditional Random Fields As mentioned above, NER belongs to sequence modeling class of problems. There are different algorithms to tackle sequence modeling, CRF or Conditional Random Fields are one such example. CRFs are proven to perform extremely well on NER and related domains. In this notebook, we will attempt at developing our own NER based on CRFs. Question Step3: Prepare Train and Test Datasets Step4: Building Models with sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides scikit-learn-compatible sklearn_crfsuite.CRF estimator Step5: Train the model! Train the model using the default configurations mentioned in the sklearn-crfsuite API docs algorithm Step6: Use the following to load our pre-trained model if training above takes a lot of time Step7: Model Evaluation Let's evaluate our model performance for NER Tagging on the test data now! Try playing around with the following cells and observe the overall model performance. We use standard classification metrics like precision, recall and f1-score Step9: We have intentially left out the Others tag to understand the performance of model on the remaining tags. The above evaluation statistics showcase a model which seems to have learnt the transitions quite well giving us an overall F1-score of 85%! We can achieve even better results by fine tuning the feature engineering step along with hyper-parameter tuning. End-to-End NER Tagger with trained NER Model There is no fun (or value!) if we cannot use our model to tag new sentences in the future assuming we would want to put this model in production. Let's try and build an end-to-end workflow to perform NER Tagging on our sample document. First we perform NER tagging with SpaCy to remind you how it looks like. Prepare Sample Document Step10: NER Tagging with SpaCy Step11: Pipeline Step 1 Tokenize Text POS Tagging Step12: Pipeline Step 2 Extract Features from the POS tagged text document Hint Step13: Pipeline Step 3 Use the CRF Model crf to predict on the features Step14: Pipeline Step 4 Combine text tokens with NER Tags Retrieve relevant named entities from NER Tags
Python Code: import pandas as pd df = pd.read_csv('ner_dataset.csv.gz', compression='gzip', encoding='ISO-8859-1') df.info() df.T df = df.fillna(method='ffill') df.info() df.T df['Sentence #'].nunique(), df.Word.nunique(), df.POS.nunique(), df.Tag.nunique() Explanation: Build your own NER Tagger Named Entity Recognition (NER) , also known as entity chunking/extraction , is a popular technique used in information extraction to identify and segment the named entities and classify or categorize them under various predefined classes. There are various off the shelf solutions which offer capabilites to perform named entity extraction (some of which we discussed in the previous units). Yet there are times when the requirements are beyond the capabilities of off-the-shelf classifiers. In this notebook, we will go through an exercise to build our own NER using Conditional Random Fields. We would be utilizing sklearn_crfsuite to develop our NER. Load Dataset Named Entity Recognition is a sequence modeling problem at it's core. It is more related to classification class of problems where in we need a labeled dataset to train a classifier. There are various labeled datasets for NER class of problems. We would be utilizing a pre-processed version of GMB(Groningen Meaning Bank) corpus for this notebook. The preprocessed version is availble at the following link : kaggle/ner We have provided the dataset in the code repository itself using some intelligent compression and you can access it directly from pandas as follows. End of explanation df.Tag.value_counts() Explanation: We have 47959 sentences that contain 35178 unique words. These sentences have a total of 42 unique POS tags and 17 unique NER tags in total. Tag Distribution The GMB dataset utilizes IOB tagging or Inside, Outside Beginning. IOB is a common tagging format for tagging tokens which we have discussed earlier. To refresh your memory: I- prefix before a tag indicates that the tag is inside a chunk. B- prefix before a tag indicates that the tag is the beginning of a chunk. O- tag indicates that a token belongs to no chunk (outside). The tags in this dataset are explained as follows: geo = Geographical Entity org = Organization per = Person gpe = Geopolitical Entity tim = Time indicator art = Artifact eve = Event nat = Natural Phenomenon Anything outside these classes is termed as other, denoted as O. The following output shows the unbalanced distribution of different tags in the dataset End of explanation def word2features(sent, i): word = sent[i][0] postag = sent[i][1] features = { 'bias': 1.0, 'word.lower()': word.lower(), 'word[-3:]': word[-3:], 'word[-2:]': word[-2:], 'word.isupper()': word.isupper(), 'word.istitle()': word.istitle(), 'word.isdigit()': word.isdigit(), 'postag': postag, 'postag[:2]': postag[:2], } if i > 0: word1 = sent[i-1][0] postag1 = sent[i-1][1] features.update({ '-1:word.lower()': word1.lower(), '-1:word.istitle()': word1.istitle(), '-1:word.isupper()': word1.isupper(), '-1:postag': postag1, '-1:postag[:2]': postag1[:2], }) else: features['BOS'] = True if i < len(sent)-1: word1 = sent[i+1][0] postag1 = sent[i+1][1] features.update({ '+1:word.lower()': word1.lower(), '+1:word.istitle()': word1.istitle(), '+1:word.isupper()': word1.isupper(), '+1:postag': postag1, '+1:postag[:2]': postag1[:2], }) else: features['EOS'] = True return features def sent2features(sent): return [word2features(sent, i) for i in range(len(sent))] def sent2labels(sent): return [label for token, postag, label in sent] agg_func = lambda s: [(w, p, t) for w, p, t in zip(s['Word'].values.tolist(), s['POS'].values.tolist(), s['Tag'].values.tolist())] grouped_df = df.groupby('Sentence #').apply(agg_func) print(grouped_df[grouped_df.index == 'Sentence: 1'].values) grouped_df.shape sentences = [s for s in grouped_df] sentences[0] sent2features(sentences[0][5:7]) sent2labels(sentences[0][5:7]) Explanation: Conditional Random Fields As mentioned above, NER belongs to sequence modeling class of problems. There are different algorithms to tackle sequence modeling, CRF or Conditional Random Fields are one such example. CRFs are proven to perform extremely well on NER and related domains. In this notebook, we will attempt at developing our own NER based on CRFs. Question: What is a CRF and how does it work? Wikipedia : CRF is an undirected graphical model whose nodes can be divided into exactly two disjoint sets $X$ and $Y$, the observed and output variables, respectively; the conditional distribution $p(Y|X)$ is then modeled. For more details, checkout the paper Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data Prepare Data CRF trains upon sequence of input data to learn transitions from one state (label) to another. To enable such an algorithm, we need to define features which take into account different transitions. In the function word2features() below, we transform each word into a feature dictionary depicting the following attributes or features: lower case of word suffix containing last 3 characters suffix containing last 2 characters flags to determine upper-case, title-case, numeric data and POS tag We also attach attributes related to previous and next words or tags to determine beginning of sentence (BOS) or end of sentence (EOS) End of explanation from sklearn.model_selection import train_test_split import numpy as np X = np.array([sent2features(s) for s in sentences]) y = np.array([sent2labels(s) for s in sentences]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) X_train.shape, X_test.shape Explanation: Prepare Train and Test Datasets End of explanation !pip install sklearn-crfsuite Explanation: Building Models with sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides scikit-learn-compatible sklearn_crfsuite.CRF estimator: you can use e.g. scikit-learn model selection utilities (cross-validation, hyperparameter optimization) with it, or save/load CRF models using joblib. End of explanation import sklearn_crfsuite crf = sklearn_crfsuite.CRF(algorithm='lbfgs', c1=0.1, c2=0.1, max_iterations=100, all_possible_transitions=True, verbose=True) crf.fit(X_train, y_train) Explanation: Train the model! Train the model using the default configurations mentioned in the sklearn-crfsuite API docs algorithm: the training algorithm. We use L-BFGS for gradient descent for optimization and getting model parameters c1: Coefficient for Lasso (L1) regularization c2: Coefficient for Ridge (L2) regularization all_possible_transitions: Specify whether CRFsuite generates transition features that do not even occur in the training data Note: If the model is taking too long to train, you can load up the pre-trained model using the code after the training cells and use that for predictions. End of explanation from sklearn.externals import joblib #joblib.dump(crf, 'ner_model.pkl') crf = joblib.load('ner_model.pkl') Explanation: Use the following to load our pre-trained model if training above takes a lot of time End of explanation y_pred = crf.predict(X_test) print(y_pred[0]) print(y_test[0]) from sklearn_crfsuite import metrics as crf_metrics labels = list(crf.classes_) labels.remove('O') print(crf_metrics.flat_classification_report(y_test, y_pred, labels=labels)) Explanation: Model Evaluation Let's evaluate our model performance for NER Tagging on the test data now! Try playing around with the following cells and observe the overall model performance. We use standard classification metrics like precision, recall and f1-score End of explanation import re text = Three more countries have joined an “international grand committee” of parliaments, adding to calls for Facebook’s boss, Mark Zuckerberg, to give evidence on misinformation to the coalition. Brazil, Latvia and Singapore bring the total to eight different parliaments across the world, with plans to send representatives to London on 27 November with the intention of hearing from Zuckerberg. Since the Cambridge Analytica scandal broke, the Facebook chief has only appeared in front of two legislatures: the American Senate and House of Representatives, and the European parliament. Facebook has consistently rebuffed attempts from others, including the UK and Canadian parliaments, to hear from Zuckerberg. He added that an article in the New York Times on Thursday, in which the paper alleged a pattern of behaviour from Facebook to “delay, deny and deflect” negative news stories, “raises further questions about how recent data breaches were allegedly dealt with within Facebook.” text = re.sub(r'\n', '', text) text Explanation: We have intentially left out the Others tag to understand the performance of model on the remaining tags. The above evaluation statistics showcase a model which seems to have learnt the transitions quite well giving us an overall F1-score of 85%! We can achieve even better results by fine tuning the feature engineering step along with hyper-parameter tuning. End-to-End NER Tagger with trained NER Model There is no fun (or value!) if we cannot use our model to tag new sentences in the future assuming we would want to put this model in production. Let's try and build an end-to-end workflow to perform NER Tagging on our sample document. First we perform NER tagging with SpaCy to remind you how it looks like. Prepare Sample Document End of explanation import spacy from spacy import displacy nlp = spacy.load('en') text_nlp = nlp(text) displacy.render(text_nlp, style='ent', jupyter=True) Explanation: NER Tagging with SpaCy End of explanation import nltk text_tokens = nltk.word_tokenize(text) text_pos = nltk.pos_tag(text_tokens) text_pos[:10] Explanation: Pipeline Step 1 Tokenize Text POS Tagging End of explanation features = [sent2features(text_pos)] features[0][0] Explanation: Pipeline Step 2 Extract Features from the POS tagged text document Hint: Use sent2features End of explanation labels = crf.predict(features) doc_labels = labels[0] doc_labels[10:20] Explanation: Pipeline Step 3 Use the CRF Model crf to predict on the features End of explanation text_ner = [(token, tag) for token, tag in zip(text_tokens, doc_labels)] print(text_ner) named_entities = [] temp_entity_name = '' temp_named_entity = None for term, tag in text_ner: if tag != 'O': temp_entity_name = ' '.join([temp_entity_name, term]).strip() temp_named_entity = (temp_entity_name, tag) else: if temp_named_entity: named_entities.append(temp_named_entity) temp_entity_name = '' temp_named_entity = None import pandas as pd pd.DataFrame(named_entities, columns=['Entity', 'Tag']) Explanation: Pipeline Step 4 Combine text tokens with NER Tags Retrieve relevant named entities from NER Tags End of explanation
9,733
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Land MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Description Is Required Step7: 1.4. Land Atmosphere Flux Exchanges Is Required Step8: 1.5. Atmospheric Coupling Treatment Is Required Step9: 1.6. Land Cover Is Required Step10: 1.7. Land Cover Change Is Required Step11: 1.8. Tiling Is Required Step12: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required Step13: 2.2. Water Is Required Step14: 2.3. Carbon Is Required Step15: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required Step16: 3.2. Time Step Is Required Step17: 3.3. Timestepping Method Is Required Step18: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required Step19: 4.2. Code Version Is Required Step20: 4.3. Code Languages Is Required Step21: 5. Grid Land surface grid 5.1. Overview Is Required Step22: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required Step23: 6.2. Matches Atmosphere Grid Is Required Step24: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required Step25: 7.2. Total Depth Is Required Step26: 8. Soil Land surface soil 8.1. Overview Is Required Step27: 8.2. Heat Water Coupling Is Required Step28: 8.3. Number Of Soil layers Is Required Step29: 8.4. Prognostic Variables Is Required Step30: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required Step31: 9.2. Structure Is Required Step32: 9.3. Texture Is Required Step33: 9.4. Organic Matter Is Required Step34: 9.5. Albedo Is Required Step35: 9.6. Water Table Is Required Step36: 9.7. Continuously Varying Soil Depth Is Required Step37: 9.8. Soil Depth Is Required Step38: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required Step39: 10.2. Functions Is Required Step40: 10.3. Direct Diffuse Is Required Step41: 10.4. Number Of Wavelength Bands Is Required Step42: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required Step43: 11.2. Time Step Is Required Step44: 11.3. Tiling Is Required Step45: 11.4. Vertical Discretisation Is Required Step46: 11.5. Number Of Ground Water Layers Is Required Step47: 11.6. Lateral Connectivity Is Required Step48: 11.7. Method Is Required Step49: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required Step50: 12.2. Ice Storage Method Is Required Step51: 12.3. Permafrost Is Required Step52: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required Step53: 13.2. Types Is Required Step54: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required Step55: 14.2. Time Step Is Required Step56: 14.3. Tiling Is Required Step57: 14.4. Vertical Discretisation Is Required Step58: 14.5. Heat Storage Is Required Step59: 14.6. Processes Is Required Step60: 15. Snow Land surface snow 15.1. Overview Is Required Step61: 15.2. Tiling Is Required Step62: 15.3. Number Of Snow Layers Is Required Step63: 15.4. Density Is Required Step64: 15.5. Water Equivalent Is Required Step65: 15.6. Heat Content Is Required Step66: 15.7. Temperature Is Required Step67: 15.8. Liquid Water Content Is Required Step68: 15.9. Snow Cover Fractions Is Required Step69: 15.10. Processes Is Required Step70: 15.11. Prognostic Variables Is Required Step71: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required Step72: 16.2. Functions Is Required Step73: 17. Vegetation Land surface vegetation 17.1. Overview Is Required Step74: 17.2. Time Step Is Required Step75: 17.3. Dynamic Vegetation Is Required Step76: 17.4. Tiling Is Required Step77: 17.5. Vegetation Representation Is Required Step78: 17.6. Vegetation Types Is Required Step79: 17.7. Biome Types Is Required Step80: 17.8. Vegetation Time Variation Is Required Step81: 17.9. Vegetation Map Is Required Step82: 17.10. Interception Is Required Step83: 17.11. Phenology Is Required Step84: 17.12. Phenology Description Is Required Step85: 17.13. Leaf Area Index Is Required Step86: 17.14. Leaf Area Index Description Is Required Step87: 17.15. Biomass Is Required Step88: 17.16. Biomass Description Is Required Step89: 17.17. Biogeography Is Required Step90: 17.18. Biogeography Description Is Required Step91: 17.19. Stomatal Resistance Is Required Step92: 17.20. Stomatal Resistance Description Is Required Step93: 17.21. Prognostic Variables Is Required Step94: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required Step95: 18.2. Tiling Is Required Step96: 18.3. Number Of Surface Temperatures Is Required Step97: 18.4. Evaporation Is Required Step98: 18.5. Processes Is Required Step99: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required Step100: 19.2. Tiling Is Required Step101: 19.3. Time Step Is Required Step102: 19.4. Anthropogenic Carbon Is Required Step103: 19.5. Prognostic Variables Is Required Step104: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required Step105: 20.2. Carbon Pools Is Required Step106: 20.3. Forest Stand Dynamics Is Required Step107: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required Step108: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required Step109: 22.2. Growth Respiration Is Required Step110: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required Step111: 23.2. Allocation Bins Is Required Step112: 23.3. Allocation Fractions Is Required Step113: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required Step114: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required Step115: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required Step116: 26.2. Carbon Pools Is Required Step117: 26.3. Decomposition Is Required Step118: 26.4. Method Is Required Step119: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required Step120: 27.2. Carbon Pools Is Required Step121: 27.3. Decomposition Is Required Step122: 27.4. Method Is Required Step123: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required Step124: 28.2. Emitted Greenhouse Gases Is Required Step125: 28.3. Decomposition Is Required Step126: 28.4. Impact On Soil Properties Is Required Step127: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required Step128: 29.2. Tiling Is Required Step129: 29.3. Time Step Is Required Step130: 29.4. Prognostic Variables Is Required Step131: 30. River Routing Land surface river routing 30.1. Overview Is Required Step132: 30.2. Tiling Is Required Step133: 30.3. Time Step Is Required Step134: 30.4. Grid Inherited From Land Surface Is Required Step135: 30.5. Grid Description Is Required Step136: 30.6. Number Of Reservoirs Is Required Step137: 30.7. Water Re Evaporation Is Required Step138: 30.8. Coupled To Atmosphere Is Required Step139: 30.9. Coupled To Land Is Required Step140: 30.10. Quantities Exchanged With Atmosphere Is Required Step141: 30.11. Basin Flow Direction Map Is Required Step142: 30.12. Flooding Is Required Step143: 30.13. Prognostic Variables Is Required Step144: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required Step145: 31.2. Quantities Transported Is Required Step146: 32. Lakes Land surface lakes 32.1. Overview Is Required Step147: 32.2. Coupling With Rivers Is Required Step148: 32.3. Time Step Is Required Step149: 32.4. Quantities Exchanged With Rivers Is Required Step150: 32.5. Vertical Grid Is Required Step151: 32.6. Prognostic Variables Is Required Step152: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required Step153: 33.2. Albedo Is Required Step154: 33.3. Dynamics Is Required Step155: 33.4. Dynamic Lake Extent Is Required Step156: 33.5. Endorheic Basins Is Required Step157: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'hammoz-consortium', 'sandbox-2', 'land') Explanation: ES-DOC CMIP6 Model Properties - Land MIP Era: CMIP6 Institute: HAMMOZ-CONSORTIUM Source ID: SANDBOX-2 Topic: Land Sub-Topics: Soil, Snow, Vegetation, Energy Balance, Carbon Cycle, Nitrogen Cycle, River Routing, Lakes. Properties: 154 (96 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:03 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Conservation Properties 3. Key Properties --&gt; Timestepping Framework 4. Key Properties --&gt; Software Properties 5. Grid 6. Grid --&gt; Horizontal 7. Grid --&gt; Vertical 8. Soil 9. Soil --&gt; Soil Map 10. Soil --&gt; Snow Free Albedo 11. Soil --&gt; Hydrology 12. Soil --&gt; Hydrology --&gt; Freezing 13. Soil --&gt; Hydrology --&gt; Drainage 14. Soil --&gt; Heat Treatment 15. Snow 16. Snow --&gt; Snow Albedo 17. Vegetation 18. Energy Balance 19. Carbon Cycle 20. Carbon Cycle --&gt; Vegetation 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality 26. Carbon Cycle --&gt; Litter 27. Carbon Cycle --&gt; Soil 28. Carbon Cycle --&gt; Permafrost Carbon 29. Nitrogen Cycle 30. River Routing 31. River Routing --&gt; Oceanic Discharge 32. Lakes 33. Lakes --&gt; Method 34. Lakes --&gt; Wetlands 1. Key Properties Land surface key properties 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of land surface model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of land surface model code (e.g. MOSES2.2) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.3. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the processes modelled (e.g. dymanic vegation, prognostic albedo, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_atmosphere_flux_exchanges') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "water" # "energy" # "carbon" # "nitrogen" # "phospherous" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.4. Land Atmosphere Flux Exchanges Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Fluxes exchanged with the atmopshere. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.atmospheric_coupling_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.5. Atmospheric Coupling Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of land surface coupling with the Atmosphere model component, which may be different for different quantities (e.g. dust: semi-implicit, water vapour: explicit) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bare soil" # "urban" # "lake" # "land ice" # "lake ice" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.6. Land Cover Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Types of land cover defined in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.land_cover_change') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.7. Land Cover Change Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how land cover change is managed (e.g. the use of net or gross transitions) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.8. Tiling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general tiling procedure used in the land surface (if any). Include treatment of physiography, land/sea, (dynamic) vegetation coverage and orography/roughness End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.energy') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Conservation Properties TODO 2.1. Energy Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how energy is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.water') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Water Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how water is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.conservation_properties.carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how carbon is conserved globally and to what level (e.g. within X [units]/year) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestep_dependent_on_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestepping Framework TODO 3.1. Timestep Dependent On Atmosphere Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a time step dependent on the frequency of atmosphere coupling? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overall timestep of land surface model (i.e. time between calls) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.timestepping_framework.timestepping_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. Timestepping Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of time stepping method and associated time step(s) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of land surface code 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Grid Land surface grid 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the grid in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Grid --&gt; Horizontal The horizontal grid in the land surface 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the horizontal grid (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.horizontal.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 6.2. Matches Atmosphere Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the horizontal grid match the atmosphere? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Grid --&gt; Vertical The vertical grid in the soil 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general structure of the vertical grid in the soil (not including any tiling) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.grid.vertical.total_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 7.2. Total Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The total depth of the soil (in metres) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Soil Land surface soil 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of soil in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_water_coupling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Heat Water Coupling Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the coupling between heat and water in the soil End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.number_of_soil layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 8.3. Number Of Soil layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the soil scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Soil --&gt; Soil Map Key properties of the land surface soil map 9.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of soil map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil structure map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.texture') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Texture Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil texture map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.organic_matter') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.4. Organic Matter Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil organic matter map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.5. Albedo Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil albedo map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.water_table') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Water Table Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil water table map, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.continuously_varying_soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 9.7. Continuously Varying Soil Depth Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the soil properties vary continuously with depth? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.soil_map.soil_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.8. Soil Depth Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil depth map End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 10. Soil --&gt; Snow Free Albedo TODO 10.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow free albedo prognostic? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "soil humidity" # "vegetation state" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If prognostic, describe the dependancies on snow free albedo calculations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.direct_diffuse') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "distinction between direct and diffuse albedo" # "no distinction between direct and diffuse albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10.3. Direct Diffuse Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, describe the distinction between direct and diffuse albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.snow_free_albedo.number_of_wavelength_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.4. Number Of Wavelength Bands Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If prognostic, enter the number of wavelength bands used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Soil --&gt; Hydrology Key properties of the land surface soil hydrology 11.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of the soil hydrological model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river soil hydrology in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil hydrology tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.number_of_ground_water_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.5. Number Of Ground Water Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of soil layers that may contain water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.lateral_connectivity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "perfect connectivity" # "Darcian flow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.6. Lateral Connectivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe the lateral connectivity between tiles End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Bucket" # "Force-restore" # "Choisnel" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 11.7. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The hydrological dynamics scheme in the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.number_of_ground_ice_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12. Soil --&gt; Hydrology --&gt; Freezing TODO 12.1. Number Of Ground Ice Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How many soil layers may contain ground ice End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.ice_storage_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Ice Storage Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of ice storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.freezing.permafrost') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Permafrost Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of permafrost, if any, within the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13. Soil --&gt; Hydrology --&gt; Drainage TODO 13.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General describe how drainage is included in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.hydrology.drainage.types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Gravity drainage" # "Horton mechanism" # "topmodel-based" # "Dunne mechanism" # "Lateral subsurface flow" # "Baseflow from groundwater" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Different types of runoff represented by the land surface model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14. Soil --&gt; Heat Treatment TODO 14.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General description of how heat treatment properties are defined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of soil heat scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.3. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the soil heat treatment tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.vertical_discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.4. Vertical Discretisation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the typical vertical discretisation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.heat_storage') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Force-restore" # "Explicit diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.5. Heat Storage Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the method of heat storage End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.soil.heat_treatment.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "soil moisture freeze-thaw" # "coupling with snow temperature" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.6. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe processes included in the treatment of soil heat End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Snow Land surface snow 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of snow in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.number_of_snow_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.3. Number Of Snow Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The number of snow levels used in the land surface scheme/model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.density') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.4. Density Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow density End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.water_equivalent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.5. Water Equivalent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the snow water equivalent End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.heat_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.6. Heat Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of the heat content of snow End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.temperature') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.7. Temperature Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow temperature End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.liquid_water_content') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.8. Liquid Water Content Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Description of the treatment of snow liquid water End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_cover_fractions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ground snow fraction" # "vegetation snow fraction" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.9. Snow Cover Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify cover fractions used in the surface snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "snow interception" # "snow melting" # "snow freezing" # "blowing snow" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.10. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Snow related processes in the land surface scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.11. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the snow scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "prescribed" # "constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Snow --&gt; Snow Albedo TODO 16.1. Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of snow-covered land albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.snow.snow_albedo.functions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation type" # "snow age" # "snow density" # "snow grain type" # "aerosol deposition" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.2. Functions Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N *If prognostic, * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17. Vegetation Land surface vegetation 17.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of vegetation in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of vegetation scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.dynamic_vegetation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.3. Dynamic Vegetation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there dynamic evolution of vegetation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.4. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vegetation tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "vegetation types" # "biome types" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.5. Vegetation Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Vegetation classification used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "broadleaf tree" # "needleleaf tree" # "C3 grass" # "C4 grass" # "vegetated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.6. Vegetation Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of vegetation types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biome_types') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "evergreen needleleaf forest" # "evergreen broadleaf forest" # "deciduous needleleaf forest" # "deciduous broadleaf forest" # "mixed forest" # "woodland" # "wooded grassland" # "closed shrubland" # "opne shrubland" # "grassland" # "cropland" # "wetlands" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.7. Biome Types Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of biome types in the classification, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_time_variation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed (not varying)" # "prescribed (varying from files)" # "dynamical (varying from simulation)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.8. Vegetation Time Variation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How the vegetation fractions in each tile are varying with time End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.vegetation_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.9. Vegetation Map Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If vegetation fractions are not dynamically updated , describe the vegetation map used (common name and reference, if possible) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.interception') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 17.10. Interception Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is vegetation interception of rainwater represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic (vegetation map)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.11. Phenology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.phenology_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.12. Phenology Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation phenology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.13. Leaf Area Index Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.leaf_area_index_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.14. Leaf Area Index Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of leaf area index End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.15. Biomass Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Treatment of vegetation biomass * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biomass_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.16. Biomass Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biomass End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.17. Biogeography Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.biogeography_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.18. Biogeography Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation biogeography End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "light" # "temperature" # "water availability" # "CO2" # "O3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.19. Stomatal Resistance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify what the vegetation stomatal resistance depends on End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.stomatal_resistance_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.20. Stomatal Resistance Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of the treatment of vegetation stomatal resistance End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.vegetation.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.21. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the vegetation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18. Energy Balance Land surface energy balance 18.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of energy balance in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the energy balance tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.number_of_surface_temperatures') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.3. Number Of Surface Temperatures Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 The maximum number of distinct surface temperatures in a grid cell (for example, each subgrid tile may have its own temperature) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "alpha" # "beta" # "combined" # "Monteith potential evaporation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.4. Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Specify the formulation method for land surface evaporation, from soil and vegetation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.energy_balance.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "transpiration" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18.5. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Describe which processes are included in the energy balance scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19. Carbon Cycle Land surface carbon cycle 19.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of carbon cycle in land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the carbon cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 19.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of carbon cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.anthropogenic_carbon') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "grand slam protocol" # "residence time" # "decay time" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19.4. Anthropogenic Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Describe the treament of the anthropogenic carbon pool End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.5. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the carbon scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 20. Carbon Cycle --&gt; Vegetation TODO 20.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.forest_stand_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.3. Forest Stand Dynamics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of forest stand dyanmics End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.photosynthesis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21. Carbon Cycle --&gt; Vegetation --&gt; Photosynthesis TODO 21.1. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for photosynthesis (e.g. type of photosynthesis, distinction between C3 and C4 grasses, Nitrogen depencence, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.maintainance_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22. Carbon Cycle --&gt; Vegetation --&gt; Autotrophic Respiration TODO 22.1. Maintainance Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for maintainence respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.autotrophic_respiration.growth_respiration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Growth Respiration Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the general method used for growth respiration End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23. Carbon Cycle --&gt; Vegetation --&gt; Allocation TODO 23.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the allocation scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_bins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "leaves + stems + roots" # "leaves + stems + roots (leafy + woody)" # "leaves + fine roots + coarse roots + stems" # "whole plant (no distinction)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Allocation Bins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify distinct carbon bins used in allocation End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.allocation.allocation_fractions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "function of vegetation type" # "function of plant allometry" # "explicitly calculated" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.3. Allocation Fractions Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the fractions of allocation are calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.phenology.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24. Carbon Cycle --&gt; Vegetation --&gt; Phenology TODO 24.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the phenology scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.vegetation.mortality.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25. Carbon Cycle --&gt; Vegetation --&gt; Mortality TODO 25.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the general principle behind the mortality scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 26. Carbon Cycle --&gt; Litter TODO 26.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.litter.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.number_of_carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 27. Carbon Cycle --&gt; Soil TODO 27.1. Number Of Carbon Pools Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.carbon_pools') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Carbon Pools Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the carbon pools used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.soil.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.4. Method Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the general method used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.is_permafrost_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28. Carbon Cycle --&gt; Permafrost Carbon TODO 28.1. Is Permafrost Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is permafrost included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.emitted_greenhouse_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.2. Emitted Greenhouse Gases Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the GHGs emitted End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.decomposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Decomposition Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List the decomposition methods used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.carbon_cycle.permafrost_carbon.impact_on_soil_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.4. Impact On Soil Properties Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the impact of permafrost on soil properties End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29. Nitrogen Cycle Land surface nitrogen cycle 29.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of the nitrogen cycle in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the notrogen cycle tiling, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 29.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of nitrogen cycle in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.nitrogen_cycle.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.4. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the nitrogen scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30. River Routing Land surface river routing 30.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of river routing in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.tiling') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.2. Tiling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the river routing, if any. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of river routing scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_inherited_from_land_surface') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.4. Grid Inherited From Land Surface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the grid inherited from land surface? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.grid_description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.5. Grid Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 General description of grid, if not inherited from land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.number_of_reservoirs') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 30.6. Number Of Reservoirs Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Enter the number of reservoirs End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.water_re_evaporation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "flood plains" # "irrigation" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.7. Water Re Evaporation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N TODO End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_atmosphere') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 30.8. Coupled To Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Is river routing coupled to the atmosphere model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.coupled_to_land') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.9. Coupled To Land Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the coupling between land and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.quantities_exchanged_with_atmosphere') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.10. Quantities Exchanged With Atmosphere Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If couple to atmosphere, which quantities are exchanged between river routing and the atmosphere model components? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.basin_flow_direction_map') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "adapted for other periods" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 30.11. Basin Flow Direction Map Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of basin flow direction map is being used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.flooding') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.12. Flooding Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the representation of flooding, if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 30.13. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the river routing End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.discharge_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "direct (large rivers)" # "diffuse" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31. River Routing --&gt; Oceanic Discharge TODO 31.1. Discharge Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify how rivers are discharged to the ocean End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.river_routing.oceanic_discharge.quantities_transported') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 31.2. Quantities Transported Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Quantities that are exchanged from river-routing to the ocean model component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32. Lakes Land surface lakes 32.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of lakes in the land surface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.coupling_with_rivers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 32.2. Coupling With Rivers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are lakes coupled to the river routing model component? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 32.3. Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Time step of lake scheme in seconds End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.quantities_exchanged_with_rivers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "heat" # "water" # "tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 32.4. Quantities Exchanged With Rivers Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If coupling with rivers, which quantities are exchanged between the lakes and rivers End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.vertical_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.5. Vertical Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the vertical grid of lakes End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 32.6. Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List the prognostic variables of the lake scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.ice_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33. Lakes --&gt; Method TODO 33.1. Ice Treatment Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is lake ice included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.2. Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the treatment of lake albedo End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "No lake dynamics" # "vertical" # "horizontal" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 33.3. Dynamics Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which dynamics of lakes are treated? horizontal, vertical, etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.dynamic_lake_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.4. Dynamic Lake Extent Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is a dynamic lake extent scheme included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.method.endorheic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 33.5. Endorheic Basins Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basins not flowing to ocean included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.land.lakes.wetlands.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 34. Lakes --&gt; Wetlands TODO 34.1. Description Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the treatment of wetlands, if any End of explanation
9,734
Given the following text description, write Python code to implement the functionality described below step by step Description: Q6 In this question, we'll dive more deeply into some of the review questions from the last flipped session. A In one of the review questions, we discussed creating nested for-loops in order to list out all possible combinations of (x, y) values for a given range of numbers. Somebody pointed out that this would indeed generate some duplicates--e.g., (0, 9) and (9, 0) could be considered exactly the same. In this question, you'll replicate the double-for loop for a range of numbers, but you'll only generate a range of unique pairwise combinations. This is exactly what itertools.combinations(list, 2) does, but you'll implement it yourself. For example, the list [1, 2, 3] should return [ (1, 2), (1, 3), (2, 3) ] (the ordering of the internal tuple pairs doesn't matter). Put your answer in the list_of_pairs variable. Step1: B This question is a straight-up rip-off from one of the lecture review questions. In the code below, you'll be given a matrix in list-of-lists format. You'll need to iterate through the matrix and replace each row list with a tuple, where the first element of the tuple is the row index, and the second element is the original row list. For example, if the input matrix list-of-lists is x = [ [1, 2, 3], [4, 5, 6] ] then the output should be y = [ (0, [1, 2, 3]), (1, [4, 5, 6]) ] In other words, y[0] would give the tuple (0, [1, 2, 3]), and y[1] would give (1, [4, 5, 6]). Put your answer in the tuple_matrix variable.
Python Code: def my_pairs(x): list_of_pairs = [] ### BEGIN SOLUTION ### END SOLUTION return list_of_pairs try: combinations itertools.combinations except: assert True else: assert False from itertools import combinations as c i1 = [1, 2, 3] a1 = set(list(c(i1, 2))) assert a1 == set(my_pairs(i1)) i2 = [8934, 123, 23, 1, 6, 8, 553, 8, 98.345, 354, 876796.5, 34] a2 = set(list(c(i2, 2))) assert a2 == set(my_pairs(i2)) Explanation: Q6 In this question, we'll dive more deeply into some of the review questions from the last flipped session. A In one of the review questions, we discussed creating nested for-loops in order to list out all possible combinations of (x, y) values for a given range of numbers. Somebody pointed out that this would indeed generate some duplicates--e.g., (0, 9) and (9, 0) could be considered exactly the same. In this question, you'll replicate the double-for loop for a range of numbers, but you'll only generate a range of unique pairwise combinations. This is exactly what itertools.combinations(list, 2) does, but you'll implement it yourself. For example, the list [1, 2, 3] should return [ (1, 2), (1, 3), (2, 3) ] (the ordering of the internal tuple pairs doesn't matter). Put your answer in the list_of_pairs variable. End of explanation def add_row_ids(matrix): tuple_matrix = [] ### BEGIN SOLUTION ### END SOLUTION return tuple_matrix i1 = [ [1, 2, 3], [4, 5, 6] ] a1 = set((1, (4, 5, 6))) i, t = add_row_ids(i1)[1] assert a1 == set((i, tuple(t))) i2 = [ [1, 2], [2, 3], [4, 5], [6, 7], [8, 9] ] a2 = set((4, (8, 9))) i, t = add_row_ids(i2)[4] assert a2 == set((i, tuple(t))) Explanation: B This question is a straight-up rip-off from one of the lecture review questions. In the code below, you'll be given a matrix in list-of-lists format. You'll need to iterate through the matrix and replace each row list with a tuple, where the first element of the tuple is the row index, and the second element is the original row list. For example, if the input matrix list-of-lists is x = [ [1, 2, 3], [4, 5, 6] ] then the output should be y = [ (0, [1, 2, 3]), (1, [4, 5, 6]) ] In other words, y[0] would give the tuple (0, [1, 2, 3]), and y[1] would give (1, [4, 5, 6]). Put your answer in the tuple_matrix variable. End of explanation
9,735
Given the following text description, write Python code to implement the functionality described below step by step Description: Piecewise Exact Integration The Dynamical System We want to study a damped SDOF system, so characterized Step1: The excitation is given by a force such that the static displacement is 5 mm, modulated by a sine in resonance with the dynamic sistem, i.e., $\omega=\omega_n$. Step2: For such a system, we know exactly the response. The particular integral is $$\xi(t)=-\frac{\cos\omega t}{2\zeta}$$ (why?) and imposing initial rest conditions the system response is $$x(t) = \frac{\Delta_{st}}{2\zeta} ((\frac{\zeta}{\sqrt{1-\zeta^2}}\sin\omega_Dt + \cos\omega_Dt)\exp(-\zeta\omega t) - \cos\omega t),\qquad \omega=\omega_n. $$ Step3: Numerical integration We define a function that, given the initial conditions and the load, returns the displacement and the velocity at the end of the step. Step4: With those pieces in place, we can define a function that, for a given number of steps per period computes the response on the interval $0 \le t \le 2.0$. Step5: Let's compute the responses for different numbers of steps, and store them away too... Step6: Eventually we can plot the numerical responses along with the exact response Step7: But... there are only two numerical curves and I've plotted three of them. Let's plot the difference between the exact response and the response computed at 16 samples per period... Step8: As you can see, the max difference is about 0.3 mm, to be compared with a max response of almost 25 mm, hence an error in the order of 1.2% that in the previous plot led to the apparent disappearance of the NSTEP=16 curve. Just for fun, how could you compute a smooth curve that interplates the results of the numerical analysis? Easy if you know the answer... smooth16 is, technically speaking, a class instance (it has methods and data) but it is also a callable (a function of sorts)...
Python Code: T=1.0 # Natural period of the oscillator w=2*pi # circular frequency of the oscillator m=1000.0 # oscillator's mass, in kg k=m*w*w # oscillator stifness, in N/m z=0.05 # damping ratio over critical c=2*z*m*w # damping wd=w*sqrt(1-z*z) # damped circular frequency ratio=sqrt(1-z*z) # ratio damped/undamped frequencies Explanation: Piecewise Exact Integration The Dynamical System We want to study a damped SDOF system, so characterized End of explanation D=0.005 # static displacement, 5mm P=D*k # force amplitude Explanation: The excitation is given by a force such that the static displacement is 5 mm, modulated by a sine in resonance with the dynamic sistem, i.e., $\omega=\omega_n$. End of explanation def exact(t): return D*((z*sin(wd*t)/ratio+cos(wd*t))*exp(-z*w*t)-cos(w*t))/(2*z) t = np.linspace(0.0, 2.0, 1001) plt.plot(t, exact(t)); plt.grid() Explanation: For such a system, we know exactly the response. The particular integral is $$\xi(t)=-\frac{\cos\omega t}{2\zeta}$$ (why?) and imposing initial rest conditions the system response is $$x(t) = \frac{\Delta_{st}}{2\zeta} ((\frac{\zeta}{\sqrt{1-\zeta^2}}\sin\omega_Dt + \cos\omega_Dt)\exp(-\zeta\omega t) - \cos\omega t),\qquad \omega=\omega_n. $$ End of explanation def step(x0,v0,p0,p1,h,cdh,sdh): dst=p0/k ddst=(p1-p0)/k B = x0 - dst + ((2*z)/w)*(ddst/h) A = (v0 + z*w*B - ddst/h)/wd x1 = A*sdh + B*cdh + dst + ddst - ddst/h * 2*z/w v1 = A*(wd*cdh-z*w*sdh) - B*(z*w*cdh+wd*sdh) + ddst/h return x1, v1 Explanation: Numerical integration We define a function that, given the initial conditions and the load, returns the displacement and the velocity at the end of the step. End of explanation def resp(nstep): T = np.linspace(0.0, 2.0, 2*nstep + 1) X = np.zeros(2*nstep + 1) h=1./float(nstep) cdh=cos(wd*h)*exp(-z*w*h) sdh=sin(wd*h)*exp(-z*w*h) x1=0. ; v1=0. ; p1=0 for i, t in enumerate(T): X[i] = x1 x0=x1 ; v0=v1 ; p0=p1 ; p1=P*sin(w*(t+h)) x1,v1=step(x0,v0,p0,p1,h, cdh, sdh) return T, X Explanation: With those pieces in place, we can define a function that, for a given number of steps per period computes the response on the interval $0 \le t \le 2.0$. End of explanation t_x = {n:resp(n) for n in (4, 8, 16)} Explanation: Let's compute the responses for different numbers of steps, and store them away too... End of explanation plt.plot(t, exact(t), label='Analytical Response', lw=1.3) for np in sorted(t_x.keys()): plt.plot(*t_x[np], label='Npoints/period = %2d'%np) plt.grid() plt.legend(loc=3) plt.xlabel('Time t/s') plt.ylabel('Displacement x/m'); Explanation: Eventually we can plot the numerical responses along with the exact response End of explanation t16, x16 = t_x[16] plt.plot(t16, exact(t16)-x16) Explanation: But... there are only two numerical curves and I've plotted three of them. Let's plot the difference between the exact response and the response computed at 16 samples per period... End of explanation from scipy.interpolate import InterpolatedUnivariateSpline as spline smooth16 = spline(*t_x[16]) plt.plot(t, exact(t), label='Analytical') plt.plot(t, smooth16(t), label='Numerical, 16 ppc, smoothed') plt.legend(loc='best') plt.grid() Explanation: As you can see, the max difference is about 0.3 mm, to be compared with a max response of almost 25 mm, hence an error in the order of 1.2% that in the previous plot led to the apparent disappearance of the NSTEP=16 curve. Just for fun, how could you compute a smooth curve that interplates the results of the numerical analysis? Easy if you know the answer... smooth16 is, technically speaking, a class instance (it has methods and data) but it is also a callable (a function of sorts)... End of explanation
9,736
Given the following text description, write Python code to implement the functionality described below step by step Description: (DGFLUJOREDES)= 4.2 Definiciones generales de flujo en redes ```{admonition} Notas para contenedor de docker Step1: ```{admonition} Comentarios Los siguientes nombres son utilizados para referirse a algunas componentes de un arco Step2: Entonces el nodo $0$ tiene un grado de $2$ y el nodo $6$ de $3$. Redes no dirigidas ```{admonition} Definición Se define una red no dirigida al igual que el caso dirigido considerando que los arcos son pares no ordenados de nodos distintos. En una red no dirigida podemos referirnos al arco que une al par de nodos $i$ y $j$ como $(i,j)$ o $(j,i)$ indistintamente. ``` ```{admonition} Observación Step3: La red anterior tiene arcos con valores numéricos asociados que ayudan a representar típicamente costos, capacidades y/o suministro o demanda. ```{admonition} Definición En la terminología de flujo en redes, la capacidad de un arco es la cantidad máxima de flujo que puede circular en el mismo. ``` ```{admonition} Comentarios Los arcos en una red no dirigida en ocasiones se les nombra ligaduras. Una red no dirigida puede convertirse en una dirigida sustituyendo sus ligaduras por dos arcos en direcciones opuestas entre el par de nodos involucrados. La interpretación en este caso puede ser un "flujo neto" entre ambos nodos. Por tanto, las definiciones también son aplicables a redes no dirigidas y las definiciones que se dan en esta nota asumen que se tiene una red dirigida. Ver por ejemplo to_directed para una función en Python que convierte a una red no dirigida en una dirigida añadiendo un par de arcos entre los nodos. ``` Adyacencia ```{admonition} Definición Si existe un arco $(i,j) \in \mathcal{A}$ entonces el nodo $j$ es adyacente al nodo $i$. ``` Representación de redes Step4: ```{margin} El resultado de la función adjacency_matrix es equivalente al de to_scipy_sparse_matrix ``` Step5: Y se puede usar to_numpy_array para obtener una matriz de tamaño $7 \times 7$ Step6: Podemos leer la matriz de adyacencia por renglón o columna. En el renglón $i$ si nos encontramos con una entrada distinta de cero nos indica que en la red existe un arco dirigido que sale de $i$, esto es $(i,j) \in \mathcal{A}$. En la columna $j$ si nos encontramos con una entrada distinta de cero nos indica que en la red existe un arco dirigido que entra al nodo $j$, esto es $(i,j) \in \mathcal{A}$. Ejemplo Para la red del ejemplo 2 anterior la matriz $\mathcal{M}_A$ es Step7: ```{margin} Obsérvese que se utiliza la función todense pues se almacena el NumPy array en formato sparse. ``` Step8: ```{admonition} Observación Step9: Una representación de la matriz de adyacencia usando diccionarios en Python es con la función to_dict_of_dicts Step10: (MATINCIDNODOARCO)= Representación de redes Step11: ```{admonition} Comentarios Si consideramos a los renglones de la matriz de incidencia como vectores y hacemos la suma de los mismos entonces el resultado es cero, esto es equivalente a escribir que la matriz de incidencia no tiene rank igual a $n$. Puede verificarse que tiene rank igual a $n-1$. Sólo $2m$ de las $nm$ entradas son distintas de cero. Aún más, el número de $1$'s en un renglón equivale al outdegree del correspondiente nodo y el número de $-1$'s por renglón corresponde al indegree del nodo. ``` Step12: Subgrafo, subgrafo inducido, spanning subgraph ```{admonition} Definición Una red $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es un subgrafo de $\mathcal{G}$ si $\mathcal{N}' \subseteq \mathcal{N}$ y $\mathcal{A}' \subseteq \mathcal{A}$. ``` Ejemplo Para la red del ejemplo 1 anterior un subgrafo es Step13: ```{admonition} Definición $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es un subgrafo de $\mathcal{G}$ inducido por $\mathcal{N}'$ si $\mathcal{A}'$ contiene todos los arcos en $\mathcal{A}$ (ambos endpoints deben estar en $\mathcal{N}'$). ``` Ejemplo Para la red del ejemplo 1 anterior un subgrafo inducido por el conjunto de nodos $\mathcal{N} = {0, 1, 2, 3, 4}$ es Step14: ```{admonition} Definición Una red $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es una spanning subgraph de $\mathcal{G}$ si $\mathcal{N}' = \mathcal{N}$ y $\mathcal{A}' \subseteq \mathcal{A}$. Esto es, spans todos los nodos de $\mathcal{G}$. ``` Ejemplo Para la red del ejemplo 1 anterior una spanning subgraph es Step15: Caminata, walk ```{admonition} Definición Una caminata es una secuencia de nodos (o también arcos) conectados de una red no importando la dirección de sus arcos que los conectan. La secuencia indica que se parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior una caminata conformada por la secuencia de nodos $0-2-5-6-4-2$ es Step16: ```{admonition} Observación Step17: Ruta o camino, path ```{admonition} Definición Un camino es una caminata en la que no se repiten los nodos y parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior un camino conformado por la secuencia de nodos $1-4-6-5$ es Step18: ```{admonition} Observación Step19: Y tenemos unas funciones para determinar si son directed paths o no Step20: ```{admonition} Observación Step21: Otro ciclo conformado por la secuencia de nodos $4-2-5-6$ es Step22: Ciclo dirigido ```{admonition} Definición Un ciclo dirigido contiene el arco $(\text{nodo fin},\text{nodo inicio})$ con $\text{nodo fin}$ el último nodo del directed path y $\text{nodo inicio}$ el primero del directed path. ``` Ejemplo Para la red del ejemplo 1 anterior podemos volver a usar la función de find_cycle con el argumento original para encontrar un ciclo dirigido Step23: Red conectada ```{admonition} Definición Dos nodos están conectados si existe al menos un camino entre éstos. Una red es conectada si cada par de nodos son conectados. ``` Ejemplo La red del ejemplo 1 anterior es conectada Step24: Un ejemplo de un subgrafo no conectado que resulta de eliminar algunos arcos de la red anterior Step25: ```{margin} Ver to_undirected ``` Step26: Red fuertemente conectada Una red es fuertemente conectada si existe al menos un directed path entre cada par de nodos. Ejemplo La red del ejemplo 1 anterior no es fuertemente conectada Step27: Pero cambiando la dirección de dos arcos obtenemos una red que sí es fuertemente conectada Step28: Red acíclica, árbol y bosque ```{margin} Ver tree para tales definiciones en el contexto del paquete networkx. ``` ```{margin} Recuérdese que se consideran redes dirigidas en las definiciones. Para el caso de una red no dirigida el adjetivo acíclico se refiere a no tener ciclos. ``` ```{admonition} Definiciones Una red acíclica es aquella que no contiene ciclos dirigidos. Una red conectada que no tiene ciclos se le nombra árbol. Una red que no tiene ciclos se le nombra bosque. ``` Ejemplo La red del ejemplo 1 no es acíclica Step29: Y eliminando el arco $(1, 3)$ obtenemos un subgrafo que sí es acíclico Step30: Ejemplo Un ejemplo de árbol de la red del ejemplo 1 es Step31: ```{margin} Ver is_tree ``` Step32: Otro ejemplo de árbol en el caso de una red no dirigida Step33: Un ejemplo de árbol que no inicia de el nodo '0' Step34: Ejemplo Un ejemplo de bosque para la red del ejemplo 1 es Step35: ```{margin} Ver is_forest ``` Step36: Obsérvese que si se elimina el arco $(0, 2)$ continúa siendo un bosque Step37: ```{admonition} Comentarios Un subgrafo de un árbol conectado es un subtree. Un árbol de $n$ nodos tiene exactamente $n-1$ arcos. Todo árbol con $n \geq 2$ nodos tiene al menos dos nodos hoja. Un nodo hoja es aquél que tiene un grado de uno. En un árbol dos nodos están conectados por un único camino. ``` (ARBORYSPANTREE)= Arborescencia y spanning tree ```{admonition} Definición Una arborescencia es un árbol en el que se tiene un nodo designado como "raíz" y existe un directed path que parte de la raíz a cada nodo. Dada una red $\mathcal{G} = (\mathcal{N}, \mathcal{A})$, un spanning tree es un árbol que incluye todos los nodos en $\mathcal{N}$ (es una spanning subgraph que además es un árbol). ``` Ejemplo Para la red del ejemplo 1 se tiene una arborescencia y un spanning tree siguiente Step38: ```{admonition} Comentarios Aquellos arcos que pertenecen al spanning tree se les nombra tree arcs y los que no pertenecen nontree arcs. En una arborescencia se tiene un indegree máximo de uno para todos los nodos (la raíz tiene un indegree de cero). Una metodología para crear un spanning tree es la siguiente Step39: Los nontree arcs son Step40: Si eliminamos el arco $(1, 2)$ obtenemos un spanning tree Step41: ```{admonition} Observación Step42: Los tree arcs son Step43: Los arcos de la red del ejemplo 1 en el corte fundamental son Step44: ```{admonition} Observación Step45: Cada valor de los arcos representan las distancias entre cada nodo. ```{margin} Ver shortest_path ``` Step46: Red solución Step47: ```{admonition} Ejercicio Step48: Una solución factible es enviar $7$ tranvías al día Step49: Red solución (se omiten los arcos con flujo igual a cero) Step50: Entonces desde el nodo 'O' salen 14 tranvías Step51: En la red anterior el arco $(D, E)$ tiene costo igual a $3$ y el arco $(E, D)$ tiene costo igual a $2$. El objetivo es satisfacer la "demanda" de todos los nodos de acuerdo a las capacidades de cada uno de ellos al menor costo posible. ```{margin} Ver min_cost_flow ``` Step52: Red solución (únicamente se muestran los arcos con flujo distinto de cero) Step53: Con costo igual a
Python Code: import matplotlib.pyplot as plt import networkx as nx nodes_pos_ex_1 = [[0.09090909090909091, 0.4545454545454546], [0.36363636363636365, 0.7272727272727273], [0.36363636363636365, 0.18181818181818182], [0.6363636363636364, 0.7272727272727273], [0.6363636363636364, 0.4545454545454546], [0.6363636363636364, 0.18181818181818182], [0.9090909090909092, 0.4545454545454546]] nodes = range(len(nodes_pos_ex_1)) G_ex_1 = nx.DiGraph() G_ex_1.add_nodes_from(nodes) G_ex_1.add_edge(0,1) G_ex_1.add_edge(0,2) G_ex_1.add_edge(1,2) G_ex_1.add_edge(1,3) G_ex_1.add_edge(2,5) G_ex_1.add_edge(3,4) G_ex_1.add_edge(3,6) G_ex_1.add_edge(4,1) G_ex_1.add_edge(4,2) G_ex_1.add_edge(4,6) G_ex_1.add_edge(5,6) nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: (DGFLUJOREDES)= 4.2 Definiciones generales de flujo en redes ```{admonition} Notas para contenedor de docker: Comando de docker para ejecución de la nota de forma local: nota: cambiar &lt;ruta a mi directorio&gt; por la ruta de directorio que se desea mapear a /datos dentro del contenedor de docker y &lt;versión imagen de docker&gt; por la versión más actualizada que se presenta en la documentación. docker run --rm -v &lt;ruta a mi directorio&gt;:/datos --name jupyterlab_optimizacion_2 -p 8888:8888 -d palmoreck/jupyterlab_optimizacion_2:&lt;versión imagen de docker&gt; password para jupyterlab: qwerty Detener el contenedor de docker: docker stop jupyterlab_optimizacion_2 Documentación de la imagen de docker palmoreck/jupyterlab_optimizacion_2:&lt;versión imagen de docker&gt; en liga. ``` ```{admonition} Al final de esta nota la comunidad lectora: :class: tip Tendrá una lista de definiciones de flujo en redes que servirán de referencia para las notas del capítulo. Aprenderá cuáles son los problemas/modelos de flujo en redes estándar. Tendrá una lista de aplicaciones en el área de investigación de operaciones. ``` ```{sidebar} Un poco de historia ... El área de investigación de operaciones (IDO) tuvo un gran desarrollo entre los años 40's y 50's principalmente para resolver la asignación de recursos disponibles en actividades militares (de hecho el nombre hace referencia a operaciones militares). Métodos como el símplex de Dantzig fueron desarrollados en esta época y establecieron triunfos importantes del lado de Estados Unidos y Gran Bretaña en batallas militares. Posterior a la segunda guerra mundial la complejidad de la división del trabajo y organización en empresas plantearon problemas en esencia iguales que los que se debían resolver en las guerras. Esta área resuelve problemáticas como son las relacionadas con la conducción y coordinación de actividades en una organización. Ha sido aplicada de manera extensa en manufactura, transporte, construcción, telecomunicaciones, planeación financiera, cuidado de la salud, fuerzas armadas y servicios públicos, entre otros. Un nombre que también le han dado a la IDO es el de management science o ciencia de la administración. ``` Muchas aplicaciones en el área de investigación de operaciones ayudan a modelar y resolver situaciones en forma de una red de nodos conectados como las siguientes: Diseño de una tubería en una zona para conectar las locaciones de suministro de cierto producto con puntos de descarga del mismo con el objetivo de minimizar el costo de construír tal tubería. Diseño de un cableado de telefonía subterránea para establecer la comunicación entre cualquier par de domicilios de personas con el objetivo de minimizar la cantidad de kilómetros que se usarán de cable. Determinar la ruta más corta entre dos ciudades en una red de transporte que involucra más de dos ciudades. Determinar la capacidad máxima de cierta sustancia que puede soportar una tubería que conecta dos o más plantas de suministro. Determinar la asignación de personas en tranvías para llegar a destinos mediante varias rutas en un parque de diversiones de modo que se maximice el número total de viajes que se pueden hacer al día por diferentes rutas, las cuales tienen cierto límite de viajes en cada ruta. Determinar la agenda y planeación de actividades incluyendo fechas de inicio y término de un proyecto. Determinar la distribución de flujo con costo mínimo de campos de petróleo hacia refinerías a través de una red de tuberías. ```{admonition} Observación :class: tip Aunque el nombre de red y el de grafo se distinguen en que en la red se definen capacidades y costos mientras que en el grafo no, en este capítulo se utilizan ambos nombres como sinónimos. ``` Problemas/Modelos de flujo en redes, network flow problems/models, estándar Un buen número de problemas de optimización de redes son en realidad tipos especiales de problemas de programación lineal, por ejemplo el {ref}problema de transporte &lt;EJPROBTRANSPORTE&gt; en el que se resuelve cómo determinar la manera óptima de transportar bienes. Otro problema es el definido en un problema de asignación que incluye aplicaciones como la asignación de personas a tareas. Aunque los métodos clásicos del símplex o puntos interiores (ver {ref}introducción a los métodos de puntos interiores &lt;INTMETPIN&gt;) podrían utilizarse para resolver tales problemas, existen métodos especializados (como network simplex o el símplex dual) aplicados a redes que modelan tales problemas y tienen un mejor desempeño que los clásicos. Es típico encontrar en la literatura el estudio de tres preguntas básicas relacionadas con problemas específicos: Problema del camino o ruta más corta, shortest path. ¿Cuál es la mejor manera para recorrer una red y llegar de un punto a otro de modo que sea lo más barato posible? Problema de flujo máximo, maximum flow. Si una red tiene capacidades en sus arcos ¿cómo podemos enviar la mayor cantidad de flujo posible entre dos puntos en la red manteniendo los límites de capacidades en sus arcos? Problema del flujo con costo mínimo, minimum cost flow. Si se incurre en un costo por unidad de flujo en una red con capacidades en sus arcos y necesitamos enviar unidades de un bien que residen en uno o más puntos en la red hacia uno o más puntos distintos en la misma ¿cómo podemos enviar tales unidades al mínimo costo posible? A los problemas anteriores los nombraremos como problemas/modelos de flujo en redes o network flow problems/models estándar. ```{admonition} Comentarios La solución de los problemas estándar puede realizarse enumerando las posibles alternativas para cada problema (piénsese por ejemplo en el problema de encontrar la ruta más corta entre dos ciudades en una red de transporte), esto si bien resuelve las preguntas planteadas, no es práctico por la cantidad enorme de alternativas que resultarían. Por esto se requieren algoritmos cuyo tiempo de cómputo sea pequeño o al menos razonable. Los problemas estándar han sido estudiados y descritos ampliamente en la literatura de IDO principalmente por ser modelos abstractos que han permitido el desarrollo de algoritmos para resolver problemas en aplicaciones que surgen en la práctica más complejos y que comparten similitudes con los estándar. Algunos ejemplos de asociación de la terminología de flujo en redes con sus componentes más importantes está dada por la siguiente tabla: | Nodos | Arcos | Flujo | |:---:|:---:|:---:| |Puertos | Caminos | Vehículos| |Aeropuertos| Líneas aéreas | Aviones | |Puntos de conmutación | Cables, canales | Mensajes | |Estaciones de bombeo | Tuberías | Líquidos | ``` Definiciones generales para flujo en redes ```{margin} Otros modelos en los que se usan las redes son las redes Bayesianas y las redes neuronales artificiales ``` La representación con redes las encontramos en muchas áreas como producción, distribución, planeación de proyectos, localización de instalaciones, administración de recursos y planeación financiera. Además, provee una visualización conceptual poderosa para mostrar las relaciones entre las componentes de sistemas científicos, sociales y económicos por mencionar algunos. A continuación se presentan algunas definiciones utilizadas en la literatura sobre flujo en redes. Redes dirigidas ```{admonition} Definición Una red dirigida, digraph, $\mathcal{G} = (\mathcal{N}, \mathcal{A})$ consiste de un conjunto $\mathcal{N}$ de nodos (vértices, puntos) y un conjunto $\mathcal{A}$ de arcos (aristas, ramas, líneas), edges, cuyos elementos son pares ordenados para nodos distintos. ``` ```{admonition} Comentario Consideramos una red como aquella con más de un nodo. ``` Ejemplo La siguiente red dirigida tiene como nodos $\mathcal{N} = {0, 1, 2, 3, 4, 5, 6}$ y arcos $\mathcal{A} = {(0,1), (0,2), (1,2), (1,3), (2,5), (3,4), (3,6), (4,1), (4,2), (4,6), (5,6) }$. End of explanation print(nx.degree(G_ex_1)) Explanation: ```{admonition} Comentarios Los siguientes nombres son utilizados para referirse a algunas componentes de un arco: El arco $(i,j)$ tiene dos endpoints: $i$ y $j$. El arco $(i,j)$ tiene tail $i$ y head $j$. El arco $(i,j)$ es incidente a los nodos $i,j$, sale (emana) del nodo $i$ y termina (entra) en el nodo $j$. ``` Grado de un nodo ```{admonition} Definición El indegree de un nodo es el número arcos que entran al nodo y su outdegree es el número de arcos que salen del mismo. El grado de un nodo es la suma de su indegree y outdegree. ``` Para el grafo anterior se tiene: End of explanation nodes_pos_ex_2 = [[0.09090909090909091, 0.5454545454545454], [0.2727272727272727, 0.7272727272727273], [0.2727272727272727, 0.2727272727272727], [0.5454545454545454, 0.7272727272727273], [0.5454545454545454, 0.2727272727272727], [0.8181818181818182, 0.5454545454545454]] nodes = range(len(nodes_pos_ex_2)) G_ex_2 = nx.Graph() G_ex_2.add_nodes_from(nodes) edge_labels = {(0,1): 4.7, (0,2): 1.5, (1,3): -1.3, (1,4): 3.2, (2,3): -0.8, (2,4): 9.4, (3,5): 1.2, (4,5): -0.4 } G_ex_2.add_edges_from(edge_labels) for e in G_ex_2.edges(): try: G_ex_2[e[0]][e[1]]["weight"] = edge_labels[e] except: G_ex_2[e[1]][e[0]]["weight"] = edge_labels[(e[1],e[0])] plt.figure(figsize=(9,7)) nx.draw_networkx_edges(G_ex_2, pos=nodes_pos_ex_2, alpha=0.3, min_source_margin=8, min_target_margin=8) nx.draw_networkx_edge_labels(G_ex_2, pos=nodes_pos_ex_2, edge_labels = edge_labels, font_size=15) nx.draw_networkx_labels(G_ex_2, pos=nodes_pos_ex_2) nx.draw_networkx_nodes(G_ex_2, pos=nodes_pos_ex_2, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Entonces el nodo $0$ tiene un grado de $2$ y el nodo $6$ de $3$. Redes no dirigidas ```{admonition} Definición Se define una red no dirigida al igual que el caso dirigido considerando que los arcos son pares no ordenados de nodos distintos. En una red no dirigida podemos referirnos al arco que une al par de nodos $i$ y $j$ como $(i,j)$ o $(j,i)$ indistintamente. ``` ```{admonition} Observación :class: tip En problemas de redes en los que se tiene un flujo: La interpretación de un arco $(i,j)$ no dirigido se interpreta indicando que el flujo se permite en ambas direcciones, de $i$ a $j$ o $j$ a $i$. En el dirigido, el flujo sólo se permite en una dirección. Si se permite que el flujo a través de un arco no dirigido ocurra en cualquier dirección, se supone que el flujo será sólo en una dirección, en la seleccionada, y no se tendrán flujos simultáneos en direcciones opuestas. Este último caso requiere usar un par de arcos dirigidos en direcciones opuestas y también el flujo real será el flujo neto, esto es, la diferencia de los flujos asignados en las dos direcciones. Por ejemplo, si se asigna un flujo de $10$ en una dirección y después un flujo de $4$ en la dirección opuesta, el efecto real es la cancelación de $4$ unidades de la asignación original, lo que reduce el flujo en la dirección original de $10$ a $6$. ``` Ejemplo La siguiente red no dirigida tiene como nodos $\mathcal{N} = {0, 1, 2, 3, 4, 5}$ y arcos $\mathcal{A} = {(1,0), (0,2), (1,3), (4,1), (2, 3), (2, 4), (3, 5), (4, 5) }$: ```{margin} La interpretación de la red presentada en este ejemplo en un problema con flujo, es que se permite el flujo en los arcos $(i,j)$ y $(j, i)$. ``` End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: La red anterior tiene arcos con valores numéricos asociados que ayudan a representar típicamente costos, capacidades y/o suministro o demanda. ```{admonition} Definición En la terminología de flujo en redes, la capacidad de un arco es la cantidad máxima de flujo que puede circular en el mismo. ``` ```{admonition} Comentarios Los arcos en una red no dirigida en ocasiones se les nombra ligaduras. Una red no dirigida puede convertirse en una dirigida sustituyendo sus ligaduras por dos arcos en direcciones opuestas entre el par de nodos involucrados. La interpretación en este caso puede ser un "flujo neto" entre ambos nodos. Por tanto, las definiciones también son aplicables a redes no dirigidas y las definiciones que se dan en esta nota asumen que se tiene una red dirigida. Ver por ejemplo to_directed para una función en Python que convierte a una red no dirigida en una dirigida añadiendo un par de arcos entre los nodos. ``` Adyacencia ```{admonition} Definición Si existe un arco $(i,j) \in \mathcal{A}$ entonces el nodo $j$ es adyacente al nodo $i$. ``` Representación de redes: matriz de adyacencia Nos ayuda a representar las adyacencias entre nodos. Almacena la red como una matriz $\mathcal{M}_{A}$ de tamaño $n \times n$ con $n$ el número de nodos, tiene un renglón y columna por cada nodo. Su entrada $i,j$ es igual a $1$ si $(i,j) \in \mathcal{A}$ y $0$ en otro caso. ```{admonition} Comentario Si tenemos $m$ arcos entonces $m$ elementos de $\mathcal{M}_{A}$ son distintos de cero. Si los arcos tienen costos o capacidades éstos se pueden almacenar en matrices del mismo tamaño siguiendo la misma representación anterior en la que se sustituye el $1$ por el costo o capacidad. ``` Ejemplo Para la red del ejemplo 1 anterior se tiene la función adjacency_matrix para una representación sparse de $\mathcal{M_A}$: End of explanation print(nx.to_scipy_sparse_matrix(G_ex_1)) print(nx.adjacency_matrix(G_ex_1)) Explanation: ```{margin} El resultado de la función adjacency_matrix es equivalente al de to_scipy_sparse_matrix ``` End of explanation print(nx.to_numpy_array(G_ex_1)) Explanation: Y se puede usar to_numpy_array para obtener una matriz de tamaño $7 \times 7$: End of explanation plt.figure(figsize=(9,7)) nx.draw_networkx_edges(G_ex_2, pos = nodes_pos_ex_2, alpha = 0.3, min_source_margin=8, min_target_margin=8) nx.draw_networkx_edge_labels(G_ex_2, pos = nodes_pos_ex_2, edge_labels = edge_labels, font_size=15) nx.draw_networkx_labels(G_ex_2, pos = nodes_pos_ex_2) nx.draw_networkx_nodes(G_ex_2, pos = nodes_pos_ex_2, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Podemos leer la matriz de adyacencia por renglón o columna. En el renglón $i$ si nos encontramos con una entrada distinta de cero nos indica que en la red existe un arco dirigido que sale de $i$, esto es $(i,j) \in \mathcal{A}$. En la columna $j$ si nos encontramos con una entrada distinta de cero nos indica que en la red existe un arco dirigido que entra al nodo $j$, esto es $(i,j) \in \mathcal{A}$. Ejemplo Para la red del ejemplo 2 anterior la matriz $\mathcal{M}_A$ es: End of explanation print(nx.adjacency_matrix(G_ex_2).todense()) Explanation: ```{margin} Obsérvese que se utiliza la función todense pues se almacena el NumPy array en formato sparse. ``` End of explanation print(nx.to_pandas_adjacency(G_ex_2)) Explanation: ```{admonition} Observación :class: tip Obsérvese que para una red no dirigida su matriz de adyacencia es simétrica. ``` Ejemplo: otras representaciones en Python Ver converting-to-and-from-other-data-formats para otros formatos. Por ejemplo un DataFrame de Pandas: End of explanation import pprint pprint.pprint(nx.to_dict_of_dicts(G_ex_2)) Explanation: Una representación de la matriz de adyacencia usando diccionarios en Python es con la función to_dict_of_dicts: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() print(-1*nx.incidence_matrix(G_ex_1, oriented=True).todense()) Explanation: (MATINCIDNODOARCO)= Representación de redes: matriz de incidencia nodo-arco Nos ayuda a representar los arcos de una red como una matriz $\mathcal{M}_{I}$ de tamaño $n \times m$ con $n$ el número de nodos y $m$ el número de arcos que contiene un renglón por cada nodo de la red y una columna por cada arco. La columna correspondiente al arco $(i,j)$ tiene el número $1$ en el renglón correspondiente al nodo $i$ y un $-1$ en el renglón correspondiente al nodo $j$. ```{margin} Multiplicamos por $-1$ pues el resultado de la función incidence_matrix está volteado respecto a la definición de la matriz $\mathcal{M}_I$. ``` ```{margin} Obsérvese que se utiliza la función todense pues se almacena el NumPy array en formato sparse. ``` Ejemplo Para la red del ejemplo 1 anterior la matriz $\mathcal{M}_I$ es: End of explanation import numpy as np print(np.linalg.matrix_rank(nx.incidence_matrix(G_ex_1, oriented=True).todense())) Explanation: ```{admonition} Comentarios Si consideramos a los renglones de la matriz de incidencia como vectores y hacemos la suma de los mismos entonces el resultado es cero, esto es equivalente a escribir que la matriz de incidencia no tiene rank igual a $n$. Puede verificarse que tiene rank igual a $n-1$. Sólo $2m$ de las $nm$ entradas son distintas de cero. Aún más, el número de $1$'s en un renglón equivale al outdegree del correspondiente nodo y el número de $-1$'s por renglón corresponde al indegree del nodo. ``` End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_subgraph_ex_1 = nx.subgraph(G_ex_1, [0, 1, 2, 3, 4]).copy() G_subgraph_ex_1.remove_edges_from([(1,2), (4,1)]) nx.draw(G_subgraph_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Subgrafo, subgrafo inducido, spanning subgraph ```{admonition} Definición Una red $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es un subgrafo de $\mathcal{G}$ si $\mathcal{N}' \subseteq \mathcal{N}$ y $\mathcal{A}' \subseteq \mathcal{A}$. ``` Ejemplo Para la red del ejemplo 1 anterior un subgrafo es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_induced_subgraph_ex_1 = nx.subgraph(G_ex_1, [0, 1, 2, 3, 4]) nx.draw(G_induced_subgraph_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: ```{admonition} Definición $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es un subgrafo de $\mathcal{G}$ inducido por $\mathcal{N}'$ si $\mathcal{A}'$ contiene todos los arcos en $\mathcal{A}$ (ambos endpoints deben estar en $\mathcal{N}'$). ``` Ejemplo Para la red del ejemplo 1 anterior un subgrafo inducido por el conjunto de nodos $\mathcal{N} = {0, 1, 2, 3, 4}$ es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_spanning_subgraph_ex_1 = G_ex_1.copy() G_spanning_subgraph_ex_1.remove_edges_from([(1,2), (4,1)]) nx.draw(G_spanning_subgraph_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: ```{admonition} Definición Una red $\mathcal{G}' = (\mathcal{N}', \mathcal{A}')$ es una spanning subgraph de $\mathcal{G}$ si $\mathcal{N}' = \mathcal{N}$ y $\mathcal{A}' \subseteq \mathcal{A}$. Esto es, spans todos los nodos de $\mathcal{G}$. ``` Ejemplo Para la red del ejemplo 1 anterior una spanning subgraph es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_walk_ex_1 =nx.subgraph(G_ex_1, [0, 2, 5, 6, 4]).copy() nx.draw(G_walk_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Caminata, walk ```{admonition} Definición Una caminata es una secuencia de nodos (o también arcos) conectados de una red no importando la dirección de sus arcos que los conectan. La secuencia indica que se parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior una caminata conformada por la secuencia de nodos $0-2-5-6-4-2$ es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_directed_walk_ex_1 =nx.subgraph(G_ex_1, [0, 1, 3, 4, 1, 2]).copy() G_directed_walk_ex_1.remove_edges_from([(0,2), (4,2)]) nx.draw(G_directed_walk_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: ```{admonition} Observación :class: tip En una caminata se pueden repetir nodos. ``` Caminata dirigida, directed walk ```{admonition} Definición Una caminata dirigida es una secuencia de nodos (o también arcos) de una red en la que sí importa la dirección de los arcos. La secuencia indica que se parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior una caminata dirigida compuesta por la secuencia de nodos $0-1-3-4-1-2$ es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_path_ex_1 =nx.subgraph(G_ex_1, [1, 4, 6, 5]).copy() nx.draw(G_path_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Ruta o camino, path ```{admonition} Definición Un camino es una caminata en la que no se repiten los nodos y parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior un camino conformado por la secuencia de nodos $1-4-6-5$ es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_directed_path_ex_1 =nx.subgraph(G_ex_1, [0, 1, 2, 5, 6]).copy() G_directed_path_ex_1.remove_edge(0, 2) nx.draw(G_directed_path_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: ```{admonition} Observación :class: tip En los caminos se pueden distinguir aquellos arcos como forward arcs o backward arcs. Para el camino anterior el arco $(4, 6)$ es un forward arc y $(1, 4), (5, 6)$ son backward arcs. ``` Ruta dirigida, directed path ```{admonition} Definición Una ruta dirigida es un camino dirigido que parte desde un nodo y llega hasta otro. ``` Ejemplo Para la red del ejemplo 1 anterior un directed path de la secuencia de nodos $0-1-2-5-6$ es: End of explanation print(nx.classes.function.is_path(G_ex_1, [0, 1, 2, 5, 6])) print(nx.classes.function.is_path(G_ex_1, [0, 1, 4])) Explanation: Y tenemos unas funciones para determinar si son directed paths o no: End of explanation G_cycle_ex_1 = nx.find_cycle(G_ex_1, source=0, orientation="ignore") G_cycle_ex_1 nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_plot_cycle_ex_1 = nx.subgraph(G_ex_1, [1, 2, 3, 4, 5, 6]).copy() G_plot_cycle_ex_1.remove_edges_from([(1, 3), (4, 6), (4, 2)]) nx.draw(G_plot_cycle_ex_1, pos=nodes_pos_ex_1, with_labels= True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: ```{admonition} Observación :class: tip En una ruta dirigida todos los arcos son forward. ``` Ciclo ```{admonition} Definición Un ciclo es un camino cerrado (comienza y termina en el mismo nodo). ``` Ejemplo Para la red del ejemplo 1 anterior podemos usar la función find_cycle con el argumento ignore para encontrar uno de los ciclos: End of explanation G_cycle_2_ex_1 = nx.subgraph(G_ex_1, [4, 2, 5, 6]).copy() nx.draw(G_cycle_2_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Otro ciclo conformado por la secuencia de nodos $4-2-5-6$ es: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_directed_cycle_ex_1 = nx.find_cycle(G_ex_1, source=0, orientation="original") G_directed_cycle_ex_1 G_plot_directed_cycle_ex_1 = nx.subgraph(G_ex_1, [1, 3, 4]).copy() nx.draw(G_plot_directed_cycle_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Ciclo dirigido ```{admonition} Definición Un ciclo dirigido contiene el arco $(\text{nodo fin},\text{nodo inicio})$ con $\text{nodo fin}$ el último nodo del directed path y $\text{nodo inicio}$ el primero del directed path. ``` Ejemplo Para la red del ejemplo 1 anterior podemos volver a usar la función de find_cycle con el argumento original para encontrar un ciclo dirigido: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() print(nx.is_connected(G_ex_1.to_undirected())) Explanation: Red conectada ```{admonition} Definición Dos nodos están conectados si existe al menos un camino entre éstos. Una red es conectada si cada par de nodos son conectados. ``` Ejemplo La red del ejemplo 1 anterior es conectada: End of explanation G_not_connected_ex_1 = G_ex_1.copy() G_not_connected_ex_1.remove_edges_from([(0, 1), (1, 2), (4, 2), (2,5)]) nx.draw(G_not_connected_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: Un ejemplo de un subgrafo no conectado que resulta de eliminar algunos arcos de la red anterior: End of explanation print(nx.is_connected(G_not_connected_ex_1.to_undirected())) Explanation: ```{margin} Ver to_undirected ``` End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() print(nx.is_strongly_connected(G_ex_1)) Explanation: Red fuertemente conectada Una red es fuertemente conectada si existe al menos un directed path entre cada par de nodos. Ejemplo La red del ejemplo 1 anterior no es fuertemente conectada: End of explanation G_strongly_connected = G_ex_1.copy() G_strongly_connected.remove_edges_from([(0, 2), (4, 6)]) G_strongly_connected.add_edges_from([(2, 0), (6, 4)]) nx.draw(G_strongly_connected, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() print(nx.is_strongly_connected(G_strongly_connected)) Explanation: Pero cambiando la dirección de dos arcos obtenemos una red que sí es fuertemente conectada: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() print(nx.is_directed_acyclic_graph(G_ex_1)) Explanation: Red acíclica, árbol y bosque ```{margin} Ver tree para tales definiciones en el contexto del paquete networkx. ``` ```{margin} Recuérdese que se consideran redes dirigidas en las definiciones. Para el caso de una red no dirigida el adjetivo acíclico se refiere a no tener ciclos. ``` ```{admonition} Definiciones Una red acíclica es aquella que no contiene ciclos dirigidos. Una red conectada que no tiene ciclos se le nombra árbol. Una red que no tiene ciclos se le nombra bosque. ``` Ejemplo La red del ejemplo 1 no es acíclica: End of explanation G_acyclic_ex_1 = G_ex_1.copy() G_acyclic_ex_1.remove_edges_from([(1, 3)]) nx.draw(G_acyclic_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() print(nx.is_directed_acyclic_graph(G_acyclic_ex_1)) Explanation: Y eliminando el arco $(1, 3)$ obtenemos un subgrafo que sí es acíclico: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_tree_ex_1 = G_ex_1.copy() G_tree_ex_1.remove_edges_from([(1, 3), (3, 6), (0, 2), (4, 2), (2, 5)]) nx.draw(G_tree_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: Ejemplo Un ejemplo de árbol de la red del ejemplo 1 es: End of explanation print(nx.is_tree(G_tree_ex_1)) Explanation: ```{margin} Ver is_tree ``` End of explanation G_tree_2_ex_1 = nx.minimum_spanning_tree(G_ex_1.to_undirected()) nx.draw(G_tree_2_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() print(nx.is_tree(G_tree_2_ex_1)) Explanation: Otro ejemplo de árbol en el caso de una red no dirigida: End of explanation plt.figure(figsize=(5,5)) G_tree_3_ex_1 = G_tree_2_ex_1.subgraph([1, 2, 3, 4, 5, 6]).copy() G_tree_3_ex_1.add_edge(5, 6) nx.draw(G_tree_3_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() print(nx.is_tree(G_tree_3_ex_1)) Explanation: Un ejemplo de árbol que no inicia de el nodo '0': End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_forest_ex_1 = G_ex_1.copy() G_forest_ex_1.remove_edges_from([(0, 1), (1, 2), (4, 2), (2,5), (1, 3), (3, 6)]) nx.draw(G_forest_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: Ejemplo Un ejemplo de bosque para la red del ejemplo 1 es: End of explanation print(nx.is_forest(G_forest_ex_1)) Explanation: ```{margin} Ver is_forest ``` End of explanation G_forest_2_ex_1 = G_ex_1.copy() G_forest_2_ex_1.remove_edges_from([(0, 1), (1, 2), (4, 2), (2,5), (1, 3), (3, 6), (0,2)]) nx.draw(G_forest_2_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() print(nx.is_forest(G_forest_2_ex_1)) Explanation: Obsérvese que si se elimina el arco $(0, 2)$ continúa siendo un bosque: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() G_arborescence_ex_1 = nx.algorithms.minimum_spanning_arborescence(G_ex_1) nx.draw(G_arborescence_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: ```{admonition} Comentarios Un subgrafo de un árbol conectado es un subtree. Un árbol de $n$ nodos tiene exactamente $n-1$ arcos. Todo árbol con $n \geq 2$ nodos tiene al menos dos nodos hoja. Un nodo hoja es aquél que tiene un grado de uno. En un árbol dos nodos están conectados por un único camino. ``` (ARBORYSPANTREE)= Arborescencia y spanning tree ```{admonition} Definición Una arborescencia es un árbol en el que se tiene un nodo designado como "raíz" y existe un directed path que parte de la raíz a cada nodo. Dada una red $\mathcal{G} = (\mathcal{N}, \mathcal{A})$, un spanning tree es un árbol que incluye todos los nodos en $\mathcal{N}$ (es una spanning subgraph que además es un árbol). ``` Ejemplo Para la red del ejemplo 1 se tiene una arborescencia y un spanning tree siguiente: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() nx.draw(G_tree_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: ```{admonition} Comentarios Aquellos arcos que pertenecen al spanning tree se les nombra tree arcs y los que no pertenecen nontree arcs. En una arborescencia se tiene un indegree máximo de uno para todos los nodos (la raíz tiene un indegree de cero). Una metodología para crear un spanning tree es la siguiente: considerar una red sin arcos y con $n$ nodos. Añadir arcos en la siguiente manera: "el primer arco puede ir en cualquier lugar de modo que conecte algún par de nodos. De ahí en adelante, cada arco nuevo debe agregarse entre un nodo que ya haya sido conectado a otros nodos y a un nuevo nodo no conectado. Si se agregan arcos de esta manera, se evita que se forme un ciclo y además se asegura que el número de nodos conectados sea uno más que el número de arcos. Cada nuevo arco crea un árbol más grande que no contiene ciclos. Una vez agregado el (n – 1)-ésimo arco, el proceso se detiene porque el árbol resultante se expande, spans, (conecta) hacia todos los n nodos. ``` Algunos resultados útiles de árboles (CICLOFUND)= Ciclo fundamental ```{admonition} Definición Si tenemos un spanning tree de una red $\mathcal{G}$ y se le añade algún nontree arc entonces se crea exactamente un ciclo al que se le nombra ciclo fundamental. ``` Sobre eliminar ciclos en un spanning tree Supóngase que se ha creado un ciclo fundamental en un spanning tree. Si se borra tal ciclo fundamental del spanning tree se obtiene nuevamente un spanning tree. Ejemplo La siguiente red es un spanning tree del ejemplo 1: End of explanation G_tree_example_fundamental_cycle = G_tree_ex_1.copy() G_tree_example_fundamental_cycle.add_edge(0, 2) nx.draw(G_tree_example_fundamental_cycle, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Los nontree arcs son: $(0, 2), (4, 2), (2, 5), (1, 3), (3, 6)$. Añadimos $(0, 2)$ al spanning tree y obtenemos un ciclo fundamental: End of explanation G_tree_example_fundamental_cycle.remove_edge(1, 2) nx.draw(G_tree_example_fundamental_cycle, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: Si eliminamos el arco $(1, 2)$ obtenemos un spanning tree: End of explanation nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() nx.draw(G_tree_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: ```{admonition} Observación :class: tip Obsérvese que si una red tiene $n$ nodos y $m$ arcos entonces existen $m - n + 1$ ciclos fundamentales (mismo número que nontree arcs). ``` Sobre cortes fundamentales en un spanning tree Si tenemos un spanning tree de una red $\mathcal{G}$ al que se le elimina algún tree arc entonces se genera una red no conectada en la que se tienen dos subtrees. Aquellos arcos cuyos endpoints pertenecen a diferentes subtrees constituyen lo que se conoce como cortes fundamentales de la red $\mathcal{G}$ respecto al spanning tree. Si se añade algún arco perteneciente a los cortes fundamentales se obtiene un spanning tree. Ejemplo La siguiente red es un spanning tree del ejemplo 1: End of explanation G_tree_example_fundamental_cut = G_tree_ex_1.copy() G_tree_example_fundamental_cut.remove_edge(4, 1) nx.draw(G_tree_example_fundamental_cut, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() nx.draw(G_ex_1, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000, alpha=0.5) plt.show() Explanation: Los tree arcs son: $(0, 1), (1, 2), (4, 1), (3, 4), (4, 6), (5, 6)$. Si eliminamos el arco $(4, 1)$ del spanning tree anterior se obtienen dos árboles: End of explanation G_tree_example_fundamental_cut.add_edge(2, 5) nx.draw(G_tree_example_fundamental_cut, pos=nodes_pos_ex_1, with_labels=True, node_color='r', node_size=1000,alpha=0.5) plt.show() Explanation: Los arcos de la red del ejemplo 1 en el corte fundamental son: $(4, 1), (1, 3), (4, 2), (2, 5)$. Si añadimos el arco $(2, 5)$ obtenemos un spanning tree: End of explanation nodes_pos_ex_std_model = [[0.0, 0.5454545454545454], [0.09090909090909091, 0.7272727272727273], [0.2727272727272727, 0.5454545454545454], [0.18181818181818182, 0.36363636363636365], [0.6363636363636364, 0.5454545454545454], [0.5454545454545454, 0.36363636363636365], [0.8181818181818182, 0.6363636363636364]] nodes_std_model = ['O', 'A', 'B', 'C', 'D', 'E', 'T' ] nodes_and_pos_std_model = dict(zip(nodes_std_model, nodes_pos_ex_std_model)) G_shortest_path = nx.Graph() G_shortest_path.add_nodes_from(nodes_std_model) edge_labels_shortest_path = {('O', 'A'): 2, ('O', 'B'): 5, ('O', 'C'): 4, ('A', 'B'): 2, ('A', 'D'): 7, ('B', 'D'): 4, ('B', 'E'): 3, ('C', 'B'): 1, ('C', 'E'): 4, ('D', 'E'): 1, ('D', 'T'): 5, ('E', 'T'): 7 } G_shortest_path.add_edges_from(edge_labels_shortest_path) for e in G_shortest_path.edges(): try: G_shortest_path[e[0]][e[1]]["weight"] = edge_labels_shortest_path[e] except: G_shortest_path[e[1]][e[0]]["weight"] = edge_labels_shortest_path[(e[1],e[0])] plt.figure(figsize=(7, 7)) nx.draw_networkx_edges(G_shortest_path, pos=nodes_and_pos_std_model, alpha=0.3, min_source_margin=8, min_target_margin=8) nx.draw_networkx_edge_labels(G_shortest_path, pos=nodes_and_pos_std_model, edge_labels=edge_labels_shortest_path, font_size=15) nx.draw_networkx_labels(G_shortest_path, pos=nodes_and_pos_std_model) nx.draw_networkx_nodes(G_shortest_path, pos=nodes_and_pos_std_model, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: ```{admonition} Observación :class: tip Un spanning tree tiene $n-1$ cortes fundamentales respecto a cualquier red. ``` ```{admonition} Ejercicio :class: tip Para fortalecer las definiciones y resultados anteriores realiza ejemplos de redes de cada definición y resultado. ``` Ejemplo de problemas/modelos estándar de flujo en redes Camino o ruta más corta Dada la siguiente red se desea encontrar el camino más corto entre los nodos 'O' y 'T' de la siguiente red: End of explanation sh_path = nx.shortest_path(G_shortest_path,source='O', target='T', weight="weight") print(sh_path) edges_sh_path = [(sh_path[k-1], sh_path[k]) for k in range(1, len(sh_path))] edge_att = nx.get_edge_attributes(G_shortest_path, "weight") distances_sh_path = {k: edge_att[k] for k in edges_sh_path} print(distances_sh_path) print(nx.shortest_path_length(G_shortest_path, source='O', target='T', weight="weight")) Explanation: Cada valor de los arcos representan las distancias entre cada nodo. ```{margin} Ver shortest_path ``` End of explanation nodes_pos_sh_path_sol = [nodes_and_pos_std_model[k] for k in sh_path] nodes_sh_path_sol = sh_path nodes_and_pos_sh_path_sol = dict(zip(nodes_sh_path_sol, nodes_pos_sh_path_sol)) G_shortest_path_sol = nx.Graph() G_shortest_path_sol.add_nodes_from(nodes_sh_path_sol) G_shortest_path_sol.add_edges_from(distances_sh_path) plt.figure(figsize=(7, 7)) nx.draw_networkx_edges(G_shortest_path_sol, pos=nodes_and_pos_sh_path_sol, alpha=0.3, min_source_margin=8, min_target_margin=8) nx.draw_networkx_edge_labels(G_shortest_path_sol, pos=nodes_and_pos_sh_path_sol, edge_labels=distances_sh_path, font_size=15) nx.draw_networkx_labels(G_shortest_path_sol, pos=nodes_and_pos_sh_path_sol) nx.draw_networkx_nodes(G_shortest_path_sol, pos=nodes_and_pos_sh_path_sol, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Red solución: End of explanation G_maximum_flow = nx.DiGraph() G_maximum_flow.add_nodes_from(nodes_std_model) edge_capacities = {('O', 'A'): 5, ('O', 'B'): 7, ('O', 'C'): 4, ('A', 'B'): 1, ('A', 'D'): 3, ('B', 'D'): 4, ('B', 'E'): 5, ('B', 'C'): 2, ('C', 'E'): 4, ('D', 'T'): 9, ('E', 'D'): 1, ('E', 'T'): 6 } G_maximum_flow.add_edges_from(edge_capacities) for e in G_maximum_flow.edges(): G_maximum_flow[e[0]][e[1]]["capacity"] = edge_capacities[e] plt.figure(figsize=(9, 7)) nx.draw_networkx_edges(G_maximum_flow, pos=nodes_and_pos_std_model, alpha=0.3, min_target_margin=20) nx.draw_networkx_edge_labels(G_maximum_flow, pos=nodes_and_pos_std_model, edge_labels=edge_capacities, font_size=15) nx.draw_networkx_labels(G_maximum_flow, pos=nodes_and_pos_std_model) nx.draw_networkx_nodes(G_maximum_flow, pos=nodes_and_pos_std_model, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: ```{admonition} Ejercicio :class: tip Encuentra la ruta más corta entre 'O' y 'T' para la red dirigida $\mathcal{G}$ con los arcos siguientes: {(O, B): 5, (O, C): 4, (A, O): 2, (B, A): 2, (A, D): 7, (B, D): 4, (B, E): 3, (C, B): 1, (C, E): 4, (D, E): 1, (D, T): 5, (E, T): 7}. Visualiza a la red, calcula la distancia de la solución y visualiza la red solución con sus distancias. ``` ```{admonition} Comentario El problema de la ruta más corta se puede reescribir en términos de flujos de redes si se interpreta al flujo como una variable de decisión que toma valores en ${0,1}$. Un flujo en un arco $(i,j)$ de $1$ indica que tal arco debe incluirse en la ruta y un valor de $0$ indica que no tenemos que incluir tal arco. Entonces: $$x_{i,j} = \begin{cases} 0 & \text{si } (i,j) \text{ no está incluido en la ruta} \ 1 & \text{si } (i,j) \text{ está incluido en la ruta} \end{cases} $$ El flujo neto generado en un nodo es el flujo que sale menos el flujo que entra considerando que un nodo tiene un flujo de $1$ si está en la ruta y sin flujo en otro caso. Así, el origen tiene un flujo neto de $1$, el destino un flujo neto de $0$ y el resto de los nodos $0$. ``` Flujo máximo Supóngase que la red del ejemplo de la ruta más corta anterior representa a un parque con diferentes caminos por el que transitan un número de tranvías. Se desea determinar las rutas de algunos viajes de tranvías desde el nodo 'O' hasta el nodo 'T' de manera que el número de viajes sea máximo. (Cada tranvía debe regresar por la misma ruta que tomó de ida, por lo que el análisis se hace sólo sobre los viajes de ida). Para evitar perturbaciones innecesarias a la ecología y a la vida silvestre se impusieron límites superiores sobre el número de viajes de salida permitidos hacia el nodo 'T' para cada camino individual en la dirección de ida. Se tiene entonces la siguiente red dirigida en la que el número que aparece en cada arco representa el límite superior de viajes en la dirección de salida: End of explanation flow_value, flow_dict = nx.maximum_flow(G_maximum_flow, 'O', 'T') print(flow_value) pprint.pprint(flow_dict) Explanation: Una solución factible es enviar $7$ tranvías al día: $5$ por la ruta O-B-E-T, $1$ por la ruta $O-B-C-E-T$ y $1$ por la ruta $O-B-C-E-D-T$. Obsérvese que esta solución bloquea el uso de cualquier ruta que comience con el arco $(O,C)$ debido a que las capacidades del arco $(E,T)$ y $(E,D)$ están saturadas. El problema anterior se conoce como de flujo máximo. ```{margin} Ver maximum_flow ``` End of explanation G_maximum_flow_solution = nx.DiGraph() G_maximum_flow_solution.add_nodes_from(nodes_std_model) edge_flows = {('O', 'A'): 4, ('O', 'B'): 6, ('O', 'C'): 4, ('A', 'B'): 1, ('A', 'D'): 3, ('B', 'D'): 4, ('B', 'E'): 3, ('C', 'E'): 4, ('D', 'T'): 8, ('E', 'D'): 1, ('E', 'T'): 6 } G_maximum_flow_solution.add_edges_from(edge_flows) plt.figure(figsize=(9, 7)) nx.draw_networkx_edges(G_maximum_flow_solution, pos=nodes_and_pos_std_model, alpha=0.3, min_target_margin=15) nx.draw_networkx_edge_labels(G_maximum_flow_solution, pos=nodes_and_pos_std_model, edge_labels=edge_flows, font_size=15) nx.draw_networkx_labels(G_maximum_flow_solution, pos=nodes_and_pos_std_model) nx.draw_networkx_nodes(G_maximum_flow_solution, pos=nodes_and_pos_std_model, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Red solución (se omiten los arcos con flujo igual a cero): End of explanation nodes_pos = [[0.18181818181818182, 0.7272727272727273], [0.18181818181818182, 0.2727272727272727], [0.5454545454545454, 0.2727272727272727], [0.5454545454545454, 0.7272727272727273], [0.36363636363636365, 0.5454545454545454]] nodes = ['A', 'B', 'E', 'D', 'C'] nodes_and_pos = dict(zip(nodes, nodes_pos)) G_min_cost_flow = nx.DiGraph() G_min_cost_flow.add_node('A', demand = -50, node_and_demand="A [-50]") G_min_cost_flow.add_node('B', demand = -40, node_and_demand="B [-40]") G_min_cost_flow.add_node('C', demand = 0, node_and_demand="C [0]") G_min_cost_flow.add_node('D', demand = 30, node_and_demand="D [30]") G_min_cost_flow.add_node('E', demand = 60, node_and_demand="E [60]") edge_labels_min_cost_flow = {('A', 'B'): {"capacity": 10, "weight": 2}, ('A', 'C'): {"weight": 4}, ('A', 'D'): {"weight": 9}, ('B', 'C'): {"weight": 3}, ('C', 'E'): {"capacity": 80, "weight": 1}, ('E', 'D'): {"weight": 2}, ('D', 'E'): {"weight": 3} } G_min_cost_flow.add_edges_from(edge_labels_min_cost_flow) for e in G_min_cost_flow.edges(): if e == ('A', 'B') or e == ('C', 'E'): G_min_cost_flow[e[0]][e[1]]["capacity"] = edge_labels_min_cost_flow[e]["capacity"] G_min_cost_flow[e[0]][e[1]]["weight"] = edge_labels_min_cost_flow[e]["weight"] else: G_min_cost_flow[e[0]][e[1]]["weight"] = edge_labels_min_cost_flow[e]["weight"] plt.figure(figsize=(9, 9)) nx.draw_networkx_edges(G_min_cost_flow, pos=nodes_and_pos, alpha=0.3, min_target_margin=25, connectionstyle="arc3, rad = 0.1") nx.draw_networkx_edge_labels(G_min_cost_flow, pos=nodes_and_pos, edge_labels=edge_labels_min_cost_flow, label_pos=0.4, font_size=10) nodes_pos_modified = {} y_off = 0.03 nodes_and_pos_modified = nodes_and_pos.copy() for node in G_min_cost_flow.nodes(): if node == 'B' or node == 'E': nodes_and_pos_modified[node] = [nodes_and_pos_modified[node][0], nodes_and_pos_modified[node][1] - y_off] else: nodes_and_pos_modified[node] = [nodes_and_pos_modified[node][0], nodes_and_pos_modified[node][1] + y_off] labels = nx.get_node_attributes(G_min_cost_flow, "node_and_demand") nx.draw_networkx_labels(G_min_cost_flow, pos=nodes_and_pos_modified, labels=labels) nx.draw_networkx_nodes(G_min_cost_flow, pos=nodes_and_pos, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Entonces desde el nodo 'O' salen 14 tranvías: $4$ hacia el nodo 'A', $6$ hacia el nodo 'B' y $4$ hacia el nodo 'C'. (EJREDFLUJOCOSTOMIN)= Flujo con costo mínimo Al igual que el problema de flujo máximo, el problema de flujo con costo mínimo toma en cuenta un flujo en una red con capacidades en los arcos limitadas. Al igual que en el problema de la ruta más corta, considera un costo (o distancia) del flujo a través de un arco. Al igual que en el {ref}problema de transporte &lt;EJPROBTRANSPORTE&gt; o en el de asignación puede manejar varios orígenes (nodos fuente) y varios destinos (nodos demanda) del flujo, de nuevo con costos asociados. En realidad, estos cuatro problemas son casos especiales del problema del flujo de costo mínimo. En el problema de costo mínimo se tienen las siguientes características: Al menos uno de los nodos es un nodo fuente. Al menos uno de los nodos es un nodo demanda. El resto de los nodos son nodos de transbordo. El costo del flujo a través del arco es proporcional a la cantidad de ese flujo. El costo es por unidad. El objetivo es minimizar el costo total y enviar el suministro disponible a través de la red para satisfacer la demanda dada. (Un objetivo alternativo puede ser el de maximizar la ganancia total del envío). A continuación se muestra una red ejemplo de tal problema en la que se tienen nodos con etiquetas "A, B, C, D" y "E". Al lado de cada nodo en corchetes se presentan las "demandas". Los nodos origen tienen demanda negativa (proporcionan o suministran) que en la red son los nodos "A" y "B" (por ejemplo fábricas). Los nodos destino tienen demanda positiva (almacenan o reciben) que en la red son los nodos "D" y "E" (por ejemplo clientes). El único nodo de transbordo es el nodo "C" que tiene demanda igual a cero (centro de distribución por ejemplo). Los valores de los costos se muestran en los arcos. Únicamente se tienen capacidades en los arcos $(A, B)$ igual a $10$ y el arco $(C, E)$ igual a $80$: End of explanation flowDict = nx.min_cost_flow(G_min_cost_flow) pprint.pprint(flowDict) Explanation: En la red anterior el arco $(D, E)$ tiene costo igual a $3$ y el arco $(E, D)$ tiene costo igual a $2$. El objetivo es satisfacer la "demanda" de todos los nodos de acuerdo a las capacidades de cada uno de ellos al menor costo posible. ```{margin} Ver min_cost_flow ``` End of explanation G_min_cost_flow_solution = nx.DiGraph() G_min_cost_flow_solution.add_nodes_from(nodes) edge_flows = {('A', 'C'): 40, ('A', 'D'): 10, ('B', 'C'): 40, ('C', 'E'): 80, ('E', 'D'): 20 } G_min_cost_flow_solution.add_edges_from(edge_flows) plt.figure(figsize=(9, 9)) nx.draw_networkx_edges(G_min_cost_flow_solution, pos=nodes_and_pos, alpha=0.3, min_target_margin=25, connectionstyle="arc3, rad = 0.1") nx.draw_networkx_edge_labels(G_min_cost_flow_solution, pos=nodes_and_pos, edge_labels=edge_flows, label_pos=0.4, font_size=12) nx.draw_networkx_labels(G_min_cost_flow_solution, pos=nodes_and_pos) nx.draw_networkx_nodes(G_min_cost_flow_solution, pos=nodes_and_pos, node_size=1000, alpha=0.6) plt.axis("off") plt.show() Explanation: Red solución (únicamente se muestran los arcos con flujo distinto de cero): End of explanation print(nx.min_cost_flow_cost(G_min_cost_flow)) Explanation: Con costo igual a: End of explanation
9,737
Given the following text description, write Python code to implement the functionality described below step by step Description: Auto MPG Data Step1: 2D Binning Default behavior for 2d binning is to bin the dimensions provided, then count the rows that fall into each bin. This is visualizing how the source data represents all possible combinations of mpg and displacement. Step2: Binning and Aggregating Values For each x and y bin, the stat is used on values. After the binning operation, the aggregated values are then binned a second time so that a discrete color can be mapped to the aggregated value. Step3: Specifying the Number of Bins Step4: Mixing binning and non-binned data Step5: The Size of the Glyph Can be Altered Step6: Applying a Custom Palette The number of discrete colors in the palette determines the number of bins used for applying colors. Example with 6 Colors Step7: Example with 9 Colors Step8: Viewing Color Bins in Legend Step9: Build Fruit Data Step10: Without Dimension Binning Each x and y value are treated as the coordinates of a bin. The values column is then binned and assigned to the color attribute, so discrete colors can be assigned. Step11: Unemployment Data Prepare the Data Current data is in a pivoted form, which is difficult to use when defining plots by specifying columns. We will use the pandas melt function to de-pivot the columns with numerical data we want to use, while keeping the categorical data. Step12: De-pivoted Data We now have the 3 dimensions that we want to map to attributes of the plot.
Python Code: df.head() Explanation: Auto MPG Data End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ')) show(hm) Explanation: 2D Binning Default behavior for 2d binning is to bin the dimensions provided, then count the rows that fall into each bin. This is visualizing how the source data represents all possible combinations of mpg and displacement. End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ'), values='cyl', stat='mean') show(hm) Explanation: Binning and Aggregating Values For each x and y bin, the stat is used on values. After the binning operation, the aggregated values are then binned a second time so that a discrete color can be mapped to the aggregated value. End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ', bin_count=15), values='cyl', stat='mean') show(hm) Explanation: Specifying the Number of Bins End of explanation hm = HeatMap(df, x=bins('mpg'), y='cyl', values='displ', stat='mean') show(hm) Explanation: Mixing binning and non-binned data End of explanation hm = HeatMap(df, y=bins('displ'), x=bins('mpg'), values='cyl', stat='mean', spacing_ratio=0.9) show(hm) Explanation: The Size of the Glyph Can be Altered End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ'), stat='mean', values='cyl', palette=RdYlGn6) show(hm) Explanation: Applying a Custom Palette The number of discrete colors in the palette determines the number of bins used for applying colors. Example with 6 Colors End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ'), stat='mean', values='cyl', palette=RdYlGn9) show(hm) Explanation: Example with 9 Colors End of explanation hm = HeatMap(df, x=bins('mpg'), y=bins('displ'), values='cyl', stat='mean', legend='top_right') show(hm) Explanation: Viewing Color Bins in Legend End of explanation fruits = {'fruit': ['apples', 'apples', 'apples', 'apples', 'apples', 'pears', 'pears', 'pears', 'pears', 'pears', 'bananas', 'bananas', 'bananas', 'bananas', 'bananas'], 'fruit_count': [4, 5, 8, 12, 4, 6, 5, 4, 8, 7, 1, 2, 4, 8, 12], 'year': [2009, 2010, 2011, 2012, 2013, 2009, 2010, 2011, 2012, 2013, 2009, 2010, 2011, 2012, 2013]} fruits['year'] = [str(yr) for yr in fruits['year']] fruits_df = pd.DataFrame(fruits) fruits_df.head() Explanation: Build Fruit Data End of explanation hm = HeatMap(fruits, y='year', x='fruit', values='fruit_count', stat=None) show(hm) Explanation: Without Dimension Binning Each x and y value are treated as the coordinates of a bin. The values column is then binned and assigned to the color attribute, so discrete colors can be assigned. End of explanation unempl_data = data.copy() unempl_data.head() # Remove the annual column if we don't want to show the total del unempl_data['Annual'] # Convert numerical year to strings unempl_data['Year'] = unempl_data['Year'].astype(str) # de-pivot all columns, except for Year, into two columns. # One column will have the values and the second will have the labels unempl = pd.melt(unempl_data, var_name='Month', value_name='Unemployment', id_vars=['Year']) Explanation: Unemployment Data Prepare the Data Current data is in a pivoted form, which is difficult to use when defining plots by specifying columns. We will use the pandas melt function to de-pivot the columns with numerical data we want to use, while keeping the categorical data. End of explanation unempl.head() hm = HeatMap(unempl, x='Year', y='Month', values='Unemployment', stat=None, sort_dim={'x': False}, width=1000) show(hm) Explanation: De-pivoted Data We now have the 3 dimensions that we want to map to attributes of the plot. End of explanation
9,738
Given the following text description, write Python code to implement the functionality described below step by step Description: Simple Maps in IPython This notebook demonstrates the basics of mapping data in IPython. All you need is a simple dataset, containing coordinate values. Step1: And now let's test if the Basemap package is loaded and the graphics displayed correctly. Step2: Now to the cool part!
Python Code: %pylab inline from pylab import * pylab.rcParams['figure.figsize'] = (8.0, 6.4) from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np Explanation: Simple Maps in IPython This notebook demonstrates the basics of mapping data in IPython. All you need is a simple dataset, containing coordinate values. End of explanation map = Basemap(projection='ortho', lat_0=50, lon_0=-100, resolution='l', area_thresh=1000.0) map.drawcoastlines() plt.show() Explanation: And now let's test if the Basemap package is loaded and the graphics displayed correctly. End of explanation import csv # Open the cities population data file. filename = 'city_longlat.csv' # Create empty lists for the latitudes, longitudes and population. lats, lons, population = [], [], [] # Read through the entire file, skip the first line, # and pull out the data we need. with open(filename) as f: # Create a csv reader object. reader = csv.reader(f) # Ignore the header row. next(reader) # Store the latitudes, longitudes and populations in the appropriate lists. for row in reader: lats.append(float(row[1])) lons.append(float(row[2])) population.append(float(row[3])) # --- Build Map --- from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np def get_marker_color(population): if population < 2000000: return ('ro') elif population < 7000000: return ('yo') else: return ('go') map = Basemap(projection='merc', resolution = 'h', area_thresh = 1000.0, lat_0=0, lon_0=-130, llcrnrlon=-18.968978, llcrnrlat=33.679432, urcrnrlon=41.968945, urcrnrlat=58.940191) map.drawcoastlines() map.drawcountries() map.bluemarble() map.drawmapboundary() map.drawmeridians(np.arange(0, 360, 30)) map.drawparallels(np.arange(-90, 90, 30)) for lons, lats, population in zip(lons, lats, population): x,y = map(lats, lons) marker_string = get_marker_color(population) map.plot(x, y, marker_string, markersize=population/150000) title_string = "Most Populous Cities in Europe" figsize(18, 12) plt.title(title_string) plt.show() Explanation: Now to the cool part! End of explanation
9,739
Given the following text description, write Python code to implement the functionality described below step by step Description: Security-Constrained Optimisation In this example, the dispatch of generators is optimised using the security-constrained linear OPF, to guaranteed that no branches are overloaded by certain branch outages. Step1: There are some infeasibilities without line extensions. Step2: Performing security-constrained linear OPF Step3: For the PF, set the P to the optimised P. Step4: Check no lines are overloaded with the linear contingency analysis Step5: Check loading as per unit of s_nom in each contingency
Python Code: import pypsa, os import numpy as np network = pypsa.examples.scigrid_de(from_master=True) Explanation: Security-Constrained Optimisation In this example, the dispatch of generators is optimised using the security-constrained linear OPF, to guaranteed that no branches are overloaded by certain branch outages. End of explanation for line_name in ["316", "527", "602"]: network.lines.loc[line_name, "s_nom"] = 1200 now = network.snapshots[0] Explanation: There are some infeasibilities without line extensions. End of explanation branch_outages = network.lines.index[:15] network.sclopf(now, branch_outages=branch_outages, solver_name="cbc") Explanation: Performing security-constrained linear OPF End of explanation network.generators_t.p_set = network.generators_t.p_set.reindex( columns=network.generators.index ) network.generators_t.p_set.loc[now] = network.generators_t.p.loc[now] network.storage_units_t.p_set = network.storage_units_t.p_set.reindex( columns=network.storage_units.index ) network.storage_units_t.p_set.loc[now] = network.storage_units_t.p.loc[now] Explanation: For the PF, set the P to the optimised P. End of explanation p0_test = network.lpf_contingency(now, branch_outages=branch_outages) p0_test Explanation: Check no lines are overloaded with the linear contingency analysis End of explanation max_loading = ( abs(p0_test.divide(network.passive_branches().s_nom, axis=0)).describe().loc["max"] ) max_loading np.allclose(max_loading, np.ones((len(max_loading)))) Explanation: Check loading as per unit of s_nom in each contingency End of explanation
9,740
Given the following text description, write Python code to implement the functionality described below step by step Description: Data We have the CSV file output of a git blame result. Step1: Main Contributors The blame file incorporates every single line of code with the author that changed that line at last. Step2: No-Go Areas We want to find the components, where knowledge is probably outdated. Step3: These are the oldest 10 components Step4: For all components, we create an overview with a bar chart.
Python Code: import pandas as pd blame_log = pd.read_csv("../demos/dataset/linux_blame_log.csv") blame_log.head() blame_log.info() Explanation: Data We have the CSV file output of a git blame result. End of explanation top10 = blame_log.author.value_counts().head(10) top10 %matplotlib inline top10_authors.plot.pie(); Explanation: Main Contributors The blame file incorporates every single line of code with the author that changed that line at last. End of explanation blame_log.timestamp = pd.to_datetime(blame_log.timestamp) blame_log.head() blame_log['age'] = pd.Timestamp('today') - blame_log.timestamp blame_log.head() blame_log['component'] = blame_log.path.str.split("/").str[:2].str.join(":") blame_log.head() age_per_component = blame_log.groupby('component') \ .age.min().sort_values() age_per_component.head() Explanation: No-Go Areas We want to find the components, where knowledge is probably outdated. End of explanation age_per_component.tail(10) Explanation: These are the oldest 10 components End of explanation age_per_component.plot.bar(figsize=[15,5]) Explanation: For all components, we create an overview with a bar chart. End of explanation
9,741
Given the following text description, write Python code to implement the functionality described below step by step Description: .. _tut_stats_cluster_source_rANOVA Step1: Set parameters Step2: Read epochs for all channels, removing a bad one Step3: Transform to source space Step4: Transform to common cortical space Normally you would read in estimates across several subjects and morph them to the same cortical space (e.g. fsaverage). For example purposes, we will simulate this by just having each "subject" have the same response (just noisy in source space) here. We'll only consider the left hemisphere in this tutorial. Step5: It's a good idea to spatially smooth the data, and for visualization purposes, let's morph these to fsaverage, which is a grade 5 source space with vertices 0 Step6: Now we need to prepare the group matrix for the ANOVA statistic. To make the clustering function work correctly with the ANOVA function X needs to be a list of multi-dimensional arrays (one per condition) of shape Step7: Prepare function for arbitrary contrast As our ANOVA function is a multi-purpose tool we need to apply a few modifications to integrate it with the clustering function. This includes reshaping data, setting default arguments and processing the return values. For this reason we'll write a tiny dummy function. We will tell the ANOVA how to interpret the data matrix in terms of factors. This is done via the factor levels argument which is a list of the number factor levels for each factor. Step8: Finally we will pick the interaction effect by passing 'A Step9: A stat_fun must deal with a variable number of input arguments. Inside the clustering function each condition will be passed as flattened array, necessitated by the clustering procedure. The ANOVA however expects an input array of dimensions Step10: Compute clustering statistic To use an algorithm optimized for spatio-temporal clustering, we just pass the spatial connectivity matrix (instead of spatio-temporal). Step11: Visualize the clusters Step12: Finally, let's investigate interaction effect by reconstructing the time courses
Python Code: # Authors: Alexandre Gramfort <[email protected]> # Eric Larson <[email protected]> # Denis Engemannn <[email protected]> # # License: BSD (3-clause) import os.path as op import numpy as np from numpy.random import randn import matplotlib.pyplot as plt import mne from mne import (io, spatial_tris_connectivity, compute_morph_matrix, grade_to_tris) from mne.stats import (spatio_temporal_cluster_test, f_threshold_mway_rm, f_mway_rm, summarize_clusters_stc) from mne.minimum_norm import apply_inverse, read_inverse_operator from mne.datasets import sample print(__doc__) Explanation: .. _tut_stats_cluster_source_rANOVA: Repeated measures ANOVA on source data with spatio-temporal clustering This example illustrates how to make use of the clustering functions for arbitrary, self-defined contrasts beyond standard t-tests. In this case we will tests if the differences in evoked responses between stimulation modality (visual VS auditory) depend on the stimulus location (left vs right) for a group of subjects (simulated here using one subject's data). For this purpose we will compute an interaction effect using a repeated measures ANOVA. The multiple comparisons problem is addressed with a cluster-level permutation test across space and time. End of explanation data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' subjects_dir = data_path + '/subjects' tmin = -0.2 tmax = 0.3 # Use a lower tmax to reduce multiple comparisons # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) Explanation: Set parameters End of explanation raw.info['bads'] += ['MEG 2443'] picks = mne.pick_types(raw.info, meg=True, eog=True, exclude='bads') # we'll load all four conditions that make up the 'two ways' of our ANOVA event_id = dict(l_aud=1, r_aud=2, l_vis=3, r_vis=4) reject = dict(grad=1000e-13, mag=4000e-15, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Equalize trial counts to eliminate bias (which would otherwise be # introduced by the abs() performed below) epochs.equalize_event_counts(event_id, copy=False) Explanation: Read epochs for all channels, removing a bad one End of explanation fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) inverse_operator = read_inverse_operator(fname_inv) # we'll only use one hemisphere to speed up this example # instead of a second vertex array we'll pass an empty array sample_vertices = [inverse_operator['src'][0]['vertno'], np.array([], int)] # Let's average and compute inverse, then resample to speed things up conditions = [] for cond in ['l_aud', 'r_aud', 'l_vis', 'r_vis']: # order is important evoked = epochs[cond].average() evoked.resample(50, npad='auto') condition = apply_inverse(evoked, inverse_operator, lambda2, method) # Let's only deal with t > 0, cropping to reduce multiple comparisons condition.crop(0, None) conditions.append(condition) tmin = conditions[0].tmin tstep = conditions[0].tstep Explanation: Transform to source space End of explanation n_vertices_sample, n_times = conditions[0].lh_data.shape n_subjects = 7 print('Simulating data for %d subjects.' % n_subjects) # Let's make sure our results replicate, so set the seed. np.random.seed(0) X = randn(n_vertices_sample, n_times, n_subjects, 4) * 10 for ii, condition in enumerate(conditions): X[:, :, :, ii] += condition.lh_data[:, :, np.newaxis] Explanation: Transform to common cortical space Normally you would read in estimates across several subjects and morph them to the same cortical space (e.g. fsaverage). For example purposes, we will simulate this by just having each "subject" have the same response (just noisy in source space) here. We'll only consider the left hemisphere in this tutorial. End of explanation fsave_vertices = [np.arange(10242), np.array([], int)] # right hemi is empty morph_mat = compute_morph_matrix('sample', 'fsaverage', sample_vertices, fsave_vertices, 20, subjects_dir) n_vertices_fsave = morph_mat.shape[0] # We have to change the shape for the dot() to work properly X = X.reshape(n_vertices_sample, n_times * n_subjects * 4) print('Morphing data.') X = morph_mat.dot(X) # morph_mat is a sparse matrix X = X.reshape(n_vertices_fsave, n_times, n_subjects, 4) Explanation: It's a good idea to spatially smooth the data, and for visualization purposes, let's morph these to fsaverage, which is a grade 5 source space with vertices 0:10242 for each hemisphere. Usually you'd have to morph each subject's data separately (and you might want to use morph_data instead), but here since all estimates are on 'sample' we can use one morph matrix for all the heavy lifting. End of explanation X = np.transpose(X, [2, 1, 0, 3]) # X = [np.squeeze(x) for x in np.split(X, 4, axis=-1)] Explanation: Now we need to prepare the group matrix for the ANOVA statistic. To make the clustering function work correctly with the ANOVA function X needs to be a list of multi-dimensional arrays (one per condition) of shape: samples (subjects) x time x space. First we permute dimensions, then split the array into a list of conditions and discard the empty dimension resulting from the split using numpy squeeze. End of explanation factor_levels = [2, 2] Explanation: Prepare function for arbitrary contrast As our ANOVA function is a multi-purpose tool we need to apply a few modifications to integrate it with the clustering function. This includes reshaping data, setting default arguments and processing the return values. For this reason we'll write a tiny dummy function. We will tell the ANOVA how to interpret the data matrix in terms of factors. This is done via the factor levels argument which is a list of the number factor levels for each factor. End of explanation effects = 'A:B' # Tell the ANOVA not to compute p-values which we don't need for clustering return_pvals = False # a few more convenient bindings n_times = X[0].shape[1] n_conditions = 4 Explanation: Finally we will pick the interaction effect by passing 'A:B'. (this notation is borrowed from the R formula language). Without this also the main effects will be returned. End of explanation def stat_fun(*args): return f_mway_rm(np.swapaxes(args, 1, 0), factor_levels=factor_levels, effects=effects, return_pvals=return_pvals)[0] # get f-values only. Explanation: A stat_fun must deal with a variable number of input arguments. Inside the clustering function each condition will be passed as flattened array, necessitated by the clustering procedure. The ANOVA however expects an input array of dimensions: subjects X conditions X observations (optional). The following function catches the list input and swaps the first and the second dimension, and finally calls ANOVA. Note. for further details on this ANOVA function consider the corresponding :ref:time frequency tutorial &lt;tut_stats_cluster_sensor_rANOVA_tfr&gt;. End of explanation source_space = grade_to_tris(5) # as we only have one hemisphere we need only need half the connectivity lh_source_space = source_space[source_space[:, 0] < 10242] print('Computing connectivity.') connectivity = spatial_tris_connectivity(lh_source_space) # Now let's actually do the clustering. Please relax, on a small # notebook and one single thread only this will take a couple of minutes ... pthresh = 0.0005 f_thresh = f_threshold_mway_rm(n_subjects, factor_levels, effects, pthresh) # To speed things up a bit we will ... n_permutations = 128 # ... run fewer permutations (reduces sensitivity) print('Clustering.') T_obs, clusters, cluster_p_values, H0 = clu = \ spatio_temporal_cluster_test(X, connectivity=connectivity, n_jobs=1, threshold=f_thresh, stat_fun=stat_fun, n_permutations=n_permutations, buffer_size=None) # Now select the clusters that are sig. at p < 0.05 (note that this value # is multiple-comparisons corrected). good_cluster_inds = np.where(cluster_p_values < 0.05)[0] Explanation: Compute clustering statistic To use an algorithm optimized for spatio-temporal clustering, we just pass the spatial connectivity matrix (instead of spatio-temporal). End of explanation print('Visualizing clusters.') # Now let's build a convenient representation of each cluster, where each # cluster becomes a "time point" in the SourceEstimate stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') # Let's actually plot the first "time point" in the SourceEstimate, which # shows all the clusters, weighted by duration subjects_dir = op.join(data_path, 'subjects') # The brighter the color, the stronger the interaction between # stimulus modality and stimulus location brain = stc_all_cluster_vis.plot(subjects_dir=subjects_dir, colormap='mne', time_label='Duration significant (ms)') brain.set_data_time_index(0) brain.show_view('lateral') brain.save_image('cluster-lh.png') brain.show_view('medial') Explanation: Visualize the clusters End of explanation inds_t, inds_v = [(clusters[cluster_ind]) for ii, cluster_ind in enumerate(good_cluster_inds)][0] # first cluster times = np.arange(X[0].shape[1]) * tstep * 1e3 plt.figure() colors = ['y', 'b', 'g', 'purple'] event_ids = ['l_aud', 'r_aud', 'l_vis', 'r_vis'] for ii, (condition, color, eve_id) in enumerate(zip(X, colors, event_ids)): # extract time course at cluster vertices condition = condition[:, :, inds_v] # normally we would normalize values across subjects but # here we use data from the same subject so we're good to just # create average time series across subjects and vertices. mean_tc = condition.mean(axis=2).mean(axis=0) std_tc = condition.std(axis=2).std(axis=0) plt.plot(times, mean_tc.T, color=color, label=eve_id) plt.fill_between(times, mean_tc + std_tc, mean_tc - std_tc, color='gray', alpha=0.5, label='') ymin, ymax = mean_tc.min() - 5, mean_tc.max() + 5 plt.xlabel('Time (ms)') plt.ylabel('Activation (F-values)') plt.xlim(times[[0, -1]]) plt.ylim(ymin, ymax) plt.fill_betweenx((ymin, ymax), times[inds_t[0]], times[inds_t[-1]], color='orange', alpha=0.3) plt.legend() plt.title('Interaction between stimulus-modality and location.') plt.show() Explanation: Finally, let's investigate interaction effect by reconstructing the time courses End of explanation
9,742
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2019 The TensorFlow Hub Authors. Licensed under the Apache License, Version 2.0 (the "License"); Step1: 映画レビューを使ったテキスト分類 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https Step2: IMDB データセットをダウンロードする IMDB データセットは、TensorFlow データセットで提供されています。次のコードを使って、IMDB データセットをマシン(または Colab ランタイム)にダウンロードしてください。 Step3: データの観察 データの形式を確認してみましょう。各サンプルは、映画レビューを表す文章と対応するラベルです。文章はまったく事前処理されていません。ラベルは 0 または 1 の整数値で、0 は否定的なレビューで 1 は肯定的なレビューを示します。 Step4: 最初の 10 個のサンプルを出力しましょう。 Step5: 最初の 10 個のラベルも出力しましょう。 Step6: モデルを構築する ニューラルネットワークは、レイヤーのスタックによって作成されています。これには、次の 3 つのアーキテクチャ上の決定が必要です。 どのようにテキストを表現するか。 モデルにはいくつのレイヤーを使用するか。 各レイヤーにはいくつの非表示ユニットを使用するか。 この例では、入力データは文章で構成されています。予測するラベルは、0 または 1 です。 テキストの表現方法としては、文章を埋め込みベクトルに変換する方法があります。トレーニング済みのテキスト埋め込みを最初のレイヤーとして使用することで、次のような 2 つのメリットを得ることができます。 テキストの事前処理を心配する必要がない。 転移学習を利用できる。 この例では、TensorFlow Hub のモデルである「google/nnlm-en-dim50/2」を使います。 このチュートリアルのためにテストできるモデルが、ほかに 2 つあります。 google/nnlm-en-dim50-with-normalization/2 - google/nnlm-en-dim50/2 と同じものですが、句読点を削除するためのテキスト正規化が含まれています。このため、入力テキストのトークンに使用する語彙内埋め込みのカバレッジを改善することができます。 google/nnlm-en-dim128-with-normalization/2 - 50 次元未満でなく、128 の埋め込み次元を備えたより大規模なモデルです。 では始めに、TensorFlow Hub モデル を使用して文章を埋め込む Keras レイヤーを作成し、いくつかの入力サンプルで試してみましょう。生成される埋め込みの出力形状は、(num_examples, embedding_dimension) であるところに注意してください。 Step7: 今度は、完全なモデルを構築しましょう。 Step8: これらのレイヤーは、分類器を構成するため一列に積み重ねられます。 最初のレイヤーは、TensorFlow Hub レイヤーです。このレイヤーは文章から埋め込みベクトルにマッピングする事前トレーニング済みの SavedModel を使用します。使用しているモデル (google/nnlm-en-dim50/2) は文章とトークンに分割し、各トークンを埋め込んで、埋め込みを組み合わせます。その結果、次元は (num_examples, embedding_dimension) となります。 この固定長の出力ベクトルは、16 個の非表示ユニットを持つ全結合(Dense)レイヤーに受け渡されます。 最後のレイヤーは単一の出力ノードで密に接続されます。これは、ロジットを出力します。モデルに応じた、真のクラスの対数オッズです。 非表示ユニット 上記のモデルには、入力と出力の間に 2 つの中間または「非表示」レイヤーがあります。出力数(ユニット数、ノード数、またはニューロン数)はレイヤーの表現空間の次元で、言い換えると、内部表現を学習する際にネットワークが許可された自由の量と言えます。 モデルの非表示ユニット数やレイヤー数が増えるほど(より高次元の表現空間)、ネットワークはより複雑な表現を学習できますが、ネットワークの計算がより高価となり、トレーニングデータでのパフォーマンスを改善してもテストデータでのパフォーマンスは改善されない不要なパターンが学習されることになります。この現象を過適合と呼び、これについては後の方で説明します。 損失関数とオプティマイザ モデルをトレーニングするには、損失関数とオプティマイザが必要です。これは二項分類問題であり、モデルは確率(シグモイドアクティベーションを持つ単一ユニットレイヤー)を出力するため、binary_crossentropy 損失関数を使用します。 これは、損失関数の唯一の選択肢ではありません。たとえば、mean_squared_error を使用することもできます。ただし、一般的には、確率を扱うには binary_crossentropy の方が適しているといえます。これは、確率分布間、またはこのケースではグランドトゥルース分布と予測間の「距離」を測定するためです。 後の方で、回帰問題(家の価格を予測するなど)を考察する際に、平均二乗誤差と呼ばれる別の損失関数の使用方法を確認します。 では、オプティマイザと損失関数を使用するようにモデルを構成します。 Step9: 検証セットを作成する トレーニングの際、モデルが遭遇したことのないデータでモデルの精度を確認したいと思います。そこで、元のトレーニングデータから 10,000 個のサンプルを取り出して検証セットを作成します(ここでテストセットを使用しないのは、トレーニングデータのみを使用してモデルの構築と調整を行った上で、テストデータを一度だけ使用して精度を評価することを目標としているからです)。 Step10: モデルのトレーニング モデルを 512 サンプルのミニバッチで 40 エポック、トレーニングします。これは、x_train と y_train テンソルのすべてのサンプルを 40 回イテレーションします。トレーニング中、検証セットの 10,000 個のサンプルで、モデルの損失と精度を監視します。 Step11: モデルを評価する モデルのパフォーマンスを見てみましょう。2 つの値が返されます。損失(誤差、値が低いほど良)と正確率です。 Step12: このかなり単純なアプローチで、約 87% の正解率が達成されます。より高度なアプローチを使えば、95% に近づくでしょう。 経時的な精度と損失のグラフを作成する model.fit() は、トレーニング中に発生したすべての情報を詰まったディクショナリを含む History オブジェクトを返します。 Step13: トレーニングと検証中に監視されている各メトリックに対して 1 つずつ、計 4 つのエントリがあります。このエントリを使用して、トレーニングと検証の損失とトレーニングと検証の精度を比較したグラフを作成することができます。
Python Code: # Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. Explanation: Copyright 2019 The TensorFlow Hub Authors. Licensed under the Apache License, Version 2.0 (the "License"); End of explanation import numpy as np import tensorflow as tf import tensorflow_hub as hub import tensorflow_datasets as tfds import matplotlib.pyplot as plt print("Version: ", tf.__version__) print("Eager mode: ", tf.executing_eagerly()) print("Hub version: ", hub.__version__) print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE") Explanation: 映画レビューを使ったテキスト分類 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://www.tensorflow.org/hub/tutorials/tf2_text_classification"><img src="https://www.tensorflow.org/images/tf_logo_32px.png"> TensorFlow.orgで表示</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ja/hub/tutorials/tf2_text_classification.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png"> Google Colab で実行</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ja/hub/tutorials/tf2_text_classification.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png">GitHub でソースを表示</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ja/hub/tutorials/tf2_text_classification.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">ノートブックをダウンロード/a0}</a></td> <td><a href="https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1"><img src="https://www.tensorflow.org/images/hub_logo_32px.png">TF Hub モデルを見る</a></td> </table> このノートブックでは、映画レビューのテキストを使用して、それが肯定的であるか否定的であるかに分類します。これは二項分類の例で、機械学習問題では重要な分類法として広く適用されます。 Internet Movie Database より、50,000 件の映画レビューテキストが含まれる IMDB データセットを使用します。これは、トレーニング用の 25,000 件のレビューとテスト用の 25,000 件のレビューに分割されます。トレーニングセットとテストセットは均衡が保たれており、肯定的評価と否定的評価が同じ割合で含まれます。 このノートブックでは、TensorFlow でモデルを構築してトレーニングするための tf.keras という高レベル API と、転移学習用のライブラリ兼プラットフォームである TensorFlow Hub を使用します。tf.keras を使用した、より高度なテキスト分類チュートリアルについては、MLCC Text Classification Guide をご覧ください。 その他のモデル テキスト埋め込みの生成に使用できる、より表現豊かなモデルや効率性の高いモデルをこちらでご覧ください。 MNIST モデルをビルドする End of explanation train_data, test_data = tfds.load(name="imdb_reviews", split=["train", "test"], batch_size=-1, as_supervised=True) train_examples, train_labels = tfds.as_numpy(train_data) test_examples, test_labels = tfds.as_numpy(test_data) Explanation: IMDB データセットをダウンロードする IMDB データセットは、TensorFlow データセットで提供されています。次のコードを使って、IMDB データセットをマシン(または Colab ランタイム)にダウンロードしてください。 End of explanation print("Training entries: {}, test entries: {}".format(len(train_examples), len(test_examples))) Explanation: データの観察 データの形式を確認してみましょう。各サンプルは、映画レビューを表す文章と対応するラベルです。文章はまったく事前処理されていません。ラベルは 0 または 1 の整数値で、0 は否定的なレビューで 1 は肯定的なレビューを示します。 End of explanation train_examples[:10] Explanation: 最初の 10 個のサンプルを出力しましょう。 End of explanation train_labels[:10] Explanation: 最初の 10 個のラベルも出力しましょう。 End of explanation model = "https://tfhub.dev/google/nnlm-en-dim50/2" hub_layer = hub.KerasLayer(model, input_shape=[], dtype=tf.string, trainable=True) hub_layer(train_examples[:3]) Explanation: モデルを構築する ニューラルネットワークは、レイヤーのスタックによって作成されています。これには、次の 3 つのアーキテクチャ上の決定が必要です。 どのようにテキストを表現するか。 モデルにはいくつのレイヤーを使用するか。 各レイヤーにはいくつの非表示ユニットを使用するか。 この例では、入力データは文章で構成されています。予測するラベルは、0 または 1 です。 テキストの表現方法としては、文章を埋め込みベクトルに変換する方法があります。トレーニング済みのテキスト埋め込みを最初のレイヤーとして使用することで、次のような 2 つのメリットを得ることができます。 テキストの事前処理を心配する必要がない。 転移学習を利用できる。 この例では、TensorFlow Hub のモデルである「google/nnlm-en-dim50/2」を使います。 このチュートリアルのためにテストできるモデルが、ほかに 2 つあります。 google/nnlm-en-dim50-with-normalization/2 - google/nnlm-en-dim50/2 と同じものですが、句読点を削除するためのテキスト正規化が含まれています。このため、入力テキストのトークンに使用する語彙内埋め込みのカバレッジを改善することができます。 google/nnlm-en-dim128-with-normalization/2 - 50 次元未満でなく、128 の埋め込み次元を備えたより大規模なモデルです。 では始めに、TensorFlow Hub モデル を使用して文章を埋め込む Keras レイヤーを作成し、いくつかの入力サンプルで試してみましょう。生成される埋め込みの出力形状は、(num_examples, embedding_dimension) であるところに注意してください。 End of explanation model = tf.keras.Sequential() model.add(hub_layer) model.add(tf.keras.layers.Dense(16, activation='relu')) model.add(tf.keras.layers.Dense(1)) model.summary() Explanation: 今度は、完全なモデルを構築しましょう。 End of explanation model.compile(optimizer='adam', loss=tf.losses.BinaryCrossentropy(from_logits=True), metrics=[tf.metrics.BinaryAccuracy(threshold=0.0, name='accuracy')]) Explanation: これらのレイヤーは、分類器を構成するため一列に積み重ねられます。 最初のレイヤーは、TensorFlow Hub レイヤーです。このレイヤーは文章から埋め込みベクトルにマッピングする事前トレーニング済みの SavedModel を使用します。使用しているモデル (google/nnlm-en-dim50/2) は文章とトークンに分割し、各トークンを埋め込んで、埋め込みを組み合わせます。その結果、次元は (num_examples, embedding_dimension) となります。 この固定長の出力ベクトルは、16 個の非表示ユニットを持つ全結合(Dense)レイヤーに受け渡されます。 最後のレイヤーは単一の出力ノードで密に接続されます。これは、ロジットを出力します。モデルに応じた、真のクラスの対数オッズです。 非表示ユニット 上記のモデルには、入力と出力の間に 2 つの中間または「非表示」レイヤーがあります。出力数(ユニット数、ノード数、またはニューロン数)はレイヤーの表現空間の次元で、言い換えると、内部表現を学習する際にネットワークが許可された自由の量と言えます。 モデルの非表示ユニット数やレイヤー数が増えるほど(より高次元の表現空間)、ネットワークはより複雑な表現を学習できますが、ネットワークの計算がより高価となり、トレーニングデータでのパフォーマンスを改善してもテストデータでのパフォーマンスは改善されない不要なパターンが学習されることになります。この現象を過適合と呼び、これについては後の方で説明します。 損失関数とオプティマイザ モデルをトレーニングするには、損失関数とオプティマイザが必要です。これは二項分類問題であり、モデルは確率(シグモイドアクティベーションを持つ単一ユニットレイヤー)を出力するため、binary_crossentropy 損失関数を使用します。 これは、損失関数の唯一の選択肢ではありません。たとえば、mean_squared_error を使用することもできます。ただし、一般的には、確率を扱うには binary_crossentropy の方が適しているといえます。これは、確率分布間、またはこのケースではグランドトゥルース分布と予測間の「距離」を測定するためです。 後の方で、回帰問題(家の価格を予測するなど)を考察する際に、平均二乗誤差と呼ばれる別の損失関数の使用方法を確認します。 では、オプティマイザと損失関数を使用するようにモデルを構成します。 End of explanation x_val = train_examples[:10000] partial_x_train = train_examples[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] Explanation: 検証セットを作成する トレーニングの際、モデルが遭遇したことのないデータでモデルの精度を確認したいと思います。そこで、元のトレーニングデータから 10,000 個のサンプルを取り出して検証セットを作成します(ここでテストセットを使用しないのは、トレーニングデータのみを使用してモデルの構築と調整を行った上で、テストデータを一度だけ使用して精度を評価することを目標としているからです)。 End of explanation history = model.fit(partial_x_train, partial_y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1) Explanation: モデルのトレーニング モデルを 512 サンプルのミニバッチで 40 エポック、トレーニングします。これは、x_train と y_train テンソルのすべてのサンプルを 40 回イテレーションします。トレーニング中、検証セットの 10,000 個のサンプルで、モデルの損失と精度を監視します。 End of explanation results = model.evaluate(test_examples, test_labels) print(results) Explanation: モデルを評価する モデルのパフォーマンスを見てみましょう。2 つの値が返されます。損失(誤差、値が低いほど良)と正確率です。 End of explanation history_dict = history.history history_dict.keys() Explanation: このかなり単純なアプローチで、約 87% の正解率が達成されます。より高度なアプローチを使えば、95% に近づくでしょう。 経時的な精度と損失のグラフを作成する model.fit() は、トレーニング中に発生したすべての情報を詰まったディクショナリを含む History オブジェクトを返します。 End of explanation acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" is for "blue dot" plt.plot(epochs, loss, 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.clf() # clear figure plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show() Explanation: トレーニングと検証中に監視されている各メトリックに対して 1 つずつ、計 4 つのエントリがあります。このエントリを使用して、トレーニングと検証の損失とトレーニングと検証の精度を比較したグラフを作成することができます。 End of explanation
9,743
Given the following text description, write Python code to implement the functionality described below step by step Description: Using pymldb Tutorial Interactions with MLDB occurs via a REST API. Interacting with a REST API over HTTP from a Notebook interface can be a little bit laborious if you're using a general-purpose Python library like requests directly, so MLDB comes with a Python library called pymldb to ease the pain. Connections The pymldb library includes a class called Connection. The recommended usage pattern is shown here Step1: Accessing the REST API Once you have a connection object, you can easily make calls to the REST API Step2: Here we create a dataset and insert two rows of two columns into it Step3: SQL Queries Now that we have a dataset, we can use the query() method on the connection to run an SQL query and get the results back as a Pandas DataFrame
Python Code: from pymldb import Connection mldb = Connection("http://localhost") Explanation: Using pymldb Tutorial Interactions with MLDB occurs via a REST API. Interacting with a REST API over HTTP from a Notebook interface can be a little bit laborious if you're using a general-purpose Python library like requests directly, so MLDB comes with a Python library called pymldb to ease the pain. Connections The pymldb library includes a class called Connection. The recommended usage pattern is shown here: End of explanation mldb.get("/v1/types") #keyword arguments to get() are appended to the GET query string mldb.get("/v1/types", x="y") #dictionaries arguments to put() and post() are sent as JSON via PUT or POST mldb.put("/v1/datasets/sample", {"type": "sparse.mutable"} ) Explanation: Accessing the REST API Once you have a connection object, you can easily make calls to the REST API: End of explanation mldb.put( "/v1/datasets/demo", {"type":"sparse.mutable"}) mldb.post("/v1/datasets/demo/rows", {"rowName": "first", "columns":[["a",1,0],["b",2,0]]}) mldb.post("/v1/datasets/demo/rows", {"rowName": "second", "columns":[["a",3,0],["b",4,0]]}) mldb.post("/v1/datasets/demo/commit") Explanation: Here we create a dataset and insert two rows of two columns into it: End of explanation df = mldb.query("select * from demo") print type(df) df Explanation: SQL Queries Now that we have a dataset, we can use the query() method on the connection to run an SQL query and get the results back as a Pandas DataFrame: End of explanation
9,744
Given the following text description, write Python code to implement the functionality described below step by step Description: This challenge will get you familiar with the basic elements of Python by programming a simple card game. We will create a custom class to represent each player in the game, which will store information about their current pot, as well as a series of methods defining how they play the game. We will also build several functions to control the flow of the game and get data back at the end. We will start by importing the 'random' library, which will allow us to use its functions for picking a random entry from a list. Step1: First we will establish some general variables for our game, including the 'stake' of the game (how much money each play is worth), as well as a list representing the cards used in the game. To make things easier, we will just use a list of numbers 0-9 for the cards. Step2: Next, let's define a new class to represent each player in the game. I have provided a rough framework of the class definition along with comments along the way to help you complete it. Places where you should write code are denoted by comments inside [] brackets and CAPITAL TEXT. Step3: Next we will create some functions outside the class definition which will control the flow of the game. The first function will play one round. It will take as an input the collection of players, and iterate through each one, calling each player's '.play() function. Step4: Next we will define a function that will check the balances of each player, and print out a message with the player's ID and their balance. Step5: Now we are ready to start the game. First we create an empy list to store the collection of players in the game. Step6: Then we create a loop that will run a certain number of times, each time creating a player with a unique ID and a starting balance. Each player should be appended to the empty list, which will store all the players. In this case we pass the 'i' iterator of the loop as the player ID, and set a constant value of 500 for the starting balance. Step7: Once the players are created, we will create a loop to run the game a certain amount of times. Each step of the loop should start with a print statement announcing the start of the game, and then call the playHand() function, passing as an input the list of players. Step8: Finally, we will analyze the results of the game by running the 'checkBalances()' function and passing it our list of players.
Python Code: import random Explanation: This challenge will get you familiar with the basic elements of Python by programming a simple card game. We will create a custom class to represent each player in the game, which will store information about their current pot, as well as a series of methods defining how they play the game. We will also build several functions to control the flow of the game and get data back at the end. We will start by importing the 'random' library, which will allow us to use its functions for picking a random entry from a list. End of explanation gameStake = 50 cards = range(10) Explanation: First we will establish some general variables for our game, including the 'stake' of the game (how much money each play is worth), as well as a list representing the cards used in the game. To make things easier, we will just use a list of numbers 0-9 for the cards. End of explanation class Player: # in the __init__() function, use the two input variables to initialize the ID and starting pot of each player def __init__(self, inputID, startingPot): # [CREATE YOUR INITIALIZATIONS HERE] # make sure you initialize two local variables to store a unique ID for each player # and the player's current 'pot' of money # create a function for playing the game. This function starts by taking an input for the dealer's card # and picking a random number from the 'cards' list for the player's card def play(self, dealerCard): # we use the random.choice() function to select a random item from a list playerCard = random.choice(cards) # here we should have a conditional that tests the player's card value against the dealer card # and returns a statement saying whether the player won or lost the hand # before returning the statement, make sure to either add or subtract the stake from the player's pot so that # the 'pot' variable tracks the player's money if playerCard < dealerCard: # [INCREMENT THE PLAYER'S POT, AND RETURN A MESSAGE] else: # [INCREMENT THE PLAYER'S POT, AND RETURN A MESSAGE] # create an accessor function to return the current value of the player's pot def returnPot(self): # [FILL IN THE RETURN STATEMENT] # create an accessor function to return the player's ID def returnID(self): # [FILL IN THE RETURN STATEMENT] Explanation: Next, let's define a new class to represent each player in the game. I have provided a rough framework of the class definition along with comments along the way to help you complete it. Places where you should write code are denoted by comments inside [] brackets and CAPITAL TEXT. End of explanation def playHand(players): for player in players: dealerCard = random.choice(cards) #[EXECUTE THE PLAY() FUNCTION FOR EACH PLAYER USING THE DEALER CARD, AND PRINT OUT THE RESULTS] Explanation: Next we will create some functions outside the class definition which will control the flow of the game. The first function will play one round. It will take as an input the collection of players, and iterate through each one, calling each player's '.play() function. End of explanation def checkBalances(players): for player in players: #[PRINT OUT EACH PLAYER'S BALANCE BY USING EACH PLAYER'S ACCESSOR FUNCTIONS] Explanation: Next we will define a function that will check the balances of each player, and print out a message with the player's ID and their balance. End of explanation players = [] Explanation: Now we are ready to start the game. First we create an empy list to store the collection of players in the game. End of explanation for i in range(5): players.append(Player(i, 500)) Explanation: Then we create a loop that will run a certain number of times, each time creating a player with a unique ID and a starting balance. Each player should be appended to the empty list, which will store all the players. In this case we pass the 'i' iterator of the loop as the player ID, and set a constant value of 500 for the starting balance. End of explanation for i in range(10): print('') print('start game ' + str(i)) playHand(players) Explanation: Once the players are created, we will create a loop to run the game a certain amount of times. Each step of the loop should start with a print statement announcing the start of the game, and then call the playHand() function, passing as an input the list of players. End of explanation print('') print('game results:') checkBalances(players) Explanation: Finally, we will analyze the results of the game by running the 'checkBalances()' function and passing it our list of players. End of explanation
9,745
Given the following text description, write Python code to implement the functionality described below step by step Description: Tarea 2, parte 2 <hr> Pregunta 1 Según <a href="https Step1: <hr> Pregunta 3 A simple vista, aproximadamente, se tiene $T_T = 0.7$ d $T_F = 0.4$ d $\Delta F = 0.003$ Con esto, se calculan los cuatro parámetros a partir de observables (sin considerar en este punto una ley de potencias que relacione masa y radio). Como las ecuaciones son las del trabajo de Seager & Mallén-Ornelas, las suposiciones necesarias para determinar las cantidades son las que allí se hacen. Step2: <hr> Pregunta 4 Se calculan los coeficientes según se detalla en en <a href="https Step3: Se ejecuta batman como se explica en la documentación, entregando como parámetros los valores obtenidos a lo largo de este trabajo. Step4: <hr> Pregunta Bonus Se repiten los pasos para el planeta anterior. Dado que los valores del flujo son más dispersos, se realiza el paso de median filter con ventanas de 25 valores y se centra el gráfico en un posible tránsito, que corresponde al sector alrededor de la zona de mínimo flujo (obviando un punto, seguramente espuria, en phase ~ 0.35). Si el planeta fuera del radio de la Tierra y su estrella fuera del radio del Sol, entonces $$R_p/R_* = 0.009 \rightarrow \Delta F = 0,000081$$ Esto se acerca a lo que muestra el gráfico.
Python Code: import numpy as np from scipy.signal import medfilt import matplotlib.pyplot as plt import kplr %matplotlib inline client = kplr.API() koi = client.koi(1274.01) lcs = koi.get_light_curves(short_cadence=True) p = 704.2 time, flux, ferr, med = [], [], [], [] for lc in lcs: with lc.open() as f: # The lightcurve data are in the first FITS HDU. hdu_data = f[1].data time.append(hdu_data["time"][~np.isnan(hdu_data["pdcsap_flux"])]) flux.append(hdu_data["pdcsap_flux"][~np.isnan(hdu_data["pdcsap_flux"])]) ferr.append(hdu_data["pdcsap_flux_err"][~np.isnan(hdu_data["pdcsap_flux"])]) # Ignora los NaN al hacer append normFlux, normFerr, phase = flux, ferr, time for i in range(0,len(flux)): med.append(np.median(flux[i])) prom = np.mean(med) for i in range(0,len(flux)): normFlux[i] = normFlux[i] - (med[i] - prom) normFlux[i] = medfilt(normFlux[i], 11) fig, ax = plt.subplots(2,1,figsize=(15,20)) for i in range(0,len(ax)): ax[i].set_ylim(0.996,1.0007) ax[i].set_title('KOI-1274.01') ax[i].set_xlabel('Phase',size=16) ax[i].set_ylabel('Normalized flux',size=14) for i in range(0,len(normFlux)): normFlux[i] = normFlux[i]/prom normFerr[i] = normFerr[i]/prom phase[i] = time[i]/p %1 ax[0].errorbar(phase[i], normFlux[i], normFerr[i], fmt='g.', ecolor='green', ms = 3) ax[0].plot(phase[i], normFlux[i],'k.') ax[1].errorbar(phase[i], normFlux[i], normFerr[i], fmt='g.', ecolor='green', ms = 3) ax[1].plot(phase[i], normFlux[i],'k--', alpha=.2) ax[1].set_xlim(0.699,0.7005) plt.show() plt.close() Explanation: Tarea 2, parte 2 <hr> Pregunta 1 Según <a href="https://ui.adsabs.harvard.edu/#abs/2003ApJ...585.1038S/abstract">Seager & Mallén-Ornelas (2003)</a>, La geometría del tránsito puede ser descrita por (se presentan imágenes del trabajo de Seager & Mallén-Ornelas): <img src="transitshape.png"> y la duración total como: <img src="transittotaltime.png"> <img src="fig1.png"> <em>a</em> es el semieje mayor. A partir de las características de la curva de luz de un tránsito, teniendo en cuenta la geometría del evento y la Tercera Ley de Kepler, se pueden obtener cuatro parámetros derivables de observables del sistema: <ol> <li><strong>La razón entre el radio planetario y el estelar</strong> $$R_P/R_* = \sqrt{\Delta F}$$ directamente de definir $\Delta F \equiv (F_{no transit}-F_{transit})/F_{no transit} = (R_P/R*)^2$</li> <li><strong>El parámetro de impacto</strong> <img src="b.png"> definido como la distancia proyectada entre el los centros del planeta y de la estrella durante la mitad del tránsito, en términos de $R_*$. Se deriva directamente de la ecuación anterior y de la ecuación de la forma del tránsito.</li> <li><strong>La razón entre el semieje mayor de la órbita y el radio estelar</strong> <img src="ar.png"> a partir de la ecuación de la duración del tránsito.</li> <li><strong>La densidad estelar</strong> <img src="rho.png"> a partir de la ecuación anterior y de la Tercera Ley de Kepler cuando $M_P \ll M_*$. Depende del parámetro de impacto puesto que $b$ afecta la duración del tránsito. </ol> Si se considera la relación masa-radio para una estrella $$R_ = kM_^x $$ para algunas constantes $k,x$ se obtiene un sistema de cinco ecuaciones y cinco incógnitas, y se pueden derivar las cantidades físicas una por una. <hr> Pregunta 2 En este paso se reliza una estandarización de los cuartos de modo que queden en torno al promedio de las medianas. Luego, se realizan dos pasos de <em>median filter</em> con ventanas de 11 valores y se normaliza el flujo. Para el período sugerido (704.2 días), se grafica el flujo en función de la fase. En verde se incluyen las barras de error asociadas al flujo. End of explanation df = 0.003 tt = 0.7 tf = 0.4 sintf = np.sin(tf*np.pi/p)**2 # un par de variables auxiliares sintt = np.sin(tt*np.pi/p)**2 ratio = np.sqrt(df) #Rp/R* b = np.sqrt( ((1-ratio)**2 - (sintf)/(sintt) *(1+ratio)**2) /(1-(sintf/sintt)) ) aR = np.sqrt( ((1+ratio)**2 - b**2 *(1-sintt)) /sintt ) i = np.arccos(b/aR) i = np.degrees(i) rho = aR**3 * 365.25**2 / 215**3 / p**2 print 'Rp/R* \t = \t' + repr(ratio) print 'b \t = \t' + repr(b) print 'a/R* \t = \t' + repr(aR) print 'i \t = \t' + repr(i) print 'rho \t = \t' + repr(rho) + ' densidades solares' Explanation: <hr> Pregunta 3 A simple vista, aproximadamente, se tiene $T_T = 0.7$ d $T_F = 0.4$ d $\Delta F = 0.003$ Con esto, se calculan los cuatro parámetros a partir de observables (sin considerar en este punto una ley de potencias que relacione masa y radio). Como las ecuaciones son las del trabajo de Seager & Mallén-Ornelas, las suposiciones necesarias para determinar las cantidades son las que allí se hacen. End of explanation from scipy.optimize import leastsq from scipy.interpolate import UnivariateSpline import scipy.integrate as integrate w, r = np.loadtxt('kepler_response_hires1.txt', unpack=True) w = 10*w S = UnivariateSpline(w,r,s=0,k=1) min_w = min(w) max_w = max(w) idx = np.where((w>min_w)&(w<max_w))[0] S_wav = np.append(np.append(min_w,w[idx]),max_w) S_res = np.append(np.append(S(min_w),r[idx]),S(max_w)) I = np.array([]) wavelengths = np.array([]) f = open('grav_4.5_lh_1.25.dat','r') counter = 0 while(True): l = f.readline() if(l==''): break # If no jump of line or comment, save the intensities: if(l[0]!='#' and l[:3]!='\n'): splitted = l.split('\t') if(len(splitted)==18): splitted[-1] = (splitted[-1])[:-1] # The last one always has a jump of line (\n), so erase it. wavelength = np.double(splitted[0])*10 # Convert wavelengths, which are in nanometers, to angstroms. intensities = np.double(np.array(splitted[1:])) # Get the intensities. ndigits = len(str(int(intensities[1]))) # Only if I(1) is different from zero, fit the LDs: if(intensities[0]!=0.0): intensities[1:] = intensities[1:]/1e5 # Kurucz doesn't put points on his files (e.g.: 0.8013 is 8013). intensities[1:] = intensities[1:]*intensities[0] # All the rest of the intensities are normalized w/r to the center one. if(counter == 0): I = intensities else: I = np.vstack((I,intensities)) wavelengths = np.append(wavelengths,wavelength) counter = counter + 1 f.close() mu = np.array([1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.25,0.2,0.15,0.125,0.1,0.075,0.05,0.025,0.01]) # Define the number of mu angles at which we will perform the integrations: nmus = len(mu) # Now integrate intensity through each angle: I_l = np.array([]) for i in range(nmus): # Interpolate the intensities: Ifunc = UnivariateSpline(wavelengths,I[:,i],s=0,k=1) integrand = S_res*Ifunc(S_wav) integration_results = np.trapz(integrand, x=S_wav) I_l = np.append(I_l,integration_results) I0 = I_l/(I_l[0]) # Normalize profile with respect to I(mu = 1): # Define A matrix for the linear system: A = np.zeros([2,2]) # Define b vector for the linear system: b = np.zeros(2) # Obtain the alpha_n_k and beta_k that fill the A matrix and b vector: for n in range(1,3,1): for k in range(1,3,1): A[n-1,k-1] = sum(((1.0-mu)**n)*((1.0-mu)**k)) b[n-1] = sum(((1.0-mu)**n)*(1.0-I0)) u = list(np.linalg.solve(A,b)) print u Explanation: <hr> Pregunta 4 Se calculan los coeficientes según se detalla en en <a href="https://arxiv.org/pdf/1503.07020v3.pdf">Espinoza & Jordán 2015</a>, a partir de una versión modificada del código disponible en <a href="https://github.com/nespinoza/limb-darkening">https://github.com/nespinoza/limb-darkening</a>. End of explanation import batman params = batman.TransitParams() #object to store transit parameters params.t0 = 0. #time of inferior conjunction params.per = p #orbital period params.rp = ratio #planet radius (in units of stellar radii) params.a = aR #semi-major axis (in units of stellar radii) params.inc = i #orbital inclination (in degrees) params.ecc = 0. #eccentricity params.w = 90. #longitude of periastron (in degrees) params.limb_dark = "quadratic" #limb darkening model params.u = u #limb darkening coefficients t = np.linspace(-0.025, 0.025, 100) #times at which to calculate light curve m = batman.TransitModel(params, t) #initializes model fluxBatman = m.light_curve(params) #calculates light curve plt.plot(t, fluxBatman) plt.xlabel("Time from central transit") plt.ylabel("Relative flux") plt.show() ############## #oc Explanation: Se ejecuta batman como se explica en la documentación, entregando como parámetros los valores obtenidos a lo largo de este trabajo. End of explanation koi = client.koi(7016.01) lcs = koi.get_light_curves(short_cadence=True) p = koi.koi_period time, flux, ferr, med = [], [], [], [] for lc in lcs: with lc.open() as f: # The lightcurve data are in the first FITS HDU. hdu_data = f[1].data time.append(hdu_data["time"][~np.isnan(hdu_data["pdcsap_flux"])]) flux.append(hdu_data["pdcsap_flux"][~np.isnan(hdu_data["pdcsap_flux"])]) ferr.append(hdu_data["pdcsap_flux_err"][~np.isnan(hdu_data["pdcsap_flux"])]) # Ignora los NaN al hacer append normFlux, normFerr, phase = flux, ferr, time for i in range(0,len(flux)): med.append(np.median(flux[i])) prom = np.mean(med) for i in range(0,len(flux)): normFlux[i] = normFlux[i] - (med[i] - prom) normFlux[i] = medfilt(normFlux[i], 25) fig, ax = plt.subplots(2,1,figsize=(15,20)) for i in range(0,len(ax)): ax[i].set_ylim(0.996,1.0007) ax[i].set_title('KOI-7016.01') ax[i].set_xlabel('Phase',size=16) ax[i].set_ylabel('Normalized flux',size=14) for i in range(0,len(normFlux)): normFlux[i] = normFlux[i]/prom normFerr[i] = normFerr[i]/prom phase[i] = time[i]/p %1 ax[0].errorbar(phase[i], normFlux[i], normFerr[i], fmt='g.', ecolor='green', ms = 3) ax[0].plot(phase[i], normFlux[i],'k.') ax[1].errorbar(phase[i], normFlux[i], normFerr[i], fmt='g.', ecolor='green', ms = 3) ax[1].plot(phase[i], normFlux[i],'k.', alpha=.2) ax[1].set_xlim(0.762,0.782) ax[1].set_ylim(0.9985,1.001) plt.show() plt.close() Explanation: <hr> Pregunta Bonus Se repiten los pasos para el planeta anterior. Dado que los valores del flujo son más dispersos, se realiza el paso de median filter con ventanas de 25 valores y se centra el gráfico en un posible tránsito, que corresponde al sector alrededor de la zona de mínimo flujo (obviando un punto, seguramente espuria, en phase ~ 0.35). Si el planeta fuera del radio de la Tierra y su estrella fuera del radio del Sol, entonces $$R_p/R_* = 0.009 \rightarrow \Delta F = 0,000081$$ Esto se acerca a lo que muestra el gráfico. End of explanation
9,746
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2018 The TensorFlow Probability Authors. Licensed under the Apache License, Version 2.0 (the "License"); Step1: Eight schools <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https Step2: The Data From Bayesian Data Analysis, section 5.5 (Gelman et al. 2013) Step4: Model To capture the data, we use a hierarchical normal model. It follows the generative process, $$ \begin{align} \mu &\sim \text{Normal}(\text{loc}{=}0,\ \text{scale}{=}10) \ \log\tau &\sim \text{Normal}(\text{loc}{=}5,\ \text{scale}{=}1) \ \text{for } & i=1\ldots 8 Step5: Bayesian Inference Given data, we perform Hamiltonian Monte Carlo (HMC) to calculate the posterior distribution over the model's parameters. Step6: We can observe the shrinkage toward the group avg_effect above. Step7: Criticism To get the posterior predictive distribution, i.e., a model of new data $y^*$ given the observed data $y$ Step8: We can look at the residuals between the treatment effects data and the predictions of the model posterior. These correspond with the plot above which shows the shrinkage of the estimated effects toward the population average. Step9: Because we have a distribution of predictions for each school, we can consider the distribution of residuals as well.
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2018 The TensorFlow Probability Authors. Licensed under the Apache License, Version 2.0 (the "License"); End of explanation import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd import warnings tf.enable_v2_behavior() plt.style.use("ggplot") warnings.filterwarnings('ignore') Explanation: Eight schools <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/probability/examples/Eight_Schools"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/probability/blob/main/tensorflow_probability/examples/jupyter_notebooks/Eight_Schools.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/probability/blob/main/tensorflow_probability/examples/jupyter_notebooks/Eight_Schools.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/probability/tensorflow_probability/examples/jupyter_notebooks/Eight_Schools.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a> </td> </table> The eight schools problem (Rubin 1981) considers the effectiveness of SAT coaching programs conducted in parallel at eight schools. It has become a classic problem (Bayesian Data Analysis, Stan) that illustrates the usefulness of hierarchical modeling for sharing information between exchangeable groups. The implemention below is an adaptation of an Edward 1.0 tutorial. Imports End of explanation num_schools = 8 # number of schools treatment_effects = np.array( [28, 8, -3, 7, -1, 1, 18, 12], dtype=np.float32) # treatment effects treatment_stddevs = np.array( [15, 10, 16, 11, 9, 11, 10, 18], dtype=np.float32) # treatment SE fig, ax = plt.subplots() plt.bar(range(num_schools), treatment_effects, yerr=treatment_stddevs) plt.title("8 Schools treatment effects") plt.xlabel("School") plt.ylabel("Treatment effect") fig.set_size_inches(10, 8) plt.show() Explanation: The Data From Bayesian Data Analysis, section 5.5 (Gelman et al. 2013): A study was performed for the Educational Testing Service to analyze the effects of special coaching programs for SAT-V (Scholastic Aptitude Test-Verbal) in each of eight high schools. The outcome variable in each study was the score on a special administration of the SAT-V, a standardized multiple choice test administered by the Educational Testing Service and used to help colleges make admissions decisions; the scores can vary between 200 and 800, with mean about 500 and standard deviation about 100. The SAT examinations are designed to be resistant to short-term efforts directed specifically toward improving performance on the test; instead they are designed to reflect knowledge acquired and abilities developed over many years of education. Nevertheless, each of the eight schools in this study considered its short-term coaching program to be very successful at increasing SAT scores. Also, there was no prior reason to believe that any of the eight programs was more effective than any other or that some were more similar in effect to each other than to any other. For each of the eight schools ($J = 8$), we have an estimated treatment effect $y_j$ and a standard error of the effect estimate $\sigma_j$. The treatment effects in the study were obtained by a linear regression on the treatment group using PSAT-M and PSAT-V scores as control variables. As there was no prior belief that any of the schools were more or less similar or that any of the coaching programs would be more effective, we can consider the treatment effects as exchangeable. End of explanation model = tfd.JointDistributionSequential([ tfd.Normal(loc=0., scale=10., name="avg_effect"), # `mu` above tfd.Normal(loc=5., scale=1., name="avg_stddev"), # `log(tau)` above tfd.Independent(tfd.Normal(loc=tf.zeros(num_schools), scale=tf.ones(num_schools), name="school_effects_standard"), # `theta_prime` reinterpreted_batch_ndims=1), lambda school_effects_standard, avg_stddev, avg_effect: ( tfd.Independent(tfd.Normal(loc=(avg_effect[..., tf.newaxis] + tf.exp(avg_stddev[..., tf.newaxis]) * school_effects_standard), # `theta` above scale=treatment_stddevs), name="treatment_effects", # `y` above reinterpreted_batch_ndims=1)) ]) def target_log_prob_fn(avg_effect, avg_stddev, school_effects_standard): Unnormalized target density as a function of states. return model.log_prob(( avg_effect, avg_stddev, school_effects_standard, treatment_effects)) Explanation: Model To capture the data, we use a hierarchical normal model. It follows the generative process, $$ \begin{align} \mu &\sim \text{Normal}(\text{loc}{=}0,\ \text{scale}{=}10) \ \log\tau &\sim \text{Normal}(\text{loc}{=}5,\ \text{scale}{=}1) \ \text{for } & i=1\ldots 8:\ & \theta_i \sim \text{Normal}\left(\text{loc}{=}\mu,\ \text{scale}{=}\tau \right) \ & y_i \sim \text{Normal}\left(\text{loc}{=}\theta_i,\ \text{scale}{=}\sigma_i \right) \end{align} $$ where $\mu$ represents the prior average treatment effect and $\tau$ controls how much variance there is between schools. The $y_i$ and $\sigma_i$ are observed. As $\tau \rightarrow \infty$, the model approaches the no-pooling model, i.e., each of the school treatment effect estimates are allowed to be more independent. As $\tau \rightarrow 0$, the model approaches the complete-pooling model, i.e., all of the school treatment effects are closer to the group average $\mu$. To restrict the standard deviation to be positive, we draw $\tau$ from a lognormal distribution (which is equivalent to drawing $log(\tau)$ from a normal distribution). Following Diagnosing Biased Inference with Divergences, we transform the model above into an equivalent non-centered model: $$ \begin{align} \mu &\sim \text{Normal}(\text{loc}{=}0,\ \text{scale}{=}10) \ \log\tau &\sim \text{Normal}(\text{loc}{=}5,\ \text{scale}{=}1) \ \text{for } & i=1\ldots 8:\ & \theta_i' \sim \text{Normal}\left(\text{loc}{=}0,\ \text{scale}{=}1 \right) \ & \theta_i = \mu + \tau \theta_i' \ & y_i \sim \text{Normal}\left(\text{loc}{=}\theta_i,\ \text{scale}{=}\sigma_i \right) \end{align} $$ We reify this model as a JointDistributionSequential instance: End of explanation num_results = 5000 num_burnin_steps = 3000 # Improve performance by tracing the sampler using `tf.function` # and compiling it using XLA. @tf.function(autograph=False, jit_compile=True) def do_sampling(): return tfp.mcmc.sample_chain( num_results=num_results, num_burnin_steps=num_burnin_steps, current_state=[ tf.zeros([], name='init_avg_effect'), tf.zeros([], name='init_avg_stddev'), tf.ones([num_schools], name='init_school_effects_standard'), ], kernel=tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, step_size=0.4, num_leapfrog_steps=3)) states, kernel_results = do_sampling() avg_effect, avg_stddev, school_effects_standard = states school_effects_samples = ( avg_effect[:, np.newaxis] + np.exp(avg_stddev)[:, np.newaxis] * school_effects_standard) num_accepted = np.sum(kernel_results.is_accepted) print('Acceptance rate: {}'.format(num_accepted / num_results)) fig, axes = plt.subplots(8, 2, sharex='col', sharey='col') fig.set_size_inches(12, 10) for i in range(num_schools): axes[i][0].plot(school_effects_samples[:,i].numpy()) axes[i][0].title.set_text("School {} treatment effect chain".format(i)) sns.kdeplot(school_effects_samples[:,i].numpy(), ax=axes[i][1], shade=True) axes[i][1].title.set_text("School {} treatment effect distribution".format(i)) axes[num_schools - 1][0].set_xlabel("Iteration") axes[num_schools - 1][1].set_xlabel("School effect") fig.tight_layout() plt.show() print("E[avg_effect] = {}".format(np.mean(avg_effect))) print("E[avg_stddev] = {}".format(np.mean(avg_stddev))) print("E[school_effects_standard] =") print(np.mean(school_effects_standard[:, ])) print("E[school_effects] =") print(np.mean(school_effects_samples[:, ], axis=0)) # Compute the 95% interval for school_effects school_effects_low = np.array([ np.percentile(school_effects_samples[:, i], 2.5) for i in range(num_schools) ]) school_effects_med = np.array([ np.percentile(school_effects_samples[:, i], 50) for i in range(num_schools) ]) school_effects_hi = np.array([ np.percentile(school_effects_samples[:, i], 97.5) for i in range(num_schools) ]) fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True) ax.scatter(np.array(range(num_schools)), school_effects_med, color='red', s=60) ax.scatter( np.array(range(num_schools)) + 0.1, treatment_effects, color='blue', s=60) plt.plot([-0.2, 7.4], [np.mean(avg_effect), np.mean(avg_effect)], 'k', linestyle='--') ax.errorbar( np.array(range(8)), school_effects_med, yerr=[ school_effects_med - school_effects_low, school_effects_hi - school_effects_med ], fmt='none') ax.legend(('avg_effect', 'HMC', 'Observed effect'), fontsize=14) plt.xlabel('School') plt.ylabel('Treatment effect') plt.title('HMC estimated school treatment effects vs. observed data') fig.set_size_inches(10, 8) plt.show() Explanation: Bayesian Inference Given data, we perform Hamiltonian Monte Carlo (HMC) to calculate the posterior distribution over the model's parameters. End of explanation print("Inferred posterior mean: {0:.2f}".format( np.mean(school_effects_samples[:,]))) print("Inferred posterior mean se: {0:.2f}".format( np.std(school_effects_samples[:,]))) Explanation: We can observe the shrinkage toward the group avg_effect above. End of explanation sample_shape = [5000] _, _, _, predictive_treatment_effects = model.sample( value=(tf.broadcast_to(np.mean(avg_effect, 0), sample_shape), tf.broadcast_to(np.mean(avg_stddev, 0), sample_shape), tf.broadcast_to(np.mean(school_effects_standard, 0), sample_shape + [num_schools]), None)) fig, axes = plt.subplots(4, 2, sharex=True, sharey=True) fig.set_size_inches(12, 10) fig.tight_layout() for i, ax in enumerate(axes): sns.kdeplot(predictive_treatment_effects[:, 2*i].numpy(), ax=ax[0], shade=True) ax[0].title.set_text( "School {} treatment effect posterior predictive".format(2*i)) sns.kdeplot(predictive_treatment_effects[:, 2*i + 1].numpy(), ax=ax[1], shade=True) ax[1].title.set_text( "School {} treatment effect posterior predictive".format(2*i + 1)) plt.show() # The mean predicted treatment effects for each of the eight schools. prediction = np.mean(predictive_treatment_effects, axis=0) Explanation: Criticism To get the posterior predictive distribution, i.e., a model of new data $y^*$ given the observed data $y$: $$ p(y^|y) \propto \int_\theta p(y^ | \theta)p(\theta |y)d\theta$$ we override the values of the random variables in the model to set them to the mean of the posterior distribution, and sample from that model to generate new data $y^*$. End of explanation treatment_effects - prediction Explanation: We can look at the residuals between the treatment effects data and the predictions of the model posterior. These correspond with the plot above which shows the shrinkage of the estimated effects toward the population average. End of explanation residuals = treatment_effects - predictive_treatment_effects fig, axes = plt.subplots(4, 2, sharex=True, sharey=True) fig.set_size_inches(12, 10) fig.tight_layout() for i, ax in enumerate(axes): sns.kdeplot(residuals[:, 2*i].numpy(), ax=ax[0], shade=True) ax[0].title.set_text( "School {} treatment effect residuals".format(2*i)) sns.kdeplot(residuals[:, 2*i + 1].numpy(), ax=ax[1], shade=True) ax[1].title.set_text( "School {} treatment effect residuals".format(2*i + 1)) plt.show() Explanation: Because we have a distribution of predictions for each school, we can consider the distribution of residuals as well. End of explanation
9,747
Given the following text description, write Python code to implement the functionality described below step by step Description: Prediction using the bottom up method This notebook details the process of prediction from which homework a notebook came after featurizing the notebook using the bottom up method. This is done by gathering all templates in each notebook after running the algorithm, then using countvectorizer to featurize the notebooks, and finally using random forests to make the prediction Step1: Inter and Intra Similarities The first measure that we can use to determine if something reasonable is happening is to look at, for each homework, the average similarity of two notebooks both pulled from that homework, and the average similarity of a notebook pulled from that homework and any notebook in the corpus not pulled from that homework. These are printed below Step2: Actual Prediction While the above results are helpful, it is better to use a classifier that uses more information. The setup is as follows Step3: Clustering Lastly, we try unsupervised learning, clustering based on the features we've extracted, and measure using sillouette score. Step4: Trying to restrict features The problem above is that there are too many unimportant features -- all this noise makes it hard to seperate the different classes. To try to counteract this, I'll try ranking the features using tfidf and only take some of them Step5: What's happening Figuring out what is going on is a bit difficult, but we can look at the top templates generated from the random forest, and see why they might have been chosen
Python Code: import sys home_directory = '/dfs/scratch2/fcipollone' sys.path.append(home_directory) import numpy as np from nbminer.notebook_miner import NotebookMiner hw_filenames = np.load('../homework_names_jplag_combined_per_student.npy') hw_notebooks = [[NotebookMiner(filename) for filename in temp[:59]] for temp in hw_filenames] from nbminer.pipeline.pipeline import Pipeline from nbminer.features.features import Features from nbminer.preprocess.get_ast_features import GetASTFeatures from nbminer.preprocess.get_imports import GetImports from nbminer.preprocess.resample_by_node import ResampleByNode from nbminer.encoders.ast_graph.ast_graph import ASTGraphReducer from nbminer.preprocess.feature_encoding import FeatureEncoding from nbminer.encoders.cluster.kmeans_encoder import KmeansEncoder from nbminer.results.similarity.jaccard_similarity import NotebookJaccardSimilarity from nbminer.results.prediction.corpus_identifier import CorpusIdentifier a = Features(hw_notebooks[2], 'hw2') a.add_notebooks(hw_notebooks[3], 'hw3') a.add_notebooks(hw_notebooks[4], 'hw4') a.add_notebooks(hw_notebooks[5], 'hw5') gastf = GetASTFeatures() rbn = ResampleByNode() gi = GetImports() agr = ASTGraphReducer(a, threshold=8, split_call=False) ci = CorpusIdentifier() pipe = Pipeline([gastf, rbn, gi, agr, ci]) a = pipe.transform(a) import tqdm X, y = ci.get_data_set() similarities = np.zeros((len(X), len(X))) for i in tqdm.tqdm(range(len(X))): for j in range(len(X)): if len(set.union(set(X[i]), set(X[j]))) == 0: continue similarities[i][j] = len(set.intersection(set(X[i]), set(X[j]))) / (len(set.union(set(X[i]), set(X[j])))) Explanation: Prediction using the bottom up method This notebook details the process of prediction from which homework a notebook came after featurizing the notebook using the bottom up method. This is done by gathering all templates in each notebook after running the algorithm, then using countvectorizer to featurize the notebooks, and finally using random forests to make the prediction End of explanation def get_avg_inter_intra_sims(X, y, val): inter_sims = [] intra_sims = [] for i in range(len(X)): for j in range(i+1, len(X)): if y[i] == y[j] and y[i] == val: intra_sims.append(similarities[i][j]) else: inter_sims.append(similarities[i][j]) return np.array(intra_sims), np.array(inter_sims) for i in np.unique(y): intra_sims, inter_sims = get_avg_inter_intra_sims(X, y, i) print('Mean intra similarity for hw',i,'is',np.mean(intra_sims),'with std',np.std(intra_sims)) print('Mean inter similarity for hw',i,'is',np.mean(inter_sims),'with std',np.std(inter_sims)) print('----') %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = 5, 15 def get_all_sims(X, y, val): sims = [] for i in range(len(X)): for j in range(i+1, len(X)): if y[i] == val or y[j] == val: sims.append(similarities[i][j]) return sims fig, axes = plt.subplots(4) for i in range(4): axes[i].hist(get_all_sims(X,y,i), bins=30) axes[i].set_xlabel("Similarity Value") axes[i].set_ylabel("Number of pairs") Explanation: Inter and Intra Similarities The first measure that we can use to determine if something reasonable is happening is to look at, for each homework, the average similarity of two notebooks both pulled from that homework, and the average similarity of a notebook pulled from that homework and any notebook in the corpus not pulled from that homework. These are printed below End of explanation import sklearn from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score X, y = ci.get_data_set() countvec = sklearn.feature_extraction.text.CountVectorizer() X_list = [" ".join(el) for el in X] countvec.fit(X_list) X = countvec.transform(X_list) p = np.random.permutation(len(X.todense())) X = X.todense()[p] y = np.array(y)[p] clf = sklearn.ensemble.RandomForestClassifier(n_estimators=400, max_depth=3) scores = cross_val_score(clf, X, y, cv=10) print(scores) print(np.mean(scores)) from sklearn.ensemble import AdaBoostClassifier clf = sklearn.ensemble.AdaBoostClassifier(n_estimators=700) scores = cross_val_score(clf, X, y, cv=10) print(scores) print(np.mean(scores)) X.shape Explanation: Actual Prediction While the above results are helpful, it is better to use a classifier that uses more information. The setup is as follows: Split the data into train and test Vectorize based on templates that exist Build a random forest classifier that uses this feature representation, and measure the performance End of explanation X, y = ci.get_data_set() countvec = sklearn.feature_extraction.text.CountVectorizer() X_list = [" ".join(el) for el in X] countvec.fit(X_list) X = countvec.transform(X_list) clusterer = sklearn.cluster.KMeans(n_clusters = 4).fit(X) cluster_score = (sklearn.metrics.silhouette_score(X, clusterer.labels_)) cheat_score = (sklearn.metrics.silhouette_score(X, y)) print('Silhouette score using the actual labels:', cheat_score) print('Silhouette score using the cluster labels:', cluster_score) x_reduced = sklearn.decomposition.PCA(n_components=2).fit_transform(X.todense()) plt.rcParams['figure.figsize'] = 5, 10 fig, axes = plt.subplots(2) axes[0].scatter(x_reduced[:,0], x_reduced[:,1], c=y) axes[0].set_title('PCA Reduced notebooks with original labels') axes[1].scatter(x_reduced[:,0], x_reduced[:,1], c=clusterer.labels_) axes[1].set_title('PCA Reduced notebooks with kmean cluster labels') Explanation: Clustering Lastly, we try unsupervised learning, clustering based on the features we've extracted, and measure using sillouette score. End of explanation X, y = ci.get_data_set() countvec = sklearn.feature_extraction.text.TfidfVectorizer() X_list = [" ".join(el) for el in X] countvec.fit(X_list) X = countvec.transform(X_list) #X = X.todense() feature_array = np.array(tfidf.get_feature_names()) tfidf_sorting = np.argsort(X.toarray()).flatten()[::-1] top_n = feature_array[tfidf_sorting][:4] print(top_n) X, y = ci.get_data_set() countvec = sklearn.feature_extraction.text.CountVectorizer() X_list = [" ".join([val for val in el if val in top_n]) for el in X] countvec.fit(X_list) X = countvec.transform(X_list) X = X.todense() np.array([X[n,0] for n in range(len(X))]).shape x_reduced = sklearn.decomposition.PCA(n_components=2).fit_transform(X) print(x_reduced.shape) plt.rcParams['figure.figsize'] = 5, 5 plt.scatter(x_reduced[:,0], x_reduced[:,1], c=y) Explanation: Trying to restrict features The problem above is that there are too many unimportant features -- all this noise makes it hard to seperate the different classes. To try to counteract this, I'll try ranking the features using tfidf and only take some of them End of explanation ''' Looking at the output below, it's clear that the bottom up method is recognizing very specific structures of ast graph, which makes sense because some structures are exactly repeated in homeworks. For example: treatment = pd.Series([0]*4 + [1]*2) is a line in all of the homework one notebooks. Example function call lines: var = call(a_bunch_of_operations) var = a[10] + call(10) var = sklearn.linear_model.linear_regression(X[a:b], y[a:b]) ''' clf.fit(X,y) fnames= countvec.get_feature_names() clfi = clf.feature_importances_ sa = [] for i in range(len(clfi)): sa.append((clfi[i], fnames[i])) sra = [el for el in reversed(sorted(sa))] import astor for temp in sra: temp = temp[1] print(temp, agr.templates.get_examples(temp)[1]) for i in range(5): print ('\t',astor.to_source(agr.templates.get_examples(temp)[0][i])) Explanation: What's happening Figuring out what is going on is a bit difficult, but we can look at the top templates generated from the random forest, and see why they might have been chosen End of explanation
9,748
Given the following text description, write Python code to implement the functionality described below step by step Description: One Queue or Two Modeling and Simulation in Python Copyright 2021 Allen Downey License Step1: This notebook presents a case study from Modeling and Simulation in Python. It explores a question related to queueing theory, which is the study of systems that involve waiting in lines, also known as "queues". Suppose you are designing the checkout area for a new store. There is room for two checkout counters and a waiting area for customers. You can make two lines, one for each counter, or one line that serves both counters. In theory, you might expect a single line to be better, but it has some practical drawbacks Step2: Test this function by creating a System object with lam=1/8 and mu=1/5. Step3: Write an update function that takes as parameters x, which is the total number of customer in the store, including the one checking out; t, which is the number of minutes that have elapsed in the simulation, and system, which is a System object. If there's a customer checking out, it should use flip to decide whether they are done. And it should use flip to decide if a new customer has arrived. It should return the total number of customers at the end of the time step. Step4: Test your function by calling it with x=1, t=0, and the System object you created. If you run it a few times, you should see different results. Step6: Now we can run the simulation. Here's a version of run_simulation that creates a TimeSeries with the total number of customers in the store, including the one checking out. Step7: Call run_simulation with your update function and plot the results. Step9: After the simulation, we can compute L, which is the average number of customers in the system, and W, which is the average time customers spend in the store. L and W are related by Little's Law Step10: Call compute_metrics with the results from your simulation. Step11: Parameter sweep Since we don't know the actual value of $\lambda$, we can sweep through a range of possibilities, from 10% to 80% of the completion rate, $\mu$. (If customers arrive faster than the completion rate, the queue grows without bound. In that case the metrics L and W just depend on how long the store is open.) Create an array of values for lam. Step12: Write a function that takes an array of values for lam, a single value for mu, and an update function. For each value of lam, it should run a simulation, compute L and W, and store the value of W in a SweepSeries. It should return the SweepSeries. Step13: Call your function to generate a SweepSeries, and plot it. Step14: If we imagine that this range of values represents arrival rates on different days, we can use the average value of W, for a range of values of lam, to compare different queueing strategies. Step16: Analysis The model I chose for this system is a common model in queueing theory, in part because many of its properties can be derived analytically. In particular, we can derive the average time in the store as a function of $\mu$ and $\lambda$ Step17: Use this function to plot the theoretical results, then plot your simulation results again on the same graph. How do they compare? Step18: Multiple servers Now let's try the other two queueing strategies Step19: Use this update function to simulate the system, plot the results, and print the metrics. Step20: Since we have two checkout counters now, we can consider values for $\lambda$ that exceed $\mu$. Create a new array of values for lam from 10% to 160% of mu. Step21: Use your sweep function to simulate the two server, one queue scenario with a range of values for lam. Plot the results and print the average value of W across all values of lam. Step22: Multiple queues To simulate the scenario with two separate queues, we need two state variables to keep track of customers in each queue. Write an update function that takes x1, x2, t, and system as parameters and returns x1 and x2 as return values. f you are not sure how to return more than one return value, see compute_metrics. When a customer arrives, which queue do they join? Step23: Write a version of run_simulation that works with this update function. Step24: Test your functions by running a simulation with a single value of lam. Step25: Sweep a range of values for lam, plot the results, and print the average wait time across all values of lam. How do the results compare to the scenario with two servers and one queue.
Python Code: # install Pint if necessary try: import pint except ImportError: !pip install pint # download modsim.py if necessary from os.path import exists filename = 'modsim.py' if not exists(filename): from urllib.request import urlretrieve url = 'https://raw.githubusercontent.com/AllenDowney/ModSim/main/' local, _ = urlretrieve(url+filename, filename) print('Downloaded ' + local) # import functions from modsim from modsim import * Explanation: One Queue or Two Modeling and Simulation in Python Copyright 2021 Allen Downey License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International End of explanation # Solution goes here Explanation: This notebook presents a case study from Modeling and Simulation in Python. It explores a question related to queueing theory, which is the study of systems that involve waiting in lines, also known as "queues". Suppose you are designing the checkout area for a new store. There is room for two checkout counters and a waiting area for customers. You can make two lines, one for each counter, or one line that serves both counters. In theory, you might expect a single line to be better, but it has some practical drawbacks: in order to maintain a single line, you would have to install rope barriers, and customers might be put off by what seems to be a longer line, even if it moves faster. So you'd like to check whether the single line is really better and by how much. Simulation can help answer this question. As we did in the bikeshare model, we'll assume that a customer is equally likely to arrive during any timestep. I'll denote this probability using the Greek letter lambda, $\lambda$, or the variable name lam. The value of $\lambda$ probably varies from day to day, so we'll have to consider a range of possibilities. Based on data from other stores, you know that it takes 5 minutes for a customer to check out, on average. But checkout times are highly variable: most customers take less than 5 minutes, but some take substantially more. A simple way to model this variability is to assume that when a customer is checking out, they have the same probability of finishing up during each time step. I'll denote this probability using the Greek letter mu, $\mu$, or the variable name mu. If we choose $\mu=1/5$, the average number of time steps for each checkout will be 5 minutes, which is consistent with the data. One server, one queue Write a function called make_system that takes lam and mu as parameters and returns a System object with variables lam, mu, and duration. Set duration, which is the number of time steps to simulate, to 10 hours, expressed in minutes. End of explanation # Solution goes here Explanation: Test this function by creating a System object with lam=1/8 and mu=1/5. End of explanation # Solution goes here Explanation: Write an update function that takes as parameters x, which is the total number of customer in the store, including the one checking out; t, which is the number of minutes that have elapsed in the simulation, and system, which is a System object. If there's a customer checking out, it should use flip to decide whether they are done. And it should use flip to decide if a new customer has arrived. It should return the total number of customers at the end of the time step. End of explanation # Solution goes here Explanation: Test your function by calling it with x=1, t=0, and the System object you created. If you run it a few times, you should see different results. End of explanation def run_simulation(system, update_func): Simulate a queueing system. system: System object update_func: function object x = 0 results = TimeSeries() results[0] = x for t in linrange(0, system.duration): x = update_func(x, t, system) results[t+1] = x return results Explanation: Now we can run the simulation. Here's a version of run_simulation that creates a TimeSeries with the total number of customers in the store, including the one checking out. End of explanation # Solution goes here Explanation: Call run_simulation with your update function and plot the results. End of explanation def compute_metrics(results, system): Compute average number of customers and wait time. results: TimeSeries of queue lengths system: System object returns: L, W L = results.mean() W = L / system.lam return L, W Explanation: After the simulation, we can compute L, which is the average number of customers in the system, and W, which is the average time customers spend in the store. L and W are related by Little's Law: $L = \lambda W$ Where $\lambda$ is the arrival rate. Here's a function that computes them. End of explanation # Solution goes here Explanation: Call compute_metrics with the results from your simulation. End of explanation # Solution goes here Explanation: Parameter sweep Since we don't know the actual value of $\lambda$, we can sweep through a range of possibilities, from 10% to 80% of the completion rate, $\mu$. (If customers arrive faster than the completion rate, the queue grows without bound. In that case the metrics L and W just depend on how long the store is open.) Create an array of values for lam. End of explanation # Solution goes here Explanation: Write a function that takes an array of values for lam, a single value for mu, and an update function. For each value of lam, it should run a simulation, compute L and W, and store the value of W in a SweepSeries. It should return the SweepSeries. End of explanation # Solution goes here # Solution goes here Explanation: Call your function to generate a SweepSeries, and plot it. End of explanation # Solution goes here Explanation: If we imagine that this range of values represents arrival rates on different days, we can use the average value of W, for a range of values of lam, to compare different queueing strategies. End of explanation def plot_W(lam_array, mu): Plot the theoretical mean wait time. lam_array: array of values for `lam` mu: probability of finishing a checkout W_array = 1 / (mu - lam_array) W_series = make_series(lam_array, W_array) W_series.plot(style='-', label='analysis') Explanation: Analysis The model I chose for this system is a common model in queueing theory, in part because many of its properties can be derived analytically. In particular, we can derive the average time in the store as a function of $\mu$ and $\lambda$: $W = 1 / (\mu - \lambda)$ The following function plots the theoretical value of $W$ as a function of $\lambda$. End of explanation # Solution goes here Explanation: Use this function to plot the theoretical results, then plot your simulation results again on the same graph. How do they compare? End of explanation # Solution goes here Explanation: Multiple servers Now let's try the other two queueing strategies: One queue with two checkout counters. Two queues, one for each counter. The following figure shows the three scenarios: Write an update function for one queue with two servers. End of explanation # Solution goes here Explanation: Use this update function to simulate the system, plot the results, and print the metrics. End of explanation # Solution goes here Explanation: Since we have two checkout counters now, we can consider values for $\lambda$ that exceed $\mu$. Create a new array of values for lam from 10% to 160% of mu. End of explanation # Solution goes here # Solution goes here Explanation: Use your sweep function to simulate the two server, one queue scenario with a range of values for lam. Plot the results and print the average value of W across all values of lam. End of explanation # Solution goes here Explanation: Multiple queues To simulate the scenario with two separate queues, we need two state variables to keep track of customers in each queue. Write an update function that takes x1, x2, t, and system as parameters and returns x1 and x2 as return values. f you are not sure how to return more than one return value, see compute_metrics. When a customer arrives, which queue do they join? End of explanation # Solution goes here Explanation: Write a version of run_simulation that works with this update function. End of explanation # Solution goes here Explanation: Test your functions by running a simulation with a single value of lam. End of explanation # Solution goes here # Solution goes here # Solution goes here Explanation: Sweep a range of values for lam, plot the results, and print the average wait time across all values of lam. How do the results compare to the scenario with two servers and one queue. End of explanation
9,749
Given the following text description, write Python code to implement the functionality described below step by step Description: Reading and writing raw files In this example, we read a raw file. Plot a segment of MEG data restricted to MEG channels. And save these data in a new raw file. Step1: Show MEG data
Python Code: # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import mne from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis_raw.fif' raw = mne.io.read_raw_fif(fname) # Set up pick list: MEG + STI 014 - bad channels want_meg = True want_eeg = False want_stim = False include = ['STI 014'] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bad channels + 2 more picks = mne.pick_types(raw.info, meg=want_meg, eeg=want_eeg, stim=want_stim, include=include, exclude='bads') some_picks = picks[:5] # take 5 first start, stop = raw.time_as_index([0, 15]) # read the first 15s of data data, times = raw[some_picks, start:(stop + 1)] # save 150s of MEG data in FIF file raw.save('sample_audvis_meg_trunc_raw.fif', tmin=0, tmax=150, picks=picks, overwrite=True) Explanation: Reading and writing raw files In this example, we read a raw file. Plot a segment of MEG data restricted to MEG channels. And save these data in a new raw file. End of explanation raw.plot() Explanation: Show MEG data End of explanation
9,750
Given the following text description, write Python code to implement the functionality described below step by step Description: モデル化 Next >> 0_quickstart Prev >> editing シミュレーションを行う際に一番最初に行うのは モデル化 である.シミュレーションの結果は,どのようにモデル化を行ったかによって大きく影響される.当然ではあるが. 例えば,単振り子のシミュレーションにおいて,0_quickstartでは 摩擦 による運動の減衰を考えなかったが,これを考えてモデル化を行ってみる. 振子と天井の結点の部分で粘性摩擦を仮定し,角速度に比例した力$-c\dot{\theta}$がはたらくものとする.すると,運動方程式は \begin{align} ml\ddot{\theta} = -mg\sin\theta - c\dot{\theta} \end{align} となる. Step1: 振り子の角度の時間変化をグラフにすると,このようになっている. Step2: 摩擦 という要素を考えることによって運動の様相が変化したことがわかる. シミュレーションを行う上では,考えたい物理モデルをどのようにモデル化するかによって,得られる結果が大きく変わる.所望のシミュレーションを行うためには,十分な力学の知識が必要となる. Lagrange の運動方程式 0_quickstartでは,単振り子の運動方程式をニュートンの運動方程式から求めたが,今度は ラグランジュの運動方程式 から求める. おもりの運動エネルギーは \begin{align} T = \frac{1}{2}m(l\dot{\theta})^2 \end{align} であり,ポテンシャルエネルギー(位置エネルギー)は \begin{align} U = - m(-g)(l-l\cos\theta) = mgl(1 - \cos\theta) \end{align} である.したがって,系のラグランジアンは \begin{align} L = T - U = \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \end{align} であり,ラグランジュの運動方程式は \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0 \end{align} である.項を一つ一つ丁寧に計算をすると, \begin{align} \frac{\partial L}{\partial \dot{\theta}} = \frac{\partial }{\partial \dot{\theta}} \left( \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \right) = ml^2\dot{\theta} \end{align} \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) = \frac{d}{dt} (ml^2\dot{\theta}) = ml^2\ddot{\theta} \end{align} \begin{align} \frac{\partial L}{\partial \theta} = \frac{\partial }{\partial \theta} \left( \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \right) = -mgl \sin\theta \end{align} より, \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = ml^2\ddot{\theta} - (-mgl \sin\theta) = 0 \end{align} よって, \begin{align} ml^2\ddot{\theta} + mgl \sin\theta = 0 \end{align} である.式を整理すると, \begin{align} \ddot{\theta} = -\frac{g}{l} \sin\theta \end{align} となっており,ニュートンの運動方程式から導出したものと同じ結果が得られたことがわかる. Lagrange の運動方程式を SymPy で計算する Lagrange の運動方程式は運動の自由度についてのミニマムな運動方程式を記述することができる.しかし,ラグランジアンとその偏微分の計算は複雑になりがちである.単振り子の例については,運動の自由度は1であり,かつ非常にシンプルな状況であるため手で計算してもよいのだが,これが他リンク系となったり,運動を2次元から3次元に拡張したりしたときには,もはや手計算で求める気力が起こらない. そこで, Python を使って Lagrange の運動方程式を導く. SymPy の LagrangesMethod クラス を用いる. Step3: 定数については,m = sym.symbols('m') のように定義する. なお,時間$t$については必ず m = sym.symbols('m') を定義する必要がある. 時間とともに変化する値(一般化座標)については, theta = me.dynamicsymbols('theta') のように定義する.また,これの微分(一般加速度)については, dtheta = me.dynamicsymbols('theta, 1') のようにして定義をする. Step4: 物理モデルに必要な定数・変数を全て定義してから,力学的エネルギーをそれぞれ記述し,ラグランジアンについても計算する. Step5: LM = me.LagrangesMethod(ラグランジアン, [一般化座標の配列]) という関数で,ラグランジュの運動方程式を定義する. LM.form_lagranges_equations() でラグランジュの運動方程式が出力される.
Python Code: import numpy as np from scipy.integrate import odeint from math import sin ''' constants ''' m = 1 # mass of the pendulum [kg] l = 1 # length of the pendulum [m] g = 10 # Gravitational acceleration [m/s^2] c = 0.3 # Damping constant [kg.m/(rad.s)] ''' time setting ''' t_end = 10 # simulation time [s] t_fps = 50 # frame per second. This value means smoothness of produced graph and animation t_step = 1/t_fps t = np.arange(0, t_end, t_step) ''' initial value ''' theta_init = 0 # initial value of theta [rad] dtheta_init = 1 # initial value of dot theta [rad/s] s_init = np.array([theta_init, dtheta_init]) def odefunc(s, t): theta = s[0] dtheta = s[1] ddtheta = -g/l*sin(theta) - c*dtheta# <- Equation of motion. *** THIS CODE CHANGED *** return np.r_[dtheta, ddtheta] s = odeint(odefunc, s_init, t) print('ODE calculation finished.') Explanation: モデル化 Next >> 0_quickstart Prev >> editing シミュレーションを行う際に一番最初に行うのは モデル化 である.シミュレーションの結果は,どのようにモデル化を行ったかによって大きく影響される.当然ではあるが. 例えば,単振り子のシミュレーションにおいて,0_quickstartでは 摩擦 による運動の減衰を考えなかったが,これを考えてモデル化を行ってみる. 振子と天井の結点の部分で粘性摩擦を仮定し,角速度に比例した力$-c\dot{\theta}$がはたらくものとする.すると,運動方程式は \begin{align} ml\ddot{\theta} = -mg\sin\theta - c\dot{\theta} \end{align} となる. End of explanation %matplotlib inline import matplotlib.pyplot as plt plt.figure() plt.plot(t, s[:, 0]) plt.xlabel('t [s]') plt.ylabel('theta [rad]') plt.show() Explanation: 振り子の角度の時間変化をグラフにすると,このようになっている. End of explanation import sympy as sym import sympy.physics.mechanics as me Explanation: 摩擦 という要素を考えることによって運動の様相が変化したことがわかる. シミュレーションを行う上では,考えたい物理モデルをどのようにモデル化するかによって,得られる結果が大きく変わる.所望のシミュレーションを行うためには,十分な力学の知識が必要となる. Lagrange の運動方程式 0_quickstartでは,単振り子の運動方程式をニュートンの運動方程式から求めたが,今度は ラグランジュの運動方程式 から求める. おもりの運動エネルギーは \begin{align} T = \frac{1}{2}m(l\dot{\theta})^2 \end{align} であり,ポテンシャルエネルギー(位置エネルギー)は \begin{align} U = - m(-g)(l-l\cos\theta) = mgl(1 - \cos\theta) \end{align} である.したがって,系のラグランジアンは \begin{align} L = T - U = \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \end{align} であり,ラグランジュの運動方程式は \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0 \end{align} である.項を一つ一つ丁寧に計算をすると, \begin{align} \frac{\partial L}{\partial \dot{\theta}} = \frac{\partial }{\partial \dot{\theta}} \left( \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \right) = ml^2\dot{\theta} \end{align} \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) = \frac{d}{dt} (ml^2\dot{\theta}) = ml^2\ddot{\theta} \end{align} \begin{align} \frac{\partial L}{\partial \theta} = \frac{\partial }{\partial \theta} \left( \frac{1}{2}m(l\dot{\theta})^2 - mgl(1 - \cos\theta) \right) = -mgl \sin\theta \end{align} より, \begin{align} \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = ml^2\ddot{\theta} - (-mgl \sin\theta) = 0 \end{align} よって, \begin{align} ml^2\ddot{\theta} + mgl \sin\theta = 0 \end{align} である.式を整理すると, \begin{align} \ddot{\theta} = -\frac{g}{l} \sin\theta \end{align} となっており,ニュートンの運動方程式から導出したものと同じ結果が得られたことがわかる. Lagrange の運動方程式を SymPy で計算する Lagrange の運動方程式は運動の自由度についてのミニマムな運動方程式を記述することができる.しかし,ラグランジアンとその偏微分の計算は複雑になりがちである.単振り子の例については,運動の自由度は1であり,かつ非常にシンプルな状況であるため手で計算してもよいのだが,これが他リンク系となったり,運動を2次元から3次元に拡張したりしたときには,もはや手計算で求める気力が起こらない. そこで, Python を使って Lagrange の運動方程式を導く. SymPy の LagrangesMethod クラス を用いる. End of explanation ''' Define constants and generalized coordinates ''' t = sym.symbols('t') l, m, g = sym.symbols('l m g') theta = me.dynamicsymbols('theta') dtheta = me.dynamicsymbols('theta', 1) Explanation: 定数については,m = sym.symbols('m') のように定義する. なお,時間$t$については必ず m = sym.symbols('m') を定義する必要がある. 時間とともに変化する値(一般化座標)については, theta = me.dynamicsymbols('theta') のように定義する.また,これの微分(一般加速度)については, dtheta = me.dynamicsymbols('theta, 1') のようにして定義をする. End of explanation ''' Kinetic energy ''' T = m*(l*dtheta)**2/2 ''' Potential energy ''' U = -m*(-g)*(l - l*sym.cos(theta)) ''' Lagurangian ''' L = T - U Explanation: 物理モデルに必要な定数・変数を全て定義してから,力学的エネルギーをそれぞれ記述し,ラグランジアンについても計算する. End of explanation ''' Calculating the eom ''' LM = me.LagrangesMethod(L, [theta]) print(LM.form_lagranges_equations()) Explanation: LM = me.LagrangesMethod(ラグランジアン, [一般化座標の配列]) という関数で,ラグランジュの運動方程式を定義する. LM.form_lagranges_equations() でラグランジュの運動方程式が出力される. End of explanation
9,751
Given the following text description, write Python code to implement the functionality described below step by step Description: GA4GH IPython Example Notebook This notebook provides an overview of how to call a the GA4GH reference server from an iPython notebook. Before running this notebook Step1: Great! Now we can run calls to query ReferenceSets, References, Datasets, VariantSets, CallSets, Variants, ReadGroups, ReadGroupSets, & Reads. Search methods return generators. Here we will explictly create lists out of these objects to allow us to directly index into the list of instances that the query returned. Instances have a toJsonDict method that returns a dictionary representation of the object. We'll make use of this to examine the the underlying data structures. Search/Get ReferenceSets ReferenceSets are lists of References. Think of them like the genome version (ie. grch37, hg19). Step2: Search/Get References The References endpoints let you access the DNA sequences that make up the reference genome. The example dataset is from subsets of the first 3 chromosomes Step3: In addition to fetching metadata about the reference, you can access the base sequence Step4: Search/Get Dataset Datasets are a collection of related data. In this example, we'll examine a collection of reads and variants. Step5: Search/Get VariantSets VariantSets are a collection of variants and calls that are intended to be analyzed together. Step6: Search/Get Callset Callsets are a collection of genotype calls. Callsets apply to the samples within a dataset. Step7: Search/Get Variants A Variant represents a change in DNA sequence relative to some reference. For example, a variant could represent a SNP or an insertion. You can think of them as a row in a VCF. Variants can be supported by many calls. Step8: Search/Get Readgroupsets A ReadGroupSet is a logical collection of ReadGroups. Typically one ReadGroupSet represents all the reads from one experimental sample. Step9: Get ReadGroups A ReadGroup is a set of reads derived from one physical sequencing process. Step10: Get Reads Each read alignment describes an alignment with additional information about the fragment and the read. A read alignment object is equivalent to a line in a SAM file. Since there are often many reads, we won't iterate over all of them. Instead we can summerize the query and then output the dictionary representing the last one.
Python Code: baseURL = "http://localhost:8000" client = ga4gh.client.HttpClient(baseURL) Explanation: GA4GH IPython Example Notebook This notebook provides an overview of how to call a the GA4GH reference server from an iPython notebook. Before running this notebook: git clone https://github.com/ga4gh/server.git -b develop Download the example data (if $scripts/download_data.py$ doens't work, wget https://github.com/ga4gh/server/releases/download/data/ga4gh-example-data-v3.2.tar and tar -xvf in the server/ directory Launch an instance of the reference server on localhost ("python server_dev.py") Note: If you have trouble importing the ga4gh module, either symlink this notebook into the /server directory or add the path to the GA4GH development repo to your PYTHONPATH. Connect to GA4GH Server End of explanation referenceSets = list(client.search_reference_sets()) print("ReferenceSets") for referenceSet in referenceSets: print("NCBI Taxon Id: {}".format(referenceSet.ncbiTaxonId)) referenceSet = client.get_reference_set(referenceSets[0].id) referenceSet.toJsonDict() Explanation: Great! Now we can run calls to query ReferenceSets, References, Datasets, VariantSets, CallSets, Variants, ReadGroups, ReadGroupSets, & Reads. Search methods return generators. Here we will explictly create lists out of these objects to allow us to directly index into the list of instances that the query returned. Instances have a toJsonDict method that returns a dictionary representation of the object. We'll make use of this to examine the the underlying data structures. Search/Get ReferenceSets ReferenceSets are lists of References. Think of them like the genome version (ie. grch37, hg19). End of explanation references = list(client.search_references(referenceSet.id)) print("References") for reference in references: print("Name: {}, Length: {}".format(reference.name, reference.length)) reference = client.get_reference(references[0].id) reference.toJsonDict() Explanation: Search/Get References The References endpoints let you access the DNA sequences that make up the reference genome. The example dataset is from subsets of the first 3 chromosomes: End of explanation client.listReferenceBases(references[0].id, start=10000, end=10100) Explanation: In addition to fetching metadata about the reference, you can access the base sequence: End of explanation datasets = list(client.search_datasets()) print("Datasets") for dataset in datasets: print("Name: {}".format(dataset.name)) dataset = client.get_dataset(datasets[0].id) dataset.toJsonDict() Explanation: Search/Get Dataset Datasets are a collection of related data. In this example, we'll examine a collection of reads and variants. End of explanation variantSets = list(client.search_variant_sets(dataset.id)) print("VariantSets") for variantSet in variantSets: print("Name: {}".format(variantSet.name)) variantSetId = variantSets[0].id variantSet = client.get_variant_set(variantSetId) variantSet.toJsonDict() Explanation: Search/Get VariantSets VariantSets are a collection of variants and calls that are intended to be analyzed together. End of explanation callSets = list(client.search_call_sets(variantSetId)) print("CallSets") for callSet in callSets: print("Name: {}".format(callSet.name)) callSet = client.get_call_set(callSets[0].id) callSet.toJsonDict() Explanation: Search/Get Callset Callsets are a collection of genotype calls. Callsets apply to the samples within a dataset. End of explanation variants = list(client.search_variants(variantSetId, start=100000, end=101000, referenceName = "1")) print("Variants") for variant in variants: print("Reference Name: {}, Start: {}, Name: {}".format(variant.referenceName, variant.start, variant.names[0])) variant = client.get_variant(variants[0].id) variant.toJsonDict() Explanation: Search/Get Variants A Variant represents a change in DNA sequence relative to some reference. For example, a variant could represent a SNP or an insertion. You can think of them as a row in a VCF. Variants can be supported by many calls. End of explanation readGroupSets = list(client.search_read_group_sets(dataset.id)) print("ReadGroupSets") for readGroup in readGroupSets: print("Name: {}".format(readGroup.name)) readGroupSet = client.get_read_group_set(readGroupSets[0].id) readGroupSet.toJsonDict() Explanation: Search/Get Readgroupsets A ReadGroupSet is a logical collection of ReadGroups. Typically one ReadGroupSet represents all the reads from one experimental sample. End of explanation readGroup = client.get_read_group(readGroupSet.readGroups[0].id) readGroup.toJsonDict() Explanation: Get ReadGroups A ReadGroup is a set of reads derived from one physical sequencing process. End of explanation readGroupIds = [readGroup.id for readGroup in readGroupSet.readGroups] readGroupDescriptions = [readGroup.description for readGroup in readGroupSet.readGroups] reads = client.search_reads(readGroupIds, reference.id) print("Read Alignments") # The server paginates reads by default; here we iterate over the reads # generate to make the appropriate requests to the server count = 0 for read in reads: count += 1 print("{} reads in Readgroups: {} on Reference: {}".format( count, ', '.join(readGroupDescriptions), reference.name)) read.toJsonDict() Explanation: Get Reads Each read alignment describes an alignment with additional information about the fragment and the read. A read alignment object is equivalent to a line in a SAM file. Since there are often many reads, we won't iterate over all of them. Instead we can summerize the query and then output the dictionary representing the last one. End of explanation
9,752
Given the following text description, write Python code to implement the functionality described below step by step Description: Training a neural network on MNIST with Keras This simple example demonstrates how to plug TensorFlow Datasets (TFDS) into a Keras model. Copyright 2020 The TensorFlow Datasets Authors, Licensed under the Apache License, Version 2.0 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https Step1: 手順 1 Step3: トレーニングパイプラインを構築する 次の変換を適用します。 tf.data.Dataset.map Step4: 評価パイプラインを構築する テストのパイプラインはトレーニングのパイプラインと似ていますが、次のようにわずかに異なります。 tf.data.Dataset.shuffle を呼び出す必要はありません。 エポック間のバッチが同一である可能性があるのでキャッシュはバッチ処理の後に行われます。 Step5: 手順 2
Python Code: import tensorflow as tf import tensorflow_datasets as tfds Explanation: Training a neural network on MNIST with Keras This simple example demonstrates how to plug TensorFlow Datasets (TFDS) into a Keras model. Copyright 2020 The TensorFlow Datasets Authors, Licensed under the Apache License, Version 2.0 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://www.tensorflow.org/datasets/keras_example"><img src="https://www.tensorflow.org/images/tf_logo_32px.png">TensorFlow.org で表示</a></td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ja/datasets/keras_example.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png">Google Colab で実行</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ja/datasets/keras_example.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png">GitHub でソースを表示</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ja/datasets/keras_example.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">ノートブックをダウンロード</a> </td> </table> End of explanation (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) Explanation: 手順 1: 入力パイプラインを作成する まず、次のガイドを参照し、有効な入力パイプラインを構築します。 TFDS パフォーマンスガイド tf.data パフォーマンスガイド データセットを読み込む 次の引数を使って MNIST データセットを読み込みます。 shuffle_files: MNIST データは、単一のファイルにのみ保存されていますが、ディスク上の複数のファイルを伴うより大きなデータセットについては、トレーニングの際にシャッフルすることが良い実践です。 as_supervised: dict {'image': img, 'label': label} の代わりに tuple (img, label) を返します。 End of explanation def normalize_img(image, label): Normalizes images: `uint8` -> `float32`. return tf.cast(image, tf.float32) / 255., label ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(128) ds_train = ds_train.prefetch(tf.data.AUTOTUNE) Explanation: トレーニングパイプラインを構築する 次の変換を適用します。 tf.data.Dataset.map: TFDS は画像を tf.uint8 として提供しますが、モデルは tf.float32 を期待するため、画像を正規化します。 tf.data.Dataset.cache: データセットがメモリに収まる場合、シャッフル前にキャッシュすると、パフォーマンスを改善できます。<br> 注意: ランダム変換は、キャッシュの後に適用してください。 tf.data.Dataset.shuffle: 真のランダム性を得るには、シャッフルバッファをデータセットの完全なサイズに設定してください。<br> 注意: メモリに収まらない大きなデータセットについては、システムで可能な場合は buffer_size=1000 にします。 tf.data.Dataset.batch: シャッフルの後にバッチ処理を行い、各エポックで一意のバッチを取得します。 tf.data.Dataset.prefetch: プリフェッチによってパイプラインを終了し、パフォーマンスを向上させます。 End of explanation ds_test = ds_test.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_test = ds_test.batch(128) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.AUTOTUNE) Explanation: 評価パイプラインを構築する テストのパイプラインはトレーニングのパイプラインと似ていますが、次のようにわずかに異なります。 tf.data.Dataset.shuffle を呼び出す必要はありません。 エポック間のバッチが同一である可能性があるのでキャッシュはバッチ処理の後に行われます。 End of explanation model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) model.compile( optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], ) model.fit( ds_train, epochs=6, validation_data=ds_test, ) Explanation: 手順 2: モデルを作成してトレーニングする TFDS 入力パイプラインを簡単な Keras モデルにプラグインし、モデルをコンパイルしてトレーニングします。 End of explanation
9,753
Given the following text description, write Python code to implement the functionality described below step by step Description: Correlating microstripline model to measurement Target The aim of this example is to correlate the microstripline model to the measurement over 4 frequency decades from 1MHz to 5GHz. Plan Two different lengths of microstripline are measured; Multiline method is used to compute the frequency dependent relative permittivity and loss angle of the dielectric; Microstripline model is fitted to the computed parameters by optimization; Checking the results by embedding the connectors and comparison against measurement; Step1: Measurement of two microstripline with different lengths The measurement where performed the 21th March 2017 on a Anritsu MS46524B 20GHz Vector Network Analyser. The setup is a linear frequency sweep from 1MHz to 10GHz with 10'000 points. Output power is 0dBm, IF bandwidth is 1kHz and neither averaging nor smoothing are used. The frequency range of interest is limited from 1MHz to 5GHz, but the measurement are up to 10GHz. MSLxxx is a L long, W wide, T thick copper microstripline on a H height substrate with bottom ground plane. | Name | L (mm) | W (mm) | H (mm) | T (um) | Substrate | | Step2: The measured data shows that the electrical length of MSL200 is approximately twice the one of MSL100. The frequency spacing between Return Loss dips is approximately the half for MSL200 compared to MSL100. This is coherent with the physical dimensions if the small connector length is neglected. The MSL200 Insertion Loss is also about twice than MSL100, which is coherent as a longer path bring more attenuation. Return Loss under -20dB is usually considered to be fair for microstripline, it correspond to 1% of the power being reflected. Dielectric effective relative permittivity extraction by multiline method The phase of the measurements transmission parameter are subtracted. Because connectors are present on both DUTs, their length effect is canceled and the remaining phase difference is related to the difference of the DUTs length. Knowing the physical length $\Delta L$ and the phase $\Delta \phi$, the effective relative permittivity constant $\epsilon_{r,eff}$ can be computed from the relation $$\left{ \begin{array}{ll} \lambda = \frac{c_0}{f \cdot \sqrt{\epsilon_{r,eff}}} \ \phi = \frac{2\pi L}{\lambda} \end{array} \right. \implies \epsilon_{r,eff} = \left( \frac{\Delta \phi \cdot c_0}{2 \pi f \cdot \Delta L} \right)^2 $$ In the same idea, the difference of Insertion Loss of the two DUT gives the Insertion Loss of the difference of the length and cancel connectors effects. Step3: The effective relative permittivity of the geometry shows a dispersion effect at low frequency which can be modelled by a wideband Debye model such as Djordjevic/Svensson implementation of skrf microstripline media. The value then increase slowly with frequency which correspond roughly to the Kirschning and Jansen dispersion model. The Insertion Loss seems proportional to frequency, which indicate a predominance of the dielectric losses. Conductor losses are related to the square-root of frequency. Radiation losses are neglected. Fit microstripline model to the computed parameters by optimization Effective relative permittivity Microstrip media model with the physical dimensions of the measured microstriplines is fitted to the computed $\epsilon_{r,eff}$ by optimization of $\epsilon_r$ and tand of the substrate at 1GHz. The dispersion model used to account for frequency variation of the parameters are Djordjevic/Svensson and Kirschning and Jansen. Step4: As a sanity check, the model data are compared with the computed parameters Step5: The model results shows a reasonable agreement with the measured $\epsilon_{r,eff}$ and Insertion Loss values. Checking the results If the model is now plotted against the measurement of the same length, the plot shows no agreement. This is because the connector effects are not captured by the model. Step6: Connector delay and loss estimation The delay of the connector is estimated by fitting a line to its phase contribution vs frequency. The phase and loss of the two connector are computed by subtracting phase and loss computed without the connectors to the measurement of the same length. Step7: The phase of the model shows a good agreement, while the Insertion Loss seems to have a reasonable agreement and is small whatsoever. Connector impedance adjustment by time-domain reflectometry Time-domain step responses of measurement and model are used to adjust the connector model characteristic impedance. The plots shows the connector having an inductive behaviour (positive peak) and the microstripline being a bit too much capacitive (negative plateau). Characteristic impedance of the connector is tuned by trial-and-error until a reasonable agreement is achieved. Optimization could have been used instead. Step8: Final comparison
Python Code: %load_ext autoreload %autoreload 2 import skrf as rf import numpy as np from numpy import real, log10, sum, absolute, pi, sqrt import matplotlib.pyplot as plt from scipy.optimize import minimize, differential_evolution rf.stylely() Explanation: Correlating microstripline model to measurement Target The aim of this example is to correlate the microstripline model to the measurement over 4 frequency decades from 1MHz to 5GHz. Plan Two different lengths of microstripline are measured; Multiline method is used to compute the frequency dependent relative permittivity and loss angle of the dielectric; Microstripline model is fitted to the computed parameters by optimization; Checking the results by embedding the connectors and comparison against measurement; End of explanation # Load raw measurements MSL100_raw = rf.Network('MSL100.s2p') MSL200_raw = rf.Network('MSL200.s2p') # Keep only the data from 1MHz to 5GHz MSL100 = MSL100_raw['1-5000mhz'] MSL200 = MSL200_raw['1-5000mhz'] plt.figure() plt.title('Measured data') MSL100.plot_s_db() MSL200.plot_s_db() plt.show() Explanation: Measurement of two microstripline with different lengths The measurement where performed the 21th March 2017 on a Anritsu MS46524B 20GHz Vector Network Analyser. The setup is a linear frequency sweep from 1MHz to 10GHz with 10'000 points. Output power is 0dBm, IF bandwidth is 1kHz and neither averaging nor smoothing are used. The frequency range of interest is limited from 1MHz to 5GHz, but the measurement are up to 10GHz. MSLxxx is a L long, W wide, T thick copper microstripline on a H height substrate with bottom ground plane. | Name | L (mm) | W (mm) | H (mm) | T (um) | Substrate | | :--- | ---: | ---: | ---: | ---: | :--- | | MSL100 | 100 | 3.00 | 1.55 | 50 | FR-4 | | MSL200 | 200 | 3.00 | 1.55 | 50 | FR-4 | The milling of the artwork is performed mechanically with a lateral wall of 45°. A small top ground plane chunk connected by a vias array to bottom ground is provided to solder the connector top ground legs and provide some coplanar-like transition from coax to microstrip. The relative permittivity of the dielectric was assumed to be approximately 4.5 for design purpose. End of explanation c0 = 3e8 f = MSL100.f deltaL = 0.1 deltaPhi = np.unwrap(np.angle(MSL100.s[:,1,0])) - np.unwrap(np.angle(MSL200.s[:,1,0])) Er_eff = np.power(deltaPhi * c0 / (2 * np.pi * f * deltaL), 2) Loss_mea = 20 * log10(absolute(MSL200.s[:,1,0] / MSL100.s[:,1,0])) plt.figure() plt.suptitle('Effective relative permittivity and loss') plt.subplot(2,1,1) plt.plot(f * 1e-9, Er_eff) plt.ylabel('$\epsilon_{r,eff}$') plt.subplot(2,1,2) plt.plot(f * 1e-9, Loss_mea) plt.xlabel('Frequency (GHz)') plt.ylabel('Insertion Loss (dB)') plt.show() Explanation: The measured data shows that the electrical length of MSL200 is approximately twice the one of MSL100. The frequency spacing between Return Loss dips is approximately the half for MSL200 compared to MSL100. This is coherent with the physical dimensions if the small connector length is neglected. The MSL200 Insertion Loss is also about twice than MSL100, which is coherent as a longer path bring more attenuation. Return Loss under -20dB is usually considered to be fair for microstripline, it correspond to 1% of the power being reflected. Dielectric effective relative permittivity extraction by multiline method The phase of the measurements transmission parameter are subtracted. Because connectors are present on both DUTs, their length effect is canceled and the remaining phase difference is related to the difference of the DUTs length. Knowing the physical length $\Delta L$ and the phase $\Delta \phi$, the effective relative permittivity constant $\epsilon_{r,eff}$ can be computed from the relation $$\left{ \begin{array}{ll} \lambda = \frac{c_0}{f \cdot \sqrt{\epsilon_{r,eff}}} \ \phi = \frac{2\pi L}{\lambda} \end{array} \right. \implies \epsilon_{r,eff} = \left( \frac{\Delta \phi \cdot c_0}{2 \pi f \cdot \Delta L} \right)^2 $$ In the same idea, the difference of Insertion Loss of the two DUT gives the Insertion Loss of the difference of the length and cancel connectors effects. End of explanation from skrf.media import MLine W = 3.00e-3 H = 1.51e-3 T = 50e-6 L = 0.1 Er0 = 4.5 tand0 = 0.02 f_epr_tand = 1e9 x0 = [Er0, tand0] def model(x, freq, Er_eff, L, W, H, T, f_epr_tand, Loss_mea): ep_r = x[0] tand = x[1] m = MLine(frequency=freq, z0=50, w=W, h=H, t=T, ep_r=ep_r, mu_r=1, rho=1.712e-8, tand=tand, rough=0.15e-6, f_low=1e3, f_high=1e12, f_epr_tand=f_epr_tand, diel='djordjevicsvensson', disp='kirschningjansen') DUT = m.line(L, 'm', embed=True, z0=m.Z0_f) Loss_mod = 20 * log10(absolute(DUT.s[:,1,0])) return sum((real(m.ep_reff_f) - Er_eff)**2) + 0.01*sum((Loss_mod - Loss_mea)**2) res = minimize(model, x0, args=(MSL100.frequency, Er_eff, L, W, H, T, f_epr_tand, Loss_mea), bounds=[(4.2, 4.7), (0.001, 0.1)]) Er = res.x[0] tand = res.x[1] print('Er={:.3f}, tand={:.4f} at {:.1f} GHz.'.format(Er, tand, f_epr_tand * 1e-9)) Explanation: The effective relative permittivity of the geometry shows a dispersion effect at low frequency which can be modelled by a wideband Debye model such as Djordjevic/Svensson implementation of skrf microstripline media. The value then increase slowly with frequency which correspond roughly to the Kirschning and Jansen dispersion model. The Insertion Loss seems proportional to frequency, which indicate a predominance of the dielectric losses. Conductor losses are related to the square-root of frequency. Radiation losses are neglected. Fit microstripline model to the computed parameters by optimization Effective relative permittivity Microstrip media model with the physical dimensions of the measured microstriplines is fitted to the computed $\epsilon_{r,eff}$ by optimization of $\epsilon_r$ and tand of the substrate at 1GHz. The dispersion model used to account for frequency variation of the parameters are Djordjevic/Svensson and Kirschning and Jansen. End of explanation m = MLine(frequency=MSL100.frequency, z0=50, w=W, h=H, t=T, ep_r=Er, mu_r=1, rho=1.712e-8, tand=tand, rough=0.15e-6, f_low=1e3, f_high=1e12, f_epr_tand=f_epr_tand, diel='djordjevicsvensson', disp='kirschningjansen') DUT = m.line(L, 'm', embed=True, z0=m.Z0_f) DUT.name = 'DUT' Loss_mod = 20 * log10(absolute(DUT.s[:,1,0])) plt.figure() plt.suptitle('Measurement vs Model') plt.subplot(2,1,1) plt.plot(f * 1e-9, Er_eff, label='Measured') plt.plot(f * 1e-9, real(m.ep_reff_f), label='Model') plt.ylabel('$\epsilon_{r,eff}$') plt.legend() plt.subplot(2,1,2) plt.plot(f * 1e-9, Loss_mea, label='Measured') plt.plot(f * 1e-9, Loss_mod, label='Model') plt.xlabel('Frequency (GHz)') plt.ylabel('Insertion Loss (dB)') plt.legend() plt.show() Explanation: As a sanity check, the model data are compared with the computed parameters End of explanation plt.figure() plt.title('Measured vs modelled data') MSL100.plot_s_db() DUT.plot_s_db(0, 0, color='k') DUT.plot_s_db(1, 0, color='k') plt.show() Explanation: The model results shows a reasonable agreement with the measured $\epsilon_{r,eff}$ and Insertion Loss values. Checking the results If the model is now plotted against the measurement of the same length, the plot shows no agreement. This is because the connector effects are not captured by the model. End of explanation phi_conn = np.unwrap(np.angle(MSL100.s[:,1,0])) + deltaPhi z = np.polyfit(f, phi_conn, 1) p = np.poly1d(z) delay = -z[0]/(2*np.pi)/2 print('Connector delay: {:.0f} ps'.format(delay * 1e12)) loss_conn_db = 20 * log10(absolute(MSL100.s[:,1,0])) - Loss_mea alpha = 1.6*np.log(10)/20 * np.sqrt(f/1e9) beta = 2*np.pi*f/c0 gamma = alpha + 1j*beta mf = rf.media.DefinedGammaZ0(m.frequency, z0=50, gamma=gamma) left = mf.line(delay*1e9, 'ns', embed=True, z0=53.2) right = left.flipped() check = left ** right plt.figure() plt.suptitle('Connector effects') plt.subplot(2,1,1) plt.plot(f * 1e-9, phi_conn, label='measured') plt.plot(f * 1e-9, np.unwrap(np.angle(check.s[:,1,0])), label='model') plt.ylabel('phase (rad)') plt.legend() plt.subplot(2,1,2) plt.plot(f * 1e-9, loss_conn_db, label='Measured') plt.plot(f * 1e-9, 20*np.log10(np.absolute(check.s[:,1,0])), label='model') plt.xlabel('Frequency (GHz)') plt.ylabel('Insertion Loss (dB)') plt.legend() plt.show() Explanation: Connector delay and loss estimation The delay of the connector is estimated by fitting a line to its phase contribution vs frequency. The phase and loss of the two connector are computed by subtracting phase and loss computed without the connectors to the measurement of the same length. End of explanation mod = left ** DUT ** right MSL100_dc = MSL100.extrapolate_to_dc(kind='linear') DUT_dc = mod.extrapolate_to_dc(kind='linear') plt.figure() plt.suptitle('Left-right and right-left TDR') plt.subplot(2,1,1) MSL100_dc.s11.plot_s_time_step(pad=2000, window='hamming', label='Measured L-R') DUT_dc.s11.plot_s_time_step(pad=2000, window='hamming', label='Model L-R') plt.xlim(-2, 4) plt.subplot(2,1,2) MSL100_dc.s22.plot_s_time_step(pad=2000, window='hamming', label='Measured R-L') DUT_dc.s22.plot_s_time_step(pad=2000, window='hamming', label='Model R-L') plt.xlim(-2, 4) plt.tight_layout() plt.show() Explanation: The phase of the model shows a good agreement, while the Insertion Loss seems to have a reasonable agreement and is small whatsoever. Connector impedance adjustment by time-domain reflectometry Time-domain step responses of measurement and model are used to adjust the connector model characteristic impedance. The plots shows the connector having an inductive behaviour (positive peak) and the microstripline being a bit too much capacitive (negative plateau). Characteristic impedance of the connector is tuned by trial-and-error until a reasonable agreement is achieved. Optimization could have been used instead. End of explanation plt.figure() plt.title('Measured vs modelled data') MSL100.plot_s_db() mod.name = 'Model' mod.plot_s_db(0, 0, color='k') mod.plot_s_db(1, 0, color='k') plt.show() Explanation: Final comparison End of explanation
9,754
Given the following text description, write Python code to implement the functionality described below step by step Description: Ejercicios 2 1 Ejercicio Escribir una función que reciba como parámetro una lista de elementos y devuelva el valor True si la lista posee elementos y False en caso contrario. Step1: 2 Ejercicio Dada la lista $L = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]$, escribe expresiones en Python que produzcan los siguientes resultados Step2: 3 Ejercicio Dada una lista de enteros $a$ y un número entero $n$, define Step3: 4 Ejercicio Utiliza la función range para generar listas de elementos. Genera de forma automática las siguientes lista Step4: 5 Ejercicio El método upper del tipo string genera una nueva cadena de caracteres, donde todos los caracteres son mayúsculas. Dada la siguiente cadena
Python Code: def tieneElementos(milista): return len(milista) > 0 print(tieneElementos([])) print(tieneElementos([1, 3, 96])) Explanation: Ejercicios 2 1 Ejercicio Escribir una función que reciba como parámetro una lista de elementos y devuelva el valor True si la lista posee elementos y False en caso contrario. End of explanation # Sol: l = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] print(l[0]) print(l[-1]) print(l[-2], l[-1]) print(l[-2:]) print() print(l[::2]) print(l[1::2]) print() print(len(l)-1) Explanation: 2 Ejercicio Dada la lista $L = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]$, escribe expresiones en Python que produzcan los siguientes resultados: El primer elemento de la lista. El último elemento de la lista (Sin conocer la longitud de la lista). La sublista con los dos últimos elementos. (Sol: [8, 9]) La sublista de los elementos que ocupan posiciones pares. (Sol: [1, 3, 5, 7, 9]) La sublista de los elementos que ocupan posiciones impares. (Sol: [2, 4, 6, 8]) End of explanation # Sol: # Definimos la lista 'a' a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 1, 4] # Definimos la función 'repeticiones()' tomando como base los valores de la lista 'a' def repeticiones(a): # mediante a.count(valor) recorremos la lista 'a' para comproobar cuantas veces se repite un valor determinado return a.count(4) # Mostramos el resultado print('El número 4 se repite',repeticiones(a),'veces en la lista',a) # En base a la lista 'a' antes definida, pasamos a averiguar el nº de elementos de la lista para calcular # que porcentaje de veces se repite el número 'n' def porcentaje(a): nelementos = len(a) nrepeticiones = a.count(4) return nrepeticiones / nelementos * 100 print("Lo que supone un",porcentaje(a),'%') # el 4 se repite 3 veces en la lista [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 1, 4] # lo que supone un 18.75 % Explanation: 3 Ejercicio Dada una lista de enteros $a$ y un número entero $n$, define: 1. una función que calcule el número de veces que se repite $n$ en $a$. 2. una función que calcule el porcentaje de veces que se repite $n$ en $a$. Nota: utiliza los métodos len y count. * Puedes ejecutar list.count? para obtener ayuda del método count. * Puedes ejecutar help(list.count) para obtener ayuda del método count. End of explanation # Sol: # Creamos una variable 'lista' cuyo rango empieza en 10 y acaba en 100, con un salto de 10. # Su expresión matemática sería [10,100) donde se incluye el 10(inicio), pero no el 100(fin) # de ahí que se muestre [10, 20, 30, 40, 50, 60, 70, 80, 90] lista = range(10,100,10) list(lista) Explanation: 4 Ejercicio Utiliza la función range para generar listas de elementos. Genera de forma automática las siguientes lista: [10, 20, 30, 40, 50, 60, 70, 80, 90] End of explanation # Sol: # Definimos la cadena como 's' s = 'Hola, me llamo Iñigo Montoya, tú mataste a mi padre ...Prepárate a morir!' # Definimos una nueva cadena como 'sMayus' para capitalizar todas las letras, como no podemos modificar una cadena # debemos crear una nueva y modificar esta en función de la cadena original sMayus = s.upper() # Mostramos el resultado print(sMayus) # Modificamos el valor de 's' y lo ponemos todo en minúsculas print(s.lower()) s, sMayus Explanation: 5 Ejercicio El método upper del tipo string genera una nueva cadena de caracteres, donde todos los caracteres son mayúsculas. Dada la siguiente cadena: 'Hola, me llamo Iñigo Montoya, tú mataste a mi padre. ... Prepárate a morir' Genera la cadena en mayúsculas Ejecuta el método split. ¿Qué hace? Escribe la expresión Python que calcula el número de palabras de la cadena. Ejecuta el método lower. Ejecuta el método title. Ejecuta dir(str) para listar los métodos disponibles. End of explanation
9,755
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1>WorkCamp # Maschinelles Lernen - ## Grundlagen - ###2018</h1> <h2>Praktische Übung</h2> <h3>Beispiel xx # Arbeiten mit Sensordaten ## Feature Selektion</h3> Problemstellung Step1: Problem Beschreibung Step2: <h3>Beschreibende Statistik</h3> Step3: <h3>Visualisierung der Daten</h3> Step4: <h3>Univariate Feature Selektion</h3> Uum die Merkmale auszuwählen, die am stärksten mit der Ausgabevariablen verknüpft sind, können Statistische Tests verwendet werden,. Die scikit-learn Bibliothek stellt die SelectKBest Klasse zur Verfügung, die mit einer Reihe von unterschiedlichen statistischen Tests zur Auswahl der relavantesten Features eingesetzt werden kann. Das folgende Beispiel verwendet den Chi-squared (Chi2) statistischen Test für nicht-negative Merkmale, um 5 der besten Merkmale aus den Sensordaten auszuwählen. Step5: Im Sensor Datensatz sind also die Sensoren Sens-5, Sens-7, Sens-8, Sens-9 und Sens-10 besonders relevant. <h3>Rekursive Feature Elimination</h3> Die rekursive Feature Elimination (oder RFE) funktioniert durch rekursives Entfernen von Attributen und Aufbau eines Modells auf den verbleibenden Attributen. Anhand der Modellgenauigkeit wird ermittelt, welche Attribute (und die Kombination von Attributen) tragen am meisten zur Vorhersage des Zielattributs bei. Das folgende Beispiel verwendet RFE mit dem logistischen Regressionsalgorithmus, um die 3 wichtigsten Features auszuwählen. Die Wahl des Algorithmus spielt keine Rolle, solange er geschickt und konsistent ist. Step6: Die rekursive Feature Elimination wählt die gleichen Sensoren aus wie bei der univariaten Auswahl. <h3>Principal Component Analysis</h3> Die Principal Component Analysis (oder PCA) verwendet lineare Algebra, um den Datensatz in eine komprimierte Form zu transformieren. Im Allgemeinen wird dies als Datenreduktionstechnik bezeichnet. Eine Eigenschaft von PCA ist, dass wir die Anzahl der Dimensionen oder Hauptkomponenten im transformierten Ergebnis wählen können. Im folgenden Beispiel verwenden wir PCA und wählen 3 Hauptkomponenten aus. Step7: <h3>Abschätzung der Bedeutung von Merkmalen</h3> Random Forest und Extra Trees können verwendet werden, um die Bedeutung von Merkmalen abzuschätzen. Im folgenden Beispiel konstruieren wir einen ExtraTreesClassifier für den Datensatz der Sonardaten. Step8: Die Abschätzung der Bedeutung von Features wählt die gleichen Sensoren aus wie bei der univariaten Auswahl. <h3>Weiteres Beispiel</h3>
Python Code: # Laden der entsprechenden Module (kann etwas dauern !) # Wir laden die Module offen, damit man einmal sieht, was da alles benötigt wird # Allerdings aufpassen, dann werden die Module anderst angesprochen wie beim Standard # zum Beispiel pyplot und nicht plt from matplotlib import pyplot pyplot.rcParams["figure.figsize"] = (15,12) %matplotlib inline import numpy as np #wird allerdings nicht benötigt from pandas import read_csv from pandas import set_option from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier Explanation: <h1>WorkCamp # Maschinelles Lernen - ## Grundlagen - ###2018</h1> <h2>Praktische Übung</h2> <h3>Beispiel xx # Arbeiten mit Sensordaten ## Feature Selektion</h3> Problemstellung:<br> In diesem Jupyter Notebook , werden Sie in einer Fallstudie die Aufbereitung von Daten durch Skalierung, Normalisierung, Skalenänderung und Binärisierung kennenlernen. Dies ist für einige Algorithmen für Maschinelles Lernen notwendig. Nach Abschluss dieses Notebooks sollten Sie wissen: <ul> <li>Wie man ein Vorhersagemodellierungsproblem auf Basis einer Fragestelluung zur Classification durchgehend abarbeitet. <li>Wie man bisher unbekannte Daten in panda DataFrames lädt: (csv, xlsx, xls, xml, json, hdf5 etc.). <li>Wie man unbekannte Daten mit einer deskriptiven Statistik in python analysiert. <li>Wie man unbekannte Daten mit python Bibliotheken visualisiert. <li>Wie man erzeugte Plots, speichert und dokumentiert. <li>Wie man Datentransformationen verwendet, um die Performance des Modells zu verbessern, zum Beispiel Normalisierung oder Standardisierung. <li>Wie man Algorithmus-, oder Hyperparameter-Tuning verwendet, um die Modell-Leistung zu verbessern. <li>Wie man Ensemble-Methoden verwendet und eine Abstimmung der Parameter zur Verbesserung der Modell-Performance durchführt. <li>Wie man die Kreuz-Validierung zur Beurteilung der Performance von ML-Algorithmen einsetzt. <li> Auf welcher Basis eine Beurteilung der verwendetn Classification Algorithmen stattfindet. (Classification Matrix, Confusion Matrix) </ul> Die Module und Bibliotheken stehen alle in der <b>Anaconda scikit-learn</b> Umgebung zum Maschinellen Lernen direkt zur Verfügung.<br> <b>Arbeiten mit Zeitreihen:</b><br> Insbesondere beim arbeiten mit Zeitreihen (timeseries) wird, falls notwendig, statsmodels und dessen Klassen, Bibliotheken und Module nachgeladen.<br> <b>Tipp:</b><br> <b>Falls in Ihrer Version statsmodels nicht vorhanden ist, mit: !pip install statsmodels in einer Jupyter Zelle nachinstallieren.</b><br> Informationen zu statsmodels finden Sie hier: http://www.statsmodels.org/<br> ##Eventuell Strukturbild einbauen ##Evtl. nochmals Vorgehen als Ablaufmodell End of explanation #Laden der Daten [12100 Datensätze mit 10 Sensoren und einer Spalte Label (12100x11)Matrix] url = 'sensordaten-10.csv' datensatz = read_csv(url, sep=';', header=0) Explanation: Problem Beschreibung:<br> Der Fokus dieses Projektes liegt auf dem Datensatz "sensordaten-10.csv". Das Problem ist die Vorhersage von guten und schlechten Werkstücken aus den 10 Sensordaten. Jedes Muster ist ein Satz von 10 Zahlen. Die Sensoren decken unterschiedliche Wertebereiche ab.Das Label, das jeder Datenreihe zugeordnet ist, enthält 0 oder 1. Wenn das Werkstück die Beurteilung gut hat steht eine 1 in der Spalte Label, sonst eine 0.<br> <b>Aufgabe:</b><br> Laden Sie die Daten und verschaffen Sie sich einen ersten Überblick<br> End of explanation # Ausgabe df.shape print(datensatz.shape) # Ausgabe df.dtypes # Spalte enthält die Classifikation R oder M set_option('display.max_rows', 50) print(datensatz.dtypes) # Ausgabe df.head mit vergösserter display width set_option('display.width', 100) print(datensatz.head(20)) # Ausgabe df.describe() mit 4 Nachkomma Stellen set_option('precision', 4) print(datensatz.describe()) # Ausgabe der Klassen Verteilung in der Spalte 60 print(datensatz.groupby('Label').size()) Explanation: <h3>Beschreibende Statistik</h3> End of explanation # Ausgabe Histogramm pyplot.rcParams["figure.figsize"] = (15,12) datensatz.hist() pyplot.show() Explanation: <h3>Visualisierung der Daten</h3> End of explanation from numpy import set_printoptions from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # Übergabe der Dtaen array = datensatz.values X = array[:,0:10] Y = array[:,10] # Feature Extraktion test = SelectKBest(score_func=chi2, k=5) fit = test.fit(X, Y) # Zusammenfassung der Ergebnisse set_printoptions(precision=3) print(fit.scores_) features = fit.transform(X) # Ausgewählte Features print(features[0:9,:]) Explanation: <h3>Univariate Feature Selektion</h3> Uum die Merkmale auszuwählen, die am stärksten mit der Ausgabevariablen verknüpft sind, können Statistische Tests verwendet werden,. Die scikit-learn Bibliothek stellt die SelectKBest Klasse zur Verfügung, die mit einer Reihe von unterschiedlichen statistischen Tests zur Auswahl der relavantesten Features eingesetzt werden kann. Das folgende Beispiel verwendet den Chi-squared (Chi2) statistischen Test für nicht-negative Merkmale, um 5 der besten Merkmale aus den Sensordaten auszuwählen. End of explanation # Rekursives Feature Engineering # Laden des Moduls RFE from sklearn.feature_selection import RFE #Verwendung der Logistischen Regression als Algorithmus from sklearn.linear_model import LogisticRegression # Übergabe der Werte in datensatz an ein array2 array2 = datensatz.values # Aufteilen des arrays in abhängige Variable Y und unabhängige Variable X X = array2[:,0:10] Y = array2[:,10] # feature extraction model = LogisticRegression() rfe = RFE(model, 3) fit = rfe.fit(X, Y) print("Num Features: %d" % fit.n_features_) print("Selected Features: %s" % fit.support_) print("Feature Ranking: %s" % fit.ranking_) Explanation: Im Sensor Datensatz sind also die Sensoren Sens-5, Sens-7, Sens-8, Sens-9 und Sens-10 besonders relevant. <h3>Rekursive Feature Elimination</h3> Die rekursive Feature Elimination (oder RFE) funktioniert durch rekursives Entfernen von Attributen und Aufbau eines Modells auf den verbleibenden Attributen. Anhand der Modellgenauigkeit wird ermittelt, welche Attribute (und die Kombination von Attributen) tragen am meisten zur Vorhersage des Zielattributs bei. Das folgende Beispiel verwendet RFE mit dem logistischen Regressionsalgorithmus, um die 3 wichtigsten Features auszuwählen. Die Wahl des Algorithmus spielt keine Rolle, solange er geschickt und konsistent ist. End of explanation # Binärisierung der Daten # Laden des Moduls Binarizer aus sklearn.preprocessing from sklearn.decomposition import PCA # Übergabe der Werte in datensatz an ein array3 array3 = datensatz.values # Aufteilen des arrays in abhängige Variable Y und unabhängige Variable X X = array3[:,0:10] Y = array3[:,10] # feature extraction pca = PCA(n_components=3) fit = pca.fit(X) # summarize components print("Explained Variance: %s" % fit.explained_variance_ratio_) print(fit.components_) Explanation: Die rekursive Feature Elimination wählt die gleichen Sensoren aus wie bei der univariaten Auswahl. <h3>Principal Component Analysis</h3> Die Principal Component Analysis (oder PCA) verwendet lineare Algebra, um den Datensatz in eine komprimierte Form zu transformieren. Im Allgemeinen wird dies als Datenreduktionstechnik bezeichnet. Eine Eigenschaft von PCA ist, dass wir die Anzahl der Dimensionen oder Hauptkomponenten im transformierten Ergebnis wählen können. Im folgenden Beispiel verwenden wir PCA und wählen 3 Hauptkomponenten aus. End of explanation # Abschätzung der Bedeutung von Merkmalen # Laden des Moduls ExtraTreesClassifier aus sklearn.ensemble from sklearn.ensemble import ExtraTreesClassifier # Übergabe der Werte in datensatz an ein array4 array4 = datensatz.values # Aufteilen des arrays in abhängige Variable Y und unabhängige Variable X X = array4[:,0:10] Y = array4[:,10] # feature extraction model = ExtraTreesClassifier() model.fit(X, Y) print(model.feature_importances_) Explanation: <h3>Abschätzung der Bedeutung von Merkmalen</h3> Random Forest und Extra Trees können verwendet werden, um die Bedeutung von Merkmalen abzuschätzen. Im folgenden Beispiel konstruieren wir einen ExtraTreesClassifier für den Datensatz der Sonardaten. End of explanation # Feature Importance with Extra Trees Classifier from sklearn.ensemble import ExtraTreesClassifier # Übergabe des Dateinamens an die Variable dateiname dateiname = 'pima-indians-diabetes.data.csv' # Festlegen der Spalten Namen für den DataFrame namen = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] # Einlesen der Daten in einen panda DataFrame mit read_csv() df = read_csv(dateiname, names=namen) # Übergabe der Werte in df an ein array5 array5 = df.values # Aufteilen des arrays in abhängige Variable Y und unabhängige Variable X - hier steht die Klasse in Spalte 9 X = array5[:,0:8] Y = array5[:,8] # feature extraction model = ExtraTreesClassifier() model.fit(X, Y) print(model.feature_importances_) Explanation: Die Abschätzung der Bedeutung von Features wählt die gleichen Sensoren aus wie bei der univariaten Auswahl. <h3>Weiteres Beispiel</h3> End of explanation
9,756
Given the following text description, write Python code to implement the functionality described below step by step Description: RateChar RateChar is a tool for performing generalised supply-demand analysis (GSDA) [2,3]. This entails the generation data needed to draw rate characteristic plots for all the variable species of metabolic model through parameter scans and the subsequent visualisation of these data in the form of ScanFig objects. Features Performs parameter scans for any variable species of a metabolic model Stores results in a structure similar to Data2D. Saving of raw parameter scan data, together with metabolic control analysis results to disk. Saving of RateChar sessions to disk for later use. Generates rate characteristic plots from parameter scans (using ScanFig). Can perform parameter scans of any variable species with outputs for relevant response, partial response, elasticity and control coefficients (with data stores as Data2D objects). Usage and Feature Walkthrough Workflow Performing GSDA with RateChar usually requires taking the following steps Step1: Default parameter scan settings relating to a specific RateChar session can also be specified during instantiation Step2: min_concrange_factor Step3: Various optional arguments, similar to those used during object instantiation, can be used to override the default settings and customise any parameter scan Step4: Accessing Results Parameter Scan Results Parameter scan results for any particular species are saved as an attribute of the RateChar object under the name of that species. These RateCharData objects are similar to Data2D objects with parameter scan results being accessible through a scan_results DotDict Step5: .. note Step6: Finally data needed to draw lines relating to metabolic control analysis coefficients are also included in scan_results. Data is supplied in 3 different forms Step7: Metabolic Control Analysis Results The in addition to being able to access the data that will be used to draw rate characteristic plots, the user also has access to the values of the metabolic control analysis coefficient values at the steady state of any particular species via the mca_results field. This field represents a DotDict dictionary-like object (like scan_results), however as each key maps to exactly one result, the data can be displayed as a table (see Basic Usage) Step8: Naturally, coefficients can also be accessed individually Step9: Plotting Results One of the strengths of generalised supply-demand analysis is that it provides an intuitive visual framework for inspecting results through the used of rate characteristic plots. Naturally this is therefore the main focus of RateChar. Parameter scan results for any particular species can be visualised as a ScanFig object through the plot method Step10: Plots generated by RateChar do not have widgets for each individual line; lines are enabled or disabled in batches according to the category they belong to. By default the Fluxes, Demand and Supply categories are enabled when plotting. To display the partial response coefficient lines together with the flux lines for J_R3, for instance, we would click the J_R3 and the Partial Response Coefficients buttons (in addition to those that are enabled by default). Step11: Modifying the status of individual lines is still supported, but has to take place via the toggle_line method. As an example prcJR3_C_R4 can be disabled as follows Step12: .. note Step13: When no path is supplied the dataset will be saved to the default directory. (Which should be "~/Pysces/lin4_fb/ratechar/save_data.npz" in this case. Step14: Similarly results may be loaded using the load_session method, either with or without a specified path Step15: Saving Results Results may also be exported in csv format either to a specified location or to the default directory. Unlike saving of sessions results are spread over multiple files, so here an existing folder must be specified Step16: A subdirectory will be created for each metabolite with the files ec_results_N, rc_results_N, prc_results_N, flux_results_N and mca_summary_N (where N is a number starting at "0" which increments after each save operation to prevent overwriting files).
Python Code: mod = pysces.model('lin4_fb.psc') rc = psctb.RateChar(mod) Explanation: RateChar RateChar is a tool for performing generalised supply-demand analysis (GSDA) [2,3]. This entails the generation data needed to draw rate characteristic plots for all the variable species of metabolic model through parameter scans and the subsequent visualisation of these data in the form of ScanFig objects. Features Performs parameter scans for any variable species of a metabolic model Stores results in a structure similar to Data2D. Saving of raw parameter scan data, together with metabolic control analysis results to disk. Saving of RateChar sessions to disk for later use. Generates rate characteristic plots from parameter scans (using ScanFig). Can perform parameter scans of any variable species with outputs for relevant response, partial response, elasticity and control coefficients (with data stores as Data2D objects). Usage and Feature Walkthrough Workflow Performing GSDA with RateChar usually requires taking the following steps: Instantiation of RateChar object (optionally specifying default settings). Performing a configurable parameter scan of any combination of variable species (or loading previously saved results). Accessing scan results through RateCharData objects corresponding to the names of the scanned species that can be found as attributes of the instantiated RateChar object. Plotting results of a particular species using the plot method of the RateCharData object corresponding to that species. Further analysis using the do_mca_scan method. Session/Result saving if required. Further Analysis .. note:: Parameter scans are performed for a range of concentrations values between two set values. By default the minimum and maximum scan range values are calculated relative to the steady state concentration the species for which a scan is performed respectively using a division and multiplication factor. Minimum and maximum values may also be explicitly specified. Furthermore the number of points for which a scan is performed may also be specified. Details of how to access these options will be discussed below. Object Instantiation Like most tools provided in PySCeSToolbox, instantiation of a RateChar object requires a pysces model object (PysMod) as an argument. A RateChar session will typically be initiated as follows (here we will use the included lin4_fb.psc model): End of explanation rc = psctb.RateChar(mod,min_concrange_factor=100, max_concrange_factor=100, scan_points=255, auto_load=False) Explanation: Default parameter scan settings relating to a specific RateChar session can also be specified during instantiation: End of explanation mod.species rc.do_ratechar() Explanation: min_concrange_factor : The steady state division factor for calculating scan range minimums (default: 100). max_concrange_factor : The steady state multiplication factor for calculating scan range maximums (default: 100). scan_points : The number of concentration sample points that will be taken during parameter scans (default: 256). auto_load : If True RateChar will try to load saved data from a previous session during instantiation. Saved data is unaffected by the above options and are only subject to the settings specified during the session where they were generated. (default: False). The settings specified with these optional arguments take effect when the corresponding arguments are not specified during a parameter scan. Parameter Scan After object instantiation, parameter scans may be performed for any of the variable species using the do_ratechar method. By default do_ratechar will perform parameter scans for all variable metabolites using the settings specified during instantiation. For saving/loading see Saving/Loading Sessions below. End of explanation rc.do_ratechar(fixed=['S1','S3'], scan_min=0.02, max_concrange_factor=110, scan_points=200) Explanation: Various optional arguments, similar to those used during object instantiation, can be used to override the default settings and customise any parameter scan: fixed : A string or list of strings specifying the species for which to perform a parameter scan. The string 'all' specifies that all variable species should be scanned. (default: all) scan_min : The minimum value of the scan range, overrides min_concrange_factor (default: None). scan_max : The maximum value of the scan range, overrides max_concrange_factor (default: None). min_concrange_factor : The steady state division factor for calculating scan range minimums (default: None) max_concrange_factor : The steady state multiplication factor for calculating scan range maximums (default: None). scan_points : The number of concentration sample points that will be taken during parameter scans (default: None). solver : An integer value that specifies which solver to use (0:Hybrd,1:NLEQ,2:FINTSLV). (default: 0). .. note:: For details on different solvers see the PySCeS documentation: For example in a scenario where we only wanted to perform parameter scans of 200 points for the metabolites S1 and S3 starting at a value of 0.02 and ending at a value 110 times their respective steady-state values the method would be called as follows: End of explanation # Each key represents a field through which results can be accessed sorted(rc.S3.scan_results.keys()) Explanation: Accessing Results Parameter Scan Results Parameter scan results for any particular species are saved as an attribute of the RateChar object under the name of that species. These RateCharData objects are similar to Data2D objects with parameter scan results being accessible through a scan_results DotDict: End of explanation # Single value results # scan_min value rc.S3.scan_results.scan_min # fixed metabolite name rc.S3.scan_results.fixed # 1-dimensional ndarray results (only every 10th value of 200 value arrays) # scan_range values rc.S3.scan_results.scan_range[::10] # J_R3 values for scan_range rc.S3.scan_results.J_R3[::10] # total_supply values for scan_range rc.S3.scan_results.total_supply[::10] # Note that J_R3 and total_supply are equal in this case, because S3 # only has a single supply reaction Explanation: .. note:: The DotDict data structure is essentially a dictionary with additional functionality for displaying results in table form (when appropriate) and for accessing data using dot notation in addition the normal dictionary bracket notation. In the above dictionary-like structure each field can represent different types of data, the most simple of which is a single value, e.g., scan_min and fixed, or a 1-dimensional numpy ndarray which represent input (scan_range) or output (J_R3, J_R4, total_supply): End of explanation # Metabolic Control Analysis coefficient line data # Names of elasticity coefficients related to the 'S3' parameter scan rc.S3.scan_results.ec_names # The x, y coordinates for two points that will be used to plot a # visual representation of ecR3_S3 rc.S3.scan_results.ecR3_S3 # The x,y coordinates for two points that will be used to plot a # visual representation of ecR4_S3 rc.S3.scan_results.ecR4_S3 # The ecR3_S3 and ecR4_S3 data collected into a single array # (horizontally stacked). rc.S3.scan_results.ec_data Explanation: Finally data needed to draw lines relating to metabolic control analysis coefficients are also included in scan_results. Data is supplied in 3 different forms: Lists names of the coefficients (under ec_names, prc_names, etc.), 2-dimensional arrays with exactly 4 values (representing 2 sets of x,y coordinates) that will be used to plot coefficient lines, and 2-dimensional array that collects coefficient line data for each coefficient type into single arrays (under ec_data, prc_names, etc.). End of explanation # Metabolic control analysis coefficient results rc.S3.mca_results Explanation: Metabolic Control Analysis Results The in addition to being able to access the data that will be used to draw rate characteristic plots, the user also has access to the values of the metabolic control analysis coefficient values at the steady state of any particular species via the mca_results field. This field represents a DotDict dictionary-like object (like scan_results), however as each key maps to exactly one result, the data can be displayed as a table (see Basic Usage): End of explanation # Control coefficient ccJR3_R1 value rc.S3.mca_results.ccJR3_R1 Explanation: Naturally, coefficients can also be accessed individually: End of explanation # Rate characteristic plot for 'S3'. S3_rate_char_plot = rc.S3.plot() Explanation: Plotting Results One of the strengths of generalised supply-demand analysis is that it provides an intuitive visual framework for inspecting results through the used of rate characteristic plots. Naturally this is therefore the main focus of RateChar. Parameter scan results for any particular species can be visualised as a ScanFig object through the plot method: End of explanation # Display plot via `interact` and enable certain lines by clicking category buttons. # The two method calls below are equivalent to clicking the 'J_R3' # and 'Partial Response Coefficients' buttons: # S3_rate_char_plot.toggle_category('J_R3',True) # S3_rate_char_plot.toggle_category('Partial Response Coefficients',True) S3_rate_char_plot.interact() Explanation: Plots generated by RateChar do not have widgets for each individual line; lines are enabled or disabled in batches according to the category they belong to. By default the Fluxes, Demand and Supply categories are enabled when plotting. To display the partial response coefficient lines together with the flux lines for J_R3, for instance, we would click the J_R3 and the Partial Response Coefficients buttons (in addition to those that are enabled by default). End of explanation S3_rate_char_plot.toggle_line('prcJR3_S3_R4', False) S3_rate_char_plot.show() Explanation: Modifying the status of individual lines is still supported, but has to take place via the toggle_line method. As an example prcJR3_C_R4 can be disabled as follows: End of explanation # This points to a file under the Pysces directory save_file = '~/Pysces/rc_doc_example.npz' # Correct path depending on platform - necessary for platform independent scripts if platform == 'win32': save_file = psctb.utils.misc.unix_to_windows_path(save_file) else: save_file = path.expanduser(save_file) rc.save_session(file_name = save_file) Explanation: .. note:: For more details on saving see the sections Saving and Default Directories and ScanFig under Basic Usage. Saving Saving/Loading Sessions RateChar sessions can be saved for later use. This is especially useful when working with large data sets that take some time to generate. Data sets can be saved to any arbitrary location by supplying a path: End of explanation rc.save_session() # to "~/Pysces/lin4_fb/ratechar/save_data.npz" Explanation: When no path is supplied the dataset will be saved to the default directory. (Which should be "~/Pysces/lin4_fb/ratechar/save_data.npz" in this case. End of explanation rc.load_session(save_file) # OR rc.load_session() # from "~/Pysces/lin4_fb/ratechar/save_data.npz" Explanation: Similarly results may be loaded using the load_session method, either with or without a specified path: End of explanation # This points to a subdirectory under the Pysces directory save_folder = '~/Pysces/lin4_fb/' # Correct path depending on platform - necessary for platform independent scripts if platform == 'win32': save_folder = psctb.utils.misc.unix_to_windows_path(save_folder) else: save_folder = path.expanduser(save_folder) rc.save_results(save_folder) Explanation: Saving Results Results may also be exported in csv format either to a specified location or to the default directory. Unlike saving of sessions results are spread over multiple files, so here an existing folder must be specified: End of explanation # Otherwise results will be saved to the default directory rc.save_results(save_folder) # to sub folders in "~/Pysces/lin4_fb/ratechar/ Explanation: A subdirectory will be created for each metabolite with the files ec_results_N, rc_results_N, prc_results_N, flux_results_N and mca_summary_N (where N is a number starting at "0" which increments after each save operation to prevent overwriting files). End of explanation
9,757
Given the following text description, write Python code to implement the functionality described below step by step Description: Clustering Clustering techniques are unsupervised learning algorithms that try to group unlabelled data into "clusters", using the (typically spatial) structure of the data itself. The easiest way to demonstrate how clustering works is to simply generate some data and show them in action. We'll start off by importing the libraries we'll be using today. Step1: Create data Step2: To generate our data, we're going to pick 6 random points, which we'll call centroids, and for each point we're going to generate 250 random points about it. Step3: Below we can see each centroid marked w/ X, and the coloring associated to each respective cluster. Step4: Mean shift Most people that have come across clustering algorithms have learnt about k-means. Mean shift clustering is a newer and less well-known approach, but it has some important advantages Step5: This person at the science march certainly remembered! <img src="http Step6: We can see that mean shift clustering has almost reproduced our original clustering. The one exception are the very close clusters, but if we really wanted to differentiate them we could lower the bandwidth. What is impressive is that this algorithm nearly reproduced the original clusters without telling it how many clusters there should be. Step7: We should be able to accelerate this algorithm with a GPU. Broadcasting Step8: Pytorch does not support broadcasting, therefore I have replaced the operators with broadcasting versions. Step9: GPU-accelerated mean shift in pytorch One advantage of pytorch is that it's very similar to numpy. For instance, the definition of gaussian is identical, except for the namespace. Step10: And the implementation of meanshift is nearly identical too! Step11: This implementation actually takes longer. Oh dear! What do you think is causing this? Step12: All the computation is happening in the <tt>for</tt> loop, which isn't accelerated by pytorch. Each iteration launches a new cuda kernel, which takes time and slows the algorithm down as a whole. Furthermore, each iteration doesn't have enough processing to do to fill up all of the threads of the GPU. But at least the results are correct... Step13: GPU batched algorithm To truly accelerate the algorithm, we need to be performing updates on a batch of points per iteration, instead of just one as we were doing. Step14: Although each iteration still has to launch a new cuda kernel, there are now fewer iterations, and the acceleration from updating a batch of points more than makes up for it. Step15: That's more like it! We've gone from 914ms to 44ms, which is a speedup of over 2000%. Oh, and it even gives the right answer
Python Code: %matplotlib inline import math, numpy as np, matplotlib.pyplot as plt, operator, torch Explanation: Clustering Clustering techniques are unsupervised learning algorithms that try to group unlabelled data into "clusters", using the (typically spatial) structure of the data itself. The easiest way to demonstrate how clustering works is to simply generate some data and show them in action. We'll start off by importing the libraries we'll be using today. End of explanation n_clusters=6 n_samples =250 Explanation: Create data End of explanation centroids = np.random.uniform(-35, 35, (n_clusters, 2)) slices = [np.random.multivariate_normal(centroids[i], np.diag([5., 5.]), n_samples) for i in range(n_clusters)] data = np.concatenate(slices).astype(np.float32) Explanation: To generate our data, we're going to pick 6 random points, which we'll call centroids, and for each point we're going to generate 250 random points about it. End of explanation def plot_data(centroids, data, n_samples): colour = plt.cm.rainbow(np.linspace(0,1,len(centroids))) for i, centroid in enumerate(centroids): samples = data[i*n_samples:(i+1)*n_samples] plt.scatter(samples[:,0], samples[:,1], c=colour[i], s=1) plt.plot(centroid[0], centroid[1], markersize=10, marker="x", color='k', mew=5) plt.plot(centroid[0], centroid[1], markersize=5, marker="x", color='m', mew=2) plot_data(centroids, data, n_samples) Explanation: Below we can see each centroid marked w/ X, and the coloring associated to each respective cluster. End of explanation def gaussian(d, bw): return np.exp(-0.5*((d/bw))**2) / (bw*math.sqrt(2*math.pi)) Explanation: Mean shift Most people that have come across clustering algorithms have learnt about k-means. Mean shift clustering is a newer and less well-known approach, but it has some important advantages: * It doesn't require selecting the number of clusters in advance, but instead just requires a bandwidth to be specified, which can be easily chosen automatically * It can handle clusters of any shape, whereas k-means (without using special extensions) requires that clusters be roughly ball shaped. The algorithm is as follows: * For each data point x in the sample X, find the distance between that point x and every other point in X * Create weights for each point in X by using the Gaussian kernel of that point's distance to x * This weighting approach penalizes points further away from x * The rate at which the weights fall to zero is determined by the bandwidth, which is the standard deviation of the Gaussian * Update x as the weighted average of all other points in X, weighted based on the previous step This will iteratively push points that are close together even closer until they are next to each other. So here's the definition of the gaussian kernel, which you may remember from high school... End of explanation def meanshift(data): X = np.copy(data) for it in range(5): for i, x in enumerate(X): dist = np.sqrt(((x-X)**2).sum(1)) weight = gaussian(dist, 2.5) X[i] = (np.expand_dims(weight,1)*X).sum(0) / weight.sum() return X %time X=meanshift(data) Explanation: This person at the science march certainly remembered! <img src="http://i.imgur.com/nijQLHw.jpg" width=400> In our implementation, we choose the bandwidth to be 2.5. One easy way to choose bandwidth is to find which bandwidth covers one third of the data. End of explanation plot_data(centroids+2, X, n_samples) Explanation: We can see that mean shift clustering has almost reproduced our original clustering. The one exception are the very close clusters, but if we really wanted to differentiate them we could lower the bandwidth. What is impressive is that this algorithm nearly reproduced the original clusters without telling it how many clusters there should be. End of explanation v=np.array([1,2,3]); v, v.shape m=np.array([v,v*2,v*3]); m, m.shape m+v v1=np.expand_dims(v,-1); v1, v1.shape m+v1 Explanation: We should be able to accelerate this algorithm with a GPU. Broadcasting End of explanation def unit_prefix(x, n=1): for i in range(n): x = x.unsqueeze(0) return x def align(x, y, start_dim=2): xd, yd = x.dim(), y.dim() if xd > yd: y = unit_prefix(y, xd - yd) elif yd > xd: x = unit_prefix(x, yd - xd) xs, ys = list(x.size()), list(y.size()) nd = len(ys) for i in range(start_dim, nd): td = nd-i-1 if ys[td]==1: ys[td] = xs[td] elif xs[td]==1: xs[td] = ys[td] return x.expand(*xs), y.expand(*ys) def aligned_op(x,y,f): return f(*align(x,y,0)) def add(x, y): return aligned_op(x, y, operator.add) def sub(x, y): return aligned_op(x, y, operator.sub) def mul(x, y): return aligned_op(x, y, operator.mul) def div(x, y): return aligned_op(x, y, operator.truediv) Explanation: Pytorch does not support broadcasting, therefore I have replaced the operators with broadcasting versions. End of explanation def gaussian(d, bw): return torch.exp(-0.5*((d/bw))**2) / (bw*math.sqrt(2*math.pi)) Explanation: GPU-accelerated mean shift in pytorch One advantage of pytorch is that it's very similar to numpy. For instance, the definition of gaussian is identical, except for the namespace. End of explanation def meanshift(data): X = torch.FloatTensor(np.copy(data)) for it in range(5): for i, x in enumerate(X): dist = torch.sqrt((sub(x, X)**2).sum(1)) weight = gaussian(dist, 3) num = mul(weight, X).sum(0) X[i] = num / weight.sum() return X Explanation: And the implementation of meanshift is nearly identical too! End of explanation %time X = meanshift(data).numpy() Explanation: This implementation actually takes longer. Oh dear! What do you think is causing this? End of explanation plot_data(centroids+2, X, n_samples) Explanation: All the computation is happening in the <tt>for</tt> loop, which isn't accelerated by pytorch. Each iteration launches a new cuda kernel, which takes time and slows the algorithm down as a whole. Furthermore, each iteration doesn't have enough processing to do to fill up all of the threads of the GPU. But at least the results are correct... End of explanation def dist_b(a,b): return torch.sqrt((sub(a.unsqueeze(0),b.unsqueeze(1))**2).sum(2)) a=torch.rand(2,2) b=torch.rand(3,2) dist_b(b, a).squeeze(2) # def gaussian(d, bw): # return torch.exp(-0.5*((d/bw))**2) / (bw*math.sqrt(2*math.pi)) def sum_sqz(a,axis): return a.sum(axis).squeeze(axis) def meanshift(data, bs=500): n = len(data) X = torch.FloatTensor(np.copy(data)).cuda() for it in range(5): for i in range(0,n,bs): s = slice(i,min(n,i+bs)) weight = gaussian(dist_b(X, X[s]), 2) num = sum_sqz(mul(weight, X), 1) X[s] = div(num, sum_sqz(weight, 1)) return X Explanation: GPU batched algorithm To truly accelerate the algorithm, we need to be performing updates on a batch of points per iteration, instead of just one as we were doing. End of explanation %time X = meanshift(data).cpu().numpy() Explanation: Although each iteration still has to launch a new cuda kernel, there are now fewer iterations, and the acceleration from updating a batch of points more than makes up for it. End of explanation plot_data(centroids+2, X, n_samples) Explanation: That's more like it! We've gone from 914ms to 44ms, which is a speedup of over 2000%. Oh, and it even gives the right answer: End of explanation
9,758
Given the following text description, write Python code to implement the functionality described below step by step Description: Calculate mean width and lenght from test images Step1: Size mean dimension will be used for the resizing process. All the images will be scaled to (149, 149) since it's the average of the test images. Show some test examples Step2: Making batches (resized) Step3: Preprocessing data Step4: Storing preprocessed batches on disk Step5: NOTE Since here the data is already processed and saved as pickle files. Building the Network Step6: Testing model
Python Code: import os, random from scipy.misc import imread, imresize width = 0 lenght = 0 num_test_images = len(test_image_names) for i in range(num_test_images): path_file = os.path.join(test_root_path, test_image_names[i]) image = imread(path_file) width += image.shape[0] lenght += image.shape[1] width_mean = width//num_test_images lenght_mean = lenght//num_test_images dim_size = (width_mean + lenght_mean) // 2 print("Width mean: {}".format(width_mean)) print("Lenght mean: {}".format(lenght_mean)) print("Size mean dimension: {}".format(dim_size)) Explanation: Calculate mean width and lenght from test images End of explanation import matplotlib.pyplot as plt idx = random.randint(0, num_test_images) sample_file, sample_name = test_image_names[idx], test_image_names[idx].split('_')[:-1] path_file = os.path.join(test_root_path, sample_file) sample_image = imread(path_file) print("Label:{}, Image:{}, Shape:{}".format('_'.join(sample_name), idx, sample_image.shape)) plt.figure(figsize=(3,3)) plt.imshow(sample_image) plt.axis('off') plt.show() Explanation: Size mean dimension will be used for the resizing process. All the images will be scaled to (149, 149) since it's the average of the test images. Show some test examples End of explanation def get_num_of_samples(): count = 0 for _,character in enumerate(character_directories): path = os.path.join(train_root_path, character) count += len(listdir(path)) return count def get_batch(batch_init, batch_size): data = {'image':[], 'label':[]} character_batch_size = batch_size//len(character_directories) character_batch_init = batch_init//len(character_directories) character_batch_end = character_batch_init + character_batch_size for _,character in enumerate(character_directories): path = os.path.join(train_root_path, character) images_list = listdir(path) for i in range(character_batch_init, character_batch_end): if len(images_list) == 0: continue #if this character has small number of features #we repeat them if i >= len(images_list): p = i % len(images_list) else: p = i path_file = os.path.join(path, images_list[p]) image = imread(path_file) #all with the same shape image = imresize(image, (dim_size, dim_size)) data['image'].append(image) data['label'].append(character) return data def get_batches(num_batches, batch_size, verbose=False): #num max of samples num_samples = get_num_of_samples() #check number of batches with the maximum max_num_batches = num_samples//batch_size - 1 if verbose: print("Number of samples:{}".format(num_samples)) print("Batches:{} Size:{}".format(num_batches, batch_size)) assert num_batches <= max_num_batches, "Surpassed the maximum number of batches" for i in range(0, num_batches): init = i * batch_size if verbose: print("Batch-{} yielding images from {} to {}...".format(i, init, init+batch_size)) yield get_batch(init, batch_size) #testing generator batch_size = 500 for b in get_batches(10, batch_size, verbose=True): print("\t|- retrieved {} images".format(len(b['image']))) Explanation: Making batches (resized) End of explanation from sklearn import preprocessing #num characters num_characters = len(character_directories) #normalize def normalize(x): #we use the feature scaling to have all the batches #in the same space, that is (0,1) return (x - np.amin(x))/(np.amax(x) - np.amin(x)) #one-hot encode lb = preprocessing.LabelBinarizer() lb = lb.fit(character_directories) def one_hot(label): return lb.transform([label]) Explanation: Preprocessing data End of explanation num_batches = 40 batch_size = 500 import pickle import numpy as np cnt_images = 0 for cnt, b in enumerate(get_batches(num_batches, batch_size)): data = {'image':[], 'label':[]} for i in range( min(len(b['image']), batch_size) ): image = np.array( b['image'][i] ) label = np.array( b['label'][i] ) #label = label.reshape([-1,:]) if len(image.shape) == 3: data['image'].append(normalize(image)) data['label'].append(one_hot(label)[-1,:]) cnt_images += 1 else: print("Dim image < 3") with open("simpson_train_{}.pkl".format(cnt), 'wb') as file: pickle.dump(data, file, pickle.HIGHEST_PROTOCOL) print("Loaded {} train images and stored on disk".format(cnt_images)) #testing load from file import pickle with open('simpson_train_0.pkl', 'rb') as file: data = pickle.load(file) print("Example of onehot encoded:\n{}".format(data['label'][0])) print("Data shape: {}".format(data['image'][0].shape)) Explanation: Storing preprocessed batches on disk End of explanation import torch import torchvision device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assume that we are on a CUDA machine, then this should print a CUDA device: print(device) import torch.nn as nn import torch.nn.functional as F num_characters = 47 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, 5) self.fc1 = nn.Linear(64 * 34 * 34, num_characters) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) #print("shape: {}".format(x.size())) x = x.view(x.size(0), -1) x = self.fc1(x) return x net = Net() #move the neural network to the GPU if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs net = nn.DataParallel(net) net.to(device) import torch.optim as optim loss_fn = nn.CrossEntropyLoss() #buit-in softmax, we can use logits directly optimizer = optim.Adam(net.parameters()) import os import pickle from sklearn.model_selection import train_test_split def getDatasetsFromPickle(file): #print("Processing: {}".format(fname)) data = pickle.load(file) X_train, X_val, y_train, y_val = train_test_split(data['image'], data['label'], test_size=0.2) inputs_train, labels_train = torch.FloatTensor(X_train), torch.FloatTensor(y_train) inputs_val, labels_val = torch.FloatTensor(X_train), torch.FloatTensor(y_train) #permute image as (samples, x, y, channels) to (samples, channels, x, y) inputs_train = inputs_train.permute(0, 3, 1, 2) inputs_val = inputs_val.permute(0, 3, 1, 2) #move the inputs and labels to the GPU return inputs_train.to(device), labels_train.to(device), inputs_val.to(device), labels_val.to(device) stats = {'train_loss':[], 'val_loss':[], 'acc':[]} for epoch in range(3): # loop over the dataset multiple times for i in range(100): fname = "simpson_train_{}.pkl".format(i) if os.path.exists(fname): with open(fname, 'rb') as file: #retrieve the data inputs_train, labels_train, inputs_val, labels_val = getDatasetsFromPickle(file) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs_train) #cross entropy loss doesn't accept onehot encoded targets # |-> use the index class instead lbls_no_onehot_encoded = torch.argmax(labels_train, dim=1) loss = loss_fn(outputs, lbls_no_onehot_encoded) loss.backward() optimizer.step() #statistics stats['train_loss'].append(loss.item()) with torch.no_grad(): outputs = net(inputs_val) label_val_classes = torch.argmax(labels_val, dim=1) output_classes = torch.argmax(outputs, dim=1) stats['val_loss'].append( loss_fn(outputs, label_val_classes).item() ) stats['acc'].append( (output_classes == label_val_classes).sum().item() / label_val_classes.size(0) ) #printouts if i % 20 == 19: printout = "Epoch: {} Batch: {} Training loss: {:.3f} Validation loss: {:.3f} Accuracy: {:.3f}" print(printout.format(epoch + 1, i + 1, stats['train_loss'][-1], stats['val_loss'][-1], stats['acc'][-1],)) else: break print('Finished Training') import matplotlib.pyplot as plt plt.plot(stats['train_loss'], label='Train Loss') plt.plot(stats['val_loss'], label='Validation Loss') plt.plot(stats['acc'], label='Accuracy') plt.legend() Explanation: NOTE Since here the data is already processed and saved as pickle files. Building the Network End of explanation import warnings warnings.filterwarnings('ignore') #select random image idx = random.randint(0, num_test_images) sample_file, sample_name = test_image_names[idx], test_image_names[idx].split('_')[:-1] path_file = os.path.join(test_root_path, sample_file) #read them test_image = normalize(imresize(imread(path_file), (dim_size, dim_size))) test_label_onehot = one_hot('_'.join(sample_name))[-1,:] #move to tensors test_image, test_label_onehot = torch.FloatTensor(test_image), torch.FloatTensor(test_label_onehot) #permute image as (samples, x, y, channels) to (samples, channels, x, y) test_image = test_image.permute(2, 0, 1) test_image.unsqueeze_(0) #move to GPU test_image, test_label_onehot = test_image.to(device), test_label_onehot.to(device) ## with torch.no_grad(): output = net(test_image) predicted_character = torch.argmax(output.data, 1) actual_character = torch.argmax(test_label_onehot) print("Right!!") if (predicted_character == actual_character) else print("Wrong..") #showing actual_name = ' '.join([s.capitalize() for s in sample_name]) print("Label: {}".format(actual_name)) pred_name = lb.inverse_transform(output.cpu().numpy()).item() #copy from cuda to cpu, then to numpy prediction = ' '.join([s.capitalize() for s in pred_name.split('_')]) print("Prediction: {}".format(prediction)) plt.figure(figsize=(3,3)) plt.imshow(test_image.permute(0, 2, 3, 1).squeeze()) plt.axis('off') plt.show() Explanation: Testing model End of explanation
9,759
Given the following text description, write Python code to implement the functionality described below step by step Description: Preferential Attachment Outline - Basic Simulation and Plot Step1: Simulation Step2: Experiment 1 - Alpha = 1, - hypothesis Step3: Experiment 2 - Alpha &lt; 1, - Hypothesis Step4: Experiment 3 - Alpha &gt; 1, - Hypothesis Step5: Networkx - computes the preferential attachment score, - Preferential Attachment Score
Python Code: import networkx as netx import numpy as np import matplotlib.pyplot as plt import warnings import random import itertools def power_law_graph(G): histo = netx.degree_histogram(G) _ = plt.loglog(histo, 'b-', marker='o') _ = plt.ylabel("k(x)") _ = plt.xlabel("k") plt.show() def plot(T,skew=True): plt.axis('off') pos=netx.spring_layout(T) if skew: D = dict(netx.degree(T)) sizes = [v * 200 for k,v in D.items()] netx.draw_networkx(T, pos=pos, with_labels=True, nodelist=D.keys(), node_size=sizes) else: netx.draw_networkx(T, pos=pos, with_labels=True) plt.show() def hist(T,bins=25): degree_lookup = dict(netx.degree(T)) degrees = list(degree_lookup.values()) _ = plt.title("Degree Distribution") _ = plt.hist(degrees,bins=bins) plt.show() def generate(nodes): n = 0 while n < nodes: n = n + 1 yield n # number of attachments per round m = 1 # nodes at time t = 0 a = 1 t0 = m + a # build graph G = netx.Graph() paths = list(generate(t0)) G.add_path(paths) plot(G) ## builds a distribution node sequence def linear_distribute(G,disregard=[]): for node in G.nodes(data = False): if node in disregard: continue for edge in netx.edges(G,node): yield node # randomly gets attachments of the new node def get_linear_attachments(G,m=1): if m < 1: return [] nodes = [] i = 0 while i < m: distribution = list(linear_distribute(G,disregard=nodes)) nodes.append(random.choice(distribution)) i = i + 1 return nodes def simulate(G,node,m=1,rounds=100): while node <= rounds: attachments = get_linear_attachments(G,m=m) G.add_node(node) for attachment in attachments: G.add_edge(node,attachment) node = node + 1 Explanation: Preferential Attachment Outline - Basic Simulation and Plot: alpha = 1 - Experiement 1: alpha = 1 - Experiement 2: alpha &lt; 1 - Experiement 3: alpha &gt; 1 - How Networkx Preferential Attachment Differs - Based on the paper: https://arxiv.org/pdf/cond-mat/0104131.pdf End of explanation T = G.copy() simulate(T,m+1,m,rounds=15) plot(T,skew=True) Explanation: Simulation End of explanation # ramp up... T1 = G.copy() simulate(T1,m+1,m,rounds=3000) hist(T1) power_law_graph(T1) Explanation: Experiment 1 - Alpha = 1, - hypothesis: degree distribution should be exponential, End of explanation def draw(G,disregard=[],alpha=1): nodes = { } lookup = dict(G.degree()) denominator = 0.0 for k,v in lookup.items(): if k in disregard: continue nodes[k] = (v ** alpha) denominator = denominator + nodes[k] #print(np.array(list(nodes.values()))/denominator) drawing = random.uniform(0,1) key = None bottom = 0.0 top = 0.0 for k,v in nodes.items(): key = k top = bottom + (v / denominator) if (drawing >= bottom) & (drawing < top): key = k break bottom = top # print(drawing, " ", bottom, "-", top, ":", key) return key # randomly gets attachments of the new node def get_attachments(G,alpha=1,m=1): if m < 1: return [] nodes = [] i = 0 while i < m: node = draw(G,disregard=nodes,alpha=alpha) nodes.append(node) i = i + 1 # print() return nodes def simulate2(G,node,alpha=1,m=1,rounds=100): while node <= rounds: attachments = get_attachments(G,alpha,m=m) G.add_node(node) for attachment in attachments: G.add_edge(node,attachment) node = node + 1 T2 = G.copy() simulate2(T2,m+1,.5,m,3000) hist(T2) power_law_graph(T2) Explanation: Experiment 2 - Alpha &lt; 1, - Hypothesis: degree distribution should be a stretched exponential, End of explanation T3 = G.copy() simulate2(T3,m+1,3.5,m,3000) hist(T3) nodes = sorted(list(dict(T3.degree()).values()),reverse=True) # print segment of list out ... nodes[0:5] power_law_graph(T3) Explanation: Experiment 3 - Alpha &gt; 1, - Hypothesis: degree distribution should be gelation-like phenomenon, - means m nodes should have a majority of the connections End of explanation T4 = netx.generators.random_graphs.barabasi_albert_graph(8,1) plot(T4) scores = netx.preferential_attachment(G=T4) for u,v,score in scores: print('(%d, %d) -> score = %d' % (u, v, score)) len(list(T4.neighbors(1))) * len(list(T4.neighbors(7))) Explanation: Networkx - computes the preferential attachment score, - Preferential Attachment Score: Indicates the likelihood of a new link forming between two nodes (u,v). Multiplication of the friends of u and v (1). References: https://books.google.com/books?id=F2cPpfcpor8C&pg=PA294&lpg=PA294&dq=what+is+preferential+attachment+score&source=bl&ots=G1yfDyOsO_&sig=JcuDjT9wQyH4a0mHcBzNgxIoalU&hl=en&sa=X&ved=0ahUKEwjAjqb6p6fXAhVPVWMKHU5cBTEQ6AEIazAL#v=onepage&q=what%20is%20preferential%20attachment%20score&f=false End of explanation
9,760
Given the following text description, write Python code to implement the functionality described below step by step Description: Tips for Selecting Columns in a DataFrame Notebook to accompany this post. Step1: Build a mapping list so we can see the index of all the columns Step2: We can also build a dictionary Step3: Use iloc to select just the second column (Unique Squirrel ID) Step4: Pass a list of integers to select multiple columns by index Step5: We can also pass a slice object to select a range of columns Step6: If we want to combine the list and slice notation, we need to use nump.r_ to process the data into an appropriate format. Step7: We can pass the output of np.r_ to .iloc to use multiple selection approaches Step8: We can use the same notation when reading in a csv as well Step9: We can also select columns using a boolean array Step10: A lambda function can be useful for combining into 1 line. Step11: A more complex example Step12: Combining index and boolean arrays
Python Code: import pandas as pd import numpy as np df = pd.read_csv( 'https://data.cityofnewyork.us/api/views/vfnx-vebw/rows.csv?accessType=DOWNLOAD&bom=true&format=true' ) Explanation: Tips for Selecting Columns in a DataFrame Notebook to accompany this post. End of explanation col_mapping = [f"{c[0]}:{c[1]}" for c in enumerate(df.columns)] col_mapping Explanation: Build a mapping list so we can see the index of all the columns End of explanation col_mapping_dict = {c[0]:c[1] for c in enumerate(df.columns)} col_mapping_dict Explanation: We can also build a dictionary End of explanation df.iloc[:, 2] Explanation: Use iloc to select just the second column (Unique Squirrel ID) End of explanation df.iloc[:, [0,1,2]] Explanation: Pass a list of integers to select multiple columns by index End of explanation df.iloc[:, 0:3] Explanation: We can also pass a slice object to select a range of columns End of explanation np.r_[0:3,15:19,24,25] Explanation: If we want to combine the list and slice notation, we need to use nump.r_ to process the data into an appropriate format. End of explanation df.iloc[:, np.r_[0:3,15:19,24,25]] Explanation: We can pass the output of np.r_ to .iloc to use multiple selection approaches End of explanation df_2 = pd.read_csv( 'https://data.cityofnewyork.us/api/views/vfnx-vebw/rows.csv?accessType=DOWNLOAD&bom=true&format=true', usecols=np.r_[1,2,5:8,15:25], ) df_2.head() Explanation: We can use the same notation when reading in a csv as well End of explanation run_cols = df.columns.str.contains('run', case=False) run_cols df.iloc[:, run_cols].head() Explanation: We can also select columns using a boolean array End of explanation df.iloc[:, lambda df:df.columns.str.contains('run', case=False)].head() Explanation: A lambda function can be useful for combining into 1 line. End of explanation df.iloc[:, lambda df: df.columns.str.contains('district|precinct|boundaries', case=False)].head() Explanation: A more complex example End of explanation location_cols = df.columns.str.contains('district|precinct|boundaries', case=False) location_cols location_indices = [i for i, col in enumerate(location_cols) if col] location_indices df.iloc[:, np.r_[0:3,location_indices]].head() Explanation: Combining index and boolean arrays End of explanation
9,761
Given the following text description, write Python code to implement the functionality described below step by step Description: scikit-learn is a machine learning library for python, with a very easy to use API and great documentation. Step1: Lets load up our trajectory. This is the trajectory that we generated in the "Running a simulation in OpenMM and analyzing the results with mdtraj" example. Step2: Create a two component PCA model, and project our data down into this reduced dimensional space. Using just the cartesian coordinates as input to PCA, it's important to start with some kind of alignment. Step3: Now we can plot the data on this projection. Step4: Lets try cross-checking our result by using a different feature space that isn't sensitive to alignment, and instead to "featurize" our trajectory by computing the pairwise distance between every atom in each frame, and using that as our high dimensional input space for PCA.
Python Code: %matplotlib inline from __future__ import print_function import mdtraj as md import matplotlib.pyplot as plt from sklearn.decomposition import PCA Explanation: scikit-learn is a machine learning library for python, with a very easy to use API and great documentation. End of explanation traj = md.load('ala2.h5') traj Explanation: Lets load up our trajectory. This is the trajectory that we generated in the "Running a simulation in OpenMM and analyzing the results with mdtraj" example. End of explanation pca1 = PCA(n_components=2) traj.superpose(traj, 0) reduced_cartesian = pca1.fit_transform(traj.xyz.reshape(traj.n_frames, traj.n_atoms * 3)) print(reduced_cartesian.shape) Explanation: Create a two component PCA model, and project our data down into this reduced dimensional space. Using just the cartesian coordinates as input to PCA, it's important to start with some kind of alignment. End of explanation plt.figure() plt.scatter(reduced_cartesian[:, 0], reduced_cartesian[:,1], marker='x', c=traj.time) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Cartesian coordinate PCA: alanine dipeptide') cbar = plt.colorbar() cbar.set_label('Time [ps]') Explanation: Now we can plot the data on this projection. End of explanation pca2 = PCA(n_components=2) from itertools import combinations # this python function gives you all unique pairs of elements from a list atom_pairs = list(combinations(range(traj.n_atoms), 2)) pairwise_distances = md.geometry.compute_distances(traj, atom_pairs) print(pairwise_distances.shape) reduced_distances = pca2.fit_transform(pairwise_distances) plt.figure() plt.scatter(reduced_distances[:, 0], reduced_distances[:,1], marker='x', c=traj.time) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Pairwise distance PCA: alanine dipeptide') cbar = plt.colorbar() cbar.set_label('Time [ps]') Explanation: Lets try cross-checking our result by using a different feature space that isn't sensitive to alignment, and instead to "featurize" our trajectory by computing the pairwise distance between every atom in each frame, and using that as our high dimensional input space for PCA. End of explanation
9,762
Given the following text description, write Python code to implement the functionality described below step by step Description: Using MBA cmin and cmax are coordinates of the bottom-left and the top-right corners of the bounding box containing scattered data. coo and val are arrays containing coordinates and values of the data points. Step1: Create $n \times n$ regular grid of coordinates to interpolate onto. Step2: The plot_surface() function constructs MBA class with the given initial grid size, interpolates the input data over regular surface, and plots the results Step3: The smaller the initial grid size, the smoother the interpolated surface. Step4: Report some timings and statistics about the constructed hierarchy Step5: Specifing the initial approximation By default MBA uses linear approximation as an initial guess. Multilevel B-splines then are used to fit the difference between initial approximation and the actual data. Sometimes it may useful to provide an initial approximation that would better fit the underlying model. Here is a simple example demonstrating this
Python Code: cmin = [0.0, 0.0] cmax = [1.0, 1.0] coo = uniform(0, 1, (7,2)) val = uniform(0, 1, coo.shape[0]) Explanation: Using MBA cmin and cmax are coordinates of the bottom-left and the top-right corners of the bounding box containing scattered data. coo and val are arrays containing coordinates and values of the data points. End of explanation n = 100 s = linspace(0,1,n) x = array(meshgrid(s,s)).transpose([1,2,0]).copy() Explanation: Create $n \times n$ regular grid of coordinates to interpolate onto. End of explanation def plot_surface(m0): interp = mba2(cmin, cmax, [m0,m0], coo, val) error = amax(abs(val - interp(coo))) / amax(abs(val)) v = interp(x) pcolormesh(s, s, v, cmap='RdBu') scatter(x=coo[:,0], y=coo[:,1], c=val, cmap='RdBu') xlim([0,1]) ylim([0,1]) title("$m_0 = {0:}$, error = {1:.3e}".format(m0, error)) colorbar(); Explanation: The plot_surface() function constructs MBA class with the given initial grid size, interpolates the input data over regular surface, and plots the results End of explanation figure(figsize=(11,5)) subplot(121); plot_surface(2) subplot(122); plot_surface(10) tight_layout() Explanation: The smaller the initial grid size, the smoother the interpolated surface. End of explanation %%timeit interp = mba2(cmin, cmax, [3,3], coo, val) %%timeit interp = mba2(cmin, cmax, [3,3], coo, val) v = interp(x) interp = mba2(cmin, cmax, [3,3], coo, val) print(interp) Explanation: Report some timings and statistics about the constructed hierarchy: End of explanation def test_initial(x0, y0, init, desc): interp = mba1([0], [1], [8], x0, y0, init) x = linspace(0, 1, 100).reshape(100,1) y = interp(x) plot(x, y, 'k-') plot(x, [init(x) for x in x], 'k:') plot(x0, y0, 'ro') ylim([0,1]) title(desc) x = [[0.3], [0.5], [0.7]] v = [0.45, 0.55, 0.5, ] figure(figsize=(12, 3)) subplot(131); test_initial(x, v, lambda x: 0.5, 'y = 0.5') subplot(132); test_initial(x, v, lambda x: x[0], 'y = x') subplot(133); test_initial(x, v, lambda x: 1-x[0], 'y = 1-x') tight_layout() Explanation: Specifing the initial approximation By default MBA uses linear approximation as an initial guess. Multilevel B-splines then are used to fit the difference between initial approximation and the actual data. Sometimes it may useful to provide an initial approximation that would better fit the underlying model. Here is a simple example demonstrating this: End of explanation
9,763
Given the following text description, write Python code to implement the functionality described below step by step Description: Two Object Tracking Summary of notebook <b> Kalman filter Step1: Target information Step2: The Kalman Filter Model Step3: Motion and measurement models Step4: Priors Step5: Linear Kalman Filtering Creating the model Step6: The Kalman Filter algorithm Step7: <img src="images/kalman/kalman_hl.gif"> Two object tracking
Python Code: %matplotlib inline %load_ext autoreload %autoreload 2 import numpy as np from matplotlib import pylab as plt from mpl_toolkits import mplot3d from canonical_gaussian import CanonicalGaussian as CG from gaussian_mixture import GaussianMixtureModel as GMM from calc_traj import calc_traj from range_doppler import * from util import * np.set_printoptions(precision=2) Explanation: Two Object Tracking Summary of notebook <b> Kalman filter: PGM implementation </b> Nearly identical to standard implementation. This section is just a basis for comparison. <b> Simulation of the two object tracking </b> It tracks the objects, but the likelihoods seem incorrect. End of explanation names, p, v, w = load_clubs('clubs.csv') cpi = 40e-3 T = 12 t_sim = np.arange(0, T, cpi) t1, p1, v1 = calc_traj(p[0, :], v[0, :], w[0, :], t_sim) t2, p2, v2 = calc_traj(p[-1, :], v[-1, :], w[-1, :], t_sim) sensor_locations = np.array([[-10, 28.5, 1], [-15, 30.3, 3], [200, 30, 1.5], [220, -31, 2], [-30, 0, 0.5], [150, 10, 0.6]]) rd_1 = range_doppler(sensor_locations, p1, v1) pm_1 = multilateration(sensor_locations, rd_1[:, :, 1]) vm_1 = determine_velocity(t1, pm_1, rd_1[:, :, 0]) rd_2 = range_doppler(sensor_locations, p2, v2) pm_2 = multilateration(sensor_locations, rd_2[:, :, 1]) vm_2 = determine_velocity(t2, pm_2, rd_2[:, :, 0]) Explanation: Target information End of explanation N = 6 if pm_1.shape < pm_2.shape: M, _ = pm_1.shape pm_2 = pm_2[:M] vm_2 = pm_2[:M] else: M, _ = pm_2.shape pm_1 = pm_1[:M] vm_1 = vm_2[:M] print(M) dt = cpi g = 9.81 sigma_r = 2.5 sigma_q = 0.5 prior_var = 1 Explanation: The Kalman Filter Model End of explanation A = np.identity(N) A[0, 3] = A[1, 4] = A[2, 5] = dt B = np.zeros((N, N)) B[2, 2] = B[5, 5] = 1 R = np.identity(N)*sigma_r C = np.identity(N) Q = np.identity(N)*sigma_q u = np.zeros((6, 1)) u[2] = -0.5*g*(dt**2) u[5] = -g*dt Explanation: Motion and measurement models End of explanation #Object 1 mu0_1 = np.zeros((N, 1)) mu0_1[:3, :] = p1[0, :].reshape(3, 1) mu0_1[3:, :] = v[0, :].reshape(3, 1) prec0_1 = np.linalg.inv(prior_var*np.identity(N)) h0_1 = (prec0_1)@(mu0_1) g0_1 = -0.5*(mu0_1.T)@(prec0_1)@(mu0_1) -3*np.log(2*np.pi) #Object 2 mu0_2 = np.zeros((N, 1)) mu0_2[:3, :] = p2[0, :].reshape(3, 1) mu0_2[3:, :] = v2[0, :].reshape(3, 1) prec0_2 = np.linalg.inv(prior_var*np.identity(N)) h0_2 = (prec0_2)@(mu0_2) g0_2 = -0.5*(mu0_2.T)@(prec0_2)@(mu0_2) -3*np.log(2*np.pi) print(h0_1) Explanation: Priors End of explanation z_t = np.empty((M, N)) z_t[:, :3] = pm_1 z_t[:, 3:] = vm_1 R_in = np.linalg.inv(R) P_pred = np.bmat([[R_in, -(R_in)@(A)], [-(A.T)@(R_in), (A.T)@(R_in)@(A)]]) M_pred = np.zeros((2*N, 1)) M_pred[:N, :] = (B)@(u) h_pred = (P_pred)@(M_pred) g_pred = -0.5*(M_pred.T)@(P_pred)@(M_pred).flatten() -0.5*np.log( np.linalg.det(2*np.pi*R)) Q_in = np.linalg.inv(Q) P_meas = np.bmat([[(C.T)@(Q_in)@(C), -(C.T)@(Q_in)], [-(Q_in)@(C), Q_in]]) h_meas = np.zeros((2*N, 1)) g_meas = -0.5*np.log( np.linalg.det(2*np.pi*Q)) L, _ = z_t.shape X = np.arange(0, L) Z = np.arange(L-1, 2*L-1) C_X = [CG([X[0]], [N], h0_1, prec0_1, g0_1)] C_Z = [CG([X[0]], [N], h0_1, prec0_1, g0_1)] for i in np.arange(1, L): C_X.append(CG([X[i], X[i-1]], [N, N], h_pred, P_pred, g_pred)) C_Z.append(CG([X[i], Z[i]], [N, N], h_meas, P_meas, g_meas)) Explanation: Linear Kalman Filtering Creating the model End of explanation message_out = [C_X[0]] prediction = [C_X[0]] mean = np.zeros((N, L)) for i in np.arange(1, L): #Kalman Filter Algorithm C_Z[i].introduce_evidence([Z[i]], z_t[i, :]) marg = (message_out[i-1]*C_X[i]).marginalize([X[i-1]]) message_out.append(marg*C_Z[i]) mean[:, i] = (np.linalg.inv(message_out[i]._prec)@(message_out[i]._info)).reshape((N, )) #For plotting only prediction.append(marg) p_e = mean[:3, :] fig = plt.figure(figsize=(25, 25)) ax = plt.axes(projection='3d') ax.plot(p1[:, 0], p1[:, 1], p1[:, 2]) ax.plot(p_e[0, :], p_e[1, :], p_e[2, :], 'or') ax.set_xlabel('x (m)', fontsize = '20') ax.set_ylabel('y (m)', fontsize = '20') ax.set_zlabel('z (m)', fontsize = '20') ax.set_title('Kalman Filtering', fontsize = '20') ax.set_ylim([-1, 1]) ax.legend(['Actual Trajectory', 'Estimated trajectory']) plt.show() D = 100 t = np.linspace(0, 2*np.pi, D) xz = np.array([[np.cos(t)], [np.sin(t)]]).reshape((2, D)) gaussians = message_out + prediction + C_Z ellipses = [] for g in gaussians: g._vars = [1, 2, 3, 4] g._dims = [1, 1, 1, 3] c = g.marginalize([2, 4]) cov = np.linalg.inv(c._prec) mu = (cov)@(c._info) U, S, _ = np.linalg.svd(cov) L = np.diag(np.sqrt(S)) ellipses.append(np.dot((U)@(L), xz) + mu) for i in np.arange(0, M): plt.figure(figsize= (15, 15)) message_out = ellipses[i] prediction = ellipses[i+M] measurement = ellipses[i+2*M] plt.plot(p1[:, 0], p1[:, 2], 'k--', label='Trajectory') plt.plot(message_out[0, :], message_out[1, :], 'r', label='After measurement update') plt.plot(prediction[0, :], prediction[1, :], 'b', label = 'Recursive prediction') plt.plot(measurement[0, :], measurement[1, :], 'g', label='Measurement') plt.xlim([-3.5, 250]) plt.ylim([-3.5, 35]) plt.grid(True) plt.xlabel('x (m)') plt.ylabel('z (m)') plt.legend(loc='upper left') plt.title('x-z position for t = %d'%i) plt.savefig('images/kalman/%d.png'%i, format = 'png') plt.close() Explanation: The Kalman Filter algorithm: Gaussian belief propagation End of explanation fig = plt.figure(figsize=(25, 25)) ax = plt.axes(projection='3d') ax.plot(p1[:, 0], p1[:, 1], p1[:, 2]) ax.plot(p2[:, 0], p2[:, 1], p2[:, 2], 'or') ax.set_xlabel('x (m)', fontsize = '20') ax.set_ylabel('y (m)', fontsize = '20') ax.set_zlabel('z (m)', fontsize = '20') ax.set_title('', fontsize = '20') ax.set_ylim([-20, 20]) ax.legend(['Target 1', 'Target 2']) plt.show() L = 10 X_1 = np.arange(0, L).tolist() X_2 = np.arange(L, 2*L).tolist() Z_1 = np.arange(2*L, 3*L).tolist() Z_2 = np.arange(3*L, 4*L).tolist() z_1 = np.empty((M, N)) z_1[:, :3] = pm_1 z_1[:, 3:] = vm_1 z_2 = np.empty((M, N)) z_2[:, :3] = pm_2 z_2[:, 3:] = vm_2 C_X = [CG([X_1[0]], [N], h0_1, prec0_1, g0_1)*CG([X_2[0]], [N], h0_2, prec0_2, g0_2)] for i in np.arange(1, L): C_X.append(CG([X_1[i], X_1[i-1]], [N, N], h_pred, P_pred, g_pred) *CG([X_2[i], X_2[i-1]], [N, N], h_pred, P_pred, g_pred)) C_Z = [None] Z_11 = CG([X_1[1], Z_1[1]], [N, N], h_meas, P_meas, g_meas) Z_11.introduce_evidence([Z_1[1]], z_1[1, :]) Z_22 = CG([X_2[1], Z_2[1]], [N, N], h_meas, P_meas, g_meas) Z_22.introduce_evidence([Z_2[1]], z_2[1, :]) C_Z.append(Z_11*Z_22) for i in np.arange(2, L): Z_11 = CG([X_1[i], Z_1[i]], [N, N], h_meas, P_meas, g_meas) Z_11.introduce_evidence([Z_1[i]], z_1[i, :]) Z_22 = CG([X_2[i], Z_2[i]], [N, N], h_meas, P_meas, g_meas) Z_22.introduce_evidence([Z_2[i]], z_2[i, :]) Z_12 = CG([X_1[i], Z_2[i]], [N, N], h_meas, P_meas, g_meas) Z_12.introduce_evidence([Z_2[i]] ,z_2[i, :]) Z_21 = CG([X_2[i], Z_1[i]], [N, N], h_meas, P_meas, g_meas) Z_21.introduce_evidence([Z_1[i]], z_1[i, :]) C_Z.append(GMM([0.5*(Z_11*Z_22), 0.5*(Z_12*Z_21)])) predict = [C_X[0]] for i in np.arange(1, L): marg = (C_X[i]*predict[i-1]).marginalize([X_1[i-1], X_2[i-1]]) predict.append(C_Z[i]*marg) D = 100 t = np.linspace(0, 2*np.pi, D) xz = np.array([[np.cos(t)], [np.sin(t)]]).reshape((2, D)) ellipses = [] norms = [] i = 0 for p in predict: if isinstance(p, GMM): mix = p._mix else: mix = [p] time_step = [] for m in mix: m._vars = [1, 2, 3, 4] m._dims = [1, 1, 1, 9] c = m.marginalize([2, 4]) cov = np.linalg.inv(c._prec) mu = (cov)@(c._info) if i == 0: print(cov) i = 1 U, S, _ = np.linalg.svd(cov) lambda_ = np.diag(np.sqrt(S)) norms.append(c._norm) time_step.append(np.dot((U)@(lambda_), xz) + mu) ellipses.append(time_step) for i in np.arange(0, L): plt.figure(figsize= (15, 15)) plt.plot(p1[1:, 0], p1[1:, 2], 'or', label='Trajectory 1') plt.plot(p2[1:, 0], p2[1:, 2], 'og', label='Trajectory 2') for e in ellipses[i]: plt.plot(e[0, :], e[1, :], 'b') plt.xlim([-3.5, 25]) plt.ylim([-3.5, 15]) plt.grid(True) plt.legend(loc='upper left') plt.xlabel('x (m)') plt.ylabel('z (m)') plt.title('x-z position for t = %d'%(i)) plt.savefig('images/two_objects/%d.png'%i, format = 'png') plt.close() Explanation: <img src="images/kalman/kalman_hl.gif"> Two object tracking End of explanation
9,764
Given the following text description, write Python code to implement the functionality described below step by step Description: Apply logistic regression to categorize whether a county had high mortality rate due to contamination 1. Import the necessary packages to read in the data, plot, and create a logistic regression model Step1: 2. Read in the hanford.csv file in the data/ folder Step2: <img src="../../images/hanford_variables.png"></img> 3. Calculate the basic descriptive statistics on the data Step3: 4. Find a reasonable threshold to say exposure is high and recode the data Step4: 5. Create a logistic regression model Step5: 6. Predict whether the mortality rate (Cancer per 100,000 man years) will be high at an exposure level of 50
Python Code: import pandas as pd %matplotlib inline import numpy as np from sklearn.linear_model import LogisticRegression import statsmodels.formula.api as smf Explanation: Apply logistic regression to categorize whether a county had high mortality rate due to contamination 1. Import the necessary packages to read in the data, plot, and create a logistic regression model End of explanation df = pd.read_csv("hanford.csv") Explanation: 2. Read in the hanford.csv file in the data/ folder End of explanation df.describe() df.corr() Explanation: <img src="../../images/hanford_variables.png"></img> 3. Calculate the basic descriptive statistics on the data End of explanation # I could define "high exposure" as 1.5 x IQR, which would be: Q3-Q1, or 6.41-2.49 high_exposure = 4.08*1.5 df['Exposure'].describe() Explanation: 4. Find a reasonable threshold to say exposure is high and recode the data End of explanation lm = smf.ols(formula="Mortality~Exposure",data=df).fit() #notice the formula regresses Y on X (Y~X) intercept, slope = lm.params lm.params Explanation: 5. Create a logistic regression model End of explanation #y=mx+b Explanation: 6. Predict whether the mortality rate (Cancer per 100,000 man years) will be high at an exposure level of 50 End of explanation
9,765
Given the following text description, write Python code to implement the functionality described below step by step Description: Unit 1 Step1: your explanation here (delete this) 2. If the temperature of an oven is 450 degrees Fahrenheit, what is it in kelvins?
Python Code: ## your code here ## or ## type what you put in calculator (safer to convert cell to markdown) Explanation: Unit 1: Programming Basics Lesson 1: Introduction to Python - Pre-activity Scientific Context: Unit Conversions The International System of Units (SI) is the modern metric system of measurement. It was designed to provide an organized system of measurement that everyone in the world could use. Due to the fact that an SI base unit is not always the most convenient unit for experimental measurements, unit conversions are a very common computation in science. Fundamental Principles: Temperature Scales The Fahrenheit temperature scale defines 32 for the freezing point of water, 212 for the boiling point of water. The difference between these two reference points is divided into 180 equal intervals called degrees. In contrast, the Celsius temperature scale defines 0 for the freezing point of water and 100 for the boiling point of water, thus dividing this same region into 100 parts. The following formula can be used to convert a temperature from its representation on the Fahrenheit scale to the Celsius value: equation 1: $$T_{Celsius} = \frac{5}{9}(T_{Farenheit} - 32)$$ The Kelvin temperature scale uses the same physical reference points of water as the Celsius scale (0°C for the freezing point of water and 100°C for the boiling point of water), thus the “degree” increment for the two scales is the same. The Kelvin scale, however, shifts the zero point by defining an absolute zero below which temperatures do not exist, i.e., molecular energy is a minimum. This point corresponds to a temperature of -273.15° on the Celsius temperature scale such that: equation 2: $$T_{kelvin} = T_{Celsius} + 273.15$$ Temperatures on this scale are called kelvins, not degrees kelvin, and it is the SI unit for temperature. Pre-Activity Questions 1. If a cup of water is 38 degrees Celsius, what is it in Fahrenheit? End of explanation ## your code here ## or ## type what you put in calculator (safer to convert cell to markdown) Explanation: your explanation here (delete this) 2. If the temperature of an oven is 450 degrees Fahrenheit, what is it in kelvins? End of explanation
9,766
Given the following text description, write Python code to implement the functionality described below step by step Description: If, Elif, Else Statements Programming starts and ends at control flow. Decisions need to be made to carry out the functions you write. We make decisions use the if, elif, and else statement. Like any other programming language, the semantics of the statements work the same, but the syntax differs. Let's try some examples. Step1: Imagine you've written a magic number program, and the system outputs a message to indicate your correctness. Here, the if checks the most specific condition -> if the user is right. As we move down, we become more general. This is the typical layout of control flow in programming. Step2: Let's output a message depending on where you are going. Step3: We can nest ifs, elifs, and elses, too!
Python Code: you = "ready" if you == "ready": print("Vamanos!") else: print("What's wrong?") Explanation: If, Elif, Else Statements Programming starts and ends at control flow. Decisions need to be made to carry out the functions you write. We make decisions use the if, elif, and else statement. Like any other programming language, the semantics of the statements work the same, but the syntax differs. Let's try some examples. End of explanation magic_number = 24 my_guess = 29 if my_guess == magic_number: print("Correct!") elif magic_number == (my_guess-1) or magic_number == (my_guess+1): print("So, so close!") else: print("Wrong!") Explanation: Imagine you've written a magic number program, and the system outputs a message to indicate your correctness. Here, the if checks the most specific condition -> if the user is right. As we move down, we become more general. This is the typical layout of control flow in programming. End of explanation my_place = "Grocery store" if my_place == "work": print("Clock out early!") elif my_place == "Grocery store": print("Run those errands!") else: print("Where are you going?") Explanation: Let's output a message depending on where you are going. End of explanation # A simple pet and breed printer pet = "Dog" breed = "Labrador" if pet == "Cat": print("Pet: cat") if breed == "Siberian": print("Breed: Siberian") else: print("Breed: Not specified clearly") elif pet == "Dog": print("Pet: Dog") if breed == "Labrador": print("Breed: Labrador") elif breed == "Husky": print("Breed: Husky") else: print("Breed: Not specified clearly") else: print("I have no idea what that is!") Explanation: We can nest ifs, elifs, and elses, too! End of explanation
9,767
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="http Step1: 1. Load a shapefile that represents the river network First, we need to create a Landlab NetworkModelGrid to represent the river network. Each link on the grid represents a reach of river. Each node represents a break between reaches. All tributary junctions must be associated with grid nodes. Step2: Alright, let's see what fields we read in with this shapefile Step3: Great! Looks like we have length (reach length), upstream drainage area (drainage area), x and y verticies of each link/reach (x and y of polyline), and bed elevation (topographic elevation). Note that "reach_length" is defined by the user, rather than calculated as the minimum distance between nodes. This accounts for channel sinuosity. In this case, "reach_length" could be equivalently calculated as the cumulative distance between verticies defined by x and y of polyline. Step4: Our network consists of 29 links between 30 nodes. In the plot above, X and Y represent the plan-view coordinates of the node locations. Next, we need to populate the grid with the relevant topographic and hydrologic information Step5: We must distinguish between topographic elevation (the top surface of the bed sediment) and bedrock elevation (the surface of the river in the absence of modeled sediment). 2. Create sediment 'parcels' in a DataRecord We represent sediment in the network as discrete parcels (or packages) of grains of uniform size and characteristics. Each parcel is tracked through the network grid according to sediment transport and stratigraphic constraints. Parcels are tracked using the Landlab DataRecord. First, let's create arrays with all of the essential sediment parcel variables Step6: In order to track sediment motion, we classify parcels as either active (representing mobile surface sediment) or inactive (immobile subsurface) during each timestep. The active parcels are the most recent parcels to arrive in the link. During a timestep, active parcels are transported downstream (increasing their location_in_link, which is a normalized value ranging from 0 to 1) according to a sediment transport formula. We begin by assigning each parcel an arbitrary (and small) arrival time and location in the link. Step7: In addition to the required parcel attributes listed above, you can designate optional parcel characteristics, depending on your needs. For example Step8: We now collect the arrays into a dictionary of variables, some of which will be tracked through time (["item_id", "time"]), and others of which will remain constant through time Step9: With all of the required attributes collected, we can create the parcels DataRecord. Often, parcels will eventually transport off of the downstream-most link. To track these parcels, we have designated a "dummy_element" here, which has index value -2. Step10: 3. Run the NetworkSedimentTransporter With the parcels and grid set up, we can move on to setting up the model. Step11: Before running the NST, we need to determine flow direction on the grid (upstream and downstream for each link). To do so, we initalize and run a Landlab flow director component Step12: Then, we initialize the network sediment transporter Step13: Now we are ready to run the model forward in time Step14: 4. Plot the model results There are landlab plotting tools specific to the NetworkSedimentTransporter. In particular, plot_network_and_parcels creates a plan-view map of the network and parcels (represented as dots along the network). We can color both the parcels and the links by attributes. Here, we demonstrate one example use of plot_network_and_parcels. For a thorough tutorial on the plotting tools, see this notebook. We can color links by values that we calculate. For example, if we are curious about the fate of sediment that started out on link 27, we might want to plot the total volume of sediment that originated on link 27 during a later timestep Step15: Non-network plotting The results of the NST can be visualized by directly accessing information about the grid, the parcels, and by accessing variables stored after the run of NST. As a simple example, we can plot the total volume of parcels on the grid through time. As parcels exit the grid, the total volume decreases. Step16: We can also plot individual parcel characteristics. The plot below shows the total transport distance of each parcel through the whole model run as a function of the parcel's grain size (during the final timestep). Step17: The plot below is an example of accessing variables associated with the grid (grid.at_link.X, or grid.at_node.X), as well as a variable associated with this instance of NetworkModelGrid (nmg.X)
Python Code: import warnings warnings.filterwarnings('ignore') import os import pathlib import matplotlib.pyplot as plt import numpy as np from landlab.components import FlowDirectorSteepest, NetworkSedimentTransporter from landlab.data_record import DataRecord from landlab.grid.network import NetworkModelGrid from landlab.plot import graph from landlab.io import read_shapefile from landlab import ExampleData from landlab.plot import plot_network_and_parcels %matplotlib inline Explanation: <a href="http://landlab.github.io"><img style="float: left" src="../../landlab_header.png"></a> Using the Landlab NetworkSedimentTransporter component starting with a shapefile river network <hr> <small>For more Landlab tutorials, click here: <a href="https://landlab.readthedocs.io/en/latest/user_guide/tutorials.html">https://landlab.readthedocs.io/en/latest/user_guide/tutorials.html</a></small> <hr> This tutorial illustrates how to model the transport of coarse sediment through a river network using the NetworkSedimentTransporter Landlab component. For an equivalent tutorial demonstrating initialization of the NetworkSedimentTransporter with a synthetic network model grid, here. In this example we will: - load a river network shapefile to create a Landlab grid to represent a river network - create sediment "parcels" that will transport through the river network, represented as items in a Landlab DataRecord - run the component - plot the results of the model run Import the necessary libraries, plus a bit of magic so that we can plot within this notebook: End of explanation datadir = ExampleData("io/shapefile", case="methow").base shp_file = datadir / "MethowSubBasin.shp" points_shapefile = datadir / "MethowSubBasin_Nodes_4.shp" grid = read_shapefile( shp_file, points_shapefile=points_shapefile, node_fields=["usarea_km2", "Elev_m"], link_fields=["usarea_km2", "Length_m"], link_field_conversion={"usarea_km2": "drainage_area", "Slope":"channel_slope", "Length_m":"reach_length"}, node_field_conversion={ "usarea_km2": "drainage_area", "Elev_m": "topographic__elevation", }, threshold=0.01, ) Explanation: 1. Load a shapefile that represents the river network First, we need to create a Landlab NetworkModelGrid to represent the river network. Each link on the grid represents a reach of river. Each node represents a break between reaches. All tributary junctions must be associated with grid nodes. End of explanation grid.at_link.keys() grid.at_node.keys() Explanation: Alright, let's see what fields we read in with this shapefile: End of explanation graph.plot_graph(grid, at="node,link") grid.number_of_links grid.number_of_nodes Explanation: Great! Looks like we have length (reach length), upstream drainage area (drainage area), x and y verticies of each link/reach (x and y of polyline), and bed elevation (topographic elevation). Note that "reach_length" is defined by the user, rather than calculated as the minimum distance between nodes. This accounts for channel sinuosity. In this case, "reach_length" could be equivalently calculated as the cumulative distance between verticies defined by x and y of polyline. End of explanation grid.at_node["bedrock__elevation"] = grid.at_node["topographic__elevation"].copy() grid.at_link["channel_width"] = 1 * np.ones(grid.number_of_links) # m grid.at_link["flow_depth"] = 0.5 * np.ones(grid.number_of_links) # m Explanation: Our network consists of 29 links between 30 nodes. In the plot above, X and Y represent the plan-view coordinates of the node locations. Next, we need to populate the grid with the relevant topographic and hydrologic information: End of explanation # element_id is the link on which the parcel begins. element_id = np.repeat(np.arange(grid.number_of_links), 50) element_id = np.expand_dims(element_id, axis=1) volume = 1*np.ones(np.shape(element_id)) # (m3) active_layer = np.ones(np.shape(element_id)) # 1= active, 0 = inactive density = 2650 * np.ones(np.size(element_id)) # (kg/m3) abrasion_rate = 0 * np.ones(np.size(element_id)) # (mass loss /m) # Lognormal GSD medianD = 0.15 # m mu = np.log(medianD) sigma = np.log(2) #assume that D84 = sigma*D50 np.random.seed(0) D = np.random.lognormal( mu, sigma, np.shape(element_id) ) # (m) the diameter of grains in each parcel Explanation: We must distinguish between topographic elevation (the top surface of the bed sediment) and bedrock elevation (the surface of the river in the absence of modeled sediment). 2. Create sediment 'parcels' in a DataRecord We represent sediment in the network as discrete parcels (or packages) of grains of uniform size and characteristics. Each parcel is tracked through the network grid according to sediment transport and stratigraphic constraints. Parcels are tracked using the Landlab DataRecord. First, let's create arrays with all of the essential sediment parcel variables: End of explanation time_arrival_in_link = np.random.rand(np.size(element_id), 1) location_in_link = np.random.rand(np.size(element_id), 1) Explanation: In order to track sediment motion, we classify parcels as either active (representing mobile surface sediment) or inactive (immobile subsurface) during each timestep. The active parcels are the most recent parcels to arrive in the link. During a timestep, active parcels are transported downstream (increasing their location_in_link, which is a normalized value ranging from 0 to 1) according to a sediment transport formula. We begin by assigning each parcel an arbitrary (and small) arrival time and location in the link. End of explanation lithology = ["quartzite"] * np.size(element_id) Explanation: In addition to the required parcel attributes listed above, you can designate optional parcel characteristics, depending on your needs. For example: End of explanation variables = { "abrasion_rate": (["item_id"], abrasion_rate), "density": (["item_id"], density), "lithology": (["item_id"], lithology), "time_arrival_in_link": (["item_id", "time"], time_arrival_in_link), "active_layer": (["item_id", "time"], active_layer), "location_in_link": (["item_id", "time"], location_in_link), "D": (["item_id", "time"], D), "volume": (["item_id", "time"], volume) } Explanation: We now collect the arrays into a dictionary of variables, some of which will be tracked through time (["item_id", "time"]), and others of which will remain constant through time : End of explanation items = {"grid_element": "link", "element_id": element_id} parcels = DataRecord( grid, items=items, time=[0.0], data_vars=variables, dummy_elements={"link": [NetworkSedimentTransporter.OUT_OF_NETWORK]}, ) Explanation: With all of the required attributes collected, we can create the parcels DataRecord. Often, parcels will eventually transport off of the downstream-most link. To track these parcels, we have designated a "dummy_element" here, which has index value -2. End of explanation timesteps = 10 # total number of timesteps dt = 60 * 60 * 24 *2 # length of timestep (seconds) Explanation: 3. Run the NetworkSedimentTransporter With the parcels and grid set up, we can move on to setting up the model. End of explanation fd = FlowDirectorSteepest(grid, "topographic__elevation") fd.run_one_step() Explanation: Before running the NST, we need to determine flow direction on the grid (upstream and downstream for each link). To do so, we initalize and run a Landlab flow director component: End of explanation nst = NetworkSedimentTransporter( grid, parcels, fd, bed_porosity=0.3, g=9.81, fluid_density=1000, transport_method="WilcockCrowe", ) Explanation: Then, we initialize the network sediment transporter: End of explanation for t in range(0, (timesteps * dt), dt): nst.run_one_step(dt) print("Model time: ", t/(60*60*24), "days passed") Explanation: Now we are ready to run the model forward in time: End of explanation timestep_of_interest = 6 originating_link = 27 #filter the parcels to calculate total volumes of only the parcels that originated in the chosen link parcelfilter = np.zeros_like( parcels.dataset.element_id, dtype=bool ) parcelfilter[:, timestep_of_interest] = (parcels.dataset.element_id[:,0] == originating_link) vol_orig_link = parcels.calc_aggregate_value( np.sum, "volume", at="link", filter_array=parcelfilter, fill_value=0.0 ) fig = plot_network_and_parcels( grid, parcels, link_attribute=vol_orig_link, link_attribute_title = "Vol of sed originating on link x", network_linewidth = 5, parcel_alpha = 0 ) Explanation: 4. Plot the model results There are landlab plotting tools specific to the NetworkSedimentTransporter. In particular, plot_network_and_parcels creates a plan-view map of the network and parcels (represented as dots along the network). We can color both the parcels and the links by attributes. Here, we demonstrate one example use of plot_network_and_parcels. For a thorough tutorial on the plotting tools, see this notebook. We can color links by values that we calculate. For example, if we are curious about the fate of sediment that started out on link 27, we might want to plot the total volume of sediment that originated on link 27 during a later timestep: End of explanation parcel_vol_on_grid = parcels.dataset["volume"].values parcel_vol_on_grid[parcels.dataset["element_id"].values==-2]=0 #plt.figure(figsize=(8,6)) plt.plot(np.asarray(parcels.time_coordinates)/(60*60*24), np.sum(parcel_vol_on_grid, axis=0), '-', linewidth=3, alpha=0.5 ) plt.ylabel('Total volume of parcels on grid $[m^3]$') plt.xlabel('Time [days]') plt.show() Explanation: Non-network plotting The results of the NST can be visualized by directly accessing information about the grid, the parcels, and by accessing variables stored after the run of NST. As a simple example, we can plot the total volume of parcels on the grid through time. As parcels exit the grid, the total volume decreases. End of explanation plt.loglog(parcels.dataset.D[:,-1], nst._distance_traveled_cumulative, '.' ) plt.xlabel('Parcel grain size (m)') plt.ylabel('Cumulative parcel travel distance (m)') # Note: some of the smallest grain travel distances can exceed the length of the # grid by "overshooting" during a single timestep of high transport rate Explanation: We can also plot individual parcel characteristics. The plot below shows the total transport distance of each parcel through the whole model run as a function of the parcel's grain size (during the final timestep). End of explanation plt.plot(grid.at_link["channel_slope"], nst.d_mean_active, '.') plt.xlabel('Channel slope (m/m)') plt.ylabel('Mean grain size of active layer (m)') Explanation: The plot below is an example of accessing variables associated with the grid (grid.at_link.X, or grid.at_node.X), as well as a variable associated with this instance of NetworkModelGrid (nmg.X): End of explanation
9,768
Given the following text description, write Python code to implement the functionality described below step by step Description: 1D Optimal Classifier Compared With a Simple Neural Network This tutorial is part of the EFI Data Analytics for Physics workshop. It is meant for the beginner HEP undergraduate or graduate student (or postdoc/faculty) who wants to get started implementing a simple feed-forward Neural Network in Python with Keras. A more advanced Keras tutorial on "Deep learning with images" will follow later in the afternoon. This tutorial aims to teach you key concepts and apply what you have learned in the talks and morning hands-on sessions on using Python for scientific compyting with Jupyter notebooks. Basic familiarity with Python, Jupyter, and numpy is assumed. The tutorial uses Matplotlib, which is the de-facto plotting utility for Python. Don't worry if you are not yet familiar with Matplotlib, we will provide what you need. Basic Keras functionality will be briefly explained as it is introduced in the exercises below. Below are some suggested excercies for you to think about and discuss with your fellow mates. However, feel free to play around and modify the notebook as you like. This tutorial was develped by Ben Nachman (UC Berkeley) and Joakim Olsson (University of Chicago). If you are interested in a similar tutorial using some ATLAS simualated data there is another tutorial for that by by Amir Farbin at University of Texas at Arlington. Exercises 1.) Run through the notebook We recommend that you first run and read through the tutorial carefully one time, don't hesitate to ask us question of something is not clear Step1: 1D Optimal Classifier We will start by implementing the optimal (Gaussian) 1D classifier, like Ben Nachman explained in his talk "Introduction to pattern recognition algorithms and Machine Learning". Numpy provides the function numpy.random.normal, which is very useful for sampling a Gaussian with a mean 'mu' and standard deviation 'sigma'. You can try out this function yourself in the cell below. Step2: Let's generate some data. Below we have provided you with a function that gives you two cases Step3: Now, let's actually run the function and generate some data. Step4: Often when dealing with data you may want to either save something you generated or load data you got from somebody else. One of the most common formats is HDF5, a "data model, library, and file format for storing and managing data." It is also the most common storage format in data science. h5py provides a python API for HDF5. In most cases, you do not need to know very much about HDF5 or h5py, just how to read/write tensors into/from files, which you can easily pick up from the h5py (Quick Start)[http Step5: Here's how we can retreive the data back. Step6: Create histograms and plot the data. Step7: Next, let's compute the log-likelihood ratio (LLR). Step8: We can also plot the mapping between the input feature vector and the LLR. Step9: Don't worry about the 'bumps' towards the edges of the plot, that's just due to low statistics. The next step is to compute and plot the PDF of the LLR. Step10: Finally, we can scan a threshold cut on the LLR and make the ROC curve. Step11: That's it for the first part of this tutorial. Now let's do some Machine Learning! Implement and train a simple Neural Network in Keras Before one gets to the actual training, it's often necessary to transform the data into numpy array of the correct shape. To better understand what's going on below, let's do a quick example. Step12: Another things is that Keras require the 'X' inputs to be formatted in a certain way. Here's a simple example of that. Step13: Now when we hopefully understand a little more about how to manipulate numpy arrays, let's prepare our actual data for training a Neural Network in Keras. If you already executed the cells for generating (or loading) data in the first part of the tutorial, you should be good to go, otherwise please scroll up and execute the cell that calls Step14: Finally we get to the fun stuff, let's implement our first Neural Network in Keras. To learn more what all this does, you are strongly encouraged to go and read the Keras documentation. The core data structure of Keras is a model, a way to organize layers. The simplest type of model is the Sequential model, a linear stack of layers. For more complex architectures, you should use the Keras functional API, which allows to build arbitrary graphs of layers. Step15: Now let's add some layers to our model with "Dense". Dense implements the operation Step16: Next, we compile our model and choose 'binary_crossentropy' as our loss function and 'ADAM' (adaptive moment estimation) as the optimizer (an extension of stochastic gradient descent). Step17: We then train our model in the training data. Keras automatically runs validation on the test data. You can experiment with the number of 'epochs' the 'batch size' Step18: This very simple model should converge very quickly (even after 1-3 epochs). Training more complicated networks can take a very long time (days, weeks, or even months). The model history keeps track of the loss and accuracy for each epoch. Note that the training above was setup to run on the validation sample at the end of each epoch Step19: You can plot the loss versus epoch. Step20: Finally, let's plot the ROC curve and compare it to the result we got form the 1D optimal classifier above.
Python Code: # Import the print function that is compatible with Python 3 from __future__ import print_function # Import numpy - the fundamental package for scientific computing with Python import numpy as np # Import plotting Python plotting from matplotlib import matplotlib.pyplot as plt Explanation: 1D Optimal Classifier Compared With a Simple Neural Network This tutorial is part of the EFI Data Analytics for Physics workshop. It is meant for the beginner HEP undergraduate or graduate student (or postdoc/faculty) who wants to get started implementing a simple feed-forward Neural Network in Python with Keras. A more advanced Keras tutorial on "Deep learning with images" will follow later in the afternoon. This tutorial aims to teach you key concepts and apply what you have learned in the talks and morning hands-on sessions on using Python for scientific compyting with Jupyter notebooks. Basic familiarity with Python, Jupyter, and numpy is assumed. The tutorial uses Matplotlib, which is the de-facto plotting utility for Python. Don't worry if you are not yet familiar with Matplotlib, we will provide what you need. Basic Keras functionality will be briefly explained as it is introduced in the exercises below. Below are some suggested excercies for you to think about and discuss with your fellow mates. However, feel free to play around and modify the notebook as you like. This tutorial was develped by Ben Nachman (UC Berkeley) and Joakim Olsson (University of Chicago). If you are interested in a similar tutorial using some ATLAS simualated data there is another tutorial for that by by Amir Farbin at University of Texas at Arlington. Exercises 1.) Run through the notebook We recommend that you first run and read through the tutorial carefully one time, don't hesitate to ask us question of something is not clear :) 2.) Try changing things After you have done that, it's time to start tweaking some parameters and play around with the code. Here are a few suggestions of what you can try: 2a). Try changing the number of samples (N) What happens if you reduce the number of samples by an order of magnitude or more? If you don't see any effect, try to reduce it further. Which model does better as the number of events goes to zero? Why? 2b). Vary the Network structure What happens if you increase the number neurons in the hidden layer? What happens if you increase/decrease the number of training epochs? What happens if you vary the batch size? What happens if you change the activation function (in particular try switching from 'sigmoind' to 'linear')? Let's get started and import some packages that we'll need throughout the tutorial. End of explanation # Generate 1000 samples from a Gaussian pdf with mu=5 and sigma=2 mu = 5 sigma = 2 number_of_samples = 1000 test_samples = np.random.normal(mu, sigma, number_of_samples) # Plotting with matplotlib # First clear the figures plt.clf() # Segment the canvas into upper and lower subplots plt.subplot(211) # Plot the random numbers plt.plot(test_samples) plt.subplot(212) # Histogram the numbers plt.hist(test_samples, bins=100) # Display the canvas plt.show() Explanation: 1D Optimal Classifier We will start by implementing the optimal (Gaussian) 1D classifier, like Ben Nachman explained in his talk "Introduction to pattern recognition algorithms and Machine Learning". Numpy provides the function numpy.random.normal, which is very useful for sampling a Gaussian with a mean 'mu' and standard deviation 'sigma'. You can try out this function yourself in the cell below. End of explanation # Function that generates N signal and N background samples (note that 'do_simple' is true by default) def generate_samples(N, do_superposition=False): # Case 1: Signal and background are each a single Gaussian if not do_superposition: # Signal Gaussian has mean 1 and standard deviation 1 mu1, sigma1 = 1, 1 signal = np.random.normal(mu1, sigma1, N) # Background Gaussian has mean 1 and standard deviation 1 mu1, sigma1 = -1, 1 background = np.random.normal(mu1, sigma1, N) # Case 2: Signal and background are superpositions of Gaussians else: mu1a, sigma1a = -1.1, 0.5 x1a = np.random.normal(mu1a, sigma1a, int(0.6*N)) mu1b, sigma1b = 1, 1 x1b = np.random.normal(mu1b, sigma1b, int(0.4*N)) mu2a, sigma2a = 2, 0.5 x2a = np.random.normal(mu2a, sigma2a, int(0.7*N)) mu2b, sigma2b = -1, 1 x2b = np.random.normal(mu2b, sigma2b, int(0.3*N)) signal = np.append(x1a,x1b) background = np.append(x2a,x2b) return signal, background Explanation: Let's generate some data. Below we have provided you with a function that gives you two cases: 1. 'do_superposition = False': Two Gaussians, both with a standard deviation of 1, but one with mean +1 and the other with mean -1. 2. 'do_superposition = True': Signal and background are the superposition of two Gaussians whose parameters are given below. By construction, the overlap between signal and background is larger in this second case. You are encouraged to experiment with your own function after you have run through the tutorial. End of explanation # If 'do_superposition = True' we get multiple Gaussians do_superposition = True # Number of samples N = 10000000 # Number of bins in the histograms nbins = 500 # Generate signal and background signal, background = generate_samples(N, do_superposition) Explanation: Now, let's actually run the function and generate some data. End of explanation import h5py # create a new file h5_file = h5py.File("data1.h5", "w") h5_file.create_dataset('signal', data=signal) h5_file.create_dataset('background', data=background) h5_file.close() Explanation: Often when dealing with data you may want to either save something you generated or load data you got from somebody else. One of the most common formats is HDF5, a "data model, library, and file format for storing and managing data." It is also the most common storage format in data science. h5py provides a python API for HDF5. In most cases, you do not need to know very much about HDF5 or h5py, just how to read/write tensors into/from files, which you can easily pick up from the h5py (Quick Start)[http://docs.h5py.org/en/latest/quick.html]. Even though this tutorial could be completed without storing and retreiving the data, it may be useful to go through that exercise. Let's start by save the data you generated to HDF5. End of explanation h5_file_readonly = h5py.File('data1.h5','r') signal = h5_file_readonly['signal'][:] background = h5_file_readonly['background'][:] h5_file_readonly.close() Explanation: Here's how we can retreive the data back. End of explanation # Plot the histograms plt.clf() plt.hist(signal, 50, density=True, facecolor='blue', alpha=0.75, label='S') plt.hist(background, 50, density=True, facecolor='red', alpha=0.75, label='B') plt.xlabel('Input feature x') plt.ylabel('Probability density (arbitrary units)') plt.title(r'Signal and Background') plt.legend(loc='upper right') plt.axis([-5, 5, 0, 0.7]) plt.grid(True) plt.show() Explanation: Create histograms and plot the data. End of explanation # Create the histograms, which we will use for calculating the log-likelihood ratio (LLR) below h_signal = np.histogram(signal, bins=500, range=(-5,5)) h_background = np.histogram(background, bins=500, range=(-5,5)) LL_dict = {} # used only for plotting LL_dict_bybin = {} # used for computing for i in range(len(h_signal[0])): # the if statements are there to account for "binning effects" if (h_background[0][i] > 0 and h_signal[0][i] > 0): LL_dict[h_background[1][i]] = np.log(1.*h_signal[0][i]/h_background[0][i]) elif (h_signal[0][i] > 0): # in case background bin = 0 LL_dict[h_background[1][i]] = np.log(100000.) #huge number elif (h_background[0][i] > 0): # in case signal bin = 0 LL_dict[h_background[1][i]] = np.log(1./100000.) #very small number else: LL_dict[h_background[1][i]] = np.log(1.) LL_dict_bybin[i] = LL_dict[h_background[1][i]] Explanation: Next, let's compute the log-likelihood ratio (LLR). End of explanation # array of 'x' values xvals = [d for d in LL_dict] # array of 'y' values yvals = [LL_dict[d] for d in LL_dict] xvals = np.array(xvals) yvals = np.array(yvals) # Return the indices that result from sorting the array (but do not modify the array itself) index_sorted = xvals.argsort() # Sort the arrays xvals = xvals[index_sorted[::-1]] yvals = yvals[index_sorted[::-1]] # Plot the LLR as a function of input feature x plt.clf() plt.plot(xvals,yvals) plt.xlabel('Input feature x') plt.ylabel('Log Likelihood Ratio') plt.title(r'LLR as a function of x') plt.axis([-6,6,-6,6]) plt.show() Explanation: We can also plot the mapping between the input feature vector and the LLR. End of explanation # Number of bins in the histgrams nbins = 50 # Create histograms h_signal_yvals = np.histogram([], bins=nbins, range=(-10,10)) h_background_yvals = np.histogram([], bins=nbins, range=(-10,10)) # Fill histograms for i in range(len(h_signal[0])): whichbin = np.digitize(LL_dict[h_signal[1][i]], h_signal_yvals[1]) if (whichbin > 49): whichbin = 49 h_signal_yvals[0][whichbin]+=h_signal[0][i] h_background_yvals[0][whichbin]+=h_background[0][i] # Plot the PDF of the LLR plt.clf() plt.xlabel('Log Likelihood Ratio') plt.ylabel('Probability Density (arbitrary units)') plt.title(r'Signal and Background') plt.bar(h_signal_yvals[1][:-1],h_signal_yvals[0], width=h_signal_yvals[1][1]-h_signal_yvals[1][0],facecolor='blue', alpha=0.75, label='S') plt.bar(h_background_yvals[1][:-1],h_background_yvals[0], width=h_background_yvals[1][1]-h_background_yvals[1][0],facecolor='red', alpha=0.75, label='B') plt.show() Explanation: Don't worry about the 'bumps' towards the edges of the plot, that's just due to low statistics. The next step is to compute and plot the PDF of the LLR. End of explanation # Make the ROC curve ROCx = np.zeros(nbins) ROCy = np.zeros(nbins) intx = 0. inty = 0. for i in range(nbins): intx+=h_signal_yvals[0][i] inty+=h_background_yvals[0][i] for i in range(nbins): sum_signal = 0. sum_background = 0. for j in range(i,len(h_signal_yvals[1])-1): sum_signal+=h_signal_yvals[0][j] sum_background+=h_background_yvals[0][j] ROCx[i] = sum_signal/intx ROCy[i] = sum_background/inty # Plot the ROC curve plt.clf() plt.axes().set_aspect('equal') plt.plot(ROCx,ROCy,label="LLR") plt.plot([0,1],[0,1],linestyle='--',color="#C0C0C0",label="Random") plt.xlabel('Pr(label signal | signal)') plt.ylabel('Pr(label signal | background)') plt.title(r'ROC Curve') plt.axis([0, 1, 0, 1]) plt.legend(loc='upper left') plt.show() Explanation: Finally, we can scan a threshold cut on the LLR and make the ROC curve. End of explanation # Say we have two 1x3 arrays (e.g. A=signal, B=background) A = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=np.float32) B = np.array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], dtype=np.float32) # We want to have labels '1' associated with the signal (A) and labels '0' associated with the background (B) A_labels = np.ones(10) B_labels = np.zeros(10) print('\nA: {}'.format(A)) print('B: {}'.format(B)) print('\nA_labels: {}'.format(A_labels)) print('B_labels: {}\n'.format(B_labels)) # We can concatenate the A and B arrays, and the A_labels and B_labels array like this C = np.concatenate((A,B)) C_labels = np.concatenate((A_labels,B_labels)) print('\nC: {}'.format(C)) print('C_labels: {}'.format(C_labels)) # Before training on the a dataset one often want to split it up into a 'training set' and a 'test set' # There is a useful function in scikit-learn that does this for you # This function also scrambles the examples from sklearn.model_selection import train_test_split C_train, C_test, C_labels_train, C_labels_test, = train_test_split(C, C_labels, test_size=3, random_state=1) # If this seems confusing, taking a look at the print output below should hopefully make things clear print('\nC_train: {}'.format(C_train)) print('C_labels_train: {}'.format(C_labels_train)) print('\nC_test: {}'.format(C_test)) print('\nC_labels_test: {}'.format(C_labels_test)) Explanation: That's it for the first part of this tutorial. Now let's do some Machine Learning! Implement and train a simple Neural Network in Keras Before one gets to the actual training, it's often necessary to transform the data into numpy array of the correct shape. To better understand what's going on below, let's do a quick example. End of explanation A = np.array([1, 2, 3, 4], dtype=np.float32) print(A) AT = np.array(A)[np.newaxis].T print(AT) Explanation: Another things is that Keras require the 'X' inputs to be formatted in a certain way. Here's a simple example of that. End of explanation # total number of signal + background events n_signal = len(signal) n_background = len(background) n_total = len(signal) + len(background) # use 90% of the total number of events for training the network n_train = int(0.9*n_total) # use the remaning 10% for testing n_test = n_total-n_train # generate an array of ones as signal labels sig_labels = np.ones(n_signal) # generate an array of zeros as background labels bkg_labels = np.zeros(n_background) # concatenate the signal and background samples X = np.concatenate((signal,background)) y = np.concatenate((sig_labels,bkg_labels)) # Format the inputs for Keras X = np.array(X)[np.newaxis].T # split the dataset into a training and a validation set and scamble the inputs (as illustrated above) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test, = train_test_split(X, y, test_size=n_test, random_state=1) Explanation: Now when we hopefully understand a little more about how to manipulate numpy arrays, let's prepare our actual data for training a Neural Network in Keras. If you already executed the cells for generating (or loading) data in the first part of the tutorial, you should be good to go, otherwise please scroll up and execute the cell that calls: signal, background = generate_samples(N) End of explanation from keras.models import Sequential model = Sequential() Explanation: Finally we get to the fun stuff, let's implement our first Neural Network in Keras. To learn more what all this does, you are strongly encouraged to go and read the Keras documentation. The core data structure of Keras is a model, a way to organize layers. The simplest type of model is the Sequential model, a linear stack of layers. For more complex architectures, you should use the Keras functional API, which allows to build arbitrary graphs of layers. End of explanation from keras.layers import Dense # Since our samples are only the X values (of either signal or background), the first layer just has one input dimension model.add(Dense(1, input_dim=1, kernel_initializer='normal', activation='relu')) # We then implement only one hidden layer with 8 neurons (you can experiment with changing this number) n_neurons_hidden = 8 model.add(Dense(n_neurons_hidden, kernel_initializer='normal', activation='relu')) # Finally we add one output layer model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) Explanation: Now let's add some layers to our model with "Dense". Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the element-wise activation function passed as the activation argument, kernel is a weights matrix created by the layer, and bias is a bias vector created by the layer (only applicable if use_bias is True). In other words, Dense is just your the regular densely-connected NN layer. End of explanation # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Print a summary of the model structure model.summary() Explanation: Next, we compile our model and choose 'binary_crossentropy' as our loss function and 'ADAM' (adaptive moment estimation) as the optimizer (an extension of stochastic gradient descent). End of explanation history=model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=3, batch_size=2048) Explanation: We then train our model in the training data. Keras automatically runs validation on the test data. You can experiment with the number of 'epochs' the 'batch size': - one epoch = One forward pass and one backward pass of all the training examples. - batch size = The number of training examples in one forward/backward pass. Tthe higher the batch size, the more memory space you'll need. End of explanation print(history.history) Explanation: This very simple model should converge very quickly (even after 1-3 epochs). Training more complicated networks can take a very long time (days, weeks, or even months). The model history keeps track of the loss and accuracy for each epoch. Note that the training above was setup to run on the validation sample at the end of each epoch: End of explanation loss_history=history.history["loss"] plt.plot(range(len(loss_history)),loss_history) plt.show() Explanation: You can plot the loss versus epoch. End of explanation # Here we make use of a function in scikit-learn to calculate the ROC curve from sklearn.metrics import roc_curve, auc fpr, tpr, _ = roc_curve(y_test, model.predict(X_test)) roc_auc = auc(fpr, tpr) # Plot the ROC curve from the NN and overlay the ROC curve from the 1D classifier plt.clf() plt.axes().set_aspect('equal') plt.plot(ROCx,ROCy,label="LLR") plt.plot(tpr,fpr,color='darkorange',label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0,1],[0,1],linestyle='--',color="#C0C0C0",label="Random") plt.xlabel('Pr(label signal | signal)') plt.ylabel('Pr(label signal | background)') plt.title(r'ROC Curve') plt.axis([0, 1, 0, 1]) plt.legend(loc='upper left') plt.show() Explanation: Finally, let's plot the ROC curve and compare it to the result we got form the 1D optimal classifier above. End of explanation
9,769
Given the following text description, write Python code to implement the functionality described below step by step Description: 1D Wasserstein barycenter demo This example illustrates the computation of regularized Wassersyein Barycenter as proposed in [3]. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems SIAM Journal on Scientific Computing, 37(2), A1111-A1138. Step1: Generate data Step2: Plot data Step3: Barycenter computation Step4: Barycentric interpolation
Python Code: # Author: Remi Flamary <[email protected]> # # License: MIT License import numpy as np import matplotlib.pylab as pl import ot # necessary for 3d plot even if not used from mpl_toolkits.mplot3d import Axes3D # noqa from matplotlib.collections import PolyCollection Explanation: 1D Wasserstein barycenter demo This example illustrates the computation of regularized Wassersyein Barycenter as proposed in [3]. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems SIAM Journal on Scientific Computing, 37(2), A1111-A1138. End of explanation #%% parameters n = 100 # nb bins # bin positions x = np.arange(n, dtype=np.float64) # Gaussian distributions a1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std a2 = ot.datasets.make_1D_gauss(n, m=60, s=8) # creating matrix A containing all distributions A = np.vstack((a1, a2)).T n_distributions = A.shape[1] # loss matrix + normalization M = ot.utils.dist0(n) M /= M.max() Explanation: Generate data End of explanation #%% plot the distributions pl.figure(1, figsize=(6.4, 3)) for i in range(n_distributions): pl.plot(x, A[:, i]) pl.title('Distributions') pl.tight_layout() Explanation: Plot data End of explanation #%% barycenter computation alpha = 0.2 # 0<=alpha<=1 weights = np.array([1 - alpha, alpha]) # l2bary bary_l2 = A.dot(weights) # wasserstein reg = 1e-3 bary_wass = ot.bregman.barycenter(A, M, reg, weights) pl.figure(2) pl.clf() pl.subplot(2, 1, 1) for i in range(n_distributions): pl.plot(x, A[:, i]) pl.title('Distributions') pl.subplot(2, 1, 2) pl.plot(x, bary_l2, 'r', label='l2') pl.plot(x, bary_wass, 'g', label='Wasserstein') pl.legend() pl.title('Barycenters') pl.tight_layout() Explanation: Barycenter computation End of explanation #%% barycenter interpolation n_alpha = 11 alpha_list = np.linspace(0, 1, n_alpha) B_l2 = np.zeros((n, n_alpha)) B_wass = np.copy(B_l2) for i in range(0, n_alpha): alpha = alpha_list[i] weights = np.array([1 - alpha, alpha]) B_l2[:, i] = A.dot(weights) B_wass[:, i] = ot.bregman.barycenter(A, M, reg, weights) #%% plot interpolation pl.figure(3) cmap = pl.cm.get_cmap('viridis') verts = [] zs = alpha_list for i, z in enumerate(zs): ys = B_l2[:, i] verts.append(list(zip(x, ys))) ax = pl.gcf().gca(projection='3d') poly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list]) poly.set_alpha(0.7) ax.add_collection3d(poly, zs=zs, zdir='y') ax.set_xlabel('x') ax.set_xlim3d(0, n) ax.set_ylabel('$\\alpha$') ax.set_ylim3d(0, 1) ax.set_zlabel('') ax.set_zlim3d(0, B_l2.max() * 1.01) pl.title('Barycenter interpolation with l2') pl.tight_layout() pl.figure(4) cmap = pl.cm.get_cmap('viridis') verts = [] zs = alpha_list for i, z in enumerate(zs): ys = B_wass[:, i] verts.append(list(zip(x, ys))) ax = pl.gcf().gca(projection='3d') poly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list]) poly.set_alpha(0.7) ax.add_collection3d(poly, zs=zs, zdir='y') ax.set_xlabel('x') ax.set_xlim3d(0, n) ax.set_ylabel('$\\alpha$') ax.set_ylim3d(0, 1) ax.set_zlabel('') ax.set_zlim3d(0, B_l2.max() * 1.01) pl.title('Barycenter interpolation with Wasserstein') pl.tight_layout() pl.show() Explanation: Barycentric interpolation End of explanation
9,770
Given the following text description, write Python code to implement the functionality described below step by step Description: Simulating the 1945 Makran Tsunami using Thetis The 1945 Makran Tsunami was a large tsunami which originated due to the 1945 Balochistan earthquake. The resulting tsunami is beielved to have killed around 4000 people along the coast of modern day Pakistan, India, Iran and Oman. Tidal records indicate that the tsunami was recorded as far as the islands of Seychells and Minicoy. Moden simulations of the tsunami indicate tsunami elevations would have been observed across the islands of the Maldives as well. Here we will model the tsunami using elevations from actual fault estimations. <img src="figures/Map_of_region.png" style="height Step1: Importing the mesh Next we will import the mesh (this mesh was actually created using qmesh mentioned in yesterday's lecture). Additionally we will visualise the mesh as well using the firedrake plot utility function. The plot function provides an easy way to plot of firedrake functions. Step2: The mesh is created using a UTM-based coordinate system, which divides the world in different zones. In each zone coordinates can be accurately represented by a flat x,y plane. The zone that covers our region is UTM zone 43 which is valid between 72 and 78 degrees longitude East. Setup the bathymetry Next we will define a bathymetry function. For the purpose of this simulation to keeps things simple we will assign a constant depth of 20m. Before creating the bathymetry function and assigning depth we will visualise the bathymetry of the area using the GEBCO bathymetry dataset. <img src="figures/Depth.png" style="height Step3: Initial Elevation Now we will define a function for the initial elevation, using the same P1 function space. This initial elevation function will set the values for the initial elevation in our simulation. It contains a perturbation in the North of the domain that represent the initial stage of a tsunami. Step4: After defining the initial elevation function we need to set the values of the function, across our mesh. The initial elevation is given to us stored on a regular lon, lat grid. In our simulation we will be using a mesh defined in UTM zone 43 coordinates, and thus we need to perform a coordinate transformation and interpolate between the two grids. First we extract the coordinates of the mesh (in UTM zone 43) and the values of the initial value function as numpy arrays Step5: Next we will import the data that we wish to be interpolate onto the initial elevation function. Here the data that we wish to be interpolated on to our elevation function is the vertical displacement of the free-surface due to the earthquake. Given the earthquake fault parameters which are available from various sources such as USGS these deformations can be obtained through various means. Here we will use the output obtained from an 'Okada model' utilising single-fault parameters as provided in Arjun.et.al. We also print the first row of the data, the columns are arranged as Longitude, Latitude, x, y and z displacement. Step6: In order to interpolate the data values onto our mesh, we will use a nearest-neighbour interpolator from scipy. We extract the first two columns (lon and lat) as the coordinates, and the fourth column (vertical displacement) as the values we want to interpolate Step7: intp is now an interpolator object that can interpolate the data at any location using intp(lon, lat). However since our mesh is in Universal Transverse Mercator coordinate system (UTM) coordinates, we first convert the coordinates of the mesh points into lat, lon. This is done using the pyproj library Step8: lon and lat are now two numpy arrays with longitude and latitude of all mesh points. These can be fed straight into intp to return an array of the interpolated values in these points. By assigning it to the init_elev_data array these will become the values of the init_elev function. Step9: Let's plot this to check Step10: Setting Solver Options Now we have everything we need to setup the solver and set its options. The setup is very similar to what was discussed for the 2D channel example. Step11: Boundary and Initial Conditions Next we define the boundary conditions of our model. We will set the velocities at the coastlines and open boundaries to zero. At the open boundaries we set both the normal velocity and elevation to zero, this leads to weakly reflective boundaries. Step12: Additionaly we set the initial conditions for our simulation. Here we use the init_elev we set up above. Initial velocities are zero (by default) Step13: Now set the solver iterator to start the simulation running. Note that since we do not have any time varying forcing, we do not need a update_forcings function. Step14: Further Practice a. Instead of the constant bathymetry, load the bathymetry file provided in the runfiles folder, visuallize the bathymetry and use this bathymetry to run the model. Notice any difference? Hint, to load the bathymetry, use
Python Code: %matplotlib inline import matplotlib import matplotlib.pyplot as plt import scipy.interpolate # used for interpolation import pyproj # used for coordinate transformations import math from thetis import * Explanation: Simulating the 1945 Makran Tsunami using Thetis The 1945 Makran Tsunami was a large tsunami which originated due to the 1945 Balochistan earthquake. The resulting tsunami is beielved to have killed around 4000 people along the coast of modern day Pakistan, India, Iran and Oman. Tidal records indicate that the tsunami was recorded as far as the islands of Seychells and Minicoy. Moden simulations of the tsunami indicate tsunami elevations would have been observed across the islands of the Maldives as well. Here we will model the tsunami using elevations from actual fault estimations. <img src="figures/Map_of_region.png" style="height:1000px, width:1000px"> As usual we begin by importing the required python libraries and modules. End of explanation mesh = Mesh('runfiles/mesh.msh') plt.figure(figsize=(12, 8)) ax = plt.gca() triplot(mesh, axes=ax); Explanation: Importing the mesh Next we will import the mesh (this mesh was actually created using qmesh mentioned in yesterday's lecture). Additionally we will visualise the mesh as well using the firedrake plot utility function. The plot function provides an easy way to plot of firedrake functions. End of explanation P1 = FunctionSpace(mesh, "CG", 1) bathymetry_2d = Function(P1, name='Bathymetry') depth = 2000.0 bathymetry_2d.assign(depth) tricontourf(bathymetry_2d); Explanation: The mesh is created using a UTM-based coordinate system, which divides the world in different zones. In each zone coordinates can be accurately represented by a flat x,y plane. The zone that covers our region is UTM zone 43 which is valid between 72 and 78 degrees longitude East. Setup the bathymetry Next we will define a bathymetry function. For the purpose of this simulation to keeps things simple we will assign a constant depth of 20m. Before creating the bathymetry function and assigning depth we will visualise the bathymetry of the area using the GEBCO bathymetry dataset. <img src="figures/Depth.png" style="height:1000px, width:1000px"> To start of with however, we will simply use a constant depth of 2000m. The bathymetry function will be defined within the function space of piecewise linear functions ("CG" for Continous Galerkin and a polynomial degree of 1). We will again visualise the depth to confirm if the value is assigned across the domain. End of explanation init_elev = Function(P1, name = 'init_elev') Explanation: Initial Elevation Now we will define a function for the initial elevation, using the same P1 function space. This initial elevation function will set the values for the initial elevation in our simulation. It contains a perturbation in the North of the domain that represent the initial stage of a tsunami. End of explanation mesh_coordinates = mesh.coordinates.dat.data init_elev_data = init_elev.dat.data Explanation: After defining the initial elevation function we need to set the values of the function, across our mesh. The initial elevation is given to us stored on a regular lon, lat grid. In our simulation we will be using a mesh defined in UTM zone 43 coordinates, and thus we need to perform a coordinate transformation and interpolate between the two grids. First we extract the coordinates of the mesh (in UTM zone 43) and the values of the initial value function as numpy arrays: End of explanation data = np.genfromtxt('runfiles/outputs.txt') print (np.round(data[0],5)) Explanation: Next we will import the data that we wish to be interpolate onto the initial elevation function. Here the data that we wish to be interpolated on to our elevation function is the vertical displacement of the free-surface due to the earthquake. Given the earthquake fault parameters which are available from various sources such as USGS these deformations can be obtained through various means. Here we will use the output obtained from an 'Okada model' utilising single-fault parameters as provided in Arjun.et.al. We also print the first row of the data, the columns are arranged as Longitude, Latitude, x, y and z displacement. End of explanation intp = scipy.interpolate.NearestNDInterpolator(data[:,0:2], data[:,4]) Explanation: In order to interpolate the data values onto our mesh, we will use a nearest-neighbour interpolator from scipy. We extract the first two columns (lon and lat) as the coordinates, and the fourth column (vertical displacement) as the values we want to interpolate: End of explanation outproj = pyproj.Proj(init='epsg:4326') inproj = pyproj.Proj(init='epsg:32643') lon, lat = pyproj.transform(inproj, outproj, mesh_coordinates[:,0], mesh_coordinates[:,1]) Explanation: intp is now an interpolator object that can interpolate the data at any location using intp(lon, lat). However since our mesh is in Universal Transverse Mercator coordinate system (UTM) coordinates, we first convert the coordinates of the mesh points into lat, lon. This is done using the pyproj library: End of explanation init_elev_data[:] = intp(lon, lat) Explanation: lon and lat are now two numpy arrays with longitude and latitude of all mesh points. These can be fed straight into intp to return an array of the interpolated values in these points. By assigning it to the init_elev_data array these will become the values of the init_elev function. End of explanation plt.figure(figsize=(12, 8)) ax = plt.gca() tricontourf(init_elev, axes=ax, cmap=matplotlib.cm.coolwarm, levels=50); Explanation: Let's plot this to check: End of explanation solver_obj = solver2d.FlowSolver2d(mesh, bathymetry_2d) options = solver_obj.options # total duration in seconds options.simulation_export_time = 900.0 # export interval in seconds options.simulation_end_time = 3600.0 * 2 options.timestepper_type = 'CrankNicolson' options.timestep = 5.0 options.output_directory = 'outputs_makran_tsunami' options.fields_to_export = [] options.fields_to_export_hdf5 = ['elev_2d', 'uv_2d'] Explanation: Setting Solver Options Now we have everything we need to setup the solver and set its options. The setup is very similar to what was discussed for the 2D channel example. End of explanation solver_obj.bnd_functions['shallow_water'] = { 100: {'un': 0.0}, 200: {'un': 0.0, 'elev' :0.0} } Explanation: Boundary and Initial Conditions Next we define the boundary conditions of our model. We will set the velocities at the coastlines and open boundaries to zero. At the open boundaries we set both the normal velocity and elevation to zero, this leads to weakly reflective boundaries. End of explanation solver_obj.assign_initial_conditions(elev=init_elev) Explanation: Additionaly we set the initial conditions for our simulation. Here we use the init_elev we set up above. Initial velocities are zero (by default): End of explanation solver_obj.iterate() elev = Function(solver_obj.function_spaces.H_2d, name='elev_2d') uv = Function(solver_obj.function_spaces.U_2d, name='uv_2d') last_idx = solver_obj.i_export nrows = math.ceil(last_idx/2) fig, axes = plt.subplots(nrows, 2, figsize=(16, 6*nrows)) for idx, ax in enumerate(axes.flatten()): filename = os.path.join(options.output_directory, 'hdf5','Elevation2d_%05d' % idx) dc = DumbCheckpoint(filename, mode=FILE_READ) dc.load(elev) dc.close() # by specifying cmap=None above, we avoid displaying a colorbar tricontourf(elev, axes=ax, cmap=matplotlib.cm.coolwarm, levels=50) # Firedrake sets an automatic colorbar range which therefore changes per timestep # instead, we want to fix it: cbar = ax.collections[-1].set_clim(-5, 5) # we do want to set an appropriate colormap cbar = ax.collections[-1].set_cmap(matplotlib.cm.coolwarm) ax.axis('equal') ax.title.set_text('Export no. %d at t=%.0f' % (idx, options.simulation_export_time*idx)) plt.tight_layout() Explanation: Now set the solver iterator to start the simulation running. Note that since we do not have any time varying forcing, we do not need a update_forcings function. End of explanation dc = DumbCheckpoint('runfiles/bathy', mode=FILE_READ) dc.load(bathymetry_2d, name='bathy'); Explanation: Further Practice a. Instead of the constant bathymetry, load the bathymetry file provided in the runfiles folder, visuallize the bathymetry and use this bathymetry to run the model. Notice any difference? Hint, to load the bathymetry, use: End of explanation
9,771
Given the following text description, write Python code to implement the functionality described below step by step Description: Aligning MRS voxels with the anatomy Several steps in the analysis and interpertation of the MRS data require knowledge of the anatomical location of the volume from which MRS data was acquired. In particular, we would like to know how much of the volume contains gray matter, relative to other tissue components, such as white matter, CSF, etc. In order to infer this, we need to acquire a T1-weighted MRI scan in the same session, and (assuming the subject hasn't moved too much), use the segmentation of the T1w image into different tissue types (e.g. using Freesurfer). However, in order to do that, we first need to align the MRS voxel with the T1w data, so that we can extract these quantities. Step1: In order to be able to align the files with regard to each other, they need to both encode an affine transformation relative to the scanner space. For a very thorough introduction to these transformations and their utility, see this tutorial Step2: If you read the aformentioned tutorial, this will make sense. The diagonal of the top ledt 3 x 3 matrix encodes the resolution of the voxels used in each of the acquisitions (in mm). The MRS data has a single 2.5 x 2.5 x 2.5 cm$^2$ isotropic voxel, and the T1 has (approximately) 0.9 x 0.9 x 0.9 mm$^2$ isotropic voxels. They were both acquired without any rotation relative to the scanner coordinate system, which is why the off-diagonal terms of the top left 3 x 3 matrix is all zeros. The 4th column of each of these matrices encodes the xyz shift (again, in mm) relative to the scanner isocenter. Composing these two transformations together tells us how to align the two volumes relative to each other. In particular, we might ask where in the t1 coordinate system the center of the MRS voxel is. Since we are multiplying Step3: This allows us to compute the location of the center of the MRS voxel in the T1 volume coordinates, and the locations of the corners of the voxel Step4: Using this information, we can manually create a volume that only contains the T1-weighted data in the MRS ROI Step5: To view this, we will create a rather rough orthographic viewer of the T1 data, using IPython's interactive widget system. We add the data int the MRS ROI using a different color map, so that we can see where it is in the context of the anatomy
Python Code: import numpy as np import matplotlib import matplotlib.pyplot as plt %matplotlib inline import os.path as op import nibabel as nib import MRS.data as mrd import IPython.html.widgets as wdg import IPython.display as display mrs_nifti = nib.load(op.join(mrd.data_folder, '12_1_PROBE_MEGA_L_Occ.nii.gz')) t1_nifti = nib.load(op.join(mrd.data_folder, '5062_2_1.nii.gz')) Explanation: Aligning MRS voxels with the anatomy Several steps in the analysis and interpertation of the MRS data require knowledge of the anatomical location of the volume from which MRS data was acquired. In particular, we would like to know how much of the volume contains gray matter, relative to other tissue components, such as white matter, CSF, etc. In order to infer this, we need to acquire a T1-weighted MRI scan in the same session, and (assuming the subject hasn't moved too much), use the segmentation of the T1w image into different tissue types (e.g. using Freesurfer). However, in order to do that, we first need to align the MRS voxel with the T1w data, so that we can extract these quantities. End of explanation mrs_aff = mrs_nifti.get_affine() t1_aff = t1_nifti.get_affine() print("The affine transform for the MRS data is:") print(mrs_aff) print("The affine transform for the T1 data is:") print(t1_aff) Explanation: In order to be able to align the files with regard to each other, they need to both encode an affine transformation relative to the scanner space. For a very thorough introduction to these transformations and their utility, see this tutorial End of explanation composed_affine = np.dot(np.linalg.pinv(t1_aff), mrs_aff) Explanation: If you read the aformentioned tutorial, this will make sense. The diagonal of the top ledt 3 x 3 matrix encodes the resolution of the voxels used in each of the acquisitions (in mm). The MRS data has a single 2.5 x 2.5 x 2.5 cm$^2$ isotropic voxel, and the T1 has (approximately) 0.9 x 0.9 x 0.9 mm$^2$ isotropic voxels. They were both acquired without any rotation relative to the scanner coordinate system, which is why the off-diagonal terms of the top left 3 x 3 matrix is all zeros. The 4th column of each of these matrices encodes the xyz shift (again, in mm) relative to the scanner isocenter. Composing these two transformations together tells us how to align the two volumes relative to each other. In particular, we might ask where in the t1 coordinate system the center of the MRS voxel is. Since we are multiplying End of explanation mrs_center = [0,0,0,1] t1_center = np.round(np.dot(composed_affine, mrs_center)).astype(int) mrs_corners = [[-0.5, -0.5, -0.5, 1], [-0.5, -0.5, 0.5, 1], [-0.5, 0.5, -0.5, 1], [-0.5, 0.5, 0.5, 1], [ 0.5, -0.5, -0.5, 1], [ 0.5, -0.5, 0.5, 1], [ 0.5, 0.5, -0.5, 1], [ 0.5, 0.5, 0.5, 1]] t1_corners = [np.round(np.dot(composed_affine, c)).astype(int) for c in mrs_corners] t1_corners Explanation: This allows us to compute the location of the center of the MRS voxel in the T1 volume coordinates, and the locations of the corners of the voxel: End of explanation t1_data = t1_nifti.get_data().squeeze() mrs_roi = np.ones_like(t1_data) * np.nan mrs_roi[144:172, 176:204, 78:106] = t1_data[144:172, 176:204, 78:106] Explanation: Using this information, we can manually create a volume that only contains the T1-weighted data in the MRS ROI: End of explanation def show_voxel(x=t1_center[0], y=t1_center[1], z=t1_center[2]): fig = plt.figure() ax = fig.add_subplot(221) ax.axis('off') ax.imshow(np.rot90(t1_data[:, :, z]), matplotlib.cm.bone) ax.imshow(np.rot90(mrs_roi[:, :, z]), matplotlib.cm.jet) ax.plot([x, x], [0, t1_data.shape[0]], color='w') ax.plot([0, t1_data.shape[1]], [y, y], color='w') ax.set_ylim([0, t1_data.shape[0]]) ax.set_xlim([0, t1_data.shape[1]]) ax = fig.add_subplot(222) ax.axis('off') ax.imshow(np.rot90(t1_data[:, -y, :]), matplotlib.cm.bone) ax.imshow(np.rot90(mrs_roi[:, -y, :]), matplotlib.cm.jet) ax.plot([x, x], [0, t1_data.shape[1]], color='w') ax.plot([0, t1_data.shape[1]], [z, z], color='w') ax.set_xlim([0, t1_data.shape[0]]) ax.set_ylim([t1_data.shape[2], 0]) ax = fig.add_subplot(223) ax.axis('off') ax.imshow(np.rot90(t1_data[x, :, :]), matplotlib.cm.bone) ax.imshow(np.rot90(mrs_roi[x, :, :]), matplotlib.cm.jet) ax.plot([t1_data.shape[1]-y, t1_data.shape[1]-y], [0, t1_data.shape[1]], color='w') ax.plot([0, t1_data.shape[1]], [z, z], color='w') ax.set_xlim([0, t1_data.shape[1]]) ax.set_ylim([t1_data.shape[2], 0]) fig.set_size_inches(10, 10) return fig def voxel_viewer(t1_data, mrs_roi): pb_widget = wdg.interactive(show_voxel, t1_data = wdg.fixed(t1_data), mrs_roi = wdg.fixed(mrs_roi), x=wdg.IntSliderWidget(min=0, max=t1_data.shape[0]-1, value=155), y=wdg.IntSliderWidget(min=0, max=t1_data.shape[1]-1, value=65), z=wdg.IntSliderWidget(min=0, max=t1_data.shape[2]-1, value=92) ) display.display(pb_widget) voxel_viewer(t1_data, mrs_roi) Explanation: To view this, we will create a rather rough orthographic viewer of the T1 data, using IPython's interactive widget system. We add the data int the MRS ROI using a different color map, so that we can see where it is in the context of the anatomy End of explanation
9,772
Given the following text description, write Python code to implement the functionality described below step by step Description: <!--BOOK_INFORMATION--> <a href="https Step1: Then we can visualize Lena with the following command (don't forget to switch the BGR ordering of the color channels to RGB) Step2: The image itself is stored in a 3D array of size (height, width, depth) containing blue/green/red contributions as integers from 0 to 255 Step3: Because every color channel has 256 possible values, the number of possible colors is 256 x 256 x 256, or 16,777,216, as mentioned prior to this. One way to visualize the sheer amount of different colors in the image is to reshape the data to a cloud of points in a 3D color space. We also scale the colors to lie between 0 and 1 Step4: In this 3D color space, every row of data is a data point. In order to visualize this data, we will write a function called plot_pixels, which takes as input the data matrix and a figure title. Optionally, we also let the user specify the colors to use. For the sake of efficiency, we can also limit the analysis to a subset of N pixels Step5: We can then call the function with our data matrix (data) and an appropriate title Step6: Reducing the color palette using k-means Now let's reduce these 16 million colors to just 16 colors by telling $k$-means to cluster all color variations into 16 distinct clusters. We use the before mentioned procedure, but now specify 16 as the number of clusters Step7: The resulting cluster corresponds to the 16 colors of our reduced color palette. Visual inspection of the centers array reveals that all colors have three entries—B, G, and R—with values between 0 and 1 Step8: These 16 colors correspond to the 16 cluster labels contained in the labels vector. So we want all data points with label 0 to be colored according to row 0 in the centers array; all data points with label 1 to be colored according to row 1 in the centers array; and so on. In other words, we want to use labels as an index into the centers array—these are our new colors Step9: We can plot the data again, but this time, we will use new_colors to color the data points accordingly Step10: In order to see the effect of this recoloring, we have to plot new_colors as an image. In order to get from the image to the data matrix, we flattened the earlier image. Now we need to do the inverse to get back to the image, which is to reshape new_colors according to the shape of the Lena image Step11: Then we can visualize the recolored Lena image like any other image
Python Code: import cv2 import numpy as np lena = cv2.imread('data/lena.jpg', cv2.IMREAD_COLOR) import matplotlib.pyplot as plt %matplotlib inline plt.style.use('ggplot') plt.rc('axes', **{'grid': False}) Explanation: <!--BOOK_INFORMATION--> <a href="https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv" target="_blank"><img align="left" src="data/cover.jpg" style="width: 76px; height: 100px; background: white; padding: 1px; border: 1px solid black; margin-right:10px;"></a> This notebook contains an excerpt from the book Machine Learning for OpenCV by Michael Beyeler. The code is released under the MIT license, and is available on GitHub. Note that this excerpt contains only the raw code - the book is rich with additional explanations and illustrations. If you find this content useful, please consider supporting the work by buying the book! <!--NAVIGATION--> < Understanding k-means clustering | Contents | Classifying handwritten digits using k-means > Compressing Color Spaces Using k-Means One exciting application of $k$-means is the compression of image color spaces. For example, a typical true-color image comes with a 24-bit color depth, allowing for a total of 16,777,216 color variations. However, in most images, a large number of the colors will be unused, and many of the pixels in the image will have similar or identical colors. Alternatively, we can use k-means to reduce the color palette to, for example, 16 color variations. The trick here is to think of the cluster centers as the reduced color palette. Then $k$-means will automatically organize the millions of colors in the original image into the appropriate number of colors! Visualizing the true-color palette Let's have a look at a particular image: End of explanation plt.figure(figsize=(10, 6)) plt.imshow(cv2.cvtColor(lena, cv2.COLOR_BGR2RGB)) Explanation: Then we can visualize Lena with the following command (don't forget to switch the BGR ordering of the color channels to RGB): End of explanation lena.shape Explanation: The image itself is stored in a 3D array of size (height, width, depth) containing blue/green/red contributions as integers from 0 to 255: End of explanation img_data = lena / 255.0 # use 0...1 scale img_data = img_data.reshape((-1, 3)) img_data.shape Explanation: Because every color channel has 256 possible values, the number of possible colors is 256 x 256 x 256, or 16,777,216, as mentioned prior to this. One way to visualize the sheer amount of different colors in the image is to reshape the data to a cloud of points in a 3D color space. We also scale the colors to lie between 0 and 1: End of explanation def plot_pixels(data, title, colors=None, N=10000): if colors is None: colors = data # choose a random subset rng = np.random.RandomState(0) i = rng.permutation(data.shape[0])[:N] colors = colors[i] pixel = data[i].T R, G, B = pixel[0], pixel[1], pixel[2] fig, ax = plt.subplots(1, 2, figsize=(16, 6)) ax[0].scatter(R, G, color=colors, marker='.') ax[0].set(xlabel='Red', ylabel='Green', xlim=(0, 1), ylim=(0, 1)) ax[1].scatter(R, B, color=colors, marker='.') ax[1].set(xlabel='Red', ylabel='Blue', xlim=(0, 1), ylim=(0, 1)) fig.suptitle(title, size=20); Explanation: In this 3D color space, every row of data is a data point. In order to visualize this data, we will write a function called plot_pixels, which takes as input the data matrix and a figure title. Optionally, we also let the user specify the colors to use. For the sake of efficiency, we can also limit the analysis to a subset of N pixels: End of explanation plot_pixels(img_data, title='Input color space: 16 million possible colors') Explanation: We can then call the function with our data matrix (data) and an appropriate title: End of explanation criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) flags = cv2.KMEANS_RANDOM_CENTERS compactness, labels, centers = cv2.kmeans(img_data.astype(np.float32), 16, None, criteria, 10, flags) Explanation: Reducing the color palette using k-means Now let's reduce these 16 million colors to just 16 colors by telling $k$-means to cluster all color variations into 16 distinct clusters. We use the before mentioned procedure, but now specify 16 as the number of clusters: End of explanation centers Explanation: The resulting cluster corresponds to the 16 colors of our reduced color palette. Visual inspection of the centers array reveals that all colors have three entries—B, G, and R—with values between 0 and 1: End of explanation new_colors = centers[labels].reshape((-1, 3)) Explanation: These 16 colors correspond to the 16 cluster labels contained in the labels vector. So we want all data points with label 0 to be colored according to row 0 in the centers array; all data points with label 1 to be colored according to row 1 in the centers array; and so on. In other words, we want to use labels as an index into the centers array—these are our new colors: End of explanation plot_pixels(img_data, colors=new_colors, title="Reduced color space: 16 colors") Explanation: We can plot the data again, but this time, we will use new_colors to color the data points accordingly: End of explanation lena_recolored = new_colors.reshape(lena.shape) Explanation: In order to see the effect of this recoloring, we have to plot new_colors as an image. In order to get from the image to the data matrix, we flattened the earlier image. Now we need to do the inverse to get back to the image, which is to reshape new_colors according to the shape of the Lena image: End of explanation plt.figure(figsize=(10, 6)) plt.imshow(cv2.cvtColor(lena_recolored, cv2.COLOR_BGR2RGB)); plt.title('16-color image') Explanation: Then we can visualize the recolored Lena image like any other image: End of explanation
9,773
Given the following text description, write Python code to implement the functionality described below step by step Description: Notebook arguments measurement_id (int) Step1: Selecting a data file Step2: Data load and Burst search Load and process the data Step3: Compute background and burst search Step4: Perform a background plot as a function of the channel Step5: Let's take a look at the photon waiting times histograms and at the fitted background rates Step6: Using dplot exactly in the same way as for the single-spot data has now generated 8 subplots, one for each channel. Let's plot a timetrace for the background to see is there are significat variations during the measurement Step7: We can look at the timetrace of the photon stream (binning) Step8: Burst selection and FRET Step9: Selecting bursts by size Step10: 3-Gaussian peaks Step13: Fit Step14: $$f(x) = \frac{A}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$$ $$\log f(x) = \log \frac{A}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}} = \log{A} -\log{\sigma} - \log\sqrt{2\pi} -\frac{(x - \mu)^2}{2 \sigma^2}$$ $$w_1 \; f_1(x) + w_2 \; f_2(x) + w_3 \; f_3(x)$$ $$\log (w_1 \; f_1(x)) = \log{w_1} + \log{f_1(x)}$$ Step15: Kinetics Definitions Step16: Moving-window processing Step17: Burst-data Step18: Population fraction
Python Code: import time from pathlib import Path import pandas as pd from scipy.stats import linregress from IPython.display import display from fretbursts import * sns = init_notebook(fs=14) import lmfit; lmfit.__version__ import phconvert; phconvert.__version__ Explanation: Notebook arguments measurement_id (int): Select the measurement. Valid values: 0, 1, 2. windows (tuple of ints): List of integration window durations (seconds). 8-spot kinetics <p class="lead">This notebook executes the realtime-kinetics analysis.</p> The first cell of this notebook selects which measurement is analyzed. Measurements can be processed one-by-one, by manually running this notebook, or in batch by using the notebook: "8-spot bubble-bubble kinetics - Run-All". Loading the software End of explanation dir_ = 'data/multispot_' filenames = [ dir_+'2015-07-31_bubble-bubble-run-off-kinetics-800mW-steer110_12.hdf5', dir_+'2015-07-29_bubble-bubble-open-complex-run-off-kinetics-600mW-steer110_7.hdf5', dir_+'2015-07-30_bubble-bubble-run-off-kinetics-800mW-steer110_8.hdf5'] start_times = [900, 600, 900] # time of NTP injection and start of kinetics filename = filenames[measurement_id] start_time = start_times[measurement_id] filename import os assert os.path.exists(filename) Explanation: Selecting a data file End of explanation d = loader.photon_hdf5(filename) d.time_max Explanation: Data load and Burst search Load and process the data: End of explanation d.calc_bg(bg.exp_fit, time_s=10, tail_min_us='auto', F_bg=1.7) Explanation: Compute background and burst search: End of explanation mch_plot_bg(d) Explanation: Perform a background plot as a function of the channel: End of explanation dplot(d, hist_bg); Explanation: Let's take a look at the photon waiting times histograms and at the fitted background rates: End of explanation dplot(d, timetrace_bg); xlim(start_time - 150, start_time + 150) Explanation: Using dplot exactly in the same way as for the single-spot data has now generated 8 subplots, one for each channel. Let's plot a timetrace for the background to see is there are significat variations during the measurement: End of explanation #dplot(d, timetrace) #xlim(2, 3); ylim(-100, 100); Explanation: We can look at the timetrace of the photon stream (binning): End of explanation d.burst_search(m=10, F=5) ds = d.select_bursts(select_bursts.size, th1=30) Explanation: Burst selection and FRET End of explanation ds0 = ds.select_bursts(select_bursts.time, time_s1=0, time_s2=start_time-10) dplot(ds0, hist_fret, pdf=False); dm0 = ds0.collapse() dplot(dm0, hist_fret, pdf=False); weights = 'size' bext.bursts_fitter(dm0, weights=weights) dm0.E_fitter.fit_histogram(mfit.factory_three_gaussians(p1_center=0.05, p2_center=0.6, p3_center=0.9), verbose=False) dplot(dm0, hist_fret, show_model=True, weights=weights); dm0.E_fitter.params weights = None bext.bursts_fitter(dm0, weights=weights) dm0.E_fitter.fit_histogram(mfit.factory_three_gaussians(p1_center=0.05, p2_center=0.6, p3_center=0.9), verbose=False) dplot(dm0, hist_fret, show_model=True, weights=weights); dm0.E_fitter.params Explanation: Selecting bursts by size End of explanation def gauss3(**params0): peak1 = lmfit.models.GaussianModel(prefix='p1_') peak3 = lmfit.models.GaussianModel(prefix='p3_') peak2 = lmfit.models.GaussianModel(prefix='p2_') model = peak1 + peak2 + peak3 model.set_param_hint('p1_center', **{'value': 0.0, 'min': 0.0, 'max': 0.2, **params0.get('p1_center', {})}) model.set_param_hint('p2_center', **{'value': 0.5, 'min': 0.0, 'max': 1.0, **params0.get('p2_center', {})}) model.set_param_hint('p3_center', **{'value': 0.9, 'min': 0.8, 'max': 1.0, **params0.get('p3_center', {})}) for sigma in ['p%d_sigma' % i for i in (1, 2, 3)]: model.set_param_hint(sigma, **{'value': 0.02, 'min': 0.01, **params0.get(sigma, {})}) for ampl in ['p%d_amplitude' % i for i in (1, 2, 3)]: model.set_param_hint(ampl, **{'value': 0.333, 'min': 0.01, **params0.get(ampl, {})}) model.name = '3 gauss peaks' return model #%matplotlib notebook #fig, ax = plt.subplots(figsize=(12, 8)) #dplot(dm0, scatter_fret_size, ax=ax) bext.bursts_fitter(dm0, weights=None) dm0.E_fitter.fit_histogram(gauss3(), verbose=False) mfit.plot_mfit(dm0.E_fitter) params_3gauss = dm0.E_fitter.params plt.xlabel('E') plt.ylabel('PDF') plt.title('') #dir_ = r'C:\Data\Antonio\docs\conferences\Seaborg2015\figures/' #plt.savefig(dir_+'Realtime kinetics FRET hist', dpi=200, bbox_inches='tight') params_3gauss dsc = ds.collapse() dm_final = dsc.select_bursts(select_bursts.time, time_s1=start_time+300, time_s2=ds.time_max + 1) dm_final.num_bursts dm_final1 = dsc.select_bursts(select_bursts.time, time_s1=start_time+100, time_s2=start_time+1600) dm_final1.num_bursts dm_final2 = dsc.select_bursts(select_bursts.time, time_s1=start_time + 2100, time_s2=ds.time_max + 1) dm_final2.num_bursts bext.bursts_fitter(dm_final1, weights=None) model = gauss3() model.set_param_hint('p2_center', value=params_3gauss.p2_center[0], vary=False) dm_final1.E_fitter.fit_histogram(model, verbose=False) fig, ax = plt.subplots(figsize=(12, 6)) mfit.plot_mfit(dm_final1.E_fitter, ax=ax) params_3gauss1 = dm_final1.E_fitter.params params_3gauss1 bext.bursts_fitter(dm_final2, weights=None) model = gauss3() model.set_param_hint('p2_center', value=params_3gauss.p2_center[0], vary=False) dm_final2.E_fitter.fit_histogram(model, verbose=False) fig, ax = plt.subplots(figsize=(12, 6)) mfit.plot_mfit(dm_final2.E_fitter, ax=ax) params_3gauss1 = dm_final2.E_fitter.params params_3gauss1 bext.bursts_fitter(dm_final, weights=None) model = gauss3() model.set_param_hint('p2_center', value=params_3gauss.p2_center[0], vary=False) dm_final.E_fitter.fit_histogram(model, verbose=False) fig, ax = plt.subplots(figsize=(12, 6)) mfit.plot_mfit(dm_final.E_fitter, ax=ax) params_3gauss1 = dm_final.E_fitter.params params_3gauss1 #del params_3gauss0 if 'params_3gauss0' not in locals(): params_3gauss0 = params_3gauss.copy() params_3gauss0.p3_center = params_3gauss1.p3_center params_3gauss0.p1_amplitude + params_3gauss0.p2_amplitude + params_3gauss0.p3_amplitude 'params_3gauss0' in locals() Explanation: 3-Gaussian peaks End of explanation from scipy import optimize params_fixed = dict( mu1=float(params_3gauss0.p1_center), mu2=float(params_3gauss0.p2_center), mu3=float(params_3gauss0.p3_center), sig1=float(params_3gauss0.p1_sigma), sig2=float(params_3gauss0.p2_sigma), sig3=float(params_3gauss0.p3_sigma), ) def em_weights_3gauss(x, a2, a3, mu1, mu2, mu3, sig1, sig2, sig3): Responsibility function for a 3-Gaussian model. Returns 3 arrays of size = x.size: the responsibility of each Gaussian population. a1 = 1 - a2 - a3 assert np.abs(a1 + a2 + a3 - 1) < 1e-3 f1 = a1 * gauss_pdf(x, mu1, sig1) f2 = a2 * gauss_pdf(x, mu2, sig2) f3 = a3 * gauss_pdf(x, mu3, sig3) γ1 = f1 / (f1 + f2 + f3) γ2 = f2 / (f1 + f2 + f3) γ3 = f3 / (f1 + f2 + f3) return γ1, γ2, γ3 def em_fit_3gauss(x, a2_0, a3_0, params_fixed, print_every=10, max_iter=100, rtol=1e-3): Fit amplitude of 3_Gaussian model using Expectation-Maximization. Only 2 amplitudes are fitted (a2, a3), the first peak is derived imposing that the PDF sums to 1. a2_new, a3_new = a2_0, a3_0 rel_change = 1 i = 0 while rel_change > rtol and i < max_iter: # E-step γ1, γ2, γ3 = em_weights_3gauss(x, a2_new, a3_new, **params_fixed) assert np.allclose(γ1.sum() + γ2.sum() + γ3.sum(), x.size) # M-step a2_old, a3_old = a2_new, a3_new a2_new = γ2.sum()/γ2.size a3_new = γ3.sum()/γ3.size # Convergence rel_change = (np.abs((a2_old - a2_new)/a2_new) + np.abs((a3_old - a3_new)/a3_new)) i += 1 if (i % print_every) == 0: print(i, a2_new, a3_new, rel_change) return a2_new, a3_new, i from matplotlib.pylab import normpdf as gauss_pdf # Model PDF to be maximized def model_pdf(x, a2, a3, mu1, mu2, mu3, sig1, sig2, sig3): a1 = 1 - a2 - a3 #assert np.abs(a1 + a2 + a3 - 1) < 1e-3 return (a1 * gauss_pdf(x, mu1, sig1) + a2 * gauss_pdf(x, mu2, sig2) + a3 * gauss_pdf(x, mu3, sig3)) # Function to be minimized by lmfit def func2min_lmfit(params, x): a2 = params['a2'].value a3 = params['a3'].value mu1 = params['mu1'].value mu2 = params['mu2'].value mu3 = params['mu3'].value sig1 = params['sig1'].value sig2 = params['sig2'].value sig3 = params['sig3'].value return -np.sqrt(np.log(model_pdf(x, a2, a3, mu1, mu2, mu3, sig1, sig2, sig3))) # Function to be minimized by scipy def func2min_scipy(params_fit, params_fixed, x): a2, a3 = params_fit mu1 = params_fixed['mu1'] mu2 = params_fixed['mu2'] mu3 = params_fixed['mu3'] sig1 = params_fixed['sig1'] sig2 = params_fixed['sig2'] sig3 = params_fixed['sig3'] return -np.log(model_pdf(x, a2, a3, mu1, mu2, mu3, sig1, sig2, sig3)).sum() # create a set of Parameters params = lmfit.Parameters() params.add('a2', value=0.33, min=0) params.add('a3', value=0.33, min=0) for k, v in params_fixed.items(): params.add(k, value=v, vary=False) Explanation: Fit End of explanation x = dm0.E[0] x #result = lmfit.minimize(func2min_lmfit, params, args=(x,), method='nelder') #lmfit.report_fit(result.params) #optimize.brute(func2min_scipy, ranges=((0.01, 0.99), (0.01, 0.99)), Ns=101, args=(params, x)) res = optimize.minimize(func2min_scipy, x0=[0.33, 0.33], args=(params_fixed, x), method='Nelder-Mead') res res = optimize.minimize(func2min_scipy, x0=[0.33, 0.33], args=(params_fixed, x), bounds=((0,1), (0,1)), method='SLSQP') res res = optimize.minimize(func2min_scipy, x0=[0.33, 0.33], args=(params_fixed, x), bounds=((0,1), (0,1)), method='TNC') res bins = np.arange(-0.1, 1.1, 0.025) plt.hist(x, bins, histtype='step', lw=2, normed=True); xx = np.arange(-0.1, 1.1, 0.005) #plt.plot(xx, model_pdf(xx, params)) plt.plot(xx, model_pdf(xx, a2=res.x[0], a3=res.x[1], **params_fixed)) Explanation: $$f(x) = \frac{A}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$$ $$\log f(x) = \log \frac{A}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}} = \log{A} -\log{\sigma} - \log\sqrt{2\pi} -\frac{(x - \mu)^2}{2 \sigma^2}$$ $$w_1 \; f_1(x) + w_2 \; f_2(x) + w_3 \; f_3(x)$$ $$\log (w_1 \; f_1(x)) = \log{w_1} + \log{f_1(x)}$$ End of explanation def _kinetics_fit_em(dx, a2_0, a3_0, params_fixed, **kwargs): kwargs = {'max_iter': 200, 'print_every': 201, **kwargs} a2, a3, i = em_fit_3gauss(dx.E[0], a2_0, a3_0, params_fixed, **kwargs) return a2, a3, i < kwargs['max_iter'] def _kinetics_fit_ll(dx, a2_0, a3_0, params_fixed, **kwargs): kwargs = {'method':'Nelder-Mead', **kwargs} res = optimize.minimize(func2min_scipy, x0=[a2_0, a3_0], args=(params_fixed, dx.E[0]), **kwargs) return res.x[0], res.x[1], res.success def _kinetics_fit_hist(dx, a2_0, a3_0, params_fixed): E_fitter = bext.bursts_fitter(dx) model = gauss3(p1_amplitude={'value': 1 - a2_0 - a3_0}, p2_amplitude={'value': a2_0}, p3_amplitude={'value': a3_0}) model.set_param_hint('p1_center', value=params_fixed['mu1'], vary=False) model.set_param_hint('p2_center', value=params_fixed['mu2'], vary=False) model.set_param_hint('p3_center', value=params_fixed['mu3'], vary=False) model.set_param_hint('p1_sigma', value=params_fixed['sig1'], vary=False) model.set_param_hint('p2_sigma', value=params_fixed['sig2'], vary=False) model.set_param_hint('p3_sigma', value=params_fixed['sig3'], vary=False) E_fitter.fit_histogram(model, verbose=False) return (float(E_fitter.params.p2_amplitude), float(E_fitter.params.p3_amplitude), dx.E_fitter.fit_res[0].success) def kinetics_fit(ds_slices, params_fixed, a2_0=0.33, a3_0=0.33, method='em', **method_kws): fit_func = { 'em': _kinetics_fit_em, 'll': _kinetics_fit_ll, 'hist': _kinetics_fit_hist} fit_list = [] for dx in ds_slices: a2, a3, success = fit_func[method](dx, a2_0, a3_0, params_fixed, **method_kws) df_i = pd.DataFrame(data=dict(p2_amplitude=a2, p3_amplitude=a3, p1_center=params_fixed['mu1'], p2_center=params_fixed['mu2'], p3_center=params_fixed['mu3'], p1_sigma=params_fixed['sig1'], p2_sigma=params_fixed['sig2'], p3_sigma=params_fixed['sig3'], tstart=dx.slice_tstart, tstop=dx.slice_tstop, tmean=0.5*(dx.slice_tstart + dx.slice_tstop)), index=[0.5*(dx.slice_tstart + dx.slice_tstop)]) if not success: print('* ', end='', flush=True) continue fit_list.append(df_i) return pd.concat(fit_list) start_time/60 Explanation: Kinetics Definitions End of explanation def print_slices(moving_window_params): msg = ' - Slicing measurement:' for name in ('start', 'stop', 'step', 'window'): msg += ' %s = %.1fs' % (name, moving_window_params[name]) print(msg, flush=True) num_slices = len(bext.moving_window_startstop(**moving_window_params)) print(' Number of slices %d' % num_slices, flush=True) t1 = time.time() time.ctime() dsc = ds.collapse() dsc.calc_max_rate(m=10) dsc_high = dsc.select_bursts(select_bursts.E, E1=0.88) step = 1 params = {} for window in windows: moving_window_params = dict(start=0, stop=dsc.time_max, step=step, window=window) print_slices(moving_window_params) ds_slices = bext.moving_window_chunks(dsc, time_zero=start_time, **moving_window_params) for meth in ['em', 'll', 'hist']: print(' >>> Fitting method %s ' % meth, end='', flush=True) p = kinetics_fit(ds_slices, params_fixed, method=meth) print(flush=True) p['kinetics'] = p.p3_amplitude / (p.p2_amplitude + p.p3_amplitude) p = p.round(dict(p1_center=3, p1_sigma=4, p2_amplitude=4, p2_center=3, p2_sigma=4, kinetics=4, p3_amplitude=4, p3_center=3, p3_sigma=4)) params[meth, window, step] = p print('Moving-window processing duration: %d seconds.' % (time.time() - t1)) Explanation: Moving-window processing End of explanation moving_window_params['window'] = 30 moving_window_params ds_slices = bext.moving_window_chunks(dsc, **moving_window_params) ds_slices_high = bext.moving_window_chunks(dsc_high, **moving_window_params) df = bext.moving_window_dataframe(**moving_window_params) - start_time df['size_mean'] = [di.nt_.mean() for di in ds_slices] df['size_max'] = [di.nt_.max() for di in ds_slices] df['num_bursts'] = [di.num_bursts[0] for di in ds_slices] df['burst_width'] = [di.mburst_.width.mean()*di.clk_p*1e3 for di in ds_slices] df['burst_width_high'] = [di.mburst_.width.mean()*di.clk_p*1e3 for di in ds_slices_high] df['phrate_mean'] = [di.max_rate_.mean() for di in ds_slices] df = df.round(dict(tmean=1, tstart=1, tstop=1, size_mean=2, size_max=1, burst_width=2, burst_width_high=2, phrate_mean=1)) df labels = ('num_bursts', 'burst_width', 'phrate_mean') fig, axes = plt.subplots(len(labels), 1, figsize=(12, 3*len(labels))) for ax, label in zip(axes, labels): ax.plot(label, data=df) ax.legend(loc='best') #ax.set_ylim(0) # %%timeit -n1 -r1 # meth = 'em' # print(' >>> Fitting method %s' % meth, flush=True) # p = kinetics_fit(ds_slices, params_fixed, method=meth) # %%timeit -n1 -r1 # meth = 'hist' # print(' >>> Fitting method %s' % meth, flush=True) # p = kinetics_fit(ds_slices, params_fixed, method=meth) # %%timeit -n1 -r1 # meth = 'll' # print(' >>> Fitting method %s' % meth, flush=True) # p = kinetics_fit(ds_slices, params_fixed, method=meth) out_fname = 'results/%s_burst_data_vs_time__window%ds_step%ds.csv' % ( Path(filename).stem, moving_window_params['window'], moving_window_params['step']) out_fname df.to_csv(out_fname) Explanation: Burst-data End of explanation # np.abs((params['em', 30, 1] - params['ll', 30, 1]).p2_amplitude).max() methods = ('em', 'll', 'hist') for meth in methods: plt.figure(figsize=(14, 3)) plt.plot(params[meth, windows[0], step].index, params[meth, windows[0], step].kinetics, 'h', color='gray', alpha=0.2) plt.plot(params[meth, windows[1], step].index, params[meth, windows[1], step].kinetics, 'h', alpha=0.3) # (params['em', 5, 1].kinetics - params['ll', 5, 1].kinetics).plot() step = 1 for window in windows: for meth in methods: out_fname = ('results/' + Path(filename).stem + '_%sfit_ampl_only__window%ds_step%ds.csv' % (meth, window, step)) print('- Saving: ', out_fname) params[meth, window, step].to_csv(out_fname) d Explanation: Population fraction End of explanation
9,774
Given the following text description, write Python code to implement the functionality described below step by step Description: Deriving coefficients for the implicit scheme The ice sheet energy balance model uses an implicit scheme to solve the heat equation for $N$ layers. It uses the Crank-Nicholson scheme to discretise the equations. For an equation in one space dimension $x$ $\frac{df}{dt} = F$, the Crank-Nicholson scheme discretises the equation as $\frac{f^{i+1}_x - f^{i}_x}{\Delta t} = 0.5\left [ F^{i+1}_x + F^{i}_x \right ]$ where the superscript is time and the subscript is space. Step1: The coefficients for the $i+1$ temperature (predicted) are Step2: The coefficients for the $i$ temperature (current) are
Python Code: from sympy import * init_printing() tnew_x = Symbol('T^{i+1}_x') tnew_xprev = Symbol('T^{i+1}_{x-1}') tnew_xafter = Symbol('T^{i+1}_{x+1}') told_x = Symbol('T^{i}_x') told_xprev = Symbol('T^{i}_{x-1}') told_xafter = Symbol('T^{i}_{x+1}') u_x = Symbol('\kappa_x') u_xprev = Symbol('\kappa_{x-1}') u_xafter = Symbol('\kappa_{x+1}') delta_t = Symbol('\Delta t') delta_x = Symbol('\Delta x') told_x, u_xprev, tnew_xafter, delta_x lhs = (tnew_x - told_x)/delta_t lhs # The time derivative rhs_new = 0.5*(u_x*(tnew_xprev - 2*tnew_x + tnew_xafter)/delta_x**2 + ((tnew_x - tnew_xprev)/(delta_x))*((u_x - u_xprev)/(delta_x))) rhs_old = 0.5*(u_x*(told_xprev - 2*told_x + told_xafter)/delta_x**2 + ((told_x - told_xprev)/(delta_x))*((u_x - u_xprev)/(delta_x))) rhs_new, rhs_old # The two parts of the crank-nicholson RHS. expr = lhs - rhs_new - rhs_old expr poly_form = Poly(expr, tnew_x, tnew_xafter, tnew_xprev, told_x, told_xafter, told_xprev) poly_form Explanation: Deriving coefficients for the implicit scheme The ice sheet energy balance model uses an implicit scheme to solve the heat equation for $N$ layers. It uses the Crank-Nicholson scheme to discretise the equations. For an equation in one space dimension $x$ $\frac{df}{dt} = F$, the Crank-Nicholson scheme discretises the equation as $\frac{f^{i+1}_x - f^{i}_x}{\Delta t} = 0.5\left [ F^{i+1}_x + F^{i}_x \right ]$ where the superscript is time and the subscript is space. End of explanation (poly_form.coeff_monomial(tnew_xprev)*delta_t).simplify(), (poly_form.coeff_monomial(tnew_x)*delta_t).simplify(), (poly_form.coeff_monomial(tnew_xafter)*delta_t).simplify() Explanation: The coefficients for the $i+1$ temperature (predicted) are End of explanation -(poly_form.coeff_monomial(told_xprev)*delta_t).simplify(), (poly_form.coeff_monomial(told_x)*-delta_t).simplify(), -(poly_form.coeff_monomial(told_xafter)*delta_t).simplify() Explanation: The coefficients for the $i$ temperature (current) are End of explanation
9,775
Given the following text description, write Python code to implement the functionality described below step by step Description: YAML support is provided by PyYAML at http Step2: The following cell provides an initial example of a note in our system. A note is nothing more than a YAML document. The idea of notetaking is to keep it simple, so a note should make no assumptions about formatting whatsoever. In our current thinking, we have the following sections Step3: This shows how to load just the YAML portion of the document, resulting in a Python dictionary data structure. Observe that the Python dictionary has { key Step4: Closing the loop, the following shows how to iterate the keys of the data structure. Step5: And this shows how to get any particular item of interest. In this case, we're extracting the bibtex key so we can do something with the embedded BibTeX (e.g. print it). Step6: Adapted from http Step7: Now we are onto some sqlite3 explorations. Ordinarily, I would use some sort of mapping framework to handle database operations. However, it's not clear the FTS support is part of any ORM (yet). I will continue to research but since there is likely only one table, it might not be worth the trouble. Next we will actually add the Zettel to the database and do a test query. Almost there.
Python Code: import yaml Explanation: YAML support is provided by PyYAML at http://pyyaml.org/. This notebook depends on it. End of explanation myFirstZettel= title: First BIB Note for Castells tags: - Castells - Network Society - Charles Babbage is Awesome - Charles Didn't do Everything mentions: - gkt - dbdennis dates: 2016 cite: - Castells Rise 2016 - ii-iv - 23-36 outline: - Introduction - - Computers - People - Conclusions - - Great Ideas of Computing text: | Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam eleifend est sed diam maximus rutrum. Quisque sit amet imperdiet odio, id tristique libero. Aliquam viverra convallis mauris vel tristique. Cras ac dolor non risus porttitor molestie vel at nisi. Donec vitae finibus quam. Phasellus vehicula urna sed nibh condimentum, ultrices interdum velit eleifend. Nam suscipit dolor eu rutrum fringilla. Sed pulvinar purus purus, sit amet venenatis enim convallis a. Duis fringilla nisl sit amet erat lobortis dictum. Nunc fringilla arcu nec ex blandit, a gravida purus commodo. Vivamus lacinia tellus dui, vel maximus lacus ornare id. Vivamus euismod justo sit amet luctus bibendum. Integer non mi ullamcorper enim fringilla vulputate sit amet in urna. Nullam eu sodales ipsum. Curabitur id convallis ex. Duis a condimentum lorem. Nulla et urna massa. Duis in nibh eu elit lobortis vehicula. Mauris congue mauris mollis metus lacinia, ut suscipit mi egestas. Donec luctus ante ante, eget viverra est mollis vitae. Vivamus in purus in erat dictum scelerisque. Aliquam dictum quis ligula ac euismod. Mauris elementum metus vel scelerisque feugiat. Vivamus bibendum massa eu pellentesque sodales. Nulla nec lacus dolor. Donec scelerisque, nibh sed placerat gravida, nunc turpis tristique nibh, ac feugiat enim massa ut eros. Nulla finibus, augue egestas hendrerit accumsan, tellus augue tempor eros, in sagittis dolor turpis nec mi. Nunc fringilla mi non malesuada aliquet. bibkey: Castells Rise 1996 bibtex: | @book{castells_rise_1996, address = {Cambridge, Mass.}, series = {Castells, {Manuel}, 1942- {Information} age . v}, title = {The rise of the network society}, isbn = {978-1-55786-616-5}, language = {eng}, publisher = {Blackwell Publishers}, author = {Castells, Manuel}, year = {1996}, keywords = {Information networks., Information society., Information technology Economic aspects., Information technology Social aspects., Technology and civilization.} } note: George likes this new format. print(myFirstZettel) Explanation: The following cell provides an initial example of a note in our system. A note is nothing more than a YAML document. The idea of notetaking is to keep it simple, so a note should make no assumptions about formatting whatsoever. In our current thinking, we have the following sections: title: an optional title (text) tags: one or more keywords (text, sequence of text, no nesting) mentions: one or more mentions (text, sequence of text, no nesting) outline: one or more items (text, sequence of text, nesting is permitted) dates (numeric text, sequence, must follow established historical ways of representing dates) text (text from the source as multiline string) bibtex, ris, or inline (text for the bibliographic item; will be syntax checked) bibkey (text, a hopefully unique identifier for referring to this source in other Zettels) cite: Used to cite a bibkey from the same or other notes. In addition, the citation may be represented as a list, where the first item is the bibkey and subsequent items are pages or ranges of page numbers. See below for a good example of how this will work. note (any additional details that you wish to hide from indexing) In most situations, freeform text is permitted. If you need to do crazy things, you must put quotes around the text so YAML can process it. However, words separated by whitespace and punctuation seems to work fine in most situations. These all are intended to be string data, so there are no restrictions on what can be in any field; however, we will likely limit tags, mentions, dates in some way as we go forward. Fields such as bibtex, ris, or inline are also subject to validity checking. Print the document to the console (nothing special here). End of explanation doc = yaml.load(myFirstZettel) Explanation: This shows how to load just the YAML portion of the document, resulting in a Python dictionary data structure. Observe that the Python dictionary has { key : value, ... }. So we can extract the YAML fields from the Python dictionary data structure. Notice that when you write a YAML list of mentions, there is a nested Python list ['gkt', 'dbdennis']. End of explanation for key in doc.keys(): print(key, "=", doc[key]) Explanation: Closing the loop, the following shows how to iterate the keys of the data structure. End of explanation print(doc['bibkey']) print(doc['bibtex']) Explanation: And this shows how to get any particular item of interest. In this case, we're extracting the bibtex key so we can do something with the embedded BibTeX (e.g. print it). End of explanation def flatten(item): if type(item) != type([]): return [str(item)] if item == []: return item if isinstance(item[0], list): return flatten(item[0]) + flatten(item[1:]) return item[:1] + flatten(item[1:]) flatten("George was here") flatten(['A', ['B', 'C'], ['D', ['E']]]) Explanation: Adapted from http://stackoverflow.com/questions/12472338/flattening-a-list-recursively. There really must be a nicer way to do stuff like this. I will rewrite this using a walker so we can have custom processing of the list items. End of explanation import sqlite3 # This is for showing data structures only. import pprint printer = pprint.PrettyPrinter(indent=2) class SQLiteFTS(object): def __init__(self, db_name, table_name, field_names): self.db_name = db_name self.conn = sqlite3.connect(db_name) self.cursor = self.conn.cursor() self.table_name = table_name self.fts_field_names = field_names self.fts_field_refs = ['?'] * len(self.fts_field_names) # for sqlite insert template generation self.fts_field_init = [''] * len(self.fts_field_names) self.fts_fields = dict(zip(self.fts_field_names, self.fts_field_refs)) self.fts_default_record = dict(zip(self.fts_field_names, self.fts_field_init)) def bind(self, doc): self.record = self.fts_default_record.copy() for k in doc.keys(): if k in self.record.keys(): self.record[k] = doc[k] else: print("Unknown fts field %s" % k) self.record.update(doc) def drop_table(self): self.conn.execute("DROP TABLE IF EXISTS %s" % self.table_name) def create_table(self): sql_fields = ",".join(self.fts_default_record.keys()) print("CREATE VIRTUAL TABLE zettels USING fts4(%s)" % sql_fields) self.conn.execute("CREATE VIRTUAL TABLE zettels USING fts4(%s)" % sql_fields) def insert_into_table(self): sql_params = ",".join(self.fts_fields.values()) #printer.pprint(self.record) #printer.pprint(self.record.values()) sql_insert_values = [ ",".join(flatten(value)) for value in list(self.record.values())] print("INSERT INTO zettels VALUES (%s)" % sql_params) print(self.record.keys()) printer.pprint(sql_insert_values) self.conn.execute("INSERT INTO zettels VALUES (%s)" % sql_params, sql_insert_values) def done(self): self.conn.commit() self.conn.close() sql = SQLiteFTS('zettels.db', 'zettels', ['title', 'tags', 'mentions', 'outline', 'cite', 'dates', 'summary', 'text', 'bibkey', 'bibtex', 'ris', 'inline', 'note' ]) #doc_keys = list(doc.keys()) #doc_keys.sort() #rec_keys = list(sql.record.keys()) #rec_keys.sort() #print("doc keys %s" % doc_keys) #print("record keys %s" % rec_keys) sql.drop_table() sql.create_table() printer.pprint(doc) sql.bind(doc) sql.insert_into_table() sql.done() #sql_insert_values = [ str(field) for field in sql.record.values()] #print(sql_insert_values) #print(record) with open("xyz.txt") as datafile: text = datafile.read() print(text) bibkey = 'blahblahblah' bibtex = text import yaml from collections import OrderedDict class quoted(str): pass def quoted_presenter(dumper, data): return dumper.represent_scalar('tag:yaml.org,2002:str', data, style='"') yaml.add_representer(quoted, quoted_presenter) class literal(str): pass def literal_presenter(dumper, data): return dumper.represent_scalar('tag:yaml.org,2002:str', data, style='|') yaml.add_representer(literal, literal_presenter) def ordered_dict_presenter(dumper, data): return dumper.represent_dict(data.items()) yaml.add_representer(OrderedDict, ordered_dict_presenter) d = OrderedDict(bibkey=bibkey, bibtex=literal(bibtex)) print(yaml.dump(d)) Explanation: Now we are onto some sqlite3 explorations. Ordinarily, I would use some sort of mapping framework to handle database operations. However, it's not clear the FTS support is part of any ORM (yet). I will continue to research but since there is likely only one table, it might not be worth the trouble. Next we will actually add the Zettel to the database and do a test query. Almost there. End of explanation
9,776
Given the following text description, write Python code to implement the functionality described below step by step Description: QuickDraw Data If machine learning is rocket science then data is your fuel! So before doing anything we will have a close look at the data available and spend some time bringing it into the "right" form (i.e. tf.train.Example). That's why we start by spending quite a lot of time on this notebook, downloading the data, understanding it, and transforming it into the right format for Tensorflow. The data used in this workshop is taken from Google's quickdraw (click on the images to see loads of examples) Step2: Get the data In this section we download a set of raw data files from the web. Step5: Create your own group -- the more categories you include the more challenging the classification task will be... Step6: Inspect the data Let's find out what the format of the downloaded files is. First, we are going to enumerate them. Step7: Let's further explore what the NDJSON file format is. Step11: As we can see, it's a format that contains one JSON dictionary per line. Let's parse one single line. Step14: Rasterize Idea Step15: Protobufs and tf.train.Example Tensorflow's "native" format for data storage is the tf.train.Example protocol buffer. In this section we briefly explore the API needed to access the data inside the tf.train.Example protocol buffer. It's not necessary to read through the Protocol Buffer Basics Step16: Create datasets Now let's create a "dataset" of tf.train.Example protocol buffers ("protos"). A single example will contain all the information we want to use for training for a drawing (i.e. rasterized image, label, and maybe other information). Step22: Sharding A dataset consists of non-overlapping sets of examples that will be used for training and evaluation of the classifier (the "test" set will be used for the final evaluation). As these files can quickly become very large, we split them into smaller files referred to as shards. For example, we could split a single dataset into a number of shards, like * train-00000-of-00005, * train-00001-of-00005, * ..., * train-00004-of-00005 (if we're using 5 shards). This way we have smaller individual files, and we can also easily access for example only 20% of all data, or have 5 threads which read through all the data simultaneously. Generally, with large datasets, a recommendation is to split data into individual shards with a size of ~100 MB each. This workshop might use smaller sharding sizes for simplicity reasons. Step24: Create IMG dataset Step25: We will now create a dataset with 80k samples consisting of Step27: Create STROKE dataset This section creates another dataset of example protos that contain the raw stroke data, suitable for usage with a recurrent neural network. Step28: ----- Optional part ----- Inspect data Step29: More on protobufs
Python Code: data_path = '/content/gdrive/My Drive/amld_data' # Alternatively, you can also store the data in a local directory. This method # will also work when running the notebook in Jupyter instead of Colab. # data_path = './amld_data if data_path.startswith('/content/gdrive/'): from google.colab import drive assert data_path.startswith('/content/gdrive/My Drive/'), 'Google Drive paths must start with "/content/gdrive/My Drive/"!' drive.mount('/content/gdrive') if data_path.startswith('gs://'): from google.colab import auth auth.authenticate_user() # In Jupyter, you would need to install TF 2 via !pip. %tensorflow_version 2.x # Always make sure you are using running the expected version. # There are considerable differences between versions. # This Colab was tested with 2.1.0. import tensorflow as tf tf.__version__ import base64, collections, io, itertools, functools, json, os, random, re, textwrap, time, urllib, xml import numpy as np import pandas as pd from matplotlib import pyplot as plt from PIL import Image, ImageDraw from IPython import display Explanation: QuickDraw Data If machine learning is rocket science then data is your fuel! So before doing anything we will have a close look at the data available and spend some time bringing it into the "right" form (i.e. tf.train.Example). That's why we start by spending quite a lot of time on this notebook, downloading the data, understanding it, and transforming it into the right format for Tensorflow. The data used in this workshop is taken from Google's quickdraw (click on the images to see loads of examples): https://quickdraw.withgoogle.com/data We will download the data below. Init First, we'll choose where our data should be stored. If you choose a path under "/content/gdrive/My Drive" then data will be stored in your Google drive and persisted across VM starts (preferable). End of explanation # Retrieve list of categories. def list_bucket(bucket, regexp='.*'): Returns a filtered list of Keys in specified GCS bucket. keys = [] fh = urllib.request.urlopen('https://storage.googleapis.com/%s' % bucket) content = xml.dom.minidom.parseString(fh.read()) for e in content.getElementsByTagName('Contents'): key = e.getElementsByTagName('Key')[0].firstChild.data if re.match(regexp, key): keys.append(key) return keys all_ndjsons = list_bucket('quickdraw_dataset', '.*ndjson$') print('available: (%d)' % len(all_ndjsons)) print('\n'.join(textwrap.wrap( '|'.join([key.split('/')[-1].split('.')[0] for key in all_ndjsons]), width=100))) # Mini group of two animals. pets = ['cat', 'dog'] # Somewhat larger group of zoo animals. zoo = ['camel', 'crocodile', 'dolphin', 'elephant', 'flamingo', 'giraffe', 'kangaroo', 'lion', 'monkey', 'penguin', 'rhinoceros'] # Even larger group of all animals. animals = ['ant', 'bat', 'bear', 'bee', 'bird', 'butterfly', 'camel', 'cat', 'cow', 'crab', 'crocodile', 'dog', 'dolphin', 'dragon', 'duck', 'elephant', 'fish', 'flamingo', 'frog', 'giraffe', 'hedgehog', 'horse', 'kangaroo', 'lion', 'lobster', 'monkey', 'mosquito', 'mouse', 'octopus', 'owl', 'panda', 'parrot', 'penguin', 'pig', 'rabbit', 'raccoon', 'rhinoceros', 'scorpion', 'sea turtle', 'shark', 'sheep', 'snail', 'snake', 'spider', 'squirrel', 'swan'] # You could do something like: # my_objects = ['shoe', 'shorts', 't-shirt'] Explanation: Get the data In this section we download a set of raw data files from the web. End of explanation # YOUR ACTION REQUIRED: # Choose one of above groups for remainder of workshop. # Note: This will result in ~100MB of download per class. # `dataset_name` will be used to construct directories containing the data. labels, dataset_name = zoo, 'zoo' # Or use another dataset defined above: # labels, dataset_name = pets, 'pets' # labels, dataset_name = animals, 'animals' # Download above chosen group. def valid_ndjson(filename): Checks presence + completeness of .ndjson file. try: json.loads(tf.io.gfile.GFile(filename).readlines()[-1]) return True except (ValueError, IOError): return False def retrieve(bucket, key, filename): Returns a file specified by its Key from a GCS bucket. url = 'https://storage.googleapis.com/%s/%s' % ( bucket, urllib.parse.quote(key)) print('\n' + url) if not tf.io.gfile.exists(filename): with tf.io.gfile.GFile(filename, 'w') as f: f.write(urllib.request.urlopen(url).read()) while not valid_ndjson(filename): print('*** Corrupted download (%.2f MB), retrying...' % ( os.path.getsize(filename) / 2.**20)) with tf.io.gfile.GFile(filename, 'w') as f: f.write(urllib.request.urlopen(url).read()) tf.io.gfile.makedirs(data_path) print('\n%d labels:' % len(labels)) for name in labels: print(name, end=' ') dst = '%s/%s.ndjson' % (data_path, name) retrieve('quickdraw_dataset', 'full/simplified/%s.ndjson' % name, dst) print('%.2f MB' % (tf.io.gfile.stat(dst).length / 2.**20)) print('\nDONE :)') Explanation: Create your own group -- the more categories you include the more challenging the classification task will be... End of explanation print('\n'.join([ '%6.1fM : %s' % (tf.io.gfile.stat(path).length/1024**2, path) for path in tf.io.gfile.glob('{}/*.ndjson'.format(data_path)) ])) Explanation: Inspect the data Let's find out what the format of the downloaded files is. First, we are going to enumerate them. End of explanation path = sorted(tf.io.gfile.glob(os.path.join(data_path, '*.ndjson')))[0] print(path) print(tf.io.gfile.GFile(path).read()[:1000] + '...') Explanation: Let's further explore what the NDJSON file format is. End of explanation data_json = json.loads(tf.io.gfile.GFile(path).readline()) data_json.keys() # So we have some meta information. for k, v in data_json.items(): if k != 'drawing': print('%20s -> %s' % (k, v)) # Extract the actual drawing. drawing = data_json['drawing'] # The drawing consists of a series of strokes: print('Shapes:', [np.array(stroke).shape for stroke in drawing]) print('Example stroke:', drawing[0]) # Draw the image -- the strokes all have have shape (2, n) # so the first index seems to be x/y coordinate: for stroke in drawing: # Each array has X coordinates at [0, :] and Y coordinates at [1, :]. plt.plot(np.array(stroke[0]), -np.array(stroke[1])) # Would YOU recognize this drawing successfully? # Some more code to load many sketches at once. # Let's ignore the difficult `unrecognized` sketches for now # (i.e. unrecognized by the official quickdraw classifier). def convert(line): Converts single JSON line and converts 'drawing' to list of np.array. d = json.loads(line) d['drawing'] = [np.array(stroke) for stroke in d['drawing']] return d def loaditer(name, unrecognized=False): Returns iterable of drawings in specified file. Args: name: Name of the downloaded object (e.g. "elephant"). unrecognized: Whether to include drawings that were not recognized by Google AI (i.e. the hard ones). for line in tf.io.gfile.GFile('%s/%s.ndjson' % (data_path, name)): d = convert(line) if d['recognized'] or unrecognized: yield d def loadn(name, n, unrecognized=False): Returns list of drawings. Args: name: Name of the downloaded object (e.g. "elephant"). n: Number of drawings to load. unrecognized: Whether to include drawings that were not recognized by Google AI (i.e. the hard ones). it = loaditer(name, unrecognized=unrecognized) return list(itertools.islice(it, 0, n)) n = 100 print('Loading {} instances of "{}"...'.format(n, labels[0]), end='') sample = loadn(labels[0], 100) print('done.') # Some more drawings. rows, cols = 3, 3 plt.figure(figsize=(3*cols, 3*rows)) for y in range(rows): for x in range(cols): i = y * cols + x plt.subplot(rows, cols, i + 1) for stroke in sample[i]['drawing']: plt.plot(np.array(stroke[0]), -np.array(stroke[1])) Explanation: As we can see, it's a format that contains one JSON dictionary per line. Let's parse one single line. End of explanation def dict_to_img(drawing, img_sz=64, lw=3, maximize=True): Converts QuickDraw data to quadratic rasterized image. Args: drawing: Dictionary instance of QuickDraw dataset. img_sz: Size output image (in pixels). lw: Line width (in pixels). maximize: Whether to maximize drawing within image pixels. Returns: A PIL.Image with the rasterized drawing. img = Image.new('L', (img_sz, img_sz)) draw = ImageDraw.Draw(img) lines = np.array([ stroke[0:2, i:i+2] for stroke in drawing['drawing'] for i in range(stroke.shape[1] - 1) ], dtype=np.float32) if maximize: for i in range(2): min_, max_ = lines[:,i,:].min() * 0.95, lines[:,i,:].max() * 1.05 lines[:,i,:] = (lines[:,i,:] - min_) / max(max_ - min_, 1) else: lines /= 1024 for line in lines: draw.line(tuple(line.T.reshape((-1,)) * img_sz), fill='white', width=lw) return img # Show some examples. def showimg(img): Shows an image with an inline HTML <img> tag. Args: img: Can be a PIL.Image or a numpy.ndarray. if isinstance(img, np.ndarray): img = Image.fromarray(img, 'L') b = io.BytesIO() img.convert('RGB').save(b, format='png') enc = base64.b64encode(b.getvalue()).decode('utf-8') display.display(display.HTML( '<img src="data:image/png;base64,%s">' % enc)) # Fetch some images + shuffle order. rows, cols = len(labels), 10 n_per_class = rows * cols // len(labels) + 1 drawings_list = [drawing for name in labels for drawing in loadn(name, cols)] # Create mosaic of rendered images. lw = 4 img_sz = 64 tableau = np.zeros((img_sz * rows, img_sz * cols), dtype=np.uint8) for y in range(rows): for x in range(cols): i = y * cols + x img = dict_to_img(drawings_list[i], img_sz=img_sz, lw=lw, maximize=True) tableau[y*img_sz:(y+1)*img_sz, x*img_sz:(x+1)*img_sz] = np.asarray(img) showimg(tableau) print('{} samples of : {}'.format(cols, ' '.join(labels))) Explanation: Rasterize Idea: After converting the raw drawing data into rasterized images, we can use MNIST-like image processing to classify the drawings. End of explanation # Create a new (empty) instance. example = tf.train.Example() # An empty example will not print anything. print(example) # An example contains a map from feature name to "Feature". # Every "Feature" contains a list of elements of the same # type, which is one of: # - bytes_list (similar to Python's "str") # - float_list (float number) # - int64_list (integer number) # These values can be accessed as follows (no need to understand # details): # Add float value "3.1416" to feature "magic_numbers" example.features.feature['magic_numbers'].float_list.value.append(3.1416) # Add some more values to the float list "magic_numbers". example.features.feature['magic_numbers'].float_list.value.extend([2.7183, 1.4142, 1.6180]) ### YOUR ACTION REQUIRED: # Create a second feature named "adversaries" and add the elements # b'Alice' and b'Bob'. example.features.feature['adversaries']. # This will now print a serialized representation of our protocol buffer # with features "magic_numbers" and "adversaries" set... print(example) # .. et voila : that's all you need to know about protocol buffers for this # workshop. Explanation: Protobufs and tf.train.Example Tensorflow's "native" format for data storage is the tf.train.Example protocol buffer. In this section we briefly explore the API needed to access the data inside the tf.train.Example protocol buffer. It's not necessary to read through the Protocol Buffer Basics: Python - documentation. End of explanation # Let's first check how many [recognized=True] examples we have in each class. for name in labels: num_all_samples = len(list(tf.io.gfile.GFile('%s/%s.ndjson' % (data_path, name)))) num_recognized_samples = len(list(loaditer(name))) print(name, num_all_samples, 'recognized', num_recognized_samples) Explanation: Create datasets Now let's create a "dataset" of tf.train.Example protocol buffers ("protos"). A single example will contain all the information we want to use for training for a drawing (i.e. rasterized image, label, and maybe other information). End of explanation #@title `make_sharded_files()` code #@markdown Helper code to create sharded recordio files. #@markdown Simply **click "execute"** and continue to the next cell. #@markdown No need to read through this code to understand the remainder of the Colab. #@markdown #@markdown If you want to have a look anyways, you can double-click this cell or click on the three dots #@markdown and then select "Form" and then "Show Code" (shortcut `<Ctrl-M> <F>`). # Helper code to create sharded recordio files. # (No need to read through this.) # The code in this cell simply takes a list of iterators and then # randomly distributes the values returned by these iterators into sharded # datasets (e.g. a train/eval/test split). def rand_key(counts): Returns a random key from "counts", using values as distribution. r = random.randint(0, sum(counts.values())) for key, count in counts.items(): if r > count or count == 0: r -= count else: counts[key] -= 1 return key def get_split(i, splits): Returns key from "splits" for iteration "i". i %= sum(splits.values()) for split in sorted(splits): if i < splits[split]: return split i -= splits[split] def make_counts(labels, total): Generates counts for "labels" totaling "total". counts = {} for i, name in enumerate(labels): counts[name] = total // (len(labels) - i) total -= counts[name] return counts def example_to_dict(example): Converts a tf.train.Example to a dictionary. example_dict = {} for name, value in example.features.feature.items(): if value.HasField('bytes_list'): value = value.bytes_list.value elif value.HasField('int64_list'): value = value.int64_list.value elif value.HasField('float_list'): value = value.float_list.value else: raise 'Unknown *_list type!' if len(value) == 1: example_dict[name] = value[0] else: example_dict[name] = np.array(value) return example_dict def make_sharded_files(make_example, path, labels, iters, counts, splits, shards=10, overwrite=False, report_dt=10, make_df=False): Create sharded dataset from "iters". Args: make_example: Converts object returned by elements of "iters" to tf.train.Example() proto. path: Directory that will contain recordio files. labels: Names of labels, will be written to "labels.txt". iters: List of iterables returning drawing objects. counts: Dictionary mapping class to number of examples. splits: Dictionary mapping filename to multiple examples. For example, splits=dict(a=2, b=1) will result in two examples being written to "a" for every example being written to "b". shards: Number of files to be created per split. overwrite: Whether a pre-existing directory should be overwritten. report_dt: Number of seconds between status updates (0=no updates). make_df: Also write data as pandas.DataFrame - do NOT use this with very large datasets that don't fit in memory! Returns: Total number of examples written to disk per split. assert len(iters) == len(labels) # Prepare output. if not tf.io.gfile.exists(path): tf.io.gfile.makedirs(path) paths = { split: ['%s/%s-%05d-of-%05d' % (path, split, i, shards) for i in range(shards)] for split in splits } assert overwrite or not tf.io.gfile.exists(paths.values()[0][0]) writers = { split: [tf.io.TFRecordWriter(ps[i]) for i in range(shards)] for split, ps in paths.items() } t0 = time.time() examples_per_split = collections.defaultdict(int) i, n = 0, sum(counts.values()) counts = dict(**counts) rows = [] # Create examples. while sum(counts.values()): name = rand_key(counts) split = get_split(i, splits) writer = writers[split][examples_per_split[split] % shards] label = labels.index(name) example = make_example(label, next(iters[label])) writer.write(example.SerializeToString()) if make_df: example.features.feature['split'].bytes_list.value.append(split.encode('utf8')) rows.append(example_to_dict(example)) examples_per_split[split] += 1 i += 1 if report_dt > 0 and time.time() - t0 > report_dt: print('processed %d/%d (%.2f%%)' % (i, n, 100. * i / n)) t0 = time.time() # Store results. for split in splits: for writer in writers[split]: writer.close() with tf.io.gfile.GFile('%s/labels.txt' % path, 'w') as f: f.write('\n'.join(labels)) with tf.io.gfile.GFile('%s/counts.json' % path, 'w') as f: json.dump(examples_per_split, f) if make_df: df_path = '%s/dataframe.pkl' % path print('Writing %s...' % df_path) pd.DataFrame(rows).to_pickle(df_path) return dict(**examples_per_split) Explanation: Sharding A dataset consists of non-overlapping sets of examples that will be used for training and evaluation of the classifier (the "test" set will be used for the final evaluation). As these files can quickly become very large, we split them into smaller files referred to as shards. For example, we could split a single dataset into a number of shards, like * train-00000-of-00005, * train-00001-of-00005, * ..., * train-00004-of-00005 (if we're using 5 shards). This way we have smaller individual files, and we can also easily access for example only 20% of all data, or have 5 threads which read through all the data simultaneously. Generally, with large datasets, a recommendation is to split data into individual shards with a size of ~100 MB each. This workshop might use smaller sharding sizes for simplicity reasons. End of explanation # Uses `dict_to_img()` from previous cell to create raster image. def make_example_img(label, drawing): Converts QuickDraw dictionary to example with rasterized data. Args: label: Numerical representation of the label (e.g. '0' for labels[0]). drawing: Dictionary with QuickDraw data. Returns: A tf.train.Example protocol buffer (with 'label', 'img_64', and additional metadata features). example = tf.train.Example() example.features.feature['label'].int64_list.value.append(label) img_64 = np.asarray(dict_to_img( drawing, img_sz=64, lw=4, maximize=True)).reshape(-1) example.features.feature['img_64'].int64_list.value.extend(img_64) example.features.feature['countrycode'].bytes_list.value.append( drawing['countrycode'].encode()) example.features.feature['recognized'].int64_list.value.append( drawing['recognized']) example.features.feature['word'].bytes_list.value.append( drawing['word'].encode()) ts = drawing['timestamp'] ts = time.mktime(time.strptime(ts[:ts.index('.')], '%Y-%m-%d %H:%M:%S')) example.features.feature['timestamp'].int64_list.value.append(int(ts)) example.features.feature['key_id'].int64_list.value.append( int(drawing['key_id'])) return example Explanation: Create IMG dataset End of explanation # Create the (rasterized) dataset. path = '%s/%s_img' % (data_path, dataset_name) t0 = time.time() examples_per_split = make_sharded_files( make_example=make_example_img, path=path, labels=labels, iters=[loaditer(name) for name in labels], # Creating 50k train, 20k eval and 10k test examples. counts=make_counts(labels, 80000), splits=dict(train=5, eval=2, test=1), overwrite=True, # Note: Set this to False when generating large datasets. make_df=True, ) # If you don't see the final output below, it's probably because your VM # has run out of memory and crashed! # This can happen when make_df=True. print('stored data to "%s"' % path) print('generated %s examples in %d seconds' % ( examples_per_split, time.time() - t0)) Explanation: We will now create a dataset with 80k samples consisting of: 50k samples used for training 20k samples used for evaluation 10k samples used for testing The generation below will take about ~5 minutes. Note: Larger datasets take longer to generate and to train on, but also lead to better classification results. End of explanation # Convert stroke coordinates into normalized relative coordinates, # one single list, and add a "third dimension" that indicates when # a new stroke starts. def dict_to_stroke(d): norm = lambda x: (x - x.min()) / max(1, (x.max() - x.min())) xy = np.concatenate([np.array(s, dtype=np.float32) for s in d['drawing']], axis=1) z = np.zeros(xy.shape[1]) if len(d['drawing']) > 1: z[np.cumsum(np.array(list(map(lambda x: x.shape[1], d['drawing'][:-1]))))] = 1 dxy = np.diff(norm(xy)) return np.concatenate([dxy, z.reshape((1, -1))[:, 1:]]) # Visualize and control output of `dict_to_stroke()`. stroke = dict_to_stroke(sample[0]) # The first 2 dimensions are normalized dx/dy coordinates, and # the third dimension indicates a new stroke. xy = stroke[:2, :].cumsum(axis=1) plt.plot(xy[0,:], -xy[1,:]) pxy = xy[:, stroke[2] != 0] # Indicate the new stroke with a red circle. plt.plot(pxy[0], -pxy[1], 'ro'); # Uses `dict_to_stroke()` from previous cell to create raster image. def make_example_stroke(label, drawing): Converts QuickDraw dictionary to example with stroke data. Args: label: Numerical representation of the label (e.g. '0' for labels[0]). drawing: Dictionary with QuickDraw data. Returns: A tf.train.Example protocol buffer (with 'label', 'stroke_x', 'stroke_y', 'stroke_z', and additional metadata features). example = tf.train.Example() example.features.feature['label'].int64_list.value.append(label) stroke = dict_to_stroke(drawing) example.features.feature['stroke_x'].float_list.value.extend(stroke[0, :]) example.features.feature['stroke_y'].float_list.value.extend(stroke[1, :]) example.features.feature['stroke_z'].float_list.value.extend(stroke[2, :]) example.features.feature['stroke_len'].int64_list.value.append( stroke.shape[1]) example.features.feature['countrycode'].bytes_list.value.append( drawing['countrycode'].encode()) example.features.feature['recognized'].int64_list.value.append( drawing['recognized']) example.features.feature['word'].bytes_list.value.append( drawing['word'].encode()) ts = drawing['timestamp'] ts = time.mktime(time.strptime(ts[:ts.index('.')], '%Y-%m-%d %H:%M:%S')) example.features.feature['timestamp'].int64_list.value.append(int(ts)) example.features.feature['key_id'].int64_list.value.append( int(drawing['key_id'])) return example path = '%s/%s_stroke' % (data_path, dataset_name) t0 = time.time() examples_per_split = make_sharded_files( make_example=make_example_stroke, path=path, labels=labels, iters=[loaditer(name) for name in labels], # Creating 50k train, 20k eval, 10k test examples. Takes ~2min counts=make_counts(labels, 80000), splits=dict(train=5, eval=2, test=1), overwrite=True, # Note: Set this to False when generating large datasets... make_df=True, ) print('stored data to "%s"' % path) print('generated %s examples in %d seconds' % (examples_per_split, time.time() - t0)) Explanation: Create STROKE dataset This section creates another dataset of example protos that contain the raw stroke data, suitable for usage with a recurrent neural network. End of explanation # YOUR ACTION REQUIRED: # Check out the files generated in $data_path # Note that you can also inspect the files in http://drive.google.com if you # used Drive as the destination. # Let's look at a single file of the sharded dataset. tf_record_path = '{}/{}_img/eval-00000-of-00010'.format(data_path, dataset_name) # YOUR ACTION REQUIRED: # Use `tf.data.TFRecordDataset()` to read a single record from the file and # assign it to the variable `record`. What data type has this record? # Hint: dataset is a Python "iterable". #dataset = ... #record # Check out the features. They should correspond to what we generated in # `make_example_img()` above. example = tf.train.Example() # Note: `.numpy()` returns the underlying string from the Tensor. example.ParseFromString(record.numpy()) print(list(example.features.feature.keys())) # YOUR ACTION REQUIRED: # Extract the label and the image data from the example protobuf. # Use above section "tf.train.Example" for reference. label_int = img_64 = # Visualize the image: print(labels[label_int]) plt.matshow(np.array(img_64).reshape((64, 64))) # YOUR ACTION REQUIRED: # Check that we have an equal distribution of labels in the training files. Explanation: ----- Optional part ----- Inspect data End of explanation # If we want to create our own protocol buffers, we first need to install # some programs. !apt-get -y install protobuf-compiler python-pil python-lxml # Step 1: Write a proto file that describes our data format. # YOUR ACTION REQUIRED: Complete the definition of the "Person" message (you # can use the slide for inspiration). with open('person.proto', 'w') as f: f.write('''syntax = "proto3";''') # Step 2: Compile proto definition to a Python file. !protoc --python_out=. person.proto !ls -lh # Step 3: Import code from generated Python file. from person_pb2 import Person # Note: If you change the person_pb2 module, you'll need to restart the kernel # to see the changes because Python will still remember the previous import. person = Person() person.name = 'John Doe' person.email = '[email protected]' person.lucky_numbers.extend([13, 99]) person.SerializeToString() # YOUR ACTION REQUIRED: # Compare the size of the serialized person structure in proto format # vs. JSON encoded (you can use Python's json.dumps() and list members # manually, or import google.protobuf.json_format). # Which format is more efficient? Why? # Which format is easier to use? # Which format is more versatile? Explanation: More on protobufs End of explanation
9,777
Given the following text description, write Python code to implement the functionality described below step by step Description: Data Bootcamp Step1: Population by age We have both "estimates" of the past (1950-2015) and "projections" of the future (out to 2100). Here we focus on the latter, specifically what the UN refers to as the medium variant Step2: Exercise. What do you see here? What else would you like to know? Exercise. Adapt the preceeding code to do the same thing for China. Or some other country that sparks your interest. Fertility Step3: Exercise. What do you see here? What else would you like to know? Exercise. Add Canada to the figure. How does it compare to the others? What other countries would you be interested in? Life expectancy One of the bottom line summary numbers for mortality is life expectancy Step4: Exercise. What other countries would you like to see? Can you add them? The code below generates a list. Step5: Exercise. Why do you think the US is falling behind? What would you look at to verify your conjecture? Mortality Step6: Comment. At this point, we need to pivot the data. That's not something we've done before, so take it as simply something we can do easily if we have to. We're going to do this twice to produce different graphs Step7: Exercises. What country's old people have the lowest mortality? What do you see here for the US? Why is our life expectancy shorter? What other countries would you like to see? Can you adapt the code to show them? Anything else cross your mind?
Python Code: # import packages import pandas as pd # data management import matplotlib.pyplot as plt # graphics import matplotlib as mpl # graphics parameters import numpy as np # numerical calculations # IPython command, puts plots in notebook %matplotlib inline # check Python version import datetime as dt import sys print('Today is', dt.date.today()) print('What version of Python are we running? \n', sys.version, sep='') Explanation: Data Bootcamp: Demography We love demography, specifically the dynamics of population growth and decline. You can drill down seemingly without end, as this terrific graphic about causes of death suggests. We take a look here at the UN's population data: the age distribution of the population, life expectancy, fertility (the word we use for births), and mortality (deaths). Explore the website, it's filled with interesting data. There are other sources that cover longer time periods, and for some countries you can get detailed data on specific things (causes of death, for example). We use a number of countries as examples, but Japan and China are the most striking. The code is written so that the country is easily changed. This IPython notebook was created by Dave Backus, Chase Coleman, and Spencer Lyon for the NYU Stern course Data Bootcamp. Preliminaries Import statements and a date check for future reference. End of explanation url1 = 'http://esa.un.org/unpd/wpp/DVD/Files/' url2 = '1_Indicators%20(Standard)/EXCEL_FILES/1_Population/' url3 = 'WPP2015_POP_F07_1_POPULATION_BY_AGE_BOTH_SEXES.XLS' url = url1 + url2 + url3 cols = [2, 5] + list(range(6,28)) #est = pd.read_excel(url, sheetname=0, skiprows=16, parse_cols=cols, na_values=['…']) prj = pd.read_excel(url, sheetname=1, skiprows=16, parse_cols=cols, na_values=['…']) prj.head(3)[list(range(6))] # rename some variables pop = prj names = list(pop) pop = pop.rename(columns={names[0]: 'Country', names[1]: 'Year'}) # select country and years country = ['Japan'] years = [2015, 2055, 2095] pop = pop[pop['Country'].isin(country) & pop['Year'].isin(years)] pop = pop.drop(['Country'], axis=1) # set index = Year # divide by 1000 to convert numbers from thousands to millions pop = pop.set_index('Year')/1000 pop.head()[list(range(8))] # transpose (T) so that index = age pop = pop.T pop.head(3) ax = pop.plot(kind='bar', color='blue', alpha=0.5, subplots=True, sharey=True, figsize=(8,6)) for axnum in range(len(ax)): ax[axnum].set_title('') ax[axnum].set_ylabel('Millions') ax[0].set_title('Population by age', fontsize=14, loc='left') Explanation: Population by age We have both "estimates" of the past (1950-2015) and "projections" of the future (out to 2100). Here we focus on the latter, specifically what the UN refers to as the medium variant: their middle of the road projection. It gives us a sense of how Japan's population might change over the next century. It takes a few seconds to read the data. What are the numbers? Thousands of people in various 5-year age categories. End of explanation # fertility overall uft = 'http://esa.un.org/unpd/wpp/DVD/Files/' uft += '1_Indicators%20(Standard)/EXCEL_FILES/' uft += '2_Fertility/WPP2015_FERT_F04_TOTAL_FERTILITY.XLS' cols = [2] + list(range(5,18)) ftot = pd.read_excel(uft, sheetname=0, skiprows=16, parse_cols=cols, na_values=['…']) ftot.head(3)[list(range(6))] # rename some variables names = list(ftot) f = ftot.rename(columns={names[0]: 'Country'}) # select countries countries = ['China', 'Japan', 'Germany', 'United States of America'] f = f[f['Country'].isin(countries)] # shape f = f.set_index('Country').T f = f.rename(columns={'United States of America': 'United States'}) f.tail(3) fig, ax = plt.subplots() f.plot(ax=ax, kind='line', alpha=0.5, lw=3, figsize=(6.5, 4)) ax.set_title('Fertility (births per woman, lifetime)', fontsize=14, loc='left') ax.legend(loc='best', fontsize=10, handlelength=2, labelspacing=0.15) ax.set_ylim(ymin=0) ax.hlines(2.1, -1, 13, linestyles='dashed') ax.text(8.5, 2.4, 'Replacement = 2.1') Explanation: Exercise. What do you see here? What else would you like to know? Exercise. Adapt the preceeding code to do the same thing for China. Or some other country that sparks your interest. Fertility: aka birth rates We might wonder, why is the population falling in Japan? Other countries? Well, one reason is that birth rates are falling. Demographers call this fertility. Here we look at the fertility using the same UN source as the previous example. We look at two variables: total fertility and fertility by age of mother. In both cases we explore the numbers to date, but the same files contain projections of future fertility. End of explanation # life expectancy at birth, both sexes ule = 'http://esa.un.org/unpd/wpp/DVD/Files/1_Indicators%20(Standard)/EXCEL_FILES/3_Mortality/' ule += 'WPP2015_MORT_F07_1_LIFE_EXPECTANCY_0_BOTH_SEXES.XLS' cols = [2] + list(range(5,34)) le = pd.read_excel(ule, sheetname=0, skiprows=16, parse_cols=cols, na_values=['…']) le.head(3)[list(range(10))] # rename some variables oldname = list(le)[0] l = le.rename(columns={oldname: 'Country'}) l.head(3)[list(range(8))] # select countries countries = ['China', 'Japan', 'Germany', 'United States of America'] l = l[l['Country'].isin(countries)] # shape l = l.set_index('Country').T l = l.rename(columns={'United States of America': 'United States'}) l.tail() fig, ax = plt.subplots() l.plot(ax=ax, kind='line', alpha=0.5, lw=3, figsize=(6, 8), grid=True) ax.set_title('Life expectancy at birth', fontsize=14, loc='left') ax.set_ylabel('Life expectancy in years') ax.legend(loc='best', fontsize=10, handlelength=2, labelspacing=0.15) ax.set_ylim(ymin=0) Explanation: Exercise. What do you see here? What else would you like to know? Exercise. Add Canada to the figure. How does it compare to the others? What other countries would you be interested in? Life expectancy One of the bottom line summary numbers for mortality is life expectancy: if mortaility rates fall, people live longer, on average. Here we look at life expectancy at birth. There are also numbers for life expectancy given than you live to some specific age; for example, life expectancy given that you survive to age 60. End of explanation countries = le.rename(columns={oldname: 'Country'})['Country'] Explanation: Exercise. What other countries would you like to see? Can you add them? The code below generates a list. End of explanation # mortality overall url = 'http://esa.un.org/unpd/wpp/DVD/Files/' url += '1_Indicators%20(Standard)/EXCEL_FILES/3_Mortality/' url += 'WPP2015_MORT_F17_1_ABRIDGED_LIFE_TABLE_BOTH_SEXES.XLS' cols = [2, 5, 6, 7, 9] mort = pd.read_excel(url, sheetname=0, skiprows=16, parse_cols=cols, na_values=['…']) mort.tail(3) # change names names = list(mort) m = mort.rename(columns={names[0]: 'Country', names[2]: 'Age', names[3]: 'Interval', names[4]: 'Mortality'}) m.head(3) Explanation: Exercise. Why do you think the US is falling behind? What would you look at to verify your conjecture? Mortality: aka death rates Another thing that affects the age distribution of the population is the mortality rate: if mortality rates fall people live longer, on average. Here we look at how mortality rates have changed over the past 60+ years. Roughly speaking, people live an extra five years every generation. Which is a lot. Some of you will live to be a hundred. (Look at the 100+ agen category over time for Japan.) The experts look at mortality rates by age. The UN has a whole page devoted to mortality numbers. We take 5-year mortality rates from the Abridged Life Table. The numbers are percentages of people in a given age group who die over a 5-year period. 0.1 means that 90 percent of an age group is still alive in five years. End of explanation # compare countries for most recent period countries = ['China', 'Japan', 'Germany', 'United States of America'] mt = m[m['Country'].isin(countries) & m['Interval'].isin([5]) & m['Period'].isin(['2010-2015'])] print('Dimensions:', mt.shape) mp = mt.pivot(index='Age', columns='Country', values='Mortality') mp.head(3) fig, ax = plt.subplots() mp.plot(ax=ax, kind='line', alpha=0.5, linewidth=3, # logy=True, figsize=(6, 4)) ax.set_title('Mortality by age', fontsize=14, loc='left') ax.set_ylabel('Mortality Rate (log scale)') ax.legend(loc='best', fontsize=10, handlelength=2, labelspacing=0.15) Explanation: Comment. At this point, we need to pivot the data. That's not something we've done before, so take it as simply something we can do easily if we have to. We're going to do this twice to produce different graphs: Compare countries for the same period. Compare different periods for the same country. End of explanation # compare periods for the one country -- countries[0] is China mt = m[m['Country'].isin([countries[0]]) & m['Interval'].isin([5])] print('Dimensions:', mt.shape) mp = mt.pivot(index='Age', columns='Period', values='Mortality') mp = mp[[0, 6, 12]] mp.head(3) fig, ax = plt.subplots() mp.plot(ax=ax, kind='line', alpha=0.5, linewidth=3, # logy=True, figsize=(6, 4)) ax.set_title('Mortality over time', fontsize=14, loc='left') ax.set_ylabel('Mortality Rate (log scale)') ax.legend(loc='best', fontsize=10, handlelength=2, labelspacing=0.15) Explanation: Exercises. What country's old people have the lowest mortality? What do you see here for the US? Why is our life expectancy shorter? What other countries would you like to see? Can you adapt the code to show them? Anything else cross your mind? End of explanation
9,778
Given the following text description, write Python code to implement the functionality described below step by step Description: Sinkhorn Divergence Hessians Samples two point clouds, computes their sinkhorn_divergence We show in this colab how OTT and JAX can be used to compute automatically the Hessian of the Sinkhorn divergence w.r.t. input variables, such as weights a or locations x. Don't forget to !pip install ott-jax before running the code below. Step1: Sample two random point clouds of dimension dim Step2: As usual in JAX, we define a custom loss that outputs the quantity of interest, and is defined using relevant inputs as arguments, i.e. parameters against which we may want to differentiate. We add to a and x the implicit auxiliary flag which will be used to switch between unrolling and implicit differentiation of the Sinkhorn algorithm (see this excellent tutorial for a deep dive on their differences!) The loss outputs the Sinkhorn Divergence between two point clouds. Step3: Let's parse the three lines in the call to sinkhorn_divergence above
Python Code: import jax import jax.numpy as jnp import ott from ott.tools import sinkhorn_divergence from ott.geometry import pointcloud import matplotlib.pyplot as plt Explanation: Sinkhorn Divergence Hessians Samples two point clouds, computes their sinkhorn_divergence We show in this colab how OTT and JAX can be used to compute automatically the Hessian of the Sinkhorn divergence w.r.t. input variables, such as weights a or locations x. Don't forget to !pip install ott-jax before running the code below. End of explanation def sample(n, m, dim): rngs = jax.random.split(jax.random.PRNGKey(0), 6) x = jax.random.uniform(rngs[0], (n, dim)) y = jax.random.uniform(rngs[1], (m, dim)) a = jax.random.uniform(rngs[2], (n,)) + .1 b = jax.random.uniform(rngs[3], (m,)) + .1 a = a / jnp.sum(a) b = b / jnp.sum(b) return a, x, b ,y a, x, b, y = sample(15, 17, 3) Explanation: Sample two random point clouds of dimension dim End of explanation def loss(a, x, implicit): return sinkhorn_divergence.sinkhorn_divergence( pointcloud.PointCloud, x, y, # this part defines geometry a=a, b=b, # this sets weights sinkhorn_kwargs={'implicit_differentiation': implicit, 'use_danskin': False} # to be used by Sinkhorn algorithm. ).divergence Explanation: As usual in JAX, we define a custom loss that outputs the quantity of interest, and is defined using relevant inputs as arguments, i.e. parameters against which we may want to differentiate. We add to a and x the implicit auxiliary flag which will be used to switch between unrolling and implicit differentiation of the Sinkhorn algorithm (see this excellent tutorial for a deep dive on their differences!) The loss outputs the Sinkhorn Divergence between two point clouds. End of explanation for arg in [0,1]: # Compute Hessians using either unrolling or implicit differentiation. hess_loss_imp = jax.jit(jax.hessian(lambda a, x: loss(a, x, True), argnums=arg)) print('--- Time: Implicit Hessian w.r.t. ' + ('a' if arg == 0 else 'x')) %timeit _ = hess_loss_imp(a, x).block_until_ready() hess_imp = hess_loss_imp(a, x) hess_loss_back = jax.jit(jax.hessian(lambda a, x: loss(a, x, False), argnums=arg)) print('--- Time: Unrolled Hessian w.r.t. ' + ('a' if arg == 0 else 'x')) %timeit _ = hess_loss_back(a, x).block_until_ready() hess_back = hess_loss_back(a, x) # Since we are solving balanced OT problems, Hessians w.r.t. weights are # only defined up to the orthogonal space of 1s. # For that reason we remove that contribution and check the # resulting matrices are equal. if arg == 0: hess_imp -= jnp.mean(hess_imp,axis=1)[:,None] hess_back -= jnp.mean(hess_back,axis=1)[:,None] fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) im = ax1.imshow(hess_imp if arg == 0 else hess_imp[0,0,:,:]) ax1.set_title('Implicit Hessian w.r.t. ' + ('a' if arg == 0 else 'x (1st slice)')) fig.colorbar(im, ax=ax1) im = ax2.imshow(hess_back if arg == 0 else hess_back[0,0,:,:]) ax2.set_title('Unrolled Hessian w.r.t. ' + ('a' if arg == 0 else 'x (1st slice)')) fig.colorbar(im, ax=ax2) Explanation: Let's parse the three lines in the call to sinkhorn_divergence above: - The first one defines the point cloud geometry between x and y that will define the cost matrix. Here we could have added details on epsilon regularization (or scheduler), as well as alternative definitions of the cost function (here assumed by default to be squared Euclidean distance). We stick to the default setting. The second one sets the respective weight vectors a and b. Those are simply two histograms of size n and m, both sum to 1, in the so-called balanced setting. The third one passes on arguments to the three sinkhorn solvers that will be called, to compare x with y, x with x and y with y with their respective weights a and b. Rather than focusing on the several numerical options available to parmeterize sinkhorn's behavior, we instruct JAX on how it should differentiate the outputs of the sinkhorn algorithm. The use_danskin flag specifies whether the outputted potentials should be freezed when differentiating. Since we aim for 2nd order differentiation here, we must set this to False (if we wanted to compute gradients, True would have resulted in faster yet almost equivalent computations). Computing Hessians Let's now plot Hessians of this output w.r.t. either a or x. The Hessian w.r.t. a will be a $n \times n$ matrix, with the convention that a has size $n$. Because x is itself a matrix of 3D coordinates, the Hessian w.r.t. x will be a 4D tensor of size $n \times 3 \times n \times 3$. To plot both Hessians, we loop on arg 0 or 1 of loss, and plot all (or part for x) of those Hessians, to check they match: End of explanation
9,779
Given the following text description, write Python code to implement the functionality described below step by step Description: <p><font size="6"><b>Visualization - Matplotlib</b></font></p> © 2021, Joris Van den Bossche and Stijn Van Hoey. Licensed under CC BY 4.0 Creative Commons Matplotlib Matplotlib is a Python package used widely throughout the scientific Python community to produce high quality 2D publication graphics. It transparently supports a wide range of output formats including PNG (and other raster formats), PostScript/EPS, PDF and SVG and has interfaces for all of the major desktop GUI (graphical user interface) toolkits. It is a great package with lots of options. However, matplotlib is... The 800-pound gorilla — and like most 800-pound gorillas, this one should probably be avoided unless you genuinely need its power, e.g., to make a custom plot or produce a publication-ready graphic. (As we’ll see, when it comes to statistical visualization, the preferred tack might be Step1: - dry stuff - The matplotlib Figure, Axes and Axis At the heart of every plot is the figure object. The "Figure" object is the top level concept which can be drawn to one of the many output formats, or simply just to screen. Any object which can be drawn in this way is known as an "Artist" in matplotlib. Lets create our first artist using pyplot, and then show it Step2: On its own, drawing the figure artist is uninteresting and will result in an empty piece of paper (that's why we didn't see anything above). By far the most useful artist in matplotlib is the Axes artist. The Axes artist represents the "data space" of a typical plot, a rectangular axes (the most common, but not always the case, e.g. polar plots) will have 2 (confusingly named) Axis artists with tick labels and tick marks. There is no limit on the number of Axes artists which can exist on a Figure artist. Let's go ahead and create a figure with a single Axes artist, and show it using pyplot Step3: Matplotlib's pyplot module makes the process of creating graphics easier by allowing us to skip some of the tedious Artist construction. For example, we did not need to manually create the Figure artist with plt.figure because it was implicit that we needed a figure when we created the Axes artist. Under the hood matplotlib still had to create a Figure artist, its just we didn't need to capture it into a variable. - essential stuff - pyplot versus Object based Some example data Step4: Observe the following difference Step5: 2. object oriented Step6: Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure Step7: And also Matplotlib advices the object oriented style Step8: An small cheat-sheet reference for some common elements Step9: Adjusting specific parts of a plot is a matter of accessing the correct element of the plot Step10: <div class="alert alert-success"> **EXERCISE** Make a line chart of the `data` using Matplotlib. The figure should be 12 (width) by 4 (height) in inches. Make the line color 'darkgrey' and provide an x-label ('days since start') and a y-label ('measured value'). Use the object oriented approach to create the chart. <details><summary>Hints</summary> - When Matplotlib only receives a single input variable, it will interpret this as the variable for the y-axis - Check the cheat sheet above for the functions. </details> </div> Step11: <div class="alert alert-success"> **EXERCISE** The data represents each a day starting from Jan 1st 2021. Create an array (variable name `dates`) of the same length as the original data (length 100) with the corresponding dates ('2021-01-01', '2021-01-02',...). Create the same chart as in the previous exercise, but use the `dates` values for the x-axis data. Mark the region inside `[-5, 5]` with a green color to show that these values are within an acceptable range. <details><summary>Hints</summary> - As seen in notebook `pandas_04_time_series_data`, Pandas provides a useful function `pd.date_range` to create a set of datetime values. In this case 100 values with `freq="D"`. - Make sure to understand the difference between `axhspan` and `fill_between`, which one do you need? - When adding regions, adding an `alpha` level is mostly a good idea. </details> </div> Step12: <div class="alert alert-success"> **EXERCISE** Compare the __last ten days__ ('2021-04-01' till '2021-04-10') in a bar chart using darkgrey color. For the data on '2021-04-01', use an orange bar to highlight the measurement on this day. <details><summary>Hints</summary> - Select the last 10 days from the `data` and `dates` variable, i.e. slice [-10 Step13: I do not like the style... ...understandable Matplotlib had a bad reputation in terms of its default styling as figures created with earlier versions of Matplotlib were very Matlab-lookalike and mostly not really catchy. Since Matplotlib 2.0, this has changed Step14: We should not start discussing about colors and styles, just pick your favorite style! Step15: or go all the way and define your own custom style, see the official documentation or this tutorial. <div class="alert alert-info"> <b>REMEMBER</b> Step16: A typical issue when plotting multiple elements in the same Figure is the overlap of the subplots. A straight-forward approach is using a larger Figure size, but this is not always possible and does not make the content independent from the Figure size. Matplotlib provides the usage of a constrained-layout to fit plots within your Figure cleanly. Step18: When more advanced layout configurations are required, the usage of the gridspec module is a good reference. See gridspec demo for more information. A useful shortcut to know about is the string-shorthand to setup subplot layouts in a more intuitive way, e.g. Step19: Interaction with Pandas What we have been doing while plotting with Pandas Step20: Under the hood, it creates an Matplotlib Figure with an Axes object. Pandas versus matplotlib Comparison 1 Step21: Making this with matplotlib... Step22: is still ok! Comparison 2 Step23: Mimicking this in matplotlib (just as a reference, it is basically what Pandas is doing under the hood) Step24: Is already a bit harder ;-). Pandas provides as set of default configurations on top of Matplotlib. Best of both worlds... Step25: <div class="alert alert-info"> <b>Remember</b> Step26: <div class="alert alert-success"> **EXERCISE** Pandas supports different types of charts besides line plots, all available from `.plot.xxx`, e.g. `.plot.scatter`, `.plot.bar`,... Make a bar chart to compare the mean discharge in the three measurement stations L06_347, LS06_347, LS06_348. Add a y-label 'mean discharge'. To do so, prepare a Figure and Axes with Matplotlib and add the chart to the created Axes. <details><summary>Hints</summary> * You can either use Pandas `ylabel` parameter to set the label or add it with Matploltib `ax.set_ylabel()` * To link an Axes object with Pandas output, pass the Axes created by `fig, ax = plt.subplots()` as parameter to the Pandas plot function. </details> </div> Step27: <div class="alert alert-success"> **EXERCISE** To compare the stations data, make two subplots next to each other Step28: <div class="alert alert-success"> **EXERCISE** Make a line plot of the discharge measurements in station `LS06_347`. The main event on November 13th caused a flood event. To support the reader in the interpretation of the graph, add the following elements
Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt Explanation: <p><font size="6"><b>Visualization - Matplotlib</b></font></p> © 2021, Joris Van den Bossche and Stijn Van Hoey. Licensed under CC BY 4.0 Creative Commons Matplotlib Matplotlib is a Python package used widely throughout the scientific Python community to produce high quality 2D publication graphics. It transparently supports a wide range of output formats including PNG (and other raster formats), PostScript/EPS, PDF and SVG and has interfaces for all of the major desktop GUI (graphical user interface) toolkits. It is a great package with lots of options. However, matplotlib is... The 800-pound gorilla — and like most 800-pound gorillas, this one should probably be avoided unless you genuinely need its power, e.g., to make a custom plot or produce a publication-ready graphic. (As we’ll see, when it comes to statistical visualization, the preferred tack might be: “do as much as you easily can in your convenience layer of choice [nvdr e.g. directly from Pandas, or with seaborn], and then use matplotlib for the rest.”) (quote used from this blogpost) And that's we mostly did, just use the .plot function of Pandas. So, why do we learn matplotlib? Well, for the ...then use matplotlib for the rest.; at some point, somehow! Matplotlib comes with a convenience sub-package called pyplot which, for consistency with the wider matplotlib community, should always be imported as plt: End of explanation fig = plt.figure() plt.show() Explanation: - dry stuff - The matplotlib Figure, Axes and Axis At the heart of every plot is the figure object. The "Figure" object is the top level concept which can be drawn to one of the many output formats, or simply just to screen. Any object which can be drawn in this way is known as an "Artist" in matplotlib. Lets create our first artist using pyplot, and then show it: End of explanation ax = plt.axes() Explanation: On its own, drawing the figure artist is uninteresting and will result in an empty piece of paper (that's why we didn't see anything above). By far the most useful artist in matplotlib is the Axes artist. The Axes artist represents the "data space" of a typical plot, a rectangular axes (the most common, but not always the case, e.g. polar plots) will have 2 (confusingly named) Axis artists with tick labels and tick marks. There is no limit on the number of Axes artists which can exist on a Figure artist. Let's go ahead and create a figure with a single Axes artist, and show it using pyplot: End of explanation x = np.linspace(0, 5, 10) y = x ** 2 Explanation: Matplotlib's pyplot module makes the process of creating graphics easier by allowing us to skip some of the tedious Artist construction. For example, we did not need to manually create the Figure artist with plt.figure because it was implicit that we needed a figure when we created the Axes artist. Under the hood matplotlib still had to create a Figure artist, its just we didn't need to capture it into a variable. - essential stuff - pyplot versus Object based Some example data: End of explanation ax = plt.plot(x, y, '-') Explanation: Observe the following difference: 1. pyplot style: plt. (you will see this a lot for code online!) End of explanation from matplotlib import ticker x = np.linspace(0, 5, 10) y = x ** 10 fig, ax = plt.subplots() ax.plot(x, y, '-') ax.set_title("My data") ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.1f")) Explanation: 2. object oriented End of explanation fig, ax1 = plt.subplots() ax1.plot(x, y, '-') ax1.set_ylabel('y') ax2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes ax2.set_xlabel('x') ax2.plot(x, y*2, 'r-') Explanation: Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure: End of explanation fig, ax = plt.subplots() ax.plot(x, y, '-') # ... Explanation: And also Matplotlib advices the object oriented style: <div class="alert alert-info" style="font-size:18px"> <b>REMEMBER</b>: <ul> <li>Use the <b>object oriented</b> power of Matplotlib</li> <li>Get yourself used to writing <code>fig, ax = plt.subplots()</code></li> </ul> </div> End of explanation x = np.linspace(-1, 0, 100) fig, ax = plt.subplots(figsize=(10, 7)) # Adjust the created axes so that its topmost extent is 0.8 of the figure. fig.subplots_adjust(top=0.9) ax.plot(x, x**2, color='0.4', label='power 2') ax.plot(x, x**3, color='0.8', linestyle='--', label='power 3') ax.vlines(x=-0.75, ymin=0., ymax=0.8, color='0.4', linestyle='-.') ax.fill_between(x=x, y1=x**2, y2=1.1*x**2, color='0.85') ax.axhline(y=0.1, color='0.4', linestyle='-.') ax.axhspan(ymin=0.65, ymax=0.75, color='0.95') fig.suptitle('Figure title', fontsize=18, fontweight='bold') ax.set_title('Axes title', fontsize=16) ax.set_xlabel('The X axis') ax.set_ylabel('The Y axis $y=f(x)$', fontsize=16) ax.set_xlim(-1.0, 1.1) ax.set_ylim(-0.1, 1.) ax.text(0.5, 0.2, 'Text centered at (0.5, 0.2)\nin data coordinates.', horizontalalignment='center', fontsize=14) ax.text(0.5, 0.5, 'Text centered at (0.5, 0.5)\nin relative Axes coordinates.', horizontalalignment='center', fontsize=14, transform=ax.transAxes, color='grey') ax.annotate('Text pointing at (0.0, 0.75)', xy=(0.0, 0.75), xycoords="data", xytext=(20, 40), textcoords="offset points", horizontalalignment='left', fontsize=14, arrowprops=dict(facecolor='black', shrink=0.05, width=1)) ax.legend(loc='lower right', frameon=True, ncol=2, fontsize=14) Explanation: An small cheat-sheet reference for some common elements End of explanation data = np.random.randint(-2, 3, 100).cumsum() data Explanation: Adjusting specific parts of a plot is a matter of accessing the correct element of the plot: For more information on legend positioning, check this post on stackoverflow! Exercises For these exercises we will use some random generated example data (as a Numpy array), representing daily measured values: End of explanation fig, ax = plt.subplots(figsize=(12, 4)) ax.plot(data, color='darkgrey') ax.set_xlabel('days since start'); ax.set_ylabel('measured value'); Explanation: <div class="alert alert-success"> **EXERCISE** Make a line chart of the `data` using Matplotlib. The figure should be 12 (width) by 4 (height) in inches. Make the line color 'darkgrey' and provide an x-label ('days since start') and a y-label ('measured value'). Use the object oriented approach to create the chart. <details><summary>Hints</summary> - When Matplotlib only receives a single input variable, it will interpret this as the variable for the y-axis - Check the cheat sheet above for the functions. </details> </div> End of explanation dates = pd.date_range("2021-01-01", periods=100, freq="D") fig, ax = plt.subplots(figsize=(12, 4)) ax.plot(dates, data, color='darkgrey') ax.axhspan(ymin=-5, ymax=5, color='green', alpha=0.2) ax.set_xlabel('days since start'); ax.set_ylabel('measured value'); Explanation: <div class="alert alert-success"> **EXERCISE** The data represents each a day starting from Jan 1st 2021. Create an array (variable name `dates`) of the same length as the original data (length 100) with the corresponding dates ('2021-01-01', '2021-01-02',...). Create the same chart as in the previous exercise, but use the `dates` values for the x-axis data. Mark the region inside `[-5, 5]` with a green color to show that these values are within an acceptable range. <details><summary>Hints</summary> - As seen in notebook `pandas_04_time_series_data`, Pandas provides a useful function `pd.date_range` to create a set of datetime values. In this case 100 values with `freq="D"`. - Make sure to understand the difference between `axhspan` and `fill_between`, which one do you need? - When adding regions, adding an `alpha` level is mostly a good idea. </details> </div> End of explanation fig, ax = plt.subplots(figsize=(12, 4)) ax.bar(dates[-10:], data[-10:], color='darkgrey') ax.bar(dates[-6], data[-6], color='orange') Explanation: <div class="alert alert-success"> **EXERCISE** Compare the __last ten days__ ('2021-04-01' till '2021-04-10') in a bar chart using darkgrey color. For the data on '2021-04-01', use an orange bar to highlight the measurement on this day. <details><summary>Hints</summary> - Select the last 10 days from the `data` and `dates` variable, i.e. slice [-10:]. - Similar to a `plot` method, Matplotlib provides a `bar` method. - By plotting a single orange bar on top of the grey bars with a second bar chart, that one is highlithed. </details> </div> End of explanation plt.style.available x = np.linspace(0, 10) with plt.style.context('seaborn-whitegrid'): # 'seaborn', ggplot', 'bmh', 'grayscale', 'seaborn-whitegrid', 'seaborn-muted' fig, ax = plt.subplots() ax.plot(x, np.sin(x) + x + np.random.randn(50)) ax.plot(x, np.sin(x) + 0.5 * x + np.random.randn(50)) ax.plot(x, np.sin(x) + 2 * x + np.random.randn(50)) Explanation: I do not like the style... ...understandable Matplotlib had a bad reputation in terms of its default styling as figures created with earlier versions of Matplotlib were very Matlab-lookalike and mostly not really catchy. Since Matplotlib 2.0, this has changed: https://matplotlib.org/users/dflt_style_changes.html! However... Des goûts et des couleurs, on ne discute pas... (check this link if you're not french-speaking) To account different tastes, Matplotlib provides a number of styles that can be used to quickly change a number of settings: End of explanation plt.style.use('seaborn') Explanation: We should not start discussing about colors and styles, just pick your favorite style! End of explanation fig, ax = plt.subplots(2, 3, figsize=(5, 5)) Explanation: or go all the way and define your own custom style, see the official documentation or this tutorial. <div class="alert alert-info"> <b>REMEMBER</b>: * If you just want **quickly a good-looking plot**, use one of the available styles (`plt.style.use('...')`) * Otherwise, creating `Figure` and `Axes` objects makes it possible to change everything! </div> Advanced subplot configuration The function to setup a Matplotlib Figure we have seen up to now, fig, ax = plt.subplots(), supports creating both a single plot and multiple subplots with a regular number of rows/columns: End of explanation fig, ax = plt.subplots(2, 3, figsize=(5, 5), constrained_layout=True) Explanation: A typical issue when plotting multiple elements in the same Figure is the overlap of the subplots. A straight-forward approach is using a larger Figure size, but this is not always possible and does not make the content independent from the Figure size. Matplotlib provides the usage of a constrained-layout to fit plots within your Figure cleanly. End of explanation axd = plt.figure(constrained_layout=True).subplot_mosaic( ABD CCD ) axd; Explanation: When more advanced layout configurations are required, the usage of the gridspec module is a good reference. See gridspec demo for more information. A useful shortcut to know about is the string-shorthand to setup subplot layouts in a more intuitive way, e.g. End of explanation import pandas as pd flowdata = pd.read_csv('data/vmm_flowdata.csv', index_col='Time', parse_dates=True) flowdata.plot.line() # remark default plot() is a line plot Explanation: Interaction with Pandas What we have been doing while plotting with Pandas: End of explanation flowdata.plot(figsize=(16, 6), ylabel="Discharge m3/s") # SHIFT + TAB this! Explanation: Under the hood, it creates an Matplotlib Figure with an Axes object. Pandas versus matplotlib Comparison 1: single plot End of explanation fig, ax = plt.subplots(figsize=(16, 6)) ax.plot(flowdata) ax.legend(["L06_347", "LS06_347", "LS06_348"]) Explanation: Making this with matplotlib... End of explanation axs = flowdata.plot(subplots=True, sharex=True, figsize=(16, 8), colormap='viridis', # Dark2 fontsize=15, rot=0) axs[0].set_title("EXAMPLE"); Explanation: is still ok! Comparison 2: with subplots End of explanation from matplotlib import cm import matplotlib.dates as mdates colors = [cm.viridis(x) for x in np.linspace(0.0, 1.0, len(flowdata.columns))] # list comprehension to set up the colors fig, axs = plt.subplots(3, 1, figsize=(16, 8)) for ax, col, station in zip(axs, colors, flowdata.columns): ax.plot(flowdata.index, flowdata[station], label=station, color=col) ax.legend() if not ax.get_subplotspec().is_last_row(): ax.xaxis.set_ticklabels([]) ax.xaxis.set_major_locator(mdates.YearLocator()) else: ax.xaxis.set_major_locator(mdates.YearLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) ax.set_xlabel('Time') ax.tick_params(labelsize=15) Explanation: Mimicking this in matplotlib (just as a reference, it is basically what Pandas is doing under the hood): End of explanation fig, (ax0, ax1) = plt.subplots(2, 1) #prepare a Matplotlib figure flowdata.plot(ax=ax0) # use Pandas for the plotting fig, ax = plt.subplots(figsize=(15, 5)) #prepare a matplotlib figure flowdata.plot(ax=ax) # use pandas for the plotting # Provide further adaptations with matplotlib: ax.set_xlabel("") ax.grid(which="major", linewidth='0.5', color='0.8') fig.suptitle('Flow station time series', fontsize=15) fig, (ax0, ax1) = plt.subplots(2, 1, figsize=(16, 6)) #provide with matplotlib 2 axis flowdata[["L06_347", "LS06_347"]].plot(ax=ax0) # plot the two timeseries of the same location on the first plot flowdata["LS06_348"].plot(ax=ax1, color='0.7') # plot the other station on the second plot # further adapt with matplotlib ax0.set_ylabel("L06_347") ax1.set_ylabel("LS06_348") ax1.legend() Explanation: Is already a bit harder ;-). Pandas provides as set of default configurations on top of Matplotlib. Best of both worlds... End of explanation flowdata = pd.read_csv('data/vmm_flowdata.csv', index_col='Time', parse_dates=True) flowdata.head() Explanation: <div class="alert alert-info"> <b>Remember</b>: * You can do anything with matplotlib, but at a cost... <a href="http://stackoverflow.com/questions/tagged/matplotlib">stackoverflow</a> * The preformatting of Pandas provides mostly enough flexibility for quick analysis and draft reporting. It is not for paper-proof figures or customization If you take the time to make your perfect/spot-on/greatest-ever matplotlib-figure: Make it a <b>reusable function</b>! `fig.savefig()` to save your Figure object! </div> Exercise End of explanation fig, ax = plt.subplots() flowdata.mean().plot.bar(ylabel="mean discharge", ax=ax) Explanation: <div class="alert alert-success"> **EXERCISE** Pandas supports different types of charts besides line plots, all available from `.plot.xxx`, e.g. `.plot.scatter`, `.plot.bar`,... Make a bar chart to compare the mean discharge in the three measurement stations L06_347, LS06_347, LS06_348. Add a y-label 'mean discharge'. To do so, prepare a Figure and Axes with Matplotlib and add the chart to the created Axes. <details><summary>Hints</summary> * You can either use Pandas `ylabel` parameter to set the label or add it with Matploltib `ax.set_ylabel()` * To link an Axes object with Pandas output, pass the Axes created by `fig, ax = plt.subplots()` as parameter to the Pandas plot function. </details> </div> End of explanation fig, (ax0, ax1) = plt.subplots(1, 2, constrained_layout=True) flowdata.min().plot.bar(ylabel="min discharge", ax=ax0) flowdata.max().plot.bar(ylabel="max discharge", ax=ax1) fig.suptitle(f"Minimal and maximal discharge from {flowdata.index[0]:%Y-%m-%d} till {flowdata.index[-1]:%Y-%m-%d}"); Explanation: <div class="alert alert-success"> **EXERCISE** To compare the stations data, make two subplots next to each other: - In the left subplot, make a bar chart of the minimal measured value for each of the station. - In the right subplot, make a bar chart of the maximal measured value for each of the station. Add a title to the Figure containing 'Minimal and maximal discharge from 2009-01-01 till 2013-01-02'. Extract these dates from the data itself instead of hardcoding it. <details><summary>Hints</summary> - One can directly unpack the result of multiple axes, e.g. `fig, (ax0, ax1) = plt.subplots(1, 2,..` and link each of them to a Pands plot function. - Remember the remark about `constrained_layout=True` to overcome overlap with subplots? - A Figure title is called `suptitle` (which is different from an Axes title) - f-strings ([_formatted string literals_](https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals)) is a powerful Python feature (since Python 3.6) to use variables inside a string, e.g. `f"some text with a {variable:HOWTOFORMAT}"` (with the format being optional). </details> </div> End of explanation alarm_level = 20 max_datetime, max_value = flowdata["LS06_347"].idxmax(), flowdata["LS06_347"].max() fig, ax = plt.subplots(figsize=(18, 4)) flowdata["LS06_347"].plot(ax=ax) ax.axhline(y=alarm_level, color='red', linestyle='-', alpha=0.8) ax.annotate('Alarm level', xy=(flowdata.index[0], alarm_level), xycoords="data", xytext=(10, 10), textcoords="offset points", color="red", fontsize=12) ax.annotate(f"Flood event on {max_datetime:%Y-%m-%d}", xy=(max_datetime, max_value), xycoords='data', xytext=(-30, -30), textcoords='offset points', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='bottom', fontsize=12) Explanation: <div class="alert alert-success"> **EXERCISE** Make a line plot of the discharge measurements in station `LS06_347`. The main event on November 13th caused a flood event. To support the reader in the interpretation of the graph, add the following elements: - Add an horizontal red line at 20 m3/s to define the alarm level. - Add the text 'Alarm level' in red just above the alarm levl line. - Add an arrow pointing to the main peak in the data (event on November 13th) with the text 'Flood event on 2020-11-13' Check the Matplotlib documentation on [annotations](https://matplotlib.org/stable/gallery/text_labels_and_annotations/annotation_demo.html#annotating-plots) for the text annotation <details><summary>Hints</summary> - The horizontal line is explained in the cheat sheet in this notebook. - Whereas `ax.text` would work as well for the 'alarm level' text, the `annotate` method provides easier options to shift the text slightly relative to a data point. - Extract the main peak event by filtering the data on the maximum value. Different approaches are possible, but the `max()` and `idxmax()` methods are a convenient option in this case. </details> </div> End of explanation
9,780
Given the following text description, write Python code to implement the functionality described below step by step Description: SemCor SemCor is a WordNet annotated subset of the Brown corpus. WordNet has coarse features for nouns and verbs, called "supersenses". These are things like "NOUN.BODY", "VERB.MOTION". Supersenses are coarse semantic features, given by linguists. Once downloaded, NLTK provides easy access to the SemCor corpus, in particular as a stream of tagged chunks. Chunks are coarse constituents. Features In this section, I derive feature representations for words from SemCor. This follows Tsvetkov et al. (2015). Step1: Put the tagged chunks into a pandas dataframe. Each row holds a chunk, and I will add columns as I go on. Step6: These functions correspond to the columns I want to add. Step7: Add the columns. Step8: Only nouns and verbs have supersenses in WordNet (adjectives do, but they seem to be ignored in the original paper). We only care about words that have supersenses now. Also, there's a lot of junk words in SemCor. First we replace all digits with '0'. Then we'll drop words that are i) not alphabetic or '0' or ii) multiple words. I can't tell how this is done in the original paper, so I may get slightly different results. Step9: The linguistic features are in fact a distribution over the 41 supersenses. Step10: Now we restrict to words with a certain frequency in the corpus. The original paper has 4199 words when thresholding at a frequency of 5, I get 4847. I believe this discrepancy comes from how words are preprocessed. Step11: Save my features Step12: Comparing with reference implementation I want to know how different my linguistic features are from the original paper's, available here. Read in the original paper's. Note that their columns start with "semcor.", which will be helpful when I merge the two sets. Step13: Save Tsvetkov et al.'s features Step14: Merge the two sets. This dataframe has 84 columns Step15: So I have two discrete distributions, and I want to know how different/similar they are. I need to ask someone how to do this properly, but I have a few naive ideas. KL divergence Step17: Sort the columns so that features in the two lists are in the same position. Step18: Inf is not good, meaning that the two distributions are very different. Nearly half of the words have very different distributions. Step19: Otherwise, most words have similar distributions.
Python Code: import pandas as pd from nltk.corpus import semcor from nltk.corpus.reader.wordnet import Lemma tagged_chunks = semcor.tagged_chunks(tag='both') tagged_chunks = list(tagged_chunks) # takes ages Explanation: SemCor SemCor is a WordNet annotated subset of the Brown corpus. WordNet has coarse features for nouns and verbs, called "supersenses". These are things like "NOUN.BODY", "VERB.MOTION". Supersenses are coarse semantic features, given by linguists. Once downloaded, NLTK provides easy access to the SemCor corpus, in particular as a stream of tagged chunks. Chunks are coarse constituents. Features In this section, I derive feature representations for words from SemCor. This follows Tsvetkov et al. (2015). End of explanation sc = pd.DataFrame({'chunk': tagged_chunks}) Explanation: Put the tagged chunks into a pandas dataframe. Each row holds a chunk, and I will add columns as I go on. End of explanation def extract_words(tc): Return the words of a tagged chunk. words = [w.lower() for w in tc.leaves()] return ' '.join(words) def extract_pos(tc): Return the POS of a tagged chunk. This isn't the cleanest way, but it works for now. return tc.pos()[0][1] def extract_supersense(tc): Return the supersense of a tagged chunk, otherwise None. Only nouns and verbs have supersenses. label = tc.label() if isinstance(label, Lemma): return label.synset().lexname() return None def extract_rough_pos(supersense): Return coarser POS from supersense information. if supersense: return supersense.split('.')[0] return None Explanation: These functions correspond to the columns I want to add. End of explanation sc['words'] = sc['chunk'].apply(extract_words) sc['pos'] = sc['chunk'].apply(extract_pos) sc['supersense'] = sc['chunk'].apply(extract_supersense) sc['rough_pos'] = sc['supersense'].apply(extract_rough_pos) Explanation: Add the columns. End of explanation sc = sc[sc['rough_pos'].isin(['noun', 'verb'])] sc.loc[sc['words'].str.isdigit(), 'words'] = '0' sc = sc[(sc['words'].str.isalpha()) | (sc['words'].str.match('0'))] Explanation: Only nouns and verbs have supersenses in WordNet (adjectives do, but they seem to be ignored in the original paper). We only care about words that have supersenses now. Also, there's a lot of junk words in SemCor. First we replace all digits with '0'. Then we'll drop words that are i) not alphabetic or '0' or ii) multiple words. I can't tell how this is done in the original paper, so I may get slightly different results. End of explanation grouped = sc.groupby('words') features = grouped['supersense'].value_counts(normalize=True).unstack() features['count_in_semcor'] = grouped['supersense'].count() features.reset_index(inplace=True) # make "words" a column not the index features.fillna(0, inplace=True) features.columns.name = '' Explanation: The linguistic features are in fact a distribution over the 41 supersenses. End of explanation threshold = 5 subset = features[features['count_in_semcor'] > threshold] print('Number of words:', len(subset)) Explanation: Now we restrict to words with a certain frequency in the corpus. The original paper has 4199 words when thresholding at a frequency of 5, I get 4847. I believe this discrepancy comes from how words are preprocessed. End of explanation subset.to_csv('my_semcor.csv') Explanation: Save my features End of explanation words, dicts = [], [] with open('tsvetkov.txt', 'r') as f: for line in f: word, _, d = line.partition('\t') words.append(word) d = eval(d.strip()) dicts.append(d) tsvetkov = pd.DataFrame(dicts) tsvetkov['words'] = words tsvetkov.fillna(0, inplace=True) Explanation: Comparing with reference implementation I want to know how different my linguistic features are from the original paper's, available here. Read in the original paper's. Note that their columns start with "semcor.", which will be helpful when I merge the two sets. End of explanation tsvetkov.to_csv('tsvetkov_semcor.csv') Explanation: Save Tsvetkov et al.'s features End of explanation comparison = pd.merge(features, tsvetkov, on=['words'], how='inner') comparison.head() Explanation: Merge the two sets. This dataframe has 84 columns: one for the word, one for my count in SemCor, 41 for my features, 41 for their features. End of explanation %matplotlib inline import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns sns.set() Explanation: So I have two discrete distributions, and I want to know how different/similar they are. I need to ask someone how to do this properly, but I have a few naive ideas. KL divergence End of explanation their_columns = sorted([c for c in comparison.columns if c.startswith('semcor')]) my_columns = [c.partition('.')[2] for c in their_columns] def KL(row): Helper function for apply KL to a dataframe. I get errors unless I explicitly convert to float, even though they appear to be floats anyway theirs = row[their_columns].values.astype(float) mine = row[my_columns].values.astype(float) return stats.entropy(theirs, mine) comparison['KL'] = comparison.apply(KL, axis=1) Explanation: Sort the columns so that features in the two lists are in the same position. End of explanation np.isinf(comparison['KL']).sum() / len(comparison) Explanation: Inf is not good, meaning that the two distributions are very different. Nearly half of the words have very different distributions. End of explanation sns.boxplot(comparison[np.isfinite(comparison['KL'])]['KL']); Explanation: Otherwise, most words have similar distributions. End of explanation
9,781
Given the following text description, write Python code to implement the functionality described below step by step Description: Predicting Student Admissions with Neural Networks in Keras In this notebook, we predict student admissions to graduate school at UCLA based on three pieces of data Step1: Plotting the data First let's make a plot of our data to see how it looks. In order to have a 2D plot, let's ingore the rank. Step2: Roughly, it looks like the students with high scores in the grades and test passed, while the ones with low scores didn't, but the data is not as nicely separable as we hoped it would. Maybe it would help to take the rank into account? Let's make 4 plots, each one for each rank. Step3: This looks more promising, as it seems that the lower the rank, the higher the acceptance rate. Let's use the rank as one of our inputs. In order to do this, we should one-hot encode it. One-hot encoding the rank For this, we'll use the get_dummies function in pandas. Step4: Scaling the data The next step is to scale the data. We notice that the range for grades is 1.0-4.0, whereas the range for test scores is roughly 200-800, which is much larger. This means our data is skewed, and that makes it hard for a neural network to handle. Let's fit our two features into a range of 0-1, by dividing the grades by 4.0, and the test score by 800. Step5: Splitting the data into Training and Testing In order to test our algorithm, we'll split the data into a Training and a Testing set. The size of the testing set will be 10% of the total data. Step6: Splitting the data into features and targets (labels) Now, as a final step before the training, we'll split the data into features (X) and targets (y). Also, in Keras, we need to one-hot encode the output. We'll do this with the to_categorical function. Step7: Defining the model architecture Here's where we use Keras to build our neural network. Step8: Training the model Step9: Scoring the model
Python Code: # Importing pandas and numpy import pandas as pd import numpy as np # Reading the csv file into a pandas DataFrame data = pd.read_csv('student_data.csv') # Printing out the first 10 rows of our data data[:10] Explanation: Predicting Student Admissions with Neural Networks in Keras In this notebook, we predict student admissions to graduate school at UCLA based on three pieces of data: - GRE Scores (Test) - GPA Scores (Grades) - Class rank (1-4) The dataset originally came from here: http://www.ats.ucla.edu/ Loading the data To load the data and format it nicely, we will use two very useful packages called Pandas and Numpy. You can read on the documentation here: - https://pandas.pydata.org/pandas-docs/stable/ - https://docs.scipy.org/ End of explanation # Importing matplotlib import matplotlib.pyplot as plt # Function to help us plot def plot_points(data): X = np.array(data[["gre","gpa"]]) y = np.array(data["admit"]) admitted = X[np.argwhere(y==1)] rejected = X[np.argwhere(y==0)] plt.scatter([s[0][0] for s in rejected], [s[0][1] for s in rejected], s = 25, color = 'red', edgecolor = 'k') plt.scatter([s[0][0] for s in admitted], [s[0][1] for s in admitted], s = 25, color = 'cyan', edgecolor = 'k') plt.xlabel('Test (GRE)') plt.ylabel('Grades (GPA)') # Plotting the points plot_points(data) plt.show() Explanation: Plotting the data First let's make a plot of our data to see how it looks. In order to have a 2D plot, let's ingore the rank. End of explanation # Separating the ranks data_rank1 = data[data["rank"]==1] data_rank2 = data[data["rank"]==2] data_rank3 = data[data["rank"]==3] data_rank4 = data[data["rank"]==4] # Plotting the graphs plot_points(data_rank1) plt.title("Rank 1") plt.show() plot_points(data_rank2) plt.title("Rank 2") plt.show() plot_points(data_rank3) plt.title("Rank 3") plt.show() plot_points(data_rank4) plt.title("Rank 4") plt.show() Explanation: Roughly, it looks like the students with high scores in the grades and test passed, while the ones with low scores didn't, but the data is not as nicely separable as we hoped it would. Maybe it would help to take the rank into account? Let's make 4 plots, each one for each rank. End of explanation # Make dummy variables for rank one_hot_data = pd.concat([data, pd.get_dummies(data['rank'], prefix='rank')], axis=1) # Drop the previous rank column one_hot_data = one_hot_data.drop('rank', axis=1) # Print the first 10 rows of our data one_hot_data[:10] Explanation: This looks more promising, as it seems that the lower the rank, the higher the acceptance rate. Let's use the rank as one of our inputs. In order to do this, we should one-hot encode it. One-hot encoding the rank For this, we'll use the get_dummies function in pandas. End of explanation # Copying our data processed_data = one_hot_data[:] # Scaling the columns processed_data['gre'] = processed_data['gre']/800 processed_data['gpa'] = processed_data['gpa']/4.0 processed_data[:10] Explanation: Scaling the data The next step is to scale the data. We notice that the range for grades is 1.0-4.0, whereas the range for test scores is roughly 200-800, which is much larger. This means our data is skewed, and that makes it hard for a neural network to handle. Let's fit our two features into a range of 0-1, by dividing the grades by 4.0, and the test score by 800. End of explanation sample = np.random.choice(processed_data.index, size=int(len(processed_data)*0.9), replace=False) train_data, test_data = processed_data.iloc[sample], processed_data.drop(sample) print("Number of training samples is", len(train_data)) print("Number of testing samples is", len(test_data)) print(train_data[:10]) print(test_data[:10]) Explanation: Splitting the data into Training and Testing In order to test our algorithm, we'll split the data into a Training and a Testing set. The size of the testing set will be 10% of the total data. End of explanation import keras # Separate data and one-hot encode the output # Note: We're also turning the data into numpy arrays, in order to train the model in Keras features = np.array(train_data.drop('admit', axis=1)) targets = np.array(keras.utils.to_categorical(train_data['admit'], 2)) features_test = np.array(test_data.drop('admit', axis=1)) targets_test = np.array(keras.utils.to_categorical(test_data['admit'], 2)) print(features[:10]) print(targets[:10]) Explanation: Splitting the data into features and targets (labels) Now, as a final step before the training, we'll split the data into features (X) and targets (y). Also, in Keras, we need to one-hot encode the output. We'll do this with the to_categorical function. End of explanation # Imports import numpy as np from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils # Building the model model = Sequential() model.add(Dense(128, activation='relu', input_shape=(6,))) model.add(Dropout(.2)) model.add(Dense(64, activation='relu')) model.add(Dropout(.1)) model.add(Dense(2, activation='softmax')) # Compiling the model model.compile(loss = 'categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() Explanation: Defining the model architecture Here's where we use Keras to build our neural network. End of explanation # Training the model model.fit(features, targets, epochs=200, batch_size=100, verbose=0) Explanation: Training the model End of explanation # Evaluating the model on the training and testing set score = model.evaluate(features, targets) print("\n Training Accuracy:", score[1]) score = model.evaluate(features_test, targets_test) print("\n Testing Accuracy:", score[1]) Explanation: Scoring the model End of explanation
9,782
Given the following text description, write Python code to implement the functionality described below step by step Description: Extra 3.2 - Historical Provenance - Application 3 Step1: Labelling data Since we are only interested in the instruction messages, we categorise the data entity into two sets Step2: Balancing data This section explore the balance of the RRG datasets. Step3: Since both labels have roughly the same number of data points, we decide not to balance the RRG datasets. Cross validation We now run the cross validation tests on the datasets using all the features (combined), only the generic network metrics (generic), and only the provenance-specific network metrics (provenance). Please refer to Cross Validation Code.ipynb for the detailed description of the cross validation code.
Python Code: import pandas as pd filepath = "rrg/ancestor-graphs.csv" df = pd.read_csv(filepath, index_col=0) df.head() Explanation: Extra 3.2 - Historical Provenance - Application 3: RRG Chat Messages Identifying instructions from chat messages in the Radiation Response Game. In this notebook, we explore the performance of classification using the provenance of a data entity instead of its dependencies (as shown here and in the paper). In order to distinguish between the two, we call the former historical provenance and the latter forward provenance. Apart from using the historical provenance, all other steps are the same as the original experiments. Goal: To determine if the provenance network analytics method can identify instructions from the provenance of a chat messages. Classification labels: $\mathcal{L} = \left{ \textit{instruction}, \textit{other} \right} $. Training data: 69 chat messages manually categorised by HCI researchers. Reading data The RRG dataset based on historical provenance is provided in the rrg/ancestor-graphs.csv file, which contains a table whose rows correspond to individual chat messages in RRG: * First column: the identifier of the chat message * label: the manual classification of the message (e.g., instruction, information, requests, etc.) * The remaining columns provide the provenance network metrics calculated from the historical provenance graph of the message. Note that in this extra experiment, we use the full (historical) provenance of a message, not limiting how far it goes. Hence, there is no $k$ parameter in this experiment. End of explanation label = lambda l: 'other' if l != 'instruction' else l df.label = df.label.apply(label).astype('category') df.head() Explanation: Labelling data Since we are only interested in the instruction messages, we categorise the data entity into two sets: instruction and other. Note: This section is just an example to show the data transformation to be applied on each dataset. End of explanation # Examine the balance of the dataset df.label.value_counts() Explanation: Balancing data This section explore the balance of the RRG datasets. End of explanation from analytics import test_classification results, importances = test_classification(df, n_iterations=1000) Explanation: Since both labels have roughly the same number of data points, we decide not to balance the RRG datasets. Cross validation We now run the cross validation tests on the datasets using all the features (combined), only the generic network metrics (generic), and only the provenance-specific network metrics (provenance). Please refer to Cross Validation Code.ipynb for the detailed description of the cross validation code. End of explanation
9,783
Given the following text description, write Python code to implement the functionality described below step by step Description: WASP-80b broadband analysis 3a. Gaussian process hyperparameter estimation I Hannu Parviainen, Instituto de Astrofísica de Canarias<br> This notebook works as an appendix to Parviainen et al., Ground based transmission spectroscopy of WASP-80b (2017). The paper covers two analyses Step1: Compute residuals The GP hyperparameters are fit to the residuals from the ckwn white-noise analysis. Step2: Plot the light curves Step3: Fit the Hyperparameters and plot the GP mean with the data Step4: Create a Pandas dataframe and save the hyperparameters
Python Code: %pylab inline %run __init__.py from exotk.utils.misc import fold from src.extcore import * Explanation: WASP-80b broadband analysis 3a. Gaussian process hyperparameter estimation I Hannu Parviainen, Instituto de Astrofísica de Canarias<br> This notebook works as an appendix to Parviainen et al., Ground based transmission spectroscopy of WASP-80b (2017). The paper covers two analyses: a broadband analysis using three previously published datasets, and a transmission spectroscopy analysis using two GTC-observed spectroscopic time series, and this notebook covers a part of the broadband analysis. Last (significant) revision: 11.08.2017 Here we estimate the GP hyperparameters (HPs) for the light curves in T13 and M14 datasets. The GP for these two datasets uses a simple kernel with time as the only input parameter. End of explanation lpf = LPFTM() pv0 = pd.read_hdf(RFILE_EXT, 'ckwn/fc').median().values fluxes_m = lpf.compute_transit(pv0) residuals = [fo-fm for fo,fm in zip(lpf.fluxes, fluxes_m)] gps = [GPTime(time, res) for time,res in zip(lpf.times, residuals)] hps = [] Explanation: Compute residuals The GP hyperparameters are fit to the residuals from the ckwn white-noise analysis. End of explanation phases = list(map(lambda t: fold(t, P, TC, 0.5)-0.5, lpf.times)) fig,axs = subplots(4,3, figsize=(14,14),sharey=True, sharex=True) for iax,ilc in enumerate(lpf.lcorder): a = axs.flat[iax] a.plot(phases[ilc], lpf.fluxes[ilc],'.', alpha=0.5) a.plot(phases[ilc], fluxes_m[ilc],'k') a.plot(phases[ilc], lpf.fluxes[ilc]-fluxes_m[ilc]+0.95,'.', alpha=0.5) a.text(0.5, 0.95, lpf.passbands[ilc], ha='center', va='top', size=12, transform=a.transAxes) setp(axs, ylim=(0.94,1.01), xlim=(-0.035,0.035)) fig.tight_layout() axs.flat[-1].set_visible(False) Explanation: Plot the light curves End of explanation hps = [] for gp in tqdm(gps, desc='Optimising GP hyperparameters'): gp.fit() hps.append(gp.hp) fig,axs = subplots(4,3, figsize=(14,10),sharey=True, sharex=True) for iax,ilc in enumerate(lpf.lcorder): axs.flat[iax].plot(phases[ilc], gps[ilc].flux, '.', alpha=0.5) gps[ilc].compute(hps[ilc]) pr = gps[ilc].predict() axs.flat[iax].plot(phases[ilc], pr, 'k') setp(axs, ylim=(-0.015,.015), xlim=(-0.04,0.04)) fig.tight_layout() axs.flat[-1].set_visible(False) fig,axs = subplots(4,3, figsize=(14,10),sharey=True, sharex=True) for iax,ilc in enumerate(lpf.lcorder): axs.flat[iax].plot(phases[ilc], lpf.fluxes[ilc], '.', alpha=0.5) gps[ilc].compute(hps[ilc]) pr = gps[ilc].predict() axs.flat[iax].plot(phases[ilc], fluxes_m[ilc]+pr, 'k') setp(axs, ylim=(0.955,1.015), xlim=(-0.04,0.04)) fig.tight_layout() axs.flat[-1].set_visible(False) Explanation: Fit the Hyperparameters and plot the GP mean with the data End of explanation with pd.HDFStore(DFILE_EXT) as f: ntr = [k[3:] for k in f.keys() if 'lc/triaud' in k] nma = [k[3:] for k in f.keys() if 'lc/mancini' in k] df = pd.DataFrame(hps, columns=gp.names, index=lpf.passbands) df['lc_name'] = ntr+nma df df.ix[:3].to_hdf(RFILE_EXT, 'gphp/triaud2013') df.ix[3:].to_hdf(RFILE_EXT, 'gphp/mancini2014') Explanation: Create a Pandas dataframe and save the hyperparameters End of explanation
9,784
Given the following text description, write Python code to implement the functionality described below step by step Description: 'rv' Datasets and Options Setup Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). Step1: As always, let's do imports and initialize a logger and a new Bundle. Step2: Dataset Parameters Let's add an RV dataset to the Bundle (see also the rv API docs). Some parameters are only visible based on the values of other parameters, so we'll pass check_visible=False (see the filter API docs for more details). These visibility rules will be explained below. Step3: For information on the included passband-dependent parameters (not mentioned below), see the section on the lc dataset (these are used only to compute fluxes when rv_method is 'flux-weighted') times Step4: rvs The rvs parameter is only visible if the respective times parameter is not empty. Step5: sigmas The sigmas parameter is also only visible if the respective times parameter is not empty. Step6: compute_times / compute_phases See the Compute Times & Phases tutorial. Step7: Compute Options Let's look at the compute options (for the default PHOEBE 2 backend) that relate to the RV dataset. Other compute options are covered elsewhere Step8: rv_method Step9: If rv_method is set to 'dynamical' then the computed radial velocities are simply the z-velocities of the centers of mass of each component. In this case, only the dynamical options are relevant. For more details on these, see the section on the orb dataset. If rv_method is set to 'flux-weighted' then radial velocities are determined by the z-velocity of each visible surface element of the mesh, weighted by their respective intensities. Since the stars are placed in their orbits by the dynamic options, the section on the orb dataset is still applicable. So are the meshing options described in mesh dataset and the options for computing fluxes in lc dataset. See also the Rossiter-McLaughlin example. rv_grav Step10: See the Gravitational Redshift example for more details on the influence this parameter has on radial velocities. Synthetics Step11: Plotting By default, RV datasets plot as 'rvs' vs 'times'. Step12: Since these are the only two columns available in the synthetic model, the only other options is to plot in phase instead of time. Step13: In system hierarchies where there may be multiple periods, it is also possible to determine whose period to use for phasing. Step14: Mesh Fields By adding a mesh dataset and setting the columns parameter, radial velocities per-element quantities can be exposed and plotted. Since the radial velocities are flux-weighted, the flux-related quantities are also included (except relative intensities/luminosities that would require pblum scaling). For a description of these, see the section on the lc dataset. Let's add a mesh at the first time of the rv dataset and re-call run_compute Step15: These new columns are stored with the rv's dataset tag, but with the mesh model-kind. Step16: Any of these columns are then available to use as edge or facecolors when plotting the mesh (see the section on the MESH dataset). Step17: rvs
Python Code: #!pip install -I "phoebe>=2.3,<2.4" Explanation: 'rv' Datasets and Options Setup Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). End of explanation import phoebe from phoebe import u # units logger = phoebe.logger() b = phoebe.default_binary() Explanation: As always, let's do imports and initialize a logger and a new Bundle. End of explanation b.add_dataset('rv') print(b.get_dataset(kind='rv', check_visible=False)) Explanation: Dataset Parameters Let's add an RV dataset to the Bundle (see also the rv API docs). Some parameters are only visible based on the values of other parameters, so we'll pass check_visible=False (see the filter API docs for more details). These visibility rules will be explained below. End of explanation print(b.get_parameter(qualifier='times', component='primary')) Explanation: For information on the included passband-dependent parameters (not mentioned below), see the section on the lc dataset (these are used only to compute fluxes when rv_method is 'flux-weighted') times End of explanation b.set_value('times', component='primary', value=[0]) print(b.get_parameter(qualifier='rvs', component='primary')) Explanation: rvs The rvs parameter is only visible if the respective times parameter is not empty. End of explanation print(b.get_parameter(qualifier='sigmas', component='primary')) Explanation: sigmas The sigmas parameter is also only visible if the respective times parameter is not empty. End of explanation print(b.get_parameter(qualifier='compute_times')) print(b.get_parameter(qualifier='compute_phases', context='dataset')) print(b.get_parameter(qualifier='phases_t0')) Explanation: compute_times / compute_phases See the Compute Times & Phases tutorial. End of explanation print(b.get_compute()) Explanation: Compute Options Let's look at the compute options (for the default PHOEBE 2 backend) that relate to the RV dataset. Other compute options are covered elsewhere: * parameters related to dynamics are explained in the section on the orb dataset * parameters related to meshing, eclipse detection, and subdivision (used if rv_method=='flux-weighted') are explained in the section on the mesh dataset * parameters related to computing fluxes (used if rv_method=='flux-weighted') are explained in the section on the lc dataset End of explanation print(b.get_parameter(qualifier='rv_method', component='primary')) Explanation: rv_method End of explanation print(b.get_parameter(qualifier='rv_grav', component='primary')) Explanation: If rv_method is set to 'dynamical' then the computed radial velocities are simply the z-velocities of the centers of mass of each component. In this case, only the dynamical options are relevant. For more details on these, see the section on the orb dataset. If rv_method is set to 'flux-weighted' then radial velocities are determined by the z-velocity of each visible surface element of the mesh, weighted by their respective intensities. Since the stars are placed in their orbits by the dynamic options, the section on the orb dataset is still applicable. So are the meshing options described in mesh dataset and the options for computing fluxes in lc dataset. See also the Rossiter-McLaughlin example. rv_grav End of explanation b.set_value_all('times', phoebe.linspace(0,1,101)) b.run_compute(irrad_method='none') print(b.filter(context='model').twigs) print(b.get_parameter(qualifier='times', component='primary', kind='rv', context='model')) print(b.get_parameter(qualifier='rvs', component='primary', kind='rv', context='model')) Explanation: See the Gravitational Redshift example for more details on the influence this parameter has on radial velocities. Synthetics End of explanation afig, mplfig = b.plot(show=True) Explanation: Plotting By default, RV datasets plot as 'rvs' vs 'times'. End of explanation afig, mplfig = b.plot(x='phases', show=True) Explanation: Since these are the only two columns available in the synthetic model, the only other options is to plot in phase instead of time. End of explanation print(b.filter(qualifier='period').components) afig, mplfig = b.plot(x='phases:binary', show=True) Explanation: In system hierarchies where there may be multiple periods, it is also possible to determine whose period to use for phasing. End of explanation b.add_dataset('mesh', times=[0], dataset='mesh01') print(b.get_parameter(qualifier='columns').choices) b.set_value('columns', value=['rvs@rv01']) b.run_compute(irrad_method='none') print(b.get_model().datasets) Explanation: Mesh Fields By adding a mesh dataset and setting the columns parameter, radial velocities per-element quantities can be exposed and plotted. Since the radial velocities are flux-weighted, the flux-related quantities are also included (except relative intensities/luminosities that would require pblum scaling). For a description of these, see the section on the lc dataset. Let's add a mesh at the first time of the rv dataset and re-call run_compute End of explanation print(b.filter(dataset='rv01', kind='mesh', context='model').twigs) Explanation: These new columns are stored with the rv's dataset tag, but with the mesh model-kind. End of explanation afig, mplfig = b.filter(kind='mesh').plot(fc='rvs', ec='None', show=True) Explanation: Any of these columns are then available to use as edge or facecolors when plotting the mesh (see the section on the MESH dataset). End of explanation print(b.get_parameter(qualifier='rvs', component='primary', dataset='rv01', kind='mesh', context='model')) Explanation: rvs End of explanation
9,785
Given the following text description, write Python code to implement the functionality described below step by step Description: Heat Transfer Conduction Calculations This jupyter notebook walks through basic heat transfer calculations. There are three basic types of heat transfer Step1: 1. Conduction Conduction is defined as the transfer of heat through matter without motion. Before getting into a detailed derivation of the heat equation, lets take a parochial look at heat transfer analysis. Thermal Resistance Circuits An analogy between conduction heat transfer and electric circuits can be exploited to aid in problem solving. $\dot{Q}$, the rate of heat transfer, is analogous to current, and $R$, thermal resistance, is analogous to electric resistance. Thus we can define $\dot{Q}$. $$\dot{Q} = \frac{T_1 - T_2}{R}$$. <!-- resistive model of heat transfer through a composite slab --> <img src="assets/HeatTransferConduction_CompositeSlab.PNG"> Lets run through an example using this resistive model. Example Step2: These values can be used to calculate $\dot{Q}$ the rate of heat transfer. This can be related to a more physically relevant value, $\dot{q}$, the heat flux. Where, $$ \dot{q} = \frac{\dot{q}}{A} = \frac{T_1 - T_4}{RA} $$ $$ RA = \sum_{n}{AR_n} $$ Step3: The temperature in the intermediary steps can be found using the fact that $\dot{Q}$ is constant throughout the slab. $$ \dot{q} = \frac{T_1 - T_2}{R_1 A} $$
Python Code: import numpy as np import matplotlib.pyplot as plt Explanation: Heat Transfer Conduction Calculations This jupyter notebook walks through basic heat transfer calculations. There are three basic types of heat transfer: 1. Conduction 1. Convection 1. Radiation This tutorial covers conduction calculations We will be using will use numpy and matplotlib, which are imported below. End of explanation # Temperatures at stations T1 = 150 T4 = 10 # celcius # define values for thermal conductivity k = [0.07, 0.7, 0.07] # Length of layers L = [0.03, 0.1, 0.03] AR = [] # initialize empty array for i in range(0,len(k)): AR.append(L[i]/k[i]) print(AR, "m^2 K/W") Explanation: 1. Conduction Conduction is defined as the transfer of heat through matter without motion. Before getting into a detailed derivation of the heat equation, lets take a parochial look at heat transfer analysis. Thermal Resistance Circuits An analogy between conduction heat transfer and electric circuits can be exploited to aid in problem solving. $\dot{Q}$, the rate of heat transfer, is analogous to current, and $R$, thermal resistance, is analogous to electric resistance. Thus we can define $\dot{Q}$. $$\dot{Q} = \frac{T_1 - T_2}{R}$$. <!-- resistive model of heat transfer through a composite slab --> <img src="assets/HeatTransferConduction_CompositeSlab.PNG"> Lets run through an example using this resistive model. Example: 2D Brick Wall A brick wall with thermal insulation on both sides has temperatures $T_1, T_2, T_3, T_4$ which are defined in the image below. Thus, we have four nodes in our resistive model, and three thermal resistances. <!-- Example 1: Heat Transfer through brick wall using resistive model --> <img src="assets/HeatTransferConduction_Example1.PNG"> $k$ is the thermal conductivity. $$ k_{brick} = k_2 = 0.7 W/m-K $$ $$ k_{insulation} = k_1 = k_3 = 0.07 W/m-K $$ $$ A_1 = A_2 = A_3 = A $$ $$ L1 = L3 = 0.03 $$ $$ L2 = 0.1 $$ The overall resistance is: $$ R = R_1 + R_2 + R_3 = \frac{L_1}{k_1 A_1} + \frac{L_2}{k_2 A_2} + \frac{L_3}{k_3 A_3} $$ Solving with an arbitrary Area, $A$, we get $$ A_1 R_1 = \frac{L_1}{k_1}, A_2 R_2 = \frac{L_2}{k_2}, A_3 R_3 = \frac{L_3}{k_3} $$ Lets calculate values of $AR$ End of explanation q = float(T1 - T4)/np.sum(AR) print('q = ', q, 'W/m^2') # W/m^2 Explanation: These values can be used to calculate $\dot{Q}$ the rate of heat transfer. This can be related to a more physically relevant value, $\dot{q}$, the heat flux. Where, $$ \dot{q} = \frac{\dot{q}}{A} = \frac{T_1 - T_4}{RA} $$ $$ RA = \sum_{n}{AR_n} $$ End of explanation T2 = -q*AR[0] + T1 T3 = q*AR[2] + T4 T = [T1, T2, T3, T4] # vectorize temps x = [0, L[0], L[0]+L[1], L[0]+L[1]+L[2]] # Plot Temperature distribution plt.title('Temperature Distribution Across Brick Wall') plt.xlabel('X-location') plt.ylabel('Temperature (C)') plt.grid() plt.plot(x,T) plt.show() # Print Temperatures print('T1 = ', T1, 'C') print('T2 = ', T2, 'C') print('T3 = ', T3, 'C') print('T4 = ', T4, 'C') Explanation: The temperature in the intermediary steps can be found using the fact that $\dot{Q}$ is constant throughout the slab. $$ \dot{q} = \frac{T_1 - T_2}{R_1 A} $$ End of explanation
9,786
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1> Create TensorFlow DNN model </h1> This notebook illustrates Step1: <h2> Create TensorFlow model using TensorFlow's Estimator API </h2> <p> First, write an input_fn to read the data. Step2: Next, define the feature columns Step3: To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user. Step4: Finally, train!
Python Code: !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.1 # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi %%bash ls *.csv Explanation: <h1> Create TensorFlow DNN model </h1> This notebook illustrates: <ol> <li> Creating a model using the high-level Estimator API </ol> End of explanation import shutil import numpy as np import tensorflow as tf print(tf.__version__) # Determine CSV, label, and key columns CSV_COLUMNS = 'weight_pounds,is_male,mother_age,plurality,gestation_weeks,key'.split(',') LABEL_COLUMN = 'weight_pounds' KEY_COLUMN = 'key' # Set default values for each CSV column DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0], ['nokey']] TRAIN_STEPS = 1000 # Create an input function reading a file using the Dataset API # Then provide the results to the Estimator API def read_dataset(filename, mode, batch_size = 512): def _input_fn(): def decode_csv(value_column): columns = tf.compat.v1.decode_csv(value_column, record_defaults=DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) return features, label # Create list of files that match pattern file_list = tf.compat.v1.gfile.Glob(filename) # Create dataset from file list dataset = (tf.compat.v1.data.TextLineDataset(file_list) # Read text file .map(decode_csv)) # Transform each elem by applying decode_csv fn if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # indefinitely dataset = dataset.shuffle(buffer_size=10*batch_size) else: num_epochs = 1 # end-of-input after this dataset = dataset.repeat(num_epochs).batch(batch_size) return dataset return _input_fn Explanation: <h2> Create TensorFlow model using TensorFlow's Estimator API </h2> <p> First, write an input_fn to read the data. End of explanation # Define feature columns def get_categorical(name, values): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(name, values)) def get_cols(): # Define column types return [\ get_categorical('is_male', ['True', 'False', 'Unknown']), tf.feature_column.numeric_column('mother_age'), get_categorical('plurality', ['Single(1)', 'Twins(2)', 'Triplets(3)', 'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']), tf.feature_column.numeric_column('gestation_weeks') ] Explanation: Next, define the feature columns End of explanation # Create serving input function to be able to serve predictions later using provided inputs def serving_input_fn(): feature_placeholders = { 'is_male': tf.compat.v1.placeholder(tf.string, [None]), 'mother_age': tf.compat.v1.placeholder(tf.float32, [None]), 'plurality': tf.compat.v1.placeholder(tf.string, [None]), 'gestation_weeks': tf.compat.v1.placeholder(tf.float32, [None]) } features = { key: tf.expand_dims(tensor, -1) for key, tensor in feature_placeholders.items() } return tf.estimator.export.ServingInputReceiver(features, feature_placeholders) # Create estimator to train and evaluate def train_and_evaluate(output_dir): EVAL_INTERVAL = 300 run_config = tf.estimator.RunConfig(save_checkpoints_secs = EVAL_INTERVAL, keep_checkpoint_max = 3) estimator = tf.estimator.DNNRegressor( model_dir = output_dir, feature_columns = get_cols(), hidden_units = [64, 32], config = run_config) train_spec = tf.estimator.TrainSpec( input_fn = read_dataset('train.csv', mode = tf.estimator.ModeKeys.TRAIN), max_steps = TRAIN_STEPS) exporter = tf.estimator.LatestExporter('exporter', serving_input_fn) eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset('eval.csv', mode = tf.estimator.ModeKeys.EVAL), steps = None, start_delay_secs = 60, # start evaluating after N seconds throttle_secs = EVAL_INTERVAL, # evaluate every N seconds exporters = exporter) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) Explanation: To predict with the TensorFlow model, we also need a serving input function. We will want all the inputs from our user. End of explanation # Run the model shutil.rmtree('babyweight_trained', ignore_errors = True) # start fresh each time tf.compat.v1.summary.FileWriterCache.clear() train_and_evaluate('babyweight_trained') Explanation: Finally, train! End of explanation
9,787
Given the following text description, write Python code to implement the functionality described below step by step Description: Test for Mohammed This container was started with sudo docker run -d -p 433 Step1: Here are the RadarSat-2 quadpol coherency matrix image directories as created from the Sentinel-1 Toolbox Step2: To combine the matrix bands into a single GeoTiff image, we run the python script ingestrs2quad.py Step3: Here is an RGB display of the three diagonal matrix elements of the above image (bands 1,6 and 9) Step4: To estimate the equivalent number of looks, run the python script enlml.py Step5: So the ENL would appear to be about 5. To run the change sequential change detection on the three images, run the bash script sar_seq_rs2quad.sh. It gathers the three images together and calls the python script sar_seq.py which does the change detection. By choosing a spatial subset (in this case 400x400), the images are clipped and co-registered to the first image. This might be unnecessary if the images are well registered anyway. If you have a multicore processor you can eneable parallel computation by openeing a terminal window in the container (new terminal) and running ipcluster start -n 4 Step6: Here is the change map for the most recent changes
Python Code: %matplotlib inline Explanation: Test for Mohammed This container was started with sudo docker run -d -p 433:8888 --name=sar -v /home/mort/imagery/mohammed/Data:/home/imagery mort/sardocker End of explanation ls /home/imagery Explanation: Here are the RadarSat-2 quadpol coherency matrix image directories as created from the Sentinel-1 Toolbox: End of explanation run /home/ingestrs2quad /home/imagery/RS2_OK82571_PK721079_DK650144_FQ17W_20160403_230258_HH_VV_HV_VH_SLC/ run /home/ingestrs2quad /home/imagery/RS2_OK82571_PK721080_DK650145_FQ17W_20160427_230257_HH_VV_HV_VH_SLC/ run /home/ingestrs2quad /home/imagery/RS2_OK82571_PK721081_DK650146_FQ17W_20160614_230256_HH_VV_HV_VH_SLC/ Explanation: To combine the matrix bands into a single GeoTiff image, we run the python script ingestrs2quad.py: End of explanation run /home/dispms -f /home/imagery/RS2_OK82571_PK721081_DK650146_FQ17W_20160614_230256_HH_VV_HV_VH_SLC/polSAR.tif \ -p [1,6,9] Explanation: Here is an RGB display of the three diagonal matrix elements of the above image (bands 1,6 and 9): End of explanation run /home/enlml /home/imagery/RS2_OK82571_PK721081_DK650146_FQ17W_20160614_230256_HH_VV_HV_VH_SLC/polSAR.tif Explanation: To estimate the equivalent number of looks, run the python script enlml.py: End of explanation !/home/sar_seq_rs2quad.sh 20160403 20160427 20160614 [50,50,400,400] 5 0.01 Explanation: So the ENL would appear to be about 5. To run the change sequential change detection on the three images, run the bash script sar_seq_rs2quad.sh. It gathers the three images together and calls the python script sar_seq.py which does the change detection. By choosing a spatial subset (in this case 400x400), the images are clipped and co-registered to the first image. This might be unnecessary if the images are well registered anyway. If you have a multicore processor you can eneable parallel computation by openeing a terminal window in the container (new terminal) and running ipcluster start -n 4 End of explanation run /home/dispms \ -f /home/imagery/RS2_OK82571_PK721079_DK650144_FQ17W_20160403_230258_HH_VV_HV_VH_SLC/sarseq(20160403-1-20160614)_cmap.tif -c Explanation: Here is the change map for the most recent changes: End of explanation
9,788
Given the following text description, write Python code to implement the functionality described below step by step Description: Epoching and averaging (ERP/ERF) Step1: In MNE, epochs refers to a collection of single trials or short segments of time locked raw data. If you haven't already, you might want to check out tut_epochs_objects. In this tutorial we take a deeper look into construction of epochs and averaging the epoch data to evoked instances. First let's read in the raw sample data. Step2: To create time locked epochs, we first need a set of events that contain the information about the times. In this tutorial we use the stimulus channel to define the events. Let's look at the raw data. Step3: Notice channel STI 014 at the bottom. It is the trigger channel that was used for combining all the events to a single channel. We can see that it has several pulses of different amplitude throughout the recording. These pulses correspond to different stimuli presented to the subject during the acquisition. The pulses have values of 1, 2, 3, 4, 5 and 32. These are the events we are going to align the epochs to. To create an event list from raw data, we simply call a function dedicated just for that. Since the event list is simply a numpy array, you can also manually create one. If you create one from an outside source (like a separate file of events), pay special attention in aligning the events correctly with the raw data. Step4: The event list contains three columns. The first column corresponds to sample number. To convert this to seconds, you should divide the sample number by the used sampling frequency. The second column is reserved for the old value of the trigger channel at the time of transition, but is currently not in use. The third column is the trigger id (amplitude of the pulse). You might wonder why the samples don't seem to align with the plotted data. For instance, the first event has a sample number of 27977 which should translate to roughly 46.6 seconds (27977 / 600). However looking at the pulses we see the first pulse at 3.6 seconds. This is because Neuromag recordings have an attribute first_samp which refers to the offset between the system start and the start of the recording. Our data has a first_samp equal to 25800. This means that the first sample you see with raw.plot is the sample number 25800. Generally you don't need to worry about this offset as it is taken into account with MNE functions, but it is good to be aware of. Just to confirm, let's plot the events together with the raw data. Notice how the vertical lines (events) align nicely with the pulses on STI 014. Step5: In this tutorial we are only interested in triggers 1, 2, 3 and 4. These triggers correspond to auditory and visual stimuli. The event_id here can be an int, a list of ints or a dict. With dicts it is possible to assign these ids to distinct categories. When using ints or lists this information is lost. First we shall define some parameters to feed to the Step6: Now we have everything we need to construct the epochs. To get some meaningful results, we also want to baseline the epochs. Baselining computes the mean over the baseline period and adjusts the data accordingly. The epochs constructor uses a baseline period from tmin to 0.0 seconds by default, but it is wise to be explicit. That way you are less likely to end up with surprises along the way. None as the first element of the tuple refers to the start of the time window (-200 ms in this case). See Step7: Let's plot the epochs to see the results. The number at the top refers to the id number. We can see that 128 good epochs out of total of 145 events got through the rejection process. Visual inspection also reveals that some epochs containing saccades or blinks got through. You can also reject epochs by hand by clicking on the epoch in the browser window. The selected epochs get rejected when you close the epochs browser. How you should reject the epochs and which thresholds to use is not a trivial question and this tutorial takes no stand on that matter. To see all the interactive features of the epochs browser, click 'Help' in the lower left corner of the browser window. Step8: To see why the epochs were rejected, we can plot the drop log. Step9: To get the evoked response you can simply do epochs.average(). It includes only the data channels by default. For the sake of example, we use picks to include the EOG channels as well. Notice that we cannot use the same picks as before as the indices are different. 'Why are they different?' you might ask. They're different because picks is simply a list of channel indices and as the epochs were constructed, also a new info structure is created where the channel indices run from 0 to epochs.info['nchan']. See tut_info_objects for more information. Step10: Notice we have used forward slashes ('/') to separate the factors of the conditions of the experiment. We can use these 'tags' to select for example all left trials (both visual left and auditory right) ... Step11: Finally, let's plot the evoked responses.
Python Code: import os.path as op import numpy as np import mne Explanation: Epoching and averaging (ERP/ERF) End of explanation data_path = mne.datasets.sample.data_path() fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(fname, add_eeg_ref=False) raw.set_eeg_reference() # set EEG average reference Explanation: In MNE, epochs refers to a collection of single trials or short segments of time locked raw data. If you haven't already, you might want to check out tut_epochs_objects. In this tutorial we take a deeper look into construction of epochs and averaging the epoch data to evoked instances. First let's read in the raw sample data. End of explanation order = np.arange(raw.info['nchan']) order[9] = 312 # We exchange the plotting order of two channels order[312] = 9 # to show the trigger channel as the 10th channel. raw.plot(n_channels=10, order=order, block=True) Explanation: To create time locked epochs, we first need a set of events that contain the information about the times. In this tutorial we use the stimulus channel to define the events. Let's look at the raw data. End of explanation events = mne.find_events(raw) print(events) # Plot the events to get an idea of the paradigm # Specify colors and an event_id dictionary for the legend. event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3, 'Visual/Right': 4, 'smiley': 5, 'button': 32} color = {1: 'green', 2: 'yellow', 3: 'red', 4: 'c', 5: 'black', 32: 'blue'} mne.viz.plot_events(events, raw.info['sfreq'], raw.first_samp, color=color, event_id=event_id) Explanation: Notice channel STI 014 at the bottom. It is the trigger channel that was used for combining all the events to a single channel. We can see that it has several pulses of different amplitude throughout the recording. These pulses correspond to different stimuli presented to the subject during the acquisition. The pulses have values of 1, 2, 3, 4, 5 and 32. These are the events we are going to align the epochs to. To create an event list from raw data, we simply call a function dedicated just for that. Since the event list is simply a numpy array, you can also manually create one. If you create one from an outside source (like a separate file of events), pay special attention in aligning the events correctly with the raw data. End of explanation raw.plot(events=events, n_channels=10, order=order) Explanation: The event list contains three columns. The first column corresponds to sample number. To convert this to seconds, you should divide the sample number by the used sampling frequency. The second column is reserved for the old value of the trigger channel at the time of transition, but is currently not in use. The third column is the trigger id (amplitude of the pulse). You might wonder why the samples don't seem to align with the plotted data. For instance, the first event has a sample number of 27977 which should translate to roughly 46.6 seconds (27977 / 600). However looking at the pulses we see the first pulse at 3.6 seconds. This is because Neuromag recordings have an attribute first_samp which refers to the offset between the system start and the start of the recording. Our data has a first_samp equal to 25800. This means that the first sample you see with raw.plot is the sample number 25800. Generally you don't need to worry about this offset as it is taken into account with MNE functions, but it is good to be aware of. Just to confirm, let's plot the events together with the raw data. Notice how the vertical lines (events) align nicely with the pulses on STI 014. End of explanation tmin, tmax = -0.2, 0.5 event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3, 'Visual/Right': 4} # Only pick MEG and EOG channels. picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True) Explanation: In this tutorial we are only interested in triggers 1, 2, 3 and 4. These triggers correspond to auditory and visual stimuli. The event_id here can be an int, a list of ints or a dict. With dicts it is possible to assign these ids to distinct categories. When using ints or lists this information is lost. First we shall define some parameters to feed to the :class:mne.Epochs constructor. The values tmin and tmax refer to offsets in relation to the events. Here we make epochs that collect the data from 200 ms before to 500 ms after the event. End of explanation baseline = (None, 0.0) reject = {'mag': 4e-12, 'eog': 200e-6} epochs = mne.Epochs(raw, events=events, event_id=event_id, tmin=tmin, tmax=tmax, reject=reject, picks=picks, add_eeg_ref=False) Explanation: Now we have everything we need to construct the epochs. To get some meaningful results, we also want to baseline the epochs. Baselining computes the mean over the baseline period and adjusts the data accordingly. The epochs constructor uses a baseline period from tmin to 0.0 seconds by default, but it is wise to be explicit. That way you are less likely to end up with surprises along the way. None as the first element of the tuple refers to the start of the time window (-200 ms in this case). See :class:mne.Epochs for more. We also define rejection thresholds to get rid of noisy epochs. The rejection thresholds are defined as peak-to-peak values within the epoch time window. They are defined as T/m for gradiometers, T for magnetometers and V for EEG and EOG electrodes. <div class="alert alert-info"><h4>Note</h4><p>In this tutorial, we don't preprocess the data. This is not something you would normally do. See our `tutorials` on preprocessing for more.</p></div> End of explanation epochs.plot(block=True) Explanation: Let's plot the epochs to see the results. The number at the top refers to the id number. We can see that 128 good epochs out of total of 145 events got through the rejection process. Visual inspection also reveals that some epochs containing saccades or blinks got through. You can also reject epochs by hand by clicking on the epoch in the browser window. The selected epochs get rejected when you close the epochs browser. How you should reject the epochs and which thresholds to use is not a trivial question and this tutorial takes no stand on that matter. To see all the interactive features of the epochs browser, click 'Help' in the lower left corner of the browser window. End of explanation epochs.plot_drop_log() Explanation: To see why the epochs were rejected, we can plot the drop log. End of explanation picks = mne.pick_types(epochs.info, meg=True, eog=True) evoked_left = epochs['Auditory/Left'].average(picks=picks) evoked_right = epochs['Auditory/Right'].average(picks=picks) Explanation: To get the evoked response you can simply do epochs.average(). It includes only the data channels by default. For the sake of example, we use picks to include the EOG channels as well. Notice that we cannot use the same picks as before as the indices are different. 'Why are they different?' you might ask. They're different because picks is simply a list of channel indices and as the epochs were constructed, also a new info structure is created where the channel indices run from 0 to epochs.info['nchan']. See tut_info_objects for more information. End of explanation epochs_left = epochs['Left'] # ... or to select a very specific subset. This is the same as above: evoked_left = epochs['Left/Auditory'].average(picks=picks) Explanation: Notice we have used forward slashes ('/') to separate the factors of the conditions of the experiment. We can use these 'tags' to select for example all left trials (both visual left and auditory right) ... End of explanation evoked_left.plot() evoked_right.plot() Explanation: Finally, let's plot the evoked responses. End of explanation
9,789
Given the following text description, write Python code to implement the functionality described below step by step Description: Deep Learning Assignment 2 Previously in 1_notmnist.ipynb, we created a pickle with formatted datasets for training, development and testing on the notMNIST dataset. The goal of this assignment is to progressively train deeper and more accurate models using TensorFlow. Step1: First reload the data we generated in 1_notmnist.ipynb. Step2: Reformat into a shape that's more adapted to the models we're going to train Step3: We're first going to train a multinomial logistic regression using simple gradient descent. TensorFlow works like this Step4: Let's run this computation and iterate Step5: Let's now switch to stochastic gradient descent training instead, which is much faster. The graph will be similar, except that instead of holding all the training data into a constant node, we create a Placeholder node which will be fed actual data at every call of session.run(). Step6: Let's run it Step7: Problem Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units nn.relu() and 1024 hidden nodes. This model should improve your validation / test accuracy.
Python Code: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range Explanation: Deep Learning Assignment 2 Previously in 1_notmnist.ipynb, we created a pickle with formatted datasets for training, development and testing on the notMNIST dataset. The goal of this assignment is to progressively train deeper and more accurate models using TensorFlow. End of explanation pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) Explanation: First reload the data we generated in 1_notmnist.ipynb. End of explanation image_size = 28 num_labels = 10 def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) Explanation: Reformat into a shape that's more adapted to the models we're going to train: - data as a flat matrix, - labels as float 1-hot encodings. End of explanation # With gradient descent training, even this much data is prohibitive. # Subset the training data for faster turnaround. train_subset = 10000 graph = tf.Graph() with graph.as_default(): # Input data. # Load the training, validation and test data into constants that are # attached to the graph. tf_train_dataset = tf.constant(train_dataset[:train_subset, :]) tf_train_labels = tf.constant(train_labels[:train_subset]) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. # These are the parameters that we are going to be training. The weight # matrix will be initialized using random valued following a (truncated) # normal distribution. The biases get initialized to zero. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. # We multiply the inputs with the weight matrix, and add biases. We compute # the softmax and cross-entropy (it's one operation in TensorFlow, because # it's very common, and it can be optimized). We take the average of this # cross-entropy across all training examples: that's our loss. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. # We are going to find the minimum of this loss using gradient descent. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. # These are not part of training, but merely here so that we can report # accuracy figures as we train. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) Explanation: We're first going to train a multinomial logistic regression using simple gradient descent. TensorFlow works like this: * First you describe the computation that you want to see performed: what the inputs, the variables, and the operations look like. These get created as nodes over a computation graph. This description is all contained within the block below: with graph.as_default(): ... Then you can run the operations on this graph as many times as you want by calling session.run(), providing it outputs to fetch from the graph that get returned. This runtime operation is all contained in the block below: with tf.Session(graph=graph) as session: ... Let's load all the data into TensorFlow and build the computation graph corresponding to our training: End of explanation num_steps = 801 def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) with tf.Session(graph=graph) as session: # This is a one-time operation which ensures the parameters get initialized as # we described in the graph: random weights for the matrix, zeros for the # biases. tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): # Run the computations. We tell .run() that we want to run the optimizer, # and get the loss value and the training predictions returned as numpy # arrays. _, l, predictions = session.run([optimizer, loss, train_prediction]) if (step % 100 == 0): print('Loss at step %d: %f' % (step, l)) print('Training accuracy: %.1f%%' % accuracy( predictions, train_labels[:train_subset, :])) # Calling .eval() on valid_prediction is basically like calling run(), but # just to get that one numpy array. Note that it recomputes all its graph # dependencies. print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) Explanation: Let's run this computation and iterate: End of explanation batch_size = 128 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax( tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) Explanation: Let's now switch to stochastic gradient descent training instead, which is much faster. The graph will be similar, except that instead of holding all the training data into a constant node, we create a Placeholder node which will be fed actual data at every call of session.run(). End of explanation num_steps = 3001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) Explanation: Let's run it: End of explanation batch_size = 100 num_hiddens = 200 graph = tf.Graph() with graph.as_default(): #input tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size,image_size*image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size,num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) tf_valid_labels = tf.constant(valid_labels) #invalid tf_test_labels = tf.constant(test_labels) #variables weights1 = tf.Variable(tf.truncated_normal([image_size*image_size,num_hiddens])) biases1 = tf.Variable(tf.zeros([num_hiddens])) weights2 = tf.Variable(tf.truncated_normal([num_hiddens, num_labels])) biases2 = tf.Variable(tf.zeros([num_labels])) #training computation hiddens1_input = tf.matmul(tf_train_dataset,weights1)+biases1 hiddens1_output = tf.nn.relu(hiddens1_input) logits = tf.matmul(hiddens1_output,weights2)+biases2 loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) #optimizer optimizer = tf.train.GradientDescentOptimizer(0.3).minimize(loss) #predictions tf_train_prediction = tf.nn.softmax(logits) tf_valid_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset,weights1)+biases1),weights2)+biases2) tf_test_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset,weights1)+biases1),weights2)+biases2) # training num_steps = 4000 with tf.Session(graph=graph) as sess: # initilze variables init_graph = tf.initialize_all_variables() sess.run(init_graph) print("Initialized!") #training iterations for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = sess.run([optimizer, loss, tf_train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy(tf_valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(tf_test_prediction.eval(), test_labels)) print("----------------------------------------") Explanation: Problem Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units nn.relu() and 1024 hidden nodes. This model should improve your validation / test accuracy. End of explanation
9,790
Given the following text description, write Python code to implement the functionality described below step by step Description: k-Nearest Neighbor (kNN) exercise Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website. The kNN classifier consists of two stages Step1: We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps Step2: Inline Question #1 Step3: You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5 Step4: You should expect to see a slightly better performance than with k = 1. Test one_loop code Step6: Test no_loop code Step7: Cross-validation We have implemented the k-Nearest Neighbor classifier but we set the value k = 5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation. test python code for creating fold lists
Python Code: # Run some setup code for this notebook. import random import numpy as np from data_utils import load_CIFAR10 import matplotlib.pyplot as plt # This is a bit of magic to make matplotlib figures appear inline in the notebook # rather than in a new window. %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # Some more magic so that the notebook will reload external python modules; # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 # Load the raw CIFAR-10 data. cifar10_dir = 'cifar-10-batches-py' X_train_im, y_train, X_test_im, y_test = load_CIFAR10(cifar10_dir) # As a sanity check, we print out the size of the training and test data. print 'Training data shape: ', X_train_im.shape print 'Training labels shape: ', y_train.shape print 'Test data shape: ', X_test_im.shape print 'Test labels shape: ', y_test.shape # Visualize some examples from the dataset. # We show a few examples of training images from each class. classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes = len(classes) samples_per_class = 7 for y, cls in enumerate(classes): idxs = np.flatnonzero(y_train == y) idxs = np.random.choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples_per_class, num_classes, plt_idx) plt.imshow(X_train_im[idx].astype('uint8')) plt.axis('off') if i == 0: plt.title(cls) plt.show() # plt.subplot(1,2,1) # plt.imshow(X_train_im[index_max10]) # plt.subplot(1,2,2) # plt.imshow(X_test_im[10]) # Subsample the data for more efficient code execution in this exercise num_training = 5000 mask = range(num_training) X_train = X_train_im[mask] y_train = y_train[mask] num_test = 500 mask = range(num_test) X_test = X_test_im[mask] y_test = y_test[mask] # Reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) print X_train.shape, X_test.shape from classifiers import KNearestNeighbor # Create a kNN classifier instance. # Remember that training a kNN classifier is a noop: # the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor() classifier.train(X_train, y_train) Explanation: k-Nearest Neighbor (kNN) exercise Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website. The kNN classifier consists of two stages: During training, the classifier takes the training data and simply remembers it During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples The value of k is cross-validated In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code. End of explanation # Open cs231n/classifiers/k_nearest_neighbor.py and implement # compute_distances_two_loops. # Test your implementation: print X_train.shape, X_test.shape dists = classifier.compute_distances_two_loops(X_test) print dists.shape # We can visualize the distance matrix: each row is a single test example and # its distances to training examples plt.imshow(dists, interpolation='none') plt.show() index_min10 = np.argmin(dists, axis=1)[10] index_max10 = np.argmax(dists, axis=1)[10] print index_min10 # index of min dist for 10th test example print index_max10 test = np.argsort(dists, axis=1)[10,:3] print test.shape Explanation: We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps: First we must compute the distances between all test examples and all train examples. Given these distances, for each test example we find the k nearest examples and have them vote for the label Lets begin with computing the distance matrix between all training and test examples. For example, if there are Ntr training examples and Nte test examples, this stage should result in a Nte x Ntr matrix where each element (i,j) is the distance between the i-th test and j-th train example. First, open cs231n/classifiers/k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time. End of explanation # Now implement the function predict_labels and run the code below: # We use k = 1 (which is Nearest Neighbor). y_test_pred = classifier.predict_labels(dists, k=1) # Compute and print the fraction of correctly predicted examples num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) Explanation: Inline Question #1: Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.) What in the data is the cause behind the distinctly bright rows? What causes the columns? Your Answer: opposite background or foreground colors End of explanation y_test_pred = classifier.predict_labels(dists, k=5) num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) Explanation: You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5: End of explanation print np.square(X_train - X_test[0,:]).shape print np.sqrt(np.sum(np.square(X_train - X_test[0,:]), axis = 1)).shape # Now lets speed up distance matrix computation by using partial vectorization # with one loop. Implement the function compute_distances_one_loop and run the # code below: dists_one = classifier.compute_distances_one_loop(X_test) print dists_one # To ensure that our vectorized implementation is correct, we make sure that it # agrees with the naive implementation. There are many ways to decide whether # two matrices are similar; one of the simplest is the Frobenius norm. In case # you haven't seen it before, the Frobenius norm of two matrices is the square # root of the squared sum of differences of all elements; in other words, reshape # the matrices into vectors and compute the Euclidean distance between them. difference = np.linalg.norm(dists - dists_one, ord='fro') print 'Difference was: %f' % (difference, ) if difference < 0.001: print 'Good! The distance matrices are the same' else: print 'Uh-oh! The distance matrices are different' Explanation: You should expect to see a slightly better performance than with k = 1. Test one_loop code End of explanation # np.sum(X*X, axis=1).reshape((num_test,1)).dot(np.ones((1,num_test))) + np.ones((num_train, 1)).dot(np.transpose(np.sum(self.X_train*self.X_train, axis=1).reshape((num_train,1)))) - 2*X*np.transpose(X_train) num_features = X_train.shape[1] num_train = X_train.shape[0] num_test = X_test.shape[0] print num_features print np.sum(X_test*X_test, axis=1).reshape((num_test,1)).dot(np.ones((1,num_train))).shape print np.ones((num_test, 1)).dot(np.transpose(np.sum(X_train*X_train, axis=1).reshape((num_train,1)))).shape print 2*X_test.dot(np.transpose(X_train)).shape print np.sqrt(np.sum(X_test*X_test, axis=1).reshape((num_test,1)).dot(np.ones((1,num_train))) + np.ones((num_test, 1)).dot(np.transpose(np.sum(X_train*X_train, axis=1).reshape((num_train,1)))) - 2*X_test.dot(np.transpose(X_train))) print dists # Now implement the fully vectorized version inside compute_distances_no_loops # and run the code dists_two = classifier.compute_distances_no_loops(X_test) # check that the distance matrix agrees with the one we computed before: difference = np.linalg.norm(dists - dists_two, ord='fro') print 'Difference was: %f' % (difference, ) if difference < 0.001: print 'Good! The distance matrices are the same' else: print 'Uh-oh! The distance matrices are different' # Let's compare how fast the implementations are def time_function(f, *args): Call a function f with args and return the time (in seconds) that it took to execute. import time tic = time.time() f(*args) toc = time.time() return toc - tic two_loop_time = time_function(classifier.compute_distances_two_loops, X_test) print 'Two loop version took %f seconds' % two_loop_time one_loop_time = time_function(classifier.compute_distances_one_loop, X_test) print 'One loop version took %f seconds' % one_loop_time no_loop_time = time_function(classifier.compute_distances_no_loops, X_test) print 'No loop version took %f seconds' % no_loop_time # you should see significantly faster performance with the fully vectorized implementation Explanation: Test no_loop code End of explanation num_folds = 5 folds = np.arange(num_folds) print folds for count in folds: # select fold a = folds[np.arange(len(folds))!=count] print a print folds[count] num_folds = 5 folds = np.arange(num_folds) k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100] X_train_folds = [] y_train_folds = [] ################################################################################ # TODO: # # Split up the training data into folds. After splitting, X_train_folds and # # y_train_folds should each be lists of length num_folds, where # # y_train_folds[i] is the label vector for the points in X_train_folds[i]. # # Hint: Look up the numpy array_split function. # ################################################################################ X_train_folds = np.array_split(X_train, num_folds) y_train_folds = np.array_split(y_train, num_folds) # print len(X_train_folds), X_train_folds[0].shape ################################################################################ # END OF YOUR CODE # ################################################################################ # A dictionary holding the accuracies for different values of k that we find # when running cross-validation. After running cross-validation, # k_to_accuracies[k] should be a list of length num_folds giving the different # accuracy values that we found when using that value of k. k_to_accuracies = {} ################################################################################ # TODO: # # Perform k-fold cross validation to find the best value of k. For each # # possible value of k, run the k-nearest-neighbor algorithm num_folds times, # # where in each case you use all but one of the folds as training data and the # # last fold as a validation set. Store the accuracies for all fold and all # # values of k in the k_to_accuracies dictionary. # ################################################################################ classifier1 = KNearestNeighbor() #re-init classifier to make sure it's there for k in k_choices: print 'fold %i' % k # list of accuracies across all folds for this k accuracies = [] for fold in folds: # select fold a = folds[np.arange(len(folds))!=fold] for item in a: classifier1.train(X_train_folds[item], y_train_folds[item]) dists_two = classifier1.compute_distances_no_loops(X_train_folds[fold]) y_test_pred = classifier1.predict_labels(dists_two, k=k) num_correct = np.sum(y_test_pred == y_train_folds[fold]) accuracies.append(float(num_correct) / len(y_train_folds[fold])) print 'Got %d / %d correct => accuracy: %f for k: %i, fold: %i' % (num_correct, num_test, accuracies[fold], k, fold) k_to_accuracies[k] = accuracies ################################################################################ # END OF YOUR CODE # ################################################################################ # Print out the computed accuracies for k in sorted(k_to_accuracies): for accuracy in k_to_accuracies[k]: print 'k = %d, accuracy = %f' % (k, accuracy) # plot the raw observations for k in k_choices: accuracies = k_to_accuracies[k] print 'average accuracy for k %i: %f'% (k,np.mean(k_to_accuracies[k])) plt.scatter([k] * len(accuracies), accuracies) # plot the trend line with error bars that correspond to standard deviation accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())]) accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())]) plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std) plt.title('Cross-validation on k') plt.xlabel('k') plt.ylabel('Cross-validation accuracy') plt.show() # Based on the cross-validation results above, choose the best value for k, # retrain the classifier using all the training data, and test it on the test # data. You should be able to get above 28% accuracy on the test data. best_k = 7 classifier = KNearestNeighbor() classifier.train(X_train, y_train) y_test_pred = classifier.predict(X_test, k=best_k) # Compute and display the accuracy num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy) Explanation: Cross-validation We have implemented the k-Nearest Neighbor classifier but we set the value k = 5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation. test python code for creating fold lists End of explanation
9,791
Given the following text description, write Python code to implement the functionality described below step by step Description: This notebook works out the expected hillslope sediment flux, topography, and soil thickness for steady state on a 4x7 grid. This provides "ground truth" values for tests. Let the hillslope erosion rate be $E$, the flux coefficient $D$, critical gradient $S_c$, and slope gradient $S$. The regolith thickness is $H$, with bare-bedrock production rate $P_0$ and depth-decay $H_*$. Finally, we set the transport decay scale the same as the production depth-decay scale. Then we have the hillslope flux as a function of distance from ridgetop, $x$, as $q_s = E x = \left( DS + \frac{D}{S_c^2} S^3 \right) \left(1 - e^{ -H/H_*} \right)$ Parameter values Step1: With that, calculate the expected equilibrium $H$ Step2: Double check Step3: Yes, good. Now, our geometry consists of a hillslope discretized into seven nodes. The two on either end are zero-elevation fixed boundaries, so we have to find the elevations of the five interior ones. But the hillslope should be symmetrical, so we really only have to find 1, 2, and 3 as in 0 --- 1 --- 2 --- 3 --- etc. where node 3 is the top of the hill. The slope between nodes 1 and 0 must be positive (uphill to right). It must be just steep enough to carry all the sediment from its own cell plus the sediment from node 2's cell, plus half the sediment from node 3's cell. We'll assume all cells have width $dx = 10 m$. Therefore, we have to transport sediment produced in strip 25 m x 1 m, or 25 m2. Our expected flux is then Step4: In fact, for each interface between cells, the slope at that interface is given by the following polynomial Step5: Now, let's calculate the coefficients Step6: Now let's find the roots of this cubic polynomial Step7: There's just one real root here Step8: Great! That's extremely close. Let's try with the slope between nodes 1 and 2. The only difference here is that the flux $qs$ now derives from just $15 m^2$, so $qs = 0.0015 Step9: Once again, let's test Step10: Finally, the slope between 2 and 3, which needs to carry half a cell's worth of sediment, or $qs = 0.0005$ Step11: And check this Step12: Fabulous. Now to find the predicted elevations Step13: So, at equilibrium, our model should create a symmetrical hill with a peak elevation a little under 8 m and a soil thickness of 0.347 m. What time step size would be reasonable? Start by defining an "effective D" parameter, which is the linearized coefficient in front of the cubic term Step14: Now, maximum time step size should be $\Delta x^2 / 2 D_{eff}$ Step15: There's also a constraint for the weathering piece. The characteristic time scale is $T = H_* / P_0$, which in this case is Step16: So, this calculation suggests that weathering is the limiting factor on time-step size. We might choose 250 years for a reasonably smooth solution. The time it would take for baselevel fall to bring the crest of the hill up to its ten times its equilibrium elevation of 8 m Step17: So let's say we run for 800,000 years at 250 year time steps
Python Code: D = 0.01 Sc = 0.8 Hstar = 0.5 E = 0.0001 P0 = 0.0002 Explanation: This notebook works out the expected hillslope sediment flux, topography, and soil thickness for steady state on a 4x7 grid. This provides "ground truth" values for tests. Let the hillslope erosion rate be $E$, the flux coefficient $D$, critical gradient $S_c$, and slope gradient $S$. The regolith thickness is $H$, with bare-bedrock production rate $P_0$ and depth-decay $H_*$. Finally, we set the transport decay scale the same as the production depth-decay scale. Then we have the hillslope flux as a function of distance from ridgetop, $x$, as $q_s = E x = \left( DS + \frac{D}{S_c^2} S^3 \right) \left(1 - e^{ -H/H_*} \right)$ Parameter values: let $D = 0.01 m^2 y^{-1}$, $S_c = 0.8$, $H_* = 0.5 m$, $P_0 = 0.0002$, and $E = 0.0001 m y^{-1}$: End of explanation import math H = -Hstar * math.log(E / P0) H Explanation: With that, calculate the expected equilibrium $H$: $E = P_0 e^{-H/H_*}$ $H = -H_* \ln (E/P_0)$ Plugging in the numbers: End of explanation P0 * math.exp(-H / Hstar) Explanation: Double check: if we plug this $H$ back in, do we recover $E$? End of explanation qs = 25 * E qs Explanation: Yes, good. Now, our geometry consists of a hillslope discretized into seven nodes. The two on either end are zero-elevation fixed boundaries, so we have to find the elevations of the five interior ones. But the hillslope should be symmetrical, so we really only have to find 1, 2, and 3 as in 0 --- 1 --- 2 --- 3 --- etc. where node 3 is the top of the hill. The slope between nodes 1 and 0 must be positive (uphill to right). It must be just steep enough to carry all the sediment from its own cell plus the sediment from node 2's cell, plus half the sediment from node 3's cell. We'll assume all cells have width $dx = 10 m$. Therefore, we have to transport sediment produced in strip 25 m x 1 m, or 25 m2. Our expected flux is then: End of explanation f = 1.0 - math.exp(-H / Hstar) f Explanation: In fact, for each interface between cells, the slope at that interface is given by the following polynomial: $f\frac{D}{S_c^2} S^3 + 0 S^2 + fDS - qs = 0$ Here the $f$ is shorthand for $1 - \exp (-H/H_*)$. I've included the zero in front of the $S^2$ term just to make it explicit. So, for the slope between nodes 0 and 1, we need first to define our polynomial coefficients, $p$. Then we'll invoke numpy's roots function to solve for $S$. To be consistent with roots usage, we'll call the coefficient of the highest (cubic) term $p_0$, the next highest (square) $p_1$, etc. So: $p_0 S^3 + p_1 S^2 + p_2 S + p_3 = 0$ Clearly, we'll need $f$, so let's calculate that first: End of explanation import numpy as np p = np.zeros(4) p[0] = (f * D) / (Sc ** 2) p[1] = 0.0 p[2] = f * D p[3] = -qs p Explanation: Now, let's calculate the coefficients: $p_0 = f D / S_c^2$ $p_1 = 0$ $p_2 = f D$ $p_3 = -q_s$ Clearly, only $p_3$ will vary from node to node. Here are the numbers: End of explanation my_roots = np.roots(p) my_roots Explanation: Now let's find the roots of this cubic polynomial: End of explanation Spred = 0.4 qspred = (D * Spred + (D / (Sc * Sc)) * (Spred ** 3)) * (1.0 - np.exp(-H / Hstar)) qspred Explanation: There's just one real root here: $S \approx 1.33$. Let's plug that back in and see if we recapture the correct $qs$: End of explanation p[3] = -0.0015 my_roots = np.roots(p) my_roots Explanation: Great! That's extremely close. Let's try with the slope between nodes 1 and 2. The only difference here is that the flux $qs$ now derives from just $15 m^2$, so $qs = 0.0015: End of explanation Spred = 0.269437 qspred = (D * Spred + (D / (Sc * Sc)) * (Spred ** 3)) * (1.0 - np.exp(-H / Hstar)) qspred Explanation: Once again, let's test: End of explanation p[3] = -0.0005 my_roots = np.roots(p) my_roots Explanation: Finally, the slope between 2 and 3, which needs to carry half a cell's worth of sediment, or $qs = 0.0005$: End of explanation Spred = 0.0985 qspred = (D * Spred + (D / (Sc * Sc)) * (Spred ** 3)) * (1.0 - np.exp(-H / Hstar)) qspred Explanation: And check this: End of explanation elev = np.zeros(7) elev[1] = 0.4 * 10.0 elev[5] = elev[1] elev[2] = elev[1] + 0.269437 * 10.0 elev[4] = elev[2] elev[3] = elev[2] + 0.0985 * 10.0 elev Explanation: Fabulous. Now to find the predicted elevations: just add up slope x distance for each node, going inward from the boundaries: End of explanation S = 0.4 Deff = D * ((S / Sc) ** 2) Deff Explanation: So, at equilibrium, our model should create a symmetrical hill with a peak elevation a little under 8 m and a soil thickness of 0.347 m. What time step size would be reasonable? Start by defining an "effective D" parameter, which is the linearized coefficient in front of the cubic term: $D_{eff} = D (S / S_c)^2$ Then take the steepest steady state slope: End of explanation 10.0*10.0/(2.0*Deff) Explanation: Now, maximum time step size should be $\Delta x^2 / 2 D_{eff}$: End of explanation Hstar / P0 Explanation: There's also a constraint for the weathering piece. The characteristic time scale is $T = H_* / P_0$, which in this case is: End of explanation 80.0 / E Explanation: So, this calculation suggests that weathering is the limiting factor on time-step size. We might choose 250 years for a reasonably smooth solution. The time it would take for baselevel fall to bring the crest of the hill up to its ten times its equilibrium elevation of 8 m: End of explanation 8.0e5/250. Explanation: So let's say we run for 800,000 years at 250 year time steps: End of explanation
9,792
Given the following text description, write Python code to implement the functionality described below step by step Description: Multimodal multivariate Gaussian We can create a multimodal multivariate gaussian using MultimodalGaussianLogPDF. By default, this has the distribution $$ p(\boldsymbol{x}) \propto \mathcal{N}\left(\boldsymbol{x}\;\lvert\;\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1\right) + \mathcal{N}\left(\boldsymbol{x}\;\lvert\;\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2\right),$$ where, $\boldsymbol{\mu}_1 = (0,0)$ and $\boldsymbol{\mu}_2 = (10,10)$ and $\boldsymbol{\Sigma}_1$ and $\boldsymbol{\Sigma}_2$ are diagonal correlation matrices. Plotting this pdf Step1: Use adaptive covariance MCMC to sample from this (un-normalised) pdf. Step2: Scatter plot of the samples. Adaptive covariance MCMC does ok if we start the chains between the modes. Step3: And KL divergence by mode is good here. Step4: But if we start the chains at one of the modes, it can fail to find the other Step5: Now the KL divergence is for one mode is good but for the other it is terrible. Step6: Other mode configurations This distribution can also be used to generate modes in other configurations and other dimensions. For example, we can generate three modes in two dimensions then independently sample from them. Step7: Or specify different covariance matrices for each mode. Step8: Or make a multimodal distribution in one dimension. Step9: Or a multimodal distribution in 5 dimensions (plotting the first two dimensions only). Step10: Now use Hamiltonian Monte Carlo to sample from this distribution. Step11: Plot samples in two dimensions from a single chain. Hamiltonian Monte Carlo gets stuck on a mode and remains there!
Python Code: import pints import pints.toy import numpy as np import matplotlib.pyplot as plt # Create log pdf log_pdf = pints.toy.MultimodalGaussianLogPDF() # Contour plot of pdf levels = np.linspace(-3,12,20) num_points = 100 x = np.linspace(-5, 15, num_points) y = np.linspace(-5, 15, num_points) X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) Z = np.exp([[log_pdf([i, j]) for i in x] for j in y]) plt.contour(X, Y, Z) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Multimodal multivariate Gaussian We can create a multimodal multivariate gaussian using MultimodalGaussianLogPDF. By default, this has the distribution $$ p(\boldsymbol{x}) \propto \mathcal{N}\left(\boldsymbol{x}\;\lvert\;\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1\right) + \mathcal{N}\left(\boldsymbol{x}\;\lvert\;\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2\right),$$ where, $\boldsymbol{\mu}_1 = (0,0)$ and $\boldsymbol{\mu}_2 = (10,10)$ and $\boldsymbol{\Sigma}_1$ and $\boldsymbol{\Sigma}_2$ are diagonal correlation matrices. Plotting this pdf: End of explanation # Create an adaptive covariance MCMC routine x0 = np.random.uniform([2, 2], [8, 8], size=(4, 2)) mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HaarioBardenetACMC) # Set maximum number of iterations mcmc.set_max_iterations(4000) # Disable logging mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[1000:] for chain in chains] Explanation: Use adaptive covariance MCMC to sample from this (un-normalised) pdf. End of explanation stacked = np.vstack(chains) plt.contour(X, Y, Z, colors='k', alpha=0.5) plt.scatter(stacked[:,0], stacked[:,1], marker='.', alpha=0.2) plt.xlim(-5, 15) plt.ylim(-5, 15) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Scatter plot of the samples. Adaptive covariance MCMC does ok if we start the chains between the modes. End of explanation print("KL divergence by mode: " + str(log_pdf.kl_divergence(stacked))) Explanation: And KL divergence by mode is good here. End of explanation # Create an adaptive covariance MCMC routine x0 = np.random.uniform([-0.1, -0.1], [0.1, 0.1], size=(4, 2)) mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HaarioBardenetACMC) # Set maximum number of iterations mcmc.set_max_iterations(4000) # Disable logging mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[1000:] for chain in chains] stacked = np.vstack(chains) plt.contour(X, Y, Z, colors ='k', alpha=0.5) plt.scatter(stacked[:,0], stacked[:,1], marker='.', alpha = 0.2) plt.xlim(-5, 15) plt.ylim(-5, 15) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: But if we start the chains at one of the modes, it can fail to find the other: End of explanation print("KL divergence by mode: " + str(log_pdf.kl_divergence(stacked))) Explanation: Now the KL divergence is for one mode is good but for the other it is terrible. End of explanation log_pdf = pints.toy.MultimodalGaussianLogPDF(modes=[[0, 0], [5, 10], [10, 0]]) samples = log_pdf.sample(100) # Contour plot of pdf levels = np.linspace(-3,12,20) num_points = 100 x = np.linspace(-5, 15, num_points) y = np.linspace(-5, 15, num_points) X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) Z = np.exp([[log_pdf([i, j]) for i in x] for j in y]) plt.contour(X, Y, Z) plt.scatter(samples[:,0], samples[:,1]) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Other mode configurations This distribution can also be used to generate modes in other configurations and other dimensions. For example, we can generate three modes in two dimensions then independently sample from them. End of explanation covariances = [[[1, 0], [0, 1]], [[2, 0.8], [0.8, 3]], [[1, -0.5], [-0.5, 1]]] log_pdf = pints.toy.MultimodalGaussianLogPDF(modes=[[0, 0], [5, 10], [10, 0]], covariances=covariances) samples = log_pdf.sample(100) # Contour plot of pdf num_points = 100 x = np.linspace(-5, 15, num_points) y = np.linspace(-5, 15, num_points) X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) Z = np.exp([[log_pdf([i, j]) for i in x] for j in y]) plt.contour(X, Y, Z) plt.scatter(samples[:,0], samples[:,1]) plt.xlim(-5, 15) plt.ylim(-5, 15) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Or specify different covariance matrices for each mode. End of explanation log_pdf = pints.toy.MultimodalGaussianLogPDF(modes=[[0], [5], [10]]) x = np.linspace(-5, 15, num_points) prob = np.exp([log_pdf([i]) for i in x]) samples = log_pdf.sample(1000) plt.plot(x, prob / 2) plt.hist(samples, 40, density=True) plt.xlabel('x') plt.show() Explanation: Or make a multimodal distribution in one dimension. End of explanation log_pdf = pints.toy.MultimodalGaussianLogPDF(modes=[np.repeat(0, 5), np.repeat(5, 5), np.repeat(10, 5)]) samples = log_pdf.sample(100) plt.scatter(samples[:, 0], samples[:, 1]) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Or a multimodal distribution in 5 dimensions (plotting the first two dimensions only). End of explanation # Create an adaptive covariance MCMC routine x0 = np.random.uniform([2, 2, 2, 2, 2], [8, 8, 8, 8, 8], size=(4, 5)) sigma0 = [1, 1, 1, 1, 1] mcmc = pints.MCMCSampling(log_pdf, 4, x0, method=pints.HamiltonianMCMC, sigma0=sigma0) # Set maximum number of iterations mcmc.set_max_iterations(500) # Disable logging # mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[250:] for chain in chains] Explanation: Now use Hamiltonian Monte Carlo to sample from this distribution. End of explanation plt.plot(chains[0][:, 2], chains[1][:, 2]) plt.xlim(-5, 15) plt.ylim(-5, 15) plt.xlabel('x') plt.ylabel('y') plt.show() Explanation: Plot samples in two dimensions from a single chain. Hamiltonian Monte Carlo gets stuck on a mode and remains there! End of explanation
9,793
Given the following text description, write Python code to implement the functionality described below step by step Description: Construct data and experiments directorys from environment variables Step1: Specify main run parameters Step2: Load data and normalise inputs Step3: Specify prior parameters (data dependent so do after data load) Step4: Assemble run parameters into dictionary for recording with results Step5: Create necessary run objects Step6: Run chains, starting from random sample from prior in each and saving results to experiments directory
Python Code: data_dir = os.path.join(os.environ['DATA_DIR'], 'uci') exp_dir = os.path.join(os.environ['EXP_DIR'], 'apm_mcmc') Explanation: Construct data and experiments directorys from environment variables End of explanation data_set = 'pima' method = 'apm(mi+mh)' n_chain = 10 chain_offset = 0 seeds = np.random.random_integers(10000, size=n_chain) n_imp_sample = 1 adapt_run = dict( low_acc_thr = 0.15, upp_acc_thr = 0.30, batch_size = 100, n_batch = 20 ) init_log_sigma_prop_scale = 0.5 init_log_tau_prop_scale = 0.5 n_sample_main = 10000 epsilon = 1e-8 Explanation: Specify main run parameters End of explanation X = np.genfromtxt(os.path.join(data_dir, data_set + '_X.txt')) y = np.genfromtxt(os.path.join(data_dir, data_set + '_y.txt')) X, X_mn, X_sd = utils.normalise_inputs(X) Explanation: Load data and normalise inputs End of explanation prior = dict( a_tau = 1., b_tau = 1. / X.shape[1]**0.5, a_sigma = 1.1, b_sigma = 0.1 ) Explanation: Specify prior parameters (data dependent so do after data load) End of explanation run_params = dict( data_set = data_set, n_data = X.shape[0], n_feature = X.shape[1], method = method, n_imp_sample = n_imp_sample, epsilon = epsilon, prior = prior, adapt_run = adapt_run, init_log_sigma_prop_scale = init_log_sigma_prop_scale, init_log_tau_prop_scale = init_log_tau_prop_scale, n_sample_main = n_sample_main ) Explanation: Assemble run parameters into dictionary for recording with results End of explanation prng = np.random.RandomState() kernel_func = lambda K, X, theta: ( krn.isotropic_squared_exponential_kernel(K, X, theta, epsilon) ) ml_estimator = est.LogMarginalLikelihoodApproxPosteriorISEstimator( X, y, kernel_func, lpa.laplace_approximation) def log_f_estimator(u, theta=None, cached_res=None): log_marg_lik_est, new_cached_res = ml_estimator(u, theta, cached_res) log_prior = ( utils.log_gamma_log_pdf(theta[0], prior['a_sigma'], prior['b_sigma']) + utils.log_gamma_log_pdf(theta[1], prior['a_tau'], prior['b_tau']) ) return log_marg_lik_est + log_prior, new_cached_res prop_sampler = lambda theta, prop_scales: np.r_[ theta[0] + prop_scales[0] * prng.normal(), theta[1] + prop_scales[1] * prng.normal() ] log_prop_density = lambda theta_prop, theta_curr, prop_scales: ( -0.5 * ( ((theta_prop[0] - theta_curr[0]) / prop_scales[0])**2 + ((theta_prop[1] - theta_curr[1]) / prop_scales[1])**2 ) ) init_prop_scales = np.array([ init_log_sigma_prop_scale, init_log_tau_prop_scale ]) sampler = smp.APMMetIndPlusMHSampler( log_f_estimator, log_prop_density, prop_sampler, init_prop_scales, lambda: prng.normal(size=(y.shape[0], n_imp_sample)), prng) Explanation: Create necessary run objects End of explanation for c in range(n_chain): try: print('Starting chain {0}...'.format(c + 1)) prng.seed(seeds[c]) theta_init = np.array([ np.log(prng.gamma(prior['a_sigma'], 1. / prior['b_sigma'])), np.log(prng.gamma(prior['a_tau'], 1. / prior['b_tau'])), ]) sampler.prop_scales = init_prop_scales print('Starting initial adaptive run...') adapt_thetas, adapt_prop_scales, adapt_accept_rates = ( sampler.adaptive_run( theta_init, adapt_run['batch_size'], adapt_run['n_batch'], adapt_run['low_acc_thr'], adapt_run['upp_acc_thr'], utils.adapt_factor_func, True ) ) print('Final proposal scales: {0}'.format(adapt_prop_scales[-1])) print('Starting main run...') ml_estimator.reset_cubic_op_count() start_time = time.clock() thetas, n_reject = sampler.get_samples(adapt_thetas[-1], n_sample_main) comp_time = time.clock() - start_time n_cubic_ops = ml_estimator.n_cubic_ops tag = '{0}_{1}_chain_{2}'.format(data_set, method, c + 1 + chain_offset) print('Main run completed: accept rate (u|theta) {0:.1f}%, ' 'accept rate (theta|u) {1:.1f}%, time {2}s, # cubic ops {3}' .format((1. - n_reject[0] * 1./ n_sample_main) * 100., (1. - n_reject[1] * 1./ n_sample_main) * 100., comp_time, n_cubic_ops)) utils.save_adaptive_run(exp_dir, tag, adapt_thetas, adapt_prop_scales, adapt_accept_rates, thetas, n_reject, n_cubic_ops, comp_time, run_params) utils.plot_trace(thetas) plt.show() except Exception as e: print('Exception encountered') print(e.message) print(traceback.format_exc()) print('Skipping to next chain') continue Explanation: Run chains, starting from random sample from prior in each and saving results to experiments directory End of explanation
9,794
Given the following text description, write Python code to implement the functionality described below step by step Description: When analyzing data, I usually use the following three modules. I use pandas for data management, filtering, grouping, and processing. I use numpy for basic array math. I use toyplot for rendering the charts. Step1: Load in the "auto" dataset. This is a fun collection of data on cars manufactured between 1970 and 1982. The source for this data can be found at https Step2: For this analysis I am going to group data by the car maker. The make is not directly stored in the data, but all the names start with the make, so extract the first word in that column. Step3: The data has some inconsistencies with the make strings (misspellings or alternate spellings). Do some simple fixes. Step4: Use toyplot to plot the measurements of horsepower vs weight. We should expect a general trend to higher horsepower to weight with some outliers (such as for sports cars). We are using this to demonstrate coloring. First, do a simple coloring by country origin with the default color map. This should be reasonable colors. Step5: Repeate the plot colored by the make. This is a crazy amount of colors. Also choose a bad color palette. To color by make, we actually need to convert the strings to numbers that toyplot can look up in a linear map. Create that map and make a column of make indices. Step6: I am also going to demonstrate a bad set of colors. Toyplot actually cares about good colors, so I have to jump through a few hoops to load up a bad color map.
Python Code: import pandas import numpy import toyplot import toyplot.pdf import toyplot.png import toyplot.svg print('Pandas version: ', pandas.__version__) print('Numpy version: ', numpy.__version__) print('Toyplot version: ', toyplot.__version__) Explanation: When analyzing data, I usually use the following three modules. I use pandas for data management, filtering, grouping, and processing. I use numpy for basic array math. I use toyplot for rendering the charts. End of explanation column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin', 'Car Name'] data = pandas.read_table('auto-mpg.data', delim_whitespace=True, names=column_names, index_col=False) Explanation: Load in the "auto" dataset. This is a fun collection of data on cars manufactured between 1970 and 1982. The source for this data can be found at https://archive.ics.uci.edu/ml/datasets/Auto+MPG. The data are stored in a text file containing columns of data. We use the pandas.read_table() method to parse the data and load it in a pandas DataFrame. The file does not contain a header row, so we need to specify the names of the columns manually. End of explanation data['Make'] = data['Car Name'].str.split().str.get(0) Explanation: For this analysis I am going to group data by the car maker. The make is not directly stored in the data, but all the names start with the make, so extract the first word in that column. End of explanation data.ix[data['Make'] == 'chevroelt', 'Make'] = 'chevrolet' data.ix[data['Make'] == 'chevy', 'Make'] = 'chevrolet' data.ix[data['Make'] == 'maxda', 'Make'] = 'mazda' data.ix[data['Make'] == 'mercedes-benz', 'Make'] = 'mercedes' data.ix[data['Make'] == 'vokswagen', 'Make'] = 'volkswagen' data.ix[data['Make'] == 'vw', 'Make'] = 'volkswagen' Explanation: The data has some inconsistencies with the make strings (misspellings or alternate spellings). Do some simple fixes. End of explanation canvas = toyplot.Canvas('4in', '2.6in') axes = canvas.cartesian(bounds=(41,-3,3,-44), xlabel = 'Weight', ylabel = 'Horsepower') colormap = toyplot.color.CategoricalMap() # Note that this data has some invalid measurements for Horsepower. Thus, we need # to filter those rows out. That is what the [data['Horsepower'] != '?'] is for axes.scatterplot(data['Weight'][data['Horsepower'] != '?'], data['Horsepower'][data['Horsepower'] != '?'], color=(numpy.array(data['Origin'][data['Horsepower'] != '?'])-1,colormap)) # It's usually best to make the y-axis 0-based. axes.y.domain.min = 0 # Add some labels axes.text(4700, 125, 'USA') axes.text(2100, 28, 'Europe') axes.text(2820, 145, 'Japan') toyplot.pdf.render(canvas, 'Colors.pdf') toyplot.svg.render(canvas, 'Colors.svg') toyplot.png.render(canvas, 'Colors.png', scale=5) Explanation: Use toyplot to plot the measurements of horsepower vs weight. We should expect a general trend to higher horsepower to weight with some outliers (such as for sports cars). We are using this to demonstrate coloring. First, do a simple coloring by country origin with the default color map. This should be reasonable colors. End of explanation unique_makes = data['Make'].unique() make_index_map = pandas.Series(index=unique_makes, data=xrange(0, len(unique_makes))) data['Make Index'] = numpy.array(make_index_map[data['Make']]) Explanation: Repeate the plot colored by the make. This is a crazy amount of colors. Also choose a bad color palette. To color by make, we actually need to convert the strings to numbers that toyplot can look up in a linear map. Create that map and make a column of make indices. End of explanation bad_color_palette = toyplot.color.Palette( ['#FF0000', '#FFFF00', '#00FF00', '#00FFFF', '#0000FF']) bad_colormap = toyplot.color.LinearMap(bad_color_palette) canvas = toyplot.Canvas('4in', '2.6in') axes = canvas.cartesian(bounds=(41,-3,3,-44), xlabel = 'Weight (lb)', ylabel = 'Horsepower') # Note that this data has some invalid measurements for Horsepower. Thus, we need # to filter those rows out. That is what the [data['Horsepower'] != '?'] is for axes.scatterplot(data['Weight'][data['Horsepower'] != '?'], data['Horsepower'][data['Horsepower'] != '?'], color=(numpy.array(data['Make Index'][data['Horsepower'] != '?'])-1, bad_colormap)) # It's usually best to make the y-axis 0-based. axes.y.domain.min = 0 toyplot.pdf.render(canvas, 'Colors_Bad.pdf') toyplot.svg.render(canvas, 'Colors_Bad.svg') toyplot.png.render(canvas, 'Colors_Bad.png', scale=5) Explanation: I am also going to demonstrate a bad set of colors. Toyplot actually cares about good colors, so I have to jump through a few hoops to load up a bad color map. End of explanation
9,795
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="https Step1: List Superfund sites The individual sites are instances of SuperfundSite, and are listed in the corresponding Graph Browser page. To programmatically list all Superfund sites, use the get_places_in API as follows Step2: In place of USA, you can specify any US state or county. You can use place search to find the corresponding DCID, as illustrated here. Get statistics Superfund sites have associated statistical variables like CrsiScore_Superfundsite, NaturalHazardRiskScore_Superfundsite, etc. To see the list of all variables, you can visit a Superfund site's Graph Browser page (example). To get stats for all variables for all sites, use the build_multivariate_dataframe API, as follows Step3: Additional statistics for Tar Creek site Tar Creek is one of the largest Superfund sites, and only for that site we have additional stats on contaminants in the ground water from sampling wells. These stats are attached to instances of SuperfundMeasurementSite contained in Tar Creek. The measurement sites are listed on the Tar Creek Graph Browser page, and a measurement site's Graph Browser page (example) lists all available statistical variables. To get these stats, list the measurement sites within Tar Creek, and then provide all associated variables, as follows Step4: Get non-statistical attributes The Superfund sites have non-statistical properties like latitude/longitude, ownership status, EPA region code, and so on. These are listed in each site's Graph Browser page (example). To get these values, use the get_property_labels and get_property_values APIs, and append to the existing dataframe (site_df), as follows
Python Code: !pip install datacommons_pandas datacommons --upgrade --quiet # Import Data Commons libraries import datacommons as dc import datacommons_pandas as dcpd Explanation: <a href="https://colab.research.google.com/github/datacommonsorg/api-python/blob/master/notebooks/Accessing_Superfund_data_from_Data_Commons.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> Copyright 2022 Google LLC. SPDX-License-Identifier: Apache-2.0 Notebook Version - 1.0.0 Accessing Superfund data from Data Commons Superfund sites are US locations contaminated with hazardous substances that the EPA seeks to investigate and clean up. Data Commons (DC) includes data about Superfund sites, and this notebook illustrates how that can be accessed using the DC python APIs with Pandas extension. An extended version of this notebook that does some analysis with the extracted Superfund data can be found here. Set-up Import the DC python APIs, as follows: End of explanation # Gets all Superfund sites within USA place_dcid = 'country/USA' # DCID of USA site_list = dc.get_places_in([place_dcid], 'SuperfundSite')[place_dcid] site_list[:5] Explanation: List Superfund sites The individual sites are instances of SuperfundSite, and are listed in the corresponding Graph Browser page. To programmatically list all Superfund sites, use the get_places_in API as follows: End of explanation # Gets stats for the listed variables from all sites in a Pandas table site_df = dcpd.build_multivariate_dataframe(site_list, ['CrsiScore_SuperfundSite', 'NaturalHazardExposureScore_SuperfundSite', 'NaturalHazardRiskScore_SuperfundSite', 'NaturalHazardRiskScore_SuperfundSite_CoastalFloodEvent', 'NaturalHazardRiskScore_SuperfundSite_DroughtEvent', 'NaturalHazardRiskScore_SuperfundSite_EarthquakeEvent', 'NaturalHazardRiskScore_SuperfundSite_ExcessiveHeatEvent', 'NaturalHazardRiskScore_SuperfundSite_ExtremeColdWindChillEvent', 'NaturalHazardRiskScore_SuperfundSite_FloodEvent', 'NaturalHazardRiskScore_SuperfundSite_HailEvent', 'NaturalHazardRiskScore_SuperfundSite_HighWindEvent', 'NaturalHazardRiskScore_SuperfundSite_HurricaneEvent', 'NaturalHazardRiskScore_SuperfundSite_LandslideEvent', 'NaturalHazardRiskScore_SuperfundSite_TornadoEvent', 'NaturalHazardRiskScore_SuperfundSite_WildfireEvent']) site_df.head() Explanation: In place of USA, you can specify any US state or county. You can use place search to find the corresponding DCID, as illustrated here. Get statistics Superfund sites have associated statistical variables like CrsiScore_Superfundsite, NaturalHazardRiskScore_Superfundsite, etc. To see the list of all variables, you can visit a Superfund site's Graph Browser page (example). To get stats for all variables for all sites, use the build_multivariate_dataframe API, as follows: End of explanation # Gets all measurement sites contained in Tar Creek tar_creek_site = 'epaSuperfundSiteId/OKD980629844' # DCID of Tar Creek measurement_sites = dc.get_places_in([tar_creek_site], 'SuperfundMeasurementSite')[tar_creek_site] # Gets stats for contaminant variables for said measurement sites tar_creek_df = dcpd.build_multivariate_dataframe( measurement_sites, [ 'Concentration_Cadmium_BodyOfWater_GroundWater', 'Concentration_DissolvedContaminant_Cadmium_BodyOfWater_GroundWater', 'Concentration_DissolvedContaminant_Iron_BodyOfWater_GroundWater', 'Concentration_DissolvedContaminant_Lead_BodyOfWater_GroundWater', 'Concentration_DissolvedContaminant_Zinc_BodyOfWater_GroundWater', 'Concentration_Iron_BodyOfWater_GroundWater', 'Concentration_Lead_BodyOfWater_GroundWater', 'Concentration_Sulfate_BodyOfWater_GroundWater', 'DissolvedOxygen_BodyOfWater_GroundWater', 'Concentration_Zinc_BodyOfWater_GroundWater', 'PotentialOfHydrogen_BodyOfWater_GroundWater', 'ElectricalConductivity_BodyOfWater_GroundWater', 'Temperature_BodyOfWater_GroundWater', 'WaterHardness_BodyOfWater_GroundWater' ]) tar_creek_df.head() Explanation: Additional statistics for Tar Creek site Tar Creek is one of the largest Superfund sites, and only for that site we have additional stats on contaminants in the ground water from sampling wells. These stats are attached to instances of SuperfundMeasurementSite contained in Tar Creek. The measurement sites are listed on the Tar Creek Graph Browser page, and a measurement site's Graph Browser page (example) lists all available statistical variables. To get these stats, list the measurement sites within Tar Creek, and then provide all associated variables, as follows: End of explanation # Lists properties for a sample site site_props = dc.get_property_labels([tar_creek_site], out=True)[tar_creek_site] for prop in site_props: # Gets values for a given property. pvs is dict from site-id -> list of values pvs = dc.get_property_values(site_list, prop) # Turns the list of values into a comma-separated a single-value pvs = {p: ', '.join(v) for p, v in pvs.items()} # Extends the dataframe site_df[prop] = site_df.index.map(pvs) site_df.head() Explanation: Get non-statistical attributes The Superfund sites have non-statistical properties like latitude/longitude, ownership status, EPA region code, and so on. These are listed in each site's Graph Browser page (example). To get these values, use the get_property_labels and get_property_values APIs, and append to the existing dataframe (site_df), as follows: End of explanation
9,796
Given the following text description, write Python code to implement the functionality described below step by step Description: Gradio and HuggingFace In this demo, we show how to build ready to deploy or use deep learning models. Hugging Face hosts thousands of pre-trained models in Model Hub. They also built high-level APIs so we can easily use and deploy pre-trained models using Pipeline. gradio provides APIs so we can easily build web applications that use our pre-trained models from Hugging Face. gradio also provides APIs so we can easily incorporate input and output web UIs. After building the gradio, we can have permanent hosting using Hugging Face Spaces. Let us first install Hugging Face transformers and gradio. Note Step1: Hello world in gradio As a tradition, let us build the simplest gradio app. It accepts a text input and calls the greet() function to process this input and convert into another text. The output of greet() becomes the output of the gradio app. To see our application, we call launch() after constructing our gradio Interface. Step2: Object Recognition using ResNet18 In our discussion about PyTorch, we used a pre-trained ResNet18 model from torchvision. We use jupyter notebook to show the results. The jupyter notebook is not an application that we can deploy and other people use with ease. The same with Google's colab. In this example, we use gradio to build a simple app that an end user can easily interact with. We reuse the code from our previous example. Step3: Using HuggingFace and Gradio Loading a pre-trained model from torchvision, pre-processing the input, and post processing the output are all messy. Sometimes, we just want to load and use a machine learning model. Hugging Face provides a shortcut for all these steps through the use of pipeline. In pipeline, we supply the task name and the pre-trained model that is stored in Hugging Face Model Hub. In this example, we use a much better model compared to ResNet18. It is called BEIT and can classify objects up to about 22k categories. We construct the gradio app by calling from_pipeline(). Step4: Automatic Speech Recognition (ASR) Let us shift to audio or speech domain. In this example, we demonstrate an Automatic Speech Recognition (ASR) system. We will use our microphone to record audio which is then converted to text using ASR. In this example, best to open the application in another browser tab by setting inbrowser=True. Before running the gradio app, this ASR requires sentencepice module. Let us install it first. Step5: In this ASR, we use Facebook S2T, a transformer-based speech to text model that is trained on librispeech dataset. Step6: Text to Speech (TTS) Let us do the reverse of ASR or Text to Speech (TTS). In this example, we supply text and this text is converted to speech using the voice of Linda Johnson. We use a pre-trained model of FastSpeech2 that is provided by Facebook in Model Hub. In this example, we use load() method to load the pre-trained model. Step7: Text Generation using GPT2 In this example, we use a large language model (LLM) by OpenAI to generate text. It is called GPT2. Text generation is one of the tasks where a language model can help us. Basically, we provide the initial text made of few words. Then, the model will continue it. Step8: Using gr.Series() to automatically chain the I/O of multiple models In this example, we use the previous text generator as input to our TTS. We can for example use to generate a podcast on a certain topic. In this case, we replace GPT2 with a much better model called GPT Neo.
Python Code: !pip install transformers !pip install gradio Explanation: Gradio and HuggingFace In this demo, we show how to build ready to deploy or use deep learning models. Hugging Face hosts thousands of pre-trained models in Model Hub. They also built high-level APIs so we can easily use and deploy pre-trained models using Pipeline. gradio provides APIs so we can easily build web applications that use our pre-trained models from Hugging Face. gradio also provides APIs so we can easily incorporate input and output web UIs. After building the gradio, we can have permanent hosting using Hugging Face Spaces. Let us first install Hugging Face transformers and gradio. Note: For some examples, it is best to launch the app in another tab to enable access to the required inputs such as microphone or webcam. Running the app may also lock the python kernel and the notebook becomes unresponsive. In that case, please restart the kernel and clear the output. End of explanation import gradio as gr def greet(name): return "Hello " + name + "!!" gr.Interface(fn=greet, inputs="text", outputs="text").launch() Explanation: Hello world in gradio As a tradition, let us build the simplest gradio app. It accepts a text input and calls the greet() function to process this input and convert into another text. The output of greet() becomes the output of the gradio app. To see our application, we call launch() after constructing our gradio Interface. End of explanation import gradio as gr import torch import torchvision import torchvision.transforms as transforms import requests from einops import rearrange normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) resnet = torchvision.models.resnet18(pretrained=True) resnet.eval() # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify(img): # By default, gradio image is numpy img = torch.from_numpy(img) # Numpy image is channel last. PyTorch is channel 1st. img = rearrange(img, 'h w c -> c h w') # The transforms before prediction img = torchvision.transforms.Resize(256)(img) img = torchvision.transforms.CenterCrop(224)(img).float()/255. img = normalize(img) # We insert batch size of 1 img = rearrange(img, 'c h w -> 1 c h w') # The actual prediction with torch.no_grad(): pred = resnet(img) # Convert the prediction to probabilities pred = torch.nn.functional.softmax(pred, dim=1) # Remove the batch dim. torch.squeeze() can also be used. pred = rearrange(pred, "1 j->j") # torch to numpy space pred = pred.cpu().numpy() return {labels[i]: float(pred[i]) for i in range(1000)} gr.Interface(fn=classify, inputs=gr.inputs.Image(shape=(224, 224)), outputs=gr.outputs.Label(num_top_classes=5), title="1k Object Recognition", examples=['wonder_cat.jpg', 'aki_dog.jpg',], description="Demonstrates a pre-trained model from torchvision for image classification.", allow_flagging="never").launch(inbrowser=True) Explanation: Object Recognition using ResNet18 In our discussion about PyTorch, we used a pre-trained ResNet18 model from torchvision. We use jupyter notebook to show the results. The jupyter notebook is not an application that we can deploy and other people use with ease. The same with Google's colab. In this example, we use gradio to build a simple app that an end user can easily interact with. We reuse the code from our previous example. End of explanation import gradio as gr from transformers import pipeline pipe = pipeline(task="image-classification", # model that can do 22k-category classification model="microsoft/beit-base-patch16-224-pt22k-ft22k") gr.Interface.from_pipeline(pipe, title="22k Image Classification", description="Object Recognition using Microsoft BEIT", examples = ['wonder_cat.jpg', 'aki_dog.jpg',], allow_flagging="never").launch(inbrowser=True) Explanation: Using HuggingFace and Gradio Loading a pre-trained model from torchvision, pre-processing the input, and post processing the output are all messy. Sometimes, we just want to load and use a machine learning model. Hugging Face provides a shortcut for all these steps through the use of pipeline. In pipeline, we supply the task name and the pre-trained model that is stored in Hugging Face Model Hub. In this example, we use a much better model compared to ResNet18. It is called BEIT and can classify objects up to about 22k categories. We construct the gradio app by calling from_pipeline(). End of explanation !pip install sentencepiece Explanation: Automatic Speech Recognition (ASR) Let us shift to audio or speech domain. In this example, we demonstrate an Automatic Speech Recognition (ASR) system. We will use our microphone to record audio which is then converted to text using ASR. In this example, best to open the application in another browser tab by setting inbrowser=True. Before running the gradio app, this ASR requires sentencepice module. Let us install it first. End of explanation import gradio as gr from transformers import pipeline pipe = pipeline(task="automatic-speech-recognition", model="facebook/s2t-medium-librispeech-asr") gr.Interface.from_pipeline(pipe, title="Automatic Speech Recognition (ASR)", description="Using pipeline with Facebook S2T for ASR.", examples=['data/ljspeech.wav',], ).launch(inbrowser=True) Explanation: In this ASR, we use Facebook S2T, a transformer-based speech to text model that is trained on librispeech dataset. End of explanation import gradio as gr gr.Interface.load("huggingface/facebook/fastspeech2-en-ljspeech", description="TTS using FastSpeech2", title="Text to Speech (TTS)", examples=[["The quick brown fox jumps over the lazy dog."]] ).launch() Explanation: Text to Speech (TTS) Let us do the reverse of ASR or Text to Speech (TTS). In this example, we supply text and this text is converted to speech using the voice of Linda Johnson. We use a pre-trained model of FastSpeech2 that is provided by Facebook in Model Hub. In this example, we use load() method to load the pre-trained model. End of explanation import gradio as gr gr.Interface.load("huggingface/gpt2", title="Text Generation", description="Using GPT2.", allow_flagging="never").launch(inbrowser=True) Explanation: Text Generation using GPT2 In this example, we use a large language model (LLM) by OpenAI to generate text. It is called GPT2. Text generation is one of the tasks where a language model can help us. Basically, we provide the initial text made of few words. Then, the model will continue it. End of explanation import gradio as gr textgen = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B”) tts = gr.Interface.load("huggingface/facebook/fastspeech2-en-ljspeech”) iface = gr.Series(textgen, tts) iface.title = "Generated Text to Speech" iface.allow_flagging = "never" iface.launch(inbrowser=True) Explanation: Using gr.Series() to automatically chain the I/O of multiple models In this example, we use the previous text generator as input to our TTS. We can for example use to generate a podcast on a certain topic. In this case, we replace GPT2 with a much better model called GPT Neo. End of explanation
9,797
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Aerosol MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Key Properties --&gt; Timestep Framework 4. Key Properties --&gt; Meteorological Forcings 5. Key Properties --&gt; Resolution 6. Key Properties --&gt; Tuning Applied 7. Transport 8. Emissions 9. Concentrations 10. Optical Radiative Properties 11. Optical Radiative Properties --&gt; Absorption 12. Optical Radiative Properties --&gt; Mixtures 13. Optical Radiative Properties --&gt; Impact Of H2o 14. Optical Radiative Properties --&gt; Radiative Scheme 15. Optical Radiative Properties --&gt; Cloud Interactions 16. Model 1. Key Properties Key properties of the aerosol model 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 1.3. Scheme Scope Is Required Step7: 1.4. Basic Approximations Is Required Step8: 1.5. Prognostic Variables Form Is Required Step9: 1.6. Number Of Tracers Is Required Step10: 1.7. Family Approach Is Required Step11: 2. Key Properties --&gt; Software Properties Software properties of aerosol code 2.1. Repository Is Required Step12: 2.2. Code Version Is Required Step13: 2.3. Code Languages Is Required Step14: 3. Key Properties --&gt; Timestep Framework Physical properties of seawater in ocean 3.1. Method Is Required Step15: 3.2. Split Operator Advection Timestep Is Required Step16: 3.3. Split Operator Physical Timestep Is Required Step17: 3.4. Integrated Timestep Is Required Step18: 3.5. Integrated Scheme Type Is Required Step19: 4. Key Properties --&gt; Meteorological Forcings ** 4.1. Variables 3D Is Required Step20: 4.2. Variables 2D Is Required Step21: 4.3. Frequency Is Required Step22: 5. Key Properties --&gt; Resolution Resolution in the aersosol model grid 5.1. Name Is Required Step23: 5.2. Canonical Horizontal Resolution Is Required Step24: 5.3. Number Of Horizontal Gridpoints Is Required Step25: 5.4. Number Of Vertical Levels Is Required Step26: 5.5. Is Adaptive Grid Is Required Step27: 6. Key Properties --&gt; Tuning Applied Tuning methodology for aerosol model 6.1. Description Is Required Step28: 6.2. Global Mean Metrics Used Is Required Step29: 6.3. Regional Metrics Used Is Required Step30: 6.4. Trend Metrics Used Is Required Step31: 7. Transport Aerosol transport 7.1. Overview Is Required Step32: 7.2. Scheme Is Required Step33: 7.3. Mass Conservation Scheme Is Required Step34: 7.4. Convention Is Required Step35: 8. Emissions Atmospheric aerosol emissions 8.1. Overview Is Required Step36: 8.2. Method Is Required Step37: 8.3. Sources Is Required Step38: 8.4. Prescribed Climatology Is Required Step39: 8.5. Prescribed Climatology Emitted Species Is Required Step40: 8.6. Prescribed Spatially Uniform Emitted Species Is Required Step41: 8.7. Interactive Emitted Species Is Required Step42: 8.8. Other Emitted Species Is Required Step43: 8.9. Other Method Characteristics Is Required Step44: 9. Concentrations Atmospheric aerosol concentrations 9.1. Overview Is Required Step45: 9.2. Prescribed Lower Boundary Is Required Step46: 9.3. Prescribed Upper Boundary Is Required Step47: 9.4. Prescribed Fields Mmr Is Required Step48: 9.5. Prescribed Fields Mmr Is Required Step49: 10. Optical Radiative Properties Aerosol optical and radiative properties 10.1. Overview Is Required Step50: 11. Optical Radiative Properties --&gt; Absorption Absortion properties in aerosol scheme 11.1. Black Carbon Is Required Step51: 11.2. Dust Is Required Step52: 11.3. Organics Is Required Step53: 12. Optical Radiative Properties --&gt; Mixtures ** 12.1. External Is Required Step54: 12.2. Internal Is Required Step55: 12.3. Mixing Rule Is Required Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o ** 13.1. Size Is Required Step57: 13.2. Internal Mixture Is Required Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Radiative scheme for aerosol 14.1. Overview Is Required Step59: 14.2. Shortwave Bands Is Required Step60: 14.3. Longwave Bands Is Required Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Aerosol-cloud interactions 15.1. Overview Is Required Step62: 15.2. Twomey Is Required Step63: 15.3. Twomey Minimum Ccn Is Required Step64: 15.4. Drizzle Is Required Step65: 15.5. Cloud Lifetime Is Required Step66: 15.6. Longwave Bands Is Required Step67: 16. Model Aerosol model 16.1. Overview Is Required Step68: 16.2. Processes Is Required Step69: 16.3. Coupling Is Required Step70: 16.4. Gas Phase Precursors Is Required Step71: 16.5. Scheme Type Is Required Step72: 16.6. Bulk Scheme Species Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'hadgem3-gc31-hh', 'aerosol') Explanation: ES-DOC CMIP6 Model Properties - Aerosol MIP Era: CMIP6 Institute: MOHC Source ID: HADGEM3-GC31-HH Topic: Aerosol Sub-Topics: Transport, Emissions, Concentrations, Optical Radiative Properties, Model. Properties: 69 (37 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:14 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Software Properties 3. Key Properties --&gt; Timestep Framework 4. Key Properties --&gt; Meteorological Forcings 5. Key Properties --&gt; Resolution 6. Key Properties --&gt; Tuning Applied 7. Transport 8. Emissions 9. Concentrations 10. Optical Radiative Properties 11. Optical Radiative Properties --&gt; Absorption 12. Optical Radiative Properties --&gt; Mixtures 13. Optical Radiative Properties --&gt; Impact Of H2o 14. Optical Radiative Properties --&gt; Radiative Scheme 15. Optical Radiative Properties --&gt; Cloud Interactions 16. Model 1. Key Properties Key properties of the aerosol model 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of aerosol model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of aerosol model code End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.3. Scheme Scope Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Atmospheric domains covered by the aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.4. Basic Approximations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Basic approximations made in the aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 1.5. Prognostic Variables Form Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Prognostic variables in the aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 1.6. Number Of Tracers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of tracers in the aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 1.7. Family Approach Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are aerosol calculations generalized into families of species? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Software Properties Software properties of aerosol code 2.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Timestep Framework Physical properties of seawater in ocean 3.1. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Mathematical method deployed to solve the time evolution of the prognostic variables End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Split Operator Advection Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for aerosol advection (in seconds) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.3. Split Operator Physical Timestep Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Timestep for aerosol physics (in seconds). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.4. Integrated Timestep Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Timestep for the aerosol model (in seconds) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3.5. Integrated Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Specify the type of timestep scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Meteorological Forcings ** 4.1. Variables 3D Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Three dimensionsal forcing variables, e.g. U, V, W, T, Q, P, conventive mass flux End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Variables 2D Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Two dimensionsal forcing variables, e.g. land-sea mask definition End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Frequency Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Frequency with which meteological forcings are applied (in seconds). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Resolution Resolution in the aersosol model grid 5.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Canonical Horizontal Resolution Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 5.3. Number Of Horizontal Gridpoints Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 5.4. Number Of Vertical Levels Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Number of vertical levels resolved on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.5. Is Adaptive Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Default is False. Set true if grid resolution changes during execution. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Tuning Applied Tuning methodology for aerosol model 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics of the global mean state used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics of mean state used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Transport Aerosol transport 7.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of transport in atmosperic aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) Explanation: 7.2. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method for aerosol transport modeling End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 7.3. Mass Conservation Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method used to ensure mass conservation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 7.4. Convention Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Transport by convention End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Emissions Atmospheric aerosol emissions 8.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of emissions in atmosperic aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.2. Method Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method used to define aerosol species (several methods allowed because the different species may not use the same method). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.3. Sources Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Sources of the aerosol species are taken into account in the emissions scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) Explanation: 8.4. Prescribed Climatology Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify the climatology type for aerosol emissions End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Prescribed Climatology Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of aerosol species emitted and prescribed via a climatology End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.6. Prescribed Spatially Uniform Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of aerosol species emitted and prescribed as spatially uniform End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.7. Interactive Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of aerosol species emitted and specified via an interactive method End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.8. Other Emitted Species Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of aerosol species emitted and specified via an &quot;other method&quot; End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.9. Other Method Characteristics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Characteristics of the &quot;other method&quot; used for aerosol emissions End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Concentrations Atmospheric aerosol concentrations 9.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of concentrations in atmosperic aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.2. Prescribed Lower Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the lower boundary. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.3. Prescribed Upper Boundary Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed at the upper boundary. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.4. Prescribed Fields Mmr Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed as mass mixing ratios. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.5. Prescribed Fields Mmr Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 List of species prescribed as AOD plus CCNs. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10. Optical Radiative Properties Aerosol optical and radiative properties 10.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of optical and radiative properties End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11. Optical Radiative Properties --&gt; Absorption Absortion properties in aerosol scheme 11.1. Black Carbon Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Absorption mass coefficient of black carbon at 550nm (if non-absorbing enter 0) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Dust Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Absorption mass coefficient of dust at 550nm (if non-absorbing enter 0) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.3. Organics Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Absorption mass coefficient of organics at 550nm (if non-absorbing enter 0) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Optical Radiative Properties --&gt; Mixtures ** 12.1. External Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there external mixing with respect to chemical composition? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12.2. Internal Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is there internal mixing with respect to chemical composition? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Mixing Rule Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If there is internal mixing with respect to chemical composition then indicate the mixinrg rule End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 13. Optical Radiative Properties --&gt; Impact Of H2o ** 13.1. Size Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does H2O impact size? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 13.2. Internal Mixture Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does H2O impact internal mixture? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14. Optical Radiative Properties --&gt; Radiative Scheme Radiative scheme for aerosol 14.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of radiative scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.2. Shortwave Bands Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of shortwave bands End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.3. Longwave Bands Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of longwave bands End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Optical Radiative Properties --&gt; Cloud Interactions Aerosol-cloud interactions 15.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of aerosol-cloud interactions End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 15.2. Twomey Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the Twomey effect included? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.3. Twomey Minimum Ccn Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the Twomey effect is included, then what is the minimum CCN number? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 15.4. Drizzle Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the scheme affect drizzle? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 15.5. Cloud Lifetime Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the scheme affect cloud lifetime? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 15.6. Longwave Bands Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of longwave bands End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 16. Model Aerosol model 16.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of atmosperic aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) Explanation: 16.2. Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Processes included in the Aerosol model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.3. Coupling Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Other model components coupled to the Aerosol model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.4. Gas Phase Precursors Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of gas phase aerosol precursors. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.5. Scheme Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Type(s) of aerosol scheme used by the aerosols model (potentially multiple: some species may be covered by one type of aerosol scheme and other species covered by another type). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16.6. Bulk Scheme Species Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of species covered by the bulk scheme. End of explanation
9,798
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright (c) 2018 Geosoft Inc. https Step1: Calculate the depth from the tilt-angle and tilt-derivative The depth is the reciprocal of the horizontal gradient at the zero-contour of the tilt-angle. Step2: Plot depths as coloured symbols
Python Code: import geosoft.gxpy.gx as gx import geosoft.gxpy.utility as gxu import geosoft.gxpy.grid as gxgrd import geosoft.gxpy.grid_utility as gxgrdu import geosoft.gxpy.map as gxmap import geosoft.gxpy.view as gxview import geosoft.gxpy.group as gxgrp import numpy as np from IPython.display import Image gxc = gx.GXpy() gxu.check_version('9.4.0b0') # get the sample data from github url = 'https://github.com/GeosoftInc/gxpy/raw/master/examples/data/' grid = 'bhn_tmi_250m.grd' gxu.url_retrieve(url + grid) gxu.url_retrieve(url + grid + '.gi') gxu.url_retrieve(url + grid + '.xml') grd = gxgrd.Grid.open(grid) Image(grd.image_file(shade=True, pix_width=500)) Explanation: Copyright (c) 2018 Geosoft Inc. https://github.com/GeosoftInc/gxpy/blob/master/README.md BSD 2-clause License Tilt Depth The depth to magnetic sources from the edges of magnetic features can be determined from the reciprocal of the gradient of the tilt angle at the zero-crossover. The geosoft.gxpy.grid_utility.tilt_depth makes this calculation and returns a set of (x, y, z) locations that represent magnetic depth. Reference: Salem et al, 2008, Interpretation of magnetic data using tilt-angle derivatives The procedure implemented in Geosoft follows a process developed by Blakely, 2016. TMI Grid Calculate the depth from the tilt-angle and tilt-derivative Plot depths as coloured symbols TMI Grid This is Total Magnetic Intensity (TMI) data from the Black Hills Norite in South Australia. Reference: https://doi.org/10.1071/ASEG2016ab115 End of explanation td_pp = gxgrdu.tilt_depth(grd) Explanation: Calculate the depth from the tilt-angle and tilt-derivative The depth is the reciprocal of the horizontal gradient at the zero-contour of the tilt-angle. End of explanation with gxmap.Map.figure(td_pp.extent_xy, title='Depth from Tilt-Derivative', margins=(1, 3.5, 3, 1)) as gmap: map_file = gmap.file_name with gxview.View.open(gmap, "data") as v: cmap = gxgrp.Color_map(title='depth', unit_of_measure=td_pp.coordinate_system.unit_of_measure) depths = td_pp.pp[:,2] depths = depths[~np.isnan(depths)] cmap.set_linear(np.min(depths), 2000) # np.max(depths)) gxgrp.Color_symbols_group.new(v, 'tilt-depth', td_pp.pp, cmap) gxgrp.legend_color_bar(v, 'depth_legend', cmap=cmap) Image(gxmap.Map.open(map_file).image_file(pix_width=800)) Explanation: Plot depths as coloured symbols End of explanation
9,799
Given the following text description, write Python code to implement the functionality described below step by step Description: Ordinary Differential Equations Exercise 3 Imports Step1: Damped, driven nonlinear pendulum The equations of motion for a simple pendulum of mass $m$, length $l$ are Step4: Write a function derivs for usage with scipy.integrate.odeint that computes the derivatives for the damped, driven harmonic oscillator. The solution vector at each time will be $\vec{y}(t) = (\theta(t),\omega(t))$. Step5: Simple pendulum Use the above functions to integrate the simple pendulum for the case where it starts at rest pointing vertically upwards. In this case, it should remain at rest with constant energy. Integrate the equations of motion. Plot $E/m$ versus time. Plot $\theta(t)$ and $\omega(t)$ versus time. Tune the atol and rtol arguments of odeint until $E/m$, $\theta(t)$ and $\omega(t)$ are constant. Anytime you have a differential equation with a a conserved quantity, it is critical to make sure the numerical solutions conserve that quantity as well. This also gives you an opportunity to find other bugs in your code. The default error tolerances (atol and rtol) used by odeint are not sufficiently small for this problem. Start by trying atol=1e-3, rtol=1e-2 and then decrease each by an order of magnitude until your solutions are stable. Step7: Damped pendulum Write a plot_pendulum function that integrates the damped, driven pendulum differential equation for a particular set of parameters $[a,b,\omega_0]$. Use the initial conditions $\theta(0)=-\pi + 0.1$ and $\omega=0$. Decrease your atol and rtol even futher and make sure your solutions have converged. Make a parametric plot of $[\theta(t),\omega(t)]$ versus time. Use the plot limits $\theta \in [-2 \pi,2 \pi]$ and $\theta \in [-10,10]$ Label your axes and customize your plot to make it beautiful and effective. Step8: Here is an example of the output of your plot_pendulum function that should show a decaying spiral. Step9: Use interact to explore the plot_pendulum function with
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy.integrate import odeint from IPython.html.widgets import interact, fixed Explanation: Ordinary Differential Equations Exercise 3 Imports End of explanation g = 9.81 # m/s^2 l = 0.5 # length of pendulum, in meters tmax = 50. # seconds t = np.linspace(0, tmax, int(100*tmax)) Explanation: Damped, driven nonlinear pendulum The equations of motion for a simple pendulum of mass $m$, length $l$ are: $$ \frac{d^2\theta}{dt^2} = \frac{-g}{\ell}\sin\theta $$ When a damping and periodic driving force are added the resulting system has much richer and interesting dynamics: $$ \frac{d^2\theta}{dt^2} = \frac{-g}{\ell}\sin\theta - a \omega - b \sin(\omega_0 t) $$ In this equation: $a$ governs the strength of the damping. $b$ governs the strength of the driving force. $\omega_0$ is the angular frequency of the driving force. When $a=0$ and $b=0$, the energy/mass is conserved: $$E/m =g\ell(1-\cos(\theta)) + \frac{1}{2}\ell^2\omega^2$$ Basic setup Here are the basic parameters we are going to use for this exercise: End of explanation odeint. def derivs(y, t, a, b, omega0): Compute the derivatives of the damped, driven pendulum. Parameters ---------- y : ndarray The solution vector at the current time t[i]: [theta[i],omega[i]]. t : float The current time t[i]. a, b, omega0: float The parameters in the differential equation. Returns ------- dy : ndarray The vector of derviatives at t[i]: [dtheta[i],domega[i]]. theta,omega=y dtheta=omega domega=[(-g/l)*np.sin(theta)-a*omega-b*np.sin(omega0*t)] dy=[dtheta,domega] return dy assert np.allclose(derivs(np.array([np.pi,1.0]), 0, 1.0, 1.0, 1.0), [1.,-1.]) def energy(y): Compute the energy for the state array y. The state array y can have two forms: 1. It could be an ndim=1 array of np.array([theta,omega]) at a single time. 2. It could be an ndim=2 array where each row is the [theta,omega] at single time. Parameters ---------- y : ndarray, list, tuple A solution vector Returns ------- E/m : float (ndim=1) or ndarray (ndim=2) The energy per mass. theta=y[0,::1] omega=y[1,::1] Em=g*l*(1-np.cos(theta))+.5*l**2*omega**2 return Em a=np.ones((10,2)) print(a[::1,0]) #assert np.allclose(energy(np.array([np.pi,0])),g) assert np.allclose(energy(np.ones((10,2))), np.ones(10)*energy(np.array([1,1]))) Explanation: Write a function derivs for usage with scipy.integrate.odeint that computes the derivatives for the damped, driven harmonic oscillator. The solution vector at each time will be $\vec{y}(t) = (\theta(t),\omega(t))$. End of explanation # YOUR CODE HERE raise NotImplementedError() # YOUR CODE HERE raise NotImplementedError() # YOUR CODE HERE raise NotImplementedError() assert True # leave this to grade the two plots and their tuning of atol, rtol. Explanation: Simple pendulum Use the above functions to integrate the simple pendulum for the case where it starts at rest pointing vertically upwards. In this case, it should remain at rest with constant energy. Integrate the equations of motion. Plot $E/m$ versus time. Plot $\theta(t)$ and $\omega(t)$ versus time. Tune the atol and rtol arguments of odeint until $E/m$, $\theta(t)$ and $\omega(t)$ are constant. Anytime you have a differential equation with a a conserved quantity, it is critical to make sure the numerical solutions conserve that quantity as well. This also gives you an opportunity to find other bugs in your code. The default error tolerances (atol and rtol) used by odeint are not sufficiently small for this problem. Start by trying atol=1e-3, rtol=1e-2 and then decrease each by an order of magnitude until your solutions are stable. End of explanation def plot_pendulum(a=0.0, b=0.0, omega0=0.0): Integrate the damped, driven pendulum and make a phase plot of the solution. # YOUR CODE HERE raise NotImplementedError() Explanation: Damped pendulum Write a plot_pendulum function that integrates the damped, driven pendulum differential equation for a particular set of parameters $[a,b,\omega_0]$. Use the initial conditions $\theta(0)=-\pi + 0.1$ and $\omega=0$. Decrease your atol and rtol even futher and make sure your solutions have converged. Make a parametric plot of $[\theta(t),\omega(t)]$ versus time. Use the plot limits $\theta \in [-2 \pi,2 \pi]$ and $\theta \in [-10,10]$ Label your axes and customize your plot to make it beautiful and effective. End of explanation plot_pendulum(0.5, 0.0, 0.0) Explanation: Here is an example of the output of your plot_pendulum function that should show a decaying spiral. End of explanation # YOUR CODE HERE raise NotImplementedError() Explanation: Use interact to explore the plot_pendulum function with: a: a float slider over the interval $[0.0,1.0]$ with steps of $0.1$. b: a float slider over the interval $[0.0,10.0]$ with steps of $0.1$. omega0: a float slider over the interval $[0.0,10.0]$ with steps of $0.1$. End of explanation