html_url
stringlengths
48
51
title
stringlengths
5
268
comments
stringlengths
70
51.8k
body
stringlengths
0
29.8k
comment_length
int64
16
1.52k
text
stringlengths
164
54.1k
embeddings
sequence
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
It looks like it comes from `mwparserfromhell`. Would it be possible to get the bad `section` that causes this issue ? The `section` string is from `datasets/wikipedia.py:L548` ? You could just add a `try` statement and print the section if the line `section_text.append(section.strip_code().strip())` crashes. It will help us know if we have to fix it on our side or if it is a `mwparserfromhell` issue.
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
65
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` It looks like it comes from `mwparserfromhell`. Would it be possible to get the bad `section` that causes this issue ? The `section` string is from `datasets/wikipedia.py:L548` ? You could just add a `try` statement and print the section if the line `section_text.append(section.strip_code().strip())` crashes. It will help us know if we have to fix it on our side or if it is a `mwparserfromhell` issue.
[ -0.23549383878707886, -0.13825562596321106, 0.05525399371981621, 0.5212738513946533, 0.068022221326828, -0.08562106639146805, -0.1348952353000641, 0.3071226477622986, 0.20676656067371368, 0.2888489365577698, 0.34776097536087036, -0.07156272232532501, 0.059884700924158096, -0.4790317714214325, 0.05419120192527771, 0.06242503225803375, 0.24045701324939728, 0.17174476385116577, 0.014015885069966316, -0.1562187671661377, -0.056481827050447464, 0.1827823519706726, -0.31826668977737427, 0.407927006483078, -0.2893717288970947, 0.13335742056369781, 0.18214043974876404, 0.04534775763750076, -0.08739394694566727, -0.5024523138999939, 0.16021908819675446, -0.3359048068523407, 0.13286809623241425, 0.2546604573726654, -0.00012773479102179408, -0.1548774242401123, 0.5309701561927795, -0.07023414224386215, -0.21223653852939606, -0.03697257116436958, -0.030452338978648186, -0.10570111125707626, -0.0895877331495285, -0.2332392930984497, 0.2424844205379486, 0.24333064258098602, 0.19830752909183502, -0.07131727784872055, 0.3108445405960083, 0.33530187606811523, 0.076199010014534, 0.3869359791278839, 0.11240103840827942, 0.09677904844284058, 0.6936831474304199, 0.13776221871376038, 0.1252027004957199, 0.09443690627813339, 0.03843832388520241, -0.2644348442554474, 0.0345919132232666, 0.12561173737049103, -0.3363277018070221, -0.2502647042274475, -0.17786693572998047, -0.05768044292926788, 0.14726363122463226, -0.25393345952033997, 0.3059661090373993, 0.28665995597839355, 0.3650680482387543, -0.038162171840667725, 0.2111721634864807, -0.030804941430687904, -0.16377459466457367, 0.20197023451328278, 0.3874559700489044, 0.44301432371139526, -0.5954434871673584, 0.13326898217201233, 0.4793849587440491, -0.12778030335903168, -0.020447203889489174, 0.26401612162590027, -0.2832794785499573, 0.9716570377349854, 0.12240220606327057, 0.23897676169872284, 0.1774602234363556, -0.05690288543701172, -0.2832583785057068, -0.10965197533369064, -0.06922867894172668, 0.1504843831062317, -0.10251357406377792, -0.014369168318808079, 0.006446741055697203, -0.13863541185855865, 0.05634250491857529, -0.5317036509513855, -0.49281713366508484, 0.14157463610172272, -0.06944246590137482, 0.16357116401195526, 0.5938709378242493, -0.24850399792194366, 0.2245711237192154, 0.04209500178694725, 0.02997549995779991, -0.00626063859090209, 0.03816371411085129, 0.11981076747179031, -0.05761292949318886, 0.020076822489500046, -0.3506614565849304, 0.1356576681137085, 0.2376648187637329, -0.3176879584789276, -0.21142880618572235, 0.15973487496376038, -0.11075524240732193, -0.10382350534200668, -0.06932467967271805, 0.5388104915618896, -0.06888255476951599, 0.34791335463523865, -0.04198889806866646, -0.08670556545257568, -0.18872268497943878, -0.49388328194618225, 0.07549265027046204, 0.17806820571422577, -0.38061532378196716, 0.12496218830347061, -0.19303961098194122, 0.10500577837228775, 0.04494317248463631, 0.21122363209724426, -0.07762408256530762, -0.5137024521827698, -0.2019977867603302, -0.1689559370279312, 0.03940349444746971, 0.14156924188137054, 0.2810625433921814, 0.3291310966014862, 0.24461068212985992, -0.3599989712238312, -0.08711434155702591, 0.24074536561965942, -0.3769000172615051, -0.2545086145401001, -0.49040311574935913, -0.0008209006045944989, -0.03536493703722954, 0.2822313606739044, -0.5947403907775879, 0.05087599158287048, -0.012004543095827103, -0.05758014693856239, 0.1264093518257141, -0.1706041395664215, -0.16045750677585602, -0.05797488987445831, 0.19052322208881378, 0.45092788338661194, -0.07089012116193771, -0.1168513298034668, -0.17743335664272308, -0.21409282088279724, 0.20102821290493011, 0.22693605720996857, -0.1839904487133026, 0.519572913646698, -0.4584498405456543, 0.45830005407333374, 0.3113233149051666, -0.2849515378475189, -0.057135336101055145, -0.09794643521308899, -0.1427360326051712, -0.09169750660657883, 0.04003813490271568, -0.1657859832048416, 0.13804687559604645, -0.1873328536748886, -0.2785451114177704, 0.07209248840808868, 0.0015592314302921295, 0.20395846664905548, -0.19750842452049255, -0.3238655626773834, 0.2573685944080353, 0.12389950454235077, 0.16975179314613342, -0.09272502362728119, 0.15611696243286133, 0.38958221673965454, 0.5115288496017456, -0.08131334185600281, -0.057151563465595245, 0.020880090072751045, 0.222812220454216, 0.1539546102285385, -0.013247215189039707, -0.11784128099679947, -0.07524251192808151, 0.050977203994989395, 0.11575151234865189, 0.22667932510375977, -0.25394532084465027, -0.22280022501945496, -0.22155249118804932, 0.27938440442085266, 0.02493172697722912, 0.16366438567638397, 0.026454834267497063, 0.19393175840377808, -0.20004937052726746, 0.25644049048423767, -0.0753115564584732, -0.27954721450805664, -0.3256707787513733, 0.19355683028697968, -0.0402257926762104, 0.2280980944633484, -0.01927681639790535, -0.1150708794593811, -0.21683213114738464, -0.11588013172149658, 0.5183764100074768, 0.09092774987220764, -0.12538501620292664, -0.005553240422159433, 0.2218339592218399, 0.1994570642709732, -0.3905206322669983, -0.19282469153404236, -0.07357734441757202, -0.46237418055534363, 0.007324511185288429, 0.2881063222885132, 0.01475913543254137, -0.08817359805107117, 0.3043561577796936, 0.16237519681453705, 0.36302679777145386, 0.14953464269638062, -0.14183174073696136, 0.10467212647199631, 0.11111946403980255, -0.05884656310081482, 0.31650102138519287, -0.11349860578775406, 0.3225906789302826, 0.43235617876052856, -0.0882897675037384, -0.24564091861248016, 0.17719699442386627, -0.08210378140211105, 0.5798692107200623, -0.16132348775863647, 0.3835196793079376, 0.24824965000152588, -0.25147339701652527, -0.057346902787685394, 0.2625975012779236, -0.34264498949050903, 0.038819216191768646, -0.08556455373764038, -0.17106874287128448, 0.2608410120010376, 0.11249073594808578, 0.09507215023040771, 0.44156527519226074, 0.18597295880317688, 0.04930148273706436, 0.03345879167318344, -0.20505088567733765, -0.07291600108146667, -0.3128660321235657, -0.08426614850759506, -0.5056686401367188, 0.26369839906692505, -0.40267249941825867, -0.02032044529914856, -0.3042704463005066, -0.05646457150578499, -0.4614540636539459, -0.05380317196249962, -0.329303115606308, -0.10577288269996643, -0.15451562404632568, 0.23915329575538635, -0.18525688350200653, 0.04931207373738289, -0.09501748532056808, 0.2174655646085739, -0.09376882761716843, 0.43577852845191956, -0.1978895515203476, -0.43794023990631104, -0.4635021388530731, -0.1898544728755951, 0.5398992896080017, 0.2548498213291168, 0.05208021402359009, -0.13765104115009308, -0.260935515165329, -0.225126713514328, -0.10037166625261307, 0.4269748628139496, 0.12382949143648148, 0.012356444261968136, -0.026343805715441704, 0.2941504716873169, 0.14059031009674072, -0.3974821865558624, -0.021061431616544724, -0.26811733841896057, -0.04956842586398125, 0.07129326462745667, 0.06346774846315384, -0.08284466713666916, 0.15572266280651093, -0.05711239576339722, -0.38413944840431213, -0.09794770181179047, -0.2573729455471039, -0.15976914763450623, 0.16117067635059357, -0.4041491746902466, -0.11385854333639145, 0.1818559169769287, -0.41527876257896423, -0.2532142102718353, -0.1731048971414566, 0.08034425973892212, 0.08334257453680038, 0.09956654906272888, -0.13322193920612335, 0.22561044991016388, 0.025985347107052803, 0.023223603144288063, 0.06674037128686905, -0.4840843677520752, 0.38210999965667725, 0.14899000525474548, -0.06953046470880508, -0.22078238427639008, -0.05965116620063782, 0.21725089848041534, -0.14447709918022156, 0.15588949620723724, 0.06457791477441788, -0.15545737743377686, -0.36199483275413513, -0.22555668652057648, 0.43140265345573425, -0.17061476409435272, 0.34859514236450195, 0.08842096477746964, 0.7554534673690796, -0.1121194139122963, 0.17908157408237457, 0.2185540497303009, -0.0767456591129303, -0.04682187736034393, 0.20999038219451904, -0.1366436630487442, 0.1960785686969757, 0.00413610739633441, -0.3386886417865753, 0.5686202049255371, -0.18338142335414886, -0.4030361771583557, -0.19620274007320404, -0.10506092756986618, -0.5596653819084167, -0.5058274865150452, 0.12227369844913483, 0.43510597944259644, 0.1982283741235733, -0.05932989716529846, 0.31398719549179077, -0.08330589532852173, -0.3276597559452057, 0.13979384303092957, 0.3305216133594513, -0.15926000475883484, -0.12496939301490784, -0.2837725579738617, -0.09239509701728821, -0.06767233461141586, 0.08121145516633987, 0.17045557498931885, 0.4799146354198456, -0.02804962545633316, 0.03611938655376434, 0.009549695998430252, -0.041267987340688705, 0.5193567276000977, 0.2742490768432617, 0.36251556873321533, -0.010146372020244598, 0.171381413936615, -0.050231460481882095, -0.31922316551208496, -0.14499954879283905, 0.07955681532621384, 0.43235868215560913, -0.040552131831645966, -0.46249920129776, 0.080695740878582, -0.017864959314465523, 0.10463999211788177, -0.1688561737537384, 0.009762869216501713, -0.12073402851819992, -0.19274361431598663, -0.2643754780292511, 0.325937420129776, 0.12500852346420288, 0.0898502767086029, 0.18377885222434998, 0.13403727114200592, 0.22932741045951843, 0.13694415986537933, 0.05535515770316124, 0.08963807672262192, 0.12920014560222626, 0.017946993932127953, -0.23576241731643677, -0.17440243065357208, 0.20553633570671082, 0.19449734687805176, 0.2299950271844864, 0.6723674535751343, -0.10573018342256546, 0.005119792185723782, 0.13535399734973907, 0.18142807483673096, 0.4497557282447815, 0.012187983840703964, 0.35559219121932983, 0.2967020571231842, 0.2326451987028122, -0.2024058848619461, 0.17966391146183014, 0.20872262120246887, -0.03042513132095337, -0.37457308173179626, 0.08204466104507446, 0.5366148948669434, -0.11982838809490204, -0.07006434351205826, 0.1448967158794403, -0.08489609509706497, -0.3131199777126312, 0.31410008668899536, 0.32102224230766296, 1.3559772968292236, 0.188085675239563, 0.06674190610647202, 0.11775040626525879, 0.040606800466775894, 0.8324743509292603, -0.5170833468437195, -0.1036776676774025, -0.39595529437065125, 0.08502814918756485, -0.13505595922470093, -0.05789007619023323, 0.13595734536647797, 0.041562192142009735, -0.2892318367958069, 0.30578747391700745, 0.11487370729446411, 0.8049697875976562, 0.15436787903308868, 0.2144240289926529, 0.13210569322109222, -0.027072420343756676, -0.279348224401474, -0.056281089782714844, -0.3469494581222534, 0.26031196117401123, -0.3400980234146118, 0.11585792899131775, 0.16447512805461884, -0.3571959137916565, -0.7858273386955261, 0.16946634650230408, -0.16056548058986664, 0.12773841619491577, 0.048896729946136475, 0.005637434311211109, 0.20987989008426666, -0.172347754240036, 0.08029048144817352, 0.30556973814964294, -0.2605268061161041, 0.47055885195732117, -0.12501053512096405, -0.23334452509880066, 0.0665501281619072, 0.09017270058393478, -0.13048702478408813, -0.11009620130062103, -0.19469010829925537, 0.3893641531467438, 0.03258870914578438, -0.28138309717178345, -0.2252383679151535, -0.057639867067337036, 0.36742809414863586, 0.009479837492108345, -0.4063712954521179, 0.033069293946027756, 0.2243003249168396, -0.1330428421497345, 0.023427387699484825, 0.0034677861258387566, -0.139719158411026, -0.04470410197973251, 0.19334621727466583, -0.12995420396327972, -0.07933690398931503, 0.1953895390033722, -0.0774390920996666, -0.4564896523952484, 0.3584892749786377, 0.4071046710014343, -0.16135910153388977, -0.12806113064289093, -0.0884091705083847, -0.3836037516593933, -0.5540080070495605, -0.19972792267799377, -0.15115240216255188, -0.01289988774806261, -0.06899555027484894, 0.12370887398719788, 0.36961209774017334, -0.06930915266275406, -0.07825303077697754, -0.382503867149353, 0.020622476935386658, 0.03971412032842636, -0.1970060020685196, -0.03938009962439537, -0.03656754642724991, 0.12315569818019867, -0.22335970401763916, 0.11753293871879578, -0.09844771027565002, -0.024484040215611458, -0.42434200644493103, 0.18595601618289948, 0.42813488841056824, 0.274380087852478, -0.3331550657749176, -0.15907295048236847, -0.0666215568780899, 0.2899634838104248, 0.04784796014428139, 0.0016908355755731463, -0.15110091865062714, 0.2825159728527069, 0.26117581129074097, -0.10198605805635452, 0.20510339736938477, 0.009290894493460655, 0.33711811900138855, -0.062077444046735764, -0.0645483061671257, -0.024771692231297493, 0.0066657159477472305, 0.2926815450191498, 0.3140415847301483, 0.13979585468769073, -0.5953754782676697, 0.2701895236968994, 0.06475506722927094, 0.5508183240890503, 0.056993693113327026, 0.34072041511535645, 0.0993158370256424, 0.0030707144178450108, -0.16588927805423737, 0.240172877907753, 0.18459303677082062, 0.24944718182086945, 0.07458118349313736, 0.16626814007759094, -0.1344640552997589, 0.11949598044157028, -0.17316077649593353, 0.19676464796066284, -0.2846856713294983, -0.17943012714385986, 0.526550829410553, 0.05294400453567505, -0.12869462370872498, 0.0018366217846050858, 0.43135973811149597, -0.08539681136608124, -0.29114431142807007, 0.2447132021188736, -0.15680183470249176, -0.2636807858943939, 0.3740334212779999, 0.13540495932102203, 0.3472863435745239, 0.08615438640117645, 0.11398449540138245, 0.0974196344614029, -0.07081613689661026, 0.20935788750648499, -0.019656356424093246, -0.22258025407791138, 0.39596226811408997, 0.5164228677749634, 0.039136581122875214, 0.21923178434371948, 0.14542239904403687, 0.09875869750976562, -0.058323271572589874, -0.15027642250061035, 0.20719949901103973, 0.6587827205657959, 0.00907573290169239, 0.11815489828586578, -0.016238290816545486, 0.0003630494175013155, 0.11902528256177902, -0.16178900003433228, -0.4723659157752991, 0.22159934043884277, -0.27706587314605713, -0.02084285393357277, -0.38400304317474365, -0.104166679084301, -0.300626665353775, 0.2633967995643616, 0.09935411810874939, -0.09731312096118927, -0.27572834491729736, 0.28715020418167114, -0.40271785855293274, 0.11545779556035995, -0.0865747258067131, 0.027918793261051178, 0.011255943216383457, -0.30688023567199707, 0.10570566356182098, -0.22018744051456451, 0.023019561544060707, -0.003665764117613435, 0.14860981702804565, 0.4637703597545624, 0.5263074040412903, -0.24493084847927094, -0.06904501467943192, 0.13631971180438995, 0.19986052811145782, -0.05094403401017189, 0.04710378497838974, 0.009056941606104374, 0.4417715072631836, 0.12171471863985062, 0.03329169750213623, -0.1301124095916748, -0.26721858978271484, 0.09092182666063309, -0.10365019738674164, -0.08549848198890686, -0.27361759543418884, -0.12429177016019821, -0.0035991580225527287, -0.2767068147659302, -0.011925779283046722, -0.24841433763504028, 0.22768640518188477, 0.14291685819625854, 0.21549412608146667, 0.14508257806301117, 0.018153106793761253, -0.03326786682009697, 0.056259751319885254, 0.2175431251525879, 0.35810214281082153, 0.3341640532016754, -0.20067204535007477, -0.5086641907691956, -0.7260996699333191, 0.39486587047576904, -0.3475840091705322, -0.30042460560798645, 0.19891010224819183, -0.09782315790653229, 0.1319255530834198, 0.46550220251083374, 0.1446797251701355, 0.21050815284252167, -0.2215527445077896, 0.17115630209445953, -0.22060729563236237, -0.2862982451915741, 0.09096407890319824, 0.004000918008387089, -0.17307189106941223, -0.4309077560901642, 0.3013599216938019, -0.12497822195291519, -0.10849954932928085, -0.12390708923339844, -0.30518394708633423, -0.0622992180287838, -0.31060171127319336, 0.5700956583023071, 0.022432757541537285, 0.36960241198539734, -0.08371719717979431, -0.014917677268385887, -0.11990498006343842, -0.10478498786687851, 0.005030236206948757, -0.027887454256415367, -0.14313042163848877, 0.35424739122390747, 0.10514336824417114, 0.2677585780620575, -0.512677788734436, 0.32207009196281433, 0.1184464544057846, 0.14901074767112732, -0.21591424942016602, -0.027439067140221596, -0.23201395571231842, 0.05370170995593071, 0.16112728416919708, 0.0457918755710125, 0.06877800822257996, 0.2690194845199585, -0.35089927911758423, -0.12071090936660767, 0.23044566810131073, -0.48414355516433716, -0.27774280309677124, -0.33215242624282837, 0.426787793636322, -0.08946719765663147, -0.27103859186172485, -0.23656818270683289, -0.1027492955327034, 0.1876012086868286, 0.1310235857963562, -0.04902265593409538, -0.23202036321163177, -0.1751691997051239, -0.07894142717123032, -0.020545201376080513, -0.007694432977586985, 0.19719341397285461, -0.5537317991256714, 0.24441538751125336, -0.4019877314567566 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
Hi, Thank you for you answer. I have try to print the bad section using `try` and `except`, but it is a bit weird as the error seems to appear 3 times for instance, but the two first error does not print anything (as if the function did not go in the `except` part). For the third one, I got that (I haven't display the entire text) : > error : ==== Parque nacional Cajas ==== > {{AP|Parque nacional Cajas}} > [[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]] > El parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33 > [[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol > leturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores. > Para acceder al parque desde la costa, la vía Molleturo-Cuenca es también la mejor opción. How can I display the link instead of the text ? I suppose it will help you more
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
234
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` Hi, Thank you for you answer. I have try to print the bad section using `try` and `except`, but it is a bit weird as the error seems to appear 3 times for instance, but the two first error does not print anything (as if the function did not go in the `except` part). For the third one, I got that (I haven't display the entire text) : > error : ==== Parque nacional Cajas ==== > {{AP|Parque nacional Cajas}} > [[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]] > El parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33 > [[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol > leturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores. > Para acceder al parque desde la costa, la vía Molleturo-Cuenca es también la mejor opción. How can I display the link instead of the text ? I suppose it will help you more
[ -0.2193865031003952, -0.2222701460123062, 0.04206099733710289, 0.36096689105033875, 0.0011142395669594407, -0.05777628719806671, -0.24175456166267395, 0.20955340564250946, 0.3074944317340851, 0.19320768117904663, 0.3478330373764038, 0.010102464817464352, 0.004232512321323156, -0.4349839687347412, -0.09329943358898163, -0.02336689457297325, 0.29528892040252686, 0.1979203075170517, 0.04570244625210762, -0.20405563712120056, -0.007366672158241272, 0.18823030591011047, -0.4374736249446869, 0.3260338604450226, -0.1881960928440094, 0.11314083635807037, 0.15817953646183014, -0.13931472599506378, 0.014604204334318638, -0.37554311752319336, -0.007420615293085575, -0.3144277334213257, 0.09271463006734848, 0.3675204813480377, -0.00012742722174152732, -0.2371363639831543, 0.4585932791233063, -0.09678588062524796, -0.11382070928812027, -0.19581618905067444, -0.09124793857336044, -0.14596986770629883, -0.11450858414173126, -0.295796662569046, 0.27066904306411743, 0.022173799574375153, 0.26236703991889954, -0.26418277621269226, 0.37277963757514954, 0.3115122616291046, 0.058483537286520004, 0.11521808058023453, 0.235428586602211, 0.06525950133800507, 0.47284501791000366, 0.11471562832593918, 0.1719972789287567, -0.016829974949359894, 0.0028642844408750534, -0.05669858679175377, 0.17470626533031464, 0.2266063690185547, -0.35177963972091675, -0.2806597352027893, -0.14325131475925446, 0.019119180738925934, 0.33030620217323303, -0.39328551292419434, 0.40768277645111084, 0.1749071627855301, 0.33416658639907837, -0.06309765577316284, 0.352811336517334, -0.00913381576538086, -0.20084163546562195, 0.19680292904376984, 0.4043152332305908, 0.5426403284072876, -0.419717401266098, 0.06919997185468674, 0.271842360496521, -0.09638606756925583, -0.10639871656894684, 0.3659133315086365, -0.15457557141780853, 0.8306195735931396, 0.023301899433135986, 0.27874958515167236, 0.07192779332399368, -0.020850224420428276, -0.06377094984054565, -0.2760688066482544, -0.024061473086476326, 0.2852087914943695, -0.04583001136779785, 0.06040462106466293, -0.1112738624215126, -0.12041322141885757, -0.034483376890420914, -0.5352157354354858, -0.31888511776924133, 0.016314836218953133, 0.05203527584671974, 0.25360816717147827, 0.5370837450027466, -0.18106696009635925, 0.17442046105861664, 0.05045127123594284, -0.1436624377965927, -0.036211591213941574, 0.05035775899887085, -0.014971966855227947, 0.012663927860558033, -0.003157920902594924, -0.4311354458332062, 0.161244198679924, 0.20760253071784973, -0.18558664619922638, -0.04317720979452133, 0.34129798412323, -0.20803752541542053, -0.038911644369363785, -0.10027501732110977, 0.42281097173690796, -0.06401019543409348, 0.3921247124671936, 0.043295226991176605, -0.0033581482712179422, -0.11120801419019699, -0.47317400574684143, 0.01161247305572033, 0.37636345624923706, -0.3916968107223511, 0.1339964121580124, -0.2620748281478882, 0.21827642619609833, 0.12394030392169952, 0.2374810129404068, -0.057565391063690186, -0.6647427678108215, -0.163694366812706, -0.31961753964424133, 0.08898141235113144, 0.07216054201126099, 0.29931095242500305, 0.447359174489975, 0.22032248973846436, -0.3982049524784088, -0.011189284734427929, 0.24413853883743286, -0.3707469403743744, -0.10914590209722519, -0.5119052529335022, 0.03270033001899719, -0.0072274780832231045, 0.2863238453865051, -0.6130173802375793, 0.07103521376848221, -0.06083054840564728, -0.2034669667482376, 0.1553458869457245, -0.1366093009710312, -0.0946945995092392, -0.04013112187385559, 0.1314941644668579, 0.28437620401382446, -0.18425346910953522, 0.10151540488004684, -0.16003675758838654, -0.10208113491535187, 0.4438626766204834, 0.10190850496292114, -0.07998432219028473, 0.6557810306549072, -0.4682842791080475, 0.6272989511489868, 0.2062436193227768, -0.33827775716781616, 0.11297521740198135, 0.09437777101993561, -0.029743706807494164, -0.16027694940567017, -0.01754283905029297, -0.22832906246185303, 0.1636880338191986, -0.07943183928728104, -0.3810732960700989, -0.016095297411084175, 0.020553968846797943, 0.2330000400543213, -0.19598235189914703, -0.2287374883890152, 0.1465279459953308, 0.019892068579792976, 0.19137246906757355, -0.08261824399232864, 0.14037422835826874, 0.430759459733963, 0.4653139114379883, -0.15702500939369202, 0.03320096433162689, 0.08296284824609756, 0.12457861006259918, 0.2342987358570099, -0.12931348383426666, 0.022203586995601654, -0.05318287014961243, -0.04521719738841057, 0.07894092053174973, 0.1511835753917694, -0.2835964560508728, -0.04151764139533043, -0.22713163495063782, 0.21974071860313416, -0.09273950010538101, 0.08088594675064087, 0.06595391780138016, 0.16509810090065002, -0.14871540665626526, 0.39344900846481323, 0.07594490796327591, -0.23050819337368011, -0.2285713255405426, 0.1141638234257698, -0.07203167676925659, 0.25435665249824524, -0.1999928057193756, -0.18697087466716766, -0.33684855699539185, -0.1040869802236557, 0.5295459628105164, 0.020655309781432152, -0.126514732837677, 0.15631240606307983, 0.2563985586166382, 0.12107846885919571, -0.4433177709579468, -0.1928882896900177, -0.04008810222148895, -0.5070744156837463, 0.14195701479911804, 0.26675596833229065, 0.2609444856643677, -0.0980919748544693, 0.16882427036762238, 0.055104810744524, 0.33464449644088745, 0.04819940775632858, -0.16432105004787445, 0.04712875932455063, 0.09512444585561752, 0.01967715285718441, 0.38599205017089844, -0.2309047430753708, 0.29759395122528076, 0.5082978010177612, -0.1537843644618988, -0.36125701665878296, 0.19454960525035858, -0.15084399282932281, 0.5056218504905701, -0.01854563318192959, 0.17313528060913086, 0.11719369888305664, -0.19680699706077576, -0.059871990233659744, 0.2999536097049713, -0.3947972059249878, 0.06854545325040817, -0.09935944527387619, -0.14917609095573425, 0.4354543387889862, 0.25584396719932556, 0.07677337527275085, 0.4650769531726837, 0.2169232964515686, -0.059420228004455566, 0.1005321815609932, -0.26425379514694214, -0.023703234270215034, -0.20294231176376343, -0.21032683551311493, -0.373958557844162, 0.23630017042160034, -0.28539973497390747, -0.010783092118799686, -0.29334399104118347, -0.037745047360658646, -0.3747016191482544, 0.1343974769115448, -0.31282955408096313, -0.1369609236717224, -0.07216931879520416, 0.26544561982154846, -0.25748491287231445, 0.10887978971004486, 0.016319552436470985, 0.08901253342628479, -0.08744983375072479, 0.3828768730163574, -0.3068621754646301, -0.286013126373291, -0.4424818158149719, -0.17942339181900024, 0.48419123888015747, 0.2453584522008896, 0.08988456428050995, -0.11311831325292587, -0.03401876613497734, -0.2677021324634552, -0.15570656955242157, 0.44352659583091736, -0.10226960480213165, -0.04439016804099083, -0.038353417068719864, 0.24061264097690582, -0.008652493357658386, -0.3758123517036438, -0.0006718221702612936, -0.3829982876777649, -0.04584753140807152, 0.08858620375394821, 0.03539317101240158, -0.15598636865615845, 0.040686629712581635, -0.026982927694916725, -0.23937705159187317, -0.0689101591706276, -0.3220786154270172, -0.11888286471366882, 0.1221831738948822, -0.3866705000400543, 0.08277320861816406, 0.20168690383434296, -0.3991754949092865, -0.21271425485610962, -0.19589458405971527, 0.029410982504487038, 0.07836776971817017, 0.020811842754483223, -0.17797784507274628, 0.3785982131958008, 0.033809080719947815, 0.17183759808540344, -0.11268819123506546, -0.5451942682266235, 0.40997204184532166, 0.07499958574771881, -0.17718514800071716, -0.32842811942100525, 0.06079213693737984, 0.2713207006454468, -0.18990348279476166, 0.12888367474079132, 0.06280072778463364, -0.15092377364635468, -0.3709455728530884, -0.2282284051179886, 0.3510293960571289, -0.1403122991323471, 0.35592931509017944, 0.04963768646121025, 0.6082239747047424, -0.026561493054032326, 0.23322489857673645, 0.3531583547592163, -0.04318010061979294, 0.04477329179644585, 0.08990402519702911, -0.044580549001693726, 0.31611204147338867, 0.1238502487540245, -0.34871700406074524, 0.5429701209068298, -0.2769102156162262, -0.27450093626976013, -0.218230202794075, -0.011458402499556541, -0.6698668599128723, -0.43835484981536865, 0.2053494155406952, 0.5381641983985901, 0.17441785335540771, -0.21527397632598877, 0.22178247570991516, -0.09326639771461487, -0.33287692070007324, -0.11351460218429565, 0.1445525884628296, -0.05766017735004425, -0.09417859464883804, -0.23488152027130127, -0.02497776970267296, -0.10070911794900894, 0.266074538230896, 0.15739552676677704, 0.35853856801986694, -0.04583371430635452, 0.015483622439205647, 0.0825778990983963, 0.09378403425216675, 0.45198795199394226, 0.2045944333076477, 0.21196706593036652, -0.10284994542598724, 0.07416310906410217, -0.06308481097221375, -0.3478735387325287, -0.3351355791091919, -0.08633167296648026, 0.5785006880760193, -0.12388921529054642, -0.48157110810279846, -0.018839582800865173, -0.08020291477441788, 0.06550956517457962, -0.057517219334840775, -0.09266939014196396, -0.050981611013412476, -0.13907001912593842, -0.4148446023464203, 0.31354576349258423, 0.28914958238601685, 0.13600260019302368, 0.23782168328762054, 0.13199365139007568, 0.25268739461898804, 0.11430971324443817, -0.0005185572081245482, -0.019073184579610825, 0.10958954691886902, 0.032437749207019806, -0.3732856214046478, -0.15983469784259796, 0.15721213817596436, 0.09436167031526566, 0.12165908515453339, 0.5638348460197449, -0.19612227380275726, -0.011466465890407562, -0.04034331068396568, 0.28470221161842346, 0.4375058114528656, 0.07137997448444366, 0.12141036242246628, 0.35621345043182373, 0.33273521065711975, -0.03988605737686157, 0.23765474557876587, 0.22014181315898895, 0.008926657028496265, -0.313692182302475, 0.12027999013662338, 0.35561656951904297, 0.13892923295497894, -0.07408016175031662, -0.0028915531001985073, 0.14563077688217163, -0.27083298563957214, 0.31932327151298523, 0.31957903504371643, 1.3723797798156738, 0.2524782121181488, -0.012291104532778263, 0.0701550543308258, 0.11585815250873566, 0.8574774861335754, -0.5321191549301147, -0.024794021621346474, -0.3011974096298218, 0.1800721436738968, -0.11567497998476028, 0.02214139513671398, 0.17938432097434998, 0.009346846491098404, -0.4308924078941345, 0.3299597203731537, 0.09153097867965698, 0.6716512441635132, 0.13982772827148438, 0.09622209519147873, 0.3284429609775543, -0.046092648059129715, -0.09646008163690567, -0.02224697172641754, -0.27503570914268494, 0.054385196417570114, -0.3748599886894226, 0.03840281441807747, 0.20375625789165497, -0.498711496591568, -0.6637940406799316, 0.15886621177196503, -0.14763964712619781, 0.07618919759988785, -0.04807399585843086, 0.020771553739905357, 0.3031443953514099, -0.05410578101873398, 0.1048753559589386, 0.324384868144989, -0.2084730565547943, 0.27753758430480957, -0.09196486324071884, -0.2851913273334503, -0.16175465285778046, -0.030914390459656715, -0.1557297557592392, -0.11145664006471634, -0.21506163477897644, 0.4981529414653778, 0.00003368998659425415, -0.20027101039886475, -0.20032498240470886, 0.020661145448684692, 0.3636724650859833, 0.02198742888867855, -0.39029741287231445, 0.06018033251166344, 0.06969001889228821, -0.09990493953227997, -0.0018914155662059784, -0.082793228328228, -0.1272900402545929, 0.009606870822608471, 0.26554277539253235, -0.19004319608211517, -0.000851786753628403, 0.24477437138557434, -0.08151354640722275, -0.46898192167282104, 0.35241344571113586, 0.354000985622406, -0.22343112528324127, -0.17343972623348236, -0.2212515026330948, -0.47350430488586426, -0.5677688121795654, -0.16660566627979279, -0.146772101521492, 0.05111362785100937, -0.04566836357116699, 0.21045073866844177, 0.3831044137477875, -0.022668082267045975, 0.07474831491708755, -0.32720983028411865, 0.11521245539188385, 0.019420374184846878, -0.35649609565734863, 0.0015363040147349238, -0.043427255004644394, 0.2575896084308624, -0.06838000565767288, 0.00015068810898810625, -0.10801077634096146, 0.071494460105896, -0.5082089900970459, 0.20363184809684753, 0.2900802195072174, 0.22271893918514252, -0.38655921816825867, -0.11884500086307526, 0.004873769823461771, 0.3294779360294342, -0.09604532271623611, -0.019660957157611847, -0.07842139899730682, 0.28020280599594116, 0.478346586227417, -0.1615959256887436, 0.04820159822702408, 0.10211499035358429, 0.2719171643257141, -0.12990298867225647, -0.10130217671394348, -0.15920205414295197, -0.03408613055944443, 0.31439319252967834, 0.1749914139509201, 0.25559502840042114, -0.5346774458885193, 0.10848381370306015, 0.10956666618585587, 0.6087122559547424, 0.039973996579647064, 0.304630845785141, 0.1993797868490219, -0.036480873823165894, -0.18201203644275665, 0.18664789199829102, 0.3626473844051361, 0.30186405777931213, 0.03685466945171356, 0.04865722730755806, -0.1126030758023262, 0.11417007446289062, -0.22405092418193817, 0.19155743718147278, -0.31640195846557617, -0.2697432041168213, 0.5364496111869812, 0.10279270261526108, -0.142402783036232, 0.20942449569702148, 0.5686331987380981, 0.17056836187839508, -0.25664857029914856, 0.2080310732126236, -0.055971141904592514, -0.38401272892951965, 0.42071732878685, 0.16809608042240143, 0.3814954161643982, -0.008403194136917591, 0.07410050183534622, -0.028921620920300484, -0.25066864490509033, 0.26439398527145386, -0.01089045312255621, 0.007177166175097227, 0.23462024331092834, 0.4581395387649536, -0.13358652591705322, 0.09077882766723633, 0.133170485496521, 0.18491186201572418, -0.08697871118783951, -0.21929556131362915, 0.14294154942035675, 0.5942342281341553, 0.06617380678653717, -0.040924813598394394, -0.1632828712463379, -0.3828212022781372, 0.20216937363147736, -0.13074205815792084, -0.42448410391807556, 0.26496249437332153, -0.22299684584140778, 0.14158427715301514, -0.4221540093421936, -0.08250743895769119, -0.28751447796821594, 0.15611125528812408, 0.1895638108253479, -0.1085217073559761, -0.2405119240283966, 0.340658962726593, -0.3534330129623413, 0.009076072834432125, -0.21952728927135468, -0.03452455252408981, -0.11567172408103943, -0.3618555963039398, 0.21840588748455048, -0.06041906028985977, -0.022762499749660492, -0.14663177728652954, 0.3151836395263672, 0.5144751071929932, 0.5036406517028809, -0.3321057856082916, 0.009695901535451412, -0.012540017254650593, 0.21408528089523315, 0.040192436426877975, 0.13966600596904755, 0.1544337123632431, 0.3083744943141937, 0.09841955453157425, 0.04429874196648598, -0.10319915413856506, -0.14438748359680176, 0.2481875866651535, 0.035242967307567596, 0.08717206865549088, -0.3964235484600067, -0.042759865522384644, 0.21136511862277985, -0.29746946692466736, -0.062440916895866394, -0.447871595621109, 0.1580038219690323, 0.14008519053459167, 0.05918202921748161, 0.14783671498298645, 0.033392228186130524, -0.02524615079164505, 0.01964508928358555, 0.16994918882846832, 0.3986816704273224, 0.3376193642616272, -0.285045862197876, -0.4959663152694702, -0.5544903874397278, 0.459861159324646, -0.3090629279613495, -0.2179691642522812, -0.0053545283153653145, 0.02879827283322811, 0.12464159727096558, 0.4619233012199402, 0.10057133436203003, 0.13583789765834808, -0.3769994080066681, 0.3481941521167755, -0.21029500663280487, -0.020290177315473557, 0.2572196424007416, -0.034018877893686295, -0.051865119487047195, -0.1813146024942398, 0.23957513272762299, -0.21291661262512207, -0.05216871574521065, -0.10758635401725769, -0.11473692208528519, -0.20438139140605927, -0.18759819865226746, 0.5656718611717224, 0.18079562485218048, 0.3579047620296478, -0.10336600244045258, -0.03318947181105614, -0.07599491626024246, 0.10376353561878204, 0.013417325913906097, 0.009763089008629322, 0.12764368951320648, 0.17638468742370605, 0.01841622218489647, 0.2718157172203064, -0.4293496906757355, 0.2451840192079544, 0.08266674727201462, 0.13522545993328094, -0.31059736013412476, -0.04884963110089302, -0.20558883249759674, 0.11156251281499863, -0.10699755698442459, -0.05317229777574539, -0.0025393806863576174, 0.2643369734287262, -0.3947310745716095, -0.12867143750190735, 0.27915170788764954, -0.39821857213974, -0.3795571029186249, -0.3196076452732086, 0.29292285442352295, -0.12394116818904877, -0.04978330805897713, -0.11906228959560394, 0.029518350958824158, 0.18058347702026367, 0.13517248630523682, -0.1762547343969345, -0.23945429921150208, -0.2590579390525818, -0.20079593360424042, 0.03015829063951969, -0.005294709000736475, 0.15393196046352386, -0.3781680464744568, 0.17788147926330566, -0.3950207531452179 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
The error appears several times as Apache Beam retries to process examples up to 4 times irc. I just tried to run this text into `mwparserfromhell` but it worked without the issue. I used this code (from the `wikipedia.py` script): ```python import mwparserfromhell as parser import re import six raw_content = r"""==== Parque nacional Cajas ==== {{AP|Parque nacional Cajas}} [[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]] El parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33 [[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol leturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores. """ wikicode = parser.parse(raw_content) # Filters for references, tables, and file/image links. re_rm_wikilink = re.compile("^(?:File|Image|Media):", flags=re.IGNORECASE | re.UNICODE) def rm_wikilink(obj): return bool(re_rm_wikilink.match(six.text_type(obj.title))) def rm_tag(obj): return six.text_type(obj.tag) in {"ref", "table"} def rm_template(obj): return obj.name.lower() in {"reflist", "notelist", "notelist-ua", "notelist-lr", "notelist-ur", "notelist-lg"} def try_remove_obj(obj, section): try: section.remove(obj) except ValueError: # For unknown reasons, objects are sometimes not found. pass section_text = [] for section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True): for obj in section.ifilter_wikilinks(matches=rm_wikilink, recursive=True): try_remove_obj(obj, section) for obj in section.ifilter_templates(matches=rm_template, recursive=True): try_remove_obj(obj, section) for obj in section.ifilter_tags(matches=rm_tag, recursive=True): try_remove_obj(obj, section) section_text.append(section.strip_code().strip()) ```
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
264
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` The error appears several times as Apache Beam retries to process examples up to 4 times irc. I just tried to run this text into `mwparserfromhell` but it worked without the issue. I used this code (from the `wikipedia.py` script): ```python import mwparserfromhell as parser import re import six raw_content = r"""==== Parque nacional Cajas ==== {{AP|Parque nacional Cajas}} [[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]] El parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33 [[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol leturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores. """ wikicode = parser.parse(raw_content) # Filters for references, tables, and file/image links. re_rm_wikilink = re.compile("^(?:File|Image|Media):", flags=re.IGNORECASE | re.UNICODE) def rm_wikilink(obj): return bool(re_rm_wikilink.match(six.text_type(obj.title))) def rm_tag(obj): return six.text_type(obj.tag) in {"ref", "table"} def rm_template(obj): return obj.name.lower() in {"reflist", "notelist", "notelist-ua", "notelist-lr", "notelist-ur", "notelist-lg"} def try_remove_obj(obj, section): try: section.remove(obj) except ValueError: # For unknown reasons, objects are sometimes not found. pass section_text = [] for section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True): for obj in section.ifilter_wikilinks(matches=rm_wikilink, recursive=True): try_remove_obj(obj, section) for obj in section.ifilter_templates(matches=rm_template, recursive=True): try_remove_obj(obj, section) for obj in section.ifilter_tags(matches=rm_tag, recursive=True): try_remove_obj(obj, section) section_text.append(section.strip_code().strip()) ```
[ -0.24391591548919678, -0.19704186916351318, 0.06708194315433502, 0.31342586874961853, 0.027156786993145943, -0.03122449666261673, -0.119512178003788, 0.210985466837883, 0.33122918009757996, 0.14182545244693756, 0.3229500949382782, 0.01704253815114498, 0.05120940878987312, -0.4928646981716156, -0.17448581755161285, -0.003791291732341051, 0.2605280578136444, 0.1266947090625763, -0.0522867776453495, -0.20899789035320282, 0.00765419565141201, 0.14217141270637512, -0.4332660436630249, 0.27171286940574646, -0.25200796127319336, 0.13043226301670074, 0.092976875603199, -0.01057497225701809, 0.03739679604768753, -0.46904826164245605, -0.04031208157539368, -0.22404690086841583, 0.16706715524196625, 0.284432977437973, -0.00012670639262069017, -0.21080940961837769, 0.4160573184490204, -0.09508997946977615, -0.183173269033432, -0.17165380716323853, 0.007189042400568724, -0.18808729946613312, -0.044271841645240784, -0.30144795775413513, 0.28845638036727905, 0.018589098006486893, 0.26991331577301025, -0.2863653600215912, 0.36833083629608154, 0.2292596697807312, 0.04562141001224518, 0.1972637176513672, 0.2272137701511383, 0.029124790802598, 0.450504869222641, 0.0643211305141449, 0.1650119423866272, -0.052069175988435745, -0.043265119194984436, -0.09657842665910721, 0.054221589118242264, 0.28100311756134033, -0.3560194969177246, -0.10970449447631836, -0.10743644833564758, -0.033953867852687836, 0.3892696499824524, -0.2821044921875, 0.40644922852516174, 0.0963137224316597, 0.35521841049194336, 0.01649230159819126, 0.2594860792160034, 0.015800999477505684, -0.07244312018156052, 0.27571433782577515, 0.37526100873947144, 0.5088475942611694, -0.38792458176612854, 0.06514538824558258, 0.3225114643573761, -0.016643783077597618, -0.07908808439970016, 0.24557960033416748, -0.0721081793308258, 0.7677212953567505, 0.12271565198898315, 0.37478145956993103, -0.025941915810108185, -0.06332623213529587, 0.05171135812997818, -0.31460127234458923, -0.019016675651073456, 0.3535817563533783, -0.10865293443202972, 0.1599094271659851, -0.15634748339653015, -0.08531814813613892, -0.00029253331013023853, -0.4934476912021637, -0.4367772936820984, 0.061435766518116, 0.10880342870950699, 0.257360577583313, 0.5199111700057983, -0.14115126430988312, 0.18637417256832123, -0.0718507468700409, -0.011421586386859417, -0.0882612019777298, -0.07324516773223877, 0.06596449762582779, -0.0933443233370781, -0.06628916412591934, -0.3326285481452942, 0.10627441853284836, 0.1409580111503601, -0.0423312671482563, -0.05925290286540985, 0.28945156931877136, -0.3620600998401642, -0.07682393491268158, -0.20413722097873688, 0.4364100396633148, -0.03361915796995163, 0.5642701387405396, 0.2208687961101532, 0.05347362533211708, -0.12164939939975739, -0.6564369797706604, 0.04448658600449562, 0.1973569095134735, -0.3663574755191803, 0.16616065800189972, -0.2031693011522293, 0.27607035636901855, 0.11571706831455231, 0.1909150630235672, -0.07094500213861465, -0.6753610968589783, -0.1433451622724533, -0.14778418838977814, -0.11649903655052185, 0.07265094667673111, 0.3854917585849762, 0.4602943956851959, 0.2932550609111786, -0.3723101019859314, 0.0050068809650838375, 0.3135887086391449, -0.36851438879966736, -0.09508057683706284, -0.3885686695575714, 0.04247317835688591, 0.07379835098981857, 0.1866636425256729, -0.49588268995285034, -0.053518980741500854, -0.002189393388107419, -0.10711021721363068, 0.07665861397981644, -0.16382987797260284, -0.0927642434835434, -0.07170160859823227, -0.026635130867362022, 0.3540622293949127, -0.004545406438410282, 0.08717318624258041, -0.10425486415624619, 0.05629764497280121, 0.2985343635082245, 0.17471469938755035, -0.11920959502458572, 0.6493725180625916, -0.4247388243675232, 0.6064466238021851, 0.13752318918704987, -0.22362901270389557, 0.017633043229579926, 0.14435158669948578, 0.06576830893754959, -0.20231133699417114, 0.016534660011529922, -0.10920768231153488, 0.15946529805660248, -0.13356822729110718, -0.41150572896003723, 0.11580246686935425, 0.0724971815943718, 0.30519452691078186, -0.21482303738594055, -0.29104283452033997, 0.12558972835540771, 0.0655345618724823, 0.22115406394004822, -0.1284656673669815, 0.1120070144534111, 0.48816433548927307, 0.43392354249954224, -0.19087472558021545, 0.1017395630478859, 0.07627113908529282, 0.05871628224849701, 0.17646560072898865, 0.014702065847814083, 0.09422022849321365, -0.024032382294535637, -0.0028475874569267035, -0.05965432897210121, 0.34324103593826294, -0.20330919325351715, -0.05667111277580261, -0.2062634378671646, 0.2809077501296997, -0.14547884464263916, -0.01175015140324831, 0.06245356798171997, 0.18696074187755585, -0.23657917976379395, 0.4068619906902313, 0.07016592472791672, -0.14393775165081024, -0.17340195178985596, 0.14683791995048523, 0.016656413674354553, 0.2651127278804779, -0.29533737897872925, -0.14689801633358002, -0.3140821158885956, -0.18597082793712616, 0.43679505586624146, 0.014747023582458496, -0.18538853526115417, 0.14619752764701843, 0.288145512342453, 0.17214052379131317, -0.28921180963516235, -0.24939247965812683, 0.05957350134849548, -0.4366011619567871, 0.2464805543422699, 0.30748921632766724, 0.31464627385139465, -0.14872193336486816, 0.2846551537513733, 0.09548238664865494, 0.3892084062099457, 0.10077182948589325, -0.1450609266757965, 0.1643444448709488, 0.1466248631477356, -0.005031996872276068, 0.3946208357810974, -0.09115229547023773, 0.22894296050071716, 0.5108886361122131, -0.27374324202537537, -0.35088568925857544, 0.24934446811676025, -0.19870135188102722, 0.40505272150039673, -0.01753024384379387, 0.24436183273792267, 0.11159200966358185, -0.30609315633773804, -0.12006689608097076, 0.2761848270893097, -0.46235135197639465, 0.09359271079301834, -0.09112091362476349, -0.10704250633716583, 0.3911011219024658, 0.14147204160690308, 0.03167148679494858, 0.510895848274231, 0.16683313250541687, -0.05319242551922798, 0.09660820662975311, -0.11329380422830582, -0.01941165141761303, -0.28408128023147583, -0.22900962829589844, -0.2573991119861603, 0.1794413924217224, -0.2868686616420746, 0.062266115099191666, -0.30537649989128113, 0.013766499236226082, -0.31382232904434204, 0.19554252922534943, -0.4067346155643463, -0.2165164351463318, -0.06510847061872482, 0.28006523847579956, -0.2110288292169571, 0.2325727492570877, 0.11818113923072815, 0.04519977048039436, 0.08764803409576416, 0.38886499404907227, -0.2219839096069336, -0.37627512216567993, -0.5698436498641968, -0.21660025417804718, 0.496360719203949, 0.16415661573410034, 0.10213398933410645, 0.019972169771790504, -0.04130224883556366, -0.3580475151538849, -0.14273683726787567, 0.4228232502937317, -0.05826721712946892, -0.1273174285888672, -0.07625233381986618, 0.24100637435913086, -0.15276631712913513, -0.34785184264183044, 0.05988862365484238, -0.43964630365371704, -0.09047099947929382, 0.11861079931259155, -0.006483742035925388, -0.1578284502029419, 0.02869180589914322, -0.08735382556915283, -0.15450529754161835, -0.058337561786174774, -0.37191545963287354, -0.2516956925392151, 0.03277693688869476, -0.2780531346797943, 0.07707887142896652, 0.1496903896331787, -0.36113378405570984, -0.21507921814918518, -0.2702903151512146, 0.08750178664922714, 0.11135617643594742, 0.03497001901268959, -0.23262330889701843, 0.4163248836994171, -0.10567991435527802, 0.1810457408428192, 0.00598037987947464, -0.4948803186416626, 0.22499777376651764, 0.15876546502113342, -0.05724436417222023, -0.30038899183273315, 0.1743219494819641, 0.28312551975250244, -0.0949873998761177, 0.11047403514385223, 0.07690679281949997, -0.048327963799238205, -0.2259438931941986, -0.2423434555530548, 0.37620970606803894, -0.09729566425085068, 0.4344441890716553, 0.13026952743530273, 0.6834615468978882, 0.009807565249502659, 0.22618229687213898, 0.3966529965400696, -0.042814064770936966, -0.08693089336156845, 0.03295726329088211, 0.005195187404751778, 0.24682274460792542, 0.0007925281533971429, -0.2669423818588257, 0.5544754862785339, -0.24289602041244507, -0.2323535978794098, -0.2343096286058426, 0.011268598027527332, -0.5420511960983276, -0.4312594532966614, 0.16564996540546417, 0.387828528881073, 0.3233221173286438, -0.12961345911026, 0.2052384614944458, -0.03312654793262482, -0.2678651809692383, -0.06710103154182434, 0.16276447474956512, -0.10863149166107178, -0.08259755373001099, -0.1447860151529312, 0.059813857078552246, -0.058914877474308014, 0.32016971707344055, 0.2619365453720093, 0.3989563584327698, 0.08277257531881332, 0.05918755754828453, 0.19926191866397858, 0.06848770380020142, 0.47335055470466614, 0.13634338974952698, 0.21323969960212708, -0.1031908318400383, 0.09984055161476135, -0.2521494925022125, -0.3287770748138428, -0.22640195488929749, -0.2229653298854828, 0.49338817596435547, -0.22173725068569183, -0.41865506768226624, 0.08080483973026276, -0.0878421887755394, 0.08578459918498993, -0.07718133181333542, -0.09172007441520691, -0.017533469945192337, -0.20814628899097443, -0.5254963040351868, 0.22540807723999023, 0.19140934944152832, 0.104289710521698, 0.28222712874412537, 0.22729386389255524, 0.12718495726585388, 0.031445182859897614, -0.03980809077620506, -0.04576427862048149, 0.12925390899181366, -0.05112186446785927, -0.22279414534568787, -0.2396634817123413, 0.16929544508457184, -0.00002790005601127632, 0.14987076818943024, 0.5779361128807068, -0.24086424708366394, -0.11879710108041763, 0.019982121884822845, 0.22974514961242676, 0.39950990676879883, 0.08311232924461365, 0.11783801019191742, 0.24527740478515625, 0.27160006761550903, -0.08091176301240921, 0.23537231981754303, 0.2509082555770874, -0.012439349666237831, -0.29291200637817383, 0.04659983515739441, 0.41173413395881653, 0.005536463111639023, -0.03571313992142677, -0.05812458693981171, 0.07188279926776886, -0.29869407415390015, 0.4252859354019165, 0.23904499411582947, 1.32997465133667, 0.13979783654212952, 0.1313474476337433, 0.14086154103279114, 0.07785088568925858, 0.7298781275749207, -0.6040628552436829, -0.03653460741043091, -0.2874812185764313, 0.40255075693130493, -0.1426401287317276, 0.06225075200200081, 0.17197030782699585, 0.07757581770420074, -0.42819976806640625, 0.3375900387763977, 0.14012852311134338, 0.5520433783531189, 0.17294557392597198, 0.19363346695899963, 0.10283960402011871, -0.12072984129190445, -0.0260299164801836, -0.021109214052557945, -0.312518447637558, 0.07987318933010101, -0.29151439666748047, 0.03058543987572193, 0.22906441986560822, -0.49733731150627136, -0.6621004343032837, 0.17005690932273865, -0.07380171865224838, 0.3350211977958679, -0.14315475523471832, 0.04035916179418564, 0.31505462527275085, -0.10899992287158966, 0.06849260628223419, 0.2554074823856354, -0.1021939218044281, 0.3669734001159668, -0.15649446845054626, -0.3252677321434021, -0.19417676329612732, 0.05015876516699791, -0.07157246023416519, -0.10064227133989334, -0.23043175041675568, 0.28710925579071045, 0.013122842647135258, -0.18329861760139465, -0.28517913818359375, 0.06353598088026047, 0.47194862365722656, 0.10429907590150833, -0.2770494222640991, 0.06526459008455276, -0.0046189920976758, -0.08386626094579697, -0.004112263675779104, -0.1452437788248062, -0.18518178164958954, -0.010416056960821152, 0.2468063235282898, -0.22413477301597595, 0.011385452002286911, 0.38398051261901855, -0.046563271433115005, -0.4790760278701782, 0.46703022718429565, 0.37684687972068787, -0.2421932816505432, -0.20996923744678497, -0.12980514764785767, -0.5138641595840454, -0.6772119402885437, -0.0528038926422596, -0.12778659164905548, 0.08120859414339066, -0.04302676394581795, 0.24755696952342987, 0.23626288771629333, -0.05683029443025589, 0.02075917087495327, -0.30457067489624023, 0.20194068551063538, -0.058914076536893845, -0.4229644238948822, -0.07002706080675125, 0.01116485707461834, 0.29406842589378357, -0.012625562027096748, -0.034152597188949585, -0.08794591575860977, 0.11435260623693466, -0.3084956407546997, 0.2707253396511078, 0.25666990876197815, 0.09094369411468506, -0.36158400774002075, 0.009398686699569225, 0.013560529798269272, 0.28614509105682373, -0.06974606215953827, -0.007109092548489571, -0.13280190527439117, 0.2703225910663605, 0.38271549344062805, -0.23389817774295807, 0.10111440718173981, -0.04756169766187668, 0.217499777674675, -0.15663069486618042, -0.03961828351020813, -0.07346050441265106, -0.1314593255519867, 0.24850818514823914, 0.20891927182674408, 0.2581075429916382, -0.4424046576023102, 0.12115303426980972, 0.07219428569078445, 0.5967174768447876, 0.14024899899959564, 0.1848926842212677, 0.21564975380897522, -0.006922395434230566, -0.25611990690231323, 0.21146315336227417, 0.37071382999420166, 0.1301712691783905, 0.13726991415023804, -0.10828345268964767, -0.19176095724105835, 0.06710517406463623, -0.13973742723464966, 0.1556292474269867, -0.32549723982810974, -0.2894350290298462, 0.5366225838661194, 0.08861827105283737, -0.15793311595916748, 0.20360171794891357, 0.4370487928390503, 0.1117447167634964, -0.2860325872898102, 0.18648700416088104, 0.08790688216686249, -0.4010627865791321, 0.262422651052475, 0.16034258902072906, 0.38009026646614075, -0.05048343539237976, 0.08296468108892441, -0.09774385392665863, -0.13104115426540375, 0.199689120054245, -0.13018746674060822, -0.09602577984333038, 0.3383074998855591, 0.3912016451358795, -0.11818899214267731, 0.2143646627664566, 0.18547500669956207, 0.1639162003993988, -0.023963138461112976, -0.20192618668079376, 0.1884986013174057, 0.5047793388366699, 0.10207582265138626, -0.02565985918045044, -0.09846413880586624, -0.20708568394184113, 0.16365337371826172, -0.09892908483743668, -0.46676069498062134, 0.3099548816680908, -0.14473940432071686, 0.030256878584623337, -0.20936541259288788, -0.02316126599907875, -0.3640720248222351, 0.21600288152694702, 0.1275569498538971, -0.06290990114212036, -0.32953953742980957, 0.39417779445648193, -0.3697268068790436, -0.1015251874923706, -0.24333079159259796, 0.00541332270950079, -0.10280212759971619, -0.34562918543815613, 0.1546686738729477, 0.031443044543266296, -0.060971472412347794, -0.07310574501752853, 0.19594551622867584, 0.5290169715881348, 0.4877012073993683, -0.5272619128227234, 0.0753340944647789, -0.06738003343343735, 0.2905636727809906, 0.023284833878278732, 0.057329170405864716, 0.1342730075120926, 0.367850124835968, 0.0767161101102829, 0.0019118357449769974, -0.09781438112258911, -0.34199807047843933, 0.2982870638370514, -0.04154999554157257, 0.039241936057806015, -0.3417465388774872, -0.05619525536894798, 0.2586342394351959, -0.27511411905288696, 0.0397304892539978, -0.5000796318054199, 0.16003625094890594, 0.16810846328735352, 0.08029493689537048, 0.07846174389123917, -0.04409784451127052, -0.03531535342335701, -0.1571894735097885, 0.21497870981693268, 0.48693105578422546, 0.27155783772468567, -0.2093728631734848, -0.5163055658340454, -0.5368038415908813, 0.4130149781703949, -0.33028480410575867, -0.21919666230678558, -0.01585664413869381, 0.09471766650676727, 0.15775743126869202, 0.40189245343208313, 0.1277688443660736, 0.038051243871450424, -0.34440696239471436, 0.3325326442718506, -0.23692157864570618, -0.1468169242143631, 0.3220624327659607, -0.07911371439695358, -0.07478246092796326, -0.3180963099002838, 0.1554449498653412, -0.15190203487873077, -0.05780263990163803, -0.13219834864139557, -0.10998658090829849, -0.05858748406171799, -0.22272202372550964, 0.523977518081665, 0.13626940548419952, 0.40430840849876404, -0.0057476479560136795, 0.01597937010228634, -0.17768464982509613, -0.030055992305278778, -0.02192358300089836, -0.03590301424264908, 0.03882084786891937, 0.19364336133003235, -0.0677345022559166, 0.17204436659812927, -0.43008822202682495, 0.28314948081970215, 0.05269799381494522, 0.17483165860176086, -0.3980621099472046, -0.031036539003252983, -0.2528936564922333, 0.289625346660614, -0.23565322160720825, -0.08015380054712296, 0.02228379249572754, 0.2795815169811249, -0.37362658977508545, -0.19031034409999847, 0.24500082433223724, -0.4076631963253021, -0.5217409133911133, -0.22197702527046204, 0.23117008805274963, -0.39004281163215637, 0.0033995609264820814, -0.18551228940486908, 0.0024275195319205523, 0.22900353372097015, 0.13648325204849243, -0.27300912141799927, -0.24391919374465942, -0.07863572239875793, -0.24421636760234833, -0.005855881609022617, -0.04878440871834755, 0.11362579464912415, -0.335930734872818, 0.11511093378067017, -0.4321380853652954 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
Not sure why we're having this issue. Maybe could you get also the file that's causing that ?
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
18
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` Not sure why we're having this issue. Maybe could you get also the file that's causing that ?
[ -0.2438734471797943, -0.15484479069709778, 0.09030287712812424, 0.4575003385543823, 0.12444965541362762, -0.05433880165219307, -0.11729759722948074, 0.2066470980644226, 0.33644387125968933, 0.30087193846702576, 0.29528695344924927, -0.0024949058424681425, 0.05222317948937416, -0.38132810592651367, -0.07671695947647095, -0.003008776344358921, 0.36804643273353577, 0.19511796534061432, 0.044042594730854034, -0.24198588728904724, -0.05900030583143234, 0.20053768157958984, -0.3453766405582428, 0.30418166518211365, -0.31076580286026, 0.0585559643805027, 0.14182962477207184, -0.024723483249545097, -0.07643647491931915, -0.31203940510749817, 0.02769189327955246, -0.2750106453895569, 0.16518054902553558, 0.32288211584091187, -0.00012734612391795963, -0.18571621179580688, 0.5115444660186768, -0.10405478626489639, -0.14684994518756866, -0.23387712240219116, -0.08396681398153305, -0.1510859727859497, -0.03172018378973007, -0.30544328689575195, 0.3135242164134979, 0.06394711136817932, 0.253077894449234, -0.2387651652097702, 0.2600454092025757, 0.23022820055484772, 0.0824696496129036, 0.21990370750427246, 0.2952755391597748, -0.006982638966292143, 0.5136982798576355, 0.12198048084974289, 0.20475313067436218, -0.0710386335849762, -0.034142788499593735, -0.030316803604364395, 0.12669390439987183, 0.09698585420846939, -0.41623392701148987, -0.24477915465831757, -0.1444559395313263, -0.09353366494178772, 0.3075278103351593, -0.4182211458683014, 0.4121518135070801, 0.17473073303699493, 0.526961088180542, -0.020269688218832016, 0.35011279582977295, 0.1336369514465332, -0.05023692548274994, 0.24152804911136627, 0.4162765443325043, 0.5217390060424805, -0.39931565523147583, 0.034027550369501114, 0.39006251096725464, -0.14695151150226593, -0.04246891662478447, 0.26518452167510986, -0.17420126497745514, 0.8081714510917664, 0.0326363667845726, 0.30843934416770935, 0.05077741667628288, -0.018315259367227554, -0.08519532531499863, -0.33191701769828796, -0.07108759880065918, 0.28309905529022217, -0.13640910387039185, 0.03209776431322098, -0.1755916029214859, -0.07499947398900986, 0.026335665956139565, -0.5093846917152405, -0.46731966733932495, 0.04800184816122055, 0.018448179587721825, 0.24843904376029968, 0.4564213156700134, -0.11469192802906036, 0.18458573520183563, -0.013837134465575218, -0.008998150937259197, -0.14459854364395142, -0.05387236550450325, 0.01911136880517006, -0.23152904212474823, -0.012574166059494019, -0.48529985547065735, 0.07806272059679031, 0.09570746123790741, -0.1704503446817398, -0.040203481912612915, 0.25725269317626953, -0.23127120733261108, -0.09551230818033218, -0.1507345587015152, 0.4952983260154724, -0.06190302222967148, 0.3919491767883301, -0.04854680225253105, 0.02426728792488575, -0.13796965777873993, -0.6093873977661133, 0.012873334810137749, 0.1973121166229248, -0.35479748249053955, -0.011047076433897018, -0.16462892293930054, 0.22071820497512817, 0.13381002843379974, 0.3228282630443573, -0.042138297110795975, -0.47797080874443054, -0.026118559762835503, -0.29503655433654785, -0.14444996416568756, 0.05411573499441147, 0.480547159910202, 0.4583340287208557, 0.19965195655822754, -0.3672829568386078, -0.0564434751868248, 0.40875443816185, -0.4907044470310211, -0.15471959114074707, -0.502054750919342, 0.03647937253117561, 0.023386621847748756, 0.160127192735672, -0.5785998106002808, 0.025601644068956375, -0.06941991299390793, -0.15777769684791565, 0.053375981748104095, -0.22337648272514343, -0.15925200283527374, -0.1376730501651764, 0.10063588619232178, 0.3055132329463959, -0.18458230793476105, 0.011036817915737629, -0.09798725694417953, -0.17480818927288055, 0.3727368712425232, 0.15099643170833588, -0.1719997525215149, 0.6597503423690796, -0.44920098781585693, 0.5568723082542419, 0.3406914472579956, -0.28882548213005066, -0.09071923792362213, 0.04628199711441994, -0.06447445601224899, -0.20668615400791168, 0.026675231754779816, -0.19098208844661713, 0.2845528721809387, -0.04674367979168892, -0.32654350996017456, 0.0959966778755188, 0.09158910065889359, 0.20538733899593353, -0.21473567187786102, -0.31041374802589417, 0.2907606065273285, 0.07472381740808487, 0.17161473631858826, -0.06633816659450531, 0.1719050258398056, 0.4653396010398865, 0.4322320818901062, -0.20571433007717133, 0.16025379300117493, 0.1152566447854042, 0.15966057777404785, 0.21816903352737427, -0.11319255083799362, 0.14177386462688446, 0.002072411123663187, -0.054543428122997284, 0.029757028445601463, 0.20593035221099854, -0.12558436393737793, -0.08301621675491333, -0.1817033886909485, 0.21466317772865295, -0.08890844881534576, 0.07871872186660767, 0.053917188197374344, 0.1325587034225464, -0.21255385875701904, 0.36927422881126404, 0.04768473654985428, -0.19676467776298523, -0.25405094027519226, 0.11092940717935562, 0.10389864444732666, 0.29726555943489075, -0.1605812907218933, -0.057183198630809784, -0.3508011996746063, -0.1678779125213623, 0.5068054795265198, -0.01337385829538107, -0.14437486231327057, 0.03621133789420128, 0.24801433086395264, 0.06019330024719238, -0.2725652754306793, -0.20727261900901794, -0.017565999180078506, -0.2871749699115753, 0.2105046808719635, 0.1699792742729187, 0.21523192524909973, -0.16550804674625397, 0.3415621519088745, 0.08857487887144089, 0.38630014657974243, 0.07120130956172943, -0.1960388422012329, 0.12592627108097076, 0.23893365263938904, 0.007739642634987831, 0.46711671352386475, -0.07113711535930634, 0.29763102531433105, 0.41763871908187866, -0.09229449182748795, -0.25192347168922424, 0.12866948544979095, -0.1277332305908203, 0.5343971848487854, -0.06959810853004456, 0.19193096458911896, 0.20515082776546478, -0.3437318801879883, -0.010775435715913773, 0.2965950071811676, -0.39118319749832153, 0.17483152449131012, -0.027696477249264717, -0.10482294857501984, 0.2737584412097931, 0.2530733048915863, 0.013561714440584183, 0.5135732889175415, 0.08790174871683121, 0.041871462017297745, 0.11942360550165176, -0.26106709241867065, -0.029309038072824478, -0.2766622006893158, -0.14233918488025665, -0.258379727602005, 0.20754820108413696, -0.25467103719711304, -0.10888820141553879, -0.2646131217479706, -0.021030312404036522, -0.3601515293121338, 0.1243792399764061, -0.3825921416282654, -0.08192825317382812, -0.16107474267482758, 0.254398912191391, -0.12000832706689835, 0.128391295671463, -0.010133306495845318, 0.11124272644519806, -0.03557701036334038, 0.23046252131462097, -0.21628005802631378, -0.27449020743370056, -0.551304280757904, -0.152410089969635, 0.5267802476882935, 0.1114872395992279, 0.0004285504692234099, -0.02615370601415634, 0.020553061738610268, -0.2660394310951233, -0.16418060660362244, 0.4210187792778015, -0.02979484386742115, -0.09148859232664108, -0.08535320311784744, 0.17953050136566162, -0.11812278628349304, -0.3170992136001587, 0.005114485509693623, -0.34517279267311096, -0.1308818906545639, 0.07493340224027634, 0.0684557631611824, -0.19050513207912445, 0.0667865052819252, -0.04303404688835144, -0.3454267680644989, -0.030189920216798782, -0.2688142657279968, -0.12283863127231598, 0.11985073983669281, -0.5135684609413147, -0.002946869470179081, 0.19318053126335144, -0.3985516130924225, -0.19481264054775238, -0.26291972398757935, 0.06818745285272598, 0.13526497781276703, -0.010628517717123032, -0.24457785487174988, 0.45655956864356995, 0.00863950327038765, 0.19073298573493958, -0.029813621193170547, -0.6047428250312805, 0.3406962752342224, 0.11886555701494217, -0.07867854833602905, -0.2802819609642029, 0.0917690247297287, 0.30301353335380554, -0.14918270707130432, 0.16610148549079895, 0.03421059623360634, -0.08003725856542587, -0.2589769661426544, -0.3078547716140747, 0.3895879089832306, -0.0943140909075737, 0.43092894554138184, -0.0003134006983600557, 0.5969523787498474, -0.03084186464548111, 0.24193666875362396, 0.3254551291465759, -0.059036217629909515, -0.025696132332086563, -0.028412871062755585, -0.08219608664512634, 0.30891191959381104, 0.11559771001338959, -0.24475765228271484, 0.5990240573883057, -0.23075059056282043, -0.2992628812789917, -0.20099399983882904, -0.12910941243171692, -0.44198060035705566, -0.3891986012458801, 0.1840631663799286, 0.3259332776069641, 0.24091026186943054, -0.08115116506814957, 0.18409697711467743, -0.09480183571577072, -0.345444917678833, -0.0010843252530321479, 0.23666520416736603, -0.12982428073883057, -0.05299251526594162, -0.30192244052886963, 0.04088841378688812, -0.24448585510253906, 0.2875695526599884, 0.15132363140583038, 0.4145081043243408, -0.06592855602502823, 0.09036050736904144, 0.1396750956773758, 0.11319544911384583, 0.6657509803771973, 0.1873900294303894, 0.20140381157398224, -0.05446173623204231, 0.11067818105220795, -0.2019362896680832, -0.3499331772327423, -0.28150269389152527, 0.027945643290877342, 0.481844961643219, 0.011474866420030594, -0.443354994058609, 0.015988687053322792, -0.10856323689222336, 0.07536604255437851, -0.03374685347080231, -0.055814191699028015, -0.12410584092140198, -0.1701234132051468, -0.4060514271259308, 0.22212494909763336, 0.0994759202003479, 0.23812301456928253, 0.20162878930568695, 0.10319197177886963, 0.06596159189939499, 0.0799524337053299, 0.013816675171256065, -0.1495930254459381, 0.1812981367111206, 0.14638164639472961, -0.2607519328594208, -0.1961851269006729, 0.27673277258872986, 0.06342179328203201, 0.08528490364551544, 0.5467892289161682, -0.23502685129642487, 0.03947139531373978, -0.10003867000341415, 0.28359758853912354, 0.31954720616340637, 0.06264004111289978, 0.2859419584274292, 0.1207231804728508, 0.2047336995601654, -0.09265687316656113, 0.32068416476249695, 0.20853681862354279, 0.053171880543231964, -0.39466190338134766, 0.023364882916212082, 0.2817933261394501, 0.017417900264263153, -0.04829486086964607, 0.13777196407318115, 0.05529126524925232, -0.2594875693321228, 0.30333587527275085, 0.19931012392044067, 1.3601082563400269, 0.26063665747642517, 0.060507334768772125, 0.11089488118886948, 0.004398774355649948, 0.7963570952415466, -0.6298078894615173, -0.01892673596739769, -0.3128010332584381, 0.13279493153095245, -0.13893751800060272, -0.00970865786075592, 0.10007739067077637, 0.144419863820076, -0.3683394193649292, 0.2792598307132721, 0.10702148079872131, 0.6044887900352478, 0.18500782549381256, 0.21067382395267487, 0.19671452045440674, -0.05658208578824997, -0.010823520831763744, -0.02224736474454403, -0.2962779402732849, 0.1750328689813614, -0.352853924036026, 0.045906513929367065, 0.060824405401945114, -0.39042237401008606, -0.5212927460670471, 0.18443046510219574, -0.14862920343875885, 0.20018382370471954, -0.006378367077559233, -0.055713385343551636, 0.38609829545021057, -0.07570619881153107, 0.12671798467636108, 0.3899015486240387, -0.17919117212295532, 0.38684093952178955, -0.11202272772789001, -0.30658024549484253, -0.028433041647076607, 0.09074237197637558, -0.20488598942756653, -0.1419510543346405, -0.3151189982891083, 0.3814619183540344, -0.08079055696725845, -0.29832345247268677, -0.30184200406074524, 0.002633791184052825, 0.42866450548171997, 0.0016235242364928126, -0.40588217973709106, 0.06374693661928177, 0.13337793946266174, -0.02593221515417099, 0.03391537442803383, -0.13004319369792938, -0.11883581429719925, -0.028706341981887817, 0.31103381514549255, -0.24702005088329315, -0.0372653491795063, 0.36365631222724915, -0.0766468197107315, -0.468862920999527, 0.5109811425209045, 0.30102524161338806, -0.22087669372558594, -0.14785082638263702, -0.04447517916560173, -0.4849439561367035, -0.6720794439315796, -0.17981721460819244, -0.1361633986234665, 0.09115418046712875, -0.15924663841724396, 0.2470298558473587, 0.3108227849006653, -0.00553873972967267, 0.12533977627754211, -0.33821386098861694, 0.07866600900888443, -0.03176690265536308, -0.40440425276756287, -0.09210458397865295, 0.15337161719799042, 0.1658637523651123, -0.0442025326192379, -0.08045198023319244, -0.09909116476774216, 0.08896410465240479, -0.3104230761528015, 0.17675521969795227, 0.4049193561077118, 0.16131994128227234, -0.28868743777275085, -0.02890944480895996, -0.00782060343772173, 0.21134275197982788, -0.01621856540441513, -0.03101986274123192, -0.12062153965234756, 0.2824006676673889, 0.3431394398212433, -0.10131067782640457, 0.1341455727815628, -0.04024608060717583, 0.1312258243560791, -0.06307446211576462, -0.08405376970767975, -0.12436960637569427, -0.11893600970506668, 0.23114748299121857, 0.1561112105846405, 0.30337604880332947, -0.6175180673599243, 0.15670889616012573, 0.2122367024421692, 0.5182584524154663, 0.010178190656006336, 0.241363063454628, 0.21245825290679932, -0.00969667173922062, -0.21738022565841675, 0.19851984083652496, 0.3253699541091919, 0.19107964634895325, 0.07402637600898743, -0.0056872921995818615, -0.029286421835422516, 0.12162310630083084, -0.2189948707818985, 0.10842232406139374, -0.384061723947525, -0.2678416967391968, 0.6546404361724854, 0.10487114638090134, -0.11999088525772095, 0.11652010679244995, 0.5963566303253174, 0.19863897562026978, -0.3658188283443451, 0.11730241030454636, 0.05385204404592514, -0.4070933759212494, 0.3382416069507599, 0.17662928998470306, 0.3714928925037384, 0.008865570649504662, 0.1212616041302681, 0.06262055039405823, -0.1921662837266922, 0.29160594940185547, 0.06218858063220978, -0.037033677101135254, 0.21246236562728882, 0.563007652759552, -0.08892500400543213, 0.06858699023723602, 0.1866462379693985, 0.0757058784365654, -0.05323619022965431, -0.24766896665096283, 0.15535497665405273, 0.5270800590515137, 0.08407610654830933, -0.10043302178382874, -0.11712807416915894, -0.03641217574477196, 0.1418987512588501, -0.17666202783584595, -0.45147672295570374, 0.21056711673736572, -0.3536439538002014, 0.08197794109582901, -0.37653541564941406, -0.09533842653036118, -0.2704105079174042, 0.25137144327163696, 0.12254200130701065, -0.04083762317895889, -0.4008161723613739, 0.3257640600204468, -0.4385766088962555, -0.010014929808676243, 0.030656632035970688, 0.10956984758377075, -0.11274836957454681, -0.34232670068740845, 0.1936747431755066, -0.19679883122444153, 0.0354597233235836, -0.11072827130556107, 0.22378836572170258, 0.45905572175979614, 0.5882251858711243, -0.34029102325439453, -0.05767224729061127, 0.1371680349111557, 0.2367716282606125, 0.018131738528609276, 0.15040665864944458, 0.21211370825767517, 0.40061935782432556, 0.0605677030980587, 0.027456307783722878, -0.1269885003566742, -0.26614880561828613, 0.3369751572608948, 0.003071737242862582, 0.052720196545124054, -0.33598414063453674, -0.10482761263847351, 0.12394155561923981, -0.2843914031982422, -0.0802130177617073, -0.5245041847229004, 0.2972148656845093, 0.13819411396980286, 0.1650836020708084, 0.08396011590957642, -0.11340411007404327, -0.026124456897377968, -0.1292487531900406, 0.18290431797504425, 0.3374115526676178, 0.23513127863407135, -0.2557028532028198, -0.5928301215171814, -0.5923687219619751, 0.5155176520347595, -0.20852583646774292, -0.17196239531040192, -0.07314059138298035, 0.060141026973724365, 0.0623319074511528, 0.36245569586753845, 0.10183011740446091, 0.14380119740962982, -0.3306405544281006, 0.2046480029821396, -0.2297416776418686, -0.0936586856842041, 0.19095288217067719, -0.015770692378282547, -0.0849762111902237, -0.338299959897995, 0.22909486293792725, -0.16222608089447021, -0.06982364505529404, -0.1829073131084442, -0.214568629860878, -0.1364617794752121, -0.2413012534379959, 0.5710756778717041, 0.12116260826587677, 0.47857820987701416, -0.06563486158847809, 0.18721401691436768, -0.0684070959687233, 0.0168245118111372, -0.08158141374588013, 0.037877701222896576, -0.01923845149576664, 0.14396905899047852, 0.042360465973615646, 0.31293779611587524, -0.39901289343833923, 0.335487425327301, 0.13869476318359375, 0.22681714594364166, -0.36253198981285095, -0.034590139985084534, -0.3117888867855072, 0.08084280043840408, -0.03347105532884598, -0.05636167898774147, 0.02632138878107071, 0.15047311782836914, -0.37170419096946716, -0.04805216193199158, 0.17378105223178864, -0.47953954339027405, -0.38244256377220154, -0.2534617483615875, 0.24237601459026337, -0.11367042362689972, -0.23967565596103668, -0.1374632716178894, 0.04307319596409798, 0.25642329454421997, 0.12809036672115326, -0.16105465590953827, -0.11423011869192123, -0.2987762987613678, -0.1495223194360733, -0.0021700949873775244, 0.05355771631002426, 0.17170660197734833, -0.41445842385292053, 0.1750481277704239, -0.43451637029647827 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
thanks for your answer. How can I know which file is causing the issue ? I am trying to load the spanish wikipedia data.
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
24
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` thanks for your answer. How can I know which file is causing the issue ? I am trying to load the spanish wikipedia data.
[ -0.3805394172668457, -0.340488076210022, 0.05695934221148491, 0.6597746014595032, -0.0239438246935606, -0.13706406950950623, -0.22147627174854279, 0.3551200032234192, 0.3205154240131378, 0.2352275848388672, 0.39368918538093567, -0.04771598055958748, 0.02794949896633625, -0.45238226652145386, 0.10121890157461166, 0.1489470899105072, 0.4252944588661194, 0.19562862813472748, 0.15544548630714417, -0.2860962748527527, -0.14368028938770294, 0.3324865996837616, -0.2521989643573761, 0.47650569677352905, -0.37998950481414795, 0.1468520313501358, 0.17038211226463318, 0.13428474962711334, -0.03882446512579918, -0.33402541279792786, 0.1467207819223404, -0.22870054841041565, 0.24948462843894958, 0.41082853078842163, -0.0001294858957407996, -0.1358284205198288, 0.4792959690093994, -0.21675655245780945, -0.07115045934915543, -0.2471742331981659, -0.1766095906496048, -0.10249941051006317, 0.05180913582444191, -0.2762676477432251, 0.36788123846054077, -0.048121798783540726, 0.4033312499523163, -0.2109246701002121, 0.27429571747779846, 0.3901076018810272, 0.06695151329040527, 0.21845708787441254, 0.16870912909507751, -0.013109397143125534, 0.5559425354003906, -0.003925136756151915, 0.2948896884918213, -0.013816218823194504, 0.054849863052368164, -0.04460546001791954, 0.009428751654922962, 0.09132535010576248, -0.41199609637260437, -0.13169588148593903, -0.08111758530139923, -0.11474572867155075, 0.31586095690727234, -0.38110047578811646, 0.3990839719772339, 0.28648272156715393, 0.5265468955039978, 0.02444029599428177, 0.4537287652492523, 0.13209699094295502, -0.2025647759437561, 0.34748706221580505, 0.5818399786949158, 0.40230438113212585, -0.35171326994895935, -0.016566133126616478, 0.38786014914512634, -0.008527402766048908, -0.015506451949477196, 0.2399369329214096, -0.3587431311607361, 0.7549954056739807, -0.02312638610601425, 0.3411196172237396, 0.10308010131120682, -0.02042725868523121, -0.18200306594371796, -0.23888011276721954, 0.03184208646416664, 0.28762125968933105, -0.16895149648189545, 0.009021274745464325, -0.06374993175268173, -0.1376197338104248, -0.07292551547288895, -0.48240387439727783, -0.3953341841697693, 0.09368520975112915, 0.020817743614315987, 0.2795303463935852, 0.4600296914577484, -0.12797173857688904, 0.226894810795784, -0.12814760208129883, 0.03612583503127098, -0.06545277684926987, -0.16186799108982086, 0.033029645681381226, -0.3590046465396881, -0.1693916916847229, -0.31825098395347595, -0.05561157315969467, 0.15240545570850372, -0.23561248183250427, -0.10321521013975143, 0.24232153594493866, -0.2417159378528595, -0.24014265835285187, -0.01605917699635029, 0.5928182601928711, 0.046002596616744995, 0.36126914620399475, -0.0883767157793045, -0.17049668729305267, -0.16431643068790436, -0.5626623630523682, 0.021412404254078865, 0.1993013620376587, -0.3200521469116211, -0.031070487573742867, -0.14059697091579437, 0.16450732946395874, 0.1247255876660347, 0.2809576690196991, -0.11082842946052551, -0.533494770526886, -0.029339319095015526, -0.30775126814842224, -0.05999608337879181, 0.10156432539224625, 0.3478441536426544, 0.39762115478515625, 0.278571754693985, -0.4330412447452545, -0.12212098389863968, 0.27681848406791687, -0.5401118397712708, -0.19042693078517914, -0.36558666825294495, 0.0073638781905174255, -0.08136279881000519, 0.21840551495552063, -0.5214788913726807, 0.03528878837823868, -0.15890377759933472, -0.3161869943141937, 0.08656400442123413, -0.2566933333873749, -0.07144027203321457, -0.13563165068626404, 0.09507720917463303, 0.3783816695213318, -0.15707169473171234, -0.08653638511896133, -0.11004135757684708, -0.294540137052536, 0.24813959002494812, 0.07768572121858597, -0.15221548080444336, 0.5089010000228882, -0.39291971921920776, 0.46071740984916687, 0.40201544761657715, -0.3885555863380432, -0.07740632444620132, 0.0032983755227178335, -0.10516950488090515, -0.1443251669406891, 0.17046119272708893, -0.07708127796649933, 0.16417036950588226, -0.1816912144422531, -0.21039754152297974, 0.038153063505887985, 0.15813255310058594, 0.12026501446962357, -0.2180199772119522, -0.27954426407814026, 0.06813815236091614, 0.11301518231630325, 0.12436586618423462, -0.22366659343242645, 0.11091307550668716, 0.4432348310947418, 0.2955293357372284, -0.020417505875229836, -0.014105210080742836, 0.13043808937072754, 0.13461969792842865, 0.16347962617874146, -0.050448305904865265, 0.027142565697431564, -0.003953315317630768, -0.07222341746091843, -0.05480080097913742, -0.08438532799482346, -0.2033381462097168, -0.024471482262015343, -0.1983308494091034, 0.1904841810464859, -0.1336471140384674, 0.13398875296115875, 0.02512381784617901, 0.2611248195171356, -0.2519674301147461, 0.2475951910018921, -0.187020942568779, -0.1587837189435959, -0.2405167520046234, 0.1432478427886963, 0.05960627645254135, 0.18160995841026306, 0.02901660092175007, 0.007920332252979279, -0.1988385170698166, -0.25802314281463623, 0.5626894235610962, -0.1092524453997612, -0.16045576333999634, 0.09303159266710281, 0.2045787274837494, 0.23945985734462738, -0.12460169196128845, -0.09293282777070999, -0.19777734577655792, -0.292837530374527, 0.12944543361663818, 0.13615131378173828, 0.1311369240283966, -0.034599948674440384, 0.35716769099235535, 0.021312886849045753, 0.2833709120750427, 0.005476939957588911, -0.15363185107707977, 0.029036518186330795, 0.1711270958185196, -0.03579575940966606, 0.5272098183631897, -0.09986531734466553, 0.3510567545890808, 0.4659896790981293, 0.05298332870006561, -0.08243580907583237, 0.04916044697165489, -0.19451932609081268, 0.7476954460144043, -0.16081766784191132, 0.18866810202598572, 0.28486165404319763, -0.344103068113327, -0.04935150220990181, 0.21522152423858643, -0.24022720754146576, 0.1980990171432495, -0.011259018443524837, -0.12184982746839523, 0.13065069913864136, 0.17971378564834595, -0.006830668542534113, 0.517173171043396, 0.09125416725873947, -0.0789404809474945, 0.11842688918113708, -0.3818057179450989, -0.04530443251132965, -0.362002432346344, -0.12430482357740402, -0.32549819350242615, 0.2499777227640152, -0.27316707372665405, 0.07964316010475159, -0.2528131604194641, 0.02177475392818451, -0.5295091867446899, 0.09548062831163406, -0.3828403353691101, -0.03978755697607994, -0.06761567294597626, 0.21317538619041443, -0.012707876041531563, 0.04285108670592308, -0.06390165537595749, 0.19829261302947998, -0.12038680911064148, 0.15864497423171997, -0.18723677098751068, -0.25421974062919617, -0.5679867267608643, -0.1637691855430603, 0.6536368727684021, 0.18328401446342468, -0.043457187712192535, -0.24049988389015198, 0.016271941363811493, -0.15311214327812195, -0.1163962334394455, 0.40066730976104736, 0.061388272792100906, 0.0006474535912275314, -0.11087793856859207, 0.2774050235748291, -0.05377194657921791, -0.3318937122821808, 0.03615182265639305, -0.3673258125782013, -0.11348890513181686, 0.07656050473451614, 0.14524079859256744, -0.18880540132522583, 0.21443721652030945, -0.11242939531803131, -0.26425546407699585, -0.1026667132973671, -0.3206094205379486, -0.14889471232891083, 0.2024528533220291, -0.60963374376297, -0.2209497094154358, 0.338260293006897, -0.2790542244911194, -0.06576818972826004, -0.2418011873960495, -0.027333129197359085, 0.09939723461866379, 0.11113610863685608, -0.078066386282444, 0.44127723574638367, 0.11039576679468155, 0.08498847484588623, 0.07414977252483368, -0.5340142846107483, 0.20135289430618286, 0.08201170712709427, -0.08470021188259125, -0.23226943612098694, -0.051765989512205124, 0.34500712156295776, -0.09149157255887985, 0.14311879873275757, -0.0692385584115982, -0.049428634345531464, -0.2028437703847885, -0.3041855990886688, 0.3847752809524536, -0.05652119591832161, 0.31373676657676697, -0.037456098943948746, 0.6825993061065674, 0.024097317829728127, 0.08738122135400772, 0.29805707931518555, -0.016012711450457573, -0.1377185434103012, 0.032033953815698624, -0.0759115144610405, 0.22006158530712128, 0.18204990029335022, -0.2735165059566498, 0.7422611117362976, -0.17680774629116058, -0.23669004440307617, -0.17631308734416962, -0.1182144284248352, -0.6048864126205444, -0.25587397813796997, 0.19365330040454865, 0.37648698687553406, 0.25330451130867004, -0.2265685796737671, 0.11472287774085999, -0.1012260839343071, -0.2793627679347992, -0.0246506966650486, 0.5404155254364014, -0.1634947806596756, -0.017396017909049988, -0.23036901652812958, 0.06076820194721222, 0.01730889081954956, 0.33301421999931335, 0.027890104800462723, 0.3645252585411072, -0.3009798228740692, 0.05848192423582077, 0.1851804554462433, -0.06644214689731598, 0.7375569939613342, 0.28129202127456665, 0.1952388733625412, -0.13913322985172272, 0.10791207104921341, -0.10957102477550507, -0.3150519132614136, -0.22844652831554413, 0.06642644852399826, 0.3795226812362671, 0.11860489100217819, -0.3667222261428833, -0.06812244653701782, -0.07574306428432465, 0.12490957975387573, -0.06617749482393265, -0.042297735810279846, -0.10816597193479538, -0.11782321333885193, -0.2608387768268585, 0.1928355097770691, -0.04082944244146347, 0.13026727735996246, 0.28436213731765747, 0.15728293359279633, 0.04703216254711151, 0.0588473379611969, 0.14618444442749023, 0.011059446260333061, 0.1652793139219284, 0.008765244856476784, -0.37720441818237305, 0.018428141251206398, 0.30992892384529114, 0.18469178676605225, 0.10314970463514328, 0.628896176815033, -0.17462071776390076, 0.0785401314496994, 0.02819887362420559, 0.10295045375823975, 0.41683897376060486, -0.011183086782693863, 0.2691117525100708, 0.02757839858531952, 0.1334400326013565, -0.06158683821558952, 0.2459007203578949, 0.31129443645477295, 0.10986430943012238, -0.5357342958450317, 0.06799861043691635, 0.512000560760498, 0.0847100093960762, -0.19742783904075623, 0.17876392602920532, -0.17563624680042267, -0.2289906144142151, 0.15383745729923248, 0.20003050565719604, 1.4499608278274536, 0.15241211652755737, 0.07451076060533524, 0.057549845427274704, -0.013034287840127945, 0.6243776082992554, -0.7486427426338196, -0.09164205938577652, -0.2428951859474182, 0.09127220511436462, -0.24305537343025208, -0.130057230591774, 0.21651402115821838, 0.14150959253311157, -0.34551453590393066, 0.2901124656200409, 0.14401976764202118, 0.542639434337616, 0.18061864376068115, 0.18911588191986084, 0.16025784611701965, 0.12304237484931946, -0.2093893140554428, -0.07008934766054153, -0.3668532371520996, 0.33850982785224915, -0.2858899235725403, 0.05317109078168869, -0.018717283383011818, -0.36753013730049133, -0.4911454916000366, -0.03800557553768158, -0.1358441412448883, 0.13499264419078827, -0.014703316614031792, -0.12966318428516388, 0.2623562216758728, 0.05903396010398865, 0.052873171865940094, 0.19755570590496063, -0.13323910534381866, 0.4760960638523102, -0.03048826940357685, -0.17260800302028656, -0.08413086086511612, 0.0062042963691055775, -0.13616901636123657, -0.13840322196483612, -0.21770106256008148, 0.407486230134964, -0.021368026733398438, -0.20469830930233002, -0.16164910793304443, 0.057245444506406784, 0.4449588358402252, 0.059650253504514694, -0.5058216452598572, -0.06528650224208832, 0.08230314403772354, 0.04259207472205162, 0.026316961273550987, -0.05132647976279259, -0.014103270135819912, -0.1445215344429016, 0.1523774117231369, -0.24359829723834991, -0.04300791770219803, 0.2790701687335968, -0.11725252866744995, -0.4595456123352051, 0.4491490423679352, 0.08571509271860123, -0.17939256131649017, -0.0937565490603447, 0.0898449644446373, -0.45172998309135437, -0.5832414627075195, -0.19653794169425964, -0.04961651191115379, -0.006353752221912146, -0.04697655886411667, 0.20735402405261993, 0.3686405122280121, -0.020753920078277588, 0.06679186224937439, -0.40619173645973206, -0.0126440254971385, -0.03456052020192146, -0.23904241621494293, 0.016428260132670403, 0.09661107510328293, -0.03994331136345863, 0.03989192843437195, -0.01329201739281416, -0.07642718404531479, 0.1367543637752533, -0.3796549439430237, 0.10447782278060913, 0.40975216031074524, 0.31771552562713623, -0.25521740317344666, -0.12675832211971283, -0.05762869864702225, 0.0908842459321022, -0.061549507081508636, -0.013918723911046982, -0.09170006215572357, 0.3072163760662079, 0.2673514783382416, -0.1160518229007721, 0.13979707658290863, -0.11297114938497543, 0.3074871301651001, -0.04246034100651741, -0.14133480191230774, -0.08091013878583908, -0.0709223747253418, 0.15892712771892548, 0.15671344101428986, 0.07651512324810028, -0.6586510539054871, 0.20115284621715546, 0.1272817701101303, 0.4618559181690216, 0.10028690844774246, 0.24003741145133972, 0.031579699367284775, -0.07182113826274872, -0.2901141047477722, 0.2863994836807251, 0.2572472095489502, 0.13480794429779053, -0.024997446686029434, 0.08594372868537903, -0.014200487174093723, 0.10627786070108414, -0.3425726592540741, 0.1890193521976471, -0.42099055647850037, -0.2592407166957855, 0.46552303433418274, 0.05061587691307068, -0.03438157960772514, 0.08725897967815399, 0.5667286515235901, 0.04731534793972969, -0.37608930468559265, 0.08757714927196503, 0.009315812028944492, -0.32729342579841614, 0.3672848343849182, 0.16127370297908783, 0.3269897401332855, 0.037009287625551224, 0.2489854246377945, 0.1275036484003067, -0.04273973032832146, 0.43046897649765015, 0.07371836155653, -0.05443089082837105, 0.3077157735824585, 0.5992565155029297, -0.1523352563381195, 0.14097119867801666, 0.21592873334884644, 0.09218590706586838, -0.027493026107549667, -0.27942898869514465, 0.16678375005722046, 0.6952605843544006, 0.011261976324021816, -0.02669505774974823, -0.013463469222187996, 0.1441679298877716, 0.03147561103105545, -0.09187182039022446, -0.5693452954292297, 0.17236503958702087, -0.30399811267852783, -0.041874960064888, -0.4359056353569031, -0.17337477207183838, -0.2718031406402588, 0.2712935209274292, 0.08467545360326767, 0.007534689735621214, -0.4959261119365692, 0.4745285212993622, -0.3862534165382385, 0.16597296297550201, -0.0016137085622176528, -0.03529823571443558, -0.07689184695482254, -0.2510150969028473, 0.27670472860336304, -0.10094700008630753, 0.09001555293798447, 0.17859004437923431, 0.10787954926490784, 0.45181503891944885, 0.4608573615550995, -0.19816620647907257, -0.07176818698644638, 0.14640991389751434, 0.19928528368473053, -0.08066819608211517, 0.1715557724237442, 0.04441574960947037, 0.4488542079925537, 0.06131226196885109, 0.04119341820478439, -0.1205742359161377, -0.23068948090076447, 0.1679256707429886, 0.03292005881667137, -0.058457523584365845, -0.32363641262054443, -0.2525622546672821, 0.1214086040854454, -0.32761701941490173, -0.043904274702072144, -0.40127032995224, 0.2954160273075104, 0.08267632126808167, 0.3247377574443817, 0.09956900030374527, 0.012449182569980621, -0.050752852112054825, 0.016123734414577484, 0.08427385240793228, 0.26712173223495483, 0.2433381974697113, -0.19792327284812927, -0.6244454979896545, -0.7142552137374878, 0.5119059681892395, -0.17517995834350586, -0.14377975463867188, 0.011991663835942745, -0.1430337131023407, 0.17337675392627716, 0.21215927600860596, 0.24621279537677765, 0.0237592626363039, -0.2725059390068054, 0.3092395067214966, -0.09161090850830078, -0.14334744215011597, 0.12179496139287949, 0.04823111370205879, -0.17142866551876068, -0.3135453462600708, 0.2311398983001709, -0.1329476237297058, -0.10060500353574753, -0.13888905942440033, -0.20521610975265503, -0.15085488557815552, -0.3039782643318176, 0.5101717114448547, 0.04160449281334877, 0.6107795834541321, -0.14156946539878845, 0.21253669261932373, 0.057217881083488464, 0.09024142473936081, -0.05025801435112953, 0.07781030982732773, -0.1217023953795433, 0.2651924192905426, -0.006483945995569229, 0.44338259100914, -0.3522951602935791, 0.34042680263519287, 0.04319778457283974, 0.1644781082868576, -0.18726539611816406, -0.26758667826652527, -0.2149728536605835, 0.014527195133268833, 0.23573538661003113, 0.1750921905040741, 0.011604680679738522, 0.08112223446369171, -0.321675568819046, 0.033271655440330505, 0.07843656092882156, -0.5061958432197571, -0.3236171007156372, -0.08282387256622314, 0.3031017780303955, -0.2015245258808136, -0.09868478775024414, -0.07662263512611389, -0.05157255753874779, 0.3096538186073303, 0.10906372964382172, -0.1457051783800125, -0.14728493988513947, -0.22156889736652374, -0.15542417764663696, 0.0013423759955912828, 0.01959395408630371, 0.22980241477489471, -0.4885847568511963, 0.2433445155620575, -0.43099984526634216 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
Because of the way Apache Beam works we indeed don't have access to the file name at this point in the code. We'll have to use some tricks I think :p You can append `filepath` to `title` in `wikipedia.py:L512` for example. [[EDIT: it's L494 my bad]] Then just do `try:...except:` on the call of `_parse_and_clean_wikicode` L500 I guess. Thanks for diving into this ! I tried it myself but I run out of memory on my laptop As soon as we have the name of the file it should be easier to find what's wrong.
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
95
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` Because of the way Apache Beam works we indeed don't have access to the file name at this point in the code. We'll have to use some tricks I think :p You can append `filepath` to `title` in `wikipedia.py:L512` for example. [[EDIT: it's L494 my bad]] Then just do `try:...except:` on the call of `_parse_and_clean_wikicode` L500 I guess. Thanks for diving into this ! I tried it myself but I run out of memory on my laptop As soon as we have the name of the file it should be easier to find what's wrong.
[ -0.12096278369426727, -0.07050874084234238, 0.05642203241586685, 0.3891802132129669, 0.10341459512710571, 0.017031308263540268, -0.12144574522972107, 0.3558143973350525, 0.2514157295227051, 0.26409491896629333, 0.21410581469535828, -0.06851916015148163, 0.040643032640218735, -0.44989219307899475, -0.08695905655622482, -0.0778384655714035, 0.3508557975292206, 0.12347842752933502, 0.05552854761481285, -0.17326024174690247, -0.16951917111873627, 0.13764844834804535, -0.2810787856578827, 0.41074931621551514, -0.18640880286693573, 0.11123520880937576, 0.08038121461868286, -0.02381427027285099, -0.07701893895864487, -0.3404315114021301, -0.14635838568210602, -0.16897161304950714, 0.20265153050422668, 0.333497017621994, -0.00012585667718667537, -0.18554112315177917, 0.5518953204154968, -0.14463576674461365, -0.21378184854984283, -0.13358074426651, 0.004677142016589642, -0.26678961515426636, -0.059188276529312134, -0.369064599275589, 0.22016142308712006, -0.05414542928338051, 0.3302629590034485, -0.25504085421562195, 0.3609260022640228, 0.2255512923002243, 0.07797802239656448, 0.13909658789634705, 0.27758920192718506, 0.040810540318489075, 0.6543576121330261, 0.0034431195817887783, 0.12901438772678375, -0.22421936690807343, -0.01365638617426157, -0.1525861620903015, -0.00303682591766119, 0.24535682797431946, -0.29656878113746643, -0.19944293797016144, -0.06752535700798035, -0.11387717723846436, 0.23020341992378235, -0.29965829849243164, 0.38473260402679443, 0.13379144668579102, 0.5107123255729675, -0.10197567194700241, 0.18095766007900238, 0.06408005952835083, -0.11538064479827881, 0.25648513436317444, 0.34985947608947754, 0.4780447781085968, -0.4989577829837799, 0.060281675308942795, 0.4844408333301544, -0.1789775937795639, -0.10386047512292862, 0.29819661378860474, -0.00745985796675086, 0.7731325030326843, 0.13813698291778564, 0.33521777391433716, 0.018403740599751472, -0.06715863198041916, -0.13882434368133545, -0.28768467903137207, -0.0027429640758782625, 0.3892369270324707, -0.09846431016921997, 0.11769182235002518, -0.13368742167949677, -0.07980859279632568, 0.00042147713247686625, -0.4752693176269531, -0.3524788022041321, 0.09234365820884705, 0.06550157070159912, 0.2571342885494232, 0.39521512389183044, -0.08808853477239609, 0.2560521066188812, -0.10583996027708054, 0.06495901197195053, -0.003579059848561883, 0.031890589743852615, 0.009238919243216515, -0.1560276597738266, -0.1251683533191681, -0.5585860013961792, 0.15723402798175812, 0.1669793426990509, -0.06112891435623169, 0.08678282052278519, 0.21846133470535278, -0.19899290800094604, -0.09441859275102615, -0.1439748853445053, 0.5513177514076233, -0.036121152341365814, 0.501717746257782, 0.10817365348339081, -0.019512243568897247, -0.20921215415000916, -0.6590043902397156, 0.07262835651636124, 0.2387358695268631, -0.3837995231151581, 0.09405196458101273, -0.14628447592258453, 0.27063649892807007, 0.0817146971821785, 0.16267675161361694, -0.11014797538518906, -0.41276466846466064, -0.01777082495391369, -0.1296963393688202, -0.11069037020206451, 0.06231486052274704, 0.42662927508354187, 0.5009469985961914, 0.20246176421642303, -0.4213835895061493, 0.03247249871492386, 0.31856364011764526, -0.4508616328239441, -0.1133398711681366, -0.38652610778808594, 0.021905215457081795, -0.0549517497420311, 0.29634925723075867, -0.5117598176002502, -0.02573758363723755, -0.06119150295853615, -0.18052172660827637, 0.05795896425843239, -0.09742920845746994, -0.05029258877038956, -0.1684543490409851, 0.14002035558223724, 0.34383827447891235, -0.08687730878591537, 0.0030443703290075064, -0.15164229273796082, -0.12712916731834412, 0.20690405368804932, 0.012518439441919327, -0.08788838237524033, 0.5803273320198059, -0.46322304010391235, 0.5278594493865967, 0.4331422746181488, -0.41728121042251587, -0.044425833970308304, -0.050906386226415634, -0.06905905157327652, -0.18006864190101624, 0.15325334668159485, -0.24177433550357819, 0.20282962918281555, -0.1651456356048584, -0.4169231653213501, 0.16149477660655975, 0.09470921754837036, 0.15453341603279114, -0.23937538266181946, -0.29761943221092224, 0.1369991898536682, 0.06999225914478302, 0.11596132814884186, -0.055403921753168106, 0.2703327238559723, 0.5132506489753723, 0.5763165950775146, -0.20470677316188812, 0.20865923166275024, 0.12090654671192169, 0.010767797939479351, 0.1776311844587326, -0.0026645860634744167, 0.11111409217119217, 0.10034795850515366, -0.008074317127466202, -0.11552273482084274, 0.1904522031545639, -0.2601396441459656, -0.06369759142398834, -0.24234911799430847, 0.18933120369911194, -0.20078884065151215, -0.04286057874560356, 0.07768100500106812, 0.23353689908981323, -0.2802913188934326, 0.31161409616470337, 0.06655093282461166, -0.20750552415847778, -0.20281392335891724, 0.13608388602733612, -0.07702472060918808, 0.11767121404409409, -0.1301358938217163, -0.04567126929759979, -0.3280327618122101, -0.11805642396211624, 0.5273603796958923, 0.01161420438438654, -0.1616957187652588, 0.11494721472263336, 0.28329941630363464, 0.0874379500746727, -0.13256682455539703, -0.1691451519727707, -0.0989627093076706, -0.3816637694835663, 0.18659240007400513, 0.267435222864151, 0.24122603237628937, -0.11061060428619385, 0.1445414125919342, 0.1156608909368515, 0.3446529805660248, 0.19227032363414764, -0.07927470654249191, 0.12988285720348358, 0.1943042278289795, 0.010688742622733116, 0.2934867739677429, -0.0030796551145613194, 0.30460914969444275, 0.49900710582733154, -0.07064591348171234, -0.3424892723560333, 0.32921865582466125, -0.2922590374946594, 0.49653810262680054, -0.11308790743350983, 0.14921647310256958, 0.12617583572864532, -0.34482455253601074, 0.06662221997976303, 0.3503163754940033, -0.4112820029258728, -0.0033075532410293818, 0.015366099774837494, -0.1353277564048767, 0.1966358721256256, 0.310482919216156, 0.05338866636157036, 0.37213757634162903, 0.20420201122760773, 0.018650028854608536, 0.030154388397932053, -0.17954418063163757, -0.08556051552295685, -0.16124358773231506, -0.17829900979995728, -0.2557563781738281, 0.17656588554382324, -0.24246419966220856, -0.08523494005203247, -0.1452089250087738, -0.08678781241178513, -0.41741740703582764, 0.24484406411647797, -0.4018445611000061, -0.25481903553009033, -0.07837440073490143, 0.2720756530761719, -0.27205073833465576, 0.1508205235004425, 0.07408246397972107, 0.08927495032548904, 0.04607643932104111, 0.1715887188911438, -0.3309582471847534, -0.3067092299461365, -0.47029584646224976, -0.16244009137153625, 0.5332533717155457, 0.13992615044116974, 0.05488921329379082, 0.03834886848926544, -0.0015598473837599158, -0.3136585056781769, -0.10012388229370117, 0.3807927072048187, 0.0008732389542274177, -0.09852307289838791, -0.14017818868160248, 0.2973884344100952, 0.06640513986349106, -0.3065909445285797, 0.034085873514413834, -0.3090631067752838, -0.054121822118759155, 0.15751630067825317, 0.22501182556152344, -0.012601759284734726, 0.11137741804122925, -0.09025721251964569, -0.3435206413269043, -0.1660824567079544, -0.17935273051261902, -0.0840207040309906, 0.10745199769735336, -0.38856106996536255, -0.03758365660905838, 0.16723299026489258, -0.27399054169654846, -0.12621845304965973, -0.11906741559505463, 0.11501877754926682, 0.18190819025039673, -0.04878794774413109, -0.26808246970176697, 0.367941290140152, -0.038990747183561325, 0.06916163116693497, 0.021388228982686996, -0.3876899182796478, 0.21298076212406158, 0.2526645064353943, -0.032775167375802994, -0.2018022984266281, 0.11487655341625214, 0.30686962604522705, -0.09765034914016724, 0.14948061108589172, -0.005584373604506254, 0.04562631621956825, -0.27134278416633606, -0.34733137488365173, 0.5005397796630859, 0.051083240658044815, 0.29849931597709656, 0.13913090527057648, 0.7935023903846741, -0.09140762686729431, 0.4170955717563629, 0.38060635328292847, -0.05090779811143875, -0.06162028759717941, -0.006895044352859259, -0.06387115269899368, 0.2387562394142151, 0.017053524032235146, -0.22867879271507263, 0.5545761585235596, -0.16084173321723938, -0.1884113848209381, -0.30430224537849426, -0.03009653277695179, -0.5362464189529419, -0.4509309232234955, 0.16388677060604095, 0.3014618754386902, 0.12659409642219543, -0.039928510785102844, 0.24649657309055328, -0.13929523527622223, -0.3547824025154114, 0.11805794388055801, 0.2957462668418884, -0.1534203737974167, -0.06182030588388443, -0.045154474675655365, 0.08049806207418442, -0.2142871916294098, 0.3920483887195587, 0.11262959986925125, 0.400647908449173, -0.030244970694184303, -0.06067194044589996, 0.1365610808134079, 0.04211566597223282, 0.6749556064605713, 0.1139661967754364, 0.26688051223754883, -0.04831915721297264, 0.15171097218990326, -0.20120279490947723, -0.33704873919487, -0.24024717509746552, -0.12922115623950958, 0.4147006869316101, -0.05394323915243149, -0.4135914742946625, 0.005338870920240879, -0.14689315855503082, 0.09561197459697723, -0.16251714527606964, -0.029524363577365875, -0.12506811320781708, -0.18670153617858887, -0.4802513122558594, 0.1160198524594307, 0.15346898138523102, 0.2812899649143219, 0.22325992584228516, 0.24677817523479462, 0.10223422944545746, -0.022160667926073074, -0.006682461127638817, -0.026074279099702835, 0.11489440500736237, 0.04153330624103546, -0.39085930585861206, -0.1406550407409668, 0.34130042791366577, -0.1051340252161026, 0.0629715770483017, 0.5062640905380249, -0.2861003577709198, 0.01143869198858738, -0.1281372606754303, 0.22773855924606323, 0.36433377861976624, 0.009366917423903942, 0.16435356438159943, 0.08917710930109024, 0.1918288618326187, -0.16675536334514618, 0.3696988821029663, 0.199113130569458, -0.04134589806199074, -0.3877439796924591, -0.012873949483036995, 0.4758427143096924, -0.007365927565842867, -0.1285911500453949, 0.14806029200553894, 0.08249015361070633, -0.3054511845111847, 0.4694945812225342, 0.15949705243110657, 1.4028260707855225, 0.07431057840585709, 0.10608689486980438, 0.058272507041692734, -0.02342783845961094, 0.77097487449646, -0.8501490950584412, 0.0102291414514184, -0.3112945854663849, 0.13366292417049408, -0.1457693874835968, 0.09927663207054138, 0.24563348293304443, 0.18842455744743347, -0.17971676588058472, 0.4108472466468811, 0.20996364951133728, 0.5706495642662048, 0.16180112957954407, 0.2777124345302582, 0.15841878950595856, -0.12245252728462219, -0.1224462240934372, -0.0375857837498188, -0.3394307792186737, 0.26488760113716125, -0.28232693672180176, -0.0010858733439818025, 0.000082182559708599, -0.4254598915576935, -0.4824258089065552, 0.17029763758182526, -0.17449051141738892, 0.16458454728126526, -0.3101140856742859, -0.12700289487838745, 0.1680436134338379, 0.014791329391300678, 0.011114600114524364, 0.32381901144981384, -0.1544264554977417, 0.4299154579639435, -0.2235509157180786, -0.23137569427490234, -0.09460046142339706, 0.1680571585893631, -0.02229548618197441, -0.1653200387954712, -0.19680820405483246, 0.4138619303703308, -0.06228343024849892, -0.3473200798034668, -0.1739186942577362, 0.019729245454072952, 0.557270348072052, 0.02665206976234913, -0.3261713683605194, -0.06117168068885803, -0.0020255004055798054, -0.08700848370790482, 0.04784798622131348, -0.1802935004234314, -0.3034144639968872, -0.12233270704746246, 0.18913692235946655, -0.14198799431324005, 0.07636965066194534, 0.3687137961387634, -0.15629613399505615, -0.5203360319137573, 0.5429052114486694, 0.3616914749145508, -0.18473997712135315, -0.12301096320152283, -0.020262282341718674, -0.3258291184902191, -0.649755597114563, -0.2177562564611435, -0.07702672481536865, 0.028563115745782852, -0.1641373187303543, 0.1911831796169281, 0.25158682465553284, -0.03833984211087227, 0.05100812017917633, -0.3938290476799011, 0.051792751997709274, -0.012760350480675697, -0.2740119695663452, -0.08350750803947449, 0.11598499119281769, 0.18714475631713867, -0.009262091480195522, -0.0447380393743515, -0.11616354435682297, -0.02259158156812191, -0.30628225207328796, 0.19242851436138153, 0.482649028301239, 0.232657328248024, -0.2700318396091461, -0.013720853254199028, 0.010552280582487583, 0.1974303126335144, -0.021830638870596886, -0.034447330981492996, -0.0908612385392189, 0.26677918434143066, 0.33934080600738525, -0.03511182591319084, 0.1336829513311386, -0.133157879114151, 0.19758015871047974, -0.15637820959091187, -0.1528538018465042, -0.15404203534126282, -0.04547415301203728, 0.2977790832519531, 0.3360816538333893, 0.2830897867679596, -0.5487605333328247, 0.21780230104923248, 0.13833825290203094, 0.6532807350158691, 0.005428330972790718, 0.19275496900081635, 0.1559055894613266, 0.05255851522088051, -0.24534925818443298, 0.09297651797533035, 0.2692931890487671, 0.1605542004108429, 0.10481128096580505, 0.06294648349285126, -0.1325591653585434, 0.0959392786026001, -0.1208665668964386, 0.1463814377784729, -0.38143810629844666, -0.2813280522823334, 0.6323447227478027, 0.07454588264226913, -0.15127287805080414, 0.18933486938476562, 0.6089373230934143, 0.04913129284977913, -0.2840149998664856, 0.12595979869365692, -0.12534870207309723, -0.2812301218509674, 0.21488630771636963, 0.16087235510349274, 0.2591938376426697, 0.01497663650661707, 0.13510635495185852, 0.09736219048500061, -0.08754123002290726, 0.2604696452617645, -0.03261131793260574, -0.06439439952373505, 0.2623575031757355, 0.641319751739502, -0.24147048592567444, 0.17568160593509674, 0.1518554389476776, 0.10701268166303635, -0.11176274716854095, -0.2240465134382248, 0.23137614130973816, 0.5097438097000122, 0.11598873883485794, 0.066604845225811, -0.1439884454011917, 0.04341346397995949, 0.2388581782579422, -0.11327469348907471, -0.44333741068840027, 0.2972135841846466, -0.15414515137672424, 0.04859841242432594, -0.2984187602996826, -0.09291940182447433, -0.32101479172706604, 0.2261299341917038, 0.14804281294345856, -0.1404353380203247, -0.2817443013191223, 0.3320847451686859, -0.3453848659992218, 0.0739460214972496, -0.0042848060838878155, 0.01883486658334732, 0.035162992775440216, -0.38156867027282715, 0.07409558445215225, -0.059380967170000076, 0.09985144436359406, 0.06163976341485977, 0.051592908799648285, 0.4012047052383423, 0.4144955277442932, -0.398713618516922, -0.05378996953368187, 0.030558617785573006, 0.1961590200662613, 0.02572965994477272, 0.09141920506954193, 0.14729852974414825, 0.37246230244636536, 0.13653817772865295, 0.041132256388664246, -0.10638149827718735, -0.3492836058139801, 0.2604296803474426, -0.02335205487906933, -0.054686289280653, -0.28949862718582153, -0.09831109642982483, 0.01898076944053173, -0.36979731917381287, -0.10282693058252335, -0.4696653485298157, 0.2777033746242523, 0.00039801845559850335, 0.19270576536655426, 0.08354375511407852, -0.0362853966653347, -0.034611284732818604, -0.08329453319311142, 0.08166781067848206, 0.3843728005886078, 0.17861780524253845, -0.2805784344673157, -0.5301000475883484, -0.6154991388320923, 0.3956105709075928, -0.2236166000366211, -0.2989005744457245, -0.06406226009130478, -0.028065767139196396, 0.10253582149744034, 0.26081904768943787, 0.055098358541727066, 0.08367395401000977, -0.24003730714321136, 0.36801856756210327, -0.2253846824169159, -0.28017890453338623, 0.14841006696224213, 0.11705455929040909, -0.11359992623329163, -0.3118141293525696, 0.213999941945076, -0.038148123770952225, -0.08435828238725662, -0.09959974139928818, -0.29434001445770264, 0.037327807396650314, -0.4005628824234009, 0.4856734871864319, 0.0347069688141346, 0.38013339042663574, -0.07103775441646576, 0.11277212202548981, -0.12776021659374237, 0.07428677380084991, -0.12263810634613037, -0.010781051591038704, -0.11047546565532684, 0.20151913166046143, 0.030901851132512093, 0.21080227196216583, -0.4701860845088959, 0.386542409658432, -0.08253362774848938, 0.1990240514278412, -0.3401547074317932, -0.039673492312431335, -0.1996801644563675, 0.22417575120925903, -0.04659600183367729, -0.07788418233394623, -0.051911093294620514, 0.20633578300476074, -0.4808901846408844, -0.10812194645404816, 0.22490067780017853, -0.5813333988189697, -0.4714144170284271, -0.041544947773218155, 0.3231419622898102, -0.31286925077438354, -0.06189803406596184, -0.23545698821544647, 0.035361967980861664, 0.18740279972553253, 0.2431429624557495, -0.14913056790828705, -0.17975850403308868, -0.28894665837287903, -0.13730347156524658, -0.008098543621599674, -0.10901639610528946, 0.23299968242645264, -0.3411547541618347, 0.10055296868085861, -0.3634815216064453 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
Thanks for your help. I tried to print the "title" of the document inside the` except (mwparserfromhell.parser.ParserError) as e`,the title displayed was : "Campeonato Mundial de futsal de la AMF 2015". (Wikipedia ES) Is it what you were looking for ?
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
41
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` Thanks for your help. I tried to print the "title" of the document inside the` except (mwparserfromhell.parser.ParserError) as e`,the title displayed was : "Campeonato Mundial de futsal de la AMF 2015". (Wikipedia ES) Is it what you were looking for ?
[ -0.09824029356241226, -0.14601245522499084, 0.05791448429226875, 0.45700716972351074, 0.03996893763542175, 0.08334873616695404, -0.24785257875919342, 0.1913089156150818, 0.3329874873161316, 0.29417750239372253, 0.2543115019798279, 0.10800537467002869, 0.09529759734869003, -0.3402065932750702, -0.16964080929756165, -0.06795425713062286, 0.35555142164230347, 0.12141747027635574, 0.16242314875125885, -0.246880441904068, -0.050184689462184906, 0.1787007749080658, -0.34273165464401245, 0.38260218501091003, -0.16341668367385864, 0.16693410277366638, 0.12315522134304047, -0.1326596438884735, -0.1403282880783081, -0.2993071377277374, -0.020049968734383583, -0.2091214954853058, 0.1560906320810318, 0.36523252725601196, -0.00012790580512955785, -0.31931233406066895, 0.48680421710014343, -0.08477941155433655, -0.14866948127746582, -0.2189909666776657, 0.015291753225028515, -0.15223850309848785, -0.04100558161735535, -0.40440085530281067, 0.32483822107315063, 0.11539822816848755, 0.334157794713974, -0.28099241852760315, 0.1205003559589386, 0.21973949670791626, 0.06404589116573334, 0.10662005096673965, 0.3839099705219269, 0.07591766864061356, 0.4806534945964813, 0.07341235131025314, 0.20546980202198029, -0.06007953733205795, -0.01687653176486492, -0.05325741693377495, 0.14912527799606323, 0.20146986842155457, -0.36598190665245056, -0.188492089509964, -0.1632104367017746, 0.06625480949878693, 0.2595542073249817, -0.4452036917209625, 0.4108956754207611, 0.13947080075740814, 0.6173773407936096, -0.11910349875688553, 0.26145854592323303, 0.16543692350387573, -0.05808669701218605, 0.25800734758377075, 0.30136993527412415, 0.5481123924255371, -0.3672947883605957, -0.02532476745545864, 0.38778284192085266, -0.11348912864923477, -0.13692927360534668, 0.3051532506942749, -0.24320513010025024, 0.9164059162139893, 0.12523727118968964, 0.3172871768474579, 0.035912103950977325, 0.04807909205555916, -0.06625579297542572, -0.2513139843940735, -0.04936040937900543, 0.33407628536224365, 0.021480828523635864, -0.02585788443684578, -0.1511848270893097, -0.07842045277357101, 0.0011785721872001886, -0.625525951385498, -0.4130968153476715, 0.029995637014508247, 0.12094862759113312, 0.34029054641723633, 0.4541517496109009, -0.24070070683956146, 0.29414981603622437, -0.005448262207210064, -0.07710976898670197, -0.14972028136253357, 0.0046598282642662525, -0.025847861543297768, -0.14398394525051117, 0.0026519864331930876, -0.4691488444805145, -0.002937502460554242, 0.24612067639827728, -0.2048177868127823, 0.08656132966279984, 0.35607919096946716, -0.2949359118938446, -0.11160656809806824, -0.25788143277168274, 0.43412357568740845, -0.07180002331733704, 0.37737277150154114, 0.06061043590307236, -0.03673196956515312, -0.13950960338115692, -0.5028151869773865, -0.01804574951529503, 0.2353695183992386, -0.3238376975059509, 0.06982193887233734, -0.2390313595533371, 0.22646209597587585, 0.1722397357225418, 0.1966179609298706, -0.011000918224453926, -0.5448353290557861, -0.04280971363186836, -0.18366600573062897, -0.07190394401550293, 0.04728551208972931, 0.40676048398017883, 0.5007112622261047, 0.2680574655532837, -0.405728280544281, -0.052523721009492874, 0.3967241644859314, -0.3704168200492859, -0.022261565551161766, -0.5510871410369873, 0.04797462373971939, 0.042807504534721375, 0.18167641758918762, -0.5636147856712341, 0.023634055629372597, -0.06371141225099564, -0.16770274937152863, 0.21262842416763306, -0.05187131464481354, -0.14555254578590393, -0.031013574451208115, 0.11249927431344986, 0.21955692768096924, -0.1851063370704651, 0.06158561259508133, -0.10123872011899948, -0.1575167328119278, 0.23706801235675812, -0.03276904672384262, -0.08646617084741592, 0.6368800401687622, -0.350578635931015, 0.5782255530357361, 0.26526352763175964, -0.4091208279132843, -0.08828480541706085, 0.007163143716752529, -0.02757498435676098, -0.22220739722251892, 0.0340309776365757, -0.13931648433208466, 0.17055931687355042, 0.008535588160157204, -0.47803330421447754, -0.044012848287820816, 0.030570462346076965, 0.18126514554023743, -0.13811777532100677, -0.28466179966926575, 0.24031105637550354, 0.08366817981004715, 0.25432461500167847, -0.08258620649576187, 0.15284356474876404, 0.4838690161705017, 0.6022039651870728, -0.15351471304893494, 0.1452036201953888, 0.055283788591623306, 0.06347044557332993, 0.21412907540798187, -0.08454044163227081, 0.07010636478662491, -0.0034428653307259083, -0.019444160163402557, 0.08263440430164337, 0.19797851145267487, -0.14654333889484406, -0.13807398080825806, -0.13799621164798737, 0.2703555226325989, -0.12374139577150345, 0.02377963811159134, 0.02325800061225891, 0.21339590847492218, -0.19865472614765167, 0.39074698090553284, 0.08319240808486938, -0.27092403173446655, -0.2775024473667145, 0.0981847271323204, -0.018413985148072243, 0.194644957780838, -0.12727560102939606, -0.0370277501642704, -0.3745703399181366, -0.19184869527816772, 0.4063359498977661, 0.12157449871301651, -0.152032732963562, 0.02346155233681202, 0.2480849176645279, 0.1226690411567688, -0.2635527551174164, -0.24105896055698395, -0.12964145839214325, -0.42556920647621155, 0.11462422460317612, 0.2754119634628296, 0.25983917713165283, -0.12637536227703094, 0.1595698595046997, 0.080110102891922, 0.2849266827106476, 0.08742807805538177, -0.19437077641487122, 0.06345349550247192, 0.12802642583847046, -0.0008980919374153018, 0.38229864835739136, -0.11339053511619568, 0.2536652982234955, 0.4015442430973053, -0.13220801949501038, -0.376473605632782, 0.17883384227752686, -0.20943711698055267, 0.6232563853263855, -0.02976139262318611, 0.1618250012397766, 0.15059059858322144, -0.26789548993110657, 0.009571396745741367, 0.3111508786678314, -0.5253850817680359, 0.12164182215929031, -0.0011218092404305935, -0.12084387242794037, 0.35899314284324646, 0.3209594786167145, 0.02808944694697857, 0.4389224350452423, 0.27469906210899353, -0.053825099021196365, 0.07298638671636581, -0.20882214605808258, -0.0472809299826622, -0.25505274534225464, -0.09365932643413544, -0.24958716332912445, 0.13084007799625397, -0.24616357684135437, -0.05398721247911453, -0.1664285957813263, 0.04534660279750824, -0.32020333409309387, 0.044148292392492294, -0.4074266254901886, -0.19823776185512543, -0.12498960644006729, 0.44253790378570557, -0.18594421446323395, 0.14495804905891418, 0.0070481738075613976, 0.04018724337220192, -0.04611819609999657, 0.3184623718261719, -0.26227879524230957, -0.3390578329563141, -0.4685196578502655, -0.16192355751991272, 0.4164779484272003, 0.16190727055072784, 0.13008111715316772, -0.08165644109249115, 0.06477561593055725, -0.3107573390007019, -0.13375721871852875, 0.41584157943725586, -0.10417059808969498, -0.037483807653188705, -0.18439044058322906, 0.16310954093933105, -0.20271076261997223, -0.3040032386779785, 0.008298883214592934, -0.3350696563720703, -0.08697110414505005, 0.0554574653506279, 0.2022852748632431, -0.16504846513271332, 0.15634427964687347, -0.09125764667987823, -0.3194940388202667, -0.0305152740329504, -0.2652243375778198, -0.1757875680923462, 0.13098834455013275, -0.5440910458564758, -0.10378853976726532, 0.22215504944324493, -0.1957855522632599, -0.1582680642604828, -0.24162879586219788, 0.05118624493479729, 0.13861025869846344, -0.027117745950818062, -0.19730494916439056, 0.4221188426017761, 0.0898568406701088, 0.1270071566104889, -0.13427844643592834, -0.5310725569725037, 0.3187635540962219, 0.287252277135849, -0.2071969360113144, -0.2658964991569519, 0.09538042545318604, 0.3380013406276703, -0.1261993646621704, 0.13008055090904236, -0.020574867725372314, -0.020033443346619606, -0.30607008934020996, -0.26120129227638245, 0.36595383286476135, -0.06968849152326584, 0.3568730354309082, 0.00527155352756381, 0.5611317753791809, 0.007797695230692625, 0.34981420636177063, 0.29980558156967163, -0.05596490949392319, -0.12492939084768295, 0.04783597216010094, -0.10558070987462997, 0.2657904624938965, 0.12482701241970062, -0.23739199340343475, 0.7256165146827698, -0.24252763390541077, -0.2778721749782562, -0.21145254373550415, -0.10849988460540771, -0.4927820563316345, -0.3511238396167755, 0.13406190276145935, 0.4256850481033325, 0.21511298418045044, -0.15820226073265076, 0.2645699381828308, -0.046171024441719055, -0.3970324397087097, 0.04092425853013992, 0.2700922191143036, -0.14577072858810425, -0.07522262632846832, -0.2231328785419464, -0.0068607330322265625, -0.22167378664016724, 0.2792331576347351, 0.16581061482429504, 0.263062447309494, -0.0474541038274765, 0.03786536306142807, 0.0920642763376236, 0.10627448558807373, 0.7170774340629578, 0.0799824669957161, 0.2855760455131531, 0.007633413188159466, 0.10889516025781631, -0.08556705713272095, -0.3343634009361267, -0.3213564157485962, 0.03471141308546066, 0.41144660115242004, -0.08111049979925156, -0.38284018635749817, 0.011715360917150974, -0.11305415630340576, -0.027653081342577934, -0.07710230350494385, -0.15947644412517548, -0.06318296492099762, -0.07506534457206726, -0.4859532117843628, 0.29361283779144287, 0.1052246242761612, 0.18477962911128998, 0.21815495193004608, 0.11675865948200226, 0.06451714783906937, 0.11837497353553772, 0.04048112779855728, -0.08190237730741501, 0.06523985415697098, 0.15322938561439514, -0.3297496438026428, -0.10779627412557602, 0.3382180333137512, 0.1190088540315628, 0.08552075922489166, 0.4668067991733551, -0.28608015179634094, 0.04675431549549103, -0.2273382544517517, 0.35709813237190247, 0.3676093816757202, 0.13782237470149994, 0.1718907505273819, 0.2850581407546997, 0.18464295566082, -0.20059776306152344, 0.2463531345129013, 0.2104187160730362, -0.010119758546352386, -0.45726948976516724, 0.047660067677497864, 0.4190885126590729, 0.04328851401805878, -0.12917368113994598, 0.08075491338968277, 0.1301431804895401, -0.3920387625694275, 0.2276463508605957, 0.3042016625404358, 1.3743019104003906, 0.22904714941978455, 0.00005529800182557665, 0.01821761392056942, -0.02120385132730007, 0.7775990962982178, -0.5432034134864807, -0.041660111397504807, -0.4133482277393341, 0.22355082631111145, -0.2628510892391205, 0.07188588380813599, 0.17437054216861725, 0.15499332547187805, -0.4109579622745514, 0.33152642846107483, 0.11954517662525177, 0.6789627075195312, 0.20074819028377533, 0.2311808168888092, 0.30038586258888245, -0.06962664425373077, -0.04713517054915428, -0.05624854564666748, -0.2997575104236603, 0.16412663459777832, -0.33604687452316284, 0.004093507770448923, 0.07265828549861908, -0.4021907150745392, -0.510524570941925, 0.1497732400894165, -0.15608207881450653, 0.13559550046920776, -0.24009329080581665, -0.09243758022785187, 0.3394128680229187, 0.030381014570593834, 0.15302541851997375, 0.3946719169616699, -0.236074760556221, 0.30844545364379883, -0.07908018678426743, -0.28274819254875183, -0.08459991216659546, 0.07598719745874405, -0.16626062989234924, -0.07624940574169159, -0.2573309540748596, 0.40241479873657227, 0.040414612740278244, -0.2437889575958252, -0.12975281476974487, -0.017381146550178528, 0.5050361156463623, -0.017975658178329468, -0.46334338188171387, -0.024339694529771805, 0.01355426199734211, -0.09684034436941147, 0.009935454465448856, -0.2525741755962372, -0.18891467154026031, -0.08008027821779251, 0.3576355576515198, -0.276216983795166, 0.02397642657160759, 0.3802039623260498, -0.050861574709415436, -0.3608962595462799, 0.40538445115089417, 0.4141707420349121, -0.21107392013072968, -0.172927126288414, -0.1388736218214035, -0.4548933207988739, -0.6205153465270996, -0.24527081847190857, 0.003687636461108923, 0.07518792897462845, -0.09934546798467636, 0.22783997654914856, 0.26643386483192444, -0.0028216559439897537, 0.06733478605747223, -0.37571001052856445, 0.13013429939746857, 0.00044284953037276864, -0.2997361719608307, -0.05415351688861847, 0.1505136638879776, 0.14407004415988922, -0.07728365808725357, 0.01089233998209238, -0.10242016613483429, 0.050126124173402786, -0.34579116106033325, 0.18440230190753937, 0.40436291694641113, 0.2660728394985199, -0.33348551392555237, -0.1559801548719406, -0.00824001058936119, 0.3081270456314087, -0.11100773513317108, -0.04379015043377876, -0.14296859502792358, 0.27741172909736633, 0.4025515913963318, -0.11546854674816132, 0.11430095136165619, -0.05690396949648857, 0.12810716032981873, -0.143881693482399, -0.1454659104347229, -0.11521540582180023, -0.05078957602381706, 0.3200851082801819, 0.28642234206199646, 0.33639243245124817, -0.6627498865127563, 0.11767759174108505, 0.2216808944940567, 0.5979233384132385, -0.0016467338427901268, 0.25841188430786133, 0.16013890504837036, 0.06296899169683456, -0.08356617391109467, 0.21122229099273682, 0.32958611845970154, 0.14438077807426453, 0.062353916466236115, 0.01624871790409088, -0.046371400356292725, 0.1883051097393036, -0.10923641920089722, 0.10766509920358658, -0.3437705934047699, -0.31860753893852234, 0.5859048962593079, 0.0780179500579834, -0.1367443948984146, 0.0791250616312027, 0.5128089189529419, 0.050333935767412186, -0.28168120980262756, 0.13536451756954193, -0.019264619797468185, -0.305471271276474, 0.1443624496459961, 0.16004960238933563, 0.3883186876773834, -0.008088444359600544, 0.09768252819776535, 0.042797576636075974, -0.21450944244861603, 0.3497296869754791, 0.03314313292503357, 0.11038798838853836, 0.2539874315261841, 0.41915765404701233, -0.009226391091942787, 0.03066078945994377, 0.1890912652015686, 0.21958249807357788, -0.1321517825126648, -0.11681172996759415, 0.1506025195121765, 0.48521754145622253, 0.14170269668102264, -0.03645148128271103, -0.1465827077627182, -0.27299806475639343, 0.2765251100063324, -0.10701031237840652, -0.4260050356388092, 0.2682326138019562, -0.20227797329425812, 0.050631631165742874, -0.2739010155200958, -0.11676222831010818, -0.16630475223064423, 0.29340195655822754, 0.1380990892648697, -0.20001152157783508, -0.34350094199180603, 0.2851370573043823, -0.3189728558063507, -0.02035130187869072, -0.07664033770561218, -0.006300820969045162, -0.04492158815264702, -0.4550504684448242, 0.11714796721935272, -0.1794956624507904, 0.09010866284370422, -0.11993831396102905, 0.23480597138404846, 0.3847109079360962, 0.4226668179035187, -0.43578270077705383, 0.02632979303598404, -0.04640582948923111, 0.2207932025194168, 0.12110333889722824, 0.07871699333190918, 0.24108336865901947, 0.24353298544883728, 0.09524006396532059, 0.035022981464862823, -0.07255177944898605, -0.3141314387321472, 0.38126084208488464, -0.029578452929854393, 0.05844668671488762, -0.3081599175930023, 0.007968250662088394, 0.1974344104528427, -0.2284306287765503, -0.14964790642261505, -0.5025537014007568, 0.21571534872055054, 0.15537266433238983, 0.13634634017944336, 0.08662310987710953, 0.05856766924262047, -0.04317283630371094, -0.04269247502088547, 0.1241077184677124, 0.34791329503059387, 0.2889399528503418, -0.29437702894210815, -0.4787544906139374, -0.5232974886894226, 0.4851521849632263, -0.14595891535282135, -0.1678866446018219, 0.026609452441334724, -0.09690859168767929, 0.1434946358203888, 0.356270432472229, 0.03532533347606659, 0.03650735318660736, -0.34789082407951355, 0.31064873933792114, -0.14911521971225739, -0.18096810579299927, 0.1536918580532074, 0.077484630048275, -0.13197767734527588, -0.2365519106388092, 0.17630235850811005, -0.2174253910779953, -0.09638412296772003, -0.2786427140235901, -0.12995211780071259, -0.12763722240924835, -0.16475987434387207, 0.5894806385040283, 0.02011277712881565, 0.487386018037796, -0.14681492745876312, 0.15158654749393463, 0.11994366347789764, 0.11681067943572998, -0.08407784253358841, 0.16338667273521423, -0.024093450978398323, 0.19273129105567932, -0.020526191219687462, 0.16957387328147888, -0.36051490902900696, 0.24144545197486877, -0.020420091226696968, 0.21536661684513092, -0.41553083062171936, -0.09289519488811493, -0.17697763442993164, 0.027434442192316055, -0.09587766975164413, -0.02968055009841919, 0.012035995721817017, 0.23437507450580597, -0.3720816373825073, 0.00043285629362799227, 0.2789653539657593, -0.5013765692710876, -0.33557477593421936, -0.19071629643440247, 0.26180124282836914, -0.14889608323574066, -0.17623303830623627, -0.2184722125530243, 0.04822126030921936, 0.26318666338920593, 0.1811581701040268, -0.21862176060676575, -0.14422395825386047, -0.23119497299194336, -0.1701051890850067, -0.04749128967523575, 0.003345873672515154, 0.12157338857650757, -0.4107509255409241, 0.06297130882740021, -0.42897140979766846 ]
https://github.com/huggingface/datasets/issues/321
ERROR:root:mwparserfromhell
Thanks a lot @Shiro-LK ! I was able to reproduce the issue. It comes from [this table on wikipedia](https://es.wikipedia.org/wiki/Campeonato_Mundial_de_futsal_de_la_AMF_2015#Clasificados) that can't be parsed. The file in which the problem occurs comes from the wikipedia dumps, and it can be downloaded [here](https://dumps.wikimedia.org/eswiki/20200501/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2) Parsing the file this way raises the parsing issue: ```python import mwparserfromhell as parser from tqdm.auto import tqdm import bz2 import six import logging import codecs import xml.etree.cElementTree as etree filepath = "path/to/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2" def _extract_content(filepath): """Extracts article content from a single WikiMedia XML file.""" logging.info("generating examples from = %s", filepath) with open(filepath, "rb") as f: f = bz2.BZ2File(filename=f) if six.PY3: # Workaround due to: # https://github.com/tensorflow/tensorflow/issues/33563 utf_f = codecs.getreader("utf-8")(f) else: utf_f = f # To clear root, to free-up more memory than just `elem.clear()`. context = etree.iterparse(utf_f, events=("end",)) context = iter(context) unused_event, root = next(context) for unused_event, elem in tqdm(context, total=949087): if not elem.tag.endswith("page"): continue namespace = elem.tag[:-4] title = elem.find("./{0}title".format(namespace)).text ns = elem.find("./{0}ns".format(namespace)).text id_ = elem.find("./{0}id".format(namespace)).text # Filter pages that are not in the "main" namespace. if ns != "0": root.clear() continue raw_content = elem.find("./{0}revision/{0}text".format(namespace)).text root.clear() if "Campeonato Mundial de futsal de la AMF 2015" in title: yield (id_, title, raw_content) for id_, title, raw_content in _extract_content(filepath): wikicode = parser.parse(raw_content) ``` The copied the raw content that can't be parsed [here](https://pastebin.com/raw/ZbmevLyH). The minimal code to reproduce is: ```python import mwparserfromhell as parser import requests raw_content = requests.get("https://pastebin.com/raw/ZbmevLyH").content.decode("utf-8") wikicode = parser.parse(raw_content) ``` I will create an issue on mwparserfromhell's repo to see if we can fix that
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
248
ERROR:root:mwparserfromhell Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')` Thanks a lot @Shiro-LK ! I was able to reproduce the issue. It comes from [this table on wikipedia](https://es.wikipedia.org/wiki/Campeonato_Mundial_de_futsal_de_la_AMF_2015#Clasificados) that can't be parsed. The file in which the problem occurs comes from the wikipedia dumps, and it can be downloaded [here](https://dumps.wikimedia.org/eswiki/20200501/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2) Parsing the file this way raises the parsing issue: ```python import mwparserfromhell as parser from tqdm.auto import tqdm import bz2 import six import logging import codecs import xml.etree.cElementTree as etree filepath = "path/to/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2" def _extract_content(filepath): """Extracts article content from a single WikiMedia XML file.""" logging.info("generating examples from = %s", filepath) with open(filepath, "rb") as f: f = bz2.BZ2File(filename=f) if six.PY3: # Workaround due to: # https://github.com/tensorflow/tensorflow/issues/33563 utf_f = codecs.getreader("utf-8")(f) else: utf_f = f # To clear root, to free-up more memory than just `elem.clear()`. context = etree.iterparse(utf_f, events=("end",)) context = iter(context) unused_event, root = next(context) for unused_event, elem in tqdm(context, total=949087): if not elem.tag.endswith("page"): continue namespace = elem.tag[:-4] title = elem.find("./{0}title".format(namespace)).text ns = elem.find("./{0}ns".format(namespace)).text id_ = elem.find("./{0}id".format(namespace)).text # Filter pages that are not in the "main" namespace. if ns != "0": root.clear() continue raw_content = elem.find("./{0}revision/{0}text".format(namespace)).text root.clear() if "Campeonato Mundial de futsal de la AMF 2015" in title: yield (id_, title, raw_content) for id_, title, raw_content in _extract_content(filepath): wikicode = parser.parse(raw_content) ``` The copied the raw content that can't be parsed [here](https://pastebin.com/raw/ZbmevLyH). The minimal code to reproduce is: ```python import mwparserfromhell as parser import requests raw_content = requests.get("https://pastebin.com/raw/ZbmevLyH").content.decode("utf-8") wikicode = parser.parse(raw_content) ``` I will create an issue on mwparserfromhell's repo to see if we can fix that
[ -0.10873899608850479, -0.26877015829086304, 0.05885450169444084, 0.37449952960014343, 0.06803169846534729, 0.058510903269052505, -0.09784902632236481, 0.4072328507900238, 0.2762870788574219, 0.2615220844745636, 0.1648644208908081, 0.16331368684768677, 0.06970052421092987, -0.4300827383995056, -0.1707361787557602, -0.0426843985915184, 0.2212868630886078, 0.11823683977127075, 0.05900874733924866, -0.10140811651945114, -0.08594636619091034, 0.1587129533290863, -0.34762874245643616, 0.2824130654335022, -0.3269038200378418, 0.11481110751628876, 0.1520310640335083, -0.06561566144227982, -0.08894292265176773, -0.20034506916999817, -0.00282796798273921, -0.2012958824634552, 0.23792703449726105, 0.47865885496139526, -0.00012598019384313375, -0.04126940667629242, 0.30499476194381714, -0.09365743398666382, 0.009966851212084293, -0.23593106865882874, 0.033660151064395905, -0.16312217712402344, -0.11595036834478378, -0.36890143156051636, 0.2481284886598587, 0.20718444883823395, 0.19433832168579102, -0.18664321303367615, 0.40954193472862244, 0.24381037056446075, 0.054466612637043, 0.16391706466674805, 0.26021134853363037, 0.09128481149673462, 0.5147398114204407, -0.05387960001826286, -0.006511039100587368, 0.007900371216237545, 0.09300503879785538, -0.10259482264518738, 0.1022946834564209, 0.2438962459564209, -0.42066165804862976, -0.07171247154474258, -0.13774962723255157, 0.1038782075047493, 0.44660842418670654, -0.5326792597770691, 0.47915637493133545, 0.31687596440315247, 0.3135969042778015, -0.022695224732160568, 0.1983240842819214, 0.10353455692529678, -0.13768815994262695, 0.10461229085922241, 0.311514675617218, 0.5089525580406189, -0.4895595908164978, 0.09532687067985535, 0.44127991795539856, -0.060346171259880066, -0.20981785655021667, 0.2732830345630646, -0.3379984200000763, 0.8441171646118164, 0.053851284086704254, 0.1933106929063797, -0.0251843873411417, -0.03692489117383957, 0.019327597692608833, -0.22091110050678253, 0.1413908451795578, 0.37872418761253357, -0.0517866276204586, -0.009132967330515385, -0.03431928530335426, -0.39730846881866455, -0.021723011508584023, -0.6584088802337646, -0.3500773310661316, 0.1816471368074417, 0.050003279000520706, 0.2907332181930542, 0.34542399644851685, -0.3378628194332123, 0.15257906913757324, 0.035260483622550964, 0.032170746475458145, 0.029241444543004036, -0.12716799974441528, 0.03678499907255173, -0.20314060151576996, -0.06741054356098175, -0.5065874457359314, 0.06229705736041069, 0.23971280455589294, -0.07039432227611542, -0.05327475443482399, 0.389104962348938, -0.20073989033699036, 0.02077723667025566, -0.15780167281627655, 0.531645655632019, -0.06916489452123642, 0.4129960536956787, 0.1543024629354477, 0.0851949006319046, -0.14685644209384918, -0.5985726714134216, 0.05266339331865311, 0.12287842482328415, -0.03972375765442848, 0.013453471474349499, -0.11450502276420593, 0.11655491590499878, 0.21619866788387299, 0.2504265606403351, -0.03260565549135208, -0.5398548245429993, -0.05034337937831879, -0.3519895076751709, 0.05674538388848305, 0.12980611622333527, 0.44785401225090027, 0.3495006561279297, 0.21508347988128662, -0.411338746547699, -0.021997736766934395, 0.4195789396762848, -0.4311131238937378, -0.16878864169120789, -0.4756803810596466, 0.05219458416104317, 0.03557150438427925, 0.13921748101711273, -0.5501323938369751, 0.1158682256937027, 0.0992075502872467, -0.1055627167224884, -0.03583887219429016, -0.19666902720928192, -0.2580610513687134, -0.06328671425580978, 0.1914139986038208, 0.11817184835672379, -0.14227664470672607, 0.12672697007656097, -0.05996282398700714, 0.05715978518128395, 0.4125910997390747, 0.1793215572834015, -0.16306602954864502, 0.7019709348678589, -0.26708313822746277, 0.7228689789772034, 0.17450150847434998, -0.27368295192718506, -0.07193491607904434, 0.03379463404417038, 0.04282991960644722, 0.007124753203243017, -0.10016857832670212, -0.22171692550182343, 0.36948198080062866, -0.08163438737392426, -0.18426458537578583, 0.11090049892663956, -0.00387563300319016, 0.2598792314529419, -0.2199011892080307, -0.2137373834848404, 0.3384663164615631, 0.015582620166242123, 0.29965728521347046, -0.21944905817508698, 0.021885229274630547, 0.49704208970069885, 0.5048381090164185, -0.2736797034740448, 0.12975850701332092, 0.08268877118825912, 0.1501491367816925, 0.14392496645450592, -0.10939453542232513, -0.10136520117521286, -0.09069443494081497, 0.004549008794128895, 0.06584835052490234, 0.3201473653316498, -0.2615014612674713, -0.15889646112918854, -0.12521788477897644, 0.23522913455963135, -0.20038549602031708, 0.05343996733427048, 0.08825115114450455, -0.05687521770596504, -0.2928088307380676, 0.3478441536426544, -0.04865119233727455, -0.48444944620132446, -0.351745069026947, 0.17334340512752533, 0.16469325125217438, 0.29528483748435974, -0.2190813422203064, -0.07931558042764664, -0.33755335211753845, -0.09903237223625183, 0.4453217685222626, -0.061053138226270676, -0.05298924073576927, -0.05618901923298836, 0.28351178765296936, 0.112092524766922, -0.3946906328201294, -0.14282110333442688, 0.05444364994764328, -0.2703915536403656, 0.011028055101633072, 0.23991861939430237, 0.25012657046318054, -0.14884360134601593, 0.23067863285541534, 0.2286774069070816, 0.33251044154167175, 0.08250781148672104, -0.17617207765579224, 0.1144726574420929, 0.26241496205329895, 0.009354962967336178, 0.3972715437412262, -0.12827599048614502, 0.1555531620979309, 0.43826448917388916, -0.5117692351341248, -0.33619245886802673, 0.0879170298576355, -0.054539233446121216, 0.5132350921630859, 0.050865594297647476, 0.22477874159812927, 0.09001372009515762, -0.18700525164604187, -0.04012928530573845, 0.22988222539424896, -0.32109472155570984, 0.10839171707630157, -0.12201028317213058, 0.00576763367280364, 0.3593577444553375, 0.11244423687458038, 0.03584986552596092, 0.5103647112846375, 0.21139030158519745, 0.0721912607550621, 0.1669255644083023, -0.13204562664031982, 0.0987076535820961, -0.18851187825202942, -0.03523434326052666, -0.08125323802232742, 0.20752021670341492, -0.3698165714740753, 0.027747903019189835, -0.31474995613098145, 0.07860379666090012, -0.19187042117118835, -0.032361824065446854, -0.322031170129776, -0.20891495048999786, -0.06294593214988708, 0.4096318185329437, -0.2718830704689026, 0.04198836162686348, -0.006463426165282726, -0.11802488565444946, 0.021586786955595016, 0.29716071486473083, -0.23700308799743652, -0.3015562891960144, -0.3740297555923462, -0.1583939641714096, 0.5779920220375061, 0.05351027101278305, -0.051250796765089035, -0.05166713893413544, -0.21617993712425232, -0.35149040818214417, -0.3976762592792511, 0.42860931158065796, -0.1134413406252861, 0.006005135830491781, -0.10025954991579056, 0.3180461823940277, -0.21116597950458527, -0.4990893304347992, 0.11484422534704208, -0.2589312195777893, -0.08329837769269943, 0.16712172329425812, 0.07927387952804565, -0.23072460293769836, 0.05193031206727028, -0.1746176779270172, -0.14007723331451416, -0.09658152610063553, -0.2825164496898651, -0.12978523969650269, 0.18237879872322083, -0.3487781882286072, -0.0708559900522232, 0.1796255260705948, -0.33425894379615784, -0.13620306551456451, -0.24766762554645538, 0.01838955469429493, 0.2872106432914734, -0.13294105231761932, -0.3237057328224182, 0.4956243932247162, 0.0269246194511652, 0.34183523058891296, 0.056648723781108856, -0.4030572474002838, 0.22679215669631958, 0.23140472173690796, 0.025005610659718513, -0.17484690248966217, 0.04610740393400192, 0.21272717416286469, -0.0847877711057663, 0.18351010978221893, 0.050591886043548584, 0.09726293385028839, -0.3360316753387451, -0.1924433559179306, 0.283132940530777, -0.09030171483755112, 0.5138002038002014, 0.2595725655555725, 0.6778405904769897, -0.13127350807189941, 0.227793887257576, 0.19736969470977783, -0.1405770629644394, -0.18992604315280914, 0.09494592994451523, -0.07613874226808548, 0.11434447765350342, -0.10036173462867737, -0.17148633301258087, 0.5857170224189758, -0.21737337112426758, -0.23466886579990387, -0.23782794177532196, -0.056800466030836105, -0.5688067078590393, -0.523938775062561, 0.18283604085445404, 0.34036317467689514, 0.37617233395576477, 0.017500020563602448, 0.21387988328933716, -0.09207092225551605, -0.3685363531112671, -0.015546558424830437, 0.2618904113769531, -0.12444081902503967, -0.12311701476573944, -0.21951253712177277, -0.054555851966142654, -0.2247728556394577, 0.24506647884845734, 0.22234120965003967, 0.5213930606842041, 0.12163236737251282, 0.037334125488996506, 0.1914767622947693, 0.08040831238031387, 0.40790486335754395, 0.12295735627412796, 0.26164698600769043, -0.05483444035053253, -0.15939077734947205, -0.3506837487220764, -0.2592151463031769, -0.37398773431777954, -0.009043621830642223, 0.5089578032493591, -0.03365175426006317, -0.3929763734340668, -0.06885438412427902, -0.04054473713040352, -0.021974124014377594, -0.10079796612262726, 0.037390366196632385, -0.0903741791844368, -0.358205109834671, -0.35505637526512146, 0.22068540751934052, 0.3207583725452423, 0.259935587644577, 0.23186618089675903, 0.11075445264577866, 0.020227083936333656, 0.0940772294998169, 0.16799376904964447, 0.1295647919178009, 0.02189609594643116, 0.10685405135154724, -0.13355113565921783, -0.347114235162735, 0.046348340809345245, 0.07719077169895172, 0.1125214621424675, 0.5233771204948425, -0.4655446708202362, -0.034226175397634506, -0.15878602862358093, 0.2762382924556732, 0.3710387349128723, -0.009256941266357899, 0.28740328550338745, 0.20222997665405273, 0.20216040313243866, -0.05595209077000618, 0.25514277815818787, 0.33623456954956055, 0.06272103637456894, -0.24582473933696747, 0.10517284274101257, 0.38957878947257996, -0.00802725087851286, -0.02414131350815296, -0.0015796765219420195, 0.07672591507434845, -0.26919856667518616, 0.189324289560318, 0.35150107741355896, 1.2506077289581299, 0.265969842672348, 0.016989031806588173, 0.27635765075683594, 0.044212695211172104, 0.6086791753768921, -0.646241307258606, 0.10948502272367477, -0.2827795445919037, 0.06142422556877136, -0.20590518414974213, 0.13298547267913818, 0.09340129047632217, 0.14195916056632996, -0.2886447012424469, 0.2039872407913208, 0.10328981280326843, 0.5259105563163757, 0.2789725959300995, 0.18035034835338593, 0.21756146848201752, -0.08302383869886398, -0.15296538174152374, -0.04142855852842331, -0.26364797353744507, 0.00029085285495966673, -0.2863669693470001, -0.021572472527623177, 0.09853526949882507, -0.37792637944221497, -0.47262316942214966, 0.17672549188137054, -0.3571781516075134, 0.27393749356269836, -0.038375984877347946, 0.010659248568117619, 0.35926035046577454, 0.009947522543370724, -0.0358080118894577, 0.3343281149864197, -0.13446813821792603, 0.2318212389945984, -0.16977092623710632, -0.3552459478378296, 0.01299783494323492, 0.03383687138557434, -0.013248763978481293, -0.21997828781604767, -0.23431403934955597, 0.4540519416332245, 0.01617835834622383, -0.2345127910375595, -0.11093827337026596, 0.0964357778429985, 0.26401975750923157, 0.11341259628534317, -0.4126051068305969, 0.06841745227575302, 0.0020152460783720016, -0.04287795349955559, 0.023738985881209373, -0.22108148038387299, -0.30891773104667664, 0.045583371073007584, 0.19145935773849487, -0.2989698052406311, 0.15112586319446564, 0.35348838567733765, -0.007974540814757347, -0.30899903178215027, 0.5539166331291199, 0.42148712277412415, -0.26525357365608215, -0.12008524686098099, -0.1469397395849228, -0.599523663520813, -0.5139876008033752, -0.12962651252746582, -0.15178194642066956, 0.07531791925430298, -0.002799808280542493, 0.29870012402534485, 0.3360539376735687, -0.16017337143421173, -0.014523360878229141, -0.26965832710266113, 0.1962418407201767, -0.014420921914279461, -0.3134302496910095, -0.10974180698394775, 0.08296699821949005, 0.38196539878845215, -0.09908180683851242, 0.08594267070293427, -0.11873561143875122, 0.22754372656345367, -0.21631206572055817, 0.2235797792673111, 0.35375267267227173, 0.08806893229484558, -0.32638004422187805, -0.02843092940747738, -0.021976923570036888, 0.32975417375564575, -0.007791623938828707, -0.03664471581578255, -0.23280882835388184, 0.2400612086057663, 0.3293091058731079, -0.07574944198131561, 0.13625147938728333, -0.027053480967879295, 0.0028647801373153925, -0.11231426894664764, -0.039521653205156326, -0.04608453810214996, -0.05719542130827904, 0.3660624325275421, 0.23205256462097168, 0.3750465214252472, -0.5651992559432983, 0.10876043885946274, 0.13379278779029846, 0.5745223760604858, 0.027867674827575684, 0.22878044843673706, 0.2306109368801117, 0.006489081308245659, -0.17364589869976044, 0.1414303183555603, 0.09748724848031998, -0.02930349111557007, 0.34017640352249146, 0.006782554090023041, 0.006758051924407482, 0.18460460007190704, -0.24827633798122406, 0.22058357298374176, -0.2990249991416931, -0.27419185638427734, 0.5228119492530823, 0.0742759257555008, -0.21246953308582306, 0.08749113976955414, 0.46207982301712036, 0.10626312345266342, -0.2562897205352783, 0.22621621191501617, 0.03154323995113373, -0.2609513998031616, 0.18556970357894897, 0.18762901425361633, 0.28015807271003723, -0.12009375542402267, 0.20268303155899048, 0.016492946073412895, -0.25984859466552734, 0.30148085951805115, -0.12158758193254471, -0.0723855122923851, 0.26371708512306213, 0.3368172347545624, -0.04162570834159851, 0.052130427211523056, 0.09754280745983124, 0.09319230914115906, 0.0775517001748085, -0.15736287832260132, 0.024424929171800613, 0.42140382528305054, -0.02568761445581913, -0.0009938975563272834, -0.15516504645347595, -0.20603182911872864, 0.25795769691467285, -0.07230398803949356, -0.44498053193092346, 0.3604533076286316, -0.2784140408039093, -0.003635722678154707, -0.2545231878757477, -0.10360214859247208, -0.23357698321342468, 0.13759088516235352, 0.1638423502445221, -0.017842965200543404, -0.3674665093421936, 0.3523711562156677, -0.37446701526641846, 0.14559410512447357, -0.05294647812843323, 0.003199538681656122, -0.01978522539138794, -0.39901432394981384, 0.16688069701194763, -0.024333292618393898, -0.03978919982910156, -0.14535854756832123, 0.13076740503311157, 0.4951552748680115, 0.5052855014801025, -0.4910767376422882, 0.030637508258223534, -0.03136695176362991, 0.22233209013938904, 0.034114088863134384, 0.11101514846086502, 0.24236465990543365, 0.4140436053276062, 0.15236225724220276, 0.02426161989569664, -0.11704812198877335, -0.3675271272659302, 0.36833566427230835, 0.17414093017578125, 0.10256100445985794, -0.2432253658771515, -0.04279119148850441, 0.14850325882434845, -0.13466289639472961, -0.18214990198612213, -0.37635338306427, 0.1467437446117401, 0.2502170205116272, 0.034484848380088806, 0.13111692667007446, 0.023634664714336395, -0.02900916337966919, -0.019000226631760597, 0.12559224665164948, 0.31326016783714294, 0.03822910785675049, -0.1958370953798294, -0.3837859332561493, -0.6240742206573486, 0.46084973216056824, -0.2040310502052307, -0.36619850993156433, 0.14764708280563354, 0.2049543261528015, 0.12406187504529953, 0.3853283226490021, 0.08209232985973358, -0.2400577962398529, -0.3210081160068512, 0.29785919189453125, -0.1986881047487259, -0.055745575577020645, 0.03744950518012047, -0.07877303659915924, -0.06855681538581848, -0.34961703419685364, 0.1586839109659195, -0.10431673377752304, -0.11142139881849289, -0.2411876767873764, -0.028007563203573227, -0.15530280768871307, -0.15150186419487, 0.39712437987327576, 0.10634830594062805, 0.39479222893714905, -0.17075777053833008, 0.0838165134191513, -0.0741475373506546, 0.12129843235015869, -0.10708805918693542, 0.3608299195766449, 0.05441945046186447, 0.20733779668807983, 0.02874842844903469, 0.023359399288892746, -0.3573513329029083, 0.18849851191043854, -0.011684038676321507, 0.03798125684261322, -0.4710640609264374, 0.04269085079431534, -0.22210541367530823, 0.18873824179172516, 0.01772487349808216, 0.0637412741780281, -0.0354146733880043, 0.2457730919122696, -0.42988407611846924, -0.25229865312576294, 0.17842166125774384, -0.5421520471572876, -0.39522212743759155, -0.30521801114082336, 0.28598734736442566, -0.23572960495948792, 0.04010714963078499, -0.2903585433959961, -0.11322414129972458, 0.2577061653137207, 0.020261989906430244, -0.2819971740245819, -0.10803490877151489, -0.14238350093364716, -0.2690140902996063, -0.12814640998840332, -0.08447612822055817, 0.04113323614001274, -0.4689807891845703, -0.08422940969467163, -0.42503243684768677 ]
https://github.com/huggingface/datasets/issues/320
Blog Authorship Corpus, Non Matching Splits Sizes Error, nlp viewer
This dataset seems to have a decoding problem that results in inconsistencies in the number of generated examples. See #215. That's why we end up with a `NonMatchingSplitsSizesError `.
Selecting `blog_authorship_corpus` in the nlp viewer throws the following error: ``` NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=610252351, num_examples=532812, dataset_name='blog_authorship_corpus'), 'recorded': SplitInfo(name='train', num_bytes=614706451, num_examples=535568, dataset_name='blog_authorship_corpus')}, {'expected': SplitInfo(name='validation', num_bytes=37500394, num_examples=31277, dataset_name='blog_authorship_corpus'), 'recorded': SplitInfo(name='validation', num_bytes=32553710, num_examples=28521, dataset_name='blog_authorship_corpus')}] Traceback: File "/home/sasha/streamlit/lib/streamlit/ScriptRunner.py", line 322, in _run_script exec(code, module.__dict__) File "/home/sasha/nlp-viewer/run.py", line 172, in <module> dts, fail = get(str(option.id), str(conf_option.name) if conf_option else None) File "/home/sasha/streamlit/lib/streamlit/caching.py", line 591, in wrapped_func return get_or_create_cached_value() File "/home/sasha/streamlit/lib/streamlit/caching.py", line 575, in get_or_create_cached_value return_value = func(*args, **kwargs) File "/home/sasha/nlp-viewer/run.py", line 132, in get builder_instance.download_and_prepare() File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/builder.py", line 488, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) ``` @srush @lhoestq
29
Blog Authorship Corpus, Non Matching Splits Sizes Error, nlp viewer Selecting `blog_authorship_corpus` in the nlp viewer throws the following error: ``` NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=610252351, num_examples=532812, dataset_name='blog_authorship_corpus'), 'recorded': SplitInfo(name='train', num_bytes=614706451, num_examples=535568, dataset_name='blog_authorship_corpus')}, {'expected': SplitInfo(name='validation', num_bytes=37500394, num_examples=31277, dataset_name='blog_authorship_corpus'), 'recorded': SplitInfo(name='validation', num_bytes=32553710, num_examples=28521, dataset_name='blog_authorship_corpus')}] Traceback: File "/home/sasha/streamlit/lib/streamlit/ScriptRunner.py", line 322, in _run_script exec(code, module.__dict__) File "/home/sasha/nlp-viewer/run.py", line 172, in <module> dts, fail = get(str(option.id), str(conf_option.name) if conf_option else None) File "/home/sasha/streamlit/lib/streamlit/caching.py", line 591, in wrapped_func return get_or_create_cached_value() File "/home/sasha/streamlit/lib/streamlit/caching.py", line 575, in get_or_create_cached_value return_value = func(*args, **kwargs) File "/home/sasha/nlp-viewer/run.py", line 132, in get builder_instance.download_and_prepare() File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/builder.py", line 488, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/home/sasha/.local/share/virtualenvs/lib-ogGKnCK_/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) ``` @srush @lhoestq This dataset seems to have a decoding problem that results in inconsistencies in the number of generated examples. See #215. That's why we end up with a `NonMatchingSplitsSizesError `.
[ -0.23413626849651337, 0.17466317117214203, 0.05287705361843109, 0.22421255707740784, -0.054631173610687256, -0.027442412450909615, 0.03754366934299469, 0.5022197365760803, -0.21980763971805573, 0.19498024880886078, -0.08825401216745377, -0.0733068585395813, -0.0650147870182991, -0.02180282212793827, -0.14845573902130127, -0.27767980098724365, -0.2665168344974518, 0.3368442952632904, 0.004006068222224712, 0.050570350140333176, -0.13302521407604218, 0.39724594354629517, -0.2592678368091583, -0.028847230598330498, -0.05600988119840622, -0.0945773497223854, 0.11967555433511734, 0.09924130886793137, -0.19943852722644806, -0.2846437394618988, -0.032058313488960266, -0.22765371203422546, 0.0017963539576157928, 0.24054597318172455, -0.00011832002928713337, -0.05213167145848274, 0.3046364486217499, -0.26105326414108276, 0.1739029884338379, -0.22337684035301208, 0.0804653987288475, -0.0924181342124939, -0.15359441936016083, -0.23802833259105682, -0.09689856320619583, 0.1424373984336853, 0.23612500727176666, 0.0534081906080246, 0.2056046724319458, 0.4859824776649475, 0.18640610575675964, 0.2100057303905487, -0.019357983022928238, -0.08229868859052658, 0.03103228472173214, 0.06911084055900574, -0.2774815261363983, -0.11392109841108322, -0.0661814957857132, -0.3515659272670746, -0.10206928104162216, 0.49201953411102295, -0.3369564712047577, 0.0684971958398819, 0.05901303142309189, -0.1667567640542984, 0.4507971405982971, -0.3006083071231842, 0.3966713845729828, 0.11319523304700851, 0.370720773935318, -0.08089099824428558, 0.12842905521392822, -0.4112170934677124, -0.06088032200932503, 0.09573646634817123, 0.15108409523963928, 0.5192418694496155, -0.1550329178571701, -0.1399208903312683, -0.30925214290618896, 0.1647307425737381, -0.16080474853515625, -0.07766406238079071, 0.032820746302604675, 0.40276771783828735, 0.08673035353422165, 0.04052510857582092, 0.031768545508384705, -0.05718802660703659, 0.22191062569618225, -0.04344988614320755, -0.05888589844107628, 0.2149183601140976, -0.16245229542255402, -0.25322917103767395, 0.07671446353197098, 0.0638757199048996, 0.06676095724105835, 0.29607126116752625, 0.43020161986351013, -0.2747681140899658, 0.3439980149269104, -0.0774327963590622, 0.23654529452323914, 0.19865049421787262, -0.08943691104650497, 0.7137352824211121, -0.1469515562057495, 0.1481848806142807, 0.06431666016578674, 0.0327579639852047, 0.05727884918451309, -0.43480798602104187, -0.28259551525115967, 0.19444182515144348, -0.01286159735172987, -0.24236905574798584, -0.40296584367752075, 0.08943764865398407, -0.23522041738033295, 0.0019081777427345514, 0.04373002424836159, 0.35381707549095154, -0.13846251368522644, 0.37253841757774353, -0.13214297592639923, 0.17018793523311615, -0.4958770275115967, -0.029940420761704445, -0.25533226132392883, 0.19973230361938477, -0.23404346406459808, -0.11520496010780334, 0.10649025440216064, -0.23413564264774323, 0.489070326089859, -0.33745917677879333, 0.2625008821487427, -0.18432040512561798, 0.06679446250200272, -0.17198383808135986, -0.053293466567993164, 0.15532144904136658, 0.004640286788344383, -0.05835748836398125, 0.05111977830529213, -0.0762762501835823, -0.22328563034534454, 0.08237405121326447, 0.18804998695850372, -0.433112770318985, 0.07299122959375381, 0.2012609988451004, -0.14272098243236542, -0.008585485629737377, 0.3555386960506439, 0.20013102889060974, 0.5317851901054382, -0.2940739393234253, -0.06162697821855545, -0.31554824113845825, -0.18922314047813416, -0.13236881792545319, -0.04782910645008087, 0.3900070786476135, 0.29235491156578064, -0.18826934695243835, 0.047963447868824005, 0.2060772329568863, 0.676064670085907, 0.25154003500938416, 0.2933118939399719, -0.09340976923704147, -0.07032016664743423, 0.5923357009887695, 0.29924800992012024, -0.36816608905792236, -0.3501451015472412, 0.30497878789901733, 0.0814271867275238, 0.1100989356637001, 0.458931028842926, -0.022686192765831947, 0.3694958984851837, -0.28301185369491577, -0.16940057277679443, 0.3530234098434448, -0.3465048670768738, 0.24411676824092865, -0.37571820616722107, -0.18677569925785065, 0.1422659009695053, 0.04735836014151573, 0.5175160765647888, -0.28101542592048645, 0.07195232063531876, 0.4198399484157562, 0.24451342225074768, -0.09585840255022049, 0.12449202686548233, 0.03264732286334038, -0.3409709334373474, -0.04533451050519943, 0.1311379224061966, -0.17358286678791046, 0.05785993114113808, 0.06845112144947052, -0.5445123910903931, 0.09090909361839294, 0.3199635446071625, -0.0716685876250267, -0.46997302770614624, -0.2672964334487915, -0.012380799278616905, -0.14569419622421265, 0.07862488180398941, 0.06008134409785271, 0.21710999310016632, 0.016241399571299553, 0.03956998139619827, 0.01581307128071785, -0.02279200777411461, 0.12866859138011932, -0.491409033536911, 0.19547763466835022, -0.4119061529636383, -0.28829580545425415, 0.4236944913864136, 0.4241125285625458, 0.1636868715286255, 0.10434775054454803, -0.09152280539274216, 0.2704000771045685, -0.30403390526771545, 0.5339006185531616, -0.2337971329689026, -0.11912292242050171, 0.20681306719779968, -0.19635845720767975, 0.23903049528598785, 0.25735747814178467, 0.03977091610431671, -0.19760450720787048, 0.18388278782367706, 0.22307811677455902, -0.22079795598983765, 0.09890484064817429, -0.06058071553707123, 0.03264082595705986, -0.06232549995183945, -0.2171821892261505, 0.10069304704666138, -0.4573524594306946, 0.6223406195640564, -0.014644619077444077, -0.36530569195747375, -0.032807137817144394, -0.2899560332298279, 0.11509589850902557, 0.24119368195533752, 0.20790451765060425, -0.025372397154569626, 0.03635367751121521, -0.14951559901237488, -0.05345742404460907, 0.0021606937516480684, 0.14828874170780182, 0.3844684660434723, 0.1326703280210495, 0.169029101729393, 0.07480857521295547, -0.0515364445745945, -0.4746570289134979, 0.28132686018943787, -0.086415134370327, 0.032334133982658386, 0.6150072813034058, 0.06905936449766159, 0.060059916228055954, -0.34897881746292114, 0.21189391613006592, 0.1659850776195526, 0.0698252022266388, -0.21406860649585724, -0.19296856224536896, -0.20776763558387756, -0.6258756518363953, -0.12617413699626923, -0.08944524824619293, -0.1052096039056778, -0.2106356918811798, 0.2958928942680359, 0.36217236518859863, -0.22836074233055115, 0.16975831985473633, -0.1669316589832306, 0.09539222717285156, -0.12574568390846252, 0.27005577087402344, 0.05922186002135277, -0.24293756484985352, -0.12077439576387405, 0.1339830756187439, 0.23802433907985687, 0.1384688764810562, 0.2744056284427643, -0.21086850762367249, -0.09060628712177277, 0.010530661791563034, -0.3887265920639038, -0.02872103825211525, -0.0631745308637619, -0.1951727718114853, 0.08044673502445221, -0.24567702412605286, 0.42629557847976685, -0.0986749529838562, 0.07600509375333786, -0.05354246124625206, -0.34607648849487305, 0.1199558898806572, 0.08067002892494202, 0.006533922627568245, -0.2380540817975998, -0.21551969647407532, -0.06290405243635178, -0.6166680455207825, -0.09156881272792816, 0.44236618280410767, 0.32544681429862976, 0.1410060077905655, -0.2032933533191681, -0.21820926666259766, -0.061207935214042664, 0.3252718448638916, -0.11649783700704575, 0.3335404098033905, 0.31016290187835693, -0.17657101154327393, -0.24337758123874664, -0.04590436443686485, -0.0428633913397789, 0.21999406814575195, -0.05980457365512848, -0.38796257972717285, 0.007303284946829081, -0.09938152134418488, -0.5655640363693237, -0.08691012859344482, -0.15790578722953796, 0.4219523072242737, -0.020016033202409744, 0.01865066960453987, -0.04660338908433914, -0.07528743147850037, -0.05930964648723602, 0.23291568458080292, 0.4591052830219269, -0.237942636013031, 0.27908313274383545, 0.24471154808998108, 0.4417749047279358, 0.6506688594818115, 0.21295174956321716, 0.057481713593006134, 0.2250230610370636, -0.1328054666519165, 0.11630477756261826, -0.11532138288021088, 0.8192628026008606, 0.13288532197475433, 0.010454953648149967, 0.570565938949585, 0.054900649935007095, -0.30371955037117004, -0.11086325347423553, -0.11354580521583557, -0.18975308537483215, -0.13299360871315002, 0.21267226338386536, -0.38503298163414, 0.30223968625068665, 0.07844637334346771, 0.2738240659236908, -0.1990063190460205, -0.4706107974052429, -0.20832477509975433, 0.03807337209582329, 0.04733722656965256, 0.14689624309539795, 0.1081886738538742, 0.19748394191265106, -0.7274340391159058, 0.33553940057754517, 0.19948287308216095, -0.12154121696949005, -0.24274665117263794, -0.15550659596920013, 0.031780414283275604, -0.012624429538846016, 0.09506730735301971, -0.3479499816894531, -0.17238456010818481, -0.11015897244215012, 0.1378665715456009, -0.35103821754455566, -0.16158577799797058, 0.14323994517326355, 0.2933986186981201, 0.21129968762397766, 0.022389492020010948, -0.22872266173362732, 0.13699981570243835, 0.43545493483543396, -0.1594470739364624, -0.09510622173547745, -0.13166309893131256, -0.21108901500701904, -0.31616777181625366, -0.12808851897716522, 0.03689948096871376, 0.11889505386352539, 0.34833455085754395, 0.04199032858014107, -0.02434280700981617, 0.1267145574092865, -0.23767870664596558, 0.2830745577812195, 0.1491047441959381, 0.10821712017059326, -0.05035347118973732, 0.09615025669336319, 0.14138056337833405, 0.20731130242347717, -0.003689398756250739, 0.4415615200996399, 0.2652773857116699, -0.08428099006414413, -0.03974077105522156, -0.07082206010818481, -0.01912466622889042, 0.45736315846443176, 0.2647048234939575, 0.033088650554418564, -0.025469109416007996, 0.22427646815776825, -0.20588278770446777, -0.04686695709824562, 0.1015852764248848, -0.19149550795555115, -0.2139110118150711, -0.26488053798675537, 0.23916396498680115, 0.07085824012756348, 0.00387340085580945, 0.0017734869616106153, -0.3494579792022705, -0.2807813286781311, 0.09608669579029083, 0.19220398366451263, 0.9271714687347412, 0.41094034910202026, -0.21128860116004944, 0.006301776506006718, -0.2388446033000946, 0.3870350420475006, -0.16617481410503387, 0.4693220853805542, -0.44355958700180054, -0.07929449528455734, -0.04387395456433296, -0.10805530101060867, 0.06062077730894089, -0.07723783701658249, -0.3219486176967621, 0.24580669403076172, 0.16259272396564484, 0.011275856755673885, -0.11459312587976456, 0.07121328264474869, -0.36711040139198303, -0.07815100252628326, 0.12061195075511932, 0.04608966037631035, -0.4622892439365387, 0.4662289321422577, 0.037444960325956345, -0.0012151894625276327, -0.0522681400179863, -0.1625233292579651, -0.5065695643424988, 0.31882554292678833, -0.24637699127197266, -0.12972022593021393, 0.11937382817268372, -0.33741459250450134, 0.2889290153980255, 0.3410128653049469, 0.20151829719543457, -0.20780611038208008, -0.08502937853336334, 0.285128116607666, 0.04431074857711792, -0.23244161903858185, 0.14423322677612305, 0.23614870011806488, 0.19825614988803864, -0.25729063153266907, 0.06066402420401573, -0.02268139086663723, 0.03510880097746849, -0.06610788404941559, -0.19295810163021088, -0.06787066161632538, 0.20317941904067993, -0.12450646609067917, -0.16893023252487183, -0.03189310058951378, -0.18665054440498352, -0.010346910916268826, 0.06589459627866745, -0.3126450479030609, -0.23565919697284698, 0.1632261872291565, -0.20365026593208313, -0.18212518095970154, -0.051460396498441696, 0.22832821309566498, 0.3686066269874573, 0.01552979089319706, 0.4415654242038727, 0.09836498647928238, -0.22561630606651306, -0.18477657437324524, -0.36936575174331665, -0.40836039185523987, -0.3803122341632843, 0.18821735680103302, -0.1573258340358734, -0.34534597396850586, 0.3613978624343872, 0.2624170482158661, 0.1682596206665039, 0.29152029752731323, -0.11401059478521347, -0.2506523132324219, 0.06130027770996094, 0.08309858292341232, -0.37080132961273193, 0.007301952689886093, -0.1438215970993042, 0.5562913417816162, 0.0027534093242138624, 0.42660126090049744, -0.23464339971542358, -0.10493960231542587, -0.42375311255455017, 0.30385175347328186, 0.09879061579704285, -0.30493173003196716, -0.21352796256542206, 0.12621688842773438, -0.00475652189925313, 0.34958112239837646, -0.24986955523490906, -0.09643078595399857, -0.08772601187229156, 0.15994252264499664, 0.17590714991092682, -0.0947134792804718, -0.09701809287071228, 0.12314475327730179, -0.21387147903442383, -0.08773159980773926, -0.01944531500339508, 0.03723958134651184, -0.02563231810927391, 0.043423812836408615, -0.27684301137924194, -0.14103855192661285, 0.030720794573426247, 0.20409978926181793, -0.3766617476940155, 0.28217291831970215, -0.10753078758716583, 0.24199484288692474, 0.10071708261966705, -0.09408869594335556, -0.16425450146198273, 0.03794568404555321, -0.028483258560299873, -0.07100509107112885, 0.284409761428833, -0.034359101206064224, 0.1698395162820816, 0.25087353587150574, 0.148368239402771, 0.21956020593643188, 0.10223333537578583, -0.15014493465423584, 0.08489350974559784, 0.17767377197742462, -0.41090813279151917, 0.13440202176570892, -0.1264767348766327, 0.11097080260515213, 0.05015656724572182, 0.2803555727005005, 0.1536610871553421, -0.047712542116642, -0.12302585691213608, 0.2995513677597046, 0.2638215720653534, -0.23145006597042084, 0.22819894552230835, 0.258867084980011, 0.10390805453062057, -0.0019344736356288195, 0.34970027208328247, -0.18867754936218262, 0.28354793787002563, -0.026532480493187904, 0.06139532849192619, 0.42754632234573364, 0.006078005768358707, 0.2399890124797821, 0.07654742896556854, -0.15973934531211853, -0.3672069013118744, 0.35413458943367004, 0.21383945643901825, 0.3802351653575897, 0.10981221497058868, 0.40138810873031616, -0.3140052556991577, -0.016199668869376183, -0.31875213980674744, 0.11519727855920792, -0.05179322510957718, 0.046431176364421844, -0.6466076970100403, -0.14583493769168854, -0.22961576282978058, -0.09039892256259918, -0.028212565928697586, 0.3658715784549713, 0.22165217995643616, -0.037403155118227005, -0.28776857256889343, -0.36700907349586487, -0.035592153668403625, -0.014013701118528843, 0.3070986866950989, -0.37623584270477295, 0.28431788086891174, 0.1654311716556549, -0.039042916148900986, 0.10799164324998856, 0.7267918586730957, 0.5513196587562561, 0.24561142921447754, -0.26862597465515137, -0.3699726164340973, 0.0882115513086319, -0.05451619625091553, 0.09366874396800995, 0.3815406858921051, 0.33708763122558594, 0.01621484011411667, 0.24376121163368225, 0.0145369628444314, -0.17594659328460693, 0.2181912511587143, 0.1912267655134201, -0.16706515848636627, 0.03721896931529045, 0.42609772086143494, -0.28454113006591797, -0.04900893568992615, -0.17148253321647644, -0.010555170476436615, -0.5934742093086243, 0.011410344392061234, 0.09975922107696533, -0.16362090408802032, 0.2351558953523636, -0.1910559982061386, 0.03956668823957443, 0.09596090763807297, 0.3803492486476898, 0.29554417729377747, -0.46189630031585693, -0.14537933468818665, -0.2333027869462967, -0.1304207593202591, 0.34422942996025085, -0.36239761114120483, -0.18693025410175323, -0.03439668193459511, 0.3930366039276123, -0.240201935172081, 0.009620381519198418, 0.020727917551994324, 0.4349844455718994, 0.04597935825586319, 0.20904015004634857, -0.16404573619365692, 0.10657655447721481, -0.12002462893724442, -0.356132447719574, 0.07618117332458496, -0.17052720487117767, 0.09346847981214523, -0.20031709969043732, 0.0382784865796566, 0.036162301898002625, 0.0556778684258461, 0.2787976861000061, 0.3713517487049103, -0.2958141267299652, 0.29408571124076843, 0.28994593024253845, -0.059201430529356, 0.058741722255945206, -0.1465972512960434, -0.3278467059135437, -0.4173359274864197, 0.14476056396961212, 0.1439015418291092, 0.5233872532844543, -0.2440175861120224, 0.2875048518180847, -0.09433136880397797, 0.22796249389648438, -0.06776714324951172, 0.02134268917143345, -0.13857977092266083, -0.05848218500614166, -0.15808473527431488, 0.09575454145669937, 0.23693814873695374, 0.39300209283828735, 0.04053178429603577, -0.046965889632701874, -0.25438958406448364, -0.6759300231933594, 0.33114194869995117, -0.21845291554927826, -0.1853184551000595, 0.19430439174175262, 0.06945715099573135, 0.2764317989349365, 0.0643567368388176, -0.6895743012428284, 0.0946861281991005, 0.050229642540216446, -0.07154380530118942, 0.22511903941631317, -0.05903235822916031, -0.09836244583129883, -0.38305848836898804, 0.017595971003174782, -0.41237881779670715, 0.2721536457538605, -0.28418847918510437, 0.23505893349647522, -0.029007641598582268 ]
https://github.com/huggingface/datasets/issues/319
Nested sequences with dicts
Oh yes, this is a backward compatibility feature with tensorflow_dataset in which a `Sequence` or `dict` is converted in a `dict` of `lists`, unfortunately it is not very intuitive, see here: https://github.com/huggingface/nlp/blob/master/src/nlp/features.py#L409 To avoid this behavior, you can just define the list in the feature with a simple list or a tuple (which is also simpler to write). In your case, the features could be as follow: ``` python ... features=nlp.Features({ "title": nlp.Value("string"), "vertexSet": [[{ "name": nlp.Value("string"), "sent_id": nlp.Value("int32"), "pos": nlp.features.Sequence(nlp.Value("int32")), "type": nlp.Value("string"), }]], ... }), ... ```
Am pretty much finished [adding a dataset](https://github.com/ghomasHudson/nlp/blob/DocRED/datasets/docred/docred.py) for [DocRED](https://github.com/thunlp/DocRED), but am getting an error when trying to add a nested `nlp.features.sequence(nlp.features.sequence({key:value,...}))`. The original data is in this format: ```python { 'title': "Title of wiki page", 'vertexSet': [ [ { 'name': "mention_name", 'sent_id': "mention in which sentence", 'pos': ["postion of mention in a sentence"], 'type': "NER_type"}, {another mention} ], [another entity] ] ... } ``` So to represent this I've attempted to write: ``` ... features=nlp.Features({ "title": nlp.Value("string"), "vertexSet": nlp.features.Sequence(nlp.features.Sequence({ "name": nlp.Value("string"), "sent_id": nlp.Value("int32"), "pos": nlp.features.Sequence(nlp.Value("int32")), "type": nlp.Value("string"), })), ... }), ... ``` This is giving me the error: ``` pyarrow.lib.ArrowTypeError: Could not convert [{'pos': [[0,2], [2,4], [3,5]], "type": ["ORG", "ORG", "ORG"], "name": ["Lark Force", "Lark Force", "Lark Force", "sent_id": [0, 3, 4]}..... with type list: was not a dict, tuple, or recognized null value for conversion to struct type ``` Do we expect the pyarrow stuff to break when doing this deeper nesting? I've checked that it still works when you do `nlp.features.Sequence(nlp.features.Sequence(nlp.Value("string"))` or `nlp.features.Sequence({key:value,...})` just not nested sequences with a dict. If it's not possible, I can always convert it to a shallower structure. I'd rather not change the DocRED authors' structure if I don't have to though.
88
Nested sequences with dicts Am pretty much finished [adding a dataset](https://github.com/ghomasHudson/nlp/blob/DocRED/datasets/docred/docred.py) for [DocRED](https://github.com/thunlp/DocRED), but am getting an error when trying to add a nested `nlp.features.sequence(nlp.features.sequence({key:value,...}))`. The original data is in this format: ```python { 'title': "Title of wiki page", 'vertexSet': [ [ { 'name': "mention_name", 'sent_id': "mention in which sentence", 'pos': ["postion of mention in a sentence"], 'type': "NER_type"}, {another mention} ], [another entity] ] ... } ``` So to represent this I've attempted to write: ``` ... features=nlp.Features({ "title": nlp.Value("string"), "vertexSet": nlp.features.Sequence(nlp.features.Sequence({ "name": nlp.Value("string"), "sent_id": nlp.Value("int32"), "pos": nlp.features.Sequence(nlp.Value("int32")), "type": nlp.Value("string"), })), ... }), ... ``` This is giving me the error: ``` pyarrow.lib.ArrowTypeError: Could not convert [{'pos': [[0,2], [2,4], [3,5]], "type": ["ORG", "ORG", "ORG"], "name": ["Lark Force", "Lark Force", "Lark Force", "sent_id": [0, 3, 4]}..... with type list: was not a dict, tuple, or recognized null value for conversion to struct type ``` Do we expect the pyarrow stuff to break when doing this deeper nesting? I've checked that it still works when you do `nlp.features.Sequence(nlp.features.Sequence(nlp.Value("string"))` or `nlp.features.Sequence({key:value,...})` just not nested sequences with a dict. If it's not possible, I can always convert it to a shallower structure. I'd rather not change the DocRED authors' structure if I don't have to though. Oh yes, this is a backward compatibility feature with tensorflow_dataset in which a `Sequence` or `dict` is converted in a `dict` of `lists`, unfortunately it is not very intuitive, see here: https://github.com/huggingface/nlp/blob/master/src/nlp/features.py#L409 To avoid this behavior, you can just define the list in the feature with a simple list or a tuple (which is also simpler to write). In your case, the features could be as follow: ``` python ... features=nlp.Features({ "title": nlp.Value("string"), "vertexSet": [[{ "name": nlp.Value("string"), "sent_id": nlp.Value("int32"), "pos": nlp.features.Sequence(nlp.Value("int32")), "type": nlp.Value("string"), }]], ... }), ... ```
[ 0.11176298558712006, 0.06674250960350037, -0.07140688598155975, -0.021016117185354233, -0.10916834324598312, -0.04101823270320892, 0.1987866312265396, 0.16972915828227997, -0.08717647194862366, -0.4004122018814087, 0.2879692018032074, 0.39652955532073975, -0.08983433246612549, 0.20380482077598572, -0.06072423979640007, -0.2475784868001938, 0.34309130907058716, 0.1289697140455246, 0.3750729262828827, 0.2590894401073456, -0.20450226962566376, 0.36376434564590454, -0.28152358531951904, 0.1494688242673874, -0.2481650710105896, -0.3701810836791992, -0.3637535572052002, 0.1604202687740326, -0.05953867360949516, -0.730687141418457, 0.32754942774772644, 0.21912164986133575, 0.14507874846458435, 0.12763971090316772, -0.00011868731962749735, -0.05218762904405594, 0.5560513734817505, -0.07500369846820831, -0.15467876195907593, -0.06947223842144012, 0.00748469028621912, -0.30739954113960266, 0.2966662049293518, -0.24974551796913147, 0.021584616973996162, -0.408824622631073, -0.0574822872877121, -0.06132369861006737, 0.32712438702583313, 0.21509712934494019, 0.1544763445854187, 0.06881508976221085, 0.33993038535118103, 0.02711115963757038, 0.4079802930355072, 0.3201030492782593, -0.1407758891582489, 0.16631437838077545, 0.40562406182289124, -0.3216360807418823, 0.020934373140335083, -0.09789282828569412, -0.13531914353370667, -0.2777380049228668, 0.36066561937332153, 0.22689838707447052, 0.04913616180419922, -0.18413174152374268, -0.5392253398895264, -0.022310813888907433, 0.12288810312747955, -0.24567227065563202, -0.13840164244174957, -0.42003604769706726, 0.003653597319498658, -0.4405345618724823, -0.007977941073477268, -0.14070962369441986, -0.2733756899833679, -0.09639760851860046, 0.24597708880901337, -0.25613099336624146, -0.27790573239326477, 0.3951283097267151, 0.14473102986812592, 0.23107153177261353, 0.11849581450223923, 0.09925872832536697, -0.13296695053577423, -0.41750791668891907, 0.13480377197265625, -0.244781494140625, 0.027878260239958763, 0.10050757229328156, 0.009871584363281727, -0.18780997395515442, -0.026991773396730423, -0.1887383908033371, 0.1825389564037323, 0.015206532552838326, 0.19400322437286377, -0.07376371324062347, -0.023839931935071945, 0.043031007051467896, 0.345659077167511, 0.17640335857868195, 0.010860396549105644, -0.17157544195652008, -0.06673408299684525, 0.3115687072277069, 0.07907350361347198, 0.0870559811592102, -0.11880794912576675, 0.01329368818551302, -0.2246384620666504, 0.21447022259235382, 0.388327419757843, 0.041962992399930954, -0.1750757247209549, 0.06247677654027939, -0.3113231658935547, 0.060451608151197433, -0.01196094136685133, 0.09201383590698242, 0.07000049203634262, 0.20330901443958282, 0.10664697736501694, 0.3950110673904419, 0.06660372763872147, 0.046285808086395264, -0.08070091903209686, 0.007730663754045963, -0.10413578152656555, 0.06578045338392258, -0.08922180533409119, 0.186811164021492, 0.1713128685951233, -0.11152657121419907, 0.13407814502716064, -0.009342060424387455, -0.23808738589286804, -0.054778214544057846, 0.24777553975582123, -0.16157756745815277, -0.2585243284702301, 0.15316720306873322, 0.17023004591464996, -0.4171900749206543, -0.04090038686990738, 0.10304144024848938, -0.12276368588209152, -0.24760468304157257, -0.36333853006362915, 0.06230252608656883, -0.31662219762802124, -0.08549428731203079, -0.14101769030094147, 0.32024458050727844, 0.5429487228393555, -0.16324542462825775, -0.18146629631519318, -0.19929420948028564, -0.26641714572906494, -0.3964798152446747, -0.07496314495801926, 0.11412081867456436, -0.22132255136966705, 0.12710532546043396, -0.34028851985931396, 0.16479399800300598, 0.14235956966876984, 0.16910915076732635, -0.05937954783439636, 0.3282696604728699, -0.2519993484020233, 0.7448480129241943, 0.2469034045934677, -0.15425430238246918, -0.05594097450375557, 0.148960679769516, -0.03510524705052376, 0.13763363659381866, -0.055232081562280655, 0.07226411998271942, 0.1872957944869995, -0.3772202432155609, 0.21969252824783325, -0.0028167206328362226, 0.042397987097501755, -0.35662245750427246, -0.18940559029579163, -0.016820643097162247, 0.4003436267375946, -0.22666321694850922, -0.35183390974998474, -0.18621499836444855, -0.11018458008766174, 0.14655180275440216, 0.12165424972772598, -0.1506720632314682, 0.2942145764827728, 0.32813823223114014, 0.09828269481658936, 0.03064480610191822, -0.022191977128386497, -0.18013839423656464, -0.6082834005355835, -0.07783886790275574, -0.45642533898353577, 0.2655048370361328, -0.515653669834137, -0.13810569047927856, -0.29862380027770996, 0.29171809554100037, -0.29393526911735535, -0.08744463324546814, 0.16573399305343628, 0.045794468373060226, -0.0814891904592514, -0.11216576397418976, -0.04715374857187271, -0.2919529378414154, 0.14651359617710114, -0.004919370636343956, -0.2575114965438843, 0.48286113142967224, -0.0993679016828537, -0.39815813302993774, 0.34747907519340515, 0.6011694073677063, 0.2996062934398651, 0.010809657163918018, 0.2203306406736374, 0.08396518975496292, 0.06140093877911568, -0.2706189751625061, -0.21628345549106598, -0.15767844021320343, 0.16633333265781403, -0.5653812289237976, -0.05508022755384445, 0.26635685563087463, -0.015745291486382484, -0.36643871665000916, -0.10523398965597153, 0.3159487545490265, -0.03462506830692291, 0.40777480602264404, -0.1733398288488388, 0.27057945728302, -0.03487074375152588, 0.13746050000190735, -0.17085711658000946, -0.33303430676460266, -0.10484018176794052, 0.42038142681121826, -0.31212112307548523, -0.14430323243141174, -0.16926689445972443, 0.4793446362018585, 0.35342854261398315, 0.12255790829658508, 0.0461263582110405, 0.15546061098575592, -0.07942492514848709, -0.25595822930336, 0.18026748299598694, -0.2929844856262207, 0.2055213302373886, 0.22461317479610443, 0.14536318182945251, 0.08072323352098465, -0.20612569153308868, -0.05723976343870163, 0.1440233439207077, -0.023712314665317535, 0.3502277433872223, 0.20818473398685455, 0.37140604853630066, -0.19972868263721466, -0.07407072186470032, -0.41082850098609924, -0.018083425238728523, 0.11002078652381897, -0.28631457686424255, 0.02801142819225788, -0.13822880387306213, -0.45614534616470337, -0.017967309802770615, -0.49065306782722473, -0.15960749983787537, -0.5329732298851013, -0.03052334114909172, 0.1939590871334076, -0.10031148046255112, 0.21251346170902252, 0.18253739178180695, -0.2348063439130783, 0.23441529273986816, -0.32061055302619934, -0.22406376898288727, -0.4881904423236847, -0.24423693120479584, 0.13112735748291016, 0.15155892074108124, 0.04880839213728905, 0.06721694022417068, 0.2802768051624298, -0.07386339455842972, -0.15616260468959808, -0.5505624413490295, 0.03042461909353733, -0.4866119921207428, 0.09574201703071594, 0.4155690670013428, 0.24726040661334991, 0.12928903102874756, -0.4227379262447357, 0.30088937282562256, 0.5386326313018799, -0.37859126925468445, -0.05005769431591034, -0.04422781616449356, -0.015310605987906456, -0.09045759588479996, -0.0681430995464325, -0.07465896010398865, -0.2739900052547455, 0.30047741532325745, 0.33600369095802307, 0.15567076206207275, 0.14523707330226898, -0.0839371606707573, 0.06322400271892548, 0.15607525408267975, -0.22992457449436188, 0.07306469231843948, 0.4016880989074707, 0.39704567193984985, -0.2707502841949463, -0.3289732038974762, 0.006612654309719801, -0.484430193901062, 0.029571503400802612, -0.11770465970039368, -0.1482519805431366, 0.10777399688959122, 0.1482846438884735, 0.42575353384017944, 0.3425687849521637, -0.3354378640651703, 0.35982346534729004, 0.49602189660072327, -0.05224356800317764, -0.08664729446172714, -0.03413994610309601, 0.24977514147758484, 0.15862105786800385, 0.20010589063167572, 0.24615196883678436, 0.0882548838853836, 0.13812002539634705, 0.36822351813316345, 0.45008209347724915, -0.04553145170211792, 0.4103306531906128, -0.16358985006809235, -0.024468660354614258, -0.2582240104675293, 0.007021741475909948, -0.3686867952346802, -0.1982264518737793, 0.05727798119187355, 0.028959529474377632, -0.1232873871922493, -0.39411476254463196, 0.08816039562225342, 0.04665429890155792, 0.24597106873989105, -0.13581188023090363, 0.11189626157283783, -0.5101606249809265, 0.2923167645931244, -0.13879422843456268, -0.3272828757762909, -0.06655821204185486, -0.42181596159935, -0.07834687829017639, -0.17945122718811035, 0.07772877812385559, -0.02372145839035511, -0.3296520411968231, -0.0878601148724556, -0.4834108352661133, 0.21098342537879944, 0.39804768562316895, 0.19805704057216644, -0.053076162934303284, -0.10226897895336151, -0.10975905507802963, -0.22386716306209564, 0.1809988021850586, -0.10997244715690613, -0.18931515514850616, 0.485535204410553, 0.11836494505405426, -0.42148756980895996, -0.03384685143828392, -0.08967114984989166, 0.17747901380062103, 0.09129945933818817, 0.4397973418235779, -0.6211690306663513, 0.0020220917649567127, 0.07137420028448105, 0.09220968931913376, -0.0677066519856453, -0.07419966161251068, -0.07351361960172653, -0.26399466395378113, -0.1719912439584732, 0.00820735190063715, 0.3025732934474945, 0.46190088987350464, 0.012173370458185673, -0.2804289758205414, -0.08993405848741531, -0.16198517382144928, 0.03625272214412689, -0.10583863407373428, 0.2589026987552643, -0.12458488345146179, -0.05142287537455559, 0.013486617244780064, 0.2822634279727936, 0.13860370218753815, 0.23928725719451904, 0.32204699516296387, 0.1425619274377823, -0.1194692924618721, -0.07974884659051895, 0.37868645787239075, 0.13635826110839844, 0.017159627750515938, 0.29749351739883423, 0.15624280273914337, -0.15464836359024048, -0.19926907122135162, -0.054286569356918335, 0.31014284491539, -0.16846831142902374, -0.31622403860092163, -0.056288279592990875, 0.28435274958610535, 0.012521738186478615, -0.08016180992126465, -0.038885243237018585, 0.029412008821964264, -0.4231780767440796, 0.48968762159347534, 0.2276361584663391, 0.9587826728820801, 0.1433471292257309, 0.33342400193214417, 0.701172411441803, 0.10090905427932739, 0.5256801843643188, 0.12354731559753418, 0.02781619317829609, -0.34825024008750916, 0.3312150239944458, -0.09383070468902588, -0.19702811539173126, 0.033750955015420914, 0.1511794924736023, -0.3989119827747345, 0.20762573182582855, -0.04394084960222244, -0.009774770587682724, 0.09696324914693832, 0.07735985517501831, 0.4406331181526184, -0.03988150507211685, -0.19461022317409515, 0.03434653952717781, -0.04216986522078514, -0.0641203299164772, -0.029213983565568924, -0.5158141851425171, -0.45264124870300293, -0.19400008022785187, -0.1262550801038742, 0.0731220543384552, 0.00021986794308759272, 0.12773014605045319, 0.10205485671758652, -0.3356177806854248, 0.1802394986152649, 0.5281006097793579, -0.018788255751132965, -0.34721213579177856, -0.20473892986774445, -0.2765873670578003, 0.04607464745640755, -0.38229990005493164, 0.07962696999311447, -0.2330663651227951, 0.17021775245666504, -0.1389922946691513, 0.05838770046830177, 0.0667981430888176, -0.1025184914469719, -0.1171068400144577, -0.12455718219280243, 0.12984946370124817, -0.2100256234407425, -0.277729332447052, -0.24268975853919983, 0.27115103602409363, -0.2643263638019562, -0.005320810247212648, 0.0688452422618866, 0.0013982524396851659, -0.2149062603712082, 0.08824335783720016, 0.0066770329140126705, 0.20093224942684174, 0.10780773311853409, 0.16765019297599792, 0.39025816321372986, 0.24985119700431824, 0.6531680226325989, 0.35359880328178406, -0.2699030041694641, -0.03707583621144295, -0.2008211612701416, 0.13566383719444275, -0.26122066378593445, 0.27314814925193787, 0.009565416723489761, -0.10795165598392487, -0.18512481451034546, 0.5661981105804443, -0.035905905067920685, 0.327217698097229, -0.029484376311302185, -0.2730291485786438, -0.4289375841617584, 0.3417750895023346, -0.33761703968048096, 0.1372971385717392, -0.2105010598897934, 0.34178465604782104, -0.020043816417455673, -0.08668464422225952, -0.23198027908802032, -0.03389750421047211, -0.2695261836051941, 0.28315043449401855, 0.07277626544237137, -0.24186626076698303, 0.14327490329742432, 0.1637406051158905, 0.11349223554134369, 0.1377164125442505, 0.009140629321336746, -0.11896129697561264, -0.09468000382184982, 0.14830173552036285, 0.24621200561523438, -0.014638304710388184, 0.16111791133880615, 0.1037166565656662, 0.007238726131618023, -0.09347855299711227, -0.16617311537265778, -0.20707343518733978, -0.09780316054821014, 0.2616789937019348, 0.2590043842792511, 0.06088291481137276, -0.16138897836208344, 0.17215004563331604, -0.07495772838592529, 0.25439733266830444, -0.13270895183086395, 0.20221306383609772, -0.13597096502780914, -0.06581475585699081, 0.05591296777129173, 0.29711785912513733, -0.08773675560951233, -0.07802560180425644, 0.4186023771762848, -0.0817786380648613, -0.44336459040641785, -0.27198225259780884, 0.3999478816986084, 0.26811516284942627, -0.10099814087152481, -0.08307823538780212, -0.11218004673719406, 0.07475969195365906, -0.3760127127170563, -0.007778417784720659, 0.28608930110931396, 0.03238225355744362, 0.020430846139788628, 0.21591031551361084, 0.3058033287525177, -0.040489088743925095, -0.2148517668247223, -0.04018353670835495, 0.006054124794900417, -0.011284439824521542, 0.029572952538728714, 0.09083457291126251, 0.14685885608196259, 0.06438786536455154, 0.19960561394691467, 0.006144392769783735, 0.3186854422092438, 0.34051498770713806, 0.2255374938249588, 0.07470673322677612, 0.7099596858024597, -0.020604098215699196, 0.4179554879665375, 0.062439147382974625, -0.09592209756374359, 0.23015913367271423, 0.815522313117981, -0.08012751489877701, 0.22812235355377197, 0.2109823375940323, 0.4051738679409027, -0.15393264591693878, 0.2298150658607483, 0.44922858476638794, -0.06960317492485046, -0.2035357803106308, -0.18845796585083008, 0.011691677384078503, -0.21719990670681, -0.4033900201320648, -0.20081323385238647, -0.20080146193504333, 0.16091372072696686, -0.08555173873901367, 0.3172803521156311, -0.35788631439208984, 0.6291171312332153, 0.23592793941497803, 0.15793965756893158, -0.06872876733541489, 0.39837053418159485, 0.28599274158477783, -0.12273355573415756, 0.12003946304321289, 0.3106324076652527, 0.5210933089256287, 0.23192617297172546, -0.4977973699569702, -0.020134104415774345, -0.15759965777397156, -0.31199589371681213, 0.045281071215867996, 0.15575674176216125, 0.10338865965604782, 0.17144334316253662, 0.42702415585517883, 0.0027692255098372698, 0.003536635311320424, -0.0066913459450006485, 0.3002270758152008, -0.10845252871513367, 0.25306436419487, 0.5017451047897339, -0.2810669541358948, -0.36820805072784424, 0.16333931684494019, 0.028057457879185677, -0.2052234262228012, -0.10812073200941086, 0.3654826581478119, 0.22884798049926758, 0.27943655848503113, 0.07714071124792099, 0.059262990951538086, -0.09336957335472107, 0.5959614515304565, 0.1037612184882164, 0.30816224217414856, -0.154645174741745, -0.2343512922525406, -0.35366004705429077, 0.0036339247599244118, -0.056519120931625366, -0.3216264545917511, 0.30732211470603943, -0.011177345179021358, 0.05892426520586014, 0.1984139233827591, -0.17917311191558838, 0.019347215071320534, -0.2994588315486908, 0.22041922807693481, -0.3973325192928314, 0.050212398171424866, 0.39117541909217834, 0.04674549773335457, -0.08370444923639297, 0.02302360348403454, 0.05106068029999733, 0.028629276901483536, -0.008694038726389408, -0.1330474466085434, -0.12296470254659653, -0.09376981109380722, 0.22399815917015076, -0.04957983270287514, 0.25528931617736816, 0.2741926908493042, 0.07164504379034042, -0.1535007506608963, -0.15623237192630768, -0.2056281864643097, -0.06908062100410461, 0.6255398988723755, 0.08909966796636581, 0.45917949080467224, -0.21442662179470062, 0.2980731427669525, -0.0728883221745491, -0.06758523732423782, 0.034764114767313004, -0.03158958628773689, -0.3935305178165436, 0.3084964156150818, -0.24219681322574615, 0.21915483474731445, -0.08173093944787979, 0.09468305855989456, 0.016862260177731514, 0.2577868700027466, -0.24221789836883545, -0.4130553901195526, 0.38985341787338257, -0.11537598073482513, -0.24641545116901398, 0.46507883071899414, -0.14557063579559326, 0.4240632951259613, 0.036995720118284225, -0.14423587918281555, -0.2059313803911209, 0.4398934245109558, -0.10900372266769409, -0.3411957919597626, -0.1297614723443985, -0.06775869429111481, -0.13854946196079254, -0.18108317255973816, 0.19944733381271362, -0.16368846595287323, -0.06514797359704971, -0.24590854346752167, -0.4080280363559723 ]
https://github.com/huggingface/datasets/issues/317
Adding a dataset with multiple subtasks
For one dataset you can have different configurations that each have their own `nlp.Features`. We imagine having one configuration per subtask for example. They are loaded with `nlp.load_dataset("my_dataset", "my_config")`. For example the `glue` dataset has many configurations. It is a bit different from your case though because each configuration is a dataset by itself (sst2, mnli). Another example is `wikipedia` that has one configuration per language.
I intent to add the datasets of the MT Quality Estimation shared tasks to `nlp`. However, they have different subtasks -- such as word-level, sentence-level and document-level quality estimation, each of which having different language pairs, and some of the data reused in different subtasks. For example, in [QE 2019,](http://www.statmt.org/wmt19/qe-task.html) we had the same English-Russian and English-German data for word-level and sentence-level QE. I suppose these datasets could have both their word and sentence-level labels inside `nlp.Features`; but what about other subtasks? Should they be considered a different dataset altogether? I read the discussion on #217 but the case of QE seems a lot simpler.
66
Adding a dataset with multiple subtasks I intent to add the datasets of the MT Quality Estimation shared tasks to `nlp`. However, they have different subtasks -- such as word-level, sentence-level and document-level quality estimation, each of which having different language pairs, and some of the data reused in different subtasks. For example, in [QE 2019,](http://www.statmt.org/wmt19/qe-task.html) we had the same English-Russian and English-German data for word-level and sentence-level QE. I suppose these datasets could have both their word and sentence-level labels inside `nlp.Features`; but what about other subtasks? Should they be considered a different dataset altogether? I read the discussion on #217 but the case of QE seems a lot simpler. For one dataset you can have different configurations that each have their own `nlp.Features`. We imagine having one configuration per subtask for example. They are loaded with `nlp.load_dataset("my_dataset", "my_config")`. For example the `glue` dataset has many configurations. It is a bit different from your case though because each configuration is a dataset by itself (sst2, mnli). Another example is `wikipedia` that has one configuration per language.
[ -0.07099545747041702, -0.18145304918289185, -0.04370281472802162, 0.38491472601890564, -0.21697472035884857, 0.09465905278921127, 0.3582092225551605, -0.13353431224822998, 0.1271398812532425, -0.15524694323539734, -0.28162091970443726, 0.1489308625459671, -0.15718209743499756, 0.6809746623039246, 0.3387671709060669, -0.22827202081680298, 0.15951304137706757, -0.35347452759742737, -0.0652335062623024, -0.018868722021579742, -0.16572575271129608, 0.05232613533735275, -0.048503439873456955, -0.01048594992607832, -0.36160197854042053, -0.23399147391319275, -0.29406389594078064, -0.12222589552402496, 0.3124147653579712, -0.3002321124076843, 0.09821561723947525, 0.2476523369550705, -0.03276250511407852, 0.06598156690597534, -0.0001160392421297729, 0.12002027034759521, 0.03031524270772934, -0.10520301014184952, -0.3548586666584015, -0.1189139187335968, -0.23487643897533417, -0.471265971660614, -0.04687383025884628, -0.16617996990680695, 0.19217580556869507, -0.30591559410095215, 0.34838753938674927, -0.22731296718120575, 0.1708158403635025, 0.16543173789978027, 0.0961555689573288, 0.3004249334335327, -0.3444351553916931, 0.18980084359645844, 0.14191333949565887, -0.14653073251247406, -0.08647052943706512, 0.14829511940479279, 0.1591271311044693, 0.12156908959150314, 0.10448862612247467, 0.08991008996963501, 0.13055892288684845, 0.15654882788658142, 0.3428242802619934, 0.043693993240594864, 0.2532324492931366, -0.3091910481452942, -0.19410865008831024, 0.38680413365364075, 0.5393714904785156, 0.043002527207136154, -0.4733118414878845, -0.41007259488105774, 0.06197180598974228, -0.10595966875553131, -0.01838647574186325, 0.3538912236690521, 0.06193891912698746, -0.24967801570892334, 0.2122740000486374, -0.08404058963060379, -0.09232738614082336, 0.20203401148319244, 0.17034588754177094, 0.49902164936065674, 0.056195057928562164, 0.24287959933280945, -0.23657521605491638, -0.1611417531967163, -0.17206339538097382, -0.14426855742931366, -0.18450774252414703, -0.01231482531875372, -0.2962131202220917, -0.07260364294052124, -0.09223563224077225, -0.4936169981956482, 0.2760331630706787, 0.04808168113231659, 0.38680151104927063, -0.0181513000279665, -0.03430139273405075, 0.3849566876888275, 0.5777328610420227, -0.07199258357286453, 0.3023169934749603, -0.036558955907821655, -0.05050639063119888, -0.5055099725723267, -0.10484176129102707, -0.1112041100859642, -0.0039246464148163795, 0.05783485993742943, -0.3177068829536438, -0.1836053431034088, 0.14305724203586578, 0.07736089825630188, -0.22938232123851776, -0.12814007699489594, -0.12914732098579407, -0.31752654910087585, -0.20341970026493073, -0.07261162996292114, 0.24716044962406158, 0.2654176950454712, -0.3013917803764343, 0.5123950839042664, 0.043233856558799744, 0.060239505022764206, -0.06641080975532532, -0.077902652323246, -0.3201753795146942, 0.23677565157413483, 0.04633067175745964, 0.0716187134385109, 0.44740328192710876, -0.004477395676076412, -0.028468845412135124, -0.35217148065567017, 0.18821187317371368, -0.07907862216234207, -0.06916330009698868, -0.030083326622843742, 0.04277984797954559, 0.06560218334197998, -0.22535432875156403, 0.28756919503211975, -0.41455158591270447, 0.020099518820643425, -0.3364299237728119, -0.166695699095726, 0.08987398445606232, 0.0010789594380185008, -0.18327848613262177, -0.19883409142494202, -0.5550370216369629, 0.6362176537513733, 0.08194804191589355, -0.07988449186086655, -0.020813103765249252, -0.14135828614234924, -0.2756299376487732, -0.1657593548297882, -0.3760385513305664, -0.10043927282094955, -0.29674676060676575, -0.486111044883728, -0.014935820363461971, -0.16964995861053467, 0.017027338966727257, 0.3792361617088318, -0.20671892166137695, 0.49382543563842773, -0.09010449796915054, 0.38409072160720825, 0.5942388772964478, -0.20192718505859375, -0.08353644609451294, 0.3388240933418274, 0.12393870949745178, 0.04260701313614845, 0.2889140248298645, 0.4311681389808655, 0.2352268397808075, 0.022179845720529556, 0.004531914368271828, 0.34517017006874084, -0.12428755313158035, -0.15704815089702606, 0.015790700912475586, -0.14394237101078033, 0.4175119996070862, -0.00808460172265768, -0.010497636161744595, -0.2487356960773468, 0.12752798199653625, -0.04336075484752655, 0.15092068910598755, 0.0679415687918663, 0.13763640820980072, -0.12132576107978821, -0.1397402137517929, 0.3720225989818573, -0.08128359913825989, -0.29375159740448, -0.3058459162712097, 0.1738560050725937, -0.19136649370193481, 0.11775077134370804, 0.5350755453109741, -0.18690168857574463, 0.0972270667552948, -0.2575562298297882, -0.1604674756526947, -0.49020621180534363, 0.09142354875802994, 0.45305168628692627, -0.510992169380188, -0.39187464118003845, -0.4492614269256592, 0.17530624568462372, 0.12128766626119614, -0.12233361601829529, -0.15637102723121643, 0.27136850357055664, 0.16020359098911285, 0.02595187909901142, 0.12400102615356445, 0.3958662450313568, -0.05448925122618675, -0.006239050999283791, 0.09372889995574951, 0.08532901108264923, 0.20980185270309448, 0.23525536060333252, 0.26916930079460144, -0.1274304836988449, 0.14234225451946259, -0.006453384179621935, 0.09067187458276749, -0.1277322620153427, -0.029870061203837395, -0.2179366946220398, 0.2128390371799469, 0.2513687014579773, 0.19436299800872803, 0.37429723143577576, 0.03655115142464638, -0.0915965735912323, 0.24194929003715515, 0.08246222138404846, -0.3555675446987152, -0.22424869239330292, 0.13615798950195312, 0.0217419620603323, -0.06853004544973373, 0.102736696600914, -0.2026439607143402, 0.23701703548431396, 0.33044466376304626, 0.11694524437189102, 0.11938046663999557, -0.13728567957878113, -0.1324390321969986, -0.13277006149291992, 0.12773443758487701, 0.3263098895549774, 0.47374817728996277, 0.18272458016872406, 0.36266395449638367, -0.020629240199923515, -0.015571445226669312, -0.10861790180206299, -0.0022715714294463396, 0.1844286173582077, 0.0015733529580757022, 0.21316836774349213, -0.07691636681556702, -0.16092036664485931, -0.0590052455663681, 0.15981483459472656, 0.3098052740097046, -0.19485899806022644, -0.1620256006717682, 0.006378237158060074, -0.40358349680900574, -0.4256438910961151, -0.2943241596221924, 0.02316584810614586, -0.31561675667762756, -0.2660317122936249, 0.08972807228565216, -0.08034530282020569, -0.19059190154075623, 0.3742901086807251, 0.02858438901603222, 0.42667558789253235, -0.4384792149066925, 0.17274771630764008, 0.2919110357761383, -0.365160197019577, -0.03918648138642311, 0.07529933750629425, 0.45333486795425415, 0.5177780985832214, 0.5196749567985535, 0.08196587860584259, -0.26921069622039795, -0.14957751333713531, -0.17664240300655365, 0.18274207413196564, -0.35116252303123474, 0.6441906690597534, -0.1898636370897293, -0.06355589628219604, 0.06541091948747635, -0.3773077726364136, 0.1839829534292221, 0.30568698048591614, -0.16883815824985504, -0.09972642362117767, -0.09916479885578156, -0.1515534371137619, -0.016697771847248077, -0.5070539116859436, -0.4871922731399536, -0.23863743245601654, 0.24699951708316803, -0.1593509018421173, 0.3552491366863251, 0.010929415002465248, -0.36001065373420715, -0.044591180980205536, -0.05102841556072235, 0.022551357746124268, -0.2522813081741333, -0.09906579554080963, -0.028114499524235725, -0.44576379656791687, -0.07536303997039795, 0.14581036567687988, -0.11003071069717407, 0.5756060481071472, 0.0492917001247406, -0.23687878251075745, -0.06098058074712753, 0.17622055113315582, -0.13571500778198242, 0.21015867590904236, 0.02923872321844101, 0.1821366399526596, -0.10605607181787491, 0.06362844258546829, -0.06080317869782448, -0.37648361921310425, 0.41220465302467346, 0.4863763749599457, 0.1986301839351654, -0.0532781258225441, 0.06210893765091896, -0.21244852244853973, 0.43117624521255493, 0.6173297762870789, 0.2669888734817505, 0.13748323917388916, 0.015275165438652039, -0.01565118134021759, 0.13433459401130676, -0.17310911417007446, 0.5373429656028748, -0.15205886960029602, -0.0741887092590332, 0.509647786617279, 0.07712876796722412, -0.10019323229789734, -0.03490985557436943, -0.2184164822101593, -0.2870624363422394, -0.2746577858924866, 0.21589918434619904, -0.38213300704956055, 0.3279491364955902, -0.11125554889440536, -0.5277524590492249, -0.3999686539173126, 0.12230851501226425, -0.2745324969291687, 0.4277229309082031, 0.014691083692014217, 0.15394528210163116, -0.711886465549469, -0.2398281693458557, -0.2504856586456299, 0.07744519412517548, 0.16256803274154663, 0.4083615243434906, -0.045882534235715866, 0.16510261595249176, -0.048812512308359146, 0.0752662643790245, -0.09322607517242432, -0.44280755519866943, -0.11551226675510406, 0.18163570761680603, 0.3534647822380066, -0.29031479358673096, -0.19670289754867554, -0.13208362460136414, -0.07324261218309402, 0.3702419102191925, 0.20475202798843384, -0.37994077801704407, -0.07816113531589508, 0.03960450366139412, 0.07436293363571167, -0.20151712000370026, -0.25655433535575867, -0.16366709768772125, -0.07913995534181595, -0.14591547846794128, -0.07083792239427567, -0.15507341921329498, -0.09937524050474167, 0.10380807518959045, -0.05233122780919075, -0.023225728422403336, -0.17166538536548615, 0.1622261106967926, 0.1499483436346054, -0.017311304807662964, 0.1483185589313507, 0.16597555577754974, 0.035667676478624344, -0.007045037113130093, 0.20200566947460175, 0.6304768323898315, -0.18414229154586792, -0.02869763970375061, 0.04730173200368881, -0.24319136142730713, 0.5375527739524841, 0.08001731336116791, 0.1366085708141327, 0.30330485105514526, -0.08369837701320648, -0.35349828004837036, -0.08292241394519806, 0.1730746626853943, 0.4156099259853363, 0.20729798078536987, -0.09309423714876175, -0.47283926606178284, 0.3493262231349945, 0.15291181206703186, -0.16371087729930878, 0.09366435557603836, -0.21412183344364166, -0.2796531617641449, 0.17488336563110352, 0.15634572505950928, 0.5925900340080261, 0.17064891755580902, 0.16015076637268066, 0.019666526466608047, 0.14274001121520996, 0.47231417894363403, -0.04326789453625679, 0.05077783018350601, 0.07045204192399979, 0.12620188295841217, 0.017640067264437675, -0.10342217236757278, 0.10138474404811859, 0.3143950402736664, -0.10515043884515762, 0.20271439850330353, 0.4885597825050354, 0.07388150691986084, -0.20549888908863068, 0.16520532965660095, 0.02240217849612236, -0.1119207963347435, 0.024573776870965958, 0.005142487585544586, -0.33819061517715454, -0.06445227563381195, -0.15802736580371857, -0.09547057002782822, 0.020236851647496223, 0.18885952234268188, -0.2974640130996704, -0.2856966555118561, -0.21643713116645813, -0.09071409702301025, -0.08838304877281189, 0.07414532452821732, 0.10490518063306808, -0.11231938004493713, 0.23295049369335175, -0.29491326212882996, 0.07577817887067795, -0.0610651969909668, -0.16012974083423615, -0.05803718417882919, -0.24135780334472656, -0.1626473069190979, 0.3596683740615845, -0.13284151256084442, -0.3288188874721527, -0.021393610164523125, 0.2124662846326828, -0.21411778032779694, -0.22377124428749084, 0.08441593497991562, 0.01280967053025961, 0.024249160662293434, 0.029885616153478622, 0.6271651387214661, -0.1276540458202362, -0.08098495751619339, 0.011536166071891785, 0.08100487291812897, -0.06636546552181244, 0.45479318499565125, -0.24118660390377045, 0.12811531126499176, -0.09839273989200592, -0.2685524523258209, 0.3955037593841553, -0.14304150640964508, 0.061532534658908844, -0.16156193614006042, 0.05602287873625755, -0.12295697629451752, 0.3657936751842499, -0.22342850267887115, 0.1669934093952179, -0.04066338762640953, 0.16723687946796417, -0.23485761880874634, -0.09836504608392715, 0.4191533625125885, 0.17444726824760437, 0.16597025096416473, -0.021405108273029327, -0.3090895414352417, -0.28142809867858887, 0.43153318762779236, -0.23808126151561737, 0.21823187172412872, -0.33611801266670227, 0.45609769225120544, 0.10060030966997147, 0.7375181913375854, -0.20381079614162445, -0.05855095759034157, -0.0582377165555954, 0.30754998326301575, 0.6464060544967651, 0.12273094803094864, 0.01449565403163433, 0.17480912804603577, -0.1364329755306244, -0.13183704018592834, -0.2538299858570099, -0.04798571765422821, -0.27254578471183777, 0.15848417580127716, 0.4529350697994232, -0.05978987738490105, 0.1185256615281105, -0.08370652049779892, 0.19685591757297516, -0.1743214726448059, 0.15404248237609863, -0.08648894727230072, -0.17040005326271057, 0.5633851289749146, 0.17757202684879303, 0.1963307410478592, -0.09346307814121246, 0.49119773507118225, 0.10677928477525711, 0.1471947431564331, 0.14887036383152008, -0.00694823544472456, 0.032847750931978226, 0.05640449374914169, -0.10656683146953583, 0.037998706102371216, 0.061036616563797, 0.3045612871646881, -0.1991027146577835, 0.044117461889982224, -0.009520361199975014, -0.07328798621892929, -0.0040003159083426, 0.45770159363746643, 0.10571537166833878, 0.177002415060997, 0.054863352328538895, 0.032939761877059937, -0.20060808956623077, 0.13137274980545044, 0.22794866561889648, -0.03673652559518814, 0.17022208869457245, 0.2453300952911377, 0.3747326731681824, 0.06277399510145187, 0.10346569865942001, -0.18872283399105072, -0.36891812086105347, -0.38208237290382385, 0.3947610557079315, 0.0812266618013382, 0.15402550995349884, 0.07479015737771988, 0.3632288873195648, 0.20619475841522217, 0.16359376907348633, 0.2591196894645691, 0.16669251024723053, 0.35711154341697693, 0.4458708167076111, -0.04546266794204712, 0.4074282646179199, 0.05979609489440918, -0.08665697276592255, 0.32712969183921814, 0.01005878858268261, 0.1574147790670395, 0.08930863440036774, 0.18169774115085602, -0.12574715912342072, -0.39562541246414185, -0.002783183939754963, 0.16566559672355652, -0.0827641710639, -0.22446738183498383, -0.46350330114364624, -0.21037614345550537, -0.12924902141094208, -0.1795019805431366, -0.3159162700176239, -0.22409802675247192, 0.10019184648990631, 0.015940748155117035, 0.08364283293485641, -0.10326627641916275, -0.34102198481559753, 0.04062638804316521, -0.24160437285900116, -0.08817118406295776, 0.4383791983127594, -0.03843480348587036, -0.12429794669151306, 0.33255547285079956, 0.5182185173034668, -0.008541706018149853, -0.043424610048532486, -0.09470173716545105, 0.07897290587425232, 0.10351420938968658, 0.17427948117256165, 0.0017957770032808185, 0.06610773503780365, 0.14959925413131714, -0.4645208418369293, 0.42820245027542114, -0.07462073117494583, 0.0445437878370285, 0.37635964155197144, 0.059167761355638504, -0.3788805305957794, -0.5645084381103516, 0.37451010942459106, -0.07400837540626526, -0.10723994672298431, 0.05227012559771538, 0.18935027718544006, -0.450651079416275, -0.3078395426273346, 0.39061254262924194, -0.0274614617228508, 0.10433804243803024, -0.21644212305545807, 0.04260993376374245, -0.15391531586647034, 0.5759132504463196, 0.1403672695159912, 0.12147089838981628, -0.1890481859445572, 0.06323469430208206, -0.7028478980064392, 0.09084860980510712, -0.21619191765785217, -0.012122364714741707, -0.03172166645526886, 0.08100124448537827, 0.1939312368631363, 0.46881821751594543, 0.12659239768981934, 0.21478179097175598, -0.10427815467119217, -0.05664132907986641, -0.5983036756515503, -0.1369602084159851, 0.14843256771564484, 0.23209193348884583, 0.07382121682167053, 0.08754003793001175, -0.12036196142435074, -0.038253653794527054, -0.1451861709356308, 0.1198895275592804, -0.283984512090683, 0.3616272211074829, 0.31768599152565, 0.417770653963089, 0.02502717822790146, 0.6134973764419556, -0.0264576468616724, -0.09298287332057953, -0.10206723213195801, -0.26818808913230896, -0.31060856580734253, -0.11437954753637314, -0.04345384240150452, 0.3557244539260864, -0.5675239562988281, 0.4912193715572357, 0.1228705495595932, -0.23944875597953796, -0.27122431993484497, -0.1315518319606781, 0.002027918118983507, 0.24046997725963593, 0.08519382774829865, -0.18212676048278809, 0.20759426057338715, 0.5532333850860596, 0.046041376888751984, -0.1255837380886078, -0.007740207482129335, 0.018144886940717697, 0.17123785614967346, 0.07117437571287155, -0.18219351768493652, -0.1840195208787918, 0.2387351095676422, 0.07368241250514984, 0.3201594948768616, -0.46001917123794556, -0.09383698552846909, 0.4359743893146515, 0.10779835283756256, 0.11933980137109756, 0.1448533684015274, 0.12024154514074326, -0.4784877896308899, -0.282283753156662, -0.21169091761112213, -0.0737445056438446, -0.2070969045162201, -0.09614913910627365, -0.35650643706321716 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Update: I think I've found a solution. ```python output_types = {"input_ids": tf.int64, "token_type_ids": tf.int64, "attention_mask": tf.int64} def train_dataset_gen(): for i in range(len(train_dataset)): yield train_dataset[i] tf_dataset = tf.data.Dataset.from_generator(train_dataset_gen, output_types=output_types) ``` loads WikiText-2 in 20 ms, and WikiText-103 in 20 ms. It appears to be lazily loading via indexing train_dataset.
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
48
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Update: I think I've found a solution. ```python output_types = {"input_ids": tf.int64, "token_type_ids": tf.int64, "attention_mask": tf.int64} def train_dataset_gen(): for i in range(len(train_dataset)): yield train_dataset[i] tf_dataset = tf.data.Dataset.from_generator(train_dataset_gen, output_types=output_types) ``` loads WikiText-2 in 20 ms, and WikiText-103 in 20 ms. It appears to be lazily loading via indexing train_dataset.
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Yes this is the current best solution. We should probably show it in the tutorial notebook. Note that this solution unfortunately doesn't allow to train on TPUs (yet). See #193
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
30
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Yes this is the current best solution. We should probably show it in the tutorial notebook. Note that this solution unfortunately doesn't allow to train on TPUs (yet). See #193
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
This approach still seems quite slow. When using TFRecords with a similar training loop, I get ~3.0-3.5 it/s on multi-node, multi-GPU training. I notice a pretty severe performance regression when scaling, with observed performance numbers. Since the allreduce step takes less than 100ms/it and I've achieved 80% scaling efficiency up to 64 GPUs, it must be the data pipeline. | Nodes | GPUs | Iterations/Second | | --- | --- | --- | | 1 | 2 | 2.01 | | 1 | 8 | 0.81 | | 2 | 16 | 0.37 | Here are performance metrics over 10k steps. The iteration speed appears to follow some sort of caching pattern. I would love to use `nlp` in my project, but a slowdown from 3.0 it/s to 0.3 it/s is too great to stomach. <img width="1361" alt="Screen Shot 2020-07-02 at 8 29 22 AM" src="https://user-images.githubusercontent.com/4564897/86378156-2f8d3900-bc3e-11ea-918b-c395c3df5377.png">
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
146
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? This approach still seems quite slow. When using TFRecords with a similar training loop, I get ~3.0-3.5 it/s on multi-node, multi-GPU training. I notice a pretty severe performance regression when scaling, with observed performance numbers. Since the allreduce step takes less than 100ms/it and I've achieved 80% scaling efficiency up to 64 GPUs, it must be the data pipeline. | Nodes | GPUs | Iterations/Second | | --- | --- | --- | | 1 | 2 | 2.01 | | 1 | 8 | 0.81 | | 2 | 16 | 0.37 | Here are performance metrics over 10k steps. The iteration speed appears to follow some sort of caching pattern. I would love to use `nlp` in my project, but a slowdown from 3.0 it/s to 0.3 it/s is too great to stomach. <img width="1361" alt="Screen Shot 2020-07-02 at 8 29 22 AM" src="https://user-images.githubusercontent.com/4564897/86378156-2f8d3900-bc3e-11ea-918b-c395c3df5377.png">
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
An interesting alternative to investigate here would be to use the tf.io library which has some support for Arrow to TF conversion: https://www.tensorflow.org/io/api_docs/python/tfio/arrow/ArrowDataset There are quite a few types supported, including lists so if the unsupported columns are dropped then we could maybe have a zero-copy mapping from Arrow to TensorFlow, including tokenized inputs and 1D tensors like the ones we mostly use in NLP: https://github.com/tensorflow/io/blob/322b3170c43ecac5c6af9e39dbd18fd747913e5a/tensorflow_io/arrow/python/ops/arrow_dataset_ops.py#L44-L72 Here is an introduction on Arrow to TF using tf.io: https://medium.com/tensorflow/tensorflow-with-apache-arrow-datasets-cdbcfe80a59f
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
77
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? An interesting alternative to investigate here would be to use the tf.io library which has some support for Arrow to TF conversion: https://www.tensorflow.org/io/api_docs/python/tfio/arrow/ArrowDataset There are quite a few types supported, including lists so if the unsupported columns are dropped then we could maybe have a zero-copy mapping from Arrow to TensorFlow, including tokenized inputs and 1D tensors like the ones we mostly use in NLP: https://github.com/tensorflow/io/blob/322b3170c43ecac5c6af9e39dbd18fd747913e5a/tensorflow_io/arrow/python/ops/arrow_dataset_ops.py#L44-L72 Here is an introduction on Arrow to TF using tf.io: https://medium.com/tensorflow/tensorflow-with-apache-arrow-datasets-cdbcfe80a59f
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Interesting. There's no support for strings, but it does enable int and floats so that would work for tokenized inputs. ArrowStreamDataset requires loading from a "record batch iterator", which can be instantiated from in-memory arrays as described here: https://arrow.apache.org/docs/python/ipc.html. But the nlp.Dataset stores its data as a `pyarrow.lib.Table`, and the underlying features are `pyarrow.lib.ChunkedArray`. I can't find any documentation about lazily creating a record batch iterator from a ChunkedArray or a Table. Have you had any success? I can't find [any uses](https://grep.app/search?q=ArrowDataset&filter[lang][0]=Python) of tfio.arrow.ArrowDataset on GitHub.
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
86
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Interesting. There's no support for strings, but it does enable int and floats so that would work for tokenized inputs. ArrowStreamDataset requires loading from a "record batch iterator", which can be instantiated from in-memory arrays as described here: https://arrow.apache.org/docs/python/ipc.html. But the nlp.Dataset stores its data as a `pyarrow.lib.Table`, and the underlying features are `pyarrow.lib.ChunkedArray`. I can't find any documentation about lazily creating a record batch iterator from a ChunkedArray or a Table. Have you had any success? I can't find [any uses](https://grep.app/search?q=ArrowDataset&filter[lang][0]=Python) of tfio.arrow.ArrowDataset on GitHub.
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Also note that since #322 it is now possible to do ```python ids = [1, 10, 42, 100] batch = dataset[ids] ``` From my experience it is quite fast but it can take lots of memory for large batches (haven't played that much with it). Let me know if you think there could be a better way to implement it. (current code is [here](https://github.com/huggingface/nlp/blob/78628649962671b4aaa31a6b24e7275533416845/src/nlp/arrow_dataset.py#L463))
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
64
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Also note that since #322 it is now possible to do ```python ids = [1, 10, 42, 100] batch = dataset[ids] ``` From my experience it is quite fast but it can take lots of memory for large batches (haven't played that much with it). Let me know if you think there could be a better way to implement it. (current code is [here](https://github.com/huggingface/nlp/blob/78628649962671b4aaa31a6b24e7275533416845/src/nlp/arrow_dataset.py#L463))
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Thanks @lhoestq! That format is much better to work with. I put together a benchmarking script. This doesn't measure the CPU-to-GPU efficiency, nor how it scales with multi-GPU multi-node training where many processes are making the same demands on the same dataset. But it does show some interesting results: ```python import nlp import numpy as np import tensorflow as tf import time dset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train") dset = dset.filter(lambda ex: len(ex["text"]) > 0) bsz = 1024 n_batches = 100 def single_item_gen(): for i in range(len(dset)): yield dset[i] def sequential_batch_gen(): for i in range(0, len(dset), bsz): yield dset[i:i+bsz] def random_batch_gen(): for i in range(len(dset)): indices = list(np.random.randint(len(dset), size=(bsz,))) yield dset[indices] output_types = {"text": tf.string} single_item = tf.data.Dataset.from_generator(single_item_gen, output_types=output_types).batch(bsz) interleaved = tf.data.Dataset.range(10).interleave( lambda idx: tf.data.Dataset.from_generator(single_item_gen, output_types=output_types), cycle_length=10, ) sequential_batch = tf.data.Dataset.from_generator(sequential_batch_gen, output_types=output_types) random_batch = tf.data.Dataset.from_generator(random_batch_gen, output_types=output_types) def iterate(tf_dset): start = time.perf_counter() for i, batch in enumerate(tf_dset.take(n_batches)): pass elapsed = time.perf_counter() - start print(f"{tf_dset} took {elapsed:.3f} secs") iterate(single_item) iterate(interleaved) iterate(sequential_batch) iterate(random_batch) ``` Results: ``` <BatchDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 23.005 secs <InterleaveDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.135 secs <FlatMapDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.074 secs <FlatMapDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.550 secs ``` - Batching a generator which fetches a single item is terrible. - Interleaving performs well on a single process, but doesn't scale well to multi-GPU training. I believe the bottleneck here is in Arrow dataset locking or something similar. The numbers from the table above are with interleaving. - The sequential access dominates the random access (7x faster). Is there any way to bring random access times closer to sequential access? Maybe re-indexing the dataset after shuffling each pass over the data.
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
285
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Thanks @lhoestq! That format is much better to work with. I put together a benchmarking script. This doesn't measure the CPU-to-GPU efficiency, nor how it scales with multi-GPU multi-node training where many processes are making the same demands on the same dataset. But it does show some interesting results: ```python import nlp import numpy as np import tensorflow as tf import time dset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train") dset = dset.filter(lambda ex: len(ex["text"]) > 0) bsz = 1024 n_batches = 100 def single_item_gen(): for i in range(len(dset)): yield dset[i] def sequential_batch_gen(): for i in range(0, len(dset), bsz): yield dset[i:i+bsz] def random_batch_gen(): for i in range(len(dset)): indices = list(np.random.randint(len(dset), size=(bsz,))) yield dset[indices] output_types = {"text": tf.string} single_item = tf.data.Dataset.from_generator(single_item_gen, output_types=output_types).batch(bsz) interleaved = tf.data.Dataset.range(10).interleave( lambda idx: tf.data.Dataset.from_generator(single_item_gen, output_types=output_types), cycle_length=10, ) sequential_batch = tf.data.Dataset.from_generator(sequential_batch_gen, output_types=output_types) random_batch = tf.data.Dataset.from_generator(random_batch_gen, output_types=output_types) def iterate(tf_dset): start = time.perf_counter() for i, batch in enumerate(tf_dset.take(n_batches)): pass elapsed = time.perf_counter() - start print(f"{tf_dset} took {elapsed:.3f} secs") iterate(single_item) iterate(interleaved) iterate(sequential_batch) iterate(random_batch) ``` Results: ``` <BatchDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 23.005 secs <InterleaveDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.135 secs <FlatMapDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.074 secs <FlatMapDataset shapes: {text: <unknown>}, types: {text: tf.string}> took 0.550 secs ``` - Batching a generator which fetches a single item is terrible. - Interleaving performs well on a single process, but doesn't scale well to multi-GPU training. I believe the bottleneck here is in Arrow dataset locking or something similar. The numbers from the table above are with interleaving. - The sequential access dominates the random access (7x faster). Is there any way to bring random access times closer to sequential access? Maybe re-indexing the dataset after shuffling each pass over the data.
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Hey @jarednielsen Thanks for this very interesting analysis!! IMHO to read text data one should use `tf.data.TextLineDataset`. It would be interesting to compare what you have done with simply load with a `TextLineDataset` and see if there is a difference. A good example can be found here https://www.tensorflow.org/tutorials/load_data/text
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
48
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Hey @jarednielsen Thanks for this very interesting analysis!! IMHO to read text data one should use `tf.data.TextLineDataset`. It would be interesting to compare what you have done with simply load with a `TextLineDataset` and see if there is a difference. A good example can be found here https://www.tensorflow.org/tutorials/load_data/text
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Thanks! I'm not actually loading in raw text data, that was just the synthetic data I created for this benchmark. A more realistic use case would be a dataset of tokenized examples, which would be a dict of lists of integers. TensorFlow's TextLineDataset greedily loads the dataset into the graph itself, which can lead to out-of-memory errors - one of the main reason I'm so drawn to the `nlp` library is its zero-copy no-RAM approach to dataset loading and mapping. It's quite helpful for running a preprocessing pipeline - a sample ELECTRA pipeline I've built is here: https://github.com/jarednielsen/deep-learning-models/blob/nlp/models/nlp/common/preprocess.py.
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
98
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Thanks! I'm not actually loading in raw text data, that was just the synthetic data I created for this benchmark. A more realistic use case would be a dataset of tokenized examples, which would be a dict of lists of integers. TensorFlow's TextLineDataset greedily loads the dataset into the graph itself, which can lead to out-of-memory errors - one of the main reason I'm so drawn to the `nlp` library is its zero-copy no-RAM approach to dataset loading and mapping. It's quite helpful for running a preprocessing pipeline - a sample ELECTRA pipeline I've built is here: https://github.com/jarednielsen/deep-learning-models/blob/nlp/models/nlp/common/preprocess.py.
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/315
[Question] Best way to batch a large dataset?
Sorry, I think I badly expressed myself, my bad. What I suggested is to compare with the usual loading textual data in pure TF with `TextLineDataset` with `nlp`. I know it is not recommended with very large datasets to use it, but I was curious to see how it behaves compared to a processing with `nlp` on smaller datasets. BTW your script looks very interesting, thanks for sharing!!
I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets?
68
[Question] Best way to batch a large dataset? I'm training on large datasets such as Wikipedia and BookCorpus. Following the instructions in [the tutorial notebook](https://colab.research.google.com/github/huggingface/nlp/blob/master/notebooks/Overview.ipynb), I see the following recommended for TensorFlow: ```python train_tf_dataset = train_tf_dataset.filter(remove_none_values, load_from_cache_file=False) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_tf_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_tf_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.max_len]) for x in columns[:3]} labels = {"output_1": train_tf_dataset["start_positions"].to_tensor(default_value=0, shape=[None, 1])} labels["output_2"] = train_tf_dataset["end_positions"].to_tensor(default_value=0, shape=[None, 1]) ### Question about this last line ### tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) ``` This code works for something like WikiText-2. However, scaling up to WikiText-103, the last line takes 5-10 minutes to run. I assume it is because tf.data.Dataset.from_tensor_slices() is pulling everything into memory, not lazily loading. This approach won't scale up to datasets 25x larger such as Wikipedia. So I tried manual batching using `dataset.select()`: ```python idxs = np.random.randint(len(dataset), size=bsz) batch = dataset.select(idxs).map(lambda example: {"input_ids": tokenizer(example["text"])}) tf_batch = tf.constant(batch["ids"], dtype=tf.int64) ``` This appears to create a new Apache Arrow dataset with every batch I grab, and then tries to cache it. The runtime of `dataset.select([0, 1])` appears to be much worse than `dataset[:2]`. So using `select()` doesn't seem to be performant enough for a training loop. Is there a performant scalable way to lazily load batches of nlp Datasets? Sorry, I think I badly expressed myself, my bad. What I suggested is to compare with the usual loading textual data in pure TF with `TextLineDataset` with `nlp`. I know it is not recommended with very large datasets to use it, but I was curious to see how it behaves compared to a processing with `nlp` on smaller datasets. BTW your script looks very interesting, thanks for sharing!!
[ -0.30983999371528625, -0.35490188002586365, 0.0400700680911541, -0.13144150376319885, 0.043479494750499725, 0.17069223523139954, 0.5454063415527344, 0.3945959508419037, 0.1853831559419632, 0.07585105299949646, -0.010929049924015999, 0.09057126194238663, -0.04582533985376358, 0.163685142993927, 0.14648115634918213, -0.3626331686973572, 0.016457607969641685, -0.2653389275074005, -0.026075586676597595, -0.14478838443756104, -0.2456076592206955, -0.2963109314441681, -0.3499276340007782, -0.22726655006408691, -0.31489840149879456, -0.2920515239238739, 0.022102203220129013, -0.17865975201129913, 0.21462544798851013, -0.049013007432222366, 0.04904104396700859, 0.021640630438923836, 0.30009540915489197, 0.4448579251766205, -0.00011566012108232826, -0.1326187402009964, 0.060012128204107285, -0.044534020125865936, -0.008880963549017906, 0.3237413167953491, -0.06123672053217888, -0.3881528973579407, -0.09791865199804306, -0.40618792176246643, 0.11056158691644669, 0.19236421585083008, 0.19394253194332123, -0.04725091531872749, 0.1358858197927475, -0.03251303732395172, 0.06321778893470764, 0.37276172637939453, -0.024766212329268456, 0.17228791117668152, 0.02888389676809311, -0.06397271901369095, 0.011858084239065647, 0.0609922930598259, 0.2795849144458771, -0.0697016790509224, -0.0007686511380597949, 0.32840514183044434, -0.16740447282791138, -0.015942523255944252, 0.29255786538124084, 0.23139570653438568, 0.12011294066905975, -0.6053035855293274, 0.03197593241930008, 0.37242764234542847, 0.2989351749420166, 0.0038550859317183495, -0.2751544415950775, -0.6016539931297302, -0.12167351692914963, -0.26009824872016907, -0.25438475608825684, 0.27798497676849365, -0.2282434105873108, -0.17848581075668335, -0.2848559319972992, -0.06075048819184303, -0.11166192591190338, 0.15172748267650604, -0.1742459088563919, 0.1897968202829361, 0.15614376962184906, 0.25138330459594727, 0.1800086349248886, -0.2591578960418701, 0.07230870425701141, -0.29449722170829773, 0.39196744561195374, 0.2885424494743347, -0.5199072957038879, -0.16105036437511444, 0.1525551676750183, -0.23571033775806427, 0.06207100674510002, -0.2695544958114624, -0.08921315521001816, 0.00710701011121273, 0.0950782373547554, 0.04642259702086449, 0.18401484191417694, 0.2864990234375, -0.12670402228832245, 0.048185084015131, 0.10405651479959488, -0.26251283288002014, -0.24212174117565155, 0.35900741815567017, -0.10837431997060776, -0.2902847230434418, 0.047520775347948074, -0.19520950317382812, -0.35822317004203796, 0.13851572573184967, -0.008815178647637367, 0.031235795468091965, 0.0680118054151535, -0.06761360168457031, -0.03112523816525936, 0.12811218202114105, -0.284243643283844, 0.07877598702907562, -0.14889664947986603, -0.13956864178180695, -0.38058575987815857, 0.1666763722896576, -0.14858905971050262, 0.017498325556516647, -0.005479640793055296, -0.016314351931214333, 0.13558901846408844, -0.13967584073543549, 0.11040765792131424, -0.1817803978919983, 0.0023558358661830425, 0.20693345367908478, -0.1126762181520462, -0.23203733563423157, 0.13548313081264496, 0.23468762636184692, 0.05799390748143196, 0.24105341732501984, 0.03128354623913765, 0.15585586428642273, -0.209434375166893, 0.3726697266101837, -0.30990228056907654, -0.33958011865615845, 0.194315105676651, 0.06684470921754837, 0.016657009720802307, -0.31499165296554565, -0.5945525169372559, 0.3981284499168396, 0.3210081160068512, 0.09307797998189926, -0.07706105709075928, -0.2863125205039978, -0.15488652884960175, -0.24354860186576843, 0.18753281235694885, 0.21212317049503326, -0.4263501763343811, 0.15767064690589905, 0.4017446041107178, 0.3291969299316406, 0.3743067979812622, 0.6147410273551941, -0.2548478841781616, 0.44109418988227844, 0.17502246797084808, 0.11253955215215683, 0.10754159837961197, -0.2590002715587616, -0.29352349042892456, 0.417607843875885, -0.22390054166316986, 0.09114973992109299, 0.02806123159825802, 0.27542608976364136, 0.2909407317638397, -0.23584046959877014, 0.46772849559783936, 0.5002923607826233, -0.10605166107416153, 0.32535937428474426, -0.2121746987104416, -0.26241356134414673, 0.12942005693912506, 0.16811400651931763, 0.16876447200775146, -0.10443639010190964, -0.22626440227031708, 0.21720169484615326, 0.2735999822616577, -0.16012579202651978, -0.1335325837135315, 0.014446590095758438, 0.044746994972229004, 0.04505491256713867, -0.2553616166114807, 0.0899205133318901, -0.5541228652000427, 0.249113991856575, 0.10459496080875397, -0.07205688953399658, 0.29759061336517334, -0.30176711082458496, 0.26776012778282166, -0.08500591665506363, 0.026245318353176117, 0.24394601583480835, -0.06388568878173828, -0.11516033858060837, 0.2073928564786911, -0.0009460468427278101, -0.2045057862997055, -0.06943541020154953, -0.45423123240470886, 0.033503059297800064, -0.33972856402397156, -0.1507049947977066, 0.34225741028785706, 0.10178498923778534, -0.13040533661842346, 0.16107910871505737, -0.0711500495672226, -0.19750423729419708, 0.0639176219701767, 0.12129221856594086, -0.08295545727014542, -0.010953083634376526, -0.220866858959198, 0.31507399678230286, 0.23632553219795227, 0.3301176130771637, 0.05162755399942398, -0.14597605168819427, 0.007589829619973898, -0.3100176751613617, -0.25219985842704773, 0.27856650948524475, -0.031787045300006866, 0.38977524638175964, 0.13793134689331055, -0.3446786403656006, -0.14783123135566711, 0.10223782807588577, 0.05754933878779411, 0.1419411152601242, 0.13987304270267487, 0.12660124897956848, 0.06356580555438995, 0.15172915160655975, -0.40281611680984497, 0.27085521817207336, 0.5878332257270813, -0.11926930397748947, -0.06938764452934265, 0.23959246277809143, 0.05955921486020088, -0.1695692241191864, -0.03381573036313057, -0.21775710582733154, 0.17166060209274292, 0.16191789507865906, 0.17905229330062866, -0.09990964829921722, 0.12429340183734894, -0.12985773384571075, 0.3223980963230133, 0.21209903061389923, 0.004855236504226923, 0.022191321477293968, 0.11641880869865417, 0.07220395654439926, 0.001625307835638523, -0.09553846716880798, 0.13059379160404205, 0.3099609613418579, -0.1252199113368988, 0.004457835108041763, 0.1954183578491211, -0.10726481676101685, -0.12373752892017365, -0.02690885215997696, 0.015735885128378868, -0.3178580105304718, -0.13699814677238464, 0.24892275035381317, -0.11663831770420074, 0.03645437955856323, 0.10610140860080719, 0.35926997661590576, 0.12710259854793549, -0.3642118573188782, 0.10107818245887756, -0.1170879602432251, -0.2541910707950592, -0.016068413853645325, 0.1550411731004715, -0.009769249707460403, 0.18844690918922424, 0.08863281458616257, -0.11062941700220108, 0.015856921672821045, -0.13766887784004211, -0.0592116042971611, -0.4576977491378784, 0.07348893582820892, -0.10063385963439941, 0.3356165587902069, -0.224977508187294, -0.4371744990348816, -0.002617591992020607, -0.06879503279924393, 0.2533339262008667, -0.2674294114112854, 0.00786985456943512, -0.05997270718216896, 0.1682513803243637, -0.20918263494968414, -0.397970050573349, -0.277337908744812, 0.16169941425323486, -0.08041758835315704, 0.11209913343191147, 0.37582123279571533, 0.08613184839487076, 0.06143540143966675, 0.1984483301639557, -0.11173984408378601, 0.06450636684894562, -0.3359967768192291, 0.2933337390422821, -0.11332059651613235, -0.23221738636493683, -0.2972748279571533, -0.05691907927393913, -0.05418248847126961, 0.3564842939376831, -0.5518572330474854, 0.17812052369117737, -0.36432167887687683, 0.19894185662269592, -0.005830800160765648, 0.56259685754776, -0.0943654403090477, -0.4863790273666382, -0.015356339514255524, 0.11361028254032135, 0.111194908618927, 0.013240957632660866, 0.2653706669807434, 0.21404553949832916, 0.2785109579563141, 0.4317783713340759, 0.13376794755458832, 1.1682612895965576, 0.17215336859226227, -0.23985974490642548, -0.2142924815416336, -0.0006967509398236871, -0.02674708515405655, -0.3446090519428253, -0.2672058343887329, 0.3804667592048645, -0.0651109367609024, -0.12184116989374161, 0.20864686369895935, -0.1688443124294281, -0.2933582365512848, -0.037518780678510666, 0.12444675713777542, -0.11183770000934601, -0.28586822748184204, 0.42263689637184143, 0.09176314622163773, 0.24910283088684082, 0.1349135786294937, 0.0886385440826416, -0.49933508038520813, -0.3593014180660248, -0.05251413211226463, -0.21201351284980774, 0.4119951128959656, -0.1316412091255188, -0.2977100610733032, -0.13671694695949554, -0.97551429271698, 0.21768303215503693, 0.03096935525536537, 0.2673723101615906, 0.06919834762811661, -0.35081666707992554, 0.09280719608068466, 0.2425127476453781, 0.853837788105011, -0.06931998580694199, -0.11682844161987305, -0.004631461575627327, -0.3046586811542511, -0.41526898741722107, 0.03635282814502716, -0.09841048717498779, 0.16871759295463562, 0.358832985162735, 0.052105098962783813, -0.38088545203208923, -0.12106490880250931, 0.2053188532590866, 0.2232016921043396, -0.0370706245303154, -0.06275788694620132, -0.023799264803528786, -0.16116304695606232, 0.0037862244062125683, 0.19200003147125244, 0.10956171900033951, 0.1918831467628479, -0.1529376208782196, 0.07674021273851395, -0.11668625473976135, 0.30529382824897766, 0.16553948819637299, 0.12453069537878036, -0.06460042297840118, 0.6843845844268799, 0.282118022441864, -0.0045885322615504265, 0.027322806417942047, 0.21222279965877533, 0.03134085610508919, -0.2250829041004181, -0.07588520646095276, 0.0017628729110583663, 0.14972220361232758, 0.31837430596351624, 0.41582196950912476, 0.051836833357810974, -0.10185812413692474, -0.024469872936606407, 0.47591632604599, -0.04457167536020279, 0.26521292328834534, 0.22571240365505219, 0.1480262726545334, -0.4993152618408203, -0.5580796599388123, 0.6823277473449707, 0.17416377365589142, 0.16442720592021942, 0.36661186814308167, -0.12835989892482758, -0.21077202260494232, 0.30205798149108887, 0.07867545634508133, 0.6478747725486755, -0.1737247258424759, 0.4172232747077942, 0.314653605222702, 0.8153582811355591, 0.6308771371841431, -0.09869074076414108, 0.28938427567481995, -0.12651202082633972, -0.11746323108673096, 0.08058782666921616, -0.09408547729253769, -0.283012717962265, 0.21022965013980865, 0.11972182989120483, 0.26076290011405945, -0.05776742845773697, 0.2022131383419037, -0.2976982295513153, 0.26786115765571594, 0.12155801057815552, -0.4888283312320709, -0.14901024103164673, 0.00786339957267046, -0.02505480870604515, 0.1897142380475998, -0.07386773079633713, 0.12315969914197922, 0.011590722016990185, 0.052198100835084915, -0.05868467688560486, -0.19830217957496643, -0.22939640283584595, 0.27102968096733093, -0.10330282151699066, -0.3641132712364197, -0.05811253935098648, 0.22461922466754913, 0.055412065237760544, 0.10297417640686035, 0.05191310867667198, -0.13790923357009888, 0.07405053079128265, 0.06709923595190048, 0.24100102484226227, -0.272134006023407, 0.4046177864074707, 0.07199428975582123, 0.09430930763483047, 0.09115294367074966, -0.015827476978302002, -0.26698482036590576, -0.36973726749420166, 0.10587888211011887, 0.15801729261875153, -0.09575449675321579, -0.5968508124351501, 0.26843369007110596, -0.2813645303249359, 0.05032264441251755, 0.003791133174672723, -0.073190838098526, -0.08497606962919235, 0.7211557626724243, -0.2573438882827759, -0.18432234227657318, 0.0496472604572773, 0.1847873479127884, 0.12497029453516006, -0.20624859631061554, 0.39218637347221375, 0.3405943512916565, -0.17576155066490173, 0.03225374594330788, 0.2664456367492676, 0.17982514202594757, -0.0468793548643589, 0.14887313544750214, 0.07246401906013489, 0.31756114959716797, 0.045094262808561325, 0.4393853545188904, -0.1473890244960785, -0.1433924287557602, -0.18480582535266876, 0.05079711973667145, -0.30965834856033325, 0.21692174673080444, 0.1730133295059204, 0.2440241575241089, 0.06642366945743561, 0.20085349678993225, 0.08331276476383209, 0.08566587418317795, -0.16937117278575897, 0.04683149605989456, 0.04154045134782791, 0.23223820328712463, -0.0782679095864296, 0.09800295531749725, 0.11464785039424896, 0.18793001770973206, -0.007132890168577433, 0.11725114285945892, -0.09326260536909103, -0.25556597113609314, 0.012203399091959, 0.14957071840763092, 0.12009182572364807, -0.23211127519607544, 0.11481688171625137, -0.24946607649326324, -0.2574734091758728, -0.328142911195755, 0.5115011930465698, 0.19161154329776764, -0.016906611621379852, -0.20776115357875824, 0.06093120574951172, 0.13624334335327148, 0.09352054446935654, 0.23894049227237701, 0.011246370151638985, 0.1360509842634201, 0.2009718269109726, 0.19533488154411316, 0.09300733357667923, -0.09666256606578827, -0.24220262467861176, -0.09266632795333862, 0.21893979609012604, 0.04917740449309349, -0.051662541925907135, -0.2504855990409851, -0.3024638593196869, 0.0773896649479866, 0.19291505217552185, 0.3313833773136139, -0.11758799105882645, -0.2975838780403137, 0.23201213777065277, 0.09400401264429092, 0.06180398166179657, -0.024388929829001427, 0.18373532593250275, -0.06884072721004486, 0.13891033828258514, 0.32482674717903137, -0.0041175102815032005, 0.20212402939796448, -0.30897828936576843, -0.04328884929418564, 0.3552233576774597, -0.14687824249267578, 0.019646000117063522, 0.2772550582885742, 0.009076546877622604, -0.07087481021881104, 0.029867593199014664, 0.27873480319976807, 0.19382059574127197, 0.14486758410930634, 0.306863009929657, 0.3006325960159302, -0.013525600545108318, -0.019471436738967896, -0.11823417991399765, -0.4309401512145996, -0.21602720022201538, 0.21034160256385803, -0.2322041094303131, 0.41290056705474854, -0.09530704468488693, -0.03142724558711052, -0.18004022538661957, -0.2994455099105835, -0.07064224779605865, 0.2695060968399048, -0.16463027894496918, -0.19546984136104584, -0.2913826107978821, 0.05391077324748039, 0.3463346064090729, 0.3158676028251648, -0.12977685034275055, -0.39055946469306946, -0.008900722488760948, 0.1537621170282364, 0.09233515709638596, -0.05727517232298851, 0.05853354185819626, -0.1711357682943344, 0.4078228175640106, 0.0008700499893166125, 0.035384319722652435, -0.23851901292800903, -0.1040235310792923, -0.3525908589363098, 0.1843397617340088, 0.23110558092594147, 0.2485174536705017, -0.18204037845134735, 0.25313302874565125, -0.002480957191437483, 0.1195363998413086, -0.09975937008857727, 0.1101074069738388, -0.031689368188381195, -0.08664681762456894, 0.35028892755508423, -0.0026457884814590216, -0.05336016044020653, -0.012873981148004532, 0.10489114373922348, -0.10128064453601837, -0.20764487981796265, -0.10980496555566788, 0.2251524180173874, -0.1399897336959839, -0.12393839657306671, -0.03635910525918007, -0.39624688029289246, -0.10252062231302261, 0.40846681594848633, -0.3164226710796356, 0.05282106250524521, 0.061071593314409256, 0.046657104045152664, -0.5405769944190979, 0.7912290096282959, 0.25150859355926514, 0.3168754279613495, -0.44032225012779236, 0.19565355777740479, -0.24044884741306305, -0.2135181725025177, -0.25807902216911316, -0.020423097535967827, 0.09346480667591095, 0.393406480550766, 0.01632578857243061, 0.25440800189971924, -0.3146834373474121, -0.296671062707901, -0.3043268322944641, 0.29856762290000916, -0.15391962230205536, -0.030977189540863037, -0.5753908157348633, 0.2206028401851654, 0.03126576170325279, -0.38811567425727844, 0.3129306137561798, -0.16372980177402496, -0.12294995784759521, -0.2661142945289612, 0.18413381278514862, 0.35752952098846436, 0.20943966507911682, 0.21813006699085236, -0.005550573579967022, 0.1824413537979126, 0.18047501146793365, 0.03650251403450966, -0.1549038141965866, 0.19351142644882202, -0.21969130635261536, 0.1634928435087204, -0.006640855688601732, 0.34923967719078064, -0.04348453879356384, -0.21721677482128143, 0.012838741764426231, 0.03588131070137024, 0.21512022614479065, -0.15706373751163483, 0.19819076359272003, -0.250936895608902, 0.05483770743012428, 0.05370409041643143, 0.42354699969291687, 0.6069494485855103, -0.21014739573001862, 0.11473672837018967, -0.33051374554634094, -0.2574831247329712, 0.47390156984329224, -0.7701925039291382, -0.3619871437549591, -0.36498284339904785, 0.0039871144108474255, 0.08367212116718292, 0.2129298448562622, -0.18462495505809784, 0.0348593108355999, 0.24425643682479858, -0.16082023084163666, -0.36595290899276733, 0.27327847480773926, -0.14067935943603516, -0.09610947966575623, -0.0890374630689621, 0.18387189507484436, -0.1871085911989212, -0.3062252104282379, -0.30185237526893616, -0.38976114988327026 ]
https://github.com/huggingface/datasets/issues/312
[Feature request] Add `shard()` method to dataset
Hi Jared, Interesting, thanks for raising this question. You can also do that after loading with `dataset.select()` or `dataset.filter()` which let you keep only a specific subset of rows in a dataset. What is your use-case for sharding?
Currently, to shard a dataset into 10 pieces on different ranks, you can run ```python rank = 3 # for example size = 10 dataset = nlp.load_dataset('wikitext', 'wikitext-2-raw-v1', split=f"train[{rank*10}%:{(rank+1)*10}%]") ``` However, this breaks down if you have a number of ranks that doesn't divide cleanly into 100, such as 64 ranks. Is there interest in adding a method shard() that looks like this? ```python rank = 3 size = 64 dataset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train").shard(rank=rank, size=size) ``` TensorFlow has a similar API: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard. I'd be happy to contribute this code.
38
[Feature request] Add `shard()` method to dataset Currently, to shard a dataset into 10 pieces on different ranks, you can run ```python rank = 3 # for example size = 10 dataset = nlp.load_dataset('wikitext', 'wikitext-2-raw-v1', split=f"train[{rank*10}%:{(rank+1)*10}%]") ``` However, this breaks down if you have a number of ranks that doesn't divide cleanly into 100, such as 64 ranks. Is there interest in adding a method shard() that looks like this? ```python rank = 3 size = 64 dataset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train").shard(rank=rank, size=size) ``` TensorFlow has a similar API: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard. I'd be happy to contribute this code. Hi Jared, Interesting, thanks for raising this question. You can also do that after loading with `dataset.select()` or `dataset.filter()` which let you keep only a specific subset of rows in a dataset. What is your use-case for sharding?
[ -0.09021896868944168, 0.03354477882385254, -0.13852670788764954, -0.010493786074221134, -0.1253204196691513, -0.039162468165159225, 0.45831558108329773, 0.4131174683570862, -0.11074091494083405, 0.18661773204803467, 0.19244462251663208, 0.2701653242111206, -0.2045646756887436, 0.3323414921760559, 0.5994437336921692, -0.4415320158004761, -0.10181927680969238, 0.08527104556560516, 0.1498795598745346, 0.18688108026981354, -0.062361545860767365, -0.09343959391117096, -0.05210331827402115, -0.37565261125564575, -0.0738372802734375, 0.08363178372383118, -0.10620586574077606, -0.21920840442180634, 0.24959655106067657, -0.20339709520339966, 0.19814908504486084, 0.012835712172091007, 0.17643491923809052, 0.1089039146900177, -0.00011932759662158787, -0.16190259158611298, 0.17325235903263092, 0.14185139536857605, -0.04076168313622475, -0.13415920734405518, -0.4363880157470703, -0.3930356502532959, -0.02485993504524231, -0.2685239017009735, -0.07632596790790558, 0.4600836932659149, 0.03768221288919449, 0.0504968985915184, 0.415801078081131, 0.04527260363101959, 0.057458240538835526, 0.014458411373198032, 0.07067415118217468, 0.22108246386051178, 0.42043185234069824, 0.1398421972990036, -0.27790117263793945, 0.006835229694843292, -0.025893863290548325, 0.230010524392128, 0.17238524556159973, 0.18197278678417206, -0.00768224336206913, -0.1983824521303177, 0.1514262557029724, 0.14207738637924194, -0.2785288393497467, -0.16847866773605347, -0.07833124697208405, 0.481845885515213, -0.29340389370918274, -0.08418145775794983, -0.3170889914035797, -0.45900726318359375, 0.26008984446525574, -0.719308078289032, -0.32650336623191833, 0.25902462005615234, -0.21548743546009064, -0.16172407567501068, -0.15394434332847595, -0.2942081689834595, -0.24694187939167023, 0.08699369430541992, 0.11843952536582947, 0.20547372102737427, 0.10943491756916046, -0.006646679248660803, 0.25969958305358887, -0.07845989614725113, -0.1302294284105301, 0.04879176244139671, 0.20605064928531647, 0.12324836105108261, -0.67263263463974, -0.34961628913879395, 0.15128640830516815, 0.32566192746162415, 0.28872811794281006, 0.12944696843624115, 0.0897560566663742, 0.32288286089897156, 0.18714600801467896, 0.07154727727174759, 0.021672934293746948, -0.12126030772924423, 0.2701038420200348, -0.087767593562603, -0.05794905871152878, -0.24498476088047028, 0.26638269424438477, 0.09723104536533356, 0.2398785799741745, -0.2317630499601364, -0.0781482458114624, -0.11927983909845352, -0.15094447135925293, 0.08511483669281006, 0.03451031818985939, -0.26243284344673157, 0.3014732897281647, -0.20908154547214508, 0.27986183762550354, 0.033191706985235214, 0.24755904078483582, -0.22528864443302155, -0.3614952862262726, 0.05533866584300995, -0.11402609199285507, -0.2651718556880951, -0.05614224076271057, 0.030946319922804832, -0.15025535225868225, 0.17249919474124908, 0.04324111342430115, -0.28084614872932434, -0.22952400147914886, -0.09294545650482178, 0.29701846837997437, 0.11923623830080032, 0.0993342474102974, 0.10044743120670319, 0.11981386691331863, 0.18193328380584717, -0.33142074942588806, -0.40151599049568176, -0.09381336718797684, -0.05589255690574646, -0.3344351053237915, 0.08635083585977554, -0.48459282517433167, -0.3599366843700409, -0.12703464925289154, 0.049937620759010315, 0.03257715702056885, -0.1788468360900879, -0.678297221660614, 0.5066899061203003, 0.14959439635276794, -0.1023566946387291, 0.031142350286245346, -0.16726350784301758, -0.7003090381622314, -0.21023975312709808, 0.30992448329925537, -0.047584325075149536, -0.13965733349323273, -0.1577157825231552, -0.7277156114578247, 0.15840204060077667, 0.1372091919183731, 0.06912846118211746, -0.09614024311304092, -0.004977251403033733, 0.11605445295572281, 0.7563393115997314, 0.9136986136436462, 0.14928270876407623, -0.3636247515678406, 0.2881655693054199, -0.07137231528759003, -0.22637969255447388, 0.10190066695213318, 0.28323155641555786, 0.3127050995826721, -0.06040755659341812, 0.11396133899688721, 0.32643333077430725, -0.22084231674671173, -0.13736185431480408, 0.006382244639098644, -0.13728933036327362, 0.28470513224601746, 0.4371268153190613, 0.11759213358163834, -0.04392901808023453, 0.42595791816711426, -0.22729827463626862, 0.22275440394878387, -0.10660366714000702, -0.013788403011858463, -0.3090631365776062, 0.117264524102211, 0.07238489389419556, -0.06674621254205704, -0.5428250432014465, -0.08492283523082733, 0.07709216326475143, 0.003751602955162525, -0.09329527616500854, -0.022390717640519142, -0.3046742379665375, 0.09485197067260742, -0.0015545727219432592, 0.11647308617830276, 0.12858964502811432, -0.04308536648750305, -0.2586107552051544, 0.08330000191926956, -0.15956301987171173, -0.36286699771881104, -0.4273322522640228, -0.4661526381969452, -0.0019464484648779035, -0.3521493971347809, 0.4206295907497406, 0.3815577030181885, -0.20369970798492432, -0.09613626450300217, 0.4029870331287384, 0.01170413102954626, -0.2372407168149948, 0.2422446608543396, 0.27404341101646423, 0.08533875644207001, -0.11358119547367096, 0.05203701928257942, 0.33043062686920166, 0.17167522013187408, 0.17073765397071838, -0.28141140937805176, -0.02874627523124218, -0.22435158491134644, -0.07521279156208038, -0.045159757137298584, 0.484174907207489, -0.4256810247898102, 0.40087080001831055, -0.10611259937286377, 0.0063103013671934605, -0.013831949792802334, -0.09322620928287506, -0.11305774748325348, -0.18250763416290283, 0.07057613134384155, 0.20055308938026428, -0.1365465670824051, -0.2851178050041199, 0.061633795499801636, 0.19756899774074554, 0.5304970741271973, -0.22339296340942383, 0.2951182723045349, 0.3810320496559143, 0.38919907808303833, 0.10837367177009583, 0.1387319564819336, 0.48421233892440796, 0.40517088770866394, 0.17746303975582123, 0.04637579992413521, 0.20857533812522888, 0.06841380894184113, -0.20035304129123688, 0.0488264225423336, 0.21361903846263885, -0.207434743642807, 0.09623245894908905, 0.03007262572646141, 0.004094133153557777, -0.1740269809961319, -0.11032900214195251, -0.10590601712465286, 0.020382951945066452, -0.04596778750419617, -0.15077435970306396, -0.2782163918018341, 0.14700479805469513, -0.169345885515213, 0.19821064174175262, -0.2531132102012634, 0.021505014970898628, 0.007458237465471029, -0.1364808827638626, -0.15254679322242737, 0.09693771600723267, 0.15126311779022217, 0.4196160137653351, -0.14363530278205872, 0.0009895998518913984, 0.09769412875175476, -0.06512787193059921, 0.21221637725830078, -0.012715366668999195, 0.15868613123893738, 0.0745873898267746, 0.554214358329773, -0.05276992544531822, -0.10787452757358551, -0.1906171292066574, -0.4497659206390381, -0.03229103982448578, -0.27612021565437317, 0.2822999656200409, 0.18095453083515167, 0.06856204569339752, -0.35657283663749695, -0.15031631290912628, -0.0005951382336206734, 0.014513817615807056, 0.03180484473705292, 0.11614957451820374, 0.18401597440242767, 0.3239156901836395, -0.06852336972951889, 0.075889952480793, -0.11159700900316238, -0.17511901259422302, 0.3468528091907501, 0.14125989377498627, 0.19198274612426758, -0.28044918179512024, -0.04938177764415741, 0.1952582746744156, -0.0353982150554657, -0.1059933751821518, 0.11416132003068924, -0.34250882267951965, 0.24139510095119476, -0.32419222593307495, -0.18809005618095398, -0.1552041620016098, -0.08929994702339172, -0.0342252291738987, 0.64439457654953, -0.13537950813770294, -0.02859690599143505, -0.024995960295200348, 0.188188374042511, -0.07915258407592773, 0.014095650985836983, 0.44914212822914124, -0.16322289407253265, 0.15474236011505127, 0.21476319432258606, 0.16155077517032623, -0.02620282955467701, 0.025896035134792328, 0.061339180916547775, 0.31980785727500916, 0.7087906002998352, 0.34687209129333496, 0.8575089573860168, 0.08324798196554184, -0.06175448000431061, -0.10293318331241608, -0.1273307055234909, -0.15566504001617432, -0.08135154098272324, -0.14528946578502655, 0.2121749222278595, 0.05236353352665901, 0.10284440964460373, 0.23888172209262848, 0.08313494920730591, -0.1338016390800476, 0.07355194538831711, -0.5296787619590759, 0.06410970538854599, -0.30445870757102966, 0.25655820965766907, -0.1438811868429184, 0.4951170086860657, -0.2542145252227783, -0.12137310206890106, -0.009549761191010475, -0.3806799054145813, 0.009929385967552662, 0.15261641144752502, 0.24757567048072815, -0.20419441163539886, -0.34711506962776184, -0.34309473633766174, -0.23645316064357758, 0.29777050018310547, 0.40208306908607483, -0.027021117508411407, -0.047871414572000504, -0.03522521257400513, -0.088127002120018, 0.19387619197368622, 0.3996642529964447, -0.31420326232910156, 0.010429468005895615, -0.09939150512218475, -0.2552528977394104, -0.1477763056755066, 0.3164612948894501, 0.09157264232635498, -0.0733204036951065, -0.12869764864444733, -0.09114930778741837, -0.4403865933418274, 0.022414248436689377, 0.41559645533561707, 0.07757329940795898, -0.04314243420958519, -0.14725588262081146, -0.1289370357990265, 0.18353325128555298, 0.012326739728450775, -0.02530435472726822, -0.0034033609554171562, -0.0076589435338974, 0.034473735839128494, -0.050344888120889664, -0.19795045256614685, -0.1843431293964386, 0.08833430707454681, -0.016794659197330475, -0.08803801983594894, 0.4143819212913513, 0.010363507084548473, -0.08085419237613678, -0.20355527102947235, -0.14489595592021942, -0.013129059225320816, 0.03457699343562126, -0.08989100158214569, -0.24190810322761536, 0.11916933953762054, 0.552759051322937, -0.07340104132890701, -0.13865642249584198, 0.2675367593765259, -0.038271140307188034, 0.41986244916915894, -0.17966681718826294, -0.03939346224069595, 0.32800203561782837, -0.04873967170715332, -0.2213154435157776, -0.4990406930446625, 0.8817310333251953, -0.16768646240234375, -0.031204665079712868, 0.290824830532074, 0.5615333318710327, -0.318046897649765, 0.27625229954719543, 0.36889904737472534, 0.8417677879333496, -0.018597662448883057, 0.19777043163776398, -0.005353488028049469, 0.2951345443725586, 0.5957831740379333, -0.023993242532014847, 0.16937214136123657, -0.018118305131793022, -0.2097393423318863, -0.1149548590183258, -0.031704969704151154, 0.1744544953107834, 0.29649293422698975, 0.07740260660648346, 0.10004139691591263, -0.06266669929027557, 0.1996499001979828, -0.000521693320479244, 0.2713550329208374, -0.0904921367764473, -0.20580066740512848, -0.17278386652469635, 0.07369357347488403, -0.06169236823916435, -0.5089706182479858, -0.13054794073104858, 0.06081654876470566, 0.38814598321914673, 0.1675245612859726, -0.21870896220207214, -0.1979365348815918, 0.15052205324172974, 0.356330931186676, 0.0353720523416996, -0.6842541098594666, 0.2394351214170456, 0.18099994957447052, 0.10213327407836914, 0.06435185670852661, 0.05248352512717247, 0.16872289776802063, -0.3369868993759155, 0.017816925421357155, 0.09219422936439514, -0.1664426475763321, 0.16321013867855072, -0.12824782729148865, -0.2016727477312088, -0.055816106498241425, 0.5025719404220581, -0.718515932559967, -0.5703020095825195, 0.3079189658164978, 0.08598029613494873, -0.033444639295339584, 0.03509817272424698, 0.20571529865264893, -0.05514354631304741, -0.067752905189991, 0.1048271507024765, 0.08798962831497192, -0.2392212301492691, 0.16275860369205475, 0.05028337240219116, 0.1598164439201355, -0.04912976175546646, -0.010662714950740337, -0.04907800629734993, 0.28989601135253906, 0.2006635069847107, -0.14720392227172852, -0.037478912621736526, -0.12136975675821304, 0.04826398193836212, -0.0772889256477356, 0.23242004215717316, -0.13162663578987122, -0.2182995229959488, 0.40744784474372864, -0.07881344109773636, -0.21872691810131073, -0.0651693344116211, 0.01123480312526226, -0.11798293888568878, -0.39170190691947937, 0.09559309482574463, 0.05077701061964035, 0.12088735401630402, 0.16017784178256989, -0.3732316493988037, 0.3524295389652252, -0.2587747573852539, 0.3208482265472412, -0.17679233849048615, 0.07860289514064789, 0.2764820456504822, 0.28897884488105774, 0.35630732774734497, 0.1760888695716858, -0.11934499442577362, 0.0895460769534111, -0.04829474166035652, 0.23968689143657684, -0.19328275322914124, -0.1602514684200287, -0.32072633504867554, 0.059937652200460434, 0.03134524077177048, 0.12892434000968933, -0.08888905495405197, -0.033944789320230484, -0.2797560393810272, -0.0945417508482933, 0.1314077079296112, -0.0925762951374054, 0.031040886417031288, 0.36473405361175537, 0.5323231220245361, -0.09476356208324432, -0.03619874268770218, 0.07605765759944916, -0.09459388256072998, 0.214578315615654, 0.04020928591489792, 0.3685859441757202, 0.07917541265487671, 0.2802959978580475, -0.12417140603065491, 0.14855244755744934, 0.18645335733890533, -0.29942405223846436, 0.3278990089893341, 0.033835191279649734, 0.015524561516940594, -0.07487770169973373, 0.40801042318344116, 0.1803860068321228, -0.11504953354597092, 0.014980512671172619, 0.08507867902517319, 0.13347570598125458, -0.147575244307518, -0.07433605939149857, 0.31329482793807983, 0.2744508683681488, 0.03567297011613846, 0.2053099125623703, -0.2430109977722168, 0.16976135969161987, -0.15949757397174835, -0.24895843863487244, 0.10264190286397934, -0.6579894423484802, 0.18404336273670197, 0.2643784284591675, 0.0433323010802269, -0.18082985281944275, 0.0193112064152956, 0.12769633531570435, 0.01665208674967289, 0.18819113075733185, -0.16838085651397705, 0.8092693090438843, -0.18404817581176758, -0.12789830565452576, 0.18484912812709808, 0.03169665113091469, -0.20594507455825806, 0.5624417066574097, -0.03168141469359398, 0.10917603224515915, -0.028933348134160042, 0.32716673612594604, 0.25321680307388306, -0.029078306630253792, 0.07395325601100922, 0.2886959910392761, 0.21153849363327026, -0.07323327660560608, -0.1257724165916443, 0.04074601083993912, -0.20360520482063293, 0.05408956855535507, 0.21316620707511902, -0.18531079590320587, 0.2970462441444397, 0.3495040833950043, 0.23272199928760529, 0.1828581988811493, 0.25660401582717896, -0.01183758582919836, 0.4107106626033783, -0.260087788105011, -0.47874915599823, 0.028381383046507835, 0.09895239025354385, 0.16305610537528992, -0.13802480697631836, -0.11953186243772507, 0.07459995150566101, -0.03685717284679413, 0.15594062209129333, -0.22964085638523102, 0.14350831508636475, -0.1377502828836441, 0.1587153822183609, 0.042050618678331375, 0.3200649619102478, 0.14990362524986267, 0.02248663268983364, -0.04908394813537598, 0.18503828346729279, 0.13093158602714539, 0.01975071430206299, -0.9951920509338379, 0.4971161484718323, 0.07976412773132324, -0.38429415225982666, -0.24634426832199097, 0.05873992666602135, 0.050881411880254745, -0.1601068675518036, 0.313906192779541, -0.27799496054649353, -0.17117071151733398, -0.021955156698822975, 0.017433589324355125, -0.05458609759807587, 0.35638824105262756, -0.2912057042121887, 0.1353495717048645, -0.14703220129013062, -0.261318564414978, -0.28694576025009155, -0.377789169549942, 0.19083277881145477, -0.04585438221693039, 0.2734173536300659, 0.12319352477788925, -0.15537919104099274, 0.37420710921287537, -0.3006046414375305, -0.7832531332969666, -0.39122274518013, -0.08668448030948639, -0.05622309073805809, 0.10229865461587906, -0.43342405557632446, -0.06305385380983353, -0.015994058921933174, -0.1879207044839859, 0.05093568563461304, -0.13209521770477295, -0.1596628725528717, 0.0530988872051239, 0.1379392445087433, 0.1119832992553711, 0.033096808940172195, 0.09411272406578064, 0.047715917229652405, 0.25229042768478394, 0.05494687706232071, 0.18030044436454773, -0.01224801316857338, -0.003488199319690466, -0.28987300395965576, 0.5254080295562744, -0.14953279495239258, 0.22075606882572174, 0.010190950706601143, -0.2680512070655823, -0.16624027490615845, 0.2822897434234619, -0.09883379191160202, -0.14224232733249664, -0.052184559404850006, -0.09364347159862518, 0.13604184985160828, 0.0863376036286354, 0.13898633420467377, 0.47834017872810364, -0.22119960188865662, 0.11717613786458969, 0.2113042175769806, 0.010495029389858246, 0.16839295625686646, -0.6793174147605896, -0.20719793438911438, -0.04065903648734093, 0.35527369379997253, 0.042337656021118164, -0.12638938426971436, -0.4131157100200653, -0.4194982051849365, 0.36565184593200684, -0.006235674489289522, 0.1600140929222107, 0.4764111042022705, 0.2468641847372055, -0.2728734314441681, 0.056102339178323746, -0.011411430314183235, -0.11013688147068024, -0.1423390507698059, 0.0051894234493374825, -0.6049829125404358 ]
https://github.com/huggingface/datasets/issues/312
[Feature request] Add `shard()` method to dataset
Thanks for the pointer to those functions! It's still a little more verbose since you have to manually calculate which ids each rank would keep, but definitely works. My use case is multi-node, multi-GPU training and avoiding global batches of duplicate elements. I'm using horovod. You can shuffle indices, or set random seeds, but explicitly sharding the dataset up front is the safest and clearest way I've found to do so.
Currently, to shard a dataset into 10 pieces on different ranks, you can run ```python rank = 3 # for example size = 10 dataset = nlp.load_dataset('wikitext', 'wikitext-2-raw-v1', split=f"train[{rank*10}%:{(rank+1)*10}%]") ``` However, this breaks down if you have a number of ranks that doesn't divide cleanly into 100, such as 64 ranks. Is there interest in adding a method shard() that looks like this? ```python rank = 3 size = 64 dataset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train").shard(rank=rank, size=size) ``` TensorFlow has a similar API: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard. I'd be happy to contribute this code.
71
[Feature request] Add `shard()` method to dataset Currently, to shard a dataset into 10 pieces on different ranks, you can run ```python rank = 3 # for example size = 10 dataset = nlp.load_dataset('wikitext', 'wikitext-2-raw-v1', split=f"train[{rank*10}%:{(rank+1)*10}%]") ``` However, this breaks down if you have a number of ranks that doesn't divide cleanly into 100, such as 64 ranks. Is there interest in adding a method shard() that looks like this? ```python rank = 3 size = 64 dataset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train").shard(rank=rank, size=size) ``` TensorFlow has a similar API: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard. I'd be happy to contribute this code. Thanks for the pointer to those functions! It's still a little more verbose since you have to manually calculate which ids each rank would keep, but definitely works. My use case is multi-node, multi-GPU training and avoiding global batches of duplicate elements. I'm using horovod. You can shuffle indices, or set random seeds, but explicitly sharding the dataset up front is the safest and clearest way I've found to do so.
[ -0.09039982408285141, 0.016252150759100914, -0.1279894858598709, -0.0729837715625763, -0.058892976492643356, -0.07297811657190323, 0.4991563558578491, 0.40996628999710083, -0.05547763407230377, 0.2099149525165558, 0.23607945442199707, 0.3211590647697449, -0.3143121898174286, 0.400358110666275, 0.6131051182746887, -0.4336142838001251, -0.032296132296323776, 0.009385880082845688, 0.21557380259037018, 0.08773450553417206, -0.06566371023654938, -0.14018614590168, -0.04003720358014107, -0.3743533790111542, -0.005202536936849356, 0.10193302482366562, -0.18085356056690216, -0.28721457719802856, 0.204999178647995, -0.21633929014205933, 0.16605591773986816, 0.058209799230098724, 0.18237587809562683, 0.16010528802871704, -0.00011838044156320393, -0.1914464235305786, 0.15885087847709656, 0.11808846890926361, 0.0012728552101179957, -0.13928170502185822, -0.4328423738479614, -0.40101149678230286, -0.03401876613497734, -0.25991228222846985, -0.011953218840062618, 0.40127167105674744, 0.06988786160945892, -0.012515894137322903, 0.3925468623638153, 0.0025388256181031466, 0.05161278322339058, -0.060711853206157684, 0.15445499122142792, 0.18728969991207123, 0.4036007225513458, 0.22146713733673096, -0.2822939157485962, -0.008945358917117119, -0.07868634164333344, 0.125414177775383, 0.1136670932173729, 0.12171942740678787, -0.02757302112877369, -0.10820741206407547, 0.1557447463274002, 0.1765584796667099, -0.3047390282154083, -0.15316163003444672, -0.19506831467151642, 0.47811734676361084, -0.3025982975959778, -0.15099221467971802, -0.41324928402900696, -0.3879089951515198, 0.29347774386405945, -0.7473737001419067, -0.3074723482131958, 0.271418958902359, -0.2418927401304245, -0.27542537450790405, -0.23800568282604218, -0.2768070697784424, -0.20718707144260406, 0.07773720473051071, 0.2221379429101944, 0.26386451721191406, 0.16816236078739166, -0.01753390207886696, 0.33115050196647644, -0.04026228189468384, -0.0945928543806076, 0.07552327960729599, 0.20972426235675812, 0.11884644627571106, -0.6140281558036804, -0.3843817710876465, 0.12186504155397415, 0.338056743144989, 0.3469471037387848, 0.11593348532915115, 0.13813656568527222, 0.27206656336784363, 0.17449133098125458, 0.03008638136088848, 0.0391739197075367, -0.09181581437587738, 0.22051037847995758, -0.07232984900474548, -0.09077172726392746, -0.22893676161766052, 0.2165078967809677, 0.11328232288360596, 0.21267065405845642, -0.27850815653800964, -0.01425548829138279, 0.008166072890162468, -0.2290857583284378, 0.11695495247840881, 0.11371033638715744, -0.2728082239627838, 0.24447235465049744, -0.2083791047334671, 0.28253287076950073, -0.032082073390483856, 0.2095983922481537, -0.20823273062705994, -0.32777804136276245, 0.03496730327606201, -0.15315979719161987, -0.304824560880661, -0.04777760058641434, 0.07216925173997879, -0.1881657987833023, 0.22568078339099884, -0.00016131186566781253, -0.233084037899971, -0.27420157194137573, -0.06486377865076065, 0.43468257784843445, 0.17861661314964294, 0.08406483381986618, 0.21263471245765686, 0.13578367233276367, 0.08894149959087372, -0.25725114345550537, -0.3714538812637329, -0.032555341720581055, -0.04157453775405884, -0.3541634976863861, 0.04917371645569801, -0.587731659412384, -0.38948291540145874, -0.12142890691757202, 0.03791065514087677, 0.0685509666800499, -0.17419181764125824, -0.6619853973388672, 0.4921073615550995, 0.09406130760908127, -0.15064987540245056, 0.03673971816897392, -0.18102774024009705, -0.6687292456626892, -0.21301107108592987, 0.3053412139415741, 0.002079823287203908, -0.06419817358255386, -0.1369176059961319, -0.7781400084495544, 0.17454224824905396, 0.13278169929981232, -0.009821305051445961, -0.09797003865242004, 0.0036863728892058134, 0.06320523470640182, 0.6894864439964294, 0.7901312708854675, 0.07992410659790039, -0.25932133197784424, 0.24964775145053864, -0.049858059734106064, -0.2648638188838959, 0.09047366678714752, 0.302418977022171, 0.24533842504024506, -0.08331556618213654, 0.09769270569086075, 0.3536021113395691, -0.24859218299388885, -0.07417500019073486, 0.00004377208824735135, -0.14810054004192352, 0.26246723532676697, 0.40192461013793945, 0.16137173771858215, -0.09980493783950806, 0.4458763897418976, -0.2314697802066803, 0.2351805716753006, -0.06465001404285431, -0.044908735901117325, -0.19559083878993988, 0.18739992380142212, 0.04018662869930267, -0.11985357105731964, -0.4801620543003082, -0.021149134263396263, 0.061555635184049606, 0.0188919510692358, -0.006278102286159992, 0.00003057502181036398, -0.28936079144477844, 0.1609879583120346, -0.014813121408224106, 0.015560819767415524, 0.08977033197879791, -0.02488771267235279, -0.22941188514232635, 0.07180635631084442, -0.16655957698822021, -0.32501572370529175, -0.42096149921417236, -0.41539621353149414, -0.0026576635427773, -0.3153286874294281, 0.4252644181251526, 0.33516842126846313, -0.13145582377910614, -0.12511706352233887, 0.35016390681266785, 0.010608606971800327, -0.1990659534931183, 0.23250028491020203, 0.31444019079208374, 0.12395911663770676, -0.1851850301027298, 0.13843126595020294, 0.31855690479278564, 0.1622316986322403, 0.11509478092193604, -0.3427920937538147, 0.02176923304796219, -0.2812333106994629, -0.020155595615506172, -0.02494833990931511, 0.4834854006767273, -0.45365840196609497, 0.34468770027160645, -0.09481971710920334, 0.04139786213636398, -0.06749150902032852, -0.032281529158353806, -0.0821055918931961, -0.1548915058374405, 0.017099933698773384, 0.24700486660003662, -0.1021982803940773, -0.2881007194519043, 0.11008992046117783, 0.18037015199661255, 0.5856360197067261, -0.16341964900493622, 0.2819886803627014, 0.2988932132720947, 0.412126749753952, 0.11757436394691467, 0.10007789731025696, 0.4900336265563965, 0.3577454388141632, 0.1889503449201584, 0.054070111364126205, 0.18355365097522736, 0.007465070113539696, -0.15628069639205933, 0.017705800011754036, 0.13347293436527252, -0.1327427178621292, 0.08750622719526291, 0.06981892138719559, -0.04966551065444946, -0.14107674360275269, -0.17633546888828278, -0.00498047424480319, 0.011095643974840641, -0.07499443739652634, -0.22841033339500427, -0.23711134493350983, 0.2976135015487671, -0.2259349226951599, 0.1298103630542755, -0.3122289180755615, 0.011635292321443558, 0.04768272489309311, -0.1525695025920868, -0.14050912857055664, 0.14760933816432953, 0.20230944454669952, 0.39738544821739197, -0.0970735251903534, -0.047663718461990356, 0.21241702139377594, -0.06444037705659866, 0.16981002688407898, -0.01295563206076622, 0.2171647995710373, 0.0514899417757988, 0.5093233585357666, 0.03581469878554344, -0.07438833266496658, -0.25292834639549255, -0.4815768897533417, -0.053488411009311676, -0.2781824767589569, 0.2317030429840088, 0.15686698257923126, -0.03272869437932968, -0.408772349357605, -0.13734860718250275, 0.028285760432481766, -0.14509545266628265, -0.07189617305994034, 0.14045174419879913, 0.15676851570606232, 0.2897752821445465, -0.07629502564668655, 0.09760204702615738, -0.11896567791700363, -0.12357574701309204, 0.31685203313827515, 0.13043774664402008, 0.22000963985919952, -0.281402587890625, -0.010222765617072582, 0.10613191872835159, -0.029449738562107086, -0.10924462229013443, 0.18495486676692963, -0.3109934628009796, 0.23821277916431427, -0.35824862122535706, -0.16943253576755524, -0.24859708547592163, -0.12500959634780884, -0.06421408802270889, 0.749173641204834, -0.0403825081884861, -0.06685729324817657, 0.010884284041821957, 0.14395935833454132, -0.10543813556432724, 0.03169754147529602, 0.5483809113502502, -0.05722016841173172, 0.13602563738822937, 0.20815345644950867, 0.26600709557533264, 0.03470388054847717, 0.030690206214785576, 0.09581517428159714, 0.29536378383636475, 0.6451734304428101, 0.3203069269657135, 0.8731666803359985, 0.0987207219004631, -0.03279103711247444, -0.09869460761547089, -0.193379744887352, -0.13654255867004395, -0.029643572866916656, -0.12958009541034698, 0.18161600828170776, 0.03525006026029587, 0.0240283515304327, 0.20457546412944794, 0.04473031312227249, -0.11479055136442184, 0.02064821869134903, -0.3997076451778412, 0.06642019003629684, -0.24721214175224304, 0.19350674748420715, -0.09223703294992447, 0.4955630302429199, -0.35167568922042847, -0.13734453916549683, -0.11739207059144974, -0.41282084584236145, 0.02964238077402115, 0.05619721859693527, 0.244741752743721, -0.19900117814540863, -0.4037177264690399, -0.38703304529190063, -0.21389387547969818, 0.2600160837173462, 0.46986714005470276, -0.08543484658002853, 0.00040267835720442235, -0.0650436133146286, -0.16988293826580048, 0.17489121854305267, 0.3240433931350708, -0.34771081805229187, -0.014920744113624096, -0.12519188225269318, -0.15576663613319397, -0.07630093395709991, 0.23192231357097626, 0.05417563393712044, -0.06693315505981445, -0.21828687191009521, -0.11528417468070984, -0.39817100763320923, 0.054019745439291, 0.4199633002281189, 0.017879171296954155, -0.027956444770097733, -0.08524924516677856, -0.19490209221839905, 0.20194724202156067, 0.07813254743814468, -0.015912078320980072, 0.026629069820046425, 0.01680281199514866, -0.047767169773578644, -0.018746083602309227, -0.15113654732704163, -0.14460428059101105, 0.13393574953079224, -0.11232731491327286, -0.03478125482797623, 0.40888386964797974, 0.04234256222844124, -0.09519872814416885, -0.21629270911216736, -0.14342592656612396, -0.022567005828022957, -0.06110920011997223, -0.1042456328868866, -0.33211931586265564, 0.04905619099736214, 0.5573013424873352, -0.07624028623104095, -0.11680392920970917, 0.22947002947330475, -0.15562355518341064, 0.47778940200805664, -0.1714918315410614, -0.07859234511852264, 0.2965261936187744, -0.1075156033039093, -0.20802295207977295, -0.5555896162986755, 0.828885018825531, -0.12457939982414246, 0.016623176634311676, 0.39373326301574707, 0.6424809694290161, -0.25836771726608276, 0.2959197163581848, 0.41287294030189514, 0.7760372757911682, -0.060591716319322586, 0.19502753019332886, -0.018349967896938324, 0.2824892997741699, 0.5539622902870178, -0.010674371384084225, 0.2589060068130493, -0.02919963002204895, -0.24992863833904266, -0.13816431164741516, 0.011839661747217178, 0.1304519772529602, 0.37502995133399963, 0.08059629797935486, 0.15004713833332062, -0.004986261948943138, 0.21641051769256592, -0.10831911116838455, 0.2598162591457367, 0.0379079170525074, -0.22820129990577698, -0.05236581712961197, 0.09436694532632828, -0.05690919980406761, -0.44578617811203003, -0.1336325705051422, 0.03268607705831528, 0.37835419178009033, 0.12656676769256592, -0.26688453555107117, -0.1820000410079956, 0.20779608190059662, 0.44576889276504517, 0.0431356281042099, -0.5865628123283386, 0.1645912081003189, 0.24363675713539124, 0.18727310001850128, 0.06451575458049774, 0.049990247935056686, 0.16147427260875702, -0.24001167714595795, 0.03934194892644882, 0.043374571949243546, -0.1680685132741928, 0.1748080551624298, -0.05584031715989113, -0.20170734822750092, -0.1359778791666031, 0.50468510389328, -0.7938539385795593, -0.6001185774803162, 0.25082889199256897, 0.08747007697820663, 0.04047762602567673, 0.15484026074409485, 0.2515392303466797, -0.08264560252428055, -0.06863457709550858, 0.10062174499034882, -0.0030939604621380568, -0.2071586549282074, 0.1797482967376709, 0.027452724054455757, 0.16588222980499268, 0.02110058069229126, 0.0017024060944095254, -0.06022390350699425, 0.2708497643470764, 0.21403521299362183, -0.1862255185842514, -0.024716855958104134, -0.12426573038101196, 0.05162271112203598, 0.02390412427484989, 0.21627013385295868, -0.10212413221597672, -0.33564409613609314, 0.39761415123939514, 0.002581512788310647, -0.2233179807662964, -0.08062537759542465, 0.14476221799850464, -0.010423907078802586, -0.31649014353752136, 0.05916273593902588, 0.03513091430068016, 0.1229834333062172, 0.17193296551704407, -0.39313939213752747, 0.3110387325286865, -0.21842049062252045, 0.2882930338382721, -0.17756347358226776, 0.03381529450416565, 0.2850923240184784, 0.19579437375068665, 0.2985617220401764, 0.20796719193458557, -0.16099116206169128, 0.0786818265914917, -0.03599931299686432, 0.23719897866249084, -0.12236242741346359, -0.12751221656799316, -0.269520103931427, 0.0688309371471405, 0.027952412143349648, 0.2212001234292984, -0.03755372762680054, -0.09352609515190125, -0.3762473165988922, -0.18215371668338776, 0.06340183317661285, 0.05287180095911026, 0.01365064736455679, 0.3772660493850708, 0.5071144700050354, -0.09894488751888275, -0.00194920611102134, 0.0522296167910099, -0.04820151999592781, 0.20429281890392303, 0.06099899485707283, 0.3407793641090393, 0.145076185464859, 0.2970133125782013, -0.08689095079898834, 0.19847749173641205, 0.21861864626407623, -0.30085140466690063, 0.33197999000549316, 0.04146772250533104, -0.033726129680871964, -0.04112742468714714, 0.47188252210617065, 0.07584141194820404, -0.08298899233341217, 0.045923128724098206, 0.07142288982868195, 0.13319937884807587, -0.22804772853851318, -0.11324727535247803, 0.2901129722595215, 0.29399657249450684, 0.0008626091293990612, 0.2336084097623825, -0.18205589056015015, 0.144745871424675, -0.15692289173603058, -0.21286773681640625, 0.037684664130210876, -0.6488706469535828, 0.22755861282348633, 0.261542409658432, 0.05824822187423706, -0.224446102976799, 0.014898695982992649, 0.024730611592531204, 0.02519337087869644, 0.259137362241745, -0.2055083066225052, 0.8164563179016113, -0.23797477781772614, -0.1572355479001999, 0.23473337292671204, 0.04097909480333328, -0.14768654108047485, 0.5167102813720703, 0.03778312727808952, 0.14501486718654633, -0.016497530043125153, 0.3107827603816986, 0.1570967137813568, -0.07565496861934662, -0.0013406116049736738, 0.2672909200191498, 0.23987922072410583, -0.015585784800350666, -0.13860048353672028, 0.0024055710528045893, -0.30021560192108154, 0.08063559234142303, 0.2542971074581146, -0.1714048683643341, 0.3803829252719879, 0.3777693212032318, 0.31447890400886536, 0.13010786473751068, 0.1567276567220688, 0.13480962812900543, 0.49643418192863464, -0.2856990396976471, -0.5428256392478943, 0.09038860350847244, -0.012122320011258125, 0.20143990218639374, -0.11130782216787338, -0.12307443469762802, 0.127977192401886, -0.0741170272231102, 0.15039660036563873, -0.18978935480117798, 0.1648389846086502, -0.06471368670463562, 0.08414282649755478, 0.04241226986050606, 0.349031001329422, 0.09157295525074005, 0.0008263135678134859, -0.026821594685316086, 0.2064237743616104, 0.1759447604417801, 0.09863623976707458, -0.8560945391654968, 0.48716145753860474, 0.10967952013015747, -0.36256229877471924, -0.23555943369865417, 0.07896523177623749, -0.03305068239569664, -0.25871092081069946, 0.2877325117588043, -0.16541866958141327, -0.16793763637542725, -0.07517599314451218, 0.025164537131786346, -0.043702710419893265, 0.31413739919662476, -0.24698366224765778, -0.016326604411005974, -0.11312615126371384, -0.3326272666454315, -0.3796079158782959, -0.3455866873264313, 0.1628321260213852, -0.007793912664055824, 0.23993054032325745, 0.13908517360687256, -0.096791572868824, 0.2934945821762085, -0.28718045353889465, -0.7887306213378906, -0.33147555589675903, -0.04211403802037239, -0.10085213929414749, 0.05310908704996109, -0.4707808494567871, -0.11792866140604019, 0.015995437279343605, -0.1709066927433014, -0.01092512160539627, -0.08518438786268234, -0.14938952028751373, 0.06722848117351532, 0.1867276430130005, 0.07342015206813812, 0.020415643230080605, 0.005812243092805147, 0.009814389981329441, 0.26335564255714417, 0.003153842408210039, 0.1583023965358734, 0.04238256439566612, 0.077089324593544, -0.3178185224533081, 0.5716712474822998, -0.19826480746269226, 0.21222738921642303, 0.021432990208268166, -0.24250967800617218, -0.2888357937335968, 0.24729694426059723, -0.10038404166698456, -0.12122821807861328, -0.19286395609378815, -0.07190041989088058, 0.1775728166103363, 0.05867679789662361, 0.13523966073989868, 0.4553301930427551, -0.25739237666130066, 0.1884121298789978, 0.22332213819026947, -0.027631709352135658, 0.10074836760759354, -0.7333003878593445, -0.1903626173734665, -0.1361529529094696, 0.35774049162864685, -0.018162772059440613, -0.04028542339801788, -0.3952939808368683, -0.37228304147720337, 0.3207334280014038, 0.03829018771648407, 0.19538336992263794, 0.456309050321579, 0.14429186284542084, -0.21791529655456543, 0.04175969213247299, -0.01616423763334751, -0.10480955243110657, -0.10962524265050888, 0.060344912111759186, -0.5192134380340576 ]
https://github.com/huggingface/datasets/issues/302
Question - Sign Language Datasets
Even more complicating - As I see it, datasets can have "addons". For example, the WebNLG dataset is a dataset for data-to-text. However, a work of mine and other works enriched this dataset with text plans / underlying text structures. In that case, I see a need to load the dataset "WebNLG" with "plans" addon. Same for sign language - if there is a dataset of videos, one addon can be to run OpenPose, another to run ARKit4 pose estimation, and another to run PoseNet, or even just a video embedding addon. (which are expensive to run individually for everyone who wants to use these data) This is something I dabbled with my own implementation to a [research datasets library](https://github.com/AmitMY/meta-scholar/) and I love to get the discussion going on these topics.
An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so.
131
Question - Sign Language Datasets An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so. Even more complicating - As I see it, datasets can have "addons". For example, the WebNLG dataset is a dataset for data-to-text. However, a work of mine and other works enriched this dataset with text plans / underlying text structures. In that case, I see a need to load the dataset "WebNLG" with "plans" addon. Same for sign language - if there is a dataset of videos, one addon can be to run OpenPose, another to run ARKit4 pose estimation, and another to run PoseNet, or even just a video embedding addon. (which are expensive to run individually for everyone who wants to use these data) This is something I dabbled with my own implementation to a [research datasets library](https://github.com/AmitMY/meta-scholar/) and I love to get the discussion going on these topics.
[ -0.3277657926082611, 0.45256543159484863, -0.07328397780656815, 0.012340008281171322, -0.07884003221988678, -0.01153353787958622, 0.22011034190654755, 0.26100027561187744, 0.20139575004577637, -0.36875635385513306, 0.0878809317946434, 0.29479295015335083, -0.39396390318870544, 0.28343382477760315, 0.3449886739253998, -0.1765507608652115, -0.0004948232090100646, -0.06266476958990097, 0.008734655566513538, -0.0980997234582901, -0.27639541029930115, -0.19098252058029175, 0.053151682019233704, -0.007089891936630011, -0.3837485611438751, -0.3320618271827698, -0.15200412273406982, 0.055229078978300095, -0.0798218846321106, -0.36704668402671814, -0.46540114283561707, 0.1338605135679245, 0.3811519145965576, -0.05737536400556564, -0.00010921218927251175, -0.21317443251609802, 0.0867844820022583, 0.1366245001554489, -0.2981790602207184, -0.11203853040933609, -0.12251875549554825, -0.6363075375556946, -0.1847897469997406, -0.2197486311197281, 0.3014649748802185, -0.36717596650123596, 0.11779829859733582, -0.4387136995792389, 0.02041003294289112, 0.2650386095046997, 0.2657267153263092, 0.07349506765604019, -0.17630131542682648, 0.28454461693763733, 0.10739374905824661, 0.28802427649497986, 0.05393488332629204, -0.3114774525165558, 0.36664149165153503, -0.004013553727418184, -0.15321111679077148, 0.282224178314209, 0.08716746419668198, -0.53694748878479, 0.2831125259399414, -0.08322303742170334, -0.16812124848365784, -0.06657683849334717, -0.0609675794839859, 0.054595623165369034, 0.3695204257965088, -0.38873592019081116, -0.5512011647224426, -0.6927585005760193, 0.31906846165657043, -0.041757382452487946, -0.18505063652992249, 0.31319716572761536, 0.24869737029075623, -0.04419398680329323, -0.20324306190013885, -0.6055929660797119, 0.07352469861507416, 0.20323121547698975, 0.05049432814121246, 0.37712040543556213, 0.1068512350320816, 0.08536291867494583, -0.05983511358499527, -0.05807109549641609, 0.10203390568494797, -0.4142608046531677, 0.005912847816944122, 0.12477463483810425, -0.27503836154937744, -0.16849516332149506, 0.007473955396562815, 0.10953389108181, 0.21646520495414734, 0.12882854044437408, -0.0004102636594325304, 0.0027559844311326742, -0.3363451361656189, 0.04451420530676842, 0.3745673596858978, -0.03916604444384575, -0.028341855853796005, 0.14429010450839996, 0.15193645656108856, -0.26772865653038025, 0.4116024076938629, 0.069371797144413, -0.00971380528062582, 0.006476260721683502, -0.23467662930488586, -0.20146963000297546, 0.11952269822359085, -0.03267837315797806, -0.16037172079086304, 0.0468570776283741, -0.19523410499095917, -0.25741448998451233, 0.12044959515333176, -0.07898115366697311, 0.002864404348656535, 0.29788410663604736, 0.01927141286432743, 0.3454528748989105, 0.19673551619052887, -0.1687960922718048, 0.018306488171219826, 0.1815776228904724, -0.3700411319732666, 0.2450752556324005, 0.3831813633441925, 0.05946069955825806, 0.05077770724892616, 0.016631055623292923, -0.13975593447685242, 0.07063896954059601, 0.30916059017181396, -0.05343005433678627, 0.09022961556911469, -0.2173834592103958, 0.006571557372808456, 0.08541297167539597, -0.3741539418697357, -0.05301591753959656, -0.3044705092906952, 0.11985936015844345, 0.08166828751564026, -0.023612236604094505, 0.0384661927819252, 0.2177259922027588, -0.39234450459480286, -0.3972734212875366, -0.3264206349849701, 0.6124718189239502, 0.0717179998755455, -0.042214520275592804, 0.1649867743253708, -0.10422798246145248, -0.30489668250083923, -0.03579378128051758, -0.21060001850128174, 0.4268854260444641, -0.33845043182373047, -0.16723237931728363, -0.123256154358387, -0.06469080597162247, -0.2797650694847107, 0.21271616220474243, -0.23857007920742035, 0.1813209503889084, 0.0024056239053606987, 0.21500054001808167, 0.5056702494621277, -0.25692200660705566, -0.07567103207111359, 0.3999681770801544, -0.045914530754089355, -0.04780407249927521, 0.016966335475444794, 0.3778141140937805, 0.13293321430683136, -0.16630758345127106, -0.21450094878673553, 0.36919906735420227, -0.20470227301120758, -0.09592746198177338, -0.1628260761499405, -0.1164555698633194, 0.42064806818962097, 0.37980857491493225, 0.11315416544675827, -0.05185895413160324, 0.03572236746549606, 0.3774412274360657, 0.04352669417858124, -0.19644375145435333, 0.3942948579788208, -0.16037525236606598, -0.017672501504421234, -0.07535108923912048, -0.13992084562778473, -0.3019444942474365, -0.2899511158466339, 0.00628364784643054, 0.04558877274394035, 0.057438720017671585, 0.17553721368312836, -0.06289106607437134, 0.20707032084465027, 0.002997530624270439, 0.17416328191757202, 0.12037083506584167, 0.1408802717924118, 0.1355980783700943, -0.2524045407772064, -0.10827550292015076, -0.41501617431640625, 0.5105984210968018, -0.2547084093093872, -0.03927575424313545, -0.061357539147138596, 0.25253820419311523, 0.024633117020130157, 0.14125557243824005, 0.13429775834083557, 0.6351199746131897, -0.26996394991874695, 0.013525554910302162, 0.2918761372566223, -0.16008323431015015, -0.2763580083847046, 0.1621052324771881, 0.3680672347545624, 0.2745387554168701, 0.3609110713005066, -0.19779206812381744, 0.33371758460998535, -0.2925088107585907, 0.20457376539707184, -0.20856542885303497, -0.07540834695100784, 0.19006040692329407, 0.21695637702941895, 0.1152895912528038, 0.1386888325214386, -0.0741419568657875, 0.0885089561343193, -0.057048313319683075, -0.2784790098667145, -0.04235387593507767, 0.27719351649284363, -0.0012599554611369967, 0.4623279869556427, 0.20141080021858215, -0.318694144487381, 0.14953112602233887, 0.31335729360580444, -0.1303914189338684, -0.013362363912165165, 0.2636479139328003, -0.026886548846960068, -0.17148712277412415, -0.040531329810619354, 0.2153078019618988, 0.41459599137306213, 0.3478785753250122, 0.09279849380254745, 0.04690727964043617, -0.16730305552482605, -0.16036660969257355, 0.02639251947402954, 0.14484454691410065, -0.0611664243042469, 0.21208007633686066, 0.09079235792160034, 0.1768360584974289, -0.1688583493232727, -0.287146657705307, 0.01970212161540985, -0.038344137370586395, -0.04562670364975929, 0.12168379127979279, 0.0811140313744545, -0.45164185762405396, -0.28041666746139526, 0.06582365185022354, -0.2214261144399643, -0.31730544567108154, 0.15473271906375885, -0.37176409363746643, -0.008509118109941483, 0.0050644525326788425, -0.31084761023521423, 0.6126180291175842, -0.638067901134491, -0.0599994920194149, -0.04292147979140282, -0.329720675945282, -0.15287739038467407, 0.1691618114709854, 0.3665492832660675, 0.15223313868045807, 0.5014582872390747, 0.09290354698896408, 0.27224209904670715, -0.2442159801721573, -0.5257207155227661, -0.11770997196435928, -0.36393454670906067, -0.10254979133605957, -0.11849305033683777, -0.2681984603404999, 0.3248799741268158, -0.1772308051586151, -0.14127913117408752, 0.06133366376161575, -0.09010244905948639, -0.307028204202652, -0.01025528647005558, -0.361046701669693, -0.06578072160482407, -0.21391768753528595, -0.2801145017147064, -0.3550030589103699, 0.22227126359939575, 0.147224560379982, -0.11434879899024963, -0.08255335688591003, -0.11714954674243927, 0.23020239174365997, -0.055917154997587204, 0.09735628962516785, -0.10915572941303253, 0.22153280675411224, 0.09667752683162689, 0.073700912296772, -0.2337377667427063, 0.03555655851960182, -0.059986766427755356, 0.08565502613782883, 0.2619893252849579, -0.5661296248435974, 0.14495635032653809, -0.0693792924284935, 0.11105651408433914, -0.02268661931157112, -0.0608457513153553, 0.033021584153175354, 0.28169143199920654, -0.01822044886648655, -0.15315312147140503, -0.434261679649353, 0.03233123570680618, 0.08225413411855698, 0.2794433534145355, -0.06374330818653107, 0.037120554596185684, -0.03882678225636482, 0.21415603160858154, 0.28311848640441895, -0.34065520763397217, 0.2703125774860382, 0.303926020860672, 0.36581671237945557, 0.10948804020881653, -0.10961661487817764, 0.4175211489200592, 0.005568359047174454, 0.1120266392827034, 0.20094899833202362, 0.18555127084255219, -0.25468283891677856, -0.15137925744056702, 0.16814817488193512, -0.052904147654771805, 0.03326224908232689, 0.33926400542259216, -0.32598018646240234, 0.26817935705184937, 0.06945974379777908, -0.29366594552993774, -0.32405897974967957, -0.11897662281990051, -0.05277309566736221, 0.25303447246551514, 0.22210979461669922, 0.11113335192203522, -0.7394843101501465, 0.1310262680053711, -0.3390886187553406, 0.17666393518447876, 0.2675979733467102, 0.36004817485809326, -0.2742619812488556, 0.037904396653175354, -0.02456769347190857, -0.003453386016190052, -0.05960303172469139, -0.3821161091327667, -0.4413817822933197, -0.0014769954141229391, 0.13783644139766693, -0.1934785544872284, 0.2766517400741577, -0.07315093278884888, -0.020283320918679237, 0.23453699052333832, 0.28081923723220825, -0.16438454389572144, -0.09725379198789597, 0.1360974758863449, 0.3822794258594513, 0.01384000014513731, -0.36394381523132324, 0.21488411724567413, -0.15495838224887848, -0.15724731981754303, -0.2554563581943512, -0.11480853706598282, -0.18867169320583344, 0.19327807426452637, 0.020252399146556854, -0.16470901668071747, -0.15926657617092133, 0.32845059037208557, -0.07597962766885757, -0.32975178956985474, 0.17662781476974487, 0.19958944618701935, -0.18828195333480835, 0.37751272320747375, 0.02680831030011177, 0.40574216842651367, -0.1532980501651764, -0.26425543427467346, 0.031308989971876144, -0.14811909198760986, 0.5700646638870239, 0.3201327323913574, 0.07566272467374802, 0.22562232613563538, 0.023661093786358833, -0.28874531388282776, -0.3492984473705292, 0.28073054552078247, 0.245675191283226, 0.31735292077064514, -0.34988850355148315, -0.5515735745429993, 0.4434361159801483, 0.19498446583747864, -0.08183109015226364, -0.06996769458055496, -0.14790256321430206, -0.267708957195282, 0.20631010830402374, 0.05110665410757065, 0.7768349647521973, -0.1354140341281891, 0.3382517099380493, 0.025280257686972618, -0.4550475776195526, 0.5315403342247009, -0.1426776647567749, -0.16118820011615753, -0.025968637317419052, 0.16256645321846008, 0.013133052736520767, -0.076337531208992, 0.025565173476934433, 0.29100537300109863, 0.13305848836898804, -0.014058420434594154, 0.21049287915229797, -0.15065275132656097, 0.09649302065372467, 0.7823002338409424, -0.22086603939533234, -0.35754385590553284, -0.30734044313430786, 0.16965046525001526, -0.21329955756664276, -0.10543534904718399, -0.0683995857834816, -0.20089510083198547, -0.1548353135585785, 0.30813416838645935, -0.3293708860874176, -0.01278101559728384, 0.33295562863349915, -0.16266882419586182, -0.15926174819469452, -0.08144223690032959, 0.695205569267273, 0.06788697093725204, 0.3631230294704437, -0.07602650672197342, -0.11237024515867233, -0.03972858935594559, -0.39750826358795166, 0.041818637400865555, 0.15060003101825714, 0.05973343923687935, 0.29843875765800476, -0.06340805441141129, -0.02201121300458908, 0.23721909523010254, 0.1376473605632782, 0.022247828543186188, -0.43880778551101685, 0.03400397300720215, 0.30602455139160156, -0.1512727290391922, -0.07498227804899216, 0.5886839628219604, -0.09401006996631622, 0.025753870606422424, 0.1371878981590271, 0.233313649892807, 0.1604955643415451, 0.11720721423625946, 0.14137524366378784, -0.1444665640592575, -0.16404874622821808, 0.028744559735059738, -0.10755177587270737, -0.190090149641037, 0.18521592020988464, 0.0035882252268493176, -0.18001554906368256, -0.14287137985229492, 0.027699699625372887, -0.041826896369457245, -0.31367066502571106, -0.2985224425792694, 0.22796320915222168, -0.06655283272266388, -0.21616187691688538, -0.08970917761325836, 0.1252865493297577, -0.278339147567749, 0.15147919952869415, -0.232045978307724, -0.33846598863601685, 0.23098793625831604, -0.21371440589427948, 0.1870667040348053, -0.006873547099530697, 0.29226091504096985, -0.1624264121055603, 0.13559313118457794, -0.3200896978378296, -0.16592612862586975, 0.06379815936088562, 0.19739677011966705, 0.36637935042381287, -0.08287058770656586, -0.2532851994037628, -0.10485450178384781, 0.0668521523475647, -0.22570407390594482, -0.14111797511577606, -0.15413357317447662, -0.001979706110432744, 0.11520662158727646, 0.4015699326992035, -0.23541127145290375, 0.0057656350545585155, -0.15893647074699402, 0.029565559700131416, -0.10204724222421646, -0.14644649624824524, -0.033581264317035675, -0.2479204535484314, 0.3239004909992218, -0.4041709303855896, -0.07528392970561981, -0.05304499715566635, 0.32443493604660034, 0.0446135476231575, 0.21835073828697205, 0.1103096604347229, 0.4018845558166504, 0.28771543502807617, 0.1919247806072235, -0.19512073695659637, 0.2794584333896637, 0.1016831323504448, 0.29874178767204285, 0.22391650080680847, -0.1098160520195961, 0.4686132073402405, 0.26529672741889954, 0.14522290229797363, 0.28068825602531433, -0.1026005819439888, -0.15880057215690613, 0.3392031788825989, 0.16660799086093903, -0.23671434819698334, 0.10888519883155823, 0.0988430380821228, 0.19008876383304596, 0.1052078902721405, 0.3454726040363312, 0.36330050230026245, 0.1701592206954956, -0.18713724613189697, -0.13436564803123474, 0.2054469734430313, -0.1705106794834137, -0.14073818922042847, -0.016962110996246338, 0.027636563405394554, 0.026455311104655266, 0.17862263321876526, 0.5877977013587952, 0.019520767033100128, 0.2158791422843933, -0.11328985542058945, 0.570566713809967, 0.16602593660354614, 0.29260963201522827, 0.251877099275589, -0.15017667412757874, 0.19900023937225342, 0.31319287419319153, 0.19057150185108185, 0.09405156970024109, 0.09971681237220764, 0.32162049412727356, 0.09406516700983047, -0.15494251251220703, 0.27532923221588135, 0.2987983524799347, -0.12125205993652344, 0.06104709208011627, -0.17941837012767792, -0.11373716592788696, -0.20610550045967102, 0.030428210273385048, -0.2563619613647461, -0.23592525720596313, 0.24089787900447845, 0.06693229079246521, -0.04766501113772392, -0.4425087571144104, 0.3935590386390686, 0.00006518926238641143, 0.01778658665716648, -0.08880265802145004, 0.18224963545799255, -0.19030116498470306, -0.05592682585120201, 0.356433242559433, 0.27429014444351196, 0.12482591718435287, 0.18404161930084229, -0.029915358871221542, 0.3358229994773865, -0.13165508210659027, 0.1448100507259369, -0.11638399213552475, 0.43673378229141235, 0.17133231461048126, -0.027258925139904022, 0.4199909567832947, 0.09013067185878754, -0.0635479986667633, 0.21654613316059113, -0.008266364224255085, -0.3266596496105194, -0.1900065392255783, 0.5533899068832397, 0.07430457323789597, -0.17846855521202087, -0.17534784972667694, -0.013800496235489845, -0.09823711961507797, -0.3667753040790558, 0.5476846098899841, -0.22095097601413727, 0.05809132009744644, -0.19556593894958496, 0.10268732160329819, -0.05376887321472168, 0.29137933254241943, 0.3408297896385193, 0.2516349256038666, -0.08499512076377869, 0.12127809226512909, -0.48034775257110596, -0.057856690138578415, -0.021976690739393234, -0.18197599053382874, -0.27378949522972107, -0.08333107084035873, 0.07230766862630844, 0.325225293636322, -0.09844809025526047, 0.28622886538505554, -0.020114855840802193, -0.2694891095161438, -0.207024946808815, -0.05627726390957832, 0.2990216612815857, 0.20869405567646027, -0.06642644852399826, 0.078642338514328, -0.1919182538986206, -0.012033035978674889, 0.030599916353821754, -0.3177834749221802, -0.057242318987846375, -0.02072174847126007, 0.1644589900970459, 0.17148932814598083, 0.06034661456942558, 0.5298668146133423, -0.025094391778111458, 0.010118632577359676, -0.20499484241008759, -0.3195367157459259, -0.20655757188796997, 0.16816990077495575, -0.035723067820072174, 0.0005481967818923295, -0.3461433947086334, 0.33493128418922424, 0.008743604645133018, -0.010463614016771317, -0.02482527680695057, -0.10523286461830139, -0.26637789607048035, 0.1646503210067749, -0.29045945405960083, 0.18722835183143616, 0.1142694428563118, 0.3710082471370697, 0.13349467515945435, 0.00816882960498333, 0.029006311669945717, -0.006843914277851582, 0.11381100118160248, -0.0040215905755758286, -0.0990748181939125, 0.33020836114883423, 0.03846987336874008, 0.32645276188850403, -0.00201759347692132, -0.6941641569137573, -0.2996281385421753, 0.41331562399864197, -0.21553419530391693, 0.12699995934963226, 0.19949382543563843, -0.0874260738492012, -0.3565060794353485, -0.20233775675296783, -0.0215886402875185, -0.2799348831176758, -0.14786560833454132, 0.23825505375862122, -0.21456937491893768 ]
https://github.com/huggingface/datasets/issues/302
Question - Sign Language Datasets
This is a really cool idea ! The example for data objects you gave for the RWTH-PHOENIX-Weather 2014 T dataset can totally fit inside the library. For your point about formats like `ilex`, `eaf`, or `srt`, it is possible to use any library in your dataset script. However most user probably won't need these libraries, as most datasets don't need them, and therefore it's unlikely that we will have them in the minimum requirements to use `nlp` (we want to keep it as light-weight as possible). If a user wants to load your dataset and doesn't have the libraries you need, an error is raised asking the user to install them. More generally, we plan to have something like a `requirements.txt` per dataset. This could also be a place for addons as you said. What do you think ?
An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so.
139
Question - Sign Language Datasets An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so. This is a really cool idea ! The example for data objects you gave for the RWTH-PHOENIX-Weather 2014 T dataset can totally fit inside the library. For your point about formats like `ilex`, `eaf`, or `srt`, it is possible to use any library in your dataset script. However most user probably won't need these libraries, as most datasets don't need them, and therefore it's unlikely that we will have them in the minimum requirements to use `nlp` (we want to keep it as light-weight as possible). If a user wants to load your dataset and doesn't have the libraries you need, an error is raised asking the user to install them. More generally, we plan to have something like a `requirements.txt` per dataset. This could also be a place for addons as you said. What do you think ?
[ -0.23924104869365692, 0.432206928730011, -0.06781703978776932, 0.026453392580151558, -0.0018660627538338304, -0.02651732601225376, 0.21930299699306488, 0.33501264452934265, 0.2512374222278595, -0.29820770025253296, 0.07764818519353867, 0.2235991507768631, -0.3672272264957428, 0.3933984339237213, 0.37319037318229675, -0.1788405478000641, -0.14178647100925446, 0.14452862739562988, -0.0459924042224884, -0.006875981576740742, -0.17934097349643707, -0.13834621012210846, 0.08431777358055115, 0.0032772812992334366, -0.38720881938934326, -0.2946249544620514, -0.2022380381822586, 0.01030055619776249, -0.20749327540397644, -0.3936847448348999, -0.3563820421695709, 0.23896588385105133, 0.43276116251945496, -0.04131670296192169, -0.00011181793524883687, -0.19651474058628082, 0.0004839814791921526, -0.02641233615577221, -0.3759380280971527, -0.2181892693042755, -0.15992975234985352, -0.6538228988647461, -0.09965778142213821, -0.27341264486312866, 0.23597471415996552, -0.42077428102493286, 0.19323602318763733, -0.41313570737838745, 0.02407442033290863, 0.31000816822052, 0.25512996315956116, 0.20836544036865234, -0.14624962210655212, 0.28167110681533813, 0.21710629761219025, 0.4220110774040222, -0.04849308729171753, -0.31061795353889465, 0.37964877486228943, 0.053586263209581375, -0.11970894783735275, 0.17567215859889984, 0.15216173231601715, -0.5902649760246277, 0.3719702959060669, -0.04825229197740555, -0.21446029841899872, -0.11579877883195877, -0.07887011021375656, 0.17586873471736908, 0.46226316690444946, -0.4509211778640747, -0.6121044158935547, -0.5556024312973022, 0.24401454627513885, -0.10523729771375656, -0.23228947818279266, 0.4563675820827484, 0.1665138155221939, 0.06772790104150772, -0.22393609583377838, -0.5427975654602051, -0.06805461645126343, 0.21723182499408722, 0.17045971751213074, 0.43200305104255676, 0.13027678430080414, 0.028224116191267967, -0.1478251963853836, -0.036315638571977615, 0.08338552713394165, -0.4088714122772217, -0.05474311113357544, 0.07550227642059326, -0.15219080448150635, -0.2674986720085144, -0.04437331110239029, 0.3259718716144562, 0.2731188237667084, 0.17764028906822205, -0.011931543238461018, -0.01928999461233616, -0.38700002431869507, 0.09396088123321533, 0.34645795822143555, -0.028210464864969254, 0.11120587587356567, -0.020722810178995132, 0.11455218493938446, -0.35241127014160156, 0.4173053801059723, -0.0421946756541729, -0.11748316138982773, 0.08227775990962982, -0.27193519473075867, -0.11315767467021942, 0.1355944275856018, -0.024695858359336853, -0.07081607729196548, 0.033358410000801086, -0.037872523069381714, -0.17798224091529846, 0.13808965682983398, -0.07318636775016785, 0.00210212217643857, 0.33318132162094116, 0.02886880375444889, 0.2900317311286926, 0.1525738388299942, -0.20599816739559174, 0.09052141010761261, 0.33862972259521484, -0.39302849769592285, 0.22883684933185577, 0.38499563932418823, -0.07329967617988586, 0.16231635212898254, -0.03178960829973221, -0.032840438187122345, 0.03338587284088135, 0.3529447317123413, -0.11493314057588577, 0.1789231151342392, -0.1788971722126007, -0.019250033423304558, 0.019733335822820663, -0.3452152609825134, -0.14836980402469635, -0.34174421429634094, 0.04573923721909523, -0.013469387777149677, -0.024854371324181557, -0.07251005619764328, 0.15270136296749115, -0.37376973032951355, -0.3657543659210205, -0.3084923326969147, 0.4737793207168579, 0.0162904504686594, -0.13614623248577118, 0.1009615957736969, -0.2238280326128006, -0.32142671942710876, -0.07594944536685944, -0.2590915560722351, 0.549983561038971, -0.4044002592563629, -0.1308392733335495, -0.08573126792907715, -0.0600162111222744, -0.2899179756641388, 0.19031240046024323, -0.2675341069698334, 0.2019132375717163, -0.061580393463373184, 0.12603168189525604, 0.5230681896209717, -0.33387598395347595, 0.05306520313024521, 0.491376131772995, 0.052351828664541245, -0.0058542643673717976, 0.16323384642601013, 0.3408494293689728, 0.24599477648735046, -0.29456230998039246, -0.359025239944458, 0.36874186992645264, -0.2249612659215927, -0.07281233370304108, -0.0955335944890976, -0.17861203849315643, 0.4174604117870331, 0.27284008264541626, 0.04707428440451622, -0.058904219418764114, 0.006361934822052717, 0.36322012543678284, 0.033931367099285126, -0.2127639353275299, 0.36844298243522644, -0.10886353999376297, 0.007604965474456549, 0.010127810761332512, -0.074704110622406, -0.2783145010471344, -0.3135426342487335, -0.013272106647491455, -0.01919659785926342, 0.0899147093296051, 0.2209034562110901, -0.16530032455921173, 0.1142110824584961, -0.05274389311671257, 0.19206613302230835, 0.07836265116930008, 0.10119637101888657, 0.10694338381290436, -0.22991211712360382, -0.13014186918735504, -0.44603636860847473, 0.34606993198394775, -0.029505010694265366, -0.031145645305514336, -0.07711132615804672, 0.11652466654777527, 0.034504570066928864, 0.19588206708431244, 0.17979472875595093, 0.6314455270767212, -0.23890893161296844, -0.0438045933842659, 0.24265053868293762, 0.028352443128824234, -0.11188968271017075, 0.17526057362556458, 0.22021768987178802, 0.3296028971672058, 0.36993974447250366, -0.07041219621896744, 0.3901994228363037, -0.22601938247680664, 0.2912963330745697, -0.1420738697052002, -0.07084192335605621, 0.28596895933151245, 0.1660408079624176, 0.07177992165088654, 0.2095986157655716, -0.04425043240189552, 0.07859998941421509, -0.0545327365398407, -0.33886635303497314, -0.18127934634685516, 0.15920628607273102, -0.040566932410001755, 0.38093575835227966, 0.2173037827014923, -0.38260671496391296, 0.09805230796337128, 0.4414026737213135, -0.03117300756275654, 0.033394552767276764, 0.24069777131080627, -0.0047638448886573315, -0.10459063202142715, -0.03789844736456871, 0.19691555202007294, 0.4480663537979126, 0.35965418815612793, -0.07679563015699387, 0.03280821070075035, -0.0605686753988266, -0.2623927891254425, 0.14126421511173248, 0.16700772941112518, -0.14437757432460785, 0.10626991093158722, -0.030021488666534424, 0.15402653813362122, -0.15100383758544922, -0.4089510142803192, -0.0720314010977745, -0.1273515820503235, -0.0816778615117073, 0.2121167778968811, -0.12153179943561554, -0.5161290764808655, -0.3476406931877136, 0.11488507688045502, -0.09873044490814209, -0.2064291536808014, 0.26149067282676697, -0.39102521538734436, 0.011318066157400608, 0.07682731747627258, -0.2987983822822571, 0.6431241631507874, -0.7239421010017395, 0.011215758509933949, 0.01672305539250374, -0.3049185872077942, -0.22723788022994995, 0.140206441283226, 0.45694246888160706, 0.1615842580795288, 0.5446457862854004, 0.048596251755952835, 0.24543355405330658, -0.2471979707479477, -0.4581657946109772, -0.05861954018473625, -0.3301425576210022, -0.0572841577231884, -0.07133465260267258, -0.14754953980445862, 0.27979156374931335, -0.11514702439308167, -0.19598981738090515, 0.003561988240107894, -0.04172230884432793, -0.2534700334072113, -0.06148958578705788, -0.32465294003486633, -0.19386518001556396, -0.2606068253517151, -0.2597324550151825, -0.3310178816318512, 0.13133922219276428, 0.17732053995132446, 0.030421487987041473, 0.026485085487365723, -0.08152366429567337, 0.17963974177837372, -0.10722953081130981, 0.09630713611841202, 0.008284693583846092, 0.10833832621574402, 0.1894972324371338, -0.052026331424713135, -0.33160728216171265, 0.08739311993122101, -0.022806979715824127, 0.14448918402194977, 0.31624460220336914, -0.4225606620311737, 0.06710062175989151, -0.06350833177566528, -0.07215876132249832, -0.008991794660687447, -0.0036775486078113317, 0.11861829459667206, 0.20580758154392242, 0.017941556870937347, -0.15308819711208344, -0.3764444887638092, 0.08282733708620071, -0.08344034850597382, 0.1790897697210312, 0.038872864097356796, 0.13810159265995026, -0.010397003032267094, 0.14125970005989075, 0.1929103434085846, -0.30878984928131104, 0.3499717116355896, 0.27291786670684814, 0.4398563504219055, 0.11962404102087021, -0.016252752393484116, 0.36992618441581726, 0.1009175032377243, 0.22198519110679626, 0.33527249097824097, 0.20736530423164368, -0.09740086644887924, -0.20052406191825867, 0.14870788156986237, -0.1287810504436493, 0.03929524123668671, 0.4502100348472595, -0.3502017855644226, 0.32203391194343567, 0.06123199313879013, -0.16015863418579102, -0.22317656874656677, -0.2075299322605133, -0.042139943689107895, 0.34623417258262634, 0.3087904155254364, 0.18749646842479706, -0.6915631890296936, 0.028101162984967232, -0.19867518544197083, 0.14143410325050354, 0.19806207716464996, 0.3719218671321869, -0.2181529700756073, 0.19712120294570923, -0.024720488116145134, 0.06497728079557419, -0.17257487773895264, -0.348708838224411, -0.5127556920051575, -0.09924645721912384, 0.04869825392961502, -0.2950550615787506, 0.24543397128582, -0.1107889786362648, -0.017683973535895348, 0.0993618443608284, 0.24902239441871643, -0.22876031696796417, -0.24611473083496094, 0.023490555584430695, 0.3472219407558441, -0.05219636484980583, -0.4224451780319214, 0.20011618733406067, -0.13701310753822327, -0.20338447391986847, -0.319595605134964, -0.06628693640232086, -0.2527783215045929, 0.10402699559926987, 0.07797547429800034, -0.17036865651607513, -0.14111173152923584, 0.4347411096096039, -0.11843648552894592, -0.20262344181537628, 0.1415364146232605, 0.04481826350092888, -0.26200157403945923, 0.3238804340362549, 0.08315740525722504, 0.30490073561668396, -0.10744725167751312, -0.04295621067285538, 0.04509590193629265, -0.2195616513490677, 0.6228874325752258, 0.33408594131469727, 0.08120685070753098, 0.25020650029182434, -0.018296154215931892, -0.3800028860569, -0.308887779712677, 0.18872492015361786, 0.1485966295003891, 0.008277202025055885, -0.37031930685043335, -0.6633867621421814, 0.3367484211921692, 0.16515648365020752, 0.005812462884932756, -0.07492534816265106, -0.049480997025966644, -0.3187718689441681, 0.32408905029296875, 0.14642131328582764, 0.8677594661712646, -0.13015128672122955, 0.3352992534637451, 0.006356837693601847, -0.4858841300010681, 0.5969658493995667, -0.23431427776813507, -0.12935581803321838, -0.15310004353523254, 0.13663941621780396, -0.12045788019895554, -0.07733315974473953, 0.13177362084388733, 0.312000572681427, 0.0009113323758356273, 0.07090073823928833, 0.18172907829284668, -0.11638288199901581, 0.08053446561098099, 0.8477866649627686, -0.3845672607421875, -0.4652252793312073, -0.3680848479270935, 0.15186807513237, -0.2248249500989914, -0.13280312716960907, -0.1276872605085373, -0.24708609282970428, -0.11003007739782333, 0.15956714749336243, -0.3609999120235443, -0.07531313598155975, 0.33454981446266174, -0.20683418214321136, -0.0873974934220314, -0.11785934865474701, 0.7803841233253479, 0.14367005228996277, 0.311117023229599, 0.0839649960398674, -0.12463098019361496, -0.08102106302976608, -0.427060067653656, -0.011017224751412868, 0.14029811322689056, 0.07204492390155792, 0.32781165838241577, -0.10533010959625244, 0.05811792239546776, 0.26165151596069336, 0.10771970450878143, 0.07247935980558395, -0.36109673976898193, -0.005148808937519789, 0.3375663757324219, -0.1543584167957306, -0.1817445456981659, 0.3534454107284546, -0.1184588149189949, 0.03544348478317261, 0.11113541573286057, 0.24202218651771545, 0.21341244876384735, 0.13717831671237946, 0.15664570033550262, -0.06939532607793808, -0.23075702786445618, -0.06526311486959457, -0.07055777311325073, -0.18461674451828003, 0.26721230149269104, 0.07542288303375244, -0.1197478175163269, -0.21362996101379395, 0.16333076357841492, -0.029477326199412346, -0.394957035779953, -0.31767410039901733, 0.25995051860809326, -0.02353990636765957, -0.25618427991867065, -0.08135122060775757, 0.038074154406785965, -0.18455149233341217, 0.15192419290542603, -0.3738635778427124, -0.21478983759880066, 0.2328856885433197, -0.1929451823234558, 0.1649005115032196, 0.02286459319293499, 0.2064363658428192, -0.18116305768489838, 0.15035907924175262, -0.31482765078544617, -0.20836982131004333, 0.1537436693906784, 0.266775518655777, 0.3345372676849365, 0.07923579216003418, -0.27527984976768494, -0.11766959726810455, 0.022004609927535057, -0.09060710668563843, -0.1588032990694046, -0.11681681126356125, -0.14603778719902039, 0.13779984414577484, 0.36701589822769165, -0.24576792120933533, -0.020174071192741394, -0.10322690010070801, -0.13630549609661102, -0.11416410654783249, -0.184723898768425, 0.02390250563621521, -0.3247131407260895, 0.3724553883075714, -0.32344821095466614, -0.016898909583687782, -0.14683790504932404, 0.20279835164546967, 0.04412192478775978, 0.32068243622779846, 0.342631459236145, 0.30072540044784546, 0.17993970215320587, 0.09476016461849213, -0.23694609105587006, 0.3371215760707855, 0.17224779725074768, 0.32675519585609436, 0.1307583898305893, -0.015097428113222122, 0.4982782006263733, 0.2800494432449341, 0.08311224728822708, 0.2850401997566223, -0.006260822992771864, -0.09257622808218002, 0.4295138120651245, 0.11918569356203079, -0.11689388751983643, 0.15043503046035767, 0.11592517048120499, 0.17502152919769287, 0.025716226547956467, 0.49621209502220154, 0.3500535190105438, 0.14378879964351654, -0.06755313277244568, -0.13500219583511353, 0.08262783288955688, -0.0661148950457573, -0.06668062508106232, -0.14478537440299988, 0.0724010020494461, 0.04374565929174423, 0.0006441588629968464, 0.43991461396217346, 0.06957372277975082, 0.06638195365667343, -0.07985436916351318, 0.5231019258499146, 0.20747049152851105, 0.27473440766334534, 0.19348043203353882, -0.20480377972126007, 0.10355477780103683, 0.2038630247116089, 0.30040380358695984, 0.11932068318128586, 0.15913882851600647, 0.3542211949825287, 0.12608930468559265, -0.11948923021554947, 0.1709069460630417, 0.21106408536434174, -0.08064920455217361, 0.1110624372959137, -0.200402170419693, -0.07253016531467438, -0.21580427885055542, 0.06211942061781883, -0.23874132335186005, -0.17981210350990295, 0.09636800736188889, 0.13682132959365845, 0.006745199207216501, -0.3859767019748688, 0.45282620191574097, -0.04021056741476059, 0.009166695177555084, -0.13563799858093262, 0.3052268326282501, -0.1014409288764, 0.065983846783638, 0.3549158573150635, 0.21006588637828827, 0.09907093644142151, 0.28556379675865173, 0.1362924873828888, 0.2355004847049713, -0.21027091145515442, 0.14387373626232147, -0.0006829712074249983, 0.44069579243659973, 0.23737311363220215, 0.21297688782215118, 0.45362427830696106, 0.09136823564767838, 0.001861813711002469, 0.12051040679216385, 0.05140063911676407, -0.42797327041625977, -0.22074690461158752, 0.5370094180107117, 0.2514305114746094, -0.16852007806301117, -0.15818741917610168, 0.002970521105453372, -0.08600776642560959, -0.40353575348854065, 0.5033173561096191, 0.01576320268213749, 0.0497165285050869, -0.278609961271286, 0.08308684080839157, 0.046387139707803726, 0.3376850485801697, 0.39663755893707275, 0.27806827425956726, -0.18497002124786377, 0.04939835146069527, -0.3838035762310028, -0.0559990368783474, -0.15252800285816193, -0.28196361660957336, -0.28187328577041626, -0.12823167443275452, 0.09951777756214142, 0.3470938503742218, -0.15715019404888153, 0.3710308372974396, 0.017946772277355194, -0.306007981300354, -0.23530422151088715, -0.1054624542593956, 0.24770322442054749, 0.28294268250465393, -0.11344901472330093, 0.05600637570023537, -0.22235894203186035, -0.08121426403522491, 0.023364944383502007, -0.40311262011528015, -0.008064824156463146, -0.06872940063476562, 0.1518031507730484, 0.13687056303024292, 0.024308783933520317, 0.5706078410148621, 0.010629811324179173, 0.06802491098642349, -0.24282418191432953, -0.1464601308107376, -0.17318587005138397, 0.14919638633728027, 0.12186948955059052, 0.06712926179170609, -0.38640618324279785, 0.13537535071372986, -0.088500015437603, 0.17953021824359894, -0.1564376950263977, -0.06570155173540115, -0.14796563982963562, 0.20392130315303802, -0.43168073892593384, 0.08307477086782455, 0.1596534103155136, 0.3315754532814026, 0.023645782843232155, 0.001556923147290945, 0.02249888703227043, 0.017032260075211525, 0.1190909892320633, 0.004098400939255953, -0.09427973628044128, 0.36295297741889954, 0.05925570800900459, 0.29284411668777466, -0.010444628074765205, -0.6340755224227905, -0.19548989832401276, 0.31985974311828613, -0.033524006605148315, 0.14366760849952698, 0.1693873256444931, -0.09858836233615875, -0.27040839195251465, -0.18934446573257446, 0.010636712424457073, -0.2141193300485611, -0.1467207968235016, 0.12958793342113495, -0.19053684175014496 ]
https://github.com/huggingface/datasets/issues/302
Question - Sign Language Datasets
Thanks, Quentin, I think a `requirements.txt` per dataset will be a good thing. I will work on adding this dataset next week, and once we sort all of the kinks, I'll add more.
An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so.
33
Question - Sign Language Datasets An emerging field in NLP is SLP - sign language processing. I was wondering about adding datasets here, specifically because it's shaping up to be large and easily usable. The metrics for sign language to text translation are the same. So, what do you think about (me, or others) adding datasets here? An example dataset would be [RWTH-PHOENIX-Weather 2014 T](https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/) For every item in the dataset, the data object includes: 1. video_path - path to mp4 file 2. pose_path - a path to `.pose` file with human pose landmarks 3. openpose_path - a path to a `.json` file with human pose landmarks 4. gloss - string 5. text - string 6. video_metadata - height, width, frames, framerate ------ To make it a tad more complicated - what if sign language libraries add requirements to `nlp`? for example, sign language is commonly annotated using `ilex`, `eaf`, or `srt` files, which are all loadable as text, but there is no reason for the dataset to parse that file by itself, if libraries exist to do so. Thanks, Quentin, I think a `requirements.txt` per dataset will be a good thing. I will work on adding this dataset next week, and once we sort all of the kinks, I'll add more.
[ -0.19740062952041626, 0.402252733707428, -0.07910944521427155, -0.005023094359785318, -0.07678958773612976, 0.043610066175460815, 0.11855466663837433, 0.25038865208625793, 0.2235916256904602, -0.32818830013275146, 0.1770671159029007, 0.22711679339408875, -0.44375529885292053, 0.26445984840393066, 0.3408162593841553, -0.17647334933280945, -0.0842800885438919, 0.08045526593923569, -0.02351529337465763, -0.09637756645679474, -0.22084225714206696, -0.09170757234096527, 0.09559999406337738, -0.05770187824964523, -0.44229376316070557, -0.3327749967575073, -0.17811697721481323, 0.07416695356369019, -0.2040514498949051, -0.37078291177749634, -0.46343252062797546, 0.15675851702690125, 0.4244987964630127, -0.15837590396404266, -0.00011447801080066711, -0.24690799415111542, 0.012398915365338326, -0.015204830095171928, -0.24231870472431183, -0.1023319736123085, -0.15771807730197906, -0.7473184466362, -0.14942799508571625, -0.16430950164794922, 0.25293007493019104, -0.44305574893951416, 0.1376861184835434, -0.2573286294937134, 0.09757325053215027, 0.3461553156375885, 0.2374008446931839, 0.12112972885370255, -0.15633168816566467, 0.2964703142642975, 0.12270107865333557, 0.3389027416706085, -0.000676484836731106, -0.3003680109977722, 0.33487194776535034, -0.023488512262701988, -0.21046118438243866, 0.28187647461891174, 0.19335520267486572, -0.5736478567123413, 0.2710377275943756, -0.06851744651794434, -0.20798589289188385, -0.06763012707233429, -0.06690854579210281, 0.07544469088315964, 0.3453672528266907, -0.3600134253501892, -0.4973926246166229, -0.7469831109046936, 0.22855152189731598, -0.09282086044549942, -0.1126515120267868, 0.34692829847335815, 0.1550317257642746, -0.010782687924802303, -0.09980583190917969, -0.6777365803718567, 0.004527627024799585, 0.10901014506816864, 0.13957735896110535, 0.36643680930137634, 0.15973752737045288, -0.014016430824995041, 0.02138626202940941, -0.0601191408932209, 0.07807189971208572, -0.33961790800094604, -0.08970814943313599, 0.14681117236614227, -0.22796623408794403, -0.25468480587005615, 0.045687854290008545, 0.17959032952785492, 0.15822620689868927, 0.10558847337961197, -0.03776748105883598, -0.0872025266289711, -0.3492962419986725, 0.06521013379096985, 0.3826231360435486, -0.05246129631996155, 0.0003890480729751289, 0.06254591047763824, 0.02824850007891655, -0.38150352239608765, 0.3718286454677582, 0.006555952597409487, -0.03790505602955818, 0.008548286743462086, -0.18680569529533386, -0.111124686896801, 0.1067432165145874, -0.03398715332150459, 0.023668799549341202, 0.12124950438737869, -0.1666443794965744, -0.21111012995243073, 0.07592930644750595, -0.09829667955636978, 0.07460631430149078, 0.3548749089241028, 0.040123142302036285, 0.2771657109260559, 0.20931267738342285, -0.22900302708148956, 0.06855511665344238, 0.17226530611515045, -0.3457767367362976, 0.2788126468658447, 0.4381217956542969, 0.06690443307161331, 0.14235854148864746, 0.060319699347019196, -0.1989670991897583, 0.061863865703344345, 0.350308895111084, -0.06281670182943344, 0.16137352585792542, -0.14474427700042725, 0.038588691502809525, 0.0365699902176857, -0.38839322328567505, -0.02594311349093914, -0.29253071546554565, 0.11913153529167175, 0.1366385519504547, -0.0804760530591011, -0.03881077468395233, 0.16295486688613892, -0.40216127038002014, -0.38532182574272156, -0.3291304111480713, 0.6202970743179321, 0.10073839873075485, -0.05824918672442436, 0.1596975177526474, -0.16846781969070435, -0.25608330965042114, 0.0140380235388875, -0.27914202213287354, 0.4288567900657654, -0.2821628749370575, -0.1058998629450798, -0.12970085442066193, -0.06376855820417404, -0.26008424162864685, 0.24437230825424194, -0.24926859140396118, 0.211089625954628, -0.027282102033495903, 0.27513670921325684, 0.5070659518241882, -0.23966345191001892, 0.02089826948940754, 0.4749804437160492, -0.07977662980556488, 0.000716235488653183, 0.10555312037467957, 0.36114302277565, 0.14355029165744781, -0.17222748696804047, -0.3293008804321289, 0.32347986102104187, -0.278479665517807, -0.09337396174669266, -0.2011948823928833, -0.1771763563156128, 0.4429149329662323, 0.274211049079895, 0.14694412052631378, -0.0275894608348608, -0.06635349243879318, 0.4060545563697815, 0.12702681124210358, -0.15666405856609344, 0.3401692509651184, -0.062459349632263184, 0.035278692841529846, 0.013601472601294518, -0.09273907542228699, -0.31625446677207947, -0.15474089980125427, -0.030482254922389984, 0.012578491121530533, 0.16960513591766357, 0.20884187519550323, -0.12134858965873718, 0.20399321615695953, -0.10718245804309845, 0.2525421679019928, 0.09556342661380768, 0.11169121414422989, 0.0382409505546093, -0.18508677184581757, -0.11327502131462097, -0.39471256732940674, 0.4281034767627716, -0.2745811641216278, -0.04769701138138771, -0.01149942260235548, 0.0725870206952095, 0.029550233855843544, 0.16979588568210602, 0.13572311401367188, 0.588299572467804, -0.2614138722419739, 0.027380630373954773, 0.28823158144950867, -0.16696658730506897, -0.17252126336097717, 0.18445734679698944, 0.31495004892349243, 0.3089551329612732, 0.32110679149627686, -0.13853158056735992, 0.1999233216047287, -0.1884872168302536, 0.16151776909828186, -0.18459445238113403, -0.017568686977028847, 0.19533434510231018, 0.1894376128911972, 0.10946620255708694, 0.14559367299079895, -0.046548034995794296, 0.10121867060661316, -0.056743305176496506, -0.3234134018421173, -0.03163701295852661, 0.2800026834011078, -0.14449439942836761, 0.3401685655117035, 0.2117847204208374, -0.37064647674560547, 0.12145141512155533, 0.35135143995285034, -0.0525902695953846, 0.011654200963675976, 0.25228872895240784, 0.0804407075047493, -0.14679710566997528, 0.006311182398349047, 0.21709448099136353, 0.43612468242645264, 0.35286521911621094, 0.015123379416763783, 0.0879414826631546, -0.12889719009399414, -0.24538323283195496, 0.056670449674129486, 0.12766169011592865, -0.10847818106412888, 0.19865261018276215, 0.07199133932590485, 0.19952765107154846, -0.28642722964286804, -0.2640378177165985, -0.02114812657237053, -0.015411216765642166, 0.0046084243804216385, 0.0739661380648613, 0.049952246248722076, -0.529771089553833, -0.3653879165649414, 0.1866244524717331, -0.20115415751934052, -0.23407910764217377, 0.19682812690734863, -0.3085396885871887, 0.00915368739515543, 0.058098480105400085, -0.3039528429508209, 0.6582552790641785, -0.6731196045875549, -0.04036934673786163, -0.03514239192008972, -0.3434549570083618, -0.16521990299224854, 0.1436961591243744, 0.31008225679397583, 0.11607695370912552, 0.428360253572464, 0.06530480086803436, 0.29604512453079224, -0.21095281839370728, -0.5485614538192749, -0.1787148267030716, -0.31395623087882996, -0.19216543436050415, -0.10192853957414627, -0.14951807260513306, 0.3705410361289978, -0.1683761328458786, -0.20327244699001312, 0.07174506038427353, -0.12424179911613464, -0.3720768392086029, -0.014636719599366188, -0.32224494218826294, -0.13558226823806763, -0.17216026782989502, -0.2186245620250702, -0.3289656341075897, 0.22495894134044647, 0.10057681798934937, 0.0016789722722023726, -0.02164650708436966, -0.16452684998512268, 0.20520925521850586, -0.18310342729091644, 0.060090839862823486, -0.0031859225127846003, 0.17642776668071747, 0.10624870657920837, 0.07994099706411362, -0.30902257561683655, 0.07495859265327454, -0.10065889358520508, 0.13148437440395355, 0.2565285563468933, -0.5255863666534424, 0.12688776850700378, -0.10699883848428726, 0.06410601735115051, -0.06967731565237045, -0.10266736149787903, 0.12477366626262665, 0.2839755415916443, 0.024792516604065895, -0.15746644139289856, -0.4571687579154968, 0.0672450140118599, 0.127267524600029, 0.3437802493572235, -0.13922999799251556, 0.05945122614502907, -0.0022459423635154963, 0.2647853195667267, 0.24345815181732178, -0.2642882764339447, 0.3422490060329437, 0.2653166353702545, 0.4194595515727997, 0.16896004974842072, -0.17617037892341614, 0.3868720531463623, 0.06304604560136795, 0.1371612846851349, 0.25772354006767273, 0.19273558259010315, -0.20394949615001678, -0.18080276250839233, 0.1392492800951004, -0.07618562132120132, 0.0204943735152483, 0.41472870111465454, -0.3725939989089966, 0.35465696454048157, 0.15371987223625183, -0.1958044320344925, -0.2766861617565155, -0.17655543982982635, -0.14717908203601837, 0.33648839592933655, 0.32846102118492126, 0.17079736292362213, -0.641078770160675, 0.03683024272322655, -0.31057167053222656, 0.04621654003858566, 0.27456343173980713, 0.43196651339530945, -0.31120041012763977, 0.09761419147253036, -0.055794280022382736, 0.03618096932768822, -0.10557755827903748, -0.4134278893470764, -0.47558605670928955, -0.12964193522930145, 0.143390491604805, -0.19864089787006378, 0.24958555400371552, -0.039807483553886414, -0.020131969824433327, 0.31655922532081604, 0.29095789790153503, -0.10882700979709625, -0.09149734675884247, 0.02645779214799404, 0.33080458641052246, -0.029688715934753418, -0.40279722213745117, 0.10511814802885056, -0.19422873854637146, -0.09854695945978165, -0.17010091245174408, -0.06686320155858994, -0.18662118911743164, 0.20330239832401276, 0.10286793112754822, -0.1352117657661438, -0.22714383900165558, 0.38353073596954346, -0.07931896299123764, -0.34644076228141785, 0.19343021512031555, 0.11893894523382187, -0.2414218634366989, 0.33231329917907715, -0.026491550728678703, 0.35135555267333984, -0.16459904611110687, -0.20129728317260742, 0.029150119051337242, -0.2196475714445114, 0.6314372420310974, 0.35423776507377625, 0.08560147136449814, 0.36291006207466125, 0.0632554441690445, -0.36545735597610474, -0.3602575659751892, 0.3150694966316223, 0.23699669539928436, 0.1942257434129715, -0.32914480566978455, -0.5076608061790466, 0.40111634135246277, 0.13763605058193207, -0.03640611842274666, -0.06778255850076675, -0.14304006099700928, -0.28110629320144653, 0.24082857370376587, -0.008189026266336441, 0.788987934589386, -0.14933590590953827, 0.24965311586856842, -0.07657762616872787, -0.5114424228668213, 0.6271573901176453, -0.16748367249965668, -0.08042747527360916, -0.014344238676130772, 0.18382777273654938, -0.01919296756386757, -0.0812126100063324, 0.13407865166664124, 0.3162005543708801, 0.2134099155664444, -0.04627608507871628, 0.2883572280406952, -0.07037907093763351, 0.10026510804891586, 0.8568922281265259, -0.30346015095710754, -0.396368145942688, -0.36593395471572876, 0.12642040848731995, -0.24640938639640808, -0.02661154977977276, -0.06498952955007553, -0.29473623633384705, -0.13238224387168884, 0.1267937421798706, -0.48325130343437195, -0.06936801970005035, 0.3888426423072815, -0.235024556517601, -0.15117201209068298, -0.07680779695510864, 0.7176426649093628, 0.07720863819122314, 0.33002668619155884, 0.03146887570619583, -0.195288747549057, 0.024129290133714676, -0.43251729011535645, -0.08638564497232437, 0.14717388153076172, 0.12194577604532242, 0.1403825432062149, -0.14542199671268463, 0.023473598062992096, 0.22626008093357086, 0.06845942884683609, -0.014514906331896782, -0.5050382018089294, 0.052278198301792145, 0.19508707523345947, -0.12311629205942154, -0.06892764568328857, 0.5138171911239624, -0.06818488985300064, 0.020765407010912895, 0.10276409983634949, 0.18382665514945984, 0.16899187862873077, 0.09131165593862534, 0.15205128490924835, -0.037457697093486786, -0.21605972945690155, 0.042968474328517914, -0.07532619684934616, -0.20157527923583984, 0.23438352346420288, 0.03304566815495491, -0.05552257224917412, -0.18408702313899994, 0.07510443776845932, -0.14975479245185852, -0.3243549168109894, -0.310467004776001, 0.3003429174423218, -0.07594544440507889, -0.24338525533676147, -0.05680438131093979, 0.17332793772220612, -0.22640545666217804, 0.2474825531244278, -0.2429959923028946, -0.3314930200576782, 0.2082415372133255, -0.31189078092575073, 0.11740368604660034, -0.02322205901145935, 0.3572559654712677, -0.1480078101158142, 0.2578614354133606, -0.2804977297782898, -0.15461015701293945, 0.08826366811990738, 0.31050747632980347, 0.30995795130729675, -0.08457619696855545, -0.2685913145542145, -0.1762031465768814, 0.01619640365242958, -0.1489245891571045, -0.10561340302228928, -0.08669041097164154, -0.036428093910217285, 0.12633171677589417, 0.4104902148246765, -0.165384903550148, -0.04199378564953804, -0.1324814409017563, -0.05440596118569374, -0.04909105226397514, -0.24263565242290497, -0.07072555273771286, -0.27578991651535034, 0.4180636405944824, -0.3472611904144287, -0.06581437587738037, -0.14800268411636353, 0.17745688557624817, -0.045743994414806366, 0.28279417753219604, 0.2108144760131836, 0.3214334547519684, 0.31531277298927307, 0.23420892655849457, -0.18816736340522766, 0.2993410527706146, 0.06029270961880684, 0.18302153050899506, 0.1445746272802353, -0.046850718557834625, 0.447917103767395, 0.29597756266593933, 0.14117874205112457, 0.26752781867980957, -0.013285098597407341, -0.14913682639598846, 0.34320560097694397, 0.13705772161483765, -0.25715872645378113, 0.1818166822195053, 0.08003578335046768, 0.2518633008003235, 0.06291021406650543, 0.40560218691825867, 0.3765973448753357, 0.10174087435007095, -0.025251511484384537, -0.0959128737449646, 0.14649765193462372, -0.1528300791978836, -0.06249953806400299, -0.04979245364665985, 0.09694025665521622, -0.013849928043782711, 0.1129712387919426, 0.570289134979248, 0.0413040928542614, 0.17164038121700287, -0.08988110721111298, 0.5023492574691772, 0.13052281737327576, 0.21564163267612457, 0.2177160680294037, -0.24260111153125763, 0.0598224513232708, 0.25343477725982666, 0.2359834611415863, 0.024711530655622482, 0.08120948076248169, 0.4312998354434967, 0.07412414252758026, -0.1881435662508011, 0.19459199905395508, 0.22067035734653473, -0.20818324387073517, 0.11941225826740265, -0.09047876298427582, -0.12705710530281067, -0.1531335562467575, 0.03482320159673691, -0.12822799384593964, -0.23180288076400757, 0.14737175405025482, 0.08511925488710403, -0.018901392817497253, -0.5047825574874878, 0.33165261149406433, 0.013049432076513767, 0.08007063716650009, -0.08406399935483932, 0.28318271040916443, -0.17456696927547455, -0.09478628635406494, 0.44626039266586304, 0.21712443232536316, 0.09836895763874054, 0.2315949946641922, 0.060385361313819885, 0.3669407367706299, -0.2215573638677597, 0.12180750072002411, -0.06246890500187874, 0.5107766389846802, 0.2789464294910431, 0.14899906516075134, 0.4225062429904938, 0.044611215591430664, -0.019828109070658684, 0.19220490753650665, 0.03854435682296753, -0.35319623351097107, -0.19633576273918152, 0.6884592771530151, 0.13493606448173523, -0.1358708292245865, -0.20450656116008759, -0.0006399106932803988, -0.04501386731863022, -0.3699131906032562, 0.44955891370773315, -0.0729043260216713, 0.03963383659720421, -0.24856485426425934, 0.06800366193056107, -0.07032414525747299, 0.31277623772621155, 0.39564749598503113, 0.3038146495819092, -0.13837866485118866, 0.06634710729122162, -0.4806426167488098, -0.1293334811925888, -0.19266222417354584, -0.1880766749382019, -0.28002387285232544, -0.07143773138523102, 0.09983725845813751, 0.32373976707458496, -0.18765540421009064, 0.4049895703792572, 0.06944533437490463, -0.345706969499588, -0.2288663238286972, -0.05235971510410309, 0.307967871427536, 0.18606069684028625, -0.12233061343431473, 0.11427165567874908, -0.16672302782535553, 0.013004641979932785, 0.01835440658032894, -0.37343060970306396, -0.06548892706632614, -0.07637050002813339, 0.31840062141418457, 0.09783901274204254, 0.10626411437988281, 0.5531413555145264, -0.007961675524711609, 0.011461838148534298, -0.21547268331050873, -0.26398733258247375, -0.24832560122013092, 0.12838822603225708, 0.10177760571241379, 0.06747066229581833, -0.3718891739845276, 0.33229562640190125, -0.027088766917586327, 0.11039869487285614, -0.07589588314294815, -0.08411171287298203, -0.21964681148529053, 0.19998951256275177, -0.32083651423454285, 0.19738677144050598, 0.12384491413831711, 0.31815019249916077, 0.11431223899126053, 0.04780161753296852, -0.07393786311149597, -0.01786077953875065, 0.1678125411272049, -0.00408726604655385, -0.0524945892393589, 0.3718818724155426, 0.18767398595809937, 0.39534977078437805, -0.023265618830919266, -0.7201077342033386, -0.3790507912635803, 0.38962915539741516, -0.14203177392482758, 0.1743507832288742, 0.19147394597530365, -0.08301838487386703, -0.33348456025123596, -0.1527765542268753, -0.03220074623823166, -0.2428935319185257, -0.14349651336669922, 0.19090914726257324, -0.1825065165758133 ]
https://github.com/huggingface/datasets/issues/301
Setting cache_dir gives error on wikipedia download
Whoops didn't mean to close this one. I did some changes, could you try to run it from the master branch ?
First of all thank you for a super handy library! I'd like to download large files to a specific drive so I set `cache_dir=my_path`. This works fine with e.g. imdb and squad. But on wikipedia I get an error: ``` nlp.load_dataset('wikipedia', '20200501.de', split = 'train', cache_dir=my_path) ``` ``` OSError Traceback (most recent call last) <ipython-input-2-23551344d7bc> in <module> 1 import nlp ----> 2 nlp.load_dataset('wikipedia', '20200501.de', split = 'train', cache_dir=path) ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 385 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 386 reader = ArrowReader(self._cache_dir, self.info) --> 387 reader.download_from_hf_gcs(self._cache_dir, self._relative_data_dir(with_version=True)) 388 downloaded_info = DatasetInfo.from_directory(self._cache_dir) 389 self.info.update(downloaded_info) ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/arrow_reader.py in download_from_hf_gcs(self, cache_dir, relative_data_dir) 231 remote_dataset_info = os.path.join(remote_cache_dir, "dataset_info.json") 232 downloaded_dataset_info = cached_path(remote_dataset_info) --> 233 os.rename(downloaded_dataset_info, os.path.join(cache_dir, "dataset_info.json")) 234 if self._info is not None: 235 self._info.update(self._info.from_directory(cache_dir)) OSError: [Errno 18] Invalid cross-device link: '/home/local/NTU/nn/.cache/huggingface/datasets/025fa4fd4f04aaafc9e939260fbc8f0bb190ce14c61310c8ae1ddd1dcb31f88c.9637f367b6711a79ca478be55fe6989b8aea4941b7ef7adc67b89ff403020947' -> '/data/nn/nlp/wikipedia/20200501.de/1.0.0.incomplete/dataset_info.json' ```
22
Setting cache_dir gives error on wikipedia download First of all thank you for a super handy library! I'd like to download large files to a specific drive so I set `cache_dir=my_path`. This works fine with e.g. imdb and squad. But on wikipedia I get an error: ``` nlp.load_dataset('wikipedia', '20200501.de', split = 'train', cache_dir=my_path) ``` ``` OSError Traceback (most recent call last) <ipython-input-2-23551344d7bc> in <module> 1 import nlp ----> 2 nlp.load_dataset('wikipedia', '20200501.de', split = 'train', cache_dir=path) ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 385 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 386 reader = ArrowReader(self._cache_dir, self.info) --> 387 reader.download_from_hf_gcs(self._cache_dir, self._relative_data_dir(with_version=True)) 388 downloaded_info = DatasetInfo.from_directory(self._cache_dir) 389 self.info.update(downloaded_info) ~/anaconda3/envs/fastai2/lib/python3.7/site-packages/nlp/arrow_reader.py in download_from_hf_gcs(self, cache_dir, relative_data_dir) 231 remote_dataset_info = os.path.join(remote_cache_dir, "dataset_info.json") 232 downloaded_dataset_info = cached_path(remote_dataset_info) --> 233 os.rename(downloaded_dataset_info, os.path.join(cache_dir, "dataset_info.json")) 234 if self._info is not None: 235 self._info.update(self._info.from_directory(cache_dir)) OSError: [Errno 18] Invalid cross-device link: '/home/local/NTU/nn/.cache/huggingface/datasets/025fa4fd4f04aaafc9e939260fbc8f0bb190ce14c61310c8ae1ddd1dcb31f88c.9637f367b6711a79ca478be55fe6989b8aea4941b7ef7adc67b89ff403020947' -> '/data/nn/nlp/wikipedia/20200501.de/1.0.0.incomplete/dataset_info.json' ``` Whoops didn't mean to close this one. I did some changes, could you try to run it from the master branch ?
[ -0.016413507983088493, 0.22768670320510864, -0.008926266804337502, 0.10926728695631027, 0.12234624475240707, 0.1999376118183136, 0.25578567385673523, 0.331746369600296, 0.4485461711883545, -0.1023547500371933, -0.1903626024723053, 0.11786500364542007, 0.06666586548089981, -0.5188590288162231, 0.14065097272396088, -0.11021824181079865, 0.03000006452202797, -0.061313074082136154, -0.022650884464383125, 0.05169413611292839, -0.27471962571144104, 0.2622624337673187, -0.04418228939175606, 0.054089173674583435, -0.2433820515871048, -0.10504673421382904, -0.07263272255659103, 0.10746198892593384, 0.11366574466228485, -0.35966241359710693, 0.41280505061149597, -0.02995283156633377, 0.2771954834461212, 0.44033169746398926, -0.00011742396600311622, -0.015261916443705559, 0.36242586374282837, -0.20309509336948395, -0.5579509735107422, -0.2163560688495636, -0.22461038827896118, -0.24185869097709656, 0.2105766385793686, -0.4761382043361664, 0.362643301486969, 0.3921293020248413, 0.36018770933151245, -0.28841114044189453, -0.11544539034366608, 0.38038963079452515, 0.18881307542324066, -0.2133145034313202, -0.024149827659130096, 0.13253426551818848, 0.45766162872314453, 0.006448495667427778, -0.046040840446949005, 0.41965654492378235, -0.5581923127174377, -0.1824084371328354, -0.19788748025894165, 0.31906288862228394, -0.334837943315506, 0.361063688993454, 0.49967601895332336, 0.1689675748348236, 0.05516599491238594, -0.15767225623130798, 0.17405220866203308, -0.021712901070713997, 0.7087026834487915, -0.31869620084762573, -0.16675329208374023, -0.1298632174730301, -0.1916632503271103, -0.3419360816478729, 0.3887318968772888, 0.3142910897731781, -0.21688103675842285, -0.13133439421653748, -0.07852020114660263, -0.18641726672649384, -0.20554985105991364, 0.5084336400032043, 0.035347145050764084, 0.24217979609966278, -0.011890320107340813, 0.1077328696846962, 0.31052783131599426, 0.15596546232700348, -0.015227609314024448, -0.18830876052379608, 0.028922708705067635, 0.2680671811103821, -0.09172799438238144, 0.04632921889424324, 0.01649438589811325, 0.17545968294143677, 0.046952854841947556, -0.13587714731693268, -0.03642074763774872, -0.15848734974861145, -0.018010558560490608, 0.20707865059375763, 0.26718583703041077, 0.4584437608718872, -0.2714020609855652, 0.07250773161649704, 0.34549516439437866, 0.2596299946308136, -0.17699451744556427, -0.011409900151193142, 0.2153179794549942, -0.20619292557239532, 0.049374911934137344, -0.0884283035993576, 0.1682380586862564, -0.19104865193367004, -0.07279396057128906, -0.013464925810694695, -0.12057352811098099, -0.20028342306613922, 0.049752265214920044, 0.39133787155151367, -0.11084289848804474, 0.07258918881416321, 0.03939700499176979, 0.383053183555603, -0.21097707748413086, 0.365888774394989, -0.08639279752969742, 0.18494391441345215, -0.05625525116920471, 0.3640349805355072, 0.3974511921405792, 0.1643991768360138, 0.2825455963611603, -0.29967090487480164, 0.010531661100685596, -0.10802152752876282, 0.026367994025349617, -0.3558073341846466, 0.047279730439186096, 0.21185527741909027, 0.1468360722064972, 0.515688955783844, 0.2154468148946762, -0.1385781615972519, -0.33629122376441956, 0.1985240876674652, -0.3842073678970337, -0.4099828600883484, 0.02023007906973362, 0.10661716759204865, -0.22284334897994995, -0.18021756410598755, -0.06740923225879669, -0.09133816510438919, 0.41547560691833496, -0.27225950360298157, 0.20223642885684967, 0.08812399953603745, -0.3097885549068451, -0.3220294415950775, 0.01655671000480652, 0.39737385511398315, 0.08719765394926071, 0.031764447689056396, -0.1866355538368225, 0.47133657336235046, 0.2485874742269516, 0.4971693456172943, -0.1658024936914444, 0.3217126727104187, -0.20381280779838562, 0.14774256944656372, 0.5421151518821716, -0.4087108373641968, -0.5469186305999756, 0.2316523790359497, 0.006426524370908737, -0.11506805568933487, 0.13681145012378693, 0.2783949673175812, 0.19178801774978638, -0.09246817231178284, 0.05882391706109047, 0.5033124089241028, 0.144049271941185, 0.2762487530708313, -0.4132537543773651, -0.18852268159389496, 0.28452786803245544, -0.04272954910993576, -0.07079189270734787, 0.02578432857990265, -0.04644627496600151, 0.5719915628433228, 0.13341079652309418, -0.022025156766176224, 0.07294747978448868, 0.37172210216522217, 0.00858029630035162, 0.08948889374732971, 0.043272484093904495, 0.18528766930103302, -0.2929486930370331, 0.08711877465248108, 0.07798248529434204, -0.025801775977015495, -0.15080450475215912, -0.05668927729129791, -0.20657125115394592, -0.24051633477210999, -0.14766764640808105, -0.3601519763469696, 0.10878930240869522, 0.08356411010026932, 0.45313549041748047, 0.1844787299633026, 0.097995325922966, 0.04648445546627045, 0.14987868070602417, -0.027507541701197624, -0.12224481999874115, 0.24758262932300568, -0.31758639216423035, -0.05430731177330017, -0.27897557616233826, 0.06169569492340088, 0.06930842250585556, 0.1027572900056839, -0.3141677975654602, 0.20363521575927734, 0.12152554839849472, -0.184294655919075, 0.06915677338838577, 0.034874167293310165, 0.09981361031532288, -0.1528586447238922, 0.20426757633686066, 0.4087332487106323, 0.15078909695148468, 0.07229577749967575, -0.44350114464759827, 0.00040986129897646606, -0.179254949092865, 0.11779449135065079, -0.07727917283773422, 0.04837164655327797, 0.3536258935928345, 0.03179154545068741, 0.3313838839530945, -0.05965756997466087, 0.4391058087348938, 0.21699947118759155, 0.15325643122196198, -0.1297256052494049, 0.08154574036598206, -0.1299448311328888, 0.1299862265586853, 0.1706518679857254, 0.24197161197662354, 0.3518333435058594, -0.12397585809230804, -0.3393211364746094, -0.010878914035856724, 0.2468978464603424, 0.4208875000476837, 0.10964661836624146, 0.27627450227737427, -0.19046048820018768, -0.09322808682918549, -0.13602295517921448, 0.2923358976840973, -0.027750886976718903, 0.08625702559947968, -0.0453641451895237, 0.1577398031949997, -0.038677528500556946, -0.06471195816993713, -0.13630816340446472, 0.006143190432339907, 0.4186868369579315, -0.23523260653018951, 0.22368840873241425, -0.026441866531968117, -0.5045304298400879, -0.1359293907880783, -0.12097232788801193, -0.26911622285842896, -0.37516525387763977, 0.015554751269519329, 0.5011120438575745, 0.13190169632434845, 0.04804042726755142, -0.2572091817855835, -0.030309278517961502, 0.14349468052387238, -0.47540929913520813, -0.02046027220785618, -0.32411858439445496, -0.14429086446762085, -0.08568026125431061, 0.3514273762702942, -0.12240949273109436, 0.05934453383088112, 0.040458228439092636, -0.0966990739107132, -0.45001721382141113, 0.0011225256603211164, -0.05972478911280632, 0.05850769206881523, -0.1251753717660904, -0.0632038563489914, 0.4381803572177887, -0.1269311010837555, -0.34282389283180237, 0.06283871084451675, -0.0527421198785305, 0.16007176041603088, 0.13987214863300323, 0.1020866334438324, 0.2967463731765747, -0.1913740634918213, -0.009144801646471024, -0.1177050769329071, -0.39374464750289917, 0.17961159348487854, 0.11782225966453552, 0.21932387351989746, 0.5895367860794067, -0.07777637988328934, 0.11911138892173767, 0.17468537390232086, 0.0949007123708725, -0.2395322620868683, -0.2428201586008072, 0.5289345383644104, -0.16705210506916046, -0.1949596405029297, -0.05250243470072746, -0.0015181712806224823, 0.04635675996541977, 0.19171741604804993, -0.7021471261978149, -0.14431828260421753, 0.00017107157327700406, 0.3861827850341797, 0.06060846149921417, 0.024765247479081154, 0.32328763604164124, -0.22176457941532135, 0.025940878316760063, 0.021082567051053047, -0.25410181283950806, 0.06530950963497162, 0.21541136503219604, 0.357669860124588, -0.025815917178988457, 0.24749328196048737, 0.09258241206407547, 0.7005699872970581, -0.0984535738825798, 0.13672484457492828, 0.5910070538520813, 0.26306718587875366, 0.3123769462108612, -0.10811248421669006, -0.14156395196914673, 0.03397570922970772, -0.25436532497406006, -0.41276922821998596, 0.21695773303508759, 0.11304071545600891, -0.5909473896026611, -0.11572186648845673, 0.07740823179483414, -0.04751328378915787, -0.2686401307582855, 0.17148113250732422, -0.11324896663427353, 0.07477018237113953, -0.008788901381194592, 0.008581493981182575, -0.31244292855262756, -0.437177449464798, 0.027365611866116524, 0.33864396810531616, 0.03910510614514351, 0.230850487947464, 0.08255167305469513, -0.1985097974538803, -0.48889070749282837, 0.20853278040885925, 0.11874457448720932, 0.10587663948535919, -0.11610320955514908, -0.015307322144508362, 0.03505292907357216, 0.03164198622107506, 0.27443817257881165, 0.0489107221364975, 0.17940029501914978, -0.035676781088113785, 0.2467140406370163, -0.4296482801437378, -0.08892814069986343, 0.059802789241075516, 0.5444707870483398, 0.3421786427497864, 0.16696234047412872, -0.31418538093566895, 0.047257136553525925, 0.027811039239168167, 0.1755383312702179, -0.07615625113248825, -0.33645522594451904, -0.20552337169647217, -0.2697412073612213, -0.36977821588516235, -0.12101811915636063, -0.0007540331571362913, 0.029036136344075203, 0.22872911393642426, 0.32664504647254944, 0.1051139086484909, 0.12885506451129913, -0.2328953742980957, -0.14330081641674042, 0.29517194628715515, 0.2628566324710846, -0.10474305599927902, 0.0527544841170311, 0.047277867794036865, -0.3289656341075897, 0.2599809765815735, -0.12445994466543198, -0.0068396613933146, 0.0860869362950325, 0.10599255561828613, -0.29233506321907043, 0.05871427804231644, 0.09293477237224579, -0.13387387990951538, -0.04504997283220291, -0.1996910572052002, 0.06668942421674728, 0.19335009157657623, 0.1434357911348343, -0.1451653391122818, -0.11407367140054703, -0.3475615382194519, 0.7029226422309875, 0.023550208657979965, 0.11700541526079178, 0.43386390805244446, -0.10114859789609909, -0.3010013997554779, 0.18585969507694244, 0.11761634796857834, 0.7429110407829285, -0.07623493671417236, 0.4683905839920044, 0.17142410576343536, -0.08572837710380554, 0.7115087509155273, -0.3196156322956085, 0.36852216720581055, -0.21884803473949432, 0.15060655772686005, 0.026020735502243042, -0.12301638722419739, -0.3293703496456146, -0.0714215338230133, -0.42673325538635254, 0.27697041630744934, -0.016586482524871826, 0.006624705158174038, -0.02991137094795704, 0.37364113330841064, -0.064019575715065, -0.4104451537132263, -0.33340469002723694, 0.09719407558441162, -0.3908357322216034, 0.4360160827636719, -0.04533301293849945, 0.02078091911971569, -0.1653061956167221, -0.09807787090539932, -0.34040969610214233, 0.058703240007162094, -0.28883692622184753, 0.6166500449180603, -0.3921467661857605, -0.3520503640174866, -0.2892830967903137, 0.3093361556529999, 0.03791398927569389, -0.030552994459867477, -0.242915540933609, -0.007159020751714706, -0.2245875895023346, -0.09483680129051208, 0.10907359421253204, -0.07166609168052673, 0.06745517253875732, -0.19583429396152496, 0.05201023072004318, -0.10567687451839447, -0.14422249794006348, -0.46802401542663574, 0.17117635905742645, 0.0920494943857193, -0.07239022105932236, 0.15895093977451324, -0.3950122594833374, -0.05226963758468628, -0.24813072383403778, -0.009481445886194706, 0.08876554667949677, 0.08747152239084244, -0.0033816122449934483, -0.03487534821033478, -0.19816039502620697, -0.337341845035553, 0.050610922276973724, 0.44149157404899597, -0.09779093414545059, -0.007696416694670916, 0.5240350961685181, -0.014789856038987637, -0.40553590655326843, -0.0018626309465616941, -0.1336486041545868, -0.7260411381721497, -0.24801494181156158, 0.01797649823129177, -0.2769372761249542, 0.1718011349439621, -0.4101257026195526, -0.27339643239974976, 0.218552827835083, 0.14189481735229492, -0.01730971410870552, -0.4404848515987396, -0.3008427321910858, 0.07399202883243561, -0.3456283211708069, -0.021984471008181572, 0.14557449519634247, -0.39089322090148926, 0.3372860550880432, -0.015987763181328773, -0.18532375991344452, 0.03636353090405464, -0.19458472728729248, 0.05074651911854744, 0.34063777327537537, -0.17693278193473816, 0.19413875043392181, -0.06365306675434113, -0.00018490756337996572, -0.1336812973022461, 0.034710098057985306, -0.1682870090007782, -0.1124800518155098, 0.15424294769763947, 0.12873633205890656, -0.25470995903015137, -0.01747070997953415, -0.43008601665496826, 0.18384914100170135, -0.11784501373767853, -0.25594574213027954, 0.18824288249015808, -0.0693533718585968, 0.16108405590057373, 0.024028059095144272, 0.0328596867620945, -0.20471857488155365, 0.15652385354042053, -0.2831513583660126, 0.25835496187210083, 0.10936214029788971, 0.34051546454429626, 0.16001860797405243, 0.025988277047872543, -0.6841734051704407, -0.05029722675681114, -0.2113686352968216, 0.0981021597981453, 0.008451995439827442, -0.3884675204753876, 0.006139273755252361, 0.2412358969449997, -0.08072540909051895, 0.17983824014663696, -0.061038173735141754, -0.21790724992752075, 0.32694482803344727, 0.050585903227329254, 0.02004896104335785, 0.03222288563847542, 0.39120131731033325, -0.1006627157330513, -0.15353576838970184, 0.18295539915561676, 0.03327715024352074, -0.08523363620042801, 0.055988606065511703, 0.1523454785346985, 0.24912597239017487, -0.05878207087516785, 0.12429188191890717, 0.017892586067318916, -0.05047943443059921, 0.13448897004127502, 0.07266144454479218, 0.21493187546730042, 0.20573966205120087, 0.14940860867500305, 0.0041575124487280846, 0.17108535766601562, 0.23434729874134064, -0.30781465768814087, -0.1340903490781784, -0.13034731149673462, -0.1543121486902237, -0.10207508504390717, 0.06688019633293152, 0.09824574738740921, 0.00009463234891882166, 0.2079460173845291, -0.2135249525308609, 0.14496952295303345, -0.05996932089328766, 0.11553751677274704, -0.09781241416931152, -0.06594027578830719, 0.06033456325531006, 0.026300301775336266, 0.13751131296157837, 0.10758340358734131, -0.18264296650886536, -0.16796904802322388, 0.28718650341033936, 0.31520384550094604, -0.18913403153419495, -0.22318847477436066, 0.46204662322998047, 0.17359168827533722, 0.0819261446595192, -0.1670200079679489, 0.19477435946464539, -0.05855625495314598, -0.14759302139282227, -0.1181572824716568, 0.15864816308021545, 0.5159631967544556, 0.41655388474464417, -0.41977161169052124, -0.06788340210914612, 0.029960595071315765, 0.09226658195257187, -0.038152553141117096, -0.06788843125104904, 0.2026343196630478, -0.09424737095832825, 0.29244640469551086, 0.03788655623793602, -0.07115893065929413, 0.23845317959785461, 0.18495917320251465, 0.053498830646276474, 0.15749700367450714, -0.02767130918800831, 0.09169425070285797, 0.04335087910294533, 0.014420728199183941, 0.1833706498146057, -0.36184409260749817, 0.2814030945301056, 0.13142314553260803, 0.06166432797908783, 0.028416115790605545, 0.13676244020462036, 0.020925339311361313, 0.18753628432750702, 0.5410304665565491, 0.22929561138153076, 0.268312007188797, -0.5026730895042419, 0.08787314593791962, -0.5525561571121216, 0.29626935720443726, -0.3617640733718872, -0.1734837144613266, -0.14761130511760712, 0.3638661503791809, -0.33918365836143494, 0.18393589556217194, 0.01751539669930935, -0.10176742821931839, 0.0994248315691948, 0.1635322868824005, -0.2389966994524002, -0.19564834237098694, -0.11134078353643417, 0.051891028881073, -0.08038371056318283, -0.42285335063934326, 0.034816861152648926, 0.032207466661930084, 0.06736161559820175, -0.07691583037376404, -0.05760068818926811, 0.0864318311214447, 0.5537905693054199, 0.17995747923851013, -0.07725359499454498, 0.4416602551937103, 0.006157930940389633, -0.2031337171792984, -0.3520435690879822, -0.03667965531349182, -0.137537881731987, -0.21562981605529785, -0.07386338710784912, 0.2568700909614563, -0.39551350474357605, -0.09108088165521622, -0.49424880743026733, 0.7418965101242065, -0.14843116700649261, -0.03399462625384331, 0.23667830228805542, -0.2610362768173218, 0.008272151462733746, 0.2684926986694336, 0.1910717934370041, 0.04642048105597496, -0.17636537551879883, 0.35526371002197266, -0.48961153626441956, -0.2099742591381073, 0.33729425072669983, -0.48629242181777954, -0.32943040132522583, 0.09791509807109833, 0.26202723383903503, 0.1855795830488205, 0.10445688664913177, -0.3378351330757141, 0.04519495740532875, 0.2677619457244873, 0.04446845501661301, -0.44067275524139404, -0.1964244544506073, -0.09749005734920502, 0.10889725387096405, -0.008824354968965054, 0.14060044288635254, 0.08232187479734421, -0.30425354838371277, -0.1703522950410843, -0.24228344857692719 ]
https://github.com/huggingface/datasets/issues/297
Error in Demo for Specific Datasets
Thanks for reporting these errors :) I can actually see two issues here. First, datasets like `natural_questions` require apache_beam to be processed. Right now the import is not at the right place so we have this error message. However, even the imports are fixed, the nlp viewer doesn't actually have the resources to process NQ right now so we'll have to wait until we have a version that we've already processed on our google storage (that's what we've done for wikipedia for example). Second, datasets like `newsroom` require manual downloads as we're not allowed to redistribute the data ourselves (if I'm not wrong). An error message should be displayed saying that we're not allowed to show the dataset. I can fix the first issue with the imports but for the second one I think we'll have to see with @srush to show a message for datasets that require manual downloads (it can be checked whether a dataset requires manual downloads if `dataset_builder_instance.manual_download_instructions is not None`).
Selecting `natural_questions` or `newsroom` dataset in the online demo results in an error similar to the following. ![image](https://user-images.githubusercontent.com/60150701/85347842-ac861900-b4ae-11ea-98c4-a53a00934783.png)
165
Error in Demo for Specific Datasets Selecting `natural_questions` or `newsroom` dataset in the online demo results in an error similar to the following. ![image](https://user-images.githubusercontent.com/60150701/85347842-ac861900-b4ae-11ea-98c4-a53a00934783.png) Thanks for reporting these errors :) I can actually see two issues here. First, datasets like `natural_questions` require apache_beam to be processed. Right now the import is not at the right place so we have this error message. However, even the imports are fixed, the nlp viewer doesn't actually have the resources to process NQ right now so we'll have to wait until we have a version that we've already processed on our google storage (that's what we've done for wikipedia for example). Second, datasets like `newsroom` require manual downloads as we're not allowed to redistribute the data ourselves (if I'm not wrong). An error message should be displayed saying that we're not allowed to show the dataset. I can fix the first issue with the imports but for the second one I think we'll have to see with @srush to show a message for datasets that require manual downloads (it can be checked whether a dataset requires manual downloads if `dataset_builder_instance.manual_download_instructions is not None`).
[ -0.19810713827610016, 0.4033780097961426, -0.03457415848970413, 0.09161670506000519, -0.06098021939396858, -0.0404713973402977, 0.2643224000930786, 0.39570850133895874, -0.0206501055508852, 0.11498042941093445, 0.036538656800985336, 0.12681789696216583, -0.143379345536232, 0.17077229917049408, 0.19211751222610474, -0.44996336102485657, -0.003880689386278391, 0.12495531141757965, -0.035556066781282425, -0.06931976228952408, -0.12045653909444809, 0.16535082459449768, -0.4725417494773865, 0.2649034559726715, -0.01761169359087944, -0.261862188577652, -0.038472697138786316, 0.03927313908934593, -0.3994922935962677, -0.4657360911369324, 0.08092749863862991, 0.19680152833461761, 0.15992605686187744, -0.00051815778715536, -0.00011310290574328974, 0.038239896297454834, 0.4839167296886444, -0.04831613600254059, -0.5484041571617126, -0.16969241201877594, -0.12862884998321533, -0.3020375967025757, 0.10215628892183304, -0.043053820729255676, 0.02622968889772892, -0.6082088351249695, 0.19225215911865234, -0.07852240651845932, 0.35780927538871765, 0.5196112990379333, 0.22013604640960693, 0.5076088905334473, 0.016102859750390053, -0.32827404141426086, 0.43934452533721924, 0.29428255558013916, -0.1518372744321823, 0.13522040843963623, 0.04779069125652313, -0.05100291967391968, -0.03646538034081459, 0.3086340129375458, 0.025701383128762245, 0.15278293192386627, -0.0602615624666214, -0.14215704798698425, -0.32063478231430054, -0.4986158609390259, -0.11975164711475372, 0.44593849778175354, 0.663361132144928, 0.07437168061733246, -0.18359868228435516, -0.19395050406455994, 0.14957329630851746, 0.04788020998239517, 0.06316237151622772, 0.4371372163295746, -0.2138037383556366, -0.019730370491743088, -0.3787338435649872, -0.27511486411094666, -0.2470446527004242, 0.4400157034397125, 0.08486564457416534, 0.09874699264764786, -0.02640393003821373, 0.2691400945186615, -0.05080072581768036, -0.18012934923171997, 0.12784640491008759, -0.058707427233457565, 0.05414615944027901, 0.0016122275264933705, -0.4455088973045349, -0.11124081164598465, -0.031179146841168404, 0.040598783642053604, 0.03728310391306877, 0.1945744901895523, 0.12947846949100494, -0.011735610663890839, 0.03954240679740906, 0.279365211725235, 0.28311046957969666, 0.3266351819038391, 0.31462734937667847, 0.38724154233932495, 0.4034561514854431, 0.05307776853442192, 0.17791247367858887, 0.20514103770256042, -0.1392928510904312, -0.33847808837890625, -0.5065165162086487, 0.032385118305683136, 0.31755781173706055, -0.2519688010215759, -0.5763887166976929, 0.20638419687747955, -0.29666662216186523, -0.009444592520594597, -0.054754458367824554, 0.31921568512916565, 0.09110484272241592, 0.023213857784867287, 0.1775570958852768, 0.4780530333518982, -0.21472632884979248, -0.7115918397903442, 0.03569202125072479, 0.33530113101005554, -0.2933811545372009, 0.1421968638896942, 0.2954670786857605, 0.37536942958831787, 0.19080300629138947, 0.01719539985060692, 0.15302538871765137, -0.03490887209773064, 0.3172851800918579, -0.008297725580632687, -0.09135979413986206, 0.261453777551651, 0.1109580397605896, 0.14359591901302338, 0.01978493668138981, -0.04496082663536072, -0.10872164368629456, 0.13044008612632751, -0.017440246418118477, -0.42206716537475586, -0.021851694211363792, 0.14349505305290222, -0.17966563999652863, 0.00013197059161029756, -0.15492065250873566, 0.37011849880218506, -0.10664795339107513, -0.24541543424129486, -0.09333395212888718, -0.19888432323932648, 0.0739988386631012, -0.06201109290122986, 0.060978010296821594, 0.4929053485393524, -0.35729530453681946, -0.014105016365647316, -0.2872875928878784, -0.07318312674760818, 0.16951516270637512, 0.3137458562850952, -0.34980079531669617, 0.2884294390678406, -0.31244707107543945, 0.03608850762248039, 0.6690327525138855, -0.2652318775653839, -0.13616812229156494, 0.38895168900489807, 0.1521366983652115, -0.20953643321990967, -0.155626580119133, -0.08275990188121796, 0.1384107917547226, -0.16525793075561523, -0.33146247267723083, 0.5041033029556274, -0.044560931622982025, 0.03156234323978424, -0.3019278347492218, -0.23242361843585968, 0.40357476472854614, 0.44793879985809326, 0.11554517596960068, 0.039159759879112244, 0.032392311841249466, 0.07546365261077881, 0.019848385825753212, 0.024790136143565178, 0.06142266467213631, 0.11028861999511719, 0.018290668725967407, -0.2559671998023987, -0.04605960473418236, 0.1362551599740982, -0.3674876093864441, 0.0775815024971962, -0.5094984769821167, 0.3944987952709198, 0.12080498784780502, -0.004111126530915499, -0.4444129168987274, -0.09596174210309982, -0.2176894247531891, -0.27497515082359314, 0.17791880667209625, 0.06474843621253967, 0.163130521774292, 0.25219544768333435, 0.05540010333061218, 0.09354788064956665, -0.10574661195278168, 0.06576268374919891, -0.24428214132785797, 0.25868353247642517, -0.18129748106002808, -0.06169051304459572, 0.29207608103752136, -0.13919472694396973, 0.39432331919670105, -0.06891188770532608, -0.15089228749275208, 0.39556407928466797, -0.1765991449356079, 0.23770777881145477, 0.2862996459007263, -0.1709463745355606, 0.21784481406211853, -0.5033506155014038, 0.1584491729736328, 0.19455738365650177, -0.05327612906694412, 0.21520760655403137, -0.19128428399562836, 0.37229666113853455, 0.04923040792346001, 0.09868600219488144, 0.053878381848335266, 0.4147877097129822, 0.18126334249973297, -0.0780162587761879, -0.0885620191693306, -0.19923052191734314, 0.26474013924598694, 0.4113308787345886, 0.08348030596971512, -0.2449461668729782, -0.4166581332683563, 0.024964360520243645, 0.18111421167850494, -0.04826517775654793, 0.20140418410301208, 0.06230495870113373, 0.06792844086885452, -0.10105206072330475, 0.40008920431137085, 0.4113735556602478, 0.38273873925209045, 0.031804174184799194, 0.047578003257513046, 0.10441074520349503, -0.25164344906806946, -0.32536789774894714, 0.11449700593948364, 0.04143118858337402, 0.16461387276649475, 0.11453413963317871, 0.13520649075508118, 0.04006458818912506, -0.3648930788040161, 0.04718877747654915, 0.3612004518508911, 0.2409498691558838, -0.2400977611541748, -0.044033899903297424, -0.42946091294288635, -0.5175086855888367, -0.16846542060375214, 0.13020539283752441, -0.25687310099601746, -0.5409414172172546, 0.3794938325881958, 0.021148663014173508, -0.40987756848335266, 0.23341600596904755, 0.13670781254768372, 0.4418497383594513, -0.20190612971782684, 0.49639734625816345, -0.07612285017967224, -0.0833592563867569, -0.3440183401107788, 0.09766673296689987, 0.34940603375434875, 0.3973332345485687, 0.4992437958717346, -0.17474515736103058, -0.02806510403752327, -0.40558406710624695, -0.3387174904346466, 0.22341011464595795, 0.15965214371681213, 0.595138430595398, -0.09448447823524475, 0.35120391845703125, -0.05526670441031456, -0.16464588046073914, 0.1619519293308258, -0.1427627056837082, -0.0991605669260025, 0.14410904049873352, -0.04819570481777191, -0.06266238540410995, -0.2645435035228729, -0.6977812647819519, -0.40905892848968506, -0.45995864272117615, -0.2028886079788208, -0.19792425632476807, 0.24380646646022797, 0.233698308467865, -0.10973665863275528, -0.017572136595845222, 0.020550299435853958, -0.008396349847316742, -0.17180608212947845, -0.06894446909427643, 0.27195942401885986, -0.6593869924545288, -0.42824941873550415, 0.051717303693294525, 0.10686035454273224, 0.12746722996234894, 0.27934426069259644, -0.458237886428833, 0.09105394035577774, -0.12348165363073349, -0.17709225416183472, 0.1160823181271553, -0.28552109003067017, 0.25485551357269287, -0.19535794854164124, -0.04407572001218796, -0.14619135856628418, -0.0373641736805439, 0.08142869919538498, 0.1666162759065628, 0.26658642292022705, -0.04156513884663582, 0.18222109973430634, 0.08578662574291229, 0.6566119194030762, 0.21171487867832184, 0.22545789182186127, 0.5008476972579956, 0.1887434870004654, 0.3019883334636688, 0.06331539899110794, 0.11524907499551773, 0.25095731019973755, -0.139277383685112, 0.0063594430685043335, 0.2092837244272232, -0.1221352145075798, -0.242593914270401, -0.29600003361701965, 0.20201972126960754, -0.3664734959602356, -0.24416662752628326, 0.09564802795648575, -0.3765968382358551, 0.27362218499183655, 0.14944297075271606, -0.07453669607639313, 0.22032248973846436, -0.03725745156407356, -0.11457061767578125, 0.08149614930152893, 0.24389001727104187, 0.15167993307113647, -0.5252454876899719, -0.01776314526796341, -0.20786568522453308, 0.14158979058265686, -0.26519352197647095, 0.6571937203407288, -0.3658408522605896, 0.0038032729644328356, 0.10370146483182907, 0.19374561309814453, 0.11753976345062256, -0.5748884677886963, -0.1773446947336197, 0.03857572749257088, 0.0863678976893425, -0.4662766456604004, -0.21957145631313324, -0.35894808173179626, 0.20498335361480713, 0.0694778561592102, 0.009078742004930973, -0.30308979749679565, -0.1169038936495781, 0.25419050455093384, 0.07203119993209839, -0.016757942736148834, -0.17889286577701569, 0.17673449218273163, 0.0978533923625946, -0.6125368475914001, -0.07652530074119568, -0.0403105765581131, -0.07417930662631989, -0.5367667078971863, 0.05630991980433464, -0.06272361427545547, 0.32568109035491943, 0.054090362042188644, 0.11250250041484833, 0.16141343116760254, 0.01827138289809227, -0.13592562079429626, 0.11897638440132141, 0.13136126101016998, 0.1471991091966629, 0.38365477323532104, 0.262398362159729, -0.1001560166478157, 0.13860660791397095, 0.053600866347551346, -0.007189392577856779, 0.6157615184783936, -0.06302450597286224, 0.011197217740118504, -0.22877611219882965, 0.09844959527254105, 0.0687740221619606, 0.259080708026886, 0.18437719345092773, -0.4804317355155945, -0.13610097765922546, -0.1868961900472641, 0.3830972909927368, -0.13276489078998566, -0.24014349281787872, 0.012968429364264011, 0.005827618762850761, -0.03563575819134712, 0.23835910856723785, 0.24638541042804718, 1.0048415660858154, -0.036688610911369324, -0.05809735879302025, 0.10965529084205627, -0.14803510904312134, 0.5812594294548035, -0.1890588402748108, 0.02438470721244812, -0.24519553780555725, -0.06134771183133125, 0.032800547778606415, -0.09355746954679489, 0.2910007834434509, 0.19776470959186554, -0.42158666253089905, 0.3042159974575043, 0.1378447413444519, 0.014951671473681927, -0.04486779496073723, 0.14839230477809906, -0.15593133866786957, 0.016965720802545547, -0.35733965039253235, 0.14503782987594604, -0.28274422883987427, 0.349819540977478, -0.17276231944561005, -0.2722785174846649, -0.14991459250450134, -0.20563675463199615, -0.4191603660583496, 0.27250856161117554, 0.018625563010573387, 0.1489473283290863, -0.01926550641655922, -0.29831984639167786, 0.35974857211112976, 0.46832340955734253, 0.2272590696811676, 0.04116516187787056, -0.38728392124176025, 0.14799389243125916, -0.2452414333820343, -0.17169377207756042, 0.04241340234875679, 0.062113940715789795, 0.3522131145000458, -0.17977528274059296, -0.1785711646080017, 0.12927760183811188, -0.17437146604061127, 0.06132354587316513, -0.5083680152893066, -0.12569689750671387, 0.31288161873817444, -0.022085854783654213, -0.08472240716218948, -0.1698155552148819, -0.11955816298723221, -0.1661524474620819, 0.1224929466843605, 0.025628596544265747, -0.031775835901498795, -0.04185689985752106, 0.24215815961360931, -0.030817965045571327, 0.029304690659046173, 0.09251800179481506, 0.10955879092216492, 0.08046744763851166, 0.3666873574256897, 0.18186524510383606, -0.06378068774938583, -0.2809882164001465, 0.18192777037620544, 0.13144555687904358, -0.502711832523346, 0.1247771680355072, -0.27197304368019104, -0.06596717983484268, 0.13074475526809692, 0.1952538639307022, -0.08601589500904083, -0.057927604764699936, 0.09050442278385162, -0.509904682636261, -0.058102089911699295, 0.19894325733184814, -0.30427515506744385, 0.17957803606987, -0.15786121785640717, -0.13064731657505035, 0.21916472911834717, 0.2721654176712036, -0.29211655259132385, -0.09750739485025406, -0.4532202482223511, 0.26790833473205566, -0.030494878068566322, 0.12929768860340118, -0.2409977912902832, 0.021109385415911674, -0.10474304854869843, -0.1094214916229248, -0.3323504328727722, -0.10128813982009888, -0.04973931983113289, 0.16162267327308655, 0.3272656202316284, -0.15391269326210022, 0.13397078216075897, -0.15223188698291779, 0.14955349266529083, -0.013419383205473423, 0.08367568254470825, -0.17468960583209991, -0.1118210032582283, 0.2551407217979431, 0.0492248497903347, 0.1118849515914917, -0.018691301345825195, 0.19295662641525269, -0.004864747170358896, 0.18779508769512177, 0.1860693395137787, 0.10590357333421707, 0.2087065875530243, -0.15943896770477295, -0.44277137517929077, 0.03322939947247505, 0.05949161574244499, 0.21148371696472168, 0.12992636859416962, -0.2598476707935333, 0.3293118178844452, -0.10000919550657272, 0.20813202857971191, 0.21635760366916656, -0.32546675205230713, 0.058816827833652496, 0.2458350658416748, 0.13404561579227448, -0.2870178818702698, -0.017888041213154793, 0.07398023456335068, 0.10569930821657181, -0.15368221700191498, -0.061985425651073456, 0.41003933548927307, -0.03652126342058182, 0.19993683695793152, 0.06753773242235184, 0.08273643255233765, -0.08516369760036469, 0.33171647787094116, 0.30986276268959045, -0.22364529967308044, 0.09567106515169144, -0.08717121928930283, -0.02531253732740879, 0.04201940447092056, 0.07523423433303833, -0.1770765483379364, 0.5282188653945923, 0.21051791310310364, 0.17989248037338257, 0.43755289912223816, -0.30835631489753723, 0.11265528202056885, 0.4501844048500061, 0.2951728105545044, 0.17113402485847473, -0.031728409230709076, 0.11509837955236435, -0.11648546159267426, -0.2579781115055084, -0.3172602653503418, 0.15337298810482025, -0.016242707148194313, 0.13175068795681, -0.38022592663764954, -0.19473515450954437, -0.47115448117256165, 0.0005564889288507402, -0.09242488443851471, -0.2355910986661911, 0.04712957143783569, 0.02813073992729187, -0.318985253572464, -0.6951643228530884, 0.41201052069664, 0.145124152302742, -0.04031173512339592, -0.20130039751529694, 0.27889779210090637, -0.08096769452095032, -0.1254064440727234, 0.2645360827445984, 0.46756529808044434, 0.33625614643096924, 0.4843827784061432, -0.18376195430755615, -0.06372310221195221, 0.036875393241643906, 0.0664660632610321, 0.13765284419059753, 0.08353626728057861, 0.26195335388183594, 0.033694926649332047, 0.4762539565563202, 0.029066359624266624, -0.08782432973384857, 0.15576250851154327, 0.25472578406333923, -0.0385509729385376, -0.3124660849571228, 0.11967454850673676, -0.232589453458786, -0.046337783336639404, -0.02398601546883583, -0.27677997946739197, -0.37215718626976013, 0.06650548428297043, 0.10474151372909546, 0.016474323347210884, 0.10639605671167374, -0.40643110871315, 0.06415008753538132, -0.22640812397003174, 0.662260115146637, 0.27856531739234924, 0.2648005187511444, -0.2889126241207123, -0.42036929726600647, -0.6882612109184265, 0.1602884978055954, -0.05887966230511665, 0.08523165434598923, 0.2896305322647095, 0.09507793933153152, 0.1803099662065506, 0.3617953360080719, -0.1563684195280075, 0.2062145322561264, -0.15819483995437622, 0.22506731748580933, -0.5480687618255615, -0.15410320460796356, -0.02567916549742222, 0.06638035923242569, -0.08992093801498413, -0.13672122359275818, 0.1477310210466385, -0.07817874103784561, -0.07486380636692047, 0.1385718435049057, -0.04473085701465607, 0.12644486129283905, -0.03386778384447098, 0.4230632781982422, 0.266176700592041, 0.5350291132926941, -0.04709385335445404, -0.1777534931898117, -0.16978885233402252, -0.25895261764526367, -0.18551047146320343, 0.031178368255496025, -0.005857511423528194, 0.41071513295173645, 0.08445510268211365, 0.26025083661079407, -0.06812084466218948, -0.003667760407552123, -0.022285962477326393, 0.2091825008392334, -0.19718493521213531, -0.14685453474521637, 0.00944359041750431, 0.13407659530639648, 0.14533938467502594, -0.07311450690031052, -0.048314016312360764, 0.06921634823083878, -0.32024869322776794, -0.21298253536224365, 0.3976902365684509, -0.2018698751926422, -0.09359506517648697, 0.0902116671204567, 0.08438843488693237, 0.041825082153081894, -0.10342014580965042, -0.40779951214790344, -0.06464473158121109, 0.1281602382659912, -0.171163871884346, 0.20173679292201996, 0.10486584901809692, 0.16902507841587067, -0.21659813821315765, 0.03303750976920128, 0.2552475929260254, 0.09996342658996582, -0.24829019606113434, 0.1486690789461136, -0.1618630290031433 ]
https://github.com/huggingface/datasets/issues/297
Error in Demo for Specific Datasets
We don't plan to host the source files of newsroom ourselves for now. You can still get the dataset if you follow the download instructions given by `dataset = load_dataset('newsroom')` though. The viewer also shows the instructions now. Closing this one. If you have other questions, feel free to re-open :)
Selecting `natural_questions` or `newsroom` dataset in the online demo results in an error similar to the following. ![image](https://user-images.githubusercontent.com/60150701/85347842-ac861900-b4ae-11ea-98c4-a53a00934783.png)
51
Error in Demo for Specific Datasets Selecting `natural_questions` or `newsroom` dataset in the online demo results in an error similar to the following. ![image](https://user-images.githubusercontent.com/60150701/85347842-ac861900-b4ae-11ea-98c4-a53a00934783.png) We don't plan to host the source files of newsroom ourselves for now. You can still get the dataset if you follow the download instructions given by `dataset = load_dataset('newsroom')` though. The viewer also shows the instructions now. Closing this one. If you have other questions, feel free to re-open :)
[ -0.38725072145462036, 0.31880906224250793, -0.16402336955070496, -0.0211658738553524, 0.013869858346879482, -0.00031281221890822053, 0.24411004781723022, 0.42485904693603516, -0.10584637522697449, 0.2502387464046478, 0.07646096497774124, 0.06626679003238678, -0.15477260947227478, 0.1989978402853012, 0.15765637159347534, -0.30583682656288147, 0.03413934260606766, 0.10672954469919205, 0.008037889376282692, 0.07688015699386597, 0.020898576825857162, 0.13810014724731445, -0.38022664189338684, 0.08078571408987045, 0.05556658282876015, 0.07056645303964615, -0.06121860444545746, 0.10057883709669113, -0.38537701964378357, -0.28244784474372864, 0.1910809874534607, 0.18659672141075134, 0.10666631907224655, 0.2580336034297943, -0.00009687822603154927, 0.10137269645929337, 0.3720097541809082, -0.07408944517374039, -0.38534992933273315, -0.2452899068593979, -0.11443466693162918, -0.1170116439461708, -0.1747405230998993, -0.07784909754991531, -0.3093830347061157, -0.39325153827667236, 0.14332231879234314, -0.13476848602294922, 0.38088977336883545, 0.5134057998657227, 0.3451368510723114, 0.3197132349014282, 0.06417730450630188, -0.3982391357421875, 0.24451766908168793, 0.33477678894996643, -0.28666263818740845, 0.2551395297050476, 0.13513591885566711, -0.010375364683568478, 0.1773415207862854, 0.2695544958114624, 0.13106772303581238, 0.11857220530509949, -0.1659906953573227, -0.06584754586219788, -0.12248559296131134, -0.39449062943458557, 0.1921982616186142, 0.3081764876842499, 0.46081846952438354, 0.20949934422969818, -0.040614575147628784, 0.018214570358395576, 0.07344134896993637, 0.009701510891318321, 0.02953394688665867, 0.37681683897972107, -0.28347069025039673, 0.11237193644046783, -0.2613160014152527, -0.32047930359840393, -0.3009408116340637, 0.3629046380519867, 0.021559378132224083, 0.2622925341129303, -0.2182944267988205, 0.2114821970462799, -0.12044370919466019, -0.1118348091840744, 0.16943173110485077, 0.059789180755615234, -0.0276934951543808, -0.023177359253168106, -0.08686267584562302, -0.0712508112192154, 0.0011096225352957845, -0.04491795226931572, 0.2504671812057495, 0.11486432701349258, -0.032284434884786606, -0.07908929139375687, 0.16515929996967316, 0.07674341648817062, 0.25475358963012695, 0.13501286506652832, 0.31062984466552734, 0.42361879348754883, 0.28866466879844666, 0.30244317650794983, -0.06351921707391739, 0.09665868431329727, -0.1747274100780487, -0.3139656186103821, -0.2929466664791107, 0.04582536965608597, 0.4366627633571625, -0.368216335773468, -0.37179791927337646, 0.15407513082027435, -0.05053304508328438, 0.12733198702335358, -0.11395736038684845, 0.29868048429489136, 0.12180094420909882, 0.06316294521093369, 0.05737217888236046, 0.4153444170951843, -0.11907298117876053, -0.4704572558403015, -0.15394233167171478, 0.18741030991077423, -0.19110466539859772, 0.06574235111474991, 0.32467013597488403, 0.15267784893512726, 0.29517796635627747, 0.05764182657003403, 0.20794405043125153, -0.08804913610219955, 0.36447450518608093, 0.12676458060741425, 0.1516769528388977, 0.25034546852111816, 0.11389710009098053, 0.05188550800085068, 0.03528384491801262, -0.07814165949821472, 0.038864582777023315, 0.24605314433574677, -0.02806198224425316, -0.4773590862751007, -0.15691860020160675, 0.32962945103645325, -0.07044298946857452, 0.0011814082972705364, -0.039582766592502594, 0.2608209550380707, -0.05484825372695923, -0.1282828152179718, -0.1434522122144699, -0.08726396411657333, 0.14088432490825653, 0.04214039444923401, 0.21345971524715424, 0.2267337441444397, -0.4083753228187561, 0.2936525046825409, -0.11565372347831726, -0.025573380291461945, 0.1778572052717209, 0.008878390304744244, -0.4150945842266083, 0.2261175960302353, -0.3022592067718506, -0.020909538492560387, 0.4404129087924957, -0.35775917768478394, -0.21002693474292755, 0.09458699822425842, -0.01353304274380207, -0.2623961269855499, -0.23016472160816193, -0.1978842318058014, -0.016495604068040848, 0.04891523718833923, -0.15840138494968414, 0.32088783383369446, 0.007394453044980764, 0.1409163475036621, -0.24308644235134125, -0.13508495688438416, 0.25734743475914, 0.352931410074234, 0.014426792040467262, -0.0176272913813591, -0.07140322774648666, 0.04953926056623459, 0.13442878425121307, -0.10437564551830292, -0.021151091903448105, 0.19384391605854034, 0.13354377448558807, -0.23040226101875305, -0.04594656825065613, -0.04335671663284302, -0.24373678863048553, 0.05540456250309944, -0.1315821409225464, 0.39959830045700073, 0.1226349025964737, 0.04208962619304657, -0.4179421067237854, -0.03782820701599121, -0.2738238275051117, -0.5199093818664551, 0.3302706778049469, 0.20207323133945465, 0.07333846390247345, 0.07722771912813187, -0.10830239206552505, -0.054993368685245514, -0.055058035999536514, -0.0631413608789444, -0.21990834176540375, 0.17076502740383148, -0.28463292121887207, -0.005671101156622171, 0.09670348465442657, -0.3065670430660248, 0.2832337021827698, -0.17267443239688873, -0.20594260096549988, 0.41938766837120056, -0.019836924970149994, 0.05754689872264862, 0.41825148463249207, -0.19717280566692352, 0.052595384418964386, -0.4988580048084259, -0.008072921074926853, 0.16528645157814026, -0.11556342989206314, 0.24966759979724884, -0.12854725122451782, 0.21419966220855713, 0.14453613758087158, -0.02368362620472908, -0.009527523070573807, 0.21604382991790771, 0.33463844656944275, -0.09742236882448196, 0.01770445890724659, -0.10070955008268356, 0.18117763102054596, 0.2839541435241699, 0.09240132570266724, -0.3739609122276306, -0.37494972348213196, 0.10013415664434433, 0.07938549667596817, -0.03191930800676346, 0.0861244723200798, 0.08889705687761307, -0.07450152933597565, -0.2598750591278076, 0.2304983139038086, 0.3278220593929291, 0.4170774817466736, 0.07742736488580704, 0.24844537675380707, 0.13004156947135925, -0.17208969593048096, -0.2319052666425705, 0.2817387878894806, -0.1592702567577362, 0.12910614907741547, 0.14294008910655975, 0.1644270122051239, -0.09985360503196716, -0.41314390301704407, 0.05571189522743225, 0.1864567995071411, 0.19601264595985413, -0.18863829970359802, -0.008992967195808887, -0.20100969076156616, -0.175567626953125, 0.1071399450302124, 0.04762735217809677, -0.06593869626522064, -0.30552244186401367, 0.43214312195777893, 0.03233344107866287, -0.36554986238479614, 0.10235949605703354, -0.01792765222489834, 0.3619750142097473, -0.04568751901388168, 0.42992064356803894, -0.04441366344690323, -0.04636633023619652, -0.32818806171417236, 0.24817465245723724, 0.15987913310527802, 0.18438881635665894, 0.35904744267463684, -0.27369198203086853, -0.2064642757177353, -0.47845059633255005, -0.27117300033569336, 0.2871101200580597, 0.23679426312446594, 0.7645660638809204, 0.012166855856776237, 0.4614914357662201, -0.11202792078256607, -0.12310897558927536, 0.29721587896347046, -0.16846783459186554, -0.06434406340122223, 0.06804142892360687, -0.06573639065027237, -0.2628166675567627, -0.271085649728775, -0.605461835861206, -0.27642396092414856, -0.2533032298088074, -0.07400872558355331, -0.03439212962985039, 0.08085734397172928, 0.340263694524765, 0.01849534921348095, -0.08877447247505188, -0.007562853861600161, 0.03599033132195473, -0.46593308448791504, -0.43918418884277344, 0.16146929562091827, -0.7218427062034607, -0.4966351091861725, 0.02584477700293064, 0.21401380002498627, 0.2463015615940094, 0.05347047373652458, -0.37889111042022705, -0.06303573399782181, 0.06971782445907593, -0.057284194976091385, 0.09169019758701324, -0.16309531033039093, 0.2149607539176941, -0.2943844795227051, -0.24223966896533966, -0.2595788836479187, 0.07472355663776398, 0.13734623789787292, 0.09629815816879272, 0.18590351939201355, -0.20094595849514008, -0.07457105815410614, 0.06760107725858688, 0.623089611530304, 0.08540979772806168, 0.09926719963550568, 0.3722314238548279, -0.13273118436336517, 0.3359416127204895, -0.13864567875862122, -0.005020481999963522, 0.16694514453411102, -0.06740594655275345, -0.1498183012008667, 0.23953726887702942, 0.02594553492963314, -0.3132222890853882, -0.3852423429489136, 0.24055235087871552, -0.30150067806243896, -0.19897036254405975, -0.05389050394296646, -0.02087320014834404, 0.2608450949192047, 0.24068033695220947, -0.0016865163343027234, 0.10400406271219254, -0.07460295408964157, 0.024388568475842476, 0.05703284963965416, 0.04457107558846474, 0.0031951654236763716, -0.6048046946525574, 0.026720739901065826, -0.35156872868537903, 0.15912608802318573, -0.2577735185623169, 0.4119022786617279, -0.24070708453655243, -0.008532910607755184, 0.013882775790989399, -0.08647803962230682, 0.17690999805927277, -0.5102121233940125, -0.027670415118336678, 0.014934825710952282, 0.11099226027727127, -0.19242055714130402, -0.23557738959789276, -0.27454710006713867, 0.2641192674636841, 0.07852289080619812, 0.18461990356445312, -0.14298725128173828, -0.12873345613479614, 0.2427590936422348, -0.013487158343195915, 0.020748823881149292, -0.08058172464370728, 0.06306032091379166, -0.09678691625595093, -0.3988785743713379, -0.09116218984127045, 0.04460122808814049, -0.04636949300765991, -0.36870497465133667, -0.11566285789012909, 0.07933775335550308, 0.31598472595214844, -0.0858841985464096, 0.133670374751091, 0.20203876495361328, 0.047965142875909805, -0.011496982537209988, 0.2605052590370178, 0.06770730763673782, 0.1446574330329895, 0.36333727836608887, 0.22159145772457123, -0.08191971480846405, 0.19261889159679413, -0.12055423110723495, -0.04242783412337303, 0.5388208031654358, -0.17511963844299316, -0.2817951738834381, -0.10479450225830078, 0.14179956912994385, 0.008728345856070518, 0.3472476005554199, 0.2992350459098816, -0.31333211064338684, 0.020970601588487625, -0.23781734704971313, 0.19730548560619354, -0.1814102828502655, -0.16685038805007935, 0.13335020840168, -0.16425161063671112, -0.0373820923268795, 0.006274668499827385, 0.12893804907798767, 0.8680386543273926, 0.14483346045017242, 0.041103117167949677, 0.1716701239347458, -0.1048961952328682, 0.23320786654949188, -0.1474512368440628, -0.004534250590950251, -0.2011491060256958, -0.2723902761936188, 0.04247544705867767, -0.08726748824119568, 0.13091248273849487, 0.17688003182411194, -0.21600961685180664, 0.16029058396816254, 0.03247221186757088, 0.08713573962450027, -0.15215744078159332, 0.09693877398967743, -0.0012680612271651626, 0.22950240969657898, -0.16763506829738617, 0.3235168755054474, -0.05647891387343407, 0.15176904201507568, -0.2461147904396057, -0.09187112748622894, -0.1434955894947052, -0.16288606822490692, -0.3564285337924957, 0.2898540794849396, -0.0516657829284668, 0.15430790185928345, 0.01123929861932993, -0.18032005429267883, -0.0429256409406662, 0.3814532160758972, 0.13133543729782104, 0.12403873354196548, -0.3673485815525055, 0.25981420278549194, -0.01724495366215706, -0.2312890887260437, 0.0838160514831543, 0.10567408055067062, 0.16000352799892426, -0.31142809987068176, -0.27723926305770874, 0.09134365618228912, -0.16300146281719208, -0.010979822836816311, -0.35282501578330994, -0.1768672913312912, 0.28596606850624084, -0.14016616344451904, -0.2297172248363495, -0.13819825649261475, -0.11623620241880417, -0.2525806427001953, 0.2790488600730896, -0.08385965973138809, -0.22370728850364685, -0.3463154733181, 0.3273395299911499, -0.16934889554977417, -0.057697050273418427, 0.05630407854914665, 0.0639568567276001, 0.08822722733020782, 0.37012842297554016, 0.2061977982521057, -0.062180254608392715, -0.4052586555480957, 0.18423908948898315, 0.22914022207260132, -0.39340925216674805, 0.05962175503373146, -0.16184720396995544, -0.02138681709766388, 0.2566963732242584, 0.24764974415302277, -0.05336575210094452, -0.21096456050872803, 0.05786878243088722, -0.3806428015232086, -0.018285881727933884, -0.059531789273023605, -0.1610083431005478, 0.28979283571243286, -0.050001028925180435, -0.21121911704540253, 0.1830371916294098, 0.029549796134233475, -0.4641394317150116, -0.05850664898753166, -0.33931559324264526, 0.16481027007102966, -0.3402888774871826, 0.07720950990915298, -0.052079036831855774, -0.05207625404000282, 0.17250984907150269, -0.12196262925863266, -0.27856531739234924, -0.361524373292923, -0.054661981761455536, 0.09168098866939545, 0.25516313314437866, -0.2535851001739502, 0.021073272451758385, -0.13812850415706635, -0.13465389609336853, 0.14051014184951782, 0.1434345841407776, -0.23038144409656525, 0.018286176025867462, 0.09261319041252136, 0.020150700584053993, 0.023940252140164375, 0.08748052269220352, 0.10176558792591095, 0.09542938321828842, 0.3023669123649597, 0.044339653104543686, 0.11460372805595398, 0.06871876120567322, -0.23199975490570068, -0.3179430663585663, 0.005967871751636267, 0.08622923493385315, 0.4791339635848999, 0.11763438582420349, -0.2625260651111603, 0.20804226398468018, 0.012303784489631653, 0.1937863528728485, 0.24825088679790497, -0.46868082880973816, 0.2854803502559662, 0.14892630279064178, 0.3802306056022644, -0.25359058380126953, -0.10250172764062881, -0.07129652053117752, -0.0021170855034142733, -0.04052355885505676, -0.16187021136283875, 0.2719230651855469, 0.03808605298399925, 0.1705891638994217, 0.15375405550003052, 0.026166241616010666, -0.04615025594830513, 0.2621162533760071, 0.3201761543750763, -0.37989699840545654, 0.12224185466766357, -0.17087841033935547, -0.00012165944644948468, 0.039264362305402756, 0.21621941030025482, 0.07259070128202438, 0.4372935891151428, 0.3349693715572357, 0.20505984127521515, 0.3065778911113739, -0.13988763093948364, 0.12677894532680511, 0.2541254758834839, 0.18115133047103882, 0.2138209044933319, -0.03612615540623665, 0.026357201859354973, -0.26868051290512085, -0.16444386541843414, -0.2801772654056549, 0.1193191260099411, 0.040275540202856064, 0.017068536952137947, -0.2899395525455475, -0.2994575500488281, -0.2605132460594177, 0.0391092449426651, -0.12773482501506805, -0.11997973173856735, 0.007824273779988289, -0.0688193216919899, -0.1869894564151764, -0.3241328299045563, 0.33644887804985046, 0.1578708291053772, -0.03299853578209877, -0.11217167228460312, 0.3772617280483246, 0.04386270418763161, -0.13664142787456512, 0.23843558132648468, 0.5030643343925476, 0.3806137442588806, 0.36722615361213684, -0.23982149362564087, -0.013041647151112556, 0.07304732501506805, -0.07885511964559555, 0.005191470496356487, 0.0679343044757843, 0.24013587832450867, -0.07565149664878845, 0.4011608958244324, 0.2593038082122803, -0.19294603168964386, 0.17420309782028198, 0.2846860885620117, 0.04875972121953964, -0.0909428820014, -0.07255546748638153, -0.19080686569213867, 0.10580285638570786, -0.02525297924876213, -0.3271613121032715, -0.2807621359825134, 0.03862675651907921, 0.13424935936927795, -0.03002237342298031, 0.18848948180675507, -0.27349451184272766, 0.17094868421554565, -0.1840057075023651, 0.595134437084198, 0.08790750801563263, 0.25178542733192444, -0.09254588186740875, -0.5342867374420166, -0.5470657348632812, 0.2486831247806549, -0.09674254059791565, -0.0746893659234047, 0.15314604341983795, -0.030512448400259018, 0.26962780952453613, 0.2860684096813202, 0.05128636583685875, 0.07998927682638168, -0.14881335198879242, 0.2649141252040863, -0.5765100717544556, -0.018991880118846893, 0.09922786056995392, 0.2678033411502838, 0.009133403189480305, -0.23197762668132782, 0.13177582621574402, -0.10628404468297958, 0.09715873003005981, 0.32703691720962524, -0.020054200664162636, 0.06819958984851837, -0.07297701388597488, 0.4364088177680969, 0.06434886157512665, 0.36928847432136536, -0.23292052745819092, -0.2746250033378601, -0.2033754587173462, -0.13245272636413574, -0.198307603597641, 0.10448984801769257, 0.11429104954004288, 0.1928531378507614, 0.07953675836324692, 0.06595709174871445, 0.051696211099624634, -0.09229791164398193, 0.0949280709028244, 0.040688931941986084, -0.33760637044906616, -0.07710719853639603, 0.07682626694440842, 0.021775417029857635, 0.1538316160440445, -0.08042123168706894, -0.172263041138649, -0.12884999811649323, -0.22119085490703583, -0.11580237746238708, 0.5106817483901978, -0.04353463649749756, -0.2114216834306717, -0.07105539739131927, 0.007559376768767834, 0.0878862515091896, -0.09366268664598465, -0.38440680503845215, 0.0481378398835659, 0.14462149143218994, -0.05204346776008606, 0.09143045544624329, 0.12576347589492798, 0.18575793504714966, 0.016451936215162277, -0.024996956810355186, 0.5657557845115662, 0.16931399703025818, -0.22482699155807495, 0.003962246235460043, -0.12324608117341995 ]
https://github.com/huggingface/datasets/issues/296
snli -1 labels
@jxmorris12 , we use `-1` to label examples for which `gold label` is missing (`gold label = -` in the original dataset).
I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ```
22
snli -1 labels I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ``` @jxmorris12 , we use `-1` to label examples for which `gold label` is missing (`gold label = -` in the original dataset).
[ 0.4284369647502899, -0.322036474943161, -0.07235008478164673, 0.2394533008337021, 0.21637772023677826, 0.14638860523700714, 0.5796834826469421, 0.16553576290607452, 0.17036321759223938, 0.1855381429195404, -0.19042900204658508, 0.3528851270675659, -0.15023529529571533, 0.08440101146697998, 0.2737317681312561, 0.007783535867929459, 0.42015311121940613, 0.27410849928855896, 0.35146135091781616, -0.4586467444896698, -0.17099983990192413, 0.13829132914543152, -0.15224555134773254, 0.31282246112823486, -0.4414058327674866, 0.3461146056652069, 0.0009131638798862696, -0.38704347610473633, -0.018064921721816063, -0.7808857560157776, 0.1705102026462555, -0.052124425768852234, 0.24947762489318848, -0.20460481941699982, -0.00011848997382912785, -0.28295642137527466, 0.11125533282756805, 0.10014184564352036, -0.6039984226226807, -0.12913839519023895, -0.14780430495738983, -0.20917247235774994, 0.2700715959072113, -0.02263062819838524, -0.056176140904426575, -0.22350001335144043, 0.25704383850097656, 0.12134339660406113, -0.03771413862705231, 0.24866554141044617, 0.1201033815741539, 0.007454360835254192, -0.39624103903770447, 0.22410498559474945, 0.26312723755836487, -0.2490137368440628, 0.0693388357758522, 0.02331884391605854, 0.010257916525006294, -0.1695573925971985, 0.41048064827919006, 0.4804101288318634, -0.1212422102689743, -0.16331838071346283, 0.15867900848388672, 0.07581881433725357, 0.2860765755176544, -0.3415984809398651, -0.0064108953811228275, 0.22402538359165192, 0.09168235212564468, -0.2839530110359192, -0.2545430064201355, -0.3441046476364136, 0.20203366875648499, -0.2572906017303467, -0.23164471983909607, 0.1768644154071808, 0.36292439699172974, 0.012536764144897461, -0.18316486477851868, 0.013428742066025734, -0.1046055257320404, 0.11068744957447052, 0.2206532508134842, 0.6899820566177368, 0.1222342699766159, 0.2554948031902313, 0.3940926492214203, 0.23378339409828186, -0.23951534926891327, -0.0751243606209755, 0.03525875508785248, 0.409728467464447, -0.5185239315032959, -0.2892341613769531, 0.026358770206570625, 0.0373355932533741, -0.03613928332924843, 0.19921782612800598, -0.014205367304384708, -0.13239900767803192, -0.1135493814945221, 0.049819618463516235, 0.09856055676937103, 0.03400253504514694, 0.38281363248825073, 0.23380644619464874, 0.0019424287602305412, -0.21103809773921967, 0.27144137024879456, 0.037879813462495804, -0.2870957851409912, -0.05079519748687744, 0.43600499629974365, -0.08399629592895508, -0.23531340062618256, -0.1152167022228241, -0.14647884666919708, -0.02897433005273342, -0.48384496569633484, -0.016802802681922913, 0.1664532870054245, -0.2647251486778259, 0.1997203826904297, 0.243399977684021, -0.2316463142633438, 0.05991783365607262, -0.11011810600757599, -0.48509252071380615, -0.14736627042293549, 0.029176343232393265, -0.12752962112426758, -0.09465207159519196, 0.08639416098594666, -0.19763533771038055, 0.1781769096851349, 0.027248427271842957, -0.3649910092353821, -0.09378474950790405, 0.372490793466568, 0.10107675194740295, -0.05017823353409767, 0.3409380614757538, -0.3068792223930359, 0.6312387585639954, -0.06134745106101036, -0.14267024397850037, -0.08958073705434799, -0.1582086831331253, -0.22099603712558746, -0.31804805994033813, 0.02004501409828663, 0.16402871906757355, 0.04415448382496834, -0.2355019897222519, 0.06947638094425201, 0.12587939202785492, -0.01167825423181057, -0.14528967440128326, 0.12688300013542175, -0.26023223996162415, -0.08305950462818146, -0.02596958726644516, 0.06306183338165283, -0.0034207317512482405, -0.1305021047592163, -0.14613258838653564, -0.0012305212439969182, -0.2816195785999298, 0.3323376476764679, 0.4053995907306671, -0.07142621278762817, -0.10505740344524384, 0.07506201416254044, 0.06983418762683868, 0.4805375337600708, -0.37348127365112305, -0.3728364408016205, 0.15434278547763824, -0.25539013743400574, -0.4819989502429962, -0.03012123331427574, 0.6453999280929565, -0.184307262301445, -0.028885507956147194, 0.0026407239492982626, -0.17713944613933563, 0.053197309374809265, -0.13754969835281372, -0.37072083353996277, 0.08681587874889374, 0.5049747228622437, 0.226497083902359, -0.05128149688243866, -0.025872545316815376, -0.38039907813072205, 0.11615052074193954, 0.3642607629299164, -0.07194669544696808, 0.16277927160263062, 0.02994672581553459, 0.269273966550827, 0.1729637235403061, 0.17089104652404785, 0.04422194883227348, -0.19666117429733276, 0.17850430309772491, -0.057838115841150284, 0.44211912155151367, 0.4727392792701721, 0.04122956469655037, -0.08828198164701462, -0.10187777876853943, -0.12166258692741394, -0.11067628860473633, 0.05367399752140045, 0.1870276927947998, 0.20118463039398193, -0.06381016224622726, -0.13424663245677948, 0.06882017105817795, -0.15888692438602448, 0.1239442229270935, -0.34224939346313477, -0.020610500127077103, 0.05809146538376808, 0.08119916170835495, -0.19159206748008728, 0.24226616322994232, 0.32309865951538086, 0.16152386367321014, 0.12243255972862244, 0.08022649586200714, -0.1514073610305786, -0.2654777765274048, 0.23201753199100494, 0.39968159794807434, 0.17412623763084412, -0.2977234721183777, 0.0530991330742836, 0.4022231698036194, 0.06530853360891342, -0.2728528380393982, -0.0711689367890358, 0.12251557409763336, -0.01212320663034916, 0.21923212707042694, -0.2900402545928955, 0.14576369524002075, 0.1062534898519516, 0.20038972795009613, -0.3209223747253418, -0.24414806067943573, 0.12839838862419128, -0.3559904396533966, 0.08736290037631989, 0.3305926024913788, -0.3314162492752075, 0.06432662159204483, 0.042399343103170395, -0.1731131374835968, -0.04588254168629646, 0.09961694478988647, -0.12291830033063889, -0.13101647794246674, 0.34079399704933167, 0.06932782381772995, 0.11921526491641998, 0.21575148403644562, -0.06956694275140762, -0.009683417156338692, -0.5985790491104126, -0.23975883424282074, 0.1104307696223259, 0.10058338940143585, -0.21638549864292145, -0.24156062304973602, 0.3826271593570709, 0.06104668974876404, -0.2787591516971588, -0.5435174703598022, -0.2947511672973633, 0.21735507249832153, -0.24281755089759827, 0.2016546130180359, -0.13936570286750793, -0.40475282073020935, -0.4046647548675537, -0.27777519822120667, -0.10122843831777573, -0.15193229913711548, 0.27741333842277527, -0.28947189450263977, 0.19860361516475677, 0.04490524157881737, 0.07574538886547089, 0.22326728701591492, -0.19362372159957886, 0.43439188599586487, -0.2699824273586273, -0.20433369278907776, -0.33948850631713867, -0.05699251592159271, -0.36402928829193115, 0.027794715017080307, 0.23828117549419403, -0.09087596833705902, -0.3378666639328003, -0.009052468463778496, -0.23545275628566742, -0.09371697157621384, -0.1507403701543808, -0.09953010827302933, 0.17838750779628754, -0.14490218460559845, -0.21056297421455383, 0.38575446605682373, 0.00335946143604815, 0.15524321794509888, 0.017958499491214752, 0.1333085000514984, -0.2987651526927948, 0.11115016788244247, -0.3893032371997833, -0.13976676762104034, -0.053563568741083145, 0.2671802043914795, 0.1522258222103119, 0.08300802856683731, 0.14538729190826416, 0.4180041551589966, -0.10876594483852386, 0.05650990828871727, -0.12559789419174194, 0.31793197989463806, -0.13659633696079254, -0.31297463178634644, 0.06496340036392212, 0.2428855150938034, -0.02453635446727276, -0.034625038504600525, 0.12623493373394012, -0.03092898800969124, -0.3222070634365082, -0.403883159160614, 0.08780975639820099, 0.1511194407939911, -0.1705160290002823, -0.021857857704162598, 0.04039726406335831, -0.09443826973438263, 0.24828390777111053, 0.10874000936746597, -0.06426768749952316, 0.11752369999885559, 0.22059324383735657, -0.15932407975196838, 0.491018682718277, -0.31289219856262207, 0.1855701059103012, -0.1263468712568283, -0.019329512491822243, 0.5070951581001282, -0.08164875954389572, 0.06443383544683456, 0.019432291388511658, -0.17547579109668732, -0.09441519528627396, 0.003892257111147046, 0.32160690426826477, 0.29235464334487915, -0.06558681279420853, 0.35404661297798157, -0.06133732944726944, -0.012218549847602844, 0.013100488111376762, 0.231455460190773, 0.3084683418273926, 0.13598425686359406, -0.09614037722349167, -0.09068910032510757, -0.06440044194459915, -0.07721829414367676, -0.23301775753498077, -0.18295499682426453, 0.006727500353008509, -0.15956231951713562, -0.11795192211866379, -0.030778495594859123, 0.2115192413330078, -0.353569895029068, -0.2933380603790283, -0.19930225610733032, -0.19758178293704987, 0.04198693856596947, 0.20098480582237244, 0.19042743742465973, 0.2532200217247009, 0.34690621495246887, 0.4513166546821594, 0.5280635356903076, -0.41172805428504944, 0.1360704004764557, 0.17080219089984894, 0.4598352015018463, -0.3179309666156769, -0.1705053746700287, -0.3953027129173279, -0.24225884675979614, 0.5076137185096741, 0.3429151773452759, 0.035154566168785095, -0.2855623960494995, 0.49060550332069397, 0.11880266666412354, -0.14197970926761627, -0.1873473972082138, -0.37004992365837097, -0.15891878306865692, 0.1474745124578476, -0.12221524119377136, -0.06029271334409714, -0.0016447479138150811, -0.08892688900232315, 0.03278129920363426, 0.03899729251861572, -0.06674440950155258, 0.17910023033618927, 0.12498703598976135, -0.09247013926506042, 0.3167530298233032, -0.023619187995791435, 0.2637504041194916, 0.15024334192276, -0.22141942381858826, 0.3227815330028534, -0.08093348145484924, -0.5003842115402222, -0.11042928695678711, -0.03611324727535248, 0.5688655376434326, -0.052807170897722244, 0.16314661502838135, -0.15160967409610748, -0.1663205474615097, 0.12892326712608337, -0.1146496906876564, 0.11874480545520782, 0.2864685356616974, 0.1708453893661499, -0.3608551025390625, -0.5239191055297852, 0.7567546963691711, 0.12848223745822906, -0.23638856410980225, 0.03320727497339249, -0.226627379655838, -0.24644804000854492, 0.28461959958076477, 0.3165576159954071, 0.8278554081916809, -0.086728535592556, 0.19370949268341064, 0.17113251984119415, -0.5426456332206726, 0.7377097010612488, -0.14588046073913574, -0.09431952983140945, -0.29760846495628357, 0.1872485727071762, 0.06833572685718536, 0.1426670402288437, -0.3443261981010437, 0.6471420526504517, 0.220302015542984, 0.36243870854377747, -0.05332132428884506, -0.1575542837381363, 0.23816989362239838, 0.030114781111478806, 0.5198008418083191, -0.14377403259277344, -0.2588643729686737, 0.07728009670972824, -0.09723252803087234, 0.06213461235165596, -0.2950022220611572, 0.04299990087747574, 0.16008494794368744, -0.01889345608651638, -0.008338742889463902, -0.31288930773735046, 0.3336397707462311, 0.01064554788172245, 0.24203024804592133, 0.030686529353260994, -0.2397782951593399, 0.3733060956001282, 0.6426191329956055, 0.12604357302188873, 0.01525193266570568, -0.09820175915956497, 0.151576966047287, 0.23967954516410828, -0.04404662176966667, 0.1718330681324005, 0.42698368430137634, -0.003946130163967609, -0.23665335774421692, -0.09855686873197556, 0.08617888391017914, 0.3245222866535187, -0.44287917017936707, -0.024927616119384766, -0.26099419593811035, 0.239754781126976, 0.18580271303653717, 0.08802667260169983, 0.129747211933136, -0.22001329064369202, 0.1239403709769249, 0.20141418278217316, -0.25349482893943787, -0.13741903007030487, -0.06246311217546463, -0.31232285499572754, -0.19252747297286987, 0.24765916168689728, 0.16449640691280365, 0.16971679031848907, 0.10507095605134964, -0.09639254212379456, -0.061398882418870926, -0.10755135864019394, -0.044947199523448944, 0.1630549132823944, -0.43713897466659546, 0.14337559044361115, 0.1855718046426773, -0.05269366502761841, -0.1781574785709381, 0.2972719967365265, 0.04932013154029846, 0.028577156364917755, 0.16518646478652954, -0.04418489709496498, -0.40840792655944824, -0.25846096873283386, -0.23348721861839294, 0.23230403661727905, 0.024025334045290947, 0.12253867834806442, 0.07786340266466141, -0.11577072739601135, -0.2326526641845703, -0.30474239587783813, -0.3286302089691162, 0.40379440784454346, -0.06447184830904007, 0.11571439355611801, -0.3726021945476532, 0.23196808993816376, 0.16439834237098694, -0.14961637556552887, 0.06678266823291779, -0.10291440039873123, -0.1187082827091217, 0.15555530786514282, 0.130763441324234, -0.06192931905388832, -0.06856719404459, 0.27007800340652466, -0.1134970411658287, 0.06766854971647263, -0.04476986080408096, 0.15812432765960693, 0.2739683985710144, 0.8259965181350708, -0.19831308722496033, -0.06518103182315826, 0.09306411445140839, -0.10752987861633301, 0.03446296602487564, -0.04901430383324623, 0.18306300044059753, -0.004762635566294193, 0.2388303279876709, -0.03631727397441864, -0.33588454127311707, 0.03412516415119171, -0.3662406802177429, -0.09981357306241989, -0.027898922562599182, -0.3548503816127777, 0.5007497072219849, 0.3900422155857086, 0.17719289660453796, 0.13065825402736664, -0.15921081602573395, -0.10077337175607681, 0.32264795899391174, 0.161051943898201, -0.015470672398805618, -0.14435552060604095, 0.3236384689807892, 0.2663090229034424, -0.1328851580619812, 0.17088474333286285, -0.009012890048325062, -0.2163245975971222, -0.07792119681835175, -0.1670885533094406, 0.053846586495637894, -0.41350796818733215, -0.006783515214920044, 0.31447672843933105, -0.05232978239655495, -0.07292625308036804, 0.20956508815288544, -0.11440164595842361, -0.052961111068725586, 0.4292704463005066, -0.08709213882684708, 0.35969048738479614, 0.1496717631816864, 0.00444284500554204, -0.26100993156433105, 0.3264990746974945, -0.24332450330257416, 0.30399274826049805, -0.5721049904823303, 0.14336352050304413, -0.04326017200946808, 0.1583162099123001, -0.11235851794481277, -0.011762205511331558, 0.2700255215167999, 0.15382207930088043, -0.19343875348567963, -0.25394877791404724, -0.6602361798286438, 0.37648916244506836, -0.15800346434116364, 0.3186728060245514, -0.1989758163690567, 0.0066093807108700275, 0.13754862546920776, 0.07336379587650299, 0.016258476302027702, -0.4448855221271515, -0.34406527876853943, 0.3040148615837097, 0.4286312460899353, -0.18470458686351776, -0.06506293267011642, -0.08347298949956894, -0.06229556351900101, 0.036038488149642944, -0.22500689327716827, 0.19164933264255524, 0.06944109499454498, 0.2670173645019531, -0.03612061217427254, -0.39365455508232117, -0.06367112696170807, -0.14850494265556335, 0.05413653329014778, 0.29234376549720764, 0.08508777618408203, 0.09183947741985321, -0.021030016243457794, -0.04213344305753708, 0.5177642107009888, -0.10643769055604935, 0.05947207286953926, -0.4241497814655304, 0.3440137207508087, -0.10120650380849838, -0.4397439956665039, -0.3080054223537445, 0.070856474339962, -0.1951526403427124, 0.16184939444065094, 0.06135023385286331, 0.21989023685455322, 0.1738259643316269, -0.3444455564022064, 0.048126596957445145, -0.10168437659740448, 0.367390513420105, 0.018078234046697617, -0.01194250863045454, -0.063600555062294, -0.03802011162042618, -0.3053797483444214, -0.09800925850868225, -0.10970836132764816, 0.018185768276453018, 0.12456978112459183, -0.02732086554169655, -0.41324108839035034, -0.035494353622198105, 0.029525382444262505, 0.3789497911930084, -0.012074430473148823, 0.05779829993844032, 0.02640780247747898, 0.056325461715459824, -0.20313599705696106, 0.13884375989437103, 0.05117177218198776, 0.19747553765773773, 0.04913286119699478, -0.21895992755889893, 0.012661255896091461, -0.028322115540504456, 0.18656285107135773, -0.13768425583839417, 0.38923466205596924, 0.1794740855693817, 0.004266471602022648, 0.39033669233322144, 0.2284800410270691, 0.18998487293720245, -0.2603657841682434, 0.08868088573217392, -0.2987477779388428, 0.0385255329310894, -0.19589392840862274, 0.21794115006923676, -0.11114214360713959, 0.2162514179944992, 0.039323192089796066, -0.039480529725551605, 0.287275493144989, -0.04649965837597847, -0.4199911952018738, 0.21909013390541077, -0.0755968764424324, 0.1324479728937149, -0.007036842871457338, 0.01590205915272236, 0.45992448925971985, -0.13286279141902924, -0.1711118221282959, -0.40887540578842163, 0.2925472557544708, -0.2253914326429367, -0.09675344079732895, 0.010684102773666382, 0.29125913977622986, 0.2761576771736145, -0.06524156033992767, -0.7549910545349121, -0.1509406566619873, 0.43030133843421936, 0.04971778020262718, -0.5622780919075012, 0.11530185490846634, 0.2581782341003418, 0.108859121799469, 0.005846649408340454, -0.05532598868012428, 0.22740735113620758, 0.33286213874816895, 0.40135374665260315, -0.4327887296676636 ]
https://github.com/huggingface/datasets/issues/296
snli -1 labels
Thanks @mariamabarham! so the original dataset is missing some labels? That is weird. Is standard practice just to discard those examples training/eval?
I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ```
22
snli -1 labels I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ``` Thanks @mariamabarham! so the original dataset is missing some labels? That is weird. Is standard practice just to discard those examples training/eval?
[ 0.3789803087711334, -0.2363891750574112, 0.002203544368967414, 0.19780559837818146, 0.16761687397956848, 0.22788235545158386, 0.6327142119407654, 0.17202207446098328, 0.04842032864689827, 0.11039801687002182, -0.1079237312078476, 0.3746732473373413, -0.22194641828536987, 0.14969488978385925, 0.19423620402812958, 0.1201867088675499, 0.3345720171928406, 0.3273703157901764, 0.32620683312416077, -0.4975581169128418, -0.1646403968334198, 0.1366201639175415, -0.10910124331712723, 0.2648754417896271, -0.4185906648635864, 0.23733453452587128, -0.15384812653064728, -0.3429221212863922, 0.10450252145528793, -0.646228015422821, 0.21992695331573486, -0.1023126021027565, 0.42179080843925476, -0.28093817830085754, -0.00012166708620497957, -0.2675632834434509, 0.05438527464866638, -0.01705213263630867, -0.5345321893692017, 0.013919703662395477, -0.07294829934835434, -0.19387078285217285, 0.2907182276248932, -0.10572835057973862, -0.07979762554168701, -0.19854071736335754, 0.24333825707435608, 0.00828605517745018, 0.07407920807600021, 0.29169762134552, 0.12089851498603821, -0.007320189382880926, -0.4337943196296692, 0.3430730700492859, 0.34377312660217285, -0.22768664360046387, 0.06303707510232925, 0.08631643652915955, 0.020141558721661568, -0.07729023694992065, 0.46422111988067627, 0.4380052983760834, -0.11586088687181473, -0.2857218086719513, 0.17432770133018494, 0.13083511590957642, 0.42744898796081543, -0.38704144954681396, 0.0074045308865606785, 0.25461140275001526, 0.14398489892482758, -0.1291530728340149, -0.3260563015937805, -0.4347470998764038, 0.24930399656295776, -0.3112300932407379, -0.23609213531017303, 0.21969564259052277, 0.30170223116874695, 0.15113835036754608, -0.28292185068130493, -0.05166555941104889, -0.18891893327236176, 0.14142940938472748, 0.12954626977443695, 0.6374173164367676, 0.11013427376747131, 0.1782872974872589, 0.13658148050308228, 0.226998969912529, -0.13424840569496155, -0.11056750267744064, -0.012063045985996723, 0.376901239156723, -0.3886619210243225, -0.2018812894821167, 0.0016418019076809287, 0.025168275460600853, -0.08315069228410721, 0.23637619614601135, 0.05369025096297264, -0.0864015519618988, 0.07082711160182953, 0.06043626368045807, 0.18551404774188995, 0.14932262897491455, 0.46044811606407166, 0.3609255254268646, -0.0067779929377138615, -0.20381027460098267, 0.23742741346359253, -0.017834095284342766, -0.43187811970710754, 0.07513303309679031, 0.28643304109573364, -0.11907370388507843, -0.15249715745449066, -0.20759102702140808, -0.1685069054365158, -0.008001688867807388, -0.5624998211860657, 0.05498052388429642, 0.08528266102075577, -0.12432737648487091, 0.07340721040964127, 0.29666322469711304, -0.23001214861869812, 0.10543179512023926, -0.15785084664821625, -0.6040852069854736, -0.12770405411720276, 0.1315525621175766, -0.17731299996376038, -0.2071240097284317, 0.19951008260250092, -0.2129681259393692, 0.23791158199310303, -0.011701272800564766, -0.34590980410575867, -0.06301145255565643, 0.4673311412334442, 0.05776224657893181, 0.17290133237838745, 0.3453714847564697, -0.13117896020412445, 0.531272292137146, -0.062060266733169556, -0.1381404548883438, -0.07480606436729431, 0.02976946346461773, -0.21549800038337708, -0.33280032873153687, 0.18160538375377655, 0.1727149486541748, -0.1253916621208191, -0.15301473438739777, 0.04544555023312569, 0.14676985144615173, 0.08497994393110275, -0.23307693004608154, 0.05829599127173424, -0.3490654528141022, 0.04291745275259018, -0.09430821985006332, 0.15685005486011505, 0.00987956952303648, -0.1807921826839447, -0.12342432141304016, 0.003013386856764555, -0.1748470813035965, 0.3881749212741852, 0.4391433000564575, -0.08881407976150513, 0.05851258710026741, -0.051350485533475876, 0.08467148244380951, 0.5011434555053711, -0.27366963028907776, -0.2654494047164917, 0.11332445591688156, -0.10756490379571915, -0.2903260290622711, -0.11853548139333725, 0.5133689045906067, 0.010310104116797447, -0.02208457700908184, -0.026220235973596573, -0.05764997750520706, -0.046939242631196976, -0.1908295601606369, -0.4078170955181122, 0.043990857899188995, 0.5144599676132202, 0.15849682688713074, -0.10348770767450333, 0.13258711993694305, -0.4626443684101105, 0.11769458651542664, 0.3830079138278961, -0.17689195275306702, 0.18461699783802032, 0.11847306787967682, 0.2052667737007141, 0.1556287556886673, 0.07375793159008026, 0.07111000269651413, -0.2450222223997116, 0.20191149413585663, -0.09622206538915634, 0.2569849491119385, 0.5588253140449524, -0.1285277158021927, -0.03602736070752144, -0.1826656311750412, -0.1530182808637619, -0.28609156608581543, 0.0586610808968544, 0.1514592170715332, 0.16417407989501953, -0.03859705105423927, -0.18274278938770294, 0.11583153903484344, -0.2991257607936859, 0.08031126856803894, -0.4682605564594269, -0.025893770158290863, 0.11079664528369904, 0.08762627094984055, -0.1554863452911377, 0.268387109041214, 0.21601979434490204, 0.023261532187461853, 0.17583435773849487, 0.09779207408428192, -0.09764301031827927, -0.21835686266422272, 0.11025456339120865, 0.24687731266021729, 0.0685354694724083, -0.27578482031822205, 0.09640573710203171, 0.420738160610199, 0.010860873386263847, -0.2066677063703537, -0.20598995685577393, 0.26844674348831177, 0.007992880418896675, 0.22700892388820648, -0.10758548229932785, 0.08825492113828659, 0.07339096814393997, 0.07654067128896713, -0.34252750873565674, -0.15689104795455933, 0.143741175532341, -0.30225855112075806, 0.13474904000759125, 0.2816455662250519, -0.37677496671676636, 0.018183032050728798, 0.03382324054837227, -0.1499396413564682, -0.046587806195020676, 0.13388335704803467, -0.14937104284763336, -0.1522815078496933, 0.3809712827205658, 0.011432665400207043, 0.16329450905323029, 0.2967982888221741, 0.11020533740520477, 0.007357488851994276, -0.49067723751068115, -0.17888429760932922, 0.23809252679347992, 0.14337393641471863, -0.24976643919944763, -0.18358369171619415, 0.3590715229511261, 0.14493288099765778, -0.37708407640457153, -0.47805437445640564, -0.2569276690483093, 0.21298767626285553, -0.2778192460536957, 0.2787249684333801, -0.15151384472846985, -0.44872555136680603, -0.2847847640514374, -0.1748628467321396, -0.13729457557201385, -0.22568202018737793, 0.26763084530830383, -0.2786775529384613, 0.07919459044933319, 0.0603087916970253, 0.11532813310623169, 0.28105318546295166, -0.30828118324279785, 0.40001508593559265, -0.14655770361423492, -0.2746139168739319, -0.5887210965156555, -0.0012310673482716084, -0.44732123613357544, 0.07784656435251236, 0.20338109135627747, -0.1895955353975296, -0.4071708619594574, 0.010083241388201714, -0.27981579303741455, -0.04986707866191864, -0.016585351899266243, -0.05195724591612816, 0.15740808844566345, -0.02764963172376156, -0.27754923701286316, 0.3261583149433136, -0.08079244941473007, 0.1119641438126564, -0.01245131529867649, 0.043721944093704224, -0.17878471314907074, 0.13604913651943207, -0.4149356186389923, -0.27563512325286865, -0.04657812789082527, 0.18764817714691162, 0.24553683400154114, 0.15911632776260376, 0.11081817001104355, 0.4958164393901825, -0.09896028786897659, 0.01942647248506546, -0.13185985386371613, 0.23229999840259552, -0.14000114798545837, -0.2537878751754761, 0.1410229653120041, 0.14778152108192444, -0.10400757193565369, -0.001457078498788178, 0.0027142923790961504, -0.006684637162834406, -0.13981333374977112, -0.3399151563644409, 0.06743598729372025, 0.24945317208766937, -0.1703871637582779, -0.09085989743471146, 0.05149995535612106, 0.02194168046116829, 0.13298286497592926, 0.21892273426055908, -0.058600522577762604, 0.07187703996896744, 0.3512076437473297, -0.18908238410949707, 0.3821302056312561, -0.2982613146305084, 0.17685191333293915, -0.10047972202301025, 0.03707599267363548, 0.45770785212516785, -0.05185374245047569, -0.005830254405736923, -0.04743730649352074, -0.02918233908712864, 0.023192092776298523, 0.19065596163272858, 0.3272816240787506, 0.11975600570440292, -0.2978256344795227, 0.33432069420814514, 0.054596878588199615, 0.040574003010988235, -0.06138598546385765, 0.28180694580078125, 0.17985886335372925, -0.021821847185492516, -0.08165832608938217, -0.14258694648742676, 0.030879300087690353, 0.10000348091125488, -0.18865317106246948, -0.20833435654640198, 0.03757038339972496, -0.11641931533813477, -0.08895445615053177, 0.0256187841296196, 0.14568473398685455, -0.5623360872268677, -0.264572411775589, -0.2910386621952057, -0.09640470892190933, 0.026838315650820732, 0.2349053919315338, 0.2702006995677948, 0.09196890890598297, 0.2787652313709259, 0.30797263979911804, 0.5773763656616211, -0.45419231057167053, 0.10105288028717041, 0.21699103713035583, 0.4372354745864868, -0.3506586253643036, -0.26707714796066284, -0.43105512857437134, -0.24279317259788513, 0.592447817325592, 0.18378818035125732, 0.06316888332366943, -0.17830626666545868, 0.4404778778553009, 0.21135669946670532, -0.1671168953180313, -0.009117549285292625, -0.3676309883594513, -0.2801329493522644, 0.15149229764938354, -0.22551830112934113, 0.09987206757068634, -0.2316170185804367, -0.1847836971282959, 0.03779534995555878, -0.029949910938739777, -0.03869570046663284, 0.27093684673309326, 0.1719343364238739, 0.06625831127166748, 0.20849919319152832, 0.05247983708977699, 0.1953190416097641, 0.23767147958278656, -0.19297677278518677, 0.4753510653972626, -0.10046539455652237, -0.5855264067649841, -0.05824252963066101, -0.19158613681793213, 0.6324007511138916, 0.050311312079429626, 0.16608738899230957, -0.26001861691474915, -0.2560631334781647, 0.025766678154468536, -0.04163429141044617, 0.19959913194179535, 0.3217671513557434, 0.05998742952942848, -0.24062998592853546, -0.4686696529388428, 0.6235414147377014, 0.16899138689041138, -0.2375260442495346, 0.07834437489509583, -0.4431009292602539, -0.33507269620895386, 0.2247922718524933, 0.2869836091995239, 0.88568514585495, 0.12620224058628082, 0.3661867082118988, 0.3354712128639221, -0.33730438351631165, 0.8705612421035767, -0.18799780309200287, 0.012724763713777065, -0.3058096170425415, 0.11859966814517975, 0.07003746926784515, 0.08234792202711105, -0.22791504859924316, 0.6563937067985535, 0.2238606959581375, 0.39905187487602234, -0.09816767275333405, -0.15518051385879517, 0.2914149761199951, 0.10504788905382156, 0.51240074634552, -0.06647565215826035, -0.4091571271419525, 0.03502606227993965, 0.015216267667710781, 0.02872515097260475, -0.33840882778167725, 0.09990667551755905, 0.09556343406438828, -0.07263844460248947, 0.13506199419498444, -0.08361075818538666, 0.31463900208473206, 0.08523005992174149, 0.20307880640029907, 0.040964365005493164, -0.21028217673301697, 0.38416555523872375, 0.6445976495742798, 0.1013748049736023, 0.015899380668997765, -0.07584229856729507, 0.10294198989868164, 0.19863319396972656, -0.009977358393371105, 0.15619158744812012, 0.33243104815483093, -0.03767945244908333, -0.12385977804660797, -0.061792269349098206, -0.08712148666381836, 0.3406484127044678, -0.4597952365875244, -0.013242136687040329, -0.2539183497428894, 0.09862995147705078, 0.19668346643447876, 0.12011951208114624, 0.11160197854042053, -0.20673514902591705, 0.09159434586763382, 0.21020957827568054, -0.2533971965312958, -0.13354340195655823, -0.08844784647226334, -0.23591968417167664, -0.2024582475423813, 0.2868644595146179, 0.24571919441223145, 0.12320835888385773, 0.2502734661102295, -0.11677920818328857, 0.0769655779004097, -0.06726931780576706, 0.06561513245105743, 0.13563692569732666, -0.4576825499534607, 0.10382171720266342, 0.0951974093914032, -0.03799029067158699, -0.08269090950489044, 0.39623764157295227, 0.1526854783296585, 0.046647850424051285, 0.12682850658893585, -0.009704329073429108, -0.34433647990226746, -0.13379739224910736, -0.14814618229866028, 0.21087852120399475, 0.08223112672567368, 0.20095597207546234, 0.05582951381802559, -0.23241858184337616, -0.236139178276062, -0.239350363612175, -0.30156877636909485, 0.45749714970588684, 0.0366840660572052, 0.08519508689641953, -0.2945259213447571, 0.11025957018136978, 0.0999089851975441, -0.12459629774093628, 0.12620389461517334, -0.1113538146018982, -0.09420329332351685, 0.16199031472206116, 0.10656814277172089, -0.05922966077923775, 0.009596098214387894, 0.3082391321659088, -0.22138342261314392, 0.10640238225460052, -0.1534726470708847, 0.08174318075180054, 0.21119706332683563, 0.7996439337730408, -0.3170278072357178, -0.009531836025416851, 0.0008496266091242433, -0.08024933934211731, -0.08868832141160965, -0.025413403287529945, 0.15480586886405945, 0.01842920482158661, 0.29774507880210876, -0.04850972816348076, -0.31814050674438477, -0.04093832150101662, -0.4460305869579315, -0.09159792959690094, -0.032710328698158264, -0.36586010456085205, 0.5111552476882935, 0.21651528775691986, 0.08758524805307388, 0.36265280842781067, -0.24007408320903778, -0.12910838425159454, 0.35613813996315, 0.1767561435699463, -0.14727066457271576, -0.10372611880302429, 0.27478843927383423, 0.11898667365312576, -0.2216213494539261, 0.2710150182247162, -0.011451956816017628, -0.11412404477596283, -0.014825227670371532, -0.17530429363250732, 0.06869012862443924, -0.3968210518360138, 0.004042868036776781, 0.3071717917919159, -0.14141856133937836, 0.030705545097589493, 0.07072987407445908, -0.06785400211811066, -0.012755089439451694, 0.35859566926956177, -0.08021262288093567, 0.3504014015197754, 0.10297635942697525, 0.06368305534124374, -0.26067453622817993, 0.06313180923461914, -0.26401832699775696, 0.3453328609466553, -0.5192775726318359, 0.2897834777832031, -0.02082689106464386, 0.12851671874523163, -0.11852031201124191, -0.16622640192508698, 0.22121311724185944, 0.11086485534906387, -0.22672311961650848, -0.24588000774383545, -0.6276054978370667, 0.27414894104003906, -0.14370234310626984, 0.21108011901378632, -0.15007589757442474, 0.028396179899573326, 0.15617629885673523, 0.12123014777898788, 0.0291352029889822, -0.45442289113998413, -0.3073247969150543, 0.1885608583688736, 0.42315077781677246, -0.14603720605373383, -0.04799318686127663, -0.07898005098104477, -0.07878206670284271, 0.014900625683367252, -0.16474810242652893, 0.24164240062236786, 0.03918596729636192, 0.30863356590270996, -0.015748854726552963, -0.31571707129478455, -0.041315462440252304, -0.19690445065498352, 0.00043395222746767104, 0.37845101952552795, 0.06294838339090347, 0.17169007658958435, -0.01536360289901495, -0.04192441701889038, 0.6420857906341553, -0.10407695919275284, -0.013765351846814156, -0.5475205183029175, 0.4322214424610138, -0.044351909309625626, -0.4740866422653198, -0.26274582743644714, 0.008188632316887379, -0.20355987548828125, 0.16647320985794067, 0.11107760667800903, 0.2830698490142822, 0.12227732688188553, -0.18127374351024628, 0.036266617476940155, -0.20988185703754425, 0.3790421187877655, 0.16068367660045624, 0.02719609998166561, -0.15024898946285248, -0.052647437900304794, -0.37678399682044983, -0.011114243417978287, -0.2767835557460785, -0.0702110156416893, 0.26218482851982117, -0.04104042798280716, -0.3554293215274811, -0.03569174185395241, -0.14049428701400757, 0.295712947845459, -0.00044160665129311383, -0.016113830730319023, -0.10044991970062256, -0.017059439793229103, -0.2887943685054779, 0.274664044380188, 0.07900351285934448, 0.011628849431872368, 0.06865417957305908, -0.24503760039806366, -0.04741896688938141, 0.048485491424798965, 0.2022886574268341, -0.04137486219406128, 0.36975085735321045, 0.12136039137840271, 0.08222047239542007, 0.3480967581272125, 0.20352163910865784, 0.040939442813396454, -0.1323348730802536, 0.08101456612348557, -0.22308501601219177, 0.1789839118719101, -0.19708295166492462, 0.2060556411743164, -0.2088862657546997, 0.216095969080925, 0.009711348451673985, -0.10776202380657196, 0.46025994420051575, 0.11122534424066544, -0.5706870555877686, 0.3810388743877411, -0.1481637954711914, 0.25993451476097107, 0.10891266912221909, 0.15226860344409943, 0.25661805272102356, -0.32181134819984436, -0.3548778295516968, -0.28342095017433167, 0.344890296459198, -0.408042311668396, -0.12701189517974854, -0.16887694597244263, 0.3636050522327423, 0.19030587375164032, -0.07086129486560822, -0.7023308873176575, -0.1694469153881073, 0.5747873187065125, -0.06463484466075897, -0.5643621683120728, 0.08758996427059174, 0.24182461202144623, -0.049872785806655884, 0.029372112825512886, -0.08776107430458069, 0.15848201513290405, 0.12317423522472382, 0.36826616525650024, -0.5045647025108337 ]
https://github.com/huggingface/datasets/issues/296
snli -1 labels
Yes the original dataset is missing some labels maybe @sleepinyourhat , @gangeli can correct me if I'm wrong For my personal opinion at least if you want your model to learn to predict no answer (-1) you can leave it their but otherwise you can discard them.
I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ```
47
snli -1 labels I'm trying to train a model on the SNLI dataset. Why does it have so many -1 labels? ``` import nlp from collections import Counter data = nlp.load_dataset('snli')['train'] print(Counter(data['label'])) Counter({0: 183416, 2: 183187, 1: 182764, -1: 785}) ``` Yes the original dataset is missing some labels maybe @sleepinyourhat , @gangeli can correct me if I'm wrong For my personal opinion at least if you want your model to learn to predict no answer (-1) you can leave it their but otherwise you can discard them.
[ 0.4120676815509796, -0.29795539379119873, -0.022575758397579193, 0.21812143921852112, 0.1907150149345398, 0.2088949978351593, 0.5165293216705322, 0.15536215901374817, 0.18814347684383392, 0.18189220130443573, -0.1560332030057907, 0.3227592408657074, -0.24339354038238525, 0.17844128608703613, 0.23894870281219482, 0.060684531927108765, 0.3916952908039093, 0.32878339290618896, 0.3345848619937897, -0.5028903484344482, -0.29303595423698425, 0.06340019404888153, -0.17345046997070312, 0.3559277057647705, -0.453776478767395, 0.2747114896774292, -0.07792090624570847, -0.31430134177207947, -0.057968754321336746, -0.6953610777854919, 0.2357223778963089, -0.09171725809574127, 0.3343622386455536, -0.18887360394001007, -0.00011943820572923869, -0.2986069321632385, 0.03208997845649719, -0.0003683364484459162, -0.4734800457954407, -0.07678387314081192, -0.19252502918243408, -0.2501674294471741, 0.30627018213272095, -0.15139377117156982, -0.12586480379104614, -0.21643923223018646, 0.19403965771198273, 0.06852900236845016, 0.03658638149499893, 0.3135188817977905, 0.11145377159118652, -0.03597043454647064, -0.4204096794128418, 0.31922104954719543, 0.35246890783309937, -0.20564720034599304, 0.05934491008520126, 0.050315022468566895, -0.029987726360559464, -0.095865897834301, 0.4762231111526489, 0.48959335684776306, -0.1497642695903778, -0.25771355628967285, 0.1788150519132614, 0.08833174407482147, 0.3778858482837677, -0.47071313858032227, 0.03887641429901123, 0.1814834475517273, 0.22182853519916534, -0.23974677920341492, -0.2664618492126465, -0.4241093695163727, 0.29334089159965515, -0.3391403257846832, -0.17739450931549072, 0.18820594251155853, 0.3220198452472687, 0.05771869421005249, -0.18282045423984528, -0.12960003316402435, -0.08961834758520126, 0.1390959769487381, 0.15693512558937073, 0.7602539658546448, 0.1406560093164444, 0.2380843311548233, 0.28968900442123413, 0.24942949414253235, -0.12650451064109802, -0.13248297572135925, 0.007853732444345951, 0.42541801929473877, -0.460096538066864, -0.23750002682209015, -0.06902642548084259, 0.02062113955616951, -0.06082534417510033, 0.1892070472240448, -0.07393267005681992, -0.21070340275764465, -0.06270184367895126, -0.0006546762306243181, 0.1791670173406601, 0.03484426438808441, 0.4093094766139984, 0.3669911026954651, -0.02775532379746437, -0.2307465821504593, 0.2878878712654114, -0.033375512808561325, -0.31749194860458374, 0.05336499214172363, 0.39767971634864807, -0.08202747255563736, -0.18033459782600403, -0.14355000853538513, -0.05712255835533142, 0.011617944575846195, -0.49934637546539307, 0.02747158147394657, 0.11463738232851028, -0.17530220746994019, 0.1298205852508545, 0.3081148564815521, -0.14467014372348785, 0.06426306813955307, -0.16551493108272552, -0.5688717365264893, -0.141046404838562, 0.06965181976556778, -0.15434418618679047, -0.0887163057923317, 0.1715063750743866, -0.14741721749305725, 0.22523441910743713, 0.03795826807618141, -0.41951557993888855, -0.10140499472618103, 0.3598076105117798, -0.008805607445538044, 0.07239591330289841, 0.365506649017334, -0.2805553674697876, 0.572259247303009, -0.047012537717819214, -0.18117327988147736, -0.05675099417567253, -0.01310192421078682, -0.24386022984981537, -0.23726536333560944, 0.03397494927048683, 0.17563951015472412, -0.07299426943063736, -0.1955128163099289, 0.022902637720108032, 0.08382251858711243, 0.0013996231136843562, -0.21583271026611328, 0.1908334493637085, -0.30648013949394226, -0.015968482941389084, -0.051163360476493835, 0.12759962677955627, 0.04893560707569122, -0.18825280666351318, -0.1532483994960785, -0.031197719275951385, -0.2510913908481598, 0.3765104413032532, 0.383774995803833, -0.008592784404754639, -0.009601086378097534, 0.029397878795862198, 0.05644872784614563, 0.4859062135219574, -0.2925828993320465, -0.36113789677619934, 0.12709520757198334, -0.13218526542186737, -0.3597743809223175, -0.062411289662122726, 0.6516439318656921, -0.10791178792715073, 0.038940757513046265, -0.011343412101268768, -0.23585908114910126, 0.06706629693508148, -0.14160217344760895, -0.3873310685157776, 0.014775032177567482, 0.46541792154312134, 0.27211353182792664, 0.02656562253832817, 0.03152727708220482, -0.5151116251945496, 0.09764526039361954, 0.33382660150527954, -0.07229851931333542, 0.23750099539756775, 0.1364915519952774, 0.2828276455402374, 0.04655483737587929, 0.09209578484296799, 0.02384381927549839, -0.3373569846153259, 0.14596153795719147, -0.13826052844524384, 0.35342738032341003, 0.4647587537765503, -0.008606665767729282, -0.057696808129549026, -0.15005707740783691, -0.14641007781028748, -0.17855603992938995, 0.05401552468538284, 0.1326824426651001, 0.09548504650592804, -0.007223839405924082, -0.19511321187019348, 0.08663787692785263, -0.24948853254318237, 0.09132065623998642, -0.3926183879375458, 0.01504756510257721, 0.11656315624713898, 0.10160944610834122, -0.07975351810455322, 0.26405856013298035, 0.27952083945274353, 0.12976482510566711, 0.1358783096075058, 0.00036836802610196173, -0.13167420029640198, -0.29798129200935364, 0.12325187027454376, 0.3700309097766876, 0.14343301951885223, -0.3118864893913269, 0.04999798163771629, 0.39835724234580994, 0.09202990680932999, -0.2388046383857727, -0.0484091192483902, 0.18895748257637024, -0.13474823534488678, 0.2445470243692398, -0.300715833902359, 0.0992036834359169, 0.09710031002759933, 0.040334805846214294, -0.32377517223358154, -0.16824038326740265, 0.14575810730457306, -0.3325270712375641, 0.1793392151594162, 0.37627553939819336, -0.32388174533843994, 0.019069219008088112, 0.13782814145088196, -0.15288664400577545, -0.046198830008506775, 0.12754932045936584, -0.17763927578926086, -0.10515057295560837, 0.28494539856910706, 0.09558134526014328, 0.21187302470207214, 0.24634195864200592, -0.09615818411111832, 0.02316359616816044, -0.4363023638725281, -0.19024558365345, 0.16169367730617523, 0.1675458550453186, -0.17876380681991577, -0.14619335532188416, 0.3087538778781891, 0.1443948596715927, -0.2746993899345398, -0.45008835196495056, -0.3060744106769562, 0.2510749101638794, -0.26837268471717834, 0.16342657804489136, -0.1412917822599411, -0.5088819861412048, -0.2976733148097992, -0.24566279351711273, -0.19448716938495636, -0.22436179220676422, 0.26054078340530396, -0.3658295273780823, 0.1340443193912506, 0.05149465054273605, 0.01582958549261093, 0.22251959145069122, -0.23645752668380737, 0.35483700037002563, -0.3228273093700409, -0.2669394612312317, -0.38622117042541504, -0.04147673398256302, -0.3748985826969147, 0.04533820226788521, 0.2227773666381836, -0.1961696594953537, -0.39110127091407776, 0.030559053644537926, -0.15716654062271118, -0.07258192449808121, -0.1245051920413971, -0.12544220685958862, 0.11592085659503937, -0.013274536468088627, -0.25718945264816284, 0.3905104100704193, 0.014368169009685516, 0.13177230954170227, 0.009425190277397633, 0.01726611517369747, -0.2333175092935562, 0.1317775547504425, -0.37922292947769165, -0.25306254625320435, -0.12661637365818024, 0.24661612510681152, 0.10637841373682022, 0.09226983040571213, 0.13429823517799377, 0.4017401933670044, -0.1403210163116455, 0.04625292494893074, -0.11535855382680893, 0.22296565771102905, -0.1725614368915558, -0.32509124279022217, 0.11195532977581024, 0.30897459387779236, -0.1082744151353836, 0.0492468923330307, 0.08642841875553131, 0.038934607058763504, -0.31062981486320496, -0.4128585755825043, 0.13070255517959595, 0.1852615922689438, -0.15540368854999542, -0.09664048254489899, -0.021869182586669922, -0.028448088094592094, 0.25818580389022827, 0.12514734268188477, -0.06091013550758362, 0.015404080040752888, 0.29196158051490784, -0.14036925137043, 0.5043455362319946, -0.31882092356681824, 0.18676868081092834, -0.22054006159305573, -0.03582441806793213, 0.500866174697876, -0.07418260723352432, 0.052161987870931625, -0.0028762267902493477, -0.07132288068532944, -0.09262596815824509, -0.005719326436519623, 0.3170008659362793, 0.2775489091873169, -0.16017065942287445, 0.3516403138637543, -0.04622624069452286, 0.0496387705206871, -0.07318709045648575, 0.16020728647708893, 0.1834723800420761, 0.11610198020935059, -0.03830341994762421, -0.11002849787473679, -0.057138171046972275, -0.024760834872722626, -0.22629618644714355, -0.180010125041008, -0.08099166303873062, -0.1655828207731247, -0.054746974259614944, 0.07270927727222443, 0.18596120178699493, -0.4748190939426422, -0.331872820854187, -0.24253001809120178, -0.19802767038345337, 0.04165211319923401, 0.1889449656009674, 0.16113166511058807, 0.23301450908184052, 0.32688912749290466, 0.4457795023918152, 0.4638787806034088, -0.3988010883331299, 0.041724465787410736, 0.18745528161525726, 0.462413489818573, -0.3448837399482727, -0.13337378203868866, -0.3770238161087036, -0.24640679359436035, 0.5334616899490356, 0.28322210907936096, 0.008937954902648926, -0.31694668531417847, 0.4711282551288605, 0.218729630112648, -0.21867404878139496, -0.1684420257806778, -0.40442049503326416, -0.16216398775577545, 0.18676617741584778, -0.1542467325925827, -0.006006299518048763, -0.11265244334936142, -0.10678882151842117, 0.026667965576052666, 0.07246066629886627, -0.017595436424016953, 0.1845533698797226, 0.10217573493719101, -0.026325201615691185, 0.22139579057693481, -0.06498169898986816, 0.20340058207511902, 0.24493414163589478, -0.1937406212091446, 0.45181137323379517, -0.041084662079811096, -0.5115540027618408, -0.03358999639749527, -0.09071104228496552, 0.5892900228500366, -0.03258415311574936, 0.16089382767677307, -0.15522854030132294, -0.18388105928897858, 0.05989938601851463, -0.10856077820062637, 0.050505250692367554, 0.30035415291786194, 0.08905180543661118, -0.3902947008609772, -0.43636927008628845, 0.7228565812110901, 0.08156323432922363, -0.17191007733345032, 0.005937307141721249, -0.248679518699646, -0.28809505701065063, 0.2744545340538025, 0.3458244204521179, 0.9324259161949158, -0.07126305252313614, 0.2072613686323166, 0.29287171363830566, -0.3646984398365021, 0.8622063398361206, -0.09751944988965988, -0.08979484438896179, -0.22669093310832977, 0.11354554444551468, 0.02193615399301052, 0.1276337206363678, -0.3245335817337036, 0.622357189655304, 0.2274997979402542, 0.4053783714771271, -0.041842397302389145, -0.2047155797481537, 0.2640419602394104, 0.06608027964830399, 0.6422034502029419, -0.05330367758870125, -0.44707706570625305, 0.039094917476177216, -0.13350312411785126, 0.12823612987995148, -0.27084407210350037, 0.07037907838821411, 0.10404612123966217, 0.009086721576750278, 0.04782191291451454, -0.1962493658065796, 0.30358126759529114, -0.02763504348695278, 0.21797385811805725, 0.07706400007009506, -0.17336496710777283, 0.4282206892967224, 0.6543004512786865, 0.11192621290683746, -0.028282109647989273, -0.12024668604135513, 0.08823566138744354, 0.17866358160972595, 0.03306449577212334, 0.2490721344947815, 0.288735955953598, -0.023373816162347794, -0.2041572630405426, -0.06594020128250122, -0.030076641589403152, 0.31038302183151245, -0.4120934307575226, -0.046102892607450485, -0.17864340543746948, 0.16460895538330078, 0.13622084259986877, 0.07370917499065399, 0.15474556386470795, -0.20458243787288666, 0.10592927783727646, 0.1657693237066269, -0.1347658634185791, -0.12267862260341644, 0.00020555849187076092, -0.35133108496665955, -0.2387324422597885, 0.2964491546154022, 0.24783146381378174, 0.17471733689308167, 0.3137507438659668, -0.13126075267791748, -0.05541011318564415, -0.13257728517055511, 0.05156503617763519, 0.15218864381313324, -0.4057532846927643, 0.03363209590315819, 0.27778518199920654, 0.04192744195461273, -0.11350589990615845, 0.3011675477027893, 0.11364775151014328, -0.019167080521583557, 0.17403022944927216, -0.06119028478860855, -0.3874637484550476, -0.11789292097091675, -0.2103269398212433, 0.14813296496868134, 0.09967286139726639, 0.12589360773563385, 0.1087307557463646, -0.10698217898607254, -0.22872091829776764, -0.2903220057487488, -0.38008126616477966, 0.3530940115451813, 0.04649665951728821, 0.12376526743173599, -0.34871068596839905, 0.12567321956157684, 0.134016215801239, -0.2506501078605652, 0.12342780083417892, -0.09795141965150833, -0.08344752341508865, 0.1621093899011612, 0.1471531093120575, -0.03781437128782272, -0.09731883555650711, 0.2508465349674225, -0.10848375409841537, 0.07880329340696335, -0.1278064250946045, 0.11973220854997635, 0.28410446643829346, 0.9013694524765015, -0.2116043120622635, -0.12908387184143066, -0.07343456894159317, 0.0020568515174090862, -0.055000659078359604, -0.1138259544968605, 0.16743521392345428, 0.03080623969435692, 0.3321893811225891, -0.036918118596076965, -0.4046168029308319, -0.06743346154689789, -0.4131423532962799, -0.07541695982217789, 0.029155584052205086, -0.3671231269836426, 0.570258617401123, 0.3725830018520355, 0.0709696039557457, 0.21557976305484772, -0.21567599475383759, -0.13707809150218964, 0.33588722348213196, 0.15873205661773682, -0.1546134650707245, -0.07378852367401123, 0.31209078431129456, 0.23776382207870483, -0.20222574472427368, 0.16584353148937225, -0.11474200338125229, -0.24522215127944946, 0.0237955953925848, -0.13201723992824554, 0.09835644066333771, -0.4627378284931183, -0.0020066339056938887, 0.2875806391239166, 0.021135300397872925, -0.03863593563437462, 0.16887211799621582, -0.06032058224081993, -0.08921419829130173, 0.362558513879776, -0.09795413166284561, 0.2860642075538635, 0.1389857679605484, 0.0911921039223671, -0.26946932077407837, 0.21166609227657318, -0.2799438238143921, 0.39018043875694275, -0.62746661901474, 0.09556668251752853, -0.034285131841897964, 0.1606093943119049, -0.0645185336470604, -0.07606208324432373, 0.30540549755096436, 0.19589634239673615, -0.20976883172988892, -0.19104209542274475, -0.7020377516746521, 0.3145955502986908, -0.10272803157567978, 0.19353267550468445, -0.20565304160118103, -0.045544832944869995, 0.19611656665802002, 0.15185782313346863, 0.009951641783118248, -0.40938839316368103, -0.337850958108902, 0.30466946959495544, 0.419678658246994, -0.14120930433273315, -0.03531017526984215, -0.04909871146082878, -0.042377691715955734, 0.039334844797849655, -0.12895730137825012, 0.1613064408302307, 0.09814905375242233, 0.28823667764663696, -0.01410340890288353, -0.29826080799102783, -0.0761909931898117, -0.12932877242565155, 0.06363511085510254, 0.3996810019016266, 0.11835131794214249, 0.12230636179447174, -0.012567988596856594, -0.019114019349217415, 0.5593016743659973, -0.1612657755613327, 0.0404149629175663, -0.41874197125434875, 0.3836144208908081, -0.05567586421966553, -0.42989712953567505, -0.3160558044910431, -0.012160792015492916, -0.166495218873024, 0.18038047850131989, 0.049398135393857956, 0.22561566531658173, 0.19699978828430176, -0.2624005079269409, 0.03643009439110756, -0.2123410403728485, 0.32624754309654236, 0.1140013188123703, -0.022119080647826195, -0.18661382794380188, 0.038924407213926315, -0.2679362893104553, -0.11434558779001236, -0.12527549266815186, -0.09900816529989243, 0.2258652001619339, -0.09219411760568619, -0.39237236976623535, -0.05366700515151024, -0.061584267765283585, 0.37324634194374084, -0.035419970750808716, 0.06346352398395538, -0.09168881922960281, 0.039018962532281876, -0.27570512890815735, 0.2917642295360565, 0.025966497138142586, 0.14610262215137482, 0.07743393629789352, -0.1551794558763504, -0.045600902289152145, 0.08817561715841293, 0.24809639155864716, -0.035705141723155975, 0.43330904841423035, 0.0886678621172905, 0.06692168861627579, 0.4264245629310608, 0.18095576763153076, 0.10415451973676682, -0.10602589696645737, 0.0758252814412117, -0.24263153970241547, 0.08497841656208038, -0.09507080167531967, 0.23591262102127075, -0.11516846716403961, 0.2538590729236603, -0.004419152159243822, -0.11711917072534561, 0.21433033049106598, 0.043527085334062576, -0.5104151368141174, 0.28873321413993835, 0.0654880478978157, 0.16750015318393707, 0.015192897990345955, -0.016200803220272064, 0.36706680059432983, -0.1828433722257614, -0.27238282561302185, -0.274708092212677, 0.3082424998283386, -0.23241345584392548, 0.014117687940597534, 0.036809924989938736, 0.35902613401412964, 0.22868210077285767, -0.08324842154979706, -0.72268146276474, -0.15639564394950867, 0.5330834984779358, 0.0519065298140049, -0.5233261585235596, 0.07320161908864975, 0.20853537321090698, 0.11356450617313385, 0.02246345393359661, -0.0436311736702919, 0.19752424955368042, 0.22566701471805573, 0.3895890414714813, -0.4311518669128418 ]
https://github.com/huggingface/datasets/issues/294
Cannot load arxiv dataset on MacOS?
I couldn't replicate this issue on my macbook :/ Could you try to play with different encodings in `with open(path, encoding=...) as f` in scientific_papers.py:L108 ?
I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas?
26
Cannot load arxiv dataset on MacOS? I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas? I couldn't replicate this issue on my macbook :/ Could you try to play with different encodings in `with open(path, encoding=...) as f` in scientific_papers.py:L108 ?
[ -0.058140113949775696, 0.08776889741420746, -0.041909776628017426, 0.18866856396198273, 0.2178974449634552, 0.045470014214515686, -0.02418770268559456, 0.3616170585155487, 0.081568643450737, -0.18188244104385376, -0.05052271857857704, 0.6910572052001953, -0.19199059903621674, -0.2139137089252472, -0.10822978615760803, 0.009493304416537285, -0.12760469317436218, 0.011453578248620033, 0.11468178033828735, -0.11108418554067612, -0.12306953221559525, 0.19933028519153595, -0.15732406079769135, -0.09930674731731415, 0.4090958535671234, 0.09582984447479248, 0.13648591935634613, 0.39574870467185974, -0.002754537621513009, -0.3556491434574127, 0.13499031960964203, 0.024096135050058365, 0.21715809404850006, 0.5375876426696777, -0.0001107034258893691, 0.2718125283718109, 0.3134250044822693, -0.09398903697729111, -0.20430153608322144, -0.5840529203414917, -0.41151508688926697, -0.3066377341747284, 0.1335058957338333, -0.2136874943971634, -0.03607165813446045, -0.2607661485671997, 0.12421464920043945, -0.1539175659418106, 0.32883235812187195, 0.3756518065929413, 0.20792165398597717, 0.07984910905361176, 0.3830093443393707, 0.11644217371940613, -0.06707217544317245, -0.023134347051382065, 0.0021167085506021976, 0.46498289704322815, 0.04228508844971657, 0.12632350623607635, 0.16122329235076904, 0.14480987191200256, -0.1489693969488144, 0.11279797554016113, 0.20924586057662964, -0.029665449634194374, -0.10750377923250198, -0.14368776977062225, 0.03752223029732704, 0.13045744597911835, 0.27215704321861267, -0.09744838625192642, -0.24030570685863495, 0.056407950818538666, 0.2218075841665268, -0.10190599411725998, 0.295181542634964, 0.4300823211669922, -0.11249369382858276, 0.0761578157544136, -0.30629947781562805, -0.3497585952281952, -0.4034610390663147, 0.4736582338809967, -0.02189871110022068, -0.1115584671497345, -0.20071862637996674, 0.20338736474514008, 0.15959429740905762, -0.24159273505210876, 0.036896027624607086, 0.09394820779561996, 0.17075596749782562, 0.11694560945034027, -0.4864809215068817, 0.24697642028331757, 0.07967296242713928, -0.37537091970443726, 0.07538299262523651, -0.15014664828777313, -0.10377908498048782, -0.08154429495334625, -0.28297731280326843, 0.2728937864303589, 0.11201644688844681, 0.018602974712848663, -0.15581831336021423, -0.001816719537600875, 0.05822945758700371, -0.01259017176926136, -0.1686110943555832, 0.032958097755908966, -0.35958656668663025, -0.15404058992862701, -0.3627385199069977, -0.38012105226516724, 0.2619627118110657, -0.32074764370918274, 0.062183938920497894, -0.025036044418811798, -0.025041719898581505, 0.01687735691666603, 0.02384425327181816, 0.22841322422027588, -0.05426689237356186, 0.1421990990638733, 0.17162379622459412, 0.4296219050884247, -0.34669479727745056, 0.17580175399780273, -0.050975628197193146, 0.07547523826360703, -0.10979939997196198, -0.29682204127311707, 0.20440460741519928, 0.0846940353512764, 0.1635967344045639, -0.0225836168974638, 0.0854119062423706, -0.2016286998987198, 0.12524370849132538, 0.1339760571718216, -0.10179369896650314, 0.48088937997817993, 0.3299890458583832, 0.05649871006608009, 0.2672581970691681, 0.03862297162413597, -0.12501317262649536, 0.2215333878993988, -0.4679539203643799, -0.12276071310043335, -0.2679324150085449, 0.16265414655208588, -0.19974780082702637, -0.13173407316207886, -0.1605495810508728, -0.14329302310943604, 0.1379329264163971, 0.23946848511695862, -0.3634815514087677, -0.22936679422855377, 0.0001347443030681461, -0.3333008587360382, 0.24883565306663513, 0.03920990601181984, -0.3133453130722046, 0.16130292415618896, -0.10561653971672058, 0.14759722352027893, 0.2834640145301819, 0.36523979902267456, -0.20566117763519287, 0.1426015943288803, -0.02555016241967678, -0.11357081681489944, 0.3589998781681061, -0.3276819884777069, -0.1195763424038887, 0.03648514673113823, -0.13938535749912262, 0.07627036422491074, -0.07434353977441788, 0.02311629056930542, -0.1838790774345398, 0.2579205334186554, 0.20406274497509003, 0.2711194157600403, 0.0826367735862732, 0.030418017879128456, -0.18050047755241394, -0.20094457268714905, 0.45898643136024475, 0.3523830473423004, -0.08574258536100388, 0.029466722160577774, -0.0705716609954834, -0.07236623764038086, 0.11355103552341461, -0.09911785274744034, -0.30653542280197144, 0.205490380525589, 0.012770108878612518, 0.0597909651696682, 0.06962531059980392, 0.12583813071250916, 0.16646118462085724, 0.09673258662223816, 0.23967672884464264, 0.29656943678855896, -0.2159077674150467, 0.38277217745780945, -0.38724082708358765, 0.09267235547304153, -0.031039200723171234, 0.07113015651702881, 0.06565479934215546, 0.043967828154563904, -0.09347717463970184, 0.19505155086517334, -0.18202157318592072, 0.21836663782596588, -0.38070908188819885, -0.03710097447037697, -0.8843940496444702, 0.056074175983667374, -0.11706388741731644, 0.11073502153158188, 0.21009936928749084, 0.140255868434906, -0.1191784143447876, -0.24003364145755768, -0.11652061343193054, 0.21397867798805237, 0.2940782308578491, -0.06993135809898376, 0.22796911001205444, 0.04208054766058922, 0.05837443470954895, -0.32013460993766785, 0.24768485128879547, 0.017178207635879517, 0.045467767864465714, 0.0980466976761818, -0.24006293714046478, 0.39546629786491394, 0.08486466854810715, 0.18532399833202362, 0.14780369400978088, 0.13192693889141083, 0.4758429229259491, -0.0060154469683766365, -0.027584688737988472, -0.008976242505013943, 0.45163002610206604, 0.18057754635810852, -0.34028854966163635, -0.14204886555671692, -0.18555928766727448, -0.0007557141361758113, 0.07749948650598526, 0.15927280485630035, -0.08404695242643356, 0.30205053091049194, -0.10745397210121155, 0.06075631454586983, -0.1180129274725914, 0.02912227436900139, 0.3401019275188446, 0.17099972069263458, -0.3174944818019867, 0.037521325051784515, -0.20741143822669983, -0.06406980752944946, 0.15766438841819763, 0.0042496309615671635, 0.0024907842744141817, -0.15622404217720032, 0.13022364675998688, 0.11905694007873535, -0.22860586643218994, -0.29152876138687134, -0.014925031922757626, 0.40365201234817505, -0.33745619654655457, 0.06246413290500641, -0.353437215089798, -0.26018303632736206, -0.0542711466550827, -0.1631041169166565, -0.16000406444072723, -0.2046506106853485, -0.11035027354955673, 0.15495234727859497, 0.19716745615005493, 0.1569383591413498, -0.34042295813560486, -0.06874439865350723, 0.22804468870162964, -0.21275800466537476, 0.21781879663467407, -0.32016974687576294, -0.09057360142469406, 0.09150417149066925, 0.256733238697052, 0.11535640805959702, 0.21687781810760498, -0.07115190476179123, -0.19917021691799164, 0.19511564075946808, -0.3111148774623871, -0.06906340271234512, -0.25292858481407166, 0.16224469244480133, -0.01277285534888506, 0.2829393744468689, 0.06636890769004822, -0.2645323574542999, 0.21239328384399414, 0.035251546651124954, -0.15870468318462372, 0.30225902795791626, 0.056970398873090744, -0.4054756462574005, -0.12616801261901855, -0.6859311461448669, -0.24029889702796936, -0.2965233623981476, 0.02073516882956028, 0.2632630169391632, 0.1707102656364441, 0.4518839716911316, 0.30537155270576477, 0.021538086235523224, 0.08881991356611252, 0.06292892247438431, -0.15816640853881836, -0.08669242262840271, 0.22770367562770844, -0.15107154846191406, -0.40117552876472473, 0.17722246050834656, 0.20705287158489227, 0.5639317631721497, 0.13035351037979126, -0.4385879337787628, 0.15774224698543549, -0.10611411184072495, -0.07551936060190201, -0.21828675270080566, 0.10153880715370178, 0.06630236655473709, -0.21097777783870697, -0.02575346827507019, 0.007954182103276253, -0.19149351119995117, -0.030136244371533394, 0.14666873216629028, 0.2630588114261627, 0.2407553344964981, 0.4278973639011383, -0.2681683301925659, 0.5905352234840393, 0.014262113720178604, -0.160919189453125, 0.06947707384824753, -0.1589576154947281, 0.40267688035964966, -0.0031169182620942593, -0.5069507360458374, 0.21585288643836975, 0.2842627167701721, 0.017193371430039406, 0.17447690665721893, 0.03403165563941002, -0.2551557123661041, -0.16617047786712646, 0.23797142505645752, -0.3800166845321655, -0.29085493087768555, 0.1960817277431488, -0.2611019015312195, 0.078947052359581, 0.0448547825217247, -0.05900571495294571, -0.08908912539482117, -0.13881011307239532, -0.18871821463108063, 0.43584007024765015, 0.06431879848241806, 0.03150036185979843, -0.46330001950263977, 0.05056890845298767, -0.34297287464141846, 0.20747338235378265, -0.158753901720047, 0.616038978099823, -0.12195812910795212, -0.09990633279085159, 0.11056820303201675, -0.014026598073542118, 0.3819845914840698, 0.08129219710826874, 0.16612453758716583, 0.3375769257545471, -0.12394189089536667, -0.4966864585876465, -0.041407112032175064, 0.002459649695083499, 0.44725120067596436, 0.4753025770187378, 0.15871255099773407, 0.07489831000566483, -0.11193177103996277, -0.18555200099945068, 0.10593269765377045, -0.09404470771551132, -0.2817319631576538, -0.3055518865585327, -0.318679541349411, -0.2693057358264923, -0.4744183123111725, -0.17208366096019745, 0.23046864569187164, -0.09995115548372269, 0.1676112413406372, -0.12123671919107437, -0.2166731208562851, 0.1496969610452652, 0.3861212432384491, 0.03988482058048248, -0.08788273483514786, 0.15041998028755188, 0.2156408429145813, -0.11630473285913467, 0.13654926419258118, 0.3614485561847687, 0.10973740369081497, -0.7085859775543213, -0.0461752787232399, -0.06683280318975449, 0.1575988084077835, -0.2619428038597107, -0.16748689115047455, -0.17460335791110992, 0.07693810760974884, -0.136073499917984, 0.0028717585373669863, 0.16608911752700806, 0.20372143387794495, 0.04542742669582367, -0.20446747541427612, -0.29293093085289, 0.26326265931129456, -0.10856572538614273, 0.03423241525888443, 0.19201187789440155, -0.2135145515203476, -0.16013698279857635, 0.3781903386116028, -0.02102390117943287, 0.5590019822120667, -0.3097172975540161, 0.14125733077526093, 0.2761949598789215, 0.013916300609707832, 0.6699483394622803, -0.11156299710273743, 0.21044379472732544, -0.31749317049980164, -0.01419129315763712, -0.056561507284641266, -0.2007323056459427, 0.02643759734928608, 0.11239311844110489, -0.1216484010219574, 0.18026527762413025, -0.02423604391515255, -0.28142809867858887, 0.12919872999191284, 0.2311946004629135, 0.5022940635681152, -0.24463221430778503, -0.7192258238792419, 0.2023688405752182, -0.21775180101394653, 0.05226719379425049, 0.05177243798971176, -0.13526520133018494, -0.22485622763633728, 0.048974279314279556, -0.31240323185920715, 0.38945984840393066, 0.09013577550649643, 0.3495635688304901, 0.30822691321372986, -0.04682813212275505, 0.055508803576231, 0.230915367603302, 0.17503724992275238, 0.2278953194618225, -0.17041097581386566, 0.23411022126674652, -0.00879826582968235, -0.25911247730255127, 0.24826088547706604, 0.10018879920244217, 0.18867504596710205, -0.1627509891986847, -0.20014840364456177, 0.1331465244293213, 0.08533202111721039, -0.5239754319190979, 0.1386450231075287, 0.17833299934864044, -0.07202621549367905, 0.09921745210886002, -0.28296181559562683, 0.10971974581480026, 0.10711837559938431, 0.20754747092723846, 0.11732294410467148, 0.3670860826969147, 0.07368104159832001, 0.34078407287597656, 0.007955995388329029, -0.4690260589122772, 0.14298680424690247, 0.252999484539032, 0.17923682928085327, 0.009054653346538544, 0.3015252649784088, 0.14253123104572296, 0.04716578125953674, -0.10458729416131973, -0.1746542900800705, -0.4619157016277313, 0.010912584140896797, -0.12246854603290558, 0.31275674700737, 0.22294291853904724, 0.15213637053966522, -0.18185070157051086, 0.041040822863578796, -0.22364045679569244, 0.0997597873210907, -0.859870433807373, -0.13540996611118317, -0.054828401654958725, -0.4878777861595154, -0.0006445774342864752, 0.21669955551624298, -0.046997345983982086, -0.08471474051475525, -0.19135023653507233, -0.24978740513324738, 0.019766801968216896, -0.20321844518184662, -0.1099872961640358, 0.2819567620754242, 0.06199821084737778, 0.12834994494915009, -0.22953057289123535, 0.12995894253253937, -0.4033861756324768, -0.10847501456737518, -0.19876618683338165, -0.0028025242500007153, 0.12854604423046112, 0.05298842117190361, -0.2573787271976471, -0.20843680202960968, -0.245995432138443, -0.32995352149009705, 0.10250035673379898, -0.04098810255527496, -0.020156199112534523, -0.15408824384212494, 0.05817567557096481, -0.5069238543510437, 0.016590196639299393, 0.11863666772842407, 0.3586592674255371, -0.11647384613752365, 0.24674688279628754, 0.2674192488193512, 0.26443132758140564, -0.17530642449855804, -0.09090709686279297, -0.5406347513198853, -0.06691063195466995, -0.2757554054260254, 0.16379880905151367, 0.37029728293418884, -0.10896921902894974, 0.13248425722122192, 0.08164180815219879, 0.05350201204419136, 0.5262345671653748, -0.17825773358345032, -0.046150241047143936, 0.12992675602436066, 0.14883995056152344, -0.28394630551338196, -0.13352979719638824, 0.3298019766807556, 0.3099816143512726, -0.2143113613128662, 0.20181120932102203, -0.022295916453003883, 0.02268771082162857, 0.12968392670154572, 0.03032204508781433, 0.5294113159179688, -0.24933035671710968, 0.08841293305158615, -0.15197859704494476, -0.2476819008588791, -0.09166668355464935, -0.21199285984039307, 0.24993081390857697, 0.24116568267345428, 0.3728550970554352, -0.0014118674444034696, 0.10809299349784851, 0.19088074564933777, -0.12381588667631149, -0.013418791815638542, -0.3544933497905731, -0.46468934416770935, 0.16359730064868927, 0.023323867470026016, 0.395041286945343, 0.00796471443027258, 0.09288619458675385, 0.05199464038014412, -0.2455947995185852, -0.0657275915145874, 0.2370259016752243, 0.11939351260662079, -0.0006316824001260102, -0.20608796179294586, 0.04167858883738518, -0.03172675520181656, -0.18166430294513702, 0.03758329898118973, -0.11872875690460205, 0.08652349561452866, 0.34904342889785767, -0.30358558893203735, -0.7911368608474731, 0.2285947948694229, 0.06625986844301224, -0.10320674628019333, 0.0720449909567833, 0.39186984300613403, 0.02368760295212269, 0.043521106243133545, 0.3245862126350403, 0.10883171856403351, 0.5102600455284119, 0.4114189147949219, -0.049233581870794296, -0.04577317088842392, 0.024272510781884193, 0.11899890750646591, -0.08506079018115997, 0.3223443329334259, 0.033200327306985855, 0.32211002707481384, 0.2746065855026245, 0.11984925717115402, 0.05741520971059799, 0.2889924645423889, 0.16253726184368134, 0.07124697417020798, 0.022603599354624748, 0.06667269021272659, 0.1023150235414505, 0.23945069313049316, -0.2568708658218384, 0.07248672097921371, -0.3361441493034363, -0.11034940928220749, 0.2590256929397583, 0.20748697221279144, 0.11409559100866318, 0.0336429700255394, 0.05824983865022659, -0.13191485404968262, 0.7058607935905457, 0.51078200340271, 0.3717735707759857, -0.14329193532466888, -0.060413990169763565, -0.5617273449897766, 0.16892528533935547, -0.22681085765361786, -0.2093265801668167, 0.10783424973487854, 0.12824194133281708, 0.43573084473609924, 0.19244523346424103, -0.027367739006876945, -0.17254704236984253, -0.4005472958087921, -0.02374383807182312, -0.342823326587677, -0.21782685816287994, 0.007897171191871166, -0.11197390407323837, -0.13830047845840454, -0.01803782396018505, 0.08996331691741943, -0.18239139020442963, -0.001959751360118389, 0.02701946534216404, 0.157826766371727, -0.03326725214719772, 0.09149497002363205, 0.40420109033584595, 0.015184849500656128, 0.42905014753341675, -0.027054935693740845, -0.2645835876464844, -0.4509981572628021, -0.19910061359405518, -0.3306634724140167, 0.3517015278339386, 0.2352202832698822, 0.1762441247701645, -0.1694798767566681, 0.18722249567508698, -0.16852784156799316, 0.48381680250167847, -0.05659092590212822, -0.5422754883766174, 0.1255185902118683, 0.07394246011972427, 0.09575552493333817, 0.14441202580928802, -0.01064637117087841, 0.053534410893917084, 0.004479521419852972, 0.5422228574752808, -0.2458280324935913, -0.13782119750976562, 0.2703123390674591, -0.25956544280052185, -0.35438841581344604, 0.2645864486694336, -0.13422991335391998, -0.36559292674064636, 0.30934083461761475, -0.5371620059013367, 0.16548679769039154, 0.34196937084198, -0.10925083607435226, -0.17104482650756836, -0.05043360963463783, 0.10094987601041794, -0.2060299515724182, -0.08585012704133987, 0.5699593424797058, -0.11934273689985275, -0.23340573906898499, -0.04696149751543999, 0.009048042818903923 ]
https://github.com/huggingface/datasets/issues/294
Cannot load arxiv dataset on MacOS?
I was able to track down the file causing the problem by adding the following to `scientific_papers.py` (starting at line 116): ```python from json import JSONDecodeError try: d = json.loads(line) summary = "\n".join(d["abstract_text"]) except JSONDecodeError: print(path, line) ``` For me it was at: `/Users/johngiorgi/.cache/huggingface/datasets/f87fd498c5003cbe253a2af422caa1e58f87a4fd74cb3e67350c635c8903b259/arxiv-dataset/train.txt` with `"article_id": "1407.3051"`. Not really 100% sure at the moment, but it looks like this specific substring from `"article_text"` may be causing the problem? ``` "after the missing - mass scale adjustment , the validity of the corrections was tested in the @xmath85 productions at 1.69 gev/@xmath1 . in fig . [", "fig : calibrations ] ( a ) , we show the missing - mass spectrum in the @xmath86 region in the @xmath87 reaction at 1.69 gev/@xmath1 . a fitting result with a lorentzian function for the @xmath86 ( dashed line ) and the three - body phas ``` perhaps because it appears to be truncated. I (think) I can recreate the problem by doing the following: ```python import json # A minimal example of the json file that causes the error invalid_json = '{"article_id": "1407.3051", "article_text": ["the missing - mass resolution was obtained to be 2.8 @xmath3 0.1 mev/@xmath4 ( fwhm ) , which corresponds to the missing - mass resolution of 3.2 @xmath3 0.2 mev/@xmath4 ( fwhm ) at the @xmath6 cusp region in the @xmath0 reaction .", "this resolution is at least by a factor of 2 better than the previous measurement with the same reaction ( [email protected] mev/@xmath4 in @xmath84 ) @xcite .", "after the missing - mass scale adjustment , the validity of the corrections was tested in the @xmath85 productions at 1.69 gev/@xmath1 . in fig . [", "fig : calibrations ] ( a ) , we show the missing - mass spectrum in the @xmath86 region in the @xmath87 reaction at 1.69 gev/@xmath1 . a fitting result with a lorentzian function for the @xmath86 ( dashed line ) and the three - body phas' # The line of code from `scientific_papers.py` which appears to cause the error json.loads(invalid_json) ``` This is as far as I get before I am stumped.
I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas?
352
Cannot load arxiv dataset on MacOS? I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas? I was able to track down the file causing the problem by adding the following to `scientific_papers.py` (starting at line 116): ```python from json import JSONDecodeError try: d = json.loads(line) summary = "\n".join(d["abstract_text"]) except JSONDecodeError: print(path, line) ``` For me it was at: `/Users/johngiorgi/.cache/huggingface/datasets/f87fd498c5003cbe253a2af422caa1e58f87a4fd74cb3e67350c635c8903b259/arxiv-dataset/train.txt` with `"article_id": "1407.3051"`. Not really 100% sure at the moment, but it looks like this specific substring from `"article_text"` may be causing the problem? ``` "after the missing - mass scale adjustment , the validity of the corrections was tested in the @xmath85 productions at 1.69 gev/@xmath1 . in fig . [", "fig : calibrations ] ( a ) , we show the missing - mass spectrum in the @xmath86 region in the @xmath87 reaction at 1.69 gev/@xmath1 . a fitting result with a lorentzian function for the @xmath86 ( dashed line ) and the three - body phas ``` perhaps because it appears to be truncated. I (think) I can recreate the problem by doing the following: ```python import json # A minimal example of the json file that causes the error invalid_json = '{"article_id": "1407.3051", "article_text": ["the missing - mass resolution was obtained to be 2.8 @xmath3 0.1 mev/@xmath4 ( fwhm ) , which corresponds to the missing - mass resolution of 3.2 @xmath3 0.2 mev/@xmath4 ( fwhm ) at the @xmath6 cusp region in the @xmath0 reaction .", "this resolution is at least by a factor of 2 better than the previous measurement with the same reaction ( [email protected] mev/@xmath4 in @xmath84 ) @xcite .", "after the missing - mass scale adjustment , the validity of the corrections was tested in the @xmath85 productions at 1.69 gev/@xmath1 . in fig . [", "fig : calibrations ] ( a ) , we show the missing - mass spectrum in the @xmath86 region in the @xmath87 reaction at 1.69 gev/@xmath1 . a fitting result with a lorentzian function for the @xmath86 ( dashed line ) and the three - body phas' # The line of code from `scientific_papers.py` which appears to cause the error json.loads(invalid_json) ``` This is as far as I get before I am stumped.
[ -0.058140113949775696, 0.08776889741420746, -0.041909776628017426, 0.18866856396198273, 0.2178974449634552, 0.045470014214515686, -0.02418770268559456, 0.3616170585155487, 0.081568643450737, -0.18188244104385376, -0.05052271857857704, 0.6910572052001953, -0.19199059903621674, -0.2139137089252472, -0.10822978615760803, 0.009493304416537285, -0.12760469317436218, 0.011453578248620033, 0.11468178033828735, -0.11108418554067612, -0.12306953221559525, 0.19933028519153595, -0.15732406079769135, -0.09930674731731415, 0.4090958535671234, 0.09582984447479248, 0.13648591935634613, 0.39574870467185974, -0.002754537621513009, -0.3556491434574127, 0.13499031960964203, 0.024096135050058365, 0.21715809404850006, 0.5375876426696777, -0.0001107034258893691, 0.2718125283718109, 0.3134250044822693, -0.09398903697729111, -0.20430153608322144, -0.5840529203414917, -0.41151508688926697, -0.3066377341747284, 0.1335058957338333, -0.2136874943971634, -0.03607165813446045, -0.2607661485671997, 0.12421464920043945, -0.1539175659418106, 0.32883235812187195, 0.3756518065929413, 0.20792165398597717, 0.07984910905361176, 0.3830093443393707, 0.11644217371940613, -0.06707217544317245, -0.023134347051382065, 0.0021167085506021976, 0.46498289704322815, 0.04228508844971657, 0.12632350623607635, 0.16122329235076904, 0.14480987191200256, -0.1489693969488144, 0.11279797554016113, 0.20924586057662964, -0.029665449634194374, -0.10750377923250198, -0.14368776977062225, 0.03752223029732704, 0.13045744597911835, 0.27215704321861267, -0.09744838625192642, -0.24030570685863495, 0.056407950818538666, 0.2218075841665268, -0.10190599411725998, 0.295181542634964, 0.4300823211669922, -0.11249369382858276, 0.0761578157544136, -0.30629947781562805, -0.3497585952281952, -0.4034610390663147, 0.4736582338809967, -0.02189871110022068, -0.1115584671497345, -0.20071862637996674, 0.20338736474514008, 0.15959429740905762, -0.24159273505210876, 0.036896027624607086, 0.09394820779561996, 0.17075596749782562, 0.11694560945034027, -0.4864809215068817, 0.24697642028331757, 0.07967296242713928, -0.37537091970443726, 0.07538299262523651, -0.15014664828777313, -0.10377908498048782, -0.08154429495334625, -0.28297731280326843, 0.2728937864303589, 0.11201644688844681, 0.018602974712848663, -0.15581831336021423, -0.001816719537600875, 0.05822945758700371, -0.01259017176926136, -0.1686110943555832, 0.032958097755908966, -0.35958656668663025, -0.15404058992862701, -0.3627385199069977, -0.38012105226516724, 0.2619627118110657, -0.32074764370918274, 0.062183938920497894, -0.025036044418811798, -0.025041719898581505, 0.01687735691666603, 0.02384425327181816, 0.22841322422027588, -0.05426689237356186, 0.1421990990638733, 0.17162379622459412, 0.4296219050884247, -0.34669479727745056, 0.17580175399780273, -0.050975628197193146, 0.07547523826360703, -0.10979939997196198, -0.29682204127311707, 0.20440460741519928, 0.0846940353512764, 0.1635967344045639, -0.0225836168974638, 0.0854119062423706, -0.2016286998987198, 0.12524370849132538, 0.1339760571718216, -0.10179369896650314, 0.48088937997817993, 0.3299890458583832, 0.05649871006608009, 0.2672581970691681, 0.03862297162413597, -0.12501317262649536, 0.2215333878993988, -0.4679539203643799, -0.12276071310043335, -0.2679324150085449, 0.16265414655208588, -0.19974780082702637, -0.13173407316207886, -0.1605495810508728, -0.14329302310943604, 0.1379329264163971, 0.23946848511695862, -0.3634815514087677, -0.22936679422855377, 0.0001347443030681461, -0.3333008587360382, 0.24883565306663513, 0.03920990601181984, -0.3133453130722046, 0.16130292415618896, -0.10561653971672058, 0.14759722352027893, 0.2834640145301819, 0.36523979902267456, -0.20566117763519287, 0.1426015943288803, -0.02555016241967678, -0.11357081681489944, 0.3589998781681061, -0.3276819884777069, -0.1195763424038887, 0.03648514673113823, -0.13938535749912262, 0.07627036422491074, -0.07434353977441788, 0.02311629056930542, -0.1838790774345398, 0.2579205334186554, 0.20406274497509003, 0.2711194157600403, 0.0826367735862732, 0.030418017879128456, -0.18050047755241394, -0.20094457268714905, 0.45898643136024475, 0.3523830473423004, -0.08574258536100388, 0.029466722160577774, -0.0705716609954834, -0.07236623764038086, 0.11355103552341461, -0.09911785274744034, -0.30653542280197144, 0.205490380525589, 0.012770108878612518, 0.0597909651696682, 0.06962531059980392, 0.12583813071250916, 0.16646118462085724, 0.09673258662223816, 0.23967672884464264, 0.29656943678855896, -0.2159077674150467, 0.38277217745780945, -0.38724082708358765, 0.09267235547304153, -0.031039200723171234, 0.07113015651702881, 0.06565479934215546, 0.043967828154563904, -0.09347717463970184, 0.19505155086517334, -0.18202157318592072, 0.21836663782596588, -0.38070908188819885, -0.03710097447037697, -0.8843940496444702, 0.056074175983667374, -0.11706388741731644, 0.11073502153158188, 0.21009936928749084, 0.140255868434906, -0.1191784143447876, -0.24003364145755768, -0.11652061343193054, 0.21397867798805237, 0.2940782308578491, -0.06993135809898376, 0.22796911001205444, 0.04208054766058922, 0.05837443470954895, -0.32013460993766785, 0.24768485128879547, 0.017178207635879517, 0.045467767864465714, 0.0980466976761818, -0.24006293714046478, 0.39546629786491394, 0.08486466854810715, 0.18532399833202362, 0.14780369400978088, 0.13192693889141083, 0.4758429229259491, -0.0060154469683766365, -0.027584688737988472, -0.008976242505013943, 0.45163002610206604, 0.18057754635810852, -0.34028854966163635, -0.14204886555671692, -0.18555928766727448, -0.0007557141361758113, 0.07749948650598526, 0.15927280485630035, -0.08404695242643356, 0.30205053091049194, -0.10745397210121155, 0.06075631454586983, -0.1180129274725914, 0.02912227436900139, 0.3401019275188446, 0.17099972069263458, -0.3174944818019867, 0.037521325051784515, -0.20741143822669983, -0.06406980752944946, 0.15766438841819763, 0.0042496309615671635, 0.0024907842744141817, -0.15622404217720032, 0.13022364675998688, 0.11905694007873535, -0.22860586643218994, -0.29152876138687134, -0.014925031922757626, 0.40365201234817505, -0.33745619654655457, 0.06246413290500641, -0.353437215089798, -0.26018303632736206, -0.0542711466550827, -0.1631041169166565, -0.16000406444072723, -0.2046506106853485, -0.11035027354955673, 0.15495234727859497, 0.19716745615005493, 0.1569383591413498, -0.34042295813560486, -0.06874439865350723, 0.22804468870162964, -0.21275800466537476, 0.21781879663467407, -0.32016974687576294, -0.09057360142469406, 0.09150417149066925, 0.256733238697052, 0.11535640805959702, 0.21687781810760498, -0.07115190476179123, -0.19917021691799164, 0.19511564075946808, -0.3111148774623871, -0.06906340271234512, -0.25292858481407166, 0.16224469244480133, -0.01277285534888506, 0.2829393744468689, 0.06636890769004822, -0.2645323574542999, 0.21239328384399414, 0.035251546651124954, -0.15870468318462372, 0.30225902795791626, 0.056970398873090744, -0.4054756462574005, -0.12616801261901855, -0.6859311461448669, -0.24029889702796936, -0.2965233623981476, 0.02073516882956028, 0.2632630169391632, 0.1707102656364441, 0.4518839716911316, 0.30537155270576477, 0.021538086235523224, 0.08881991356611252, 0.06292892247438431, -0.15816640853881836, -0.08669242262840271, 0.22770367562770844, -0.15107154846191406, -0.40117552876472473, 0.17722246050834656, 0.20705287158489227, 0.5639317631721497, 0.13035351037979126, -0.4385879337787628, 0.15774224698543549, -0.10611411184072495, -0.07551936060190201, -0.21828675270080566, 0.10153880715370178, 0.06630236655473709, -0.21097777783870697, -0.02575346827507019, 0.007954182103276253, -0.19149351119995117, -0.030136244371533394, 0.14666873216629028, 0.2630588114261627, 0.2407553344964981, 0.4278973639011383, -0.2681683301925659, 0.5905352234840393, 0.014262113720178604, -0.160919189453125, 0.06947707384824753, -0.1589576154947281, 0.40267688035964966, -0.0031169182620942593, -0.5069507360458374, 0.21585288643836975, 0.2842627167701721, 0.017193371430039406, 0.17447690665721893, 0.03403165563941002, -0.2551557123661041, -0.16617047786712646, 0.23797142505645752, -0.3800166845321655, -0.29085493087768555, 0.1960817277431488, -0.2611019015312195, 0.078947052359581, 0.0448547825217247, -0.05900571495294571, -0.08908912539482117, -0.13881011307239532, -0.18871821463108063, 0.43584007024765015, 0.06431879848241806, 0.03150036185979843, -0.46330001950263977, 0.05056890845298767, -0.34297287464141846, 0.20747338235378265, -0.158753901720047, 0.616038978099823, -0.12195812910795212, -0.09990633279085159, 0.11056820303201675, -0.014026598073542118, 0.3819845914840698, 0.08129219710826874, 0.16612453758716583, 0.3375769257545471, -0.12394189089536667, -0.4966864585876465, -0.041407112032175064, 0.002459649695083499, 0.44725120067596436, 0.4753025770187378, 0.15871255099773407, 0.07489831000566483, -0.11193177103996277, -0.18555200099945068, 0.10593269765377045, -0.09404470771551132, -0.2817319631576538, -0.3055518865585327, -0.318679541349411, -0.2693057358264923, -0.4744183123111725, -0.17208366096019745, 0.23046864569187164, -0.09995115548372269, 0.1676112413406372, -0.12123671919107437, -0.2166731208562851, 0.1496969610452652, 0.3861212432384491, 0.03988482058048248, -0.08788273483514786, 0.15041998028755188, 0.2156408429145813, -0.11630473285913467, 0.13654926419258118, 0.3614485561847687, 0.10973740369081497, -0.7085859775543213, -0.0461752787232399, -0.06683280318975449, 0.1575988084077835, -0.2619428038597107, -0.16748689115047455, -0.17460335791110992, 0.07693810760974884, -0.136073499917984, 0.0028717585373669863, 0.16608911752700806, 0.20372143387794495, 0.04542742669582367, -0.20446747541427612, -0.29293093085289, 0.26326265931129456, -0.10856572538614273, 0.03423241525888443, 0.19201187789440155, -0.2135145515203476, -0.16013698279857635, 0.3781903386116028, -0.02102390117943287, 0.5590019822120667, -0.3097172975540161, 0.14125733077526093, 0.2761949598789215, 0.013916300609707832, 0.6699483394622803, -0.11156299710273743, 0.21044379472732544, -0.31749317049980164, -0.01419129315763712, -0.056561507284641266, -0.2007323056459427, 0.02643759734928608, 0.11239311844110489, -0.1216484010219574, 0.18026527762413025, -0.02423604391515255, -0.28142809867858887, 0.12919872999191284, 0.2311946004629135, 0.5022940635681152, -0.24463221430778503, -0.7192258238792419, 0.2023688405752182, -0.21775180101394653, 0.05226719379425049, 0.05177243798971176, -0.13526520133018494, -0.22485622763633728, 0.048974279314279556, -0.31240323185920715, 0.38945984840393066, 0.09013577550649643, 0.3495635688304901, 0.30822691321372986, -0.04682813212275505, 0.055508803576231, 0.230915367603302, 0.17503724992275238, 0.2278953194618225, -0.17041097581386566, 0.23411022126674652, -0.00879826582968235, -0.25911247730255127, 0.24826088547706604, 0.10018879920244217, 0.18867504596710205, -0.1627509891986847, -0.20014840364456177, 0.1331465244293213, 0.08533202111721039, -0.5239754319190979, 0.1386450231075287, 0.17833299934864044, -0.07202621549367905, 0.09921745210886002, -0.28296181559562683, 0.10971974581480026, 0.10711837559938431, 0.20754747092723846, 0.11732294410467148, 0.3670860826969147, 0.07368104159832001, 0.34078407287597656, 0.007955995388329029, -0.4690260589122772, 0.14298680424690247, 0.252999484539032, 0.17923682928085327, 0.009054653346538544, 0.3015252649784088, 0.14253123104572296, 0.04716578125953674, -0.10458729416131973, -0.1746542900800705, -0.4619157016277313, 0.010912584140896797, -0.12246854603290558, 0.31275674700737, 0.22294291853904724, 0.15213637053966522, -0.18185070157051086, 0.041040822863578796, -0.22364045679569244, 0.0997597873210907, -0.859870433807373, -0.13540996611118317, -0.054828401654958725, -0.4878777861595154, -0.0006445774342864752, 0.21669955551624298, -0.046997345983982086, -0.08471474051475525, -0.19135023653507233, -0.24978740513324738, 0.019766801968216896, -0.20321844518184662, -0.1099872961640358, 0.2819567620754242, 0.06199821084737778, 0.12834994494915009, -0.22953057289123535, 0.12995894253253937, -0.4033861756324768, -0.10847501456737518, -0.19876618683338165, -0.0028025242500007153, 0.12854604423046112, 0.05298842117190361, -0.2573787271976471, -0.20843680202960968, -0.245995432138443, -0.32995352149009705, 0.10250035673379898, -0.04098810255527496, -0.020156199112534523, -0.15408824384212494, 0.05817567557096481, -0.5069238543510437, 0.016590196639299393, 0.11863666772842407, 0.3586592674255371, -0.11647384613752365, 0.24674688279628754, 0.2674192488193512, 0.26443132758140564, -0.17530642449855804, -0.09090709686279297, -0.5406347513198853, -0.06691063195466995, -0.2757554054260254, 0.16379880905151367, 0.37029728293418884, -0.10896921902894974, 0.13248425722122192, 0.08164180815219879, 0.05350201204419136, 0.5262345671653748, -0.17825773358345032, -0.046150241047143936, 0.12992675602436066, 0.14883995056152344, -0.28394630551338196, -0.13352979719638824, 0.3298019766807556, 0.3099816143512726, -0.2143113613128662, 0.20181120932102203, -0.022295916453003883, 0.02268771082162857, 0.12968392670154572, 0.03032204508781433, 0.5294113159179688, -0.24933035671710968, 0.08841293305158615, -0.15197859704494476, -0.2476819008588791, -0.09166668355464935, -0.21199285984039307, 0.24993081390857697, 0.24116568267345428, 0.3728550970554352, -0.0014118674444034696, 0.10809299349784851, 0.19088074564933777, -0.12381588667631149, -0.013418791815638542, -0.3544933497905731, -0.46468934416770935, 0.16359730064868927, 0.023323867470026016, 0.395041286945343, 0.00796471443027258, 0.09288619458675385, 0.05199464038014412, -0.2455947995185852, -0.0657275915145874, 0.2370259016752243, 0.11939351260662079, -0.0006316824001260102, -0.20608796179294586, 0.04167858883738518, -0.03172675520181656, -0.18166430294513702, 0.03758329898118973, -0.11872875690460205, 0.08652349561452866, 0.34904342889785767, -0.30358558893203735, -0.7911368608474731, 0.2285947948694229, 0.06625986844301224, -0.10320674628019333, 0.0720449909567833, 0.39186984300613403, 0.02368760295212269, 0.043521106243133545, 0.3245862126350403, 0.10883171856403351, 0.5102600455284119, 0.4114189147949219, -0.049233581870794296, -0.04577317088842392, 0.024272510781884193, 0.11899890750646591, -0.08506079018115997, 0.3223443329334259, 0.033200327306985855, 0.32211002707481384, 0.2746065855026245, 0.11984925717115402, 0.05741520971059799, 0.2889924645423889, 0.16253726184368134, 0.07124697417020798, 0.022603599354624748, 0.06667269021272659, 0.1023150235414505, 0.23945069313049316, -0.2568708658218384, 0.07248672097921371, -0.3361441493034363, -0.11034940928220749, 0.2590256929397583, 0.20748697221279144, 0.11409559100866318, 0.0336429700255394, 0.05824983865022659, -0.13191485404968262, 0.7058607935905457, 0.51078200340271, 0.3717735707759857, -0.14329193532466888, -0.060413990169763565, -0.5617273449897766, 0.16892528533935547, -0.22681085765361786, -0.2093265801668167, 0.10783424973487854, 0.12824194133281708, 0.43573084473609924, 0.19244523346424103, -0.027367739006876945, -0.17254704236984253, -0.4005472958087921, -0.02374383807182312, -0.342823326587677, -0.21782685816287994, 0.007897171191871166, -0.11197390407323837, -0.13830047845840454, -0.01803782396018505, 0.08996331691741943, -0.18239139020442963, -0.001959751360118389, 0.02701946534216404, 0.157826766371727, -0.03326725214719772, 0.09149497002363205, 0.40420109033584595, 0.015184849500656128, 0.42905014753341675, -0.027054935693740845, -0.2645835876464844, -0.4509981572628021, -0.19910061359405518, -0.3306634724140167, 0.3517015278339386, 0.2352202832698822, 0.1762441247701645, -0.1694798767566681, 0.18722249567508698, -0.16852784156799316, 0.48381680250167847, -0.05659092590212822, -0.5422754883766174, 0.1255185902118683, 0.07394246011972427, 0.09575552493333817, 0.14441202580928802, -0.01064637117087841, 0.053534410893917084, 0.004479521419852972, 0.5422228574752808, -0.2458280324935913, -0.13782119750976562, 0.2703123390674591, -0.25956544280052185, -0.35438841581344604, 0.2645864486694336, -0.13422991335391998, -0.36559292674064636, 0.30934083461761475, -0.5371620059013367, 0.16548679769039154, 0.34196937084198, -0.10925083607435226, -0.17104482650756836, -0.05043360963463783, 0.10094987601041794, -0.2060299515724182, -0.08585012704133987, 0.5699593424797058, -0.11934273689985275, -0.23340573906898499, -0.04696149751543999, 0.009048042818903923 ]
https://github.com/huggingface/datasets/issues/294
Cannot load arxiv dataset on MacOS?
I just checked inside `train.txt` and this line isn't truncated for me (line 163577). Could you try to clear your cache and re-download the dataset ?
I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas?
26
Cannot load arxiv dataset on MacOS? I am having trouble loading the `"arxiv"` config from the `"scientific_papers"` dataset on MacOS. When I try loading the dataset with: ```python arxiv = nlp.load_dataset("scientific_papers", "arxiv") ``` I get the following stack trace: ```bash JSONDecodeError Traceback (most recent call last) <ipython-input-2-8e00c55d5a59> in <module> ----> 1 arxiv = nlp.load_dataset("scientific_papers", "arxiv") ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 662 663 generator = self._generate_examples(**split_generator.gen_kwargs) --> 664 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 665 example = self.info.features.encode_example(record) 666 writer.write(example) ~/miniconda3/envs/t2t/lib/python3.7/site-packages/tqdm/std.py in __iter__(self) 1106 fp_write=getattr(self.fp, 'write', sys.stderr.write)) 1107 -> 1108 for obj in iterable: 1109 yield obj 1110 # Update and possibly print the progressbar. ~/miniconda3/envs/t2t/lib/python3.7/site-packages/nlp/datasets/scientific_papers/107a416c0e1958cb846f5934b5aae292f7884a5b27e86af3f3ef1a093e058bbc/scientific_papers.py in _generate_examples(self, path) 114 # "section_names": list[str], list of section names. 115 # "sections": list[list[str]], list of sections (list of paragraphs) --> 116 d = json.loads(line) 117 summary = "\n".join(d["abstract_text"]) 118 # In original paper, <S> and </S> are not used in vocab during training ~/miniconda3/envs/t2t/lib/python3.7/json/__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 346 parse_int is None and parse_float is None and 347 parse_constant is None and object_pairs_hook is None and not kw): --> 348 return _default_decoder.decode(s) 349 if cls is None: 350 cls = JSONDecoder ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in decode(self, s, _w) 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): ~/miniconda3/envs/t2t/lib/python3.7/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Unterminated string starting at: line 1 column 46983 (char 46982) 163502 examples [02:10, 2710.68 examples/s] ``` I am not sure how to trace back to the specific JSON file that has the "Unterminated string". Also, I do not get this error on colab so I suspect it may be MacOS specific. Copy pasting the relevant lines from `transformers-cli env` below: - Platform: Darwin-19.5.0-x86_64-i386-64bit - Python version: 3.7.5 - PyTorch version (GPU?): 1.5.0 (False) - Tensorflow version (GPU?): 2.2.0 (False) Any ideas? I just checked inside `train.txt` and this line isn't truncated for me (line 163577). Could you try to clear your cache and re-download the dataset ?
[ -0.058140113949775696, 0.08776889741420746, -0.041909776628017426, 0.18866856396198273, 0.2178974449634552, 0.045470014214515686, -0.02418770268559456, 0.3616170585155487, 0.081568643450737, -0.18188244104385376, -0.05052271857857704, 0.6910572052001953, -0.19199059903621674, -0.2139137089252472, -0.10822978615760803, 0.009493304416537285, -0.12760469317436218, 0.011453578248620033, 0.11468178033828735, -0.11108418554067612, -0.12306953221559525, 0.19933028519153595, -0.15732406079769135, -0.09930674731731415, 0.4090958535671234, 0.09582984447479248, 0.13648591935634613, 0.39574870467185974, -0.002754537621513009, -0.3556491434574127, 0.13499031960964203, 0.024096135050058365, 0.21715809404850006, 0.5375876426696777, -0.0001107034258893691, 0.2718125283718109, 0.3134250044822693, -0.09398903697729111, -0.20430153608322144, -0.5840529203414917, -0.41151508688926697, -0.3066377341747284, 0.1335058957338333, -0.2136874943971634, -0.03607165813446045, -0.2607661485671997, 0.12421464920043945, -0.1539175659418106, 0.32883235812187195, 0.3756518065929413, 0.20792165398597717, 0.07984910905361176, 0.3830093443393707, 0.11644217371940613, -0.06707217544317245, -0.023134347051382065, 0.0021167085506021976, 0.46498289704322815, 0.04228508844971657, 0.12632350623607635, 0.16122329235076904, 0.14480987191200256, -0.1489693969488144, 0.11279797554016113, 0.20924586057662964, -0.029665449634194374, -0.10750377923250198, -0.14368776977062225, 0.03752223029732704, 0.13045744597911835, 0.27215704321861267, -0.09744838625192642, -0.24030570685863495, 0.056407950818538666, 0.2218075841665268, -0.10190599411725998, 0.295181542634964, 0.4300823211669922, -0.11249369382858276, 0.0761578157544136, -0.30629947781562805, -0.3497585952281952, -0.4034610390663147, 0.4736582338809967, -0.02189871110022068, -0.1115584671497345, -0.20071862637996674, 0.20338736474514008, 0.15959429740905762, -0.24159273505210876, 0.036896027624607086, 0.09394820779561996, 0.17075596749782562, 0.11694560945034027, -0.4864809215068817, 0.24697642028331757, 0.07967296242713928, -0.37537091970443726, 0.07538299262523651, -0.15014664828777313, -0.10377908498048782, -0.08154429495334625, -0.28297731280326843, 0.2728937864303589, 0.11201644688844681, 0.018602974712848663, -0.15581831336021423, -0.001816719537600875, 0.05822945758700371, -0.01259017176926136, -0.1686110943555832, 0.032958097755908966, -0.35958656668663025, -0.15404058992862701, -0.3627385199069977, -0.38012105226516724, 0.2619627118110657, -0.32074764370918274, 0.062183938920497894, -0.025036044418811798, -0.025041719898581505, 0.01687735691666603, 0.02384425327181816, 0.22841322422027588, -0.05426689237356186, 0.1421990990638733, 0.17162379622459412, 0.4296219050884247, -0.34669479727745056, 0.17580175399780273, -0.050975628197193146, 0.07547523826360703, -0.10979939997196198, -0.29682204127311707, 0.20440460741519928, 0.0846940353512764, 0.1635967344045639, -0.0225836168974638, 0.0854119062423706, -0.2016286998987198, 0.12524370849132538, 0.1339760571718216, -0.10179369896650314, 0.48088937997817993, 0.3299890458583832, 0.05649871006608009, 0.2672581970691681, 0.03862297162413597, -0.12501317262649536, 0.2215333878993988, -0.4679539203643799, -0.12276071310043335, -0.2679324150085449, 0.16265414655208588, -0.19974780082702637, -0.13173407316207886, -0.1605495810508728, -0.14329302310943604, 0.1379329264163971, 0.23946848511695862, -0.3634815514087677, -0.22936679422855377, 0.0001347443030681461, -0.3333008587360382, 0.24883565306663513, 0.03920990601181984, -0.3133453130722046, 0.16130292415618896, -0.10561653971672058, 0.14759722352027893, 0.2834640145301819, 0.36523979902267456, -0.20566117763519287, 0.1426015943288803, -0.02555016241967678, -0.11357081681489944, 0.3589998781681061, -0.3276819884777069, -0.1195763424038887, 0.03648514673113823, -0.13938535749912262, 0.07627036422491074, -0.07434353977441788, 0.02311629056930542, -0.1838790774345398, 0.2579205334186554, 0.20406274497509003, 0.2711194157600403, 0.0826367735862732, 0.030418017879128456, -0.18050047755241394, -0.20094457268714905, 0.45898643136024475, 0.3523830473423004, -0.08574258536100388, 0.029466722160577774, -0.0705716609954834, -0.07236623764038086, 0.11355103552341461, -0.09911785274744034, -0.30653542280197144, 0.205490380525589, 0.012770108878612518, 0.0597909651696682, 0.06962531059980392, 0.12583813071250916, 0.16646118462085724, 0.09673258662223816, 0.23967672884464264, 0.29656943678855896, -0.2159077674150467, 0.38277217745780945, -0.38724082708358765, 0.09267235547304153, -0.031039200723171234, 0.07113015651702881, 0.06565479934215546, 0.043967828154563904, -0.09347717463970184, 0.19505155086517334, -0.18202157318592072, 0.21836663782596588, -0.38070908188819885, -0.03710097447037697, -0.8843940496444702, 0.056074175983667374, -0.11706388741731644, 0.11073502153158188, 0.21009936928749084, 0.140255868434906, -0.1191784143447876, -0.24003364145755768, -0.11652061343193054, 0.21397867798805237, 0.2940782308578491, -0.06993135809898376, 0.22796911001205444, 0.04208054766058922, 0.05837443470954895, -0.32013460993766785, 0.24768485128879547, 0.017178207635879517, 0.045467767864465714, 0.0980466976761818, -0.24006293714046478, 0.39546629786491394, 0.08486466854810715, 0.18532399833202362, 0.14780369400978088, 0.13192693889141083, 0.4758429229259491, -0.0060154469683766365, -0.027584688737988472, -0.008976242505013943, 0.45163002610206604, 0.18057754635810852, -0.34028854966163635, -0.14204886555671692, -0.18555928766727448, -0.0007557141361758113, 0.07749948650598526, 0.15927280485630035, -0.08404695242643356, 0.30205053091049194, -0.10745397210121155, 0.06075631454586983, -0.1180129274725914, 0.02912227436900139, 0.3401019275188446, 0.17099972069263458, -0.3174944818019867, 0.037521325051784515, -0.20741143822669983, -0.06406980752944946, 0.15766438841819763, 0.0042496309615671635, 0.0024907842744141817, -0.15622404217720032, 0.13022364675998688, 0.11905694007873535, -0.22860586643218994, -0.29152876138687134, -0.014925031922757626, 0.40365201234817505, -0.33745619654655457, 0.06246413290500641, -0.353437215089798, -0.26018303632736206, -0.0542711466550827, -0.1631041169166565, -0.16000406444072723, -0.2046506106853485, -0.11035027354955673, 0.15495234727859497, 0.19716745615005493, 0.1569383591413498, -0.34042295813560486, -0.06874439865350723, 0.22804468870162964, -0.21275800466537476, 0.21781879663467407, -0.32016974687576294, -0.09057360142469406, 0.09150417149066925, 0.256733238697052, 0.11535640805959702, 0.21687781810760498, -0.07115190476179123, -0.19917021691799164, 0.19511564075946808, -0.3111148774623871, -0.06906340271234512, -0.25292858481407166, 0.16224469244480133, -0.01277285534888506, 0.2829393744468689, 0.06636890769004822, -0.2645323574542999, 0.21239328384399414, 0.035251546651124954, -0.15870468318462372, 0.30225902795791626, 0.056970398873090744, -0.4054756462574005, -0.12616801261901855, -0.6859311461448669, -0.24029889702796936, -0.2965233623981476, 0.02073516882956028, 0.2632630169391632, 0.1707102656364441, 0.4518839716911316, 0.30537155270576477, 0.021538086235523224, 0.08881991356611252, 0.06292892247438431, -0.15816640853881836, -0.08669242262840271, 0.22770367562770844, -0.15107154846191406, -0.40117552876472473, 0.17722246050834656, 0.20705287158489227, 0.5639317631721497, 0.13035351037979126, -0.4385879337787628, 0.15774224698543549, -0.10611411184072495, -0.07551936060190201, -0.21828675270080566, 0.10153880715370178, 0.06630236655473709, -0.21097777783870697, -0.02575346827507019, 0.007954182103276253, -0.19149351119995117, -0.030136244371533394, 0.14666873216629028, 0.2630588114261627, 0.2407553344964981, 0.4278973639011383, -0.2681683301925659, 0.5905352234840393, 0.014262113720178604, -0.160919189453125, 0.06947707384824753, -0.1589576154947281, 0.40267688035964966, -0.0031169182620942593, -0.5069507360458374, 0.21585288643836975, 0.2842627167701721, 0.017193371430039406, 0.17447690665721893, 0.03403165563941002, -0.2551557123661041, -0.16617047786712646, 0.23797142505645752, -0.3800166845321655, -0.29085493087768555, 0.1960817277431488, -0.2611019015312195, 0.078947052359581, 0.0448547825217247, -0.05900571495294571, -0.08908912539482117, -0.13881011307239532, -0.18871821463108063, 0.43584007024765015, 0.06431879848241806, 0.03150036185979843, -0.46330001950263977, 0.05056890845298767, -0.34297287464141846, 0.20747338235378265, -0.158753901720047, 0.616038978099823, -0.12195812910795212, -0.09990633279085159, 0.11056820303201675, -0.014026598073542118, 0.3819845914840698, 0.08129219710826874, 0.16612453758716583, 0.3375769257545471, -0.12394189089536667, -0.4966864585876465, -0.041407112032175064, 0.002459649695083499, 0.44725120067596436, 0.4753025770187378, 0.15871255099773407, 0.07489831000566483, -0.11193177103996277, -0.18555200099945068, 0.10593269765377045, -0.09404470771551132, -0.2817319631576538, -0.3055518865585327, -0.318679541349411, -0.2693057358264923, -0.4744183123111725, -0.17208366096019745, 0.23046864569187164, -0.09995115548372269, 0.1676112413406372, -0.12123671919107437, -0.2166731208562851, 0.1496969610452652, 0.3861212432384491, 0.03988482058048248, -0.08788273483514786, 0.15041998028755188, 0.2156408429145813, -0.11630473285913467, 0.13654926419258118, 0.3614485561847687, 0.10973740369081497, -0.7085859775543213, -0.0461752787232399, -0.06683280318975449, 0.1575988084077835, -0.2619428038597107, -0.16748689115047455, -0.17460335791110992, 0.07693810760974884, -0.136073499917984, 0.0028717585373669863, 0.16608911752700806, 0.20372143387794495, 0.04542742669582367, -0.20446747541427612, -0.29293093085289, 0.26326265931129456, -0.10856572538614273, 0.03423241525888443, 0.19201187789440155, -0.2135145515203476, -0.16013698279857635, 0.3781903386116028, -0.02102390117943287, 0.5590019822120667, -0.3097172975540161, 0.14125733077526093, 0.2761949598789215, 0.013916300609707832, 0.6699483394622803, -0.11156299710273743, 0.21044379472732544, -0.31749317049980164, -0.01419129315763712, -0.056561507284641266, -0.2007323056459427, 0.02643759734928608, 0.11239311844110489, -0.1216484010219574, 0.18026527762413025, -0.02423604391515255, -0.28142809867858887, 0.12919872999191284, 0.2311946004629135, 0.5022940635681152, -0.24463221430778503, -0.7192258238792419, 0.2023688405752182, -0.21775180101394653, 0.05226719379425049, 0.05177243798971176, -0.13526520133018494, -0.22485622763633728, 0.048974279314279556, -0.31240323185920715, 0.38945984840393066, 0.09013577550649643, 0.3495635688304901, 0.30822691321372986, -0.04682813212275505, 0.055508803576231, 0.230915367603302, 0.17503724992275238, 0.2278953194618225, -0.17041097581386566, 0.23411022126674652, -0.00879826582968235, -0.25911247730255127, 0.24826088547706604, 0.10018879920244217, 0.18867504596710205, -0.1627509891986847, -0.20014840364456177, 0.1331465244293213, 0.08533202111721039, -0.5239754319190979, 0.1386450231075287, 0.17833299934864044, -0.07202621549367905, 0.09921745210886002, -0.28296181559562683, 0.10971974581480026, 0.10711837559938431, 0.20754747092723846, 0.11732294410467148, 0.3670860826969147, 0.07368104159832001, 0.34078407287597656, 0.007955995388329029, -0.4690260589122772, 0.14298680424690247, 0.252999484539032, 0.17923682928085327, 0.009054653346538544, 0.3015252649784088, 0.14253123104572296, 0.04716578125953674, -0.10458729416131973, -0.1746542900800705, -0.4619157016277313, 0.010912584140896797, -0.12246854603290558, 0.31275674700737, 0.22294291853904724, 0.15213637053966522, -0.18185070157051086, 0.041040822863578796, -0.22364045679569244, 0.0997597873210907, -0.859870433807373, -0.13540996611118317, -0.054828401654958725, -0.4878777861595154, -0.0006445774342864752, 0.21669955551624298, -0.046997345983982086, -0.08471474051475525, -0.19135023653507233, -0.24978740513324738, 0.019766801968216896, -0.20321844518184662, -0.1099872961640358, 0.2819567620754242, 0.06199821084737778, 0.12834994494915009, -0.22953057289123535, 0.12995894253253937, -0.4033861756324768, -0.10847501456737518, -0.19876618683338165, -0.0028025242500007153, 0.12854604423046112, 0.05298842117190361, -0.2573787271976471, -0.20843680202960968, -0.245995432138443, -0.32995352149009705, 0.10250035673379898, -0.04098810255527496, -0.020156199112534523, -0.15408824384212494, 0.05817567557096481, -0.5069238543510437, 0.016590196639299393, 0.11863666772842407, 0.3586592674255371, -0.11647384613752365, 0.24674688279628754, 0.2674192488193512, 0.26443132758140564, -0.17530642449855804, -0.09090709686279297, -0.5406347513198853, -0.06691063195466995, -0.2757554054260254, 0.16379880905151367, 0.37029728293418884, -0.10896921902894974, 0.13248425722122192, 0.08164180815219879, 0.05350201204419136, 0.5262345671653748, -0.17825773358345032, -0.046150241047143936, 0.12992675602436066, 0.14883995056152344, -0.28394630551338196, -0.13352979719638824, 0.3298019766807556, 0.3099816143512726, -0.2143113613128662, 0.20181120932102203, -0.022295916453003883, 0.02268771082162857, 0.12968392670154572, 0.03032204508781433, 0.5294113159179688, -0.24933035671710968, 0.08841293305158615, -0.15197859704494476, -0.2476819008588791, -0.09166668355464935, -0.21199285984039307, 0.24993081390857697, 0.24116568267345428, 0.3728550970554352, -0.0014118674444034696, 0.10809299349784851, 0.19088074564933777, -0.12381588667631149, -0.013418791815638542, -0.3544933497905731, -0.46468934416770935, 0.16359730064868927, 0.023323867470026016, 0.395041286945343, 0.00796471443027258, 0.09288619458675385, 0.05199464038014412, -0.2455947995185852, -0.0657275915145874, 0.2370259016752243, 0.11939351260662079, -0.0006316824001260102, -0.20608796179294586, 0.04167858883738518, -0.03172675520181656, -0.18166430294513702, 0.03758329898118973, -0.11872875690460205, 0.08652349561452866, 0.34904342889785767, -0.30358558893203735, -0.7911368608474731, 0.2285947948694229, 0.06625986844301224, -0.10320674628019333, 0.0720449909567833, 0.39186984300613403, 0.02368760295212269, 0.043521106243133545, 0.3245862126350403, 0.10883171856403351, 0.5102600455284119, 0.4114189147949219, -0.049233581870794296, -0.04577317088842392, 0.024272510781884193, 0.11899890750646591, -0.08506079018115997, 0.3223443329334259, 0.033200327306985855, 0.32211002707481384, 0.2746065855026245, 0.11984925717115402, 0.05741520971059799, 0.2889924645423889, 0.16253726184368134, 0.07124697417020798, 0.022603599354624748, 0.06667269021272659, 0.1023150235414505, 0.23945069313049316, -0.2568708658218384, 0.07248672097921371, -0.3361441493034363, -0.11034940928220749, 0.2590256929397583, 0.20748697221279144, 0.11409559100866318, 0.0336429700255394, 0.05824983865022659, -0.13191485404968262, 0.7058607935905457, 0.51078200340271, 0.3717735707759857, -0.14329193532466888, -0.060413990169763565, -0.5617273449897766, 0.16892528533935547, -0.22681085765361786, -0.2093265801668167, 0.10783424973487854, 0.12824194133281708, 0.43573084473609924, 0.19244523346424103, -0.027367739006876945, -0.17254704236984253, -0.4005472958087921, -0.02374383807182312, -0.342823326587677, -0.21782685816287994, 0.007897171191871166, -0.11197390407323837, -0.13830047845840454, -0.01803782396018505, 0.08996331691741943, -0.18239139020442963, -0.001959751360118389, 0.02701946534216404, 0.157826766371727, -0.03326725214719772, 0.09149497002363205, 0.40420109033584595, 0.015184849500656128, 0.42905014753341675, -0.027054935693740845, -0.2645835876464844, -0.4509981572628021, -0.19910061359405518, -0.3306634724140167, 0.3517015278339386, 0.2352202832698822, 0.1762441247701645, -0.1694798767566681, 0.18722249567508698, -0.16852784156799316, 0.48381680250167847, -0.05659092590212822, -0.5422754883766174, 0.1255185902118683, 0.07394246011972427, 0.09575552493333817, 0.14441202580928802, -0.01064637117087841, 0.053534410893917084, 0.004479521419852972, 0.5422228574752808, -0.2458280324935913, -0.13782119750976562, 0.2703123390674591, -0.25956544280052185, -0.35438841581344604, 0.2645864486694336, -0.13422991335391998, -0.36559292674064636, 0.30934083461761475, -0.5371620059013367, 0.16548679769039154, 0.34196937084198, -0.10925083607435226, -0.17104482650756836, -0.05043360963463783, 0.10094987601041794, -0.2060299515724182, -0.08585012704133987, 0.5699593424797058, -0.11934273689985275, -0.23340573906898499, -0.04696149751543999, 0.009048042818903923 ]
https://github.com/huggingface/datasets/issues/290
ConnectionError - Eli5 dataset download
It should ne fixed now, thanks for reporting this one :) It was an issue on our google storage. Let me now if you're still facing this issue.
Hi, I have a problem with downloading Eli5 dataset. When typing `nlp.load_dataset('eli5')`, I get ConnectionError: Couldn't reach https://storage.googleapis.com/huggingface-nlp/cache/datasets/eli5/LFQA_reddit/1.0.0/explain_like_im_five-train_eli5.arrow I would appreciate if you could help me with this issue.
28
ConnectionError - Eli5 dataset download Hi, I have a problem with downloading Eli5 dataset. When typing `nlp.load_dataset('eli5')`, I get ConnectionError: Couldn't reach https://storage.googleapis.com/huggingface-nlp/cache/datasets/eli5/LFQA_reddit/1.0.0/explain_like_im_five-train_eli5.arrow I would appreciate if you could help me with this issue. It should ne fixed now, thanks for reporting this one :) It was an issue on our google storage. Let me now if you're still facing this issue.
[ -0.24975906312465668, 0.08938427269458771, -0.0778241902589798, 0.3270988464355469, 0.2081756740808487, 0.0021228597033768892, 0.2745364010334015, 0.13816240429878235, 0.049143821001052856, 0.040592871606349945, -0.031688809394836426, 0.04929553344845772, 0.12689143419265747, 0.3328093886375427, 0.09711768478155136, -0.18825384974479675, -0.012896985746920109, 0.08560670167207718, -0.009513103403151035, 0.10711326450109482, -0.04578499495983124, 0.17138725519180298, -0.10189226269721985, 0.1726020723581314, -0.19526240229606628, 0.1230362057685852, -0.05427751690149307, -0.0766948014497757, -0.36895832419395447, -0.28350991010665894, 0.3438396155834198, 0.12487540394067764, 0.18020766973495483, -0.027557266876101494, -0.00011615791299846023, -0.0773380696773529, 0.2845265567302704, -0.006801136769354343, -0.301556259393692, -0.48854872584342957, -0.1385289877653122, -0.19943681359291077, 0.3694060444831848, -0.0722760558128357, 0.2015683948993683, 0.16523535549640656, 0.4329591691493988, 0.10277573764324188, 0.4838893711566925, 0.1664903163909912, 0.1847645789384842, -0.03377621993422508, 0.37061288952827454, 0.09790980815887451, 0.06919776648283005, -0.35231027007102966, 0.05009053647518158, 0.33746716380119324, -0.14071674644947052, -0.18571913242340088, 0.11422049254179001, 0.09216753393411636, 0.16644878685474396, 0.11011248081922531, 0.18217019736766815, 0.1309395730495453, -0.07190288603305817, -0.35206249356269836, 0.024204600602388382, 0.1167074665427208, 0.9977472424507141, -0.03973948955535889, -0.2393236756324768, 0.005708887707442045, 0.14929863810539246, -0.4184674322605133, 0.5427045822143555, 0.27126362919807434, -0.14786529541015625, 0.05033392086625099, -0.34159138798713684, -0.3982752561569214, -0.35179170966148376, 0.3603953421115875, -0.03552461788058281, 0.06353586167097092, -0.08161228150129318, 0.14034748077392578, 0.09288239479064941, -0.08111939579248428, -0.10815728455781937, 0.14716561138629913, -0.23662886023521423, 0.2940259575843811, -0.3973177671432495, -0.08461884409189224, -0.2899482250213623, 0.19055086374282837, 0.22928734123706818, 0.384552538394928, 0.08991124480962753, 0.055560335516929626, -0.12632346153259277, 0.13765396177768707, 0.3958092927932739, 0.2708766758441925, 0.19036923348903656, 0.07801567763090134, 0.1873904913663864, 0.1748814880847931, -0.004694534000009298, -0.09811490029096603, -0.1432071477174759, -0.05603422224521637, -0.11155859380960464, -0.22070594131946564, 0.08076024800539017, -0.3565373420715332, -0.32904547452926636, 0.0990365520119667, -0.4623708724975586, -0.18247567117214203, -0.0268414169549942, 0.18230478465557098, -0.27287736535072327, 0.012621935456991196, 0.05286864563822746, 0.33194500207901, -0.10537789762020111, -0.2310129553079605, -0.16880595684051514, 0.013599040918052197, -0.21986040472984314, -0.028314994648098946, 0.1741316169500351, -0.19117292761802673, 0.46881523728370667, -0.21162346005439758, -0.15071135759353638, -0.1241668313741684, 0.10944857448339462, -0.1262897402048111, -0.5147403478622437, 0.07520096749067307, 0.22051209211349487, 0.09924904257059097, -0.052078716456890106, -0.2731289267539978, 0.010548720136284828, -0.1274968534708023, -0.2243049442768097, -0.1969205141067505, -0.4014471173286438, 0.15623578429222107, -0.18029174208641052, -0.209291011095047, -0.3340264856815338, 0.19141116738319397, -0.06500343978404999, -0.20150358974933624, -0.18948280811309814, 0.05366329103708267, -0.1326780915260315, -0.14890234172344208, 0.2816811800003052, 0.2782115340232849, 0.04765022546052933, -0.40400955080986023, -0.17967559397220612, -0.1528378278017044, 0.10772351920604706, 0.42099395394325256, -0.05976037308573723, -0.13246354460716248, -0.17398788034915924, 0.3515346348285675, 0.6295806169509888, -0.15927883982658386, -0.9718019366264343, 0.2665199935436249, -0.2599482536315918, -0.2456943541765213, -0.0510176420211792, 0.16132107377052307, 0.13802747428417206, 0.12878748774528503, 0.17310641705989838, 0.4931623637676239, -0.10168316215276718, -0.0801607146859169, -0.16477492451667786, -0.30462637543678284, 0.12371466308832169, 0.09845335781574249, 0.007013814058154821, 0.08282160013914108, 0.20470896363258362, 0.011772635392844677, 0.12115181982517242, 0.22191567718982697, 0.10491587966680527, 0.18532751500606537, 0.2719542682170868, -0.08458180725574493, -0.1859806925058365, 0.07553819566965103, -0.551784873008728, 0.13203918933868408, -0.24301359057426453, 0.23676106333732605, -0.3266127407550812, 0.1815018653869629, -0.13782081007957458, -0.02505793422460556, -0.08718105405569077, -0.019626272842288017, 0.05883101746439934, -0.2522031366825104, 0.08648701757192612, 0.3663788139820099, -0.012097681872546673, 0.4874071478843689, 0.0745212733745575, 0.24703054130077362, -0.35141730308532715, 0.5134063959121704, -0.2010788768529892, -0.08564264327287674, 0.15342117846012115, -0.14303292334079742, 0.0028650895692408085, 0.015937449410557747, -0.23615844547748566, 0.08543559163808823, -0.5183479189872742, 0.18100561201572418, 0.2617425322532654, 0.4170767068862915, 0.18436875939369202, -0.4226613938808441, 0.20948807895183563, -0.26816046237945557, 0.09408251941204071, 0.07690278440713882, 0.04578466713428497, 0.06140126287937164, 0.2973325848579407, 0.08593331277370453, -0.036890916526317596, 0.35024237632751465, 0.3250184953212738, -0.03222573548555374, 0.07452920824289322, -0.10635101795196533, 0.42278775572776794, 0.2946762144565582, 0.28271743655204773, -0.21027514338493347, -0.24367426335811615, 0.20492057502269745, 0.36487582325935364, 0.10896466672420502, 0.03418230637907982, 0.3822145462036133, -0.24217070639133453, -0.44250836968421936, -0.11415187269449234, -0.085402712225914, 0.3881254494190216, 0.05481500178575516, -0.000722684315405786, 0.15309911966323853, 0.05201228708028793, -0.10040778666734695, 0.16077196598052979, 0.07382287830114365, 0.09988655894994736, 0.04795154929161072, 0.17331574857234955, 0.052265752106904984, -0.14894741773605347, -0.11172173917293549, 0.006889742333441973, 0.32331836223602295, -0.11165066063404083, 0.12949848175048828, -0.06829696148633957, -0.22032393515110016, 0.16533850133419037, -0.23816180229187012, -0.433779776096344, -0.31473466753959656, 0.008576946333050728, 0.2693350315093994, 0.1083347275853157, 0.0735156461596489, -0.02768777124583721, 0.0659516230225563, 0.20063145458698273, 0.009531378746032715, -0.04121436923742294, -0.23373688757419586, -0.3130796253681183, 0.0712064579129219, 0.33175691962242126, 0.10177257657051086, 0.16272564232349396, -0.1751335710287094, -0.0672905445098877, -0.4746839106082916, -0.20869429409503937, 0.07960188388824463, -0.12448162585496902, 0.4008781909942627, 0.06623787432909012, 0.521460235118866, -0.19200071692466736, -0.10501802712678909, 0.19280144572257996, -0.17130854725837708, -0.1980883926153183, -0.028673958033323288, -0.01312251202762127, 0.16402070224285126, 0.16734349727630615, -0.2523570954799652, -0.40181422233581543, -0.21807703375816345, 0.48858582973480225, 0.14701257646083832, 0.05103811249136925, -0.08982926607131958, 0.1064496636390686, 0.07711803168058395, 0.15049482882022858, -0.10094556212425232, -0.27624911069869995, -0.4101830720901489, 0.1920643001794815, -0.08368892967700958, -0.318220853805542, 0.129568949341774, 0.1608961671590805, 0.20640331506729126, 0.05755418911576271, -0.5428878664970398, -0.1649182289838791, -0.030797624960541725, 0.20129434764385223, 0.020249638706445694, -0.1885964572429657, 0.2706340253353119, -0.10794875025749207, 0.008533574640750885, 0.2917347252368927, -0.08219920843839645, 0.28794121742248535, 0.29892683029174805, 0.4235115945339203, 0.09925179183483124, 0.6737157702445984, -0.006791365332901478, 0.43940556049346924, 0.14975154399871826, -0.15615986287593842, 0.5129271745681763, 0.21771392226219177, 0.04709738865494728, -0.0618586428463459, -0.05260699987411499, 0.04819235950708389, -0.07846157252788544, 0.03676273301243782, 0.07758821547031403, -0.007358154281973839, -0.2609281837940216, -0.30359920859336853, -0.21352846920490265, -0.24060899019241333, -0.18183135986328125, -0.009404296055436134, -0.3316062390804291, -0.03164603188633919, 0.2277187705039978, -0.34775641560554504, -0.08157644420862198, -0.3281506896018982, -0.15389041602611542, 0.11374218761920929, 0.12559008598327637, 0.09887826442718506, -0.40164026618003845, -0.16485421359539032, -0.7408912181854248, 0.4798649847507477, -0.036673471331596375, 0.40762805938720703, -0.35734453797340393, 0.198484867811203, 0.15327410399913788, -0.04750204086303711, 0.3783431053161621, -0.18770794570446014, -0.10757707804441452, -0.18085147440433502, 0.4171360731124878, -0.09906348586082458, -0.17394927144050598, 0.03279326111078262, 0.31981849670410156, 0.211264967918396, 0.004857716616243124, -0.46780702471733093, -0.04185517504811287, 0.2367250770330429, -0.019119683653116226, -0.1713787466287613, -0.16970281302928925, -0.19117695093154907, -0.18129102885723114, -0.22505685687065125, -0.15085133910179138, -0.0715976282954216, 0.20533858239650726, 0.061430495232343674, 0.07760988920927048, 0.0926983654499054, -0.055290453135967255, -0.10570571571588516, -0.26377809047698975, 0.12294699996709824, -0.0824105516076088, 0.2335931956768036, 0.3358116149902344, 0.0829341933131218, -0.06622147560119629, 0.7518088817596436, 0.07220330089330673, -0.37474215030670166, 0.21291816234588623, 0.07263445854187012, 0.05049564689397812, 0.04369208961725235, 0.10961174964904785, 0.2167549431324005, 0.207012340426445, 0.31381940841674805, 0.11381033807992935, 0.08189083635807037, 0.3213292062282562, 0.1495511829853058, -0.22840280830860138, -0.3196690082550049, 0.5979224443435669, -0.07724566012620926, 0.026629338040947914, 0.36145827174186707, 0.025448188185691833, -0.052703604102134705, 0.1322513371706009, -0.16718880832195282, 0.9752017855644226, -0.06372692435979843, 0.08885116130113602, 0.29061269760131836, -0.03639235347509384, 0.5495637059211731, -0.3213946521282196, 0.14222577214241028, -0.40068289637565613, -0.3116592764854431, -0.1080610603094101, -0.1506587117910385, -0.15142588317394257, 0.038858670741319656, -0.07068309187889099, 0.38904625177383423, -0.15695977210998535, -0.030770177021622658, 0.15147757530212402, 0.3611956834793091, -0.3257433772087097, 0.0010745247127488256, -0.40617141127586365, 0.12439835071563721, -0.11155819892883301, 0.47658154368400574, -0.1790936440229416, -0.17709504067897797, -0.1528223752975464, -0.36298131942749023, -0.45250633358955383, 0.29042744636535645, -0.11861304938793182, 0.28126513957977295, 0.18375883996486664, -0.21435295045375824, 0.08216648548841476, 0.3698527216911316, 0.2788476049900055, -0.11346284300088882, -0.3012596368789673, 0.2139044851064682, -0.36419007182121277, -0.27927932143211365, 0.19098912179470062, 0.14208519458770752, 0.16447946429252625, -0.1711326539516449, -0.3458018898963928, 0.33033517003059387, 0.030087821185588837, -0.31502488255500793, 0.038395024836063385, -0.06300733238458633, -0.1650121510028839, -0.011164023540914059, -0.04914269223809242, -0.17799316346645355, -0.2788163721561432, 0.018960105255246162, 0.08542205393314362, 0.2785884141921997, 0.12998820841312408, -0.07477793842554092, 0.3183714747428894, -0.10614973306655884, -0.1094592958688736, 0.6303485631942749, -0.03671516850590706, -0.25690987706184387, 0.6961225271224976, 0.07159999012947083, -0.05231945216655731, -0.10273545980453491, -0.18063640594482422, -0.06206193193793297, -0.41428789496421814, -0.12035729736089706, -0.18964038789272308, 0.26820608973503113, -0.2403694987297058, 0.013866660185158253, 0.08328309655189514, 0.024537531659007072, 0.298829048871994, -0.5705106854438782, -0.2339954674243927, 0.3107910752296448, -0.6751427054405212, 0.09125150740146637, -0.06195574626326561, -0.04053536802530289, 0.20730723440647125, 0.046517614275217056, -0.2335013598203659, 0.0168364979326725, -0.5630574226379395, -0.10964368283748627, 0.4691393971443176, -0.31796056032180786, 0.33907029032707214, 0.03307696804404259, 0.12828099727630615, 0.07091514766216278, -0.4158703684806824, -0.12326920032501221, 0.140462264418602, 0.13424792885780334, 0.07446586340665817, -0.1471761167049408, -0.08917535096406937, -0.049411170184612274, -0.12036329507827759, 0.2037827968597412, -0.0831429585814476, -0.0802060216665268, 0.008823803626000881, -0.0409955196082592, 0.03888826072216034, 0.053242817521095276, -0.17928336560726166, 0.18629826605319977, 0.05706702172756195, 0.40409475564956665, -0.06632913649082184, 0.11072051525115967, -0.011727327480912209, 0.007330228574573994, -0.5277678966522217, -0.023364994674921036, -0.14211784303188324, -0.1028679832816124, 0.29930123686790466, -0.358530193567276, -0.03191538527607918, -0.09337595850229263, -0.039816588163375854, 0.395940899848938, -0.3606981039047241, 0.04506894201040268, 0.45363396406173706, 0.2047594040632248, -0.11504455655813217, -0.04894169792532921, 0.16180837154388428, -0.06571044772863388, -0.19152085483074188, -0.10489721596240997, 0.35602837800979614, -0.14253371953964233, 0.007494828198105097, 0.11648893356323242, 0.50724196434021, -0.2287471443414688, 0.053911834955215454, -0.1903979778289795, -0.10980552434921265, 0.004093511030077934, 0.15790435671806335, 0.26357465982437134, 0.18044446408748627, 0.029962703585624695, -0.2974124550819397, -0.3058331608772278, -0.36944276094436646, 0.3581811189651489, -0.032767970114946365, -0.38691791892051697, -0.42507901787757874, 0.37918955087661743, -0.14244705438613892, 0.09451883286237717, 0.06513583660125732, 0.26786696910858154, 0.01839861087501049, 0.02782040275633335, -0.40354180335998535, 0.2810949683189392, 0.03723431006073952, -0.07728715986013412, 0.05903850123286247, -0.20602507889270782, -0.24823704361915588, 0.15612050890922546, -0.05076466500759125, -0.22875884175300598, -0.00818656012415886, 0.2536245584487915, -0.12232936173677444, -0.33263087272644043, 0.05956549197435379, 0.4721241593360901, 0.05576988682150841, -0.2593838572502136, 0.29748523235321045, -0.05452168360352516, -0.08407452702522278, 0.06436844170093536, 0.28825899958610535, 0.4291485846042633, 0.2077864706516266, -0.11136137694120407, 0.17136366665363312, 0.14562475681304932, -0.06806188821792603, 0.05898557975888252, 0.040442030876874924, 0.4193633496761322, -0.3132341206073761, 0.16628584265708923, 0.10873537510633469, -0.13227371871471405, 0.31476423144340515, -0.027464622631669044, 0.7163366675376892, -0.05032322555780411, -0.03705207630991936, -0.14351658523082733, -0.012116766534745693, -0.23586274683475494, -0.1394416242837906, -0.6274201273918152, 0.13561272621154785, -0.04470048099756241, 0.07734031975269318, 0.11177755892276764, -0.21200059354305267, 0.03446464240550995, -0.22875811159610748, 0.5761767029762268, 0.5365767478942871, 0.45339927077293396, -0.200495183467865, -0.2497023195028305, -0.4111526310443878, 0.1546655148267746, -0.07052721828222275, 0.13288316130638123, 0.08823078870773315, 0.3086770474910736, -0.1362992376089096, 0.18988502025604248, 0.10294901579618454, 0.439831405878067, -0.191518172621727, 0.09769245237112045, -0.4273044168949127, -0.11926323175430298, 0.23794928193092346, 0.3140215575695038, -0.12239822000265121, -0.03317466750741005, 0.1472315490245819, -0.259480744600296, 0.02683463878929615, -0.2557222545146942, 0.12617076933383942, -0.17763371765613556, 0.23998165130615234, 0.42029082775115967, 0.2550697922706604, 0.46534693241119385, 0.09304921329021454, -0.2224840223789215, -0.2390587478876114, -0.37548816204071045, -0.19188134372234344, -0.043745581060647964, 0.11290857940912247, 0.30587175488471985, -0.1066821962594986, 0.3847693204879761, -0.29157954454421997, 0.16419871151447296, -0.11915925145149231, 0.1546405702829361, -0.16727548837661743, -0.11179342865943909, 0.18179379403591156, 0.18248309195041656, 0.005861362908035517, 0.05861686170101166, 0.08683187514543533, -0.06921635568141937, -0.342007577419281, -0.001157806720584631, 0.3177970051765442, -0.06576350331306458, 0.036411311477422714, 0.10981385409832001, 0.2601316571235657, 0.24801306426525116, -0.05848762020468712, -0.5286952257156372, 0.2906092405319214, 0.404107004404068, -0.16637425124645233, -0.3493911027908325, 0.07962208241224289, 0.31445440649986267, 0.1672552227973938, -0.08844628185033798, 0.13782192766666412, -0.09061794728040695, -0.16784709692001343, 0.0019330705981701612, -0.1552884727716446 ]
https://github.com/huggingface/datasets/issues/288
Error at the first example in README: AttributeError: module 'dill' has no attribute '_dill'
It looks like the bug comes from `dill`. Which version of `dill` are you using ?
/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:469: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:470: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:471: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:472: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:473: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:476: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Traceback (most recent call last): File "/Users/parasol_tree/Resource/019 - Github/AcademicEnglishToolkit /test.py", line 7, in <module> import nlp File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/__init__.py", line 27, in <module> from .arrow_dataset import Dataset File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/arrow_dataset.py", line 31, in <module> from nlp.utils.py_utils import dumps File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/__init__.py", line 20, in <module> from .download_manager import DownloadManager, GenerateMode File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/download_manager.py", line 25, in <module> from .py_utils import flatten_nested, map_nested, size_str File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 244, in <module> class Pickler(dill.Pickler): File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 247, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill'
16
Error at the first example in README: AttributeError: module 'dill' has no attribute '_dill' /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:469: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:470: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:471: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:472: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:473: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:476: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Traceback (most recent call last): File "/Users/parasol_tree/Resource/019 - Github/AcademicEnglishToolkit /test.py", line 7, in <module> import nlp File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/__init__.py", line 27, in <module> from .arrow_dataset import Dataset File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/arrow_dataset.py", line 31, in <module> from nlp.utils.py_utils import dumps File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/__init__.py", line 20, in <module> from .download_manager import DownloadManager, GenerateMode File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/download_manager.py", line 25, in <module> from .py_utils import flatten_nested, map_nested, size_str File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 244, in <module> class Pickler(dill.Pickler): File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 247, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill' It looks like the bug comes from `dill`. Which version of `dill` are you using ?
[ 0.07698371261358261, -0.402094304561615, -0.1799209862947464, 0.06598193943500519, 0.14926880598068237, -0.0033458704128861427, 0.557326078414917, 0.3920769691467285, -0.011485968716442585, 0.2672938108444214, -0.05244337394833565, 0.3347721993923187, -0.05059434846043587, -0.31200331449508667, 0.011163633316755295, -0.32917648553848267, 0.0835464745759964, 0.27364984154701233, -0.3709399700164795, -0.2723836898803711, -0.23351722955703735, 0.28005650639533997, -0.0776631161570549, 0.24849770963191986, -0.1481044441461563, -0.034943729639053345, 0.12143981456756592, 0.10596141219139099, 0.06757675111293793, -0.28865817189216614, 0.1965775489807129, -0.1745566874742508, 0.22759021818637848, 0.4768027365207672, -0.00010438694880576804, 0.13615882396697998, 0.33755338191986084, -0.03460877388715744, -0.13421884179115295, -0.35059309005737305, 0.47139137983322144, 0.05932155251502991, 0.3363775908946991, -0.3500792980194092, -0.05079090967774391, -0.2969645857810974, -0.09695760905742645, -0.30893474817276, 0.44410985708236694, 0.4418491721153259, 0.30106982588768005, 0.10265275090932846, 0.244694322347641, -0.16991539299488068, -0.02083509787917137, -0.029783722013235092, -0.06779357045888901, 0.37534719705581665, 0.13835209608078003, 0.14741657674312592, 0.3823758363723755, 0.3424665927886963, 0.1609317660331726, 0.07760809361934662, 0.33932268619537354, 0.03225771337747574, 0.660061240196228, -0.4541980028152466, -0.0775013417005539, 0.27367275953292847, 0.18128728866577148, -0.11844334751367569, -0.32098039984703064, 0.12697802484035492, 0.006010294891893864, -0.24750158190727234, 0.06167575344443321, -0.0677473396062851, -0.2496778517961502, -0.03257466107606888, 0.44583678245544434, -0.044266074895858765, -0.17719897627830505, 0.19539514183998108, -0.01851155236363411, 0.16363643109798431, -0.044930968433618546, -0.05065442621707916, 0.02716115489602089, -0.33402514457702637, 0.3872070610523224, 0.09286496043205261, 0.44849953055381775, 0.09601050615310669, -0.0759611427783966, -0.12198527902364731, 0.06254751235246658, -0.6255772709846497, -0.2034095823764801, -0.291434109210968, 0.07395203411579132, -0.012258789502084255, 0.1180226281285286, 0.2710877060890198, -0.16345706582069397, 0.06675635278224945, 0.10672740638256073, 0.16068923473358154, 0.3354814350605011, 0.07939406484365463, 0.3280118703842163, 0.16987396776676178, -0.30215227603912354, -0.12513834238052368, -0.15678544342517853, 0.06409618258476257, 0.3410714268684387, 0.0939640998840332, -0.5376571416854858, -0.04864940047264099, -0.19243746995925903, 0.0474511943757534, -0.005581858102232218, 0.2568107545375824, -0.037951260805130005, 0.1916808933019638, 0.41505157947540283, 0.11126703768968582, -0.24542313814163208, 0.004610870033502579, -0.22293561697006226, 0.3555663824081421, -0.07030681520700455, -0.2020580768585205, 0.058731723576784134, 0.15545488893985748, 0.3014602065086365, -0.0993095263838768, 0.1310545653104782, -0.08252125978469849, 0.16957266628742218, 0.01466850470751524, -0.039608072489500046, 0.15427663922309875, -0.29427647590637207, -0.045141883194446564, 0.2622385323047638, -0.18552422523498535, -0.26115503907203674, 0.09121713787317276, -0.23356413841247559, -0.009562365710735321, -0.4541473686695099, 0.3482019007205963, 0.25079572200775146, 0.11042477190494537, 0.2338400036096573, 0.03049018420279026, 0.1052180826663971, 0.047062214463949203, -0.10150939226150513, -0.2446223497390747, -0.1023617759346962, -0.330663800239563, 0.2848876714706421, 0.1544388085603714, -0.05885222554206848, -0.1574842482805252, -0.14238445460796356, -0.039736080914735794, 0.12016019225120544, 0.22023411095142365, -0.135176882147789, -0.013514547608792782, 0.11746717989444733, -0.17192399501800537, 0.6146838665008545, -0.5745149254798889, 0.10565511137247086, -0.06110144406557083, 0.137108713388443, -0.04822363331913948, -0.010827437974512577, -0.07862036675214767, 0.14182433485984802, -0.06172795593738556, 0.3198716342449188, 0.3495156764984131, 0.25150513648986816, -0.11045807600021362, -0.3646187484264374, 0.012272383086383343, 0.1300426870584488, 0.09103691577911377, 0.09657133370637894, 0.06349997967481613, -0.052370235323905945, -0.04806014522910118, 0.06474502384662628, -0.1598062962293625, 0.004075402859598398, 0.12344314903020859, 0.08758453279733658, -0.08677972853183746, 0.10082832723855972, -0.17192581295967102, -0.32303571701049805, -0.05698307231068611, -0.3147105276584625, 0.034375306218862534, -0.01524139754474163, -0.19136075675487518, -0.19831913709640503, 0.012763291597366333, 0.11912976950407028, -0.2337503731250763, 0.32199999690055847, 0.03483808413147926, -0.01301236916333437, 0.16307538747787476, -0.23216232657432556, -0.03293822333216667, -0.1512502282857895, 0.18153268098831177, -0.13530388474464417, 0.16415643692016602, -0.4232262670993805, -0.2587803602218628, -0.16872334480285645, 0.3535495400428772, 0.08731565624475479, -0.3229029178619385, -0.039890918880701065, 0.3210484981536865, -0.06600597500801086, -0.09631321579217911, -0.35608965158462524, -0.015159121714532375, 0.3564201295375824, -0.14737001061439514, 0.044009167701005936, 0.3544332981109619, 0.1194431483745575, -0.10679537802934647, 0.06604334712028503, 0.2442784309387207, 0.2975999414920807, -0.0210516769438982, 0.28134143352508545, 0.19251801073551178, 0.038185376673936844, 0.12454201281070709, -0.05835908278822899, -0.1804332137107849, 0.15598829090595245, 0.3096718192100525, 0.11827696859836578, -0.17865903675556183, -0.3969527781009674, -0.027768829837441444, 0.21053728461265564, 0.0029681972227990627, 0.21260760724544525, -0.03075021132826805, -0.07518791407346725, 0.12578998506069183, 0.15584757924079895, -0.07667507976293564, 0.1838899850845337, 0.00915990024805069, 0.13227923214435577, 0.07277984917163849, -0.20344488322734833, -0.14120428264141083, 0.11523366719484329, -0.026881054043769836, 0.349784255027771, -0.07093502581119537, -0.08731669187545776, 0.07851327955722809, -0.08443361520767212, -0.37827566266059875, 0.05666405335068703, 0.16578055918216705, -0.08290986716747284, 0.03782352805137634, -0.2627529799938202, -0.022795867174863815, -0.09478156268596649, -0.22960788011550903, 0.13249637186527252, -0.14374101161956787, -0.014999025501310825, 0.17614665627479553, -0.1750650256872177, 0.2052592635154724, 0.18839725852012634, -0.0567656084895134, 0.09606798738241196, 0.3126215636730194, -0.25922226905822754, -0.07792818546295166, -0.16635219752788544, 0.15538565814495087, 0.03306874260306358, -0.08564242720603943, 0.19942721724510193, -0.2755848169326782, -0.12011422216892242, 0.14990144968032837, -0.45208391547203064, 0.05243554711341858, 0.014011336490511894, 0.11484608054161072, 0.22276175022125244, 0.2215283066034317, 0.024878306314349174, -0.3447568416595459, 0.2151990532875061, -0.33492621779441833, -0.02589435502886772, -0.0942450761795044, 0.05397724732756615, -0.09565212577581406, -0.48859310150146484, -0.6345105767250061, -0.3095664381980896, -0.5386678576469421, 0.01893436349928379, 0.1400107443332672, 0.3738849461078644, 0.32081568241119385, 0.23707838356494904, 0.45750555396080017, 0.30190613865852356, 0.4452670216560364, 0.05901048332452774, 0.02709694392979145, 0.3070291578769684, -0.4646858274936676, -0.3787640333175659, -0.11513285338878632, -0.15162993967533112, 0.30441558361053467, -0.1614549309015274, -0.0524057000875473, -0.3177405595779419, -0.27428892254829407, 0.20446886122226715, -0.2654445469379425, -0.08346465975046158, 0.07806757837533951, 0.16832762956619263, -0.22344188392162323, -0.14726945757865906, 0.03980572149157524, 0.19829820096492767, -0.08997096866369247, 0.050387851893901825, 0.1322677582502365, 0.41052138805389404, -0.13552473485469818, 0.6412841081619263, 0.15359094738960266, -0.5416247844696045, 0.1315537691116333, 0.09418071061372757, 0.17842847108840942, 0.16107876598834991, -0.0770014300942421, 0.06412100046873093, 0.10613960772752762, 0.3015512526035309, -0.06063305586576462, -0.1528749316930771, -0.26248759031295776, -0.24856512248516083, 0.055191926658153534, -0.20936496555805206, -0.09925202280282974, -0.19032326340675354, -0.2222331315279007, 0.026647595688700676, -0.17042943835258484, 0.12949296832084656, -0.030280068516731262, 0.2669641375541687, 0.1404934823513031, 0.3743703067302704, -0.029914433136582375, 0.030931349843740463, -0.14466577768325806, -0.17214351892471313, -0.16813819110393524, 0.26893913745880127, 0.039158567786216736, 0.3509308099746704, 0.06937692314386368, -0.08991046994924545, 0.09542456269264221, 0.10213866084814072, 0.33877232670783997, -0.14164727926254272, -0.2548164427280426, 0.3434724807739258, -0.036934368312358856, -0.42666319012641907, -0.10194018483161926, -0.29800182580947876, -0.0479726567864418, 0.4439176023006439, 0.00995019730180502, -0.2568553686141968, -0.27164584398269653, 0.245505228638649, -0.13020384311676025, -0.06763878464698792, 0.07218128442764282, -0.13392703235149384, -0.4609440267086029, -0.33730530738830566, -0.1392960399389267, 0.1958247870206833, 0.18347463011741638, -0.14350661635398865, -0.14980962872505188, 0.0016156721394509077, 0.010015906766057014, 0.050371307879686356, 0.19008854031562805, 0.2087095081806183, -0.12782788276672363, -0.1401393711566925, 0.03822788968682289, 0.28630930185317993, 0.3246240019798279, 0.08555681258440018, -0.3335411548614502, -0.2565036118030548, 0.17059025168418884, -0.06748656928539276, 0.14526844024658203, 0.02411631867289543, -0.15182605385780334, -0.057467129081487656, -0.40395477414131165, 0.03527991473674774, 0.392839640378952, 0.23669439554214478, 0.4728350341320038, 0.23306626081466675, 0.041486725211143494, -0.3156416714191437, 0.27835172414779663, 0.1127391904592514, 0.016891393810510635, 0.39148831367492676, -0.11730355024337769, -0.13399042189121246, 0.10714205354452133, 0.2551786005496979, 0.779651939868927, 0.197943314909935, 0.07987774908542633, 0.3982568085193634, -0.14910835027694702, 0.27137646079063416, 0.021491214632987976, 0.12877842783927917, -0.20854344964027405, -0.10119599848985672, 0.03271312639117241, -0.09504174441099167, 0.2960812747478485, -0.16588647663593292, -0.4762011766433716, -0.008899111300706863, -0.3046587109565735, -0.08554492145776749, -0.010394049808382988, 0.25138556957244873, 0.05120612308382988, 0.0007529060821980238, 0.08318351209163666, 0.19367475807666779, 0.14291124045848846, 0.18628565967082977, -0.21740014851093292, -0.19222547113895416, -0.160750612616539, -0.3412710726261139, -0.05187274515628815, 0.15318268537521362, -0.21826355159282684, 0.43618518114089966, 0.19552850723266602, -0.3141542673110962, 0.09287656843662262, 0.3122990131378174, 0.45428466796875, -0.19127467274665833, -0.13730216026306152, -0.047419581562280655, -0.1302073746919632, -0.0439017079770565, -0.1522316038608551, 0.18011574447155, 0.5092207789421082, -0.2898778021335602, -0.13600902259349823, 0.26584094762802124, 0.00446725357323885, 0.22901758551597595, -0.40293219685554504, 0.014423730783164501, -0.20159973204135895, -0.0062909433618187904, 0.2079758495092392, -0.05272200331091881, -0.5108943581581116, -0.12159236520528793, 0.24275889992713928, -0.01685585267841816, -0.33286920189857483, -0.02939615212380886, 0.11104968190193176, -0.2632744610309601, 0.06321950256824493, 0.07045025378465652, 0.3525017499923706, 0.13922014832496643, 0.3493538200855255, -0.036030858755111694, -0.2955443263053894, -0.2647210657596588, -0.27265259623527527, 0.0311373770236969, 0.011248651891946793, 0.32448843121528625, -0.27563363313674927, -0.32464662194252014, -0.05973053351044655, 0.21165363490581512, -0.0009634742164053023, 0.2978006601333618, -0.22469589114189148, -0.16323359310626984, -0.1972970813512802, 0.19181552529335022, -0.17148061096668243, 0.3040003180503845, -0.34909045696258545, 0.42256778478622437, 0.11372353881597519, -0.04307203367352486, -0.4419589936733246, 0.16683506965637207, -0.036881182342767715, 0.02001897059381008, -0.1581537425518036, -0.21475106477737427, 0.16766135394573212, 0.24447692930698395, 0.22848013043403625, 0.06948699802160263, -0.18884064257144928, -0.2605834901332855, -0.1704721301794052, 0.06985526531934738, -0.21164099872112274, -0.18176265060901642, 0.24041903018951416, 0.09998209029436111, -0.18442001938819885, 0.08633247017860413, -0.029288392513990402, -0.13208934664726257, -0.001998456194996834, 0.5582348704338074, 0.03873405605554581, 0.5644741654396057, 0.3869159519672394, 0.008912639692425728, -0.1002073585987091, 0.1331443190574646, -0.13454526662826538, 0.0213506780564785, 0.059749502688646317, -0.2254045009613037, -0.3498133420944214, -0.13730347156524658, -0.1616208404302597, -0.14028993248939514, 0.22077853977680206, -0.16355440020561218, 0.05538133904337883, -0.2637145221233368, 0.12106924504041672, 0.3033830523490906, -0.344074010848999, 0.15444840490818024, 0.08660851418972015, 0.3013633191585541, -0.2628338038921356, 0.26797357201576233, -0.07427367568016052, 0.044652704149484634, 0.2171688824892044, 0.24855203926563263, -0.11638744920492172, -0.017700208351016045, 0.07168149203062057, 0.08110253512859344, -0.09124939888715744, -0.28893980383872986, 0.3252559304237366, 0.23269516229629517, -0.165237158536911, 0.08739938586950302, 0.20998182892799377, -0.021731209009885788, 0.16572436690330505, 0.17539359629154205, -0.11326663941144943, 0.34353238344192505, -0.08947987854480743, -0.19292432069778442, 0.3750651776790619, 0.11596249788999557, 0.20908395946025848, 0.20963145792484283, 0.15933242440223694, 0.22473104298114777, 0.08408088237047195, 0.16504566371440887, -0.17093056440353394, -0.08286039531230927, -0.051477301865816116, 0.1343662440776825, -0.32709482312202454, -0.10759706795215607, 0.03502928465604782, -0.16096976399421692, -0.15086211264133453, -0.4307507872581482, 0.09214827418327332, -0.07098112255334854, 0.1977216601371765, 0.045075055211782455, -0.18784764409065247, -0.3252621591091156, 0.12650065124034882, -0.06907792389392853, 0.31124308705329895, -0.08858639001846313, 0.1946069449186325, 0.3189256489276886, -0.10012535005807877, -0.37504148483276367, 0.33280155062675476, 0.3252204954624176, 0.5558351874351501, -0.2463054060935974, 0.06235736235976219, -0.02717875875532627, -0.25852781534194946, 0.13587993383407593, 0.006971181835979223, 0.15259766578674316, 0.009647047147154808, 0.2664267420768738, 0.18729518353939056, -0.2842237651348114, 0.09371450543403625, 0.04912123829126358, -0.028332477435469627, -0.22251345217227936, 0.6058996915817261, -0.3091020882129669, 0.02418660558760166, -0.14197424054145813, -0.02501266822218895, -0.5140054225921631, -0.1894376575946808, 0.1390504688024521, 0.0070463018491864204, 0.027031244710087776, -0.2933400273323059, 0.1228032037615776, -0.11286985129117966, 0.3584933280944824, 0.003874545218423009, 0.3682335913181305, 0.029320158064365387, -0.004502665251493454, -0.31421250104904175, 0.3037097156047821, -0.1117277443408966, -0.030564457178115845, 0.10008146613836288, 0.07312127947807312, -0.20997153222560883, 0.032497990876436234, 0.21575184166431427, -0.15405023097991943, 0.010349245741963387, 0.1331142634153366, -0.465289443731308, -0.05194324627518654, -0.32022997736930847, -0.11838122457265854, 0.3270789086818695, -0.2909775674343109, 0.00028090327396057546, -0.26574042439460754, 0.18858331441879272, -0.3409995138645172, 0.0875842347741127, 0.08087071031332016, 0.4352746605873108, 0.17728544771671295, 0.17987020313739777, 0.3052111268043518, -0.043241746723651886, -0.32418298721313477, 0.10091863572597504, -0.18349644541740417, -0.2110896110534668, 0.2475280612707138, 0.23514781892299652, -0.06517141312360764, -0.16149286925792694, -0.48831987380981445, -0.20351606607437134, 0.5369018912315369, -0.004125185310840607, -0.270772248506546, -0.23055686056613922, 0.22513411939144135, 0.06293772161006927, -0.00098138686735183, 0.07477115839719772, 0.23143593966960907, -0.014073394238948822, 0.10761561244726181, -0.4403277337551117, -0.42131632566452026, 0.696571946144104, -0.053116779774427414, -0.22330355644226074, -0.3283875286579132, 0.1428038477897644, 0.047794587910175323, 0.21800555288791656, -0.714352548122406, -0.11810461431741714, 0.34353524446487427, -0.1029728502035141, -0.36630529165267944, 0.21257297694683075, 0.16378937661647797, -0.155928835272789, -0.12147221714258194, 0.3115534782409668, 0.07703481614589691, -0.05439983680844307, -0.028303837403655052, -0.3904366195201874 ]
https://github.com/huggingface/datasets/issues/288
Error at the first example in README: AttributeError: module 'dill' has no attribute '_dill'
0.2.6 is three years old now, maybe try a more recent one, e.g. the current 0.3.2 if you can?
/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:469: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:470: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:471: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:472: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:473: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:476: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Traceback (most recent call last): File "/Users/parasol_tree/Resource/019 - Github/AcademicEnglishToolkit /test.py", line 7, in <module> import nlp File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/__init__.py", line 27, in <module> from .arrow_dataset import Dataset File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/arrow_dataset.py", line 31, in <module> from nlp.utils.py_utils import dumps File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/__init__.py", line 20, in <module> from .download_manager import DownloadManager, GenerateMode File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/download_manager.py", line 25, in <module> from .py_utils import flatten_nested, map_nested, size_str File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 244, in <module> class Pickler(dill.Pickler): File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 247, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill'
19
Error at the first example in README: AttributeError: module 'dill' has no attribute '_dill' /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:469: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:470: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:471: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:472: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:473: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:476: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /Users/parasol_tree/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) /Users/parasol_tree/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Traceback (most recent call last): File "/Users/parasol_tree/Resource/019 - Github/AcademicEnglishToolkit /test.py", line 7, in <module> import nlp File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/__init__.py", line 27, in <module> from .arrow_dataset import Dataset File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/arrow_dataset.py", line 31, in <module> from nlp.utils.py_utils import dumps File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/__init__.py", line 20, in <module> from .download_manager import DownloadManager, GenerateMode File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/download_manager.py", line 25, in <module> from .py_utils import flatten_nested, map_nested, size_str File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 244, in <module> class Pickler(dill.Pickler): File "/Users/parasol_tree/anaconda3/lib/python3.6/site-packages/nlp/utils/py_utils.py", line 247, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill' 0.2.6 is three years old now, maybe try a more recent one, e.g. the current 0.3.2 if you can?
[ 0.07698371261358261, -0.402094304561615, -0.1799209862947464, 0.06598193943500519, 0.14926880598068237, -0.0033458704128861427, 0.557326078414917, 0.3920769691467285, -0.011485968716442585, 0.2672938108444214, -0.05244337394833565, 0.3347721993923187, -0.05059434846043587, -0.31200331449508667, 0.011163633316755295, -0.32917648553848267, 0.0835464745759964, 0.27364984154701233, -0.3709399700164795, -0.2723836898803711, -0.23351722955703735, 0.28005650639533997, -0.0776631161570549, 0.24849770963191986, -0.1481044441461563, -0.034943729639053345, 0.12143981456756592, 0.10596141219139099, 0.06757675111293793, -0.28865817189216614, 0.1965775489807129, -0.1745566874742508, 0.22759021818637848, 0.4768027365207672, -0.00010438694880576804, 0.13615882396697998, 0.33755338191986084, -0.03460877388715744, -0.13421884179115295, -0.35059309005737305, 0.47139137983322144, 0.05932155251502991, 0.3363775908946991, -0.3500792980194092, -0.05079090967774391, -0.2969645857810974, -0.09695760905742645, -0.30893474817276, 0.44410985708236694, 0.4418491721153259, 0.30106982588768005, 0.10265275090932846, 0.244694322347641, -0.16991539299488068, -0.02083509787917137, -0.029783722013235092, -0.06779357045888901, 0.37534719705581665, 0.13835209608078003, 0.14741657674312592, 0.3823758363723755, 0.3424665927886963, 0.1609317660331726, 0.07760809361934662, 0.33932268619537354, 0.03225771337747574, 0.660061240196228, -0.4541980028152466, -0.0775013417005539, 0.27367275953292847, 0.18128728866577148, -0.11844334751367569, -0.32098039984703064, 0.12697802484035492, 0.006010294891893864, -0.24750158190727234, 0.06167575344443321, -0.0677473396062851, -0.2496778517961502, -0.03257466107606888, 0.44583678245544434, -0.044266074895858765, -0.17719897627830505, 0.19539514183998108, -0.01851155236363411, 0.16363643109798431, -0.044930968433618546, -0.05065442621707916, 0.02716115489602089, -0.33402514457702637, 0.3872070610523224, 0.09286496043205261, 0.44849953055381775, 0.09601050615310669, -0.0759611427783966, -0.12198527902364731, 0.06254751235246658, -0.6255772709846497, -0.2034095823764801, -0.291434109210968, 0.07395203411579132, -0.012258789502084255, 0.1180226281285286, 0.2710877060890198, -0.16345706582069397, 0.06675635278224945, 0.10672740638256073, 0.16068923473358154, 0.3354814350605011, 0.07939406484365463, 0.3280118703842163, 0.16987396776676178, -0.30215227603912354, -0.12513834238052368, -0.15678544342517853, 0.06409618258476257, 0.3410714268684387, 0.0939640998840332, -0.5376571416854858, -0.04864940047264099, -0.19243746995925903, 0.0474511943757534, -0.005581858102232218, 0.2568107545375824, -0.037951260805130005, 0.1916808933019638, 0.41505157947540283, 0.11126703768968582, -0.24542313814163208, 0.004610870033502579, -0.22293561697006226, 0.3555663824081421, -0.07030681520700455, -0.2020580768585205, 0.058731723576784134, 0.15545488893985748, 0.3014602065086365, -0.0993095263838768, 0.1310545653104782, -0.08252125978469849, 0.16957266628742218, 0.01466850470751524, -0.039608072489500046, 0.15427663922309875, -0.29427647590637207, -0.045141883194446564, 0.2622385323047638, -0.18552422523498535, -0.26115503907203674, 0.09121713787317276, -0.23356413841247559, -0.009562365710735321, -0.4541473686695099, 0.3482019007205963, 0.25079572200775146, 0.11042477190494537, 0.2338400036096573, 0.03049018420279026, 0.1052180826663971, 0.047062214463949203, -0.10150939226150513, -0.2446223497390747, -0.1023617759346962, -0.330663800239563, 0.2848876714706421, 0.1544388085603714, -0.05885222554206848, -0.1574842482805252, -0.14238445460796356, -0.039736080914735794, 0.12016019225120544, 0.22023411095142365, -0.135176882147789, -0.013514547608792782, 0.11746717989444733, -0.17192399501800537, 0.6146838665008545, -0.5745149254798889, 0.10565511137247086, -0.06110144406557083, 0.137108713388443, -0.04822363331913948, -0.010827437974512577, -0.07862036675214767, 0.14182433485984802, -0.06172795593738556, 0.3198716342449188, 0.3495156764984131, 0.25150513648986816, -0.11045807600021362, -0.3646187484264374, 0.012272383086383343, 0.1300426870584488, 0.09103691577911377, 0.09657133370637894, 0.06349997967481613, -0.052370235323905945, -0.04806014522910118, 0.06474502384662628, -0.1598062962293625, 0.004075402859598398, 0.12344314903020859, 0.08758453279733658, -0.08677972853183746, 0.10082832723855972, -0.17192581295967102, -0.32303571701049805, -0.05698307231068611, -0.3147105276584625, 0.034375306218862534, -0.01524139754474163, -0.19136075675487518, -0.19831913709640503, 0.012763291597366333, 0.11912976950407028, -0.2337503731250763, 0.32199999690055847, 0.03483808413147926, -0.01301236916333437, 0.16307538747787476, -0.23216232657432556, -0.03293822333216667, -0.1512502282857895, 0.18153268098831177, -0.13530388474464417, 0.16415643692016602, -0.4232262670993805, -0.2587803602218628, -0.16872334480285645, 0.3535495400428772, 0.08731565624475479, -0.3229029178619385, -0.039890918880701065, 0.3210484981536865, -0.06600597500801086, -0.09631321579217911, -0.35608965158462524, -0.015159121714532375, 0.3564201295375824, -0.14737001061439514, 0.044009167701005936, 0.3544332981109619, 0.1194431483745575, -0.10679537802934647, 0.06604334712028503, 0.2442784309387207, 0.2975999414920807, -0.0210516769438982, 0.28134143352508545, 0.19251801073551178, 0.038185376673936844, 0.12454201281070709, -0.05835908278822899, -0.1804332137107849, 0.15598829090595245, 0.3096718192100525, 0.11827696859836578, -0.17865903675556183, -0.3969527781009674, -0.027768829837441444, 0.21053728461265564, 0.0029681972227990627, 0.21260760724544525, -0.03075021132826805, -0.07518791407346725, 0.12578998506069183, 0.15584757924079895, -0.07667507976293564, 0.1838899850845337, 0.00915990024805069, 0.13227923214435577, 0.07277984917163849, -0.20344488322734833, -0.14120428264141083, 0.11523366719484329, -0.026881054043769836, 0.349784255027771, -0.07093502581119537, -0.08731669187545776, 0.07851327955722809, -0.08443361520767212, -0.37827566266059875, 0.05666405335068703, 0.16578055918216705, -0.08290986716747284, 0.03782352805137634, -0.2627529799938202, -0.022795867174863815, -0.09478156268596649, -0.22960788011550903, 0.13249637186527252, -0.14374101161956787, -0.014999025501310825, 0.17614665627479553, -0.1750650256872177, 0.2052592635154724, 0.18839725852012634, -0.0567656084895134, 0.09606798738241196, 0.3126215636730194, -0.25922226905822754, -0.07792818546295166, -0.16635219752788544, 0.15538565814495087, 0.03306874260306358, -0.08564242720603943, 0.19942721724510193, -0.2755848169326782, -0.12011422216892242, 0.14990144968032837, -0.45208391547203064, 0.05243554711341858, 0.014011336490511894, 0.11484608054161072, 0.22276175022125244, 0.2215283066034317, 0.024878306314349174, -0.3447568416595459, 0.2151990532875061, -0.33492621779441833, -0.02589435502886772, -0.0942450761795044, 0.05397724732756615, -0.09565212577581406, -0.48859310150146484, -0.6345105767250061, -0.3095664381980896, -0.5386678576469421, 0.01893436349928379, 0.1400107443332672, 0.3738849461078644, 0.32081568241119385, 0.23707838356494904, 0.45750555396080017, 0.30190613865852356, 0.4452670216560364, 0.05901048332452774, 0.02709694392979145, 0.3070291578769684, -0.4646858274936676, -0.3787640333175659, -0.11513285338878632, -0.15162993967533112, 0.30441558361053467, -0.1614549309015274, -0.0524057000875473, -0.3177405595779419, -0.27428892254829407, 0.20446886122226715, -0.2654445469379425, -0.08346465975046158, 0.07806757837533951, 0.16832762956619263, -0.22344188392162323, -0.14726945757865906, 0.03980572149157524, 0.19829820096492767, -0.08997096866369247, 0.050387851893901825, 0.1322677582502365, 0.41052138805389404, -0.13552473485469818, 0.6412841081619263, 0.15359094738960266, -0.5416247844696045, 0.1315537691116333, 0.09418071061372757, 0.17842847108840942, 0.16107876598834991, -0.0770014300942421, 0.06412100046873093, 0.10613960772752762, 0.3015512526035309, -0.06063305586576462, -0.1528749316930771, -0.26248759031295776, -0.24856512248516083, 0.055191926658153534, -0.20936496555805206, -0.09925202280282974, -0.19032326340675354, -0.2222331315279007, 0.026647595688700676, -0.17042943835258484, 0.12949296832084656, -0.030280068516731262, 0.2669641375541687, 0.1404934823513031, 0.3743703067302704, -0.029914433136582375, 0.030931349843740463, -0.14466577768325806, -0.17214351892471313, -0.16813819110393524, 0.26893913745880127, 0.039158567786216736, 0.3509308099746704, 0.06937692314386368, -0.08991046994924545, 0.09542456269264221, 0.10213866084814072, 0.33877232670783997, -0.14164727926254272, -0.2548164427280426, 0.3434724807739258, -0.036934368312358856, -0.42666319012641907, -0.10194018483161926, -0.29800182580947876, -0.0479726567864418, 0.4439176023006439, 0.00995019730180502, -0.2568553686141968, -0.27164584398269653, 0.245505228638649, -0.13020384311676025, -0.06763878464698792, 0.07218128442764282, -0.13392703235149384, -0.4609440267086029, -0.33730530738830566, -0.1392960399389267, 0.1958247870206833, 0.18347463011741638, -0.14350661635398865, -0.14980962872505188, 0.0016156721394509077, 0.010015906766057014, 0.050371307879686356, 0.19008854031562805, 0.2087095081806183, -0.12782788276672363, -0.1401393711566925, 0.03822788968682289, 0.28630930185317993, 0.3246240019798279, 0.08555681258440018, -0.3335411548614502, -0.2565036118030548, 0.17059025168418884, -0.06748656928539276, 0.14526844024658203, 0.02411631867289543, -0.15182605385780334, -0.057467129081487656, -0.40395477414131165, 0.03527991473674774, 0.392839640378952, 0.23669439554214478, 0.4728350341320038, 0.23306626081466675, 0.041486725211143494, -0.3156416714191437, 0.27835172414779663, 0.1127391904592514, 0.016891393810510635, 0.39148831367492676, -0.11730355024337769, -0.13399042189121246, 0.10714205354452133, 0.2551786005496979, 0.779651939868927, 0.197943314909935, 0.07987774908542633, 0.3982568085193634, -0.14910835027694702, 0.27137646079063416, 0.021491214632987976, 0.12877842783927917, -0.20854344964027405, -0.10119599848985672, 0.03271312639117241, -0.09504174441099167, 0.2960812747478485, -0.16588647663593292, -0.4762011766433716, -0.008899111300706863, -0.3046587109565735, -0.08554492145776749, -0.010394049808382988, 0.25138556957244873, 0.05120612308382988, 0.0007529060821980238, 0.08318351209163666, 0.19367475807666779, 0.14291124045848846, 0.18628565967082977, -0.21740014851093292, -0.19222547113895416, -0.160750612616539, -0.3412710726261139, -0.05187274515628815, 0.15318268537521362, -0.21826355159282684, 0.43618518114089966, 0.19552850723266602, -0.3141542673110962, 0.09287656843662262, 0.3122990131378174, 0.45428466796875, -0.19127467274665833, -0.13730216026306152, -0.047419581562280655, -0.1302073746919632, -0.0439017079770565, -0.1522316038608551, 0.18011574447155, 0.5092207789421082, -0.2898778021335602, -0.13600902259349823, 0.26584094762802124, 0.00446725357323885, 0.22901758551597595, -0.40293219685554504, 0.014423730783164501, -0.20159973204135895, -0.0062909433618187904, 0.2079758495092392, -0.05272200331091881, -0.5108943581581116, -0.12159236520528793, 0.24275889992713928, -0.01685585267841816, -0.33286920189857483, -0.02939615212380886, 0.11104968190193176, -0.2632744610309601, 0.06321950256824493, 0.07045025378465652, 0.3525017499923706, 0.13922014832496643, 0.3493538200855255, -0.036030858755111694, -0.2955443263053894, -0.2647210657596588, -0.27265259623527527, 0.0311373770236969, 0.011248651891946793, 0.32448843121528625, -0.27563363313674927, -0.32464662194252014, -0.05973053351044655, 0.21165363490581512, -0.0009634742164053023, 0.2978006601333618, -0.22469589114189148, -0.16323359310626984, -0.1972970813512802, 0.19181552529335022, -0.17148061096668243, 0.3040003180503845, -0.34909045696258545, 0.42256778478622437, 0.11372353881597519, -0.04307203367352486, -0.4419589936733246, 0.16683506965637207, -0.036881182342767715, 0.02001897059381008, -0.1581537425518036, -0.21475106477737427, 0.16766135394573212, 0.24447692930698395, 0.22848013043403625, 0.06948699802160263, -0.18884064257144928, -0.2605834901332855, -0.1704721301794052, 0.06985526531934738, -0.21164099872112274, -0.18176265060901642, 0.24041903018951416, 0.09998209029436111, -0.18442001938819885, 0.08633247017860413, -0.029288392513990402, -0.13208934664726257, -0.001998456194996834, 0.5582348704338074, 0.03873405605554581, 0.5644741654396057, 0.3869159519672394, 0.008912639692425728, -0.1002073585987091, 0.1331443190574646, -0.13454526662826538, 0.0213506780564785, 0.059749502688646317, -0.2254045009613037, -0.3498133420944214, -0.13730347156524658, -0.1616208404302597, -0.14028993248939514, 0.22077853977680206, -0.16355440020561218, 0.05538133904337883, -0.2637145221233368, 0.12106924504041672, 0.3033830523490906, -0.344074010848999, 0.15444840490818024, 0.08660851418972015, 0.3013633191585541, -0.2628338038921356, 0.26797357201576233, -0.07427367568016052, 0.044652704149484634, 0.2171688824892044, 0.24855203926563263, -0.11638744920492172, -0.017700208351016045, 0.07168149203062057, 0.08110253512859344, -0.09124939888715744, -0.28893980383872986, 0.3252559304237366, 0.23269516229629517, -0.165237158536911, 0.08739938586950302, 0.20998182892799377, -0.021731209009885788, 0.16572436690330505, 0.17539359629154205, -0.11326663941144943, 0.34353238344192505, -0.08947987854480743, -0.19292432069778442, 0.3750651776790619, 0.11596249788999557, 0.20908395946025848, 0.20963145792484283, 0.15933242440223694, 0.22473104298114777, 0.08408088237047195, 0.16504566371440887, -0.17093056440353394, -0.08286039531230927, -0.051477301865816116, 0.1343662440776825, -0.32709482312202454, -0.10759706795215607, 0.03502928465604782, -0.16096976399421692, -0.15086211264133453, -0.4307507872581482, 0.09214827418327332, -0.07098112255334854, 0.1977216601371765, 0.045075055211782455, -0.18784764409065247, -0.3252621591091156, 0.12650065124034882, -0.06907792389392853, 0.31124308705329895, -0.08858639001846313, 0.1946069449186325, 0.3189256489276886, -0.10012535005807877, -0.37504148483276367, 0.33280155062675476, 0.3252204954624176, 0.5558351874351501, -0.2463054060935974, 0.06235736235976219, -0.02717875875532627, -0.25852781534194946, 0.13587993383407593, 0.006971181835979223, 0.15259766578674316, 0.009647047147154808, 0.2664267420768738, 0.18729518353939056, -0.2842237651348114, 0.09371450543403625, 0.04912123829126358, -0.028332477435469627, -0.22251345217227936, 0.6058996915817261, -0.3091020882129669, 0.02418660558760166, -0.14197424054145813, -0.02501266822218895, -0.5140054225921631, -0.1894376575946808, 0.1390504688024521, 0.0070463018491864204, 0.027031244710087776, -0.2933400273323059, 0.1228032037615776, -0.11286985129117966, 0.3584933280944824, 0.003874545218423009, 0.3682335913181305, 0.029320158064365387, -0.004502665251493454, -0.31421250104904175, 0.3037097156047821, -0.1117277443408966, -0.030564457178115845, 0.10008146613836288, 0.07312127947807312, -0.20997153222560883, 0.032497990876436234, 0.21575184166431427, -0.15405023097991943, 0.010349245741963387, 0.1331142634153366, -0.465289443731308, -0.05194324627518654, -0.32022997736930847, -0.11838122457265854, 0.3270789086818695, -0.2909775674343109, 0.00028090327396057546, -0.26574042439460754, 0.18858331441879272, -0.3409995138645172, 0.0875842347741127, 0.08087071031332016, 0.4352746605873108, 0.17728544771671295, 0.17987020313739777, 0.3052111268043518, -0.043241746723651886, -0.32418298721313477, 0.10091863572597504, -0.18349644541740417, -0.2110896110534668, 0.2475280612707138, 0.23514781892299652, -0.06517141312360764, -0.16149286925792694, -0.48831987380981445, -0.20351606607437134, 0.5369018912315369, -0.004125185310840607, -0.270772248506546, -0.23055686056613922, 0.22513411939144135, 0.06293772161006927, -0.00098138686735183, 0.07477115839719772, 0.23143593966960907, -0.014073394238948822, 0.10761561244726181, -0.4403277337551117, -0.42131632566452026, 0.696571946144104, -0.053116779774427414, -0.22330355644226074, -0.3283875286579132, 0.1428038477897644, 0.047794587910175323, 0.21800555288791656, -0.714352548122406, -0.11810461431741714, 0.34353524446487427, -0.1029728502035141, -0.36630529165267944, 0.21257297694683075, 0.16378937661647797, -0.155928835272789, -0.12147221714258194, 0.3115534782409668, 0.07703481614589691, -0.05439983680844307, -0.028303837403655052, -0.3904366195201874 ]
https://github.com/huggingface/datasets/issues/281
Private/sensitive data
Hi @MFreidank, you should already be able to load a dataset from local sources, indeed. (ping @lhoestq and @jplu) We're also thinking about the ability to host private datasets on a hosted bucket with permission management, but that's further down the road.
Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank
42
Private/sensitive data Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank Hi @MFreidank, you should already be able to load a dataset from local sources, indeed. (ping @lhoestq and @jplu) We're also thinking about the ability to host private datasets on a hosted bucket with permission management, but that's further down the road.
[ -0.0707458034157753, 0.4125886857509613, -0.15505747497081757, 0.23369500041007996, -0.3745609521865845, -0.3104678988456726, 0.17580462992191315, 0.2741079032421112, -0.1874029040336609, 0.08432614803314209, -0.09903440624475479, 0.23551218211650848, -0.17405062913894653, 0.4147529900074005, 0.1561243087053299, -0.14106276631355286, -0.17459870874881744, 0.32796984910964966, 0.020436666905879974, 0.12347779422998428, 0.21680644154548645, -0.0035433692391961813, -0.13980647921562195, 0.181039959192276, 0.09574933350086212, -0.08277648687362671, 0.07685840874910355, -0.07090331614017487, -0.00519125210121274, -0.23778390884399414, 0.19947372376918793, 0.26747724413871765, 0.35696637630462646, 0.11032242327928543, -0.00011817557242466137, -0.06187986582517624, -0.007754691410809755, -0.09154489636421204, 0.10147097706794739, -0.3869076669216156, 0.09095380455255508, -0.3763209283351898, 0.11612652242183685, -0.09428703784942627, -0.6016391515731812, -0.22376973927021027, 0.22332927584648132, -0.20567628741264343, 0.28565871715545654, -0.14142756164073944, 0.08981321007013321, 0.4285239279270172, -0.04264167696237564, 0.4334448575973511, 0.2679480314254761, 0.04255296662449837, -0.37765657901763916, -0.23143406212329865, 0.4403626024723053, 0.06607823818922043, -0.18376424908638, 0.07955891638994217, -0.10583389550447464, 0.03702833876013756, 0.20910894870758057, -0.05356216058135033, -0.263617604970932, -0.42295315861701965, -0.04179686680436134, 0.4476960003376007, 0.6776384115219116, -0.055322159081697464, -0.3027358949184418, -0.19766271114349365, 0.04974748194217682, -0.12273072451353073, 0.04379456117749214, 0.3050140142440796, -0.3012389540672302, 0.2311728149652481, -0.23479102551937103, -0.533936619758606, -0.5878567099571228, 0.4005849063396454, 0.3250870704650879, 0.1725940704345703, -0.11474797129631042, 0.009718871675431728, -0.18342283368110657, -0.1467662751674652, 0.3118990957736969, 0.08408527821302414, 0.34607332944869995, 0.3613794147968292, 0.23149357736110687, -0.31574422121047974, -0.12350020557641983, -0.1307467669248581, 0.12639521062374115, 0.06001557409763336, 0.0627787709236145, 0.3807480037212372, -0.43438640236854553, 0.18695507943630219, 0.5641598701477051, -0.33148977160453796, -0.27328088879585266, 0.2127692550420761, 0.6141753792762756, -0.2264554500579834, 0.16248172521591187, 0.17312045395374298, -0.08663137257099152, 0.13383810222148895, -0.36972543597221375, -0.13651467859745026, 0.04592694342136383, -0.3774813413619995, -0.06414826959371567, 0.10296153277158737, -0.20011548697948456, 0.07729208469390869, 0.03451871499419212, 0.10051118582487106, 0.060626305639743805, 0.0826021134853363, 0.21943625807762146, -0.25965556502342224, 0.10024428367614746, -0.40086832642555237, 0.07367417961359024, -0.3296128511428833, -0.23051320016384125, 0.19071868062019348, 0.3585131764411926, 0.05251815542578697, 0.1227402538061142, -0.13629542291164398, 0.16619010269641876, 0.09493352472782135, 0.1821308135986328, -0.0007119187503121793, 0.20641955733299255, 0.2837129831314087, -0.14963170886039734, -0.21350733935832977, -0.20833437144756317, -0.06812364608049393, -0.26541945338249207, 0.4042982757091522, -0.21822859346866608, -0.35891997814178467, -0.07294033467769623, -0.07334587723016739, -0.360395610332489, 0.049767814576625824, 0.18302853405475616, 0.19234107434749603, -0.013297007419168949, -0.35782939195632935, 0.12330334633588791, 0.05403060093522072, -0.30919963121414185, -0.3107890486717224, 0.20444612205028534, 0.00793561339378357, -0.21543587744235992, 0.18703053891658783, 0.08019066601991653, -0.08996812999248505, 0.09076759964227676, 0.33840805292129517, -0.35517817735671997, -0.11716539412736893, 0.12380237132310867, 0.14386442303657532, 0.6366674900054932, -0.1484183371067047, -0.4632447361946106, 0.7736424207687378, 0.005080896429717541, -0.34999483823776245, -0.0010328656062483788, 0.5067371726036072, 0.07972945272922516, -0.097701795399189, -0.11440383642911911, 0.7414233684539795, 0.04943126440048218, 0.09382239729166031, -0.17055176198482513, -0.4520653486251831, 0.47996601462364197, 0.37171241641044617, -0.007751623634248972, 0.044731754809617996, 0.24418805539608002, 0.36081045866012573, 0.28456148505210876, -0.061094097793102264, 0.0669618546962738, -0.03511665761470795, 0.1061965674161911, 0.20224633812904358, -0.0028930685948580503, -0.2733084559440613, 0.08349661529064178, -0.1555231362581253, -0.5438959002494812, 0.14995308220386505, 0.03363091126084328, -0.16799300909042358, 0.22886346280574799, -0.09965083748102188, 0.19729159772396088, -0.0412277951836586, 0.01361386850476265, -0.005066432524472475, -0.0585574135184288, -0.023795437067747116, -0.357677698135376, -0.048137690871953964, -0.14946883916854858, -0.15342730283737183, -0.03648092597723007, 0.23511077463626862, 0.06540103256702423, -0.054739490151405334, 0.30411645770072937, 0.5591771006584167, -0.01357313897460699, -0.10763084143400192, 0.18229177594184875, 0.1524810642004013, -0.18574149906635284, 0.24421697854995728, 0.07262864708900452, 0.5805906057357788, 0.343222051858902, -0.17575888335704803, 0.25984787940979004, 0.36664867401123047, -0.03411591053009033, 0.17336444556713104, 0.09843321889638901, 0.7042982578277588, -0.26380208134651184, -0.16168437898159027, -0.03219715505838394, -0.1491553783416748, -0.004895185586065054, -0.17357909679412842, -0.3520435690879822, -0.030491376295685768, 0.010926731862127781, -0.26669231057167053, 0.13070371747016907, -0.03182389214634895, -0.5742010474205017, 0.22588492929935455, -0.10887062549591064, -0.08774705976247787, 0.3051641285419464, -0.02619324065744877, -0.027432981878519058, -0.06498054414987564, 0.14793957769870758, 0.29786166548728943, 0.36590754985809326, 0.11138509213924408, -0.17283783853054047, -0.07313045114278793, -0.11755392700433731, -0.14168673753738403, -0.0020145741291344166, -0.05932653695344925, 0.15234848856925964, 0.04909998178482056, 0.19651709496974945, 0.3548046052455902, -0.06706573069095612, 0.17883925139904022, -0.07302853465080261, 0.09431573748588562, -0.009576396085321903, 0.1214587539434433, -0.24237138032913208, -0.3815988600254059, 0.07225491851568222, -0.010774518363177776, -0.13104701042175293, 0.2822640538215637, 0.15543805062770844, 0.1999240219593048, -0.0822516679763794, -0.20935286581516266, -0.26920658349990845, 0.4863939583301544, -0.29746681451797485, -0.15752586722373962, -0.08365263044834137, -0.12402069568634033, -0.09600316733121872, 0.04750600829720497, 0.3210484981536865, -0.03602367639541626, 0.35413074493408203, 0.4143389165401459, 0.010744718834757805, -0.19432935118675232, -0.3171736001968384, 0.0647922083735466, 0.03165707364678383, 0.24277862906455994, -0.08614981919527054, -0.045393284410238266, 0.08745713531970978, -0.22342538833618164, -0.07342498749494553, -0.4196185767650604, -0.006141405086964369, -0.2804933190345764, -0.2080232948064804, -0.02156325802206993, -0.2728872001171112, -0.11799947917461395, -0.5042937397956848, -0.17463746666908264, 0.3917946517467499, 0.01754567213356495, 0.4474540054798126, 0.09745782613754272, -0.277303546667099, 0.09672749787569046, 0.010926405899226665, -0.04924041032791138, -0.07194975018501282, -0.4233451783657074, 0.2278178632259369, -0.5833617448806763, -0.45793652534484863, -0.11601277440786362, -0.003348775440827012, -0.04015865921974182, 0.20604246854782104, -0.6257675290107727, -0.03711237013339996, 0.1528884470462799, 0.29282933473587036, -0.03371915593743324, -0.27409103512763977, 0.24353960156440735, 0.024767089635133743, 0.07046335190534592, -0.1655634045600891, -0.1309506595134735, -0.2497606873512268, 0.024029085412621498, 0.2235521525144577, 0.3631475865840912, -0.3084201216697693, 0.4264254570007324, 0.37140822410583496, -0.03159824013710022, -0.10789757966995239, 0.3445718586444855, 0.23109374940395355, 0.15828892588615417, 0.2725987434387207, 0.042483750730752945, 0.15648150444030762, -0.04834544658660889, -0.16513685882091522, 0.3218415677547455, 0.11502677202224731, -0.4717212915420532, -0.34303703904151917, -0.4360583424568176, -0.35181745886802673, -0.17525266110897064, 0.14193996787071228, 0.1484614610671997, 0.6546309590339661, 0.034541163593530655, -0.2765914499759674, -0.264311820268631, -0.5170106887817383, -0.07062076777219772, -0.05975998938083649, 0.470882773399353, 0.1222507655620575, -0.033775053918361664, -0.2277190387248993, -0.408126562833786, -0.08944623172283173, 0.11263374984264374, 0.38847634196281433, -0.19865688681602478, 0.3296017050743103, 0.2983248233795166, -0.014293719083070755, -0.02842344343662262, -0.10287880152463913, 0.18477682769298553, 0.07035727798938751, -0.12497686594724655, -0.09494095295667648, 0.31987708806991577, -0.11207138746976852, 0.3463824689388275, 0.16395679116249084, 0.3733925223350525, -0.13242191076278687, -0.441440612077713, 0.18519124388694763, -0.08167646080255508, -0.23085804283618927, -0.19436649978160858, 0.15984989702701569, -0.05524288862943649, -0.10510995984077454, -0.08356551826000214, -0.15088923275470734, 0.09031914919614792, -0.11711712926626205, 0.12779240310192108, 0.08800602704286575, 0.31558454036712646, 0.21859058737754822, 0.049271292984485626, -0.12556275725364685, 0.22096288204193115, -0.07330401986837387, 0.2369709312915802, 0.3940103352069855, -0.20949600636959076, 0.2412097007036209, 0.31670117378234863, 0.11623647809028625, 0.053284116089344025, 0.049173757433891296, 0.44012245535850525, 0.48529866337776184, 0.10083597153425217, -0.021520450711250305, -0.05057082697749138, -0.15756332874298096, -0.2853381037712097, -0.043065592646598816, 0.04314534366130829, -0.33800268173217773, 0.12887804210186005, -0.150150328874588, 0.47079259157180786, -0.15668398141860962, -0.16870376467704773, 0.06552697718143463, 0.007811523973941803, -0.18113593757152557, 0.4684833586215973, 0.3160804212093353, 1.0504852533340454, -0.30088719725608826, 0.41452956199645996, -0.015561745502054691, -0.05842087045311928, 0.5179585218429565, -0.43143215775489807, 0.02120092138648033, -0.16928380727767944, 0.18253612518310547, -0.16509395837783813, -0.01754920557141304, 0.10861138999462128, 0.04740374535322189, 0.1744169145822525, 0.1485568732023239, 0.31243500113487244, -0.16895566880702972, 0.05636858567595482, 0.3495236039161682, 0.35509955883026123, -0.2769206464290619, -0.4173377454280853, -0.008703678846359253, -0.22158901393413544, 0.23593921959400177, -0.003516911529004574, -0.532400369644165, -0.06022797152400017, 0.264384388923645, -0.20982028543949127, -0.07542351633310318, -0.13977691531181335, 0.0012057736748829484, 0.11346332728862762, -0.39876222610473633, 0.5135900974273682, 0.443850576877594, 0.2498898059129715, 0.16266733407974243, -0.5347727537155151, -0.27946344017982483, -0.2712433636188507, -0.33801403641700745, 0.1475776582956314, 0.25291937589645386, 0.2925350069999695, -0.25894564390182495, -0.1438814401626587, 0.09599384665489197, 0.03656051680445671, -0.6549979448318481, -0.1946156919002533, 0.03890007361769676, 0.43390098214149475, -0.15149280428886414, -0.1014140248298645, 0.22598683834075928, -0.31711041927337646, 0.1088029220700264, 0.055168431252241135, 0.4022723436355591, -0.11327178031206131, -0.030477749183773994, 0.29821375012397766, -0.09445357322692871, 0.07585335522890091, 0.2888769209384918, 0.21159978210926056, -0.003028688719496131, 0.21330668032169342, -0.08310574293136597, 0.04972139000892639, -0.059917498379945755, 0.3089546859264374, -0.12532271444797516, -0.12440706044435501, -0.2226337343454361, 0.26915109157562256, -0.1552933156490326, -0.19633670151233673, 0.326651930809021, -0.028323743492364883, -0.2674144506454468, -0.20959673821926117, -0.5977568030357361, -0.20258018374443054, 0.33843740820884705, -0.12175720185041428, -0.06113135442137718, 0.024283545091748238, 0.4509023129940033, 0.03064808063209057, 0.16034625470638275, -0.19988885521888733, 0.23167239129543304, -0.20239323377609253, 0.20827162265777588, 0.2860327959060669, -0.012292670086026192, -0.15751224756240845, 0.11341042071580887, -0.11093996465206146, 0.09077943861484528, -0.19757437705993652, -0.07712063193321228, -0.12022089958190918, 0.2204323559999466, 0.3247852921485901, -0.41464757919311523, -0.2224481701850891, -0.7372850775718689, -0.24967776238918304, 0.05212930217385292, 0.02863243594765663, 0.14340513944625854, 0.009585367515683174, 0.23504875600337982, -0.09540396183729172, 0.27456769347190857, -0.03993895277380943, 0.3295145332813263, 0.1933571845293045, 0.40575557947158813, -0.13160526752471924, 0.32671812176704407, -0.009461781941354275, -0.1354021281003952, 0.013114246539771557, -0.05089443922042847, 0.2899572551250458, -0.05742652341723442, 0.6205940842628479, -0.11051128804683685, -0.044255904853343964, 0.027066491544246674, 0.14211896061897278, 0.018096979707479477, -0.061810582876205444, 0.3354994058609009, 0.16487179696559906, -0.024212557822465897, -0.264104962348938, -0.21324585378170013, -0.1139489933848381, 0.18062736093997955, -0.20428818464279175, -0.04696381092071533, 0.6455295085906982, 0.20423252880573273, 0.133235365152359, -0.2595513164997101, -0.01754939742386341, -0.25353166460990906, -0.3921937346458435, 0.061693623661994934, -0.23495854437351227, -0.04076997935771942, -0.12461606413125992, 0.33568844199180603, 0.0016510470304638147, 0.09950599819421768, 0.21405979990959167, 0.35177817940711975, 0.2666945159435272, 0.04369164630770683, 0.16047058999538422, -0.17092201113700867, -0.20235012471675873, -0.06621725112199783, 0.37860676646232605, 0.22481466829776764, -0.3483099639415741, 0.39781349897384644, 0.06788388639688492, 0.11448563635349274, 0.25013870000839233, 0.1266709566116333, 0.07715792953968048, -0.21949303150177002, -0.13998471200466156, -0.05713106691837311, 0.15118640661239624, -0.13836629688739777, -0.2714170813560486, -0.3089694082736969, 0.0563511997461319, 0.2587428689002991, 0.19642886519432068, -0.12029574066400528, -0.07495997846126556, 0.3919233977794647, 0.10097220540046692, -0.2236841470003128, 0.46807217597961426, -0.27893030643463135, 0.1513318568468094, 0.11756251007318497, 0.19438685476779938, -0.002595966449007392, 0.09405733644962311, -0.498798668384552, 0.03577272221446037, -0.5205503702163696, -0.05581233650445938, -0.017878742888569832, 0.39849525690078735, 0.34034839272499084, -0.11760393530130386, 0.33159613609313965, -0.11050102859735489, 0.08635213971138, 0.17134128510951996, 0.05799446254968643, 0.14569054543972015, -0.20984740555286407, 0.48594024777412415, 0.07962117344141006, -0.4297902286052704, 0.07701025158166885, -0.1739654839038849, 0.12410677969455719, 0.11049145460128784, 0.4481085538864136, -0.13656026124954224, 0.0984853208065033, -0.15721936523914337, 0.032108720391988754, -0.14522892236709595, 0.3510955274105072, 0.21824148297309875, 0.5691326260566711, -0.08776099234819412, -0.20638327300548553, -0.30887356400489807, 0.4102730453014374, 0.19981598854064941, -0.083382748067379, 0.06126248836517334, 0.14549456536769867, 0.3595326244831085, 0.6020910739898682, -0.25807899236679077, -0.23853981494903564, 0.08076753467321396, -0.059495966881513596, 0.06567008793354034, 0.15432758629322052, -0.24018995463848114, 0.3685510456562042, -0.1283993273973465, -0.17148615419864655, 0.25819990038871765, -0.31682083010673523, -0.10800984501838684, -0.2567023038864136, 0.14524975419044495, -0.09997685998678207, 0.26468971371650696, 0.424032986164093, -0.046415310353040695, 0.07380469143390656, 0.0059068650007247925, -0.10547997057437897, -0.1852465122938156, -0.05444593355059624, -0.03908735513687134, -0.11806938797235489, 0.18303826451301575, -0.07899434864521027, -0.38947951793670654, 0.07684419304132462, -0.13212306797504425, -0.08786070346832275, -0.3873864412307739, 0.24845074117183685, 0.28849712014198303, -0.15541872382164001, -0.380985826253891, 0.10061566531658173, -0.014935494400560856, 0.37895938754081726, -0.19338536262512207, -0.24850313365459442, -0.1345480978488922, 0.1518799215555191, 0.2221589833498001, -0.7115598320960999, 0.052677180618047714, 0.11639856547117233, 0.18238335847854614, 0.11141535639762878, -0.14425939321517944, -0.4165104329586029, 0.003409347264096141, 0.10304328054189682, 0.07603930681943893, -0.0012033473467454314, -0.09351599216461182, -0.02717754803597927, -0.14140266180038452, -0.16165612637996674, 0.39108577370643616, -0.11327217519283295, 0.010249081067740917, -0.3302140533924103, -0.3756515383720398 ]
https://github.com/huggingface/datasets/issues/281
Private/sensitive data
Hi @MFreidank, it is possible to load a dataset from your local storage, but only CSV/TSV and JSON are supported. To load a dataset in JSON format: ``` nlp.load_dataset(path="json", data_files={nlp.Split.TRAIN: ["path/to/train.json"], nlp.Split.TEST: ["path/to/test.json"]}) ``` For CSV/TSV datasets, you have to replace `json` by `csv`.
Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank
44
Private/sensitive data Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank Hi @MFreidank, it is possible to load a dataset from your local storage, but only CSV/TSV and JSON are supported. To load a dataset in JSON format: ``` nlp.load_dataset(path="json", data_files={nlp.Split.TRAIN: ["path/to/train.json"], nlp.Split.TEST: ["path/to/test.json"]}) ``` For CSV/TSV datasets, you have to replace `json` by `csv`.
[ -0.016660550609230995, 0.3993089497089386, -0.12448663264513016, 0.2548533082008362, -0.27396196126937866, -0.27529260516166687, 0.21818892657756805, 0.30807000398635864, -0.06903816759586334, 0.00781565997749567, -0.12333707511425018, 0.24154700338840485, -0.10988631099462509, 0.43130218982696533, 0.22610414028167725, -0.16052772104740143, -0.23062536120414734, 0.32906609773635864, 0.07516481727361679, 0.1278129369020462, 0.17984157800674438, 0.010817591100931168, -0.02771085500717163, 0.19783170521259308, 0.10537627339363098, -0.022412320598959923, 0.03913838043808937, -0.011053115129470825, 0.04930921643972397, -0.28079918026924133, 0.21947108209133148, 0.14611347019672394, 0.3711489140987396, 0.10421324521303177, -0.0001194865326397121, 0.05478167533874512, 0.004279150627553463, -0.17003905773162842, 0.01400824449956417, -0.501093327999115, 0.11817899346351624, -0.4590620994567871, 0.21272848546504974, -0.13232508301734924, -0.5507670044898987, -0.3828505277633667, 0.19534143805503845, -0.2550376355648041, 0.44595685601234436, -0.013473937287926674, 0.09721723198890686, 0.3948139548301697, -0.023835226893424988, 0.43012872338294983, 0.15169543027877808, 0.1558127999305725, -0.29781097173690796, -0.15469102561473846, 0.3256406784057617, 0.057655222713947296, -0.14451110363006592, -0.026069194078445435, -0.06318245083093643, 0.1081879511475563, 0.16940337419509888, 0.0011480451794341207, -0.21962864696979523, -0.3277967572212219, -0.06281670182943344, 0.39936602115631104, 0.594555139541626, -0.027526726946234703, -0.2495582103729248, -0.26703813672065735, 0.03197738900780678, -0.19983574748039246, 0.07112464308738708, 0.4118878245353699, -0.2896344065666199, 0.22821418941020966, -0.3382033407688141, -0.4331623911857605, -0.537064790725708, 0.40451285243034363, 0.34794116020202637, 0.07094426453113556, -0.09333502501249313, 0.08607028424739838, -0.16277098655700684, -0.19940185546875, 0.1973811239004135, -0.0023524423595517874, 0.39074423909187317, 0.30410999059677124, 0.1776648312807083, -0.36754336953163147, -0.13475963473320007, -0.3807196617126465, 0.09895719587802887, -0.009018590673804283, 0.02065412513911724, 0.33847367763519287, -0.3744041919708252, 0.2121005356311798, 0.5879615545272827, -0.2345273494720459, -0.2241453379392624, 0.21442367136478424, 0.45424842834472656, -0.24939633905887604, 0.043252091854810715, 0.08235473185777664, -0.05225706472992897, 0.11467499285936356, -0.4078926742076874, -0.10832980275154114, 0.05670621618628502, -0.32208672165870667, -0.07308776676654816, 0.03406274691224098, -0.25719162821769714, 0.04769548028707504, -0.043750081211328506, 0.17946065962314606, 0.06989093124866486, 0.10436559468507767, 0.2844657599925995, -0.1818286031484604, 0.11766277253627777, -0.3972921669483185, 0.06113475561141968, -0.25400862097740173, -0.1454840898513794, 0.22000131011009216, 0.41758492588996887, 0.09415079653263092, 0.1839076280593872, -0.2577002942562103, 0.10280494391918182, -0.0206567645072937, 0.14762938022613525, -0.10186303406953812, 0.24993477761745453, 0.24646854400634766, -0.03041977621614933, -0.26392972469329834, -0.09562685340642929, -0.11911548674106598, -0.32326817512512207, 0.3597043752670288, -0.28533321619033813, -0.3630566895008087, -0.11320097744464874, -0.06053020432591438, -0.40566927194595337, 0.09963800758123398, 0.11045677214860916, 0.19050268828868866, 0.025118879973888397, -0.31587955355644226, 0.02543899603188038, 0.020331449806690216, -0.36004629731178284, -0.28959810733795166, 0.21121561527252197, -0.04225599020719528, -0.25298961997032166, 0.08363247662782669, 0.0734238401055336, -0.10136464238166809, 0.062259599566459656, 0.38707661628723145, -0.3909446597099304, -0.08913182467222214, 0.06431151926517487, 0.24207459390163422, 0.6808608174324036, -0.08777829259634018, -0.3745703399181366, 0.8095408082008362, -0.08523217588663101, -0.35043349862098694, -0.012151523493230343, 0.42519545555114746, 0.1100582480430603, 0.00390319200232625, -0.07410106062889099, 0.8450557589530945, 0.048078857362270355, 0.13011929392814636, -0.21992966532707214, -0.5326389074325562, 0.5446043610572815, 0.3769710958003998, -0.05564913526177406, 0.006438820622861385, 0.23600295186042786, 0.27657097578048706, 0.3048287034034729, -0.09532923251390457, 0.11235431581735611, 0.05929643288254738, 0.05388171970844269, 0.23070333898067474, -0.0348532497882843, -0.21281322836875916, -0.029398338869214058, -0.12529146671295166, -0.445117712020874, 0.01704825460910797, 0.023572145029902458, -0.1478000432252884, 0.1749248057603836, -0.0953320860862732, 0.10142087191343307, 0.013318337500095367, 0.04360208660364151, 0.07381907105445862, 0.027904005721211433, 0.049211665987968445, -0.2668817639350891, -0.09324431419372559, -0.1285630315542221, -0.1814226657152176, -0.09821998327970505, 0.33344921469688416, 0.06965828686952591, -0.06885150820016861, 0.3223307132720947, 0.5017099380493164, 0.00124963722191751, -0.11836841702461243, 0.11831016093492508, 0.1488819569349289, -0.12877660989761353, 0.3108648955821991, -0.025182170793414116, 0.5072877407073975, 0.2461739331483841, -0.18755970895290375, 0.20041616261005402, 0.3477642238140106, 0.009959903545677662, 0.1449289172887802, 0.00776282325387001, 0.7716158628463745, -0.28400474786758423, -0.10250678658485413, -0.04446309059858322, -0.13143578171730042, 0.07630666345357895, -0.1933102160692215, -0.2854689955711365, -0.07166214287281036, 0.013611269183456898, -0.2660616934299469, 0.14431476593017578, -0.03898468241095543, -0.5130636096000671, 0.14891724288463593, 0.08065970987081528, -0.03164786472916603, 0.2720538079738617, 0.04707808792591095, -0.05269007012248039, -0.16819564998149872, 0.16841208934783936, 0.24647670984268188, 0.43917495012283325, 0.08233742415904999, -0.161299929022789, -0.05114929378032684, -0.1021537035703659, -0.13141503930091858, -0.025014763697981834, -0.10199180990457535, 0.2686353623867035, 0.10202016681432724, 0.26946038007736206, 0.26818305253982544, -0.03586416319012642, 0.2545013129711151, -0.010304388590157032, 0.07453738898038864, -0.033533770591020584, 0.16708700358867645, -0.30166730284690857, -0.38077375292778015, -0.04987787455320358, -0.013498612679541111, -0.0696672797203064, 0.24533423781394958, 0.07427376508712769, 0.1491187959909439, -0.10158340632915497, -0.23586124181747437, -0.2040971964597702, 0.3944406509399414, -0.3479897677898407, -0.25453463196754456, -0.029971590265631676, -0.14846785366535187, -0.10177396982908249, 0.01628009043633938, 0.35726261138916016, 0.12277711927890778, 0.3335718512535095, 0.39123204350471497, -0.07780154049396515, -0.044685810804367065, -0.21032752096652985, 0.05043696612119675, 0.08046826720237732, 0.28312718868255615, -0.1011570617556572, 0.0038763086777180433, 0.09026364982128143, -0.2536839544773102, 0.03191015124320984, -0.3446621000766754, -0.06555503606796265, -0.1926710307598114, -0.11883675307035446, -0.017506884410977364, -0.32316672801971436, -0.10839477181434631, -0.6310314536094666, -0.20553520321846008, 0.5200820565223694, 0.06380626559257507, 0.4213784337043762, 0.03221942484378815, -0.22505733370780945, 0.12849923968315125, -0.02327527105808258, -0.005616183392703533, -0.0860956683754921, -0.3206888735294342, 0.1609564870595932, -0.5506542325019836, -0.48488977551460266, -0.05805341526865959, -0.016476066783070564, -0.06892017275094986, 0.14133676886558533, -0.6018841862678528, -0.01630978100001812, 0.11172737181186676, 0.23892994225025177, -0.029066668823361397, -0.37380194664001465, 0.32660427689552307, -0.03158297389745712, 0.10523879528045654, -0.13301557302474976, -0.18412944674491882, -0.19819211959838867, 0.09805712848901749, 0.1647399663925171, 0.3603859543800354, -0.1718626320362091, 0.49045050144195557, 0.48670750856399536, 0.03182554244995117, -0.24356377124786377, 0.32368606328964233, 0.1442016214132309, 0.140207439661026, 0.26341935992240906, -0.025552377104759216, 0.0885939672589302, -0.11944146454334259, -0.15273359417915344, 0.3284189999103546, 0.018949169665575027, -0.3911522328853607, -0.34893715381622314, -0.36777737736701965, -0.39423003792762756, -0.23312947154045105, 0.16498687863349915, 0.14218614995479584, 0.6201730966567993, 0.04669540375471115, -0.2608409523963928, -0.2799128592014313, -0.5743587613105774, -0.1883244663476944, 0.033373087644577026, 0.45417824387550354, 0.17945466935634613, -0.2198926955461502, -0.3218362629413605, -0.3483031094074249, -0.05763248726725578, 0.12599557638168335, 0.5013284683227539, -0.17607054114341736, 0.23615701496601105, 0.2682361900806427, -0.06497927010059357, -0.08274906128644943, -0.0625155121088028, 0.18408146500587463, 0.12043256312608719, -0.2159571796655655, -0.17335611581802368, 0.2778737246990204, -0.11544816941022873, 0.29149332642555237, 0.15797258913516998, 0.4518984854221344, -0.12684795260429382, -0.4344651699066162, 0.0740378201007843, -0.0018678033957257867, -0.2597163915634155, -0.1623034030199051, 0.08585728704929352, -0.000545719638466835, -0.1680850386619568, -0.16179552674293518, -0.20336084067821503, 0.18950480222702026, -0.17801518738269806, 0.21980230510234833, 0.03692736104130745, 0.33168649673461914, 0.17515775561332703, 0.021388400346040726, -0.062215983867645264, 0.18429692089557648, -0.06513454020023346, 0.1851911097764969, 0.46014589071273804, -0.198915034532547, 0.2502404749393463, 0.33503544330596924, 0.03309822827577591, 0.00616292143240571, 0.03432188928127289, 0.4424753785133362, 0.446756511926651, 0.1427551954984665, 0.08311407268047333, -0.06380145251750946, -0.2052033543586731, -0.3313950002193451, 0.039438825100660324, 0.02639702893793583, -0.3888714611530304, 0.24937660992145538, -0.11477303504943848, 0.4262861907482147, -0.14394931495189667, -0.117798812687397, 0.019291885197162628, -0.17398783564567566, -0.20694318413734436, 0.4962056577205658, 0.31183117628097534, 0.9623216390609741, -0.276949942111969, 0.43697816133499146, -0.0007592851179651916, -0.07967590540647507, 0.57957524061203, -0.3859027028083801, 0.035377148538827896, -0.21797578036785126, 0.202281191945076, -0.11167585104703903, -0.07959312200546265, 0.11026092618703842, 0.04711677506566048, 0.15165311098098755, 0.10285404324531555, 0.3529248833656311, -0.1564781814813614, 0.018794775009155273, 0.4241894483566284, 0.38278040289878845, -0.24764062464237213, -0.45842427015304565, -0.018389593809843063, -0.2846642732620239, 0.18450970947742462, 0.052156027406454086, -0.5859044194221497, -0.09935284405946732, 0.19032704830169678, -0.22181060910224915, -0.026195012032985687, -0.0932062417268753, 0.10910660028457642, 0.12077218294143677, -0.3754260540008545, 0.43500909209251404, 0.4593993127346039, 0.14468467235565186, 0.15060263872146606, -0.4995851218700409, -0.33251458406448364, -0.3276657164096832, -0.30557969212532043, 0.14674703776836395, 0.20235252380371094, 0.21354277431964874, -0.18065820634365082, -0.1123802587389946, 0.080751933157444, 0.03613201156258583, -0.6247406601905823, -0.1462792456150055, 0.04906153678894043, 0.3756268620491028, -0.13727787137031555, -0.21921096742153168, 0.1635216474533081, -0.3295557498931885, 0.12008316814899445, 0.05588686466217041, 0.3473138213157654, -0.09220165014266968, -0.07711946219205856, 0.3084155023097992, -0.12926658987998962, 0.0950123518705368, 0.36756396293640137, 0.17772555351257324, 0.045106686651706696, 0.30618003010749817, -0.08062287420034409, 0.06714775413274765, -0.07237367331981659, 0.42557913064956665, -0.1506490707397461, -0.10599426180124283, -0.24453885853290558, 0.24785475432872772, -0.1326420158147812, -0.19672225415706635, 0.3327677249908447, -0.017812274396419525, -0.21372497081756592, -0.13648994266986847, -0.6354275941848755, -0.2036847025156021, 0.41106927394866943, -0.12021035701036453, -0.027987681329250336, 0.12538573145866394, 0.49233898520469666, -0.03415489196777344, 0.19644016027450562, -0.1920212209224701, 0.2586785554885864, -0.2582671642303467, 0.25049901008605957, 0.2631959617137909, -0.024444054812192917, -0.13391153514385223, 0.05714311823248863, -0.09819917380809784, 0.12212353199720383, -0.22535307705402374, -0.08482936024665833, -0.0873340368270874, 0.2244151085615158, 0.3185940980911255, -0.3540014326572418, -0.31491267681121826, -0.7644430994987488, -0.25448498129844666, 0.052876777946949005, -0.07035823166370392, 0.08331461250782013, -0.013587492518126965, 0.29566752910614014, -0.18384449183940887, 0.2990160882472992, -0.1141425147652626, 0.25129222869873047, 0.06109597906470299, 0.45790743827819824, -0.20315146446228027, 0.30619630217552185, 0.03425148129463196, -0.05342389643192291, -0.1696287989616394, -0.07552259415388107, 0.2967053949832916, 0.017716264352202415, 0.5531834363937378, -0.10111876577138901, -0.054282840341329575, -0.07679078727960587, 0.11798962950706482, 0.11212459951639175, -0.1626124083995819, 0.44377613067626953, 0.2562170922756195, -0.028037384152412415, -0.17090758681297302, -0.13441042602062225, 0.050560977309942245, 0.18872122466564178, -0.1945667415857315, -0.03859035670757294, 0.6310535073280334, 0.20193186402320862, 0.15444999933242798, -0.2350541353225708, 0.02826414816081524, -0.21318796277046204, -0.31820666790008545, 0.14991553127765656, -0.23676128685474396, -0.056161150336265564, -0.1369701325893402, 0.35654371976852417, 0.10275909304618835, 0.02305344119668007, 0.22358660399913788, 0.32329246401786804, 0.14927878975868225, 0.0956345945596695, 0.13137376308441162, -0.16078194975852966, -0.14412865042686462, 0.005066487938165665, 0.3178524672985077, 0.26332420110702515, -0.3417273759841919, 0.473543256521225, 0.016994697973132133, 0.09398511797189713, 0.19794440269470215, 0.15973350405693054, 0.09638410806655884, -0.17272397875785828, -0.22110937535762787, 0.009033716283738613, 0.01672700233757496, -0.07874426990747452, -0.22203010320663452, -0.3007414937019348, 0.009092425927519798, 0.2761205732822418, 0.17368340492248535, -0.10547041147947311, 0.024229219183325768, 0.4150092303752899, -0.008884632028639317, -0.22980168461799622, 0.4949306547641754, -0.2747699022293091, 0.1947166472673416, 0.13321201503276825, 0.1098015084862709, -0.017067620530724525, 0.13715289533138275, -0.4706299304962158, -0.03873071074485779, -0.4303728938102722, -0.07534749060869217, -0.03192138671875, 0.42467084527015686, 0.35049089789390564, -0.14741083979606628, 0.42880353331565857, -0.07363902777433395, 0.07250555604696274, 0.13425995409488678, 0.08079329133033752, 0.15127161145210266, -0.21413405239582062, 0.5109364986419678, 0.05717591196298599, -0.3916725814342499, 0.10184293240308762, -0.23789788782596588, 0.06556712836027145, 0.060869328677654266, 0.3961153030395508, -0.011190718039870262, 0.18756306171417236, -0.15598605573177338, 0.022043967619538307, -0.1954655796289444, 0.3519829511642456, 0.1441510021686554, 0.43405503034591675, -0.02151293307542801, -0.18801653385162354, -0.3388272821903229, 0.32614389061927795, 0.11113960295915604, -0.14464347064495087, -0.029237952083349228, 0.23799222707748413, 0.36073246598243713, 0.5662311911582947, -0.4303024113178253, -0.0895509421825409, 0.07916370034217834, -0.01863451674580574, 0.0788816288113594, 0.07071298360824585, -0.18034034967422485, 0.32502153515815735, -0.14650310575962067, -0.2175438553094864, 0.23013809323310852, -0.27847617864608765, -0.0956142470240593, -0.2670982778072357, 0.1264285445213318, -0.1632901281118393, 0.33556264638900757, 0.4106147289276123, -0.04699241369962692, 0.14893114566802979, -0.012030176818370819, -0.05277707800269127, -0.15929588675498962, -0.05944352224469185, -0.019219065085053444, -0.009469358250498772, 0.15415281057357788, 0.07983161509037018, -0.44663333892822266, 0.22089967131614685, -0.16816876828670502, -0.1616942435503006, -0.4171387851238251, 0.15729659795761108, 0.3395828604698181, -0.1699632704257965, -0.4020064175128937, 0.14479272067546844, 0.0951194241642952, 0.35824456810951233, -0.2050876021385193, -0.26011040806770325, -0.13586276769638062, 0.22580024600028992, 0.21834516525268555, -0.689232349395752, 0.024470902979373932, 0.17869769036769867, 0.12607114017009735, 0.10742103308439255, -0.13446484506130219, -0.31049248576164246, -0.02337326668202877, 0.18232505023479462, 0.003911206964403391, 0.04220908507704735, -0.049076613038778305, 0.011734900064766407, -0.11201608180999756, -0.19426229596138, 0.3277125954627991, -0.0371011383831501, -0.02719717100262642, -0.3719162046909332, -0.3669278621673584 ]
https://github.com/huggingface/datasets/issues/281
Private/sensitive data
Hi @julien-c @jplu, Thanks for sharing this solution with me, it helps, this is what I was looking for. If not already there and only missed by me, this could be a great addition in the docs. Closing my issue as resolved, thanks again.
Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank
44
Private/sensitive data Hi all, Thanks for this fantastic library, it makes it very easy to do prototyping for NLP projects interchangeably between TF/Pytorch. Unfortunately, there is data that cannot easily be shared publicly as it may contain sensitive information. Is there support/a plan to support such data with NLP, e.g. by reading it from local sources? Use case flow could look like this: use NLP to prototype an approach on similar, public data and apply the resulting prototype on sensitive/private data without the need to rethink data processing pipelines. Many thanks for your responses ahead of time and kind regards, MFreidank Hi @julien-c @jplu, Thanks for sharing this solution with me, it helps, this is what I was looking for. If not already there and only missed by me, this could be a great addition in the docs. Closing my issue as resolved, thanks again.
[ 0.02584928832948208, 0.3822508752346039, -0.14741909503936768, 0.1858091950416565, -0.3208058178424835, -0.29081353545188904, 0.17590294778347015, 0.3123893141746521, -0.27860379219055176, 0.07938168197870255, -0.06257898360490799, 0.2926686406135559, -0.09529150277376175, 0.40648728609085083, 0.16315525770187378, -0.2160254269838333, -0.2121715545654297, 0.3283578157424927, 0.03996606543660164, 0.16072826087474823, 0.30449235439300537, 0.03050851821899414, -0.06680260598659515, 0.24389129877090454, 0.13394859433174133, -0.11411378532648087, 0.11441552639007568, -0.1650370955467224, 0.047592949122190475, -0.273857980966568, 0.14514870941638947, 0.1825237274169922, 0.2605026960372925, 0.06819066405296326, -0.00011851901945192367, -0.0630129724740982, 0.008069840259850025, -0.12199333310127258, 0.18052417039871216, -0.3296786844730377, 0.16983024775981903, -0.40106016397476196, 0.10109686106443405, -0.07598666846752167, -0.6062313318252563, -0.1920444220304489, 0.2262510061264038, -0.1614922285079956, 0.23302046954631805, -0.15367712080478668, 0.11259090900421143, 0.3779383897781372, 0.10146395862102509, 0.4482399523258209, 0.2235453575849533, 0.036244574934244156, -0.34354525804519653, -0.335193008184433, 0.43539950251579285, 0.08314535021781921, -0.10787811130285263, 0.1273632049560547, -0.0848964974284172, -0.016632379963994026, 0.06925076991319656, -0.04957689344882965, -0.11093730479478836, -0.48974090814590454, 0.0032604001462459564, 0.4364348351955414, 0.6228165626525879, -0.06771184504032135, -0.2318776249885559, -0.18264354765415192, 0.11057672649621964, -0.12962472438812256, 0.014974073506891727, 0.2753039598464966, -0.31891193985939026, 0.18093223869800568, -0.1930093765258789, -0.4642404317855835, -0.5439632534980774, 0.3049430847167969, 0.367175430059433, 0.041055601090192795, -0.13377240300178528, 0.007669186685234308, -0.1846584975719452, -0.21361768245697021, 0.17720703780651093, 0.06202560290694237, 0.39483073353767395, 0.27821820974349976, 0.3060157001018524, -0.4116634428501129, -0.10946294665336609, -0.2372370958328247, 0.11591184139251709, -0.0435347706079483, 0.013556953519582748, 0.3441679775714874, -0.4206797480583191, 0.16620029509067535, 0.4476666748523712, -0.30556726455688477, -0.25718772411346436, 0.21017184853553772, 0.6010370850563049, -0.20040079951286316, 0.10962659120559692, 0.1507364809513092, 0.01636320911347866, 0.10816086083650589, -0.3722081482410431, -0.1131603941321373, 0.04034413769841194, -0.3706246614456177, -0.14591825008392334, 0.140654057264328, -0.20362205803394318, 0.1335197240114212, 0.04045554995536804, 0.13390080630779266, 0.04624124616384506, 0.09962497651576996, 0.21972423791885376, -0.2955412268638611, 0.13297300040721893, -0.44026049971580505, 0.12080143392086029, -0.3411678969860077, -0.23466584086418152, 0.2266024947166443, 0.31045934557914734, 0.16577227413654327, 0.13072523474693298, -0.08473607152700424, 0.10263935476541519, 0.05193251371383667, 0.1602872908115387, -0.06119609251618385, 0.26535749435424805, 0.22815628349781036, -0.14295442402362823, -0.20570649206638336, -0.22077880799770355, -0.04443006590008736, -0.25506505370140076, 0.43109357357025146, -0.2649872899055481, -0.3226991295814514, -0.04425199702382088, -0.06215888634324074, -0.3281318247318268, 0.043470025062561035, 0.3314889371395111, 0.22572475671768188, 0.07235195487737656, -0.3221590220928192, 0.1531202346086502, 0.05321133881807327, -0.3242946267127991, -0.3337928056716919, 0.14746889472007751, -0.11213795095682144, -0.12445145845413208, 0.16849659383296967, 0.1453002393245697, -0.08140675723552704, 0.145977184176445, 0.30590730905532837, -0.3773405849933624, -0.21750295162200928, 0.10776790231466293, 0.16231490671634674, 0.7060897946357727, -0.09300780296325684, -0.4636059105396271, 0.7872032523155212, -0.035100147128105164, -0.35845741629600525, 0.0588010810315609, 0.5080548524856567, 0.0448334701359272, -0.1144137755036354, -0.1989552080631256, 0.6941421031951904, 0.008913262747228146, 0.1344355195760727, -0.20069435238838196, -0.4680555760860443, 0.5286426544189453, 0.250670462846756, -0.10924890637397766, 0.07148150354623795, 0.17066165804862976, 0.25253355503082275, 0.34448012709617615, -0.06048021465539932, 0.07768170535564423, 0.0565265417098999, 0.1300676465034485, 0.2442747950553894, 0.016542276367545128, -0.26781347393989563, 0.19444037973880768, -0.2378709763288498, -0.5962433815002441, 0.13793842494487762, 0.004452710505574942, -0.22707846760749817, 0.2211289256811142, -0.11973471194505692, 0.19184459745883942, -0.11304768174886703, 0.0704183503985405, 0.07282070070505142, -0.06375142186880112, 0.03599248826503754, -0.1966177374124527, -0.13040946424007416, -0.12175396084785461, -0.15473031997680664, 0.003904830664396286, 0.21222515404224396, 0.03129749000072479, -0.08970693498849869, 0.34917768836021423, 0.5928797721862793, 0.030089158564805984, -0.0807664766907692, 0.147653728723526, 0.07509882748126984, -0.16316698491573334, 0.2906975746154785, 0.019502177834510803, 0.6055520176887512, 0.3023277819156647, -0.24512584507465363, 0.14311876893043518, 0.38718315958976746, -0.03192904219031334, 0.22010831534862518, 0.2057911455631256, 0.6911459565162659, -0.17326606810092926, -0.2011309415102005, -0.03599926829338074, -0.0938759297132492, -0.05588207766413689, -0.2427801787853241, -0.3530631363391876, 0.009232797659933567, -0.0009059759904630482, -0.29906153678894043, 0.10237571597099304, -0.06318824738264084, -0.5435877442359924, 0.29885387420654297, 0.04944724962115288, -0.02855844795703888, 0.3031961917877197, 0.0058652665466070175, 0.006882455199956894, -0.03200984746217728, 0.13250192999839783, 0.22786574065685272, 0.29939207434654236, 0.1043858751654625, -0.18835078179836273, -0.0772017166018486, -0.2015257328748703, -0.11348368227481842, 0.0535617358982563, -0.0895329937338829, 0.24117089807987213, 0.041297588497400284, 0.2565220892429352, 0.4144943356513977, 0.014173377305269241, 0.22227273881435394, -0.04231750965118408, 0.07571443170309067, 0.0019611185416579247, 0.1507306843996048, -0.26595109701156616, -0.4235900938510895, -0.04004326090216637, 0.02929246611893177, -0.11782199889421463, 0.26229187846183777, 0.14484182000160217, 0.17111997306346893, -0.07698878645896912, -0.17337092757225037, -0.20953473448753357, 0.38189297914505005, -0.32292160391807556, -0.15607887506484985, -0.060211535543203354, -0.11950144171714783, -0.08179877698421478, 0.05128329619765282, 0.27458077669143677, -0.06397641450166702, 0.35499247908592224, 0.4507524073123932, -0.007581841666251421, -0.19119104743003845, -0.43396949768066406, 0.01850472390651703, 0.05064571648836136, 0.21697169542312622, -0.07524988055229187, -0.07548587024211884, 0.12667720019817352, -0.23562222719192505, -0.09456316381692886, -0.40455105900764465, -0.043957751244306564, -0.21158650517463684, -0.17978453636169434, -0.018036356195807457, -0.30645644664764404, -0.08573035895824432, -0.45181864500045776, -0.1782669574022293, 0.41111430525779724, -0.1131807267665863, 0.4838879406452179, 0.12946276366710663, -0.3423334062099457, 0.07171741127967834, -0.02147078886628151, 0.1171504557132721, -0.08485952019691467, -0.29013916850090027, 0.14699086546897888, -0.5867848992347717, -0.4462217390537262, -0.14776919782161713, -0.021920468658208847, 0.05935340002179146, 0.1654687225818634, -0.6037145853042603, -0.04008391499519348, 0.10733182728290558, 0.2574414312839508, -0.07115995138883591, -0.3257623314857483, 0.3278179466724396, 0.08002196997404099, 0.043842900544404984, -0.20348866283893585, -0.1508628875017166, -0.2604580819606781, -0.046026140451431274, 0.22029028832912445, 0.3321334421634674, -0.2968665361404419, 0.5189401507377625, 0.305869996547699, 0.0639554038643837, -0.17344066500663757, 0.29944294691085815, 0.21573491394519806, 0.09459294378757477, 0.36291494965553284, 0.03307037428021431, 0.10786731541156769, -0.055529460310935974, -0.024300839751958847, 0.26750898361206055, 0.01706971600651741, -0.49169036746025085, -0.2860346734523773, -0.4513438045978546, -0.3015531003475189, -0.21948334574699402, 0.1638207882642746, 0.12655191123485565, 0.7068172097206116, 0.03674514964222908, -0.27156415581703186, -0.2608790099620819, -0.5439243316650391, -0.05290035530924797, 0.0158364400267601, 0.4337780773639679, 0.14209525287151337, -0.028852075338363647, -0.3666350841522217, -0.3698003888130188, -0.09496594220399857, 0.14921046793460846, 0.42363283038139343, -0.2810710072517395, 0.3498116731643677, 0.21009249985218048, 0.003834300208836794, -0.14650343358516693, -0.11729501932859421, 0.20599715411663055, 0.08635050803422928, -0.15972203016281128, -0.06303700059652328, 0.35929858684539795, -0.14135827124118805, 0.3985807001590729, 0.17678040266036987, 0.32080239057540894, -0.15469790995121002, -0.4560798108577728, 0.17932620644569397, -0.1133943423628807, -0.15584425628185272, -0.15796099603176117, 0.19279471039772034, 0.01487189531326294, -0.09565286338329315, -0.07504553347826004, -0.1636989563703537, 0.058543916791677475, -0.21204207837581635, 0.1596365123987198, 0.10090828686952591, 0.30269375443458557, 0.21892502903938293, 0.0021817039232701063, -0.1707446575164795, 0.20892536640167236, -0.061723582446575165, 0.1306859701871872, 0.41068410873413086, -0.21671049296855927, 0.046680521219968796, 0.3789791464805603, 0.1262374371290207, 0.029785919934511185, 0.014283867552876472, 0.4860106408596039, 0.4820488393306732, 0.14250849187374115, 0.09664369374513626, -0.1211734488606453, -0.18334153294563293, -0.28155240416526794, -0.07235938310623169, 0.08428250998258591, -0.33037450909614563, 0.2198014110326767, -0.035743799060583115, 0.339728444814682, -0.17577314376831055, -0.1982981413602829, 0.08994345366954803, -0.07550028711557388, -0.19886575639247894, 0.4128497540950775, 0.2725468873977661, 1.038630723953247, -0.1373671293258667, 0.3834438920021057, -0.01969134621322155, -0.1977069228887558, 0.5154653191566467, -0.270278662443161, 0.043494150042533875, -0.1980786770582199, 0.23642180860042572, -0.11288762092590332, -0.04409117251634598, 0.12170513719320297, -0.0623144768178463, 0.035762131214141846, 0.13584968447685242, 0.32398346066474915, -0.2967233657836914, 0.06868495792150497, 0.3357774615287781, 0.39971426129341125, -0.26512736082077026, -0.39379504323005676, -0.024837462231516838, -0.25762638449668884, 0.263271301984787, 0.0359751433134079, -0.6510302424430847, -0.09083657711744308, 0.2664676010608673, -0.24222196638584137, -0.07490677386522293, -0.25914376974105835, -0.002697981661185622, 0.08725256472826004, -0.3631940186023712, 0.5744146704673767, 0.4063817858695984, 0.27042895555496216, 0.20252349972724915, -0.4936996400356293, -0.3203509449958801, -0.24355778098106384, -0.34204795956611633, 0.19349312782287598, 0.19211013615131378, 0.31045085191726685, -0.23762567341327667, -0.14744150638580322, 0.06902015954256058, 0.07323168963193893, -0.53952556848526, -0.23276251554489136, -0.045640505850315094, 0.44909292459487915, -0.1730312556028366, -0.028515346348285675, 0.18949085474014282, -0.3881249725818634, 0.07088443636894226, 0.07141947746276855, 0.3598957359790802, -0.18135495483875275, 0.0008805476245470345, 0.2582429349422455, -0.0390998050570488, 0.10799024999141693, 0.20641256868839264, 0.19713766872882843, 0.047597382217645645, 0.2663506269454956, -0.1916866898536682, 0.033711064606904984, -0.08517127484083176, 0.30728575587272644, -0.16270171105861664, -0.14389914274215698, -0.24231399595737457, 0.2242259532213211, -0.22330623865127563, -0.1870153248310089, 0.3021795451641083, -0.13817176222801208, -0.168093740940094, -0.19989849627017975, -0.5592111945152283, -0.2277265191078186, 0.2929147183895111, -0.16144493222236633, -0.0962269976735115, -0.018294138833880424, 0.601593017578125, 0.010629831813275814, 0.20081040263175964, -0.21291440725326538, 0.27261674404144287, -0.2326039969921112, 0.2589344084262848, 0.2685908079147339, -0.10048533231019974, -0.2009238451719284, 0.1522371619939804, -0.09641151875257492, 0.15592317283153534, -0.20942167937755585, -0.07532340288162231, -0.147134467959404, 0.19753924012184143, 0.2788587510585785, -0.4151134192943573, -0.19198600947856903, -0.6648948788642883, -0.2572938799858093, 0.12073464691638947, -0.02608824148774147, 0.07009927928447723, 0.07715929299592972, 0.22838075459003448, -0.20032687485218048, 0.29886648058891296, 0.019268477335572243, 0.29215574264526367, 0.11981083452701569, 0.4512788951396942, -0.12378102540969849, 0.2936353087425232, -0.052419908344745636, -0.13773487508296967, -0.053458306938409805, -0.06985058635473251, 0.2850039303302765, -0.09466178715229034, 0.6047860980033875, -0.04835832491517067, -0.132441908121109, 0.08570515364408493, 0.029893342405557632, -0.06609214097261429, -0.1131201982498169, 0.3623417317867279, 0.16693592071533203, -0.014274965040385723, -0.1824149638414383, -0.17858265340328217, -0.06315247714519501, 0.1617216169834137, -0.19254238903522491, -0.05010288581252098, 0.7015510201454163, 0.26075267791748047, 0.3034802973270416, -0.2565440535545349, -0.027614478021860123, -0.34274983406066895, -0.3237770199775696, -0.010046645998954773, -0.22351694107055664, -0.03609364479780197, -0.11985453963279724, 0.34812068939208984, 0.02445516549050808, -0.04603472724556923, 0.2468598335981369, 0.35494235157966614, 0.23594103753566742, 0.006491210777312517, 0.22516173124313354, 0.028588540852069855, -0.22061748802661896, -0.053610317409038544, 0.30368897318840027, 0.25828203558921814, -0.3693696856498718, 0.43330031633377075, 0.08422035723924637, 0.12183455377817154, 0.3150324523448944, 0.17671415209770203, 0.002523177769035101, -0.20236527919769287, -0.129645437002182, 0.02329946868121624, 0.06203934922814369, -0.23287804424762726, -0.24340899288654327, -0.18386206030845642, 0.0827336460351944, 0.23357008397579193, 0.1629692018032074, -0.10653433203697205, -0.11869718134403229, 0.47155138850212097, 0.19821922481060028, -0.19518770277500153, 0.4647734761238098, -0.3047546446323395, 0.17824411392211914, 0.11934395879507065, 0.2213314324617386, 0.024607667699456215, 0.045915041118860245, -0.5211939811706543, -0.04554121941328049, -0.4762408435344696, -0.07266120612621307, 0.016305461525917053, 0.3716427683830261, 0.3945472836494446, -0.1800384670495987, 0.3248777389526367, -0.12164296209812164, 0.0831218957901001, 0.09599017351865768, 0.11076370626688004, 0.09474603086709976, -0.19654527306556702, 0.48423850536346436, 0.05747365951538086, -0.4130127429962158, 0.06285665184259415, -0.16276201605796814, 0.13540780544281006, 0.17418792843818665, 0.41797223687171936, -0.10497931391000748, 0.08093387633562088, -0.1722981035709381, 0.04531337320804596, -0.14309996366500854, 0.28505322337150574, 0.08290471136569977, 0.5021234154701233, -0.056717418134212494, -0.22113922238349915, -0.23733678460121155, 0.4116210639476776, 0.3190973103046417, -0.0813911110162735, 0.0870060846209526, 0.18057973682880402, 0.3197389245033264, 0.5312249660491943, -0.2244131714105606, -0.30755379796028137, 0.15142515301704407, -0.09811507910490036, 0.038772229105234146, 0.17473216354846954, -0.24536854028701782, 0.2914698123931885, -0.08228819072246552, -0.11178255081176758, 0.2605932354927063, -0.21421784162521362, -0.06406684219837189, -0.31921151280403137, 0.18886472284793854, -0.18936067819595337, 0.3761972188949585, 0.3925131559371948, 0.01114425528794527, 0.08736114203929901, -0.05466204136610031, -0.1511518806219101, -0.10100001841783524, -0.0073148817755281925, -0.03372229263186455, -0.07546543329954147, 0.1920991837978363, -0.07294159382581711, -0.37595707178115845, 0.026991723105311394, -0.1672230064868927, -0.12998346984386444, -0.3631916642189026, 0.21771249175071716, 0.3509693741798401, -0.13585913181304932, -0.308791846036911, 0.13547909259796143, 0.011854046024382114, 0.3943217396736145, -0.21957391500473022, -0.1936655044555664, -0.13838766515254974, 0.08235461264848709, 0.19382412731647491, -0.5943898558616638, 0.04945400729775429, 0.10759540647268295, 0.24108931422233582, 0.0790659487247467, -0.09957806766033173, -0.3960787355899811, -0.01852189563214779, 0.11313861608505249, 0.11504752188920975, -0.021886071190238, -0.08092017471790314, -0.016544712707400322, -0.09301182627677917, -0.10346529632806778, 0.47037309408187866, -0.04705483466386795, 0.03892287239432335, -0.2427380234003067, -0.3359512984752655 ]
https://github.com/huggingface/datasets/issues/279
Dataset Preprocessing Cache with .map() function not working as expected
When you're processing a dataset with `.map`, it checks whether it has already done this computation using a hash based on the function and the input (using some fancy serialization with `dill`). If you found that it doesn't work as expected in some cases, let us know ! Given that, you can still force to re-process using `.map(my_func, load_from_cache_file=False)` if you want to. I am curious about the problem you have with splits. It makes me think about #160 that was an issue of version 0.1.0. What version of `nlp` are you running ? Could you give me more details ?
I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks!
101
Dataset Preprocessing Cache with .map() function not working as expected I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks! When you're processing a dataset with `.map`, it checks whether it has already done this computation using a hash based on the function and the input (using some fancy serialization with `dill`). If you found that it doesn't work as expected in some cases, let us know ! Given that, you can still force to re-process using `.map(my_func, load_from_cache_file=False)` if you want to. I am curious about the problem you have with splits. It makes me think about #160 that was an issue of version 0.1.0. What version of `nlp` are you running ? Could you give me more details ?
[ 0.006409862544387579, 0.12744839489459991, -0.01766812987625599, 0.07282642275094986, -0.014893058687448502, -0.017193956300616264, -0.007192488294094801, 0.2866295576095581, 0.28882133960723877, -0.09753929823637009, 0.2722373902797699, 0.44885551929473877, -0.03161655738949776, -0.09311748296022415, 0.05008528754115105, 0.1241733506321907, 0.12280968576669693, 0.30036574602127075, -0.03343632072210312, 0.13032254576683044, -0.36290469765663147, 0.14798717200756073, -0.30158084630966187, 0.11297786980867386, -0.33480995893478394, -0.2727018892765045, 0.017257748171687126, 0.09578729420900345, -0.018856888636946678, -0.3256301283836365, 0.2679966688156128, 0.33756858110427856, -0.10443849116563797, 0.3873216211795807, -0.0001212210045196116, -0.04193746671080589, 0.4864034652709961, -0.022295309230685234, -0.36118847131729126, -0.19473792612552643, -0.2702811658382416, -0.24207638204097748, 0.1916082352399826, -0.107483871281147, -0.0039147124625742435, 0.1268712282180786, 0.09830798208713531, -0.8171736001968384, 0.3626420795917511, -0.11879200488328934, 0.12256009131669998, 0.04275355488061905, -0.3778810501098633, 0.34510767459869385, 0.14099466800689697, 0.2448933869600296, -0.15061497688293457, 0.01568218320608139, 0.24925686419010162, -0.3786751925945282, -0.19759157299995422, 0.25994348526000977, -0.18728576600551605, 0.09816572815179825, 0.1893690973520279, -0.09604396671056747, -0.15069061517715454, -0.5925680994987488, 0.2482265830039978, 0.0938563421368599, 0.383396714925766, -0.2222248613834381, -0.24843695759773254, -0.3732970654964447, -0.2066568285226822, -0.2435503453016281, 0.42303764820098877, 0.039680659770965576, 0.0000033013268421200337, 0.12134254723787308, -0.8589967489242554, -0.2417965531349182, 0.19907332956790924, 0.051570333540439606, 0.3050817549228668, 0.1497192084789276, -0.10753913223743439, 0.14883293211460114, 0.2520415782928467, -0.043258264660835266, 0.19558966159820557, -0.3810196816921234, -0.1168791800737381, 0.5440422296524048, -0.2710389494895935, -0.015740523114800453, -0.11967866867780685, 0.32771480083465576, 0.09307511895895004, 0.08092308789491653, 0.12171223759651184, 0.31188252568244934, -0.12564677000045776, 0.15976785123348236, 0.4004642367362976, 0.4134689271450043, 0.2639717757701874, 0.13816726207733154, 0.13299626111984253, -0.26752519607543945, -0.1418132781982422, 0.08522215485572815, 0.2552710473537445, -0.24415811896324158, 0.024895671755075455, 0.1836039423942566, -0.08212680369615555, -0.2886599600315094, 0.16526132822036743, -0.20475326478481293, -0.3881453275680542, -0.3014129400253296, 0.046603135764598846, -0.03465123847126961, 0.06427151709794998, 0.3691864013671875, -0.06798011064529419, 0.02377074956893921, -0.3667442798614502, -0.23129601776599884, -0.03235345706343651, -0.18591900169849396, -0.45031020045280457, 0.2917487621307373, 0.4802572727203369, -0.022991254925727844, 0.14795851707458496, 0.08765567094087601, 0.007695386651903391, -0.25260043144226074, 0.3581241965293884, -0.3446434438228607, 0.5570874810218811, 0.07972155511379242, -0.15281200408935547, 0.2126496583223343, 0.004482015036046505, 0.2268768548965454, -0.18949539959430695, 0.2410016804933548, -0.35874634981155396, -0.10224498808383942, 0.45927464962005615, -0.00006652289448538795, -0.29093804955482483, 0.2537980079650879, -0.09929535537958145, 0.3521665334701538, 0.4363529086112976, -0.47559764981269836, -0.012422374449670315, 0.06944599747657776, -0.41581934690475464, -0.22726748883724213, 0.25694718956947327, 0.441095232963562, -0.1938149631023407, -0.11987721174955368, -0.2141171246767044, 0.017956241965293884, 0.35633203387260437, 0.12710680067539215, -0.19388408958911896, 0.2086491733789444, -0.1683626025915146, 0.29002222418785095, 0.3815329670906067, 0.1351911723613739, -0.47955742478370667, 0.4713778495788574, 0.22840380668640137, 0.2276918888092041, -0.38540491461753845, 0.0375707671046257, 0.0791010707616806, -0.12692798674106598, -0.17642337083816528, 0.30060601234436035, 0.06274031102657318, 0.04137458652257919, -0.2757346034049988, -0.38749027252197266, 0.3989246189594269, -0.16247747838497162, -0.057577501982450485, 0.44691577553749084, -0.1317185014486313, -0.21320265531539917, 0.07780787348747253, -0.08799651265144348, 0.2669745683670044, 0.07546775043010712, -0.17612265050411224, -0.12861081957817078, 0.08327271789312363, -0.17623145878314972, -0.4962337017059326, 0.2724437713623047, -0.32409805059432983, -0.22737127542495728, 0.1025933027267456, 0.004281806293874979, 0.1540926843881607, -0.18190613389015198, -0.11510314792394638, -0.13374020159244537, 0.019979968667030334, -0.09290032833814621, 0.2611236870288849, -0.12856820225715637, -0.16672466695308685, 0.48820507526397705, 0.25614890456199646, -0.10327143967151642, -0.24714453518390656, 0.0003950186655856669, 0.08742810040712357, -0.17196793854236603, -0.2900412082672119, 0.19598141312599182, 0.20515388250350952, -0.075309619307518, -0.19126567244529724, 0.41127121448516846, 0.2673029899597168, 0.20199698209762573, 0.0033801684621721506, 0.014501888304948807, 0.126853346824646, -0.0009965753415599465, 0.05895460024476051, -0.03594019636511803, -0.03757443651556969, -0.16155393421649933, -0.05939706787467003, 0.3376888930797577, -0.1741296499967575, 0.34095439314842224, 0.0023423414677381516, -0.010828876867890358, 0.11171948164701462, -0.13573399186134338, -0.028474261984229088, -0.3059627413749695, 0.0659513920545578, -0.0474214106798172, 0.4817922115325928, 0.03739671781659126, 0.07832565903663635, -0.03467601165175438, 0.2912856638431549, 0.1321612447500229, 0.012398668564856052, -0.040325917303562164, 0.00765150785446167, -0.2762731909751892, 0.10637956857681274, 0.2353532910346985, 0.3839113712310791, 0.021585633978247643, 0.3465102016925812, -0.006952863186597824, -0.08780543506145477, -0.046601083129644394, -0.05628420412540436, 0.039312202483415604, 0.389308899641037, -0.005982791539281607, 0.09336934238672256, 0.01789262145757675, -0.15839797258377075, 0.14637437462806702, 0.1444564014673233, -0.11717310547828674, -0.07464566826820374, 0.2454182505607605, -0.4893401861190796, -0.29455313086509705, 0.0313841812312603, -0.040223296731710434, -0.43568602204322815, -0.20970121026039124, 0.001726034446619451, 0.14657485485076904, 0.0630529597401619, 0.2800103724002838, -0.01018457766622305, 0.3138219714164734, -0.3168032169342041, -0.19294892251491547, -0.19929850101470947, -0.3507532477378845, -0.24579189717769623, -0.011054138652980328, 0.13491500914096832, -0.026397056877613068, 0.2472257912158966, 0.03273461014032364, -0.1674436777830124, -0.010445536114275455, -0.008220820687711239, 0.26683780550956726, 0.10253831744194031, -0.016748914495110512, -0.2774064838886261, -0.16066187620162964, -0.2169780433177948, 0.0876845195889473, -0.05500350892543793, -0.4442884027957916, -0.1832214742898941, -0.026912391185760498, 0.02972588688135147, 0.007562627084553242, -0.3920729458332062, -0.06729967892169952, -0.09589264541864395, -0.07541898638010025, 0.09485066682100296, -0.21425949037075043, 0.20399922132492065, 0.08613024652004242, -0.082851842045784, -0.07849371433258057, -0.09812947362661362, -0.21458853781223297, -0.3659684658050537, -0.2436295747756958, 0.16148613393306732, -0.15922312438488007, -0.16787835955619812, 0.08094250410795212, 0.05093788728117943, 0.161315456032753, 0.7081987857818604, -0.24564197659492493, 0.08163844794034958, -0.05144518241286278, -0.15348048508167267, 0.07925321161746979, -0.00016040311311371624, 0.4673972725868225, 0.10110380500555038, 0.10885118693113327, -0.22403721511363983, -0.36842748522758484, 0.22696682810783386, 0.1711656004190445, 0.2487744688987732, 0.4404614269733429, 0.02467331662774086, 0.10915041714906693, 0.8266459107398987, 0.40550121665000916, -0.12633074820041656, 0.27482014894485474, 0.260612815618515, 0.2630581259727478, -0.25114986300468445, -0.006956441793590784, -0.10725072026252747, -0.41781526803970337, -0.021320732310414314, 0.27035072445869446, 0.014495985582470894, -0.7684548497200012, -0.21497519314289093, 0.3027920424938202, -0.32290905714035034, -0.23635591566562653, 0.05265592783689499, -0.505775511264801, 0.5118841528892517, 0.14725634455680847, 0.05122419446706772, -0.29932352900505066, -0.23637302219867706, -0.12834154069423676, -0.16721811890602112, 0.7289862632751465, 0.0014055068604648113, -0.48424777388572693, -0.022138655185699463, -0.3337205946445465, 0.21051236987113953, 0.1340552419424057, 0.5019217729568481, -0.313272088766098, -0.09185824543237686, 0.0779155045747757, 0.1511159986257553, 0.48568496108055115, -0.41337624192237854, -0.01301401387900114, 0.08947290480136871, -0.14347979426383972, -0.0367492251098156, 0.14464689791202545, 0.25118333101272583, 0.6791269183158875, 0.3776955008506775, 0.14720186591148376, -0.02706003002822399, -0.217024028301239, -0.3850436210632324, 0.07469676434993744, -0.09577251970767975, -0.3552938997745514, -0.07398133724927902, 0.27627629041671753, -0.26444298028945923, -0.20004165172576904, -0.07766495645046234, -0.250661164522171, -0.16046565771102905, -0.033691342920064926, -0.0417766198515892, 0.07360102981328964, 0.1774682104587555, 0.23504263162612915, 0.39980611205101013, -0.02284303493797779, -0.167277991771698, 0.5847776532173157, 0.21058551967144012, -0.3136139214038849, 0.43400922417640686, -0.2198307365179062, 0.23109962046146393, 0.21869616210460663, -0.029140472412109375, 0.20933619141578674, 0.4655957818031311, -0.058896373957395554, -0.12104789167642593, 0.021338535472750664, -0.20668914914131165, -0.4833391010761261, -0.0316988043487072, 0.1694445163011551, -0.12935125827789307, -0.35815709829330444, -0.383625864982605, 0.33272218704223633, 0.33414578437805176, -0.3819211721420288, 0.35498353838920593, -0.2618376314640045, -0.30197396874427795, 0.3253311812877655, 0.023950085043907166, 1.0048357248306274, -0.1948843151330948, -0.12483195215463638, -0.4032355546951294, 0.10959458351135254, 0.4291095733642578, -0.3195333182811737, 0.368987113237381, -0.24419857561588287, -0.0008733484428375959, -0.058807484805583954, -0.12479748576879501, 0.27027323842048645, 0.7461405396461487, -0.11364885419607162, 0.3719310462474823, 0.10796314477920532, 0.06013374403119087, -0.00922172050923109, 0.10001005232334137, 0.25919511914253235, -0.38438680768013, -0.023566901683807373, 0.07237254828214645, -0.16980348527431488, 0.0663476511836052, 0.06695709377527237, -0.042492084205150604, 0.007067273370921612, 0.13549870252609253, -0.10999561101198196, 0.1884273886680603, -0.14768537878990173, 0.0728602260351181, -0.10714825242757797, -0.039682772010564804, 0.33602026104927063, 0.14926989376544952, 0.18809443712234497, -0.0078010400757193565, -0.2221505045890808, -0.05171229690313339, 0.31803593039512634, 0.2039184421300888, -0.10836858302354813, 0.18314813077449799, -0.04066997393965721, 0.0020894396584481, -0.12452641874551773, -0.25309693813323975, -0.22529135644435883, -0.3147900104522705, -0.05378250032663345, 0.06206240504980087, 0.16928955912590027, -0.1764381229877472, -0.18922209739685059, 0.2640281617641449, 0.14974065124988556, 0.13165117800235748, 0.06895804405212402, 0.12832516431808472, 0.11214856058359146, 0.38216933608055115, -0.01735755056142807, -0.1874622255563736, 0.006448565516620874, 0.20968173444271088, -0.007049723528325558, -0.19488736987113953, 0.1713549792766571, -0.07167906314134598, -0.23656702041625977, -0.12360260635614395, -0.2610141634941101, -0.28974705934524536, -0.24611377716064453, -0.09084399789571762, -0.0871591866016388, -0.08644739538431168, 0.03021296113729477, -0.23087133467197418, -0.0531713142991066, 0.19101539254188538, -0.19796176254749298, -0.28898996114730835, -0.11364256590604782, -0.06764072924852371, -0.2768873870372772, 0.21762387454509735, 0.1326083540916443, -0.1775803416967392, 0.17861305177211761, 0.5122458934783936, -0.16153275966644287, -0.07358697056770325, 0.11604166030883789, 0.3080933392047882, 0.1839486062526703, 0.08730805665254593, -0.16682928800582886, -0.24345779418945312, -0.22753717005252838, 0.07588750869035721, -0.37679290771484375, -0.10499554872512817, 0.0864345133304596, 0.21872225403785706, 0.025657551363110542, -0.466827392578125, -0.07375240325927734, -0.10028859972953796, 0.0787845030426979, -0.4276938736438751, -0.04280242696404457, -0.08305484801530838, -0.08920831233263016, 0.4422379434108734, 0.30843910574913025, 0.0207798033952713, -0.23666830360889435, 0.138449028134346, -0.06561001390218735, 0.15515023469924927, 0.046853240579366684, 0.15830639004707336, 0.20344586670398712, 0.07087676227092743, -0.2576162815093994, -0.15238119661808014, 0.06384915113449097, -0.005550764966756105, 0.22880935668945312, -0.2015155404806137, 0.2854417562484741, 0.07845547795295715, 0.1884368658065796, 0.2013290673494339, 0.04898957908153534, -0.12465611100196838, 0.26702913641929626, 0.023115023970603943, -0.03065895475447178, -0.23315133154392242, 0.817462682723999, 0.23632463812828064, -0.04707830026745796, 0.2947337031364441, 0.36118248105049133, 0.14186421036720276, 0.21634158492088318, 0.010649926960468292, 0.32912224531173706, -0.49177461862564087, 0.210562601685524, 0.21032586693763733, 0.1886698454618454, 0.19617833197116852, 0.22237911820411682, 0.13657449185848236, 0.021185066550970078, 0.19926610589027405, 0.4374973773956299, 0.2988743185997009, 0.3040628433227539, 0.46976998448371887, -0.04941141977906227, -0.5832749605178833, 0.05285432189702988, 0.4703790545463562, -0.05832326412200928, 0.3675435185432434, 0.02556171454489231, 0.22905345261096954, -0.13277721405029297, -0.40961742401123047, 0.0087855514138937, 0.18527460098266602, -0.03254123777151108, -0.1582811176776886, 0.08171199262142181, -0.09036023169755936, 0.03980349004268646, -0.01133605744689703, -0.14559338986873627, 0.1309080272912979, 0.8235418796539307, 0.05222773924469948, -0.029499301686882973, -0.08354313671588898, -0.058716945350170135, -0.055250734090805054, 0.34929588437080383, -0.05783616378903389, 0.16473500430583954, -0.4313993752002716, 0.08424746990203857, 0.06665660440921783, 0.3254651427268982, 0.008874115534126759, 0.36602044105529785, -0.3733351528644562, -0.05985943600535393, 0.04300367832183838, 0.014613830484449863, -0.24892790615558624, 0.5730592608451843, 0.20414987206459045, -0.28490081429481506, 0.19779899716377258, -0.057655464857816696, 0.14152003824710846, -0.0884210616350174, 0.11050309240818024, 0.44400304555892944, -0.008537182584404945, 0.31206801533699036, 0.2348238080739975, -0.155840203166008, 0.22597667574882507, 0.054321207106113434, -0.20923322439193726, 0.10872209817171097, 0.33016443252563477, -0.20414087176322937, 0.17643925547599792, -0.07175926119089127, 0.015824297443032265, 0.06505848467350006, 0.42507028579711914, 0.28805965185165405, 0.049975812435150146, -0.2027335911989212, -0.2592551112174988, -0.4917607605457306, -0.061821386218070984, -0.11751601845026016, 0.16780726611614227, 0.04692936688661575, -0.06592981517314911, -0.07301618903875351, 0.3085065186023712, -0.11962161958217621, -0.35444456338882446, 0.08945079892873764, 0.00759577052667737, -0.3419651687145233, 0.06482191383838654, -0.23470620810985565, 0.11872727423906326, -0.10042820870876312, -0.304935485124588, 0.12478028982877731, 0.18614056706428528, -0.15504175424575806, 0.07889245450496674, -0.21648645401000977, -0.0080189760774374, 0.4857323467731476, 0.2058417797088623, 0.5476557612419128, 0.14505510032176971, 0.0631096288561821, 0.06931241601705551, -0.3424029052257538, 0.03431424871087074, -0.04268020763993263, -0.07440564036369324, 0.0526135079562664, 0.20844951272010803, -0.5877814292907715, 0.2476356476545334, -0.23618443310260773, -0.13152459263801575, -0.10149183869361877, 0.19911928474903107, -0.21817328035831451, -0.2773999869823456, -0.04755405709147453, 0.1429571509361267, 0.2431960552930832, 0.5879485607147217, -0.07436557859182358, 0.18855728209018707, -0.43465375900268555, 0.19659928977489471, 0.13311097025871277, -0.48083066940307617, -0.36720767617225647, 0.17183369398117065, 0.11149400472640991, -0.0621827095746994, -0.4134118854999542, -0.32467034459114075, -0.3102244734764099, 0.25679147243499756, -0.30810216069221497, 0.030607271939516068, 0.07504613697528839, -0.35880833864212036, -0.09286454319953918, -0.1293267458677292, 0.3822353184223175, 0.25471001863479614, -0.2054184079170227, -0.049109335988759995, -0.2069125771522522 ]
https://github.com/huggingface/datasets/issues/279
Dataset Preprocessing Cache with .map() function not working as expected
Thanks, that's helpful! I was running 0.1.0, but since upgraded to 0.2.1. I can't reproduce the issue anymore as I've cleared the cache & everything now seems to be running fine since the upgrade. I've added some checks to my code, so if I do encounter it again I will reopen this issue.
I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks!
53
Dataset Preprocessing Cache with .map() function not working as expected I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks! Thanks, that's helpful! I was running 0.1.0, but since upgraded to 0.2.1. I can't reproduce the issue anymore as I've cleared the cache & everything now seems to be running fine since the upgrade. I've added some checks to my code, so if I do encounter it again I will reopen this issue.
[ -0.059527598321437836, 0.09044838696718216, -0.06866925209760666, 0.10039035230875015, 0.12072214484214783, 0.07992339879274368, 0.04323669523000717, 0.2624785304069519, 0.2854571044445038, 0.01779654435813427, 0.25152403116226196, 0.3141239583492279, 0.1379653811454773, -0.07564301788806915, -0.12311983853578568, 0.17928102612495422, 0.18901602923870087, 0.1980447918176651, -0.12831489741802216, 0.21751460433006287, -0.3310685157775879, 0.05076158419251442, -0.26094114780426025, 0.002275648759678006, -0.26566946506500244, -0.1827593445777893, 0.1562233567237854, 0.025224650278687477, -0.0041880360804498196, -0.26673534512519836, 0.27649548649787903, 0.33081427216529846, -0.15850023925304413, 0.5676485896110535, -0.00011873270705109462, 0.10421434044837952, 0.4598640203475952, -0.07325881719589233, -0.2360091656446457, 0.00550073990598321, -0.39119401574134827, -0.04233630746603012, 0.15267199277877808, -0.03994490206241608, -0.034501511603593826, 0.11001894623041153, -0.0018388598691672087, -0.9861101508140564, 0.35879090428352356, -0.09717107564210892, 0.13504309952259064, -0.009758466854691505, -0.3999708294868469, 0.20264257490634918, 0.0671883076429367, 0.21500566601753235, -0.17968420684337616, 0.0030361672397702932, 0.42167556285858154, -0.1683780997991562, -0.14094723761081696, 0.18395136296749115, -0.2047433853149414, 0.22757157683372498, 0.22180475294589996, -0.12146900594234467, -0.06486175954341888, -0.6551269888877869, 0.45488807559013367, 0.0899076834321022, 0.48298829793930054, -0.24048812687397003, -0.3372350335121155, -0.18622447550296783, -0.20376373827457428, -0.10016468167304993, 0.4849649965763092, -0.027662739157676697, 0.06012052297592163, 0.26094821095466614, -0.8676721453666687, -0.22697988152503967, 0.1066078469157219, -0.10022338479757309, 0.18798892199993134, -0.038094788789749146, -0.1921435296535492, 0.12355271726846695, 0.13843268156051636, -0.03263191133737564, 0.3090587258338928, -0.44430282711982727, -0.12754404544830322, 0.4259270131587982, -0.2078387439250946, 0.1090448647737503, -0.14910176396369934, 0.25480183959007263, 0.13432283699512482, 0.0548301637172699, 0.11863045394420624, 0.401096910238266, -0.05581595003604889, 0.12574942409992218, 0.27081188559532166, 0.3804575204849243, 0.19995149970054626, 0.05398591607809067, 0.20719656348228455, -0.286713570356369, -0.18004101514816284, 0.049799881875514984, 0.2067422717809677, -0.28629711270332336, 0.14969532191753387, 0.09319797903299332, 0.028340673074126244, -0.3782491981983185, 0.1323271542787552, -0.16847600042819977, -0.30226850509643555, -0.26366502046585083, -0.030366601422429085, 0.07098912447690964, 0.04518261179327965, 0.32843008637428284, -0.12477981299161911, -0.0048171840608119965, -0.27956780791282654, -0.18622799217700958, -0.03132615610957146, -0.2699477970600128, -0.30302417278289795, 0.3095788061618805, 0.3854759931564331, -0.17761175334453583, 0.11340949684381485, 0.20704561471939087, 0.1104351356625557, -0.3046354055404663, 0.4097122550010681, -0.35243773460388184, 0.6011024713516235, 0.16498687863349915, -0.17726896703243256, 0.25313884019851685, 0.08846984058618546, 0.3341835141181946, -0.0959150493144989, 0.3465946614742279, -0.41387051343917847, -0.07955723255872726, 0.519035816192627, 0.012813189066946507, -0.25682196021080017, 0.29694512486457825, -0.14903971552848816, 0.2066645622253418, 0.3854326009750366, -0.3386061191558838, -0.04067452251911163, 0.07820572704076767, -0.3557199537754059, -0.23433487117290497, 0.3182881474494934, 0.43764567375183105, -0.34514033794403076, -0.024408770725131035, -0.045419178903102875, 0.03038395568728447, 0.31460970640182495, -0.050898559391498566, -0.15410926938056946, 0.2512759864330292, -0.21330231428146362, 0.08423242717981339, 0.11313368380069733, 0.0664181187748909, -0.4564330577850342, 0.45959943532943726, 0.24083149433135986, 0.32417669892311096, -0.3276291489601135, -0.031035207211971283, 0.06047702580690384, -0.058432720601558685, -0.2508627474308014, 0.09460261464118958, 0.09315923601388931, 0.04630182310938835, -0.1457221508026123, -0.3507974445819855, 0.2563436031341553, -0.20952604711055756, 0.004486044403165579, 0.5632539987564087, -0.14819635450839996, -0.46458226442337036, 0.037364181131124496, -0.15065732598304749, 0.2761831283569336, 0.17016145586967468, -0.10558781027793884, -0.08807685971260071, 0.08799418807029724, -0.13983747363090515, -0.34254300594329834, 0.37943336367607117, -0.14247550070285797, -0.3455411493778229, 0.05062117427587509, -0.00935121439397335, 0.10302542895078659, -0.15865057706832886, -0.20775721967220306, -0.05006370693445206, 0.023533491417765617, -0.03392458334565163, 0.16576535999774933, -0.2036353200674057, -0.1153065487742424, 0.5470618605613708, 0.1891898512840271, -0.07939749211072922, -0.151023268699646, -0.0350826270878315, 0.20971819758415222, -0.15024791657924652, -0.3731403648853302, -0.024570921435952187, 0.14707177877426147, -0.13567142188549042, -0.18946151435375214, 0.4257083535194397, 0.37308594584465027, 0.22146515548229218, -0.0048200590535998344, 0.13518814742565155, 0.0575563870370388, 0.06193539500236511, 0.03669339790940285, -0.07255474478006363, 0.04982040077447891, -0.15910953283309937, -0.05141640827059746, 0.33448880910873413, -0.09114125370979309, 0.3732474446296692, -0.01001009065657854, -0.05445278435945511, 0.1495048552751541, -0.010228149592876434, -0.03362651169300079, -0.2775666117668152, -0.14471998810768127, -0.07740029692649841, 0.5285406708717346, 0.006747546140104532, 0.09398158639669418, -0.06365635246038437, 0.10635028034448624, 0.14433449506759644, -0.009743359871208668, -0.16144272685050964, -0.08387312293052673, -0.17453819513320923, 0.08373583108186722, 0.15924149751663208, 0.32902976870536804, -0.0062201605178415775, 0.34098389744758606, -0.0573556162416935, 0.004836743231862783, -0.027513844892382622, -0.09392747282981873, 0.08577297627925873, 0.4193117618560791, -0.00405983068048954, 0.02938127890229225, -0.011595123447477818, -0.08498772978782654, 0.17038559913635254, 0.1218729168176651, -0.20711125433444977, -0.18273437023162842, 0.2091922014951706, -0.41686323285102844, -0.050288982689380646, 0.13016563653945923, -0.018914636224508286, -0.29837825894355774, -0.15989628434181213, -0.045606669038534164, 0.16537506878376007, 0.0913638323545456, 0.2640123963356018, -0.05856885015964508, 0.26868736743927, -0.19540929794311523, -0.34221139550209045, -0.19869089126586914, -0.20568715035915375, -0.07325713336467743, 0.007954026572406292, 0.12568390369415283, -0.15416330099105835, 0.2510620653629303, -0.08870858699083328, -0.125759556889534, -0.1457538604736328, 0.0405125617980957, 0.28855109214782715, 0.08543308079242706, 0.035691142082214355, -0.3706345558166504, -0.00897583831101656, -0.2044828087091446, 0.26173049211502075, -0.020857011899352074, -0.4014316499233246, -0.1830390840768814, -0.012171595357358456, 0.004940476268529892, -0.0473405122756958, -0.30081698298454285, -0.056737020611763, 0.08248137682676315, -0.03155725076794624, 0.0004643839201889932, -0.22428645193576813, 0.09529626369476318, -0.012026721611618996, 0.06994161009788513, -0.0765579491853714, -0.008229456841945648, -0.15317127108573914, -0.36786124110221863, -0.4966878890991211, 0.22308851778507233, -0.1863090544939041, -0.15672162175178528, 0.2615587115287781, 0.2169645130634308, 0.1964537501335144, 0.7846171855926514, -0.2175373136997223, 0.019605232402682304, -0.13015961647033691, -0.06387654691934586, 0.05542071908712387, -0.02193477936089039, 0.42518100142478943, 0.18365652859210968, 0.0809684544801712, -0.25684455037117004, -0.3909490704536438, 0.1640685349702835, 0.0993056371808052, 0.09629558771848679, 0.47367754578590393, 0.047900497913360596, -0.011418705806136131, 0.9212653636932373, 0.2891285717487335, -0.06087356060743332, 0.23338520526885986, 0.17807552218437195, 0.3517637848854065, -0.3186761736869812, 0.0609203539788723, -0.17868568003177643, -0.48752933740615845, -0.14934775233268738, 0.1119750365614891, 0.03788027539849281, -0.5454322695732117, -0.20417159795761108, 0.399044394493103, -0.28373831510543823, -0.14793020486831665, -0.06201500818133354, -0.40058383345603943, 0.539152979850769, 0.05123127996921539, 0.18546301126480103, -0.24672245979309082, -0.10701977461576462, 0.053312864154577255, -0.16044794023036957, 0.7593111991882324, -0.07617192715406418, -0.4067288637161255, 0.027426639571785927, -0.3406672775745392, 0.3155038058757782, 0.10991614311933517, 0.36789849400520325, -0.27783170342445374, -0.10297442972660065, 0.06400199979543686, 0.14806562662124634, 0.4910820424556732, -0.4214990735054016, 0.046292684972286224, 0.05970374494791031, -0.33478912711143494, 0.046597957611083984, 0.07164128124713898, 0.2156667858362198, 0.6267977356910706, 0.148823544383049, 0.0873894989490509, 0.05312357842922211, -0.19132424890995026, -0.5050851702690125, 0.1265779584646225, -0.11797347664833069, -0.3258688747882843, -0.1146569475531578, 0.22984515130519867, -0.2708110511302948, -0.16995368897914886, -0.004658686462789774, -0.26633068919181824, -0.1930045634508133, -0.15600022673606873, -0.18284261226654053, 0.09821043908596039, 0.18062226474285126, 0.24435938894748688, 0.4060882031917572, -0.06176112964749336, -0.0840654969215393, 0.6687201857566833, 0.17996342480182648, 0.02472231537103653, 0.47764718532562256, -0.18667387962341309, 0.09950906038284302, 0.22010743618011475, -0.12495525926351547, 0.13279716670513153, 0.41300269961357117, -0.2108193337917328, -0.20214606821537018, 0.019639603793621063, -0.24659410119056702, -0.5624935030937195, 0.001201053848490119, 0.18076036870479584, -0.03289823979139328, -0.37435731291770935, -0.46737754344940186, 0.22246670722961426, 0.33818915486335754, -0.41767385601997375, 0.42103371024131775, -0.17404772341251373, -0.2860766351222992, 0.20217213034629822, 0.07861173897981644, 0.886955201625824, -0.3360167145729065, -0.21193325519561768, -0.44402918219566345, 0.1028314009308815, 0.018748100847005844, -0.29729393124580383, 0.3225613832473755, -0.16319537162780762, -0.2073848694562912, -0.1289110779762268, -0.1997934728860855, 0.37842851877212524, 0.6281086802482605, -0.11031153053045273, 0.32749420404434204, -0.09224580228328705, 0.2576877474784851, -0.060438159853219986, -0.06989104300737381, 0.29256024956703186, -0.3084756135940552, 0.0903787687420845, 0.12282052636146545, -0.0432431660592556, -0.06396451592445374, 0.0824614018201828, 0.07095950096845627, -0.04374780133366585, 0.19998034834861755, 0.0007839277386665344, 0.11297544091939926, -0.3217526078224182, 0.040950577706098557, -0.2048681527376175, 0.03392013907432556, 0.3039815127849579, 0.21360839903354645, 0.2289959043264389, 0.016527140513062477, -0.24035906791687012, 0.04555393382906914, 0.37300819158554077, 0.2545779347419739, -0.16776610910892487, 0.1442345529794693, -0.14648398756980896, 0.0663701519370079, -0.12750335037708282, -0.12300008535385132, -0.2934538424015045, -0.28947803378105164, -0.021495524793863297, 0.004473050590604544, 0.14856332540512085, -0.26276853680610657, -0.17256665229797363, 0.19190962612628937, 0.2542983591556549, 0.12641489505767822, 0.07893715798854828, 0.15255992114543915, 0.10949870198965073, 0.4262721538543701, -0.07859724760055542, -0.26739931106567383, -0.02450145035982132, 0.24249045550823212, -0.06461087614297867, -0.23312599956989288, 0.120426706969738, -0.10185935348272324, -0.2137969434261322, -0.13236640393733978, -0.18074622750282288, -0.17522557079792023, -0.11027758568525314, -0.04908125102519989, -0.14082904160022736, -0.08748219162225723, 0.01108259242027998, -0.2049197107553482, -0.015799090266227722, 0.0756649449467659, -0.18359045684337616, -0.20508000254631042, -0.183875173330307, -0.1153946965932846, -0.16254840791225433, 0.3037608861923218, -0.026322580873966217, -0.31708067655563354, 0.15271659195423126, 0.3556807339191437, -0.181411013007164, -0.1099744513630867, 0.2332230508327484, 0.19672493636608124, 0.040918003767728806, 0.2854222357273102, -0.05251481756567955, -0.22877974808216095, -0.174358069896698, 0.045916516333818436, -0.36060428619384766, -0.09963497519493103, 0.19991973042488098, 0.22326047718524933, -0.12866508960723877, -0.4671004116535187, 0.011445015668869019, -0.11605606228113174, -0.002437190618366003, -0.47804924845695496, 0.15064433217048645, 0.10624056309461594, -0.060069337487220764, 0.2874803841114044, 0.3222018778324127, 0.008649403229355812, -0.26315584778785706, 0.05685720592737198, -0.03809764236211777, 0.1541026085615158, 0.011370941065251827, 0.08452147245407104, 0.19622446596622467, 0.020219532772898674, -0.005764223635196686, -0.09552564471960068, 0.11706652492284775, -0.02029445208609104, 0.2922267019748688, -0.2207026332616806, 0.2975327670574188, 0.2276819944381714, 0.21567843854427338, 0.23885516822338104, -0.07294383645057678, -0.05086985230445862, 0.1377164125442505, 0.09358161687850952, 0.03103259578347206, -0.2592693865299225, 0.7433461546897888, 0.24274319410324097, -0.044466856867074966, 0.33208104968070984, 0.3685334622859955, 0.14579561352729797, 0.2659349739551544, 0.06396514922380447, 0.3084395229816437, -0.45189017057418823, 0.22393782436847687, 0.21705517172813416, 0.18859711289405823, 0.23545818030834198, 0.308700293302536, 0.2615504860877991, -0.1081753671169281, 0.32234904170036316, 0.4323148727416992, 0.3706758916378021, 0.36671438813209534, 0.47418099641799927, -0.16129891574382782, -0.6234046220779419, 0.16545529663562775, 0.37759971618652344, -0.2864929139614105, 0.27051404118537903, 0.015828166157007217, 0.004620695021003485, -0.07070726156234741, -0.474441260099411, -0.12465830892324448, 0.02050972729921341, -0.05846788361668587, -0.15476424992084503, 0.24669677019119263, -0.1890915334224701, 0.19963310658931732, -0.053856026381254196, -0.0013487556716427207, 0.09717237949371338, 0.8700408935546875, -0.06799648702144623, 0.0033370365854352713, -0.034567467868328094, -0.08462768793106079, -0.13735264539718628, 0.3553048372268677, -0.018970858305692673, 0.09314386546611786, -0.4131547510623932, 0.032866206020116806, 0.150625079870224, 0.2757980525493622, -0.02937312051653862, 0.33241647481918335, -0.3319461941719055, -0.007849232293665409, 0.06106472760438919, -0.009050236083567142, -0.20360006392002106, 0.5143907070159912, 0.01650216244161129, -0.2763303518295288, 0.18106143176555634, -0.004494629334658384, 0.14361637830734253, -0.1180863231420517, -0.09254558384418488, 0.584807813167572, -0.1371869593858719, 0.15696614980697632, 0.1674061417579651, -0.11904767155647278, 0.2598945200443268, -0.011829097755253315, -0.08296732604503632, 0.04370748996734619, 0.41658204793930054, -0.285668283700943, 0.10088448971509933, 0.04329702630639076, 0.031041160225868225, 0.06951401382684708, 0.34781941771507263, 0.30209121108055115, -0.00020888648577965796, -0.26230520009994507, -0.20437870919704437, -0.47737011313438416, -0.011912663467228413, -0.04181687533855438, 0.2782686650753021, 0.013727317564189434, -0.10415885597467422, 0.024409743025898933, 0.2227223962545395, 0.12664273381233215, -0.6021296381950378, 0.1470218151807785, 0.09904803335666656, -0.3059792220592499, 0.03245130553841591, -0.16317693889141083, 0.0956093817949295, -0.07241290807723999, -0.30270466208457947, 0.2240172177553177, 0.25145331025123596, -0.08952393382787704, 0.08510679006576538, -0.19307555258274078, 0.00791297759860754, 0.2854199707508087, 0.424760103225708, 0.4317099452018738, 0.09102844446897507, 0.07024062424898148, 0.1292339414358139, -0.28914356231689453, 0.0006376525270752609, -0.006030119955539703, -0.033843301236629486, 0.0000888121867319569, 0.1067611575126648, -0.5476577281951904, 0.06282797455787659, -0.24755264818668365, -0.18333587050437927, 0.017473556101322174, 0.2171715945005417, -0.3235864043235779, -0.2488899827003479, -0.01224979106336832, 0.1204671710729599, 0.21197816729545593, 0.428251713514328, -0.02755499631166458, 0.27458128333091736, -0.3904280364513397, 0.2230900377035141, 0.13948625326156616, -0.4148373007774353, -0.4747496545314789, 0.07757119089365005, 0.06309426575899124, -0.16988377273082733, -0.4320865869522095, -0.2826708257198334, -0.1736196130514145, 0.28408583998680115, -0.3131861686706543, -0.03370347619056702, 0.08274699747562408, -0.48597103357315063, -0.004908039700239897, -0.14032341539859772, 0.42620453238487244, 0.19826002418994904, -0.08944923430681229, -0.17822641134262085, -0.15882478654384613 ]
https://github.com/huggingface/datasets/issues/279
Dataset Preprocessing Cache with .map() function not working as expected
Just checking in, the cache sometimes still does not work when I make changes in my processing function in version `1.2.1`. The changes made to my data processing function only propagate to the dataset when I use `load_from_cache_file=False` or clear the cache. Is this a system-specific issue?
I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks!
47
Dataset Preprocessing Cache with .map() function not working as expected I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks! Just checking in, the cache sometimes still does not work when I make changes in my processing function in version `1.2.1`. The changes made to my data processing function only propagate to the dataset when I use `load_from_cache_file=False` or clear the cache. Is this a system-specific issue?
[ -0.0422310009598732, 0.08915787190198898, -0.08176809549331665, 0.0919547900557518, 0.042321570217609406, 0.06223529204726219, 0.025528740137815475, 0.2098049521446228, 0.3237963914871216, 0.028471920639276505, 0.30006304383277893, 0.26434600353240967, 0.17761951684951782, -0.08004236966371536, -0.11281672865152359, 0.18959306180477142, 0.18956685066223145, 0.20837801694869995, -0.07325675338506699, 0.1837681233882904, -0.3083145320415497, 0.0548589862883091, -0.2294517606496811, 0.039161428809165955, -0.2585252821445465, -0.20653556287288666, 0.14323078095912933, 0.006047465838491917, 0.0013980126241222024, -0.2522467076778412, 0.297394335269928, 0.332809180021286, -0.12829671800136566, 0.5881772637367249, -0.00011693024862324819, 0.084227554500103, 0.4561636745929718, -0.050535961985588074, -0.23499222099781036, -0.00999804399907589, -0.37962111830711365, -0.07021749764680862, 0.16023439168930054, -0.024357816204428673, -0.010138248093426228, 0.11621768772602081, 0.02014787122607231, -0.962758481502533, 0.3745886981487274, -0.08566038310527802, 0.14807404577732086, 0.005917939357459545, -0.3695870041847229, 0.15309306979179382, 0.04921216517686844, 0.20582781732082367, -0.1800125539302826, 0.036516379565000534, 0.4169895052909851, -0.18542084097862244, -0.13932913541793823, 0.14357084035873413, -0.17688991129398346, 0.2246658205986023, 0.22470860183238983, -0.09709564596414566, -0.07453276216983795, -0.6531957983970642, 0.46815216541290283, 0.0929749608039856, 0.5025748610496521, -0.23823440074920654, -0.35643625259399414, -0.18861648440361023, -0.19985367357730865, -0.12840545177459717, 0.4736366271972656, -0.052115555852651596, 0.04802382364869118, 0.24724507331848145, -0.8149893879890442, -0.24417425692081451, 0.13996240496635437, -0.0658179447054863, 0.15891806781291962, -0.06066961959004402, -0.22021855413913727, 0.10060130804777145, 0.1753266602754593, -0.03353698179125786, 0.2819594144821167, -0.4145127832889557, -0.09306370466947556, 0.4279218018054962, -0.2198815494775772, 0.0837462842464447, -0.12302742898464203, 0.25605472922325134, 0.08920460194349289, -0.006210693623870611, 0.14864014089107513, 0.4178132712841034, -0.038514990359544754, 0.15052182972431183, 0.2692404091358185, 0.3919086456298828, 0.18364664912223816, 0.029540641233325005, 0.22623181343078613, -0.30689364671707153, -0.18179939687252045, 0.022411266341805458, 0.21956278383731842, -0.30194681882858276, 0.1666240245103836, 0.051904868334531784, -0.04348912835121155, -0.3644348978996277, 0.14791372418403625, -0.16130289435386658, -0.27014023065567017, -0.26870954036712646, -0.02400793880224228, 0.041953932493925095, 0.062412653118371964, 0.3686460256576538, -0.15675963461399078, -0.05837615206837654, -0.28920766711235046, -0.15359482169151306, -0.056806761771440506, -0.27321043610572815, -0.33071836829185486, 0.33376580476760864, 0.37264105677604675, -0.19955380260944366, 0.09670807421207428, 0.21275721490383148, 0.11947952210903168, -0.2556494474411011, 0.402323454618454, -0.37183183431625366, 0.6122224926948547, 0.16730396449565887, -0.1996263861656189, 0.3133723735809326, 0.0886344313621521, 0.3282327353954315, -0.12334128469228745, 0.3190571963787079, -0.4271489381790161, -0.07320349663496017, 0.5425623655319214, 0.04262480512261391, -0.2365996390581131, 0.27248528599739075, -0.15767204761505127, 0.1831423044204712, 0.3819364905357361, -0.34119758009910583, -0.01930425874888897, 0.05590430274605751, -0.36140432953834534, -0.24924615025520325, 0.301145076751709, 0.4044576585292816, -0.3130491375923157, -0.00626720953732729, -0.09665324538946152, 0.008960860781371593, 0.2724156081676483, 0.002020295010879636, -0.1514185518026352, 0.25694361329078674, -0.1890787035226822, 0.07408827543258667, 0.17972563207149506, 0.04623792693018913, -0.4824349284172058, 0.46190744638442993, 0.2666217088699341, 0.3159232437610626, -0.32009127736091614, -0.03448430076241493, 0.07549292594194412, -0.029253294691443443, -0.2274346649646759, 0.07332036644220352, 0.11262452602386475, 0.01841992698609829, -0.1365387737751007, -0.3354550004005432, 0.23870804905891418, -0.17278088629245758, 0.00988331064581871, 0.5577958226203918, -0.1166372150182724, -0.45337361097335815, -0.00553420465439558, -0.11717746406793594, 0.26888296008110046, 0.18670706450939178, -0.12418105453252792, -0.08352937549352646, 0.11222650110721588, -0.117894247174263, -0.29578009247779846, 0.38688895106315613, -0.16079941391944885, -0.3888334333896637, 0.0870993360877037, -0.0017752586863934994, 0.14892607927322388, -0.15080378949642181, -0.17087960243225098, -0.060368675738573074, 0.03417210653424263, -0.03985847532749176, 0.20859873294830322, -0.22141408920288086, -0.1505841314792633, 0.5996132493019104, 0.22883687913417816, -0.1119033470749855, -0.14412377774715424, -0.09066339582204819, 0.1879694014787674, -0.19294454157352448, -0.3765648603439331, -0.042068421840667725, 0.12401609867811203, -0.07171206176280975, -0.18283653259277344, 0.4112226963043213, 0.3644668459892273, 0.2317551076412201, -0.05719315633177757, 0.14843067526817322, 0.0776229053735733, 0.10538782179355621, 0.039512548595666885, -0.043841443955898285, 0.04816567152738571, -0.1259492188692093, -0.04571131616830826, 0.28449445962905884, -0.07565206289291382, 0.33321622014045715, 0.025585558265447617, -0.0784997045993805, 0.15123823285102844, -0.006895795464515686, -0.032718826085329056, -0.28838565945625305, -0.13718152046203613, -0.08562785387039185, 0.5550135374069214, 0.019332244992256165, 0.09989231824874878, -0.0798727497458458, 0.16449645161628723, 0.1588202714920044, -0.005759884137660265, -0.10983508080244064, -0.07650309056043625, -0.22256717085838318, 0.07858562469482422, 0.14217223227024078, 0.3094835877418518, -0.003140832995995879, 0.35055094957351685, -0.09589635580778122, -0.008195464499294758, -0.053447067737579346, -0.12732990086078644, 0.06423633545637131, 0.37828195095062256, -0.012825650162994862, 0.04471297562122345, 0.05547097697854042, -0.05883672833442688, 0.13941533863544464, 0.09541726857423782, -0.23675976693630219, -0.13918118178844452, 0.21142515540122986, -0.43828532099723816, -0.10310973972082138, 0.12161112576723099, -0.0038586859591305256, -0.2828517258167267, -0.15960346162319183, -0.04918629303574562, 0.16242587566375732, 0.07718345522880554, 0.2626120448112488, -0.04050677642226219, 0.3092964291572571, -0.24148115515708923, -0.30575183033943176, -0.21551483869552612, -0.19715134799480438, -0.11730831861495972, 0.02550090104341507, 0.06586997956037521, -0.17969916760921478, 0.21660001575946808, -0.07365643978118896, -0.12844932079315186, -0.15531010925769806, 0.06316033750772476, 0.28946369886398315, 0.1655324101448059, 0.04974359646439552, -0.38831230998039246, -0.03444042056798935, -0.2452543079853058, 0.2555256485939026, 0.003920902963727713, -0.43481627106666565, -0.15218143165111542, -0.0571381039917469, 0.0033029653131961823, -0.0713677927851677, -0.3041386306285858, 0.005595830734819174, 0.028459010645747185, -0.06614428758621216, 0.00787345040589571, -0.21590004861354828, 0.09649204462766647, -0.058854032307863235, 0.06309918314218521, -0.08047084510326385, 0.002618644153699279, -0.11127256602048874, -0.389504075050354, -0.5156042575836182, 0.23369944095611572, -0.21740120649337769, -0.16436892747879028, 0.21389538049697876, 0.21715474128723145, 0.21348200738430023, 0.8205274343490601, -0.1731252670288086, 0.01940157823264599, -0.13118654489517212, -0.05239321291446686, 0.08172482997179031, 0.0411987230181694, 0.44427889585494995, 0.12783099710941315, 0.04686891287565231, -0.2690100073814392, -0.40395817160606384, 0.1687215119600296, 0.09760364890098572, 0.12096772342920303, 0.4620669484138489, 0.0261512640863657, -0.026269422844052315, 0.9281291961669922, 0.28074923157691956, -0.11062029749155045, 0.23996186256408691, 0.2195245772600174, 0.35711559653282166, -0.2936382293701172, 0.07741248607635498, -0.1929929256439209, -0.4637967646121979, -0.15291918814182281, 0.10664116591215134, 0.030770817771553993, -0.5778460502624512, -0.23628371953964233, 0.34956812858581543, -0.2912433445453644, -0.12496134638786316, -0.05576074495911598, -0.31993022561073303, 0.5669845938682556, 0.04199158027768135, 0.16508148610591888, -0.26239609718322754, -0.09146063029766083, 0.06530936062335968, -0.14801594614982605, 0.7365277409553528, -0.07873183488845825, -0.35713067650794983, -0.010197595693171024, -0.31598567962646484, 0.2897168695926666, 0.09403769671916962, 0.3959237337112427, -0.26714956760406494, -0.11867732554674149, 0.01304759830236435, 0.1042243242263794, 0.4674055576324463, -0.4032791554927826, -0.008958394639194012, 0.07719222456216812, -0.35949549078941345, 0.08867765218019485, 0.07636117190122604, 0.24634501338005066, 0.6016663908958435, 0.13383691012859344, 0.0870828703045845, 0.08095894753932953, -0.1844833642244339, -0.5479585528373718, 0.11276254057884216, -0.11541807651519775, -0.31768742203712463, -0.09390067309141159, 0.23005838692188263, -0.23882503807544708, -0.17848719656467438, -0.025960681959986687, -0.2603917419910431, -0.1423577219247818, -0.12171195447444916, -0.20997992157936096, 0.09346304088830948, 0.17321929335594177, 0.26434817910194397, 0.39280980825424194, -0.10454626381397247, -0.10352618247270584, 0.6716064810752869, 0.16520699858665466, 0.01726214587688446, 0.4291108548641205, -0.198196679353714, 0.09517793357372284, 0.2537596821784973, -0.09034347534179688, 0.10817080736160278, 0.4060554802417755, -0.22224074602127075, -0.174139603972435, 0.0773167759180069, -0.23061321675777435, -0.5374784469604492, -0.006894002668559551, 0.1347159892320633, -0.047966621816158295, -0.3338082730770111, -0.4914815127849579, 0.22528845071792603, 0.3845280706882477, -0.4131152629852295, 0.42362549901008606, -0.2135848104953766, -0.25903207063674927, 0.21624357998371124, 0.06640686094760895, 0.8740599155426025, -0.3066960573196411, -0.17550106346607208, -0.4766535460948944, 0.11666426807641983, 0.030403688549995422, -0.31005436182022095, 0.3236526846885681, -0.155763640999794, -0.2019032984972, -0.13105085492134094, -0.1979898065328598, 0.3775119483470917, 0.6080794930458069, -0.07533550262451172, 0.36470380425453186, -0.037857454270124435, 0.2650955319404602, -0.03345184028148651, -0.03609096258878708, 0.25369808077812195, -0.3418264389038086, 0.07205137610435486, 0.13620701432228088, 0.011029163375496864, -0.012182727456092834, 0.06115075945854187, 0.07951269298791885, -0.03132724389433861, 0.16830399632453918, -0.011120428331196308, 0.07248207926750183, -0.37728753685951233, 0.05739191919565201, -0.1906115561723709, 0.05221632122993469, 0.253118634223938, 0.21590420603752136, 0.26277604699134827, 0.03249988704919815, -0.24491366744041443, 0.040422212332487106, 0.4043717682361603, 0.23838050663471222, -0.1943037062883377, 0.13015741109848022, -0.09483492374420166, 0.041607264429330826, -0.1057254821062088, -0.10373268276453018, -0.2594006359577179, -0.28512150049209595, -0.031062809750437737, 0.01695668324828148, 0.1296369433403015, -0.1928441971540451, -0.17754702270030975, 0.16502392292022705, 0.2473137229681015, 0.1264149397611618, 0.09478265047073364, 0.19029340147972107, 0.1477004736661911, 0.4358251392841339, -0.13449154794216156, -0.24793289601802826, -0.06837479770183563, 0.25779107213020325, -0.07670451700687408, -0.2712797224521637, 0.09202410280704498, -0.13710695505142212, -0.2443404644727707, -0.13622327148914337, -0.23754192888736725, -0.2199593037366867, -0.0874553769826889, -0.05922345817089081, -0.130865216255188, -0.1317468136548996, 0.017549844458699226, -0.21095506846904755, 0.008001720532774925, 0.08336978405714035, -0.1773945838212967, -0.22195136547088623, -0.13048020005226135, -0.10153220593929291, -0.16007186472415924, 0.28143033385276794, 0.013834523968398571, -0.39354902505874634, 0.16013869643211365, 0.3114463984966278, -0.19360876083374023, -0.1269918829202652, 0.26417115330696106, 0.17553476989269257, 0.08223652094602585, 0.29985353350639343, -0.06276416778564453, -0.22934122383594513, -0.1649952530860901, 0.04611969739198685, -0.35889965295791626, -0.12672437727451324, 0.18887268006801605, 0.21244166791439056, -0.11740614473819733, -0.47234559059143066, 0.028111541643738747, -0.11684735864400864, 0.04735206067562103, -0.47473254799842834, 0.1565849930047989, 0.1065792366862297, -0.04062735661864281, 0.2895567715167999, 0.28896570205688477, 0.040233202278614044, -0.2808894217014313, 0.08167935907840729, -0.008399320766329765, 0.1487882286310196, 0.018826568499207497, 0.08198539167642593, 0.1746988445520401, 0.030404750257730484, -0.01597439870238304, -0.10045038908720016, 0.07115983963012695, -0.050338804721832275, 0.2550851106643677, -0.22071076929569244, 0.30243396759033203, 0.2557481825351715, 0.19178543984889984, 0.24086034297943115, -0.06531411409378052, -0.06528577953577042, 0.1911708563566208, 0.1037212684750557, 0.0645921602845192, -0.24898803234100342, 0.6774764060974121, 0.2197594791650772, -0.05222073942422867, 0.3222692608833313, 0.39336496591567993, 0.12627312541007996, 0.2538277208805084, 0.04287637397646904, 0.34016022086143494, -0.48567113280296326, 0.2219838947057724, 0.17815667390823364, 0.23053477704524994, 0.24446792900562286, 0.3148038387298584, 0.3094747066497803, -0.12062415480613708, 0.3351336419582367, 0.4036642014980316, 0.34112632274627686, 0.40245264768600464, 0.48822668194770813, -0.16435521841049194, -0.6150527596473694, 0.21456727385520935, 0.3988511860370636, -0.27620765566825867, 0.26730719208717346, -0.03158183395862579, -0.062484078109264374, -0.06755261868238449, -0.41855186223983765, -0.09389998018741608, -0.012202005833387375, -0.05559294670820236, -0.160638228058815, 0.2629877030849457, -0.17795555293560028, 0.1947115957736969, -0.05090082064270973, 0.003110793186351657, 0.13506478071212769, 0.85003262758255, -0.07478994876146317, -0.008170735090970993, 0.01729702763259411, -0.0792999193072319, -0.17562216520309448, 0.34165894985198975, 0.009419441223144531, 0.09988964349031448, -0.45308879017829895, 0.011472572572529316, 0.12112598866224289, 0.2790076434612274, -0.030284859240055084, 0.3566257059574127, -0.3317679464817047, -0.01689336448907852, 0.06102897599339485, -0.0380292609333992, -0.2270008623600006, 0.49590736627578735, 0.02147296816110611, -0.2843986749649048, 0.14957262575626373, 0.025751100853085518, 0.11735166609287262, -0.10889796167612076, -0.1391935795545578, 0.6097431182861328, -0.16347052156925201, 0.16190014779567719, 0.16769953072071075, -0.10083799064159393, 0.29362794756889343, 0.00416836142539978, -0.07983888685703278, 0.07457449287176132, 0.44696423411369324, -0.26303571462631226, 0.09461603313684464, -0.0006473436951637268, 0.04387756437063217, 0.09216076880693436, 0.3493201732635498, 0.3144758641719818, 0.03992418199777603, -0.22348584234714508, -0.16327735781669617, -0.4827320873737335, -0.017831599339842796, -0.05514077842235565, 0.2705821692943573, -0.013803690671920776, -0.08082210272550583, 0.0153243038803339, 0.21478058397769928, 0.12492307275533676, -0.5909252762794495, 0.12185725569725037, 0.07489648461341858, -0.2518156170845032, 0.06050031632184982, -0.19806911051273346, 0.10912923514842987, -0.04604405537247658, -0.3268638253211975, 0.20527783036231995, 0.1664382666349411, -0.06130171939730644, 0.07056298106908798, -0.21737217903137207, 0.036506593227386475, 0.25304535031318665, 0.44966933131217957, 0.44071128964424133, 0.057831503450870514, 0.056471485644578934, 0.1126219779253006, -0.2935216426849365, 0.005968479905277491, 0.004178558476269245, -0.036872487515211105, -0.03194105625152588, 0.07660926878452301, -0.5562334656715393, 0.053016167134046555, -0.25100746750831604, -0.18558664619922638, 0.0044258334673941135, 0.20432531833648682, -0.24332532286643982, -0.2719516456127167, 0.028971970081329346, 0.05058673769235611, 0.27465713024139404, 0.45010611414909363, -0.03142412751913071, 0.2331925481557846, -0.40691590309143066, 0.2510465979576111, 0.08780752867460251, -0.44967979192733765, -0.39510414004325867, 0.013995688408613205, 0.06113292649388313, -0.17794384062290192, -0.40099549293518066, -0.26299118995666504, -0.15463343262672424, 0.28520944714546204, -0.3229401707649231, -0.07843690365552902, 0.042716722935438156, -0.46922510862350464, -0.003150777891278267, -0.15044960379600525, 0.4665026068687439, 0.20427227020263672, -0.10980811715126038, -0.1756788045167923, -0.16274267435073853 ]
https://github.com/huggingface/datasets/issues/279
Dataset Preprocessing Cache with .map() function not working as expected
Hi @sarahwie The data are reloaded from the cache if the hash of the function you provide is the same as a computation you've done before. The hash is computed by recursively looking at the python objects of the function you provide. If you think there's an issue, can you share the function you used or a google colab please ?
I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks!
61
Dataset Preprocessing Cache with .map() function not working as expected I've been having issues with reproducibility when loading and processing datasets with the `.map` function. I was only able to resolve them by clearing all of the cache files on my system. Is there a way to disable using the cache when processing a dataset? As I make minor processing changes on the same dataset, I want to be able to be certain the data is being re-processed rather than loaded from a cached file. Could you also help me understand a bit more about how the caching functionality is used for pre-processing? E.g. how is it determined when to load from a cache vs. reprocess. I was particularly having an issue where the correct dataset splits were loaded, but as soon as I applied the `.map()` function to each split independently, they somehow all exited this process having been converted to the test set. Thanks! Hi @sarahwie The data are reloaded from the cache if the hash of the function you provide is the same as a computation you've done before. The hash is computed by recursively looking at the python objects of the function you provide. If you think there's an issue, can you share the function you used or a google colab please ?
[ 0.012609914876520634, 0.02267608419060707, -0.08359208703041077, 0.11090552806854248, 0.1039314940571785, 0.09357597678899765, 0.007125381845980883, 0.158890962600708, 0.32624661922454834, -0.006993553135544062, 0.24600501358509064, 0.2585700452327728, 0.14196574687957764, -0.04374736174941063, -0.09526148438453674, 0.19916333258152008, 0.16590306162834167, 0.1899382621049881, -0.01755932718515396, 0.17775730788707733, -0.3379136621952057, 0.06170274317264557, -0.29091736674308777, -0.042419444769620895, -0.2941626310348511, -0.19838638603687286, 0.1261187344789505, 0.034315578639507294, -0.04284151643514633, -0.26304078102111816, 0.3011360466480255, 0.3228375017642975, -0.14332227408885956, 0.6143488883972168, -0.00011929592437809333, 0.04331526532769203, 0.39993301033973694, -0.09737006574869156, -0.19503964483737946, -0.04252798482775688, -0.3641998767852783, -0.040948204696178436, 0.18668776750564575, -0.07628151029348373, -0.07292003929615021, 0.1407177448272705, -0.034870047122240067, -1.0032602548599243, 0.40383008122444153, -0.039583802223205566, 0.13290706276893616, 0.01714950241148472, -0.4026249051094055, 0.27073973417282104, 0.021868068724870682, 0.15240992605686188, -0.1357860118150711, 0.07115818560123444, 0.33881181478500366, -0.2379152923822403, -0.08768999576568604, 0.16955716907978058, -0.23066575825214386, 0.22404272854328156, 0.2353825569152832, -0.06498581916093826, -0.13968534767627716, -0.7217980027198792, 0.3800291419029236, 0.05737847462296486, 0.5168452262878418, -0.26604995131492615, -0.3717956840991974, -0.18267272412776947, -0.22368955612182617, -0.1478830873966217, 0.4478945732116699, 0.015668440610170364, 0.048862162977457047, 0.2076195776462555, -0.8422003388404846, -0.18166624009609222, 0.14448480308055878, -0.051066573709249496, 0.17927978932857513, 0.0006040687439963222, -0.1845417320728302, 0.10826165229082108, 0.14422272145748138, -0.003639519913122058, 0.3374115824699402, -0.4216638207435608, -0.058563247323036194, 0.4882793426513672, -0.24441872537136078, 0.06818259507417679, -0.15820173919200897, 0.3357009291648865, 0.07626604288816452, 0.05825419723987579, 0.14657610654830933, 0.3805179297924042, -0.07518414407968521, 0.13834522664546967, 0.25681740045547485, 0.3748096525669098, 0.1340915709733963, 0.0845247358083725, 0.2072889804840088, -0.318716436624527, -0.23405387997627258, 0.020610062405467033, 0.2593969702720642, -0.28716611862182617, 0.28028643131256104, 0.05120905116200447, 0.016127025708556175, -0.3326471149921417, 0.15326057374477386, -0.15256984531879425, -0.3575711250305176, -0.31653499603271484, -0.028957145288586617, 0.10384733974933624, 0.013702984899282455, 0.28771737217903137, -0.1415010243654251, -0.03987428918480873, -0.29230785369873047, -0.05938993766903877, -0.03680187836289406, -0.24175730347633362, -0.30559495091438293, 0.299838125705719, 0.35594871640205383, -0.21856631338596344, 0.15734036266803741, 0.21917636692523956, 0.16408167779445648, -0.3253113627433777, 0.42041996121406555, -0.3591630458831787, 0.6152805685997009, 0.17651653289794922, -0.18646782636642456, 0.2618686854839325, 0.13143622875213623, 0.2853626012802124, -0.11622414737939835, 0.3068481683731079, -0.44819024205207825, -0.09910276532173157, 0.519160270690918, 0.026961149647831917, -0.273254930973053, 0.2550114095211029, -0.13675828278064728, 0.1432132124900818, 0.40819528698921204, -0.2797897458076477, -0.000555460515897721, 0.061521243304014206, -0.34774696826934814, -0.3059694468975067, 0.32218456268310547, 0.4391503930091858, -0.27391132712364197, -0.01652243174612522, -0.05497795343399048, 0.07935591042041779, 0.24683906137943268, 0.014458929188549519, -0.157052680850029, 0.26509836316108704, -0.21328192949295044, 0.088468998670578, 0.16391079127788544, 0.00043179583735764027, -0.46774786710739136, 0.3946532905101776, 0.3026474118232727, 0.3626725673675537, -0.35201674699783325, 0.04348386079072952, 0.02959771268069744, -0.06506529450416565, -0.1620069444179535, 0.15326207876205444, 0.09349863231182098, 0.03543046861886978, -0.12480765581130981, -0.2823023200035095, 0.27535977959632874, -0.19800880551338196, 0.000831920129712671, 0.5466745495796204, -0.1341933161020279, -0.4987400472164154, 0.026212938129901886, -0.13587725162506104, 0.17352543771266937, 0.17525337636470795, -0.08784770965576172, -0.073918916285038, 0.13875341415405273, -0.1402406543493271, -0.38009101152420044, 0.37107259035110474, -0.1506708264350891, -0.300132691860199, -0.04926496744155884, -0.010012652724981308, 0.08200838416814804, -0.11362076550722122, -0.20489534735679626, -0.0743708610534668, 0.03899053856730461, -0.10650499165058136, 0.2533738911151886, -0.190398171544075, -0.11629744619131088, 0.6129920482635498, 0.23052363097667694, -0.07501935213804245, -0.15764030814170837, -0.0453653410077095, 0.18192695081233978, -0.1382560431957245, -0.37601301074028015, -0.031753573566675186, 0.21874287724494934, -0.10274367779493332, -0.17630057036876678, 0.4331422746181488, 0.3840717375278473, 0.18367740511894226, -0.05446619167923927, 0.18201375007629395, 0.07371534407138824, 0.05861130356788635, 0.1019367128610611, -0.015754103660583496, 0.11104608327150345, -0.1827043890953064, 0.004795984365046024, 0.35257020592689514, -0.11566723883152008, 0.33075714111328125, 0.02428748458623886, -0.08836967498064041, 0.10982552915811539, -0.016141537576913834, -0.059332914650440216, -0.24159429967403412, -0.13048885762691498, -0.07399880886077881, 0.5344322323799133, 0.014976072125136852, 0.0760660395026207, -0.11010988801717758, 0.11478578299283981, 0.13519792258739471, 0.04360529035329819, -0.15152357518672943, -0.10552825033664703, -0.18256427347660065, 0.049504354596138, 0.16131256520748138, 0.3329404890537262, -0.04455452412366867, 0.32125192880630493, -0.039583366364240646, 0.007379593327641487, -0.021832825616002083, -0.06971336901187897, 0.09584493935108185, 0.3745645582675934, -0.04841276630759239, 0.0538950152695179, 0.022397110238671303, -0.07851837575435638, 0.1887507438659668, 0.08661942929029465, -0.2095688134431839, -0.1836448460817337, 0.2747167944908142, -0.37283825874328613, -0.0721573531627655, 0.12076078355312347, -0.14892899990081787, -0.31470170617103577, -0.19855493307113647, -0.0873117744922638, 0.15403616428375244, 0.14802514016628265, 0.23857815563678741, -0.021144824102520943, 0.1770700067281723, -0.1963212937116623, -0.3962065875530243, -0.21088159084320068, -0.2509935796260834, -0.024128835648298264, 0.013031822629272938, 0.058223553001880646, -0.16284224390983582, 0.2691914141178131, -0.07931932061910629, -0.14025945961475372, -0.1621200442314148, 0.0316837877035141, 0.2521142363548279, 0.06294000893831253, 0.09750814735889435, -0.386729896068573, -0.03239711374044418, -0.26332658529281616, 0.24801167845726013, -0.015013479627668858, -0.39946264028549194, -0.1009918749332428, -0.05135961249470711, 0.04633871093392372, -0.028935082256793976, -0.24536173045635223, -0.03257657214999199, -0.053397517651319504, 0.010763470083475113, -0.017133718356490135, -0.1349083036184311, 0.10153889656066895, 0.0019315890967845917, 0.0572788305580616, -0.14150667190551758, 0.04448055848479271, -0.15058447420597076, -0.39410868287086487, -0.5403396487236023, 0.29287269711494446, -0.1742098182439804, -0.11586397886276245, 0.3231078088283539, 0.14412978291511536, 0.18095973134040833, 0.8046814203262329, -0.210773766040802, -0.08868079632520676, -0.13956919312477112, -0.04635768011212349, 0.07050931453704834, 0.08548829704523087, 0.39928755164146423, 0.14132735133171082, 0.09252864122390747, -0.2513987123966217, -0.3856617510318756, 0.07273183763027191, 0.09858579188585281, 0.11498308181762695, 0.46128106117248535, 0.030072873458266258, -0.08496199548244476, 0.931719183921814, 0.28331977128982544, -0.09500180184841156, 0.26699724793434143, 0.1702575534582138, 0.3451191782951355, -0.2881954610347748, 0.07081712037324905, -0.23673583567142487, -0.4759664833545685, -0.18289177119731903, 0.10633774101734161, 0.08791831135749817, -0.5318138599395752, -0.22584478557109833, 0.386798620223999, -0.3913381099700928, -0.15998417139053345, -0.06570731103420258, -0.39750295877456665, 0.5221548080444336, 0.07053454965353012, 0.15184247493743896, -0.2838065028190613, -0.12685802578926086, 0.020297061651945114, -0.1642279177904129, 0.7392300963401794, -0.09501974284648895, -0.3028748035430908, -0.0011109741171821952, -0.3380424976348877, 0.30379435420036316, 0.10555778443813324, 0.32779768109321594, -0.18659904599189758, -0.10203836858272552, 0.034012891352176666, 0.13050377368927002, 0.49886783957481384, -0.45831653475761414, -0.0022160238586366177, 0.04955577105283737, -0.33010315895080566, 0.08775468170642853, 0.0777616947889328, 0.2153148353099823, 0.6324643492698669, 0.08399748802185059, 0.06457555294036865, 0.06565239280462265, -0.13278961181640625, -0.4931655526161194, 0.1411961168050766, -0.1203802302479744, -0.3293854594230652, -0.14171409606933594, 0.13607652485370636, -0.2405109852552414, -0.18406996130943298, 0.022815383970737457, -0.3011864125728607, -0.10762931406497955, -0.08682587742805481, -0.2012244015932083, 0.1294153779745102, 0.21728162467479706, 0.2465331107378006, 0.45487675070762634, -0.05384660139679909, -0.07477468997240067, 0.6173520684242249, 0.13360072672367096, -0.056404005736112595, 0.5255818367004395, -0.21115918457508087, 0.08767284452915192, 0.1218397319316864, -0.02137554995715618, 0.13043060898780823, 0.3328438401222229, -0.1982218474149704, -0.17874330282211304, 0.058359406888484955, -0.22085337340831757, -0.5552142858505249, -0.03144210949540138, 0.16638599336147308, 0.014575433917343616, -0.44512268900871277, -0.5543462038040161, 0.2807047665119171, 0.3444277346134186, -0.3840259313583374, 0.4244663417339325, -0.19378694891929626, -0.2579273581504822, 0.26932233572006226, 0.07669660449028015, 0.9050430059432983, -0.3999023139476776, -0.15794023871421814, -0.411059707403183, 0.1713768094778061, 0.06248077377676964, -0.3120303452014923, 0.31490403413772583, -0.16493864357471466, -0.2067505419254303, -0.14016591012477875, -0.21704138815402985, 0.29494816064834595, 0.5736168026924133, -0.11269308626651764, 0.3896787762641907, -0.07856681197881699, 0.2383885681629181, -0.07192862778902054, -0.03796320781111717, 0.25747716426849365, -0.28426215052604675, 0.04689786583185196, 0.13347259163856506, -0.025585200637578964, -0.01820470578968525, 0.04859446734189987, 0.11203303188085556, -0.048061124980449677, 0.1283043920993805, -0.0036544231697916985, 0.06864618510007858, -0.35372766852378845, 0.0665447786450386, -0.22216589748859406, -0.04806635156273842, 0.25161072611808777, 0.20763078331947327, 0.2489756941795349, 0.05587559938430786, -0.2269957810640335, 0.036482907831668854, 0.3870260715484619, 0.20332159101963043, -0.16397787630558014, 0.16353215277194977, -0.12153992056846619, 0.08564852178096771, -0.13505278527736664, -0.09167031198740005, -0.24221600592136383, -0.34251490235328674, -0.043773211538791656, 0.07180549204349518, 0.1247110366821289, -0.26514479517936707, -0.19702129065990448, 0.18207551538944244, 0.20074515044689178, 0.13494610786437988, 0.07918401062488556, 0.18696393072605133, 0.11483140289783478, 0.4786565601825714, -0.11055181175470352, -0.2748797833919525, -0.053982995450496674, 0.2129805088043213, 0.049076344817876816, -0.3119797706604004, 0.12496473640203476, -0.06758316606283188, -0.2460441291332245, -0.12267479300498962, -0.28223422169685364, -0.29114747047424316, -0.007624439429491758, -0.01062069647014141, -0.06717859953641891, -0.007607415784150362, -0.017369568347930908, -0.21600595116615295, -0.03511718660593033, 0.10808974504470825, -0.1765679270029068, -0.2673584520816803, -0.15276233851909637, -0.12977659702301025, -0.10805322974920273, 0.3174188435077667, 0.008524173870682716, -0.35978302359580994, 0.16880106925964355, 0.348643958568573, -0.18276092410087585, -0.06187876686453819, 0.20075304806232452, 0.2232431322336197, 0.09663260728120804, 0.2734757661819458, 0.008917205035686493, -0.23467513918876648, -0.13882623612880707, 0.047875914722681046, -0.34105685353279114, -0.12041106075048447, 0.2324414998292923, 0.21940647065639496, -0.11287728697061539, -0.5000815391540527, 0.01731148362159729, -0.1419837325811386, 0.06403303146362305, -0.49667081236839294, 0.1426207274198532, 0.16599231958389282, -0.0278109572827816, 0.2998483180999756, 0.3571557104587555, -0.03194069489836693, -0.27664631605148315, 0.07059217989444733, -0.0489758737385273, 0.16476579010486603, 0.04911893233656883, 0.06317790597677231, 0.1680636703968048, 0.047551076859235764, 0.009487512521445751, -0.12913574278354645, 0.0904795378446579, -0.020795049145817757, 0.27819937467575073, -0.22811123728752136, 0.2825011610984802, 0.18245834112167358, 0.24791277945041656, 0.2677652835845947, -0.07815315574407578, -0.03375159204006195, 0.16968630254268646, 0.09217823296785355, 0.00749816931784153, -0.24003195762634277, 0.6981931924819946, 0.22289839386940002, -0.010882122442126274, 0.3533831536769867, 0.3265453577041626, 0.18548564612865448, 0.203568235039711, 0.03932441398501396, 0.37944692373275757, -0.4553787112236023, 0.2298567146062851, 0.11598795652389526, 0.200004443526268, 0.2070939540863037, 0.32836613059043884, 0.27653494477272034, -0.13250653445720673, 0.25990793108940125, 0.4038735628128052, 0.3374176025390625, 0.32350003719329834, 0.39014530181884766, -0.19102968275547028, -0.5856966376304626, 0.22034569084644318, 0.3824100196361542, -0.2621113359928131, 0.3146700859069824, 0.056104253977537155, -0.024989338591694832, -0.038096196949481964, -0.3837389051914215, -0.08460433036088943, 0.03548727557063103, -0.028753675520420074, -0.15297384560108185, 0.3428885042667389, -0.16199205815792084, 0.24021396040916443, -0.04787315055727959, 0.0208126287907362, 0.01742096245288849, 0.8757124543190002, -0.03595516458153725, -0.0011872895993292332, 0.0544966459274292, -0.03593864664435387, -0.15319284796714783, 0.3803102970123291, -0.021007483825087547, 0.0297992043197155, -0.397670179605484, 0.04717158153653145, 0.0692419484257698, 0.22904078662395477, 0.028878312557935715, 0.32944831252098083, -0.3763192296028137, 0.0959211215376854, 0.09287184476852417, -0.03468770161271095, -0.16548410058021545, 0.4780680239200592, 0.01812756434082985, -0.2641531825065613, 0.10798763483762741, 0.024618560448288918, 0.1039290726184845, -0.1104387640953064, -0.09602786600589752, 0.6095186471939087, -0.15412041544914246, 0.14310696721076965, 0.1908959448337555, -0.12615172564983368, 0.22189639508724213, 0.016583381220698357, -0.14468780159950256, 0.06330887973308563, 0.45114895701408386, -0.24220268428325653, 0.09369930624961853, 0.013743194751441479, 0.027531297877430916, 0.07018256187438965, 0.38335058093070984, 0.38013264536857605, 0.1401960402727127, -0.2852889597415924, -0.1369885802268982, -0.5016656517982483, -0.05053134635090828, -0.1271040290594101, 0.20023134350776672, -0.00379066145978868, -0.08534681797027588, 0.028795327991247177, 0.2967403829097748, 0.1420731395483017, -0.5314874649047852, 0.08241937309503555, 0.09861724078655243, -0.24313807487487793, -0.027208151295781136, -0.2360905557870865, 0.08325392752885818, -0.052272867411375046, -0.30470138788223267, 0.16198515892028809, 0.13909123837947845, -0.06210413947701454, 0.041452378034591675, -0.18699537217617035, 0.043408021330833435, 0.252084881067276, 0.488482266664505, 0.4370418190956116, 0.10017290711402893, 0.062352120876312256, 0.13658910989761353, -0.23716381192207336, 0.006893371697515249, 0.016283659264445305, -0.02312837913632393, 0.004144861362874508, 0.08107126504182816, -0.520799458026886, 0.0373874194920063, -0.2671988606452942, -0.16496950387954712, -0.011317300610244274, 0.14357875287532806, -0.21956883370876312, -0.2876954972743988, 0.06595129519701004, 0.07064629346132278, 0.18522052466869354, 0.49342334270477295, -0.05604793503880501, 0.30823051929473877, -0.36121106147766113, 0.20461563766002655, 0.1274629831314087, -0.4497523307800293, -0.42565852403640747, 0.0842980369925499, 0.046521518379449844, -0.2532377243041992, -0.3669767677783966, -0.3475480377674103, -0.08038151264190674, 0.2992352247238159, -0.3192399740219116, -0.07762670516967773, 0.09496214240789413, -0.4346529543399811, -0.027277382090687752, -0.13888540863990784, 0.43340978026390076, 0.14472705125808716, -0.07487180829048157, -0.21555110812187195, -0.19944187998771667 ]
https://github.com/huggingface/datasets/issues/278
MemoryError when loading German Wikipedia
Hi ! As you noticed, "big" datasets like Wikipedia require apache beam to be processed. However users usually don't have an apache beam runtime available (spark, dataflow, etc.) so our goal for this library is to also make available processed versions of these datasets, so that users can just download and use them right away. This is the case for english and french wikipedia right now: we've processed them ourselves and now they are available from our google storage. However we've not processed the german one (yet).
Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you!
87
MemoryError when loading German Wikipedia Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you! Hi ! As you noticed, "big" datasets like Wikipedia require apache beam to be processed. However users usually don't have an apache beam runtime available (spark, dataflow, etc.) so our goal for this library is to also make available processed versions of these datasets, so that users can just download and use them right away. This is the case for english and french wikipedia right now: we've processed them ourselves and now they are available from our google storage. However we've not processed the german one (yet).
[ -0.04793386906385422, 0.12618966400623322, 0.018239110708236694, 0.6689178943634033, 0.2445327639579773, 0.15575051307678223, 0.00493532232940197, 0.2083568274974823, 0.37586426734924316, -0.051476966589689255, 0.2673628032207489, -0.3312879204750061, -0.17346259951591492, -0.33418023586273193, 0.22966910898685455, -0.48612746596336365, 0.09306783229112625, 0.05842781439423561, -0.09685792028903961, 0.021348947659134865, -0.22103898227214813, 0.28426215052604675, -0.2860867381095886, -0.12967438995838165, -0.24149952828884125, 0.06827667355537415, -0.0606941282749176, 0.05400713160634041, -0.1613469272851944, -0.4543802738189697, 0.10939019173383713, -0.25727662444114685, 0.1181674525141716, 0.18110215663909912, -0.00012172196147730574, 0.04003692790865898, 0.40139925479888916, -0.17075645923614502, -0.4441637098789215, 0.039256226271390915, -0.045473478734493256, -0.34079378843307495, 0.03673429414629936, -0.2606718838214874, 0.06098321080207825, -0.10650069266557693, 0.32536566257476807, -0.08283881843090057, 0.3636321723461151, 0.17929717898368835, 0.18307891488075256, 0.05839886888861656, 0.25969746708869934, -0.08299922943115234, 0.5757555961608887, 0.060393959283828735, 0.05178730934858322, 0.12043497711420059, -0.33719104528427124, -0.36692705750465393, -0.2666931748390198, 0.2971107065677643, 0.01685977354645729, 0.10160991549491882, 0.3428906798362732, -0.11834938824176788, 0.01459529809653759, -0.21514879167079926, 0.21466638147830963, -0.015583968721330166, 0.6984873414039612, -0.22253863513469696, 0.05440331622958183, -0.2987266778945923, -0.08197599649429321, 0.13722653687000275, 0.36996889114379883, 0.37681955099105835, -0.5374554395675659, -0.17521096765995026, -0.18167954683303833, -0.3489992022514343, -0.16345643997192383, 0.3382713794708252, 0.05806782469153404, 0.242710143327713, -0.046096425503492355, 0.16560065746307373, 0.3660612404346466, -0.047463998198509216, -0.276814341545105, -0.11192156374454498, -0.012180657126009464, 0.4462246894836426, -0.07023411244153976, 0.06821928173303604, -0.0799727737903595, -0.061932433396577835, 0.23511604964733124, -0.2792300581932068, -0.09406495094299316, -0.061494845896959305, 0.2538708746433258, 0.07732433080673218, 0.2765713036060333, 0.4570382833480835, -0.13490775227546692, -0.19879396259784698, 0.16015072166919708, 0.1806960552930832, 0.01854979246854782, -0.16259844601154327, -0.034852251410484314, -0.16336454451084137, -0.07738539576530457, -0.025875680148601532, -0.10396335273981094, -0.0469389446079731, 0.020034074783325195, 0.13095717132091522, -0.09636440128087997, -0.1339656561613083, -0.03216962143778801, 0.41890621185302734, -0.13972382247447968, 0.33823102712631226, 0.2956475019454956, 0.06871732324361801, -0.3847787380218506, -0.2950851321220398, -0.1493522971868515, 0.15822139382362366, -0.5230258703231812, 0.12379547953605652, 0.2662937045097351, 0.2771739363670349, 0.36130648851394653, -0.12290937453508377, -0.26837682723999023, 0.049833379685878754, 0.2657952308654785, -0.183197483420372, -0.0323752723634243, 0.2156432718038559, 0.14843662083148956, 0.28868919610977173, 0.13916954398155212, -0.22817568480968475, 0.00019467725360300392, 0.06192028522491455, -0.17707081139087677, -0.19407348334789276, 0.06925880908966064, 0.017681293189525604, -0.15710222721099854, 0.15428641438484192, -0.4031708538532257, 0.2367205023765564, 0.28886136412620544, -0.21285729110240936, -0.09760517627000809, -0.0422637015581131, -0.23210206627845764, -0.26150766015052795, 0.2098643183708191, 0.5494706034660339, -0.09142863005399704, -0.2689732611179352, -0.075901560485363, -0.0987921804189682, 0.40902847051620483, 0.23754893243312836, -0.10521627217531204, 0.29600462317466736, -0.23157145082950592, 0.09871386736631393, 0.34163233637809753, -0.17392174899578094, -0.3319518566131592, 0.13097704946994781, 0.11024189740419388, 0.16385547816753387, 0.05625833943486214, 0.001674460363574326, 0.011861962266266346, 0.19847510755062103, 0.19970911741256714, 0.34130859375, -0.03526127338409424, 0.29072654247283936, -0.2670718729496002, -0.27098819613456726, 0.2600761353969574, 0.008650379255414009, 0.351675420999527, 0.05551550164818764, 0.09452007710933685, 0.8308200240135193, 0.272424578666687, -0.0689331665635109, 0.3318043351173401, 0.563816249370575, -0.22771908342838287, 0.057309363037347794, -0.01126877497881651, -0.06336987018585205, -0.2486259788274765, 0.19277197122573853, -0.3067270517349243, 0.3094543218612671, -0.021482223644852638, 0.132133349776268, -0.16402971744537354, -0.09691432118415833, -0.05667475238442421, -0.3699617087841034, 0.08882918953895569, 0.16524630784988403, 0.1101260706782341, 0.2140970677137375, 0.13791531324386597, 0.2627285420894623, -0.01116105169057846, 0.022674957290291786, -0.6933619976043701, 0.20877423882484436, -0.1417604386806488, -0.1521969735622406, -0.010932045988738537, 0.10963758081197739, 0.133390411734581, 0.1438276469707489, -0.13231319189071655, 0.12147506326436996, 0.09903724491596222, -0.04699429124593735, 0.13622261583805084, -0.02500116266310215, 0.2659001052379608, -0.1880669742822647, 0.4338091313838959, 0.05866863206028938, 0.1608511209487915, -0.15430408716201782, 0.04690349102020264, -0.2138383835554123, 0.07204630970954895, 0.2993031442165375, 0.08469542115926743, 0.03472009301185608, 0.16727213561534882, 0.1503380835056305, 0.1518825888633728, -0.1656811237335205, 0.409213662147522, 0.08061874657869339, 0.11142314225435257, -0.0011588295456022024, 0.02666384167969227, -0.40508824586868286, 0.4183507263660431, 0.17379659414291382, 0.14272665977478027, 0.2619021236896515, -0.4456164538860321, -0.29049429297447205, 0.2247484177350998, -0.057461854070425034, 0.2343134880065918, 0.08118827641010284, 0.1338568925857544, 0.02899634651839733, 0.1593955159187317, 0.03790999948978424, 0.0936211347579956, 0.058901283890008926, 0.5227373242378235, 0.011513328179717064, 0.012551497668027878, -0.13416190445423126, -0.21342776715755463, 0.08087131381034851, 0.03129928186535835, 0.4169817566871643, -0.19021746516227722, -0.03903017193078995, -0.002698697382584214, -0.5402334928512573, -0.3053191006183624, 0.2616870105266571, -0.48820334672927856, -0.288331001996994, -0.24136164784431458, 0.2801437973976135, -0.06628796458244324, -0.013452871702611446, 0.0685959979891777, 0.19894059002399445, 0.10880269855260849, -0.14944233000278473, -0.1298905611038208, -0.28263652324676514, -0.3521506190299988, -0.013216479681432247, 0.17804622650146484, 0.04579133912920952, 0.2574230432510376, 0.047495078295469284, -0.12937703728675842, -0.225261852145195, -0.1390877664089203, 0.1931750476360321, 0.019397789612412453, 0.13235270977020264, 0.08083847165107727, 0.6441946029663086, -0.09161798655986786, -0.15892674028873444, 0.31236982345581055, -0.13450229167938232, -0.11235035210847855, 0.20584511756896973, 0.0021172338165342808, 0.18940813839435577, 0.02384740114212036, -0.03552180156111717, -0.12397173792123795, -0.45034050941467285, 0.16867420077323914, 0.16548091173171997, -0.020252645015716553, 0.34787461161613464, 0.128271222114563, 0.07828822731971741, 0.1775045394897461, 0.13813555240631104, -0.19091564416885376, -0.05106732249259949, 0.2469131350517273, -0.33097174763679504, -0.30591264367103577, -0.0715215727686882, -0.1601584106683731, 0.2242603898048401, 0.4027515649795532, -0.6984961628913879, 0.10614899545907974, -0.12761740386486053, -0.21900226175785065, 0.04909250885248184, 0.037253256887197495, 0.36839941143989563, -0.1916542947292328, -0.019381728023290634, -0.0021285242401063442, -0.06953475624322891, -0.03353751450777054, -0.21129022538661957, 0.6732004284858704, 0.18784351646900177, 0.35257503390312195, 0.2811797857284546, 0.9196685552597046, 0.21025912463665009, 0.42031797766685486, 0.45925676822662354, 0.1845644861459732, 0.21182699501514435, -0.13920870423316956, -0.2165398746728897, 0.0542718879878521, -0.29585009813308716, -0.14695659279823303, 0.19300782680511475, 0.05399864539504051, -0.533484935760498, -0.3363066613674164, -0.22295571863651276, -0.1735774129629135, -0.33171743154525757, 0.3225138783454895, -0.00729725044220686, 0.34786251187324524, -0.05778639018535614, -0.03293928876519203, -0.27377474308013916, -0.4534515142440796, 0.024415133520960808, 0.05254924297332764, 0.0361434705555439, 0.1982196569442749, -0.07064039260149002, 0.09258268028497696, -0.7637267112731934, 0.052149344235658646, 0.022450480610132217, 0.25257056951522827, -0.2339811772108078, -0.037598077207803726, -0.05336671695113182, -0.001964430557563901, 0.6382449269294739, -0.1221543624997139, -0.1083129495382309, -0.003673339495435357, -0.07280093431472778, -0.632750928401947, -0.0034905695356428623, -0.014184132218360901, 0.019743716344237328, 0.2299286276102066, -0.009248456917703152, -0.4394513964653015, -0.017309842631220818, 0.14759854972362518, 0.27546727657318115, -0.3025968372821808, -0.0935150533914566, -0.36616402864456177, -0.11953134834766388, -0.5057443976402283, -0.12866368889808655, 0.06480956822633743, 0.22246092557907104, 0.3846002519130707, 0.316049188375473, 0.0997215211391449, 0.08570262789726257, -0.012087141163647175, -0.06987577676773071, 0.2582472860813141, 0.1297815591096878, -0.13680168986320496, 0.28990358114242554, 0.08412624150514603, -0.2411784678697586, 0.35282251238822937, 0.0503837950527668, -0.2506101727485657, 0.07915141433477402, 0.14902561902999878, 0.11584710329771042, 0.27340880036354065, 0.0989278107881546, -0.12371596693992615, 0.16670109331607819, -0.05851414054632187, -0.4219202697277069, 0.2355523258447647, 0.28158387541770935, -0.18548007309436798, -0.3053145110607147, -0.5116244554519653, 0.6158608198165894, 0.05597119778394699, 0.030451087281107903, 0.20863181352615356, 0.02239968068897724, -0.41278132796287537, 0.44134217500686646, 0.26830101013183594, 0.9731241464614868, -0.20404236018657684, 0.4249984920024872, 0.23177854716777802, 0.1344754546880722, 0.5237070918083191, -0.5167381167411804, 0.3831549882888794, -0.3056226670742035, 0.12684471905231476, -0.013337444514036179, -0.10856370627880096, 0.03648287057876587, 0.1147196814417839, 0.06540732830762863, 0.32536640763282776, 0.20793654024600983, 0.09614409506320953, -0.07739344239234924, 0.4588257670402527, -0.08006744831800461, -0.34207260608673096, -0.19557926058769226, 0.1220066025853157, -0.3448769748210907, 0.3898962438106537, -0.364506334066391, 0.021709350869059563, 0.07767228782176971, -0.11058735102415085, -0.49160197377204895, 0.07951555401086807, -0.3250879943370819, 0.4055931866168976, -0.3284803330898285, -0.13713742792606354, -0.14217089116573334, 0.3159615397453308, 0.059257227927446365, 0.1933969408273697, -0.2498404085636139, 0.22427472472190857, -0.39769473671913147, -0.23567727208137512, 0.02082897536456585, 0.23375311493873596, 0.40875259041786194, -0.20691180229187012, -0.24383652210235596, 0.09800376743078232, -0.1904451996088028, -0.37694165110588074, -0.16764624416828156, -0.10644698143005371, 0.0883561298251152, -0.014652030542492867, -0.317278653383255, -0.0090532461181283, -0.14136458933353424, 0.05608164146542549, 0.08245307952165604, 0.013701459392905235, -0.11961692571640015, -0.09041161090135574, 0.030632758513092995, -0.1625872552394867, 0.053734324872493744, 0.44527825713157654, 0.19932767748832703, -0.17376470565795898, 0.6748775243759155, 0.3185994327068329, -0.27011680603027344, -0.05884368717670441, -0.1454923003911972, 0.026524001732468605, -0.3916163146495819, 0.08036047965288162, -0.12232132256031036, -0.032689135521650314, -0.2329392433166504, -0.015880079939961433, 0.2639753818511963, -0.12890112400054932, 0.2503606677055359, -0.3973314166069031, -0.43905168771743774, 0.3276471793651581, -0.1340378075838089, 0.18060153722763062, 0.26814207434654236, -0.3036367893218994, 0.14833346009254456, -0.0007178286323323846, -0.1766965687274933, -0.033686112612485886, -0.28325384855270386, 0.19930289685726166, 0.3011002540588379, -0.15525788068771362, 0.07127582281827927, 0.13447344303131104, 0.028118809685111046, 0.14065024256706238, -0.167130708694458, -0.12094200402498245, -0.02152673341333866, 0.17022161185741425, -0.021184705197811127, -0.1575116515159607, 0.007988763973116875, -0.4215224087238312, 0.13371950387954712, -0.3100501000881195, 0.09497401118278503, 0.09408168494701385, -0.023131204769015312, 0.3049462139606476, 0.1652725487947464, 0.05894976481795311, -0.09553530067205429, 0.45909544825553894, 0.004906592424958944, 0.48810911178588867, 0.19494375586509705, 0.1460275650024414, 0.2174537479877472, 0.009513887576758862, -0.5299929976463318, 0.0595964640378952, -0.10480725020170212, -0.03545450046658516, 0.12952890992164612, -0.17120873928070068, 0.015819283202290535, 0.1867770105600357, -0.040361542254686356, 0.1027829572558403, -0.11737862974405289, -0.04468434676527977, 0.20297324657440186, 0.13012689352035522, -0.12902091443538666, 0.12196116894483566, 0.343000590801239, -0.03814193978905678, -0.255349725484848, 0.1517675220966339, 0.11667303740978241, -0.021861176937818527, -0.04639661684632301, 0.13871259987354279, 0.34685641527175903, -0.08004237711429596, 0.08237550407648087, -0.18707381188869476, 0.024710511788725853, -0.04291169345378876, -0.13443103432655334, 0.2051125466823578, 0.1837247908115387, 0.40192681550979614, 0.002795692766085267, 0.14150051772594452, -0.16378435492515564, 0.07540314644575119, -0.19108544290065765, -0.3289395868778229, 0.020315350964665413, 0.5687055587768555, -0.046990830451250076, 0.2843693792819977, -0.14462733268737793, 0.17800414562225342, 0.36120763421058655, -0.13690337538719177, -0.36710289120674133, 0.23132221400737762, -0.14479228854179382, 0.061725419014692307, -0.05804875120520592, -0.236467644572258, -0.20972788333892822, 0.2906803786754608, 0.05285124480724335, -0.48371821641921997, 0.08078328520059586, 0.19289667904376984, -0.1719195544719696, -0.2963343858718872, 0.4201447069644928, 0.16633351147174835, -0.019270598888397217, -0.3831958770751953, 0.09907396137714386, 0.14486487209796906, -0.04473133757710457, -0.08720089495182037, 0.3097786605358124, 0.40609872341156006, 0.3071937561035156, -0.27043622732162476, 0.009355014190077782, -0.0059447381645441055, -0.0063552591018378735, -0.24959921836853027, 0.25597909092903137, 0.40651097893714905, 0.3059678375720978, 0.180397629737854, 0.05419086664915085, -0.1025388091802597, -0.3101820945739746, 0.35936877131462097, -0.062888003885746, -0.12125637382268906, -0.019211258739233017, -0.2770345211029053, 0.0351019985973835, -0.2277391254901886, 0.04942268133163452, -0.5648448467254639, 0.10318052023649216, 0.20874780416488647, -0.13252152502536774, 0.11679651588201523, -0.03639631345868111, 0.0014874603366479278, -0.1657542586326599, 0.5369605422019958, 0.25114861130714417, 0.11229152232408524, -0.4637848436832428, -0.33754757046699524, -0.5109272599220276, 0.07808104902505875, -0.36463630199432373, 0.06499917060136795, -0.05532597005367279, 0.3731815814971924, -0.17176784574985504, 0.15667979419231415, -0.26685935258865356, 0.1098732203245163, -0.11338119953870773, 0.23890440165996552, -0.3001950979232788, -0.2587817311286926, 0.047005217522382736, 0.07872353494167328, -0.08048476278781891, -0.26089033484458923, 0.087485671043396, -0.02748861163854599, -0.054856494069099426, -0.22844591736793518, -0.20256659388542175, 0.08811423927545547, 0.26463621854782104, 0.26334938406944275, 0.12228495627641678, 0.5243086218833923, 0.07498643547296524, -0.37821343541145325, -0.2976666986942291, -0.16730615496635437, 0.04359016567468643, 0.006588985212147236, -0.08003614842891693, 0.519834578037262, -0.2667163610458374, 0.15822388231754303, -0.4382745027542114, 0.4756549298763275, -0.17140772938728333, 0.10684514790773392, -0.36277395486831665, -0.15646690130233765, 0.03455972298979759, 0.22661139070987701, 0.20801515877246857, 0.18166349828243256, -0.09175554662942886, 0.07733585685491562, -0.25390756130218506, -0.13095805048942566, 0.33519795536994934, -0.5924607515335083, -0.32918933033943176, 0.052413325756788254, -0.05836724489927292, -0.015294075012207031, -0.11526031792163849, -0.5271496176719666, 0.03435312956571579, 0.16887067258358002, 0.08817488700151443, -0.1708846241235733, -0.04184361919760704, -0.06303335726261139, -0.02288970910012722, -0.08436113595962524, 0.07172209024429321, -0.12094825506210327, -0.37930646538734436, 0.13732261955738068, -0.2624128460884094 ]
https://github.com/huggingface/datasets/issues/278
MemoryError when loading German Wikipedia
Hi @lhoestq Thank you for your quick reply. I thought this might be the case, that the processing was done for some languages and not for others. Is there any set timeline for when other languages (German, Italian) will be processed? Given enough memory, is it possible to process the data ourselves by specifying the `beam_runner`?
Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you!
56
MemoryError when loading German Wikipedia Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you! Hi @lhoestq Thank you for your quick reply. I thought this might be the case, that the processing was done for some languages and not for others. Is there any set timeline for when other languages (German, Italian) will be processed? Given enough memory, is it possible to process the data ourselves by specifying the `beam_runner`?
[ -0.04793386906385422, 0.12618966400623322, 0.018239110708236694, 0.6689178943634033, 0.2445327639579773, 0.15575051307678223, 0.00493532232940197, 0.2083568274974823, 0.37586426734924316, -0.051476966589689255, 0.2673628032207489, -0.3312879204750061, -0.17346259951591492, -0.33418023586273193, 0.22966910898685455, -0.48612746596336365, 0.09306783229112625, 0.05842781439423561, -0.09685792028903961, 0.021348947659134865, -0.22103898227214813, 0.28426215052604675, -0.2860867381095886, -0.12967438995838165, -0.24149952828884125, 0.06827667355537415, -0.0606941282749176, 0.05400713160634041, -0.1613469272851944, -0.4543802738189697, 0.10939019173383713, -0.25727662444114685, 0.1181674525141716, 0.18110215663909912, -0.00012172196147730574, 0.04003692790865898, 0.40139925479888916, -0.17075645923614502, -0.4441637098789215, 0.039256226271390915, -0.045473478734493256, -0.34079378843307495, 0.03673429414629936, -0.2606718838214874, 0.06098321080207825, -0.10650069266557693, 0.32536566257476807, -0.08283881843090057, 0.3636321723461151, 0.17929717898368835, 0.18307891488075256, 0.05839886888861656, 0.25969746708869934, -0.08299922943115234, 0.5757555961608887, 0.060393959283828735, 0.05178730934858322, 0.12043497711420059, -0.33719104528427124, -0.36692705750465393, -0.2666931748390198, 0.2971107065677643, 0.01685977354645729, 0.10160991549491882, 0.3428906798362732, -0.11834938824176788, 0.01459529809653759, -0.21514879167079926, 0.21466638147830963, -0.015583968721330166, 0.6984873414039612, -0.22253863513469696, 0.05440331622958183, -0.2987266778945923, -0.08197599649429321, 0.13722653687000275, 0.36996889114379883, 0.37681955099105835, -0.5374554395675659, -0.17521096765995026, -0.18167954683303833, -0.3489992022514343, -0.16345643997192383, 0.3382713794708252, 0.05806782469153404, 0.242710143327713, -0.046096425503492355, 0.16560065746307373, 0.3660612404346466, -0.047463998198509216, -0.276814341545105, -0.11192156374454498, -0.012180657126009464, 0.4462246894836426, -0.07023411244153976, 0.06821928173303604, -0.0799727737903595, -0.061932433396577835, 0.23511604964733124, -0.2792300581932068, -0.09406495094299316, -0.061494845896959305, 0.2538708746433258, 0.07732433080673218, 0.2765713036060333, 0.4570382833480835, -0.13490775227546692, -0.19879396259784698, 0.16015072166919708, 0.1806960552930832, 0.01854979246854782, -0.16259844601154327, -0.034852251410484314, -0.16336454451084137, -0.07738539576530457, -0.025875680148601532, -0.10396335273981094, -0.0469389446079731, 0.020034074783325195, 0.13095717132091522, -0.09636440128087997, -0.1339656561613083, -0.03216962143778801, 0.41890621185302734, -0.13972382247447968, 0.33823102712631226, 0.2956475019454956, 0.06871732324361801, -0.3847787380218506, -0.2950851321220398, -0.1493522971868515, 0.15822139382362366, -0.5230258703231812, 0.12379547953605652, 0.2662937045097351, 0.2771739363670349, 0.36130648851394653, -0.12290937453508377, -0.26837682723999023, 0.049833379685878754, 0.2657952308654785, -0.183197483420372, -0.0323752723634243, 0.2156432718038559, 0.14843662083148956, 0.28868919610977173, 0.13916954398155212, -0.22817568480968475, 0.00019467725360300392, 0.06192028522491455, -0.17707081139087677, -0.19407348334789276, 0.06925880908966064, 0.017681293189525604, -0.15710222721099854, 0.15428641438484192, -0.4031708538532257, 0.2367205023765564, 0.28886136412620544, -0.21285729110240936, -0.09760517627000809, -0.0422637015581131, -0.23210206627845764, -0.26150766015052795, 0.2098643183708191, 0.5494706034660339, -0.09142863005399704, -0.2689732611179352, -0.075901560485363, -0.0987921804189682, 0.40902847051620483, 0.23754893243312836, -0.10521627217531204, 0.29600462317466736, -0.23157145082950592, 0.09871386736631393, 0.34163233637809753, -0.17392174899578094, -0.3319518566131592, 0.13097704946994781, 0.11024189740419388, 0.16385547816753387, 0.05625833943486214, 0.001674460363574326, 0.011861962266266346, 0.19847510755062103, 0.19970911741256714, 0.34130859375, -0.03526127338409424, 0.29072654247283936, -0.2670718729496002, -0.27098819613456726, 0.2600761353969574, 0.008650379255414009, 0.351675420999527, 0.05551550164818764, 0.09452007710933685, 0.8308200240135193, 0.272424578666687, -0.0689331665635109, 0.3318043351173401, 0.563816249370575, -0.22771908342838287, 0.057309363037347794, -0.01126877497881651, -0.06336987018585205, -0.2486259788274765, 0.19277197122573853, -0.3067270517349243, 0.3094543218612671, -0.021482223644852638, 0.132133349776268, -0.16402971744537354, -0.09691432118415833, -0.05667475238442421, -0.3699617087841034, 0.08882918953895569, 0.16524630784988403, 0.1101260706782341, 0.2140970677137375, 0.13791531324386597, 0.2627285420894623, -0.01116105169057846, 0.022674957290291786, -0.6933619976043701, 0.20877423882484436, -0.1417604386806488, -0.1521969735622406, -0.010932045988738537, 0.10963758081197739, 0.133390411734581, 0.1438276469707489, -0.13231319189071655, 0.12147506326436996, 0.09903724491596222, -0.04699429124593735, 0.13622261583805084, -0.02500116266310215, 0.2659001052379608, -0.1880669742822647, 0.4338091313838959, 0.05866863206028938, 0.1608511209487915, -0.15430408716201782, 0.04690349102020264, -0.2138383835554123, 0.07204630970954895, 0.2993031442165375, 0.08469542115926743, 0.03472009301185608, 0.16727213561534882, 0.1503380835056305, 0.1518825888633728, -0.1656811237335205, 0.409213662147522, 0.08061874657869339, 0.11142314225435257, -0.0011588295456022024, 0.02666384167969227, -0.40508824586868286, 0.4183507263660431, 0.17379659414291382, 0.14272665977478027, 0.2619021236896515, -0.4456164538860321, -0.29049429297447205, 0.2247484177350998, -0.057461854070425034, 0.2343134880065918, 0.08118827641010284, 0.1338568925857544, 0.02899634651839733, 0.1593955159187317, 0.03790999948978424, 0.0936211347579956, 0.058901283890008926, 0.5227373242378235, 0.011513328179717064, 0.012551497668027878, -0.13416190445423126, -0.21342776715755463, 0.08087131381034851, 0.03129928186535835, 0.4169817566871643, -0.19021746516227722, -0.03903017193078995, -0.002698697382584214, -0.5402334928512573, -0.3053191006183624, 0.2616870105266571, -0.48820334672927856, -0.288331001996994, -0.24136164784431458, 0.2801437973976135, -0.06628796458244324, -0.013452871702611446, 0.0685959979891777, 0.19894059002399445, 0.10880269855260849, -0.14944233000278473, -0.1298905611038208, -0.28263652324676514, -0.3521506190299988, -0.013216479681432247, 0.17804622650146484, 0.04579133912920952, 0.2574230432510376, 0.047495078295469284, -0.12937703728675842, -0.225261852145195, -0.1390877664089203, 0.1931750476360321, 0.019397789612412453, 0.13235270977020264, 0.08083847165107727, 0.6441946029663086, -0.09161798655986786, -0.15892674028873444, 0.31236982345581055, -0.13450229167938232, -0.11235035210847855, 0.20584511756896973, 0.0021172338165342808, 0.18940813839435577, 0.02384740114212036, -0.03552180156111717, -0.12397173792123795, -0.45034050941467285, 0.16867420077323914, 0.16548091173171997, -0.020252645015716553, 0.34787461161613464, 0.128271222114563, 0.07828822731971741, 0.1775045394897461, 0.13813555240631104, -0.19091564416885376, -0.05106732249259949, 0.2469131350517273, -0.33097174763679504, -0.30591264367103577, -0.0715215727686882, -0.1601584106683731, 0.2242603898048401, 0.4027515649795532, -0.6984961628913879, 0.10614899545907974, -0.12761740386486053, -0.21900226175785065, 0.04909250885248184, 0.037253256887197495, 0.36839941143989563, -0.1916542947292328, -0.019381728023290634, -0.0021285242401063442, -0.06953475624322891, -0.03353751450777054, -0.21129022538661957, 0.6732004284858704, 0.18784351646900177, 0.35257503390312195, 0.2811797857284546, 0.9196685552597046, 0.21025912463665009, 0.42031797766685486, 0.45925676822662354, 0.1845644861459732, 0.21182699501514435, -0.13920870423316956, -0.2165398746728897, 0.0542718879878521, -0.29585009813308716, -0.14695659279823303, 0.19300782680511475, 0.05399864539504051, -0.533484935760498, -0.3363066613674164, -0.22295571863651276, -0.1735774129629135, -0.33171743154525757, 0.3225138783454895, -0.00729725044220686, 0.34786251187324524, -0.05778639018535614, -0.03293928876519203, -0.27377474308013916, -0.4534515142440796, 0.024415133520960808, 0.05254924297332764, 0.0361434705555439, 0.1982196569442749, -0.07064039260149002, 0.09258268028497696, -0.7637267112731934, 0.052149344235658646, 0.022450480610132217, 0.25257056951522827, -0.2339811772108078, -0.037598077207803726, -0.05336671695113182, -0.001964430557563901, 0.6382449269294739, -0.1221543624997139, -0.1083129495382309, -0.003673339495435357, -0.07280093431472778, -0.632750928401947, -0.0034905695356428623, -0.014184132218360901, 0.019743716344237328, 0.2299286276102066, -0.009248456917703152, -0.4394513964653015, -0.017309842631220818, 0.14759854972362518, 0.27546727657318115, -0.3025968372821808, -0.0935150533914566, -0.36616402864456177, -0.11953134834766388, -0.5057443976402283, -0.12866368889808655, 0.06480956822633743, 0.22246092557907104, 0.3846002519130707, 0.316049188375473, 0.0997215211391449, 0.08570262789726257, -0.012087141163647175, -0.06987577676773071, 0.2582472860813141, 0.1297815591096878, -0.13680168986320496, 0.28990358114242554, 0.08412624150514603, -0.2411784678697586, 0.35282251238822937, 0.0503837950527668, -0.2506101727485657, 0.07915141433477402, 0.14902561902999878, 0.11584710329771042, 0.27340880036354065, 0.0989278107881546, -0.12371596693992615, 0.16670109331607819, -0.05851414054632187, -0.4219202697277069, 0.2355523258447647, 0.28158387541770935, -0.18548007309436798, -0.3053145110607147, -0.5116244554519653, 0.6158608198165894, 0.05597119778394699, 0.030451087281107903, 0.20863181352615356, 0.02239968068897724, -0.41278132796287537, 0.44134217500686646, 0.26830101013183594, 0.9731241464614868, -0.20404236018657684, 0.4249984920024872, 0.23177854716777802, 0.1344754546880722, 0.5237070918083191, -0.5167381167411804, 0.3831549882888794, -0.3056226670742035, 0.12684471905231476, -0.013337444514036179, -0.10856370627880096, 0.03648287057876587, 0.1147196814417839, 0.06540732830762863, 0.32536640763282776, 0.20793654024600983, 0.09614409506320953, -0.07739344239234924, 0.4588257670402527, -0.08006744831800461, -0.34207260608673096, -0.19557926058769226, 0.1220066025853157, -0.3448769748210907, 0.3898962438106537, -0.364506334066391, 0.021709350869059563, 0.07767228782176971, -0.11058735102415085, -0.49160197377204895, 0.07951555401086807, -0.3250879943370819, 0.4055931866168976, -0.3284803330898285, -0.13713742792606354, -0.14217089116573334, 0.3159615397453308, 0.059257227927446365, 0.1933969408273697, -0.2498404085636139, 0.22427472472190857, -0.39769473671913147, -0.23567727208137512, 0.02082897536456585, 0.23375311493873596, 0.40875259041786194, -0.20691180229187012, -0.24383652210235596, 0.09800376743078232, -0.1904451996088028, -0.37694165110588074, -0.16764624416828156, -0.10644698143005371, 0.0883561298251152, -0.014652030542492867, -0.317278653383255, -0.0090532461181283, -0.14136458933353424, 0.05608164146542549, 0.08245307952165604, 0.013701459392905235, -0.11961692571640015, -0.09041161090135574, 0.030632758513092995, -0.1625872552394867, 0.053734324872493744, 0.44527825713157654, 0.19932767748832703, -0.17376470565795898, 0.6748775243759155, 0.3185994327068329, -0.27011680603027344, -0.05884368717670441, -0.1454923003911972, 0.026524001732468605, -0.3916163146495819, 0.08036047965288162, -0.12232132256031036, -0.032689135521650314, -0.2329392433166504, -0.015880079939961433, 0.2639753818511963, -0.12890112400054932, 0.2503606677055359, -0.3973314166069031, -0.43905168771743774, 0.3276471793651581, -0.1340378075838089, 0.18060153722763062, 0.26814207434654236, -0.3036367893218994, 0.14833346009254456, -0.0007178286323323846, -0.1766965687274933, -0.033686112612485886, -0.28325384855270386, 0.19930289685726166, 0.3011002540588379, -0.15525788068771362, 0.07127582281827927, 0.13447344303131104, 0.028118809685111046, 0.14065024256706238, -0.167130708694458, -0.12094200402498245, -0.02152673341333866, 0.17022161185741425, -0.021184705197811127, -0.1575116515159607, 0.007988763973116875, -0.4215224087238312, 0.13371950387954712, -0.3100501000881195, 0.09497401118278503, 0.09408168494701385, -0.023131204769015312, 0.3049462139606476, 0.1652725487947464, 0.05894976481795311, -0.09553530067205429, 0.45909544825553894, 0.004906592424958944, 0.48810911178588867, 0.19494375586509705, 0.1460275650024414, 0.2174537479877472, 0.009513887576758862, -0.5299929976463318, 0.0595964640378952, -0.10480725020170212, -0.03545450046658516, 0.12952890992164612, -0.17120873928070068, 0.015819283202290535, 0.1867770105600357, -0.040361542254686356, 0.1027829572558403, -0.11737862974405289, -0.04468434676527977, 0.20297324657440186, 0.13012689352035522, -0.12902091443538666, 0.12196116894483566, 0.343000590801239, -0.03814193978905678, -0.255349725484848, 0.1517675220966339, 0.11667303740978241, -0.021861176937818527, -0.04639661684632301, 0.13871259987354279, 0.34685641527175903, -0.08004237711429596, 0.08237550407648087, -0.18707381188869476, 0.024710511788725853, -0.04291169345378876, -0.13443103432655334, 0.2051125466823578, 0.1837247908115387, 0.40192681550979614, 0.002795692766085267, 0.14150051772594452, -0.16378435492515564, 0.07540314644575119, -0.19108544290065765, -0.3289395868778229, 0.020315350964665413, 0.5687055587768555, -0.046990830451250076, 0.2843693792819977, -0.14462733268737793, 0.17800414562225342, 0.36120763421058655, -0.13690337538719177, -0.36710289120674133, 0.23132221400737762, -0.14479228854179382, 0.061725419014692307, -0.05804875120520592, -0.236467644572258, -0.20972788333892822, 0.2906803786754608, 0.05285124480724335, -0.48371821641921997, 0.08078328520059586, 0.19289667904376984, -0.1719195544719696, -0.2963343858718872, 0.4201447069644928, 0.16633351147174835, -0.019270598888397217, -0.3831958770751953, 0.09907396137714386, 0.14486487209796906, -0.04473133757710457, -0.08720089495182037, 0.3097786605358124, 0.40609872341156006, 0.3071937561035156, -0.27043622732162476, 0.009355014190077782, -0.0059447381645441055, -0.0063552591018378735, -0.24959921836853027, 0.25597909092903137, 0.40651097893714905, 0.3059678375720978, 0.180397629737854, 0.05419086664915085, -0.1025388091802597, -0.3101820945739746, 0.35936877131462097, -0.062888003885746, -0.12125637382268906, -0.019211258739233017, -0.2770345211029053, 0.0351019985973835, -0.2277391254901886, 0.04942268133163452, -0.5648448467254639, 0.10318052023649216, 0.20874780416488647, -0.13252152502536774, 0.11679651588201523, -0.03639631345868111, 0.0014874603366479278, -0.1657542586326599, 0.5369605422019958, 0.25114861130714417, 0.11229152232408524, -0.4637848436832428, -0.33754757046699524, -0.5109272599220276, 0.07808104902505875, -0.36463630199432373, 0.06499917060136795, -0.05532597005367279, 0.3731815814971924, -0.17176784574985504, 0.15667979419231415, -0.26685935258865356, 0.1098732203245163, -0.11338119953870773, 0.23890440165996552, -0.3001950979232788, -0.2587817311286926, 0.047005217522382736, 0.07872353494167328, -0.08048476278781891, -0.26089033484458923, 0.087485671043396, -0.02748861163854599, -0.054856494069099426, -0.22844591736793518, -0.20256659388542175, 0.08811423927545547, 0.26463621854782104, 0.26334938406944275, 0.12228495627641678, 0.5243086218833923, 0.07498643547296524, -0.37821343541145325, -0.2976666986942291, -0.16730615496635437, 0.04359016567468643, 0.006588985212147236, -0.08003614842891693, 0.519834578037262, -0.2667163610458374, 0.15822388231754303, -0.4382745027542114, 0.4756549298763275, -0.17140772938728333, 0.10684514790773392, -0.36277395486831665, -0.15646690130233765, 0.03455972298979759, 0.22661139070987701, 0.20801515877246857, 0.18166349828243256, -0.09175554662942886, 0.07733585685491562, -0.25390756130218506, -0.13095805048942566, 0.33519795536994934, -0.5924607515335083, -0.32918933033943176, 0.052413325756788254, -0.05836724489927292, -0.015294075012207031, -0.11526031792163849, -0.5271496176719666, 0.03435312956571579, 0.16887067258358002, 0.08817488700151443, -0.1708846241235733, -0.04184361919760704, -0.06303335726261139, -0.02288970910012722, -0.08436113595962524, 0.07172209024429321, -0.12094825506210327, -0.37930646538734436, 0.13732261955738068, -0.2624128460884094 ]
https://github.com/huggingface/datasets/issues/278
MemoryError when loading German Wikipedia
Adding them is definitely in our short term objectives. I'll be working on this early next week :) Although if you have an apache beam runtime feel free to specify the beam runner. You can find more info [here](https://github.com/huggingface/nlp/blob/master/docs/beam_dataset.md) on how to make it work on Dataflow but you can adapt it for Spark or any other beam runtime (by changing the `runner`). However if you don't have a beam runtime and even if you have enough memory, I discourage you to use the `DirectRunner` on the german or italian wikipedia. According to Apache Beam documentation it was made for testing purposes and therefore it is memory-inefficient.
Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you!
107
MemoryError when loading German Wikipedia Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you! Adding them is definitely in our short term objectives. I'll be working on this early next week :) Although if you have an apache beam runtime feel free to specify the beam runner. You can find more info [here](https://github.com/huggingface/nlp/blob/master/docs/beam_dataset.md) on how to make it work on Dataflow but you can adapt it for Spark or any other beam runtime (by changing the `runner`). However if you don't have a beam runtime and even if you have enough memory, I discourage you to use the `DirectRunner` on the german or italian wikipedia. According to Apache Beam documentation it was made for testing purposes and therefore it is memory-inefficient.
[ -0.04793386906385422, 0.12618966400623322, 0.018239110708236694, 0.6689178943634033, 0.2445327639579773, 0.15575051307678223, 0.00493532232940197, 0.2083568274974823, 0.37586426734924316, -0.051476966589689255, 0.2673628032207489, -0.3312879204750061, -0.17346259951591492, -0.33418023586273193, 0.22966910898685455, -0.48612746596336365, 0.09306783229112625, 0.05842781439423561, -0.09685792028903961, 0.021348947659134865, -0.22103898227214813, 0.28426215052604675, -0.2860867381095886, -0.12967438995838165, -0.24149952828884125, 0.06827667355537415, -0.0606941282749176, 0.05400713160634041, -0.1613469272851944, -0.4543802738189697, 0.10939019173383713, -0.25727662444114685, 0.1181674525141716, 0.18110215663909912, -0.00012172196147730574, 0.04003692790865898, 0.40139925479888916, -0.17075645923614502, -0.4441637098789215, 0.039256226271390915, -0.045473478734493256, -0.34079378843307495, 0.03673429414629936, -0.2606718838214874, 0.06098321080207825, -0.10650069266557693, 0.32536566257476807, -0.08283881843090057, 0.3636321723461151, 0.17929717898368835, 0.18307891488075256, 0.05839886888861656, 0.25969746708869934, -0.08299922943115234, 0.5757555961608887, 0.060393959283828735, 0.05178730934858322, 0.12043497711420059, -0.33719104528427124, -0.36692705750465393, -0.2666931748390198, 0.2971107065677643, 0.01685977354645729, 0.10160991549491882, 0.3428906798362732, -0.11834938824176788, 0.01459529809653759, -0.21514879167079926, 0.21466638147830963, -0.015583968721330166, 0.6984873414039612, -0.22253863513469696, 0.05440331622958183, -0.2987266778945923, -0.08197599649429321, 0.13722653687000275, 0.36996889114379883, 0.37681955099105835, -0.5374554395675659, -0.17521096765995026, -0.18167954683303833, -0.3489992022514343, -0.16345643997192383, 0.3382713794708252, 0.05806782469153404, 0.242710143327713, -0.046096425503492355, 0.16560065746307373, 0.3660612404346466, -0.047463998198509216, -0.276814341545105, -0.11192156374454498, -0.012180657126009464, 0.4462246894836426, -0.07023411244153976, 0.06821928173303604, -0.0799727737903595, -0.061932433396577835, 0.23511604964733124, -0.2792300581932068, -0.09406495094299316, -0.061494845896959305, 0.2538708746433258, 0.07732433080673218, 0.2765713036060333, 0.4570382833480835, -0.13490775227546692, -0.19879396259784698, 0.16015072166919708, 0.1806960552930832, 0.01854979246854782, -0.16259844601154327, -0.034852251410484314, -0.16336454451084137, -0.07738539576530457, -0.025875680148601532, -0.10396335273981094, -0.0469389446079731, 0.020034074783325195, 0.13095717132091522, -0.09636440128087997, -0.1339656561613083, -0.03216962143778801, 0.41890621185302734, -0.13972382247447968, 0.33823102712631226, 0.2956475019454956, 0.06871732324361801, -0.3847787380218506, -0.2950851321220398, -0.1493522971868515, 0.15822139382362366, -0.5230258703231812, 0.12379547953605652, 0.2662937045097351, 0.2771739363670349, 0.36130648851394653, -0.12290937453508377, -0.26837682723999023, 0.049833379685878754, 0.2657952308654785, -0.183197483420372, -0.0323752723634243, 0.2156432718038559, 0.14843662083148956, 0.28868919610977173, 0.13916954398155212, -0.22817568480968475, 0.00019467725360300392, 0.06192028522491455, -0.17707081139087677, -0.19407348334789276, 0.06925880908966064, 0.017681293189525604, -0.15710222721099854, 0.15428641438484192, -0.4031708538532257, 0.2367205023765564, 0.28886136412620544, -0.21285729110240936, -0.09760517627000809, -0.0422637015581131, -0.23210206627845764, -0.26150766015052795, 0.2098643183708191, 0.5494706034660339, -0.09142863005399704, -0.2689732611179352, -0.075901560485363, -0.0987921804189682, 0.40902847051620483, 0.23754893243312836, -0.10521627217531204, 0.29600462317466736, -0.23157145082950592, 0.09871386736631393, 0.34163233637809753, -0.17392174899578094, -0.3319518566131592, 0.13097704946994781, 0.11024189740419388, 0.16385547816753387, 0.05625833943486214, 0.001674460363574326, 0.011861962266266346, 0.19847510755062103, 0.19970911741256714, 0.34130859375, -0.03526127338409424, 0.29072654247283936, -0.2670718729496002, -0.27098819613456726, 0.2600761353969574, 0.008650379255414009, 0.351675420999527, 0.05551550164818764, 0.09452007710933685, 0.8308200240135193, 0.272424578666687, -0.0689331665635109, 0.3318043351173401, 0.563816249370575, -0.22771908342838287, 0.057309363037347794, -0.01126877497881651, -0.06336987018585205, -0.2486259788274765, 0.19277197122573853, -0.3067270517349243, 0.3094543218612671, -0.021482223644852638, 0.132133349776268, -0.16402971744537354, -0.09691432118415833, -0.05667475238442421, -0.3699617087841034, 0.08882918953895569, 0.16524630784988403, 0.1101260706782341, 0.2140970677137375, 0.13791531324386597, 0.2627285420894623, -0.01116105169057846, 0.022674957290291786, -0.6933619976043701, 0.20877423882484436, -0.1417604386806488, -0.1521969735622406, -0.010932045988738537, 0.10963758081197739, 0.133390411734581, 0.1438276469707489, -0.13231319189071655, 0.12147506326436996, 0.09903724491596222, -0.04699429124593735, 0.13622261583805084, -0.02500116266310215, 0.2659001052379608, -0.1880669742822647, 0.4338091313838959, 0.05866863206028938, 0.1608511209487915, -0.15430408716201782, 0.04690349102020264, -0.2138383835554123, 0.07204630970954895, 0.2993031442165375, 0.08469542115926743, 0.03472009301185608, 0.16727213561534882, 0.1503380835056305, 0.1518825888633728, -0.1656811237335205, 0.409213662147522, 0.08061874657869339, 0.11142314225435257, -0.0011588295456022024, 0.02666384167969227, -0.40508824586868286, 0.4183507263660431, 0.17379659414291382, 0.14272665977478027, 0.2619021236896515, -0.4456164538860321, -0.29049429297447205, 0.2247484177350998, -0.057461854070425034, 0.2343134880065918, 0.08118827641010284, 0.1338568925857544, 0.02899634651839733, 0.1593955159187317, 0.03790999948978424, 0.0936211347579956, 0.058901283890008926, 0.5227373242378235, 0.011513328179717064, 0.012551497668027878, -0.13416190445423126, -0.21342776715755463, 0.08087131381034851, 0.03129928186535835, 0.4169817566871643, -0.19021746516227722, -0.03903017193078995, -0.002698697382584214, -0.5402334928512573, -0.3053191006183624, 0.2616870105266571, -0.48820334672927856, -0.288331001996994, -0.24136164784431458, 0.2801437973976135, -0.06628796458244324, -0.013452871702611446, 0.0685959979891777, 0.19894059002399445, 0.10880269855260849, -0.14944233000278473, -0.1298905611038208, -0.28263652324676514, -0.3521506190299988, -0.013216479681432247, 0.17804622650146484, 0.04579133912920952, 0.2574230432510376, 0.047495078295469284, -0.12937703728675842, -0.225261852145195, -0.1390877664089203, 0.1931750476360321, 0.019397789612412453, 0.13235270977020264, 0.08083847165107727, 0.6441946029663086, -0.09161798655986786, -0.15892674028873444, 0.31236982345581055, -0.13450229167938232, -0.11235035210847855, 0.20584511756896973, 0.0021172338165342808, 0.18940813839435577, 0.02384740114212036, -0.03552180156111717, -0.12397173792123795, -0.45034050941467285, 0.16867420077323914, 0.16548091173171997, -0.020252645015716553, 0.34787461161613464, 0.128271222114563, 0.07828822731971741, 0.1775045394897461, 0.13813555240631104, -0.19091564416885376, -0.05106732249259949, 0.2469131350517273, -0.33097174763679504, -0.30591264367103577, -0.0715215727686882, -0.1601584106683731, 0.2242603898048401, 0.4027515649795532, -0.6984961628913879, 0.10614899545907974, -0.12761740386486053, -0.21900226175785065, 0.04909250885248184, 0.037253256887197495, 0.36839941143989563, -0.1916542947292328, -0.019381728023290634, -0.0021285242401063442, -0.06953475624322891, -0.03353751450777054, -0.21129022538661957, 0.6732004284858704, 0.18784351646900177, 0.35257503390312195, 0.2811797857284546, 0.9196685552597046, 0.21025912463665009, 0.42031797766685486, 0.45925676822662354, 0.1845644861459732, 0.21182699501514435, -0.13920870423316956, -0.2165398746728897, 0.0542718879878521, -0.29585009813308716, -0.14695659279823303, 0.19300782680511475, 0.05399864539504051, -0.533484935760498, -0.3363066613674164, -0.22295571863651276, -0.1735774129629135, -0.33171743154525757, 0.3225138783454895, -0.00729725044220686, 0.34786251187324524, -0.05778639018535614, -0.03293928876519203, -0.27377474308013916, -0.4534515142440796, 0.024415133520960808, 0.05254924297332764, 0.0361434705555439, 0.1982196569442749, -0.07064039260149002, 0.09258268028497696, -0.7637267112731934, 0.052149344235658646, 0.022450480610132217, 0.25257056951522827, -0.2339811772108078, -0.037598077207803726, -0.05336671695113182, -0.001964430557563901, 0.6382449269294739, -0.1221543624997139, -0.1083129495382309, -0.003673339495435357, -0.07280093431472778, -0.632750928401947, -0.0034905695356428623, -0.014184132218360901, 0.019743716344237328, 0.2299286276102066, -0.009248456917703152, -0.4394513964653015, -0.017309842631220818, 0.14759854972362518, 0.27546727657318115, -0.3025968372821808, -0.0935150533914566, -0.36616402864456177, -0.11953134834766388, -0.5057443976402283, -0.12866368889808655, 0.06480956822633743, 0.22246092557907104, 0.3846002519130707, 0.316049188375473, 0.0997215211391449, 0.08570262789726257, -0.012087141163647175, -0.06987577676773071, 0.2582472860813141, 0.1297815591096878, -0.13680168986320496, 0.28990358114242554, 0.08412624150514603, -0.2411784678697586, 0.35282251238822937, 0.0503837950527668, -0.2506101727485657, 0.07915141433477402, 0.14902561902999878, 0.11584710329771042, 0.27340880036354065, 0.0989278107881546, -0.12371596693992615, 0.16670109331607819, -0.05851414054632187, -0.4219202697277069, 0.2355523258447647, 0.28158387541770935, -0.18548007309436798, -0.3053145110607147, -0.5116244554519653, 0.6158608198165894, 0.05597119778394699, 0.030451087281107903, 0.20863181352615356, 0.02239968068897724, -0.41278132796287537, 0.44134217500686646, 0.26830101013183594, 0.9731241464614868, -0.20404236018657684, 0.4249984920024872, 0.23177854716777802, 0.1344754546880722, 0.5237070918083191, -0.5167381167411804, 0.3831549882888794, -0.3056226670742035, 0.12684471905231476, -0.013337444514036179, -0.10856370627880096, 0.03648287057876587, 0.1147196814417839, 0.06540732830762863, 0.32536640763282776, 0.20793654024600983, 0.09614409506320953, -0.07739344239234924, 0.4588257670402527, -0.08006744831800461, -0.34207260608673096, -0.19557926058769226, 0.1220066025853157, -0.3448769748210907, 0.3898962438106537, -0.364506334066391, 0.021709350869059563, 0.07767228782176971, -0.11058735102415085, -0.49160197377204895, 0.07951555401086807, -0.3250879943370819, 0.4055931866168976, -0.3284803330898285, -0.13713742792606354, -0.14217089116573334, 0.3159615397453308, 0.059257227927446365, 0.1933969408273697, -0.2498404085636139, 0.22427472472190857, -0.39769473671913147, -0.23567727208137512, 0.02082897536456585, 0.23375311493873596, 0.40875259041786194, -0.20691180229187012, -0.24383652210235596, 0.09800376743078232, -0.1904451996088028, -0.37694165110588074, -0.16764624416828156, -0.10644698143005371, 0.0883561298251152, -0.014652030542492867, -0.317278653383255, -0.0090532461181283, -0.14136458933353424, 0.05608164146542549, 0.08245307952165604, 0.013701459392905235, -0.11961692571640015, -0.09041161090135574, 0.030632758513092995, -0.1625872552394867, 0.053734324872493744, 0.44527825713157654, 0.19932767748832703, -0.17376470565795898, 0.6748775243759155, 0.3185994327068329, -0.27011680603027344, -0.05884368717670441, -0.1454923003911972, 0.026524001732468605, -0.3916163146495819, 0.08036047965288162, -0.12232132256031036, -0.032689135521650314, -0.2329392433166504, -0.015880079939961433, 0.2639753818511963, -0.12890112400054932, 0.2503606677055359, -0.3973314166069031, -0.43905168771743774, 0.3276471793651581, -0.1340378075838089, 0.18060153722763062, 0.26814207434654236, -0.3036367893218994, 0.14833346009254456, -0.0007178286323323846, -0.1766965687274933, -0.033686112612485886, -0.28325384855270386, 0.19930289685726166, 0.3011002540588379, -0.15525788068771362, 0.07127582281827927, 0.13447344303131104, 0.028118809685111046, 0.14065024256706238, -0.167130708694458, -0.12094200402498245, -0.02152673341333866, 0.17022161185741425, -0.021184705197811127, -0.1575116515159607, 0.007988763973116875, -0.4215224087238312, 0.13371950387954712, -0.3100501000881195, 0.09497401118278503, 0.09408168494701385, -0.023131204769015312, 0.3049462139606476, 0.1652725487947464, 0.05894976481795311, -0.09553530067205429, 0.45909544825553894, 0.004906592424958944, 0.48810911178588867, 0.19494375586509705, 0.1460275650024414, 0.2174537479877472, 0.009513887576758862, -0.5299929976463318, 0.0595964640378952, -0.10480725020170212, -0.03545450046658516, 0.12952890992164612, -0.17120873928070068, 0.015819283202290535, 0.1867770105600357, -0.040361542254686356, 0.1027829572558403, -0.11737862974405289, -0.04468434676527977, 0.20297324657440186, 0.13012689352035522, -0.12902091443538666, 0.12196116894483566, 0.343000590801239, -0.03814193978905678, -0.255349725484848, 0.1517675220966339, 0.11667303740978241, -0.021861176937818527, -0.04639661684632301, 0.13871259987354279, 0.34685641527175903, -0.08004237711429596, 0.08237550407648087, -0.18707381188869476, 0.024710511788725853, -0.04291169345378876, -0.13443103432655334, 0.2051125466823578, 0.1837247908115387, 0.40192681550979614, 0.002795692766085267, 0.14150051772594452, -0.16378435492515564, 0.07540314644575119, -0.19108544290065765, -0.3289395868778229, 0.020315350964665413, 0.5687055587768555, -0.046990830451250076, 0.2843693792819977, -0.14462733268737793, 0.17800414562225342, 0.36120763421058655, -0.13690337538719177, -0.36710289120674133, 0.23132221400737762, -0.14479228854179382, 0.061725419014692307, -0.05804875120520592, -0.236467644572258, -0.20972788333892822, 0.2906803786754608, 0.05285124480724335, -0.48371821641921997, 0.08078328520059586, 0.19289667904376984, -0.1719195544719696, -0.2963343858718872, 0.4201447069644928, 0.16633351147174835, -0.019270598888397217, -0.3831958770751953, 0.09907396137714386, 0.14486487209796906, -0.04473133757710457, -0.08720089495182037, 0.3097786605358124, 0.40609872341156006, 0.3071937561035156, -0.27043622732162476, 0.009355014190077782, -0.0059447381645441055, -0.0063552591018378735, -0.24959921836853027, 0.25597909092903137, 0.40651097893714905, 0.3059678375720978, 0.180397629737854, 0.05419086664915085, -0.1025388091802597, -0.3101820945739746, 0.35936877131462097, -0.062888003885746, -0.12125637382268906, -0.019211258739233017, -0.2770345211029053, 0.0351019985973835, -0.2277391254901886, 0.04942268133163452, -0.5648448467254639, 0.10318052023649216, 0.20874780416488647, -0.13252152502536774, 0.11679651588201523, -0.03639631345868111, 0.0014874603366479278, -0.1657542586326599, 0.5369605422019958, 0.25114861130714417, 0.11229152232408524, -0.4637848436832428, -0.33754757046699524, -0.5109272599220276, 0.07808104902505875, -0.36463630199432373, 0.06499917060136795, -0.05532597005367279, 0.3731815814971924, -0.17176784574985504, 0.15667979419231415, -0.26685935258865356, 0.1098732203245163, -0.11338119953870773, 0.23890440165996552, -0.3001950979232788, -0.2587817311286926, 0.047005217522382736, 0.07872353494167328, -0.08048476278781891, -0.26089033484458923, 0.087485671043396, -0.02748861163854599, -0.054856494069099426, -0.22844591736793518, -0.20256659388542175, 0.08811423927545547, 0.26463621854782104, 0.26334938406944275, 0.12228495627641678, 0.5243086218833923, 0.07498643547296524, -0.37821343541145325, -0.2976666986942291, -0.16730615496635437, 0.04359016567468643, 0.006588985212147236, -0.08003614842891693, 0.519834578037262, -0.2667163610458374, 0.15822388231754303, -0.4382745027542114, 0.4756549298763275, -0.17140772938728333, 0.10684514790773392, -0.36277395486831665, -0.15646690130233765, 0.03455972298979759, 0.22661139070987701, 0.20801515877246857, 0.18166349828243256, -0.09175554662942886, 0.07733585685491562, -0.25390756130218506, -0.13095805048942566, 0.33519795536994934, -0.5924607515335083, -0.32918933033943176, 0.052413325756788254, -0.05836724489927292, -0.015294075012207031, -0.11526031792163849, -0.5271496176719666, 0.03435312956571579, 0.16887067258358002, 0.08817488700151443, -0.1708846241235733, -0.04184361919760704, -0.06303335726261139, -0.02288970910012722, -0.08436113595962524, 0.07172209024429321, -0.12094825506210327, -0.37930646538734436, 0.13732261955738068, -0.2624128460884094 ]
https://github.com/huggingface/datasets/issues/278
MemoryError when loading German Wikipedia
I added the German and the Italian Wikipedia to our google cloud storage: First update the `nlp` package to 0.3.0: ```bash pip install nlp --upgrade ``` and then ```python from nlp import load_dataset wiki_de = load_dataset("wikipedia", "20200501.de") wiki_it = load_dataset("wikipedia", "20200501.it") ``` The datasets are downloaded and directly ready to use (no processing).
Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you!
53
MemoryError when loading German Wikipedia Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you! I added the German and the Italian Wikipedia to our google cloud storage: First update the `nlp` package to 0.3.0: ```bash pip install nlp --upgrade ``` and then ```python from nlp import load_dataset wiki_de = load_dataset("wikipedia", "20200501.de") wiki_it = load_dataset("wikipedia", "20200501.it") ``` The datasets are downloaded and directly ready to use (no processing).
[ -0.04793386906385422, 0.12618966400623322, 0.018239110708236694, 0.6689178943634033, 0.2445327639579773, 0.15575051307678223, 0.00493532232940197, 0.2083568274974823, 0.37586426734924316, -0.051476966589689255, 0.2673628032207489, -0.3312879204750061, -0.17346259951591492, -0.33418023586273193, 0.22966910898685455, -0.48612746596336365, 0.09306783229112625, 0.05842781439423561, -0.09685792028903961, 0.021348947659134865, -0.22103898227214813, 0.28426215052604675, -0.2860867381095886, -0.12967438995838165, -0.24149952828884125, 0.06827667355537415, -0.0606941282749176, 0.05400713160634041, -0.1613469272851944, -0.4543802738189697, 0.10939019173383713, -0.25727662444114685, 0.1181674525141716, 0.18110215663909912, -0.00012172196147730574, 0.04003692790865898, 0.40139925479888916, -0.17075645923614502, -0.4441637098789215, 0.039256226271390915, -0.045473478734493256, -0.34079378843307495, 0.03673429414629936, -0.2606718838214874, 0.06098321080207825, -0.10650069266557693, 0.32536566257476807, -0.08283881843090057, 0.3636321723461151, 0.17929717898368835, 0.18307891488075256, 0.05839886888861656, 0.25969746708869934, -0.08299922943115234, 0.5757555961608887, 0.060393959283828735, 0.05178730934858322, 0.12043497711420059, -0.33719104528427124, -0.36692705750465393, -0.2666931748390198, 0.2971107065677643, 0.01685977354645729, 0.10160991549491882, 0.3428906798362732, -0.11834938824176788, 0.01459529809653759, -0.21514879167079926, 0.21466638147830963, -0.015583968721330166, 0.6984873414039612, -0.22253863513469696, 0.05440331622958183, -0.2987266778945923, -0.08197599649429321, 0.13722653687000275, 0.36996889114379883, 0.37681955099105835, -0.5374554395675659, -0.17521096765995026, -0.18167954683303833, -0.3489992022514343, -0.16345643997192383, 0.3382713794708252, 0.05806782469153404, 0.242710143327713, -0.046096425503492355, 0.16560065746307373, 0.3660612404346466, -0.047463998198509216, -0.276814341545105, -0.11192156374454498, -0.012180657126009464, 0.4462246894836426, -0.07023411244153976, 0.06821928173303604, -0.0799727737903595, -0.061932433396577835, 0.23511604964733124, -0.2792300581932068, -0.09406495094299316, -0.061494845896959305, 0.2538708746433258, 0.07732433080673218, 0.2765713036060333, 0.4570382833480835, -0.13490775227546692, -0.19879396259784698, 0.16015072166919708, 0.1806960552930832, 0.01854979246854782, -0.16259844601154327, -0.034852251410484314, -0.16336454451084137, -0.07738539576530457, -0.025875680148601532, -0.10396335273981094, -0.0469389446079731, 0.020034074783325195, 0.13095717132091522, -0.09636440128087997, -0.1339656561613083, -0.03216962143778801, 0.41890621185302734, -0.13972382247447968, 0.33823102712631226, 0.2956475019454956, 0.06871732324361801, -0.3847787380218506, -0.2950851321220398, -0.1493522971868515, 0.15822139382362366, -0.5230258703231812, 0.12379547953605652, 0.2662937045097351, 0.2771739363670349, 0.36130648851394653, -0.12290937453508377, -0.26837682723999023, 0.049833379685878754, 0.2657952308654785, -0.183197483420372, -0.0323752723634243, 0.2156432718038559, 0.14843662083148956, 0.28868919610977173, 0.13916954398155212, -0.22817568480968475, 0.00019467725360300392, 0.06192028522491455, -0.17707081139087677, -0.19407348334789276, 0.06925880908966064, 0.017681293189525604, -0.15710222721099854, 0.15428641438484192, -0.4031708538532257, 0.2367205023765564, 0.28886136412620544, -0.21285729110240936, -0.09760517627000809, -0.0422637015581131, -0.23210206627845764, -0.26150766015052795, 0.2098643183708191, 0.5494706034660339, -0.09142863005399704, -0.2689732611179352, -0.075901560485363, -0.0987921804189682, 0.40902847051620483, 0.23754893243312836, -0.10521627217531204, 0.29600462317466736, -0.23157145082950592, 0.09871386736631393, 0.34163233637809753, -0.17392174899578094, -0.3319518566131592, 0.13097704946994781, 0.11024189740419388, 0.16385547816753387, 0.05625833943486214, 0.001674460363574326, 0.011861962266266346, 0.19847510755062103, 0.19970911741256714, 0.34130859375, -0.03526127338409424, 0.29072654247283936, -0.2670718729496002, -0.27098819613456726, 0.2600761353969574, 0.008650379255414009, 0.351675420999527, 0.05551550164818764, 0.09452007710933685, 0.8308200240135193, 0.272424578666687, -0.0689331665635109, 0.3318043351173401, 0.563816249370575, -0.22771908342838287, 0.057309363037347794, -0.01126877497881651, -0.06336987018585205, -0.2486259788274765, 0.19277197122573853, -0.3067270517349243, 0.3094543218612671, -0.021482223644852638, 0.132133349776268, -0.16402971744537354, -0.09691432118415833, -0.05667475238442421, -0.3699617087841034, 0.08882918953895569, 0.16524630784988403, 0.1101260706782341, 0.2140970677137375, 0.13791531324386597, 0.2627285420894623, -0.01116105169057846, 0.022674957290291786, -0.6933619976043701, 0.20877423882484436, -0.1417604386806488, -0.1521969735622406, -0.010932045988738537, 0.10963758081197739, 0.133390411734581, 0.1438276469707489, -0.13231319189071655, 0.12147506326436996, 0.09903724491596222, -0.04699429124593735, 0.13622261583805084, -0.02500116266310215, 0.2659001052379608, -0.1880669742822647, 0.4338091313838959, 0.05866863206028938, 0.1608511209487915, -0.15430408716201782, 0.04690349102020264, -0.2138383835554123, 0.07204630970954895, 0.2993031442165375, 0.08469542115926743, 0.03472009301185608, 0.16727213561534882, 0.1503380835056305, 0.1518825888633728, -0.1656811237335205, 0.409213662147522, 0.08061874657869339, 0.11142314225435257, -0.0011588295456022024, 0.02666384167969227, -0.40508824586868286, 0.4183507263660431, 0.17379659414291382, 0.14272665977478027, 0.2619021236896515, -0.4456164538860321, -0.29049429297447205, 0.2247484177350998, -0.057461854070425034, 0.2343134880065918, 0.08118827641010284, 0.1338568925857544, 0.02899634651839733, 0.1593955159187317, 0.03790999948978424, 0.0936211347579956, 0.058901283890008926, 0.5227373242378235, 0.011513328179717064, 0.012551497668027878, -0.13416190445423126, -0.21342776715755463, 0.08087131381034851, 0.03129928186535835, 0.4169817566871643, -0.19021746516227722, -0.03903017193078995, -0.002698697382584214, -0.5402334928512573, -0.3053191006183624, 0.2616870105266571, -0.48820334672927856, -0.288331001996994, -0.24136164784431458, 0.2801437973976135, -0.06628796458244324, -0.013452871702611446, 0.0685959979891777, 0.19894059002399445, 0.10880269855260849, -0.14944233000278473, -0.1298905611038208, -0.28263652324676514, -0.3521506190299988, -0.013216479681432247, 0.17804622650146484, 0.04579133912920952, 0.2574230432510376, 0.047495078295469284, -0.12937703728675842, -0.225261852145195, -0.1390877664089203, 0.1931750476360321, 0.019397789612412453, 0.13235270977020264, 0.08083847165107727, 0.6441946029663086, -0.09161798655986786, -0.15892674028873444, 0.31236982345581055, -0.13450229167938232, -0.11235035210847855, 0.20584511756896973, 0.0021172338165342808, 0.18940813839435577, 0.02384740114212036, -0.03552180156111717, -0.12397173792123795, -0.45034050941467285, 0.16867420077323914, 0.16548091173171997, -0.020252645015716553, 0.34787461161613464, 0.128271222114563, 0.07828822731971741, 0.1775045394897461, 0.13813555240631104, -0.19091564416885376, -0.05106732249259949, 0.2469131350517273, -0.33097174763679504, -0.30591264367103577, -0.0715215727686882, -0.1601584106683731, 0.2242603898048401, 0.4027515649795532, -0.6984961628913879, 0.10614899545907974, -0.12761740386486053, -0.21900226175785065, 0.04909250885248184, 0.037253256887197495, 0.36839941143989563, -0.1916542947292328, -0.019381728023290634, -0.0021285242401063442, -0.06953475624322891, -0.03353751450777054, -0.21129022538661957, 0.6732004284858704, 0.18784351646900177, 0.35257503390312195, 0.2811797857284546, 0.9196685552597046, 0.21025912463665009, 0.42031797766685486, 0.45925676822662354, 0.1845644861459732, 0.21182699501514435, -0.13920870423316956, -0.2165398746728897, 0.0542718879878521, -0.29585009813308716, -0.14695659279823303, 0.19300782680511475, 0.05399864539504051, -0.533484935760498, -0.3363066613674164, -0.22295571863651276, -0.1735774129629135, -0.33171743154525757, 0.3225138783454895, -0.00729725044220686, 0.34786251187324524, -0.05778639018535614, -0.03293928876519203, -0.27377474308013916, -0.4534515142440796, 0.024415133520960808, 0.05254924297332764, 0.0361434705555439, 0.1982196569442749, -0.07064039260149002, 0.09258268028497696, -0.7637267112731934, 0.052149344235658646, 0.022450480610132217, 0.25257056951522827, -0.2339811772108078, -0.037598077207803726, -0.05336671695113182, -0.001964430557563901, 0.6382449269294739, -0.1221543624997139, -0.1083129495382309, -0.003673339495435357, -0.07280093431472778, -0.632750928401947, -0.0034905695356428623, -0.014184132218360901, 0.019743716344237328, 0.2299286276102066, -0.009248456917703152, -0.4394513964653015, -0.017309842631220818, 0.14759854972362518, 0.27546727657318115, -0.3025968372821808, -0.0935150533914566, -0.36616402864456177, -0.11953134834766388, -0.5057443976402283, -0.12866368889808655, 0.06480956822633743, 0.22246092557907104, 0.3846002519130707, 0.316049188375473, 0.0997215211391449, 0.08570262789726257, -0.012087141163647175, -0.06987577676773071, 0.2582472860813141, 0.1297815591096878, -0.13680168986320496, 0.28990358114242554, 0.08412624150514603, -0.2411784678697586, 0.35282251238822937, 0.0503837950527668, -0.2506101727485657, 0.07915141433477402, 0.14902561902999878, 0.11584710329771042, 0.27340880036354065, 0.0989278107881546, -0.12371596693992615, 0.16670109331607819, -0.05851414054632187, -0.4219202697277069, 0.2355523258447647, 0.28158387541770935, -0.18548007309436798, -0.3053145110607147, -0.5116244554519653, 0.6158608198165894, 0.05597119778394699, 0.030451087281107903, 0.20863181352615356, 0.02239968068897724, -0.41278132796287537, 0.44134217500686646, 0.26830101013183594, 0.9731241464614868, -0.20404236018657684, 0.4249984920024872, 0.23177854716777802, 0.1344754546880722, 0.5237070918083191, -0.5167381167411804, 0.3831549882888794, -0.3056226670742035, 0.12684471905231476, -0.013337444514036179, -0.10856370627880096, 0.03648287057876587, 0.1147196814417839, 0.06540732830762863, 0.32536640763282776, 0.20793654024600983, 0.09614409506320953, -0.07739344239234924, 0.4588257670402527, -0.08006744831800461, -0.34207260608673096, -0.19557926058769226, 0.1220066025853157, -0.3448769748210907, 0.3898962438106537, -0.364506334066391, 0.021709350869059563, 0.07767228782176971, -0.11058735102415085, -0.49160197377204895, 0.07951555401086807, -0.3250879943370819, 0.4055931866168976, -0.3284803330898285, -0.13713742792606354, -0.14217089116573334, 0.3159615397453308, 0.059257227927446365, 0.1933969408273697, -0.2498404085636139, 0.22427472472190857, -0.39769473671913147, -0.23567727208137512, 0.02082897536456585, 0.23375311493873596, 0.40875259041786194, -0.20691180229187012, -0.24383652210235596, 0.09800376743078232, -0.1904451996088028, -0.37694165110588074, -0.16764624416828156, -0.10644698143005371, 0.0883561298251152, -0.014652030542492867, -0.317278653383255, -0.0090532461181283, -0.14136458933353424, 0.05608164146542549, 0.08245307952165604, 0.013701459392905235, -0.11961692571640015, -0.09041161090135574, 0.030632758513092995, -0.1625872552394867, 0.053734324872493744, 0.44527825713157654, 0.19932767748832703, -0.17376470565795898, 0.6748775243759155, 0.3185994327068329, -0.27011680603027344, -0.05884368717670441, -0.1454923003911972, 0.026524001732468605, -0.3916163146495819, 0.08036047965288162, -0.12232132256031036, -0.032689135521650314, -0.2329392433166504, -0.015880079939961433, 0.2639753818511963, -0.12890112400054932, 0.2503606677055359, -0.3973314166069031, -0.43905168771743774, 0.3276471793651581, -0.1340378075838089, 0.18060153722763062, 0.26814207434654236, -0.3036367893218994, 0.14833346009254456, -0.0007178286323323846, -0.1766965687274933, -0.033686112612485886, -0.28325384855270386, 0.19930289685726166, 0.3011002540588379, -0.15525788068771362, 0.07127582281827927, 0.13447344303131104, 0.028118809685111046, 0.14065024256706238, -0.167130708694458, -0.12094200402498245, -0.02152673341333866, 0.17022161185741425, -0.021184705197811127, -0.1575116515159607, 0.007988763973116875, -0.4215224087238312, 0.13371950387954712, -0.3100501000881195, 0.09497401118278503, 0.09408168494701385, -0.023131204769015312, 0.3049462139606476, 0.1652725487947464, 0.05894976481795311, -0.09553530067205429, 0.45909544825553894, 0.004906592424958944, 0.48810911178588867, 0.19494375586509705, 0.1460275650024414, 0.2174537479877472, 0.009513887576758862, -0.5299929976463318, 0.0595964640378952, -0.10480725020170212, -0.03545450046658516, 0.12952890992164612, -0.17120873928070068, 0.015819283202290535, 0.1867770105600357, -0.040361542254686356, 0.1027829572558403, -0.11737862974405289, -0.04468434676527977, 0.20297324657440186, 0.13012689352035522, -0.12902091443538666, 0.12196116894483566, 0.343000590801239, -0.03814193978905678, -0.255349725484848, 0.1517675220966339, 0.11667303740978241, -0.021861176937818527, -0.04639661684632301, 0.13871259987354279, 0.34685641527175903, -0.08004237711429596, 0.08237550407648087, -0.18707381188869476, 0.024710511788725853, -0.04291169345378876, -0.13443103432655334, 0.2051125466823578, 0.1837247908115387, 0.40192681550979614, 0.002795692766085267, 0.14150051772594452, -0.16378435492515564, 0.07540314644575119, -0.19108544290065765, -0.3289395868778229, 0.020315350964665413, 0.5687055587768555, -0.046990830451250076, 0.2843693792819977, -0.14462733268737793, 0.17800414562225342, 0.36120763421058655, -0.13690337538719177, -0.36710289120674133, 0.23132221400737762, -0.14479228854179382, 0.061725419014692307, -0.05804875120520592, -0.236467644572258, -0.20972788333892822, 0.2906803786754608, 0.05285124480724335, -0.48371821641921997, 0.08078328520059586, 0.19289667904376984, -0.1719195544719696, -0.2963343858718872, 0.4201447069644928, 0.16633351147174835, -0.019270598888397217, -0.3831958770751953, 0.09907396137714386, 0.14486487209796906, -0.04473133757710457, -0.08720089495182037, 0.3097786605358124, 0.40609872341156006, 0.3071937561035156, -0.27043622732162476, 0.009355014190077782, -0.0059447381645441055, -0.0063552591018378735, -0.24959921836853027, 0.25597909092903137, 0.40651097893714905, 0.3059678375720978, 0.180397629737854, 0.05419086664915085, -0.1025388091802597, -0.3101820945739746, 0.35936877131462097, -0.062888003885746, -0.12125637382268906, -0.019211258739233017, -0.2770345211029053, 0.0351019985973835, -0.2277391254901886, 0.04942268133163452, -0.5648448467254639, 0.10318052023649216, 0.20874780416488647, -0.13252152502536774, 0.11679651588201523, -0.03639631345868111, 0.0014874603366479278, -0.1657542586326599, 0.5369605422019958, 0.25114861130714417, 0.11229152232408524, -0.4637848436832428, -0.33754757046699524, -0.5109272599220276, 0.07808104902505875, -0.36463630199432373, 0.06499917060136795, -0.05532597005367279, 0.3731815814971924, -0.17176784574985504, 0.15667979419231415, -0.26685935258865356, 0.1098732203245163, -0.11338119953870773, 0.23890440165996552, -0.3001950979232788, -0.2587817311286926, 0.047005217522382736, 0.07872353494167328, -0.08048476278781891, -0.26089033484458923, 0.087485671043396, -0.02748861163854599, -0.054856494069099426, -0.22844591736793518, -0.20256659388542175, 0.08811423927545547, 0.26463621854782104, 0.26334938406944275, 0.12228495627641678, 0.5243086218833923, 0.07498643547296524, -0.37821343541145325, -0.2976666986942291, -0.16730615496635437, 0.04359016567468643, 0.006588985212147236, -0.08003614842891693, 0.519834578037262, -0.2667163610458374, 0.15822388231754303, -0.4382745027542114, 0.4756549298763275, -0.17140772938728333, 0.10684514790773392, -0.36277395486831665, -0.15646690130233765, 0.03455972298979759, 0.22661139070987701, 0.20801515877246857, 0.18166349828243256, -0.09175554662942886, 0.07733585685491562, -0.25390756130218506, -0.13095805048942566, 0.33519795536994934, -0.5924607515335083, -0.32918933033943176, 0.052413325756788254, -0.05836724489927292, -0.015294075012207031, -0.11526031792163849, -0.5271496176719666, 0.03435312956571579, 0.16887067258358002, 0.08817488700151443, -0.1708846241235733, -0.04184361919760704, -0.06303335726261139, -0.02288970910012722, -0.08436113595962524, 0.07172209024429321, -0.12094825506210327, -0.37930646538734436, 0.13732261955738068, -0.2624128460884094 ]
https://github.com/huggingface/datasets/issues/278
MemoryError when loading German Wikipedia
Hi @lhoestq Wow, thanks so much, that's **really** incredible! I was considering looking at creating my own Beam Dataset, as per the doc you linked, but instead opted to process the data myself using `wikiextractor`. However, now that this is available, I'll definitely switch across and use it. Thanks so much for the incredible work, this really helps out our team considerably! Have a great (and well-deserved ;) weekend ahead! P.S. I'm not sure if I should close the issue here - if so I'm happy to do so.
Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you!
89
MemoryError when loading German Wikipedia Hi, first off let me say thank you for all the awesome work you're doing at Hugging Face across all your projects (NLP, Transformers, Tokenizers) - they're all amazing contributions to us working with NLP models :) I'm trying to download the German Wikipedia dataset as follows: ``` wiki = nlp.load_dataset("wikipedia", "20200501.de", split="train") ``` However, when I do so, I get the following error: ``` Downloading and preparing dataset wikipedia/20200501.de (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/ubuntu/.cache/huggingface/datasets/wikipedia/20200501.de/1.0.0... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 433, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/ubuntu/anaconda3/envs/albert/lib/python3.7/site-packages/nlp/builder.py", line 824, in _download_and_prepare "\n\t`{}`".format(usage_example) nlp.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20200501.de', beam_runner='DirectRunner')` ``` So, following on from the example usage at the bottom, I tried specifying `beam_runner='DirectRunner`, however when I do this after about 20 min after the data has all downloaded, I get a `MemoryError` as warned. This isn't an issue for the English or French Wikipedia datasets (I've tried both), as neither seem to require that `beam_runner` be specified. Can you please clarify why this is an issue for the German dataset? My nlp version is 0.2.1. Thank you! Hi @lhoestq Wow, thanks so much, that's **really** incredible! I was considering looking at creating my own Beam Dataset, as per the doc you linked, but instead opted to process the data myself using `wikiextractor`. However, now that this is available, I'll definitely switch across and use it. Thanks so much for the incredible work, this really helps out our team considerably! Have a great (and well-deserved ;) weekend ahead! P.S. I'm not sure if I should close the issue here - if so I'm happy to do so.
[ -0.04793386906385422, 0.12618966400623322, 0.018239110708236694, 0.6689178943634033, 0.2445327639579773, 0.15575051307678223, 0.00493532232940197, 0.2083568274974823, 0.37586426734924316, -0.051476966589689255, 0.2673628032207489, -0.3312879204750061, -0.17346259951591492, -0.33418023586273193, 0.22966910898685455, -0.48612746596336365, 0.09306783229112625, 0.05842781439423561, -0.09685792028903961, 0.021348947659134865, -0.22103898227214813, 0.28426215052604675, -0.2860867381095886, -0.12967438995838165, -0.24149952828884125, 0.06827667355537415, -0.0606941282749176, 0.05400713160634041, -0.1613469272851944, -0.4543802738189697, 0.10939019173383713, -0.25727662444114685, 0.1181674525141716, 0.18110215663909912, -0.00012172196147730574, 0.04003692790865898, 0.40139925479888916, -0.17075645923614502, -0.4441637098789215, 0.039256226271390915, -0.045473478734493256, -0.34079378843307495, 0.03673429414629936, -0.2606718838214874, 0.06098321080207825, -0.10650069266557693, 0.32536566257476807, -0.08283881843090057, 0.3636321723461151, 0.17929717898368835, 0.18307891488075256, 0.05839886888861656, 0.25969746708869934, -0.08299922943115234, 0.5757555961608887, 0.060393959283828735, 0.05178730934858322, 0.12043497711420059, -0.33719104528427124, -0.36692705750465393, -0.2666931748390198, 0.2971107065677643, 0.01685977354645729, 0.10160991549491882, 0.3428906798362732, -0.11834938824176788, 0.01459529809653759, -0.21514879167079926, 0.21466638147830963, -0.015583968721330166, 0.6984873414039612, -0.22253863513469696, 0.05440331622958183, -0.2987266778945923, -0.08197599649429321, 0.13722653687000275, 0.36996889114379883, 0.37681955099105835, -0.5374554395675659, -0.17521096765995026, -0.18167954683303833, -0.3489992022514343, -0.16345643997192383, 0.3382713794708252, 0.05806782469153404, 0.242710143327713, -0.046096425503492355, 0.16560065746307373, 0.3660612404346466, -0.047463998198509216, -0.276814341545105, -0.11192156374454498, -0.012180657126009464, 0.4462246894836426, -0.07023411244153976, 0.06821928173303604, -0.0799727737903595, -0.061932433396577835, 0.23511604964733124, -0.2792300581932068, -0.09406495094299316, -0.061494845896959305, 0.2538708746433258, 0.07732433080673218, 0.2765713036060333, 0.4570382833480835, -0.13490775227546692, -0.19879396259784698, 0.16015072166919708, 0.1806960552930832, 0.01854979246854782, -0.16259844601154327, -0.034852251410484314, -0.16336454451084137, -0.07738539576530457, -0.025875680148601532, -0.10396335273981094, -0.0469389446079731, 0.020034074783325195, 0.13095717132091522, -0.09636440128087997, -0.1339656561613083, -0.03216962143778801, 0.41890621185302734, -0.13972382247447968, 0.33823102712631226, 0.2956475019454956, 0.06871732324361801, -0.3847787380218506, -0.2950851321220398, -0.1493522971868515, 0.15822139382362366, -0.5230258703231812, 0.12379547953605652, 0.2662937045097351, 0.2771739363670349, 0.36130648851394653, -0.12290937453508377, -0.26837682723999023, 0.049833379685878754, 0.2657952308654785, -0.183197483420372, -0.0323752723634243, 0.2156432718038559, 0.14843662083148956, 0.28868919610977173, 0.13916954398155212, -0.22817568480968475, 0.00019467725360300392, 0.06192028522491455, -0.17707081139087677, -0.19407348334789276, 0.06925880908966064, 0.017681293189525604, -0.15710222721099854, 0.15428641438484192, -0.4031708538532257, 0.2367205023765564, 0.28886136412620544, -0.21285729110240936, -0.09760517627000809, -0.0422637015581131, -0.23210206627845764, -0.26150766015052795, 0.2098643183708191, 0.5494706034660339, -0.09142863005399704, -0.2689732611179352, -0.075901560485363, -0.0987921804189682, 0.40902847051620483, 0.23754893243312836, -0.10521627217531204, 0.29600462317466736, -0.23157145082950592, 0.09871386736631393, 0.34163233637809753, -0.17392174899578094, -0.3319518566131592, 0.13097704946994781, 0.11024189740419388, 0.16385547816753387, 0.05625833943486214, 0.001674460363574326, 0.011861962266266346, 0.19847510755062103, 0.19970911741256714, 0.34130859375, -0.03526127338409424, 0.29072654247283936, -0.2670718729496002, -0.27098819613456726, 0.2600761353969574, 0.008650379255414009, 0.351675420999527, 0.05551550164818764, 0.09452007710933685, 0.8308200240135193, 0.272424578666687, -0.0689331665635109, 0.3318043351173401, 0.563816249370575, -0.22771908342838287, 0.057309363037347794, -0.01126877497881651, -0.06336987018585205, -0.2486259788274765, 0.19277197122573853, -0.3067270517349243, 0.3094543218612671, -0.021482223644852638, 0.132133349776268, -0.16402971744537354, -0.09691432118415833, -0.05667475238442421, -0.3699617087841034, 0.08882918953895569, 0.16524630784988403, 0.1101260706782341, 0.2140970677137375, 0.13791531324386597, 0.2627285420894623, -0.01116105169057846, 0.022674957290291786, -0.6933619976043701, 0.20877423882484436, -0.1417604386806488, -0.1521969735622406, -0.010932045988738537, 0.10963758081197739, 0.133390411734581, 0.1438276469707489, -0.13231319189071655, 0.12147506326436996, 0.09903724491596222, -0.04699429124593735, 0.13622261583805084, -0.02500116266310215, 0.2659001052379608, -0.1880669742822647, 0.4338091313838959, 0.05866863206028938, 0.1608511209487915, -0.15430408716201782, 0.04690349102020264, -0.2138383835554123, 0.07204630970954895, 0.2993031442165375, 0.08469542115926743, 0.03472009301185608, 0.16727213561534882, 0.1503380835056305, 0.1518825888633728, -0.1656811237335205, 0.409213662147522, 0.08061874657869339, 0.11142314225435257, -0.0011588295456022024, 0.02666384167969227, -0.40508824586868286, 0.4183507263660431, 0.17379659414291382, 0.14272665977478027, 0.2619021236896515, -0.4456164538860321, -0.29049429297447205, 0.2247484177350998, -0.057461854070425034, 0.2343134880065918, 0.08118827641010284, 0.1338568925857544, 0.02899634651839733, 0.1593955159187317, 0.03790999948978424, 0.0936211347579956, 0.058901283890008926, 0.5227373242378235, 0.011513328179717064, 0.012551497668027878, -0.13416190445423126, -0.21342776715755463, 0.08087131381034851, 0.03129928186535835, 0.4169817566871643, -0.19021746516227722, -0.03903017193078995, -0.002698697382584214, -0.5402334928512573, -0.3053191006183624, 0.2616870105266571, -0.48820334672927856, -0.288331001996994, -0.24136164784431458, 0.2801437973976135, -0.06628796458244324, -0.013452871702611446, 0.0685959979891777, 0.19894059002399445, 0.10880269855260849, -0.14944233000278473, -0.1298905611038208, -0.28263652324676514, -0.3521506190299988, -0.013216479681432247, 0.17804622650146484, 0.04579133912920952, 0.2574230432510376, 0.047495078295469284, -0.12937703728675842, -0.225261852145195, -0.1390877664089203, 0.1931750476360321, 0.019397789612412453, 0.13235270977020264, 0.08083847165107727, 0.6441946029663086, -0.09161798655986786, -0.15892674028873444, 0.31236982345581055, -0.13450229167938232, -0.11235035210847855, 0.20584511756896973, 0.0021172338165342808, 0.18940813839435577, 0.02384740114212036, -0.03552180156111717, -0.12397173792123795, -0.45034050941467285, 0.16867420077323914, 0.16548091173171997, -0.020252645015716553, 0.34787461161613464, 0.128271222114563, 0.07828822731971741, 0.1775045394897461, 0.13813555240631104, -0.19091564416885376, -0.05106732249259949, 0.2469131350517273, -0.33097174763679504, -0.30591264367103577, -0.0715215727686882, -0.1601584106683731, 0.2242603898048401, 0.4027515649795532, -0.6984961628913879, 0.10614899545907974, -0.12761740386486053, -0.21900226175785065, 0.04909250885248184, 0.037253256887197495, 0.36839941143989563, -0.1916542947292328, -0.019381728023290634, -0.0021285242401063442, -0.06953475624322891, -0.03353751450777054, -0.21129022538661957, 0.6732004284858704, 0.18784351646900177, 0.35257503390312195, 0.2811797857284546, 0.9196685552597046, 0.21025912463665009, 0.42031797766685486, 0.45925676822662354, 0.1845644861459732, 0.21182699501514435, -0.13920870423316956, -0.2165398746728897, 0.0542718879878521, -0.29585009813308716, -0.14695659279823303, 0.19300782680511475, 0.05399864539504051, -0.533484935760498, -0.3363066613674164, -0.22295571863651276, -0.1735774129629135, -0.33171743154525757, 0.3225138783454895, -0.00729725044220686, 0.34786251187324524, -0.05778639018535614, -0.03293928876519203, -0.27377474308013916, -0.4534515142440796, 0.024415133520960808, 0.05254924297332764, 0.0361434705555439, 0.1982196569442749, -0.07064039260149002, 0.09258268028497696, -0.7637267112731934, 0.052149344235658646, 0.022450480610132217, 0.25257056951522827, -0.2339811772108078, -0.037598077207803726, -0.05336671695113182, -0.001964430557563901, 0.6382449269294739, -0.1221543624997139, -0.1083129495382309, -0.003673339495435357, -0.07280093431472778, -0.632750928401947, -0.0034905695356428623, -0.014184132218360901, 0.019743716344237328, 0.2299286276102066, -0.009248456917703152, -0.4394513964653015, -0.017309842631220818, 0.14759854972362518, 0.27546727657318115, -0.3025968372821808, -0.0935150533914566, -0.36616402864456177, -0.11953134834766388, -0.5057443976402283, -0.12866368889808655, 0.06480956822633743, 0.22246092557907104, 0.3846002519130707, 0.316049188375473, 0.0997215211391449, 0.08570262789726257, -0.012087141163647175, -0.06987577676773071, 0.2582472860813141, 0.1297815591096878, -0.13680168986320496, 0.28990358114242554, 0.08412624150514603, -0.2411784678697586, 0.35282251238822937, 0.0503837950527668, -0.2506101727485657, 0.07915141433477402, 0.14902561902999878, 0.11584710329771042, 0.27340880036354065, 0.0989278107881546, -0.12371596693992615, 0.16670109331607819, -0.05851414054632187, -0.4219202697277069, 0.2355523258447647, 0.28158387541770935, -0.18548007309436798, -0.3053145110607147, -0.5116244554519653, 0.6158608198165894, 0.05597119778394699, 0.030451087281107903, 0.20863181352615356, 0.02239968068897724, -0.41278132796287537, 0.44134217500686646, 0.26830101013183594, 0.9731241464614868, -0.20404236018657684, 0.4249984920024872, 0.23177854716777802, 0.1344754546880722, 0.5237070918083191, -0.5167381167411804, 0.3831549882888794, -0.3056226670742035, 0.12684471905231476, -0.013337444514036179, -0.10856370627880096, 0.03648287057876587, 0.1147196814417839, 0.06540732830762863, 0.32536640763282776, 0.20793654024600983, 0.09614409506320953, -0.07739344239234924, 0.4588257670402527, -0.08006744831800461, -0.34207260608673096, -0.19557926058769226, 0.1220066025853157, -0.3448769748210907, 0.3898962438106537, -0.364506334066391, 0.021709350869059563, 0.07767228782176971, -0.11058735102415085, -0.49160197377204895, 0.07951555401086807, -0.3250879943370819, 0.4055931866168976, -0.3284803330898285, -0.13713742792606354, -0.14217089116573334, 0.3159615397453308, 0.059257227927446365, 0.1933969408273697, -0.2498404085636139, 0.22427472472190857, -0.39769473671913147, -0.23567727208137512, 0.02082897536456585, 0.23375311493873596, 0.40875259041786194, -0.20691180229187012, -0.24383652210235596, 0.09800376743078232, -0.1904451996088028, -0.37694165110588074, -0.16764624416828156, -0.10644698143005371, 0.0883561298251152, -0.014652030542492867, -0.317278653383255, -0.0090532461181283, -0.14136458933353424, 0.05608164146542549, 0.08245307952165604, 0.013701459392905235, -0.11961692571640015, -0.09041161090135574, 0.030632758513092995, -0.1625872552394867, 0.053734324872493744, 0.44527825713157654, 0.19932767748832703, -0.17376470565795898, 0.6748775243759155, 0.3185994327068329, -0.27011680603027344, -0.05884368717670441, -0.1454923003911972, 0.026524001732468605, -0.3916163146495819, 0.08036047965288162, -0.12232132256031036, -0.032689135521650314, -0.2329392433166504, -0.015880079939961433, 0.2639753818511963, -0.12890112400054932, 0.2503606677055359, -0.3973314166069031, -0.43905168771743774, 0.3276471793651581, -0.1340378075838089, 0.18060153722763062, 0.26814207434654236, -0.3036367893218994, 0.14833346009254456, -0.0007178286323323846, -0.1766965687274933, -0.033686112612485886, -0.28325384855270386, 0.19930289685726166, 0.3011002540588379, -0.15525788068771362, 0.07127582281827927, 0.13447344303131104, 0.028118809685111046, 0.14065024256706238, -0.167130708694458, -0.12094200402498245, -0.02152673341333866, 0.17022161185741425, -0.021184705197811127, -0.1575116515159607, 0.007988763973116875, -0.4215224087238312, 0.13371950387954712, -0.3100501000881195, 0.09497401118278503, 0.09408168494701385, -0.023131204769015312, 0.3049462139606476, 0.1652725487947464, 0.05894976481795311, -0.09553530067205429, 0.45909544825553894, 0.004906592424958944, 0.48810911178588867, 0.19494375586509705, 0.1460275650024414, 0.2174537479877472, 0.009513887576758862, -0.5299929976463318, 0.0595964640378952, -0.10480725020170212, -0.03545450046658516, 0.12952890992164612, -0.17120873928070068, 0.015819283202290535, 0.1867770105600357, -0.040361542254686356, 0.1027829572558403, -0.11737862974405289, -0.04468434676527977, 0.20297324657440186, 0.13012689352035522, -0.12902091443538666, 0.12196116894483566, 0.343000590801239, -0.03814193978905678, -0.255349725484848, 0.1517675220966339, 0.11667303740978241, -0.021861176937818527, -0.04639661684632301, 0.13871259987354279, 0.34685641527175903, -0.08004237711429596, 0.08237550407648087, -0.18707381188869476, 0.024710511788725853, -0.04291169345378876, -0.13443103432655334, 0.2051125466823578, 0.1837247908115387, 0.40192681550979614, 0.002795692766085267, 0.14150051772594452, -0.16378435492515564, 0.07540314644575119, -0.19108544290065765, -0.3289395868778229, 0.020315350964665413, 0.5687055587768555, -0.046990830451250076, 0.2843693792819977, -0.14462733268737793, 0.17800414562225342, 0.36120763421058655, -0.13690337538719177, -0.36710289120674133, 0.23132221400737762, -0.14479228854179382, 0.061725419014692307, -0.05804875120520592, -0.236467644572258, -0.20972788333892822, 0.2906803786754608, 0.05285124480724335, -0.48371821641921997, 0.08078328520059586, 0.19289667904376984, -0.1719195544719696, -0.2963343858718872, 0.4201447069644928, 0.16633351147174835, -0.019270598888397217, -0.3831958770751953, 0.09907396137714386, 0.14486487209796906, -0.04473133757710457, -0.08720089495182037, 0.3097786605358124, 0.40609872341156006, 0.3071937561035156, -0.27043622732162476, 0.009355014190077782, -0.0059447381645441055, -0.0063552591018378735, -0.24959921836853027, 0.25597909092903137, 0.40651097893714905, 0.3059678375720978, 0.180397629737854, 0.05419086664915085, -0.1025388091802597, -0.3101820945739746, 0.35936877131462097, -0.062888003885746, -0.12125637382268906, -0.019211258739233017, -0.2770345211029053, 0.0351019985973835, -0.2277391254901886, 0.04942268133163452, -0.5648448467254639, 0.10318052023649216, 0.20874780416488647, -0.13252152502536774, 0.11679651588201523, -0.03639631345868111, 0.0014874603366479278, -0.1657542586326599, 0.5369605422019958, 0.25114861130714417, 0.11229152232408524, -0.4637848436832428, -0.33754757046699524, -0.5109272599220276, 0.07808104902505875, -0.36463630199432373, 0.06499917060136795, -0.05532597005367279, 0.3731815814971924, -0.17176784574985504, 0.15667979419231415, -0.26685935258865356, 0.1098732203245163, -0.11338119953870773, 0.23890440165996552, -0.3001950979232788, -0.2587817311286926, 0.047005217522382736, 0.07872353494167328, -0.08048476278781891, -0.26089033484458923, 0.087485671043396, -0.02748861163854599, -0.054856494069099426, -0.22844591736793518, -0.20256659388542175, 0.08811423927545547, 0.26463621854782104, 0.26334938406944275, 0.12228495627641678, 0.5243086218833923, 0.07498643547296524, -0.37821343541145325, -0.2976666986942291, -0.16730615496635437, 0.04359016567468643, 0.006588985212147236, -0.08003614842891693, 0.519834578037262, -0.2667163610458374, 0.15822388231754303, -0.4382745027542114, 0.4756549298763275, -0.17140772938728333, 0.10684514790773392, -0.36277395486831665, -0.15646690130233765, 0.03455972298979759, 0.22661139070987701, 0.20801515877246857, 0.18166349828243256, -0.09175554662942886, 0.07733585685491562, -0.25390756130218506, -0.13095805048942566, 0.33519795536994934, -0.5924607515335083, -0.32918933033943176, 0.052413325756788254, -0.05836724489927292, -0.015294075012207031, -0.11526031792163849, -0.5271496176719666, 0.03435312956571579, 0.16887067258358002, 0.08817488700151443, -0.1708846241235733, -0.04184361919760704, -0.06303335726261139, -0.02288970910012722, -0.08436113595962524, 0.07172209024429321, -0.12094825506210327, -0.37930646538734436, 0.13732261955738068, -0.2624128460884094 ]
https://github.com/huggingface/datasets/issues/277
Empty samples in glue/qqp
We are only wrapping the original dataset. Maybe try to ask on the GLUE mailing list or reach out to the original authors?
``` qqp = nlp.load_dataset('glue', 'qqp') print(qqp['train'][310121]) print(qqp['train'][362225]) ``` ``` {'question1': 'How can I create an Android app?', 'question2': '', 'label': 0, 'idx': 310137} {'question1': 'How can I develop android app?', 'question2': '', 'label': 0, 'idx': 362246} ``` Notice that question 2 is empty string. BTW, I have checked and these two are the only naughty ones in all splits of qqp.
23
Empty samples in glue/qqp ``` qqp = nlp.load_dataset('glue', 'qqp') print(qqp['train'][310121]) print(qqp['train'][362225]) ``` ``` {'question1': 'How can I create an Android app?', 'question2': '', 'label': 0, 'idx': 310137} {'question1': 'How can I develop android app?', 'question2': '', 'label': 0, 'idx': 362246} ``` Notice that question 2 is empty string. BTW, I have checked and these two are the only naughty ones in all splits of qqp. We are only wrapping the original dataset. Maybe try to ask on the GLUE mailing list or reach out to the original authors?
[ 0.3944287896156311, -0.2275950312614441, -0.13336427509784698, 0.17218706011772156, -0.009043923579156399, -0.1809312254190445, 0.33997923135757446, 0.49809086322784424, 0.3016015887260437, 0.28761133551597595, -0.16288916766643524, 0.40133246779441833, -0.051373861730098724, 0.04152423143386841, 0.12119445949792862, -0.23212656378746033, -0.14264334738254547, 0.4839455187320709, -0.2110554575920105, -0.048681896179914474, -0.2900346517562866, 0.3497726619243622, -0.16072428226470947, 0.014570064842700958, -0.25724825263023376, -0.02671121433377266, -0.4356914460659027, 0.12509532272815704, -0.08387185633182526, -0.11413688957691193, -0.09536611288785934, 0.08822992444038391, -0.33561936020851135, 0.027513427659869194, -0.00010767492494778708, -0.192106693983078, 0.20978185534477234, -0.06671950966119766, 0.09793487191200256, 0.02087772823870182, -0.18860644102096558, -0.16017299890518188, -0.019719528034329414, -0.3324032425880432, -0.1081114411354065, 0.06034484878182411, 0.03120870515704155, 0.00914716999977827, 0.38788512349128723, 0.286792516708374, 0.23193898797035217, 0.1878136545419693, -0.05334576964378357, 0.0011457756627351046, 0.5737708210945129, -0.4523116648197174, 0.16638098657131195, 0.19409914314746857, 0.19045515358448029, -0.07232895493507385, 0.20125555992126465, 0.2850462794303894, -0.02919183112680912, -0.14133554697036743, -0.3117976784706116, 0.07360333949327469, -0.05499640852212906, -0.5886823534965515, 0.11005537211894989, 0.542988121509552, -0.13682283461093903, 0.005410830955952406, -0.1368396133184433, -0.28859397768974304, 0.03081418387591839, -0.12210455536842346, -0.08536230772733688, 0.28918886184692383, -0.10831746459007263, 0.18999700248241425, -0.09186197072267532, -0.18364831805229187, 0.09070400893688202, 0.11116751283407211, -0.17851929366588593, 0.31623727083206177, -0.0265360064804554, 0.09676533937454224, -0.06904701888561249, 0.0069282627664506435, -0.3025733530521393, -0.04385185241699219, -0.2633649706840515, -0.05087655782699585, -0.005477506667375565, -0.12635862827301025, 0.02656782604753971, -0.1544860303401947, 0.014671923592686653, 0.055524177849292755, 0.023598944768309593, 0.07898995280265808, 0.35783612728118896, 0.19736552238464355, 0.060347430408000946, 0.10828571021556854, 0.47454071044921875, 0.2059001922607422, -0.2136048525571823, -0.10277146100997925, -0.0928279384970665, -0.11922650039196014, -0.03448101505637169, 0.10584495216608047, -0.14633709192276, -0.0181442704051733, 0.1527647078037262, 0.019874021410942078, -0.1597275286912918, -0.08522631227970123, -0.2839926481246948, 0.09330150485038757, -0.23678435385227203, 0.4214973449707031, 0.0020286075305193663, 0.08887623995542526, 0.06640345603227615, 0.18706431984901428, -0.12523534893989563, -0.4068475067615509, -0.30488869547843933, 0.14692506194114685, -0.01834275759756565, -0.21936455368995667, 0.05064624175429344, 0.0939231887459755, 0.33059370517730713, 0.004026362206786871, -0.33677008748054504, -0.0640062764286995, 0.18150222301483154, -0.1282043159008026, 0.2904050052165985, 0.37325701117515564, 0.12242214381694794, 0.04528501257300377, 0.046347685158252716, -0.17982782423496246, -0.07649126648902893, 0.3051797151565552, -0.22959162294864655, -0.049414411187171936, -0.24822603166103363, 0.2842925488948822, -0.27530497312545776, 0.21394705772399902, 0.30104783177375793, 0.2676580548286438, -0.002821293892338872, 0.03128162398934364, 0.24521870911121368, -0.058405593037605286, 0.02245595119893551, -0.3709171414375305, 0.1769922524690628, 0.14937962591648102, -0.4684354364871979, -0.2842772901058197, -0.04023999348282814, -0.0014729754766449332, 0.0031716569792479277, 0.2163156270980835, -0.01849052868783474, 0.2671808898448944, -0.3092721104621887, 0.5628645420074463, 0.3224930465221405, -0.3252391517162323, -0.29901355504989624, 0.2551977336406708, -0.2539639174938202, -0.002069242298603058, 0.07153773307800293, -0.02734619565308094, 0.40850889682769775, 0.23998743295669556, 0.27704641222953796, 0.21807564795017242, -0.007984006777405739, -0.16788917779922485, -0.3846800625324249, -0.1650363653898239, 0.3145084083080292, -0.05289974808692932, -0.06598195433616638, 0.1639252007007599, -0.11223544180393219, -0.07193978875875473, 0.27544358372688293, 0.11924459040164948, 0.001778604811988771, 0.11930809915065765, 0.30025896430015564, -0.23462611436843872, -0.0166701041162014, -0.0893278568983078, -0.27370938658714294, 0.08472899347543716, -0.5236308574676514, 0.1633121222257614, 0.09106243401765823, -0.19315284490585327, -0.17542031407356262, -0.09318087995052338, 0.07212702184915543, -0.2961348295211792, 0.2624041438102722, -0.09422171115875244, 0.1309676617383957, -0.003955867141485214, -0.05918749421834946, 0.23724733293056488, 0.04411979392170906, 0.17584128677845, -0.27825045585632324, 0.191324383020401, 0.11083246022462845, 0.0012177755124866962, 0.1393667459487915, 0.6038910150527954, 0.17393839359283447, 0.0278026033192873, 0.33778998255729675, 0.38337865471839905, -0.12474025040864944, -0.012413895688951015, -0.06200750544667244, -0.4666866660118103, -0.06704382598400116, -0.200608029961586, -0.03976473584771156, 0.1223442554473877, 0.08252184092998505, -0.0669388473033905, -0.025950076058506966, 0.5820210576057434, 0.2762618958950043, 0.13075397908687592, 0.02660428360104561, 0.15240325033664703, -0.39627739787101746, -0.44503533840179443, -0.1695311814546585, -0.3077698051929474, 0.19282706081867218, 0.16173036396503448, 0.36331796646118164, 0.2564752697944641, -0.17092707753181458, 0.37906476855278015, 0.5739660859107971, -0.06926053017377853, 0.3076539635658264, -0.22470222413539886, -0.23812374472618103, -0.1790427565574646, 0.07018920034170151, 0.370354026556015, 0.19973593950271606, 0.39890024065971375, 0.015567881055176258, -0.08363960683345795, 0.08342613279819489, -0.3214097321033478, 0.2073068916797638, 0.12395569682121277, -0.2294912040233612, 0.1494203358888626, 0.36247140169143677, -0.1701754331588745, -0.201259046792984, 0.5741876363754272, 0.024312607944011688, -0.049415260553359985, -0.1920900046825409, -0.14922088384628296, -0.32814115285873413, -0.27903321385383606, -0.011315487325191498, -0.229265034198761, -0.2454904466867447, -0.4493694007396698, 0.2525094449520111, -0.39333945512771606, -0.1659594476222992, 0.01721404865384102, 0.13104991614818573, 0.35143399238586426, -0.13373813033103943, 0.0004681273130699992, -0.012864820659160614, -0.03706948831677437, -0.3257400393486023, 0.2296125590801239, -0.41755399107933044, 0.3865432143211365, 0.39191725850105286, -0.05755137652158737, -0.07354468107223511, 0.174566850066185, -0.2808060050010681, 0.10780786722898483, -0.3091469705104828, 0.4351453185081482, 0.15589143335819244, 0.08208728581666946, -0.07273736596107483, -0.07757281512022018, 0.10933198034763336, -0.0259624645113945, -0.15176887810230255, -0.09083864092826843, 0.2362346649169922, 0.23256981372833252, -0.3710658848285675, -0.44330281019210815, -0.2700105905532837, -0.3494875729084015, 0.4619119465351105, -0.2531076967716217, 0.34487175941467285, 0.002491496503353119, -0.19018568098545074, 0.23879225552082062, -0.32172393798828125, -0.2853172719478607, -0.16619549691677094, -0.14411881566047668, 0.22342222929000854, -0.25784608721733093, -0.2959877550601959, 0.059170618653297424, -0.2494991272687912, 0.14693602919578552, -0.18876929581165314, -0.32851362228393555, -0.3279092311859131, 0.07300643622875214, 0.058303102850914, 0.30500328540802, -0.055520813912153244, 0.11581258475780487, -0.23265111446380615, -0.1398029625415802, -0.18623550236225128, 0.004456268157809973, 0.4342604875564575, 0.0017082937993109226, 0.004330510273575783, -0.03465590253472328, 0.21830818057060242, -0.04166855290532112, 0.28179076313972473, 0.12015990167856216, 0.4252012372016907, 0.16424503922462463, -0.06522592902183533, 0.3786022365093231, 0.035927969962358475, -0.041328124701976776, 0.17578533291816711, 0.21881245076656342, 0.06032934412360191, 0.3531435430049896, 0.09794924408197403, -0.06091417372226715, 0.06411691755056381, 0.081806980073452, -0.4496346414089203, -0.14712539315223694, 0.12396311014890671, -0.07094050198793411, -0.09283233433961868, -0.004172420594841242, -0.07171014696359634, 0.02531377598643303, -0.09890104085206985, -0.28425246477127075, -0.12683826684951782, 0.20058709383010864, -0.038779836148023605, -0.487880676984787, -0.15089695155620575, -0.4676203727722168, 0.3085106909275055, 0.03557328134775162, 0.25753334164619446, -0.08585071563720703, -0.13355661928653717, 0.2047255039215088, 0.008697002194821835, 0.684246301651001, -0.21689759194850922, -0.23901723325252533, 0.2540595233440399, 0.12067282944917679, -0.29016223549842834, -0.023832781240344048, -0.5618228912353516, -0.10058373957872391, 0.3230274021625519, 0.07002474367618561, -0.41615739464759827, -0.0658373162150383, 0.06311831623315811, -0.05401620268821716, -0.20180338621139526, 0.07757217437028885, -0.2286895513534546, -0.16324743628501892, 0.021369503811001778, -0.1781853437423706, 0.15927404165267944, 0.30520865321159363, -0.23032642900943756, -0.09474987536668777, -0.020748332142829895, -0.10849859565496445, 0.2755570709705353, -0.06353634595870972, 0.42028218507766724, -0.17278140783309937, -0.1507953405380249, -0.10012932121753693, -0.025114959105849266, -0.5728302001953125, 0.2940680682659149, -0.2971133887767792, 0.3505968451499939, 0.16862578690052032, -0.3859306573867798, 0.6130175590515137, 0.36988818645477295, 0.08288887143135071, 0.3258308172225952, -0.29088452458381653, 0.23228387534618378, 0.030105989426374435, -0.055659398436546326, 0.373482346534729, -0.23575237393379211, -0.0026339057367295027, -0.09466928243637085, 0.20131000876426697, -0.11649640649557114, -0.11162225157022476, -0.09867096692323685, 0.15089969336986542, -0.14040856063365936, 0.47620683908462524, -0.0653577372431755, 0.8699274659156799, -0.10220232605934143, 0.02880031056702137, 0.36395445466041565, -0.2930317223072052, 0.7299196720123291, 0.12546631693840027, 0.0636993944644928, -0.3811814486980438, -0.08555249124765396, 0.010671605356037617, 0.0865422785282135, -0.10033334791660309, 0.2762787938117981, -0.37867939472198486, 0.3030672073364258, -0.21924078464508057, -0.169280543923378, 0.2131250947713852, 0.03345853462815285, 0.10232007503509521, 0.14878679811954498, -0.2839200496673584, 0.1911134123802185, -0.029039686545729637, 0.05499125272035599, 0.046912781894207, -0.2098495364189148, -0.08387801796197891, -0.1398306041955948, -0.09755302220582962, 0.2478509098291397, -0.2676291763782501, -0.14094427227973938, 0.45645132660865784, -0.05698719993233681, -0.6023696064949036, 0.08122546225786209, -0.014573674649000168, 0.3054857850074768, -0.011375201866030693, 0.12965118885040283, 0.14209003746509552, -0.07462044060230255, 0.3581736385822296, 0.2338319569826126, 0.26007530093193054, -0.041993774473667145, -0.19174768030643463, 0.2148965448141098, -0.14354822039604187, -0.23158429563045502, -0.33840715885162354, 0.23676154017448425, 0.012847742065787315, -0.23143403232097626, -0.43293341994285583, -0.05067142844200134, 0.20145857334136963, -0.23517116904258728, 0.18257483839988708, -0.013425753451883793, -0.20960299670696259, -0.12156189233064651, 0.1633191555738449, -0.3453216254711151, 0.005444502457976341, 0.153014674782753, 0.17500561475753784, 0.24158604443073273, 0.4682162404060364, 0.094629667699337, 0.06409402936697006, -0.3818281590938568, -0.11197305470705032, 0.36999180912971497, -0.21958012878894806, 0.23936791718006134, -0.04647032916545868, -0.16051925718784332, -0.016903633251786232, 0.13852830231189728, -0.05911583453416824, 0.034229569137096405, -0.16418005526065826, -0.35156604647636414, -0.04419247433543205, 0.4166792035102844, 0.000362531456630677, 0.18780933320522308, -0.0020645512267947197, -0.022774407640099525, 0.18796031177043915, 0.4029611349105835, -0.4251336455345154, 0.14611700177192688, -0.39650648832321167, 0.15167437493801117, -0.041575003415346146, -0.3134777247905731, 0.10911355912685394, 0.005908862687647343, 0.18960030376911163, -0.07120614498853683, -0.23080216348171234, -0.3434693217277527, -0.1895466297864914, 0.05228206515312195, -0.06762667745351791, 0.2147141695022583, -0.09183873236179352, 0.0750330239534378, 0.12013112008571625, 0.036036573350429535, 0.22406883537769318, -0.19221700727939606, 0.18649795651435852, 0.21537771821022034, 0.30402448773384094, 0.2316845953464508, -0.2960219085216522, 0.1838497519493103, 0.04547049477696419, -0.030983678996562958, 0.021033739671111107, -0.15416905283927917, -0.1896819919347763, -0.08107216656208038, 0.18927650153636932, -0.035646356642246246, -0.004892313852906227, -0.0027145487256348133, 0.05403545871376991, -0.1590566337108612, 0.05980620160698891, -0.289031445980072, 0.15384379029273987, 0.09115085750818253, -0.26109954714775085, -0.0006667060661129653, -0.036521606147289276, 0.31499433517456055, -0.11589273810386658, 0.12560540437698364, 0.13852164149284363, 0.14089949429035187, 0.10901935398578644, 0.24867026507854462, 0.10672373324632645, -0.2185639888048172, 0.1103903129696846, 0.16778551042079926, 0.18495818972587585, -0.15111705660820007, -0.10756073147058487, 0.31531208753585815, 0.09487905353307724, -0.025750547647476196, 0.26689183712005615, 0.009215551428496838, -0.020584646612405777, -0.1160522922873497, 0.135722354054451, 0.45132964849472046, 0.21038325130939484, 0.0945567935705185, 0.3860875070095062, 0.0188435185700655, -0.05400366708636284, 0.47140100598335266, 0.10026510059833527, 0.26754164695739746, -0.07988706976175308, 0.6582875847816467, -0.14324209094047546, -0.217901349067688, 0.08110810816287994, 0.34252408146858215, -0.16083170473575592, -0.22322849929332733, -0.01571190170943737, 0.058265626430511475, -0.5974661707878113, -0.17746028304100037, 0.16420581936836243, -0.2975631356239319, 0.207158163189888, 0.08256302773952484, -0.16526857018470764, -0.03916805237531662, -0.4906114637851715, 0.0012091858079656959, 0.1394328624010086, -0.2860249876976013, 0.2783670425415039, -0.19062814116477966, 0.18660974502563477, 0.365521639585495, 0.46162453293800354, 0.10542749613523483, 0.12446226179599762, -0.3238740861415863, -0.0424993596971035, -0.029882807284593582, -0.25190114974975586, -0.1712537258863449, 0.24335026741027832, 0.2742094397544861, 0.2474101483821869, 0.11316590756177902, 0.26910969614982605, -0.32046306133270264, 0.13596123456954956, 0.2478092908859253, 0.25348857045173645, -0.17507779598236084, 0.275447279214859, -0.12742021679878235, -0.16556024551391602, -0.2203073650598526, -0.33278581500053406, -0.7666964530944824, 0.03592054173350334, -0.001859030220657587, -0.15660494565963745, 0.11844940483570099, 0.04822606220841408, 0.13765154778957367, -0.25968363881111145, 0.141122967004776, 0.14830851554870605, 0.09000635147094727, -0.23476363718509674, -0.22633813321590424, -0.4332300126552582, 0.04576381295919418, -0.1479467749595642, -0.1933629810810089, 0.1902923583984375, 0.27004578709602356, -0.10341111570596695, -0.035710468888282776, -0.5100884437561035, 0.43588271737098694, -0.39940178394317627, -0.25901901721954346, -0.5443629622459412, 0.13561192154884338, -0.10302132368087769, 0.07295680791139603, 0.12660501897335052, -0.16279692947864532, 0.2099713832139969, 0.05961945280432701, 0.10077188163995743, 0.25355765223503113, -0.10367710888385773, 0.30594727396965027, 0.06928393244743347, 0.009348984807729721, 0.2776672840118408, 0.1050218716263771, -0.16153530776500702, -0.011197174899280071, -0.1702062040567398, -0.155118927359581, -0.0892968475818634, -0.005464572925120592, 0.026108231395483017, 0.4342813789844513, 0.24791619181632996, 0.13111098110675812, 0.195003941655159, 0.11774129420518875, 0.23759135603904724, 0.21820449829101562, -0.030967969447374344, 0.15260587632656097, -0.03429681807756424, 0.036025483161211014, 0.15608574450016022, 0.2993508279323578, 0.0029672866221517324, -0.09183809906244278, -0.05380314216017723, -0.18453653156757355, 0.39167916774749756, -0.5110177397727966, -0.04795248433947563, -0.07261146605014801, 0.4356442093849182, 0.24114850163459778, -0.13867904245853424, -0.6016250848770142, -0.4045550227165222, 0.31876495480537415, -0.16870495676994324, -0.09158427268266678, 0.23731866478919983, 0.17652402818202972, -0.015537895262241364, -0.057665616273880005, 0.10027119517326355, 0.2680634558200836, -0.15650153160095215, -0.021075621247291565, -0.26166805624961853 ]
https://github.com/huggingface/datasets/issues/277
Empty samples in glue/qqp
Tanks for the suggestion, I'll try to ask GLUE benchmark. I'll first close the issue, post the following up here afterwards, and reopen the issue if needed.
``` qqp = nlp.load_dataset('glue', 'qqp') print(qqp['train'][310121]) print(qqp['train'][362225]) ``` ``` {'question1': 'How can I create an Android app?', 'question2': '', 'label': 0, 'idx': 310137} {'question1': 'How can I develop android app?', 'question2': '', 'label': 0, 'idx': 362246} ``` Notice that question 2 is empty string. BTW, I have checked and these two are the only naughty ones in all splits of qqp.
27
Empty samples in glue/qqp ``` qqp = nlp.load_dataset('glue', 'qqp') print(qqp['train'][310121]) print(qqp['train'][362225]) ``` ``` {'question1': 'How can I create an Android app?', 'question2': '', 'label': 0, 'idx': 310137} {'question1': 'How can I develop android app?', 'question2': '', 'label': 0, 'idx': 362246} ``` Notice that question 2 is empty string. BTW, I have checked and these two are the only naughty ones in all splits of qqp. Tanks for the suggestion, I'll try to ask GLUE benchmark. I'll first close the issue, post the following up here afterwards, and reopen the issue if needed.
[ 0.27157264947891235, -0.21357852220535278, -0.09600071609020233, 0.20489266514778137, 0.0334746316075325, -0.22537432610988617, 0.2624843716621399, 0.5297273993492126, 0.2512713074684143, 0.3464789390563965, -0.14168423414230347, 0.36341801285743713, 0.018165411427617073, 0.017992403358221054, 0.09457504749298096, -0.21441826224327087, -0.12237109988927841, 0.4743579626083374, -0.2266593873500824, -0.016195060685276985, -0.27885591983795166, 0.2712184190750122, -0.20130124688148499, -0.05250268056988716, -0.21730589866638184, -0.029286012053489685, -0.2624512314796448, 0.08085734397172928, -0.09695247560739517, -0.21604254841804504, -0.1603916585445404, -0.007935522124171257, -0.47182556986808777, 0.11353018879890442, -0.00010816128633450717, -0.23664452135562897, 0.3038538992404938, 0.03013116680085659, -0.016531746834516525, 0.0587732158601284, -0.17608721554279327, -0.1438622623682022, -0.03161662444472313, -0.27029547095298767, -0.13103273510932922, 0.17107261717319489, 0.056366726756095886, -0.04147833585739136, 0.290912002325058, 0.28944307565689087, 0.24988162517547607, 0.3229874074459076, -0.16775186359882355, 0.05850232020020485, 0.6316816210746765, -0.48349979519844055, 0.04953886568546295, 0.20308253169059753, 0.13301041722297668, -0.15085268020629883, -0.0022955702152103186, 0.3154924809932709, -0.07694122940301895, 0.0050612036138772964, -0.27923616766929626, 0.05005539208650589, 0.03418911620974541, -0.37193721532821655, 0.12193869799375534, 0.6385515332221985, -0.22573132812976837, -0.010933890007436275, -0.13056717813014984, -0.292717844247818, 0.03471998870372772, -0.1861676275730133, -0.009598781354725361, 0.21884626150131226, -0.11216975748538971, 0.08428330719470978, -0.0766553208231926, -0.01825014315545559, 0.10957798361778259, 0.021366246044635773, -0.16052722930908203, 0.2946772277355194, 0.01508320216089487, 0.09940715879201889, 0.08317103236913681, -0.08429466933012009, -0.36710506677627563, -0.04960912838578224, -0.27790069580078125, -0.08063628524541855, -0.27373188734054565, -0.029198242351412773, 0.10333285480737686, -0.22235919535160065, 0.09155598282814026, 0.03838300332427025, 0.04510599374771118, 0.12167510390281677, 0.3454154133796692, 0.1836070716381073, 0.012911772355437279, 0.21313510835170746, 0.5253053307533264, 0.1997382491827011, -0.2258034348487854, 0.01947081834077835, -0.2615402042865753, 0.011985317803919315, 0.07028833031654358, 0.01632995530962944, 0.018254339694976807, 0.052581872791051865, 0.02143499255180359, -0.007194805424660444, -0.18146368861198425, -0.05234060063958168, -0.2602764368057251, 0.057802144438028336, -0.21409881114959717, 0.3981826603412628, -0.03541303426027298, 0.08195190876722336, -0.021464817225933075, 0.18727713823318481, -0.24360588192939758, -0.48027503490448, -0.2614173889160156, 0.13717907667160034, -0.04105828329920769, -0.14563407003879547, 0.09469404071569443, 0.13082213699817657, 0.3209361433982849, 0.050691183656454086, -0.2557222545146942, -0.048857737332582474, 0.360268235206604, -0.2660948932170868, 0.2530595660209656, 0.280216246843338, 0.20136603713035583, 0.10340671241283417, -0.007390932179987431, -0.12394033372402191, -0.08780836313962936, 0.23308299481868744, -0.03073298931121826, 0.018359964713454247, -0.09715105593204498, 0.30669713020324707, -0.11255542933940887, 0.18431445956230164, 0.1896536946296692, 0.29966118931770325, 0.025674648582935333, -0.015272589400410652, 0.11792714148759842, 0.005110675469040871, -0.07614953815937042, -0.33658742904663086, 0.07260259240865707, 0.19732844829559326, -0.36911293864250183, -0.2344619184732437, -0.03508525714278221, 0.12526528537273407, 0.13602492213249207, 0.24713388085365295, -0.01832958497107029, 0.1719408631324768, -0.2010868638753891, 0.48592811822891235, 0.17032423615455627, -0.49588868021965027, -0.3176746964454651, 0.34689053893089294, -0.24254454672336578, 0.03859041631221771, 0.1114359050989151, -0.009177793748676777, 0.43404048681259155, 0.226268470287323, 0.32731103897094727, 0.30906909704208374, 0.05492383986711502, -0.07480458915233612, -0.5140239596366882, -0.13117766380310059, 0.36484408378601074, -0.03781268000602722, -0.11559518426656723, -0.05136007070541382, -0.20636020600795746, -0.05775131657719612, 0.1394091099500656, 0.1814711093902588, -0.026304462924599648, 0.13319972157478333, 0.2710832953453064, -0.3873376250267029, -0.0003698783984873444, -0.14409737288951874, -0.29688969254493713, 0.1813848614692688, -0.5925247073173523, 0.19390836358070374, 0.21274027228355408, -0.20416633784770966, -0.11798712611198425, -0.04272959381341934, 0.03782579302787781, -0.22775503993034363, 0.2820472717285156, -0.190468430519104, 0.11553095281124115, 0.06696572154760361, 0.032552048563957214, 0.18902955949306488, 0.01942121982574463, 0.1492246389389038, -0.15490399301052094, 0.12686684727668762, 0.03740175813436508, 0.011142709292471409, 0.17957711219787598, 0.44149136543273926, 0.23461665213108063, 0.11800646036863327, 0.19577449560165405, 0.3532406687736511, -0.05561882257461548, 0.02505410462617874, 0.0326964296400547, -0.42268049716949463, -0.036822110414505005, -0.04648841544985771, -0.10705900937318802, 0.23042285442352295, 0.019570987671613693, -0.10142508149147034, -0.07609763741493225, 0.5049566030502319, 0.3220843970775604, 0.24736885726451874, 0.04459623992443085, 0.05962088704109192, -0.35281506180763245, -0.43458253145217896, -0.07007784396409988, -0.3270902633666992, 0.3353847563266754, 0.04097916558384895, 0.429875910282135, 0.29623305797576904, -0.039499297738075256, 0.38538655638694763, 0.5666269063949585, -0.047682181000709534, 0.3834281265735626, -0.200496643781662, -0.19233635067939758, -0.2509762942790985, 0.03316877782344818, 0.389690637588501, 0.2012426257133484, 0.33641982078552246, 0.027239346876740456, -0.14497582614421844, -0.0013386065838858485, -0.2931690216064453, 0.22571246325969696, -0.003083957126364112, -0.15048028528690338, 0.20938147604465485, 0.43818411231040955, -0.15805304050445557, -0.21937717497348785, 0.5158026814460754, 0.04323733225464821, -0.02126232162117958, -0.12482700496912003, -0.14865246415138245, -0.31473085284233093, -0.23750272393226624, 0.04465767368674278, -0.1595420092344284, -0.3207470178604126, -0.4617292284965515, 0.29197463393211365, -0.3784711956977844, -0.11896822601556778, 0.07362813502550125, 0.1337287276983261, 0.302520215511322, -0.05496411398053169, -0.0463307648897171, 0.05556594207882881, 0.012742706574499607, -0.34488043189048767, 0.16890794038772583, -0.3408046364784241, 0.3934914469718933, 0.36231452226638794, -0.07537329196929932, -0.13506585359573364, 0.16909654438495636, -0.3209129869937897, 0.06238418444991112, -0.13886141777038574, 0.5314762592315674, 0.1236594170331955, 0.06626805663108826, -0.06345174461603165, -0.017646582797169685, 0.16979147493839264, -0.12969285249710083, -0.1724245399236679, -0.0788314938545227, 0.20044925808906555, 0.21600046753883362, -0.24823762476444244, -0.37283921241760254, -0.11284220218658447, -0.43257975578308105, 0.30550283193588257, -0.28459838032722473, 0.38496464490890503, 0.002765179378911853, -0.2537880539894104, 0.21535561978816986, -0.23401743173599243, -0.16887012124061584, -0.13563141226768494, -0.09484381973743439, 0.17080898582935333, -0.24985091388225555, -0.24686019122600555, -0.13707999885082245, -0.2538333833217621, 0.10856320708990097, -0.2012091726064682, -0.3262816071510315, -0.35083141922950745, -0.08110177516937256, 0.12882500886917114, 0.212739959359169, -0.12513437867164612, 0.07603420317173004, -0.14899444580078125, -0.1821601241827011, -0.1802307814359665, -0.05391502380371094, 0.4500752389431, 0.04668346047401428, 0.04009170085191727, 0.06502647697925568, 0.2793384790420532, 0.05985848233103752, 0.39479708671569824, 0.08126601576805115, 0.3368879556655884, 0.1455906331539154, -0.08325886726379395, 0.23904332518577576, -0.05018138885498047, -0.10909163951873779, 0.13358430564403534, 0.2538374364376068, 0.07056873291730881, 0.3102228343486786, 0.07826942950487137, -0.10350555926561356, 0.11883769929409027, 0.10346517711877823, -0.3536418378353119, -0.16363731026649475, 0.16186080873012543, -0.14950315654277802, -0.049376387149095535, 0.058155763894319534, -0.01290161069482565, 0.01129345316439867, -0.09502233564853668, -0.2126781940460205, -0.2355819195508957, 0.12876194715499878, -0.12978903949260712, -0.4396398365497589, -0.09274903684854507, -0.5289295315742493, 0.28708887100219727, 0.107628732919693, 0.2634970545768738, -0.13358595967292786, -0.08152347058057785, 0.12619081139564514, -0.017650753259658813, 0.6705344915390015, -0.2847557067871094, -0.09520912915468216, 0.20893217623233795, 0.06586915999650955, -0.2937110364437103, 0.0069532692432403564, -0.5354694128036499, -0.09339281171560287, 0.4221336841583252, 0.09084537625312805, -0.4992762804031372, 0.01951012574136257, 0.08677934855222702, -0.017573172226548195, -0.1837093085050583, 0.0018165827495977283, -0.3305700719356537, -0.08267363160848618, 0.10900172591209412, -0.15736858546733856, 0.1065741702914238, 0.3388253152370453, -0.13723498582839966, -0.11579874157905579, -0.09575722366571426, -0.10019761323928833, 0.2797960340976715, -0.02162615954875946, 0.43616434931755066, -0.20248056948184967, 0.08197985589504242, -0.2250950038433075, -0.10144641250371933, -0.48687130212783813, 0.22788752615451813, -0.2688479721546173, 0.3672320544719696, 0.08763637393712997, -0.32225874066352844, 0.4701736867427826, 0.3631214201450348, 0.10495879501104355, 0.3797161281108856, -0.42113178968429565, 0.26065734028816223, 0.0894978865981102, -0.07864867895841599, 0.37462010979652405, -0.08581659942865372, -0.0036105888430029154, -0.010716339573264122, 0.2240370512008667, -0.12877507507801056, -0.142456516623497, -0.09258416295051575, 0.10490112006664276, -0.1471138745546341, 0.4613463878631592, -0.09700609743595123, 0.8855522871017456, -0.21997694671154022, 0.015916692093014717, 0.30637598037719727, -0.3462524116039276, 0.6145240664482117, 0.14819762110710144, 0.13100780546665192, -0.46158507466316223, -0.1653725802898407, 0.05202973261475563, 0.05371295288205147, -0.10756565630435944, 0.23945821821689606, -0.37540796399116516, 0.2790740132331848, -0.25477084517478943, -0.16996513307094574, 0.1922534704208374, 0.11669234186410904, 0.11066208779811859, 0.07040905952453613, -0.3522312641143799, 0.20067600905895233, -0.10979802161455154, 0.01117576565593481, 0.11911217868328094, -0.14645971357822418, -0.00046373732038773596, -0.12488339096307755, -0.10916038602590561, 0.15694060921669006, -0.2749904692173004, -0.051670271903276443, 0.4869019091129303, -0.013733594678342342, -0.5811049938201904, 0.012961124069988728, -0.17537161707878113, 0.3412329852581024, 0.057725973427295685, 0.18326079845428467, 0.15724672377109528, 0.01597454771399498, 0.44861462712287903, 0.19981838762760162, 0.186138316988945, -0.08326692134141922, -0.26329120993614197, 0.16956861317157745, -0.1590089499950409, -0.2312677949666977, -0.3078421950340271, 0.24836041033267975, 0.06514592468738556, -0.19738100469112396, -0.4733285903930664, -0.12102702260017395, 0.16770246624946594, -0.28199881315231323, 0.197931170463562, -0.17484605312347412, -0.21567824482917786, -0.12598325312137604, 0.23289811611175537, -0.3480014204978943, 0.018758244812488556, 0.22956235706806183, 0.13467901945114136, 0.3314608037471771, 0.4062972366809845, 0.06447557359933853, 0.03380214422941208, -0.3555426299571991, 0.009297958575189114, 0.28611093759536743, -0.16679051518440247, 0.27714869379997253, -0.13478006422519684, -0.2053501307964325, 0.020119575783610344, 0.07664406299591064, 0.0268663689494133, 0.04836907237768173, -0.11192072182893753, -0.19959062337875366, 0.043388620018959045, 0.30286911129951477, 0.03235459327697754, 0.10653989017009735, -0.003367206547409296, -0.18011291325092316, 0.136415496468544, 0.5124987959861755, -0.4190405607223511, 0.06568192690610886, -0.4481354057788849, 0.17516419291496277, -0.04050185903906822, -0.3385768234729767, 0.06386971473693848, 0.05594610050320625, 0.23853808641433716, -0.09521839767694473, -0.2287249118089676, -0.3541777431964874, -0.2276971936225891, 0.04293768107891083, -0.15392343699932098, 0.2242739200592041, -0.11856888979673386, 0.08662192523479462, 0.021283721551299095, -0.0759802907705307, 0.1834656298160553, -0.1621357798576355, 0.11491627246141434, 0.13175547122955322, 0.19072671234607697, 0.18566447496414185, -0.23943664133548737, 0.21900446712970734, 0.004908239468932152, -0.054215915501117706, -0.04666925221681595, -0.17271128296852112, -0.04549987241625786, -0.09330028295516968, 0.11479667574167252, -0.1161116361618042, -0.0677734762430191, -0.006092951167374849, 0.03569965809583664, -0.20345397293567657, -0.003162999404594302, -0.14654235541820526, 0.2589974105358124, 0.04245852306485176, -0.24575738608837128, -0.12359686940908432, -0.1482929289340973, 0.3284456133842468, -0.1436348706483841, 0.03517355024814606, 0.12394152581691742, 0.03195185586810112, 0.23160040378570557, 0.2193276286125183, 0.05966629832983017, -0.19838687777519226, 0.19969911873340607, 0.15618853271007538, 0.204075425863266, -0.2150549292564392, -0.16691607236862183, 0.14650611579418182, 0.15896466374397278, -0.055606916546821594, 0.30310988426208496, -0.08194159716367722, 0.033973656594753265, -0.04414800554513931, 0.22924533486366272, 0.4877112805843353, 0.23215068876743317, 0.07327603548765182, 0.3107292056083679, 0.1487121880054474, -0.038564328104257584, 0.624472439289093, -0.05828038230538368, 0.24890080094337463, 0.000857549486681819, 0.6918644905090332, -0.23705247044563293, -0.3201921284198761, 0.024469247087836266, 0.2090950310230255, -0.15686261653900146, -0.35463783144950867, 0.081950843334198, 0.09825561940670013, -0.5680094361305237, -0.11504564434289932, 0.20390191674232483, -0.12099257111549377, 0.2469465434551239, 0.1300611048936844, -0.04053330793976784, -0.1789054125547409, -0.43213194608688354, 0.04889409989118576, 0.2448890060186386, -0.35716331005096436, 0.2981531322002411, -0.12139629572629929, 0.26217707991600037, 0.2796629071235657, 0.39220041036605835, 0.17775991559028625, 0.21610915660858154, -0.3681354522705078, -0.07628484070301056, -0.0678267553448677, -0.14735384285449982, -0.20592913031578064, 0.20125998556613922, 0.2145918905735016, 0.16836106777191162, 0.228218674659729, 0.24580010771751404, -0.35380470752716064, 0.07850386202335358, 0.2948916256427765, 0.13548177480697632, -0.18994687497615814, 0.2803790867328644, -0.17982064187526703, -0.030417893081903458, -0.29858681559562683, -0.18439438939094543, -0.7166971564292908, 0.02510315179824829, -0.036442045122385025, -0.21038082242012024, 0.13871251046657562, -0.023435641080141068, 0.14436247944831848, -0.24123871326446533, 0.2342246174812317, 0.08596394956111908, -0.0024151469115167856, -0.32397371530532837, -0.0998619794845581, -0.4623682200908661, 0.1171024963259697, -0.18234974145889282, -0.2512119710445404, 0.15966936945915222, 0.3514060378074646, -0.22122347354888916, -0.009136008098721504, -0.330733060836792, 0.37486085295677185, -0.38005530834198, -0.2198621928691864, -0.6355608105659485, 0.16694219410419464, -0.1612004041671753, -0.114560566842556, 0.1135699525475502, -0.3320988118648529, 0.198360875248909, 0.08989163488149643, 0.10901013761758804, 0.272534042596817, -0.14273115992546082, 0.3721240758895874, 0.1770857274532318, -0.013067838735878468, 0.26494577527046204, 0.248229518532753, -0.14379143714904785, -0.11243446916341782, -0.06772825866937637, -0.1696065366268158, -0.05746903270483017, -0.07276510447263718, 0.07740962505340576, 0.42617183923721313, 0.25423359870910645, 0.07958400249481201, 0.17398372292518616, 0.3036411702632904, 0.3054364323616028, 0.11751831322908401, 0.00041703550959937274, 0.0838075503706932, 0.06422261893749237, 0.07320824265480042, 0.036990612745285034, 0.33669933676719666, 0.028032567352056503, -0.027693215757608414, -0.06123534217476845, -0.34495145082473755, 0.3664712607860565, -0.5037406086921692, -0.07374856621026993, -0.051607027649879456, 0.449162095785141, 0.34058499336242676, -0.09829989820718765, -0.5108274817466736, -0.45137569308280945, 0.2980215549468994, -0.12252738326787949, -0.14657914638519287, 0.32833003997802734, 0.0530245266854763, 0.029550660401582718, -0.02116662636399269, -0.04434390366077423, 0.24745669960975647, -0.225192129611969, 0.018570903688669205, -0.17946837842464447 ]
https://github.com/huggingface/datasets/issues/275
NonMatchingChecksumError when loading pubmed dataset
For some reason the files are not available for unauthenticated users right now (like the download service of this package). Instead of downloading the right files, it downloads the html of the error. According to the error it should be back again in 24h. ![image](https://user-images.githubusercontent.com/42851186/84751599-096c6580-afbd-11ea-97f3-ee4aef791711.png)
I get this error when i run `nlp.load_dataset('scientific_papers', 'pubmed', split = 'train[:50%]')`. The error is: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-2-7742dea167d0> in <module>() ----> 1 df = nlp.load_dataset('scientific_papers', 'pubmed', split = 'train[:50%]') 2 df = pd.DataFrame(df) 3 gc.collect() 3 frames /usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 518 download_mode=download_mode, 519 ignore_verifications=ignore_verifications, --> 520 save_infos=save_infos, 521 ) 522 /usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 431 verify_infos = not save_infos and not ignore_verifications 432 self._download_and_prepare( --> 433 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 434 ) 435 # Sync info /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 468 # Checksums verification 469 if verify_infos: --> 470 verify_checksums(self.info.download_checksums, dl_manager.get_recorded_sizes_checksums()) 471 for split_generator in split_generators: 472 if str(split_generator.split_info.name).lower() == "all": /usr/local/lib/python3.6/dist-packages/nlp/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums) 34 bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] 35 if len(bad_urls) > 0: ---> 36 raise NonMatchingChecksumError(str(bad_urls)) 37 logger.info("All the checksums matched successfully.") 38 NonMatchingChecksumError: ['https://drive.google.com/uc?id=1b3rmCSIoh6VhD4HKWjI4HOW-cSwcwbeC&export=download', 'https://drive.google.com/uc?id=1lvsqvsFi3W-pE1SqNZI0s8NR9rC1tsja&export=download'] ``` I'm currently working on google colab. That is quite strange because yesterday it was fine.
45
NonMatchingChecksumError when loading pubmed dataset I get this error when i run `nlp.load_dataset('scientific_papers', 'pubmed', split = 'train[:50%]')`. The error is: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-2-7742dea167d0> in <module>() ----> 1 df = nlp.load_dataset('scientific_papers', 'pubmed', split = 'train[:50%]') 2 df = pd.DataFrame(df) 3 gc.collect() 3 frames /usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 518 download_mode=download_mode, 519 ignore_verifications=ignore_verifications, --> 520 save_infos=save_infos, 521 ) 522 /usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 431 verify_infos = not save_infos and not ignore_verifications 432 self._download_and_prepare( --> 433 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 434 ) 435 # Sync info /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 468 # Checksums verification 469 if verify_infos: --> 470 verify_checksums(self.info.download_checksums, dl_manager.get_recorded_sizes_checksums()) 471 for split_generator in split_generators: 472 if str(split_generator.split_info.name).lower() == "all": /usr/local/lib/python3.6/dist-packages/nlp/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums) 34 bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] 35 if len(bad_urls) > 0: ---> 36 raise NonMatchingChecksumError(str(bad_urls)) 37 logger.info("All the checksums matched successfully.") 38 NonMatchingChecksumError: ['https://drive.google.com/uc?id=1b3rmCSIoh6VhD4HKWjI4HOW-cSwcwbeC&export=download', 'https://drive.google.com/uc?id=1lvsqvsFi3W-pE1SqNZI0s8NR9rC1tsja&export=download'] ``` I'm currently working on google colab. That is quite strange because yesterday it was fine. For some reason the files are not available for unauthenticated users right now (like the download service of this package). Instead of downloading the right files, it downloads the html of the error. According to the error it should be back again in 24h. ![image](https://user-images.githubusercontent.com/42851186/84751599-096c6580-afbd-11ea-97f3-ee4aef791711.png)
[ 0.058758221566677094, 0.1301916539669037, 0.03693505376577377, 0.0248563215136528, 0.26487207412719727, -0.013563213869929314, 0.21680192649364471, 0.5417690873146057, 0.23485274612903595, 0.10361489653587341, -0.13925348222255707, 0.30251991748809814, -0.1345057487487793, -0.46926137804985046, -0.16947174072265625, 0.03361248970031738, 0.018223686143755913, 0.27824708819389343, 0.08311533182859421, 0.017654411494731903, -0.271837443113327, 0.31717634201049805, -0.20225344598293304, -0.06744853407144547, 0.18952034413814545, -0.11085735261440277, 0.1367979347705841, 0.21714983880519867, 0.04846695438027382, -0.39449071884155273, 0.22323337197303772, 0.17930644750595093, 0.10682385414838791, 0.21874934434890747, -0.00011708814417943358, 0.17657996714115143, 0.3026972711086273, 0.014655249193310738, -0.24043768644332886, -0.3675606846809387, -0.3067486584186554, -0.5333062410354614, 0.20339824259281158, -0.31497347354888916, -0.09392939507961273, 0.08185260742902756, 0.09851816296577454, -0.06670183688402176, 0.13526639342308044, 0.27185648679733276, 0.1855047345161438, 0.4645368158817291, -0.01214693859219551, -0.03898004814982414, 0.22107015550136566, -0.07106882333755493, -0.11671996116638184, 0.4443890452384949, 0.24701979756355286, -0.20542147755622864, -0.4585716724395752, 0.28268638253211975, -0.2289147675037384, 0.477351576089859, -0.048723235726356506, 0.005470688920468092, 0.4340505301952362, -0.25383442640304565, 0.1287405788898468, 0.317209392786026, 0.12444981187582016, -0.11026225239038467, 0.04084327444434166, -0.2443516105413437, -0.061262357980012894, -0.10050608217716217, 0.3322422206401825, 0.16426074504852295, -0.33934447169303894, -0.16424845159053802, -0.267250657081604, 0.15482571721076965, -0.018442092463374138, 0.27728113532066345, 0.45119982957839966, 0.08239932358264923, 0.025992674753069878, 0.07795459777116776, 0.3885331451892853, -0.1400500386953354, 0.4081310033798218, -0.18918637931346893, 0.05597938969731331, 0.2718268930912018, -0.38566964864730835, -0.10505252331495285, -0.029902106150984764, 0.08300512284040451, 0.21925987303256989, 0.5085958242416382, 0.17396180331707, -0.02067423425614834, 0.1601027548313141, 0.17406651377677917, 0.23458003997802734, -0.03255023434758186, -0.20497310161590576, 0.3127061128616333, 0.2428223043680191, 0.265426367521286, -0.08172861486673355, 0.13259799778461456, -0.12437660992145538, -0.2750795781612396, 0.4795856177806854, -0.1543901413679123, 0.1567382663488388, -0.3283810019493103, -0.18533825874328613, 0.25683650374412537, 0.12563107907772064, -0.03709274157881737, 0.15078029036521912, 0.37948882579803467, -0.006701471749693155, 0.2513454258441925, -0.04671751335263252, -0.09008251130580902, -0.22859464585781097, -0.0017537801759317517, -0.16195662319660187, 0.07882745563983917, -0.2954719066619873, 0.03644021227955818, 0.2913106381893158, -0.16165456175804138, 0.3400787115097046, -0.02619423158466816, 0.14318475127220154, -0.19258703291416168, 0.2771724462509155, -0.22582973539829254, -0.1703098565340042, 0.40022915601730347, 0.07895314693450928, 0.09375590831041336, 0.25992411375045776, -0.03614431247115135, -0.30354464054107666, 0.17107488214969635, -0.18803948163986206, -0.3761235773563385, -0.35439369082450867, 0.1679353266954422, -0.3283611834049225, -0.11249413341283798, 0.19485101103782654, -0.1655436009168625, 0.41855499148368835, -0.5822323560714722, 0.019879022613167763, -0.30363139510154724, -0.21274372935295105, -0.14035892486572266, -0.004766413941979408, 0.13248056173324585, 0.3329318165779114, -0.06297784298658371, -0.06982129067182541, 0.05434449389576912, 0.5059971809387207, 0.3451899290084839, -0.20035229623317719, -0.07307793200016022, -0.1836930513381958, -0.004275636747479439, 0.6614867448806763, -0.10246440023183823, -0.5011329650878906, 0.3050442039966583, 0.05778289586305618, 0.4503069818019867, -0.03337118774652481, 0.16733694076538086, -0.11887145787477493, -0.10189644247293472, 0.3278859853744507, 0.08118043094873428, 0.0006614320445805788, 0.2791230082511902, -0.38192692399024963, -0.13033810257911682, 0.5268672108650208, 0.22772884368896484, 0.1866334080696106, -0.006332444958388805, 0.06295714527368546, 0.22063511610031128, 0.1839745193719864, -0.08553602546453476, -0.030645469203591347, 0.2708134651184082, 0.018540123477578163, 0.06929316371679306, 0.058108728379011154, -0.22189325094223022, -0.3858194053173065, 0.2098037749528885, -0.3800528347492218, 0.25021806359291077, 0.08590012043714523, 0.022694967687129974, -0.3482501208782196, -0.33040091395378113, -0.21040190756320953, 0.022805793210864067, 0.0646698921918869, 0.3360595107078552, 0.19128988683223724, 0.029781103134155273, -0.1321469396352768, 0.20024454593658447, -0.31215497851371765, 0.038458600640296936, -0.5431324243545532, 0.2622189521789551, -0.21269731223583221, -0.185294508934021, 0.16498629748821259, 0.19273920357227325, 0.08376041054725647, 0.028146518394351006, -0.24969851970672607, 0.32971855998039246, 0.08496083319187164, -0.004352961666882038, 0.0416010245680809, 0.08348719775676727, -0.06494360417127609, -0.09139280766248703, -0.0033588092774152756, 0.45076847076416016, 0.04528416320681572, -0.009753632359206676, -0.2259777933359146, 0.3569220006465912, -0.0916157215833664, 0.14008955657482147, 0.018097108229994774, 0.111937515437603, 0.2927783131599426, -0.12066040188074112, -0.2199433594942093, -0.12930968403816223, 0.5966857671737671, 0.04193899407982826, -0.15332485735416412, 0.17370809614658356, -0.43260785937309265, -0.2955917716026306, 0.36963388323783875, -0.025639262050390244, 0.02711857482790947, 0.12841616570949554, 0.0668640285730362, -0.1737568974494934, -0.013439161702990532, 0.34234756231307983, 0.5028308629989624, 0.18390889465808868, -0.1045735776424408, 0.03426302596926689, -0.35980579257011414, -0.07767850160598755, -0.07587387412786484, 0.1211586520075798, 0.4027724862098694, 0.576790988445282, 0.3505510091781616, 0.00975524727255106, -0.5195765495300293, -0.24999743700027466, 0.08926326781511307, 0.5005636215209961, -0.31458452343940735, -0.058886609971523285, -0.20205694437026978, -0.15006916224956512, -0.26692667603492737, -0.2294197678565979, -0.29968422651290894, -0.25021347403526306, -0.09031986445188522, 0.45684823393821716, 0.013585424050688744, 0.3313671946525574, -0.7557681798934937, 0.09483009576797485, -0.050943683832883835, -0.18142516911029816, -0.10372112691402435, -0.131632000207901, -0.034180257469415665, -0.037244509905576706, 0.412169873714447, 0.07760261744260788, 0.4435410797595978, -0.0992220789194107, -0.1393854171037674, -0.21772535145282745, -0.22938047349452972, -0.03389905020594597, -0.07651710510253906, -0.023081060498952866, 0.28854015469551086, 0.03952901065349579, -0.1497325748205185, -0.34571072459220886, 0.36839985847473145, -0.2874169647693634, -0.18313173949718475, 0.27369195222854614, -0.06887255609035492, 0.04775697737932205, 0.08770324289798737, -0.255553662776947, -0.10062149167060852, -0.4179309606552124, -0.09216798096895218, 0.21309620141983032, 0.15833212435245514, 0.3770299255847931, -0.18833282589912415, 0.12014389038085938, 0.07696770131587982, 0.35288259387016296, -0.2467333823442459, -0.38593313097953796, 0.39954379200935364, -0.04467497393488884, -0.28284481167793274, -0.03730436787009239, -0.2464384287595749, 0.0727727860212326, 0.08610169589519501, -0.4358643591403961, -0.3477202355861664, -0.26991885900497437, -0.2323731780052185, -0.033160410821437836, -0.17303328216075897, 0.39083731174468994, 0.09429321438074112, -0.13948334753513336, -0.006137278862297535, -0.1883254200220108, 0.19982831180095673, 0.07579370588064194, 0.3481653034687042, -0.15975049138069153, 0.29549962282180786, -0.1364239752292633, 0.5724866390228271, 0.4148237407207489, 0.051908716559410095, 0.09263554215431213, 0.03206245228648186, 0.38046568632125854, -0.12182335555553436, -0.3274919390678406, -0.08516748249530792, 0.018538111820816994, 0.19220659136772156, 0.11993394047021866, -0.09054446220397949, -0.26838651299476624, -0.07598203420639038, -0.10402883589267731, -0.16878287494182587, -0.27503931522369385, 0.14030125737190247, -0.39354753494262695, 0.31140848994255066, 0.2206876426935196, -0.004918104037642479, -0.17499499022960663, -0.4817248582839966, -0.15338625013828278, 0.30810198187828064, -0.15424416959285736, -0.021762408316135406, -0.2281147539615631, 0.20594948530197144, -0.40591850876808167, 0.24460652470588684, 0.33215174078941345, 0.37925800681114197, -0.09653591364622116, -0.13789992034435272, 0.17449109256267548, -0.10740026831626892, 0.2112133651971817, -0.15681800246238708, 0.022936563938856125, 0.18023693561553955, -0.19326402246952057, -0.3291550576686859, -0.1285324990749359, -0.07087989151477814, 0.2246687114238739, 0.16284558176994324, 0.3866911828517914, -0.18938542902469635, -0.22539256513118744, 0.5273256301879883, -0.01717677339911461, -0.13914716243743896, -0.5009344816207886, -0.4964925944805145, -0.32884228229522705, -0.4223906993865967, -0.024421915411949158, -0.06916269659996033, 0.3058440089225769, -0.060259394347667694, -0.0070516690611839294, 0.0879862904548645, 0.007744919508695602, 0.24744576215744019, 0.0470832996070385, 0.14178572595119476, 0.290608286857605, 0.28930869698524475, 0.07486049830913544, 0.2209795117378235, -0.04495823755860329, 0.4247763752937317, -0.2667270302772522, -0.23744472861289978, 0.05831766128540039, 0.023059429600834846, -0.16519218683242798, 0.06987244635820389, 0.10891257971525192, -0.05400417000055313, 0.35478344559669495, 0.06940288096666336, 0.16097548604011536, 0.01494742464274168, 0.33980026841163635, -0.13206739723682404, -0.4824083745479584, -0.33756130933761597, 0.2068866342306137, -0.003405932802706957, 0.0006137067102827132, 0.14193975925445557, -0.14033468067646027, -0.014442645013332367, 0.18130341172218323, 0.07001206278800964, 0.9123494625091553, -0.05020982399582863, 0.2700972855091095, 0.15562939643859863, -0.12637442350387573, 0.48478612303733826, -0.1906326860189438, 0.31361523270606995, -0.4442592263221741, -0.3440859317779541, 0.033206235617399216, -0.2150554358959198, 0.0016661944100633264, -0.08467426151037216, -0.03130468726158142, 0.4170593321323395, 0.31654641032218933, -0.0888693705201149, -0.029774988070130348, 0.23895791172981262, -0.0411703959107399, -0.17547474801540375, -0.31650978326797485, 0.13627007603645325, -0.4005623161792755, 0.3194374442100525, -0.15105082094669342, -0.002036711201071739, -0.002229981357231736, -0.1660822033882141, -0.214535653591156, 0.24550926685333252, 0.18387793004512787, 0.45140326023101807, 0.5331103205680847, -0.19798879325389862, -0.1453326791524887, 0.0426797941327095, 0.07314473390579224, -0.11077602207660675, -0.22802002727985382, 0.08417948335409164, 0.4728121757507324, -0.21303187310695648, -0.027643222361803055, 0.16777199506759644, 0.5750770568847656, -0.16118545830249786, -0.04883662983775139, -0.01754826493561268, -0.15862326323986053, -0.5636658668518066, 0.016521627083420753, -0.014408704824745655, 0.2287372648715973, -0.22490480542182922, -0.24086175858974457, -0.006057461723685265, -0.11772962659597397, -0.2581004798412323, 0.13442642986774445, 0.14283978939056396, -0.22202427685260773, 0.19953760504722595, 0.09581349790096283, -0.3081699013710022, 0.053559865802526474, 0.41314029693603516, 0.19125895202159882, -0.22644491493701935, 0.48884859681129456, -0.040287427604198456, -0.32321739196777344, -0.19993335008621216, 0.0013781621819362044, -0.07788429409265518, -0.3243076801300049, 0.2354053109884262, -0.00505342660471797, 0.24347242712974548, 0.19779734313488007, 0.45636940002441406, 0.153885155916214, 0.16390736401081085, 0.06401100754737854, -0.42902031540870667, -0.3424909710884094, -0.09831515699625015, -0.05868196487426758, 0.34645986557006836, 0.19336113333702087, 0.025077026337385178, 0.028280850499868393, -0.014141201041638851, -0.2789708375930786, -0.03620421886444092, -0.6158041954040527, 0.08086462318897247, 0.16279907524585724, -0.1786712259054184, 0.09856414049863815, 0.084849052131176, 0.10807693749666214, 0.0622781366109848, -0.11878979951143265, -0.21387383341789246, -0.20604614913463593, 0.16817991435527802, 0.13121311366558075, -0.1198773980140686, -0.09784737974405289, -0.13247311115264893, -0.15383003652095795, -0.1558460295200348, -0.24399758875370026, 0.16781866550445557, -0.06506069004535675, -0.010939382016658783, -0.13126082718372345, -0.07443615794181824, 0.22801010310649872, 0.14020420610904694, -0.41033193469047546, -0.11820842325687408, 0.08093979209661484, 0.009015568532049656, 0.028095481917262077, 0.08395326137542725, -0.07725835591554642, 0.07665269821882248, 0.3141532242298126, -0.2686919569969177, 0.2941831946372986, -0.32556819915771484, -0.13629068434238434, 0.06496960669755936, 0.3370263874530792, 0.21334879100322723, -0.4081491231918335, -0.07886361330747604, 0.23576754331588745, 0.16822275519371033, -0.534301221370697, 0.011874415911734104, 0.33549538254737854, 0.10925938189029694, 0.018037857487797737, 0.11050967872142792, -0.14606788754463196, -0.3263051509857178, 0.3797014057636261, 0.1548517495393753, 0.23264828324317932, -0.6414141058921814, -0.007242907769978046, 0.2353513389825821, 0.10244487226009369, -0.14251428842544556, 0.2817763090133667, 0.052332088351249695, 0.11280843615531921, -0.029143884778022766, -0.06500686705112457, 0.14648698270320892, -0.19579437375068665, 0.153143510222435, -0.2331831008195877, -0.29600974917411804, 0.21897362172603607, 0.4795645475387573, 0.23770231008529663, 0.08647364377975464, 0.06585630029439926, 0.3420737087726593, -0.07130572199821472, 0.20494307577610016, -0.3094732463359833, 0.23022469878196716, -0.10543669760227203, -0.09366004914045334, 0.023986786603927612, -0.029624011367559433, -0.17092439532279968, 0.21048079431056976, -0.013372566550970078, 0.20128720998764038, 0.04091149941086769, 0.13339242339134216, -0.04454207420349121, -0.5335200428962708, 0.14465846121311188, 0.2360323965549469, -0.015614320524036884, -0.27418839931488037, 0.2356102466583252, 0.11419714987277985, -0.07366038858890533, 0.04239785298705101, 0.3567354083061218, 0.39952510595321655, 0.3630996644496918, -0.007847441360354424, -0.1293049156665802, 0.11558037996292114, 0.11685719341039658, 0.137637659907341, 0.632048487663269, 0.39147597551345825, 0.2891392409801483, 0.36634233593940735, 0.01522331964224577, -0.1995546966791153, 0.25512394309043884, -0.0997857078909874, -0.3354570269584656, 0.0263989195227623, 0.7012004852294922, 0.1500081717967987, -0.005062686279416084, -0.2052840143442154, 0.19082129001617432, -0.3925947844982147, -0.24595364928245544, -0.0374743789434433, 0.067687027156353, 0.15588676929473877, -0.11567774415016174, 0.056367237120866776, -0.10696019232273102, 0.41850313544273376, 0.14459331333637238, -0.055076077580451965, -0.317707359790802, -0.35109418630599976, -0.7823402881622314, 0.41475436091423035, -0.22224362194538116, -0.004539258312433958, 0.1111757904291153, 0.12391988933086395, -0.12601196765899658, 0.12135880440473557, 0.05275160074234009, 0.08295328170061111, -0.47748246788978577, -0.13195602595806122, -0.026100952178239822, -0.020177416503429413, -0.11103753745555878, -0.4083556830883026, -0.04655332863330841, -0.18373596668243408, 0.028331296518445015, 0.10315566509962082, 0.022497907280921936, -0.02330736629664898, -0.057635825127363205, -0.18685264885425568, 0.45206311345100403, -0.0863674134016037, 0.1859266310930252, 0.48735812306404114, 0.05341477319598198, -0.016194503754377365, -0.06143663451075554, -0.3204174041748047, -0.24960796535015106, 0.25175419449806213, 0.11229065805673599, 0.3334977626800537, -0.05136807635426521, 0.07830718904733658, -0.31395629048347473, 0.18824836611747742, -0.02147815376520157, -0.17341665923595428, -0.07351967692375183, -0.059705302119255066, -0.041506290435791016, 0.22707527875900269, -0.05358857661485672, 0.01154667790979147, 0.21792936325073242, 0.31084880232810974, -0.325276643037796, -0.2350168377161026, 0.5604358911514282, -0.4640592038631439, -0.38451090455055237, 0.011448809877038002, 0.19404610991477966, -0.2139997035264969, -0.20467232167720795, -0.742055356502533, 0.04172968864440918, 0.35193175077438354, 0.10893889516592026, -0.09042560309171677, 0.12551076710224152, -0.5100416541099548, 0.05486287921667099, 0.010107235051691532, -0.0520603209733963, 0.14990021288394928, -0.2129964679479599, -0.18070796132087708, -0.21114666759967804 ]
https://github.com/huggingface/datasets/issues/274
PG-19
Got around to this today, and so far so good, I'm able to download and load pg19 locally. However, I think there may be an issue with the dummy data, and testing in general. The problem lies in the fact that each book from pg19 actually resides as its own text file in a google cloud folder that denotes the split, where the book id is the name of the text file. https://console.cloud.google.com/storage/browser/deepmind-gutenberg/train/ I don't believe there's anywhere else (even in the supplied metadata), where the mapping of id -> split can be found. Therefore I end up making a network call `tf.io.gfile.listdir` to get all the files within each of the split directories. https://github.com/lucidrains/nlp/commit/adbacbd85decc80db2347d0882e7dab4faa6fd03#diff-cece8f166a85dd927caf574ba303d39bR78 Does this network call need to be eventually stubbed out for testing?
Hi, and thanks for all your open-sourced work, as always! I was wondering if you would be open to adding PG-19 to your collection of datasets. https://github.com/deepmind/pg19 It is often used for benchmarking long-range language modeling.
127
PG-19 Hi, and thanks for all your open-sourced work, as always! I was wondering if you would be open to adding PG-19 to your collection of datasets. https://github.com/deepmind/pg19 It is often used for benchmarking long-range language modeling. Got around to this today, and so far so good, I'm able to download and load pg19 locally. However, I think there may be an issue with the dummy data, and testing in general. The problem lies in the fact that each book from pg19 actually resides as its own text file in a google cloud folder that denotes the split, where the book id is the name of the text file. https://console.cloud.google.com/storage/browser/deepmind-gutenberg/train/ I don't believe there's anywhere else (even in the supplied metadata), where the mapping of id -> split can be found. Therefore I end up making a network call `tf.io.gfile.listdir` to get all the files within each of the split directories. https://github.com/lucidrains/nlp/commit/adbacbd85decc80db2347d0882e7dab4faa6fd03#diff-cece8f166a85dd927caf574ba303d39bR78 Does this network call need to be eventually stubbed out for testing?
[ -0.27264299988746643, 0.10239755362272263, -0.07613081485033035, 0.038973018527030945, -0.33897027373313904, -0.12711821496486664, 0.6120795011520386, 0.14190611243247986, 0.23385140299797058, 0.0364079512655735, 0.09452354907989502, -0.027552148327231407, -0.07654087990522385, 0.8012988567352295, 0.39663103222846985, -0.044337380677461624, 0.21177737414836884, 0.058730706572532654, 0.08764137327671051, -0.03329392150044441, -0.31332340836524963, 0.3008316457271576, -0.08162745833396912, 0.008407953195273876, -0.5192524194717407, -0.4210987687110901, -0.21403461694717407, 0.13622252643108368, -0.056497082114219666, -0.09087278693914413, 0.023284951224923134, 0.3214837908744812, -0.06836458295583725, 0.7272162437438965, -0.00012029659410472959, 0.05504535511136055, 0.04572172090411186, -0.12409207969903946, -0.23834358155727386, -0.24501551687717438, -0.029781414195895195, 0.2153983861207962, -0.18174487352371216, -0.1727651059627533, -0.05625530332326889, 0.01250576414167881, -0.015662476420402527, -0.0883731096982956, 0.05340640991926193, 0.15368175506591797, 0.05777674540877342, 0.10690505057573318, -0.1264805644750595, 0.02499428018927574, 0.3883238434791565, 0.21690675616264343, -0.3077535033226013, 0.2421519160270691, 0.4530336260795593, -0.10506350547075272, 0.09347081184387207, 0.37448230385780334, 0.10027153789997101, -0.1324554681777954, 0.28714343905448914, 0.20101283490657806, 0.23145626485347748, -0.23656053841114044, -0.12517988681793213, 0.3853827118873596, 0.15420998632907867, -0.18490460515022278, -0.44270434975624084, -0.4211259186267853, -0.3595270812511444, -0.3846864402294159, 0.18331709504127502, 0.05606686696410179, -0.17145982384681702, 0.1323087364435196, -0.05736664682626724, -0.5777273774147034, -0.057594530284404755, 0.009336758404970169, -0.2454635202884674, 0.6067335605621338, 0.19005483388900757, -0.0070569138042628765, 0.3556368947029114, 0.051180701702833176, -0.3422848582267761, -0.2946125864982605, -0.04255684092640877, -0.31998196244239807, 0.2193494588136673, -0.23228859901428223, -0.05313216894865036, -0.13319101929664612, 0.05611436441540718, 0.174808070063591, 0.2768687903881073, 0.15260393917560577, -0.16417010128498077, 0.1510070264339447, 0.3916577696800232, 0.20297206938266754, 0.2193080335855484, 0.31852641701698303, 0.419636070728302, 0.17325323820114136, 0.0714324340224266, 0.10752604156732559, -0.042462058365345, -0.02061951532959938, -0.32542791962623596, -0.1253993958234787, 0.002239127643406391, -0.24483448266983032, -0.052666883915662766, 0.009429252706468105, -0.1056969091296196, -0.03377727419137955, 0.19635365903377533, 0.15844985842704773, 0.285368949174881, -0.013263555243611336, -0.04506037011742592, 0.21404390037059784, -0.33296605944633484, -0.41930118203163147, -0.06976483017206192, -0.016879644244909286, -0.1600259244441986, 0.3653954863548279, 0.32472988963127136, 0.07303082197904587, 0.027448639273643494, -0.21863235533237457, 0.0043943049386143684, 0.0464923121035099, 0.18766486644744873, -0.2817597985267639, 0.34723013639450073, 0.2262929528951645, -0.016525452956557274, -0.06296665221452713, -0.11086299270391464, -0.35621389746665955, -0.35615992546081543, 0.3167042136192322, 0.003206831170246005, -0.1998966932296753, 0.3542388379573822, 0.061094146221876144, -0.24827457964420319, -0.08608800172805786, -0.44903209805488586, 0.5363027453422546, -0.05868396908044815, -0.49316784739494324, 0.16996045410633087, -0.17518162727355957, -0.5470998287200928, 0.08174209296703339, 0.09914333373308182, 0.32350385189056396, -0.5793905854225159, -0.21484985947608948, -0.1032194197177887, 0.10398861020803452, 0.08876112103462219, 0.3730234205722809, -0.19056454300880432, 0.08986248821020126, -0.1698356717824936, 0.9594692587852478, -0.09935829043388367, 0.19754326343536377, -0.16753527522087097, 0.2848428189754486, -0.3256671130657196, -0.009038369171321392, 0.021829776465892792, 0.042634349316358566, 0.11315708607435226, -0.20485928654670715, 0.08689574152231216, 0.2947107255458832, 0.06203364208340645, -0.06005804240703583, -0.27603814005851746, -0.11125326156616211, 0.3911849558353424, 0.028965508565306664, -0.0009516160353086889, -0.4765184819698334, -0.1512327492237091, -0.26981881260871887, 0.17407751083374023, -0.2358117401599884, -0.15515686571598053, 0.030881578102707863, 0.3874010145664215, 0.037519410252571106, -0.009671300649642944, 0.3352307677268982, -0.4020671546459198, 0.2687510848045349, -0.012288017198443413, 0.17680169641971588, -0.19553197920322418, -0.21270878612995148, 0.04979679360985756, 0.1878633350133896, 0.037636399269104004, -0.13818319141864777, -0.0923650860786438, 0.20169365406036377, 0.060690250247716904, 0.18772180378437042, -0.04580513387918472, -0.42936307191848755, -0.3604779839515686, -0.03481729328632355, -0.34263914823532104, 0.17187289893627167, -0.02856362797319889, -0.03529466688632965, 0.04394017159938812, 0.0776202380657196, -0.09348297864198685, -0.27856242656707764, 0.028699783608317375, 0.2729768455028534, -0.0015403599245473742, 0.3509213924407959, 0.3272593319416046, 0.6057783365249634, 0.2587486505508423, -0.3310549557209015, 0.07901933044195175, 0.05079341679811478, -0.1362638622522354, -0.24290812015533447, -0.2827902138233185, 0.5357288718223572, -0.29185885190963745, 0.2532326877117157, 0.040842849761247635, -0.286154180765152, -0.10220412164926529, -0.0917573943734169, -0.24356381595134735, 0.097279392182827, 0.33141154050827026, -0.44707563519477844, 0.09340039640665054, 0.07283025979995728, -0.2139517366886139, 0.28925302624702454, 0.3497874140739441, -0.3756166100502014, 0.25375786423683167, 0.09150303155183792, 0.07303129136562347, -0.39838162064552307, 0.15582507848739624, -0.033674370497465134, 0.332422137260437, 0.19430676102638245, 0.3082287311553955, -0.12997058033943176, -0.00003444479079917073, -0.3080718219280243, 0.34710434079170227, 0.09730952978134155, -0.2300128936767578, 0.2968510091304779, -0.13939538598060608, -0.21483966708183289, -0.25606104731559753, 0.07618124037981033, 0.182511568069458, 0.04465482383966446, -0.2624448239803314, 0.25805002450942993, 0.052435196936130524, -0.24767149984836578, -0.11752429604530334, -0.2869986295700073, -0.3177371919155121, -0.05459476262331009, 0.29221975803375244, -0.1741597056388855, -0.31211626529693604, 0.1548203080892563, 0.1175687164068222, 0.5219110250473022, -0.3469552993774414, -0.4283789098262787, -0.10553549975156784, -0.24664384126663208, -0.33287274837493896, 0.0004457322647795081, 0.6615573167800903, 0.15184397995471954, 0.27380967140197754, -0.06654790043830872, -0.27348917722702026, 0.018518172204494476, -0.35130247473716736, 0.20384648442268372, -0.21122929453849792, 0.3707542419433594, -0.18827003240585327, 0.14625518023967743, 0.12491005659103394, -0.19291016459465027, -0.09400718659162521, -0.7298651933670044, -0.1402025818824768, -0.1654224991798401, 0.08745479583740234, -0.08372745662927628, -0.3110302686691284, -0.5655398964881897, -0.21926963329315186, -0.07602916657924652, 0.44120368361473083, 0.07930546253919601, 0.07645995914936066, 0.3570251762866974, 0.19043149054050446, 0.022289926186203957, 0.3863987922668457, -0.25528407096862793, -0.15553462505340576, -0.08336951583623886, 0.3025318682193756, 0.07705090939998627, -0.09850967675447464, 0.011152331717312336, -0.18823210895061493, 0.03944055363535881, 0.015148813836276531, -0.7059181332588196, 0.3068467080593109, 0.2903669476509094, 0.25974154472351074, 0.09256760776042938, -0.38364991545677185, 0.24977822601795197, -0.19923615455627441, -0.03310215100646019, 0.007221874315291643, -0.13477696478366852, 0.351995587348938, 0.11038544028997421, 0.025062430649995804, 0.08066930621862411, -0.1839892864227295, 0.10302574932575226, 0.6840961575508118, -0.2482760101556778, 0.003613268956542015, 0.021354269236326218, 0.18164701759815216, -0.013137690722942352, -0.16980941593647003, -0.12966670095920563, -0.24484719336032867, -0.24657082557678223, -0.45850303769111633, 0.5736467242240906, -0.05931457132101059, -0.593235433101654, -0.12987513840198517, -0.09800765663385391, 0.008136484771966934, -0.3383714556694031, 0.44114553928375244, 0.20716428756713867, 0.3476291596889496, 0.02309432439506054, -0.1251211017370224, -0.18637625873088837, -0.19506776332855225, 0.05060965195298195, -0.22795549035072327, 0.22617876529693604, 0.046655308455228806, -0.17565469443798065, -0.1343146711587906, -0.3552812337875366, 0.3489295542240143, 0.25511905550956726, 0.17490261793136597, -0.3630933463573456, -0.07558828592300415, 0.022709662094712257, -0.22196900844573975, 0.33170247077941895, -0.17793335020542145, -0.009399414993822575, 0.2630961835384369, 0.03962855413556099, 0.29767727851867676, -0.035160500556230545, -0.3403727412223816, -0.056759703904390335, 0.5999391674995422, 0.5400305986404419, -0.23751667141914368, 0.10115964710712433, 0.09148001670837402, 0.12423525750637054, -0.1108565703034401, 0.21907727420330048, -0.12448418140411377, -0.157526895403862, -0.05398077517747879, 0.14336653053760529, 0.16325347125530243, -0.14060327410697937, -0.2619321644306183, 0.16163255274295807, 0.3779694736003876, 0.22005726397037506, 0.26346638798713684, 0.04311908408999443, 0.18487146496772766, -0.07373251020908356, 0.08359600603580475, 0.4948543906211853, -0.05579350143671036, 0.37229371070861816, 0.5668671131134033, 0.05743463337421417, 0.4507495164871216, 0.23353655636310577, -0.16804338991641998, 0.3974842429161072, 0.8063251972198486, 0.14051902294158936, 0.06112049147486687, 0.07956370711326599, 0.07675745338201523, -0.3686739504337311, 0.16794873774051666, 0.34052538871765137, 0.0315883494913578, -0.2728307247161865, -0.30242055654525757, 0.4311407506465912, 0.16697615385055542, -0.10419325530529022, 0.3814062476158142, -0.20486938953399658, -0.26114121079444885, 0.5249563455581665, -0.16674797236919403, 1.1697314977645874, 0.13682472705841064, 0.29934924840927124, 0.08099772781133652, 0.419116735458374, 0.19005732238292694, -0.48842158913612366, 0.1485394537448883, 0.01819085143506527, 0.03972926363348961, -0.14417904615402222, -0.1387220323085785, 0.047332633286714554, 0.15482133626937866, -0.31101006269454956, 0.11738565564155579, 0.39085349440574646, -0.02343316562473774, -0.02941943146288395, 0.3881385028362274, 0.12132289260625839, -0.0899505615234375, 0.22960470616817474, 0.03451179340481758, 0.14061856269836426, -0.02711952105164528, 0.043583136051893234, -0.2933673858642578, -0.42278194427490234, -0.10698464512825012, -0.26749008893966675, -0.0756567120552063, -0.3035304546356201, 0.06499259173870087, -0.10642267018556595, -0.33920982480049133, 0.14191070199012756, -0.020705685019493103, -0.27131274342536926, 0.038826022297143936, -0.14737701416015625, 0.15149566531181335, -0.2022617757320404, 0.08593859523534775, 0.14814607799053192, -0.0872521847486496, 0.2579508423805237, 0.14090178906917572, -0.2104293256998062, -0.14714115858078003, -0.07716744393110275, -0.2018413543701172, -0.44170138239860535, -0.3046224117279053, 0.06850910931825638, -0.15610258281230927, 0.17711269855499268, 0.23173420131206512, -0.26455649733543396, -0.15440750122070312, 0.09706170111894608, -0.01957070268690586, -0.27397117018699646, 0.018657054752111435, 0.010625042952597141, -0.23780769109725952, -0.24210895597934723, 0.22058764100074768, -0.1942070722579956, 0.3820817470550537, 0.41248974204063416, 0.34962335228919983, 0.08176252990961075, -0.21939128637313843, 0.2541915476322174, -0.17682962119579315, -0.2578897476196289, 0.1494481861591339, -0.05521329864859581, -0.13528801500797272, -0.3229972720146179, 0.45711642503738403, 0.4444957673549652, -0.025733614340424538, -0.08926428109407425, -0.08309214562177658, 0.20626109838485718, 0.28407222032546997, 0.24988922476768494, 0.4437868893146515, -0.08976093679666519, -0.007929753512144089, -0.09504669904708862, 0.21255648136138916, -0.24109402298927307, 0.054275088012218475, -0.2605374753475189, 0.018840132281184196, -0.0955621674656868, -0.1735624521970749, 0.16202600300312042, -0.10368102788925171, -0.030338063836097717, 0.2714054584503174, 0.04786049947142601, -0.09932060539722443, -0.002333752578124404, 0.21611450612545013, 0.04341728240251541, -0.04598155617713928, -0.03247656673192978, 0.09885706007480621, 0.16137616336345673, 0.016263308003544807, 0.028270242735743523, -0.09494781494140625, 0.10343938320875168, -0.2527860105037689, 0.0637742280960083, 0.017149530351161957, -0.2364719808101654, 0.18096758425235748, 0.02994784526526928, 0.4296180009841919, -0.08236345648765564, 0.20041224360466003, -0.07349060475826263, -0.02539636939764023, 0.002416096394881606, 0.2037973403930664, 0.044808972626924515, -0.023037228733301163, 0.1332613080739975, -0.1504480540752411, 0.10106676816940308, -0.03395122289657593, 0.47991833090782166, 0.3069321811199188, -0.33843958377838135, 0.06593761593103409, -0.024124054238200188, 0.10520044714212418, -0.13859662413597107, -0.2768111228942871, 0.17256052792072296, -0.1998487263917923, 0.009590315632522106, 0.44957178831100464, 0.7169885039329529, 0.07630684226751328, -0.012504343874752522, -0.028908083215355873, -0.11710945516824722, 0.1782933920621872, 0.09389928728342056, 0.2932699918746948, -0.3195461928844452, 0.13398145139217377, 0.05405043810606003, 0.2150760143995285, 0.23834840953350067, -0.05193152651190758, 0.06294245272874832, -0.0008561530848965049, -0.08677073568105698, 0.2609275281429291, -0.24248206615447998, -0.4443643391132355, -0.19591940939426422, 0.18454517424106598, 0.13590173423290253, 0.37290051579475403, 0.009673802182078362, 0.7265557646751404, -0.5254346132278442, -0.13998444378376007, -0.1681555062532425, 0.11444959044456482, -0.12957324087619781, 0.05287407338619232, -0.4104488492012024, -0.2534974217414856, -0.7404462099075317, 0.2486051619052887, -0.03491632640361786, 0.03422476723790169, -0.20497798919677734, 0.22943973541259766, -0.16140146553516388, 0.1850539594888687, 0.18645212054252625, -0.4132702350616455, 0.2457101196050644, -0.3718053996562958, 0.33575424551963806, 0.17537684738636017, 0.08001439273357391, 0.17875444889068604, 0.20186179876327515, 0.2501915693283081, -0.26732558012008667, -0.28641411662101746, 0.06128667667508125, -0.18970003724098206, -0.05082382634282112, -0.03771763667464256, 0.31494465470314026, 0.13425634801387787, -0.019859015941619873, 0.41707074642181396, 0.0201171413064003, -0.04885159060359001, 0.2668665647506714, 0.3733464777469635, 0.25905153155326843, -0.13695068657398224, 0.40883100032806396, -0.2147061675786972, -0.25093594193458557, -0.2189856767654419, -0.20407624542713165, -0.2603701949119568, 0.1423446387052536, 0.34177395701408386, -0.23626965284347534, 0.0739111453294754, -0.04585262015461922, 0.0226540919393301, -0.19436970353126526, 0.613635778427124, 0.1349557489156723, 0.30155614018440247, -0.4537060260772705, -0.18685096502304077, -0.45649388432502747, 0.06264284998178482, -0.2675773799419403, 0.13785330951213837, 0.15337342023849487, 0.09832753986120224, 0.3756081461906433, 0.33722004294395447, -0.08962062001228333, 0.08608192950487137, -0.3630813956260681, 0.18579712510108948, -0.36471259593963623, 0.20505475997924805, -0.29187798500061035, 0.042390886694192886, 0.04486265778541565, -0.15484283864498138, 0.13354623317718506, -0.13258464634418488, -0.16128146648406982, 0.09111733734607697, -0.2634662985801697, 0.11952467262744904, 0.7089610695838928, 0.27304622530937195, -0.13855625689029694, 0.5048612952232361, 0.04496240243315697, 0.07104534655809402, 0.030807456001639366, -0.20314200222492218, -0.19387571513652802, 0.1018584594130516, -0.304217129945755, 0.26397982239723206, -0.2278984785079956, -0.13102766871452332, -0.0010580237722024322, -0.22715653479099274, -0.05901101976633072, -0.020483164116740227, -0.18817134201526642, -0.2876838147640228, -0.37682732939720154, -0.10037949681282043, 0.3555050790309906, 0.5817750096321106, -0.0689636692404747, -0.2167634516954422, -0.1972566843032837, 0.02183496206998825, 0.5056432485580444, 0.07838355004787445, -0.0010334954131394625, 0.0162263922393322, 0.06201251596212387, 0.622661292552948, 0.10652191936969757, -0.4134064018726349, -0.10987977683544159, 0.21437405049800873, 0.18306435644626617, -0.15425051748752594, 0.001152024487964809, 0.15770719945430756, -0.009703061543405056, -0.028475068509578705, 0.5589559078216553, 0.030184535309672356, -0.1919054388999939, 0.0709359347820282, -0.22029514610767365 ]
https://github.com/huggingface/datasets/issues/274
PG-19
Ohh nevermind, I think I can use `download_custom` here with `listdir` as the custom function. Ok, I'll keep trying to make the dummy data work!
Hi, and thanks for all your open-sourced work, as always! I was wondering if you would be open to adding PG-19 to your collection of datasets. https://github.com/deepmind/pg19 It is often used for benchmarking long-range language modeling.
25
PG-19 Hi, and thanks for all your open-sourced work, as always! I was wondering if you would be open to adding PG-19 to your collection of datasets. https://github.com/deepmind/pg19 It is often used for benchmarking long-range language modeling. Ohh nevermind, I think I can use `download_custom` here with `listdir` as the custom function. Ok, I'll keep trying to make the dummy data work!
[ -0.4496191143989563, -0.03256100043654442, -0.24153469502925873, 0.011325977742671967, 0.019667822867631912, -0.2363707274198532, 0.32533276081085205, 0.255472868680954, 0.3786717653274536, 0.13758958876132965, -0.14073072373867035, 0.12346838414669037, -0.2844293415546417, 0.6086753606796265, 0.24809259176254272, -0.1724565476179123, 0.1320280283689499, 0.14125894010066986, 0.02298806607723236, -0.03596772253513336, -0.327850878238678, 0.1621125042438507, 0.015688249841332436, -0.10666409879922867, 0.09940124303102493, -0.0518362820148468, -0.14558632671833038, 0.11187268793582916, -0.20362810790538788, -0.23971624672412872, 0.01958809792995453, 0.2489384412765503, 0.08734701573848724, 0.3737567663192749, -0.00009904241596814245, -0.1411963403224945, 0.1471232920885086, -0.1750645488500595, -0.16810081899166107, -0.17707911133766174, 0.008781464770436287, -0.15892502665519714, -0.35056060552597046, -0.07190430909395218, -0.2097429484128952, -0.18477897346019745, -0.074727363884449, -0.21739646792411804, -0.0259989146143198, 0.1759340465068817, 0.33317700028419495, 0.1625521183013916, -0.07659987360239029, -0.19708922505378723, 0.3186579942703247, 0.20531977713108063, -0.30262595415115356, 0.10414357483386993, 0.5350350737571716, 0.05754160135984421, 0.2266918271780014, 0.14728716015815735, -0.13924460113048553, -0.08710924535989761, 0.10388608276844025, 0.01639813557267189, 0.33580121397972107, -0.1456787884235382, -0.03258843719959259, 0.437043160200119, 0.2743552625179291, -0.22263754904270172, -0.14066968858242035, -0.17406916618347168, -0.2891647517681122, -0.5619825720787048, -0.17799383401870728, 0.02586445026099682, -0.11503677070140839, 0.17474837601184845, 0.12535330653190613, -0.23637577891349792, -0.11890299618244171, 0.10200240463018417, -0.1371811330318451, 0.5368193984031677, 0.12390466779470444, -0.18563786149024963, 0.26360052824020386, -0.2258601188659668, -0.22719204425811768, -0.3083097040653229, -0.033455993980169296, -0.2204841822385788, 0.024958690628409386, -0.30717065930366516, 0.08112329989671707, -0.026381799951195717, 0.24977973103523254, 0.06119956821203232, 0.40357598662376404, 0.37410032749176025, -0.0422346256673336, -0.03191951662302017, 0.0785554051399231, 0.16759848594665527, -0.026159990578889847, 0.11106179654598236, 0.11657247692346573, 0.12754034996032715, 0.09288761764764786, 0.2510777711868286, -0.019871056079864502, 0.22661495208740234, -0.31013959646224976, 0.1070982962846756, -0.25004661083221436, -0.1984441727399826, -0.17382901906967163, 0.10369110852479935, 0.08536095917224884, -0.004556325264275074, 0.10780064016580582, 0.305463969707489, -0.008342085406184196, 0.09052041172981262, -0.22021831572055817, 0.13062702119350433, -0.12802603840827942, -0.4333171844482422, -0.14333386719226837, 0.13601140677928925, -0.18820129334926605, -0.060578156262636185, 0.24250458180904388, 0.20055639743804932, 0.05583007261157036, 0.06556325405836105, 0.22429443895816803, 0.22395059466362, 0.4162149727344513, -0.39345213770866394, 0.2677247226238251, -0.023854177445173264, -0.013510401360690594, -0.2324434518814087, -0.027121974155306816, -0.2948923707008362, -0.4005904495716095, 0.12512372434139252, 0.17659975588321686, -0.09665501862764359, -0.05185439810156822, 0.28997185826301575, -0.285076379776001, -0.22686514258384705, -0.1316843032836914, 0.6907505393028259, -0.352103054523468, -0.24084126949310303, -0.00024948507780209184, -0.09816286712884903, -0.3826606571674347, -0.16781534254550934, -0.06826366484165192, 0.22304970026016235, -0.7102314233779907, -0.0014370647259056568, -0.08816523104906082, 0.0876411572098732, 0.12219058722257614, 0.14798860251903534, -0.12217488884925842, -0.05697474256157875, -0.1786094754934311, 0.4285408854484558, -0.007387174293398857, 0.06345529854297638, -0.13865816593170166, 0.04797197878360748, -0.17623892426490784, -0.023858852684497833, 0.0830366387963295, 0.2448209971189499, 0.2663952112197876, -0.17047590017318726, -0.20567214488983154, 0.355973482131958, 0.10173457115888596, -0.04718230292201042, -0.2808576226234436, -0.22308361530303955, 0.37212714552879333, 0.27329719066619873, 0.024575429037213326, -0.3738010823726654, -0.020069262012839317, -0.17205600440502167, 0.2108670473098755, -0.35054758191108704, -0.1919388473033905, 0.13635092973709106, 0.3697642385959625, -0.09018340706825256, 0.02717272937297821, -0.11428486555814743, -0.3181374669075012, 0.2242148369550705, -0.16260971128940582, 0.25299331545829773, 0.1391376405954361, -0.01024366170167923, -0.18966388702392578, 0.20221967995166779, 0.1474493145942688, -0.09282966703176498, 0.26756271719932556, 0.30866584181785583, 0.04511723294854164, 0.14654168486595154, 0.004035576246678829, -0.17007656395435333, -0.08285863697528839, -0.21456806361675262, -0.048216313123703, 0.16887834668159485, 0.04465433955192566, -0.08213899284601212, 0.07336503267288208, 0.0036327035631984472, 0.05826928839087486, -0.04833849519491196, 0.09671293944120407, -0.010171644389629364, 0.056885793805122375, 0.10587432980537415, 0.3047047555446625, 0.428417831659317, 0.11857854574918747, -0.18440374732017517, 0.2336854636669159, 0.35890528559684753, 0.0456295982003212, -0.1627826988697052, -0.11024199426174164, 0.7311080098152161, 0.0216264259070158, 0.08308573067188263, -0.0175758209079504, -0.09846492856740952, 0.16341309249401093, -0.012995717115700245, -0.0342785082757473, -0.06884054839611053, 0.6526180505752563, -0.042735230177640915, 0.21940894424915314, 0.05514486879110336, -0.23673227429389954, 0.329103022813797, 0.27104389667510986, -0.3213001787662506, 0.3904018998146057, 0.1643797904253006, 0.021710822358727455, -0.3258359730243683, 0.23713143169879913, 0.08658604323863983, 0.3153597414493561, 0.3786853551864624, 0.20127969980239868, -0.05511482059955597, -0.03956594690680504, -0.12765683233737946, 0.513776957988739, -0.1240723505616188, -0.19210311770439148, 0.14317308366298676, 0.1666230857372284, -0.2695824205875397, -0.2591988742351532, -0.02744855172932148, -0.08196265995502472, 0.05179446190595627, 0.023128380998969078, 0.08825168758630753, -0.16530728340148926, -0.1684926152229309, 0.1481921374797821, -0.2837993800640106, -0.3677748441696167, -0.11337348818778992, 0.20648305118083954, -0.1017499715089798, -0.3563190996646881, 0.17457519471645355, 0.05030189827084541, 0.43899214267730713, -0.30198150873184204, -0.3839161992073059, -0.0820416584610939, -0.1343022584915161, -0.16649606823921204, 0.24285604059696198, 0.27449071407318115, 0.04891787841916084, 0.33001208305358887, -0.009104224853217602, 0.07316241413354874, -0.043029144406318665, -0.3479771018028259, 0.17181135714054108, -0.05937008559703827, 0.19500643014907837, 0.06254132837057114, 0.10530295222997665, 0.14942017197608948, -0.07894494384527206, 0.027824675664305687, -0.5253397822380066, -0.09801896661520004, -0.1136683002114296, -0.1326742321252823, 0.001823054044507444, -0.24414506554603577, -0.14847159385681152, -0.41978129744529724, -0.41716185212135315, 0.15122072398662567, 0.27604395151138306, 0.10071457922458649, 0.11917730420827866, 0.23996777832508087, 0.08590172976255417, 0.25486016273498535, -0.12752941250801086, -0.3787025213241577, -0.22747239470481873, 0.35529598593711853, -0.1580529510974884, -0.13724203407764435, -0.30943408608436584, -0.3070884943008423, 0.11155827343463898, 0.011998963542282581, -0.40528538823127747, 0.12840427458286285, 0.17927111685276031, 0.2972586154937744, 0.02156936004757881, -0.2398800104856491, 0.3363257646560669, 0.0931689441204071, -0.17023728787899017, -0.16677719354629517, -0.19328485429286957, 0.14372773468494415, -0.12392662465572357, 0.054155342280864716, 0.02574159763753414, -0.14173099398612976, 0.12665145099163055, 0.6686888933181763, -0.31443676352500916, -0.12966184318065643, 0.31661349534988403, 0.2104552686214447, 0.11629672348499298, -0.1307315081357956, -0.13261178135871887, -0.2857695519924164, -0.0050992402248084545, -0.21975527703762054, 0.4992225468158722, -0.03305183723568916, -0.6249345541000366, -0.18222714960575104, -0.01184672862291336, 0.12655672430992126, 0.03618228808045387, 0.3441406786441803, 0.26901915669441223, 0.1792859584093094, 0.05257190018892288, -0.025791874155402184, -0.48496824502944946, -0.19256556034088135, 0.1623876392841339, -0.3692139983177185, -0.10430394858121872, -0.14462703466415405, -0.3234773278236389, 0.2503587007522583, -0.37762296199798584, 0.49713924527168274, 0.23450614511966705, -0.13974420726299286, -0.2826574146747589, -0.1146581843495369, -0.1458333432674408, -0.1570805013179779, 0.10016287863254547, -0.3264566957950592, -0.05543479323387146, 0.21933682262897491, -0.08011285960674286, 0.009402384981513023, 0.1120513454079628, -0.3385164141654968, -0.23007945716381073, 0.4436785876750946, 0.28354379534721375, -0.36005133390426636, 0.11661554872989655, 0.021960200741887093, 0.2847561538219452, -0.017644863575696945, 0.05404482036828995, -0.08348513394594193, -0.265290766954422, -0.022180108353495598, 0.14553670585155487, 0.020941462367773056, -0.04758301004767418, 0.009708696976304054, 0.034879352897405624, 0.11635766923427582, 0.17145879566669464, 0.3515792191028595, 0.014124559238553047, 0.055483296513557434, 0.048780545592308044, 0.10674537718296051, -0.02339520864188671, -0.030520519241690636, 0.15367624163627625, 0.37484046816825867, -0.154554083943367, -0.02655431255698204, 0.029690302908420563, -0.257840096950531, 0.16938526928424835, 0.4453938603401184, 0.16845150291919708, 0.18752145767211914, -0.26787471771240234, 0.07853914052248001, -0.36953064799308777, -0.0039598047733306885, 0.07492154836654663, 0.11941712349653244, -0.09367277473211288, -0.3885667324066162, 0.28777506947517395, 0.03607556223869324, -0.19673068821430206, 0.3596978187561035, -0.38177773356437683, -0.14037588238716125, 0.5071075558662415, 0.17153984308242798, 1.0697427988052368, 0.1382470428943634, 0.22775059938430786, 0.26901090145111084, -0.11231666803359985, 0.17693088948726654, -0.1013675257563591, 0.014101437292993069, -0.09035821259021759, -0.10908365249633789, -0.0040300944820046425, -0.11639967560768127, 0.01254518236964941, 0.23084937036037445, -0.3814270496368408, 0.21438749134540558, 0.18741390109062195, -0.0433947890996933, 0.14304013550281525, 0.23987478017807007, 0.15238896012306213, -0.13144700229167938, -0.08729854226112366, 0.30383703112602234, 0.08884329348802567, -0.23565399646759033, -0.08984647691249847, -0.24454593658447266, -0.16786734759807587, 0.014744428917765617, -0.3042562007904053, 0.0222697164863348, -0.2616692781448364, -0.024637924507260323, -0.2143445461988449, -0.38729068636894226, -0.010474943555891514, 0.043758079409599304, -0.13702315092086792, 0.12695114314556122, -0.11299019306898117, 0.08242647349834442, -0.04165997728705406, 0.2649959623813629, 0.17309266328811646, -0.27017536759376526, 0.06557821482419968, -0.09696933627128601, -0.1505323201417923, 0.05454520508646965, 0.09003160893917084, -0.29732221364974976, -0.4159226715564728, -0.06746504455804825, 0.23152472078800201, -0.039944954216480255, 0.09126698970794678, 0.052636418491601944, -0.05331634730100632, -0.26088881492614746, 0.2784076929092407, 0.15914852917194366, -0.11420693248510361, -0.0012000281130895019, 0.011547593399882317, -0.11318917572498322, -0.3527476489543915, 0.0943329706788063, -0.03671807795763016, 0.11038517951965332, 0.21886925399303436, 0.2783348262310028, -0.16156896948814392, -0.3992879390716553, 0.23033517599105835, -0.40401071310043335, -0.25516438484191895, 0.23465010523796082, -0.1682869791984558, -0.4499289393424988, -0.2994423806667328, 0.18277987837791443, 0.3982261121273041, 0.026737138628959656, 0.03624991327524185, -0.14062461256980896, -0.1324995756149292, -0.026372412219643593, 0.19789071381092072, 0.20397266745567322, -0.25252678990364075, -0.24089032411575317, -0.12476915866136551, 0.03010493330657482, -0.5307038426399231, 0.04592573270201683, -0.2104511559009552, -0.10872011631727219, -0.13189758360385895, -0.1910294145345688, -0.00013021497579757124, 0.05293714255094528, 0.17014329135417938, 0.13026884198188782, -0.3670070469379425, -0.33626657724380493, -0.24665014445781708, 0.09479911625385284, -0.18985824286937714, 0.020323779433965683, 0.17460688948631287, 0.07297487556934357, 0.025457588955760002, 0.02353721484541893, -0.14505040645599365, 0.004743864294141531, 0.014272540807723999, 0.04407304525375366, 0.16072246432304382, -0.017969245091080666, -0.10783029347658157, 0.11824429035186768, 0.1625707894563675, 0.4822969436645508, 0.028404153883457184, 0.20594187080860138, 0.005525080021470785, -0.17508496344089508, 0.13491788506507874, 0.1915425956249237, 0.09708909690380096, -0.05271005257964134, 0.3109687864780426, 0.15186148881912231, -0.0850277915596962, 0.23784315586090088, 0.4349472224712372, 0.06670146435499191, -0.26148203015327454, 0.16746462881565094, 0.24047960340976715, 0.3586173355579376, -0.35053396224975586, -0.3663562834262848, 0.26995569467544556, -0.057104967534542084, 0.20113953948020935, 0.2634994685649872, 0.5090160965919495, 0.05599386245012283, 0.3693818747997284, -0.043278370052576065, -0.020840836688876152, 0.09141697734594345, -0.003949910867959261, 0.18690793216228485, -0.16546949744224548, 0.03501968830823898, 0.11755001544952393, 0.19319979846477509, 0.15324246883392334, 0.15453176200389862, 0.08829918503761292, 0.29969727993011475, -0.0034259138628840446, 0.1333683729171753, -0.034618206322193146, -0.26290035247802734, 0.21509581804275513, 0.31946688890457153, 0.07757741957902908, 0.45731815695762634, 0.21477822959423065, 0.4042340815067291, -0.356739342212677, 0.011296534910798073, -0.2824985980987549, 0.11342506855726242, -0.04335423931479454, 0.030509868636727333, -0.09572461992502213, -0.25501424074172974, -0.6515781283378601, 0.10207708179950714, 0.05943867564201355, -0.10263308882713318, -0.02177881821990013, 0.1016775369644165, 0.18458765745162964, 0.06759994477033615, 0.018112787976861, -0.16487666964530945, 0.14800004661083221, -0.3413234055042267, 0.1909482181072235, 0.3641977906227112, 0.07046068459749222, 0.1655329167842865, 0.2569616734981537, 0.19406163692474365, -0.03387533128261566, -0.4499939978122711, 0.007520109880715609, -0.29525792598724365, -0.027349058538675308, -0.40369755029678345, 0.2954619228839874, 0.1795179843902588, 0.08728956431150436, 0.5714365839958191, 0.21343082189559937, -0.32865414023399353, 0.16668328642845154, 0.2962336242198944, -0.023502787575125694, -0.25222137570381165, 0.46533480286598206, 0.11421254277229309, -0.19699209928512573, -0.3033171594142914, -0.11753100901842117, -0.2748636305332184, 0.09195167571306229, 0.3361842930316925, -0.07737652212381363, 0.13982902467250824, -0.12191752344369888, 0.17880943417549133, -0.18846265971660614, 0.47743237018585205, 0.05185409635305405, 0.394180029630661, -0.3209950923919678, -0.12592175602912903, -0.4690098464488983, 0.29988643527030945, -0.24836678802967072, 0.024124497547745705, -0.07139301300048828, 0.09258082509040833, 0.5485864877700806, 0.44477298855781555, -0.057630714029073715, 0.23186007142066956, -0.216725155711174, 0.25892943143844604, -0.5738062858581543, 0.26761454343795776, -0.011865781620144844, 0.08884241431951523, 0.1441945731639862, -0.33716052770614624, -0.03355732560157776, 0.003161103930324316, 0.2609310746192932, -0.1328391432762146, -0.3144960403442383, 0.053510721772909164, 0.3894992172718048, 0.4873793423175812, -0.06532403081655502, 0.3704746961593628, -0.2717779874801636, -0.21417245268821716, 0.1481594443321228, 0.0041303313337266445, -0.08751671761274338, 0.006609802599996328, 0.08123172074556351, 0.2170921415090561, -0.2944076359272003, -0.23097088932991028, 0.03867079317569733, 0.007021971512585878, 0.01987660489976406, 0.004748673178255558, -0.2540017068386078, -0.0574081651866436, -0.1479104459285736, -0.10702895373106003, -0.03978055343031883, 0.47930851578712463, -0.05683702602982521, -0.009118723683059216, -0.1438843160867691, 0.0460425540804863, 0.4239738881587982, 0.07319055497646332, -0.2884410321712494, -0.05709411948919296, -0.027156421914696693, 0.2436552792787552, 0.03644385561347008, -0.28757938742637634, 0.1055404469370842, 0.19280293583869934, 0.2369605004787445, -0.06719773262739182, 0.16316501796245575, -0.054259516298770905, 0.08807608485221863, -0.07869661599397659, 0.44978201389312744, 0.1118273213505745, -0.16345128417015076, -0.049863237887620926, -0.2840101420879364 ]
https://github.com/huggingface/datasets/issues/263
[Feature request] Support for external modality for language datasets
Thanks a lot, @aleSuglia for the very detailed and introductive feature request. It seems like we could build something pretty useful here indeed. One of the questions here is that Arrow doesn't have built-in support for generic "tensors" in records but there might be ways to do that in a clean way. We'll probably try to tackle this during the summer.
# Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it!
61
[Feature request] Support for external modality for language datasets # Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it! Thanks a lot, @aleSuglia for the very detailed and introductive feature request. It seems like we could build something pretty useful here indeed. One of the questions here is that Arrow doesn't have built-in support for generic "tensors" in records but there might be ways to do that in a clean way. We'll probably try to tackle this during the summer.
[ 0.000057860739616444334, -0.14249958097934723, -0.10484323650598526, -0.11375981569290161, -0.020863497629761696, -0.2757302224636078, 0.35704636573791504, 0.161989226937294, -0.17019517719745636, -0.11541056632995605, -0.10623959451913834, 0.37419751286506653, -0.23276984691619873, 0.024785831570625305, 0.2276579588651657, -0.16313783824443817, 0.11561074107885361, 0.020651236176490784, 0.17515626549720764, 0.037741754204034805, -0.08029590547084808, -0.18629920482635498, -0.09968911856412888, 0.015808546915650368, -0.15434393286705017, -0.006553060840815306, -0.2325277477502823, -0.06639524549245834, 0.01744546927511692, -0.156731516122818, -0.4168613851070404, 0.17751136422157288, -0.006496134214103222, -0.058712612837553024, -0.00010538899368839338, 0.041064947843551636, 0.05086589977145195, -0.15447992086410522, -0.06360645592212677, -0.2922307848930359, -0.17180591821670532, -0.5856841206550598, -0.005183955188840628, -0.21386685967445374, 0.16897645592689514, -0.26110216975212097, 0.30336636304855347, -0.015454488806426525, 0.21995747089385986, 0.04244837537407875, 0.23387333750724792, 0.16196554899215698, 0.05709730088710785, 0.31448349356651306, 0.17907902598381042, 0.7218412160873413, -0.1756500005722046, -0.026227908208966255, 0.3759554922580719, -0.19800706207752228, -0.1714315265417099, 0.5319550633430481, 0.07072730362415314, -0.17268803715705872, 0.10479655861854553, -0.1554221510887146, -0.07425439357757568, -0.18622642755508423, -0.18268220126628876, 0.26961907744407654, 0.5540595650672913, -0.09467992931604385, -0.3956744074821472, -0.2771701216697693, 0.10153606534004211, 0.21204394102096558, -0.14912274479866028, 0.4695758521556854, -0.08470430225133896, 0.2618878483772278, -0.14117376506328583, -0.41724687814712524, -0.22692734003067017, 0.40050244331359863, -0.010741391219198704, -0.11447352170944214, 0.11392760276794434, 0.10642559081315994, 0.12712347507476807, -0.13947491347789764, 0.2405344396829605, -0.08524159342050552, 0.19741718471050262, 0.13847047090530396, 0.11991805583238602, -0.14774426817893982, 0.09294075518846512, -0.07566212117671967, 0.10103735327720642, -0.13798707723617554, 0.01419343613088131, 0.16521777212619781, -0.6861984729766846, 0.37200039625167847, 0.1384754627943039, -0.3171004354953766, -0.346637487411499, 0.15517252683639526, 0.29852238297462463, -0.057959407567977905, -0.02686517871916294, -0.037867166101932526, 0.016913387924432755, 0.04408812150359154, -0.3268452286720276, 0.00009457940177526325, 0.10693427175283432, -0.0153923649340868, -0.09738096594810486, -0.2925390899181366, -0.24316489696502686, 0.05811284855008125, -0.026100365445017815, -0.07544058561325073, 0.23163245618343353, 0.29516077041625977, -0.010326618328690529, 0.23807598650455475, 0.005101911257952452, -0.688583254814148, 0.06887876242399216, 0.08224218338727951, -0.450743705034256, 0.11295702308416367, 0.019686413928866386, 0.576988935470581, 0.10568461567163467, 0.02247140370309353, 0.07950716465711594, -0.05892649292945862, 0.11541950702667236, -0.3274693489074707, 0.09448724240064621, 0.01460972335189581, -0.3158082365989685, -0.2822079658508301, -0.0010035271989181638, 0.22869260609149933, -0.19302871823310852, -0.09520211070775986, 0.013752913102507591, -0.20002056658267975, -0.1908559799194336, 0.1217755451798439, -0.07179078459739685, 0.03978685662150383, 0.3123776912689209, 0.9068842530250549, -0.33208656311035156, -0.4840671718120575, -0.03723129257559776, -0.03652673959732056, -0.32463666796684265, -0.1530090868473053, -0.10833153873682022, 0.25359949469566345, -0.42064666748046875, -0.14578954875469208, 0.021455856040120125, -0.07829170674085617, -0.07302717119455338, 0.2533951997756958, -0.3021765351295471, -0.061936765909194946, 0.07331503182649612, -0.14393025636672974, 0.42248645424842834, -0.2967078685760498, -0.21420544385910034, 0.19423291087150574, 0.0423237681388855, 0.2526317834854126, -0.04389001056551933, 0.39999690651893616, -0.01888682320713997, -0.13815012574195862, 0.12124097347259521, 0.7113153338432312, -0.15096834301948547, 0.05194530263543129, -0.19383011758327484, -0.3600859045982361, 0.26589280366897583, 0.42295536398887634, 0.013050107285380363, -0.3205803334712982, 0.6397945880889893, -0.0006153924041427672, 0.10155680030584335, -0.2774530053138733, 0.12146109342575073, -0.19341151416301727, 0.2937178909778595, -0.05628791078925133, -0.14273053407669067, -0.27559974789619446, -0.22721771895885468, 0.0019213557243347168, -0.27046558260917664, 0.2816797196865082, -0.16634638607501984, -0.0009557513985782862, 0.20897899568080902, -0.13932356238365173, 0.09564221650362015, 0.004168387036770582, 0.2037205547094345, 0.10114055871963501, -0.4169176518917084, 0.2500482499599457, -0.09020821750164032, 0.025192098692059517, -0.09754271060228348, 0.03883814811706543, 0.18151581287384033, 0.25944259762763977, 0.013802275992929935, 0.1161566749215126, 0.098460353910923, 0.524605393409729, -0.22382564842700958, 0.036736808717250824, 0.03219606354832649, -0.0006298142834566534, 0.19920147955417633, 0.4802197217941284, -0.013226352632045746, 0.3972020745277405, 0.4809134900569916, -0.6762454509735107, 0.34888890385627747, -0.16103677451610565, 0.24483931064605713, -0.15033003687858582, -0.04259403049945831, 0.2094172239303589, 0.24884027242660522, 0.08534615486860275, -0.07931292802095413, 0.06880919635295868, 0.08538904786109924, 0.0471755675971508, -0.33720532059669495, -0.1611867994070053, -0.05505114048719406, 0.1943492591381073, 0.004932268988341093, 0.03765663132071495, -0.38167867064476013, 0.14591924846172333, 0.5345162153244019, 0.23161831498146057, 0.17994491755962372, 0.1668637990951538, -0.2088232934474945, -0.3059070110321045, 0.24508273601531982, -0.2178812325000763, 0.07305987924337387, 0.28381237387657166, -0.22414398193359375, 0.0624794065952301, -0.21292667090892792, 0.016899017617106438, 0.1520751267671585, 0.06433848291635513, 0.40038037300109863, 0.05814418941736221, 0.3798505663871765, 0.056044332683086395, -0.06564871966838837, -0.42015257477760315, -0.022113792598247528, -0.27254438400268555, 0.17469917237758636, -0.009488617070019245, -0.1893654763698578, -0.6152864098548889, -0.18430857360363007, -0.03982960805296898, -0.44525912404060364, -0.059504434466362, 0.06663066893815994, -0.2852559983730316, -0.1706150770187378, 0.07512359321117401, 0.005399676505476236, 0.378551721572876, -0.36183932423591614, -0.09956979751586914, 0.1389792412519455, -0.2604558765888214, -0.1546468436717987, 0.08434546738862991, 0.4543460011482239, 0.06109579652547836, 0.24025334417819977, 0.24544458091259003, -0.047696150839328766, -0.13308727741241455, -0.43275874853134155, 0.2702725827693939, 0.0578763410449028, 0.18861311674118042, -0.002010911703109741, -0.5663681626319885, 0.0909247025847435, -0.06574825197458267, 0.20208613574504852, 0.08892767131328583, -0.004245629534125328, -0.0664626806974411, -0.041693899780511856, 0.1243295893073082, -0.2534283399581909, 0.09377056360244751, -0.49234315752983093, -0.511980414390564, 0.3841015100479126, -0.1436411738395691, 0.16565918922424316, 0.5681465864181519, 0.09953828155994415, -0.09538708627223969, -0.017269635573029518, 0.2712104916572571, 0.030044523999094963, 0.35573917627334595, -0.05964663252234459, -0.00017112483328673989, -0.18747888505458832, -0.2881143093109131, -0.21742939949035645, 0.11924557387828827, 0.34939464926719666, -0.34743958711624146, -0.32426121830940247, 0.09537964314222336, 0.1561684012413025, 0.03912070021033287, 0.002788520883768797, 0.09059734642505646, 0.001648720819503069, -0.005602809134870768, -0.03885025531053543, 0.001058900379575789, -0.06858556717634201, 0.36937883496284485, 0.1696060597896576, 0.33224162459373474, 0.010456457734107971, 0.4449983537197113, 0.3984430730342865, -0.07358220219612122, -0.11300952732563019, 0.41049274802207947, 0.34180164337158203, 0.20316551625728607, -0.14582225680351257, -0.2318653166294098, 0.4618135690689087, -0.09981024265289307, -0.030408209189772606, 0.2845419645309448, -0.022318536415696144, -0.5936281085014343, -0.23098310828208923, -0.08084777742624283, -0.4445464313030243, -0.1934298276901245, 0.3490704596042633, -0.13693185150623322, 0.472456693649292, 0.17478007078170776, -0.5142964124679565, -0.2779097259044647, -0.08629500865936279, 0.062266185879707336, 0.0467645600438118, 0.23081088066101074, 0.0712512657046318, -0.38005998730659485, -0.08878610283136368, 0.09412886202335358, 0.0836932510137558, 0.22389347851276398, 0.2547115087509155, -0.17679078876972198, -0.1274385303258896, 0.034317925572395325, 0.11261192709207535, 0.10101468116044998, -0.3075810968875885, -0.42941921949386597, 0.13116690516471863, 0.06978923827409744, -0.23177139461040497, -0.04986405745148659, -0.14885194599628448, -0.005981172900646925, 0.1850324422121048, 0.24654413759708405, -0.002372028538957238, -0.1417338252067566, -0.006457079667598009, 0.31722813844680786, 0.04069112241268158, -0.24388647079467773, 0.12231501936912537, 0.16552871465682983, -0.23723049461841583, -0.22889412939548492, -0.13118267059326172, 0.026688016951084137, 0.24318455159664154, 0.11057130247354507, 0.044021621346473694, -0.007771940436214209, 0.11666693538427353, 0.17600619792938232, -0.18601427972316742, 0.016282211989164352, -0.15354911983013153, -0.009497595950961113, 0.20169803500175476, -0.12320506572723389, 0.28990307450294495, 0.17242023348808289, -0.24645698070526123, -0.034241512417793274, -0.20413658022880554, 0.5062913298606873, 0.3987750709056854, 0.555439293384552, 0.13408735394477844, -0.2353622168302536, -0.10005278140306473, -0.405900239944458, 0.07845453172922134, 0.1703917682170868, -0.08798237144947052, 0.09282451122999191, -0.255707710981369, 0.17792993783950806, -0.14843621850013733, -0.2434951364994049, -0.0016532752197235823, 0.11467041075229645, -0.3192114233970642, 0.4626781940460205, 0.2678561806678772, 0.9083017110824585, 0.1739369034767151, 0.37738555669784546, 0.06320249289274216, -0.1392996907234192, 0.4011537730693817, -0.5117279887199402, 0.19018079340457916, -0.24072498083114624, 0.03618043288588524, 0.02378205396234989, 0.05003289505839348, 0.09289257973432541, 0.14204590022563934, -0.09947951138019562, -0.08329875767230988, 0.6208555102348328, 0.11335881054401398, 0.1424347460269928, 0.23518651723861694, -0.040204472839832306, -0.5092386603355408, -0.05928300321102142, 0.13557910919189453, -0.17568252980709076, -0.2223033308982849, -0.14404445886611938, -0.3420352041721344, 0.08194076269865036, 0.26422518491744995, -0.21470728516578674, -0.0011315695010125637, -0.31605419516563416, 0.17083923518657684, 0.0972709208726883, 0.027449140325188637, 0.4782887399196625, 0.06529473513364792, 0.1030481830239296, -0.16767603158950806, 0.021499406546354294, -0.11214593052864075, 0.10283682495355606, 0.12899960577487946, -0.06452982872724533, -0.29938384890556335, 0.5649162530899048, -0.08502021431922913, -0.2367735356092453, 0.08304707705974579, 0.026579266414046288, -0.06789251416921616, -0.3287891149520874, -0.14087912440299988, 0.3525548279285431, 0.06926947832107544, -0.20426197350025177, 0.3383694887161255, 0.033639535307884216, 0.005678202491253614, 0.15857598185539246, 0.14956635236740112, -0.0072704763151705265, 0.25499239563941956, 0.0907110795378685, 0.09574225544929504, -0.041147422045469284, -0.16024422645568848, -0.1721549928188324, -0.06823384016752243, 0.002059024991467595, -0.03950390964746475, 0.026653900742530823, -0.20976682007312775, 0.4513888657093048, -0.16559402644634247, -0.06786061078310013, -0.2193891406059265, 0.16477656364440918, -0.19182303547859192, -0.1911371797323227, 0.04164784029126167, 0.11022830009460449, 0.012857489287853241, -0.056775931268930435, -0.3587939143180847, -0.022774050012230873, 0.4008125066757202, -0.42941614985466003, -0.05830197408795357, -0.056598201394081116, 0.15040065348148346, -0.013583318330347538, 0.45691603422164917, -0.36935552954673767, -0.062100861221551895, 0.22851353883743286, 0.24095867574214935, -0.07236463576555252, -0.3310264050960541, -0.1456674039363861, 0.08433083444833755, 0.1410643458366394, 0.16944049298763275, -0.2751307487487793, -0.16777953505516052, -0.07563765347003937, 0.15694454312324524, 0.27805837988853455, 0.09474194794893265, -0.08447673916816711, -0.3365342617034912, -0.1436418741941452, -0.14293882250785828, -0.32423198223114014, -0.14539514482021332, -0.2079687863588333, 0.42228519916534424, -0.6543205380439758, 0.2695191204547882, 0.29332631826400757, 0.09659743309020996, -0.12450675666332245, 0.3523566424846649, 0.25502461194992065, 0.09503109008073807, 0.08719684183597565, 0.10928256809711456, -0.2875727117061615, 0.2659046947956085, -0.1545007824897766, 0.0013405268546193838, 0.31092172861099243, 0.40306392312049866, 0.15975415706634521, -0.06661190837621689, 0.14760087430477142, -0.17238296568393707, -0.24061760306358337, 0.01507799793034792, 0.361527681350708, 0.2620093524456024, -0.2034405916929245, 0.08389435708522797, 0.5660724639892578, -0.16361378133296967, 0.18824833631515503, 0.14680054783821106, 0.829046368598938, 0.2113884687423706, 0.15853740274906158, -0.3222101032733917, 0.03156546875834465, -0.14683856070041656, -0.08657567948102951, -0.04591885209083557, 0.18194527924060822, 0.07934369146823883, 0.06892066448926926, 0.28309115767478943, 0.4801355004310608, 0.3831426203250885, -0.34672999382019043, 0.1410563439130783, -0.0798545628786087, 0.13514208793640137, 0.5679848194122314, -0.0949721485376358, 0.29066696763038635, 0.12865430116653442, 0.13389602303504944, 0.19713091850280762, -0.3649287819862366, 0.156490296125412, -0.09543529897928238, -0.09011877328157425, -0.024757608771324158, 0.2911914885044098, 0.1542280614376068, -0.0017625566106289625, -0.37245017290115356, -0.039304062724113464, -0.4641978144645691, 0.007182885892689228, -0.06937725841999054, 0.0064605181105434895, 0.03739475458860397, 0.2287444770336151, 0.12941066920757294, -0.15672950446605682, 0.19978775084018707, 0.2505197823047638, 0.4216551184654236, -0.23811930418014526, 0.04690466448664665, 0.034218668937683105, 0.08216243982315063, 0.11365333199501038, 0.13887593150138855, -0.025581838563084602, 0.038030728697776794, -0.38683804869651794, -0.06029430404305458, -0.3789958655834198, -0.02234409563243389, -0.1458854377269745, 0.043169040232896805, 0.14389778673648834, 0.32812079787254333, 0.35922032594680786, 0.07851467281579971, -0.14133970439434052, 0.045586876571178436, 0.05479902774095535, -0.24892668426036835, -0.312665730714798, -0.09545242786407471, 0.17730318009853363, 0.030504528433084488, -0.023133771494030952, 0.037086084485054016, -0.25344815850257874, -0.40802139043807983, 0.4324476420879364, -0.10378652811050415, -0.005123191513121128, -0.07829604297876358, 0.07439969480037689, -0.17611737549304962, -0.03673058748245239, 0.4093003571033478, 0.10285067558288574, 0.12965181469917297, -0.1955605447292328, -0.29238253831863403, -0.024753449484705925, 0.10403212904930115, -0.44621652364730835, -0.06454413384199142, 0.2829324007034302, 0.35475650429725647, 0.3475920259952545, -0.2640644907951355, 0.14053480327129364, 0.2678466737270355, -0.222752183675766, -0.13042795658111572, 0.17787578701972961, -0.10760658979415894, 0.21739013493061066, -0.1289331167936325, 0.04391808062791824, -0.08149697631597519, -0.1311275213956833, 0.08348511159420013, -0.43033644556999207, -0.13384205102920532, -0.059837471693754196, 0.2861565351486206, 0.3971822261810303, 0.17493951320648193, 0.004467673599720001, 0.03697860613465309, -0.30762627720832825, -0.11685165017843246, -0.07472460716962814, -0.07885754108428955, -0.05538638308644295, -0.09850048273801804, 0.7773544192314148, -0.2862603962421417, 0.16906851530075073, -0.024455601349473, 0.23678980767726898, -0.04506460949778557, -0.24279169738292694, -0.05080593749880791, 0.03194374591112137, -0.1385508030653, -0.06908588856458664, 0.10783351212739944, 0.4174988865852356, 0.037568964064121246, -0.1575307697057724, -0.05314359813928604, -0.14852380752563477, -0.04622716084122658, -0.24352379143238068, -0.20733395218849182, 0.28688228130340576, 0.05157400667667389, -0.1594635397195816, 0.3107646703720093, -0.43799781799316406, -0.23906908929347992, 0.33726954460144043, 0.06926369667053223, 0.09162507206201553, 0.3000227212905884, 0.2653144598007202, -0.3702753186225891, -0.1716800034046173, -0.24945801496505737, -0.2490815818309784, -0.1187172383069992, -0.12531255185604095, -0.12937358021736145 ]
https://github.com/huggingface/datasets/issues/263
[Feature request] Support for external modality for language datasets
I was looking into Facebook MMF and apparently they decided to use LMDB to store additional features associated with every example: https://github.com/facebookresearch/mmf/blob/master/mmf/datasets/databases/features_database.py
# Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it!
22
[Feature request] Support for external modality for language datasets # Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it! I was looking into Facebook MMF and apparently they decided to use LMDB to store additional features associated with every example: https://github.com/facebookresearch/mmf/blob/master/mmf/datasets/databases/features_database.py
[ 0.000057860739616444334, -0.14249958097934723, -0.10484323650598526, -0.11375981569290161, -0.020863497629761696, -0.2757302224636078, 0.35704636573791504, 0.161989226937294, -0.17019517719745636, -0.11541056632995605, -0.10623959451913834, 0.37419751286506653, -0.23276984691619873, 0.024785831570625305, 0.2276579588651657, -0.16313783824443817, 0.11561074107885361, 0.020651236176490784, 0.17515626549720764, 0.037741754204034805, -0.08029590547084808, -0.18629920482635498, -0.09968911856412888, 0.015808546915650368, -0.15434393286705017, -0.006553060840815306, -0.2325277477502823, -0.06639524549245834, 0.01744546927511692, -0.156731516122818, -0.4168613851070404, 0.17751136422157288, -0.006496134214103222, -0.058712612837553024, -0.00010538899368839338, 0.041064947843551636, 0.05086589977145195, -0.15447992086410522, -0.06360645592212677, -0.2922307848930359, -0.17180591821670532, -0.5856841206550598, -0.005183955188840628, -0.21386685967445374, 0.16897645592689514, -0.26110216975212097, 0.30336636304855347, -0.015454488806426525, 0.21995747089385986, 0.04244837537407875, 0.23387333750724792, 0.16196554899215698, 0.05709730088710785, 0.31448349356651306, 0.17907902598381042, 0.7218412160873413, -0.1756500005722046, -0.026227908208966255, 0.3759554922580719, -0.19800706207752228, -0.1714315265417099, 0.5319550633430481, 0.07072730362415314, -0.17268803715705872, 0.10479655861854553, -0.1554221510887146, -0.07425439357757568, -0.18622642755508423, -0.18268220126628876, 0.26961907744407654, 0.5540595650672913, -0.09467992931604385, -0.3956744074821472, -0.2771701216697693, 0.10153606534004211, 0.21204394102096558, -0.14912274479866028, 0.4695758521556854, -0.08470430225133896, 0.2618878483772278, -0.14117376506328583, -0.41724687814712524, -0.22692734003067017, 0.40050244331359863, -0.010741391219198704, -0.11447352170944214, 0.11392760276794434, 0.10642559081315994, 0.12712347507476807, -0.13947491347789764, 0.2405344396829605, -0.08524159342050552, 0.19741718471050262, 0.13847047090530396, 0.11991805583238602, -0.14774426817893982, 0.09294075518846512, -0.07566212117671967, 0.10103735327720642, -0.13798707723617554, 0.01419343613088131, 0.16521777212619781, -0.6861984729766846, 0.37200039625167847, 0.1384754627943039, -0.3171004354953766, -0.346637487411499, 0.15517252683639526, 0.29852238297462463, -0.057959407567977905, -0.02686517871916294, -0.037867166101932526, 0.016913387924432755, 0.04408812150359154, -0.3268452286720276, 0.00009457940177526325, 0.10693427175283432, -0.0153923649340868, -0.09738096594810486, -0.2925390899181366, -0.24316489696502686, 0.05811284855008125, -0.026100365445017815, -0.07544058561325073, 0.23163245618343353, 0.29516077041625977, -0.010326618328690529, 0.23807598650455475, 0.005101911257952452, -0.688583254814148, 0.06887876242399216, 0.08224218338727951, -0.450743705034256, 0.11295702308416367, 0.019686413928866386, 0.576988935470581, 0.10568461567163467, 0.02247140370309353, 0.07950716465711594, -0.05892649292945862, 0.11541950702667236, -0.3274693489074707, 0.09448724240064621, 0.01460972335189581, -0.3158082365989685, -0.2822079658508301, -0.0010035271989181638, 0.22869260609149933, -0.19302871823310852, -0.09520211070775986, 0.013752913102507591, -0.20002056658267975, -0.1908559799194336, 0.1217755451798439, -0.07179078459739685, 0.03978685662150383, 0.3123776912689209, 0.9068842530250549, -0.33208656311035156, -0.4840671718120575, -0.03723129257559776, -0.03652673959732056, -0.32463666796684265, -0.1530090868473053, -0.10833153873682022, 0.25359949469566345, -0.42064666748046875, -0.14578954875469208, 0.021455856040120125, -0.07829170674085617, -0.07302717119455338, 0.2533951997756958, -0.3021765351295471, -0.061936765909194946, 0.07331503182649612, -0.14393025636672974, 0.42248645424842834, -0.2967078685760498, -0.21420544385910034, 0.19423291087150574, 0.0423237681388855, 0.2526317834854126, -0.04389001056551933, 0.39999690651893616, -0.01888682320713997, -0.13815012574195862, 0.12124097347259521, 0.7113153338432312, -0.15096834301948547, 0.05194530263543129, -0.19383011758327484, -0.3600859045982361, 0.26589280366897583, 0.42295536398887634, 0.013050107285380363, -0.3205803334712982, 0.6397945880889893, -0.0006153924041427672, 0.10155680030584335, -0.2774530053138733, 0.12146109342575073, -0.19341151416301727, 0.2937178909778595, -0.05628791078925133, -0.14273053407669067, -0.27559974789619446, -0.22721771895885468, 0.0019213557243347168, -0.27046558260917664, 0.2816797196865082, -0.16634638607501984, -0.0009557513985782862, 0.20897899568080902, -0.13932356238365173, 0.09564221650362015, 0.004168387036770582, 0.2037205547094345, 0.10114055871963501, -0.4169176518917084, 0.2500482499599457, -0.09020821750164032, 0.025192098692059517, -0.09754271060228348, 0.03883814811706543, 0.18151581287384033, 0.25944259762763977, 0.013802275992929935, 0.1161566749215126, 0.098460353910923, 0.524605393409729, -0.22382564842700958, 0.036736808717250824, 0.03219606354832649, -0.0006298142834566534, 0.19920147955417633, 0.4802197217941284, -0.013226352632045746, 0.3972020745277405, 0.4809134900569916, -0.6762454509735107, 0.34888890385627747, -0.16103677451610565, 0.24483931064605713, -0.15033003687858582, -0.04259403049945831, 0.2094172239303589, 0.24884027242660522, 0.08534615486860275, -0.07931292802095413, 0.06880919635295868, 0.08538904786109924, 0.0471755675971508, -0.33720532059669495, -0.1611867994070053, -0.05505114048719406, 0.1943492591381073, 0.004932268988341093, 0.03765663132071495, -0.38167867064476013, 0.14591924846172333, 0.5345162153244019, 0.23161831498146057, 0.17994491755962372, 0.1668637990951538, -0.2088232934474945, -0.3059070110321045, 0.24508273601531982, -0.2178812325000763, 0.07305987924337387, 0.28381237387657166, -0.22414398193359375, 0.0624794065952301, -0.21292667090892792, 0.016899017617106438, 0.1520751267671585, 0.06433848291635513, 0.40038037300109863, 0.05814418941736221, 0.3798505663871765, 0.056044332683086395, -0.06564871966838837, -0.42015257477760315, -0.022113792598247528, -0.27254438400268555, 0.17469917237758636, -0.009488617070019245, -0.1893654763698578, -0.6152864098548889, -0.18430857360363007, -0.03982960805296898, -0.44525912404060364, -0.059504434466362, 0.06663066893815994, -0.2852559983730316, -0.1706150770187378, 0.07512359321117401, 0.005399676505476236, 0.378551721572876, -0.36183932423591614, -0.09956979751586914, 0.1389792412519455, -0.2604558765888214, -0.1546468436717987, 0.08434546738862991, 0.4543460011482239, 0.06109579652547836, 0.24025334417819977, 0.24544458091259003, -0.047696150839328766, -0.13308727741241455, -0.43275874853134155, 0.2702725827693939, 0.0578763410449028, 0.18861311674118042, -0.002010911703109741, -0.5663681626319885, 0.0909247025847435, -0.06574825197458267, 0.20208613574504852, 0.08892767131328583, -0.004245629534125328, -0.0664626806974411, -0.041693899780511856, 0.1243295893073082, -0.2534283399581909, 0.09377056360244751, -0.49234315752983093, -0.511980414390564, 0.3841015100479126, -0.1436411738395691, 0.16565918922424316, 0.5681465864181519, 0.09953828155994415, -0.09538708627223969, -0.017269635573029518, 0.2712104916572571, 0.030044523999094963, 0.35573917627334595, -0.05964663252234459, -0.00017112483328673989, -0.18747888505458832, -0.2881143093109131, -0.21742939949035645, 0.11924557387828827, 0.34939464926719666, -0.34743958711624146, -0.32426121830940247, 0.09537964314222336, 0.1561684012413025, 0.03912070021033287, 0.002788520883768797, 0.09059734642505646, 0.001648720819503069, -0.005602809134870768, -0.03885025531053543, 0.001058900379575789, -0.06858556717634201, 0.36937883496284485, 0.1696060597896576, 0.33224162459373474, 0.010456457734107971, 0.4449983537197113, 0.3984430730342865, -0.07358220219612122, -0.11300952732563019, 0.41049274802207947, 0.34180164337158203, 0.20316551625728607, -0.14582225680351257, -0.2318653166294098, 0.4618135690689087, -0.09981024265289307, -0.030408209189772606, 0.2845419645309448, -0.022318536415696144, -0.5936281085014343, -0.23098310828208923, -0.08084777742624283, -0.4445464313030243, -0.1934298276901245, 0.3490704596042633, -0.13693185150623322, 0.472456693649292, 0.17478007078170776, -0.5142964124679565, -0.2779097259044647, -0.08629500865936279, 0.062266185879707336, 0.0467645600438118, 0.23081088066101074, 0.0712512657046318, -0.38005998730659485, -0.08878610283136368, 0.09412886202335358, 0.0836932510137558, 0.22389347851276398, 0.2547115087509155, -0.17679078876972198, -0.1274385303258896, 0.034317925572395325, 0.11261192709207535, 0.10101468116044998, -0.3075810968875885, -0.42941921949386597, 0.13116690516471863, 0.06978923827409744, -0.23177139461040497, -0.04986405745148659, -0.14885194599628448, -0.005981172900646925, 0.1850324422121048, 0.24654413759708405, -0.002372028538957238, -0.1417338252067566, -0.006457079667598009, 0.31722813844680786, 0.04069112241268158, -0.24388647079467773, 0.12231501936912537, 0.16552871465682983, -0.23723049461841583, -0.22889412939548492, -0.13118267059326172, 0.026688016951084137, 0.24318455159664154, 0.11057130247354507, 0.044021621346473694, -0.007771940436214209, 0.11666693538427353, 0.17600619792938232, -0.18601427972316742, 0.016282211989164352, -0.15354911983013153, -0.009497595950961113, 0.20169803500175476, -0.12320506572723389, 0.28990307450294495, 0.17242023348808289, -0.24645698070526123, -0.034241512417793274, -0.20413658022880554, 0.5062913298606873, 0.3987750709056854, 0.555439293384552, 0.13408735394477844, -0.2353622168302536, -0.10005278140306473, -0.405900239944458, 0.07845453172922134, 0.1703917682170868, -0.08798237144947052, 0.09282451122999191, -0.255707710981369, 0.17792993783950806, -0.14843621850013733, -0.2434951364994049, -0.0016532752197235823, 0.11467041075229645, -0.3192114233970642, 0.4626781940460205, 0.2678561806678772, 0.9083017110824585, 0.1739369034767151, 0.37738555669784546, 0.06320249289274216, -0.1392996907234192, 0.4011537730693817, -0.5117279887199402, 0.19018079340457916, -0.24072498083114624, 0.03618043288588524, 0.02378205396234989, 0.05003289505839348, 0.09289257973432541, 0.14204590022563934, -0.09947951138019562, -0.08329875767230988, 0.6208555102348328, 0.11335881054401398, 0.1424347460269928, 0.23518651723861694, -0.040204472839832306, -0.5092386603355408, -0.05928300321102142, 0.13557910919189453, -0.17568252980709076, -0.2223033308982849, -0.14404445886611938, -0.3420352041721344, 0.08194076269865036, 0.26422518491744995, -0.21470728516578674, -0.0011315695010125637, -0.31605419516563416, 0.17083923518657684, 0.0972709208726883, 0.027449140325188637, 0.4782887399196625, 0.06529473513364792, 0.1030481830239296, -0.16767603158950806, 0.021499406546354294, -0.11214593052864075, 0.10283682495355606, 0.12899960577487946, -0.06452982872724533, -0.29938384890556335, 0.5649162530899048, -0.08502021431922913, -0.2367735356092453, 0.08304707705974579, 0.026579266414046288, -0.06789251416921616, -0.3287891149520874, -0.14087912440299988, 0.3525548279285431, 0.06926947832107544, -0.20426197350025177, 0.3383694887161255, 0.033639535307884216, 0.005678202491253614, 0.15857598185539246, 0.14956635236740112, -0.0072704763151705265, 0.25499239563941956, 0.0907110795378685, 0.09574225544929504, -0.041147422045469284, -0.16024422645568848, -0.1721549928188324, -0.06823384016752243, 0.002059024991467595, -0.03950390964746475, 0.026653900742530823, -0.20976682007312775, 0.4513888657093048, -0.16559402644634247, -0.06786061078310013, -0.2193891406059265, 0.16477656364440918, -0.19182303547859192, -0.1911371797323227, 0.04164784029126167, 0.11022830009460449, 0.012857489287853241, -0.056775931268930435, -0.3587939143180847, -0.022774050012230873, 0.4008125066757202, -0.42941614985466003, -0.05830197408795357, -0.056598201394081116, 0.15040065348148346, -0.013583318330347538, 0.45691603422164917, -0.36935552954673767, -0.062100861221551895, 0.22851353883743286, 0.24095867574214935, -0.07236463576555252, -0.3310264050960541, -0.1456674039363861, 0.08433083444833755, 0.1410643458366394, 0.16944049298763275, -0.2751307487487793, -0.16777953505516052, -0.07563765347003937, 0.15694454312324524, 0.27805837988853455, 0.09474194794893265, -0.08447673916816711, -0.3365342617034912, -0.1436418741941452, -0.14293882250785828, -0.32423198223114014, -0.14539514482021332, -0.2079687863588333, 0.42228519916534424, -0.6543205380439758, 0.2695191204547882, 0.29332631826400757, 0.09659743309020996, -0.12450675666332245, 0.3523566424846649, 0.25502461194992065, 0.09503109008073807, 0.08719684183597565, 0.10928256809711456, -0.2875727117061615, 0.2659046947956085, -0.1545007824897766, 0.0013405268546193838, 0.31092172861099243, 0.40306392312049866, 0.15975415706634521, -0.06661190837621689, 0.14760087430477142, -0.17238296568393707, -0.24061760306358337, 0.01507799793034792, 0.361527681350708, 0.2620093524456024, -0.2034405916929245, 0.08389435708522797, 0.5660724639892578, -0.16361378133296967, 0.18824833631515503, 0.14680054783821106, 0.829046368598938, 0.2113884687423706, 0.15853740274906158, -0.3222101032733917, 0.03156546875834465, -0.14683856070041656, -0.08657567948102951, -0.04591885209083557, 0.18194527924060822, 0.07934369146823883, 0.06892066448926926, 0.28309115767478943, 0.4801355004310608, 0.3831426203250885, -0.34672999382019043, 0.1410563439130783, -0.0798545628786087, 0.13514208793640137, 0.5679848194122314, -0.0949721485376358, 0.29066696763038635, 0.12865430116653442, 0.13389602303504944, 0.19713091850280762, -0.3649287819862366, 0.156490296125412, -0.09543529897928238, -0.09011877328157425, -0.024757608771324158, 0.2911914885044098, 0.1542280614376068, -0.0017625566106289625, -0.37245017290115356, -0.039304062724113464, -0.4641978144645691, 0.007182885892689228, -0.06937725841999054, 0.0064605181105434895, 0.03739475458860397, 0.2287444770336151, 0.12941066920757294, -0.15672950446605682, 0.19978775084018707, 0.2505197823047638, 0.4216551184654236, -0.23811930418014526, 0.04690466448664665, 0.034218668937683105, 0.08216243982315063, 0.11365333199501038, 0.13887593150138855, -0.025581838563084602, 0.038030728697776794, -0.38683804869651794, -0.06029430404305458, -0.3789958655834198, -0.02234409563243389, -0.1458854377269745, 0.043169040232896805, 0.14389778673648834, 0.32812079787254333, 0.35922032594680786, 0.07851467281579971, -0.14133970439434052, 0.045586876571178436, 0.05479902774095535, -0.24892668426036835, -0.312665730714798, -0.09545242786407471, 0.17730318009853363, 0.030504528433084488, -0.023133771494030952, 0.037086084485054016, -0.25344815850257874, -0.40802139043807983, 0.4324476420879364, -0.10378652811050415, -0.005123191513121128, -0.07829604297876358, 0.07439969480037689, -0.17611737549304962, -0.03673058748245239, 0.4093003571033478, 0.10285067558288574, 0.12965181469917297, -0.1955605447292328, -0.29238253831863403, -0.024753449484705925, 0.10403212904930115, -0.44621652364730835, -0.06454413384199142, 0.2829324007034302, 0.35475650429725647, 0.3475920259952545, -0.2640644907951355, 0.14053480327129364, 0.2678466737270355, -0.222752183675766, -0.13042795658111572, 0.17787578701972961, -0.10760658979415894, 0.21739013493061066, -0.1289331167936325, 0.04391808062791824, -0.08149697631597519, -0.1311275213956833, 0.08348511159420013, -0.43033644556999207, -0.13384205102920532, -0.059837471693754196, 0.2861565351486206, 0.3971822261810303, 0.17493951320648193, 0.004467673599720001, 0.03697860613465309, -0.30762627720832825, -0.11685165017843246, -0.07472460716962814, -0.07885754108428955, -0.05538638308644295, -0.09850048273801804, 0.7773544192314148, -0.2862603962421417, 0.16906851530075073, -0.024455601349473, 0.23678980767726898, -0.04506460949778557, -0.24279169738292694, -0.05080593749880791, 0.03194374591112137, -0.1385508030653, -0.06908588856458664, 0.10783351212739944, 0.4174988865852356, 0.037568964064121246, -0.1575307697057724, -0.05314359813928604, -0.14852380752563477, -0.04622716084122658, -0.24352379143238068, -0.20733395218849182, 0.28688228130340576, 0.05157400667667389, -0.1594635397195816, 0.3107646703720093, -0.43799781799316406, -0.23906908929347992, 0.33726954460144043, 0.06926369667053223, 0.09162507206201553, 0.3000227212905884, 0.2653144598007202, -0.3702753186225891, -0.1716800034046173, -0.24945801496505737, -0.2490815818309784, -0.1187172383069992, -0.12531255185604095, -0.12937358021736145 ]
https://github.com/huggingface/datasets/issues/263
[Feature request] Support for external modality for language datasets
I saw the Mozilla common_voice dataset in model hub, which has mp3 audio recordings as part it. It's use predominantly maybe in ASR and TTS, but dataset is a Language + Voice Dataset similar to @aleSuglia's point about Language + Vision. https://huggingface.co/datasets/common_voice
# Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it!
42
[Feature request] Support for external modality for language datasets # Background In recent years many researchers have advocated that learning meanings from text-based only datasets is just like asking a human to "learn to speak by listening to the radio" [[E. Bender and A. Koller,2020](https://openreview.net/forum?id=GKTvAcb12b), [Y. Bisk et. al, 2020](https://arxiv.org/abs/2004.10151)]. Therefore, the importance of multi-modal datasets for the NLP community is of paramount importance for next-generation models. For this reason, I raised a [concern](https://github.com/huggingface/nlp/pull/236#issuecomment-639832029) related to the best way to integrate external features in NLP datasets (e.g., visual features associated with an image, audio features associated with a recording, etc.). This would be of great importance for a more systematic way of representing data for ML models that are learning from multi-modal data. # Language + Vision ## Use case Typically, people working on Language+Vision tasks, have a reference dataset (either in JSON or JSONL format) and for each example, they have an identifier that specifies the reference image. For a practical example, you can refer to the [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html#seconddown) dataset. Currently, images are represented by either pooling-based features (average pooling of ResNet or VGGNet features, see [DeVries et.al, 2017](https://arxiv.org/abs/1611.08481), [Shekhar et.al, 2019](https://www.aclweb.org/anthology/N19-1265.pdf)) where you have a single vector for every image. Another option is to use a set of feature maps for every image extracted from a specific layer of a CNN (see [Xu et.al, 2015](https://arxiv.org/abs/1502.03044)). A more recent option, especially with large-scale multi-modal transformers [Li et. al, 2019](https://arxiv.org/abs/1908.03557), is to use FastRCNN features. For all these types of features, people use one of the following formats: 1. [HD5F](https://pypi.org/project/h5py/) 2. [NumPy](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) 3. [LMDB](https://lmdb.readthedocs.io/en/release/) ## Implementation considerations I was thinking about possible ways of implementing this feature. As mentioned above, depending on the model, different visual features can be used. This step usually relies on another model (say ResNet-101) that is used to generate the visual features for each image used in the dataset. Typically, this step is done in a separate script that completes the feature generation procedure. The usual processing steps for these datasets are the following: 1. Download dataset 2. Download images associated with the dataset 3. Write a script that generates the visual features for every image and store them in a specific file 4. Create a DataLoader that maps the visual features to the corresponding language example In my personal projects, I've decided to ignore HD5F because it doesn't have out-of-the-box support for multi-processing (see this PyTorch [issue](https://github.com/pytorch/pytorch/issues/11929)). I've been successfully using a NumPy compressed file for each image so that I can store any sort of information in it. For ease of use of all these Language+Vision datasets, it would be really handy to have a way to associate the visual features with the text and store them in an efficient way. That's why I immediately thought about the HuggingFace NLP backend based on Apache Arrow. The assumption here is that the external modality will be mapped to a N-dimensional tensor so easily represented by a NumPy array. Looking forward to hearing your thoughts about it! I saw the Mozilla common_voice dataset in model hub, which has mp3 audio recordings as part it. It's use predominantly maybe in ASR and TTS, but dataset is a Language + Voice Dataset similar to @aleSuglia's point about Language + Vision. https://huggingface.co/datasets/common_voice
[ 0.000057860739616444334, -0.14249958097934723, -0.10484323650598526, -0.11375981569290161, -0.020863497629761696, -0.2757302224636078, 0.35704636573791504, 0.161989226937294, -0.17019517719745636, -0.11541056632995605, -0.10623959451913834, 0.37419751286506653, -0.23276984691619873, 0.024785831570625305, 0.2276579588651657, -0.16313783824443817, 0.11561074107885361, 0.020651236176490784, 0.17515626549720764, 0.037741754204034805, -0.08029590547084808, -0.18629920482635498, -0.09968911856412888, 0.015808546915650368, -0.15434393286705017, -0.006553060840815306, -0.2325277477502823, -0.06639524549245834, 0.01744546927511692, -0.156731516122818, -0.4168613851070404, 0.17751136422157288, -0.006496134214103222, -0.058712612837553024, -0.00010538899368839338, 0.041064947843551636, 0.05086589977145195, -0.15447992086410522, -0.06360645592212677, -0.2922307848930359, -0.17180591821670532, -0.5856841206550598, -0.005183955188840628, -0.21386685967445374, 0.16897645592689514, -0.26110216975212097, 0.30336636304855347, -0.015454488806426525, 0.21995747089385986, 0.04244837537407875, 0.23387333750724792, 0.16196554899215698, 0.05709730088710785, 0.31448349356651306, 0.17907902598381042, 0.7218412160873413, -0.1756500005722046, -0.026227908208966255, 0.3759554922580719, -0.19800706207752228, -0.1714315265417099, 0.5319550633430481, 0.07072730362415314, -0.17268803715705872, 0.10479655861854553, -0.1554221510887146, -0.07425439357757568, -0.18622642755508423, -0.18268220126628876, 0.26961907744407654, 0.5540595650672913, -0.09467992931604385, -0.3956744074821472, -0.2771701216697693, 0.10153606534004211, 0.21204394102096558, -0.14912274479866028, 0.4695758521556854, -0.08470430225133896, 0.2618878483772278, -0.14117376506328583, -0.41724687814712524, -0.22692734003067017, 0.40050244331359863, -0.010741391219198704, -0.11447352170944214, 0.11392760276794434, 0.10642559081315994, 0.12712347507476807, -0.13947491347789764, 0.2405344396829605, -0.08524159342050552, 0.19741718471050262, 0.13847047090530396, 0.11991805583238602, -0.14774426817893982, 0.09294075518846512, -0.07566212117671967, 0.10103735327720642, -0.13798707723617554, 0.01419343613088131, 0.16521777212619781, -0.6861984729766846, 0.37200039625167847, 0.1384754627943039, -0.3171004354953766, -0.346637487411499, 0.15517252683639526, 0.29852238297462463, -0.057959407567977905, -0.02686517871916294, -0.037867166101932526, 0.016913387924432755, 0.04408812150359154, -0.3268452286720276, 0.00009457940177526325, 0.10693427175283432, -0.0153923649340868, -0.09738096594810486, -0.2925390899181366, -0.24316489696502686, 0.05811284855008125, -0.026100365445017815, -0.07544058561325073, 0.23163245618343353, 0.29516077041625977, -0.010326618328690529, 0.23807598650455475, 0.005101911257952452, -0.688583254814148, 0.06887876242399216, 0.08224218338727951, -0.450743705034256, 0.11295702308416367, 0.019686413928866386, 0.576988935470581, 0.10568461567163467, 0.02247140370309353, 0.07950716465711594, -0.05892649292945862, 0.11541950702667236, -0.3274693489074707, 0.09448724240064621, 0.01460972335189581, -0.3158082365989685, -0.2822079658508301, -0.0010035271989181638, 0.22869260609149933, -0.19302871823310852, -0.09520211070775986, 0.013752913102507591, -0.20002056658267975, -0.1908559799194336, 0.1217755451798439, -0.07179078459739685, 0.03978685662150383, 0.3123776912689209, 0.9068842530250549, -0.33208656311035156, -0.4840671718120575, -0.03723129257559776, -0.03652673959732056, -0.32463666796684265, -0.1530090868473053, -0.10833153873682022, 0.25359949469566345, -0.42064666748046875, -0.14578954875469208, 0.021455856040120125, -0.07829170674085617, -0.07302717119455338, 0.2533951997756958, -0.3021765351295471, -0.061936765909194946, 0.07331503182649612, -0.14393025636672974, 0.42248645424842834, -0.2967078685760498, -0.21420544385910034, 0.19423291087150574, 0.0423237681388855, 0.2526317834854126, -0.04389001056551933, 0.39999690651893616, -0.01888682320713997, -0.13815012574195862, 0.12124097347259521, 0.7113153338432312, -0.15096834301948547, 0.05194530263543129, -0.19383011758327484, -0.3600859045982361, 0.26589280366897583, 0.42295536398887634, 0.013050107285380363, -0.3205803334712982, 0.6397945880889893, -0.0006153924041427672, 0.10155680030584335, -0.2774530053138733, 0.12146109342575073, -0.19341151416301727, 0.2937178909778595, -0.05628791078925133, -0.14273053407669067, -0.27559974789619446, -0.22721771895885468, 0.0019213557243347168, -0.27046558260917664, 0.2816797196865082, -0.16634638607501984, -0.0009557513985782862, 0.20897899568080902, -0.13932356238365173, 0.09564221650362015, 0.004168387036770582, 0.2037205547094345, 0.10114055871963501, -0.4169176518917084, 0.2500482499599457, -0.09020821750164032, 0.025192098692059517, -0.09754271060228348, 0.03883814811706543, 0.18151581287384033, 0.25944259762763977, 0.013802275992929935, 0.1161566749215126, 0.098460353910923, 0.524605393409729, -0.22382564842700958, 0.036736808717250824, 0.03219606354832649, -0.0006298142834566534, 0.19920147955417633, 0.4802197217941284, -0.013226352632045746, 0.3972020745277405, 0.4809134900569916, -0.6762454509735107, 0.34888890385627747, -0.16103677451610565, 0.24483931064605713, -0.15033003687858582, -0.04259403049945831, 0.2094172239303589, 0.24884027242660522, 0.08534615486860275, -0.07931292802095413, 0.06880919635295868, 0.08538904786109924, 0.0471755675971508, -0.33720532059669495, -0.1611867994070053, -0.05505114048719406, 0.1943492591381073, 0.004932268988341093, 0.03765663132071495, -0.38167867064476013, 0.14591924846172333, 0.5345162153244019, 0.23161831498146057, 0.17994491755962372, 0.1668637990951538, -0.2088232934474945, -0.3059070110321045, 0.24508273601531982, -0.2178812325000763, 0.07305987924337387, 0.28381237387657166, -0.22414398193359375, 0.0624794065952301, -0.21292667090892792, 0.016899017617106438, 0.1520751267671585, 0.06433848291635513, 0.40038037300109863, 0.05814418941736221, 0.3798505663871765, 0.056044332683086395, -0.06564871966838837, -0.42015257477760315, -0.022113792598247528, -0.27254438400268555, 0.17469917237758636, -0.009488617070019245, -0.1893654763698578, -0.6152864098548889, -0.18430857360363007, -0.03982960805296898, -0.44525912404060364, -0.059504434466362, 0.06663066893815994, -0.2852559983730316, -0.1706150770187378, 0.07512359321117401, 0.005399676505476236, 0.378551721572876, -0.36183932423591614, -0.09956979751586914, 0.1389792412519455, -0.2604558765888214, -0.1546468436717987, 0.08434546738862991, 0.4543460011482239, 0.06109579652547836, 0.24025334417819977, 0.24544458091259003, -0.047696150839328766, -0.13308727741241455, -0.43275874853134155, 0.2702725827693939, 0.0578763410449028, 0.18861311674118042, -0.002010911703109741, -0.5663681626319885, 0.0909247025847435, -0.06574825197458267, 0.20208613574504852, 0.08892767131328583, -0.004245629534125328, -0.0664626806974411, -0.041693899780511856, 0.1243295893073082, -0.2534283399581909, 0.09377056360244751, -0.49234315752983093, -0.511980414390564, 0.3841015100479126, -0.1436411738395691, 0.16565918922424316, 0.5681465864181519, 0.09953828155994415, -0.09538708627223969, -0.017269635573029518, 0.2712104916572571, 0.030044523999094963, 0.35573917627334595, -0.05964663252234459, -0.00017112483328673989, -0.18747888505458832, -0.2881143093109131, -0.21742939949035645, 0.11924557387828827, 0.34939464926719666, -0.34743958711624146, -0.32426121830940247, 0.09537964314222336, 0.1561684012413025, 0.03912070021033287, 0.002788520883768797, 0.09059734642505646, 0.001648720819503069, -0.005602809134870768, -0.03885025531053543, 0.001058900379575789, -0.06858556717634201, 0.36937883496284485, 0.1696060597896576, 0.33224162459373474, 0.010456457734107971, 0.4449983537197113, 0.3984430730342865, -0.07358220219612122, -0.11300952732563019, 0.41049274802207947, 0.34180164337158203, 0.20316551625728607, -0.14582225680351257, -0.2318653166294098, 0.4618135690689087, -0.09981024265289307, -0.030408209189772606, 0.2845419645309448, -0.022318536415696144, -0.5936281085014343, -0.23098310828208923, -0.08084777742624283, -0.4445464313030243, -0.1934298276901245, 0.3490704596042633, -0.13693185150623322, 0.472456693649292, 0.17478007078170776, -0.5142964124679565, -0.2779097259044647, -0.08629500865936279, 0.062266185879707336, 0.0467645600438118, 0.23081088066101074, 0.0712512657046318, -0.38005998730659485, -0.08878610283136368, 0.09412886202335358, 0.0836932510137558, 0.22389347851276398, 0.2547115087509155, -0.17679078876972198, -0.1274385303258896, 0.034317925572395325, 0.11261192709207535, 0.10101468116044998, -0.3075810968875885, -0.42941921949386597, 0.13116690516471863, 0.06978923827409744, -0.23177139461040497, -0.04986405745148659, -0.14885194599628448, -0.005981172900646925, 0.1850324422121048, 0.24654413759708405, -0.002372028538957238, -0.1417338252067566, -0.006457079667598009, 0.31722813844680786, 0.04069112241268158, -0.24388647079467773, 0.12231501936912537, 0.16552871465682983, -0.23723049461841583, -0.22889412939548492, -0.13118267059326172, 0.026688016951084137, 0.24318455159664154, 0.11057130247354507, 0.044021621346473694, -0.007771940436214209, 0.11666693538427353, 0.17600619792938232, -0.18601427972316742, 0.016282211989164352, -0.15354911983013153, -0.009497595950961113, 0.20169803500175476, -0.12320506572723389, 0.28990307450294495, 0.17242023348808289, -0.24645698070526123, -0.034241512417793274, -0.20413658022880554, 0.5062913298606873, 0.3987750709056854, 0.555439293384552, 0.13408735394477844, -0.2353622168302536, -0.10005278140306473, -0.405900239944458, 0.07845453172922134, 0.1703917682170868, -0.08798237144947052, 0.09282451122999191, -0.255707710981369, 0.17792993783950806, -0.14843621850013733, -0.2434951364994049, -0.0016532752197235823, 0.11467041075229645, -0.3192114233970642, 0.4626781940460205, 0.2678561806678772, 0.9083017110824585, 0.1739369034767151, 0.37738555669784546, 0.06320249289274216, -0.1392996907234192, 0.4011537730693817, -0.5117279887199402, 0.19018079340457916, -0.24072498083114624, 0.03618043288588524, 0.02378205396234989, 0.05003289505839348, 0.09289257973432541, 0.14204590022563934, -0.09947951138019562, -0.08329875767230988, 0.6208555102348328, 0.11335881054401398, 0.1424347460269928, 0.23518651723861694, -0.040204472839832306, -0.5092386603355408, -0.05928300321102142, 0.13557910919189453, -0.17568252980709076, -0.2223033308982849, -0.14404445886611938, -0.3420352041721344, 0.08194076269865036, 0.26422518491744995, -0.21470728516578674, -0.0011315695010125637, -0.31605419516563416, 0.17083923518657684, 0.0972709208726883, 0.027449140325188637, 0.4782887399196625, 0.06529473513364792, 0.1030481830239296, -0.16767603158950806, 0.021499406546354294, -0.11214593052864075, 0.10283682495355606, 0.12899960577487946, -0.06452982872724533, -0.29938384890556335, 0.5649162530899048, -0.08502021431922913, -0.2367735356092453, 0.08304707705974579, 0.026579266414046288, -0.06789251416921616, -0.3287891149520874, -0.14087912440299988, 0.3525548279285431, 0.06926947832107544, -0.20426197350025177, 0.3383694887161255, 0.033639535307884216, 0.005678202491253614, 0.15857598185539246, 0.14956635236740112, -0.0072704763151705265, 0.25499239563941956, 0.0907110795378685, 0.09574225544929504, -0.041147422045469284, -0.16024422645568848, -0.1721549928188324, -0.06823384016752243, 0.002059024991467595, -0.03950390964746475, 0.026653900742530823, -0.20976682007312775, 0.4513888657093048, -0.16559402644634247, -0.06786061078310013, -0.2193891406059265, 0.16477656364440918, -0.19182303547859192, -0.1911371797323227, 0.04164784029126167, 0.11022830009460449, 0.012857489287853241, -0.056775931268930435, -0.3587939143180847, -0.022774050012230873, 0.4008125066757202, -0.42941614985466003, -0.05830197408795357, -0.056598201394081116, 0.15040065348148346, -0.013583318330347538, 0.45691603422164917, -0.36935552954673767, -0.062100861221551895, 0.22851353883743286, 0.24095867574214935, -0.07236463576555252, -0.3310264050960541, -0.1456674039363861, 0.08433083444833755, 0.1410643458366394, 0.16944049298763275, -0.2751307487487793, -0.16777953505516052, -0.07563765347003937, 0.15694454312324524, 0.27805837988853455, 0.09474194794893265, -0.08447673916816711, -0.3365342617034912, -0.1436418741941452, -0.14293882250785828, -0.32423198223114014, -0.14539514482021332, -0.2079687863588333, 0.42228519916534424, -0.6543205380439758, 0.2695191204547882, 0.29332631826400757, 0.09659743309020996, -0.12450675666332245, 0.3523566424846649, 0.25502461194992065, 0.09503109008073807, 0.08719684183597565, 0.10928256809711456, -0.2875727117061615, 0.2659046947956085, -0.1545007824897766, 0.0013405268546193838, 0.31092172861099243, 0.40306392312049866, 0.15975415706634521, -0.06661190837621689, 0.14760087430477142, -0.17238296568393707, -0.24061760306358337, 0.01507799793034792, 0.361527681350708, 0.2620093524456024, -0.2034405916929245, 0.08389435708522797, 0.5660724639892578, -0.16361378133296967, 0.18824833631515503, 0.14680054783821106, 0.829046368598938, 0.2113884687423706, 0.15853740274906158, -0.3222101032733917, 0.03156546875834465, -0.14683856070041656, -0.08657567948102951, -0.04591885209083557, 0.18194527924060822, 0.07934369146823883, 0.06892066448926926, 0.28309115767478943, 0.4801355004310608, 0.3831426203250885, -0.34672999382019043, 0.1410563439130783, -0.0798545628786087, 0.13514208793640137, 0.5679848194122314, -0.0949721485376358, 0.29066696763038635, 0.12865430116653442, 0.13389602303504944, 0.19713091850280762, -0.3649287819862366, 0.156490296125412, -0.09543529897928238, -0.09011877328157425, -0.024757608771324158, 0.2911914885044098, 0.1542280614376068, -0.0017625566106289625, -0.37245017290115356, -0.039304062724113464, -0.4641978144645691, 0.007182885892689228, -0.06937725841999054, 0.0064605181105434895, 0.03739475458860397, 0.2287444770336151, 0.12941066920757294, -0.15672950446605682, 0.19978775084018707, 0.2505197823047638, 0.4216551184654236, -0.23811930418014526, 0.04690466448664665, 0.034218668937683105, 0.08216243982315063, 0.11365333199501038, 0.13887593150138855, -0.025581838563084602, 0.038030728697776794, -0.38683804869651794, -0.06029430404305458, -0.3789958655834198, -0.02234409563243389, -0.1458854377269745, 0.043169040232896805, 0.14389778673648834, 0.32812079787254333, 0.35922032594680786, 0.07851467281579971, -0.14133970439434052, 0.045586876571178436, 0.05479902774095535, -0.24892668426036835, -0.312665730714798, -0.09545242786407471, 0.17730318009853363, 0.030504528433084488, -0.023133771494030952, 0.037086084485054016, -0.25344815850257874, -0.40802139043807983, 0.4324476420879364, -0.10378652811050415, -0.005123191513121128, -0.07829604297876358, 0.07439969480037689, -0.17611737549304962, -0.03673058748245239, 0.4093003571033478, 0.10285067558288574, 0.12965181469917297, -0.1955605447292328, -0.29238253831863403, -0.024753449484705925, 0.10403212904930115, -0.44621652364730835, -0.06454413384199142, 0.2829324007034302, 0.35475650429725647, 0.3475920259952545, -0.2640644907951355, 0.14053480327129364, 0.2678466737270355, -0.222752183675766, -0.13042795658111572, 0.17787578701972961, -0.10760658979415894, 0.21739013493061066, -0.1289331167936325, 0.04391808062791824, -0.08149697631597519, -0.1311275213956833, 0.08348511159420013, -0.43033644556999207, -0.13384205102920532, -0.059837471693754196, 0.2861565351486206, 0.3971822261810303, 0.17493951320648193, 0.004467673599720001, 0.03697860613465309, -0.30762627720832825, -0.11685165017843246, -0.07472460716962814, -0.07885754108428955, -0.05538638308644295, -0.09850048273801804, 0.7773544192314148, -0.2862603962421417, 0.16906851530075073, -0.024455601349473, 0.23678980767726898, -0.04506460949778557, -0.24279169738292694, -0.05080593749880791, 0.03194374591112137, -0.1385508030653, -0.06908588856458664, 0.10783351212739944, 0.4174988865852356, 0.037568964064121246, -0.1575307697057724, -0.05314359813928604, -0.14852380752563477, -0.04622716084122658, -0.24352379143238068, -0.20733395218849182, 0.28688228130340576, 0.05157400667667389, -0.1594635397195816, 0.3107646703720093, -0.43799781799316406, -0.23906908929347992, 0.33726954460144043, 0.06926369667053223, 0.09162507206201553, 0.3000227212905884, 0.2653144598007202, -0.3702753186225891, -0.1716800034046173, -0.24945801496505737, -0.2490815818309784, -0.1187172383069992, -0.12531255185604095, -0.12937358021736145 ]
https://github.com/huggingface/datasets/issues/261
Downloading dataset error with pyarrow.lib.RecordBatch
When you install `nlp` for the first time on a Colab runtime, it updates the `pyarrow` library that was already on colab. This update shows this message on colab: ``` WARNING: The following packages were previously imported in this runtime: [pyarrow] You must restart the runtime in order to use newly installed versions. ``` You just have to restart the runtime and it should be fine. If you don't restart, then it breaks like in your message.
I am trying to download `sentiment140` and I have the following error ``` /usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 518 download_mode=download_mode, 519 ignore_verifications=ignore_verifications, --> 520 save_infos=save_infos, 521 ) 522 /usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 418 verify_infos = not save_infos and not ignore_verifications 419 self._download_and_prepare( --> 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) 422 # Sync info /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 472 try: 473 # Prepare split will record examples associated to the split --> 474 self._prepare_split(split_generator, **prepare_split_kwargs) 475 except OSError: 476 raise OSError("Cannot find data file. " + (self.MANUAL_DOWNLOAD_INSTRUCTIONS or "")) /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _prepare_split(self, split_generator) 652 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 653 example = self.info.features.encode_example(record) --> 654 writer.write(example) 655 num_examples, num_bytes = writer.finalize() 656 /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write(self, example, writer_batch_size) 143 self._build_writer(pa_table=pa.Table.from_pydict(example)) 144 if writer_batch_size is not None and len(self.current_rows) >= writer_batch_size: --> 145 self.write_on_file() 146 147 def write_batch( /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_on_file(self) 127 else: 128 # All good --> 129 self._write_array_on_file(pa_array) 130 self.current_rows = [] 131 /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in _write_array_on_file(self, pa_array) 96 def _write_array_on_file(self, pa_array): 97 """Write a PyArrow Array""" ---> 98 pa_batch = pa.RecordBatch.from_struct_array(pa_array) 99 self._num_bytes += pa_array.nbytes 100 self.pa_writer.write_batch(pa_batch) AttributeError: type object 'pyarrow.lib.RecordBatch' has no attribute 'from_struct_array' ``` I installed the last version and ran the following command: ```python import nlp sentiment140 = nlp.load_dataset('sentiment140', cache_dir='/content') ```
77
Downloading dataset error with pyarrow.lib.RecordBatch I am trying to download `sentiment140` and I have the following error ``` /usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 518 download_mode=download_mode, 519 ignore_verifications=ignore_verifications, --> 520 save_infos=save_infos, 521 ) 522 /usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 418 verify_infos = not save_infos and not ignore_verifications 419 self._download_and_prepare( --> 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) 422 # Sync info /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 472 try: 473 # Prepare split will record examples associated to the split --> 474 self._prepare_split(split_generator, **prepare_split_kwargs) 475 except OSError: 476 raise OSError("Cannot find data file. " + (self.MANUAL_DOWNLOAD_INSTRUCTIONS or "")) /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _prepare_split(self, split_generator) 652 for key, record in utils.tqdm(generator, unit=" examples", total=split_info.num_examples, leave=False): 653 example = self.info.features.encode_example(record) --> 654 writer.write(example) 655 num_examples, num_bytes = writer.finalize() 656 /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write(self, example, writer_batch_size) 143 self._build_writer(pa_table=pa.Table.from_pydict(example)) 144 if writer_batch_size is not None and len(self.current_rows) >= writer_batch_size: --> 145 self.write_on_file() 146 147 def write_batch( /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in write_on_file(self) 127 else: 128 # All good --> 129 self._write_array_on_file(pa_array) 130 self.current_rows = [] 131 /usr/local/lib/python3.6/dist-packages/nlp/arrow_writer.py in _write_array_on_file(self, pa_array) 96 def _write_array_on_file(self, pa_array): 97 """Write a PyArrow Array""" ---> 98 pa_batch = pa.RecordBatch.from_struct_array(pa_array) 99 self._num_bytes += pa_array.nbytes 100 self.pa_writer.write_batch(pa_batch) AttributeError: type object 'pyarrow.lib.RecordBatch' has no attribute 'from_struct_array' ``` I installed the last version and ran the following command: ```python import nlp sentiment140 = nlp.load_dataset('sentiment140', cache_dir='/content') ``` When you install `nlp` for the first time on a Colab runtime, it updates the `pyarrow` library that was already on colab. This update shows this message on colab: ``` WARNING: The following packages were previously imported in this runtime: [pyarrow] You must restart the runtime in order to use newly installed versions. ``` You just have to restart the runtime and it should be fine. If you don't restart, then it breaks like in your message.
[ -0.48920780420303345, 0.39273348450660706, -0.02712656930088997, 0.13677601516246796, 0.14856144785881042, 0.11732207983732224, 0.27043914794921875, 0.5356113910675049, 0.061165500432252884, -0.19250993430614471, -0.12850819528102875, -0.07269670814275742, -0.060459427535533905, 0.04355590417981148, 0.19969531893730164, -0.39665600657463074, -0.03506923466920853, 0.3276587426662445, 0.15104936063289642, 0.16372480988502502, -0.17248277366161346, 0.1492367386817932, -0.3593589961528778, 0.14447525143623352, -0.3186689615249634, -0.31283941864967346, -0.11833181232213974, 0.10847365111112595, -0.38392332196235657, -0.4500901699066162, 0.3358420729637146, 0.05783236771821976, 0.39325985312461853, 0.2650598883628845, -0.00011744799121515825, 0.11161714047193527, 0.19057609140872955, -0.19770734012126923, -0.43375933170318604, -0.400689959526062, -0.04417216777801514, -0.23025880753993988, 0.0015389143954962492, -0.22278164327144623, 0.19085745513439178, -0.444050669670105, 0.10074145346879959, 0.2061418741941452, 0.29619625210762024, 0.39374423027038574, 0.1861061453819275, 0.3695083260536194, 0.324990451335907, -0.16963858902454376, 0.48553532361984253, 0.19415006041526794, -0.0995769053697586, 0.48990124464035034, 0.08046362549066544, -0.16946813464164734, -0.058759815990924835, 0.12253172695636749, -0.25556623935699463, 0.3563004732131958, -0.01029647421091795, 0.1473158895969391, 0.28812628984451294, -0.12100262939929962, 0.1599360555410385, 0.19333691895008087, 0.6528946161270142, -0.363542765378952, -0.30386587977409363, 0.005464568268507719, 0.21099528670310974, -0.3521166145801544, 0.037499554455280304, 0.44391825795173645, -0.527715265750885, 0.10566709190607071, -0.3487103283405304, -0.09626266360282898, -0.08070816844701767, 0.31845933198928833, -0.023749571293592453, -0.03409426659345627, -0.005472319666296244, 0.1258222609758377, 0.07786596566438675, 0.07930521667003632, 0.43590179085731506, 0.020798970013856888, -0.10233336687088013, 0.1800539791584015, -0.2871750593185425, 0.109818235039711, -0.1221948191523552, 0.2700805068016052, 0.2193385809659958, -0.05378137156367302, 0.1339002102613449, -0.16523288190364838, 0.2458813190460205, 0.11962367594242096, 0.1868957132101059, 0.2888098657131195, -0.14297111332416534, -0.2260630577802658, 0.08291865885257721, 0.09142947196960449, 0.18490298092365265, -0.08143996447324753, -0.08128345757722855, -0.3262297213077545, 0.2995929419994354, -0.010332846082746983, 0.2676488161087036, -0.11574119329452515, -0.4714720547199249, -0.08964236080646515, -0.2914097309112549, -0.17542564868927002, 0.09083125740289688, 0.37340041995048523, -0.1583024561405182, -0.03751819208264351, 0.04794752970337868, 0.22709597647190094, -0.17740167677402496, -0.1854209303855896, -0.15698100626468658, 0.0567496158182621, -0.2840728759765625, -0.10207687318325043, 0.3571471869945526, 0.19621853530406952, 0.4431746006011963, 0.05732746422290802, -0.09201420843601227, 0.09069882333278656, 0.16813476383686066, -0.2038196623325348, 0.00995273794978857, 0.40293943881988525, 0.1610421985387802, -0.00813545472919941, 0.057932399213314056, -0.002174519933760166, -0.08430638909339905, 0.2267477810382843, 0.030599970370531082, -0.3220882713794708, -0.19976221024990082, 0.12545935809612274, -0.2575153112411499, -0.0970945954322815, -0.29352644085884094, -0.12291408330202103, 0.06953177601099014, -0.22989189624786377, -0.16568338871002197, -0.25500813126564026, -0.013438682071864605, -0.3429090082645416, 0.2889152467250824, 0.19613468647003174, -0.5239393711090088, -0.06063064932823181, -0.2506813108921051, -0.18616841733455658, 0.37001922726631165, 0.1299467235803604, -0.3432074785232544, 0.5634205937385559, -0.2346496284008026, 0.3071199357509613, 0.6222009658813477, -0.28784820437431335, -0.7235488295555115, 0.27456092834472656, -0.18675680458545685, -0.09054628014564514, 0.0017629778012633324, 0.2890399694442749, 0.28612133860588074, -0.04637610912322998, 0.0073552438989281654, 0.24261699616909027, -0.08954306691884995, 0.014512108638882637, -0.2099614143371582, -0.13548707962036133, 0.2433943897485733, 0.2387472242116928, -0.09775514155626297, 0.11145420372486115, 0.04551912099123001, 0.23030295968055725, 0.4403785765171051, 0.04535249248147011, 0.24133245646953583, 0.06033634766936302, 0.19274726510047913, -0.056249406188726425, -0.0980716422200203, -0.09563642740249634, -0.4647481143474579, 0.05758412927389145, -0.46378710865974426, -0.019891563802957535, -0.5254124999046326, -0.23770304024219513, -0.5607105493545532, 0.07050061225891113, -0.3272232115268707, -0.03363773971796036, 0.09521116316318512, 0.06527189910411835, 0.19292190670967102, -0.01092957891523838, -0.04101124405860901, 0.28271979093551636, 0.16165412962436676, 0.14527897536754608, 0.1667371243238449, 0.3377927839756012, -0.25187864899635315, -0.4513130486011505, 0.22205603122711182, 0.22950169444084167, 0.22986820340156555, 0.011824745684862137, -0.003103238297626376, 0.36687976121902466, -0.19245122373104095, -0.14022253453731537, -0.05550992861390114, -0.4057018458843231, 0.1735837608575821, -0.23174618184566498, 0.1499909609556198, -0.05211228132247925, 0.1424340158700943, 0.05765451490879059, 0.1917722225189209, 0.050012458115816116, -0.15578226745128632, -0.04028720408678055, 0.016780849546194077, 0.25008636713027954, 0.2090710997581482, -0.03790260851383209, 0.35186392068862915, 0.11673057824373245, 0.18620558083057404, -0.03365945816040039, 0.38551145792007446, -0.12433923035860062, -0.06479651480913162, -0.05990985780954361, 0.49248307943344116, -0.12915794551372528, 0.26082921028137207, 0.029229748994112015, -0.15641023218631744, -0.10481633991003036, 0.0698583796620369, -0.03983180224895477, 0.47772735357284546, 0.21221955120563507, 0.04846576973795891, 0.011449487879872322, -0.11630063503980637, -0.10071539133787155, 0.10457080602645874, 0.12278302758932114, 0.14948147535324097, 0.12621653079986572, 0.12273784726858139, -0.13580240309238434, -0.22302070260047913, -0.2798747420310974, 0.2818378210067749, 0.5004070401191711, -0.23726944625377655, -0.1715032160282135, -0.20758238434791565, -0.16844698786735535, -0.2163601964712143, -0.3563210666179657, -0.07269473373889923, -0.32097968459129333, 0.01796543039381504, 0.12790046632289886, 0.08459248393774033, 0.1943114995956421, -0.01902187615633011, -0.1591053605079651, 0.05223424360156059, -0.20810669660568237, -0.03985747694969177, -0.23350739479064941, -0.3417908549308777, 0.014731871895492077, 0.13012659549713135, 0.11673957854509354, 0.363531231880188, -0.3642139732837677, 0.00804484449326992, -0.3366522192955017, -0.08634807169437408, 0.15994234383106232, -0.10550348460674286, 0.17394541203975677, 0.34992319345474243, 0.5634798407554626, -0.3219730854034424, -0.17883852124214172, 0.13709378242492676, -0.013437522575259209, -0.23222488164901733, 0.18214206397533417, -0.0834413394331932, 0.08989940583705902, -0.01916150376200676, -0.40915337204933167, -0.5689952969551086, -0.37644121050834656, 0.19926445186138153, -0.10538891702890396, 0.13561606407165527, 0.11782743781805038, 0.1452467143535614, 0.22875089943408966, -0.06644148379564285, 0.19763801991939545, -0.051418982446193695, -0.24294926226139069, 0.3138309419155121, -0.19900746643543243, -0.3422822654247284, 0.158925861120224, -0.08463884890079498, 0.15057919919490814, 0.30351537466049194, -0.5758490562438965, -0.057427048683166504, -0.032252658158540726, 0.5895158648490906, 0.1197732463479042, 0.038748566061258316, 0.3558400869369507, 0.022757260128855705, -0.06570157408714294, 0.009441792033612728, -0.05451684445142746, 0.0367184542119503, -0.2966582179069519, 0.41220709681510925, -0.08284053951501846, -0.054417941719293594, 0.006093259900808334, 0.8633527159690857, -0.009552775882184505, -0.06443783640861511, 0.3446914255619049, -0.14574980735778809, 0.08650243282318115, 0.020730163902044296, -0.2893944978713989, -0.01761813275516033, -0.1351754516363144, 0.24538367986679077, 0.16691388189792633, -0.13401493430137634, -0.1906418353319168, -0.2510347366333008, -0.16370300948619843, -0.3817251920700073, -0.31900325417518616, -0.16727149486541748, 0.36725375056266785, 0.4683554172515869, 0.13463854789733887, 0.11672880500555038, 0.004106879234313965, -0.2449626475572586, 0.11113692075014114, 0.13380372524261475, -0.06933104991912842, 0.21520540118217468, -0.008710331283509731, -0.2016221135854721, -0.32521143555641174, 0.35025712847709656, 0.15557970106601715, 0.3106238842010498, -0.10719253122806549, 0.05702506750822067, 0.03287976235151291, -0.0282170120626688, 0.774602472782135, 0.10836818814277649, 0.13242653012275696, -0.19347405433654785, 0.22642455995082855, -0.22810962796211243, -0.06884255260229111, -0.12397146970033646, 0.5027520656585693, 0.15995056927204132, 0.06059142202138901, -0.4501767158508301, -0.006993129383772612, 0.5193060040473938, 0.34878283739089966, -0.04907667636871338, -0.35426488518714905, -0.25068598985671997, -0.47691893577575684, -0.20184996724128723, 0.010334710590541363, -0.010657777078449726, 0.2906784117221832, 0.055793117731809616, 0.11901818215847015, 0.12480747699737549, 0.13257698714733124, -0.008341740816831589, -0.02558351308107376, 0.2934415638446808, -0.05177075415849686, 0.10461340844631195, 0.14401541650295258, 0.22566775977611542, 0.22765913605690002, 0.38231655955314636, 0.02903362363576889, -0.31414157152175903, -0.008919029496610165, -0.16111773252487183, 0.039493102580308914, 0.16358965635299683, -0.11092157661914825, -0.10152579098939896, 0.2779719829559326, -0.05075062811374664, 0.039735160768032074, 0.1668095737695694, 0.41432124376296997, -0.38675129413604736, -0.22496269643306732, -0.17813831567764282, 0.4710519313812256, 0.11227372288703918, 0.10210144519805908, -0.20867328345775604, 0.02671481855213642, 0.02157803624868393, 0.17185932397842407, -0.10078144818544388, 0.8868642449378967, 0.01075144112110138, 0.2602872848510742, 0.580855667591095, -0.3665027916431427, 0.22767683863639832, -0.18688088655471802, 0.12048660218715668, -0.29282689094543457, -0.006437762174755335, -0.11729087680578232, -0.11761216074228287, -0.02634912170469761, 0.1964287906885147, -0.2615426480770111, 0.22001102566719055, -0.15682126581668854, -0.046858515590429306, 0.160989910364151, 0.0589764229953289, -0.16023729741573334, -0.1513265073299408, -0.3159480690956116, 0.04557572677731514, -0.34858784079551697, 0.22276820242404938, -0.18176741898059845, -0.2723870575428009, -0.09108065813779831, -0.06869833171367645, -0.2695517838001251, 0.025184454396367073, -0.33812183141708374, 0.03645867854356766, 0.1915879249572754, -0.2730434536933899, -0.07936257869005203, 0.1309663951396942, 0.1497947722673416, 0.0633748397231102, -0.2067902833223343, 0.17408519983291626, 0.09714077413082123, -0.1893499344587326, 0.19459712505340576, 0.09825713187456131, 0.29227057099342346, -0.1235281303524971, -0.3940217196941376, 0.29474228620529175, -0.1324085295200348, 0.1024964451789856, -0.06471823900938034, -0.05420609563589096, 0.252240389585495, -0.33721476793289185, -0.10611706227064133, -0.21110980212688446, -0.03212917223572731, -0.27724307775497437, 0.08726012706756592, 0.05194048956036568, -0.24268139898777008, 0.23577430844306946, -0.19994798302650452, -0.23728175461292267, -0.1814819872379303, 0.3651658296585083, -0.0421559102833271, -0.004311008844524622, 0.5533018112182617, 0.31921660900115967, -0.3143993020057678, -0.24410946667194366, -0.282889723777771, -0.06291776895523071, -0.9106289744377136, 0.19672928750514984, 0.23734304308891296, 0.2654593884944916, -0.09828011691570282, 0.5354982614517212, 0.12931030988693237, -0.1034117192029953, 0.11702968180179596, -0.4300210475921631, -0.30582839250564575, 0.1651008278131485, 0.30791032314300537, 0.11836851388216019, 0.3951391577720642, 0.25113949179649353, 0.21111616492271423, -0.07036133110523224, -0.2607041597366333, -0.07417537271976471, -0.1678238809108734, 0.1773359477519989, -0.212611123919487, -0.09438223391771317, 0.0820896252989769, 0.10415859520435333, 0.09972123056650162, 0.12108226865530014, -0.07119733095169067, -0.16383974254131317, -0.07920536398887634, 0.1596507877111435, -0.05937928333878517, -0.24331554770469666, 0.17055892944335938, -0.11616172641515732, -0.11386189609766006, 0.12571725249290466, 0.1328083723783493, 0.2116764783859253, 0.016608739271759987, 0.11399607360363007, 0.056795116513967514, -0.06839597225189209, -0.2562175393104553, 0.13027769327163696, -0.09853675961494446, 0.18059305846691132, 0.06659083813428879, 0.29274576902389526, -0.08022506535053253, -0.059700705111026764, -0.06881152093410492, -0.20733600854873657, 0.03620842844247818, -0.2590171694755554, 0.29244115948677063, -0.5262516140937805, -0.005149445030838251, -0.031584661453962326, 0.4530528485774994, 0.05917145311832428, -0.10127130895853043, -0.13705222308635712, 0.2682364881038666, 0.15234960615634918, -0.476733535528183, 0.00968078337609768, 0.0931735634803772, 0.1418687403202057, -0.010811598040163517, 0.21865534782409668, -0.10740931332111359, -0.11575235426425934, -0.03133238106966019, 0.17954447865486145, 0.34521305561065674, -0.005290468689054251, -0.18989302217960358, 0.5471910238265991, -0.014444594271481037, 0.17631852626800537, 0.23274250328540802, 0.3172615170478821, 0.017039887607097626, 0.33299168944358826, -0.549756646156311, 0.13687701523303986, -0.17893263697624207, 0.04634540155529976, -0.08187682926654816, -0.32553693652153015, 0.19902239739894867, 0.3870965540409088, 0.09408310800790787, -0.09937646239995956, -0.1549072414636612, 0.6332027316093445, 0.09304138273000717, 0.20312274992465973, -0.07617546617984772, 0.22352251410484314, -0.17462043464183807, 0.14398536086082458, -0.17854520678520203, -0.15318569540977478, -0.20553962886333466, 0.002845147391781211, -0.10265746712684631, -0.21156474947929382, 0.18800322711467743, 0.23449409008026123, -0.06531298905611038, -0.5137718319892883, 0.29277241230010986, 0.16844743490219116, -0.213246151804924, -0.2507573366165161, 0.2595614194869995, 0.27520444989204407, -0.16261327266693115, 0.22502540051937103, 0.45636093616485596, 0.43245384097099304, 0.27364903688430786, -0.316660076379776, -0.10963590443134308, -0.03872082754969597, -0.06933319568634033, -0.06255562603473663, 0.10971452295780182, 0.3515847325325012, 0.41938167810440063, 0.37583380937576294, 0.11254341155290604, -0.08241983503103256, 0.23613087832927704, 0.20100916922092438, -0.10009940713644028, 0.07340263575315475, 0.4880058765411377, -0.24082204699516296, -0.32821574807167053, -0.1292494684457779, -0.011095710098743439, -0.36468905210494995, 0.08409503847360611, 0.13754214346408844, 0.1415962278842926, 0.05545525625348091, -0.19485729932785034, 0.043618351221084595, -0.2801864445209503, 0.4929966926574707, 0.49460962414741516, 0.43329858779907227, -0.4648813307285309, 0.031110964715480804, -0.6018992066383362, 0.2212468981742859, -0.3157525956630707, -0.34984979033470154, 0.08533963561058044, 0.10896749794483185, -0.1048838421702385, 0.3607357144355774, 0.2757781445980072, 0.003931044600903988, -0.01794927567243576, 0.17348961532115936, -0.24041680991649628, -0.1857466846704483, 0.03779290243983269, 0.1727248579263687, -0.06356672197580338, -0.39678168296813965, 0.2733363211154938, -0.17530414462089539, -0.01000353042036295, -0.3056264817714691, -0.3999146819114685, 0.24369998276233673, 0.18939855694770813, 0.11431088298559189, -0.052798572927713394, 0.4787842929363251, 0.10114254057407379, -0.034837644547224045, -0.012419787235558033, 0.15261998772621155, -0.045295607298612595, 0.0007048978586681187, 0.12066689133644104, 0.32909637689590454, -0.10678495466709137, 0.3048805296421051, -0.34484294056892395, 0.3387080132961273, 0.04872788116335869, 0.09681869298219681, -0.12379487603902817, -0.009946195408701897, -0.11823628842830658, -0.029562581330537796, 0.14713212847709656, -0.138736292719841, -0.17169754207134247, 0.0917620062828064, -0.5351996421813965, -0.4105945825576782, 0.5157892107963562, -0.49646931886672974, -0.19944939017295837, 0.06379682570695877, 0.2571899890899658, -0.00011891246685991064, -0.22477243840694427, -0.5702167749404907, 0.26951006054878235, 0.30668118596076965, 0.08650529384613037, -0.18993203341960907, 0.12506014108657837, -0.13418658077716827, 0.10827960073947906, 0.1559741199016571, 0.3093648850917816, -0.08180787414312363, -0.3986261188983917, -0.12571585178375244, -0.21069249510765076 ]
https://github.com/huggingface/datasets/issues/259
documentation missing how to split a dataset
this seems to work for my specific problem: `self.train_ds, self.test_ds, self.val_ds = map(_prepare_ds, ('train', 'test[:25%]+test[50%:75%]', 'test[75%:]'))`
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
16
documentation missing how to split a dataset I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway) this seems to work for my specific problem: `self.train_ds, self.test_ds, self.val_ds = map(_prepare_ds, ('train', 'test[:25%]+test[50%:75%]', 'test[75%:]'))`
[ -0.018602609634399414, 0.0678199976682663, -0.06753367185592651, 0.17673806846141815, -0.003944923169910908, 0.18629585206508636, 0.45442619919776917, 0.3805294334888458, -0.08497413992881775, 0.00961802527308464, 0.157981276512146, 0.2981637120246887, -0.19395986199378967, 0.11714696884155273, 0.19690343737602234, -0.3786966800689697, -0.11625230312347412, 0.21967890858650208, 0.22028470039367676, -0.020772410556674004, 0.2683161497116089, -0.08780959993600845, -0.301399827003479, 0.12893839180469513, -0.32508984208106995, -0.44627800583839417, -0.16248872876167297, -0.056075651198625565, -0.240428164601326, -0.22450196743011475, 0.23573869466781616, -0.2476491928100586, 0.02295042760670185, 0.2671956717967987, -0.00011698009620886296, 0.08588231354951859, 0.2045545130968094, -0.12312394380569458, -0.06245660036802292, -0.2040254771709442, -0.3563695549964905, -0.09652318805456161, 0.3687444031238556, -0.15157552063465118, -0.016899723559617996, -0.28951776027679443, 0.11565055698156357, -0.1246720626950264, 0.5587252974510193, 0.47057998180389404, 0.09777487069368362, 0.06059183180332184, 0.15095075964927673, 0.07479214668273926, -0.011690448969602585, 0.3118744492530823, -0.10744021832942963, 0.07410495728254318, -0.17679767310619354, -0.11088812351226807, -0.13654875755310059, 0.07059776037931442, 0.17533834278583527, 0.20464591681957245, 0.04387528821825981, 0.01068219542503357, -0.3863062858581543, -0.44494783878326416, -0.17256160080432892, 0.5125132203102112, 0.5099631547927856, -0.3127264380455017, -0.31574591994285583, -0.343855082988739, 0.037356600165367126, -0.21786440908908844, -0.1018407940864563, 0.5787153840065002, -0.12155236303806305, 0.10027404874563217, -0.1438940167427063, -0.19827920198440552, -0.30058610439300537, 0.1699095219373703, 0.03576089069247246, 0.39287322759628296, -0.09283675253391266, 0.09004126489162445, 0.25470784306526184, 0.2649126946926117, 0.21477794647216797, 0.04459484666585922, -0.007795998360961676, 0.30594512820243835, -0.26383301615715027, -0.28980961441993713, -0.11924475431442261, -0.4262010157108307, 0.1204482913017273, 0.2507861256599426, 0.13361304998397827, -0.062240708619356155, -0.19785171747207642, 0.17021122574806213, 0.4436992406845093, 0.2349587380886078, 0.1760656088590622, 0.49382367730140686, 0.003434921381995082, -0.055600181221961975, 0.004060117062181234, -0.153664693236351, -0.0026443542446941137, -0.25522127747535706, -0.0048021492548286915, 0.11848048865795135, 0.14453329145908356, 0.09705395996570587, -0.28748229146003723, -0.32727137207984924, -0.31070899963378906, -0.14245733618736267, 0.13995788991451263, 0.12617184221744537, 0.05062328279018402, -0.07497501373291016, -0.3134506046772003, 0.24432332813739777, -0.3853571116924286, -0.15056242048740387, -0.10966166108846664, 0.1972878873348236, -0.40328583121299744, 0.1087488904595375, 0.10177187621593475, 0.007764031644910574, 0.39677131175994873, -0.09830086678266525, 0.006802496034651995, -0.3800589442253113, 0.32356932759284973, -0.006088037509471178, 0.2312980741262436, 0.4229409992694855, 0.1666383296251297, 0.024442022666335106, 0.09215874969959259, 0.12392601370811462, -0.3356701135635376, -0.03313833475112915, -0.37593477964401245, -0.4590526223182678, -0.008535020053386688, 0.028857173398137093, -0.011236722581088543, 0.212641641497612, -0.21172106266021729, 0.387797087430954, 0.06553617864847183, -0.03927488625049591, 0.20406486093997955, 0.030931903049349785, -0.1864054799079895, -0.318609356880188, 0.2620125710964203, -0.035557832568883896, -0.37654533982276917, -0.08409097790718079, -0.353198379278183, -0.010514385998249054, -0.03754493221640587, 0.16687807440757751, -0.3595995306968689, 0.5219765305519104, -0.07655729353427887, 0.4839743673801422, 0.7543491125106812, -0.2417527288198471, -0.09823023527860641, 0.2866489887237549, 0.11206690967082977, -0.28190121054649353, -0.11413131654262543, -0.046917032450437546, 0.27631303668022156, 0.14342425763607025, -0.32792091369628906, 0.4014887809753418, -0.31334468722343445, -0.16275711357593536, 0.2922532558441162, -0.22284463047981262, 0.23790493607521057, -0.06285339593887329, -0.07858684659004211, -0.27064958214759827, 0.2040356546640396, 0.26984715461730957, 0.46874725818634033, 0.015190422534942627, 0.1762862503528595, 0.18044792115688324, 0.04687860980629921, 0.12267394363880157, -0.10348397493362427, -0.35996532440185547, -0.3674159348011017, -0.03638152778148651, 0.12090261280536652, -0.11677733063697815, 0.013649350963532925, -0.2652081549167633, -0.18703004717826843, -0.15209993720054626, 0.021210988983511925, -0.2905016839504242, 0.050076499581336975, -0.3772895038127899, 0.18677589297294617, -0.10278959572315216, -0.43935099244117737, 0.07196082919836044, -0.1744217872619629, 0.2400340884923935, -0.4450749158859253, 0.10220462828874588, 0.0919370949268341, -0.06680022925138474, 0.09836003929376602, 0.275968074798584, -0.03193095326423645, -0.1138189509510994, 0.02150319330394268, 0.5539044737815857, 0.5597567558288574, -0.008686463348567486, -0.22205045819282532, 0.02169521525502205, 0.40296927094459534, -0.45078045129776, 0.1424923539161682, -0.058894336223602295, -0.03638848289847374, -0.002012524288147688, -0.44578030705451965, 0.3606334924697876, -0.33324041962623596, 0.31460297107696533, 0.17358040809631348, 0.1451762467622757, 0.035445962101221085, -0.19155359268188477, -0.2770097553730011, -0.029292592778801918, -0.2691338360309601, -0.36893075704574585, 0.21416854858398438, -0.02826179750263691, -0.1507073938846588, 0.054015934467315674, 0.4456149637699127, -0.20175239443778992, 0.18504109978675842, -0.13726875185966492, 0.06449736654758453, -0.014752347022294998, 0.1648786962032318, 0.41857317090034485, 0.2900046706199646, -0.00612243777140975, 0.4006568491458893, -0.07904984802007675, -0.27347052097320557, -0.07566499710083008, 0.11545679718255997, 0.22131562232971191, 0.442046582698822, -0.032939303666353226, -0.3973309397697449, -0.08685389906167984, -0.0056654950603842735, 0.03538377583026886, 0.17229057848453522, 0.06157456338405609, -0.2826007008552551, 0.11213184893131256, -0.3698824346065521, -0.11152932047843933, -0.45408982038497925, -0.2572493851184845, -0.08542918413877487, -0.23043765127658844, -0.14611023664474487, -0.15688180923461914, -0.03090820088982582, -0.02479112520813942, -0.15844304859638214, -0.07588481158018112, -0.15447381138801575, 0.14947862923145294, 0.39114251732826233, -0.2639915943145752, -0.16559287905693054, 0.039947886019945145, 0.11624637246131897, 0.5957331657409668, 0.2761845886707306, 0.06916563212871552, -0.16880325973033905, 0.11827033013105392, -0.29011839628219604, 0.22026072442531586, -0.23562046885490417, 0.008544969372451305, 0.20443928241729736, 0.16586357355117798, 0.04784257337450981, -0.2953158915042877, -0.21436284482479095, -0.18573836982250214, -0.15272080898284912, -0.0875527411699295, 0.23345836997032166, 0.09794992953538895, -0.17646950483322144, -0.705202043056488, -0.2810894548892975, -0.19379307329654694, 0.26983779668807983, -0.25161486864089966, 0.22132466733455658, 0.21118620038032532, 0.15716928243637085, 0.3712312579154968, 0.10776052623987198, -0.09275702387094498, 0.18067540228366852, 0.2621372938156128, 0.024327490478754044, -0.47079160809516907, -0.20821824669837952, 0.2600362300872803, -0.028009116649627686, 0.2169559746980667, 0.029475929215550423, -0.1711168736219406, 0.15496769547462463, -0.18481867015361786, -0.06378278881311417, -0.0715663954615593, -0.021511327475309372, 0.26966750621795654, -0.18753379583358765, 0.2374565750360489, -0.16067685186862946, 0.11277435719966888, 0.15087972581386566, -0.07872846722602844, 0.18655695021152496, 0.029535837471485138, 0.3088376522064209, 0.27840664982795715, 0.7139960527420044, 0.2629849314689636, -0.10933271050453186, -0.2752417325973511, -0.1456858515739441, 0.09790237993001938, 0.11125689744949341, -0.07159830629825592, 0.0010459857294335961, -0.08922120183706284, -0.14020393788814545, 0.031533677130937576, 0.22970786690711975, -0.2494005411863327, 0.05157517269253731, 0.04182729125022888, -0.3889925479888916, -0.4456569254398346, 0.33257144689559937, -0.4490882456302643, 0.24677133560180664, -0.0656052678823471, 0.04511876776814461, 0.08559626340866089, -0.04428441822528839, -0.3033318519592285, 0.12364839017391205, 0.2424202412366867, 0.025077536702156067, -0.38185691833496094, -0.0773349180817604, -0.2065925896167755, -0.10824012011289597, 0.11951562017202377, 0.19519253075122833, -0.12964949011802673, -0.015336872078478336, 0.2284470498561859, 0.26357799768447876, 0.2736075520515442, -0.16423779726028442, -0.09486261755228043, -0.11137271672487259, 0.11484955996274948, -0.35095059871673584, 0.1359982192516327, -0.22492648661136627, 0.38315194845199585, 0.06229964643716812, -0.05454547330737114, -0.3764478266239166, -0.46568748354911804, 0.4516022205352783, -0.05901337414979935, -0.1405365765094757, 0.13367332518100739, -0.12436535209417343, -0.23351874947547913, 0.03564809262752533, 0.0920318067073822, 0.38545846939086914, -0.15819716453552246, -0.06390830874443054, 0.058764781802892685, -0.1279883235692978, -0.07622310519218445, 0.18287234008312225, -0.02140575274825096, 0.2896788716316223, 0.07412873208522797, -0.13207323849201202, 0.39655205607414246, 0.09846219420433044, -0.03762776777148247, 0.3037124276161194, -0.14420893788337708, -0.14239495992660522, 0.1643046736717224, -0.08013878762722015, 0.6287441849708557, 0.2862635850906372, 0.05457475408911705, 0.0391622930765152, -0.08323498070240021, -0.218118816614151, -0.2484401911497116, 0.3092341423034668, 0.23220843076705933, -0.1357230395078659, -0.22327232360839844, -0.5992252230644226, 0.3932132422924042, 0.10758142918348312, -0.040671467781066895, 0.500229001045227, 0.22755752503871918, -0.34822458028793335, 0.40416428446769714, 0.22374242544174194, 0.672236442565918, 0.09737369418144226, 0.10019563138484955, 0.1406402885913849, -0.24438925087451935, 0.5452373623847961, -0.45559069514274597, 0.16622743010520935, -0.18402604758739471, -0.13895268738269806, -0.1402612179517746, -0.2584875524044037, 0.011901794001460075, 0.3969440162181854, 0.04395681247115135, 0.26098811626434326, -0.10268037766218185, 0.00346138677559793, -0.16641317307949066, 0.3793568015098572, -0.10909739881753922, -0.07126262038946152, 0.033445004373788834, 0.04779477417469025, -0.14486686885356903, -0.028488824144005775, 0.04708705097436905, -0.11839941889047623, -0.2446737289428711, 0.06455094367265701, -0.38495999574661255, -0.024767087772488594, -0.19154030084609985, 0.18074700236320496, -0.02895936369895935, -0.16216854751110077, 0.29415884613990784, 0.2815639078617096, 0.05048989877104759, -0.06855176389217377, -0.03694130852818489, 0.2560127079486847, -0.2146633118391037, -0.017347365617752075, -0.1256805658340454, -0.04431011155247688, 0.4262988269329071, 0.16207024455070496, -0.27442076802253723, 0.031708795577287674, -0.18382211029529572, -0.11254669725894928, 0.08722487837076187, 0.3421584963798523, 0.17468047142028809, -0.3543890416622162, -0.10897395014762878, 0.14388766884803772, 0.014854008331894875, 0.039193302392959595, 0.05967039614915848, 0.02583260089159012, -0.25073421001434326, 0.18310418725013733, -0.018512152135372162, -0.18730902671813965, 0.08043751120567322, -0.15625622868537903, 0.09684523940086365, 0.12658925354480743, 0.34596148133277893, 0.044307541102170944, 0.01661999709904194, -0.23444312810897827, 0.34405723214149475, 0.5174092054367065, -0.3070375621318817, -0.04651733115315437, -0.40889444947242737, 0.14942878484725952, 0.08954398334026337, -0.17404334247112274, 0.038089923560619354, 0.33333542943000793, -0.31449130177497864, -0.44444942474365234, 0.027880443260073662, 0.34179753065109253, -0.17802464962005615, 0.34788376092910767, -0.2438230812549591, 0.11857220530509949, 0.07069827616214752, 0.4230944514274597, -0.16127605736255646, 0.1914980262517929, 0.15697045624256134, 0.3527006208896637, 0.04303071275353432, 0.10546042025089264, 0.24811549484729767, -0.1356278359889984, -0.08017857372760773, 0.07665737718343735, 0.09691052883863449, -0.16246967017650604, -0.1440144181251526, 0.15749172866344452, -0.07069266587495804, 0.03076387755572796, -0.2150486558675766, -0.26502883434295654, -0.21865518391132355, -0.047331035137176514, 0.004286422859877348, -0.09766669571399689, 0.18377649784088135, 0.42652252316474915, 0.30825984477996826, 0.1602049469947815, -0.22029289603233337, 0.0726647824048996, -0.07701823860406876, 0.3498508632183075, 0.07863754779100418, 0.26025670766830444, 0.14350971579551697, 0.09982781112194061, -0.2608238160610199, -0.027992133051156998, 0.2979620695114136, -0.4033302664756775, -0.039421625435352325, 0.2067461460828781, 0.2281351089477539, -0.6105560064315796, 0.37946996092796326, 0.4685685932636261, 0.11273187398910522, 0.16522479057312012, 0.08984319865703583, 0.06358785182237625, 0.1468057632446289, 0.23767995834350586, 0.2606690227985382, 0.18592026829719543, -0.00995581317692995, 0.2944073975086212, 0.12091456353664398, 0.6356112360954285, -0.3971502184867859, -0.07452760636806488, 0.12078642845153809, 0.015104875899851322, 0.36352792382240295, 0.4176059663295746, -0.2986030578613281, -0.11512064188718796, 0.23976336419582367, -0.3498401939868927, 0.30018287897109985, 0.16398929059505463, 0.08710458874702454, 0.5904921293258667, 0.04764842242002487, 0.047010719776153564, 0.3991539180278778, -0.08683063089847565, -0.5318812131881714, 0.053784094750881195, 0.10086569935083389, -0.08931957930326462, -0.08043689280748367, 0.5899491906166077, -0.06141044199466705, -0.2744283974170685, -0.04727281257510185, 0.14674492180347443, 0.0745285302400589, -0.020305464044213295, -0.4402680993080139, -0.0016304947203025222, -0.2677975594997406, -0.10466039925813675, 0.1856309473514557, -0.30940940976142883, 0.353985995054245, 0.06242396682500839, 0.10024406015872955, -0.02994517982006073, 0.2893144488334656, 0.26521626114845276, 0.07792019844055176, -0.016749609261751175, 0.009803502820432186, -0.16361550986766815, -0.045619361102581024, -0.09232772886753082, 0.17611294984817505, 0.14909590780735016, -0.08622784167528152, -0.3744152784347534, 0.10671401768922806, 0.2882680892944336, -0.18116378784179688, 0.18445895612239838, 0.21095044910907745, -0.09573803842067719, 0.058130182325839996, 0.14420944452285767, 0.09980269521474838, -0.03594708442687988, -0.0017199955182150006, 0.13332326710224152, 0.06717442721128464, -0.4371819496154785, 0.45073190331459045, -0.1003250852227211, -0.1818159967660904, -0.11517331004142761, -0.003097603563219309, -0.2519983649253845, -0.19639471173286438, 0.557298481464386, -0.34285831451416016, 0.0952695682644844, -0.16597414016723633, 0.0025319980923086405, -0.11938371509313583, 0.6049438714981079, 0.048550013452768326, 0.2872435450553894, -0.23063924908638, -0.23531129956245422, -0.3484075665473938, -0.17246469855308533, -0.2616732716560364, -0.14311105012893677, 0.11644656211137772, 0.325249582529068, -0.20031923055648804, 0.1976138949394226, -0.052398256957530975, 0.022370701655745506, 0.13385073840618134, 0.27883511781692505, -0.055644646286964417, -0.22805258631706238, -0.3200215697288513, 0.19413091242313385, -0.083384208381176, -0.2465539127588272, -0.02966860868036747, -0.09172540158033371, -0.2744736075401306, 0.14141462743282318, -0.10915987938642502, 0.5010815262794495, 0.47888103127479553, -0.07082592695951462, 0.16269627213478088, 0.4706989526748657, 0.21417175233364105, 0.06188606098294258, -0.36315518617630005, 0.06310109049081802, -0.322373628616333, 0.4241427481174469, -0.07200619578361511, 0.2387050837278366, -0.3206014633178711, 0.06453084200620651, -0.18233895301818848, 0.11542829126119614, 0.04565111920237541, -0.18409773707389832, -0.230617493391037, -0.05142568051815033, -0.3432810604572296, 0.18583731353282928, 0.8144024610519409, 0.4527970850467682, -0.3223564624786377, -0.00658205384388566, 0.15158487856388092, -0.12273143231868744, -0.07486338913440704, -0.42572450637817383, -0.1299208402633667, 0.18796469271183014, 0.1765194535255432, 0.4325862526893616, -0.08113826811313629, -0.7890357971191406, -0.23772500455379486, 0.21454964578151703, -0.24280020594596863, 0.05750022456049919, 0.07962445914745331, 0.3678283095359802, -0.1339792013168335, -0.03476451337337494, 0.4012279808521271, 0.1358882039785385, -0.30400118231773376, 0.0704723373055458, -0.32254263758659363 ]
https://github.com/huggingface/datasets/issues/259
documentation missing how to split a dataset
Currently you can indeed split a dataset using `ds_test = nlp.load_dataset('imdb, split='test[:5000]')` (works also with percentages). However right now we don't have a way to shuffle a dataset but we are thinking about it in the discussion in #166. Feel free to share your thoughts about it. One trick that you can do until we have a better solution is to shuffle and split the indices of your dataset: ```python import nlp from sklearn.model_selection import train_test_split imdb = nlp.load_dataset('imbd', split='test') test_indices, val_indices = train_test_split(range(len(imdb))) ``` and then to iterate each split: ```python for i in test_indices: example = imdb[i] ... ```
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
101
documentation missing how to split a dataset I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway) Currently you can indeed split a dataset using `ds_test = nlp.load_dataset('imdb, split='test[:5000]')` (works also with percentages). However right now we don't have a way to shuffle a dataset but we are thinking about it in the discussion in #166. Feel free to share your thoughts about it. One trick that you can do until we have a better solution is to shuffle and split the indices of your dataset: ```python import nlp from sklearn.model_selection import train_test_split imdb = nlp.load_dataset('imbd', split='test') test_indices, val_indices = train_test_split(range(len(imdb))) ``` and then to iterate each split: ```python for i in test_indices: example = imdb[i] ... ```
[ 0.06009962037205696, 0.05920233950018883, -0.061561841517686844, 0.11396994441747665, -0.013390638865530491, 0.2231488972902298, 0.43412911891937256, 0.34234631061553955, -0.08726134896278381, 0.09042424708604813, 0.11232982575893402, 0.325826495885849, -0.25177666544914246, 0.11685822159051895, 0.17987091839313507, -0.3691290318965912, -0.06624040007591248, 0.1591634303331375, 0.2443264275789261, 0.030817976221442223, 0.2214924693107605, -0.152311772108078, -0.37213602662086487, 0.07190285623073578, -0.29173585772514343, -0.4570460021495819, -0.246394544839859, -0.05413735285401344, -0.2753705084323883, -0.23689629137516022, 0.17016832530498505, -0.08537353575229645, -0.006451405119150877, 0.2993583083152771, -0.00011711734987329692, -0.0006970235262997448, 0.22161367535591125, -0.11507422477006912, -0.1520453691482544, -0.27495795488357544, -0.2659641206264496, 0.0024025661405175924, 0.30486470460891724, -0.20199517905712128, 0.018710041418671608, -0.26793578267097473, 0.10415343940258026, -0.11388537287712097, 0.5253755450248718, 0.4025021195411682, 0.09737696498632431, -0.018744971603155136, 0.05933957174420357, 0.12936490774154663, 0.07494479417800903, 0.27727171778678894, -0.0650620236992836, 0.17165431380271912, -0.1823064386844635, -0.09564324468374252, -0.13511425256729126, 0.04886752367019653, 0.16107991337776184, 0.2262032926082611, 0.1025448739528656, 0.02398885414004326, -0.35290393233299255, -0.45660650730133057, -0.17250320315361023, 0.5094370245933533, 0.4698420464992523, -0.3314262628555298, -0.3592272698879242, -0.386128693819046, 0.12773096561431885, -0.26421058177948, -0.13123653829097748, 0.5653489232063293, -0.09737294912338257, -0.055090323090553284, -0.15455129742622375, -0.12978078424930573, -0.2560814619064331, 0.13921739161014557, 0.08537758141756058, 0.5397903323173523, -0.03236246481537819, 0.07690929621458054, 0.3139476180076599, 0.20437295734882355, 0.4018693268299103, -0.024770764634013176, -0.011732056736946106, 0.35846081376075745, -0.25612518191337585, -0.31210169196128845, -0.1303185075521469, -0.423410564661026, 0.11904732882976532, 0.2578413188457489, 0.17167653143405914, -0.0856156200170517, -0.17894279956817627, 0.10597425699234009, 0.44757357239723206, 0.24215872585773468, 0.1864498108625412, 0.47353920340538025, 0.0036864252761006355, 0.015850437805056572, 0.05500243231654167, -0.1519695222377777, -0.030426332727074623, -0.285062700510025, -0.05409044027328491, 0.12595096230506897, 0.04234197363257408, 0.10311100631952286, -0.3341124653816223, -0.3942471444606781, -0.3149622082710266, -0.1922616809606552, 0.17695261538028717, 0.15305468440055847, 0.0330439917743206, -0.05517178401350975, -0.31209617853164673, 0.2518872320652008, -0.3018951416015625, -0.004585400689393282, -0.12498069554567337, 0.19917643070220947, -0.4028160870075226, 0.0909402072429657, 0.13776515424251556, 0.027254177257418633, 0.3933164179325104, -0.07447187602519989, 0.08510603755712509, -0.32335996627807617, 0.28442567586898804, 0.013546881265938282, 0.20843464136123657, 0.39162585139274597, 0.19600501656532288, 0.03417122736573219, 0.03795388340950012, 0.1721699982881546, -0.3572607636451721, 0.010658678598701954, -0.37622225284576416, -0.38633641600608826, 0.059066660702228546, 0.03592454269528389, -0.04296591877937317, 0.1375054270029068, -0.3059713542461395, 0.3850705623626709, 0.0028131240978837013, -0.08429810404777527, 0.18368297815322876, -0.03547077998518944, -0.18839602172374725, -0.3066430687904358, 0.2635628283023834, -0.04239655286073685, -0.3014155924320221, -0.08503292500972748, -0.311821311712265, 0.03487281873822212, 0.009222897700965405, 0.22538234293460846, -0.3613460063934326, 0.4354795813560486, -0.07879803329706192, 0.4266369044780731, 0.7096788287162781, -0.16683854162693024, -0.08304846286773682, 0.13563945889472961, 0.07302524149417877, -0.2475162148475647, -0.05864236503839493, -0.025410518050193787, 0.27929580211639404, 0.08227868378162384, -0.25813907384872437, 0.4794849753379822, -0.33176758885383606, -0.06840802729129791, 0.2964523136615753, -0.25189992785453796, 0.3039957284927368, 0.00265141436830163, -0.11293468624353409, -0.2537755072116852, 0.186483696103096, 0.34164878726005554, 0.5174598693847656, 0.0002924117725342512, 0.12405213713645935, 0.12213212251663208, 0.03477097302675247, 0.23333917558193207, -0.0684840977191925, -0.3601817190647125, -0.2926032245159149, -0.07240280508995056, 0.16962537169456482, -0.09011577069759369, 0.02935762330889702, -0.29040858149528503, -0.2447776198387146, -0.23009739816188812, 0.02671891264617443, -0.2659702003002167, 0.056223418563604355, -0.3088192045688629, 0.2587307095527649, -0.142192080616951, -0.4538699686527252, -0.022831346839666367, -0.26234275102615356, 0.1578737497329712, -0.45560312271118164, 0.2260330617427826, 0.09709768742322922, -0.15135303139686584, 0.12351154536008835, 0.3515445590019226, -0.06762335449457169, -0.1001838818192482, -0.013902082107961178, 0.6143959164619446, 0.5653507113456726, -0.09559550881385803, -0.17022384703159332, 0.029423698782920837, 0.43212997913360596, -0.371390163898468, 0.16432873904705048, -0.07341951131820679, 0.007383325602859259, 0.006760968826711178, -0.4206549823284149, 0.42400747537612915, -0.5293161869049072, 0.3824998736381531, 0.21835200488567352, 0.05541381612420082, 0.016122426837682724, -0.0953369215130806, -0.31663352251052856, 0.022135406732559204, -0.20150542259216309, -0.3675963878631592, 0.11824501305818558, -0.06441108137369156, -0.20699149370193481, 0.026013636961579323, 0.41188177466392517, -0.19969886541366577, 0.10810690373182297, -0.13601981103420258, 0.013239206746220589, -0.04035092890262604, 0.11190560460090637, 0.4428800642490387, 0.2646600306034088, 0.06288228929042816, 0.3699392080307007, -0.09811420738697052, -0.2832745313644409, -0.09415511041879654, 0.11233092844486237, 0.25499019026756287, 0.4364367127418518, 0.011018226854503155, -0.2843092083930969, -0.0864049568772316, -0.024016331881284714, -0.0805046409368515, 0.18778178095817566, 0.08373674750328064, -0.2561197578907013, 0.06383366137742996, -0.3536813259124756, -0.1584828794002533, -0.4681740999221802, -0.32021525502204895, -0.05686205253005028, -0.2556048333644867, -0.12271586060523987, -0.03393471986055374, -0.054200537502765656, 0.008823452517390251, -0.1515870839357376, -0.03954558074474335, -0.12446802854537964, 0.1857989877462387, 0.34453025460243225, -0.31507086753845215, -0.13216422498226166, 0.03292068466544151, 0.13630002737045288, 0.675849199295044, 0.3586132824420929, 0.03770436719059944, -0.1696939617395401, 0.1066736951470375, -0.22684650123119354, 0.19139987230300903, -0.1884540319442749, -0.003777401288971305, 0.14333492517471313, 0.12773776054382324, -0.04253170266747475, -0.4658030569553375, -0.19378046691417694, -0.21292535960674286, -0.15234419703483582, 0.036780912429094315, 0.22463734447956085, 0.11643931269645691, -0.1551230549812317, -0.6601368188858032, -0.34316495060920715, -0.18102429807186127, 0.19332316517829895, -0.20737065374851227, 0.2268756628036499, 0.24387982487678528, 0.18594346940517426, 0.3274715542793274, 0.01462231669574976, -0.1173027977347374, 0.19149544835090637, 0.2556436359882355, 0.04356091469526291, -0.44918307662010193, -0.1671503633260727, 0.18767307698726654, -0.06652656197547913, 0.09794668853282928, 0.09237681329250336, -0.10886930674314499, 0.16333617269992828, -0.20559291541576385, -0.05495719611644745, -0.05828729271888733, 0.027939459308981895, 0.276000440120697, -0.1686510592699051, 0.23735174536705017, -0.12998853623867035, 0.1291235089302063, 0.12755729258060455, -0.003087444230914116, 0.2730181813240051, 0.00850101001560688, 0.3296947777271271, 0.2465958148241043, 0.753081202507019, 0.2361808866262436, -0.08670445531606674, -0.2982822060585022, -0.13201041519641876, 0.05755160376429558, 0.022603629156947136, -0.08016258478164673, 0.12196590006351471, -0.0013237094972282648, -0.16967608034610748, 0.086872898042202, 0.16649092733860016, -0.3392604887485504, 0.06560968607664108, 0.07365719228982925, -0.3866911232471466, -0.4350094795227051, 0.3419039249420166, -0.43806982040405273, 0.1782551258802414, -0.061376746743917465, -0.017333775758743286, 0.022490158677101135, -0.09498456120491028, -0.3401085436344147, 0.09858114272356033, 0.22046999633312225, 0.030935250222682953, -0.4048053026199341, -0.20659580826759338, -0.21264530718326569, -0.1574433296918869, 0.1924210786819458, 0.26652616262435913, -0.026468399912118912, -0.021182093769311905, 0.2608844041824341, 0.2814455032348633, 0.2959347665309906, -0.15047746896743774, -0.05250130966305733, -0.03982871398329735, 0.12456154823303223, -0.32955822348594666, 0.06933318823575974, -0.349467396736145, 0.3621772825717926, 0.100666843354702, 0.02537926658987999, -0.38978564739227295, -0.4066639542579651, 0.43395838141441345, -0.006119922734797001, -0.13574908673763275, 0.12987221777439117, -0.1702319085597992, -0.19859793782234192, -0.011146541684865952, 0.11986047029495239, 0.3398831784725189, -0.09839117527008057, -0.14003470540046692, 0.13237299025058746, -0.07185313105583191, -0.08284489065408707, 0.13599282503128052, 0.04860096052289009, 0.3254578113555908, 0.21512547135353088, -0.11585728079080582, 0.43478554487228394, 0.022969037294387817, 0.007250319700688124, 0.21266402304172516, -0.12155874818563461, -0.11246657371520996, 0.14882244169712067, -0.0820966511964798, 0.5192815661430359, 0.33486565947532654, 0.11671244353055954, 0.0019604323897510767, -0.08885321021080017, -0.17211484909057617, -0.2203490287065506, 0.22006411850452423, 0.1969328224658966, -0.16290006041526794, -0.23226338624954224, -0.7845413088798523, 0.3825083374977112, 0.14931362867355347, -0.0787293091416359, 0.4942559003829956, 0.22275541722774506, -0.35297006368637085, 0.540419340133667, 0.26006966829299927, 0.7107945680618286, 0.027093473821878433, 0.10878513753414154, 0.2451622188091278, -0.2199295461177826, 0.5987609028816223, -0.37287235260009766, 0.1955493837594986, -0.2358037382364273, -0.23172658681869507, -0.0505058616399765, -0.2486104965209961, -0.042245328426361084, 0.3854593336582184, -0.01929841749370098, 0.309472918510437, -0.09202130138874054, -0.1220286563038826, -0.24741201102733612, 0.4114217162132263, -0.2356865406036377, -0.03785485029220581, 0.06772652268409729, 0.02942626178264618, -0.16749952733516693, -0.06039012596011162, 0.10659509152173996, -0.07353611290454865, -0.2748829126358032, 0.11426199972629547, -0.37943875789642334, -0.034500181674957275, -0.14393670856952667, 0.1884533017873764, -0.1470767855644226, -0.15393123030662537, 0.23088502883911133, 0.15992188453674316, 0.09165992587804794, -0.06489995121955872, -0.019740095362067223, 0.26765066385269165, -0.09607867896556854, -0.02899915538728237, -0.09119134396314621, 0.014268439263105392, 0.47091448307037354, 0.20436255633831024, -0.29585301876068115, -0.03503904491662979, -0.08294626325368881, -0.1843605637550354, 0.0005771582946181297, 0.2810373604297638, 0.2053862363100052, -0.28600531816482544, -0.13917119801044464, 0.20517727732658386, 0.03273576870560646, 0.025558091700077057, 0.06589667499065399, -0.01983780227601528, -0.21882621943950653, 0.21004311740398407, -0.05398527905344963, -0.17610441148281097, 0.0770147293806076, -0.1460440456867218, 0.08020801842212677, 0.10337952524423599, 0.36752527952194214, 0.05142606422305107, 0.002132592722773552, -0.20663541555404663, 0.3037536144256592, 0.438364714384079, -0.28629517555236816, 0.04947340860962868, -0.3851538300514221, 0.14462628960609436, 0.08245877176523209, -0.1435527354478836, 0.09010832011699677, 0.40065810084342957, -0.3112069368362427, -0.4613434672355652, 0.09297264367341995, 0.43247950077056885, -0.03833266720175743, 0.33950626850128174, -0.2784987688064575, 0.15135236084461212, 0.019041720777750015, 0.31904563307762146, -0.1888808310031891, 0.1861720085144043, 0.1802685707807541, 0.42717766761779785, -0.048240695148706436, 0.09498181939125061, 0.12351115792989731, -0.1272827535867691, -0.06728081405162811, 0.03961049020290375, 0.10758896172046661, -0.17025841772556305, -0.15146438777446747, 0.13831256330013275, -0.055879976600408554, 0.03552359342575073, -0.2046455442905426, -0.32836171984672546, -0.2501082420349121, -0.12947659194469452, -0.061324410140514374, -0.06784273684024811, 0.20689554512500763, 0.45333969593048096, 0.4532243609428406, 0.12273585051298141, -0.09720499813556671, 0.16519132256507874, -0.1471458524465561, 0.22503691911697388, 0.03594377636909485, 0.3269495666027069, 0.17991235852241516, 0.09982923418283463, -0.3032549321651459, -0.0818270817399025, 0.20345726609230042, -0.3801212012767792, -0.06861090660095215, 0.1789451539516449, 0.26686233282089233, -0.4711160659790039, 0.43184784054756165, 0.5926182866096497, 0.18063193559646606, 0.0577293261885643, 0.18179160356521606, 0.06982255727052689, 0.12195204943418503, 0.23703975975513458, 0.18802478909492493, 0.25610968470573425, 0.003501170314848423, 0.3167130947113037, 0.035186029970645905, 0.47662225365638733, -0.4306506812572479, -0.07014033943414688, 0.13116414844989777, -0.06631223857402802, 0.366807758808136, 0.49853387475013733, -0.2365572452545166, -0.21820950508117676, 0.2221251130104065, -0.3801797032356262, 0.24524752795696259, 0.17802615463733673, 0.1286340206861496, 0.6150346994400024, 0.0819283127784729, -0.01283238921314478, 0.34177595376968384, -0.05880432948470116, -0.49681663513183594, 0.17311547696590424, 0.09135223180055618, -0.020113440230488777, 0.0038310308009386063, 0.5978034138679504, -0.07840020209550858, -0.16260932385921478, -0.014351163059473038, 0.170525461435318, 0.11518894135951996, -0.06373879313468933, -0.43694326281547546, -0.061445556581020355, -0.3473997414112091, -0.06094314903020859, 0.11262425035238266, -0.26966649293899536, 0.323660284280777, 0.0872591957449913, 0.04000970721244812, -0.1954784095287323, 0.3290706276893616, 0.2906007766723633, 0.13569197058677673, -0.08512385189533234, -0.07892560958862305, -0.13413496315479279, -0.044185180217027664, 0.04194558411836624, 0.20853263139724731, 0.11137183755636215, -0.0033138596918433905, -0.4120710790157318, 0.10050134360790253, 0.23961137235164642, -0.22060039639472961, 0.18486787378787994, 0.22301824390888214, 0.0269465409219265, 0.06348831951618195, 0.13784492015838623, 0.12301168590784073, -0.05885325372219086, -0.005931544117629528, 0.17543545365333557, 0.012286614626646042, -0.41121751070022583, 0.4289703965187073, -0.04607664421200752, -0.13505524396896362, -0.04459699988365173, 0.0144306356087327, -0.3357689678668976, -0.1644349843263626, 0.3247781991958618, -0.33928850293159485, 0.055593013763427734, -0.16368281841278076, 0.0027706429827958345, -0.09656786918640137, 0.5712152719497681, 0.10233962535858154, 0.25753769278526306, -0.16597998142242432, -0.24229556322097778, -0.35476553440093994, -0.23544618487358093, -0.18375617265701294, -0.16355423629283905, 0.15178124606609344, 0.42012566328048706, -0.24219806492328644, 0.21163208782672882, -0.13461315631866455, 0.07613591104745865, 0.045460045337677, 0.3558131456375122, -0.10699860006570816, -0.2201104313135147, -0.3341936767101288, 0.22128432989120483, -0.10734580457210541, -0.24159270524978638, -0.04876530542969704, -0.06508522480726242, -0.2900024950504303, 0.1640605926513672, -0.09777991473674774, 0.4897423982620239, 0.4773821532726288, -0.15499041974544525, 0.13316909968852997, 0.479599267244339, 0.2026752084493637, 0.09957940876483917, -0.44112998247146606, -0.0005303522339090705, -0.4071694612503052, 0.3740478754043579, -0.034312933683395386, 0.29506537318229675, -0.3066808581352234, -0.008255420252680779, -0.1573830246925354, 0.1780373901128769, -0.022581810131669044, -0.24556107819080353, -0.3620997965335846, -0.04120832681655884, -0.3270585536956787, 0.2329270988702774, 0.6373427510261536, 0.4534016251564026, -0.30583304166793823, 0.003918275702744722, 0.16172291338443756, -0.09409836679697037, -0.012662424705922604, -0.4618833661079407, -0.17610275745391846, 0.1094803661108017, 0.13716529309749603, 0.4254467785358429, -0.11045577377080917, -0.6365734338760376, -0.16916672885417938, 0.1760028600692749, -0.1436435431241989, 0.12490983307361603, 0.11798020452260971, 0.36176571249961853, -0.08889090269804001, -0.05115273594856262, 0.3349887728691101, 0.10079392790794373, -0.286811500787735, -0.028493694961071014, -0.338917076587677 ]
https://github.com/huggingface/datasets/issues/259
documentation missing how to split a dataset
I added a small guide [here](https://github.com/huggingface/nlp/tree/master/docs/splits.md) that explains how to split a dataset. It is very similar to the tensorflow datasets guide, as we kept the same logic.
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
28
documentation missing how to split a dataset I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway) I added a small guide [here](https://github.com/huggingface/nlp/tree/master/docs/splits.md) that explains how to split a dataset. It is very similar to the tensorflow datasets guide, as we kept the same logic.
[ -0.010855104774236679, 0.10391631722450256, -0.07164089381694794, 0.17237123847007751, -0.009352690540254116, 0.1751483529806137, 0.4139042794704437, 0.3510570228099823, -0.14558438956737518, 0.02154356613755226, 0.1812569499015808, 0.2846696078777313, -0.14739838242530823, 0.1108822450041771, 0.18141385912895203, -0.3872857689857483, -0.11156081408262253, 0.2299460917711258, 0.26163774728775024, -0.04211539030075073, 0.28746557235717773, -0.05571598559617996, -0.27072176337242126, 0.10467813163995743, -0.34762832522392273, -0.46123284101486206, -0.1970774382352829, -0.03716496005654335, -0.22528040409088135, -0.229569673538208, 0.22839228808879852, -0.2733033001422882, 0.038595594465732574, 0.25957193970680237, -0.00011577824625419453, 0.06299901753664017, 0.24595242738723755, -0.10788563638925552, -0.10205551981925964, -0.20078659057617188, -0.3612455725669861, -0.08098730444908142, 0.4162449836730957, -0.1300804615020752, 0.008889961987733841, -0.24973714351654053, 0.1623074859380722, -0.17351940274238586, 0.5008518695831299, 0.45944565534591675, 0.09989427775144577, 0.035132087767124176, 0.1878994256258011, 0.08388227969408035, -0.008650494739413261, 0.33384081721305847, -0.11219765245914459, 0.07645536214113235, -0.11137387901544571, -0.07661836594343185, -0.16728302836418152, 0.04348492994904518, 0.18383759260177612, 0.20613297820091248, 0.08074339479207993, -0.027349647134542465, -0.3851656913757324, -0.4645876884460449, -0.14274822175502777, 0.5450025796890259, 0.6056336760520935, -0.3358955979347229, -0.29803943634033203, -0.304544061422348, 0.04508909210562706, -0.1760808676481247, -0.1278073638677597, 0.629643976688385, -0.11713650077581406, 0.08766067773103714, -0.12019486725330353, -0.2391178458929062, -0.3045322895050049, 0.1573001593351364, 0.022686846554279327, 0.38953372836112976, -0.10936678200960159, 0.056240975856781006, 0.19189245998859406, 0.2463199943304062, 0.2808936834335327, 0.04171024262905121, -0.012120738625526428, 0.2608875334262848, -0.1790400743484497, -0.24314874410629272, -0.09092311561107635, -0.37700480222702026, 0.09933152794837952, 0.23428650200366974, 0.13217760622501373, -0.0647842288017273, -0.17419324815273285, 0.16822873055934906, 0.44646838307380676, 0.17327654361724854, 0.2441631257534027, 0.4896547794342041, 0.03797408193349838, -0.03986445441842079, -0.002317832550033927, -0.17060302197933197, -0.012430925853550434, -0.19790741801261902, -0.02478879690170288, 0.07103624194860458, 0.1537877470254898, 0.09011023491621017, -0.28582242131233215, -0.3360195755958557, -0.2909919023513794, -0.1620490401983261, 0.1242738589644432, 0.1403425931930542, 0.07502782344818115, -0.07264705747365952, -0.3455614447593689, 0.22316497564315796, -0.3875484764575958, -0.17677566409111023, -0.12359239161014557, 0.23558670282363892, -0.38997364044189453, 0.10468103736639023, 0.11199960857629776, 0.010703789070248604, 0.4004688262939453, -0.10864897072315216, 0.0191356148570776, -0.37154969573020935, 0.3069615066051483, 0.041093263775110245, 0.21160122752189636, 0.42377349734306335, 0.21384994685649872, 0.02022911235690117, 0.061788685619831085, 0.11715015769004822, -0.3336220383644104, -0.02210114523768425, -0.3795628845691681, -0.4628949463367462, -0.06161961704492569, 0.03968001529574394, -0.02502877451479435, 0.19056114554405212, -0.1604064702987671, 0.3714156746864319, 0.05124587565660477, -0.04800330474972725, 0.2013644427061081, 0.08199365437030792, -0.174727663397789, -0.3574979603290558, 0.24172890186309814, 0.005339361727237701, -0.4272279441356659, -0.07310036569833755, -0.3806430697441101, -0.03147783502936363, -0.05574411898851395, 0.145456925034523, -0.37867143750190735, 0.5079536437988281, -0.09993240237236023, 0.45728620886802673, 0.7189483046531677, -0.2783370912075043, -0.07060562819242477, 0.3035818040370941, 0.15371105074882507, -0.2755770981311798, -0.11141642183065414, -0.05185685679316521, 0.26117777824401855, 0.15615618228912354, -0.43730977177619934, 0.3556571304798126, -0.3076072335243225, -0.13068026304244995, 0.30712005496025085, -0.2115512490272522, 0.21887437999248505, -0.07688267529010773, -0.08400363475084305, -0.2523697316646576, 0.2786921262741089, 0.3431996703147888, 0.47871991991996765, 0.027052337303757668, 0.18310119211673737, 0.23426857590675354, 0.0657581016421318, 0.1468949168920517, -0.04900435358285904, -0.34277069568634033, -0.3662567734718323, -0.052493009716272354, 0.14188000559806824, -0.1180289164185524, -0.025952233001589775, -0.2883363962173462, -0.1490790694952011, -0.13507941365242004, 0.049226969480514526, -0.29217860102653503, 0.0640786662697792, -0.35323941707611084, 0.19587574899196625, -0.11913891136646271, -0.4262674152851105, 0.08736027032136917, -0.22956912219524384, 0.266053706407547, -0.4764243960380554, 0.11535091698169708, 0.07138092815876007, -0.08158008754253387, 0.10574007779359818, 0.25924721360206604, -0.051060523837804794, -0.13670872151851654, 0.026624789461493492, 0.5864786505699158, 0.5731497406959534, 0.04044736549258232, -0.21188469231128693, 0.03198222815990448, 0.4351481795310974, -0.4945233166217804, 0.16468273103237152, -0.03570195287466049, -0.04063032940030098, 0.01973739080131054, -0.4918181300163269, 0.308912456035614, -0.3423786759376526, 0.2918803095817566, 0.2441432923078537, 0.12468929588794708, 0.05347677320241928, -0.17090469598770142, -0.2978188991546631, -0.03497491404414177, -0.2654482424259186, -0.34221288561820984, 0.21621698141098022, -0.02484954707324505, -0.15407772362232208, 0.11240371316671371, 0.4354674220085144, -0.18892434239387512, 0.20563995838165283, -0.11167542636394501, 0.07654624432325363, -0.040640588849782944, 0.20764201879501343, 0.42786702513694763, 0.24964472651481628, 0.017467854544520378, 0.41082438826560974, -0.08893435448408127, -0.26856112480163574, -0.06610962003469467, 0.11270657926797867, 0.23609738051891327, 0.4292648434638977, -0.06785205751657486, -0.3976387679576874, -0.07748675346374512, -0.01876458339393139, 0.006975557655096054, 0.14406485855579376, 0.06764572858810425, -0.2933169901371002, 0.10570120811462402, -0.39161646366119385, -0.14747074246406555, -0.4270644187927246, -0.28546342253685, -0.08070747554302216, -0.26037949323654175, -0.1695374846458435, -0.14855462312698364, 0.012248427607119083, -0.04614486172795296, -0.1674005538225174, -0.07696028798818588, -0.17104384303092957, 0.17954353988170624, 0.3728761672973633, -0.2571858763694763, -0.150711327791214, 0.060342203825712204, 0.15105094015598297, 0.6260810494422913, 0.2506405711174011, 0.020123295485973358, -0.15158559381961823, 0.0628092810511589, -0.32852616906166077, 0.24199706315994263, -0.20559699833393097, -0.015237509272992611, 0.2106802612543106, 0.18604427576065063, 0.014025050215423107, -0.3126118779182434, -0.2665431499481201, -0.19002708792686462, -0.1723768711090088, -0.08175206929445267, 0.19550806283950806, 0.0547105148434639, -0.1628088355064392, -0.7155641913414001, -0.2830570936203003, -0.2016950100660324, 0.29246294498443604, -0.24033451080322266, 0.23975184559822083, 0.17481234669685364, 0.1396598368883133, 0.3556794226169586, 0.11541419476270676, -0.0146243367344141, 0.20106828212738037, 0.23053410649299622, 0.006179003044962883, -0.49057361483573914, -0.24064046144485474, 0.31719446182250977, -0.00996375735849142, 0.22750288248062134, 0.006226752419024706, -0.20012688636779785, 0.18079380691051483, -0.2070203572511673, -0.06614571809768677, -0.05529990792274475, -0.008278770372271538, 0.26149484515190125, -0.15433841943740845, 0.2438742071390152, -0.17873789370059967, 0.12143951654434204, 0.09436303377151489, -0.13249707221984863, 0.19738873839378357, 0.0055291056632995605, 0.27608856558799744, 0.2678915858268738, 0.6091407537460327, 0.2550807297229767, -0.08768292516469955, -0.26532742381095886, -0.1400340497493744, 0.14003540575504303, 0.12631598114967346, -0.04117579385638237, 0.03606979176402092, -0.1034705638885498, -0.12279020994901657, 0.04870622232556343, 0.2632273733615875, -0.2793760597705841, 0.05875494331121445, 0.007395836059004068, -0.39545679092407227, -0.42707040905952454, 0.29443150758743286, -0.4454823434352875, 0.22394749522209167, -0.055647868663072586, 0.03238867595791817, 0.10708428174257278, -0.07389920204877853, -0.3157725930213928, 0.17430348694324493, 0.23238375782966614, 0.049364276230335236, -0.3276256024837494, -0.07963702827692032, -0.1881277710199356, -0.1433449685573578, 0.13018418848514557, 0.18069352209568024, -0.12620621919631958, -0.009460757486522198, 0.21018867194652557, 0.22274518013000488, 0.2387935072183609, -0.1617363840341568, -0.07712527364492416, -0.11367898434400558, 0.12909726798534393, -0.34100982546806335, 0.17794577777385712, -0.24921083450317383, 0.408502459526062, 0.06213562563061714, -0.10248629003763199, -0.35213789343833923, -0.45464879274368286, 0.42072930932044983, -0.059448082000017166, -0.10695675760507584, 0.1584547609090805, -0.14398115873336792, -0.2525481581687927, 0.01721680723130703, 0.023167647421360016, 0.3640355169773102, -0.1785525232553482, -0.05145876109600067, 0.03912171348929405, -0.09440051764249802, -0.08462690562009811, 0.17015723884105682, -0.0255515668541193, 0.2940465807914734, 0.012692447751760483, -0.14915479719638824, 0.375470370054245, 0.11250656098127365, 0.030352506786584854, 0.29635125398635864, -0.1479450911283493, -0.19082561135292053, 0.22484220564365387, -0.0847335085272789, 0.5996389389038086, 0.2911294102668762, 0.0861460343003273, 0.012928850948810577, -0.08896665275096893, -0.23828764259815216, -0.19264550507068634, 0.2559097707271576, 0.18343083560466766, -0.1058773398399353, -0.1930083930492401, -0.6062172651290894, 0.3586284816265106, 0.10573673993349075, -0.032886914908885956, 0.530720055103302, 0.2949857711791992, -0.30715417861938477, 0.36709776520729065, 0.19333800673484802, 0.6510211825370789, 0.13688766956329346, 0.07593528926372528, 0.13570891320705414, -0.3133866786956787, 0.5474334955215454, -0.4472086429595947, 0.1698409616947174, -0.17818468809127808, -0.1392388790845871, -0.16145780682563782, -0.24074715375900269, 0.0084847966209054, 0.39036571979522705, 0.0030034268274903297, 0.2652425169944763, -0.12452959269285202, -0.035300593823194504, -0.1479700654745102, 0.4279192388057709, -0.1697593629360199, -0.0500485822558403, 0.05452004447579384, 0.048832159489393234, -0.15916500985622406, -0.031973909586668015, 0.03778041526675224, -0.10542698949575424, -0.22675378620624542, 0.10052603483200073, -0.42336198687553406, -0.01174853928387165, -0.12563109397888184, 0.2007477879524231, -0.06050276383757591, -0.1697276532649994, 0.3008083701133728, 0.3042425215244293, 0.07807282358407974, -0.08988479524850845, -0.08147749304771423, 0.29293811321258545, -0.21994104981422424, -0.0707833543419838, -0.1192721500992775, -0.004161575343459845, 0.4283137917518616, 0.15771587193012238, -0.2871337831020355, 0.018619047477841377, -0.19460715353488922, -0.11653456836938858, 0.0995110273361206, 0.3422718942165375, 0.1865999549627304, -0.28134533762931824, -0.055021390318870544, 0.15291470289230347, -0.013290990144014359, 0.030043574050068855, 0.06662935763597488, 0.044744495302438736, -0.20661872625350952, 0.153660848736763, 0.02689896896481514, -0.19330421090126038, 0.037967465817928314, -0.1451348066329956, 0.09765423834323883, 0.12239573150873184, 0.3040717840194702, 0.10593937337398529, -0.04301895201206207, -0.22441676259040833, 0.36828941106796265, 0.49988293647766113, -0.26772117614746094, -0.06370455771684647, -0.42575427889823914, 0.16016021370887756, 0.09210971742868423, -0.19460904598236084, 0.020668942481279373, 0.3484400808811188, -0.342621386051178, -0.4485454559326172, 0.057217661291360855, 0.3609348237514496, -0.1981174498796463, 0.3023907542228699, -0.24483580887317657, 0.057295650243759155, 0.10901620239019394, 0.37574464082717896, -0.16458934545516968, 0.2210298329591751, 0.1791004240512848, 0.32169216871261597, 0.07076925039291382, 0.10658051818609238, 0.22272256016731262, -0.1663646101951599, -0.08577922731637955, 0.027471253648400307, 0.1451641470193863, -0.15921424329280853, -0.13381868600845337, 0.15777099132537842, -0.11652007699012756, 0.03362084925174713, -0.21085621416568756, -0.25794053077697754, -0.21655984222888947, -0.029082616791129112, 0.016750579699873924, -0.08077069371938705, 0.15559746325016022, 0.4094018042087555, 0.2860695421695709, 0.12069472670555115, -0.2208314836025238, 0.03815180063247681, -0.06964749097824097, 0.3842622637748718, 0.04175431281328201, 0.28557440638542175, 0.13015925884246826, 0.08430585265159607, -0.226209357380867, 0.016882427036762238, 0.2752983868122101, -0.37707749009132385, 0.004854219034314156, 0.24194732308387756, 0.23936820030212402, -0.6506140232086182, 0.38169050216674805, 0.40832844376564026, 0.12481098622083664, 0.18716825544834137, 0.07620695233345032, 0.05959891900420189, 0.16143476963043213, 0.16746266186237335, 0.2175455242395401, 0.2154756784439087, 0.0014716694131493568, 0.30661195516586304, 0.14694254100322723, 0.5802816152572632, -0.3549506366252899, -0.06541953980922699, 0.20212355256080627, 0.016342908143997192, 0.33507540822029114, 0.4409971833229065, -0.2998601496219635, -0.12877412140369415, 0.24708493053913116, -0.3163166344165802, 0.2875593602657318, 0.20365899801254272, 0.07500434666872025, 0.6348118185997009, 0.0664721354842186, 0.037162307649850845, 0.44659167528152466, -0.05898667126893997, -0.5137965083122253, 0.019000206142663956, 0.09777842462062836, -0.10535963624715805, -0.08197250962257385, 0.5677700638771057, -0.039214979857206345, -0.2483866959810257, -0.047497767955064774, 0.12345829606056213, 0.06996028125286102, -0.006069388706237078, -0.42089030146598816, -0.0004837073793169111, -0.24757443368434906, -0.11701449006795883, 0.18215690553188324, -0.2999720573425293, 0.3403623402118683, 0.06998412311077118, 0.09292508661746979, -0.03932681679725647, 0.3636171817779541, 0.21262042224407196, 0.07401331514120102, -0.003426086623221636, 0.03286754712462425, -0.1711406111717224, -0.06524176150560379, -0.11634927988052368, 0.1826276332139969, 0.1764799952507019, -0.07687955349683762, -0.33500248193740845, 0.11817192286252975, 0.3057120740413666, -0.20091384649276733, 0.18479573726654053, 0.20097298920154572, -0.11963321268558502, 0.07352038472890854, 0.11324268579483032, 0.11038197576999664, -0.03636037930846214, 0.010140297003090382, 0.18469734489917755, 0.07539904117584229, -0.4126008152961731, 0.3575340807437897, -0.14876292645931244, -0.19228464365005493, -0.136156365275383, 0.009497130289673805, -0.2746710479259491, -0.18557514250278473, 0.5705327391624451, -0.35071709752082825, 0.06341667473316193, -0.17474035918712616, 0.011593721807003021, -0.09909909218549728, 0.5687583684921265, 0.07023777067661285, 0.3151824474334717, -0.16612663865089417, -0.2857995629310608, -0.3418371379375458, -0.1547006219625473, -0.27336975932121277, -0.19083361327648163, 0.11863472312688828, 0.34847375750541687, -0.22032077610492706, 0.17137688398361206, -0.07506931573152542, 0.04492476209998131, 0.09843070805072784, 0.28848299384117126, -0.05721723288297653, -0.24400027096271515, -0.25534677505493164, 0.19811713695526123, -0.13027410209178925, -0.21693849563598633, 0.0023590223863720894, -0.11722257733345032, -0.2558828592300415, 0.1278802752494812, -0.12610192596912384, 0.5148490071296692, 0.4746755063533783, -0.1135859563946724, 0.1391737312078476, 0.47001320123672485, 0.1789063811302185, 0.007865809835493565, -0.3639889657497406, 0.0673503503203392, -0.287927508354187, 0.4713404178619385, -0.0828116163611412, 0.19498611986637115, -0.32800745964050293, 0.04485711082816124, -0.1578529328107834, 0.14213332533836365, 0.03470709174871445, -0.13264156877994537, -0.2842833697795868, -0.03887662664055824, -0.3516291081905365, 0.21116702258586884, 0.7949634790420532, 0.43126869201660156, -0.32260075211524963, -0.04992768168449402, 0.15033569931983948, -0.12830375134944916, -0.09803756326436996, -0.39854785799980164, -0.09303523600101471, 0.1671244353055954, 0.15795275568962097, 0.40696585178375244, -0.09274385869503021, -0.760087251663208, -0.22481811046600342, 0.19736695289611816, -0.25416427850723267, -0.0030321753583848476, 0.03450559824705124, 0.3735862076282501, -0.10248718410730362, -0.066909059882164, 0.40981900691986084, 0.15005382895469666, -0.3145957589149475, 0.08253256231546402, -0.30061858892440796 ]
https://github.com/huggingface/datasets/issues/259
documentation missing how to split a dataset
Thanks a lot, the new explanation is very helpful! About using train_test_split from sklearn: I stumbled across the [same error message as this user ](https://github.com/huggingface/nlp/issues/147 )and thought it can't be used at the moment in this context. Will check it out again. One of the problems is how to shuffle very large datasets, which don't fit into the memory. Well, one strategy could be shuffling data in sections. But in a case where the data is sorted by the labels you have to swap larger sections first.
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
87
documentation missing how to split a dataset I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway) Thanks a lot, the new explanation is very helpful! About using train_test_split from sklearn: I stumbled across the [same error message as this user ](https://github.com/huggingface/nlp/issues/147 )and thought it can't be used at the moment in this context. Will check it out again. One of the problems is how to shuffle very large datasets, which don't fit into the memory. Well, one strategy could be shuffling data in sections. But in a case where the data is sorted by the labels you have to swap larger sections first.
[ 0.0933191329240799, -0.018011899664998055, -0.044078096747398376, 0.20460893213748932, 0.018560299649834633, 0.229384645819664, 0.38189050555229187, 0.3100672662258148, -0.0523478165268898, 0.05605879798531532, 0.1731671392917633, 0.28970882296562195, -0.2534623444080353, 0.14297032356262207, 0.18269655108451843, -0.3846262991428375, -0.040949225425720215, 0.12388449162244797, 0.2132636457681656, 0.03404395654797554, 0.22808264195919037, -0.15668098628520966, -0.3243977725505829, 0.08330642431974411, -0.3787746727466583, -0.4607849717140198, -0.24209117889404297, 0.011334381066262722, -0.2463063895702362, -0.2269047349691391, 0.21153123676776886, -0.22302113473415375, 0.0325528122484684, 0.3177690804004669, -0.0001165538196801208, -0.01566121354699135, 0.2516825795173645, -0.1430504322052002, -0.14284566044807434, -0.16849760711193085, -0.3076057434082031, -0.061449967324733734, 0.2927655875682831, -0.1962689757347107, 0.01649298518896103, -0.16572609543800354, 0.12860572338104248, -0.09317729622125626, 0.4861189126968384, 0.43587011098861694, 0.10815547406673431, -0.07512611150741577, 0.16646479070186615, 0.07563542574644089, 0.11324243247509003, 0.2819301187992096, -0.09770175814628601, 0.1179104819893837, -0.1726415604352951, -0.07621694356203079, -0.2115270048379898, 0.053548090159893036, 0.18237623572349548, 0.15667375922203064, 0.1256847381591797, -0.08416864275932312, -0.45092934370040894, -0.4551001787185669, -0.1296016126871109, 0.4934629499912262, 0.5426619052886963, -0.3339478075504303, -0.30452990531921387, -0.3151073753833771, 0.07164856791496277, -0.22396811842918396, -0.10044461488723755, 0.6579107642173767, -0.09952650964260101, 0.032645296305418015, -0.2173858880996704, -0.2442064881324768, -0.29797127842903137, 0.13798640668392181, 0.0440279059112072, 0.4149712324142456, -0.07046540826559067, 0.06224779039621353, 0.3162672221660614, 0.2178592085838318, 0.28864192962646484, 0.052135057747364044, -0.054453425109386444, 0.29825031757354736, -0.2664627134799957, -0.3006375730037689, -0.15050062537193298, -0.37688589096069336, 0.18791277706623077, 0.2897796928882599, 0.13688990473747253, -0.09675106406211853, -0.13700461387634277, 0.09684854000806808, 0.45552825927734375, 0.26910296082496643, 0.17873847484588623, 0.5023193955421448, -0.03261807560920715, 0.02367824874818325, -0.0066177863627672195, -0.19385358691215515, -0.12317967414855957, -0.2649688124656677, -0.08597609400749207, 0.05281448736786842, -0.010835446417331696, 0.04016564041376114, -0.27103251218795776, -0.3356519043445587, -0.36712199449539185, -0.11592578142881393, 0.11288078129291534, 0.21405170857906342, 0.05477912724018097, -0.08694339543581009, -0.33018866181373596, 0.22889946401119232, -0.34446415305137634, -0.07704032957553864, -0.14733535051345825, 0.28905758261680603, -0.44305118918418884, 0.12140730768442154, 0.15004479885101318, 0.02112063392996788, 0.3825264871120453, -0.14786741137504578, 0.033254317939281464, -0.336325079202652, 0.19044229388237, -0.02613171562552452, 0.1668533831834793, 0.38499048352241516, 0.1337275356054306, 0.04648645222187042, 0.03438685089349747, 0.2436407506465912, -0.33239826560020447, 0.02219967730343342, -0.44312766194343567, -0.4673002064228058, 0.10608725994825363, 0.015361250378191471, -0.07489363849163055, 0.18246597051620483, -0.24128742516040802, 0.2949693202972412, 0.0049218181520700455, -0.05773637816309929, 0.16393283009529114, 0.013580911792814732, -0.16461734473705292, -0.3053276538848877, 0.2806355059146881, -0.027086937800049782, -0.3363460600376129, -0.02583426795899868, -0.3241040110588074, 0.004953430034220219, 0.045136161148548126, 0.26348069310188293, -0.34174904227256775, 0.46156924962997437, -0.11729328334331512, 0.386652410030365, 0.6255984902381897, -0.26659709215164185, -0.09275946021080017, 0.21992231905460358, 0.07376541197299957, -0.2708793580532074, -0.06501742452383041, -0.06748350709676743, 0.3004569113254547, 0.09945704787969589, -0.30130016803741455, 0.4073323607444763, -0.27262580394744873, -0.10132818669080734, 0.1903393268585205, -0.2702423334121704, 0.26237592101097107, -0.012560135684907436, -0.10033158212900162, -0.2614189684391022, 0.25027281045913696, 0.45293423533439636, 0.4291931092739105, 0.04575551673769951, 0.18529589474201202, 0.22998546063899994, 0.04364864155650139, 0.17431195080280304, -0.10620836168527603, -0.2931700646877289, -0.34146419167518616, -0.062488120049238205, 0.12571240961551666, -0.07338176667690277, 0.049806877970695496, -0.2440430372953415, -0.2545616924762726, -0.17272239923477173, 0.07643888145685196, -0.3039548993110657, 0.05008381977677345, -0.40494075417518616, 0.3367556035518646, -0.09298799186944962, -0.2854808568954468, 0.021039564162492752, -0.3029926121234894, 0.19376549124717712, -0.37412065267562866, 0.1780475229024887, 0.028789866715669632, -0.0663609579205513, 0.16894292831420898, 0.3435348868370056, -0.05265042930841446, -0.05930093675851822, 0.020559651777148247, 0.5714371800422668, 0.585507333278656, -0.11784821003675461, -0.13751496374607086, 0.015659458935260773, 0.4043172299861908, -0.49503153562545776, 0.1544603854417801, -0.11349011957645416, -0.015381120145320892, 0.0020599274430423975, -0.5048500299453735, 0.28724223375320435, -0.4481735825538635, 0.35010862350463867, 0.25932633876800537, 0.11637463420629501, -0.004246540833264589, -0.16617849469184875, -0.20563797652721405, 0.018674682825803757, -0.18712905049324036, -0.3557153344154358, 0.18876725435256958, -0.03126963973045349, -0.167732834815979, 0.021777989342808723, 0.5045214891433716, -0.2093385010957718, 0.06272527575492859, -0.11324997991323471, -0.004434628412127495, -0.06865092366933823, 0.18485435843467712, 0.3737937808036804, 0.18042849004268646, 0.07573139667510986, 0.36681437492370605, -0.1050654724240303, -0.2559295892715454, -0.05923079699277878, 0.05127063766121864, 0.23124784231185913, 0.4707041382789612, -0.012468060478568077, -0.3036997318267822, -0.12056787312030792, 0.0491352342069149, -0.039538558572530746, 0.20806719362735748, 0.13528889417648315, -0.2522885799407959, 0.057765066623687744, -0.35206833481788635, -0.1349603682756424, -0.5467678308486938, -0.22394442558288574, -0.13222436606884003, -0.2780599594116211, -0.11992913484573364, -0.09838635474443436, -0.021255705505609512, -0.01853089965879917, -0.18625757098197937, 0.0012159575708210468, -0.14776276051998138, 0.1817391812801361, 0.35820460319519043, -0.35151058435440063, -0.1967383772134781, 0.04761229082942009, 0.16678659617900848, 0.6737968921661377, 0.28712400794029236, 0.09110534936189651, -0.12306726723909378, 0.028722848743200302, -0.24738642573356628, 0.18659161031246185, -0.17357976734638214, -0.013963899575173855, 0.13367639482021332, 0.1673673838376999, -0.049034662544727325, -0.3744677007198334, -0.18654213845729828, -0.24793130159378052, -0.18759898841381073, 0.03657158091664314, 0.2715952396392822, 0.1522686779499054, -0.16943885385990143, -0.7023663520812988, -0.28425392508506775, -0.24416399002075195, 0.2758956551551819, -0.1915770322084427, 0.18251413106918335, 0.15253600478172302, 0.1924123466014862, 0.3374587297439575, -0.014865097589790821, -0.10659696161746979, 0.202575221657753, 0.2754480838775635, 0.004536050837486982, -0.41939878463745117, -0.2563294768333435, 0.2754092514514923, -0.020039541646838188, 0.13501591980457306, 0.09305816888809204, -0.19247382879257202, 0.2536005675792694, -0.2302524596452713, -0.15273816883563995, -0.030549542978405952, 0.0003086762153543532, 0.2978794574737549, -0.19197288155555725, 0.2687249481678009, -0.14987269043922424, 0.1061585545539856, 0.1293996125459671, -0.1358625590801239, 0.2764902114868164, -0.01951109617948532, 0.25276899337768555, 0.2697940468788147, 0.7958998680114746, 0.245632141828537, 0.02495957538485527, -0.37839415669441223, -0.08167651295661926, 0.12543261051177979, 0.05814073979854584, -0.016463469713926315, 0.16884483397006989, -0.09301112592220306, -0.18855002522468567, 0.08940045535564423, 0.2449335902929306, -0.29688963294029236, 0.055852554738521576, 0.03948847949504852, -0.3108977973461151, -0.42772114276885986, 0.328414648771286, -0.387910395860672, 0.1900000423192978, -0.11484187096357346, 0.003638423280790448, 0.07479868829250336, -0.16140151023864746, -0.3007832169532776, 0.12526163458824158, 0.23186197876930237, 0.09324303269386292, -0.47620639204978943, -0.17688031494617462, -0.23146402835845947, -0.18615199625492096, 0.16720040142536163, 0.24466675519943237, -0.08276407420635223, -0.07847505807876587, 0.2189904749393463, 0.25064536929130554, 0.25079381465911865, -0.09502438455820084, -0.038773901760578156, -0.03668392449617386, 0.15504683554172516, -0.28714457154273987, 0.11778150498867035, -0.33607184886932373, 0.2984229028224945, 0.09746246039867401, -0.09038183093070984, -0.43832963705062866, -0.4115644693374634, 0.4284506142139435, -0.012499423697590828, -0.11285899579524994, 0.144463911652565, -0.14085178077220917, -0.18218764662742615, -0.04622308537364006, 0.09680069237947464, 0.3686917722225189, -0.09267310053110123, -0.1924465447664261, 0.16784611344337463, -0.06477823108434677, -0.03189671412110329, 0.13611245155334473, -0.0034857112914323807, 0.3259028494358063, 0.05833106115460396, -0.12473118305206299, 0.38448524475097656, 0.1558668315410614, 0.07515989989042282, 0.3125389516353607, -0.13880711793899536, -0.15055173635482788, 0.1816420555114746, -0.08053573966026306, 0.5899173617362976, 0.3286980092525482, 0.1370229572057724, 0.026352114975452423, -0.09422402828931808, -0.20904773473739624, -0.27009475231170654, 0.30848386883735657, 0.1049628034234047, -0.17369389533996582, -0.31261441111564636, -0.647259533405304, 0.33250829577445984, 0.18011821806430817, -0.04246461018919945, 0.4313420355319977, 0.26091107726097107, -0.38623690605163574, 0.44322022795677185, 0.21180713176727295, 0.7920417785644531, 0.01273705717176199, 0.14754419028759003, 0.17563289403915405, -0.27058079838752747, 0.6010876893997192, -0.41574960947036743, 0.2180846929550171, -0.23152731359004974, -0.1738535314798355, -0.049646299332380295, -0.26883837580680847, -0.03396037220954895, 0.4327787458896637, -0.006655972916632891, 0.29285478591918945, -0.06400972604751587, 0.011599887162446976, -0.2614717483520508, 0.431942880153656, -0.09348610043525696, -0.06703256070613861, 0.07831699401140213, 0.04381784051656723, -0.1353280246257782, -0.01020216103643179, 0.04970630630850792, -0.07175633311271667, -0.26487892866134644, 0.1049550250172615, -0.3984523415565491, 0.04112811014056206, -0.10096228867769241, 0.17649032175540924, -0.12267161160707474, -0.14095327258110046, 0.333561509847641, 0.1761309653520584, 0.02556285820901394, -0.007610773202031851, -0.09461096674203873, 0.27425631880760193, -0.1884090155363083, -0.14894214272499084, -0.040704138576984406, 0.05720118060708046, 0.4263290464878082, 0.1537603884935379, -0.2795599400997162, 0.04112967103719711, -0.19633981585502625, -0.1461556851863861, -0.040378689765930176, 0.31162092089653015, 0.15426865220069885, -0.32745009660720825, -0.1701221466064453, 0.18625177443027496, 0.0458231158554554, -0.005372684448957443, 0.06349267810583115, -0.024749012663960457, -0.17715603113174438, 0.1570522040128708, -0.026999205350875854, -0.12441492825746536, 0.044122762978076935, -0.13269637525081635, 0.04760424420237541, 0.07935629040002823, 0.36460891366004944, 0.07177425175905228, -0.037121210247278214, -0.22472085058689117, 0.2982892394065857, 0.459731787443161, -0.3562629222869873, -0.007819022983312607, -0.37599536776542664, 0.1422557830810547, 0.10809474438428879, -0.1250566840171814, 0.11672940105199814, 0.32185477018356323, -0.2142830342054367, -0.4522640109062195, 0.004052372183650732, 0.4776442348957062, -0.18178552389144897, 0.27964797616004944, -0.29639288783073425, 0.17024314403533936, -0.004110034089535475, 0.3981890380382538, -0.1884838193655014, 0.20167838037014008, 0.09946911036968231, 0.35577601194381714, 0.04224985092878342, 0.09186650812625885, 0.1398094743490219, -0.12596666812896729, -0.10746406763792038, 0.03697975352406502, 0.1403535157442093, -0.1437070369720459, -0.08989477902650833, 0.1539747416973114, -0.04611074551939964, 0.06167422980070114, -0.22604376077651978, -0.3256385624408722, -0.17452310025691986, -0.07235296815633774, 0.005328625440597534, -0.0444333478808403, 0.1831970512866974, 0.4326810836791992, 0.35816890001296997, 0.18343088030815125, -0.18961352109909058, 0.1988263726234436, -0.09629020094871521, 0.2902747392654419, 0.035109616816043854, 0.2474220097064972, 0.20765776932239532, 0.12593315541744232, -0.26550984382629395, -0.008930337615311146, 0.23364807665348053, -0.33115318417549133, 0.00006197506445460021, 0.18743324279785156, 0.27260828018188477, -0.4687637984752655, 0.37326017022132874, 0.4829466640949249, 0.17075063288211823, 0.054336756467819214, 0.24561433494091034, 0.06583211570978165, 0.13642872869968414, 0.19679123163223267, 0.260305255651474, 0.15902870893478394, -0.010203693062067032, 0.3061125576496124, 0.08873514831066132, 0.5125862956047058, -0.42267948389053345, -0.03173033520579338, 0.15964791178703308, 0.005354698747396469, 0.35063496232032776, 0.46536341309547424, -0.23535563051700592, -0.17762719094753265, 0.25437986850738525, -0.33891621232032776, 0.3259783089160919, 0.2159128338098526, 0.16562297940254211, 0.6236846446990967, 0.04479479044675827, 0.06629781424999237, 0.3561084270477295, -0.13596642017364502, -0.5598911046981812, 0.1638803631067276, 0.08628714829683304, -0.05072896555066109, -0.2131098359823227, 0.6076285243034363, -0.05917851999402046, -0.21036826074123383, -0.04596506804227829, 0.14844487607479095, 0.053534772247076035, 0.018405957147479057, -0.34805038571357727, -0.11280616372823715, -0.22028549015522003, -0.03550050035119057, 0.16825318336486816, -0.31673377752304077, 0.3955667018890381, 0.02335279807448387, 0.0506865456700325, -0.077812559902668, 0.3185546100139618, 0.32239243388175964, 0.16124194860458374, -0.051692988723516464, -0.03849862888455391, -0.18338079750537872, -0.12029874324798584, 0.05491705238819122, 0.1042335033416748, 0.13933199644088745, -0.008013270795345306, -0.32889431715011597, 0.025801150128245354, 0.28027257323265076, -0.17537575960159302, 0.2165522426366806, 0.3208756148815155, 0.026130368933081627, -0.04677775502204895, 0.1568453162908554, 0.09373155981302261, -0.05060998350381851, -0.047943927347660065, 0.1992446482181549, 0.010977781377732754, -0.3903979957103729, 0.30621016025543213, -0.056024618446826935, -0.1820000410079956, -0.08713404089212418, 0.02120707556605339, -0.2622387409210205, -0.12150588631629944, 0.3463395833969116, -0.2991250455379486, 0.07905088365077972, -0.16138727962970734, 0.0048943087458610535, -0.05721420794725418, 0.6285120844841003, 0.1339651346206665, 0.22065213322639465, -0.2274456024169922, -0.28800588846206665, -0.32333385944366455, -0.16009441018104553, -0.3285861313343048, -0.1975022554397583, 0.13906222581863403, 0.336428701877594, -0.2651439309120178, 0.17104654014110565, -0.18043215572834015, 0.08042844384908676, 0.13381388783454895, 0.294144868850708, -0.1228974312543869, -0.22381365299224854, -0.2581772208213806, 0.1429472416639328, -0.11188594251871109, -0.2786237895488739, 0.002092246897518635, 0.014959011226892471, -0.29385000467300415, 0.1919712871313095, -0.025742944329977036, 0.4331859052181244, 0.478718638420105, -0.2102077603340149, 0.1381002515554428, 0.531771719455719, 0.2446606457233429, 0.03736484795808792, -0.39661288261413574, 0.010310789570212364, -0.30662572383880615, 0.35140761733055115, -0.05836411565542221, 0.24318628013134003, -0.33069977164268494, 0.030847730115056038, -0.1717274934053421, 0.18544456362724304, 0.02239655703306198, -0.12885241210460663, -0.3340085446834564, -0.05164898559451103, -0.3499399721622467, 0.22408877313137054, 0.7802199721336365, 0.47242528200149536, -0.31363004446029663, -0.054636672139167786, 0.16969294846057892, -0.09948214143514633, -0.08105455338954926, -0.4101923406124115, -0.17437388002872467, 0.16504411399364471, 0.13397499918937683, 0.39392247796058655, -0.1402806043624878, -0.7209003567695618, -0.16388480365276337, 0.16052864491939545, -0.10279850661754608, 0.0948311910033226, 0.09756484627723694, 0.2638239562511444, -0.12343068420886993, 0.0006556874723173678, 0.4191991090774536, 0.07783956080675125, -0.3093949854373932, 0.05669970065355301, -0.3002835512161255 ]
https://github.com/huggingface/datasets/issues/259
documentation missing how to split a dataset
We added a way to shuffle datasets (shuffle the indices and then reorder to make a new dataset). You can do `shuffled_dset = dataset.shuffle(seed=my_seed)`. It shuffles the whole dataset. There is also `dataset.train_test_split()` which if very handy (with the same signature as sklearn). Closing this issue as we added the docs for splits and tools to split datasets. Thanks again for your feedback !
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
64
documentation missing how to split a dataset I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway) We added a way to shuffle datasets (shuffle the indices and then reorder to make a new dataset). You can do `shuffled_dset = dataset.shuffle(seed=my_seed)`. It shuffles the whole dataset. There is also `dataset.train_test_split()` which if very handy (with the same signature as sklearn). Closing this issue as we added the docs for splits and tools to split datasets. Thanks again for your feedback !
[ 0.040322303771972656, 0.028683455660939217, -0.05983372777700424, 0.16467323899269104, -0.039138466119766235, 0.20289038121700287, 0.4111507833003998, 0.3333025872707367, -0.08382748067378998, 0.04181908816099167, 0.15812645852565765, 0.3008449375629425, -0.1978239119052887, 0.15138046443462372, 0.19664636254310608, -0.3646208345890045, -0.05800536274909973, 0.1984986662864685, 0.22895894944667816, -0.0036904343869537115, 0.25620120763778687, -0.10712898522615433, -0.3044230043888092, 0.12092769145965576, -0.3231806457042694, -0.4618532955646515, -0.22958829998970032, -0.031139452010393143, -0.2734038233757019, -0.19202075898647308, 0.20997054874897003, -0.18233522772789001, 0.03209177404642105, 0.3054240643978119, -0.0001161049585789442, -0.010881110094487667, 0.2465662658214569, -0.10877048969268799, -0.11473891884088516, -0.22363634407520294, -0.3785130977630615, -0.03036452829837799, 0.36818474531173706, -0.13753871619701385, 0.00561582250520587, -0.25173208117485046, 0.12259016931056976, -0.1782122105360031, 0.5087324976921082, 0.44073331356048584, 0.11155947297811508, 0.0035516780335456133, 0.17675307393074036, 0.1035163551568985, 0.042402882128953934, 0.3595410883426666, -0.10657025873661041, 0.09570770710706711, -0.15450844168663025, -0.10495031625032425, -0.12685531377792358, 0.04060199484229088, 0.16669154167175293, 0.19255216419696808, 0.10879860073328018, -0.03598063439130783, -0.3644663691520691, -0.4900597333908081, -0.12549908459186554, 0.5456266403198242, 0.60051029920578, -0.33566761016845703, -0.33388179540634155, -0.2798808515071869, 0.07615580409765244, -0.22879034280776978, -0.12582187354564667, 0.6406733393669128, -0.11848095804452896, 0.02916620671749115, -0.14757710695266724, -0.25278860330581665, -0.2896285653114319, 0.13979408144950867, 0.04766971617937088, 0.432496577501297, -0.08437344431877136, 0.05834610015153885, 0.26399466395378113, 0.22298502922058105, 0.31539613008499146, -0.003420580178499222, -0.0813538134098053, 0.2925684452056885, -0.24249446392059326, -0.2924627363681793, -0.1715586930513382, -0.3974413573741913, 0.13248392939567566, 0.2986207902431488, 0.136141836643219, -0.08381731808185577, -0.1949213445186615, 0.13451243937015533, 0.46787330508232117, 0.20583482086658478, 0.2396070808172226, 0.4790489971637726, -0.0016801469027996063, -0.026334259659051895, 0.01808962970972061, -0.1862376183271408, -0.02082378976047039, -0.22939258813858032, -0.029344819486141205, 0.07501689344644547, 0.12169786542654037, 0.06604531407356262, -0.2564261257648468, -0.34034448862075806, -0.31577572226524353, -0.1848135143518448, 0.10665034502744675, 0.13250479102134705, 0.08282497525215149, -0.0800064206123352, -0.319845974445343, 0.2792649269104004, -0.3513965308666229, -0.1381860375404358, -0.12972129881381989, 0.21638737618923187, -0.41619521379470825, 0.14544570446014404, 0.11283363401889801, -0.0038955556228756905, 0.39223676919937134, -0.08318308740854263, 0.020149579271674156, -0.3755839467048645, 0.284687340259552, 0.01713026687502861, 0.18918634951114655, 0.37796875834465027, 0.18095730245113373, 0.044062014669179916, 0.05984559282660484, 0.13182459771633148, -0.32880207896232605, -0.004824787378311157, -0.39713191986083984, -0.4248843789100647, -0.032105088233947754, 0.02827204205095768, -0.041499845683574677, 0.19020560383796692, -0.2672339677810669, 0.35102057456970215, -0.0028939677868038416, -0.054686956107616425, 0.20169171690940857, 0.027716003358364105, -0.17592459917068481, -0.32532238960266113, 0.2509886920452118, 0.014880789443850517, -0.38576847314834595, -0.03916928544640541, -0.3769054412841797, -0.040191564708948135, -0.018491210415959358, 0.16504351794719696, -0.37744268774986267, 0.48332759737968445, -0.11272717267274857, 0.4063957929611206, 0.6908683180809021, -0.19897501170635223, -0.03407970443367958, 0.23109151422977448, 0.1239069253206253, -0.26872044801712036, -0.11322318017482758, -0.05450592562556267, 0.3031640350818634, 0.11683497577905655, -0.42164647579193115, 0.384309321641922, -0.30770212411880493, -0.12684786319732666, 0.28320029377937317, -0.25482791662216187, 0.24401481449604034, -0.06546476483345032, -0.08254225552082062, -0.25432443618774414, 0.25387635827064514, 0.3207104802131653, 0.4920060932636261, 0.02802940458059311, 0.1801447719335556, 0.19091324508190155, 0.061658330261707306, 0.21790960431098938, -0.06643318384885788, -0.30250200629234314, -0.33095675706863403, -0.0793043002486229, 0.15601737797260284, -0.07121165841817856, 0.005826802924275398, -0.26461565494537354, -0.20661115646362305, -0.17261344194412231, 0.03518538177013397, -0.3387404680252075, 0.059470273554325104, -0.35655924677848816, 0.22108982503414154, -0.125991553068161, -0.40236201882362366, 0.02179129794239998, -0.2359517216682434, 0.2421005368232727, -0.4350486993789673, 0.17476604878902435, 0.06471634656190872, -0.08167726546525955, 0.1286371499300003, 0.28141289949417114, -0.07140544056892395, -0.11383695900440216, -0.004345972090959549, 0.5958952307701111, 0.5878074169158936, -0.02644280344247818, -0.13469070196151733, 0.043259892612695694, 0.4055946469306946, -0.5084707140922546, 0.21291330456733704, -0.059984441846609116, 0.016007116064429283, 0.008107715286314487, -0.4583738148212433, 0.31851720809936523, -0.4548642337322235, 0.34518635272979736, 0.20450912415981293, 0.1280926614999771, 0.015454575419425964, -0.1400158554315567, -0.2886723577976227, 0.02641609124839306, -0.236902117729187, -0.38427749276161194, 0.18044023215770721, -0.04825301840901375, -0.16476115584373474, 0.06235752999782562, 0.42563942074775696, -0.21522173285484314, 0.12373486906290054, -0.11507447808980942, 0.009508025832474232, -0.04332388937473297, 0.1387759894132614, 0.440360426902771, 0.21068401634693146, 0.052676912397146225, 0.35904088616371155, -0.09933042526245117, -0.24843142926692963, -0.059664782136678696, 0.135748028755188, 0.22583435475826263, 0.43771809339523315, -0.05570472031831741, -0.40134915709495544, -0.09798189252614975, 0.002690213965252042, -0.021484842523932457, 0.16222891211509705, 0.08480378240346909, -0.28202325105667114, 0.07944834232330322, -0.38133496046066284, -0.14990049600601196, -0.520900547504425, -0.27751484513282776, -0.10699795931577682, -0.26469886302948, -0.16758260130882263, -0.09834008663892746, 0.003045436227694154, -0.02653087116777897, -0.17902213335037231, -0.05681181326508522, -0.17165198922157288, 0.20673245191574097, 0.35746243596076965, -0.3144449293613434, -0.14908000826835632, 0.05074535682797432, 0.20324265956878662, 0.6589828729629517, 0.2827356457710266, 0.0539432018995285, -0.10182704031467438, 0.005201149731874466, -0.2792687714099884, 0.22230340540409088, -0.1885470151901245, -0.010369871743023396, 0.1580086350440979, 0.18674777448177338, 0.002878485480323434, -0.3813946843147278, -0.2566467821598053, -0.2440124750137329, -0.17780861258506775, -0.01823299750685692, 0.20755837857723236, 0.09968055784702301, -0.15868569910526276, -0.7297602295875549, -0.29716062545776367, -0.18672099709510803, 0.24421918392181396, -0.2553653419017792, 0.21988719701766968, 0.20174209773540497, 0.15176910161972046, 0.32699769735336304, 0.02145332470536232, -0.06577330827713013, 0.2023564875125885, 0.23558472096920013, -0.0004928541020490229, -0.44092029333114624, -0.1999349445104599, 0.3105660676956177, -0.030850514769554138, 0.19858002662658691, 0.03157519921660423, -0.17949604988098145, 0.21573205292224884, -0.18783265352249146, -0.06762665510177612, -0.05776538699865341, -0.005910108331590891, 0.29335126280784607, -0.14673632383346558, 0.25939762592315674, -0.15763169527053833, 0.08947578817605972, 0.11739874631166458, -0.126890629529953, 0.24165715277194977, 0.02567700296640396, 0.30072519183158875, 0.20903705060482025, 0.7162438035011292, 0.21692009270191193, -0.04961181804537773, -0.30788296461105347, -0.1198219582438469, 0.12274562567472458, 0.08320045471191406, -0.06935609877109528, 0.06017801910638809, -0.056551191955804825, -0.12304654717445374, 0.05713186040520668, 0.22249779105186462, -0.31316351890563965, 0.04924452304840088, 0.019801193848252296, -0.38517215847969055, -0.4363873600959778, 0.2914072573184967, -0.4392453730106354, 0.18465407192707062, -0.08337152749300003, 0.015539581887423992, 0.09900496155023575, -0.08828762918710709, -0.33879703283309937, 0.17838749289512634, 0.2523910701274872, 0.06755010038614273, -0.39323586225509644, -0.13682150840759277, -0.17243219912052155, -0.1602955460548401, 0.13636405766010284, 0.2237345576286316, -0.08130303770303726, -0.010579103603959084, 0.2096959352493286, 0.2643870711326599, 0.2860429584980011, -0.1441955268383026, -0.08684170246124268, -0.06860744953155518, 0.15270869433879852, -0.31934988498687744, 0.10822923481464386, -0.2728942930698395, 0.3731343448162079, 0.047841086983680725, -0.06242002546787262, -0.35230353474617004, -0.46238988637924194, 0.4459835886955261, -0.02250118926167488, -0.1089765802025795, 0.13175027072429657, -0.12187796086072922, -0.20836415886878967, 0.016591861844062805, 0.07180527597665787, 0.31530681252479553, -0.1571345180273056, -0.1344529092311859, 0.11000794917345047, -0.0813712626695633, -0.05635763704776764, 0.15612539649009705, -0.02229251153767109, 0.321855753660202, 0.09128395467996597, -0.10566144436597824, 0.3978521227836609, 0.09259587526321411, 0.020418765023350716, 0.2542870044708252, -0.13030153512954712, -0.1756853461265564, 0.155649796128273, -0.12783902883529663, 0.5831713080406189, 0.2837548851966858, 0.1274218112230301, 0.039048440754413605, -0.10546256601810455, -0.21308201551437378, -0.2523540258407593, 0.2407672107219696, 0.2048506736755371, -0.12524095177650452, -0.23709949851036072, -0.687789261341095, 0.3460371196269989, 0.12995131313800812, -0.04631896689534187, 0.5394694805145264, 0.28738933801651, -0.33302041888237, 0.4225700795650482, 0.2015978842973709, 0.7477278113365173, 0.07628525048494339, 0.07329482585191727, 0.1754496544599533, -0.3295336365699768, 0.5686730146408081, -0.3917849361896515, 0.14846844971179962, -0.2093198299407959, -0.1846490502357483, -0.12174827605485916, -0.26015859842300415, -0.002403214108198881, 0.37963223457336426, -0.02065356820821762, 0.30909425020217896, -0.12201832979917526, -0.0388309508562088, -0.18526941537857056, 0.43699437379837036, -0.1578684002161026, -0.03863333910703659, 0.11717472970485687, 0.049708109349012375, -0.17018556594848633, -0.03154226765036583, 0.06861568987369537, -0.09706009179353714, -0.23836643993854523, 0.08978873491287231, -0.4137590527534485, -0.0039855074137449265, -0.09363481402397156, 0.17431597411632538, -0.11657634377479553, -0.12858398258686066, 0.3310357332229614, 0.20149269700050354, 0.07694952934980392, -0.0469999723136425, -0.08624761551618576, 0.26443275809288025, -0.1550583392381668, -0.08023488521575928, -0.1183241680264473, 0.007898010313510895, 0.42446666955947876, 0.1777234971523285, -0.33722028136253357, -0.001675052335485816, -0.14748382568359375, -0.14043524861335754, 0.031705547124147415, 0.31006473302841187, 0.20730435848236084, -0.3079300820827484, -0.059770699590444565, 0.2092687338590622, 0.017688605934381485, 0.03009532019495964, 0.07010691612958908, 0.032398294657468796, -0.1881750077009201, 0.20461897552013397, -0.005717520602047443, -0.16750530898571014, 0.038011789321899414, -0.17537198960781097, 0.0619029626250267, 0.12149281799793243, 0.3558523952960968, 0.06765054911375046, -0.03742187097668648, -0.23571990430355072, 0.31502652168273926, 0.43898487091064453, -0.32371681928634644, -0.02740630693733692, -0.442315012216568, 0.18739987909793854, 0.1253647655248642, -0.20002396404743195, 0.05561888962984085, 0.3773561120033264, -0.28827986121177673, -0.4561295509338379, 0.08607346564531326, 0.3866673409938812, -0.1715882271528244, 0.3158801794052124, -0.26767051219940186, 0.09841283410787582, 0.055210672318935394, 0.3880159854888916, -0.18367694318294525, 0.2403482347726822, 0.20493870973587036, 0.3693644404411316, 0.06575104594230652, 0.09621231257915497, 0.19039446115493774, -0.16573204100131989, -0.08428601175546646, 0.0015351034235209227, 0.13751713931560516, -0.15802600979804993, -0.12334637343883514, 0.15133032202720642, -0.09740833193063736, 0.017409520223736763, -0.1899469494819641, -0.2951282858848572, -0.23185023665428162, -0.0545295886695385, -0.03320339322090149, -0.06778134405612946, 0.1707526445388794, 0.4092096984386444, 0.3738696277141571, 0.13425421714782715, -0.21210823953151703, 0.1207355186343193, -0.08661210536956787, 0.3235030472278595, 0.030281657353043556, 0.2924146056175232, 0.15572084486484528, 0.07963156700134277, -0.26414167881011963, 0.0043119024485349655, 0.25128012895584106, -0.383370041847229, 0.0201570987701416, 0.2284640669822693, 0.24739164113998413, -0.5429640412330627, 0.4029046595096588, 0.46168217062950134, 0.15104717016220093, 0.1251656860113144, 0.161373570561409, 0.07373778522014618, 0.1638292372226715, 0.193748340010643, 0.22261013090610504, 0.2313714176416397, -0.025391871109604836, 0.28962910175323486, 0.08568984270095825, 0.5033309459686279, -0.399338960647583, -0.06613895297050476, 0.18732334673404694, -0.025237027555704117, 0.396217942237854, 0.4388953447341919, -0.2788349390029907, -0.16009844839572906, 0.2630685567855835, -0.31446874141693115, 0.2578747868537903, 0.1524718850851059, 0.09744104743003845, 0.5958571434020996, 0.07111305743455887, 0.01408294029533863, 0.43748223781585693, -0.04861479997634888, -0.5118050575256348, 0.12021856009960175, 0.08198671042919159, -0.1059819683432579, -0.07827573269605637, 0.617523729801178, -0.052577193826436996, -0.2081807404756546, -0.049220044165849686, 0.13590089976787567, 0.09032093733549118, 0.0175968948751688, -0.42944538593292236, -0.05283982306718826, -0.26673808693885803, -0.08939013630151749, 0.1585073173046112, -0.2950610816478729, 0.32041698694229126, 0.07350778579711914, 0.07176031172275543, -0.07714485377073288, 0.3561197519302368, 0.2811407744884491, 0.10605844855308533, -0.0346495695412159, -0.04615608602762222, -0.13544191420078278, -0.09426989406347275, -0.009774228557944298, 0.22053545713424683, 0.15718786418437958, -0.0435950830578804, -0.357588529586792, 0.10804786533117294, 0.2932518720626831, -0.19909100234508514, 0.2499282956123352, 0.23950032889842987, -0.06114617735147476, 0.0016488126711919904, 0.132510706782341, 0.11824370175600052, -0.023855488747358322, -0.015528534539043903, 0.17638462781906128, 0.06158042699098587, -0.41816651821136475, 0.3436126112937927, -0.09685821086168289, -0.14697612822055817, -0.11981261521577835, 0.024331742897629738, -0.2717857360839844, -0.1448504477739334, 0.48984137177467346, -0.2937382757663727, 0.049890708178281784, -0.174017995595932, 0.011581064201891422, -0.0737595334649086, 0.5757766962051392, 0.1035175696015358, 0.2875744104385376, -0.18912141025066376, -0.27786487340927124, -0.33472302556037903, -0.1771014928817749, -0.24440769851207733, -0.1643838733434677, 0.11530414968729019, 0.34534770250320435, -0.19904837012290955, 0.17235328257083893, -0.0962461531162262, 0.05536536127328873, 0.12450956553220749, 0.3176036775112152, -0.07206086069345474, -0.24812127649784088, -0.26123470067977905, 0.19507940113544464, -0.11447151005268097, -0.23095594346523285, -0.0003364476142451167, -0.07478976994752884, -0.27155619859695435, 0.16877061128616333, -0.06199101731181145, 0.5020115375518799, 0.45364415645599365, -0.17450043559074402, 0.11708714812994003, 0.5048568248748779, 0.21035036444664001, 0.04130103811621666, -0.37596333026885986, 0.052334100008010864, -0.33603188395500183, 0.41538819670677185, -0.054098326712846756, 0.22031335532665253, -0.3131210207939148, 0.019466426223516464, -0.1805741935968399, 0.15909036993980408, -0.0025377606507390738, -0.1574302315711975, -0.3457914888858795, -0.06791253387928009, -0.3383204936981201, 0.1855582892894745, 0.7595587372779846, 0.4215840995311737, -0.32762637734413147, -0.03235064074397087, 0.16780626773834229, -0.09361208230257034, -0.07497554272413254, -0.3846355676651001, -0.12076734751462936, 0.11813458055257797, 0.15828703343868256, 0.3857811689376831, -0.08686742186546326, -0.7019304633140564, -0.1841273307800293, 0.18196067214012146, -0.18547934293746948, 0.08952359855175018, 0.09270589798688889, 0.35799139738082886, -0.09053037315607071, -0.04550357162952423, 0.39203333854675293, 0.14286211133003235, -0.27875712513923645, 0.04897220805287361, -0.29140767455101013 ]
https://github.com/huggingface/datasets/issues/258
Why is dataset after tokenization far more larger than the orginal one ?
Hi ! This is because `.map` added the new column `input_ids` to the dataset, and so all the other columns were kept. Therefore the dataset size increased a lot. If you want to only keep the `input_ids` column, you can stash the other ones by specifying `remove_columns=["title", "text"]` in the arguments of `.map`
I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ?
53
Why is dataset after tokenization far more larger than the orginal one ? I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ? Hi ! This is because `.map` added the new column `input_ids` to the dataset, and so all the other columns were kept. Therefore the dataset size increased a lot. If you want to only keep the `input_ids` column, you can stash the other ones by specifying `remove_columns=["title", "text"]` in the arguments of `.map`
[ -0.05911937728524208, -0.08479098975658417, 0.05137692391872406, 0.08934739977121353, 0.05012290179729462, 0.06170925498008728, 0.3212461769580841, 0.4181889295578003, -0.047809336334466934, -0.09947498142719269, -0.10500527918338776, 0.29056090116500854, 0.0789179727435112, -0.14244262874126434, 0.2202339470386505, -0.08854814618825912, 0.3397548198699951, 0.0273733027279377, 0.17828218638896942, -0.20898279547691345, -0.007720143534243107, 0.004556853789836168, -0.15893113613128662, 0.04087833687663078, -0.40964996814727783, -0.06494611501693726, -0.19326142966747284, -0.11585946381092072, -0.3763849437236786, -0.4542703330516815, 0.017773346975445747, 0.11248510330915451, 0.45157137513160706, 0.2357395738363266, -0.0001270274369744584, -0.30086562037467957, 0.015437101013958454, -0.0012034937972202897, 0.011202759109437466, 0.3585987687110901, 0.19096218049526215, -0.5831574201583862, -0.1245545744895935, -0.25491413474082947, 0.265302836894989, -0.5587735176086426, -0.2960032522678375, 0.22782501578330994, -0.010379907675087452, -0.11841577291488647, 0.09640321135520935, -0.14086021482944489, -0.060327958315610886, 0.4277175962924957, 0.09496454149484634, 0.025830712169408798, -0.0870460495352745, -0.23614148795604706, -0.14812831580638885, -0.24969758093357086, -0.019384237006306648, 0.20226071774959564, -0.04803455248475075, -0.24934165179729462, 0.3461994230747223, -0.03341181203722954, -0.17995783686637878, -0.022580642253160477, 0.338135689496994, 0.2231506109237671, 0.3686369061470032, -0.09173128008842468, 0.07641991972923279, -0.26638609170913696, -0.15127047896385193, -0.13329100608825684, -0.1526266187429428, 0.12956732511520386, 0.3435027003288269, -0.06652646511793137, -0.3992857336997986, -0.08628196269273758, 0.2093707174062729, 0.2339637279510498, -0.23377765715122223, 0.5117802619934082, 0.034919966012239456, 0.22417277097702026, -0.2702213525772095, -0.14532218873500824, -0.10400517284870148, -0.18281564116477966, -0.14599069952964783, 0.4562895894050598, -0.3604275584220886, -0.38795727491378784, 0.08032916486263275, -0.07795771956443787, 0.43373191356658936, -0.2686166763305664, -0.38367709517478943, 0.028689371421933174, -0.006413264200091362, -0.2013779580593109, 0.14446859061717987, 0.5048394203186035, -0.26569968461990356, 0.4378588795661926, -0.09575376659631729, -0.12296366691589355, -0.45965710282325745, -0.1897008866071701, 0.04711776599287987, 0.17094656825065613, 0.23458822071552277, -0.29915469884872437, -0.29952099919319153, -0.03883132338523865, 0.2762611210346222, 0.23374536633491516, -0.47531750798225403, 0.057649582624435425, -0.14133626222610474, 0.3265320360660553, -0.12757185101509094, 0.34443333745002747, -0.38650572299957275, 0.18685811758041382, -0.13302470743656158, 0.015350159257650375, -0.13506880402565002, -0.180036723613739, 0.09897352010011673, 0.17257060110569, -0.24827449023723602, 0.2382376790046692, 0.3281412124633789, 0.12043143808841705, -0.14697633683681488, -0.08602630347013474, 0.4267895519733429, -0.17270764708518982, 0.3936500549316406, 0.14427848160266876, 0.11970360577106476, 0.34756892919540405, -0.04413055256009102, -0.12564586102962494, -0.19792482256889343, 0.15886330604553223, -0.5327581167221069, -0.19502577185630798, -0.0560806579887867, 0.021750427782535553, 0.0058698710054159164, -0.026354115456342697, -0.36281222105026245, 0.3748995065689087, 0.41073307394981384, -0.06625280529260635, 0.17581358551979065, -0.3005610704421997, -0.3777945637702942, -0.21447764337062836, -0.013327939435839653, -0.07812512665987015, -0.10852597653865814, -0.007201956119388342, 0.2633255422115326, 0.32204747200012207, 0.3666018545627594, 0.6014492511749268, -0.22513709962368011, 0.5065833330154419, -0.24515609443187714, 0.38233399391174316, 0.405365914106369, -0.30211395025253296, -0.7379569411277771, 0.32079458236694336, 0.1591734141111374, 0.2684880793094635, -0.161289244890213, -0.018845010548830032, 0.5017423629760742, 0.09207053482532501, 0.05278477072715759, 0.2601006329059601, -0.05028505623340607, 0.12133890390396118, -0.310126930475235, -0.18898732960224152, 0.35509344935417175, -0.5069997906684875, 0.19823427498340607, 0.057711973786354065, 0.036683421581983566, 0.42328768968582153, 0.410130113363266, 0.06884679198265076, 0.29239168763160706, 0.23463529348373413, -0.022851010784506798, 0.08898698538541794, 0.26902371644973755, 0.07330082356929779, 0.09403929114341736, -0.08586594462394714, -0.0804762914776802, -0.11078411340713501, 0.19960391521453857, -0.4010842740535736, -0.193190798163414, -0.06629641354084015, -0.09751642495393753, -0.3066639006137848, 0.0048551131039857864, -0.10042674839496613, 0.11778147518634796, -0.04412902519106865, 0.21179834008216858, 0.10142629593610764, -0.08258402347564697, 0.09123247116804123, 0.09645479917526245, 0.15638971328735352, 0.1161217987537384, 0.18236295878887177, -0.26177626848220825, 0.26709479093551636, 0.18193720281124115, -0.03767957538366318, -0.21081307530403137, 0.09187141805887222, 0.10519344359636307, 0.03651143237948418, 0.15220917761325836, 0.3906075656414032, 0.17170308530330658, 0.09538175910711288, 0.4608204662799835, -0.038094744086265564, 0.011727830395102501, -0.14513999223709106, 0.15429995954036713, 0.330697625875473, 0.3767094910144806, 0.1166270449757576, 0.013811850920319557, -0.24629147350788116, 0.1822608858346939, 0.019084226340055466, 0.13453231751918793, -0.25540387630462646, -0.20804908871650696, 0.2156355381011963, -0.01921241730451584, 0.02406398393213749, 0.1125006303191185, 0.34272193908691406, 0.47784438729286194, -0.10713514685630798, -0.1353248506784439, 0.12465722858905792, -0.6855453848838806, -0.5055301785469055, 0.157845139503479, 0.05310053378343582, 0.24582505226135254, 0.09888868778944016, 0.29332906007766724, 0.027764802798628807, 0.19589045643806458, 0.11157650500535965, 0.18519118428230286, -0.0681387409567833, -0.009855234995484352, 0.17791986465454102, 0.4578200578689575, 0.1271982192993164, -0.2502453923225403, 0.25102242827415466, 0.02229868620634079, 0.42150330543518066, -0.09490901976823807, 0.1341172605752945, -0.21858516335487366, -0.050642382353544235, 0.013700279407203197, -0.06598589569330215, -0.19648976624011993, -0.4311220645904541, -0.09151870012283325, -0.03148375451564789, 0.310143381357193, -0.1640021651983261, -0.10094184428453445, 0.014145443215966225, 0.12986785173416138, 0.11785567551851273, 0.1307285726070404, -0.04813885688781738, -0.3677673041820526, -0.04373951256275177, -0.08232437819242477, -0.09464240074157715, 0.267200231552124, 0.13293752074241638, -0.06954406201839447, -0.41357097029685974, -0.7815634608268738, 0.06334731727838516, -0.1783967763185501, 0.0664600282907486, -0.04573579505085945, 0.007565713953226805, -0.4851558208465576, 0.16965033113956451, -0.027793439105153084, 0.026743199676275253, -0.19898656010627747, -0.05234721675515175, -0.3482215106487274, 0.12791329622268677, 0.15934807062149048, -0.025174768641591072, -0.01634301245212555, 0.07509173452854156, -0.03678463026881218, 0.04660383239388466, 0.06857642531394958, 0.038010288029909134, -0.20963092148303986, -0.10176266729831696, -0.0553879514336586, -0.1567961871623993, -0.5051302909851074, -0.28393882513046265, 0.27939489483833313, -0.1403147578239441, -0.23298291862010956, -0.03171481192111969, -0.17853444814682007, 0.14001740515232086, 0.08782725781202316, -0.5514487624168396, 0.1583930104970932, -0.21242795884609222, 0.191660076379776, -0.2602856159210205, 0.017265506088733673, 0.17556491494178772, -0.1336284726858139, 0.07332521677017212, 0.004524200689047575, 0.009566233493387699, -0.31304028630256653, 0.16302451491355896, 0.4565994441509247, -0.07779299467802048, 0.47333571314811707, 0.2586419880390167, 0.8525638580322266, 0.015796713531017303, 0.032810281962156296, 0.2135447859764099, -0.2784927785396576, 0.1436033546924591, -0.29891231656074524, -0.12927374243736267, 0.16177617013454437, -0.17413607239723206, 0.18075218796730042, 0.43052148818969727, 0.17388996481895447, -0.11813012510538101, 0.6388401985168457, -0.2887886166572571, 0.10471244901418686, -0.09596553444862366, 0.21213312447071075, -0.22368751466274261, 0.26412856578826904, 0.23356500267982483, -0.16420795023441315, -0.6363503336906433, -0.5240098237991333, 0.01573682203888893, 0.12684418261051178, -0.0615629144012928, 0.13311205804347992, -0.7828914523124695, -0.0653618723154068, -0.677439272403717, 0.2748369574546814, 0.09826561063528061, 0.2737056314945221, 0.3563111424446106, 0.04079305753111839, 0.11432396620512009, 0.04313246160745621, 0.5410211682319641, -0.14186516404151917, -0.2233981192111969, -0.08547791838645935, -0.023105740547180176, -0.27650707960128784, -0.20002388954162598, -0.002107636770233512, 0.22030049562454224, 0.44531771540641785, 0.6754161715507507, 0.022267377004027367, -0.18873170018196106, -0.03479288890957832, 0.5779744386672974, -0.16473595798015594, -0.058012161403894424, -0.37514641880989075, -0.04988491162657738, -0.31904885172843933, 0.017375707626342773, -0.23421774804592133, 0.2088269144296646, 0.014280232600867748, -0.266380250453949, -0.20428775250911713, -0.2549261152744293, -0.09576388448476791, 0.11313263326883316, 0.305175244808197, 0.34002265334129333, 0.060195937752723694, -0.22647321224212646, 0.23531852662563324, 0.0076810577884316444, -0.045271385461091995, 0.10828530043363571, 0.06937924772500992, -0.14581316709518433, 0.06272347271442413, 0.3206312656402588, 0.09082987159490585, 0.018807843327522278, 0.5403695106506348, -0.3301042914390564, 0.14533184468746185, -0.08386687189340591, 0.4072863757610321, 0.3613957166671753, 0.11807987093925476, -0.45151087641716003, -0.3181847035884857, 0.18577197194099426, 0.1650397926568985, -0.06916309148073196, 0.319454163312912, 0.08456990867853165, -0.13708017766475677, 0.46027830243110657, 0.0660700649023056, 0.9790534973144531, -0.10605494678020477, 0.2866688370704651, 0.00008944421279011294, -0.0036140659358352423, 0.32138320803642273, -0.5782910585403442, 0.039605576545000076, -0.243626207113266, 0.1978454738855362, 0.036744557321071625, 0.07390250265598297, -0.026067832484841347, 0.18417124450206757, 0.030752059072256088, 0.055893585085868835, 0.013466582633554935, 0.4594781696796417, -0.37877345085144043, 0.4584658741950989, 0.12931884825229645, -0.07897435873746872, 0.0771431252360344, 0.016133535653352737, -0.1007993221282959, -0.2620888948440552, -0.17633290588855743, 0.2034144252538681, -0.14379887282848358, -0.29425472021102905, -0.024579238146543503, -0.27596062421798706, -0.013632826507091522, 0.3781242072582245, -0.03935842216014862, -0.246534064412117, 0.02428293414413929, 0.07880500704050064, 0.12353325635194778, 0.4710443913936615, 0.019633013755083084, 0.15719857811927795, 0.017371419817209244, 0.23138566315174103, 0.20039096474647522, -0.19124141335487366, -0.017861222848296165, 0.04114373400807381, -0.23711077868938446, -0.061440158635377884, -0.03818149492144585, -0.30249378085136414, -0.35473641753196716, 0.15590712428092957, 0.5879483819007874, -0.3762478828430176, -0.10717304795980453, 0.07623866200447083, -0.08698384463787079, -0.13806496560573578, 0.03694682940840721, -0.17183232307434082, 0.06115725636482239, 0.27326542139053345, 0.28217387199401855, -0.42576149106025696, -0.07563986629247665, 0.36957231163978577, 0.39586687088012695, 0.07058368623256683, 0.7585433125495911, -0.28511810302734375, -0.1089351698756218, -0.03366778790950775, 0.26288729906082153, 0.1575581580400467, 0.15217933058738708, -0.25880369544029236, -0.09599179774522781, 0.13000714778900146, 0.04613471031188965, 0.023439593613147736, -0.1975012868642807, -0.0054346113465726376, -0.2912546396255493, -0.20119303464889526, -0.5601053237915039, 0.031235938891768456, -0.3721837103366852, 0.18799440562725067, 0.2716308832168579, 0.17450739443302155, -0.322724848985672, 0.5348666310310364, -0.1382448971271515, 0.07519858330488205, 0.17268434166908264, 0.17980454862117767, -0.19673804938793182, 0.028331536799669266, -0.09268924593925476, -0.03231598809361458, -0.05695246532559395, 0.1557476818561554, 0.08882782608270645, -0.13873577117919922, -0.35461941361427307, 0.1914495974779129, 0.2820286750793457, -0.145791158080101, -0.06356029957532883, 0.02002611756324768, -0.15271154046058655, -0.3770667612552643, 0.28156018257141113, -0.04162934422492981, 0.11197137087583542, 0.1002025157213211, 0.29322823882102966, -0.2668457329273224, -0.06899455934762955, -0.02810574136674404, 0.1956406831741333, -0.006250346079468727, 0.09285127371549606, 0.17380936443805695, 0.2828681170940399, -0.07996710389852524, -0.45425334572792053, 0.07022620737552643, 0.21852043271064758, 0.0287319403141737, 0.4231923520565033, 0.14606665074825287, 0.10630666464567184, 0.07024002820253372, -0.25059348344802856, 0.16186563670635223, 0.06352105736732483, -0.41216859221458435, 0.365871399641037, 0.009376602247357368, -0.06015794724225998, -0.12420466542243958, 0.3208639621734619, -0.12237997353076935, -0.1352737993001938, 0.004825208336114883, 0.44689977169036865, 0.23529517650604248, -0.41041770577430725, -0.06779062747955322, 0.4093169867992401, -0.1909322738647461, -0.04467693716287613, 0.2629775106906891, -0.07583042234182358, 0.07852314412593842, 0.292671799659729, 0.06258837133646011, 0.04271692782640457, 0.39373740553855896, 0.3723277449607849, 0.2766471803188324, 0.3065326511859894, 0.0783281922340393, 0.025759002193808556, -0.29419758915901184, -0.1397876739501953, 0.3273918032646179, -0.1583966463804245, 0.09058517217636108, 0.11753721535205841, 0.07445624470710754, 0.5569459795951843, -0.35107743740081787, 0.03871055319905281, 0.41134005784988403, -0.31157171726226807, -0.22218705713748932, -0.0707549974322319, -0.033811524510383606, 0.08181832730770111, 0.10929291695356369, -0.11413483321666718, -0.21298347413539886, -0.09529636055231094, -0.12766514718532562, -0.20527102053165436, -0.20592476427555084, 0.1625530868768692, 0.13987155258655548, 0.12890586256980896, -0.23990772664546967, 0.017809659242630005, -0.3468592166900635, 0.11774109303951263, -0.15735135972499847, 0.11329443752765656, 0.2794462740421295, 0.21934805810451508, -0.04729480296373367, -0.021197350695729256, 0.14541026949882507, 0.0477934367954731, -0.011661097407341003, 0.07663770765066147, 0.17305301129817963, -0.4105388820171356, -0.08476315438747406, -0.09953578561544418, -0.05779397487640381, -0.3521796762943268, 0.320497065782547, -0.08876805007457733, 0.07768473774194717, 0.17812180519104004, -0.06604760885238647, -0.2564237415790558, -0.10467810928821564, 0.18996912240982056, -0.3707854449748993, 0.11652621626853943, 0.3587569296360016, 0.03465276584029198, 0.33139461278915405, -0.3841506540775299, 0.026845956221222878, -0.3230530917644501, 0.382079541683197, 0.5605060458183289, -0.3645084500312805, -0.2622022330760956, -0.28136172890663147, -0.20820939540863037, 0.23005861043930054, -0.41834110021591187, -0.009950293228030205, -0.17285096645355225, 0.28262534737586975, -0.12166191637516022, -0.33472827076911926, -0.001616245019249618, -0.11503218859434128, -0.0774231031537056, 0.12133566290140152, -0.016738709062337875, -0.017166145145893097, -0.3584662675857544, 0.15422764420509338, -0.20322366058826447, -0.042357079684734344, 0.2969505786895752, 0.17754390835762024, -0.11464153230190277, -0.14535212516784668, 0.08861854672431946, -0.01430024579167366, -0.04893777519464493, 0.354716420173645, 0.2388485223054886, 0.3356853723526001, -0.06481336802244186, 0.25969821214675903, 0.018421439453959465, 0.03760280832648277, -0.11067035794258118, 0.21438930928707123, -0.2533373534679413, 0.03718751668930054, 0.10522042959928513, -0.023991534486413002, 0.208218514919281, 0.015258722007274628, 0.0650140643119812, -0.22314229607582092, -0.1852753460407257, 0.16009926795959473, -0.11264865100383759, 0.032960195094347, -0.12471023947000504, 0.5538578629493713, 0.05682789906859398, 0.22750329971313477, 0.0008595506078563631, -0.24337607622146606, 0.20343635976314545, -0.5507056713104248, -0.21118663251399994, -0.21413153409957886, 0.0035445622634142637, 0.254958838224411, -0.2977744936943054, -0.3130098879337311, -0.07921866327524185, 0.5161021947860718, -0.010719607584178448, -0.036898259073495865, 0.23896750807762146, 0.08628498762845993, 0.18690137565135956, -0.14391814172267914, 0.32119154930114746, -0.22821006178855896, 0.008853198029100895, 0.060896068811416626, -0.040390871465206146 ]
https://github.com/huggingface/datasets/issues/258
Why is dataset after tokenization far more larger than the orginal one ?
Hi ! Thanks for your reply. But since size of `input_ids` < size of `text`, I am wondering why size of `input_ids` + `text` > 2x the size of `text` 🤔
I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ?
31
Why is dataset after tokenization far more larger than the orginal one ? I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ? Hi ! Thanks for your reply. But since size of `input_ids` < size of `text`, I am wondering why size of `input_ids` + `text` > 2x the size of `text` 🤔
[ -0.05326902121305466, -0.20863652229309082, 0.017832700163125992, 0.19117698073387146, 0.01438360009342432, 0.008745522238314152, 0.23980095982551575, 0.3740541636943817, -0.11492272466421127, -0.013811668381094933, -0.08017369359731674, 0.1806693971157074, 0.14083296060562134, -0.11297174543142319, 0.19782494008541107, -0.10907384753227234, 0.2893787622451782, -0.011822642758488655, 0.17266151309013367, -0.198483407497406, 0.0641961619257927, 0.01235012337565422, -0.20447121560573578, 0.02655954845249653, -0.40991687774658203, -0.011964747682213783, -0.14313864707946777, -0.12345185875892639, -0.4040335714817047, -0.5144380331039429, -0.05269519239664078, 0.08115099370479584, 0.38159602880477905, 0.2726801633834839, -0.00012669498391915113, -0.3327265679836273, 0.07533998787403107, 0.011636288836598396, -0.012366130948066711, 0.26773667335510254, 0.16763316094875336, -0.5629212260246277, -0.16141925752162933, -0.25321272015571594, 0.2919106185436249, -0.5190229415893555, -0.2093336284160614, 0.33819231390953064, 0.041958875954151154, -0.15536068379878998, 0.0847017765045166, -0.13419975340366364, 0.033728741109371185, 0.41064873337745667, 0.14613664150238037, 0.09478871524333954, -0.04455029219388962, -0.19317668676376343, -0.12520554661750793, -0.1861882507801056, -0.014873756095767021, 0.17044508457183838, 0.08462286740541458, -0.21875202655792236, 0.35215866565704346, -0.07896684855222702, -0.18379023671150208, -0.04403115436434746, 0.22508758306503296, 0.20200614631175995, 0.3780927062034607, -0.1213996484875679, 0.01790017820894718, -0.272034615278244, -0.16476920247077942, -0.0660213902592659, -0.17578746378421783, 0.18078504502773285, 0.2901875674724579, -0.03196591138839722, -0.3919961452484131, -0.05054589360952377, 0.11636011302471161, 0.2394367903470993, -0.19160690903663635, 0.5306616425514221, 0.03733581677079201, 0.1746239960193634, -0.28768280148506165, -0.17114193737506866, -0.07721090316772461, -0.23159964382648468, -0.1640634387731552, 0.4628705680370331, -0.33474400639533997, -0.3571235239505768, 0.04544789716601372, -0.05537891015410423, 0.5116997957229614, -0.30041298270225525, -0.307953804731369, -0.0179547518491745, -0.030010271817445755, -0.13497334718704224, 0.10175642371177673, 0.5036150813102722, -0.32051748037338257, 0.40584155917167664, -0.14635664224624634, -0.0689106360077858, -0.5243207812309265, -0.18012304604053497, 0.05817346274852753, 0.09739426523447037, 0.1247243583202362, -0.26268821954727173, -0.36893364787101746, -0.06546830385923386, 0.22462822496891022, 0.22831609845161438, -0.5162185430526733, 0.05017029121518135, -0.046241749078035355, 0.35313302278518677, -0.18779216706752777, 0.39859917759895325, -0.3270302414894104, 0.21141692996025085, -0.13615289330482483, 0.042562421411275864, -0.11616846919059753, -0.1355384737253189, 0.09621676802635193, 0.1538248062133789, -0.23410937190055847, 0.198196679353714, 0.346576452255249, 0.093648262321949, 0.014688853174448013, -0.09685364365577698, 0.4784102141857147, -0.20838414132595062, 0.36299580335617065, 0.12199417501688004, 0.14084233343601227, 0.30565574765205383, -0.09019678831100464, -0.09577738493680954, -0.12010879814624786, 0.1409539431333542, -0.5012379288673401, -0.1690201312303543, 0.011677276343107224, 0.03995848074555397, 0.046361301094293594, -0.026010766625404358, -0.37902677059173584, 0.33963319659233093, 0.44503819942474365, -0.048593275249004364, 0.24750733375549316, -0.27332302927970886, -0.36723971366882324, -0.17750312387943268, 0.015388079918920994, -0.0809689313173294, -0.06500151753425598, -0.01240624487400055, 0.34793731570243835, 0.24103018641471863, 0.34923186898231506, 0.6582410335540771, -0.2303016036748886, 0.5145468711853027, -0.2676455080509186, 0.5004503726959229, 0.46325886249542236, -0.41060149669647217, -0.7795950174331665, 0.359205961227417, 0.2177221029996872, 0.19099242985248566, -0.09057649224996567, -0.06226784735918045, 0.4403337240219116, 0.17096823453903198, 0.15036523342132568, 0.26097941398620605, -0.006749305408447981, 0.089122474193573, -0.40962257981300354, -0.18714065849781036, 0.37675514817237854, -0.5307531952857971, 0.21353508532047272, -0.00004941487350151874, 0.04880697652697563, 0.4616972506046295, 0.44930002093315125, 0.0690547302365303, 0.28401586413383484, 0.26045504212379456, -0.05614741891622543, 0.031883012503385544, 0.28227412700653076, 0.02265912853181362, 0.24659548699855804, -0.055662672966718674, -0.27502790093421936, -0.06778474897146225, 0.24607811868190765, -0.3916616141796112, -0.21387779712677002, 0.005228198133409023, -0.1389307975769043, -0.2794297933578491, 0.023417791351675987, -0.09323544800281525, 0.1023213341832161, -0.03831876069307327, 0.23169676959514618, 0.11003869771957397, -0.1432962715625763, 0.09355352818965912, 0.13344989717006683, 0.16457800567150116, 0.040202122181653976, 0.15889424085617065, -0.2989458441734314, 0.27477243542671204, 0.15093819797039032, 0.03816885128617287, -0.289644718170166, 0.05617308244109154, 0.11204066872596741, 0.007937337271869183, 0.15989254415035248, 0.3029528558254242, 0.20067277550697327, 0.02096804790198803, 0.3990192413330078, 0.051971446722745895, 0.05530022457242012, -0.15162870287895203, 0.1953580379486084, 0.274139940738678, 0.4093806743621826, 0.06393247097730637, 0.08304192125797272, -0.29886844754219055, 0.1838337928056717, 0.016415901482105255, 0.14657293260097504, -0.2107122838497162, -0.14862394332885742, 0.24596692621707916, 0.09252964705228806, 0.0446779727935791, 0.08473134785890579, 0.3287923038005829, 0.495830237865448, -0.0970020741224289, -0.0951332226395607, 0.0925796627998352, -0.6602829694747925, -0.5403527021408081, 0.14899636805057526, -0.04970869794487953, 0.22394190728664398, 0.09999971091747284, 0.3472329378128052, 0.019930467009544373, 0.2298644781112671, 0.09709715098142624, 0.2053426206111908, -0.08589554578065872, 0.01857243850827217, 0.25593990087509155, 0.5013880133628845, 0.15280522406101227, -0.26602280139923096, 0.2025134563446045, -0.0429479219019413, 0.3088427782058716, -0.11249259859323502, 0.08505561947822571, -0.1335550844669342, -0.14356794953346252, -0.0023191662039607763, -0.039491280913352966, -0.19667081534862518, -0.401104211807251, -0.09010350704193115, -0.07314535975456238, 0.36249837279319763, -0.20259685814380646, -0.046921517699956894, 0.011673064902424812, 0.15434758365154266, 0.17032627761363983, 0.08429475873708725, 0.05608844384551048, -0.36765024065971375, -0.05931682884693146, -0.09912483394145966, -0.06199681758880615, 0.23751087486743927, 0.16652648150920868, -0.06456759572029114, -0.345832884311676, -0.8534326553344727, 0.0825679749250412, -0.08412156254053116, 0.07087632268667221, -0.037562284618616104, -0.04241621494293213, -0.45490795373916626, 0.14274805784225464, -0.03376008942723274, 0.08442936837673187, -0.2855614125728607, -0.1527380496263504, -0.30640682578086853, 0.11083474010229111, 0.08386629819869995, 0.032712940126657486, -0.07812924683094025, -0.005461073946207762, 0.028835764154791832, 0.0639326199889183, 0.041234634816646576, 0.03315356373786926, -0.23439373075962067, -0.005521491635590792, -0.029566410928964615, -0.0494091734290123, -0.49379003047943115, -0.2349339723587036, 0.2614576518535614, -0.1864851415157318, -0.2871461510658264, -0.13790582120418549, -0.21276581287384033, 0.16745194792747498, 0.12354166060686111, -0.5751296877861023, 0.17841757833957672, -0.20781581103801727, 0.19144964218139648, -0.28983768820762634, 0.04197106137871742, 0.07119355350732803, -0.13051626086235046, 0.04127607122063637, -0.06556466221809387, 0.06275001913309097, -0.3446023464202881, 0.1373836249113083, 0.5308550596237183, -0.10191182047128677, 0.4415528476238251, 0.3388988971710205, 0.9411721229553223, 0.07107651978731155, 0.05974099040031433, 0.2623275816440582, -0.21298490464687347, 0.10007879137992859, -0.29721367359161377, -0.11260826140642166, 0.1811748594045639, -0.08571932464838028, 0.19751985371112823, 0.4480569362640381, 0.14312390983104706, -0.1449809968471527, 0.6234250664710999, -0.40051019191741943, 0.03461722657084465, -0.04876462742686272, 0.12758228182792664, -0.21853680908679962, 0.2929036617279053, 0.2064039409160614, -0.19971393048763275, -0.5666322112083435, -0.490905225276947, -0.025202278047800064, 0.1508864462375641, -0.08974526077508926, 0.1794927716255188, -0.6895118355751038, -0.10211601853370667, -0.6798050999641418, 0.22899620234966278, 0.19071783125400543, 0.22689203917980194, 0.2893174886703491, 0.12283714860677719, 0.09867167472839355, -0.00004649453694582917, 0.5573990941047668, -0.09543897956609726, -0.16968552768230438, -0.10019518435001373, -0.08933230489492416, -0.2187117636203766, -0.15747928619384766, 0.046002842485904694, 0.19132913649082184, 0.48658135533332825, 0.6134019494056702, -0.03694392368197441, -0.20329098403453827, -0.07582058012485504, 0.563632071018219, -0.13563326001167297, -0.09072224795818329, -0.33913111686706543, -0.005641823168843985, -0.32262715697288513, -0.010169900953769684, -0.14415626227855682, 0.22907061874866486, -0.010588162578642368, -0.3273717164993286, -0.28767481446266174, -0.22290846705436707, -0.14036166667938232, 0.080937959253788, 0.33599427342414856, 0.28167304396629333, 0.04255083575844765, -0.29740944504737854, 0.23044566810131073, 0.06290502101182938, -0.0645938590168953, 0.19542647898197174, 0.015280181542038918, -0.17702867090702057, 0.0828779861330986, 0.29112571477890015, 0.09389939904212952, -0.014790077693760395, 0.5646324753761292, -0.2761474847793579, 0.13827675580978394, -0.05335579812526703, 0.47504037618637085, 0.32003599405288696, 0.1391315460205078, -0.484923392534256, -0.2804907560348511, 0.23389148712158203, 0.10955565422773361, -0.05102820321917534, 0.20236653089523315, 0.05031438171863556, -0.18621057271957397, 0.3887760043144226, 0.02814490720629692, 1.0094184875488281, -0.055926017463207245, 0.3413282334804535, -0.015066761523485184, 0.03418225049972534, 0.2308703064918518, -0.5023811459541321, 0.0393606536090374, -0.2651953399181366, 0.24726413190364838, 0.03677699342370033, -0.020033366978168488, -0.13461701571941376, 0.21808676421642303, 0.011437751352787018, 0.04845643416047096, 0.022508874535560608, 0.3262212574481964, -0.35030534863471985, 0.5328891277313232, 0.07841505855321884, -0.011508255265653133, 0.04405871778726578, 0.003480869112536311, -0.09421111643314362, -0.19453750550746918, -0.2212127149105072, 0.13402648270130157, -0.1591312140226364, -0.28524842858314514, -0.08463216572999954, -0.19293448328971863, -0.11190016567707062, 0.45393288135528564, -0.03698452189564705, -0.2596123218536377, 0.04455652832984924, 0.09518566727638245, 0.08014139533042908, 0.5051615238189697, -0.003987661097198725, 0.1667693704366684, -0.0645395889878273, 0.19650153815746307, 0.2081848680973053, -0.126743882894516, 0.08216046541929245, -0.04440180957317352, -0.24102969467639923, -0.07912595570087433, -0.017951568588614464, -0.2659713327884674, -0.3112940788269043, 0.22223897278308868, 0.4669784605503082, -0.3620295226573944, -0.1344529092311859, 0.13785897195339203, -0.17791323363780975, -0.1051541417837143, 0.043693121522665024, -0.14803127944469452, 0.019449377432465553, 0.18704085052013397, 0.3336392045021057, -0.47344231605529785, -0.07331281900405884, 0.33935296535491943, 0.3918019235134125, 0.06282404810190201, 0.7738108038902283, -0.32066279649734497, -0.13908244669437408, -0.021764209493994713, 0.24826182425022125, 0.08135417848825455, 0.12821149826049805, -0.19154371321201324, -0.09267377853393555, 0.11579453200101852, -0.00925625953823328, 0.0023912517353892326, -0.1650206446647644, -0.026118287816643715, -0.2974679172039032, -0.23089995980262756, -0.5808985233306885, 0.039086487144231796, -0.4215117394924164, 0.2389918565750122, 0.29483363032341003, 0.22633278369903564, -0.276421457529068, 0.41982436180114746, -0.142923042178154, 0.07621601969003677, 0.08431068062782288, 0.14677436649799347, -0.33285409212112427, -0.021071454510092735, -0.13390584290027618, 0.11986099928617477, -0.0671062022447586, 0.142774298787117, 0.03208160027861595, -0.14778730273246765, -0.32291680574417114, 0.1828865110874176, 0.3324046730995178, -0.16048464179039001, -0.0970514714717865, 0.010318398475646973, -0.13277360796928406, -0.3221014142036438, 0.2611096501350403, -0.05993315577507019, 0.11925261467695236, 0.14993135631084442, 0.3006537854671478, -0.1675349920988083, -0.06557677686214447, 0.05385686084628105, 0.22757399082183838, 0.0984329953789711, 0.10346142947673798, 0.17027996480464935, 0.2892480492591858, -0.09209740906953812, -0.5138876438140869, 0.04838039353489876, 0.3064833879470825, 0.0442463681101799, 0.3689001500606537, 0.16667063534259796, 0.07998322695493698, 0.011288479901850224, -0.20199348032474518, 0.10306607931852341, 0.04121099039912224, -0.33770573139190674, 0.3317943513393402, 0.00255189323797822, -0.064557284116745, -0.05170496925711632, 0.2551341652870178, -0.24530522525310516, -0.13780254125595093, -0.053886622190475464, 0.46833011507987976, 0.2841569781303406, -0.4058927595615387, -0.08853186666965485, 0.31158170104026794, -0.20140813291072845, -0.07778368890285492, 0.15216630697250366, -0.006110148970037699, 0.06565911322832108, 0.2132091224193573, 0.0985809713602066, 0.12295571714639664, 0.3483356237411499, 0.3747967779636383, 0.3071371018886566, 0.21259239315986633, 0.05738797411322594, 0.14751698076725006, -0.19726021587848663, -0.24209444224834442, 0.318095326423645, -0.11582671850919724, 0.1136651262640953, 0.07949632406234741, 0.046980783343315125, 0.5698667764663696, -0.3263920247554779, 0.09167465567588806, 0.38215675950050354, -0.2795785963535309, -0.24620144069194794, -0.039253346621990204, -0.002950648544356227, 0.029072914272546768, 0.06110573187470436, -0.048690661787986755, -0.1476874202489853, -0.2208215296268463, -0.03437187895178795, -0.18838265538215637, -0.19187705218791962, 0.2929585576057434, 0.2847602963447571, 0.14947529137134552, -0.2995000183582306, 0.040820829570293427, -0.28906315565109253, 0.15019840002059937, -0.19445392489433289, 0.25350162386894226, 0.32927045226097107, 0.26249855756759644, -0.17548207938671112, -0.0608234703540802, 0.12307359278202057, 0.07062480598688126, -0.08771034330129623, 0.05326709896326065, 0.22753605246543884, -0.40913620591163635, -0.032219745218753815, -0.11015176773071289, -0.06639572232961655, -0.30876487493515015, 0.33659836649894714, -0.2456381618976593, 0.02715306729078293, 0.15501032769680023, -0.11659999191761017, -0.2735728323459625, -0.12331126630306244, 0.21199023723602295, -0.533623218536377, 0.12187248468399048, 0.4087360203266144, 0.012875167652964592, 0.35195693373680115, -0.39627721905708313, 0.03063538856804371, -0.35640084743499756, 0.4219523072242737, 0.5847312211990356, -0.14076034724712372, -0.22088299691677094, -0.21872229874134064, -0.11225777119398117, 0.26416170597076416, -0.31317612528800964, 0.05524617061018944, -0.20111538469791412, 0.33032292127609253, -0.22820068895816803, -0.36786243319511414, 0.06400034576654434, -0.14042578637599945, -0.07279945909976959, 0.10408338904380798, -0.043460696935653687, -0.04157331958413124, -0.3713264465332031, 0.1005876362323761, -0.16299381852149963, -0.05387445166707039, 0.2102728635072708, 0.02392139472067356, -0.12340417504310608, -0.1336364597082138, 0.1404179036617279, 0.024197714403271675, 0.0155284833163023, 0.33505403995513916, 0.25557032227516174, 0.36145418882369995, -0.13832519948482513, 0.2697926461696625, 0.13203272223472595, -0.05608970671892166, -0.06951496750116348, 0.2591331899166107, -0.24245774745941162, 0.014212400652468204, 0.11624469608068466, -0.0769675001502037, 0.27979665994644165, -0.019858865067362785, 0.062499869614839554, -0.28200727701187134, -0.09782037138938904, 0.12972977757453918, -0.178395614027977, -0.005087955854833126, -0.12769173085689545, 0.5228880047798157, 0.04185954108834267, 0.1902502328157425, 0.0206492617726326, -0.25210997462272644, 0.22566112875938416, -0.4897984266281128, -0.1273147463798523, -0.24831221997737885, -0.04415428265929222, 0.27937397360801697, -0.25697413086891174, -0.3915029466152191, -0.07386553287506104, 0.5597872734069824, 0.10513851046562195, -0.09787175804376602, 0.2520545721054077, 0.14548669755458832, 0.16534100472927094, -0.17395366728305817, 0.3162578344345093, -0.22407588362693787, 0.043656084686517715, 0.11748093366622925, -0.03356964513659477 ]
https://github.com/huggingface/datasets/issues/258
Why is dataset after tokenization far more larger than the orginal one ?
Hard to tell... This is probably related to the way apache arrow compresses lists of integers, that may be different from the compression of strings.
I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ?
25
Why is dataset after tokenization far more larger than the orginal one ? I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ? Hard to tell... This is probably related to the way apache arrow compresses lists of integers, that may be different from the compression of strings.
[ -0.11238870024681091, -0.11934572458267212, 0.011290189810097218, 0.20274494588375092, -0.004323506727814674, -0.08417964726686478, 0.25018110871315, 0.4384356737136841, -0.1686830222606659, -0.07945170998573303, -0.018409399315714836, 0.17917343974113464, 0.1267877221107483, -0.41357436776161194, 0.272151917219162, -0.0815017893910408, 0.29106539487838745, -0.024630818516016006, 0.07197075337171555, -0.19687519967556, 0.0347571074962616, 0.0416623018682003, -0.13580314815044403, 0.07297970354557037, -0.40015774965286255, -0.044991347938776016, -0.12996286153793335, -0.07194671779870987, -0.23610730469226837, -0.5674787163734436, -0.07457364350557327, 0.012132389470934868, 0.4288645088672638, 0.21151335537433624, -0.00012896195403300226, -0.2799147069454193, 0.14519670605659485, 0.047584421932697296, -0.129814013838768, 0.2928498685359955, 0.2264072299003601, -0.6245274543762207, -0.09858845174312592, -0.18129003047943115, 0.29503926634788513, -0.6420506238937378, -0.22691090404987335, 0.08217141032218933, 0.18488366901874542, -0.13531453907489777, 0.08482646197080612, -0.09381578117609024, -0.107243113219738, 0.3942355215549469, 0.17671065032482147, 0.12888097763061523, -0.08183757960796356, -0.22567714750766754, -0.18743467330932617, -0.17470653355121613, -0.05089039355516434, 0.16270799934864044, 0.06343809515237808, -0.14710308611392975, 0.3064797520637512, -0.07142288982868195, -0.2241661250591278, 0.06346863508224487, 0.2754485309123993, 0.2621813118457794, 0.41695961356163025, -0.015648232772946358, -0.005996732506901026, -0.23013721406459808, -0.2018086016178131, -0.03891313076019287, -0.09311557561159134, 0.23463280498981476, 0.29061469435691833, -0.01752512715756893, -0.2741988003253937, 0.026341557502746582, 0.09475918859243393, 0.19758416712284088, -0.2298889458179474, 0.4450594484806061, 0.04016304388642311, 0.21792882680892944, -0.275377094745636, -0.15453864634037018, -0.058671921491622925, -0.21450579166412354, -0.1798376441001892, 0.43226343393325806, -0.19286522269248962, -0.26211652159690857, -0.051529526710510254, -0.25795671343803406, 0.4600997269153595, -0.0762401670217514, -0.14753013849258423, 0.17327535152435303, -0.04155794531106949, -0.25591936707496643, 0.04241197928786278, 0.4979791045188904, -0.18882770836353302, 0.4086044132709503, -0.07886456698179245, -0.016327334567904472, -0.45597341656684875, -0.1477344036102295, -0.014137779362499714, 0.08401013165712357, 0.1918039172887802, -0.1838829517364502, -0.4125387966632843, -0.0739113911986351, 0.24710379540920258, 0.25685036182403564, -0.5777154564857483, 0.01056296844035387, -0.15314404666423798, 0.271246999502182, -0.19330008327960968, 0.4041869640350342, -0.26577678322792053, 0.22528217732906342, -0.12825489044189453, 0.007667507976293564, -0.06053178384900093, -0.37401631474494934, 0.09740916639566422, 0.2564537227153778, -0.23812752962112427, 0.1824524700641632, 0.36050713062286377, 0.06975317001342773, -0.004230004735291004, -0.09864640980958939, 0.560161828994751, -0.17234668135643005, 0.3714503347873688, 0.10057485848665237, 0.09550118446350098, 0.3552553057670593, 0.0051989322528243065, 0.005940532311797142, -0.11799674481153488, 0.16847430169582367, -0.4593818783760071, -0.12196190655231476, 0.024771183729171753, -0.024990571662783623, 0.042193926870822906, 0.059815701097249985, -0.26530611515045166, 0.2889690399169922, 0.3526548743247986, 0.0013085011160001159, 0.20101355016231537, -0.25858765840530396, -0.2672610282897949, -0.21028278768062592, -0.01573740504682064, -0.15178623795509338, -0.1470726579427719, 0.0005064496654085815, 0.26726266741752625, 0.4102361798286438, 0.32009801268577576, 0.6782883405685425, -0.3026677072048187, 0.356017529964447, -0.2469850331544876, 0.48180219531059265, 0.43563133478164673, -0.26680850982666016, -0.7089948058128357, 0.36413517594337463, 0.30647432804107666, 0.1355559229850769, -0.11351753026247025, -0.11155831068754196, 0.4555980861186981, 0.15298491716384888, 0.06372403353452682, 0.3180859088897705, 0.0895824134349823, 0.05318770557641983, -0.36666834354400635, -0.1303325891494751, 0.292656809091568, -0.564603865146637, 0.10386882722377777, -0.03133523836731911, 0.11210844665765762, 0.34617456793785095, 0.41834452748298645, 0.05857106298208237, 0.329425185918808, 0.3610934019088745, -0.12274454534053802, -0.027573518455028534, 0.3681647479534149, 0.0696428194642067, 0.28049400448799133, -0.14163129031658173, -0.3820163309574127, -0.05809103325009346, 0.0012400727719068527, -0.3346400856971741, -0.21333763003349304, 0.07413895428180695, -0.026292959228157997, -0.2358429729938507, -0.02144368179142475, -0.04177189618349075, 0.062155790627002716, 0.022286606952548027, 0.2409433275461197, 0.0759204626083374, -0.00316074350848794, 0.13227634131908417, 0.12772433459758759, 0.13559724390506744, 0.14461788535118103, 0.2024890035390854, -0.24236132204532623, 0.19481921195983887, 0.12120483070611954, -0.020607678219676018, -0.25028902292251587, 0.04438689351081848, 0.09822213649749756, -0.0688159316778183, 0.25377157330513, 0.20875519514083862, 0.2937292456626892, -0.0704592689871788, 0.5168309211730957, 0.20283380150794983, 0.02269725874066353, -0.12592411041259766, 0.12287882715463638, 0.4375647306442261, 0.40349578857421875, 0.18178699910640717, 0.04096704348921776, -0.17428134381771088, 0.19050876796245575, 0.11966391652822495, 0.028065446764230728, -0.20072796940803528, -0.20023535192012787, 0.3322887718677521, 0.19521799683570862, 0.08209490776062012, 0.13258782029151917, 0.3307000696659088, 0.39309439063072205, -0.22067487239837646, -0.04462011158466339, 0.1269201636314392, -0.7217382788658142, -0.5281842947006226, 0.17523495852947235, -0.12433893233537674, 0.12786124646663666, 0.07703593373298645, 0.34782636165618896, -0.09486367553472519, 0.19670286774635315, 0.10626333951950073, 0.29838085174560547, -0.08002522587776184, 0.13229919970035553, 0.16779549419879913, 0.4140320420265198, 0.09811514616012573, -0.2518462836742401, 0.10625027865171432, -0.01785094104707241, 0.20407602190971375, -0.055260561406612396, 0.1663462519645691, -0.23658205568790436, -0.005216884892433882, -0.09085091948509216, -0.1407177597284317, -0.4034096896648407, -0.4084813594818115, -0.06564196944236755, -0.17080332338809967, 0.2646421492099762, -0.1635756641626358, -0.09704320132732391, 0.03255875036120415, 0.2891852557659149, 0.13977743685245514, 0.07468774914741516, 0.07657883316278458, -0.47378069162368774, -0.0896960198879242, -0.0797644853591919, -0.13297702372074127, 0.2211563140153885, 0.21874190866947174, -0.059992238879203796, -0.43267062306404114, -0.7699643969535828, 0.14134398102760315, -0.049747735261917114, 0.009264598600566387, -0.02130640670657158, -0.05066820606589317, -0.46607574820518494, 0.16761551797389984, 0.018613850697875023, 0.05612143501639366, -0.2046419233083725, -0.07092718780040741, -0.25411880016326904, 0.16412314772605896, 0.13209663331508636, 0.011977680027484894, 0.07093217968940735, 0.05853746458888054, 0.007406183984130621, 0.15636326372623444, 0.060902878642082214, 0.15623816847801208, -0.12969599664211273, -0.055064503103494644, -0.006598322186619043, -0.19618086516857147, -0.4393117427825928, -0.1822177618741989, 0.3604338467121124, -0.206455260515213, -0.3408963978290558, -0.1987123191356659, -0.2136015146970749, 0.1834375560283661, 0.22037477791309357, -0.5550184845924377, 0.3347567319869995, -0.20444083213806152, 0.16529680788516998, -0.3110950291156769, -0.012441313825547695, 0.09151358157396317, -0.050984907895326614, -0.009837874211370945, -0.0335424467921257, 0.11196286976337433, -0.3022395968437195, 0.019331904128193855, 0.6221033334732056, -0.01283930242061615, 0.4115440249443054, 0.26075172424316406, 1.0486243963241577, -0.02290070243179798, 0.13110841810703278, 0.24798765778541565, -0.20067574083805084, -0.0039069028571248055, -0.2587238550186157, 0.04231128469109535, 0.06115957722067833, -0.15474246442317963, 0.17541228234767914, 0.4836207628250122, 0.2739487886428833, -0.16843415796756744, 0.6691889762878418, -0.27701079845428467, 0.042347561568021774, -0.11789596080780029, 0.24334944784641266, -0.35381627082824707, 0.2527450621128082, 0.22532963752746582, -0.13770021498203278, -0.6037970185279846, -0.43506789207458496, 0.07916373014450073, -0.007894213311374187, -0.035280272364616394, 0.10694956034421921, -0.6138988137245178, 0.06492307037115097, -0.7611915469169617, 0.33994582295417786, 0.058317236602306366, 0.24439696967601776, 0.3503575623035431, -0.03739263862371445, 0.0886528491973877, 0.010469691827893257, 0.41962331533432007, -0.036393266171216965, -0.20475628972053528, -0.12323696166276932, -0.0005624104524031281, -0.4640893340110779, -0.13369405269622803, -0.012883124873042107, 0.12188885360956192, 0.3096952736377716, 0.5771068930625916, -0.08246448636054993, -0.2465147227048874, -0.19930128753185272, 0.5381541848182678, -0.15323469042778015, 0.04884900525212288, -0.374146044254303, -0.0671849474310875, -0.32749560475349426, -0.05264061689376831, -0.16334481537342072, 0.27042216062545776, -0.006817074492573738, -0.3205304741859436, -0.31820330023765564, -0.32087844610214233, -0.13784757256507874, -0.005195491947233677, 0.4126259982585907, 0.17112034559249878, -0.0614805594086647, -0.2433638721704483, 0.3658643364906311, 0.04136192798614502, -0.07285778969526291, 0.32688483595848083, -0.04058268666267395, -0.09464266151189804, 0.014399456791579723, 0.25701817870140076, 0.13784736394882202, -0.03081703372299671, 0.4664028286933899, -0.19541694223880768, 0.11280765384435654, -0.014232859015464783, 0.39223527908325195, 0.2835199534893036, 0.1453581601381302, -0.4813142716884613, -0.25784367322921753, 0.28843986988067627, 0.1952427327632904, -0.036128051578998566, 0.3587244153022766, -0.0895753800868988, -0.12821130454540253, 0.47653937339782715, 0.21434248983860016, 1.0645098686218262, -0.11152846366167068, 0.39965546131134033, -0.017052074894309044, -0.01546267420053482, 0.1706446260213852, -0.5571756362915039, 0.05370955914258957, -0.28333863615989685, 0.2938235402107239, 0.012675010599195957, 0.03170410171151161, -0.037430498749017715, 0.3189372420310974, 0.08329063653945923, -0.008817858062684536, 0.014457316137850285, 0.2932937443256378, -0.34221577644348145, 0.42351293563842773, -0.0014369457494467497, -0.07549788057804108, 0.0006073948461562395, -0.009998880326747894, -0.0705031305551529, -0.16270530223846436, -0.1790655106306076, 0.09286103397607803, -0.22791701555252075, -0.31243374943733215, -0.03659464791417122, -0.15969592332839966, -0.09729497879743576, 0.3951896131038666, -0.015033627860248089, -0.3361245393753052, 0.007635877933353186, 0.018849482759833336, 0.012641101144254208, 0.378715842962265, 0.0008671488030813634, 0.15693369507789612, -0.13391846418380737, 0.26947903633117676, 0.16501741111278534, -0.22936299443244934, 0.02452949993312359, 0.0050406684167683125, -0.1588830053806305, -0.11810038238763809, -0.05450505018234253, -0.300982266664505, -0.17614848911762238, 0.20570313930511475, 0.5047761797904968, -0.34520167112350464, 0.03275787830352783, 0.0874028280377388, -0.2508900463581085, -0.11337842047214508, 0.019335001707077026, -0.16555145382881165, 0.0634441003203392, 0.09029298275709152, 0.44226959347724915, -0.3927359879016876, -0.03955112397670746, 0.33264830708503723, 0.3317200839519501, 0.026877136901021004, 0.7461207509040833, -0.2636687755584717, -0.13106292486190796, -0.051704052835702896, 0.29819342494010925, 0.16010184586048126, -0.019589804112911224, -0.10138502717018127, -0.18953464925289154, 0.037771668285131454, -0.020609430968761444, 0.054860226809978485, -0.16414304077625275, 0.02651938609778881, -0.3682689964771271, -0.1794842928647995, -0.5608596801757812, 0.05336935073137283, -0.45163801312446594, 0.2238229662179947, 0.14083951711654663, 0.0199119970202446, -0.2691280245780945, 0.3149073123931885, -0.09879864752292633, 0.07318095862865448, 0.2684803903102875, 0.16893571615219116, -0.5337047576904297, -0.046927694231271744, -0.0677846372127533, 0.19738715887069702, -0.07386080920696259, 0.21522073447704315, 0.09421595185995102, -0.10974033921957016, -0.29694488644599915, 0.19105488061904907, 0.21002618968486786, -0.23781219124794006, -0.09308140724897385, 0.046253785490989685, -0.06685271859169006, -0.42753055691719055, 0.15658868849277496, -0.18131870031356812, 0.10882827639579773, -0.022395597770810127, 0.4402320384979248, -0.1651487946510315, -0.13763903081417084, 0.04454275965690613, 0.17238642275333405, 0.18137383460998535, 0.09751126915216446, 0.18964660167694092, 0.2859798073768616, -0.08793628960847855, -0.5068221688270569, 0.036446064710617065, 0.2951575517654419, 0.03420024365186691, 0.4252803921699524, 0.10275236517190933, -0.007354752626270056, 0.06303613632917404, -0.1609051376581192, 0.15719600021839142, 0.07944264262914658, -0.4598769247531891, 0.2521471381187439, -0.004413757938891649, -0.07563582807779312, -0.08856619149446487, 0.13119912147521973, -0.20737412571907043, -0.27147936820983887, -0.06023211032152176, 0.42273589968681335, 0.2131672203540802, -0.3525822162628174, -0.14773398637771606, 0.312983900308609, -0.22615456581115723, -0.026944603770971298, 0.2111188769340515, 0.10315348207950592, 0.08944422006607056, 0.31926843523979187, -0.07474365830421448, 0.17829786241054535, 0.3176267743110657, 0.3104432225227356, 0.30525416135787964, 0.46383777260780334, 0.04810759052634239, 0.040528226643800735, -0.17799246311187744, -0.20767350494861603, 0.3831958472728729, -0.024064138531684875, 0.13755525648593903, 0.19925172626972198, 0.17872770130634308, 0.5734668970108032, -0.30034828186035156, -0.014182029291987419, 0.3012090027332306, -0.21913760900497437, -0.2593933641910553, -0.1138366088271141, -0.015000218525528908, 0.056711841374635696, 0.03227126970887184, -0.051792774349451065, -0.1727200448513031, -0.11939069628715515, 0.00023967957531567663, -0.07666522264480591, -0.2563026249408722, 0.2634267508983612, 0.23162661492824554, 0.12739841639995575, -0.20748411118984222, 0.010599046014249325, -0.26881393790245056, 0.17092016339302063, -0.12404005229473114, 0.20043501257896423, 0.3524905741214752, 0.1364898830652237, -0.187925785779953, -0.025725381448864937, 0.08137554675340652, 0.11561839282512665, -0.0842892974615097, 0.06697769463062286, 0.2507987320423126, -0.4366207718849182, -0.05287490785121918, -0.1223691999912262, -0.013523376546800137, -0.3929217457771301, 0.2501864433288574, -0.23408567905426025, 0.09145218878984451, 0.13315992057323456, -0.158941388130188, -0.27845028042793274, -0.16426140069961548, 0.13041247427463531, -0.37572363018989563, 0.13077151775360107, 0.4261532723903656, -0.006274658255279064, 0.29644638299942017, -0.37346091866493225, -0.0024554745759814978, -0.4488925039768219, 0.38811442255973816, 0.5730144381523132, -0.22114607691764832, -0.14718002080917358, -0.26379263401031494, -0.02943241223692894, 0.2714194059371948, -0.3679637908935547, 0.02734295465052128, -0.15362006425857544, 0.35865485668182373, -0.13162267208099365, -0.29302555322647095, 0.16904698312282562, -0.09834492951631546, -0.020916402339935303, 0.15743745863437653, -0.10027661919593811, 0.004404472652822733, -0.16873593628406525, 0.2540198564529419, -0.2325388342142105, -0.10184253007173538, 0.21213044226169586, 0.13383299112319946, -0.14434179663658142, -0.12488768994808197, -0.03201448917388916, 0.12016349285840988, 0.06695704907178879, 0.4428333640098572, 0.3170437514781952, 0.23944640159606934, -0.05815181881189346, 0.15450602769851685, 0.0354992114007473, 0.009113865904510021, 0.06970997899770737, 0.3531414866447449, -0.220285564661026, -0.034510791301727295, 0.10500523447990417, 0.007260269485414028, 0.18617112934589386, 0.06119055673480034, 0.06734557449817657, -0.20351168513298035, -0.20584648847579956, 0.04943970590829849, -0.22241538763046265, -0.03055257350206375, -0.21144233644008636, 0.5169644355773926, 0.0888473317027092, 0.16199444234371185, -0.008800951763987541, -0.3011770248413086, 0.15389332175254822, -0.5309006571769714, -0.184634268283844, -0.11542559415102005, -0.020089788362383842, 0.2848859131336212, -0.19326959550380707, -0.3655534088611603, -0.10285880416631699, 0.5226109027862549, 0.07693792879581451, -0.07047512382268906, 0.04712635651230812, 0.12599621713161469, 0.1774272918701172, -0.22412176430225372, 0.42047569155693054, -0.26452890038490295, 0.04592161998152733, 0.02798263356089592, -0.07341652363538742 ]
https://github.com/huggingface/datasets/issues/258
Why is dataset after tokenization far more larger than the orginal one ?
Thanks for your point. 😀, It might be answer. Since this is hard to know, I'll close this issue. But if somebody knows more details, please comment below ~ 😁
I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ?
30
Why is dataset after tokenization far more larger than the orginal one ? I tokenize wiki dataset by `map` and cache the results. ``` def tokenize_tfm(example): example['input_ids'] = hf_fast_tokenizer.convert_tokens_to_ids(hf_fast_tokenizer.tokenize(example['text'])) return example wiki = nlp.load_dataset('wikipedia', '20200501.en', cache_dir=cache_dir)['train'] wiki.map(tokenize_tfm, cache_file_name=cache_dir/"wikipedia/20200501.en/1.0.0/tokenized_wiki.arrow") ``` and when I see their size ``` ls -l --block-size=M 17460M wikipedia-train.arrow 47511M tokenized_wiki.arrow ``` The tokenized one is over 2x size of original one. Is there something I did wrong ? Thanks for your point. 😀, It might be answer. Since this is hard to know, I'll close this issue. But if somebody knows more details, please comment below ~ 😁
[ -0.07269087433815002, -0.1665189117193222, 0.03377341106534004, 0.16052953898906708, -0.013516766019165516, -0.03793731704354286, 0.28756946325302124, 0.3828715980052948, -0.09261270612478256, -0.05337906256318092, -0.1073257103562355, 0.19670651853084564, 0.0828920230269432, -0.16333690285682678, 0.25386589765548706, -0.09170395135879517, 0.3183567225933075, 0.005669736303389072, 0.16419550776481628, -0.24626602232456207, 0.06871762871742249, -0.003468890441581607, -0.1630096286535263, 0.08090649545192719, -0.443872332572937, -0.04094467684626579, -0.14054298400878906, -0.08895140141248703, -0.3230460584163666, -0.48770496249198914, 0.05445411056280136, 0.09045419096946716, 0.44694381952285767, 0.28339770436286926, -0.00012806728773284703, -0.3116829991340637, 0.05288400873541832, 0.014643516391515732, 0.039763130247592926, 0.27555590867996216, 0.19655562937259674, -0.5918033123016357, -0.10922493785619736, -0.23436695337295532, 0.22299449145793915, -0.5260526537895203, -0.22258761525154114, 0.28661033511161804, 0.06343400478363037, -0.12166950106620789, 0.08499417454004288, -0.15386919677257538, -0.024436049163341522, 0.43185287714004517, 0.10891580581665039, 0.0561082661151886, -0.06490445882081985, -0.15242314338684082, -0.1710951328277588, -0.21753743290901184, 0.01825660467147827, 0.18566842377185822, 0.03376298397779465, -0.20182989537715912, 0.3348086178302765, -0.09028458595275879, -0.17664775252342224, -0.022714674472808838, 0.21693454682826996, 0.231210857629776, 0.37569189071655273, -0.065521739423275, 0.03662385419011116, -0.2437409907579422, -0.1951199471950531, -0.06473726034164429, -0.15029889345169067, 0.2063046544790268, 0.3383835554122925, -0.0508698895573616, -0.405969500541687, -0.010919105261564255, 0.11912387609481812, 0.2104617953300476, -0.2516649663448334, 0.5392640233039856, 0.04598630964756012, 0.19125497341156006, -0.3162841796875, -0.1431557983160019, -0.09205692261457443, -0.2071799635887146, -0.13333535194396973, 0.441374272108078, -0.3257778584957123, -0.36503976583480835, 0.042679283767938614, -0.07337545603513718, 0.46256932616233826, -0.20513345301151276, -0.34222176671028137, 0.07487652450799942, -0.04279632121324539, -0.20196284353733063, 0.08504009991884232, 0.49578049778938293, -0.28466758131980896, 0.42259395122528076, -0.06328600645065308, -0.048073384910821915, -0.5810622572898865, -0.14357036352157593, 0.010380994528532028, 0.10315878689289093, 0.15770679712295532, -0.24451768398284912, -0.4083055555820465, -0.13126873970031738, 0.24243269860744476, 0.21824830770492554, -0.5596011877059937, 0.06093723326921463, -0.09112416207790375, 0.3551529049873352, -0.2358727902173996, 0.3478899300098419, -0.3164416253566742, 0.16953693330287933, -0.15480747818946838, 0.05105450376868248, -0.10694904625415802, -0.19148404896259308, 0.07590781897306442, 0.17840443551540375, -0.24290944635868073, 0.19465325772762299, 0.33950620889663696, 0.050041187554597855, -0.04521509259939194, -0.11400361359119415, 0.49134561419487, -0.19749240577220917, 0.33776789903640747, 0.10623116791248322, 0.11371465772390366, 0.2876221835613251, -0.056181032210588455, -0.07677813619375229, -0.15264785289764404, 0.10963835567235947, -0.48032960295677185, -0.16494077444076538, 0.021757720038294792, 0.015740511938929558, -0.012823615223169327, -0.016629258170723915, -0.3845193684101105, 0.31877559423446655, 0.37291595339775085, -0.013545680791139603, 0.17544908821582794, -0.2576174736022949, -0.3746813237667084, -0.18835830688476562, 0.0029014558531343937, -0.13878892362117767, -0.053736645728349686, -0.0170463677495718, 0.3274078965187073, 0.26381534337997437, 0.3902112543582916, 0.6496691107749939, -0.2520270049571991, 0.521461546421051, -0.2812901437282562, 0.4189818203449249, 0.44589513540267944, -0.40952068567276, -0.746617317199707, 0.33054566383361816, 0.23252709209918976, 0.215955451130867, -0.1696111112833023, -0.10101497918367386, 0.45513737201690674, 0.12787771224975586, 0.07427169382572174, 0.30664345622062683, 0.043365124613046646, 0.128825843334198, -0.3877938985824585, -0.1889546513557434, 0.39308905601501465, -0.4821769595146179, 0.23458975553512573, 0.0410098172724247, 0.07403045147657394, 0.45210209488868713, 0.424604207277298, 0.11163482815027237, 0.25167447328567505, 0.2537006735801697, -0.0022563862148672342, 0.0424170047044754, 0.3129783570766449, 0.01774476282298565, 0.21829330921173096, -0.06058545038104057, -0.30317553877830505, -0.0454435795545578, 0.2102121114730835, -0.38455021381378174, -0.16224870085716248, -0.016268204897642136, -0.1313680112361908, -0.3390321731567383, 0.007726440206170082, -0.10167668014764786, 0.15280602872371674, 0.01779736950993538, 0.2814900875091553, 0.060464728623628616, -0.08134780079126358, 0.08353932946920395, 0.17481353878974915, 0.21532173454761505, 0.08705141395330429, 0.20728415250778198, -0.252454549074173, 0.26692500710487366, 0.16364721953868866, -0.0030984897166490555, -0.26743438839912415, 0.038618866354227066, 0.08811993151903152, 0.031992875039577484, 0.20416168868541718, 0.29012858867645264, 0.20438508689403534, -0.01918148808181286, 0.4399234652519226, 0.09065887331962585, 0.019606199115514755, -0.1277063637971878, 0.16469557583332062, 0.39983025193214417, 0.41837701201438904, 0.05560840666294098, 0.06079253554344177, -0.26805955171585083, 0.18886464834213257, 0.02256014011800289, 0.15577402710914612, -0.21369604766368866, -0.13847871124744415, 0.250326931476593, 0.06918448954820633, 0.040448468178510666, 0.08319791406393051, 0.3396417498588562, 0.48410141468048096, -0.13331055641174316, -0.07970426231622696, 0.12168612331151962, -0.6560306549072266, -0.5411953926086426, 0.19862304627895355, -0.06234470382332802, 0.16351500153541565, 0.09019222110509872, 0.31185856461524963, 0.015001324936747551, 0.25287461280822754, 0.1363242119550705, 0.20165374875068665, -0.10878372192382812, 0.063722625374794, 0.20564185082912445, 0.4870425760746002, 0.1158725842833519, -0.24426044523715973, 0.18122942745685577, -0.042748965322971344, 0.3363182544708252, -0.042474016547203064, 0.09072276204824448, -0.1933247447013855, -0.09873218834400177, -0.05185771733522415, -0.03707456588745117, -0.278772234916687, -0.3823391795158386, -0.11474849283695221, -0.061149679124355316, 0.37036463618278503, -0.14812101423740387, -0.05321629345417023, 0.01511144544929266, 0.11421303451061249, 0.17712099850177765, 0.13223615288734436, 0.036770135164260864, -0.4259369969367981, -0.06623724848031998, -0.08458569645881653, -0.061804112046957016, 0.27191534638404846, 0.1413690447807312, -0.05141506716609001, -0.4133569896221161, -0.818475067615509, 0.08474409580230713, -0.048430703580379486, 0.0695960596203804, -0.028559768572449684, -0.04963861033320427, -0.46962085366249084, 0.1774950474500656, -0.011236068792641163, 0.041714318096637726, -0.21677912771701813, -0.13012206554412842, -0.36630013585090637, 0.2011483609676361, 0.1551593393087387, 0.03654772788286209, -0.10277356952428818, 0.05291544646024704, 0.0019790465012192726, 0.08639675378799438, 0.05239121615886688, 0.027868302538990974, -0.24232706427574158, -0.07677476853132248, -0.04370074346661568, -0.12854324281215668, -0.46910935640335083, -0.27265098690986633, 0.25725194811820984, -0.1844528317451477, -0.27432459592819214, -0.11496236175298691, -0.18676693737506866, 0.1754225492477417, 0.10729654133319855, -0.5669485330581665, 0.2361118048429489, -0.1820843517780304, 0.188265860080719, -0.2580097019672394, -0.06546942889690399, 0.10834041237831116, -0.13167507946491241, 0.06685268133878708, -0.026135636493563652, 0.07761979848146439, -0.3353709578514099, 0.0728587657213211, 0.5143268704414368, -0.05410473421216011, 0.4642398953437805, 0.27920204401016235, 0.9787622094154358, 0.028344005346298218, 0.03379778191447258, 0.22154952585697174, -0.24287466704845428, 0.025330476462841034, -0.279673308134079, -0.08838091790676117, 0.21395531296730042, -0.10284356772899628, 0.18997973203659058, 0.49137288331985474, 0.17697773873806, -0.1503152698278427, 0.5999456644058228, -0.4078013300895691, 0.019406242296099663, -0.09211466461420059, 0.12832856178283691, -0.24464459717273712, 0.27501145005226135, 0.21088290214538574, -0.20892156660556793, -0.5871836543083191, -0.5047996640205383, 0.006857306696474552, 0.19208680093288422, -0.05355928838253021, 0.1837979555130005, -0.7017821669578552, -0.04726307466626167, -0.6418160200119019, 0.24497908353805542, 0.12167905271053314, 0.20358148217201233, 0.3331299126148224, 0.11061330139636993, 0.09692886471748352, 0.002803924959152937, 0.5349241495132446, -0.08996367454528809, -0.12341850996017456, -0.13035719096660614, -0.08319897949695587, -0.2667238414287567, -0.20348842442035675, 0.05026674270629883, 0.20798911154270172, 0.4221155047416687, 0.6396844983100891, -0.0181747954338789, -0.24088992178440094, -0.1324922889471054, 0.5823594927787781, -0.1514609307050705, -0.036633074283599854, -0.3615648150444031, 0.009744323790073395, -0.3141709566116333, 0.02315225824713707, -0.22939498722553253, 0.2083015888929367, -0.0395011343061924, -0.3119892477989197, -0.27888110280036926, -0.22690296173095703, -0.13326728343963623, 0.09342657774686813, 0.35691213607788086, 0.2507149875164032, 0.050375960767269135, -0.2593682110309601, 0.2653886377811432, 0.1222786158323288, -0.0939074382185936, 0.18295016884803772, 0.04472387954592705, -0.1494617760181427, 0.110951267182827, 0.29139450192451477, 0.11253051459789276, -0.021856969222426414, 0.5225078463554382, -0.27033084630966187, 0.13540469110012054, -0.040176697075366974, 0.43628403544425964, 0.2950797975063324, 0.18748947978019714, -0.489730566740036, -0.27305468916893005, 0.21503566205501556, 0.15906018018722534, -0.052560050040483475, 0.23522214591503143, -0.0011434786720201373, -0.17714491486549377, 0.4197636544704437, 0.0752854123711586, 1.0324592590332031, -0.08168153464794159, 0.34041160345077515, -0.006302282679826021, 0.04150635004043579, 0.2976211905479431, -0.5319029688835144, 0.04931221157312393, -0.2820635139942169, 0.2580898106098175, 0.026202764362096786, 0.02405611239373684, -0.1306203454732895, 0.25230419635772705, 0.05437188595533371, 0.0716090053319931, 0.04178531467914581, 0.34702959656715393, -0.37436312437057495, 0.5021026134490967, 0.14549024403095245, -0.03482166305184364, -0.007635082583874464, -0.008857089094817638, -0.14931344985961914, -0.17165161669254303, -0.21959587931632996, 0.12033151090145111, -0.1508478969335556, -0.25449442863464355, -0.01157290767878294, -0.21797078847885132, -0.06008303910493851, 0.42556577920913696, -0.016385400667786598, -0.2838241755962372, 0.026875438168644905, 0.06573746353387833, 0.07740331441164017, 0.4879697859287262, -0.00898908544331789, 0.1861477941274643, -0.049904532730579376, 0.2513027489185333, 0.2068411260843277, -0.16041798889636993, 0.058146629482507706, -0.06260702759027481, -0.24373838305473328, -0.1374605894088745, -0.02594839595258236, -0.27792227268218994, -0.2813146114349365, 0.18173088133335114, 0.4592377543449402, -0.3054686486721039, -0.09201044589281082, 0.10782891511917114, -0.17233282327651978, -0.12593837082386017, 0.03883940726518631, -0.1479884833097458, 0.04211026057600975, 0.2073056399822235, 0.33866992592811584, -0.4318106770515442, -0.06121492385864258, 0.3661259114742279, 0.39791539311408997, 0.06290890276432037, 0.7458975315093994, -0.27872803807258606, -0.12605589628219604, -0.05456152185797691, 0.270877480506897, 0.07438959926366806, 0.11989640444517136, -0.1902816891670227, -0.09994180500507355, 0.16312089562416077, 0.0208525862544775, 0.06997186690568924, -0.19126901030540466, -0.03216938301920891, -0.2584814727306366, -0.2195189893245697, -0.5605754852294922, 0.0462476946413517, -0.45871031284332275, 0.20773307979106903, 0.23988725244998932, 0.2475411295890808, -0.297512024641037, 0.3902417719364166, -0.1294226497411728, 0.1252296417951584, 0.09799119085073471, 0.1446114033460617, -0.3916131258010864, -0.005566050764173269, -0.11231007426977158, 0.09538044035434723, -0.08358456939458847, 0.16556212306022644, 0.067786805331707, -0.1269426792860031, -0.32808226346969604, 0.19748972356319427, 0.28746986389160156, -0.17866551876068115, -0.04337000101804733, 0.04777912423014641, -0.14998318254947662, -0.30287811160087585, 0.2485174685716629, -0.06079625338315964, 0.15759332478046417, 0.07634717226028442, 0.3379112184047699, -0.21882104873657227, -0.10006897896528244, -0.0007011471316218376, 0.2162153124809265, 0.06462883949279785, 0.08485722541809082, 0.14305278658866882, 0.267067015171051, -0.08985985815525055, -0.4806739091873169, 0.008267517201602459, 0.25035569071769714, 0.08062981069087982, 0.3912356495857239, 0.15916034579277039, 0.04107800871133804, 0.06036795303225517, -0.2062232792377472, 0.11703314632177353, 0.05046672001481056, -0.3848749101161957, 0.37465181946754456, -0.006027102004736662, -0.05515582114458084, -0.04403679817914963, 0.27438411116600037, -0.26539599895477295, -0.18598154187202454, -0.05955866351723671, 0.4661213755607605, 0.29510024189949036, -0.40410369634628296, -0.09198569506406784, 0.36614418029785156, -0.22416403889656067, -0.0641893669962883, 0.09712260961532593, -0.009846237488090992, 0.09346684068441391, 0.2680349051952362, 0.054874155670404434, 0.1133168414235115, 0.36950671672821045, 0.39238885045051575, 0.28834718465805054, 0.26033973693847656, 0.07779424637556076, 0.10326948761940002, -0.25539153814315796, -0.26535704731941223, 0.31033816933631897, -0.15311464667320251, 0.08997997641563416, 0.052887480705976486, 0.10004247725009918, 0.5368422269821167, -0.35416707396507263, 0.048019323498010635, 0.4134218990802765, -0.2640722692012787, -0.23323184251785278, -0.06277617812156677, -0.023408424109220505, 0.06824593991041183, 0.0958753451704979, -0.07185505330562592, -0.1540004312992096, -0.23464179039001465, -0.03701843321323395, -0.18332307040691376, -0.19524580240249634, 0.1980549544095993, 0.23191283643245697, 0.19820287823677063, -0.23593826591968536, 0.016950925812125206, -0.31756097078323364, 0.12712940573692322, -0.22009384632110596, 0.20206786692142487, 0.3063048720359802, 0.22416752576828003, -0.1465412825345993, -0.07885023951530457, 0.11303455382585526, 0.10727527737617493, -0.05006261169910431, 0.07205411046743393, 0.23178385198116302, -0.4880770444869995, -0.04156487435102463, -0.11642672121524811, -0.05177734047174454, -0.30744412541389465, 0.30585339665412903, -0.19777850806713104, 0.048135124146938324, 0.12422097474336624, -0.10567976534366608, -0.230058953166008, -0.16488389670848846, 0.2180308997631073, -0.439942866563797, 0.13302184641361237, 0.37669140100479126, 0.061716508120298386, 0.33580321073532104, -0.4036959111690521, 0.0198817141354084, -0.37013453245162964, 0.3990873098373413, 0.5262007117271423, -0.12096662819385529, -0.2154574990272522, -0.26463842391967773, -0.11088072508573532, 0.290273517370224, -0.35859715938568115, 0.050590429455041885, -0.1812589466571808, 0.2633676528930664, -0.1918504536151886, -0.36117374897003174, 0.02524782344698906, -0.0790434181690216, -0.00802684761583805, 0.13928164541721344, -0.042398177087306976, -0.03420199826359749, -0.41208335757255554, 0.10875257849693298, -0.19114792346954346, -0.07484667003154755, 0.20830242335796356, 0.06542093306779861, -0.13040518760681152, -0.11320450901985168, 0.0713811069726944, 0.019046494737267494, 0.0372065007686615, 0.39660772681236267, 0.2608484625816345, 0.36345452070236206, -0.0893922671675682, 0.24999429285526276, 0.11791583895683289, -0.012681120075285435, -0.06520452350378036, 0.2503352165222168, -0.2663959860801697, 0.0027406346052885056, 0.15082336962223053, -0.02779831923544407, 0.21092839539051056, 0.014536171220242977, 0.10215045511722565, -0.23042425513267517, -0.12753033638000488, 0.06396224349737167, -0.1374925673007965, -0.03613674268126488, -0.12387556582689285, 0.5886524319648743, 0.04872765764594078, 0.1767510175704956, -0.025978444144129753, -0.21673190593719482, 0.19249838590621948, -0.5318946242332458, -0.11945125460624695, -0.26145896315574646, -0.002251262543722987, 0.2452491670846939, -0.26965951919555664, -0.3578724265098572, -0.07671189308166504, 0.5602197051048279, 0.07363278418779373, -0.02472296729683876, 0.18556897342205048, 0.17730341851711273, 0.18055181205272675, -0.1497805118560791, 0.3128381669521332, -0.2767021954059601, 0.03375043720006943, 0.06838677823543549, -0.023038245737552643 ]
https://github.com/huggingface/datasets/issues/257
Tokenizer pickling issue fix not landed in `nlp` yet?
Yes, the new release of tokenizers solves this and should be out soon. In the meantime, you can install it with `pip install tokenizers==0.8.0-dev2`
Unless I recreate an arrow_dataset from my loaded nlp dataset myself (which I think does not use the cache by default), I get the following error when applying the map function: ``` dataset = nlp.load_dataset('cos_e') tokenizer = GPT2TokenizerFast.from_pretrained('gpt2', cache_dir=cache_dir) for split in dataset.keys(): dataset[split].map(lambda x: some_function(x, tokenizer)) ``` ``` 06/09/2020 10:09:19 - INFO - nlp.builder - Constructing Dataset for split train[:10], from /home/sarahw/.cache/huggingface/datasets/cos_e/default/0.0.1 Traceback (most recent call last): File "generation/input_to_label_and_rationale.py", line 390, in <module> main() File "generation/input_to_label_and_rationale.py", line 263, in main dataset[split] = dataset[split].map(lambda x: input_to_explanation_plus_label(x, tokenizer, max_length, datasource=data_args.task_name, wt5=(model_class=='t5'), expl_only=model_args.rationale_only), batched=False) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 522, in map cache_file_name = self._get_cache_file_path(function, cache_kwargs) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 381, in _get_cache_file_path function_bytes = dumps(function) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 257, in dumps dump(obj, file) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 250, in dump Pickler(file).dump(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 445, in dump StockPickler.dump(self, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 485, in dump self.save(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1410, in save_function pickler.save_reduce(_create_function, (obj.__code__, File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1147, in save_cell pickler.save_reduce(_create_cell, (f,), obj=obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 884, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 576, in save rv = reduce(self.proto) TypeError: cannot pickle 'Tokenizer' object ``` Fix seems to be in the tokenizers [`0.8.0.dev1 pre-release`](https://github.com/huggingface/tokenizers/issues/87), which I can't install with any package managers.
24
Tokenizer pickling issue fix not landed in `nlp` yet? Unless I recreate an arrow_dataset from my loaded nlp dataset myself (which I think does not use the cache by default), I get the following error when applying the map function: ``` dataset = nlp.load_dataset('cos_e') tokenizer = GPT2TokenizerFast.from_pretrained('gpt2', cache_dir=cache_dir) for split in dataset.keys(): dataset[split].map(lambda x: some_function(x, tokenizer)) ``` ``` 06/09/2020 10:09:19 - INFO - nlp.builder - Constructing Dataset for split train[:10], from /home/sarahw/.cache/huggingface/datasets/cos_e/default/0.0.1 Traceback (most recent call last): File "generation/input_to_label_and_rationale.py", line 390, in <module> main() File "generation/input_to_label_and_rationale.py", line 263, in main dataset[split] = dataset[split].map(lambda x: input_to_explanation_plus_label(x, tokenizer, max_length, datasource=data_args.task_name, wt5=(model_class=='t5'), expl_only=model_args.rationale_only), batched=False) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 522, in map cache_file_name = self._get_cache_file_path(function, cache_kwargs) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 381, in _get_cache_file_path function_bytes = dumps(function) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 257, in dumps dump(obj, file) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 250, in dump Pickler(file).dump(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 445, in dump StockPickler.dump(self, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 485, in dump self.save(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1410, in save_function pickler.save_reduce(_create_function, (obj.__code__, File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1147, in save_cell pickler.save_reduce(_create_cell, (f,), obj=obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 884, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 576, in save rv = reduce(self.proto) TypeError: cannot pickle 'Tokenizer' object ``` Fix seems to be in the tokenizers [`0.8.0.dev1 pre-release`](https://github.com/huggingface/tokenizers/issues/87), which I can't install with any package managers. Yes, the new release of tokenizers solves this and should be out soon. In the meantime, you can install it with `pip install tokenizers==0.8.0-dev2`
[ 0.009912597946822643, 0.17618773877620697, 0.0797635167837143, 0.033218685537576675, -0.0187637060880661, -0.0983520969748497, -0.04397661238908768, 0.3858543634414673, 0.23286207020282745, -0.17839542031288147, 0.15334515273571014, 0.78156977891922, -0.18905828893184662, -0.27199724316596985, 0.056634314358234406, -0.15590590238571167, 0.006841479334980249, 0.11283113062381744, 0.3384638726711273, 0.01790737546980381, -0.22156767547130585, 0.36634325981140137, -0.20355471968650818, 0.29775577783584595, -0.49662789702415466, -0.2166755050420761, 0.20677585899829865, -0.04722127690911293, -0.12316970527172089, -0.5728647708892822, 0.1870385706424713, -0.07400461286306381, -0.13193891942501068, 0.06161833554506302, -0.00011744163202820346, -0.14955832064151764, 0.39250484108924866, 0.02706455998122692, -0.14823602139949799, -0.23680879175662994, 0.1705569326877594, -0.09398560225963593, 0.1326128989458084, -0.02326970174908638, -0.02954133413732052, -0.07699161022901535, 0.10836697369813919, -0.10980632901191711, 0.324956476688385, -0.03442303091287613, 0.19127681851387024, 0.30618777871131897, 0.1382569521665573, 0.010819041170179844, 0.09691624343395233, -0.15521831810474396, -0.16840961575508118, -0.0005972807412035763, 0.09011940658092499, -0.2653213441371918, -0.2927829921245575, 0.47386735677719116, 0.008657651953399181, -0.05826234444975853, 0.06942389905452728, 0.021325577050447464, -0.17859342694282532, -0.07572020590305328, 0.09370644390583038, -0.02710699290037155, 0.09554597735404968, -0.1859518140554428, -0.04457560554146767, -0.44171828031539917, -0.12900522351264954, -0.45500636100769043, 0.1827390193939209, -0.14791937172412872, -0.2384154498577118, -0.044094908982515335, -0.009040366858243942, -0.388457715511322, 0.13887128233909607, 0.3053477108478546, 0.12892761826515198, 0.6000412702560425, -0.05727898329496384, 0.27803725004196167, 0.281980961561203, -0.0880405381321907, -0.2382824569940567, 0.15676997601985931, -0.18787752091884613, 0.435652494430542, -0.34436455368995667, -0.1178102046251297, 0.22057001292705536, 0.05353754386305809, -0.06403117626905441, 0.3975791931152344, -0.0016287657199427485, 0.24292318522930145, -0.12060771882534027, 0.16440464556217194, 0.047717638313770294, 0.459106981754303, 0.3047444522380829, 0.5499497652053833, 0.01052627619355917, -0.39809152483940125, -0.037584345787763596, -0.050383858382701874, -0.07537048310041428, -0.26227718591690063, 0.031822919845581055, 0.050952743738889694, -0.11718125641345978, -0.10476810485124588, -0.13309255242347717, 0.060889832675457, -0.2686992883682251, 0.0647372379899025, 0.22085978090763092, 0.1958482265472412, 0.13529500365257263, 0.15045127272605896, -0.13207721710205078, 0.17244142293930054, -0.1877630650997162, -0.1661205291748047, -0.2481422871351242, 0.07978565990924835, -0.31500786542892456, 0.18196241557598114, 0.09730587899684906, 0.27711865305900574, 0.4803224802017212, -0.16881366074085236, -0.05875221639871597, 0.06284811347723007, 0.12489323318004608, -0.009232071228325367, 0.23225170373916626, 0.07257470488548279, -0.1473616659641266, 0.3290611505508423, 0.3126963973045349, -0.14133340120315552, -0.2816562056541443, -0.05163018777966499, -0.273431658744812, -0.36264902353286743, -0.11526133865118027, 0.12547586858272552, -0.062264878302812576, -0.1384950876235962, -0.27198725938796997, 0.24202901124954224, 0.45948362350463867, -0.1889905035495758, 0.11018400639295578, -0.19901160895824432, -0.3264867067337036, -0.2962646782398224, 0.030712278559803963, 0.28808802366256714, 0.04842694476246834, -0.379030704498291, -0.19732090830802917, 0.15270304679870605, 0.4366890788078308, 0.5128079652786255, -0.32139718532562256, 0.15187270939350128, -0.26180073618888855, 0.8142938613891602, 0.5736557245254517, -0.2508249580860138, -0.45756974816322327, 0.035864438861608505, -0.18986953794956207, 0.08280789107084274, -0.2472430020570755, -0.0829213410615921, -0.01194287370890379, -0.14294588565826416, 0.17918740212917328, 0.2489403635263443, -0.008139642886817455, 0.00763428071513772, -0.38457533717155457, -0.04298607259988785, 0.3610704839229584, -0.04021080583333969, 0.13590100407600403, -0.11010298877954483, -0.22312113642692566, 0.013851123861968517, 0.0019649630412459373, -0.015099378302693367, 0.3447349965572357, -0.07404867559671402, 0.11379548907279968, -0.17386402189731598, 0.07570669800043106, 0.041116125881671906, -0.3737538456916809, 0.15236957371234894, -0.2930879592895508, 0.15114043653011322, -0.20104235410690308, 0.021357199177145958, -0.1287764310836792, 0.044496823102235794, -0.33988890051841736, -0.23302723467350006, 0.12846790254116058, 0.004651177674531937, 0.19840696454048157, 0.034428756684064865, -0.014597970061004162, -0.06104568392038345, 0.06276127696037292, 0.15491081774234772, -0.1303325742483139, -0.05654406547546387, -0.04677646607160568, -0.2752353549003601, -0.2991560995578766, 0.16003233194351196, 0.23997345566749573, -0.025426462292671204, -0.26036006212234497, 0.29413336515426636, 0.007031404413282871, 0.04866514727473259, -0.12077509611845016, -0.060572054237127304, 0.09702932834625244, -0.13870969414710999, -0.11031525582075119, 0.12425423413515091, -0.01986929401755333, -0.2519938349723816, 0.31832635402679443, 0.35428252816200256, 0.18840934336185455, 0.06003769859671593, -0.28683000802993774, 0.29860034584999084, 0.06109829246997833, -0.017383567988872528, 0.13141319155693054, -0.27149587869644165, 0.0666734054684639, -0.12505857646465302, 0.2938556373119354, -0.12012078613042831, -0.0217079259455204, 0.3552860617637634, 0.3217473328113556, 0.3191151022911072, 0.060160547494888306, 0.11061698943376541, -0.20485007762908936, -0.27460724115371704, 0.0948236882686615, 0.12427492439746857, 0.156790629029274, 0.18599878251552582, 0.042367905378341675, -0.05870455875992775, -0.10603741556406021, -0.0883651003241539, 0.13407090306282043, 0.012188563123345375, 0.06867881119251251, 0.159634530544281, 0.06015845015645027, 0.11714286357164383, -0.3626595437526703, 0.009321345947682858, 0.10926158726215363, 0.3128889203071594, -0.11231624335050583, -0.06857424974441528, -0.3171986937522888, -0.09657807648181915, 0.1861845999956131, -0.3486100435256958, -0.24346692860126495, -0.45386794209480286, 0.13185998797416687, 0.1396823227405548, -0.12046346068382263, 0.4497217535972595, -0.18037275969982147, 0.24646002054214478, 0.029110509902238846, -0.09016598016023636, -0.31709611415863037, -0.5001770853996277, -0.3929176926612854, -0.0020681757014244795, 0.10869297385215759, -0.06565173715353012, 0.19884319603443146, 0.17002229392528534, 0.03880377113819122, -0.07996818423271179, -0.393821656703949, 0.22453603148460388, -0.12875816226005554, 0.04867003485560417, 0.24079856276512146, -0.20670121908187866, -0.4435533583164215, -0.3115966022014618, 0.17952483892440796, -0.34777742624282837, -0.365557461977005, -0.12697593867778778, 0.044309742748737335, -0.11614901572465897, -0.15670283138751984, -0.04878833889961243, -0.1834053099155426, -0.28318995237350464, 0.27697286009788513, 0.024691367521882057, 0.18116390705108643, 0.4258755147457123, -0.34760627150535583, 0.05340435355901718, -0.3079635500907898, -0.12469952553510666, -0.5135576725006104, 0.09018106758594513, 0.31060802936553955, -0.3200933635234833, -0.1387341469526291, -0.17292651534080505, -0.15813888609409332, 0.3402467668056488, 0.0410684198141098, -0.19394457340240479, 0.11227346956729889, -0.08586576581001282, 0.1610162854194641, -0.10779808461666107, -0.06236960366368294, 0.4786888360977173, 0.09708622843027115, -0.003204066539183259, -0.18296058475971222, -0.1646912544965744, 0.411480188369751, -0.0680687427520752, 0.3304801881313324, 0.08736681938171387, 0.1052735447883606, 0.29310742020606995, 0.818351149559021, 0.20562049746513367, -0.10437144339084625, 0.48813968896865845, 0.23366084694862366, 0.0024520433507859707, -0.2040906548500061, -0.24899381399154663, 0.10887043178081512, -0.021735062822699547, 0.3350537419319153, 0.05009240657091141, 0.00859969761222601, -0.41724926233291626, 0.12043783068656921, 0.15183080732822418, -0.15421158075332642, -0.28654614090919495, 0.18523381650447845, -0.38361185789108276, 0.13475589454174042, 0.17770493030548096, 0.04425966739654541, -0.5306252837181091, -0.13457843661308289, 0.11720054596662521, -0.2568659484386444, 0.39326196908950806, 0.08267401903867722, -0.5393274426460266, 0.05163102224469185, -0.7337316274642944, 0.2864341139793396, 0.2413744330406189, 0.39541134238243103, -0.19885291159152985, -0.1736210733652115, 0.041853565722703934, 0.07487153261899948, 0.34522005915641785, -0.15505030751228333, -0.05528087541460991, 0.1675938069820404, 0.06943470239639282, -0.13529342412948608, 0.10230768471956253, 0.27725449204444885, 0.5168846249580383, 0.4541480243206024, 0.3920671045780182, -0.38812050223350525, -0.2562207579612732, -0.16759449243545532, -0.17444618046283722, -0.01865646056830883, 0.0365908145904541, 0.02932341769337654, 0.11371391266584396, -0.1721295416355133, 0.15072384476661682, 0.2761493921279907, 0.3388305604457855, 0.39486613869667053, 0.1762160211801529, -0.11653194576501846, -0.12748360633850098, -0.18791866302490234, 0.13666999340057373, 0.36158329248428345, 0.03266625851392746, 0.047416795045137405, 0.21893082559108734, 0.11869242042303085, -0.2655068039894104, 0.16447027027606964, 0.25094228982925415, -0.11180434376001358, 0.1611202508211136, 0.2835700511932373, 0.12172841280698776, 0.2762949466705322, 0.035271868109703064, 0.4669426679611206, -0.4396470785140991, 0.20554742217063904, 0.11181272566318512, 0.40232473611831665, 0.06568975746631622, -0.05350799113512039, -0.2024741917848587, -0.08513196557760239, 0.32677263021469116, 0.12510505318641663, -0.2178555577993393, 0.5619809627532959, -0.030539661645889282, -0.34341850876808167, 0.454791396856308, 0.10107158869504929, 0.8719288110733032, 0.2725569009780884, 0.2011609524488449, 0.23683440685272217, 0.05636996775865555, 0.6379817724227905, 0.03707391768693924, 0.14599940180778503, -0.3191587030887604, 0.3665103614330292, 0.03573960065841675, -0.03795957565307617, -0.12783488631248474, 0.09608088433742523, -0.04991170018911362, 0.20488812029361725, 0.23945628106594086, 0.20106443762779236, 0.248294398188591, 0.11101672798395157, -0.0012671025469899178, -0.35419049859046936, 0.18311209976673126, 0.08416624367237091, -0.37972894310951233, 0.3635554313659668, 0.043265897780656815, -0.14761506021022797, -0.02832113951444626, -0.3495352566242218, -0.26875656843185425, 0.11712496727705002, -0.4619830250740051, 0.39097175002098083, 0.4313516318798065, -0.20795002579689026, 0.17296074330806732, -0.14052067697048187, 0.17857173085212708, -0.06800052523612976, -0.12570010125637054, 0.3717615008354187, 0.2818741798400879, -0.0578298419713974, 0.03172069787979126, -0.1306055784225464, 0.2797630727291107, 0.03044203855097294, 0.0019762630108743906, -0.10162166506052017, -0.14831064641475677, -0.474752813577652, -0.4060356914997101, 0.02603604830801487, 0.17964957654476166, 0.11155859380960464, -0.21012841165065765, 0.1339704394340515, -0.01886804774403572, -0.2450491040945053, 0.08942170441150665, 0.10318667441606522, -0.17431655526161194, -0.031314145773649216, 0.10778360813856125, -0.13057252764701843, 0.0892200842499733, 0.2922823429107666, -0.2033209204673767, -0.1827050894498825, 0.55708247423172, -0.1918235421180725, -0.18153569102287292, -0.15928974747657776, -0.17469729483127594, 0.23148298263549805, -0.4645782709121704, 0.10097432881593704, -0.08941296488046646, -0.12167607992887497, 0.04108324646949768, 0.3308238685131073, 0.18773052096366882, 0.17358814179897308, 0.07088250666856766, -0.2569062411785126, -0.2817654311656952, 0.16321969032287598, -0.5082820653915405, 0.0636172816157341, 0.00040712254121899605, 0.3584067225456238, -0.288722425699234, 0.3904939889907837, -0.26252710819244385, 0.09431258589029312, -0.09145487844944, 0.09051254391670227, -0.056493472307920456, -0.33983224630355835, -0.060088008642196655, 0.008368170820176601, -0.006850607227534056, 0.4153737425804138, -0.2501581609249115, -0.16479942202568054, -0.23396314680576324, 0.12270443886518478, 0.3353528678417206, -0.3256455659866333, -0.04769616574048996, 0.24043728411197662, 0.07123216241598129, -0.14163540303707123, -0.05117877945303917, -0.034413598477840424, -0.0987120047211647, 0.10778339952230453, 0.09028047323226929, 0.04849905148148537, 0.24480745196342468, 0.1720360964536667, 0.000004376476681500208, 0.01160882506519556, 0.10337337106466293, 0.3003526031970978, -0.0566958487033844, 0.04998265206813812, 0.009672749787569046, 0.054955609142780304, -0.0547025166451931, -0.1061147078871727, 0.10379890352487564, -0.42907747626304626, -0.27676719427108765, -0.1523226797580719, 0.05145380645990372, 0.084222212433815, -0.009016575291752815, -0.40862151980400085, 0.556329071521759, 0.1777573525905609, -0.16446250677108765, -0.07306424528360367, 0.41876503825187683, 0.2304312288761139, 0.058247584849596024, 0.06152091175317764, 0.2833518087863922, -0.09697189927101135, 0.08293405175209045, 0.021381543949246407, 0.4993334710597992, -0.40744319558143616, 0.1961524337530136, -0.007524380460381508, -0.05386406555771828, 0.038979124277830124, 0.5023401379585266, 0.10222170501947403, 0.22017647325992584, 0.03153674304485321, -0.06836185604333878, 0.3054451048374176, 0.09963274002075195, 0.2393583506345749, -0.10120394825935364, -0.3959549367427826, -0.33709046244621277, 0.3917883038520813, -0.04883517697453499, 0.22348861396312714, 0.02238389290869236, 0.5310402512550354, -0.02210862562060356, -0.4205748438835144, 0.14573730528354645, 0.534075140953064, -0.3441426157951355, -0.34283414483070374, -0.47358939051628113, 0.007298361975699663, -0.3503250777721405, 0.023518657311797142, -0.02653784118592739, -0.04130303114652634, 0.007149413228034973, -0.07907358556985855, -0.1581781953573227, -0.3293401598930359, -0.2359713464975357, 0.05745381861925125, 0.29125839471817017, -0.24715036153793335, 0.4018810987472534, -0.46888962388038635, -0.21708129346370697, -0.26544636487960815, 0.19908149540424347, 0.29483386874198914, 0.24473661184310913, -0.4160877764225006, -0.22379709780216217, 0.01196381077170372, 0.12716037034988403, -0.12253841012716293, 0.31431496143341064, 0.2412484884262085, -0.38681405782699585, 0.14211145043373108, -0.040109045803546906, -0.11037406325340271, 0.03106074407696724, 0.13897007703781128, 0.2229575663805008, 0.32794272899627686, 0.16591991484165192, -0.1513466089963913, -0.07004303485155106, -0.051429633051157, 0.07747472077608109, -0.22369302809238434, 0.1334914267063141, 0.022824907675385475, 0.04229922965168953, 0.179393008351326, -0.32483187317848206, 0.08634987473487854, 0.10883825272321701, 0.4186904728412628, 0.3605180084705353, -0.26783066987991333, -0.4015859067440033, -0.4270048141479492, -0.3972657024860382, 0.19654057919979095, -0.05414578318595886, -0.047372423112392426, -0.040591705590486526, 0.05861775204539299, 0.0444418303668499, -0.01999945193529129, -0.1949561983346939, 0.4008176922798157, 0.13667960464954376, 0.1745637059211731, -0.37760692834854126, 0.4529930651187897, 0.09525100141763687, -0.07812066376209259, 0.23466187715530396, -0.30719321966171265, 0.01484607346355915, 0.10009308904409409, 0.05666586756706238, -0.1513725072145462, -0.12513817846775055, -0.04074042662978172, 0.20701265335083008, 0.2774707078933716, 0.33225366473197937, 0.20221997797489166, 0.06408817321062088, 0.1838996410369873, -0.38967061042785645, -0.3934144377708435, -0.24132771790027618, -0.10816431045532227, -0.18652424216270447, 0.43140313029289246, -0.029627440497279167, 0.23325973749160767, -0.41990214586257935, 0.012596466578543186, -0.029273631051182747, 0.07565577328205109, -0.17471399903297424, 0.3251664638519287, -0.28448691964149475, 0.2631874680519104, -0.05177677050232887, 0.3642561435699463, -0.015289964154362679, 0.43932002782821655, -0.4197937548160553, -0.4348355829715729, 0.5731081366539001, -0.7418988943099976, -0.22339516878128052, 0.23296432197093964, 0.0076881637796759605, 0.5054782629013062, -0.36830106377601624, -0.19334428012371063, -0.25314390659332275, 0.2136693298816681, -0.0410078689455986, -0.24648979306221008, 0.050612177699804306, -0.04519359767436981, -0.09691603481769562, -0.04278642684221268, 0.629905641078949, 0.1238592267036438, -0.13194991648197174, 0.1468423455953598, -0.1718582808971405 ]
https://github.com/huggingface/datasets/issues/257
Tokenizer pickling issue fix not landed in `nlp` yet?
If others run into this issue, a quick fix is to use python 3.6 instead of 3.7+. Serialization differences between the 3rd party `dataclasses` package for 3.6 and the built in `dataclasses` in 3.7+ cause the issue. Probably a dumb fix, but it works for me.
Unless I recreate an arrow_dataset from my loaded nlp dataset myself (which I think does not use the cache by default), I get the following error when applying the map function: ``` dataset = nlp.load_dataset('cos_e') tokenizer = GPT2TokenizerFast.from_pretrained('gpt2', cache_dir=cache_dir) for split in dataset.keys(): dataset[split].map(lambda x: some_function(x, tokenizer)) ``` ``` 06/09/2020 10:09:19 - INFO - nlp.builder - Constructing Dataset for split train[:10], from /home/sarahw/.cache/huggingface/datasets/cos_e/default/0.0.1 Traceback (most recent call last): File "generation/input_to_label_and_rationale.py", line 390, in <module> main() File "generation/input_to_label_and_rationale.py", line 263, in main dataset[split] = dataset[split].map(lambda x: input_to_explanation_plus_label(x, tokenizer, max_length, datasource=data_args.task_name, wt5=(model_class=='t5'), expl_only=model_args.rationale_only), batched=False) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 522, in map cache_file_name = self._get_cache_file_path(function, cache_kwargs) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 381, in _get_cache_file_path function_bytes = dumps(function) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 257, in dumps dump(obj, file) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 250, in dump Pickler(file).dump(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 445, in dump StockPickler.dump(self, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 485, in dump self.save(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1410, in save_function pickler.save_reduce(_create_function, (obj.__code__, File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1147, in save_cell pickler.save_reduce(_create_cell, (f,), obj=obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 884, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 576, in save rv = reduce(self.proto) TypeError: cannot pickle 'Tokenizer' object ``` Fix seems to be in the tokenizers [`0.8.0.dev1 pre-release`](https://github.com/huggingface/tokenizers/issues/87), which I can't install with any package managers.
46
Tokenizer pickling issue fix not landed in `nlp` yet? Unless I recreate an arrow_dataset from my loaded nlp dataset myself (which I think does not use the cache by default), I get the following error when applying the map function: ``` dataset = nlp.load_dataset('cos_e') tokenizer = GPT2TokenizerFast.from_pretrained('gpt2', cache_dir=cache_dir) for split in dataset.keys(): dataset[split].map(lambda x: some_function(x, tokenizer)) ``` ``` 06/09/2020 10:09:19 - INFO - nlp.builder - Constructing Dataset for split train[:10], from /home/sarahw/.cache/huggingface/datasets/cos_e/default/0.0.1 Traceback (most recent call last): File "generation/input_to_label_and_rationale.py", line 390, in <module> main() File "generation/input_to_label_and_rationale.py", line 263, in main dataset[split] = dataset[split].map(lambda x: input_to_explanation_plus_label(x, tokenizer, max_length, datasource=data_args.task_name, wt5=(model_class=='t5'), expl_only=model_args.rationale_only), batched=False) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 522, in map cache_file_name = self._get_cache_file_path(function, cache_kwargs) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/arrow_dataset.py", line 381, in _get_cache_file_path function_bytes = dumps(function) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 257, in dumps dump(obj, file) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/nlp/utils/py_utils.py", line 250, in dump Pickler(file).dump(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 445, in dump StockPickler.dump(self, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 485, in dump self.save(obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1410, in save_function pickler.save_reduce(_create_function, (obj.__code__, File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 899, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 1147, in save_cell pickler.save_reduce(_create_cell, (f,), obj=obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 690, in save_reduce save(args) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 884, in save_tuple save(element) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 601, in save self.save_reduce(obj=obj, *rv) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 715, in save_reduce save(state) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 558, in save f(self, obj) # Call unbound method with explicit self File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/site-packages/dill/_dill.py", line 912, in save_module_dict StockPickler.save_dict(pickler, obj) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 969, in save_dict self._batch_setitems(obj.items()) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 995, in _batch_setitems save(v) File "/home/sarahw/miniconda3/envs/project_huggingface/lib/python3.8/pickle.py", line 576, in save rv = reduce(self.proto) TypeError: cannot pickle 'Tokenizer' object ``` Fix seems to be in the tokenizers [`0.8.0.dev1 pre-release`](https://github.com/huggingface/tokenizers/issues/87), which I can't install with any package managers. If others run into this issue, a quick fix is to use python 3.6 instead of 3.7+. Serialization differences between the 3rd party `dataclasses` package for 3.6 and the built in `dataclasses` in 3.7+ cause the issue. Probably a dumb fix, but it works for me.
[ 0.009912597946822643, 0.17618773877620697, 0.0797635167837143, 0.033218685537576675, -0.0187637060880661, -0.0983520969748497, -0.04397661238908768, 0.3858543634414673, 0.23286207020282745, -0.17839542031288147, 0.15334515273571014, 0.78156977891922, -0.18905828893184662, -0.27199724316596985, 0.056634314358234406, -0.15590590238571167, 0.006841479334980249, 0.11283113062381744, 0.3384638726711273, 0.01790737546980381, -0.22156767547130585, 0.36634325981140137, -0.20355471968650818, 0.29775577783584595, -0.49662789702415466, -0.2166755050420761, 0.20677585899829865, -0.04722127690911293, -0.12316970527172089, -0.5728647708892822, 0.1870385706424713, -0.07400461286306381, -0.13193891942501068, 0.06161833554506302, -0.00011744163202820346, -0.14955832064151764, 0.39250484108924866, 0.02706455998122692, -0.14823602139949799, -0.23680879175662994, 0.1705569326877594, -0.09398560225963593, 0.1326128989458084, -0.02326970174908638, -0.02954133413732052, -0.07699161022901535, 0.10836697369813919, -0.10980632901191711, 0.324956476688385, -0.03442303091287613, 0.19127681851387024, 0.30618777871131897, 0.1382569521665573, 0.010819041170179844, 0.09691624343395233, -0.15521831810474396, -0.16840961575508118, -0.0005972807412035763, 0.09011940658092499, -0.2653213441371918, -0.2927829921245575, 0.47386735677719116, 0.008657651953399181, -0.05826234444975853, 0.06942389905452728, 0.021325577050447464, -0.17859342694282532, -0.07572020590305328, 0.09370644390583038, -0.02710699290037155, 0.09554597735404968, -0.1859518140554428, -0.04457560554146767, -0.44171828031539917, -0.12900522351264954, -0.45500636100769043, 0.1827390193939209, -0.14791937172412872, -0.2384154498577118, -0.044094908982515335, -0.009040366858243942, -0.388457715511322, 0.13887128233909607, 0.3053477108478546, 0.12892761826515198, 0.6000412702560425, -0.05727898329496384, 0.27803725004196167, 0.281980961561203, -0.0880405381321907, -0.2382824569940567, 0.15676997601985931, -0.18787752091884613, 0.435652494430542, -0.34436455368995667, -0.1178102046251297, 0.22057001292705536, 0.05353754386305809, -0.06403117626905441, 0.3975791931152344, -0.0016287657199427485, 0.24292318522930145, -0.12060771882534027, 0.16440464556217194, 0.047717638313770294, 0.459106981754303, 0.3047444522380829, 0.5499497652053833, 0.01052627619355917, -0.39809152483940125, -0.037584345787763596, -0.050383858382701874, -0.07537048310041428, -0.26227718591690063, 0.031822919845581055, 0.050952743738889694, -0.11718125641345978, -0.10476810485124588, -0.13309255242347717, 0.060889832675457, -0.2686992883682251, 0.0647372379899025, 0.22085978090763092, 0.1958482265472412, 0.13529500365257263, 0.15045127272605896, -0.13207721710205078, 0.17244142293930054, -0.1877630650997162, -0.1661205291748047, -0.2481422871351242, 0.07978565990924835, -0.31500786542892456, 0.18196241557598114, 0.09730587899684906, 0.27711865305900574, 0.4803224802017212, -0.16881366074085236, -0.05875221639871597, 0.06284811347723007, 0.12489323318004608, -0.009232071228325367, 0.23225170373916626, 0.07257470488548279, -0.1473616659641266, 0.3290611505508423, 0.3126963973045349, -0.14133340120315552, -0.2816562056541443, -0.05163018777966499, -0.273431658744812, -0.36264902353286743, -0.11526133865118027, 0.12547586858272552, -0.062264878302812576, -0.1384950876235962, -0.27198725938796997, 0.24202901124954224, 0.45948362350463867, -0.1889905035495758, 0.11018400639295578, -0.19901160895824432, -0.3264867067337036, -0.2962646782398224, 0.030712278559803963, 0.28808802366256714, 0.04842694476246834, -0.379030704498291, -0.19732090830802917, 0.15270304679870605, 0.4366890788078308, 0.5128079652786255, -0.32139718532562256, 0.15187270939350128, -0.26180073618888855, 0.8142938613891602, 0.5736557245254517, -0.2508249580860138, -0.45756974816322327, 0.035864438861608505, -0.18986953794956207, 0.08280789107084274, -0.2472430020570755, -0.0829213410615921, -0.01194287370890379, -0.14294588565826416, 0.17918740212917328, 0.2489403635263443, -0.008139642886817455, 0.00763428071513772, -0.38457533717155457, -0.04298607259988785, 0.3610704839229584, -0.04021080583333969, 0.13590100407600403, -0.11010298877954483, -0.22312113642692566, 0.013851123861968517, 0.0019649630412459373, -0.015099378302693367, 0.3447349965572357, -0.07404867559671402, 0.11379548907279968, -0.17386402189731598, 0.07570669800043106, 0.041116125881671906, -0.3737538456916809, 0.15236957371234894, -0.2930879592895508, 0.15114043653011322, -0.20104235410690308, 0.021357199177145958, -0.1287764310836792, 0.044496823102235794, -0.33988890051841736, -0.23302723467350006, 0.12846790254116058, 0.004651177674531937, 0.19840696454048157, 0.034428756684064865, -0.014597970061004162, -0.06104568392038345, 0.06276127696037292, 0.15491081774234772, -0.1303325742483139, -0.05654406547546387, -0.04677646607160568, -0.2752353549003601, -0.2991560995578766, 0.16003233194351196, 0.23997345566749573, -0.025426462292671204, -0.26036006212234497, 0.29413336515426636, 0.007031404413282871, 0.04866514727473259, -0.12077509611845016, -0.060572054237127304, 0.09702932834625244, -0.13870969414710999, -0.11031525582075119, 0.12425423413515091, -0.01986929401755333, -0.2519938349723816, 0.31832635402679443, 0.35428252816200256, 0.18840934336185455, 0.06003769859671593, -0.28683000802993774, 0.29860034584999084, 0.06109829246997833, -0.017383567988872528, 0.13141319155693054, -0.27149587869644165, 0.0666734054684639, -0.12505857646465302, 0.2938556373119354, -0.12012078613042831, -0.0217079259455204, 0.3552860617637634, 0.3217473328113556, 0.3191151022911072, 0.060160547494888306, 0.11061698943376541, -0.20485007762908936, -0.27460724115371704, 0.0948236882686615, 0.12427492439746857, 0.156790629029274, 0.18599878251552582, 0.042367905378341675, -0.05870455875992775, -0.10603741556406021, -0.0883651003241539, 0.13407090306282043, 0.012188563123345375, 0.06867881119251251, 0.159634530544281, 0.06015845015645027, 0.11714286357164383, -0.3626595437526703, 0.009321345947682858, 0.10926158726215363, 0.3128889203071594, -0.11231624335050583, -0.06857424974441528, -0.3171986937522888, -0.09657807648181915, 0.1861845999956131, -0.3486100435256958, -0.24346692860126495, -0.45386794209480286, 0.13185998797416687, 0.1396823227405548, -0.12046346068382263, 0.4497217535972595, -0.18037275969982147, 0.24646002054214478, 0.029110509902238846, -0.09016598016023636, -0.31709611415863037, -0.5001770853996277, -0.3929176926612854, -0.0020681757014244795, 0.10869297385215759, -0.06565173715353012, 0.19884319603443146, 0.17002229392528534, 0.03880377113819122, -0.07996818423271179, -0.393821656703949, 0.22453603148460388, -0.12875816226005554, 0.04867003485560417, 0.24079856276512146, -0.20670121908187866, -0.4435533583164215, -0.3115966022014618, 0.17952483892440796, -0.34777742624282837, -0.365557461977005, -0.12697593867778778, 0.044309742748737335, -0.11614901572465897, -0.15670283138751984, -0.04878833889961243, -0.1834053099155426, -0.28318995237350464, 0.27697286009788513, 0.024691367521882057, 0.18116390705108643, 0.4258755147457123, -0.34760627150535583, 0.05340435355901718, -0.3079635500907898, -0.12469952553510666, -0.5135576725006104, 0.09018106758594513, 0.31060802936553955, -0.3200933635234833, -0.1387341469526291, -0.17292651534080505, -0.15813888609409332, 0.3402467668056488, 0.0410684198141098, -0.19394457340240479, 0.11227346956729889, -0.08586576581001282, 0.1610162854194641, -0.10779808461666107, -0.06236960366368294, 0.4786888360977173, 0.09708622843027115, -0.003204066539183259, -0.18296058475971222, -0.1646912544965744, 0.411480188369751, -0.0680687427520752, 0.3304801881313324, 0.08736681938171387, 0.1052735447883606, 0.29310742020606995, 0.818351149559021, 0.20562049746513367, -0.10437144339084625, 0.48813968896865845, 0.23366084694862366, 0.0024520433507859707, -0.2040906548500061, -0.24899381399154663, 0.10887043178081512, -0.021735062822699547, 0.3350537419319153, 0.05009240657091141, 0.00859969761222601, -0.41724926233291626, 0.12043783068656921, 0.15183080732822418, -0.15421158075332642, -0.28654614090919495, 0.18523381650447845, -0.38361185789108276, 0.13475589454174042, 0.17770493030548096, 0.04425966739654541, -0.5306252837181091, -0.13457843661308289, 0.11720054596662521, -0.2568659484386444, 0.39326196908950806, 0.08267401903867722, -0.5393274426460266, 0.05163102224469185, -0.7337316274642944, 0.2864341139793396, 0.2413744330406189, 0.39541134238243103, -0.19885291159152985, -0.1736210733652115, 0.041853565722703934, 0.07487153261899948, 0.34522005915641785, -0.15505030751228333, -0.05528087541460991, 0.1675938069820404, 0.06943470239639282, -0.13529342412948608, 0.10230768471956253, 0.27725449204444885, 0.5168846249580383, 0.4541480243206024, 0.3920671045780182, -0.38812050223350525, -0.2562207579612732, -0.16759449243545532, -0.17444618046283722, -0.01865646056830883, 0.0365908145904541, 0.02932341769337654, 0.11371391266584396, -0.1721295416355133, 0.15072384476661682, 0.2761493921279907, 0.3388305604457855, 0.39486613869667053, 0.1762160211801529, -0.11653194576501846, -0.12748360633850098, -0.18791866302490234, 0.13666999340057373, 0.36158329248428345, 0.03266625851392746, 0.047416795045137405, 0.21893082559108734, 0.11869242042303085, -0.2655068039894104, 0.16447027027606964, 0.25094228982925415, -0.11180434376001358, 0.1611202508211136, 0.2835700511932373, 0.12172841280698776, 0.2762949466705322, 0.035271868109703064, 0.4669426679611206, -0.4396470785140991, 0.20554742217063904, 0.11181272566318512, 0.40232473611831665, 0.06568975746631622, -0.05350799113512039, -0.2024741917848587, -0.08513196557760239, 0.32677263021469116, 0.12510505318641663, -0.2178555577993393, 0.5619809627532959, -0.030539661645889282, -0.34341850876808167, 0.454791396856308, 0.10107158869504929, 0.8719288110733032, 0.2725569009780884, 0.2011609524488449, 0.23683440685272217, 0.05636996775865555, 0.6379817724227905, 0.03707391768693924, 0.14599940180778503, -0.3191587030887604, 0.3665103614330292, 0.03573960065841675, -0.03795957565307617, -0.12783488631248474, 0.09608088433742523, -0.04991170018911362, 0.20488812029361725, 0.23945628106594086, 0.20106443762779236, 0.248294398188591, 0.11101672798395157, -0.0012671025469899178, -0.35419049859046936, 0.18311209976673126, 0.08416624367237091, -0.37972894310951233, 0.3635554313659668, 0.043265897780656815, -0.14761506021022797, -0.02832113951444626, -0.3495352566242218, -0.26875656843185425, 0.11712496727705002, -0.4619830250740051, 0.39097175002098083, 0.4313516318798065, -0.20795002579689026, 0.17296074330806732, -0.14052067697048187, 0.17857173085212708, -0.06800052523612976, -0.12570010125637054, 0.3717615008354187, 0.2818741798400879, -0.0578298419713974, 0.03172069787979126, -0.1306055784225464, 0.2797630727291107, 0.03044203855097294, 0.0019762630108743906, -0.10162166506052017, -0.14831064641475677, -0.474752813577652, -0.4060356914997101, 0.02603604830801487, 0.17964957654476166, 0.11155859380960464, -0.21012841165065765, 0.1339704394340515, -0.01886804774403572, -0.2450491040945053, 0.08942170441150665, 0.10318667441606522, -0.17431655526161194, -0.031314145773649216, 0.10778360813856125, -0.13057252764701843, 0.0892200842499733, 0.2922823429107666, -0.2033209204673767, -0.1827050894498825, 0.55708247423172, -0.1918235421180725, -0.18153569102287292, -0.15928974747657776, -0.17469729483127594, 0.23148298263549805, -0.4645782709121704, 0.10097432881593704, -0.08941296488046646, -0.12167607992887497, 0.04108324646949768, 0.3308238685131073, 0.18773052096366882, 0.17358814179897308, 0.07088250666856766, -0.2569062411785126, -0.2817654311656952, 0.16321969032287598, -0.5082820653915405, 0.0636172816157341, 0.00040712254121899605, 0.3584067225456238, -0.288722425699234, 0.3904939889907837, -0.26252710819244385, 0.09431258589029312, -0.09145487844944, 0.09051254391670227, -0.056493472307920456, -0.33983224630355835, -0.060088008642196655, 0.008368170820176601, -0.006850607227534056, 0.4153737425804138, -0.2501581609249115, -0.16479942202568054, -0.23396314680576324, 0.12270443886518478, 0.3353528678417206, -0.3256455659866333, -0.04769616574048996, 0.24043728411197662, 0.07123216241598129, -0.14163540303707123, -0.05117877945303917, -0.034413598477840424, -0.0987120047211647, 0.10778339952230453, 0.09028047323226929, 0.04849905148148537, 0.24480745196342468, 0.1720360964536667, 0.000004376476681500208, 0.01160882506519556, 0.10337337106466293, 0.3003526031970978, -0.0566958487033844, 0.04998265206813812, 0.009672749787569046, 0.054955609142780304, -0.0547025166451931, -0.1061147078871727, 0.10379890352487564, -0.42907747626304626, -0.27676719427108765, -0.1523226797580719, 0.05145380645990372, 0.084222212433815, -0.009016575291752815, -0.40862151980400085, 0.556329071521759, 0.1777573525905609, -0.16446250677108765, -0.07306424528360367, 0.41876503825187683, 0.2304312288761139, 0.058247584849596024, 0.06152091175317764, 0.2833518087863922, -0.09697189927101135, 0.08293405175209045, 0.021381543949246407, 0.4993334710597992, -0.40744319558143616, 0.1961524337530136, -0.007524380460381508, -0.05386406555771828, 0.038979124277830124, 0.5023401379585266, 0.10222170501947403, 0.22017647325992584, 0.03153674304485321, -0.06836185604333878, 0.3054451048374176, 0.09963274002075195, 0.2393583506345749, -0.10120394825935364, -0.3959549367427826, -0.33709046244621277, 0.3917883038520813, -0.04883517697453499, 0.22348861396312714, 0.02238389290869236, 0.5310402512550354, -0.02210862562060356, -0.4205748438835144, 0.14573730528354645, 0.534075140953064, -0.3441426157951355, -0.34283414483070374, -0.47358939051628113, 0.007298361975699663, -0.3503250777721405, 0.023518657311797142, -0.02653784118592739, -0.04130303114652634, 0.007149413228034973, -0.07907358556985855, -0.1581781953573227, -0.3293401598930359, -0.2359713464975357, 0.05745381861925125, 0.29125839471817017, -0.24715036153793335, 0.4018810987472534, -0.46888962388038635, -0.21708129346370697, -0.26544636487960815, 0.19908149540424347, 0.29483386874198914, 0.24473661184310913, -0.4160877764225006, -0.22379709780216217, 0.01196381077170372, 0.12716037034988403, -0.12253841012716293, 0.31431496143341064, 0.2412484884262085, -0.38681405782699585, 0.14211145043373108, -0.040109045803546906, -0.11037406325340271, 0.03106074407696724, 0.13897007703781128, 0.2229575663805008, 0.32794272899627686, 0.16591991484165192, -0.1513466089963913, -0.07004303485155106, -0.051429633051157, 0.07747472077608109, -0.22369302809238434, 0.1334914267063141, 0.022824907675385475, 0.04229922965168953, 0.179393008351326, -0.32483187317848206, 0.08634987473487854, 0.10883825272321701, 0.4186904728412628, 0.3605180084705353, -0.26783066987991333, -0.4015859067440033, -0.4270048141479492, -0.3972657024860382, 0.19654057919979095, -0.05414578318595886, -0.047372423112392426, -0.040591705590486526, 0.05861775204539299, 0.0444418303668499, -0.01999945193529129, -0.1949561983346939, 0.4008176922798157, 0.13667960464954376, 0.1745637059211731, -0.37760692834854126, 0.4529930651187897, 0.09525100141763687, -0.07812066376209259, 0.23466187715530396, -0.30719321966171265, 0.01484607346355915, 0.10009308904409409, 0.05666586756706238, -0.1513725072145462, -0.12513817846775055, -0.04074042662978172, 0.20701265335083008, 0.2774707078933716, 0.33225366473197937, 0.20221997797489166, 0.06408817321062088, 0.1838996410369873, -0.38967061042785645, -0.3934144377708435, -0.24132771790027618, -0.10816431045532227, -0.18652424216270447, 0.43140313029289246, -0.029627440497279167, 0.23325973749160767, -0.41990214586257935, 0.012596466578543186, -0.029273631051182747, 0.07565577328205109, -0.17471399903297424, 0.3251664638519287, -0.28448691964149475, 0.2631874680519104, -0.05177677050232887, 0.3642561435699463, -0.015289964154362679, 0.43932002782821655, -0.4197937548160553, -0.4348355829715729, 0.5731081366539001, -0.7418988943099976, -0.22339516878128052, 0.23296432197093964, 0.0076881637796759605, 0.5054782629013062, -0.36830106377601624, -0.19334428012371063, -0.25314390659332275, 0.2136693298816681, -0.0410078689455986, -0.24648979306221008, 0.050612177699804306, -0.04519359767436981, -0.09691603481769562, -0.04278642684221268, 0.629905641078949, 0.1238592267036438, -0.13194991648197174, 0.1468423455953598, -0.1718582808971405 ]
https://github.com/huggingface/datasets/issues/256
[Feature request] Add a feature to dataset
Do you have an example of what you would like to do? (you can just add a field in the output of the unction you give to map and this will add this field in the output table)
Is there a straightforward way to add a field to the arrow_dataset, prior to performing map?
38
[Feature request] Add a feature to dataset Is there a straightforward way to add a field to the arrow_dataset, prior to performing map? Do you have an example of what you would like to do? (you can just add a field in the output of the unction you give to map and this will add this field in the output table)
[ -0.3230096101760864, -0.12567010521888733, -0.12979556620121002, -0.3137860894203186, 0.052387285977602005, 0.19275802373886108, 0.03158213198184967, 0.08298195153474808, 0.18523293733596802, 0.07698605954647064, 0.643558919429779, 0.7557854056358337, -0.08902165293693542, 0.4095414876937866, 0.24462351202964783, 0.032614339143037796, 0.028265368193387985, 0.22548136115074158, 0.014326248317956924, 0.0299332607537508, -0.31132760643959045, -0.33160513639450073, 0.04404199868440628, -0.14167064428329468, -0.2610885202884674, -0.10558541119098663, 0.09172365814447403, -0.2881224453449249, -0.2672577500343323, -0.4562531113624573, -0.07570026814937592, 0.052577923983335495, -0.007645521312952042, -0.2505633234977722, -0.00011566057946765795, -0.24796713888645172, 0.17165544629096985, 0.04295859858393669, -0.10686315596103668, -0.09991511702537537, -0.652342677116394, -0.46455931663513184, 0.23346516489982605, -0.14119620621204376, -0.030794957652688026, -0.09863979369401932, 0.03519235551357269, -0.32405024766921997, -0.06231965869665146, -0.09793868660926819, 0.21189472079277039, -0.1266070008277893, 0.1847652941942215, -0.05031970143318176, 0.2521039545536041, 0.4834825396537781, -0.3692205548286438, -0.24725303053855896, 0.03249862417578697, 0.0674416795372963, 0.174289733171463, 0.3334391713142395, 0.29095035791397095, -0.2479885071516037, 0.4152333438396454, 0.10510279983282089, 0.03741658478975296, -0.16112834215164185, -0.0902450755238533, 0.11849396675825119, 0.7849735617637634, -0.2754906713962555, -0.28207722306251526, 0.00497441366314888, 0.12086185067892075, -0.3142980635166168, -0.003354035783559084, -0.08357913047075272, 0.1403278261423111, 0.02121148258447647, 0.20736171305179596, -0.549000084400177, -0.06742203235626221, 0.12888820469379425, 0.12519551813602448, 0.3817352056503296, 0.062045469880104065, 0.1159200668334961, -0.11732064932584763, -0.1588691920042038, 0.017290610820055008, -0.027565717697143555, -0.201393723487854, 0.5192959904670715, -0.22264769673347473, -0.28034958243370056, 0.22947634756565094, -0.33919984102249146, 0.03923889249563217, 0.18318980932235718, 0.18487617373466492, 0.017474740743637085, -0.32537442445755005, 0.17470726370811462, 0.13227170705795288, -0.028103861957788467, 0.20364327728748322, 0.1825888305902481, 0.0067141386680305, -0.4320652186870575, -0.04066260904073715, -0.36515215039253235, 0.28560754656791687, -0.09943187236785889, 0.29189392924308777, 0.047469958662986755, 0.42997393012046814, -0.14702898263931274, 0.20401881635189056, -0.14689689874649048, 0.17100463807582855, -0.03748983144760132, 0.005303573794662952, 0.08828701078891754, 0.2963477671146393, -0.1005246490240097, -0.03683996573090553, 0.27567368745803833, 0.33909738063812256, 0.04044242575764656, -0.05025346204638481, -0.3233456611633301, 0.07568107545375824, 0.34531691670417786, 0.027161896228790283, 0.20460033416748047, 0.1169341579079628, -0.023611513897776604, -0.0765625536441803, 0.053556010127067566, 0.27328646183013916, -0.03732849657535553, 0.26735445857048035, 0.21967820823192596, -0.15470652282238007, 0.13502170145511627, -0.007507646456360817, 0.49949103593826294, -0.2631916105747223, 0.3902084529399872, -0.13045935332775116, -0.2942376434803009, -0.11275151371955872, 0.17672254145145416, 0.09515734761953354, -0.32139188051223755, -0.2972107529640198, 0.3748583495616913, -0.08899492770433426, -0.16987307369709015, 0.2799258530139923, 0.3327130377292633, -0.24854256212711334, -0.3037452697753906, -0.0681348443031311, 0.14087426662445068, -0.19924503564834595, 0.018790267407894135, -0.42185166478157043, -0.07454362511634827, -0.22383622825145721, -0.4167453348636627, -0.1549997627735138, 0.31069380044937134, 0.00013195750943850726, 0.34534573554992676, 0.8380848169326782, 0.05230792611837387, -0.11645982414484024, 0.1494685709476471, -0.4384104311466217, -0.10041643679141998, -0.21824683248996735, 0.5195290446281433, 0.22254210710525513, 0.16406480967998505, -0.09571642428636551, 0.32287803292274475, -0.2440563142299652, -0.07221218943595886, 0.08374648541212082, -0.031925417482852936, 0.1864675134420395, 0.07978184521198273, -0.1155349612236023, 0.07232267409563065, 0.35473111271858215, -0.3399243652820587, -0.07577545195817947, 0.22871273756027222, 0.1548013985157013, 0.062421321868896484, 0.6634554266929626, -0.19033552706241608, -0.14944323897361755, -0.2541687786579132, -0.37941819429397583, 0.04462601989507675, 0.018305858597159386, -0.23273007571697235, -0.0779547467827797, -0.3638581931591034, 0.13582098484039307, 0.3931482136249542, -0.046548545360565186, 0.1942266821861267, 0.03888607770204544, -0.29107746481895447, -0.24593156576156616, -0.12712253630161285, -0.24294568598270416, -0.2864038050174713, -0.05380074307322502, 0.021814091131091118, 0.06025531888008118, -0.060790400952100754, 0.17657199501991272, -0.09100345522165298, -0.3659123480319977, 0.10238566249608994, 0.040897469967603683, 0.08841703832149506, -0.21224574744701385, 0.2533626854419708, 0.16853752732276917, 0.2339465469121933, 0.5139036178588867, 0.2232464849948883, 0.05110761895775795, -0.25049352645874023, 0.012636897154152393, 0.1277925819158554, -0.09994522482156754, -0.22338928282260895, -0.18533654510974884, 0.2213394194841385, 0.07010423392057419, 0.14392898976802826, -0.20152509212493896, 0.17729772627353668, 0.2823127806186676, 0.09235447645187378, -0.0955820381641388, -0.1467551290988922, -0.33777424693107605, -0.08456873893737793, -0.09949547052383423, -0.12597191333770752, -0.028134547173976898, 0.2752671241760254, 0.3266277611255646, -0.03652535751461983, 0.07844817638397217, 0.22834515571594238, -0.16949979960918427, 0.11580159515142441, 0.3157923221588135, -0.19050930440425873, 0.3854654133319855, 0.25566843152046204, -0.022261211648583412, -0.017681216821074486, -0.02112891525030136, 0.08073374629020691, 0.24073028564453125, -0.13787314295768738, 0.2707095742225647, -0.016586927697062492, 0.33326005935668945, -0.06788592040538788, -0.05277787148952484, -0.05666189640760422, 0.11897052824497223, 0.09977108240127563, -0.04488775506615639, -0.296111136674881, 0.11918974667787552, 0.09213017672300339, -0.004259509965777397, -0.06341772526502609, -0.17336119711399078, -0.3518214225769043, 0.23315784335136414, -0.051419198513031006, -0.20887579023838043, 0.14756684005260468, -0.3344331979751587, 0.25922295451164246, 0.029575686901807785, -0.3412538468837738, -0.05221044272184372, -0.20544596016407013, 0.20899660885334015, 0.05291125923395157, -0.0919998437166214, -0.15564361214637756, 0.5642310380935669, 0.5620841979980469, 0.39211344718933105, -0.5298599600791931, -0.4843096137046814, -0.014124421402812004, 0.0818411111831665, -0.16597111523151398, 0.02432556077837944, 0.010607009753584862, -0.2986754775047302, -0.21590878069400787, 0.05155964195728302, 0.07902733981609344, -0.2116866409778595, -0.14313797652721405, -0.1234048381447792, -0.09024560451507568, -0.09769461303949356, -0.16583815217018127, -0.010662569664418697, -0.3048557639122009, 0.49070799350738525, 0.08693806827068329, 0.13834775984287262, -0.018754463642835617, 0.13125500082969666, -0.06781308352947235, -0.1683112233877182, -0.3420356810092926, -0.16108298301696777, 0.1426563709974289, 0.343258261680603, -0.4180550277233124, 0.05584801733493805, 0.2637422978878021, -0.1318228393793106, -0.020290428772568703, 0.43146321177482605, -0.2649514377117157, 0.09274496883153915, -0.0009440009016543627, 0.6025667786598206, -0.18074175715446472, -0.023150913417339325, 0.5678802132606506, 0.27968817949295044, -0.045187439769506454, -0.05303937941789627, -0.10389394313097, 0.14860324561595917, 0.4860752820968628, 0.20475643873214722, -0.048646531999111176, 0.34898489713668823, -0.2798685133457184, 0.6352143287658691, -0.20097161829471588, -0.014774812385439873, 0.2248990386724472, -0.2106429785490036, 0.1744215190410614, -0.171028733253479, 0.06277133524417877, -0.2686363458633423, 0.029555609449744225, -0.23210257291793823, -0.16377535462379456, 0.019074875861406326, -0.22148384153842926, 0.024632414802908897, 0.007816541939973831, 0.010609632357954979, -0.05507340282201767, 0.18679900467395782, -0.6058999300003052, 0.5232609510421753, -0.1445961594581604, -0.17368078231811523, -0.5607354640960693, -0.009855430573225021, 0.015952149406075478, -0.14419126510620117, 0.46543195843696594, -0.41789358854293823, -0.46120378375053406, -0.21740250289440155, -0.38718345761299133, 0.1870587170124054, 0.0808904767036438, -0.0735938623547554, -0.2195824235677719, -0.18955299258232117, -0.1442180871963501, 0.22871968150138855, 0.3513086140155792, -0.6429321765899658, -0.16470196843147278, -0.14237403869628906, 0.21227362751960754, -0.09740716964006424, 0.05929972976446152, 0.1740359514951706, 0.36194127798080444, -0.21749351918697357, 0.5275081992149353, -0.20492015779018402, 0.24443785846233368, 0.38063645362854004, -0.09481398016214371, -0.20389996469020844, -0.09966505318880081, 0.02441283129155636, -0.0027058590203523636, -0.044623956084251404, 0.0897793248295784, -0.06822138279676437, -0.21145649254322052, 0.30429425835609436, -0.4484105110168457, -0.2740820646286011, 0.07580529898405075, -0.17226475477218628, 0.12260912358760834, 0.2490202784538269, 0.2360481470823288, 0.2840409576892853, 0.01422668807208538, 0.01963740773499012, -0.025928515940904617, 0.3448987603187561, 0.025977762416005135, -0.18317700922489166, -0.1373797357082367, -0.42839235067367554, 0.7307030558586121, 0.1598430722951889, 0.07839226722717285, 0.7191218137741089, -0.06681256741285324, -0.11801952123641968, -0.37656477093696594, -0.09427543729543686, 0.2884327173233032, -0.18747520446777344, -0.08569692075252533, -0.29080554842948914, 0.5907078385353088, -0.053047675639390945, -0.07410945743322372, 0.6676123142242432, 0.08844536542892456, -0.22067639231681824, 0.598703145980835, 0.22094649076461792, 0.9525293707847595, -0.19351205229759216, -0.141744464635849, -0.05804218724370003, -0.25040820240974426, 0.21438376605510712, -0.1726955622434616, -0.08334976434707642, -0.15773889422416687, -0.2897280156612396, -0.08914307504892349, -0.11880999058485031, 0.09139049798250198, 0.3618844449520111, -0.2552138864994049, -0.297404021024704, -0.11486697196960449, 0.4763519763946533, -0.0730985775589943, 0.17063483595848083, 0.24004793167114258, -0.2808712422847748, 0.11826857924461365, 0.08720670640468597, -0.02255949191749096, -0.10195460915565491, -0.2490103393793106, -0.22411933541297913, 0.07248049974441528, -0.22204039990901947, -0.10717429220676422, -0.1413414627313614, -0.35636550188064575, -0.02495081163942814, -0.12817086279392242, -0.011054309085011482, 0.12941737473011017, -0.10549794137477875, -0.04663839191198349, 0.04328656941652298, -0.07831283658742905, 0.26174047589302063, 0.33787697553634644, 0.32202568650245667, -0.03899157792329788, -0.007521271705627441, -0.008356800302863121, -0.06790235638618469, -0.18643692135810852, 0.3520045876502991, -0.24884948134422302, -0.4843158721923828, -0.1339607536792755, -0.007556978613138199, -0.022086823359131813, -0.2310640960931778, -0.3893098831176758, 0.19509270787239075, -0.18806396424770355, -0.0804351270198822, 0.11919005215167999, 0.05649447441101074, -0.059860698878765106, 0.21808406710624695, 0.3378436267375946, -0.05729299411177635, 0.08129316568374634, -0.03875540941953659, -0.11287332326173782, 0.04399976506829262, 0.2099791169166565, -0.2339547723531723, -0.07439807802438736, -0.12852932512760162, 0.05641849339008331, 0.3340586721897125, -0.45640829205513, -0.16278612613677979, 0.2021561563014984, 0.03252565488219261, -0.14768461883068085, 0.208199143409729, -0.17216791212558746, 0.4044393002986908, -0.2823362648487091, -0.030927183106541634, -0.34422022104263306, 0.19316652417182922, -0.07702425122261047, 0.29688605666160583, -0.2407788336277008, -0.11000608652830124, -0.1486532986164093, 0.41552722454071045, -0.2784256637096405, -0.22377441823482513, 0.3204047679901123, 0.35787513852119446, 0.00011099219409516081, 0.4909782409667969, 0.06589633226394653, -0.27637577056884766, 0.1371062695980072, -0.05230085179209709, -0.03678112477064133, -0.1670791506767273, 0.12411141395568848, 0.18681254982948303, 0.06574182212352753, -0.2053637057542801, -0.25644978880882263, -0.2793380320072174, -0.1318928450345993, -0.1434381604194641, -0.14246216416358948, -0.2237468659877777, -0.23777452111244202, -0.1527934968471527, 0.03413017466664314, 0.18996921181678772, -0.15066899359226227, 0.19632413983345032, 0.1409435272216797, 0.1933097392320633, -0.099012590944767, 0.10347919166088104, -0.0658574104309082, 0.09529630094766617, 0.13806398212909698, 0.04591801017522812, 0.014824810437858105, -0.06120823696255684, 0.2245168685913086, 0.07379203289747238, 0.0046503497287631035, -0.027211759239435196, 0.2537142336368561, -0.19633468985557556, -0.14776603877544403, 0.24092422425746918, 0.0296953022480011, 0.240748792886734, -0.217531219124794, 0.12101223319768906, 0.45248299837112427, -0.06254663318395615, 0.14847944676876068, 0.14802324771881104, 0.2969687283039093, 0.4323725998401642, 0.015021898783743382, 0.09625643491744995, -0.31432437896728516, -0.3172513246536255, 0.1561305671930313, 0.4448056221008301, 0.13583362102508545, 0.09621397405862808, 0.25418442487716675, 0.3600870966911316, 0.18062542378902435, 0.2444460541009903, 0.1413000524044037, 0.2294827252626419, 0.46510064601898193, -0.2577500343322754, 0.20783166587352753, -0.3314012289047241, 0.2717258036136627, -0.0367857962846756, 0.15309010446071625, 0.013454129919409752, 0.5024027824401855, -0.09646359831094742, 0.1339126080274582, -0.2314017117023468, 0.04208574816584587, 0.039556097239255905, -0.16674433648586273, 0.1457149237394333, 0.14098073542118073, -0.110164575278759, 0.013368277810513973, -0.15926995873451233, 0.10538829863071442, -0.08723006397485733, 0.3674435615539551, -0.0022112734150141478, 0.3381569981575012, 0.27333909273147583, 0.47028350830078125, 0.24637383222579956, 0.2139003872871399, -0.11488927155733109, -0.1212855726480484, -0.4095311462879181, -0.07484690099954605, 0.047969430685043335, 0.22441044449806213, -0.1902327537536621, 0.21986879408359528, -0.2684761881828308, 0.6971402168273926, -0.022111795842647552, -0.2750873863697052, 0.0647156834602356, 0.09962860494852066, 0.20453646779060364, 0.0011920261895284057, -0.07830935716629028, 0.1592436581850052, -0.025654340162873268, 0.173117533326149, 0.04044574871659279, 0.24467656016349792, -0.15403583645820618, 0.14211472868919373, 0.26852184534072876, -0.5370786190032959, -0.039707545191049576, 0.08508806675672531, 0.21157507598400116, -0.3055973947048187, 0.3663337826728821, -0.044438786804676056, -0.1261988878250122, -0.12287750095129013, 0.05036066100001335, -0.15251001715660095, 0.1384807974100113, 0.22177311778068542, 0.04125043749809265, -0.26448431611061096, -0.15196318924427032, -0.3876912593841553, 0.016558412462472916, -0.07006926089525223, -0.1563558578491211, 0.3834623396396637, 0.04035273939371109, 0.2811024487018585, 0.08014055341482162, 0.3604904115200043, -0.47435715794563293, 0.09031766653060913, 0.18195848166942596, 0.002680521924048662, -0.21827803552150726, 0.03553937375545502, 0.10784504562616348, -0.17950020730495453, 0.09571381658315659, 0.08290014415979385, 0.30811041593551636, 0.004347209352999926, -0.23742114007472992, -0.25361377000808716, -0.07985126972198486, 0.015735939145088196, 0.554766058921814, -0.24454239010810852, 0.25687476992607117, -0.2621215581893921, 0.21611003577709198, 0.01888897269964218, -0.26262369751930237, -0.2059478908777237, 0.11629501730203629, -0.06006930395960808, 0.22138935327529907, 0.11595956981182098, -0.09374243766069412, -0.3625071346759796, -0.0897848904132843, -0.3467419445514679, -0.2869199514389038, -0.23978926241397858, 0.25588279962539673, -0.14160260558128357, -0.06300561130046844, 0.013602753169834614, -0.08358333259820938, 0.01381716225296259, 0.14786039292812347, 0.08458759635686874, -0.08590393513441086, 0.14579471945762634, 0.12017442286014557, -0.07498164474964142, 0.1234501376748085, 0.1308690458536148, 0.24487443268299103, 0.10801535844802856, -0.6100402474403381, -0.25640395283699036, 0.4132259786128998, -0.1011887863278389, 0.35084155201911926, 0.35176876187324524, -0.0846996083855629, 0.21254214644432068, -0.19007818400859833, 0.5408406853675842, -0.31254348158836365, 0.3141435384750366, -0.3981521725654602, -0.306005597114563 ]
https://github.com/huggingface/datasets/issues/256
[Feature request] Add a feature to dataset
Given another source of data loaded in, I want to pre-add it to the dataset so that it aligns with the indices of the arrow dataset prior to performing map. E.g. ``` new_info = list of length dataset['train'] dataset['train'] = dataset['train'].map(lambda x: some_function(x, new_info[index of x])) def some_function(x, new_info_x): # adds new_info[index of x] as a field to x x['new_info'] = new_info_x return x ``` I was thinking to instead create a new field in the arrow dataset so that instance x contains all the necessary information when map function is applied (since I don't have index information to pass to map function).
Is there a straightforward way to add a field to the arrow_dataset, prior to performing map?
103
[Feature request] Add a feature to dataset Is there a straightforward way to add a field to the arrow_dataset, prior to performing map? Given another source of data loaded in, I want to pre-add it to the dataset so that it aligns with the indices of the arrow dataset prior to performing map. E.g. ``` new_info = list of length dataset['train'] dataset['train'] = dataset['train'].map(lambda x: some_function(x, new_info[index of x])) def some_function(x, new_info_x): # adds new_info[index of x] as a field to x x['new_info'] = new_info_x return x ``` I was thinking to instead create a new field in the arrow dataset so that instance x contains all the necessary information when map function is applied (since I don't have index information to pass to map function).
[ -0.29545462131500244, 0.04804985597729683, -0.06860879808664322, -0.18945595622062683, 0.05623244866728783, 0.2561275064945221, 0.08071005344390869, 0.11000315099954605, 0.1961611956357956, -0.020773546770215034, 0.43143630027770996, 0.533140242099762, -0.10510312020778656, 0.21243317425251007, 0.13328154385089874, 0.06564535200595856, -0.04003985971212387, 0.34225428104400635, -0.024669883772730827, 0.052604254335165024, -0.2568829655647278, -0.3627750873565674, 0.012160714715719223, -0.22624319791793823, -0.20123249292373657, -0.05310279503464699, 0.09253466129302979, -0.2065400332212448, -0.04998442530632019, -0.434979110956192, 0.0697106122970581, 0.05478709563612938, -0.061164092272520065, -0.07750707864761353, -0.00012185194646008313, -0.008279716596007347, 0.22867920994758606, -0.01818104088306427, -0.022023407742381096, -0.08861538767814636, -0.6228856444358826, -0.45040735602378845, 0.14038273692131042, -0.14621004462242126, -0.116195447742939, -0.28148528933525085, 0.06432288885116577, -0.4899308979511261, -0.03040173463523388, 0.11766691505908966, 0.11759118735790253, -0.033911123871803284, 0.3083868622779846, 0.032769687473773956, 0.3443824350833893, 0.21786247193813324, -0.20830145478248596, -0.2057977020740509, -0.05569571629166603, -0.005128123331815004, 0.24421724677085876, 0.1893961876630783, 0.16785956919193268, -0.3340609669685364, 0.4431714415550232, 0.1553870290517807, -0.024955231696367264, -0.24538807570934296, -0.32941994071006775, 0.08959963917732239, 0.6357526183128357, -0.48093435168266296, -0.4458317160606384, -0.23426412045955658, 0.3120887875556946, -0.29011479020118713, 0.06074411794543266, -0.13333989679813385, 0.21045666933059692, -0.01644185557961464, 0.28048816323280334, -0.3896573781967163, 0.01444230880588293, 0.22691352665424347, 0.061936505138874054, 0.4766782224178314, 0.16617469489574432, 0.09683401882648468, -0.14526581764221191, -0.13353319466114044, 0.144317165017128, -0.3300929069519043, -0.06665017455816269, 0.5027744770050049, -0.24179305136203766, -0.21392254531383514, -0.0244844201952219, -0.43813377618789673, -0.001675909967161715, 0.16434696316719055, 0.14356639981269836, 0.020687205716967583, -0.2361610382795334, 0.10205144435167313, 0.25052183866500854, 0.15086600184440613, -0.011964302510023117, 0.2477615773677826, -0.12251035869121552, -0.45337048172950745, -0.07157428562641144, -0.20390616357326508, 0.36904624104499817, -0.13631993532180786, 0.3272725045681, -0.010967322625219822, 0.3330437242984772, 0.1570524275302887, 0.1418696492910385, 0.02789214812219143, -0.05645245313644409, -0.07010188698768616, 0.08543488383293152, -0.04425223544239998, 0.19404427707195282, -0.049192123115062714, -0.11297357827425003, 0.41100844740867615, 0.28652071952819824, 0.2174232304096222, -0.049588892608881, -0.21261721849441528, 0.15126892924308777, 0.24832405149936676, -0.07674654573202133, 0.06510669738054276, 0.21828947961330414, 0.056783996522426605, 0.10740022361278534, 0.25711825489997864, 0.36206796765327454, -0.048357900232076645, 0.17963914573192596, 0.25625982880592346, -0.13081197440624237, 0.11768169701099396, -0.0223748330026865, 0.26819077134132385, -0.2887226641178131, 0.4301694929599762, -0.1666407436132431, -0.3181441128253937, -0.01806578040122986, 0.07984248548746109, 0.026792697608470917, -0.3733137249946594, -0.3221886157989502, 0.5601473450660706, 0.05316147208213806, -0.3258931040763855, 0.30068662762641907, 0.07653586566448212, -0.41471636295318604, -0.3155430555343628, 0.047886501997709274, 0.2020697295665741, -0.044732846319675446, -0.04814332351088524, -0.3672383427619934, -0.058196842670440674, -0.2894321084022522, -0.3591378927230835, -0.1361573338508606, 0.13738036155700684, -0.06811723858118057, 0.3618086874485016, 0.7887744307518005, -0.1264314502477646, -0.3442749083042145, 0.04523263871669769, -0.30302661657333374, 0.15711532533168793, -0.37508222460746765, 0.5562770366668701, -0.13874293863773346, 0.150868758559227, 0.0626031830906868, 0.5208089351654053, -0.28765514492988586, -0.054899778217077255, 0.1433006078004837, 0.025133822113275528, 0.09285549819469452, 0.18535272777080536, -0.1041533350944519, 0.08625304698944092, 0.2928876280784607, -0.36133602261543274, -0.12550944089889526, 0.22932617366313934, 0.0787176564335823, 0.2501792311668396, 0.28675633668899536, -0.14078161120414734, -0.22653937339782715, -0.3820771872997284, -0.4558907747268677, 0.13553880155086517, 0.16135276854038239, -0.1518811732530594, -0.002272263402119279, -0.240302175283432, 0.05197744071483612, 0.38423269987106323, -0.029144082218408585, 0.10293751209974289, -0.035400696098804474, -0.13795723021030426, -0.1275210976600647, -0.11520908772945404, -0.19177211821079254, -0.08804550766944885, 0.02341323159635067, 0.12668737769126892, -0.0815439373254776, -0.01560958381742239, 0.295885294675827, -0.1038990393280983, -0.4534272253513336, 0.17451848089694977, -0.08100873231887817, 0.13168185949325562, -0.23031416535377502, 0.28821003437042236, 0.2810443639755249, 0.3076573610305786, 0.3753384053707123, 0.35966694355010986, 0.12027247250080109, -0.20222756266593933, -0.04924362152814865, 0.2572802007198334, -0.029328521341085434, -0.1526896059513092, -0.15355625748634338, 0.5156169533729553, 0.10864876955747604, 0.2238614559173584, -0.23374973237514496, 0.04114462807774544, 0.18700027465820312, 0.10002865642309189, -0.2504218816757202, -0.10376233607530594, -0.38281381130218506, 0.028526632115244865, 0.09362927824258804, 0.0024603698402643204, -0.035776372998952866, 0.20420260727405548, 0.06993674486875534, -0.02401816099882126, 0.16000153124332428, 0.20193663239479065, -0.22764450311660767, 0.10791295021772385, 0.07749723643064499, -0.062413718551397324, 0.32906031608581543, 0.2227064073085785, 0.012617794796824455, 0.04264836385846138, 0.1092890202999115, 0.16020962595939636, 0.19159704446792603, -0.07387193292379379, 0.3904675841331482, 0.13538233935832977, 0.3821553885936737, 0.15531770884990692, 0.09207162261009216, 0.051826607435941696, -0.02855340950191021, 0.08554194122552872, -0.17347529530525208, -0.12338099628686905, 0.193156898021698, 0.1512264758348465, -0.19079403579235077, -0.07273266464471817, -0.13094274699687958, -0.25701001286506653, -0.042208582162857056, 0.028349706903100014, -0.20326098799705505, 0.08376031368970871, -0.366987019777298, 0.19005133211612701, 0.16667915880680084, -0.6432440280914307, 0.05073893442749977, -0.08939030766487122, 0.23841583728790283, -0.0036566914059221745, -0.016402987763285637, -0.17455799877643585, 0.31048768758773804, 0.7045740485191345, 0.3526603579521179, -0.40023714303970337, -0.5986950993537903, -0.13945981860160828, 0.032624516636133194, 0.06101607531309128, -0.05643923953175545, -0.13568244874477386, -0.21873974800109863, -0.2760371267795563, 0.05296364799141884, 0.09786050021648407, -0.1257183700799942, -0.23763862252235413, -0.07661698013544083, 0.0012325734132900834, -0.0057821148075163364, -0.011828676797449589, -0.22959816455841064, -0.2544107139110565, 0.3818815052509308, 0.22829051315784454, 0.0037640773225575686, 0.025177476927638054, 0.1335630565881729, -0.17415323853492737, 0.09611060470342636, -0.3459213972091675, -0.06774219125509262, 0.00827712006866932, 0.4669158458709717, -0.2917554974555969, 0.22230248153209686, -0.056528232991695404, -0.42820119857788086, -0.1681378334760666, 0.5416527986526489, -0.2858799695968628, 0.033552344888448715, -0.0685809850692749, 0.4442356824874878, -0.005477737169712782, 0.041552890092134476, 0.4493018686771393, 0.13076074421405792, 0.10191288590431213, -0.03973972797393799, -0.1687309443950653, 0.01957097090780735, 0.3857579827308655, 0.13713999092578888, 0.02654269151389599, 0.2526223361492157, -0.4078221321105957, 0.8244695067405701, -0.09646230190992355, -0.09822108596563339, 0.21357658505439758, -0.3015335202217102, 0.21364952623844147, -0.19886156916618347, -0.03919287025928497, -0.3540039658546448, 0.11872041970491409, -0.23929154872894287, -0.11377724260091782, -0.13786911964416504, -0.33846142888069153, 0.011531924828886986, -0.10345230251550674, -0.07150515913963318, -0.11369232088327408, 0.2776062786579132, -0.7096522450447083, 0.5136857032775879, -0.11672158539295197, -0.16270916163921356, -0.5571871995925903, -0.010528969578444958, -0.13447462022304535, -0.25777873396873474, 0.2695598304271698, -0.35888639092445374, -0.2897857129573822, -0.13670413196086884, -0.33905544877052307, 0.1599770486354828, 0.3289819359779358, 0.01092406827956438, 0.06942968815565109, -0.28461936116218567, -0.201852485537529, 0.1255825012922287, 0.10079356282949448, -0.7038963437080383, -0.37767261266708374, -0.06033771112561226, 0.13507607579231262, -0.31277450919151306, 0.032195620238780975, 0.26921185851097107, 0.39599257707595825, -0.295023649930954, 0.3327854573726654, -0.09700706601142883, 0.2671414017677307, 0.20797182619571686, -0.0519150085747242, -0.18702471256256104, 0.045499153435230255, -0.0406397208571434, 0.10941850394010544, -0.03259526565670967, 0.13954824209213257, -0.07816161215305328, -0.20294871926307678, 0.49353888630867004, -0.20782609283924103, -0.5050933957099915, 0.2532685697078705, 0.009910982102155685, 0.16360293328762054, 0.312510222196579, 0.32417309284210205, 0.3094303607940674, 0.12048744410276413, -0.17882731556892395, 0.06440456956624985, 0.41805246472358704, -0.11419051140546799, -0.22285059094429016, -0.3180221915245056, -0.12682819366455078, 0.6585423946380615, 0.021800296381115913, 0.0964457243680954, 0.4333215355873108, -0.10493744909763336, -0.14043459296226501, -0.4417458176612854, 0.051324568688869476, 0.45648351311683655, -0.09330322593450546, -0.15567339956760406, -0.551012396812439, 0.614558219909668, -0.06463252753019333, -0.04333565756678581, 0.5349657535552979, 0.20637375116348267, -0.1598876714706421, 0.5062617063522339, 0.2650841772556305, 0.7346944212913513, -0.0204225592315197, 0.030151620507240295, 0.193349227309227, -0.08943376690149307, 0.16311538219451904, -0.0851111114025116, -0.0200580433011055, -0.15756496787071228, -0.4308115243911743, -0.003891840111464262, -0.15197457373142242, -0.11660230159759521, 0.3548959791660309, -0.04529135674238205, -0.297341525554657, -0.16057583689689636, 0.31142956018447876, -0.1506594866514206, 0.18678337335586548, 0.07807641476392746, -0.24342738091945648, 0.05077991634607315, 0.05683285370469093, 0.13018974661827087, -0.05252363532781601, -0.16616186499595642, -0.12707209587097168, -0.21412281692028046, -0.10483011603355408, -0.19636166095733643, 0.0009951585670933127, -0.3412138521671295, 0.10047425329685211, -0.23867085576057434, -0.0842970758676529, 0.1819698065519333, 0.1106550320982933, 0.05887717008590698, -0.057705529034137726, 0.011399067007005215, 0.36906012892723083, 0.3624339997768402, 0.31423842906951904, 0.0789666473865509, -0.0832296758890152, 0.021990062668919563, 0.12612514197826385, -0.11394817382097244, 0.33944886922836304, -0.1307380050420761, -0.596111536026001, -0.19446459412574768, 0.06594254076480865, -0.12548118829727173, -0.19748561084270477, -0.38278627395629883, 0.2993820309638977, -0.0693841353058815, -0.026739776134490967, 0.04898245260119438, -0.007394032087177038, -0.03173809126019478, 0.18843752145767212, 0.09829449653625488, -0.2052384912967682, 0.03617763891816139, 0.038770005106925964, 0.002294020727276802, 0.20708532631397247, 0.468712717294693, -0.3493293225765228, 0.05314084142446518, 0.024981331080198288, 0.0986456423997879, 0.40682509541511536, -0.16343486309051514, -0.11598416417837143, -0.007876305840909481, -0.06297528743743896, -0.1093241274356842, 0.13939635455608368, -0.16832491755485535, 0.292358934879303, -0.16292507946491241, -0.15952946245670319, -0.386402428150177, 0.24197296798229218, 0.028938252478837967, 0.4287540316581726, -0.04438306763768196, -0.1234661266207695, -0.38967183232307434, 0.4389350116252899, -0.19000884890556335, -0.3230789601802826, 0.36099064350128174, 0.18557503819465637, 0.23307566344738007, 0.4451931118965149, 0.3107377886772156, -0.3401559889316559, 0.058280956000089645, -0.1498091071844101, 0.12304699420928955, -0.11353319883346558, 0.01665283925831318, 0.1590275913476944, 0.04533981904387474, -0.23916472494602203, -0.24311944842338562, -0.39710769057273865, -0.03812151402235031, -0.3407491147518158, -0.16648118197917938, -0.07473936676979065, -0.11299973726272583, -0.1436063051223755, 0.13044610619544983, 0.14072196185588837, -0.19497792422771454, 0.18967445194721222, 0.07701452076435089, 0.053036414086818695, 0.0062447963282465935, 0.2368287593126297, -0.15697860717773438, 0.12549374997615814, 0.11313697695732117, 0.06505250185728073, 0.2635493278503418, -0.0008806935511529446, 0.1680135875940323, 0.01282460242509842, 0.1215810775756836, 0.3147469460964203, 0.3299049437046051, 0.03647156432271004, -0.1927657276391983, 0.22882512211799622, -0.0919211357831955, 0.11209020018577576, -0.2940256893634796, 0.06712334603071213, 0.32607850432395935, -0.19719040393829346, 0.1943190097808838, 0.20659124851226807, 0.20972870290279388, 0.6998456716537476, -0.28049296140670776, 0.0025722587015479803, -0.3698573708534241, -0.1945170760154724, 0.21734781563282013, 0.478553831577301, 0.22565434873104095, -0.1284532994031906, 0.28053590655326843, 0.5443065762519836, 0.3776431679725647, 0.31053590774536133, 0.16976745426654816, 0.2846689820289612, 0.25134971737861633, -0.3804257810115814, 0.0895136222243309, -0.38869422674179077, 0.29423707723617554, -0.017557131126523018, 0.2701083719730377, 0.05469951778650284, 0.5864534974098206, -0.018575603142380714, 0.10988796502351761, -0.37007713317871094, 0.021476462483406067, 0.223575621843338, -0.1024252399802208, -0.037572551518678665, 0.3706280589103699, -0.07384992390871048, -0.026334721595048904, -0.2514859735965729, 0.12836450338363647, -0.15461021661758423, 0.2608325779438019, 0.029944825917482376, 0.34022605419158936, 0.18716119229793549, 0.40173980593681335, 0.2882912755012512, 0.2756875455379486, -0.12405392527580261, -0.09713651239871979, -0.4529609978199005, -0.19254286587238312, 0.04922674968838692, 0.29180705547332764, -0.11117133498191833, 0.06180582568049431, -0.3906153440475464, 0.49111148715019226, 0.07299619168043137, -0.22806721925735474, -0.00580330565571785, -0.10851390659809113, 0.1091509684920311, -0.10929975658655167, -0.01603097654879093, 0.10795444250106812, -0.04055780544877052, 0.10229766368865967, 0.06667592376470566, 0.23670820891857147, -0.17014899849891663, 0.17638933658599854, 0.2817980945110321, -0.2224918007850647, 0.038245249539613724, 0.12614573538303375, 0.20499074459075928, -0.305223286151886, 0.30176934599876404, -0.07096771150827408, -0.011132980696856976, -0.016095561906695366, 0.015035463497042656, 0.047668442130088806, 0.12267662584781647, 0.18947699666023254, 0.08890219032764435, -0.19113875925540924, -0.03554970771074295, -0.550250232219696, 0.011776584200561047, -0.029769834131002426, -0.13081592321395874, 0.2801947593688965, 0.053748175501823425, 0.29173824191093445, -0.024515077471733093, 0.23991820216178894, -0.4459001123905182, 0.024129057303071022, 0.08056318014860153, 0.034004103392362595, -0.16970719397068024, -0.387895405292511, -0.06587518006563187, 0.052558284252882004, 0.0664348229765892, -0.11162620782852173, 0.2987186312675476, -0.026848822832107544, -0.13480828702449799, -0.3300514817237854, -0.10460101813077927, -0.022962385788559914, 0.4856199324131012, -0.29913443326950073, 0.25289130210876465, -0.3834983706474304, 0.22975508868694305, -0.0480506531894207, -0.41509902477264404, -0.4699649512767792, 0.31280964612960815, -0.21318209171295166, 0.26140397787094116, -0.12660853564739227, -0.06085246428847313, -0.18677166104316711, -0.17112761735916138, -0.2456916868686676, -0.5277998447418213, -0.2825761139392853, 0.16863393783569336, -0.34799671173095703, 0.15485168993473053, -0.0018804747378453612, 0.17253242433071136, 0.08497244119644165, 0.32822921872138977, 0.26671621203422546, -0.07908827066421509, 0.24113313853740692, 0.05847921222448349, 0.1523551344871521, -0.004624899011105299, -0.15859636664390564, 0.20980457961559296, 0.2215564101934433, -0.48397552967071533, -0.07093632221221924, 0.4147851765155792, -0.0901111513376236, 0.2609637975692749, 0.12886475026607513, 0.013630494475364685, 0.14828737080097198, -0.2505508363246918, 0.4501887559890747, -0.3410737216472626, 0.2928004562854767, -0.25227949023246765, -0.09464345872402191 ]
https://github.com/huggingface/datasets/issues/256
[Feature request] Add a feature to dataset
This is what I have so far: ``` import pyarrow as pa from nlp.arrow_dataset import Dataset aug_dataset = dataset['train'][:] aug_dataset['new_info'] = new_info #reformat as arrow-table schema = dataset['train'].schema # this line doesn't work: schema.append(pa.field('new_info', pa.int32())) table = pa.Table.from_pydict( aug_dataset, schema=schema ) dataset['train'] = Dataset(table) ```
Is there a straightforward way to add a field to the arrow_dataset, prior to performing map?
45
[Feature request] Add a feature to dataset Is there a straightforward way to add a field to the arrow_dataset, prior to performing map? This is what I have so far: ``` import pyarrow as pa from nlp.arrow_dataset import Dataset aug_dataset = dataset['train'][:] aug_dataset['new_info'] = new_info #reformat as arrow-table schema = dataset['train'].schema # this line doesn't work: schema.append(pa.field('new_info', pa.int32())) table = pa.Table.from_pydict( aug_dataset, schema=schema ) dataset['train'] = Dataset(table) ```
[ -0.1585632562637329, 0.12183156609535217, -0.01991436630487442, -0.23797725141048431, 0.11595219373703003, 0.24591794610023499, 0.05583948269486427, 0.235824316740036, -0.05676472932100296, -0.026944339275360107, 0.5227228403091431, 0.779268205165863, -0.11489396542310715, 0.2621580958366394, 0.44617849588394165, 0.01807885430753231, 0.09262468665838242, 0.3316134214401245, 0.06321625411510468, 0.05303144454956055, -0.20231640338897705, -0.5101903676986694, -0.015450157225131989, -0.1047876849770546, -0.255047470331192, 0.06405160576105118, -0.07270637899637222, -0.2698788046836853, -0.1969701051712036, -0.618567168712616, 0.055247608572244644, -0.005296806804835796, 0.04881083592772484, -0.2824995815753937, -0.00012575110304169357, -0.09902589023113251, 0.12382423877716064, 0.09376242756843567, -0.1492837518453598, 0.007087749894708395, -0.1820128709077835, -0.5508111119270325, 0.34773245453834534, -0.2505291700363159, -0.027783943340182304, -0.36419934034347534, 0.07550229877233505, 0.009284675121307373, -0.09520738571882248, 0.057949867099523544, 0.0997852310538292, 0.09396664798259735, 0.2876735329627991, 0.10711461305618286, 0.36236923933029175, 0.27982574701309204, -0.33399489521980286, -0.04289538785815239, -0.02206305041909218, -0.2151845246553421, 0.16901877522468567, 0.11275697499513626, 0.12656286358833313, -0.2649116516113281, 0.39527463912963867, 0.24035853147506714, 0.0384075753390789, -0.07232892513275146, -0.22713269293308258, -0.1069110855460167, 0.6156907677650452, -0.6202871203422546, -0.3876197636127472, -0.2214733064174652, 0.3082874119281769, -0.49067121744155884, -0.06145881116390228, 0.044830989092588425, 0.10504649579524994, 0.0437750518321991, 0.34119006991386414, -0.485838919878006, -0.12451723217964172, 0.3369031250476837, 0.15795746445655823, 0.5274515748023987, 0.3024938404560089, 0.15503716468811035, -0.13680152595043182, 0.027953635901212692, 0.1394297033548355, 0.0006352682248689234, -0.09889606386423111, 0.5474140644073486, -0.19164185225963593, -0.32885390520095825, 0.1603989601135254, -0.327559232711792, 0.06376327574253082, 0.22596600651741028, 0.0723261833190918, -0.025828562676906586, -0.1592748612165451, 0.1315598338842392, 0.2263166904449463, 0.03331157565116882, -0.024890843778848648, 0.23055149614810944, -0.05313740670681, -0.40146079659461975, 0.06751584261655807, -0.19417798519134521, 0.183513343334198, -0.024034468457102776, 0.5270878672599792, -0.09943412989377975, 0.524109423160553, 0.09161839634180069, 0.26415398716926575, -0.12291955202817917, -0.07961887866258621, 0.028933623805642128, 0.0015673694433644414, 0.1388506442308426, 0.19107505679130554, -0.047642242163419724, -0.18431757390499115, 0.44632264971733093, 0.2602831721305847, 0.02291334979236126, -0.05856885761022568, -0.11584245413541794, 0.12103917449712753, 0.21230608224868774, 0.053765106946229935, 0.19822287559509277, 0.12853293120861053, -0.00993657298386097, -0.021549465134739876, 0.1386260986328125, 0.17772607505321503, -0.0943024531006813, 0.17931179702281952, 0.3338978886604309, -0.044751785695552826, 0.07005070894956589, -0.015123055316507816, 0.20968864858150482, -0.2649385929107666, 0.49404266476631165, -0.042700402438640594, -0.3354870676994324, -0.18271173536777496, 0.07921801507472992, -0.07608819752931595, -0.381196528673172, -0.38969582319259644, 0.2810361087322235, 0.15292905271053314, -0.20521223545074463, 0.3210583031177521, 0.10227283835411072, -0.20743891596794128, -0.31839731335639954, 0.014102025888860226, 0.005058758892118931, 0.02059122733771801, -0.07319686561822891, -0.208143413066864, -0.10687313228845596, -0.2547844350337982, -0.3143124580383301, -0.24013014137744904, 0.3415866792201996, 0.026548022404313087, 0.31686580181121826, 0.9826903343200684, -0.0947195366024971, -0.3102535903453827, -0.00440110731869936, -0.28854766488075256, -0.13767190277576447, -0.28108280897140503, 0.5194311141967773, -0.00045891685294918716, 0.19117338955402374, -0.11881829798221588, 0.4386407434940338, -0.24600102007389069, 0.0624338760972023, 0.13398383557796478, -0.06223420053720474, 0.39550772309303284, 0.22146643698215485, -0.06691090762615204, 0.05658340826630592, 0.24031370878219604, -0.1898544728755951, 0.07850772887468338, 0.17494924366474152, 0.14173215627670288, -0.023440035060048103, 0.5813657641410828, -0.14802740514278412, -0.15876510739326477, -0.35590454936027527, -0.5103597044944763, 0.048198435455560684, 0.061479877680540085, -0.049838557839393616, -0.26680219173431396, -0.3365262448787689, 0.13794828951358795, 0.4108254015445709, -0.2185712456703186, 0.08282292634248734, -0.033745091408491135, -0.265791118144989, 0.031353916972875595, -0.03906331956386566, -0.3062026798725128, -0.2801215350627899, 0.08271992206573486, 0.23967556655406952, 0.07051277160644531, 0.11319248378276825, 0.15329426527023315, -0.24906082451343536, -0.39302077889442444, 0.2865007519721985, 0.024167224764823914, 0.13504578173160553, -0.11266529560089111, 0.21596622467041016, 0.2123824656009674, 0.1900208741426468, 0.21709223091602325, 0.21957209706306458, 0.07736586034297943, -0.2173907309770584, -0.00811112578958273, 0.0241395290941, -0.006425430998206139, -0.10758733749389648, -0.07679730653762817, 0.25262266397476196, 0.11839384585618973, 0.15080398321151733, -0.055112842470407486, 0.17012131214141846, 0.2972308099269867, 0.10124485939741135, -0.1686335653066635, -0.03615434095263481, -0.39485815167427063, 0.08251205831766129, 0.013297966681420803, -0.020506564527750015, -0.12428005784749985, 0.17151786386966705, 0.3190533518791199, -0.14972154796123505, 0.12844283878803253, 0.19389159977436066, -0.2011641561985016, 0.01622927561402321, 0.25852522253990173, -0.17997059226036072, 0.2840501666069031, 0.2247115969657898, -0.007128493394702673, 0.17359419167041779, -0.14914289116859436, 0.17779682576656342, 0.15074272453784943, -0.008272584527730942, 0.37916141748428345, 0.08276651799678802, 0.491883784532547, 0.06266017258167267, 0.0409867987036705, -0.01647976040840149, 0.13259854912757874, 0.27422088384628296, -0.12779460847377777, -0.2125939279794693, 0.15665225684642792, -0.0656215250492096, -0.1127953976392746, -0.2664127051830292, -0.14766378700733185, -0.30673038959503174, 0.07486560940742493, 0.08029107004404068, -0.07187938690185547, 0.06584624946117401, -0.4538493752479553, -0.033108778297901154, 0.04242444410920143, -0.611492931842804, 0.033873043954372406, -0.21734006702899933, 0.19863733649253845, -0.042018987238407135, 0.00021503001335076988, -0.022386906668543816, 0.4436037838459015, 0.5154752135276794, 0.35095685720443726, -0.4484282433986664, -0.5637549757957458, -0.026012424379587173, -0.06252124160528183, -0.05686517432332039, 0.0072709801606833935, -0.03346037492156029, -0.12157195061445236, -0.24439208209514618, 0.157859668135643, 0.052099768072366714, -0.17049440741539001, -0.0017593295779079199, -0.13900765776634216, -0.074661985039711, -0.1779552549123764, -0.11606013029813766, -0.25365179777145386, -0.20014090836048126, 0.4121740460395813, 0.31102442741394043, 0.16609810292720795, 0.10233010351657867, 0.0647420659661293, -0.039392177015542984, -0.1045549139380455, -0.27170687913894653, 0.0465514212846756, 0.2692863345146179, 0.37719401717185974, -0.2905591130256653, -0.07008707523345947, 0.12235008925199509, -0.35894742608070374, -0.013367267325520515, 0.345251202583313, -0.26812565326690674, -0.10456352680921555, -0.13152623176574707, 0.6544307470321655, -0.18099473416805267, 0.06111081317067146, 0.4917134642601013, 0.18007609248161316, 0.12596605718135834, 0.06454867869615555, -0.05752870440483093, 0.058177120983600616, 0.4751569628715515, 0.05369309335947037, -0.19743473827838898, 0.35452499985694885, -0.16389904916286469, 0.6824058890342712, -0.26742321252822876, -0.03245500847697258, 0.2890656292438507, -0.45218777656555176, 0.12435127049684525, -0.17546452581882477, -0.051814883947372437, -0.3754044473171234, -0.040245745331048965, -0.19113360345363617, -0.1986829936504364, -0.05920758098363876, -0.25718462467193604, -0.02696458250284195, -0.07670128345489502, -0.034670449793338776, -0.14327725768089294, 0.2570274770259857, -0.6129854321479797, 0.47674113512039185, -0.023436101153492928, -0.16368353366851807, -0.5934672951698303, -0.08922842890024185, -0.16046200692653656, -0.102715864777565, 0.16458313167095184, -0.2988652288913727, -0.4919734001159668, -0.43001630902290344, -0.39207154512405396, 0.019491901621222496, 0.19570133090019226, 0.165550097823143, 0.03772963583469391, -0.26861652731895447, -0.031110476702451706, 0.07758372277021408, 0.24063827097415924, -0.35993459820747375, -0.16890469193458557, 0.02841159887611866, 0.2840738594532013, -0.2831539809703827, -0.053414199501276016, 0.14231225848197937, 0.25846490263938904, -0.2029891163110733, 0.3765675127506256, -0.2487463355064392, 0.15613651275634766, 0.4884977638721466, 0.046010322868824005, -0.12589655816555023, 0.03595484048128128, -0.21192452311515808, -0.14575353264808655, -0.12958480417728424, -0.01020573265850544, -0.1028546616435051, -0.1048988327383995, 0.2832600772380829, -0.12690486013889313, -0.3473350405693054, 0.0521850511431694, -0.08328777551651001, 0.2079722136259079, 0.18581101298332214, 0.15459080040454865, 0.35816287994384766, -0.1583479940891266, -0.037782467901706696, -0.018906578421592712, 0.4107251763343811, 0.036946963518857956, -0.3677833080291748, -0.2743692398071289, -0.26123905181884766, 0.8111658692359924, -0.05337271839380264, 0.04211670160293579, 0.6886083483695984, -0.25107911229133606, -0.08837736397981644, -0.31546029448509216, 0.02379292994737625, 0.39555102586746216, -0.2213723510503769, -0.20909856259822845, -0.44959166646003723, 0.6590724587440491, -0.06080520525574684, 0.0022971676662564278, 0.2921189069747925, 0.17649711668491364, -0.20200902223587036, 0.6029344797134399, 0.028951453045010567, 0.7561178207397461, -0.16065038740634918, 0.15962649881839752, 0.3366755545139313, -0.20070867240428925, 0.28062576055526733, -0.11726680397987366, -0.064888134598732, -0.3031126856803894, -0.14779652655124664, -0.03947336971759796, -0.2222871333360672, 0.0863223448395729, 0.18382351100444794, -0.11417114734649658, -0.1544332504272461, -0.10096797347068787, 0.3915695250034332, -0.029187317937612534, 0.3354981243610382, 0.0553731769323349, -0.212038055062294, -0.15365168452262878, -0.015315319411456585, -0.10985662788152695, -0.11938489973545074, -0.16789326071739197, -0.1553381085395813, -0.2872811257839203, -0.2775653302669525, -0.11468154191970825, -0.04278042912483215, -0.2601374387741089, 0.039852045476436615, -0.025315845385193825, -0.1899043321609497, 0.06469371169805527, 0.05958253890275955, -0.06658842414617538, -0.11982090771198273, -0.0020900489762425423, 0.24607965350151062, 0.22790522873401642, 0.23593547940254211, 0.10825657844543457, 0.018383843824267387, 0.10201890766620636, -0.030978096649050713, -0.2448405772447586, 0.2957393527030945, -0.16050618886947632, -0.512387752532959, -0.035795725882053375, 0.015374520793557167, 0.10526302456855774, -0.23303669691085815, -0.36217719316482544, 0.14114171266555786, -0.14203444123268127, -0.11774385720491409, 0.04394950345158577, 0.038362156599760056, -0.0065550534054636955, 0.19055160880088806, 0.22578483819961548, -0.11663173139095306, 0.045763049274683, 0.00294970883987844, -0.03801967576146126, 0.1824086755514145, 0.4506613314151764, -0.21037332713603973, -0.003963451366871595, 0.004760471172630787, 0.04155464842915535, 0.29393234848976135, -0.48685792088508606, -0.2583300769329071, 0.276318222284317, 0.15034276247024536, -0.17294389009475708, 0.10778793692588806, -0.2781788408756256, 0.26932254433631897, -0.23988252878189087, -0.0899365246295929, -0.39138928055763245, 0.31008145213127136, 0.07208660244941711, 0.2564845383167267, 0.09135407954454422, 0.31308144330978394, -0.24481181800365448, 0.28520599007606506, -0.15283934772014618, -0.21535290777683258, 0.3948776125907898, 0.31188225746154785, -0.01827961392700672, 0.3555009663105011, 0.06666987389326096, -0.3369538187980652, 0.10577097535133362, -0.07933004200458527, 0.1960591971874237, -0.11483544111251831, 0.03339208662509918, 0.1906638741493225, 0.13417983055114746, -0.25455376505851746, -0.27063947916030884, -0.30312401056289673, -0.027735255658626556, -0.18334035575389862, -0.1302247792482376, -0.2740216851234436, -0.21453285217285156, 0.1525447964668274, 0.28623899817466736, 0.2720694839954376, -0.1430952250957489, 0.1244456097483635, 0.02828817069530487, 0.11056878417730331, -0.040976110845804214, 0.23311571776866913, -0.21324191987514496, 0.2029622197151184, -0.006632285192608833, 0.005565998610109091, -0.05142372474074364, -0.14761261641979218, 0.30387967824935913, -0.134299173951149, 0.08422207832336426, -0.12516871094703674, 0.2900976240634918, -0.022113049402832985, -0.17565377056598663, 0.23964925110340118, 0.17069029808044434, 0.12197922170162201, -0.3873327970504761, 0.17350853979587555, 0.37579959630966187, -0.2174306958913803, 0.15063083171844482, 0.22362792491912842, 0.1972637176513672, 0.6157657504081726, -0.27231886982917786, 0.022100908681750298, -0.19723466038703918, -0.1329648345708847, 0.07011838257312775, 0.6301004886627197, 0.0838816836476326, -0.001154738012701273, 0.1873219609260559, 0.45947322249412537, 0.0896192342042923, 0.2704049348831177, 0.13087114691734314, 0.2527271509170532, 0.33279359340667725, -0.40728676319122314, 0.19035372138023376, -0.2755207121372223, 0.039606813341379166, -0.042498935014009476, 0.3121160566806793, -0.1131843701004982, 0.3751172721385956, 0.23978745937347412, 0.4041920304298401, -0.17173412442207336, 0.12882640957832336, 0.19296152889728546, -0.02127135545015335, 0.057484742254018784, 0.2609865069389343, 0.015399768017232418, 0.015206447802484035, -0.19810861349105835, -0.04709240794181824, -0.3349757194519043, 0.023803483694791794, 0.03175187110900879, 0.1960807740688324, 0.12628905475139618, 0.6106856465339661, 0.3089272677898407, 0.1500253826379776, -0.11028772592544556, -0.10664644837379456, -0.3961721956729889, -0.184077650308609, -0.19288569688796997, 0.0807412713766098, 0.028290964663028717, 0.15307427942752838, -0.38659799098968506, 0.5614282488822937, -0.06928344070911407, -0.23056839406490326, 0.08210314065217972, 0.00999222882091999, 0.24774767458438873, 0.1952478140592575, -0.1186823919415474, 0.08150670677423477, -0.008298123255372047, 0.09474866092205048, 0.14387595653533936, 0.18825870752334595, -0.20915623009204865, 0.46249067783355713, 0.2958877682685852, -0.6133108139038086, 0.020360827445983887, 0.1428033858537674, 0.07566018402576447, -0.19683237373828888, 0.3214891850948334, 0.1661861538887024, -0.05560003221035004, -0.24380089342594147, -0.0070667266845703125, 0.013825811445713043, 0.15968388319015503, 0.29414260387420654, 0.284810870885849, -0.16666898131370544, -0.08294619619846344, -0.5021369457244873, -0.013130949810147285, -0.13947297632694244, -0.2369985729455948, 0.4343598186969757, 0.059833724051713943, 0.16779783368110657, 0.05578473582863808, 0.27529385685920715, -0.20919650793075562, 0.06860888749361038, 0.10435362905263901, 0.12135041505098343, -0.24911178648471832, -0.22000916302204132, 0.15547525882720947, -0.1498524695634842, -0.047301292419433594, -0.0012171429116278887, 0.11408749967813492, -0.07107646763324738, -0.3338565528392792, -0.155970960855484, 0.04471055790781975, 0.11175842583179474, 0.4848422110080719, -0.3177313506603241, 0.43254610896110535, -0.07349150627851486, 0.20760689675807953, -0.1644306778907776, -0.30241525173187256, -0.3349882960319519, 0.17365382611751556, -0.1974717080593109, 0.1441139429807663, 0.10213157534599304, -0.02773202583193779, -0.26010996103286743, -0.11214610189199448, -0.39946505427360535, -0.40512505173683167, -0.16752061247825623, 0.2998759150505066, -0.052384018898010254, 0.11328811198472977, -0.09259580820798874, -0.11970426142215729, -0.06162762641906738, 0.26050692796707153, 0.010366699658334255, -0.13408169150352478, 0.2029549926519394, -0.0630798414349556, 0.018717849627137184, 0.10502124577760696, 0.08107665181159973, 0.08594106137752533, -0.023625599220395088, -0.578327476978302, -0.18106645345687866, 0.42278972268104553, -0.0685620978474617, 0.21022094786167145, 0.3711637854576111, 0.06598832458257675, 0.21144650876522064, -0.21805284917354584, 0.6425334811210632, -0.495838463306427, 0.28594669699668884, -0.4440029263496399, -0.2989968955516815 ]
https://github.com/huggingface/datasets/issues/256
[Feature request] Add a feature to dataset
Maybe you can use `with_indices`? ```python new_info = list of length dataset['train'] def some_function(indice, x): # adds new_info[index of x] as a field to x x['new_info'] = new_info_x[indice] return x dataset['train'] = dataset['train'].map(some_function, with_indices=True) ```
Is there a straightforward way to add a field to the arrow_dataset, prior to performing map?
35
[Feature request] Add a feature to dataset Is there a straightforward way to add a field to the arrow_dataset, prior to performing map? Maybe you can use `with_indices`? ```python new_info = list of length dataset['train'] def some_function(indice, x): # adds new_info[index of x] as a field to x x['new_info'] = new_info_x[indice] return x dataset['train'] = dataset['train'].map(some_function, with_indices=True) ```
[ -0.10782375931739807, -0.09503686428070068, -0.12450113892555237, -0.15144851803779602, 0.18715673685073853, 0.30071794986724854, 0.18383494019508362, 0.2558493912220001, 0.3210428059101105, 0.15874025225639343, 0.528386652469635, 0.6252443194389343, -0.23471397161483765, 0.3278804421424866, 0.1876334547996521, -0.05337581783533096, 0.014195703901350498, 0.22495722770690918, 0.0846671313047409, 0.06138869747519493, -0.36177441477775574, -0.45333200693130493, -0.006954391021281481, -0.19572772085666656, -0.18811936676502228, -0.09189743548631668, 0.09725130349397659, -0.3355695903301239, -0.13132204115390778, -0.5429758429527283, -0.030196717008948326, -0.11675305664539337, -0.09235706180334091, 0.05240335687994957, -0.00011864180851262063, -0.04220277816057205, 0.22121258080005646, 0.1339968591928482, -0.055813536047935486, -0.15940600633621216, -0.5856687426567078, -0.5728532075881958, 0.1825902909040451, -0.3350243866443634, -0.04295044392347336, -0.2290671020746231, 0.05934879928827286, -0.4260801374912262, -0.18033020198345184, 0.057260312139987946, 0.16376429796218872, -0.06798264384269714, 0.2337603121995926, -0.03600139915943146, 0.45585164427757263, 0.1536865085363388, -0.31628909707069397, -0.2017425000667572, 0.006071866489946842, 0.004140273202210665, 0.2546449601650238, 0.28261494636535645, 0.12684135138988495, -0.35485172271728516, 0.39189502596855164, 0.14017094671726227, 0.15555208921432495, -0.23561516404151917, -0.29178568720817566, 0.08046277612447739, 0.5871174931526184, -0.26314717531204224, -0.4045744240283966, -0.07981366664171219, 0.2646791934967041, -0.4920729994773865, -0.07414694875478745, -0.1404271125793457, 0.19637373089790344, -0.06944965571165085, 0.20919352769851685, -0.43327948451042175, 0.014272084459662437, 0.29404231905937195, 0.21386200189590454, 0.5456321835517883, 0.11433429270982742, 0.09206514805555344, -0.042327530682086945, -0.16449671983718872, 0.07411126792430878, -0.0618492066860199, -0.008135031908750534, 0.4773365259170532, -0.2043195515871048, -0.2738352417945862, 0.12721650302410126, -0.458798885345459, 0.044262517243623734, 0.11551731824874878, -0.04193120077252388, -0.05659957975149155, -0.1757652759552002, 0.16065014898777008, 0.1501179188489914, 0.10764764249324799, 0.005229835864156485, 0.26772111654281616, -0.10153787583112717, -0.3580118715763092, -0.044341422617435455, -0.27044275403022766, 0.22546695172786713, -0.06495857983827591, 0.34454235434532166, 0.04793664067983627, 0.27503693103790283, 0.09163980185985565, 0.10365064442157745, 0.012059001252055168, -0.16639789938926697, -0.12385145574808121, 0.08398523926734924, 0.12303559482097626, 0.2344738394021988, 0.005437242332845926, -0.122979536652565, 0.33726367354393005, 0.34589794278144836, 0.3112014830112457, -0.10744243860244751, -0.2126326858997345, 0.15473470091819763, 0.13930122554302216, -0.07659454643726349, 0.08563777804374695, 0.1823190599679947, -0.02698063664138317, 0.15824759006500244, 0.10241589695215225, 0.22722609341144562, -0.18289755284786224, 0.2606954872608185, 0.21108995378017426, -0.18375709652900696, 0.20895735919475555, 0.05182564631104469, 0.11678792536258698, -0.31446319818496704, 0.3690933585166931, -0.2824326157569885, -0.34893798828125, -0.08264155685901642, 0.15238600969314575, 0.12727351486682892, -0.34465980529785156, -0.19757361710071564, 0.43965205550193787, 0.037064943462610245, -0.1894793063402176, 0.3492395281791687, 0.20721937716007233, -0.4341922700405121, -0.3129715621471405, -0.027673233300447464, 0.14559754729270935, 0.012092922814190388, -0.04480588808655739, -0.22124025225639343, 0.09285032004117966, -0.26088008284568787, -0.21460340917110443, -0.19814810156822205, 0.20574712753295898, -0.06801748275756836, 0.3534967601299286, 0.8596594929695129, -0.1093168631196022, -0.3311026692390442, 0.14190684258937836, -0.3039420545101166, -0.05116915702819824, -0.13902799785137177, 0.5475512146949768, 0.10056758671998978, 0.01788169890642166, 0.07484526187181473, 0.26756367087364197, -0.13412080705165863, -0.08106429129838943, 0.08019834011793137, -0.07130162417888641, 0.31104013323783875, 0.07570677995681763, -0.13749827444553375, 0.08273087441921234, 0.21401987969875336, -0.4347313344478607, 0.010431589558720589, 0.18272149562835693, 0.035351626574993134, 0.14711761474609375, 0.48658278584480286, -0.06227688491344452, -0.13924607634544373, -0.4023253917694092, -0.31506815552711487, 0.08501135557889938, 0.2560749351978302, -0.131555438041687, -0.05649235099554062, -0.38380497694015503, 0.041190970689058304, 0.3376159965991974, -0.09309516102075577, 0.1920473426580429, 0.018098389729857445, -0.25800153613090515, -0.27710264921188354, -0.11425518989562988, -0.38490021228790283, -0.2202652245759964, 0.002568703144788742, 0.034022118896245956, 0.042967550456523895, -0.03833300620317459, 0.2549906075000763, -0.06940700858831406, -0.4769134223461151, 0.1799546778202057, 0.013504508882761002, 0.06662026792764664, -0.20327702164649963, 0.17553836107254028, 0.22847120463848114, 0.027919694781303406, 0.3076649010181427, 0.3209230303764343, 0.10659816116094589, -0.2198811173439026, -0.08064287900924683, 0.2785795032978058, -0.010855047963559628, -0.13450779020786285, -0.11628405749797821, 0.2652430832386017, -0.009050470776855946, 0.2704109847545624, -0.17314520478248596, 0.05392482504248619, 0.1970149278640747, 0.09343361854553223, -0.23762734234333038, -0.19930393993854523, -0.37924182415008545, 0.004247537814080715, -0.10104098170995712, -0.12898555397987366, -0.03706362470984459, 0.08359095454216003, 0.3455304205417633, -0.1041751503944397, 0.14966237545013428, 0.1654144525527954, -0.17373362183570862, 0.23146633803844452, 0.04431762918829918, -0.22118546068668365, 0.2762588560581207, 0.25379839539527893, -0.01672222651541233, 0.03874720260500908, 0.08605068922042847, 0.18443995714187622, 0.2718242108821869, -0.007289875764399767, 0.217880979180336, 0.04036572948098183, 0.3167014420032501, 0.07693012058734894, 0.04690031334757805, -0.18509499728679657, 0.06648460775613785, 0.13589434325695038, -0.14576521515846252, -0.18152819573879242, 0.189041867852211, -0.013939335010945797, -0.07008681446313858, -0.19629836082458496, -0.12675544619560242, -0.26794692873954773, 0.027739517390727997, -0.003865544917061925, -0.1771870106458664, 0.19430401921272278, -0.39626002311706543, 0.09610636532306671, 0.2864939570426941, -0.622766375541687, 0.09142815321683884, -0.09023285657167435, 0.2919759154319763, 0.02251739241182804, -0.023435281589627266, -0.15010474622249603, 0.37811148166656494, 0.5751971006393433, 0.3162941336631775, -0.35729238390922546, -0.4256480634212494, -0.10765653103590012, 0.0035931658931076527, 0.00033796680509112775, -0.06024516373872757, 0.040925052016973495, -0.30328330397605896, -0.2962276041507721, 0.0606921948492527, 0.13358698785305023, -0.13462533056735992, -0.20707128942012787, 0.0026516388170421124, 0.06641124188899994, -0.053892239928245544, -0.12747810781002045, -0.14594553411006927, -0.35328254103660583, 0.42661529779434204, 0.19541335105895996, 0.14052174985408783, 0.06111868470907211, 0.1954493522644043, -0.04333368316292763, 0.07803770899772644, -0.2725585103034973, -0.11933792382478714, 0.05274788662791252, 0.4106858968734741, -0.17305047810077667, 0.10698646306991577, 0.035122428089380264, -0.4268287420272827, -0.22572645545005798, 0.3809041976928711, -0.2895033657550812, -0.0058324700221419334, -0.12559911608695984, 0.538993239402771, -0.13417914509773254, 0.340548574924469, 0.48506808280944824, 0.22279779613018036, 0.02946007251739502, 0.021035652607679367, -0.19615676999092102, 0.021907953545451164, 0.42014798521995544, 0.11486729234457016, 0.023869113996624947, 0.3983839452266693, -0.2614211142063141, 0.6585190296173096, 0.031671009957790375, -0.032382380217313766, 0.20639586448669434, -0.353101521730423, 0.15594233572483063, -0.2816552519798279, -0.22521504759788513, -0.3181140720844269, -0.0033166890498250723, -0.28536921739578247, -0.2781780958175659, -0.11555934697389603, -0.30262088775634766, 0.1344175636768341, -0.07037705928087234, 0.04520706087350845, -0.031316500157117844, 0.3276204764842987, -0.6335796117782593, 0.423005074262619, -0.17747347056865692, -0.0864529013633728, -0.5579728484153748, -0.028128039091825485, -0.0567118376493454, -0.17179018259048462, 0.33563917875289917, -0.4589654803276062, -0.3039742112159729, -0.30268603563308716, -0.37319308519363403, 0.09120141714811325, 0.3420957028865814, 0.030297962948679924, 0.030382635071873665, -0.24657514691352844, -0.19401171803474426, 0.21992571651935577, 0.37680986523628235, -0.6040034890174866, -0.3728712797164917, 0.07225172966718674, 0.18964888155460358, -0.20595383644104004, 0.10578988492488861, 0.13498692214488983, 0.3845054507255554, -0.21287521719932556, 0.6205475926399231, -0.15306411683559418, 0.2649078965187073, 0.3790738582611084, 0.033612750470638275, -0.13780713081359863, -0.07590799778699875, -0.09623681753873825, 0.08342349529266357, -0.02789224497973919, 0.18274781107902527, -0.031094392761588097, -0.15286709368228912, 0.35581523180007935, -0.31061121821403503, -0.3990320563316345, 0.04455554112792015, -0.027651911601424217, 0.029153451323509216, 0.24086572229862213, 0.3204192519187927, 0.29746878147125244, 0.03641950711607933, -0.06029660627245903, -0.15779484808444977, 0.38974595069885254, -0.12093155831098557, -0.205625519156456, -0.28244030475616455, -0.1346026510000229, 0.7198036313056946, 0.13173052668571472, 0.12657715380191803, 0.6759865283966064, -0.16259688138961792, -0.009566232562065125, -0.4439990520477295, -0.10296391695737839, 0.5182792544364929, -0.12298569083213806, -0.2245124727487564, -0.5432350635528564, 0.6463302969932556, -0.004804654512554407, -0.028294933959841728, 0.5440325140953064, 0.2531411647796631, -0.13545174896717072, 0.5383806228637695, 0.11782275885343552, 0.8973996639251709, -0.13866880536079407, 0.04283318668603897, 0.12145048379898071, -0.07174099236726761, 0.2672676146030426, -0.10205697268247604, 0.025776321068406105, -0.16645769774913788, -0.47321999073028564, -0.005655397195369005, -0.1722012311220169, -0.04943978041410446, 0.21971909701824188, -0.17598508298397064, -0.0735454335808754, -0.260540634393692, 0.4527997374534607, -0.11419177055358887, 0.11354324221611023, 0.04452339932322502, -0.18081946671009064, 0.006224027369171381, 0.05872069299221039, 0.15786756575107574, -0.14149650931358337, -0.11138100177049637, -0.21460142731666565, -0.1542649120092392, -0.16474992036819458, -0.10840849578380585, -0.07962993532419205, -0.38265547156333923, 0.2215472012758255, -0.23016545176506042, -0.18397803604602814, 0.1791696697473526, -0.11378980427980423, -0.014622737653553486, 0.044529110193252563, 0.01964745484292507, 0.1710759848356247, 0.4610592722892761, 0.3057667016983032, 0.08220776170492172, -0.051059506833553314, 0.05502064898610115, 0.11929637938737869, -0.2421344369649887, 0.3804897665977478, -0.13335613906383514, -0.6124711036682129, -0.11940141767263412, 0.13560351729393005, -0.03151136636734009, -0.32865795493125916, -0.41655489802360535, 0.31461918354034424, -0.11657825857400894, -0.09958337992429733, 0.09754722565412521, 0.05068992078304291, -0.16806374490261078, 0.26017364859580994, 0.2528355121612549, -0.10141441971063614, 0.07540276646614075, 0.0831802487373352, -0.03911328315734863, 0.21924257278442383, 0.39504867792129517, -0.36131957173347473, -0.08344484120607376, -0.05955974757671356, 0.13187819719314575, 0.43490418791770935, -0.13643240928649902, -0.11470816284418106, 0.012586455792188644, 0.02734372206032276, -0.22944778203964233, 0.08169608563184738, -0.20323176681995392, 0.44457927346229553, -0.33318227529525757, -0.12998367846012115, -0.5196356177330017, 0.37453117966651917, 0.0392710343003273, 0.2512500286102295, -0.27028000354766846, -0.06735697388648987, -0.3912752568721771, 0.19432683289051056, -0.24370339512825012, -0.09802769869565964, 0.2978037893772125, 0.2728988826274872, 0.11469127237796783, 0.39287862181663513, 0.2577611804008484, -0.21834076941013336, 0.15424394607543945, -0.08650490641593933, 0.06228400394320488, -0.20511260628700256, -0.029249290004372597, 0.13380125164985657, 0.029896337538957596, -0.2434542030096054, -0.24044430255889893, -0.3856900930404663, -0.05833505839109421, -0.263461172580719, -0.21876978874206543, -0.038851961493492126, -0.14610369503498077, 0.016024194657802582, 0.07783340662717819, 0.10177222639322281, -0.07191004604101181, 0.17525583505630493, 0.04170157387852669, 0.13981366157531738, 0.031197775155305862, 0.1463407576084137, -0.11060815304517746, 0.18953953683376312, 0.019301114603877068, 0.024218304082751274, 0.05647767335176468, -0.04909275844693184, 0.31637853384017944, -0.09125842899084091, 0.11301681399345398, 0.25136977434158325, 0.3021385967731476, 0.04823758453130722, -0.2788463830947876, 0.2814735472202301, 0.05082128569483757, 0.21317851543426514, -0.33024176955223083, -0.0028980481438338757, 0.3826186954975128, -0.0630892813205719, 0.2883567810058594, 0.21525581181049347, 0.1268400400876999, 0.47748619318008423, -0.19028443098068237, -0.08661338686943054, -0.372578889131546, -0.19182221591472626, 0.15188811719417572, 0.5361401438713074, 0.25442254543304443, -0.19718655943870544, 0.17848941683769226, 0.48637813329696655, 0.3134153187274933, 0.4343242049217224, 0.26413634419441223, 0.2552037537097931, 0.4459415674209595, -0.2635873854160309, 0.12865540385246277, -0.22624851763248444, 0.2911539375782013, -0.017859630286693573, 0.12147506326436996, -0.01699693128466606, 0.5025035738945007, -0.06561198085546494, 0.11539167165756226, -0.1599331796169281, 0.14410001039505005, 0.08186908066272736, -0.04789004474878311, -0.0395784005522728, 0.4195753335952759, 0.011024918407201767, -0.06045466288924217, -0.2654605507850647, 0.026690909639000893, -0.21860651671886444, 0.18476617336273193, 0.0014628522330895066, 0.3479413390159607, 0.19774962961673737, 0.4370706379413605, 0.36954760551452637, 0.4313194751739502, -0.13437801599502563, -0.1909075230360031, -0.28548288345336914, -0.07315895706415176, -0.1457270383834839, 0.2491336613893509, -0.05513449013233185, 0.09631923586130142, -0.37944552302360535, 0.5683109760284424, -0.04564985632896423, -0.2661440372467041, -0.005539490841329098, -0.014286132529377937, 0.14350005984306335, 0.005099636502563953, -0.13831265270709991, 0.1190924122929573, -0.09623587876558304, 0.2658425271511078, 0.009951685555279255, 0.24203355610370636, -0.2771899700164795, 0.15423408150672913, 0.23918452858924866, -0.4078322947025299, -0.12459315359592438, 0.026088334619998932, 0.15422774851322174, -0.19145822525024414, 0.4852946996688843, 0.007621792145073414, -0.01376825850456953, -0.02142733708024025, 0.05038010701537132, -0.07386373728513718, 0.02860565111041069, 0.22435766458511353, 0.09719710797071457, -0.2534860670566559, 0.021725518628954887, -0.3139699399471283, 0.01837797462940216, -0.06399088352918625, -0.055977609008550644, 0.3210722506046295, 0.10840710997581482, 0.2041662037372589, -0.0006588457035832107, 0.2546183168888092, -0.4506438076496124, 0.10942284017801285, 0.2318435162305832, 0.08016957342624664, -0.2506471276283264, -0.26507672667503357, 0.08355093002319336, 0.02795141376554966, 0.025448808446526527, -0.08696818351745605, 0.12552063167095184, 0.04048427566885948, -0.20183363556861877, -0.2339790314435959, -0.1614365428686142, 0.029567845165729523, 0.5203284025192261, -0.22103551030158997, 0.26489385962486267, -0.2581799328327179, 0.12992703914642334, -0.05478009581565857, -0.2884075343608856, -0.3066641688346863, 0.2825363278388977, -0.030852651223540306, 0.15206386148929596, -0.04009949788451195, -0.06604315340518951, -0.24539218842983246, -0.0955057218670845, -0.32519251108169556, -0.5171810984611511, -0.23708920180797577, 0.19826364517211914, -0.21439620852470398, 0.007814165204763412, -0.16096167266368866, 0.09793209284543991, -0.06720045208930969, 0.24129609763622284, 0.2947179973125458, -0.08452852815389633, 0.28291055560112, 0.0013367662904784083, -0.01734636351466179, 0.022088201716542244, 0.03246412053704262, 0.2264678031206131, 0.1670636534690857, -0.47230640053749084, -0.27586084604263306, 0.4274674654006958, -0.07081367820501328, 0.04584212228655815, 0.194308340549469, 0.02714531682431698, 0.2629149258136749, -0.14147454500198364, 0.453939825296402, -0.3408811688423157, 0.3687354028224945, -0.30939391255378723, -0.2806946635246277 ]
https://github.com/huggingface/datasets/issues/254
[Feature request] Be able to remove a specific sample of the dataset
Oh yes you can now do that with the `dataset.filter()` method that was added in #214
As mentioned in #117, it's currently not possible to remove a sample of the dataset. But it is a important use case : After applying some preprocessing, some samples might be empty for example. We should be able to remove these samples from the dataset, or at least mark them as `removed` so when iterating the dataset, we don't iterate these samples. I think it should be a feature. What do you think ? --- Any work-around in the meantime ?
16
[Feature request] Be able to remove a specific sample of the dataset As mentioned in #117, it's currently not possible to remove a sample of the dataset. But it is a important use case : After applying some preprocessing, some samples might be empty for example. We should be able to remove these samples from the dataset, or at least mark them as `removed` so when iterating the dataset, we don't iterate these samples. I think it should be a feature. What do you think ? --- Any work-around in the meantime ? Oh yes you can now do that with the `dataset.filter()` method that was added in #214
[ 0.15247070789337158, -0.06869038194417953, -0.1469651162624359, -0.22110974788665771, -0.30814167857170105, 0.045166607946157455, 0.22104136645793915, 0.30834582448005676, -0.08783406764268875, 0.3214426636695862, 0.15475261211395264, 0.3221750259399414, -0.184538796544075, 0.20331990718841553, -0.07251928001642227, -0.07253450155258179, -0.134435772895813, 0.2064553201198578, -0.041687265038490295, 0.10553736984729767, -0.1516437977552414, -0.09283128380775452, -0.16311214864253998, 0.036466676741838455, 0.0001394780119881034, -0.1590096801519394, 0.1928137242794037, -0.3438686728477478, -0.23199604451656342, -0.2637732923030853, 0.24204854667186737, 0.5169219374656677, 0.07834144681692123, -0.10507460683584213, -0.00010500229836907238, -0.19779764115810394, 0.2854297161102295, 0.025228720158338547, -0.3200468122959137, 0.04273537918925285, -0.2964933514595032, -0.004286804236471653, 0.0999666079878807, -0.025343313813209534, 0.058318816125392914, -0.028504207730293274, -0.12375364452600479, -0.17155973613262177, 0.018393585458397865, 0.29118990898132324, 0.321563184261322, 0.23546536266803741, -0.37383556365966797, -0.03798944130539894, 0.1803826242685318, 0.6441881656646729, -0.24913643300533295, -0.19395960867404938, 0.4327883720397949, -0.1387518346309662, 0.05430871248245239, 0.48140066862106323, -0.13519524037837982, 0.06587190926074982, 0.2164825052022934, -0.21312497556209564, -0.1743444949388504, -0.5935268998146057, 0.11514956504106522, 0.35805806517601013, 0.7855476140975952, -0.14815263450145721, -0.15149034559726715, -0.06955870240926743, -0.07389454543590546, -0.22122418880462646, -0.2048681676387787, 0.07939551025629044, -0.41284048557281494, 0.29995259642601013, -0.30559980869293213, -0.2568860948085785, -0.13694290816783905, -0.056218795478343964, 0.018854698166251183, 0.057960208505392075, 0.025300657376646996, 0.03019704297184944, 0.23653846979141235, 0.19844099879264832, 0.3114847242832184, 0.16108062863349915, 0.04007307440042496, 0.2651873230934143, -0.17974676191806793, -0.3887879252433777, -0.011524741537868977, -0.24429509043693542, 0.43769127130508423, 0.38633716106414795, 0.06655634194612503, 0.004987520631402731, 0.03851522132754326, 0.0994897410273552, 0.5406314134597778, -0.02756604179739952, 0.34642401337623596, -0.029067620635032654, 0.15846683084964752, -0.03940135985612869, 0.1427338421344757, -0.04182245582342148, 0.41673800349235535, 0.025368232280015945, 0.05896030738949776, 0.11281751841306686, 0.4688584804534912, -0.23802906274795532, -0.4363636374473572, 0.06379574537277222, -0.22821585834026337, -0.10351180285215378, -0.17434173822402954, 0.0179104246199131, 0.49648576974868774, -0.12123193591833115, -0.2533375322818756, -0.025421196594834328, -0.22520677745342255, -0.420235812664032, -0.09881232678890228, 0.11546969413757324, -0.10273116081953049, -0.2801542282104492, 0.15785960853099823, -0.048845332115888596, 0.33152925968170166, -0.10671855509281158, 0.14422748982906342, 0.020321285352110863, 0.37136733531951904, -0.0995078980922699, 0.42198213934898376, 0.3568207621574402, -0.2871766686439514, -0.062159810215234756, -0.10544224083423615, 0.16765330731868744, -0.25525641441345215, 0.4463694095611572, -0.00016590484301559627, -0.21905474364757538, -0.28392642736434937, 0.1990804225206375, 0.09799082577228546, -0.10390695184469223, -0.003237461671233177, 0.3359578847885132, -0.2822868525981903, 0.15485437214374542, 0.10225299745798111, -0.06104112043976784, -0.16287672519683838, -0.01024699304252863, -0.11155982315540314, 0.20413440465927124, -0.40113985538482666, 0.06567814201116562, -0.34491822123527527, -0.32454827427864075, 0.14613136649131775, -0.09181219339370728, -0.3562166392803192, 0.17579776048660278, -0.19459190964698792, 0.2514718472957611, 0.2005859613418579, -0.04437713325023651, -0.23767048120498657, 0.3638537526130676, -0.08641766756772995, 0.09281759709119797, -0.24696028232574463, 0.18490256369113922, 0.10595458745956421, -0.14914144575595856, -0.3297964930534363, 0.0477573536336422, -0.1588001698255539, -0.1968521922826767, -0.03131451830267906, -0.39382967352867126, 0.356423020362854, -0.07550055533647537, 0.31616514921188354, 0.22201460599899292, 0.2586924433708191, -0.17616112530231476, 0.34096652269363403, 0.08201652020215988, 0.1753762811422348, 0.10094968974590302, 0.699893593788147, -0.18351413309574127, 0.004000967834144831, -0.3151397407054901, -0.28127938508987427, -0.05162679776549339, -0.13881202042102814, -0.12762856483459473, 0.19394372403621674, -0.5064945220947266, -0.014520055614411831, -0.0448363833129406, -0.06564274430274963, -0.2465185523033142, 0.07821885496377945, -0.23712578415870667, 0.034074172377586365, -0.38306525349617004, -0.5653281211853027, 0.014514803886413574, -0.2014598548412323, 0.002071716822683811, -0.13193781673908234, -0.1468452364206314, 0.23931296169757843, 0.11317776888608932, 0.14520445466041565, 0.1961670219898224, 0.0657992884516716, -0.06608980149030685, -0.08903173357248306, 0.20033788681030273, 0.2784399092197418, -0.2950912415981293, -0.0846455916762352, 0.03591141104698181, 0.0992266982793808, -0.16693632304668427, -0.011224718764424324, 0.1364191770553589, -0.03300970792770386, 0.10667367279529572, -0.2476150393486023, 0.3743727207183838, -0.21147146821022034, 0.29944267868995667, -0.1655457317829132, 0.07406239956617355, 0.25261521339416504, -0.2343568652868271, -0.12350572645664215, -0.17970488965511322, -0.029926814138889313, 0.027166137471795082, -0.021089734509587288, -0.1740151345729828, -0.2960759103298187, 0.11433499306440353, -0.05259564518928528, 0.15039458870887756, -0.06752828508615494, 0.2828569710254669, 0.11353018134832382, -0.12671005725860596, 0.16031794250011444, 0.17151404917240143, 0.3910118639469147, 0.15523120760917664, -0.07335429638624191, -0.024598287418484688, 0.4557511508464813, 0.038287706673145294, 0.10788963735103607, 0.18329012393951416, -0.1343275010585785, -0.019993091002106667, -0.04288670793175697, -0.08447366952896118, -0.3788740932941437, -0.05677933618426323, -0.02833610773086548, 0.08681926131248474, -0.01683385856449604, -0.05512304604053497, -0.2023082822561264, -0.5482845306396484, 0.0757298693060875, 0.19052547216415405, -0.14024098217487335, -0.1396198272705078, 0.27622899413108826, 0.16739848256111145, -0.27931469678878784, 0.2397061139345169, -0.07185284048318863, 0.6686886548995972, -0.3121204674243927, 0.3265025019645691, 0.02773502841591835, -0.010819090530276299, 0.0574963241815567, 0.245864138007164, -0.16570444405078888, 0.3721703290939331, 0.6059103012084961, 0.2086496502161026, -0.16102324426174164, -0.4974035322666168, -0.2689961791038513, 0.18128088116645813, 0.01889830455183983, 0.24957188963890076, 0.2859068810939789, 0.10402251780033112, 0.012930343858897686, 0.04376343637704849, -0.33598336577415466, -0.20384305715560913, -0.30557316541671753, -0.30221009254455566, 0.05538558587431908, 0.3313926160335541, -0.22986190021038055, -0.07973595708608627, -0.28244102001190186, -0.20691896975040436, 0.10348781198263168, -0.06935960799455643, 0.22199440002441406, 0.04093829542398453, -0.2276327759027481, -0.11302915960550308, -0.1559121161699295, -0.29180192947387695, -0.24315126240253448, -0.4499203860759735, -0.28089025616645813, -0.21447105705738068, -0.239610955119133, 0.045225825160741806, 0.28543663024902344, 0.030910145491361618, 0.15763410925865173, -0.14079828560352325, -0.3538702726364136, -0.019396714866161346, 0.26197609305381775, -0.07103677839040756, -0.07387591153383255, 0.1476152092218399, 0.05991939827799797, -0.06545080989599228, -0.025645026937127113, -0.1464361846446991, 0.0759127289056778, 0.15968726575374603, 0.006143572740256786, 0.1668519526720047, 0.1987108737230301, 0.05614551156759262, 0.6262668371200562, 0.14652486145496368, 0.07187800854444504, 0.2946552634239197, 0.09827730059623718, 0.25439193844795227, -0.145462766289711, -0.2613227665424347, 0.15030591189861298, 0.027746524661779404, -0.17628063261508942, 0.34245139360427856, -0.1752699315547943, -0.33461064100265503, 0.13411006331443787, -0.09567742794752121, 0.027436504140496254, -0.21737949550151825, 0.0990593358874321, 0.0027677898760885, 0.20486421883106232, 0.10396092385053635, -0.04694236442446709, -0.13341563940048218, -0.11006124317646027, -0.05124247819185257, -0.02318439446389675, 0.529154360294342, -0.10405364632606506, -0.7140024900436401, -0.08836837857961655, -0.39179107546806335, 0.11260160058736801, 0.10151919722557068, 0.13684800267219543, -0.01558453869074583, 0.069444939494133, 0.08839807659387589, 0.3237749934196472, 0.4941776990890503, -0.12657193839550018, -0.10960900783538818, 0.09955491870641708, -0.1879330724477768, 0.22182640433311462, 0.06909206509590149, 0.12239918112754822, 0.5511654615402222, -0.06330691277980804, -0.05561845377087593, -0.056551482528448105, -0.3648301661014557, 0.5033468008041382, 0.43311187624931335, -0.2701098322868347, -0.0743386447429657, 0.1339770406484604, -0.453962504863739, -0.162375345826149, 0.1874193698167801, 0.35845062136650085, -0.01778947003185749, 0.10468550771474838, -0.21196745336055756, 0.014727571979165077, -0.20319253206253052, 0.22605197131633759, -0.14023514091968536, 0.09246842563152313, 0.16951684653759003, 0.09728610515594482, -0.033733922988176346, 0.04439118877053261, 0.3359936475753784, 0.14401933550834656, -0.2337581068277359, -0.1483151763677597, -0.050298117101192474, -0.4831164479255676, 0.57598477602005, 0.4025353193283081, 0.06612835824489594, 0.480656236410141, -0.1611286699771881, 0.1067105382680893, -0.14301139116287231, 0.03510035201907158, -0.07897400110960007, -0.35944321751594543, -0.2998984456062317, -0.3773579001426697, 0.145207479596138, -0.23905515670776367, -0.13542960584163666, 0.5034412145614624, 0.0663280189037323, -0.33768773078918457, 0.2600627839565277, 0.12797461450099945, 0.8335615992546082, 0.21015088260173798, -0.16587458550930023, -0.31974273920059204, 0.366795152425766, 0.4445437490940094, -0.066143698990345, 0.1481742113828659, -0.15171106159687042, -0.46509450674057007, -0.09869007766246796, 0.09116103500127792, 0.245801642537117, 0.1708974689245224, 0.30363133549690247, 0.14250141382217407, -0.3331363797187805, 0.23829782009124756, 0.09685668349266052, 0.20404259860515594, 0.20447896420955658, 0.08663958311080933, 0.2796415686607361, 0.1444544643163681, -0.15371885895729065, 0.13642364740371704, -0.014669070951640606, 0.014742134138941765, 0.4568224251270294, -0.1832941770553589, -0.08785146474838257, -0.27676957845687866, -0.23192612826824188, 0.17374417185783386, -0.16774313151836395, -0.22517423331737518, 0.03703853115439415, -0.041289322078228, 0.22465255856513977, -0.16241426765918732, -0.007251035887748003, 0.2616111934185028, 0.4305461645126343, 0.26134634017944336, -0.18218538165092468, 0.089293472468853, 0.0674331784248352, -0.21702840924263, -0.17401979863643646, 0.19983063638210297, -0.0882272943854332, -0.6302385926246643, 0.04511888697743416, -0.03708036243915558, 0.1394987553358078, -0.26219266653060913, -0.17782741785049438, 0.07976613938808441, 0.19987733662128448, -0.26623183488845825, 0.17913712561130524, 0.4197262227535248, -0.15943214297294617, 0.32916757464408875, 0.14194199442863464, -0.11083810776472092, -0.13112401962280273, -0.1965714991092682, 0.24859660863876343, -0.22296972572803497, 0.2435823231935501, -0.16651006042957306, -0.21721749007701874, -0.3615174889564514, 0.0978451520204544, 0.042076557874679565, -0.2994479835033417, 0.33115142583847046, -0.1571221500635147, 0.12121943384408951, -0.07682386785745621, 0.3186172544956207, -0.2623768150806427, -0.07797502726316452, -0.14588439464569092, -0.11703036725521088, -0.10968458652496338, -0.12496677041053772, -0.2324269562959671, 0.2765316963195801, -0.31720438599586487, 0.07091918587684631, -0.29928088188171387, 0.09492715448141098, -0.35202205181121826, 0.013193577527999878, 0.201929971575737, 0.33091574907302856, 0.21085956692695618, 0.4198662042617798, -0.1643502414226532, -0.13817399740219116, -0.025409428402781487, 0.0908941775560379, 0.10136204212903976, -0.2763558626174927, -0.23958370089530945, 0.12835727632045746, -0.15293386578559875, -0.2567760646343231, 0.07819713652133942, 0.1844089925289154, -0.2350839525461197, 0.011488579213619232, 0.24109110236167908, 0.08124712109565735, 0.20361517369747162, 0.3696845769882202, 0.2126162350177765, -0.3143377900123596, -0.14658856391906738, 0.2053959220647812, 0.11152157187461853, 0.09026601165533066, 0.03731062263250351, 0.17503993213176727, 0.10161004960536957, -0.0006023042951710522, -0.013576049357652664, 0.0851759985089302, -0.05805394425988197, -0.03680231049656868, -0.17073729634284973, 0.15921896696090698, 0.13805845379829407, 0.1906602680683136, 0.11466822028160095, 0.06743738800287247, -0.20139586925506592, 0.08745729923248291, 0.22944587469100952, 0.3001912832260132, -0.37573370337486267, 0.04771546646952629, 0.2190162092447281, -0.03728827089071274, 0.048004377633333206, 0.11765032261610031, 0.33796197175979614, 0.27581435441970825, 0.19446159899234772, -0.14271405339241028, 0.14667832851409912, -0.04335886985063553, 0.19661708176136017, 0.5363406538963318, 0.07790634781122208, -0.09129314124584198, 0.20901118218898773, 0.22494392096996307, 0.08971353620290756, 0.24294917285442352, -0.23686406016349792, 0.7157300710678101, 0.4475240111351013, 0.11865030974149704, 0.044916123151779175, -0.3907008767127991, 0.3061629831790924, 0.34392088651657104, -0.08166536688804626, 0.03262649103999138, 0.397599995136261, 0.05493474006652832, -0.021674709394574165, -0.32268667221069336, -0.17906981706619263, 0.25381582975387573, 0.009351332671940327, -0.037295784801244736, -0.2358718067407608, -0.15257789194583893, 0.052614208310842514, 0.20899559557437897, -0.026710178703069687, -0.11314211040735245, 0.27018728852272034, -0.13516129553318024, -0.0969170555472374, -0.053076136857271194, 0.21122857928276062, -0.3297104239463806, 0.27649375796318054, -0.12268131226301193, -0.560858428478241, -0.3446211814880371, -0.06734547019004822, 0.33212175965309143, 0.35547420382499695, -0.2908453345298767, -0.10428047925233841, 0.10988518595695496, -0.10221555083990097, -0.3607231378555298, 0.005353428423404694, -0.28862908482551575, 0.17039798200130463, -0.00047229143092408776, 0.13740281760692596, 0.1133882999420166, 0.09339786320924759, -0.06881414353847504, 0.03512129187583923, 0.38269081711769104, 0.1045234426856041, -0.7485450506210327, 0.0754263773560524, 0.31334418058395386, -0.18351437151432037, 0.02248002402484417, -0.057337258011102676, 0.34562015533447266, -0.05090580880641937, 0.437370240688324, -0.021236518397927284, 0.1652185171842575, 0.019917083904147148, 0.14346624910831451, -0.4360465705394745, -0.038612283766269684, 0.07424737513065338, -0.23860517144203186, -0.3269576132297516, -0.17424507439136505, -0.544541597366333, -0.05266237258911133, -0.08856069296598434, 0.09180764108896255, 0.5256832242012024, -0.0007512992015108466, 0.055199529975652695, 0.2635040581226349, -0.048215851187705994, -0.2776603102684021, 0.10351597517728806, 0.04000706970691681, -0.3905743956565857, 0.04180529713630676, -0.11880706250667572, 0.3993772864341736, 0.11242763698101044, -0.3543589115142822, 0.01648636907339096, -0.21468880772590637, 0.05139932408928871, -0.2378450632095337, -0.21603074669837952, 0.45011210441589355, 0.26998472213745117, 0.39346668124198914, 0.07972020655870438, -0.09021628648042679, -0.012564929202198982, -0.14074550569057465, -0.14958074688911438, 0.008123957552015781, -0.2722083330154419, 0.007036896422505379, 0.11928253620862961, 0.23221296072006226, 0.06870628893375397, 0.376831591129303, -0.21696871519088745, 0.3306801915168762, -0.2001117765903473, 0.15201038122177124, -0.3559269607067108, -0.02005322091281414, -0.03778054937720299, 0.008259881287813187, 0.2659197449684143, 0.1712702363729477, -0.1545170396566391, 0.09603927284479141, -0.36046212911605835, -0.03381621092557907, 0.287017822265625, -0.45511412620544434, -0.2992478013038635, -0.1718945950269699, 0.3613574802875519, 0.15548500418663025, -0.5626269578933716, -0.33707794547080994, -0.07432876527309418, 0.2759283781051636, -0.17158496379852295, 0.22447071969509125, 0.3413216769695282, -0.13812187314033508, 0.015497415326535702, 0.13426829874515533, 0.22555038332939148, 0.3296644985675812, 0.010961176827549934, -0.043954066932201385, -0.20933787524700165 ]
https://github.com/huggingface/datasets/issues/252
NonMatchingSplitsSizesError error when reading the IMDB dataset
I just tried on my side and I didn't encounter your problem. Apparently the script doesn't generate all the examples on your side. Can you provide the version of `nlp` you're using ? Can you try to clear your cache and re-run the code ?
Hi! I am trying to load the `imdb` dataset with this line: `dataset = nlp.load_dataset('imdb', data_dir='/A/PATH', cache_dir='/A/PATH')` but I am getting the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/load.py", line 517, in load_dataset save_infos=save_infos, File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 363, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 421, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=33442202, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=5929447, num_examples=4537, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67125548, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}] ``` Am I overlooking something? Thanks!
45
NonMatchingSplitsSizesError error when reading the IMDB dataset Hi! I am trying to load the `imdb` dataset with this line: `dataset = nlp.load_dataset('imdb', data_dir='/A/PATH', cache_dir='/A/PATH')` but I am getting the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/load.py", line 517, in load_dataset save_infos=save_infos, File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 363, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 421, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=33442202, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=5929447, num_examples=4537, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67125548, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}] ``` Am I overlooking something? Thanks! I just tried on my side and I didn't encounter your problem. Apparently the script doesn't generate all the examples on your side. Can you provide the version of `nlp` you're using ? Can you try to clear your cache and re-run the code ?
[ -0.5058613419532776, -0.12881049513816833, 0.018225474283099174, 0.34976738691329956, 0.1497056782245636, 0.2042558491230011, 0.0464908592402935, 0.42144644260406494, 0.23764608800411224, 0.07440610229969025, -0.11682222783565521, 0.1823248267173767, -0.26138192415237427, -0.1019233912229538, -0.15735286474227905, 0.09799926728010178, -0.11061843484640121, 0.21007008850574493, 0.07444298267364502, 0.06530670821666718, -0.40281060338020325, 0.2740858793258667, -0.38298770785331726, -0.07002187520265579, -0.39139318466186523, -0.13322901725769043, 0.1459163874387741, 0.1515461951494217, 0.1913575381040573, -0.3842667043209076, 0.3481656014919281, 0.01094373594969511, 0.15339834988117218, 0.16258257627487183, -0.00011615586117841303, 0.010485534556210041, 0.6431313753128052, -0.28725287318229675, -0.2771601974964142, -0.2786664664745331, -0.28904759883880615, -0.2957002818584442, 0.2998386323451996, -0.35567963123321533, -0.09214231371879578, -0.006996223237365484, 0.33322837948799133, -0.4666486978530884, 0.10930407047271729, 0.16323330998420715, 0.17784598469734192, 0.1451755315065384, -0.11867265403270721, 0.1979512721300125, 0.02276955172419548, -0.11543576419353485, -0.10673927515745163, 0.07675007730722427, -0.024576302617788315, -0.07225694507360458, -0.11633054167032242, 0.23091085255146027, -0.44658881425857544, 0.16891387104988098, 0.39011892676353455, 0.17549824714660645, 0.3332035541534424, -0.2765009105205536, 0.07517381012439728, 0.20439758896827698, 0.5286697745323181, -0.17592297494411469, -0.29505547881126404, -0.394942969083786, 0.028565946966409683, -0.24268729984760284, 0.16411520540714264, 0.3492817282676697, -0.23489712178707123, -0.0012560189934447408, -0.3458954989910126, 0.024299321696162224, -0.22278305888175964, 0.16897420585155487, 0.3957199454307556, 0.1043047159910202, 0.11116786301136017, 0.07972797751426697, 0.28578269481658936, -0.058101072907447815, 0.4545835852622986, -0.08506209403276443, 0.14595827460289001, 0.14440394937992096, -0.27104416489601135, -0.07598777860403061, -0.21710573136806488, 0.2746356427669525, 0.008276224136352539, 0.32135817408561707, 0.19679805636405945, 0.051680613309144974, 0.1436007171869278, 0.3109806180000305, 0.2449326366186142, 0.017076551914215088, 0.14312784373760223, 0.33435681462287903, 0.04980476200580597, 0.15742118656635284, -0.1261124163866043, -0.03627024590969086, 0.0853060930967331, -0.03145637363195419, 0.08145054429769516, 0.15716513991355896, 0.2686864733695984, -0.20994822680950165, -0.5460676550865173, -0.0010156111093237996, -0.23328949511051178, -0.16518886387348175, 0.09598943591117859, 0.27547457814216614, -0.15367808938026428, 0.3319399356842041, 0.042252179235219955, 0.14243721961975098, -0.3492206931114197, -0.1216830387711525, -0.23689819872379303, 0.1727498173713684, -0.2033308446407318, 0.07712920755147934, 0.31588008999824524, 0.1044001579284668, 0.4351962208747864, -0.19862200319766998, -0.11535336077213287, -0.042089130729436874, 0.42123427987098694, -0.19036266207695007, -0.07459424436092377, 0.2226094901561737, 0.19707682728767395, 0.16234682500362396, 0.08705959469079971, -0.05072993412613869, -0.3188580274581909, 0.1813303530216217, 0.00280881323851645, -0.37743163108825684, 0.015083746053278446, 0.1790362149477005, -0.19090372323989868, -0.08627596497535706, -0.034753426909446716, 0.11344140022993088, 0.13027061522006989, -0.46340927481651306, -0.20545333623886108, -0.10737647861242294, -0.2702164351940155, -0.12326683104038239, -0.016522523015737534, 0.5770249962806702, 0.03382868319749832, -0.06373387575149536, -0.14413341879844666, 0.008088603615760803, 0.5104402303695679, 0.3860459327697754, -0.05088406801223755, -0.1670525223016739, -0.3651425540447235, 0.3389679491519928, 0.2271956503391266, -0.4194642901420593, -0.4263266623020172, 0.48374420404434204, 0.0064362287521362305, 0.257896363735199, 0.3255821764469147, 0.4054277241230011, 0.12047841399908066, -0.03258928656578064, 0.05214260518550873, 0.42401862144470215, -0.13177041709423065, -0.0142842847853899, -0.2874595522880554, -0.2950437664985657, 0.6005906462669373, 0.1494240015745163, 0.06876476854085922, -0.043636515736579895, 0.018750786781311035, 0.4665600657463074, 0.32684218883514404, -0.0016484848456457257, -0.010888787917792797, 0.16495616734027863, -0.2478446662425995, 0.3226463198661804, -0.17363058030605316, -0.17615890502929688, -0.509128749370575, 0.07417894899845123, -0.11290929466485977, 0.09083030372858047, -0.1763043850660324, -0.17812633514404297, -0.08824355155229568, -0.3431611657142639, -0.2358766496181488, 0.002842016750946641, 0.10642379522323608, 0.25046083331108093, -0.060440659523010254, 0.13977347314357758, -0.17474013566970825, 0.5486708879470825, 0.002363122534006834, 0.08294231444597244, -0.8483418822288513, 0.323914110660553, -0.17331041395664215, -0.2676153779029846, 0.3004835546016693, 0.29649439454078674, 0.2826038897037506, -0.15306638181209564, -0.11416469514369965, 0.38941872119903564, 0.09103462845087051, 0.31740495562553406, -0.16694742441177368, -0.03195219859480858, 0.2927331030368805, -0.36313432455062866, 0.1423194408416748, 0.2724504768848419, 0.13418735563755035, -0.11098483949899673, -0.039215005934238434, 0.2899012267589569, -0.3300352394580841, 0.21391169726848602, 0.07908952981233597, 0.06293481588363647, 0.1603439301252365, -0.14501696825027466, -0.07456976920366287, -0.4325861632823944, 0.453466534614563, 0.16904185712337494, -0.0718616470694542, 0.06221731752157211, -0.3637722432613373, -0.12391749024391174, 0.45984575152397156, 0.11397258192300797, 0.016814887523651123, 0.046944405883550644, -0.05134854465723038, -0.16675898432731628, 0.1503908783197403, 0.19136710464954376, 0.2858821451663971, 0.3570718765258789, -0.11386313289403915, 0.08582646399736404, -0.09416208416223526, -0.18244130909442902, 0.10858916491270065, 0.15418630838394165, 0.2679121196269989, 0.3302229642868042, -0.11676221340894699, -0.05636821314692497, -0.40070220828056335, -0.2456364780664444, 0.01614169217646122, 0.3377130329608917, -0.26687708497047424, -0.15788032114505768, -0.40978384017944336, -0.4801170527935028, -0.05684186518192291, -0.08438902348279953, -0.1401246041059494, -0.40546542406082153, -0.11674544215202332, 0.5066661238670349, 0.09027650952339172, 0.2009688913822174, -0.38603395223617554, -0.05657177418470383, -0.03842752054333687, -0.14503350853919983, -0.15850810706615448, -0.3335529863834381, -0.0711715891957283, -0.04579482972621918, 0.3911578357219696, 0.22970309853553772, 0.36297282576560974, -0.4176097512245178, -0.09487972408533096, 0.06533754616975784, 0.05407121777534485, -0.15775446593761444, -0.08009116351604462, 0.07565643638372421, 0.06884559988975525, 0.07904978841543198, 0.1566695272922516, -0.3845459222793579, 0.28425541520118713, -0.27417171001434326, -0.07604866474866867, 0.19505149126052856, 0.19364340603351593, 0.041928730905056, 0.035389676690101624, -0.36084985733032227, -0.3879700303077698, -0.4397134780883789, 0.01911478117108345, 0.28493833541870117, 0.10200805962085724, 0.16516582667827606, -0.008908743038773537, 0.022370142862200737, 0.054622940719127655, 0.17856939136981964, -0.12420772016048431, 0.025242110714316368, 0.32266294956207275, -0.029078952968120575, -0.11723800748586655, 0.056345630437135696, 0.05499814823269844, 0.15209908783435822, -0.022354768589138985, -0.4382069408893585, -0.13491855561733246, -0.14882056415081024, 0.11167063564062119, -0.09015261381864548, -0.2011873871088028, 0.3662036061286926, 0.13442003726959229, -0.022055191919207573, -0.028165360912680626, -0.2943359613418579, 0.016757557168602943, 0.06942091882228851, 0.2837188243865967, -0.014133044518530369, 0.5791599154472351, -0.06438598036766052, 0.380461722612381, 0.49873387813568115, 0.045564811676740646, 0.26855361461639404, -0.19427216053009033, 0.23928777873516083, -0.07486842572689056, -0.39638176560401917, 0.04300638660788536, -0.06591188907623291, -0.09031069278717041, 0.10268974304199219, -0.20373603701591492, -0.2834116816520691, -0.2474653422832489, -0.312391996383667, -0.4928134083747864, -0.20529189705848694, -0.04197746515274048, -0.369047611951828, 0.06717155873775482, 0.11420852690935135, 0.1570952981710434, -0.13670003414154053, -0.47861430048942566, -0.002999435178935528, 0.17202158272266388, 0.20185527205467224, 0.04542604461312294, 0.00237173680216074, 0.11249271035194397, -0.42857038974761963, 0.41041481494903564, 0.08919253200292587, 0.48090627789497375, -0.1275959312915802, 0.0004132680769544095, 0.10623745620250702, -0.039648670703172684, 0.5215784907341003, -0.34768232703208923, 0.11479312926530838, 0.07725664228200912, -0.11838556826114655, -0.6588272452354431, 0.08736693859100342, -0.13857893645763397, 0.32166215777397156, 0.47805121541023254, 0.3114856481552124, -0.2311038076877594, -0.18514584004878998, 0.19537870585918427, 0.14984965324401855, -0.12070460617542267, -0.23557373881340027, -0.20585289597511292, -0.17151731252670288, -0.4106159210205078, -0.17136718332767487, -0.047479141503572464, 0.2916358709335327, 0.13337813317775726, -0.06957930326461792, 0.05028100684285164, -0.1940113753080368, 0.31460055708885193, 0.060562051832675934, 0.2779485285282135, 0.10746226459741592, 0.25392845273017883, 0.3060101568698883, 0.3158394992351532, 0.11119155585765839, 0.4503258466720581, -0.01434464193880558, 0.04616611823439598, -0.07414469867944717, -0.10895159840583801, 0.11592932045459747, 0.17147082090377808, 0.08840851485729218, -0.13650056719779968, -0.030830947682261467, -0.062235645949840546, -0.1701073944568634, -0.10185176879167557, 0.31031057238578796, -0.07304904609918594, -0.1800835132598877, -0.5892113447189331, 0.47530072927474976, 0.22448845207691193, 0.06447426974773407, -0.052106134593486786, 0.052368760108947754, -0.24500225484371185, 0.4438096880912781, 0.14619684219360352, 0.7782341837882996, 0.2315703183412552, 0.10153371840715408, 0.023329630494117737, 0.017487239092588425, 0.5530240535736084, -0.0926302894949913, 0.40830767154693604, -0.4835376441478729, -0.12686249613761902, -0.06918475776910782, -0.14241914451122284, 0.028257356956601143, -0.003495389362797141, -0.2602637708187103, 0.48728546500205994, -0.12779301404953003, -0.3951774835586548, -0.23525622487068176, 0.46706318855285645, -0.37402722239494324, -0.06870009750127792, -0.05221933871507645, 0.11086671054363251, -0.2358676791191101, 0.2975407540798187, 0.0900801420211792, -0.1718623787164688, -0.04799342527985573, -0.060390178114175797, -0.39819619059562683, 0.2106197029352188, -0.2192734330892563, 0.2922724485397339, -0.23186062276363373, -0.15821444988250732, -0.0413428470492363, 0.1540176123380661, 0.11756838858127594, -0.2576344311237335, -0.24675829708576202, -0.17269699275493622, -0.024319572374224663, -0.2438659816980362, 0.03164684772491455, 0.1261456459760666, 0.39649492502212524, -0.13963399827480316, -0.11366153508424759, 0.01961788348853588, 0.0792001411318779, -0.23061758279800415, 0.21631358563899994, -0.1996915638446808, 0.024709980934858322, -0.1647001951932907, -0.5514364242553711, -0.029141752049326897, -0.1771264523267746, -0.14537817239761353, 0.09008879214525223, -0.09608060121536255, -0.1841149926185608, 0.07291290163993835, 0.06232522055506706, -0.28905412554740906, -0.06277158111333847, 0.509592592716217, 0.1822737157344818, 0.10066613554954529, 0.48147499561309814, 0.008604908362030983, -0.2807367444038391, -0.2713318169116974, 0.10447753220796585, -0.13354644179344177, -0.4408511519432068, 0.13959506154060364, -0.013084528036415577, 0.29149627685546875, 0.2384902983903885, 0.07681207358837128, 0.296293705701828, 0.11486279219388962, -0.07309269905090332, -0.4691394567489624, -0.2807099223136902, 0.15273500978946686, -0.2083531618118286, 0.3305927515029907, -0.11062051355838776, 0.24013131856918335, 0.03889280930161476, 0.0792192667722702, -0.26346254348754883, -0.01908326894044876, -0.31926989555358887, 0.10413356125354767, 0.25879836082458496, -0.2227340042591095, 0.06520713865756989, 0.11405222862958908, 0.11876480281352997, 0.08913245052099228, -0.10066398978233337, -0.1367291659116745, -0.044154029339551926, 0.14903752505779266, 0.06984268873929977, -0.2456953227519989, -0.30870321393013, -0.11426856368780136, -0.18540379405021667, -0.11465057730674744, -0.3026447892189026, 0.2923470735549927, -0.09454790502786636, 0.5159426927566528, -0.025602946057915688, -0.1894529163837433, -0.014907673932611942, 0.2085004448890686, -0.3110038638114929, 0.33278515934944153, -0.1651076376438141, 0.1961313635110855, 0.07027744501829147, 0.09524808079004288, -0.031940147280693054, -0.07853144407272339, -0.05739786848425865, 0.017868390306830406, 0.27452102303504944, -0.2878327965736389, 0.03306124359369278, 0.2350526750087738, 0.17434270679950714, 0.4963512122631073, -0.042365092784166336, -0.21415302157402039, 0.0062149204313755035, 0.1651078462600708, -0.444652259349823, 0.11293859779834747, 0.5683698058128357, 0.028219526633620262, -0.017522698268294334, 0.28859636187553406, 0.20169150829315186, -0.026985881850123405, -0.07953761518001556, 0.04915427416563034, 0.5171207189559937, -0.3017062544822693, 0.13687627017498016, 0.14697100222110748, 0.042996641248464584, -0.12275134772062302, 0.16442255675792694, 0.21189779043197632, 0.3436451852321625, 0.5141322016716003, -0.19191047549247742, 0.3020539879798889, -0.21191345155239105, 0.19079849123954773, -0.30469176173210144, -0.3163418769836426, -0.11835034191608429, 0.29242655634880066, 0.015544462017714977, 0.183310404419899, -0.0010100570507347584, 0.21477298438549042, -0.20411410927772522, 0.1257144659757614, -0.22978557646274567, 0.13506737351417542, -0.16725623607635498, -0.03253370523452759, -0.13844497501850128, -0.09183774888515472, -0.3104116916656494, -0.019423503428697586, -0.0098299914970994, 0.12131193280220032, 0.16993653774261475, 0.2625780403614044, 0.03484605997800827, -0.3329252004623413, 0.06705710291862488, 0.06070711091160774, 0.19770050048828125, -0.34149885177612305, 0.150621697306633, 0.042752962559461594, 0.16716699302196503, 0.12540097534656525, 0.5256481170654297, 0.5326805114746094, 0.38182899355888367, -0.4976467490196228, 0.10001027584075928, 0.07873460650444031, -0.07441458106040955, 0.005149591248482466, 0.415168821811676, 0.2417096048593521, 0.1278495341539383, 0.3802852928638458, 0.068755142390728, -0.07183118909597397, 0.32950565218925476, 0.08494048565626144, -0.06180233508348465, -0.050109878182411194, 0.4606258273124695, -0.11140866577625275, 0.08408186584711075, -0.26166635751724243, 0.09434955567121506, -0.3821592926979065, -0.27049779891967773, 0.3131410479545593, -0.2778037488460541, 0.20219950377941132, 0.0626501590013504, 0.04186536371707916, -0.3012946546077728, 0.4437077045440674, 0.3239646255970001, -0.014916111715137959, -0.3931872248649597, -0.045174915343523026, -0.6925984025001526, 0.14870290458202362, -0.17574761807918549, -0.11781848222017288, 0.05300290137529373, 0.388668030500412, -0.2979031503200531, 0.0005519267288036644, -0.062254246324300766, 0.5312166213989258, -0.13506744801998138, 0.10482718050479889, -0.11336468905210495, -0.20269551873207092, -0.15233305096626282, -0.1748942732810974, -0.11979533731937408, -0.24344508349895477, 0.04054854437708855, -0.316258043050766, 0.04632912948727608, -0.1581527143716812, -0.07246123999357224, 0.008551924489438534, 0.6363363862037659, 0.03010689653456211, 0.3228031098842621, 0.6062830090522766, -0.15318633615970612, -0.047107912600040436, -0.17056700587272644, -0.3430226147174835, -0.2737981379032135, 0.09750023484230042, 0.337197870016098, 0.40556904673576355, -0.3082161247730255, 0.3000158965587616, -0.27147796750068665, 0.2924050986766815, -0.10043911635875702, -0.1348366141319275, -0.23408177495002747, 0.03849964216351509, -0.17717285454273224, 0.07956258952617645, -0.1113496869802475, 0.19574090838432312, 0.10678446292877197, 0.26460930705070496, -0.2957308292388916, -0.19541975855827332, 0.6806670427322388, -0.24252773821353912, -0.19015853106975555, 0.002097111428156495, 0.1362285315990448, 0.15337324142456055, -0.03697812929749489, -0.39615118503570557, 0.02395866997539997, 0.3804265260696411, -0.05427558347582817, -0.033266205340623856, 0.10674905776977539, -0.03008156828582287, -0.2003992795944214, -0.06963504105806351, -0.2387508898973465, 0.3049544095993042, -0.28760331869125366, 0.11369877308607101, -0.10272050648927689 ]
https://github.com/huggingface/datasets/issues/252
NonMatchingSplitsSizesError error when reading the IMDB dataset
Hi ! The cache is at ~/.cache/huggingface You can just delete this folder if needed :)
Hi! I am trying to load the `imdb` dataset with this line: `dataset = nlp.load_dataset('imdb', data_dir='/A/PATH', cache_dir='/A/PATH')` but I am getting the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/load.py", line 517, in load_dataset save_infos=save_infos, File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 363, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 421, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=33442202, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=5929447, num_examples=4537, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67125548, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}] ``` Am I overlooking something? Thanks!
16
NonMatchingSplitsSizesError error when reading the IMDB dataset Hi! I am trying to load the `imdb` dataset with this line: `dataset = nlp.load_dataset('imdb', data_dir='/A/PATH', cache_dir='/A/PATH')` but I am getting the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/load.py", line 517, in load_dataset save_infos=save_infos, File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 363, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/builder.py", line 421, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/mounts/Users/cisintern/antmarakis/anaconda3/lib/python3.7/site-packages/nlp/utils/info_utils.py", line 70, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) nlp.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=33442202, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=5929447, num_examples=4537, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67125548, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}] ``` Am I overlooking something? Thanks! Hi ! The cache is at ~/.cache/huggingface You can just delete this folder if needed :)
[ -0.5058613419532776, -0.12881049513816833, 0.018225474283099174, 0.34976738691329956, 0.1497056782245636, 0.2042558491230011, 0.0464908592402935, 0.42144644260406494, 0.23764608800411224, 0.07440610229969025, -0.11682222783565521, 0.1823248267173767, -0.26138192415237427, -0.1019233912229538, -0.15735286474227905, 0.09799926728010178, -0.11061843484640121, 0.21007008850574493, 0.07444298267364502, 0.06530670821666718, -0.40281060338020325, 0.2740858793258667, -0.38298770785331726, -0.07002187520265579, -0.39139318466186523, -0.13322901725769043, 0.1459163874387741, 0.1515461951494217, 0.1913575381040573, -0.3842667043209076, 0.3481656014919281, 0.01094373594969511, 0.15339834988117218, 0.16258257627487183, -0.00011615586117841303, 0.010485534556210041, 0.6431313753128052, -0.28725287318229675, -0.2771601974964142, -0.2786664664745331, -0.28904759883880615, -0.2957002818584442, 0.2998386323451996, -0.35567963123321533, -0.09214231371879578, -0.006996223237365484, 0.33322837948799133, -0.4666486978530884, 0.10930407047271729, 0.16323330998420715, 0.17784598469734192, 0.1451755315065384, -0.11867265403270721, 0.1979512721300125, 0.02276955172419548, -0.11543576419353485, -0.10673927515745163, 0.07675007730722427, -0.024576302617788315, -0.07225694507360458, -0.11633054167032242, 0.23091085255146027, -0.44658881425857544, 0.16891387104988098, 0.39011892676353455, 0.17549824714660645, 0.3332035541534424, -0.2765009105205536, 0.07517381012439728, 0.20439758896827698, 0.5286697745323181, -0.17592297494411469, -0.29505547881126404, -0.394942969083786, 0.028565946966409683, -0.24268729984760284, 0.16411520540714264, 0.3492817282676697, -0.23489712178707123, -0.0012560189934447408, -0.3458954989910126, 0.024299321696162224, -0.22278305888175964, 0.16897420585155487, 0.3957199454307556, 0.1043047159910202, 0.11116786301136017, 0.07972797751426697, 0.28578269481658936, -0.058101072907447815, 0.4545835852622986, -0.08506209403276443, 0.14595827460289001, 0.14440394937992096, -0.27104416489601135, -0.07598777860403061, -0.21710573136806488, 0.2746356427669525, 0.008276224136352539, 0.32135817408561707, 0.19679805636405945, 0.051680613309144974, 0.1436007171869278, 0.3109806180000305, 0.2449326366186142, 0.017076551914215088, 0.14312784373760223, 0.33435681462287903, 0.04980476200580597, 0.15742118656635284, -0.1261124163866043, -0.03627024590969086, 0.0853060930967331, -0.03145637363195419, 0.08145054429769516, 0.15716513991355896, 0.2686864733695984, -0.20994822680950165, -0.5460676550865173, -0.0010156111093237996, -0.23328949511051178, -0.16518886387348175, 0.09598943591117859, 0.27547457814216614, -0.15367808938026428, 0.3319399356842041, 0.042252179235219955, 0.14243721961975098, -0.3492206931114197, -0.1216830387711525, -0.23689819872379303, 0.1727498173713684, -0.2033308446407318, 0.07712920755147934, 0.31588008999824524, 0.1044001579284668, 0.4351962208747864, -0.19862200319766998, -0.11535336077213287, -0.042089130729436874, 0.42123427987098694, -0.19036266207695007, -0.07459424436092377, 0.2226094901561737, 0.19707682728767395, 0.16234682500362396, 0.08705959469079971, -0.05072993412613869, -0.3188580274581909, 0.1813303530216217, 0.00280881323851645, -0.37743163108825684, 0.015083746053278446, 0.1790362149477005, -0.19090372323989868, -0.08627596497535706, -0.034753426909446716, 0.11344140022993088, 0.13027061522006989, -0.46340927481651306, -0.20545333623886108, -0.10737647861242294, -0.2702164351940155, -0.12326683104038239, -0.016522523015737534, 0.5770249962806702, 0.03382868319749832, -0.06373387575149536, -0.14413341879844666, 0.008088603615760803, 0.5104402303695679, 0.3860459327697754, -0.05088406801223755, -0.1670525223016739, -0.3651425540447235, 0.3389679491519928, 0.2271956503391266, -0.4194642901420593, -0.4263266623020172, 0.48374420404434204, 0.0064362287521362305, 0.257896363735199, 0.3255821764469147, 0.4054277241230011, 0.12047841399908066, -0.03258928656578064, 0.05214260518550873, 0.42401862144470215, -0.13177041709423065, -0.0142842847853899, -0.2874595522880554, -0.2950437664985657, 0.6005906462669373, 0.1494240015745163, 0.06876476854085922, -0.043636515736579895, 0.018750786781311035, 0.4665600657463074, 0.32684218883514404, -0.0016484848456457257, -0.010888787917792797, 0.16495616734027863, -0.2478446662425995, 0.3226463198661804, -0.17363058030605316, -0.17615890502929688, -0.509128749370575, 0.07417894899845123, -0.11290929466485977, 0.09083030372858047, -0.1763043850660324, -0.17812633514404297, -0.08824355155229568, -0.3431611657142639, -0.2358766496181488, 0.002842016750946641, 0.10642379522323608, 0.25046083331108093, -0.060440659523010254, 0.13977347314357758, -0.17474013566970825, 0.5486708879470825, 0.002363122534006834, 0.08294231444597244, -0.8483418822288513, 0.323914110660553, -0.17331041395664215, -0.2676153779029846, 0.3004835546016693, 0.29649439454078674, 0.2826038897037506, -0.15306638181209564, -0.11416469514369965, 0.38941872119903564, 0.09103462845087051, 0.31740495562553406, -0.16694742441177368, -0.03195219859480858, 0.2927331030368805, -0.36313432455062866, 0.1423194408416748, 0.2724504768848419, 0.13418735563755035, -0.11098483949899673, -0.039215005934238434, 0.2899012267589569, -0.3300352394580841, 0.21391169726848602, 0.07908952981233597, 0.06293481588363647, 0.1603439301252365, -0.14501696825027466, -0.07456976920366287, -0.4325861632823944, 0.453466534614563, 0.16904185712337494, -0.0718616470694542, 0.06221731752157211, -0.3637722432613373, -0.12391749024391174, 0.45984575152397156, 0.11397258192300797, 0.016814887523651123, 0.046944405883550644, -0.05134854465723038, -0.16675898432731628, 0.1503908783197403, 0.19136710464954376, 0.2858821451663971, 0.3570718765258789, -0.11386313289403915, 0.08582646399736404, -0.09416208416223526, -0.18244130909442902, 0.10858916491270065, 0.15418630838394165, 0.2679121196269989, 0.3302229642868042, -0.11676221340894699, -0.05636821314692497, -0.40070220828056335, -0.2456364780664444, 0.01614169217646122, 0.3377130329608917, -0.26687708497047424, -0.15788032114505768, -0.40978384017944336, -0.4801170527935028, -0.05684186518192291, -0.08438902348279953, -0.1401246041059494, -0.40546542406082153, -0.11674544215202332, 0.5066661238670349, 0.09027650952339172, 0.2009688913822174, -0.38603395223617554, -0.05657177418470383, -0.03842752054333687, -0.14503350853919983, -0.15850810706615448, -0.3335529863834381, -0.0711715891957283, -0.04579482972621918, 0.3911578357219696, 0.22970309853553772, 0.36297282576560974, -0.4176097512245178, -0.09487972408533096, 0.06533754616975784, 0.05407121777534485, -0.15775446593761444, -0.08009116351604462, 0.07565643638372421, 0.06884559988975525, 0.07904978841543198, 0.1566695272922516, -0.3845459222793579, 0.28425541520118713, -0.27417171001434326, -0.07604866474866867, 0.19505149126052856, 0.19364340603351593, 0.041928730905056, 0.035389676690101624, -0.36084985733032227, -0.3879700303077698, -0.4397134780883789, 0.01911478117108345, 0.28493833541870117, 0.10200805962085724, 0.16516582667827606, -0.008908743038773537, 0.022370142862200737, 0.054622940719127655, 0.17856939136981964, -0.12420772016048431, 0.025242110714316368, 0.32266294956207275, -0.029078952968120575, -0.11723800748586655, 0.056345630437135696, 0.05499814823269844, 0.15209908783435822, -0.022354768589138985, -0.4382069408893585, -0.13491855561733246, -0.14882056415081024, 0.11167063564062119, -0.09015261381864548, -0.2011873871088028, 0.3662036061286926, 0.13442003726959229, -0.022055191919207573, -0.028165360912680626, -0.2943359613418579, 0.016757557168602943, 0.06942091882228851, 0.2837188243865967, -0.014133044518530369, 0.5791599154472351, -0.06438598036766052, 0.380461722612381, 0.49873387813568115, 0.045564811676740646, 0.26855361461639404, -0.19427216053009033, 0.23928777873516083, -0.07486842572689056, -0.39638176560401917, 0.04300638660788536, -0.06591188907623291, -0.09031069278717041, 0.10268974304199219, -0.20373603701591492, -0.2834116816520691, -0.2474653422832489, -0.312391996383667, -0.4928134083747864, -0.20529189705848694, -0.04197746515274048, -0.369047611951828, 0.06717155873775482, 0.11420852690935135, 0.1570952981710434, -0.13670003414154053, -0.47861430048942566, -0.002999435178935528, 0.17202158272266388, 0.20185527205467224, 0.04542604461312294, 0.00237173680216074, 0.11249271035194397, -0.42857038974761963, 0.41041481494903564, 0.08919253200292587, 0.48090627789497375, -0.1275959312915802, 0.0004132680769544095, 0.10623745620250702, -0.039648670703172684, 0.5215784907341003, -0.34768232703208923, 0.11479312926530838, 0.07725664228200912, -0.11838556826114655, -0.6588272452354431, 0.08736693859100342, -0.13857893645763397, 0.32166215777397156, 0.47805121541023254, 0.3114856481552124, -0.2311038076877594, -0.18514584004878998, 0.19537870585918427, 0.14984965324401855, -0.12070460617542267, -0.23557373881340027, -0.20585289597511292, -0.17151731252670288, -0.4106159210205078, -0.17136718332767487, -0.047479141503572464, 0.2916358709335327, 0.13337813317775726, -0.06957930326461792, 0.05028100684285164, -0.1940113753080368, 0.31460055708885193, 0.060562051832675934, 0.2779485285282135, 0.10746226459741592, 0.25392845273017883, 0.3060101568698883, 0.3158394992351532, 0.11119155585765839, 0.4503258466720581, -0.01434464193880558, 0.04616611823439598, -0.07414469867944717, -0.10895159840583801, 0.11592932045459747, 0.17147082090377808, 0.08840851485729218, -0.13650056719779968, -0.030830947682261467, -0.062235645949840546, -0.1701073944568634, -0.10185176879167557, 0.31031057238578796, -0.07304904609918594, -0.1800835132598877, -0.5892113447189331, 0.47530072927474976, 0.22448845207691193, 0.06447426974773407, -0.052106134593486786, 0.052368760108947754, -0.24500225484371185, 0.4438096880912781, 0.14619684219360352, 0.7782341837882996, 0.2315703183412552, 0.10153371840715408, 0.023329630494117737, 0.017487239092588425, 0.5530240535736084, -0.0926302894949913, 0.40830767154693604, -0.4835376441478729, -0.12686249613761902, -0.06918475776910782, -0.14241914451122284, 0.028257356956601143, -0.003495389362797141, -0.2602637708187103, 0.48728546500205994, -0.12779301404953003, -0.3951774835586548, -0.23525622487068176, 0.46706318855285645, -0.37402722239494324, -0.06870009750127792, -0.05221933871507645, 0.11086671054363251, -0.2358676791191101, 0.2975407540798187, 0.0900801420211792, -0.1718623787164688, -0.04799342527985573, -0.060390178114175797, -0.39819619059562683, 0.2106197029352188, -0.2192734330892563, 0.2922724485397339, -0.23186062276363373, -0.15821444988250732, -0.0413428470492363, 0.1540176123380661, 0.11756838858127594, -0.2576344311237335, -0.24675829708576202, -0.17269699275493622, -0.024319572374224663, -0.2438659816980362, 0.03164684772491455, 0.1261456459760666, 0.39649492502212524, -0.13963399827480316, -0.11366153508424759, 0.01961788348853588, 0.0792001411318779, -0.23061758279800415, 0.21631358563899994, -0.1996915638446808, 0.024709980934858322, -0.1647001951932907, -0.5514364242553711, -0.029141752049326897, -0.1771264523267746, -0.14537817239761353, 0.09008879214525223, -0.09608060121536255, -0.1841149926185608, 0.07291290163993835, 0.06232522055506706, -0.28905412554740906, -0.06277158111333847, 0.509592592716217, 0.1822737157344818, 0.10066613554954529, 0.48147499561309814, 0.008604908362030983, -0.2807367444038391, -0.2713318169116974, 0.10447753220796585, -0.13354644179344177, -0.4408511519432068, 0.13959506154060364, -0.013084528036415577, 0.29149627685546875, 0.2384902983903885, 0.07681207358837128, 0.296293705701828, 0.11486279219388962, -0.07309269905090332, -0.4691394567489624, -0.2807099223136902, 0.15273500978946686, -0.2083531618118286, 0.3305927515029907, -0.11062051355838776, 0.24013131856918335, 0.03889280930161476, 0.0792192667722702, -0.26346254348754883, -0.01908326894044876, -0.31926989555358887, 0.10413356125354767, 0.25879836082458496, -0.2227340042591095, 0.06520713865756989, 0.11405222862958908, 0.11876480281352997, 0.08913245052099228, -0.10066398978233337, -0.1367291659116745, -0.044154029339551926, 0.14903752505779266, 0.06984268873929977, -0.2456953227519989, -0.30870321393013, -0.11426856368780136, -0.18540379405021667, -0.11465057730674744, -0.3026447892189026, 0.2923470735549927, -0.09454790502786636, 0.5159426927566528, -0.025602946057915688, -0.1894529163837433, -0.014907673932611942, 0.2085004448890686, -0.3110038638114929, 0.33278515934944153, -0.1651076376438141, 0.1961313635110855, 0.07027744501829147, 0.09524808079004288, -0.031940147280693054, -0.07853144407272339, -0.05739786848425865, 0.017868390306830406, 0.27452102303504944, -0.2878327965736389, 0.03306124359369278, 0.2350526750087738, 0.17434270679950714, 0.4963512122631073, -0.042365092784166336, -0.21415302157402039, 0.0062149204313755035, 0.1651078462600708, -0.444652259349823, 0.11293859779834747, 0.5683698058128357, 0.028219526633620262, -0.017522698268294334, 0.28859636187553406, 0.20169150829315186, -0.026985881850123405, -0.07953761518001556, 0.04915427416563034, 0.5171207189559937, -0.3017062544822693, 0.13687627017498016, 0.14697100222110748, 0.042996641248464584, -0.12275134772062302, 0.16442255675792694, 0.21189779043197632, 0.3436451852321625, 0.5141322016716003, -0.19191047549247742, 0.3020539879798889, -0.21191345155239105, 0.19079849123954773, -0.30469176173210144, -0.3163418769836426, -0.11835034191608429, 0.29242655634880066, 0.015544462017714977, 0.183310404419899, -0.0010100570507347584, 0.21477298438549042, -0.20411410927772522, 0.1257144659757614, -0.22978557646274567, 0.13506737351417542, -0.16725623607635498, -0.03253370523452759, -0.13844497501850128, -0.09183774888515472, -0.3104116916656494, -0.019423503428697586, -0.0098299914970994, 0.12131193280220032, 0.16993653774261475, 0.2625780403614044, 0.03484605997800827, -0.3329252004623413, 0.06705710291862488, 0.06070711091160774, 0.19770050048828125, -0.34149885177612305, 0.150621697306633, 0.042752962559461594, 0.16716699302196503, 0.12540097534656525, 0.5256481170654297, 0.5326805114746094, 0.38182899355888367, -0.4976467490196228, 0.10001027584075928, 0.07873460650444031, -0.07441458106040955, 0.005149591248482466, 0.415168821811676, 0.2417096048593521, 0.1278495341539383, 0.3802852928638458, 0.068755142390728, -0.07183118909597397, 0.32950565218925476, 0.08494048565626144, -0.06180233508348465, -0.050109878182411194, 0.4606258273124695, -0.11140866577625275, 0.08408186584711075, -0.26166635751724243, 0.09434955567121506, -0.3821592926979065, -0.27049779891967773, 0.3131410479545593, -0.2778037488460541, 0.20219950377941132, 0.0626501590013504, 0.04186536371707916, -0.3012946546077728, 0.4437077045440674, 0.3239646255970001, -0.014916111715137959, -0.3931872248649597, -0.045174915343523026, -0.6925984025001526, 0.14870290458202362, -0.17574761807918549, -0.11781848222017288, 0.05300290137529373, 0.388668030500412, -0.2979031503200531, 0.0005519267288036644, -0.062254246324300766, 0.5312166213989258, -0.13506744801998138, 0.10482718050479889, -0.11336468905210495, -0.20269551873207092, -0.15233305096626282, -0.1748942732810974, -0.11979533731937408, -0.24344508349895477, 0.04054854437708855, -0.316258043050766, 0.04632912948727608, -0.1581527143716812, -0.07246123999357224, 0.008551924489438534, 0.6363363862037659, 0.03010689653456211, 0.3228031098842621, 0.6062830090522766, -0.15318633615970612, -0.047107912600040436, -0.17056700587272644, -0.3430226147174835, -0.2737981379032135, 0.09750023484230042, 0.337197870016098, 0.40556904673576355, -0.3082161247730255, 0.3000158965587616, -0.27147796750068665, 0.2924050986766815, -0.10043911635875702, -0.1348366141319275, -0.23408177495002747, 0.03849964216351509, -0.17717285454273224, 0.07956258952617645, -0.1113496869802475, 0.19574090838432312, 0.10678446292877197, 0.26460930705070496, -0.2957308292388916, -0.19541975855827332, 0.6806670427322388, -0.24252773821353912, -0.19015853106975555, 0.002097111428156495, 0.1362285315990448, 0.15337324142456055, -0.03697812929749489, -0.39615118503570557, 0.02395866997539997, 0.3804265260696411, -0.05427558347582817, -0.033266205340623856, 0.10674905776977539, -0.03008156828582287, -0.2003992795944214, -0.06963504105806351, -0.2387508898973465, 0.3049544095993042, -0.28760331869125366, 0.11369877308607101, -0.10272050648927689 ]
https://github.com/huggingface/datasets/issues/249
[Dataset created] some critical small issues when I was creating a dataset
Alright I think I fixed all the problems you mentioned. Thanks again, that will be useful for many people. There is still more work needed for point 7. but we plan to have some nice docs soon.
Hi, I successfully created a dataset and has made a pr #248. But I have encountered several problems when I was creating it, and those should be easy to fix. 1. Not found dataset_info.json should be fixed by #241 , eager to wait it be merged. 2. Forced to install `apach_beam` If we should install it, then it might be better to include it in the pakcage dependency or specified in `CONTRIBUTING.md` ``` Traceback (most recent call last): File "nlp-cli", line 10, in <module> from nlp.commands.run_beam import RunBeamCommand File "/home/yisiang/nlp/src/nlp/commands/run_beam.py", line 6, in <module> import apache_beam as beam ModuleNotFoundError: No module named 'apache_beam' ``` 3. `cached_dir` is `None` ``` File "/home/yisiang/nlp/src/nlp/datasets/bookscorpus/aea0bd5142d26df645a8fce23d6110bb95ecb81772bb2a1f29012e329191962c/bookscorpus.py", line 88, in _split_generators downloaded_path_or_paths = dl_manager.download_custom(_GDRIVE_FILE_ID, download_file_from_google_drive) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 128, in download_custom downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls) File "/home/yisiang/nlp/src/nlp/utils/py_utils.py", line 172, in map_nested return function(data_struct) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 126, in url_to_downloaded_path return os.path.join(self._download_config.cache_dir, hash_url_to_filename(url)) File "/home/yisiang/miniconda3/envs/nlppr/lib/python3.7/posixpath.py", line 80, in join a = os.fspath(a) ``` This is because this line https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/src/nlp/commands/test.py#L30-L32 And I add `--cache_dir="...."` to `python nlp-cli test datasets/<your-dataset-folder> --save_infos --all_configs` in the doc, finally I could pass this error. But it seems to ignore my arg and use `/home/yisiang/.cache/huggingface/datasets/bookscorpus/plain_text/1.0.0` as cahe_dir 4. There is no `pytest` So maybe in the doc we should specify a step to install pytest 5. Not enough capacity in my `/tmp` When run test for dummy data, I don't know why it ask me for 5.6g to download something, ``` def download_and_prepare ... if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), > utils.size_str(self.info.dataset_size or 0), ) ) E OSError: Not enough disk space. Needed: 5.62 GiB (download: 1.10 GiB, generated: 4.52 GiB) ``` I add a `processed_temp_dir="some/dir"; raw_temp_dir="another/dir"` to 71, and the test passed https://github.com/huggingface/nlp/blob/a67a6c422dece904b65d18af65f0e024e839dbe8/tests/test_dataset_common.py#L70-L72 I suggest we can create tmp dir under the `/home/user/tmp` but not `/tmp`, because take our lab server for example, everyone use `/tmp` thus it has not much capacity. Or at least we can improve error message, so the user know is what directory has no space and how many has it lefted. Or we could do both. 6. name of datasets I was surprised by the dataset name `books_corpus`, and didn't know it is from `class BooksCorpus(nlp.GeneratorBasedBuilder)` . I change it to `Bookscorpus` afterwards. I think this point shold be also on the doc. 7. More thorough doc to how to create `dataset.py` I believe there will be. **Feel free to close this issue** if you think these are solved.
37
[Dataset created] some critical small issues when I was creating a dataset Hi, I successfully created a dataset and has made a pr #248. But I have encountered several problems when I was creating it, and those should be easy to fix. 1. Not found dataset_info.json should be fixed by #241 , eager to wait it be merged. 2. Forced to install `apach_beam` If we should install it, then it might be better to include it in the pakcage dependency or specified in `CONTRIBUTING.md` ``` Traceback (most recent call last): File "nlp-cli", line 10, in <module> from nlp.commands.run_beam import RunBeamCommand File "/home/yisiang/nlp/src/nlp/commands/run_beam.py", line 6, in <module> import apache_beam as beam ModuleNotFoundError: No module named 'apache_beam' ``` 3. `cached_dir` is `None` ``` File "/home/yisiang/nlp/src/nlp/datasets/bookscorpus/aea0bd5142d26df645a8fce23d6110bb95ecb81772bb2a1f29012e329191962c/bookscorpus.py", line 88, in _split_generators downloaded_path_or_paths = dl_manager.download_custom(_GDRIVE_FILE_ID, download_file_from_google_drive) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 128, in download_custom downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls) File "/home/yisiang/nlp/src/nlp/utils/py_utils.py", line 172, in map_nested return function(data_struct) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 126, in url_to_downloaded_path return os.path.join(self._download_config.cache_dir, hash_url_to_filename(url)) File "/home/yisiang/miniconda3/envs/nlppr/lib/python3.7/posixpath.py", line 80, in join a = os.fspath(a) ``` This is because this line https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/src/nlp/commands/test.py#L30-L32 And I add `--cache_dir="...."` to `python nlp-cli test datasets/<your-dataset-folder> --save_infos --all_configs` in the doc, finally I could pass this error. But it seems to ignore my arg and use `/home/yisiang/.cache/huggingface/datasets/bookscorpus/plain_text/1.0.0` as cahe_dir 4. There is no `pytest` So maybe in the doc we should specify a step to install pytest 5. Not enough capacity in my `/tmp` When run test for dummy data, I don't know why it ask me for 5.6g to download something, ``` def download_and_prepare ... if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), > utils.size_str(self.info.dataset_size or 0), ) ) E OSError: Not enough disk space. Needed: 5.62 GiB (download: 1.10 GiB, generated: 4.52 GiB) ``` I add a `processed_temp_dir="some/dir"; raw_temp_dir="another/dir"` to 71, and the test passed https://github.com/huggingface/nlp/blob/a67a6c422dece904b65d18af65f0e024e839dbe8/tests/test_dataset_common.py#L70-L72 I suggest we can create tmp dir under the `/home/user/tmp` but not `/tmp`, because take our lab server for example, everyone use `/tmp` thus it has not much capacity. Or at least we can improve error message, so the user know is what directory has no space and how many has it lefted. Or we could do both. 6. name of datasets I was surprised by the dataset name `books_corpus`, and didn't know it is from `class BooksCorpus(nlp.GeneratorBasedBuilder)` . I change it to `Bookscorpus` afterwards. I think this point shold be also on the doc. 7. More thorough doc to how to create `dataset.py` I believe there will be. **Feel free to close this issue** if you think these are solved. Alright I think I fixed all the problems you mentioned. Thanks again, that will be useful for many people. There is still more work needed for point 7. but we plan to have some nice docs soon.
[ -0.21657980978488922, -0.016484905034303665, -0.12069719284772873, 0.3510124087333679, 0.29394662380218506, -0.023854704573750496, 0.08669032901525497, 0.40664294362068176, -0.19985456764698029, 0.021647436544299126, 0.22105184197425842, 0.2012127935886383, -0.2307063192129135, -0.008301273919641972, 0.11137556284666061, -0.199880912899971, 0.25772565603256226, 0.3090708553791046, 0.21963490545749664, -0.1952064484357834, -0.4448091685771942, 0.16689810156822205, -0.020273562520742416, 0.0794764831662178, -0.18549737334251404, -0.34843501448631287, 0.0012607109965756536, 0.3041498363018036, -0.27669233083724976, -0.3347339630126953, 0.042907215654850006, -0.02169693633913994, 0.061425965279340744, 0.17914889752864838, -0.0001148037554230541, -0.1664888709783554, 0.3816397190093994, -0.12867392599582672, -0.4447028338909149, -0.05248153582215309, -0.2777306139469147, -0.5376021862030029, 0.11462360620498657, -0.3695804476737976, 0.11700724065303802, -0.4766107201576233, -0.20998209714889526, -0.22514097392559052, 0.5323172807693481, 0.3592292070388794, 0.23350407183170319, 0.26303598284721375, 0.2306549847126007, -0.07524435222148895, 0.34096500277519226, 0.09867801517248154, -0.27400675415992737, -0.09093216061592102, 0.08401662856340408, 0.19145677983760834, 0.07316822558641434, 0.13206009566783905, 0.1426735818386078, -0.11036158353090286, 0.4137818515300751, -0.164157435297966, -0.028323601931333542, -0.5333042144775391, -0.03290634602308273, -0.04506121948361397, 0.4773087501525879, -0.3531983494758606, -0.3011023700237274, -0.34241414070129395, 0.1612420678138733, -0.13955849409103394, 0.23889249563217163, 0.43219923973083496, -0.1544613242149353, -0.11362588405609131, -0.19337500631809235, -0.1405055969953537, -0.28781405091285706, 0.18132176995277405, 0.41243523359298706, 0.08534722775220871, 0.15998582541942596, 0.050457973033189774, -0.002754664048552513, -0.10998180508613586, 0.16729304194450378, -0.33421558141708374, -0.07499420642852783, 0.35522598028182983, -0.1991506665945053, -0.19652415812015533, -0.044368430972099304, 0.03137350454926491, 0.0599544495344162, 0.23172429203987122, -0.24609175324440002, 0.004457124974578619, -0.011846985667943954, 0.001914585242047906, 0.14711959660053253, 0.19135044515132904, 0.13342905044555664, 0.06528209149837494, 0.10374784469604492, -0.03922351822257042, 0.2899763584136963, 0.05084526538848877, -0.0023808495607227087, 0.04067127779126167, -0.18650692701339722, 0.05195705592632294, -0.00403681630268693, -0.06702034175395966, -0.023956499993801117, 0.13877560198307037, -0.373466432094574, -0.250049352645874, 0.04233316332101822, 0.21878623962402344, 0.13104140758514404, 0.2003280520439148, -0.06771620362997055, 0.2659159302711487, -0.24258901178836823, -0.22122052311897278, -0.08900877833366394, 0.1785895973443985, -0.3464152216911316, -0.008724133484065533, 0.40412437915802, 0.36786964535713196, 0.3285500705242157, -0.05587230250239372, -0.15685799717903137, 0.08043086528778076, 0.36980122327804565, -0.1725635528564453, -0.1649511158466339, 0.3664528727531433, 0.11630821973085403, 0.3178185224533081, -0.2282940298318863, -0.006544949021190405, -0.1832161396741867, 0.07335548847913742, 0.0013048904947936535, -0.24342745542526245, -0.07428644597530365, 0.2257189154624939, -0.37861505150794983, 0.3559953272342682, 0.00950384046882391, 0.08509185165166855, 0.11430241912603378, -0.2616058886051178, -0.10594716668128967, 0.0004165419959463179, -0.040185894817113876, -0.37656891345977783, 0.22220875322818756, 0.3557882010936737, -0.2729796767234802, -0.11735645681619644, -0.23923784494400024, -0.43224355578422546, -0.17214596271514893, 0.014352372847497463, -0.10996977239847183, 0.44473186135292053, -0.1886315792798996, 0.059048786759376526, 0.5762612819671631, -0.17363223433494568, -0.38624992966651917, -0.0011029418092221022, 0.03781622648239136, -0.16118814051151276, 0.1443193107843399, 0.096682608127594, 0.039711613208055496, -0.28142425417900085, -0.35089394450187683, 0.39816468954086304, -0.06083564832806587, 0.08639659732580185, -0.3207009434700012, -0.09578771144151688, 0.17196263372898102, 0.2355940192937851, -0.009894955903291702, 0.09999673068523407, 0.24887865781784058, 0.23561348021030426, -0.0183623768389225, -0.14808134734630585, 0.24856798350811005, 0.32265153527259827, 0.3735436797142029, -0.32247570157051086, 0.084380142390728, 0.06099714711308479, -0.49091866612434387, 0.005899908021092415, -0.4745081961154938, 0.09893004596233368, -0.12335985153913498, 0.004432510584592819, -0.2629866600036621, -0.09008859097957611, -0.06470976769924164, -0.3086581528186798, 0.1512107253074646, -0.0789923220872879, 0.19190514087677002, -0.10692625492811203, -0.34201717376708984, 0.531126081943512, -0.18937654793262482, 0.06884832680225372, -0.5045076012611389, 0.21865548193454742, -0.16548441350460052, -0.12189621478319168, 0.3162866234779358, 0.5913745164871216, 0.18593794107437134, -0.12979625165462494, -0.15710805356502533, 0.3761416971683502, -0.00728836702182889, 0.10021395981311798, 0.13146723806858063, 0.10882315784692764, 0.33483079075813293, -0.14765948057174683, 0.37154483795166016, -0.28931331634521484, 0.10898064076900482, -0.2142603099346161, -0.3619838356971741, 0.25757211446762085, -0.09456969052553177, 0.19034792482852936, 0.21095669269561768, -0.004095699638128281, 0.24786774814128876, -0.0905265361070633, 0.03912823274731636, -0.12223948538303375, 0.2752210199832916, 0.24159036576747894, 0.3407289385795593, 0.2105957716703415, 0.1973714828491211, 0.2309572696685791, 0.2959471344947815, -0.05846165865659714, -0.1581479161977768, 0.20840738713741302, -0.04778125882148743, -0.1669328361749649, 0.2196258306503296, 0.45658770203590393, 0.5612215399742126, 0.21580632030963898, -0.3815114498138428, 0.1613033413887024, 0.0972902700304985, -0.17909766733646393, 0.1301804482936859, 0.20571087300777435, 0.2672237753868103, 0.038893625140190125, 0.2177979201078415, 0.08330007642507553, 0.09176401048898697, -0.012623832561075687, 0.08953185379505157, 0.3389057517051697, -0.17259912192821503, -0.156357541680336, -0.0319143682718277, -0.3260658383369446, -0.1701597422361374, 0.3311555087566376, -0.2817268967628479, -0.37849777936935425, -0.0004054876044392586, -0.16978970170021057, -0.02290773205459118, 0.2918808162212372, 0.21621482074260712, 0.26180657744407654, -0.18836505711078644, 0.09763749688863754, -0.3757292628288269, -0.3888497054576874, -0.17205306887626648, 0.11144477874040604, 0.12186603248119354, 0.3295152485370636, 0.5941368937492371, -0.015418875962495804, 0.12340003997087479, -0.16696768999099731, -0.10629860311746597, 0.07040062546730042, -0.04349745810031891, 0.19078513979911804, 0.007904698140919209, 0.20608024299144745, -0.0516081340610981, -0.27714717388153076, 0.18036086857318878, -0.08721011877059937, -0.2609620690345764, -0.013424658216536045, -0.14766652882099152, -0.0718899816274643, -0.0679897889494896, -0.5194197297096252, -0.42501288652420044, -0.2148086130619049, 0.1327865868806839, 0.3100059926509857, 0.18283866345882416, -0.08413466066122055, 0.14123065769672394, -0.018151257187128067, -0.001971603138372302, -0.061551645398139954, 0.006666035857051611, 0.01946764625608921, 0.202426016330719, -0.27553698420524597, -0.46299922466278076, 0.017261266708374023, -0.23236031830310822, 0.1478990614414215, 0.15142397582530975, -0.3561944365501404, -0.08580321073532104, -0.10027897357940674, 0.2035037726163864, 0.04860641062259674, 0.27675631642341614, 0.3269115090370178, 0.14195002615451813, 0.035899676382541656, -0.17444691061973572, -0.3353278338909149, 0.10888219624757767, -0.19084951281547546, 0.5968196988105774, -0.005301252007484436, 0.19314369559288025, -0.39186519384384155, 0.8372852206230164, 0.4679621160030365, -0.13227513432502747, 0.201990008354187, 0.06455019861459732, 0.25305014848709106, -0.0333256758749485, -0.21555763483047485, 0.5519693493843079, 0.1865864098072052, 0.13398267328739166, -0.008695523254573345, 0.1465139538049698, -0.20783613622188568, -0.2886021137237549, 0.17195403575897217, -0.788348913192749, -0.10101427882909775, -0.11523324996232986, -0.1320885568857193, 0.2729948163032532, 0.0884636715054512, -0.07578086853027344, -0.09280505776405334, -0.1519213616847992, 0.021182674914598465, 0.01901273801922798, 0.12560413777828217, -0.04084792360663414, -0.27788516879081726, -0.11659499257802963, -0.16610589623451233, 0.16098855435848236, -0.10690551996231079, 0.21666857600212097, -0.08798571676015854, 0.005394499748945236, 0.0756809189915657, -0.012185994535684586, 0.6508091688156128, -0.44581612944602966, -0.25025370717048645, 0.14289088547229767, 0.40555500984191895, -0.38142022490501404, 0.10120981186628342, -0.145569309592247, 0.15856708586215973, 0.1066674068570137, 0.2751341164112091, -0.42586809396743774, -0.038575928658246994, 0.1401395946741104, 0.3697843849658966, -0.16054415702819824, -0.17718957364559174, -0.09752800315618515, -0.25221315026283264, -0.22503700852394104, -0.34249937534332275, -0.6088343858718872, 0.12312446534633636, 0.04200119525194168, 0.28458836674690247, 0.02995654009282589, -0.03809249401092529, 0.061633870005607605, 0.13067710399627686, 0.4030516743659973, -0.14724713563919067, 0.2574329972267151, 0.02969195879995823, 0.18816298246383667, 0.21629612147808075, 0.3045305013656616, -0.08672164380550385, -0.07208522409200668, 0.046153467148542404, -0.11099035292863846, 0.3767858147621155, 0.21774081885814667, -0.07149332761764526, -0.20432452857494354, -0.08840561658143997, 0.08222117274999619, 0.04220760986208916, 0.013412795029580593, 0.1663259118795395, -0.21519483625888824, -0.28091374039649963, -0.3256172239780426, 0.41027987003326416, 0.1630631387233734, -0.07944698631763458, 0.1998075395822525, -0.1293652206659317, -0.014904164709150791, 0.5705707669258118, 0.18078359961509705, 1.1641913652420044, 0.016214827075600624, -0.14892904460430145, 0.32724398374557495, -0.31858545541763306, 0.7361055612564087, -0.9293349385261536, 0.03792908042669296, -0.4258749783039093, 0.21471361815929413, 0.12358199805021286, -0.2280755490064621, 0.2144610434770584, 0.08307585120201111, -0.12611965835094452, 0.188028484582901, 0.1353086233139038, 0.10121049731969833, -0.11475592851638794, 0.6493266820907593, -0.039823342114686966, -0.45924168825149536, -0.5051500797271729, 0.1028766855597496, -0.2891237139701843, 0.07602313160896301, -0.19445490837097168, -0.19792887568473816, -0.3322235643863678, -0.2097276896238327, -0.18911556899547577, 0.14024803042411804, -0.12208173424005508, 0.10482853651046753, 0.08215464651584625, -0.5340117812156677, 0.11893978714942932, 0.18710105121135712, 0.4441753029823303, 0.06933915615081787, -0.21727123856544495, 0.3504212200641632, 0.035604774951934814, 0.012237587943673134, 0.14341747760772705, 0.15614287555217743, 0.19424961507320404, -0.22305583953857422, 0.018500450998544693, 0.10972492396831512, -0.31668922305107117, 0.1906910091638565, -0.25798341631889343, -0.231459379196167, 0.26561251282691956, -0.16805961728096008, -0.0141961220651865, 0.18646524846553802, -0.17958596348762512, -0.18645554780960083, 0.1789260059595108, 0.0522347129881382, 0.023072991520166397, 0.2207249253988266, -0.008089032955467701, -0.025474512949585915, -0.2591034173965454, 0.1850202977657318, 0.2551262676715851, -0.4933581054210663, 0.2920074164867401, 0.014367258176207542, -0.1413041204214096, -0.33681899309158325, 0.33931735157966614, -0.021713262423872948, -0.5498063564300537, -0.047110043466091156, 0.15496253967285156, -0.1732400357723236, -0.1225041076540947, -0.06462569534778595, 0.12887343764305115, 0.1655760556459427, 0.18283295631408691, -0.31241166591644287, -0.381476491689682, 0.26857879757881165, -0.14783194661140442, 0.14925429224967957, -0.3125888407230377, -0.053351029753685, 0.13076871633529663, 0.20593850314617157, -0.3075966536998749, -0.27429819107055664, -0.08506539463996887, 0.11118785291910172, 0.06901702284812927, -0.00015504451585002244, -0.13109301030635834, -0.3503132164478302, 0.10763856768608093, -0.106089748442173, -0.3347283601760864, -0.17597882449626923, 0.028970003128051758, 0.15211080014705658, 0.08702418953180313, -0.1402989625930786, -0.13828900456428528, -0.08909881114959717, -0.02055283449590206, -0.1737530678510666, -0.08081282675266266, -0.2732880711555481, -0.08856460452079773, 0.017412707209587097, 0.16788990795612335, 0.11533880233764648, -0.2374764382839203, -0.02626180462539196, -0.0853656679391861, 0.24760811030864716, 0.08343254029750824, -0.10693446546792984, 0.1269097775220871, -0.029701488092541695, -0.2137414515018463, -0.11610915511846542, 0.009990890510380268, 0.1641688495874405, 0.18888714909553528, -0.17898884415626526, 0.03285040706396103, 0.06281168758869171, 0.3357526361942291, 0.2211797684431076, -0.2855055034160614, -0.003907141275703907, 0.25878259539604187, 0.15996670722961426, -0.3051171898841858, 0.13551048934459686, 0.5688182711601257, 0.11621800065040588, -0.19264252483844757, 0.1513209044933319, 0.12911595404148102, -0.05867764726281166, -0.05562034994363785, 0.1372755914926529, 0.517521321773529, -0.17220884561538696, 0.3115231394767761, 0.21806244552135468, 0.03187594190239906, 0.011280949227511883, 0.035239383578300476, 0.17268387973308563, 0.047005269676446915, 0.6041739583015442, -0.09633198380470276, 0.5378549695014954, 0.27662014961242676, 0.17158906161785126, -0.0179598405957222, -0.29798805713653564, 0.051623836159706116, 0.08350870013237, 0.05140361934900284, -0.06470900028944016, 0.05569151043891907, 0.4750155806541443, 0.05232824757695198, -0.28819742798805237, -0.19496750831604004, 0.08890867978334427, -0.09535165876150131, 0.40371546149253845, -0.1788717359304428, -0.21176734566688538, -0.09866853058338165, -0.17450688779354095, 0.017908625304698944, -0.1983194351196289, 0.3648064136505127, 0.1855035126209259, -0.12409469485282898, -0.17786282300949097, 0.42439308762550354, 0.07729247212409973, 0.22278621792793274, -0.028725367039442062, 0.24809898436069489, 0.014133710414171219, -0.09708784520626068, -0.14752663671970367, 0.2929859161376953, 0.36580848693847656, 0.4779534339904785, -0.1898423582315445, 0.062161900103092194, 0.2308988869190216, -0.0886327475309372, 0.07799721509218216, 0.4141322374343872, 0.39608243107795715, 0.1710059493780136, 0.11786819249391556, 0.13629977405071259, -0.13131776452064514, -0.04076823592185974, 0.2802560031414032, 0.09614676237106323, -0.03166096657514572, 0.1877766102552414, -0.23657801747322083, -0.424299418926239, -0.08513525128364563, -0.04147294908761978, -0.32122042775154114, -0.10037191212177277, 0.04865587502717972, 0.24688327312469482, 0.031216846778988838, -0.2885235548019409, 0.062097322195768356, -0.18069958686828613, 0.5545122027397156, 0.16000056266784668, 0.09341893345117569, -0.47305136919021606, -0.3395536243915558, -0.6459324359893799, -0.11856507509946823, -0.2552917003631592, 0.018761442974209785, -0.05525682121515274, 0.01705237105488777, 0.00011592352529987693, 0.2967775762081146, 0.11373849213123322, 0.5873931646347046, -0.045605383813381195, -0.03237311542034149, -0.5817579030990601, -0.059458956122398376, 0.06665237247943878, 0.03103402629494667, -0.16272659599781036, -0.050942014902830124, 0.11582326889038086, -0.09944497048854828, 0.020473141223192215, -0.038313135504722595, -0.3848721981048584, 0.3540808856487274, 0.21018093824386597, 0.36708810925483704, 0.2355557382106781, 0.34615129232406616, -0.07352373003959656, -0.07129216194152832, -0.09967947006225586, -0.24405770003795624, 0.11772091686725616, 0.27832987904548645, 0.04277636855840683, 0.19066496193408966, -0.040814369916915894, 0.14757171273231506, -0.4616031050682068, -0.0035806994419544935, -0.15046675503253937, 0.29507875442504883, -0.19723400473594666, 0.07024440914392471, -0.056657202541828156, 0.21863378584384918, 0.15411992371082306, -0.11128921806812286, -0.11312872171401978, 0.2915031313896179, -0.4034202992916107, -0.10973894596099854, 0.4648354649543762, -0.11772295087575912, -0.04574187099933624, 0.2879978120326996, 0.29584214091300964, -0.17531435191631317, -0.05715813860297203, -0.5936288237571716, -0.01580912619829178, 0.353444367647171, -0.27116259932518005, -0.014873135834932327, 0.0799037516117096, -0.15441329777240753, -0.1725824624300003, 0.03434653952717781, 0.12759873270988464, -0.15528589487075806, -0.13535262644290924, 0.18120740354061127, 0.06277838349342346 ]
https://github.com/huggingface/datasets/issues/246
What is the best way to cache a dataset?
Everything is already cached by default in 🤗nlp (in particular dataset loading and all the “map()” operations) so I don’t think you need to do any specific caching in streamlit. Tell us if you feel like it’s not the case. On Sat, 6 Jun 2020 at 13:02, Fabrizio Milo <[email protected]> wrote: > For example if I want to use streamlit with a nlp dataset: > > @st.cache > def load_data(): > return nlp.load_dataset('squad') > > This code raises the error "uncachable object" > > Right now I just fixed with a constant for my specific case: > > @st.cache(hash_funcs={pyarrow.lib.Buffer: lambda b: 0}) > > But I was curious to know what is the best way in general > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/nlp/issues/246>, or unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABYDIHKAKO7CWGX2QY55UXLRVIO3ZANCNFSM4NV333RQ> > . >
For example if I want to use streamlit with a nlp dataset: ``` @st.cache def load_data(): return nlp.load_dataset('squad') ``` This code raises the error "uncachable object" Right now I just fixed with a constant for my specific case: ``` @st.cache(hash_funcs={pyarrow.lib.Buffer: lambda b: 0}) ``` But I was curious to know what is the best way in general
151
What is the best way to cache a dataset? For example if I want to use streamlit with a nlp dataset: ``` @st.cache def load_data(): return nlp.load_dataset('squad') ``` This code raises the error "uncachable object" Right now I just fixed with a constant for my specific case: ``` @st.cache(hash_funcs={pyarrow.lib.Buffer: lambda b: 0}) ``` But I was curious to know what is the best way in general Everything is already cached by default in 🤗nlp (in particular dataset loading and all the “map()” operations) so I don’t think you need to do any specific caching in streamlit. Tell us if you feel like it’s not the case. On Sat, 6 Jun 2020 at 13:02, Fabrizio Milo <[email protected]> wrote: > For example if I want to use streamlit with a nlp dataset: > > @st.cache > def load_data(): > return nlp.load_dataset('squad') > > This code raises the error "uncachable object" > > Right now I just fixed with a constant for my specific case: > > @st.cache(hash_funcs={pyarrow.lib.Buffer: lambda b: 0}) > > But I was curious to know what is the best way in general > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/nlp/issues/246>, or unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABYDIHKAKO7CWGX2QY55UXLRVIO3ZANCNFSM4NV333RQ> > . >
[ -0.07914169132709503, -0.005442919675260782, 0.043364644050598145, 0.03096127137541771, 0.35946229100227356, -0.11144109815359116, -0.006647089961916208, 0.11713952571153641, 0.06864360719919205, 0.13081583380699158, 0.1577529013156891, 0.036761946976184845, -0.18263652920722961, 0.12470663338899612, 0.4915665090084076, -0.09635946899652481, 0.02915273793041706, 0.12171053886413574, -0.08228817582130432, 0.09331542253494263, -0.11592065542936325, -0.21491067111492157, -0.06493332982063293, -0.16433265805244446, -0.2909950017929077, -0.12106414884328842, -0.12079606205224991, 0.07994735985994339, 0.031147805973887444, -0.20018187165260315, 0.3986591398715973, 0.19181716442108154, 0.13692796230316162, -0.013521268963813782, -0.0001179133978439495, -0.017909016460180283, 0.34973981976509094, -0.2958793640136719, -0.34031805396080017, -0.20648275315761566, -0.3478739559650421, -0.32507961988449097, 0.13562604784965515, -0.028909049928188324, -0.31640350818634033, -0.119597427546978, 0.262653648853302, -0.44090908765792847, 0.4450412690639496, 0.18553288280963898, 0.11022982001304626, -0.013128990307450294, 0.13428755104541779, 0.3962051570415497, 0.05256105586886406, -0.10166190564632416, -0.19995243847370148, -0.11106299608945847, 0.08364429324865341, 0.008215592242777348, 0.04631640017032623, 0.2444911003112793, -0.10638419538736343, -0.031243206933140755, 0.636067807674408, -0.05064411461353302, -0.4649534225463867, -0.21413026750087738, -0.08441722393035889, 0.19572673738002777, 0.6592321395874023, -0.2575160562992096, -0.5362512469291687, -0.37429749965667725, 0.02167331986129284, -0.4770929217338562, 0.18693751096725464, 0.17482894659042358, -0.05896997079253197, 0.2702479958534241, -0.47975626587867737, -0.3037988841533661, 0.04408305510878563, 0.1916118860244751, 0.2693198621273041, 0.02528301067650318, -0.020784739404916763, 0.16677896678447723, 0.016176868230104446, -0.1872115582227707, 0.1719464212656021, -0.07143459469079971, -0.12037115544080734, 0.21916577219963074, -0.30668333172798157, 0.11906753480434418, 0.015553081408143044, 0.20722661912441254, 0.12553368508815765, 0.1493084877729416, 0.5070613622665405, 0.23521241545677185, 0.12814581394195557, 0.07647714763879776, -0.018727047368884087, 0.46193185448646545, 0.007862388156354427, -0.06266258656978607, 0.1022455170750618, -0.14949822425842285, -0.22853271663188934, -0.1756051629781723, 0.17214448750019073, 0.23493637144565582, 0.2839803695678711, 0.17005975544452667, 0.0865025520324707, -0.38027116656303406, 0.17995788156986237, -0.10818631947040558, -0.2296736091375351, -0.2214447259902954, 0.12307460606098175, 0.36951684951782227, -0.1252465546131134, 0.2958116829395294, -0.25602713227272034, 0.03216142952442169, -0.10353704541921616, -0.366845041513443, -0.19254767894744873, 0.008249377831816673, -0.05217798426747322, 0.3953482210636139, 0.19421491026878357, -0.487600713968277, 0.13449904322624207, -0.04390018433332443, -0.07593154907226562, -0.01275694090873003, 0.2849002778530121, -0.1794954389333725, 0.26178547739982605, 0.1858828365802765, -0.005323047284036875, 0.012310463935136795, -0.05145562067627907, -0.05015581473708153, -0.21501140296459198, 0.21341416239738464, -0.14832653105258942, -0.721486508846283, 0.2737380862236023, 0.05655788257718086, -0.4841585159301758, -0.15954479575157166, -0.371206134557724, 0.5935314297676086, 0.27331486344337463, -0.01564566232264042, 0.11794351041316986, 0.0013980090152472258, -0.182491734623909, -0.3100670576095581, 0.23777583241462708, 0.29725712537765503, -0.002303855260834098, -0.13328666985034943, 0.16391973197460175, 0.08473601192235947, 0.2712285816669464, 0.22017553448677063, -0.35045310854911804, 0.0753711387515068, 0.06945109367370605, -0.1782054305076599, 0.640879213809967, -0.15359675884246826, -0.5387376546859741, -0.019220348447561264, 0.27348271012306213, 0.2440698742866516, 0.1072872132062912, 0.3159644603729248, 0.015174117870628834, -0.06073673069477081, -0.06618254631757736, 0.41880184412002563, -0.1644415557384491, -0.013538848608732224, -0.31206342577934265, -0.4285171926021576, 0.5561184287071228, 0.059184662997722626, 0.011228838004171848, 0.06355267763137817, 0.05418787896633148, 0.5534829497337341, -0.14239506423473358, -0.15680386126041412, 0.057275865226984024, 0.4245154857635498, -0.07281026244163513, -0.1383218914270401, -0.07481346279382706, -0.19537630677223206, -0.7898915410041809, 0.14331935346126556, -0.10945401340723038, -0.09454202651977539, -0.06700067967176437, -0.2357570081949234, 0.4408470094203949, -0.15684500336647034, -0.026868971064686775, -0.1255963295698166, -0.012603702954947948, 0.029775967821478844, 0.5305256247520447, -0.1319667547941208, -0.4664227068424225, 0.5715911984443665, 0.11201582849025726, 0.14406390488147736, -0.35608938336372375, -0.12068720906972885, 0.06727910786867142, -0.3497917354106903, 0.10397714376449585, 0.27000439167022705, 0.1601339727640152, -0.17134863138198853, -0.16263221204280853, 0.19479122757911682, -0.24081113934516907, 0.3363533318042755, -0.12400344759225845, 0.382612407207489, 0.08670046925544739, -0.16239026188850403, 0.04803945869207382, 0.11885976046323776, -0.03557343780994415, 0.051749832928180695, -0.006993392948061228, 0.24905931949615479, 0.07209455966949463, 0.0005593027453869581, 0.09506215900182724, -0.24667896330356598, 0.0446450375020504, -0.04819956049323082, -0.08359338343143463, 0.0030470548663288355, 0.48134884238243103, -0.1932516247034073, 0.4335244297981262, 0.38453492522239685, -0.2530941069126129, 0.35961589217185974, 0.6983606815338135, 0.04573303088545799, 0.21781858801841736, 0.14189493656158447, 0.0875149592757225, -0.5609434247016907, 0.25648343563079834, -0.19575977325439453, 0.11062643676996231, 0.17822544276714325, 0.30065953731536865, -0.07450808584690094, 0.03629303723573685, -0.10510234534740448, 0.17545947432518005, -0.1084132194519043, 0.025778666138648987, -0.2941853404045105, 0.3341447114944458, 0.035603366792201996, -0.0822639986872673, 0.15766291320323944, 0.06330682337284088, 0.2589778006076813, -0.09236061573028564, -0.05681765824556351, -0.3436984121799469, -0.39305388927459717, 0.01271206233650446, -0.15657053887844086, -0.4962468445301056, -0.09806740283966064, -0.04862659052014351, 0.18844294548034668, 0.05837155506014824, 0.040181804448366165, -0.36192137002944946, 0.26493731141090393, -0.274990975856781, -0.3841168284416199, -0.38286343216896057, -0.1650548279285431, -0.3346542418003082, -0.05459929630160332, 0.1334373950958252, -0.3610698878765106, 0.2618536949157715, 0.16983555257320404, 0.04113457351922989, -0.10506656020879745, -0.22285452485084534, -0.03113170713186264, 0.12556548416614532, 0.22018282115459442, -0.13704480230808258, 0.1204436793923378, -0.06604050099849701, -0.08604423701763153, 0.22798576951026917, -0.3752196133136749, -0.10635210573673248, -0.04953397065401077, -0.047789495438337326, 0.2464323341846466, -0.07402756065130234, -0.1765856146812439, -0.44478362798690796, -0.29952552914619446, 0.21550938487052917, 0.024121353402733803, 0.019564088433980942, 0.007149722892791033, -0.22228051722049713, -0.0165378637611866, 0.030845940113067627, 0.05750861018896103, -0.2335255742073059, -0.5710588693618774, 0.30070772767066956, 0.12042952328920364, -0.3306612968444824, -0.17249329388141632, -0.09107518941164017, -0.04977596178650856, 0.3589242100715637, -0.4684203267097473, -0.17630070447921753, -0.1630810797214508, 0.05981617793440819, 0.13351605832576752, -0.39325523376464844, 0.39179590344429016, -0.0955054834485054, 0.024695437401533127, 0.0015861478168517351, -0.34342214465141296, -0.030146993696689606, 0.06869480013847351, 0.4674534201622009, 0.3109143078327179, 0.10023171454668045, 0.369001567363739, 0.6891120076179504, 0.1336449533700943, 0.025856172665953636, 0.43068599700927734, 0.2653583884239197, 0.30635619163513184, -0.1425517350435257, -0.22825516760349274, 0.34577786922454834, -0.12001464515924454, -0.028258731588721275, -0.034208595752716064, 0.2829245924949646, -0.19947421550750732, -0.27146434783935547, -0.01960028149187565, -0.28835567831993103, -0.18584278225898743, 0.29420292377471924, -0.3300022482872009, 0.15741729736328125, 0.3139326274394989, -0.017790991812944412, -0.15965531766414642, -0.5740084648132324, -0.031271353363990784, 0.2470712661743164, 0.2790086269378662, 0.4540107250213623, -0.5400018095970154, -0.14974835515022278, -0.6193515658378601, 0.5108373165130615, 0.1088167354464531, 0.2713663578033447, -0.2866220772266388, 0.030233101919293404, 0.01031096838414669, -0.3334999978542328, 0.1613866090774536, -0.07279401272535324, -0.2789880335330963, -0.10651439428329468, -0.13539153337478638, -0.1662483662366867, 0.04318743199110031, 0.20154938101768494, 0.3970455825328827, 0.0055100321769714355, 0.05905629321932793, -0.28872519731521606, -0.19801494479179382, -0.1678362935781479, 0.09473268687725067, -0.2160206139087677, 0.049985721707344055, -0.15663889050483704, -0.29465633630752563, -0.17534010112285614, 0.02662438154220581, -0.34784552454948425, 0.04475002363324165, 0.05743766948580742, 0.08069150149822235, -0.18452881276607513, 0.2739922106266022, 0.08410991728305817, -0.17476604878902435, 0.19753289222717285, 0.09909253567457199, 0.1353946030139923, 0.2745627164840698, 0.1315346360206604, -0.19071775674819946, 0.43766549229621887, 0.003005805891007185, -0.11529828608036041, -0.27829405665397644, 0.2551506757736206, 0.24791038036346436, 0.11654072254896164, -0.18419359624385834, 0.238542377948761, 0.3922944962978363, -0.1852266490459442, -0.3070905804634094, 0.21622787415981293, -0.17511484026908875, 0.1118568480014801, -0.290291965007782, -0.7748074531555176, 0.37106800079345703, 0.1772647649049759, -0.0068602669052779675, 0.4467780590057373, -0.3381103277206421, -0.22206874191761017, 0.2109927088022232, 0.26043736934661865, 1.0849567651748657, -0.24216075241565704, 0.31124937534332275, -0.004805725999176502, 0.01962679624557495, 0.643898069858551, -0.2434016913175583, 0.2411106377840042, -0.17574578523635864, -0.24397000670433044, -0.02549801580607891, -0.14190563559532166, 0.001954933861270547, -0.03492267429828644, -0.08018197119235992, 0.5324960947036743, 0.3090100586414337, 0.09175093472003937, 0.040632639080286026, 0.2257106751203537, -0.12184788286685944, -0.2654401659965515, -0.6026579737663269, 0.1311962902545929, -0.5431944131851196, 0.16626931726932526, -0.08905235677957535, -0.02083136886358261, 0.1979007124900818, -0.20854780077934265, -0.1069362461566925, -0.009903086349368095, -0.5662984251976013, -0.022929539903998375, -0.02766823209822178, -0.3394784927368164, -0.4411355257034302, 0.18825916945934296, 0.037242986261844635, -0.17790520191192627, -0.07329299300909042, 0.00350760156288743, -0.05589865520596504, 0.12711606919765472, 0.09731755405664444, 0.12756399810314178, 0.487274706363678, -0.0371154323220253, 0.03527254983782768, 0.022714342921972275, -0.07152436673641205, -0.5310298204421997, -0.0768444836139679, -0.14203287661075592, 0.0875498428940773, 0.05535229295492172, -0.12871569395065308, 0.2509489357471466, -0.020751219242811203, -0.03142906352877617, 0.05658842623233795, 0.32168591022491455, -0.0008595121325924993, 0.07045615464448929, 0.051184896379709244, -0.14601527154445648, -0.01673017255961895, 0.3425779938697815, 0.030094074085354805, -0.20301367342472076, 0.3337712585926056, -0.10361874848604202, -0.1535341441631317, -0.016478275880217552, 0.05576857551932335, -0.027832668274641037, 0.0011393317254260182, -0.07712239772081375, -0.21091650426387787, -0.013679910451173782, -0.13931168615818024, 0.16724377870559692, 0.11110329627990723, -0.22541318833827972, -0.10484643280506134, -0.22110144793987274, -0.6179184317588806, 0.3391149044036865, 0.1685265451669693, 0.10299544781446457, 0.3037676513195038, -0.09360984712839127, 0.037921566516160965, 0.3011033236980438, -0.2404964417219162, -0.22884750366210938, -0.1420493721961975, 0.20127275586128235, 0.22919900715351105, -0.1686757355928421, 0.3836634159088135, -0.11696593463420868, -0.09063064306974411, -0.029036452993750572, -0.36703208088874817, -0.20137503743171692, -0.060591116547584534, 0.15169546008110046, 0.17761261761188507, -0.30689069628715515, -0.4292011559009552, -0.1945921629667282, 0.31831008195877075, -0.26834598183631897, 0.03359298035502434, 0.21062442660331726, 0.035240210592746735, 0.14168503880500793, -0.1328352391719818, 0.07792659848928452, -0.14012117683887482, 0.09890757501125336, 0.11960584670305252, 0.18595214188098907, -0.08012908697128296, 0.21558666229248047, -0.008647485636174679, 0.11036888509988785, 0.006619065999984741, -0.12068549543619156, 0.2880951762199402, 0.18178991973400116, 0.1528448462486267, -0.34598055481910706, 0.09091033041477203, -0.025871440768241882, 0.14171595871448517, -0.042765725404024124, -0.1329604983329773, 0.27246972918510437, 0.2716383934020996, 0.042084842920303345, -0.025203468278050423, 0.07081936299800873, 0.19470210373401642, 0.16547048091888428, -0.10979221016168594, 0.21654605865478516, 0.1546689122915268, 0.17390066385269165, 0.0819321870803833, -0.06818486005067825, 0.6233015060424805, -0.46343356370925903, -0.061028480529785156, -0.34580177068710327, -0.011176368221640587, -0.17960190773010254, 0.32053855061531067, 0.3976682722568512, 0.029405303299427032, 0.4939385652542114, 0.1547963172197342, 0.28781354427337646, 0.3103055953979492, 0.17739921808242798, -0.11196926236152649, -0.24882349371910095, -0.087834931910038, 0.5038479566574097, 0.1372721940279007, 0.38593772053718567, 0.09509184211492538, 0.35102543234825134, 0.11139735579490662, -0.4690275490283966, 0.3331848084926605, 0.20703844726085663, -0.047094542533159256, -0.24590536952018738, 0.007309798151254654, 0.1810506284236908, 0.07215819507837296, 0.11409444361925125, 0.1187763437628746, -0.15829049050807953, 0.3963155150413513, 0.19786392152309418, 0.2835293710231781, -0.29037216305732727, 0.15383437275886536, 0.41103261709213257, 0.23815502226352692, -0.05646966025233269, 0.6531957983970642, 0.02235933393239975, -0.10396423190832138, 0.1026451513171196, 0.2962406873703003, 0.22188407182693481, 0.02708074264228344, -0.24861747026443481, 0.3493121266365051, 0.05680617690086365, -0.019457710906863213, -0.40215399861335754, 0.3465336263179779, 0.1706773191690445, -0.011761882342398167, 0.19785287976264954, 0.05726376175880432, -0.005411500111222267, 0.42231255769729614, -0.04544996842741966, 0.10036078840494156, -0.17071428894996643, 0.3791210353374481, 0.23295001685619354, -0.1478302776813507, 0.006882659625262022, 0.2115757316350937, -0.19290943443775177, 0.08956274390220642, 0.3285349905490875, -0.01565473899245262, 0.20735344290733337, -0.1555519849061966, 0.06045133247971535, 0.21840742230415344, 0.4291936755180359, 0.24906961619853973, 0.3821171224117279, -0.1617901474237442, 0.15744724869728088, -0.5565523505210876, -0.021078728139400482, 0.008830519393086433, 0.1861976534128189, 0.0010195377981290221, 0.2689862847328186, 0.08288652449846268, 0.2567795515060425, -0.06063542515039444, 0.16989591717720032, 0.2654249966144562, -0.10538876056671143, -0.295450896024704, -0.13355033099651337, -0.0017765795346349478, 0.25442415475845337, 0.059433430433273315, -0.24198965728282928, 0.24423569440841675, 0.014312596060335636, -0.08045025169849396, -0.26807546615600586, -0.16146259009838104, 0.11662349104881287, 0.24801389873027802, 0.2433747947216034, 0.3024020493030548, 0.2082260102033615, 0.06503727287054062, 0.03960996866226196, -0.21749745309352875, -0.13979141414165497, -0.24298052489757538, 0.05141959711909294, -0.2882686257362366, 0.08406241238117218, -0.40571755170822144, 0.08797118067741394, -0.3254972994327545, 0.13946160674095154, -0.06825777888298035, -0.1787353903055191, -0.09084276109933853, -0.07741759717464447, -0.06236882135272026, -0.021402643993496895, -0.06983848661184311, 0.5901697278022766, -0.062192924320697784, -0.04108868166804314, -0.34183305501937866, 0.07700936496257782, 0.43598854541778564, -0.44910913705825806, 0.09844683110713959, 0.050857603549957275, 0.09313192963600159, 0.6444495916366577, -0.22570353746414185, -0.6652422547340393, 0.011179356835782528, 0.31368523836135864, -0.26413843035697937, -0.037628285586833954, 0.15061691403388977, -0.042732927948236465, 0.15261520445346832, -0.15119343996047974, 0.14686132967472076, -0.08753078430891037, -0.19629289209842682, 0.14621996879577637, -0.058207184076309204 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
Yes, this is because the test sets for glue are hidden so the labels are not publicly available. You can read the glue paper for more details. On Sat, 6 Jun 2020 at 18:16, Jack Morris <[email protected]> wrote: > this also happened to me with nlp.load_datasets('glue', 'mnli') > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/nlp/issues/245#issuecomment-640083980>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABYDIHMVQD2EDX2HTZUXG5DRVJTWRANCNFSM4NVG3AKQ> > . >
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
82
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` Yes, this is because the test sets for glue are hidden so the labels are not publicly available. You can read the glue paper for more details. On Sat, 6 Jun 2020 at 18:16, Jack Morris <[email protected]> wrote: > this also happened to me with nlp.load_datasets('glue', 'mnli') > > — > You are receiving this because you are subscribed to this thread. > Reply to this email directly, view it on GitHub > <https://github.com/huggingface/nlp/issues/245#issuecomment-640083980>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABYDIHMVQD2EDX2HTZUXG5DRVJTWRANCNFSM4NVG3AKQ> > . >
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
It should be in the datasets card (the README.md and on the hub) in my opinion. What do you think @yjernite?
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
21
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` It should be in the datasets card (the README.md and on the hub) in my opinion. What do you think @yjernite?
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
I checked both before I got to looking at issues, so that would be fine as well. Some additional thoughts on this: Is there a specific reason why the "test" split even has a "label" column if it isn't tagged. Shouldn't there just not be any. Seems more transparent
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
49
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` I checked both before I got to looking at issues, so that would be fine as well. Some additional thoughts on this: Is there a specific reason why the "test" split even has a "label" column if it isn't tagged. Shouldn't there just not be any. Seems more transparent
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
I'm a little confused with the data size. `sst2` dataset is referenced to `Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank` and the link of the dataset in the paper is https://nlp.stanford.edu/sentiment/index.html which is often shown in GLUE/SST2 reference. From the original data, the standard train/dev/test splits split is 6920/872/1821 for binary classification. Why in GLUE/SST2 the train/dev/test split is 67,349/872/1,821 ?
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
64
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` I'm a little confused with the data size. `sst2` dataset is referenced to `Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank` and the link of the dataset in the paper is https://nlp.stanford.edu/sentiment/index.html which is often shown in GLUE/SST2 reference. From the original data, the standard train/dev/test splits split is 6920/872/1821 for binary classification. Why in GLUE/SST2 the train/dev/test split is 67,349/872/1,821 ?
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
> I'm a little confused with the data size. > `sst2` dataset is referenced to `Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank` and the link of the dataset in the paper is https://nlp.stanford.edu/sentiment/index.html which is often shown in GLUE/SST2 reference. > From the original data, the standard train/dev/test splits split is 6920/872/1821 for binary classification. > Why in GLUE/SST2 the train/dev/test split is 67,349/872/1,821 ? Have you figured out this problem? AFAIK, the original sst-2 dataset is totally different from the GLUE/sst-2. Do you think so?
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
89
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` > I'm a little confused with the data size. > `sst2` dataset is referenced to `Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank` and the link of the dataset in the paper is https://nlp.stanford.edu/sentiment/index.html which is often shown in GLUE/SST2 reference. > From the original data, the standard train/dev/test splits split is 6920/872/1821 for binary classification. > Why in GLUE/SST2 the train/dev/test split is 67,349/872/1,821 ? Have you figured out this problem? AFAIK, the original sst-2 dataset is totally different from the GLUE/sst-2. Do you think so?
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/245
SST-2 test labels are all -1
@yc1999 Sorry, I didn't solve this conflict. In the end, I just use a local data file provided by the previous work I followed(for consistent comparison), not use `datasets` package. Related information: https://github.com/thunlp/OpenAttack/issues/146#issuecomment-766323571
I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ```
33
SST-2 test labels are all -1 I'm trying to test a model on the SST-2 task, but all the labels I see in the test set are -1. ``` >>> import nlp >>> glue = nlp.load_dataset('glue', 'sst2') >>> glue {'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349), 'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872), 'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)} >>> list(l['label'] for l in glue['test']) [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ``` @yc1999 Sorry, I didn't solve this conflict. In the end, I just use a local data file provided by the previous work I followed(for consistent comparison), not use `datasets` package. Related information: https://github.com/thunlp/OpenAttack/issues/146#issuecomment-766323571
[ 0.32367777824401855, -0.3612534999847412, -0.09375040978193283, 0.17786164581775665, -0.0011130190687254071, 0.10074960440397263, 0.3361848294734955, 0.44995465874671936, 0.5752966403961182, 0.014867324382066727, -0.12565340101718903, 0.13467760384082794, -0.1473742574453354, 0.27732157707214355, 0.3333796560764313, -0.05304769054055214, 0.10838054120540619, 0.31975045800209045, -0.16760092973709106, -0.2568301260471344, -0.03263864666223526, 0.3825783133506775, -0.14461301267147064, 0.19946524500846863, -0.28053292632102966, 0.24851666390895844, 0.0017224742332473397, -0.0963405892252922, -0.031620047986507416, -0.5869411826133728, 0.20443381369113922, 0.2065008282661438, 0.2146625816822052, 0.041023239493370056, -0.00011391187581466511, 0.04387734830379486, 0.19964419305324554, -0.1350759118795395, -0.2542121112346649, -0.12165820598602295, -0.10567635297775269, -0.2028767317533493, 0.04586192965507507, -0.1059136688709259, -0.33675098419189453, 0.15860438346862793, 0.04682115092873573, 0.007083652541041374, 0.1640625149011612, 0.15194328129291534, 0.17462953925132751, -0.04133794829249382, 0.003840287448838353, 0.00024223518266808242, 0.09865247458219528, -0.3579418957233429, 0.007024155929684639, 0.04189832881093025, -0.044988926500082016, -0.1923692673444748, 0.28505465388298035, 0.44253966212272644, 0.16352297365665436, 0.3538922369480133, 0.0891573578119278, -0.10861758887767792, 0.2901041805744171, -0.24144768714904785, 0.05704488232731819, 0.10712726414203644, 0.157832071185112, -0.15712061524391174, -0.24079157412052155, -0.1164395809173584, -0.05656179040670395, 0.10065744817256927, -0.005957227200269699, 0.0276228878647089, 0.21763691306114197, 0.2936665415763855, -0.019367486238479614, -0.09277649968862534, -0.16660159826278687, 0.08752496540546417, 0.04443759471178055, 0.5951552391052246, 0.05255730077624321, 0.13232915103435516, 0.3667905926704407, 0.08864620327949524, -0.42316141724586487, 0.2890288531780243, -0.2783503830432892, 0.17419271171092987, -0.5723791122436523, -0.1834566593170166, 0.19603955745697021, -0.0028695964720100164, -0.21506620943546295, 0.10167336463928223, 0.025422750040888786, 0.027583958581089973, 0.36238792538642883, -0.05170787125825882, -0.01841648481786251, 0.32787540555000305, 0.5321331024169922, 0.3578607439994812, 0.027929475530982018, -0.16158169507980347, 0.04337592050433159, 0.1671689748764038, -0.3254516124725342, -0.2536085247993469, 0.05578980967402458, 0.20359012484550476, 0.0716068297624588, -0.3534901440143585, -0.3213401734828949, -0.06896520406007767, -0.3975771963596344, 0.11827583611011505, 0.10451056063175201, 0.013810109347105026, 0.2748119831085205, 0.02854100987315178, -0.12523624300956726, -0.005990851670503616, -0.11779506504535675, -0.3868846893310547, -0.2563749849796295, 0.13177275657653809, -0.1777152568101883, 0.01841198466718197, 0.40443646907806396, 0.16017860174179077, 0.16646327078342438, -0.2921449542045593, -0.3622269928455353, -0.04228133335709572, 0.1334695667028427, -0.043492816388607025, 0.1852779984474182, 0.3485696315765381, -0.2840803265571594, 0.3784767985343933, 0.24288947880268097, -0.5122999548912048, -0.14108587801456451, -0.27263131737709045, -0.02923859842121601, -0.07268927991390228, 0.06737291067838669, 0.14270101487636566, -0.30557727813720703, -0.06546945869922638, -0.000672109192237258, 0.34674158692359924, -0.041000742465257645, 0.12588343024253845, 0.04871672764420509, -0.23691920936107635, 0.0019333824748173356, 0.253792941570282, 0.22849923372268677, 0.2446567714214325, -0.4592037498950958, -0.09783865511417389, 0.31456777453422546, -0.017924457788467407, -0.1690039038658142, 0.17246182262897491, 0.21617671847343445, 0.14936578273773193, -0.06026538088917732, 0.2051672637462616, 0.35422706604003906, -0.30272582173347473, -0.3342142105102539, 0.10458994656801224, -0.2881500720977783, -0.4994359612464905, 0.03234081715345383, 0.06090255454182625, -0.0006795891677029431, 0.10404446721076965, -0.04217104986310005, -0.3407537639141083, 0.12075398862361908, 0.03561927750706673, -0.52375727891922, 0.2544219493865967, 0.5446702241897583, -0.016373464837670326, -0.025427941232919693, -0.12888649106025696, -0.3430946469306946, 0.19785574078559875, 0.14037679135799408, 0.05447131395339966, 0.036712098866701126, 0.15441562235355377, 0.17454223334789276, -0.1268417239189148, 0.08580396324396133, -0.09543446451425552, -0.1772255301475525, 0.1945025622844696, 0.013031507842242718, 0.393972247838974, 0.549452006816864, 0.06488453596830368, -0.3999762237071991, -0.2042216658592224, 0.03571431711316109, -0.22716999053955078, 0.17650330066680908, 0.42787548899650574, 0.3945476710796356, -0.047025006264448166, 0.07510009407997131, -0.01102735847234726, 0.28155088424682617, 0.009615974500775337, -0.2109096348285675, 0.23462463915348053, 0.08188236504793167, -0.24157337844371796, 0.07868684083223343, 0.29264795780181885, 0.2893487215042114, -0.09177562594413757, 0.03226165845990181, 0.22111697494983673, -0.20145663619041443, -0.054602816700935364, 0.08865471184253693, 0.2956273853778839, -0.0888022631406784, -0.4509786367416382, -0.2570939064025879, 0.5002956390380859, -0.039547812193632126, -0.020869245752692223, -0.07503321021795273, 0.07552418857812881, -0.05294342339038849, 0.158423513174057, -0.11409232765436172, 0.15477867424488068, -0.037726595997810364, -0.059129420667886734, -0.4671587347984314, -0.05292940139770508, 0.22411872446537018, -0.43858084082603455, -0.007664586883038282, 0.1317543238401413, -0.04628782719373703, 0.317730575799942, 0.22819465398788452, 0.1615155190229416, 0.09794716536998749, -0.2021482288837433, -0.20775945484638214, -0.09145290404558182, 0.26680946350097656, 0.2907693684101105, -0.0192168727517128, 0.1956547200679779, 0.056212857365608215, -0.23100155591964722, -0.5293566584587097, -0.03980402275919914, 0.013005473650991917, -0.09802041947841644, -0.22998203337192535, -0.1332419067621231, 0.33717167377471924, -0.3350445032119751, -0.19458554685115814, 0.20707102119922638, -0.06920474767684937, 0.37862250208854675, -0.626308262348175, -0.06222321838140488, -0.11877090483903885, -0.12420904636383057, -0.27603358030319214, -0.05202312767505646, 0.010320888832211494, -0.2586921155452728, 0.3558694124221802, 0.04935724288225174, 0.08481484651565552, 0.0825461596250534, -0.000740192539524287, 0.16189514100551605, -0.14972904324531555, 0.2043103575706482, -0.3001512587070465, -0.12423398345708847, -0.2505885362625122, -0.00016622734256088734, -0.22512641549110413, 0.3416074812412262, 0.03140438348054886, -0.16156652569770813, -0.4707099199295044, 0.20105479657649994, -0.30753225088119507, -0.05090973526239395, -0.3116738498210907, 0.19300256669521332, 0.2237747311592102, 0.151786670088768, -0.20707321166992188, 0.1381041258573532, 0.10404588282108307, -0.10741451382637024, -0.10880322754383087, 0.11961549520492554, 0.03148284927010536, 0.06556566059589386, -0.4639659523963928, -0.4390849173069, -0.0139320632442832, 0.04091724753379822, 0.40105485916137695, 0.06592170894145966, -0.12235136330127716, 0.04969717189669609, -0.24709896743297577, -0.12648898363113403, -0.1755557507276535, 0.16636799275875092, -0.1875952035188675, -0.2554453909397125, 0.247919499874115, 0.11192555725574493, -0.3266983926296234, -0.21272212266921997, 0.08012731373310089, 0.07626764476299286, -0.7130566239356995, -0.20004905760288239, -0.11349266022443771, -0.1474510133266449, -0.05904777720570564, 0.0865231528878212, -0.11033142358064651, 0.19841036200523376, 0.10983209311962128, -0.029258284717798233, -0.15767787396907806, -0.38244205713272095, 0.6548928618431091, 0.307911217212677, 0.09668909758329391, -0.40281248092651367, 0.07456984370946884, 0.05198431387543678, 0.17514611780643463, 0.16730424761772156, -0.16686557233333588, -0.0060527329333126545, -0.10989893227815628, -0.04088335484266281, 0.15313701331615448, -0.32984980940818787, 0.42636117339134216, 0.23925398290157318, 0.0783151164650917, 0.27850672602653503, 0.0004224096192047, 0.048124875873327255, -0.029271205887198448, 0.49049288034439087, -0.1470143347978592, 0.04515228420495987, -0.2398294061422348, -0.11434295773506165, -0.1532818078994751, 0.030300190672278404, 0.010628433898091316, -0.20775637030601501, -0.12809604406356812, 0.1492242068052292, -0.16171926259994507, -0.03725896775722504, 0.2752903997898102, -0.7325524091720581, -0.07514503598213196, -0.09447263181209564, -0.02846371941268444, 0.04528440535068512, 0.44044029712677, -0.10819876194000244, -0.1188611313700676, 0.17016053199768066, -0.008202426135540009, 0.6488139629364014, 0.06172548979520798, 0.49407586455345154, 0.31025850772857666, 0.19854344427585602, -0.3425166606903076, -0.38013747334480286, -0.439365953207016, -0.17255255579948425, 0.5286610126495361, 0.15605437755584717, -0.2542393207550049, -0.2872362434864044, 0.21373100578784943, -0.10232780128717422, -0.1947612464427948, 0.0963858887553215, -0.4203896224498749, -0.23837235569953918, 0.3322482705116272, -0.03734423965215683, 0.16446220874786377, 0.059559695422649384, -0.0016734841046854854, 0.0782700628042221, 0.23689046502113342, -0.4608205556869507, 0.4027179777622223, 0.35780730843544006, 0.1285773515701294, 0.3503630757331848, 0.024371616542339325, 0.37490516901016235, 0.11767139285802841, -0.46493855118751526, 0.2364986091852188, -0.15619707107543945, -0.04619309678673744, 0.1719631552696228, -0.26021140813827515, 0.341686874628067, -0.06599022448062897, -0.10732215642929077, -0.04898737370967865, -0.38393285870552063, 0.2862160801887512, -0.3703196942806244, 0.30199798941612244, 0.34846776723861694, 0.24248529970645905, 0.020128948614001274, -0.15553107857704163, 0.12222004681825638, -0.1180986613035202, -0.262839138507843, -0.21134759485721588, -0.01615333929657936, -0.4556926488876343, 0.08491995930671692, -0.21040953695774078, 0.6448177695274353, 0.04535135626792908, 0.0006922241300344467, 0.10229935497045517, -0.34347468614578247, 0.5957655310630798, -0.11621277034282684, 0.13951797783374786, -0.2881872057914734, -0.0822029858827591, 0.06939640641212463, 0.06554362922906876, -0.15029093623161316, 0.42535126209259033, -0.15432731807231903, 0.42215749621391296, 0.18519428372383118, 0.007249623537063599, 0.03674520179629326, 0.14724570512771606, 0.504435658454895, 0.13582240045070648, -0.2058897465467453, 0.18068695068359375, -0.22780287265777588, 0.13816788792610168, -0.10229242593050003, -0.020023996010422707, 0.11156009882688522, -0.2711077928543091, -0.2080398052930832, -0.14581501483917236, -0.30248892307281494, -0.08702083677053452, 0.42410075664520264, 0.10370264947414398, -0.16670000553131104, 0.036884061992168427, 0.5649840235710144, 0.23046520352363586, -0.2195451706647873, -0.06361722946166992, 0.16688576340675354, 0.33945658802986145, 0.09629535675048828, 0.20728707313537598, 0.31981438398361206, 0.0012473302194848657, -0.23087379336357117, -0.016641216352581978, 0.08016323298215866, 0.17380888760089874, -0.348150372505188, -0.10174238681793213, -0.046893779188394547, -0.12306847423315048, 0.22461672127246857, 0.2875225841999054, 0.1345016211271286, -0.2777552604675293, 0.14777600765228271, 0.0421106293797493, -0.48234593868255615, 0.08805473148822784, 0.18621529638767242, -0.44669613242149353, 0.1284506767988205, 0.4110446274280548, -0.39318495988845825, 0.31991517543792725, 0.28903698921203613, -0.07670185714960098, -0.008669115602970123, -0.268333375453949, 0.08292976766824722, 0.02079303003847599, -0.5002566576004028, 0.15103735029697418, 0.06824220716953278, -0.31271275877952576, -0.06179950386285782, 0.35857486724853516, 0.3742310106754303, -0.045724209398031235, -0.04592027887701988, 0.04956585913896561, -0.12660598754882812, -0.03153582662343979, -0.052550699561834335, 0.2949241101741791, -0.09919630736112595, 0.20353907346725464, -0.0005552747752517462, 0.2477174699306488, -0.3138470947742462, -0.18423546850681305, -0.3627868890762329, 0.1797090619802475, -0.007426898926496506, -0.008049797266721725, -0.2206866443157196, -0.08024933934211731, 0.20637363195419312, -0.20195847749710083, -0.07713688164949417, -0.23787711560726166, 0.04907620698213577, 0.10978679358959198, -0.061953648924827576, 0.0475422665476799, -0.2424401342868805, 0.07746154069900513, 0.04003326594829559, 0.010938393883407116, -0.06157408654689789, 0.06705949455499649, 0.097012460231781, 0.8924070000648499, 0.1089363768696785, -0.034523919224739075, 0.12641435861587524, -0.04720563814043999, -0.0908404216170311, -0.13989035785198212, -0.03531390056014061, 0.22051647305488586, 0.2597258985042572, 0.07087588310241699, -0.24794159829616547, 0.10922667384147644, -0.4701395034790039, 0.06705997884273529, -0.10033829510211945, -0.33490192890167236, 0.17072758078575134, -0.11029034107923508, 0.24509812891483307, -0.002097651595249772, -0.05650276690721512, -0.07533710449934006, 0.19672586023807526, 0.2744040787220001, -0.14405934512615204, 0.29913759231567383, 0.30246269702911377, 0.12853020429611206, 0.20637591183185577, 0.2766053378582001, -0.08614081144332886, -0.09184569120407104, 0.044617198407649994, 0.17085935175418854, 0.253320574760437, -0.1556813269853592, 0.014833547174930573, 0.23541903495788574, -0.377832293510437, -0.13941754400730133, 0.23388898372650146, -0.5454509258270264, -0.25998538732528687, -0.06353218108415604, 0.3590611517429352, 0.47308364510536194, 0.2442905753850937, 0.22485414147377014, -0.11749700456857681, 0.5504230856895447, -0.10056457668542862, 0.11489886045455933, -0.19030067324638367, 0.1568085253238678, -0.026904717087745667, 0.42283061146736145, -0.22543521225452423, -0.28968173265457153, -0.14281854033470154, 0.07419420033693314, 0.01234182808548212, -0.4227359890937805, -0.3647423982620239, 0.07755828648805618, -0.27781566977500916, 0.09376990050077438, 0.027242332696914673, -0.06893565505743027, 0.4262215495109558, -0.015631215646862984, 0.029314637184143066, -0.362405925989151, -0.659120500087738, 0.08273029327392578, 0.24549728631973267, -0.030819445848464966, 0.35645702481269836, 0.013535319827497005, -0.023416873067617416, 0.08269430696964264, 0.4850861132144928, -0.021708723157644272, -0.15393714606761932, -0.13774973154067993, -0.2947838604450226, -0.19909735023975372, -0.17983488738536835, -0.19977396726608276, 0.11430691182613373, -0.0689537301659584, -0.2047247737646103, 0.2256321758031845, 0.13329365849494934, -0.03386799618601799, 0.4815894365310669, -0.30655762553215027, -0.13529032468795776, -0.19851671159267426, 0.47358229756355286, 0.05333280935883522, -0.08433862775564194, -0.04198821634054184, 0.004211581777781248, -0.2606082558631897, -0.17261087894439697, 0.010212801396846771, -0.06900589913129807, 0.2692812979221344, -0.3107883036136627, 0.08778034150600433, 0.08726038783788681, 0.4814493656158447, -0.28419166803359985, 0.13342490792274475, -0.15048404037952423, 0.15816821157932281, -0.18487507104873657, -0.1463613212108612, -0.036307357251644135, -0.16399897634983063, -0.12060634791851044, -0.058959946036338806, 0.16122819483280182, -0.07762575894594193, 0.05039301887154579, 0.3595693111419678, -0.11823965609073639, -0.06551530212163925, -0.3488408327102661, 0.34651753306388855, 0.061924636363983154, 0.36269086599349976, 0.2391088306903839, -0.12598589062690735, 0.13562221825122833, 0.11258245259523392, 0.08265534043312073, 0.10623279958963394, 0.16612499952316284, -0.09636073559522629, 0.27698060870170593, 0.1993839591741562, 0.0897279679775238, 0.49743911623954773, 0.05676335468888283, 0.17370779812335968, -0.2943836450576782, -0.33704063296318054, -0.3608502745628357, -0.10455306619405746, -0.2991928458213806, 0.4071643054485321, -0.05689827352762222, 0.005760107189416885, 0.1097954586148262, -0.12080241739749908, 0.17387449741363525, 0.3284975290298462, -0.23322515189647675, 0.14248226583003998, -0.0696457177400589, -0.021369870752096176, -0.011361097916960716, -0.15444041788578033, 0.15083563327789307, -0.06890217959880829, -0.15474051237106323, -0.515006959438324, 0.6079295873641968, -0.17489059269428253, -0.12970614433288574, -0.07439278066158295, 0.38571134209632874, 0.32967716455459595, -0.13160918653011322, -0.5880597829818726, -0.22726652026176453, 0.4960269033908844, 0.19417232275009155, -0.4108332395553589, 0.3343147933483124, 0.13902775943279266, 0.21445712447166443, 0.09442698210477829, -0.08707505464553833, 0.3029443323612213, 0.046142641454935074, -0.03721999377012253, -0.282423198223114 ]
https://github.com/huggingface/datasets/issues/242
UnicodeDecodeError when downloading GLUE-MNLI
It should be good now, thanks for noticing and fixing it ! I would say that it was because you are on windows but not 100% sure
When I run ```python dataset = nlp.load_dataset('glue', 'mnli') ``` I get an encoding error (could it be because I'm using Windows?) : ```python # Lots of error log lines later... ~\Miniconda3\envs\nlp\lib\site-packages\tqdm\std.py in __iter__(self) 1128 try: -> 1129 for obj in iterable: 1130 yield obj ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\glue\5256cc2368cf84497abef1f1a5f66648522d5854b225162148cb8fc78a5a91cc\glue.py in _generate_examples(self, data_file, split, mrpc_files) 529 --> 530 for n, row in enumerate(reader): 531 if is_cola_non_test: ~\Miniconda3\envs\nlp\lib\csv.py in __next__(self) 110 self.fieldnames --> 111 row = next(self.reader) 112 self.line_num = self.reader.line_num ~\Miniconda3\envs\nlp\lib\encodings\cp1252.py in decode(self, input, final) 22 def decode(self, input, final=False): ---> 23 return codecs.charmap_decode(input,self.errors,decoding_table)[0] 24 UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 6744: character maps to <undefined> ``` Anyway this can be solved by specifying to decode in UTF when reading the csv file. I am proposing a PR if that's okay.
27
UnicodeDecodeError when downloading GLUE-MNLI When I run ```python dataset = nlp.load_dataset('glue', 'mnli') ``` I get an encoding error (could it be because I'm using Windows?) : ```python # Lots of error log lines later... ~\Miniconda3\envs\nlp\lib\site-packages\tqdm\std.py in __iter__(self) 1128 try: -> 1129 for obj in iterable: 1130 yield obj ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\glue\5256cc2368cf84497abef1f1a5f66648522d5854b225162148cb8fc78a5a91cc\glue.py in _generate_examples(self, data_file, split, mrpc_files) 529 --> 530 for n, row in enumerate(reader): 531 if is_cola_non_test: ~\Miniconda3\envs\nlp\lib\csv.py in __next__(self) 110 self.fieldnames --> 111 row = next(self.reader) 112 self.line_num = self.reader.line_num ~\Miniconda3\envs\nlp\lib\encodings\cp1252.py in decode(self, input, final) 22 def decode(self, input, final=False): ---> 23 return codecs.charmap_decode(input,self.errors,decoding_table)[0] 24 UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 6744: character maps to <undefined> ``` Anyway this can be solved by specifying to decode in UTF when reading the csv file. I am proposing a PR if that's okay. It should be good now, thanks for noticing and fixing it ! I would say that it was because you are on windows but not 100% sure
[ 0.09607858955860138, -0.031378090381622314, -0.07758274674415588, 0.2640610337257385, 0.4257141053676605, -0.07900062203407288, -0.08543737977743149, 0.15145030617713928, 0.08581583201885223, 0.17578783631324768, 0.15942540764808655, 0.1134679764509201, -0.024907639250159264, -0.1914835274219513, 0.15886527299880981, -0.20885269343852997, 0.19392608106136322, 0.17276084423065186, -0.15495125949382782, -0.015185021795332432, -0.2860027253627777, 0.3500201404094696, 0.024488190189003944, 0.1565985530614853, -0.11446177959442139, -0.18528741598129272, -0.23074635863304138, 0.2669435143470764, -0.3331383466720581, -0.5159597992897034, -0.0930938720703125, -0.1411759853363037, 0.40583765506744385, -0.3424752950668335, -0.00010933078738162294, -0.07211483269929886, 0.39827439188957214, -0.1664465069770813, 0.054783713072538376, 0.11661611497402191, -0.015473579987883568, -0.3343655467033386, -0.17601603269577026, -0.24869541823863983, 0.3781101107597351, 0.3489088714122772, 0.07319112122058868, -0.32126903533935547, 0.024205271154642105, 0.26598700881004333, 0.23782511055469513, 0.2477600872516632, 0.17812855541706085, 0.2954210937023163, 0.2441825568675995, -0.3906763792037964, -0.02849491685628891, 0.3495040535926819, 0.2638512849807739, -0.2385389506816864, 0.13456477224826813, 0.24734027683734894, -0.2612059414386749, 0.142332524061203, -0.2731609344482422, 0.3587568700313568, 0.16235467791557312, -0.5745044946670532, -0.07329092174768448, 0.13750432431697845, -0.08252380788326263, -0.21084588766098022, -0.23247283697128296, -0.021467085927724838, 0.31494981050491333, -0.3452874422073364, 0.4538140594959259, 0.343069463968277, -0.13913360238075256, 0.20289570093154907, 0.23957248032093048, -0.005509800277650356, 0.1321132332086563, 0.2591434419155121, 0.019058464094996452, 0.1714114546775818, -0.1949969381093979, -0.033863864839076996, 0.31587842106819153, -0.29770100116729736, -0.27579453587532043, -0.14276637136936188, -0.1771567016839981, 0.07203184068202972, -0.035612910985946655, -0.08120407909154892, -0.28427428007125854, 0.14358212053775787, 0.08466789126396179, -0.013462300412356853, 0.0946584939956665, -0.05734313279390335, 0.08996161073446274, 0.11085311323404312, 0.020828992128372192, 0.2417103350162506, -0.14708249270915985, -0.0004218599642626941, 0.42326682806015015, 0.10886036604642868, 0.3318256139755249, 0.018172800540924072, -0.18345844745635986, -0.2916090488433838, -0.1649368405342102, 0.27084243297576904, 0.2871675491333008, -0.06480467319488525, -0.3927217423915863, 0.08097001165151596, -0.10124238580465317, 0.06559205800294876, -0.22239939868450165, 0.07617653906345367, -0.18084341287612915, 0.20430947840213776, -0.18883384764194489, 0.34699589014053345, -0.25717103481292725, -0.3519372344017029, 0.014991373755037785, 0.3389756679534912, -0.12324297428131104, -0.028552554547786713, 0.19558176398277283, -0.028384311124682426, -0.04042286425828934, -0.06022863835096359, -0.15891364216804504, 0.0255915317684412, -0.2434096783399582, -0.08014541119337082, 0.05788586661219597, 0.22193460166454315, 0.11366551369428635, 0.18838149309158325, 0.09872402995824814, -0.6630220413208008, -0.23514433205127716, 0.05864068865776062, -0.1415203958749771, 0.0448230504989624, -0.15688708424568176, 0.15356391668319702, -0.2686421871185303, -0.1982618272304535, -0.004965315107256174, -0.052148036658763885, 0.0420171320438385, 0.11564671248197556, 0.08025989681482315, -0.03186892718076706, 0.037602655589580536, -0.3339197337627411, 0.1539803296327591, 0.4237537384033203, -0.30735477805137634, 0.08815562725067139, 0.034353096038103104, -0.26267027854919434, 0.27004867792129517, 0.37273794412612915, 0.2950722873210907, -0.1970292627811432, -0.27106526494026184, 0.5628251433372498, 0.29697054624557495, -0.4510255455970764, -0.5493009090423584, 0.5310092568397522, -0.17517443001270294, -0.016424324363470078, 0.08717156946659088, 0.1576894223690033, 0.2352525144815445, 0.10921546071767807, 0.18373650312423706, 0.5050613284111023, -0.08011927455663681, 0.098230741918087, -0.36594003438949585, -0.4618392884731293, 0.37618139386177063, 0.06762944906949997, -0.29855188727378845, -0.07299219071865082, 0.1556462049484253, -0.4404204785823822, 0.22563570737838745, 0.02871565707027912, 0.23879696428775787, 0.14482255280017853, 0.22140702605247498, -0.16681507229804993, -0.004205949604511261, -0.13054493069648743, -0.16857507824897766, 0.007993772625923157, -0.10551825910806656, 0.25925108790397644, -0.6571524739265442, -0.21875151991844177, -0.04679812863469124, -0.14350970089435577, -0.2525244653224945, -0.10950648784637451, 0.185592383146286, 0.0744088739156723, 0.3862217366695404, 0.2373247593641281, -0.13185635209083557, 0.5412459373474121, 0.036115583032369614, 0.10055551677942276, -0.250545471906662, 0.3868023157119751, -0.13733184337615967, -0.2259560376405716, 0.06241939589381218, 0.35213249921798706, 0.1498400866985321, -0.11489208787679672, -0.021961400285363197, 0.2945457994937897, -0.14496327936649323, 0.04587734490633011, 0.15622800588607788, -0.09293272346258163, 0.3510414659976959, -0.33137083053588867, 0.1879155933856964, 0.28393805027008057, 0.20871946215629578, 0.011667660437524319, 0.4055999517440796, 0.24084120988845825, 0.07734233140945435, 0.23597221076488495, 0.18076543509960175, 0.2210744023323059, 0.22782737016677856, 0.02441500872373581, -0.2061997801065445, -0.46194881200790405, 0.2684991657733917, 0.033173203468322754, 0.12589505314826965, -0.06796587258577347, -0.23847471177577972, -0.058927588164806366, 0.6475164294242859, -0.1361551135778427, 0.1365405172109604, -0.018666667863726616, -0.3090728521347046, 0.3296530246734619, -0.11493388563394547, 0.2858797609806061, 0.4102843701839447, -0.028452405706048012, -0.10261231660842896, 0.2041168361902237, 0.07722125947475433, -0.10808475315570831, 0.07495392858982086, -0.08331861346960068, -0.14472313225269318, -0.03376944735646248, -0.22384127974510193, 0.08573178946971893, -0.23101215064525604, 0.012782770209014416, -0.08084795624017715, 0.22514939308166504, -0.16223852336406708, -0.1788056492805481, -0.5618281960487366, -0.4707528054714203, -0.20298191905021667, -0.2117939293384552, -0.5013466477394104, -0.2158411592245102, -0.13239215314388275, -0.2413424700498581, -0.023420415818691254, -0.03383888676762581, -0.14165735244750977, -0.13578397035598755, -0.08208411186933517, -0.19614334404468536, 0.10376402735710144, -0.14614297449588776, -0.4340038299560547, 0.11213131994009018, 0.32207822799682617, 0.12119954824447632, 0.18147292733192444, -0.33217737078666687, 0.3115807771682739, -0.19616568088531494, -0.05531184747815132, 0.10366201400756836, -0.1345861703157425, 0.2402225136756897, 0.09636691212654114, -0.012691552750766277, 0.265698105096817, -0.2591365575790405, 0.2570512592792511, -0.07767639309167862, -0.13772274553775787, 0.12003219872713089, 0.1895545870065689, -0.40343865752220154, -0.09659776836633682, -0.13971486687660217, -0.7030831575393677, -0.22302812337875366, 0.061533208936452866, -0.12932953238487244, 0.013375173322856426, -0.195248544216156, -0.2366752028465271, 0.11219072341918945, -0.14537563920021057, -0.030458714812994003, -0.1451871246099472, -0.001821740996092558, 0.5186718106269836, -0.1627868264913559, -0.4522244334220886, 0.15558433532714844, -0.19127710163593292, -0.033165350556373596, -0.18880677223205566, -0.3169982433319092, 0.037770070135593414, -0.42470481991767883, -0.02068839780986309, 0.11688810586929321, 0.19116733968257904, 0.16161352396011353, -0.1768028885126114, 0.11681189388036728, 0.10306606441736221, -0.11067651957273483, -0.21660643815994263, 0.2738516330718994, 0.27814385294914246, 0.15004898607730865, 0.187875896692276, 0.13566504418849945, 0.009065639227628708, 0.19349756836891174, 0.049135830253362656, 0.5423478484153748, -0.2135622501373291, 0.3014676868915558, 0.3107931613922119, -0.09276066720485687, 0.006523503456264734, -0.19775739312171936, 0.20895130932331085, 0.18555951118469238, 0.016629083082079887, -0.29933005571365356, -0.16785037517547607, 0.2693977653980255, -0.3353395164012909, -0.3381198048591614, 0.05091438814997673, -0.038756996393203735, -0.05625658482313156, 0.08221893757581711, -0.05500415712594986, 0.1378331333398819, -0.28537002205848694, 0.14536653459072113, 0.4659431278705597, -0.217674121260643, 0.1647079735994339, -0.14233280718326569, -0.69853276014328, -0.30429115891456604, 0.15655337274074554, 0.3822275400161743, 0.6439918875694275, -0.06999169290065765, -0.015153078362345695, 0.18501195311546326, -0.1884349137544632, 0.40233898162841797, -0.48892489075660706, -0.1586768478155136, 0.21945343911647797, 0.41562721133232117, 0.11417326331138611, -0.12480810284614563, -0.4630338251590729, -0.08999963104724884, 0.3163909912109375, 0.10487189143896103, -0.010783830657601357, 0.011773970909416676, 0.1132073849439621, 0.1722646951675415, -0.09744562953710556, -0.11951131373643875, -0.4737178683280945, -0.46005040407180786, -0.290191113948822, 0.02440371736884117, 0.06291854381561279, 0.35565754771232605, 0.20493772625923157, 0.2504355013370514, -0.01931135356426239, -0.13135690987110138, 0.027362419292330742, 0.16372287273406982, 0.14672447741031647, -0.03840145096182823, 0.011271548457443714, -0.1745097041130066, 0.21395233273506165, -0.19996106624603271, 0.4932181239128113, 0.12384767830371857, -0.1025705337524414, 0.0527387373149395, -0.4481795132160187, 0.42381706833839417, 0.16456946730613708, -0.05121468007564545, -0.07257992029190063, 0.06449618935585022, 0.1399889588356018, -0.23246175050735474, -0.07162286341190338, 0.43076640367507935, 0.08138860017061234, -0.2889285087585449, 0.055474210530519485, 0.30267584323883057, 0.18563686311244965, 0.20760497450828552, -0.0527174212038517, 0.169897198677063, -0.09226324409246445, 0.006046458147466183, -0.03356288745999336, 0.8596195578575134, 0.13930624723434448, 0.04824038967490196, 0.08052996546030045, -0.48871415853500366, 0.41155731678009033, -0.07282108813524246, 0.07823974639177322, -0.2332850694656372, -0.26928144693374634, -0.07483845949172974, 0.20213142037391663, 0.5368657112121582, 0.017887689173221588, -0.4103846251964569, 0.21232064068317413, 0.259462833404541, 0.1733085811138153, 0.2273138463497162, 0.41006723046302795, -0.4128699004650116, -0.34614095091819763, -0.260755717754364, 0.1467486172914505, -0.050929032266139984, 0.15753798186779022, -0.0025416426360607147, -0.1808657944202423, 0.1510879397392273, -0.16430819034576416, -0.37969139218330383, 0.14817962050437927, -0.5830649733543396, -0.10590964555740356, -0.11595074087381363, -0.05055597797036171, 0.027600541710853577, -0.03253466635942459, 0.43017569184303284, 0.07881441712379456, 0.14622178673744202, 0.028776373714208603, 0.5023579597473145, -0.13479509949684143, 0.26344960927963257, 0.06491540372371674, 0.029369330033659935, -0.16923998296260834, -0.2536669671535492, 0.05032067000865936, 0.10352836549282074, 0.09317284822463989, 0.04574309661984444, 0.030972285196185112, -0.16556493937969208, -0.009998996742069721, -0.17818523943424225, -0.0597793348133564, 0.13391418755054474, 0.19692647457122803, 0.13731522858142853, 0.05390261113643646, -0.16220630705356598, 0.21585385501384735, -0.05047204717993736, -0.20698504149913788, -0.11498607695102692, 0.09628921002149582, -0.08655796200037003, -0.33876511454582214, -0.000044933203753316775, -0.0895201563835144, -0.3144170641899109, -0.1773141771554947, -0.049867186695337296, -0.29486656188964844, -0.10956009477376938, -0.24908119440078735, 0.09477555751800537, -0.0037874740082770586, -0.14600850641727448, 0.00996511708945036, 0.2050778716802597, -0.017567234113812447, 0.05671493709087372, -0.6207973957061768, -0.27902960777282715, 0.270121693611145, 0.11701910942792892, -0.05110304057598114, 0.02509760856628418, 0.04355904087424278, 0.1252608597278595, -0.21932411193847656, -0.28474509716033936, 0.10456248372793198, -0.048022739589214325, 0.009142348542809486, 0.5306368470191956, -0.07971812784671783, 0.14519591629505157, 0.10643241554498672, 0.12818223237991333, 0.36853939294815063, -0.010018045082688332, -0.18604716658592224, -0.072840116918087, 0.07237919420003891, 0.07004876434803009, -0.26264873147010803, 0.2065209448337555, -0.14369472861289978, 0.009093052707612514, -0.0019016641890630126, 0.10962027311325073, -0.042061835527420044, -0.0786517783999443, 0.20499971508979797, -0.12442567944526672, 0.11314986646175385, -0.019208041951060295, 0.21280688047409058, -0.3043263852596283, 0.5440459847450256, 0.19881387054920197, 0.1885213553905487, -0.11736837029457092, 0.17261634767055511, 0.12180217355489731, -0.13423901796340942, -0.3007752597332001, 0.020139819011092186, 0.19695892930030823, -0.34342023730278015, 0.06762304157018661, 0.004234127700328827, 0.14575380086898804, 0.41976699233055115, -0.13850300014019012, -0.12659494578838348, 0.5794140696525574, 0.2061557024717331, -0.13759009540081024, 0.13667692244052887, 0.2641613483428955, -0.08641763031482697, 0.002064712345600128, 0.24701941013336182, 0.28738826513290405, 0.14105582237243652, 0.25851699709892273, -0.07540568709373474, 0.6104862093925476, -0.011016481555998325, -0.012119018472731113, 0.19573575258255005, 0.03420187905430794, 0.139329195022583, -0.013901528902351856, 0.06413495540618896, -0.03792201727628708, 0.2962033450603485, -0.31296029686927795, 0.014259696938097477, 0.381351500749588, 0.252204954624176, -0.16196876764297485, -0.14295059442520142, 0.005067370366305113, 0.06381629407405853, -0.06137203052639961, 0.3057825267314911, 0.21153894066810608, 0.45597171783447266, -0.14304231107234955, -0.13311134278774261, -0.0036831952165812254, 0.22210079431533813, -0.02447407692670822, 0.03299373760819435, 0.09958628565073013, 0.12237055599689484, -0.5756688117980957, 0.20163121819496155, 0.02974647842347622, -0.1971905678510666, 0.27010592818260193, 0.22819359600543976, -0.07450632750988007, -0.3943827450275421, -0.199198916554451, 0.019858164712786674, 0.18722085654735565, -0.3332829773426056, 0.25013190507888794, 0.1700824648141861, 0.14096815884113312, -0.020706331357359886, -0.00719981687143445, 0.5386064052581787, 0.4117133915424347, -0.41774308681488037, 0.06788276135921478, -0.2541174590587616, 0.0018232843140140176, 0.0017787069082260132, 0.19283872842788696, 0.3674042820930481, 0.34360551834106445, 0.18353307247161865, 0.14757457375526428, -0.09709004312753677, -0.12521706521511078, 0.08209600299596786, 0.06589961051940918, 0.16691236197948456, 0.262180358171463, -0.12371307611465454, 0.2254277467727661, -0.4461056590080261, -0.14138194918632507, -0.694462239742279, -0.007803517859429121, 0.201196551322937, -0.18336737155914307, 0.20144490897655487, -0.10614126175642014, 0.08253427594900131, 0.08946678787469864, 0.28431764245033264, 0.4724917709827423, 0.16242823004722595, -0.14314241707324982, -0.1814243197441101, -0.7731503248214722, 0.1070471927523613, -0.20135506987571716, -0.3078993856906891, -0.14619138836860657, 0.06860368698835373, -0.17061136662960052, 0.35007333755493164, 0.06150498613715172, 0.7089385390281677, -0.0908864289522171, 0.03477276489138603, -0.1442362666130066, -0.040093086659908295, 0.07910489290952682, -0.07475676387548447, -0.0370701365172863, -0.33914363384246826, 0.13309301435947418, -0.06519719213247299, 0.01615026779472828, -0.10798332840204239, -0.15411628782749176, -0.35098588466644287, 0.050036363303661346, 0.24327974021434784, 0.3958933353424072, 0.6262512803077698, -0.15792742371559143, -0.0846172347664833, -0.3797357380390167, -0.0811668410897255, -0.19521790742874146, 0.2209116816520691, -0.05061596632003784, -0.030929841101169586, -0.08457046747207642, 0.1616847813129425, -0.5174286365509033, 0.2082439661026001, 0.04109472408890724, 0.23995360732078552, -0.04593207687139511, 0.09101998805999756, 0.2638615071773529, 0.03511003777384758, 0.05312670022249222, 0.17807158827781677, -0.0814526379108429, 0.1501331478357315, 0.053790342062711716, -0.32575419545173645, 0.13639959692955017, -0.16207362711429596, -0.24246874451637268, 0.19623854756355286, 0.2875564396381378, 0.23239678144454956, 0.09413351118564606, -0.3354715406894684, -0.08600722998380661, 0.07477732747793198, -0.166824609041214, -0.2506377696990967, 0.30785995721817017, -0.07068194448947906, -0.2163032740354538, -0.038853537291288376, 0.10735400021076202, 0.07008183002471924, -0.24263177812099457, 0.14631429314613342, -0.3746825158596039 ]
https://github.com/huggingface/datasets/issues/242
UnicodeDecodeError when downloading GLUE-MNLI
On Windows Python supports Unicode almost everywhere, but one of the notable exceptions is open() where it uses the locale encoding schema. So platform independent python scripts would always set the encoding='utf-8' in calls to open explicitly. In the meantime: since Python 3.7 Windows users can set the default encoding for everything including open() to Unicode by setting this environment variable: set PYTHONUTF8=1 (details can be found in [PEP 540](https://www.python.org/dev/peps/pep-0540/)) For me this fixed the problem described by the OP.
When I run ```python dataset = nlp.load_dataset('glue', 'mnli') ``` I get an encoding error (could it be because I'm using Windows?) : ```python # Lots of error log lines later... ~\Miniconda3\envs\nlp\lib\site-packages\tqdm\std.py in __iter__(self) 1128 try: -> 1129 for obj in iterable: 1130 yield obj ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\glue\5256cc2368cf84497abef1f1a5f66648522d5854b225162148cb8fc78a5a91cc\glue.py in _generate_examples(self, data_file, split, mrpc_files) 529 --> 530 for n, row in enumerate(reader): 531 if is_cola_non_test: ~\Miniconda3\envs\nlp\lib\csv.py in __next__(self) 110 self.fieldnames --> 111 row = next(self.reader) 112 self.line_num = self.reader.line_num ~\Miniconda3\envs\nlp\lib\encodings\cp1252.py in decode(self, input, final) 22 def decode(self, input, final=False): ---> 23 return codecs.charmap_decode(input,self.errors,decoding_table)[0] 24 UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 6744: character maps to <undefined> ``` Anyway this can be solved by specifying to decode in UTF when reading the csv file. I am proposing a PR if that's okay.
80
UnicodeDecodeError when downloading GLUE-MNLI When I run ```python dataset = nlp.load_dataset('glue', 'mnli') ``` I get an encoding error (could it be because I'm using Windows?) : ```python # Lots of error log lines later... ~\Miniconda3\envs\nlp\lib\site-packages\tqdm\std.py in __iter__(self) 1128 try: -> 1129 for obj in iterable: 1130 yield obj ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\glue\5256cc2368cf84497abef1f1a5f66648522d5854b225162148cb8fc78a5a91cc\glue.py in _generate_examples(self, data_file, split, mrpc_files) 529 --> 530 for n, row in enumerate(reader): 531 if is_cola_non_test: ~\Miniconda3\envs\nlp\lib\csv.py in __next__(self) 110 self.fieldnames --> 111 row = next(self.reader) 112 self.line_num = self.reader.line_num ~\Miniconda3\envs\nlp\lib\encodings\cp1252.py in decode(self, input, final) 22 def decode(self, input, final=False): ---> 23 return codecs.charmap_decode(input,self.errors,decoding_table)[0] 24 UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 6744: character maps to <undefined> ``` Anyway this can be solved by specifying to decode in UTF when reading the csv file. I am proposing a PR if that's okay. On Windows Python supports Unicode almost everywhere, but one of the notable exceptions is open() where it uses the locale encoding schema. So platform independent python scripts would always set the encoding='utf-8' in calls to open explicitly. In the meantime: since Python 3.7 Windows users can set the default encoding for everything including open() to Unicode by setting this environment variable: set PYTHONUTF8=1 (details can be found in [PEP 540](https://www.python.org/dev/peps/pep-0540/)) For me this fixed the problem described by the OP.
[ 0.06596629321575165, 0.06928083300590515, -0.00750305550172925, 0.14659889042377472, 0.489040732383728, -0.13624073565006256, -0.005773158278316259, 0.07956115901470184, 0.057453300803899765, 0.31636229157447815, 0.15498436987400055, 0.12631480395793915, -0.06716343015432358, -0.17417821288108826, 0.0777118057012558, -0.29716727137565613, 0.19267722964286804, 0.20517513155937195, -0.049280066043138504, -0.033945366740226746, -0.43677443265914917, 0.3971390426158905, 0.07370856404304504, 0.2630496621131897, -0.02193440869450569, -0.08675539493560791, -0.1529306173324585, 0.23977506160736084, -0.301611065864563, -0.5756043791770935, -0.12371077388525009, -0.12663602828979492, 0.3628610372543335, -0.2685573697090149, -0.00011571258801268414, -0.012200111523270607, 0.320054829120636, -0.26031890511512756, 0.13760924339294434, 0.17118215560913086, 0.028887683525681496, -0.2948039770126343, -0.15161745250225067, -0.17748309671878815, 0.3508852422237396, 0.28269442915916443, 0.1608465164899826, -0.4594716727733612, -0.12640684843063354, 0.28556177020072937, 0.148749440908432, 0.3086075484752655, 0.1480986326932907, 0.4098854064941406, 0.10597461462020874, -0.3754206597805023, -0.10380574315786362, 0.35547736287117004, 0.28983041644096375, -0.28610488772392273, -0.12150846421718597, 0.18851353228092194, -0.272969514131546, 0.08025292307138443, -0.30738365650177, 0.3867276906967163, 0.1543736308813095, -0.5894982218742371, -0.11912743002176285, 0.07876414805650711, -0.10836707800626755, -0.27374935150146484, -0.34482622146606445, -0.11081443727016449, 0.16247744858264923, -0.3434238135814667, 0.3828708231449127, 0.3813180923461914, -0.19834066927433014, 0.3759186863899231, 0.3234002888202667, 0.02712418884038925, 0.12974397838115692, 0.17889250814914703, -0.11494261026382446, 0.30309367179870605, -0.04841773957014084, 0.005219930782914162, 0.3293924927711487, -0.17606796324253082, -0.21788915991783142, -0.09270691871643066, -0.02819475531578064, -0.07834848016500473, -0.007780797313898802, -0.027578983455896378, -0.17305772006511688, 0.08976731449365616, 0.06501030921936035, 0.024377472698688507, 0.1349373310804367, 0.0160541869699955, -0.037760697305202484, 0.19033172726631165, -0.007162348832935095, 0.15370869636535645, -0.19606639444828033, 0.11052758991718292, 0.5007559657096863, 0.0054311431013047695, 0.39201658964157104, 0.0856894701719284, -0.09160776436328888, -0.33368584513664246, -0.14815348386764526, 0.3762514293193817, 0.3734878897666931, 0.04882977530360222, -0.32706403732299805, 0.12451168894767761, -0.09322082996368408, 0.08089432865381241, -0.268321692943573, -0.01883072592318058, -0.1305699199438095, 0.40930336713790894, -0.18845726549625397, 0.34447622299194336, -0.4128131568431854, -0.30858680605888367, 0.06232007220387459, 0.2654925584793091, -0.05761285871267319, -0.02167849987745285, 0.19536283612251282, -0.006377069745212793, -0.0489240400493145, -0.0647774413228035, -0.06683658063411713, 0.0914171040058136, -0.16264937818050385, -0.10586491227149963, 0.1504984200000763, 0.21321362257003784, 0.11116599291563034, 0.0766252726316452, 0.16058549284934998, -0.7501704096794128, -0.36767318844795227, 0.1320262849330902, -0.1136828288435936, -0.03273896127939224, -0.16247951984405518, 0.041972365230321884, -0.2905903458595276, -0.268328994512558, 0.04321015998721123, 0.08936338871717453, -0.012850739061832428, 0.058380551636219025, 0.14237071573734283, -0.06582415848970413, -0.12564630806446075, -0.2885707914829254, 0.1912129670381546, 0.5120857357978821, -0.27142053842544556, 0.11977842450141907, 0.2272896021604538, -0.28879213333129883, 0.18523214757442474, 0.3578082323074341, 0.24168825149536133, -0.33237361907958984, -0.19234667718410492, 0.4748018682003021, 0.24837520718574524, -0.5571577548980713, -0.5454273223876953, 0.4257730543613434, -0.1235027089715004, -0.038965437561273575, 0.189101442694664, -0.014496039599180222, 0.18784618377685547, 0.02919234149158001, 0.15255676209926605, 0.5387170910835266, -0.19745516777038574, 0.19255055487155914, -0.2940199077129364, -0.49474263191223145, 0.3141424059867859, 0.14263184368610382, -0.17361964285373688, -0.08229245245456696, 0.1291462481021881, -0.4585203230381012, 0.17232811450958252, -0.11129458248615265, 0.27876320481300354, 0.028267037123441696, 0.3319399952888489, -0.21119005978107452, 0.03807664290070534, -0.09157006442546844, -0.04154574126005173, -0.011097466573119164, -0.023712433874607086, 0.21214278042316437, -0.6939573884010315, -0.2628231644630432, 0.07375648617744446, -0.12024083733558655, -0.21305185556411743, -0.05977718532085419, 0.07056251168251038, 0.13115715980529785, 0.3312762975692749, 0.3530183434486389, -0.25604894757270813, 0.4444120228290558, 0.02911042422056198, 0.059634774923324585, -0.18609744310379028, 0.2995319366455078, -0.033216580748558044, -0.18522508442401886, -0.03280157968401909, 0.4689338803291321, 0.0278451070189476, -0.11686206609010696, -0.013039055280387402, 0.29949405789375305, 0.007141742389649153, 0.08742817491292953, 0.09967915713787079, 0.03509295731782913, 0.44629570841789246, -0.2842262387275696, 0.13989004492759705, 0.4377094805240631, 0.14055120944976807, 0.16815070807933807, 0.2921563684940338, 0.43543151021003723, 0.04503607377409935, 0.1407744437456131, 0.21761341392993927, 0.1677333116531372, 0.20796993374824524, 0.08859087526798248, -0.4142261743545532, -0.48249584436416626, 0.13219836354255676, 0.08460221439599991, 0.20979458093643188, -0.003814414143562317, -0.36438077688217163, -0.1360844224691391, 0.7756449580192566, -0.14777956902980804, 0.1650187373161316, 0.07730207592248917, -0.10303958505392075, 0.343203067779541, -0.11691270768642426, 0.21652628481388092, 0.4581325352191925, -0.0990949422121048, -0.06002447009086609, 0.2631983757019043, 0.0864500030875206, -0.08633359521627426, 0.06015896797180176, -0.0021348444279283285, -0.20386634767055511, 0.033626738935709, -0.18103940784931183, 0.060292262583971024, -0.23868736624717712, -0.0007924176170490682, -0.07269511371850967, 0.13444189727306366, -0.1566106230020523, 0.018895335495471954, -0.595806360244751, -0.3180295526981354, -0.29057595133781433, -0.15697769820690155, -0.3728330135345459, -0.17783333361148834, -0.08260424435138702, -0.22051900625228882, -0.1535082757472992, -0.009858694858849049, -0.38068506121635437, -0.05833519250154495, -0.16454638540744781, -0.35510796308517456, 0.2879951298236847, -0.15195044875144958, -0.3765111565589905, 0.04586346447467804, 0.29718828201293945, -0.07450472563505173, 0.052741263061761856, -0.3912448287010193, 0.2198839783668518, -0.116172194480896, -0.15981611609458923, 0.10455377399921417, -0.012612560763955116, 0.1350211650133133, 0.07287483662366867, -0.26139670610427856, 0.1342349499464035, -0.32894816994667053, 0.2606319487094879, -0.10184568911790848, -0.05074542760848999, 0.05796261131763458, 0.1840226799249649, -0.33691635727882385, -0.08881465345621109, -0.04773373529314995, -0.6349594593048096, -0.26218968629837036, 0.1085832491517067, -0.2164631485939026, -0.029641620814800262, -0.32150688767433167, -0.24970117211341858, -0.0321873314678669, -0.08244066685438156, -0.09888697415590286, -0.04847807064652443, -0.040887121111154556, 0.4804699420928955, -0.21169300377368927, -0.381987988948822, 0.12539099156856537, -0.2614031434059143, -0.09493868052959442, -0.008432228118181229, -0.25963470339775085, -0.1206078976392746, -0.4150761067867279, 0.06789993494749069, 0.08164399862289429, 0.21131739020347595, 0.18883661925792694, -0.06624642759561539, 0.18891039490699768, 0.028525810688734055, -0.21332915127277374, -0.20139603316783905, 0.3152661621570587, 0.12870429456233978, 0.19945921003818512, 0.16979056596755981, 0.22298277914524078, -0.13162072002887726, 0.17205379903316498, 0.15817992389202118, 0.5512159466743469, -0.20447835326194763, 0.38490986824035645, 0.2994397282600403, 0.07942401617765427, 0.03524434193968773, -0.16225752234458923, 0.12206844985485077, 0.25170058012008667, 0.08815894275903702, -0.3062874972820282, -0.16598433256149292, 0.2079833596944809, -0.34732377529144287, -0.5740142464637756, 0.160089910030365, -0.11924940347671509, 0.03590210899710655, -0.051987431943416595, 0.04144824668765068, 0.11850736290216446, -0.16472837328910828, 0.1501123458147049, 0.46509164571762085, -0.08521723002195358, 0.2689601480960846, -0.02883027493953705, -0.5663639903068542, -0.32294291257858276, 0.011827596463263035, 0.3666897416114807, 0.7510472536087036, -0.03677946701645851, -0.05803627893328667, 0.13670110702514648, -0.2418791949748993, 0.2690560221672058, -0.4555698037147522, -0.1715729981660843, 0.07084465026855469, 0.3321158289909363, 0.04978208988904953, -0.08531767129898071, -0.34137892723083496, -0.09957470744848251, 0.09290127456188202, 0.017954852432012558, 0.0016854413552209735, -0.004817354027181864, 0.04947200417518616, 0.15624214708805084, -0.04991447553038597, 0.0009701562812551856, -0.49996909499168396, -0.5834291577339172, -0.2735545039176941, 0.035648126155138016, 0.17986994981765747, 0.20006109774112701, 0.2440769374370575, 0.3113580048084259, -0.09079033881425858, -0.13108891248703003, 0.12079436331987381, 0.13930797576904297, 0.0824257880449295, -0.11104141920804977, -0.0769583061337471, -0.21786493062973022, 0.09862124174833298, -0.13958290219306946, 0.5598428845405579, 0.11881263554096222, -0.39391788840293884, 0.08080416917800903, -0.3913770020008087, 0.4750381112098694, 0.22057482600212097, -0.048224687576293945, -0.15263760089874268, 0.029597600921988487, 0.05468617379665375, -0.3251279294490814, -0.10332775115966797, 0.3757901191711426, 0.1071183905005455, -0.31140705943107605, -0.04233396798372269, 0.251954585313797, 0.15877501666545868, 0.19819606840610504, 0.001610232749953866, 0.2698328197002411, -0.08528037369251251, 0.12100397050380707, 0.10674671828746796, 0.7687667012214661, 0.1135379821062088, 0.09853698313236237, 0.14861087501049042, -0.4876004457473755, 0.32081329822540283, -0.008652965538203716, 0.08975823223590851, -0.17351359128952026, -0.25280332565307617, -0.11899660527706146, 0.23381997644901276, 0.5631157159805298, -0.07957430928945541, -0.3419628441333771, 0.19240804016590118, 0.34761738777160645, 0.10653139650821686, 0.3265293538570404, 0.39448875188827515, -0.5686740875244141, -0.39116841554641724, -0.3675348162651062, 0.03758176788687706, 0.025379840284585953, 0.12020602077245712, 0.04900091141462326, -0.19874997437000275, 0.15205219388008118, -0.2151768058538437, -0.3568888008594513, 0.026598913595080376, -0.5614290833473206, -0.06911053508520126, -0.10167717933654785, -0.13719157874584198, 0.08281994611024857, 0.1239936575293541, 0.5200179815292358, 0.04276488348841667, 0.19076836109161377, -0.032532449811697006, 0.4909977614879608, -0.08638738840818405, 0.28429675102233887, -0.005328046157956123, -0.02083650603890419, -0.09111520648002625, -0.24476838111877441, 0.030484722927212715, 0.12656933069229126, 0.015104321762919426, 0.048536889255046844, 0.02133505418896675, -0.13587141036987305, 0.07949897646903992, -0.16741466522216797, -0.21601878106594086, 0.0747629702091217, 0.304226815700531, 0.05336638540029526, -0.031025534495711327, -0.0037366244941949844, 0.19651377201080322, -0.17727826535701752, -0.24354314804077148, -0.053942158818244934, -0.05637720227241516, -0.21467998623847961, -0.37885549664497375, -0.06939647346735, -0.18190354108810425, -0.2666614055633545, -0.05699314549565315, 0.04049261659383774, -0.2393922209739685, -0.008552605286240578, -0.28232622146606445, 0.03700416162610054, -0.08032361418008804, -0.13168956339359283, -0.04846363142132759, 0.1440737396478653, -0.031769439578056335, 0.07222869247198105, -0.6231849789619446, -0.2428382933139801, 0.30597636103630066, 0.10474080592393875, -0.1449359953403473, 0.11050770431756973, 0.13055895268917084, 0.012691866606473923, -0.3582857847213745, -0.1965314894914627, 0.1318669617176056, 0.06097446382045746, -0.0028749953489750624, 0.49723881483078003, -0.003472277196124196, 0.09573101252317429, 0.12361307442188263, 0.0042777531780302525, 0.37769225239753723, 0.011891487054526806, -0.05825210362672806, -0.18051692843437195, 0.12877365946769714, 0.08751694858074188, -0.2672635018825531, 0.31878137588500977, -0.13040582835674286, 0.004707168787717819, -0.10049518197774887, 0.1612781286239624, 0.17796118557453156, -0.21462641656398773, 0.2810826003551483, -0.1274721324443817, 0.22427427768707275, -0.00386865995824337, 0.12453225255012512, -0.18656904995441437, 0.632071316242218, 0.22639422118663788, 0.279594749212265, -0.10153601318597794, 0.24691051244735718, 0.23190726339817047, -0.024961138144135475, -0.24583657085895538, 0.09196475148200989, 0.12800244987010956, -0.22202689945697784, 0.10555942356586456, -0.05792520195245743, 0.12618236243724823, 0.3847448229789734, -0.1186879575252533, -0.12199640274047852, 0.5793874263763428, 0.09306168556213379, -0.05751010403037071, 0.12113912403583527, 0.27557459473609924, -0.06880120187997818, 0.02648969180881977, 0.3882042467594147, 0.4089776277542114, 0.17655128240585327, 0.2406211644411087, -0.12539063394069672, 0.5952464938163757, 0.001120449393056333, 0.1183714047074318, 0.36231717467308044, -0.04728613421320915, 0.18799960613250732, -0.07083561271429062, 0.014251688495278358, 0.06846612691879272, 0.2516636252403259, -0.31385114789009094, -0.004432611633092165, 0.385050505399704, 0.2570827305316925, -0.2002011239528656, -0.20423075556755066, 0.011569159105420113, -0.11482017487287521, -0.02023611217737198, 0.31926411390304565, 0.2976197302341461, 0.3538486063480377, -0.2145281434059143, -0.025005701929330826, -0.004770171828567982, 0.24877773225307465, 0.045797400176525116, -0.09790002554655075, 0.17635630071163177, 0.10711529105901718, -0.5134838223457336, 0.2841792702674866, -0.046039413660764694, -0.17741286754608154, 0.3543107807636261, 0.25237828493118286, 0.08536279946565628, -0.24630652368068695, -0.14915934205055237, -0.04642690718173981, 0.35130244493484497, -0.2995991110801697, 0.19494062662124634, 0.29793813824653625, 0.11315673589706421, 0.027372727170586586, -0.11218491941690445, 0.5564964413642883, 0.35548868775367737, -0.4729909300804138, 0.11468809098005295, -0.3460690379142761, 0.09187285602092743, 0.000026923453333438374, 0.11664114892482758, 0.3284032344818115, 0.40902063250541687, 0.18224173784255981, 0.07900331169366837, 0.04787052050232887, -0.13975217938423157, 0.07072596997022629, 0.04420917108654976, 0.10398191213607788, 0.37874653935432434, 0.014495188370347023, 0.31789135932922363, -0.2724895775318146, -0.10723721235990524, -0.49204713106155396, -0.021880658343434334, 0.19370713829994202, -0.09320001304149628, 0.18540525436401367, 0.016116004437208176, 0.018090568482875824, 0.2927773892879486, 0.12423979490995407, 0.32512059807777405, 0.19012434780597687, 0.005343145225197077, -0.11244729906320572, -0.7355489730834961, 0.16766947507858276, -0.05779973044991493, -0.41952061653137207, -0.11058951914310455, -0.0916399210691452, -0.09296360611915588, 0.4235084056854248, -0.18732255697250366, 0.720227062702179, 0.014637080021202564, 0.06413917988538742, -0.0472104586660862, -0.14102257788181305, 0.14666669070720673, -0.06345383822917938, -0.07974081486463547, -0.379546195268631, 0.035613369196653366, -0.0526411347091198, -0.0431564599275589, -0.14622092247009277, -0.08945310860872269, -0.45862066745758057, -0.008464867249131203, 0.17162944376468658, 0.5348656177520752, 0.6343555450439453, -0.2648265063762665, -0.051596518605947495, -0.34334996342658997, -0.021751323714852333, -0.33861976861953735, 0.2185119241476059, -0.10613551735877991, 0.0010006254306063056, -0.2635778784751892, -0.01798759028315544, -0.4536590576171875, 0.24372568726539612, 0.0708177238702774, 0.27212586998939514, 0.04455264285206795, 0.15151885151863098, 0.2206396609544754, -0.0536918081343174, 0.026381853967905045, 0.32072770595550537, -0.0657147616147995, 0.15666060149669647, 0.15683819353580475, -0.33247822523117065, 0.1384955495595932, -0.2053888589143753, -0.20749691128730774, 0.14610637724399567, 0.21877296268939972, 0.1676388382911682, 0.12322510778903961, -0.3770214021205902, 0.0337979719042778, -0.018949901685118675, -0.1387716382741928, -0.31868383288383484, 0.27753594517707825, -0.09343686699867249, -0.304644376039505, -0.14729557931423187, 0.22299405932426453, 0.047705017030239105, -0.27415522933006287, 0.11334121227264404, -0.41068607568740845 ]
https://github.com/huggingface/datasets/issues/240
Deterministic dataset loading
I think using `sorted(glob.glob())` would actually solve this problem. Can you think of other reasons why dataset loading might not be deterministic? @mariamabarham @yjernite @lhoestq @thomwolf . I can do a sweep through the dataset scripts and fix the glob.glob() if you guys are ok with it
When calling: ```python import nlp dataset = nlp.load_dataset("trivia_qa", split="validation[:1%]") ``` the resulting dataset is not deterministic over different google colabs. After talking to @thomwolf, I suspect the reason to be the use of `glob.glob` in line: https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/datasets/trivia_qa/trivia_qa.py#L180 which seems to return an ordering of files that depends on the filesystem: https://stackoverflow.com/questions/6773584/how-is-pythons-glob-glob-ordered I think we should go through all the dataset scripts and make sure to have deterministic behavior. A simple solution for `glob.glob()` would be to just replace it with `sorted(glob.glob())` to have everything sorted by name. What do you think @lhoestq?
47
Deterministic dataset loading When calling: ```python import nlp dataset = nlp.load_dataset("trivia_qa", split="validation[:1%]") ``` the resulting dataset is not deterministic over different google colabs. After talking to @thomwolf, I suspect the reason to be the use of `glob.glob` in line: https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/datasets/trivia_qa/trivia_qa.py#L180 which seems to return an ordering of files that depends on the filesystem: https://stackoverflow.com/questions/6773584/how-is-pythons-glob-glob-ordered I think we should go through all the dataset scripts and make sure to have deterministic behavior. A simple solution for `glob.glob()` would be to just replace it with `sorted(glob.glob())` to have everything sorted by name. What do you think @lhoestq? I think using `sorted(glob.glob())` would actually solve this problem. Can you think of other reasons why dataset loading might not be deterministic? @mariamabarham @yjernite @lhoestq @thomwolf . I can do a sweep through the dataset scripts and fix the glob.glob() if you guys are ok with it
[ 0.12789899110794067, 0.06803526729345322, 0.018163084983825684, 0.16125589609146118, 0.1494208127260208, -0.09384381026029587, 0.28779157996177673, 0.07379543781280518, 0.2083064317703247, -0.057463500648736954, 0.10429295897483826, 0.37041735649108887, -0.1524900197982788, 0.11149103939533234, -0.012711687944829464, -0.04838837310671806, -0.026026908308267593, 0.1764349788427353, -0.05848520249128342, -0.18720099329948425, -0.30695271492004395, 0.07847332209348679, -0.4576542377471924, -0.36906856298446655, -0.2645185887813568, 0.08991910517215729, -0.09915203601121902, 0.13413913547992706, -0.0830378532409668, -0.4587271511554718, 0.15707813203334808, 0.5054250359535217, 0.16285762190818787, 0.18232212960720062, -0.00011504535359563306, -0.265695720911026, 0.4034866690635681, -0.10312597453594208, -0.44383320212364197, -0.3913381099700928, -0.39457735419273376, -0.030480023473501205, 0.137995645403862, -0.01771540567278862, -0.27747559547424316, 0.026426175609230995, 0.38824182748794556, -0.267333447933197, 0.26693737506866455, 0.04184238985180855, 0.1728890985250473, -0.12490256875753403, 0.0030791580211371183, 0.1387372761964798, 0.01047234982252121, 0.06959181278944016, -0.022829240188002586, 0.45246756076812744, 0.13822662830352783, -0.2738267183303833, -0.06894588470458984, 0.1072152853012085, 0.03125673905014992, 0.10483033955097198, 0.48225080966949463, 0.12794910371303558, -0.21762757003307343, -0.4005134701728821, -0.10749924182891846, 0.24439358711242676, 0.5826350450515747, -0.172165185213089, -0.25149163603782654, -0.3525477647781372, 0.264547735452652, -0.10003046691417694, 0.12447167187929153, 0.3805080056190491, -0.13450929522514343, -0.09593231230974197, -0.0022381225135177374, 0.16711105406284332, -0.13715212047100067, 0.07108728587627411, 0.08564572781324387, 0.587982714176178, -0.013878642581403255, 0.025663770735263824, 0.07930358499288559, 0.2684374153614044, 0.20621970295906067, -0.2505575716495514, -0.06963106244802475, 0.14748311042785645, -0.3169844448566437, -0.11941840499639511, 0.1632872372865677, 0.5273430347442627, 0.0931171402335167, 0.18719129264354706, 0.2267666608095169, 0.06747977435588837, -0.1524084359407425, 0.008962437510490417, 0.3967239558696747, 0.5014609694480896, 0.012952852994203568, 0.08890356123447418, 0.33930158615112305, 0.010244658216834068, -0.14010897278785706, 0.273424357175827, -0.06045614182949066, -0.3183382749557495, 0.15365254878997803, 0.09681841731071472, 0.14907009899616241, -0.23966462910175323, -0.44630885124206543, -0.28191012144088745, -0.2935082018375397, -0.04257583990693092, 0.025523768737912178, 0.2448839545249939, -0.30413469672203064, 0.1373276263475418, -0.2099102884531021, 0.1781618893146515, -0.11226441711187363, -0.06672558933496475, -0.04424739629030228, -0.11899052560329437, -0.36724650859832764, 0.15537290275096893, 0.177964985370636, 0.07100199162960052, 0.1543084979057312, 0.2629646956920624, -0.2230554074048996, -0.09332269430160522, 0.031871311366558075, -0.33387017250061035, 0.034008342772722244, -0.01251686830073595, 0.10989262163639069, -0.08348662406206131, -0.21222437918186188, -0.09923749417066574, -0.3635239601135254, 0.10933347791433334, -0.22316265106201172, -0.10212463140487671, -0.11641702055931091, 0.1394498497247696, -0.32032206654548645, -0.14174820482730865, -0.4392816722393036, 0.34631216526031494, 0.06612786650657654, -0.08564160019159317, -0.1390952616930008, -0.25195446610450745, -0.30007603764533997, -0.3598107695579529, -0.1437501609325409, 0.5643340349197388, -0.33395615220069885, 0.08831590414047241, -0.07750708609819412, 0.2793799638748169, 0.32617196440696716, 0.3118193745613098, -0.04331200569868088, 0.26128846406936646, -0.2711885869503021, -0.034849897027015686, 0.09159292280673981, -0.07655758410692215, -0.14798693358898163, 0.15606911480426788, -0.20977069437503815, 0.3643495738506317, -0.0059248898178339005, 0.2887924909591675, 0.026955651119351387, -0.2857646346092224, 0.21222621202468872, 0.5817524194717407, 0.1125246211886406, 0.1455496996641159, -0.22289597988128662, -0.11607090383768082, 0.16065068542957306, 0.13416053354740143, -0.15292507410049438, 0.2557579278945923, -0.07974942028522491, -0.1022738441824913, 0.2364649772644043, 0.05878138914704323, -0.37616604566574097, 0.0654710978269577, 0.4298803508281708, 0.05662703141570091, -0.005900915712118149, 0.0919145867228508, -0.8025336861610413, 0.2653382420539856, -0.13567723333835602, 0.21970497071743011, -0.1007077544927597, -0.17107774317264557, -0.0598146878182888, -0.19293111562728882, -0.36713963747024536, 0.043226346373558044, 0.10956613719463348, 0.3891426622867584, 0.2721545398235321, 0.2649303078651428, 0.14290033280849457, 0.5052410364151001, 0.02264249697327614, -0.13037854433059692, -0.40896958112716675, 0.40760767459869385, -0.0580008402466774, -0.1394963413476944, 0.3009551465511322, 0.23228853940963745, 0.010630079545080662, -0.2568788528442383, -0.1099533811211586, 0.3478693962097168, 0.19225521385669708, 0.14909839630126953, 0.14226849377155304, -0.006386084482073784, 0.07905752956867218, 0.06358940154314041, 0.22845280170440674, 0.2303832322359085, -0.03064936026930809, -0.14227734506130219, -0.023764336481690407, 0.4832133948802948, -0.14083364605903625, 0.24325531721115112, 0.1068810448050499, -0.0918821170926094, 0.05768508091568947, 0.056152135133743286, -0.00985822081565857, -0.18489818274974823, 0.28721705079078674, 0.2241622805595398, 0.39847081899642944, 0.48911285400390625, -0.6162041425704956, 0.26853394508361816, 0.6741495728492737, 0.11728674918413162, 0.054570965468883514, 0.0422467440366745, 0.12816017866134644, -0.29233887791633606, 0.24354316294193268, 0.31094127893447876, 0.5828955173492432, 0.1728079915046692, -0.12159440666437149, -0.048713162541389465, -0.1323099583387375, -0.2566326856613159, 0.00822567567229271, -0.049705248326063156, 0.2310311645269394, 0.06836976110935211, 0.3204987347126007, 0.27185550332069397, -0.2242339700460434, -0.11448062211275101, -0.11838037520647049, 0.035549189895391464, -0.1283753365278244, 0.1732633411884308, -0.24314932525157928, -0.3185340464115143, -0.35505175590515137, -0.09981810301542282, -0.33054107427597046, -0.24067352712154388, 0.07259487360715866, 0.21840521693229675, 0.05714348703622818, -0.12663939595222473, 0.18628820776939392, 0.2984233796596527, -0.0690755695104599, -0.4595796465873718, -0.18096770346164703, -0.04505292326211929, -0.37602266669273376, -0.032173581421375275, 0.4337281286716461, 0.25273773074150085, 0.48213428258895874, -0.13459236919879913, -0.20568130910396576, 0.1416741907596588, -0.2974398136138916, -0.13052597641944885, -0.3035554587841034, 0.33357730507850647, -0.08232158422470093, -0.09865342825651169, -0.024281520396471024, -0.0864901915192604, 0.011955427937209606, -0.00916751567274332, -0.03246267884969711, 0.00952341128140688, 0.06952489912509918, 0.002109996508806944, -0.04886699840426445, -0.34148550033569336, -0.28315383195877075, -0.1440598964691162, 0.08791173249483109, 0.2736334204673767, 0.13327793776988983, 0.30458492040634155, -0.07927428185939789, -0.2478584498167038, 0.13714894652366638, 0.04496140033006668, -0.08069683611392975, -0.08782384544610977, 0.34281885623931885, -0.1608348786830902, -0.23617742955684662, -0.3503187894821167, -0.11388896405696869, -0.07062038779258728, 0.10050711780786514, -0.33239951729774475, -0.28483846783638, -0.3624158501625061, 0.010044853202998638, -0.07570217549800873, -0.28654900193214417, 0.3644973933696747, 0.07750269770622253, 0.06958341598510742, 0.18889538943767548, -0.004141538869589567, 0.19653305411338806, 0.2920995056629181, 0.3772507309913635, 0.1817643940448761, 0.018389515578746796, -0.03392231836915016, 0.48459941148757935, -0.012619873508810997, -0.41455575823783875, 0.20607228577136993, 0.15878693759441376, 0.3422958552837372, -0.4762469530105591, -0.06830195337533951, 0.232044979929924, 0.19107162952423096, -0.10547753423452377, 0.5191332697868347, -0.04053249955177307, -0.04474068805575371, -0.11589989066123962, 0.3423369228839874, -0.2025170475244522, -0.2299305945634842, 0.03644796460866928, -0.23571768403053284, -0.225430428981781, 0.10374993085861206, 0.0921151265501976, 0.053458381444215775, -0.36301493644714355, -0.20383195579051971, 0.14841461181640625, 0.18672272562980652, 0.068440280854702, 0.21180002391338348, 0.04994433373212814, -0.5956828594207764, 0.10554414242506027, 0.013453216291964054, 0.05382085591554642, 0.02502075582742691, -0.0765678882598877, 0.27286195755004883, -0.024145137518644333, 0.24141836166381836, -0.02487344667315483, 0.21684546768665314, -0.005712129641324282, 0.08499616384506226, 0.08628175407648087, -0.31255921721458435, -0.29672524333000183, 0.0863681212067604, 0.18976370990276337, 0.20330016314983368, -0.4483336806297302, -0.11497791111469269, 0.025938140228390694, 0.14939247071743011, 0.007736289873719215, -0.5178688764572144, -0.5376971960067749, 0.017501572147011757, 0.1657564342021942, -0.18614521622657776, -0.036014556884765625, 0.1354907602071762, -0.5030943155288696, -0.17360176146030426, -0.017603613436222076, -0.219473734498024, 0.21784842014312744, 0.23942451179027557, 0.2116101086139679, 0.0699547529220581, 0.0652293860912323, 0.08449918031692505, 0.16721610724925995, 0.20789247751235962, 0.34943464398384094, -0.0006085775094106793, -0.2274157702922821, -0.19796216487884521, -0.11079692095518112, 0.01769142411649227, 0.2727668881416321, -0.09006143361330032, -0.21789804100990295, -0.6402571797370911, 0.05756421014666557, -0.242133229970932, 0.20267361402511597, 0.21560664474964142, -0.1161157414317131, -0.5116730332374573, -0.4302210807800293, 0.5949906706809998, 0.12571093440055847, -0.2779102325439453, 0.4554835557937622, -0.0401199571788311, -0.4783618152141571, 0.48304417729377747, 0.21970973908901215, 0.7067084312438965, -0.2930581569671631, 0.047250982373952866, 0.2937936782836914, 0.09226978570222855, 0.5350894331932068, 0.16951371729373932, 0.38811713457107544, -0.5430062413215637, -0.25236448645591736, 0.020654216408729553, -0.08755870908498764, -0.07993309199810028, 0.300467848777771, -0.4050025939941406, 0.50306236743927, -0.025599280372262, 0.1538592278957367, 0.04216710850596428, 0.5493941903114319, -0.0957556888461113, -0.057728491723537445, -0.35144248604774475, 0.0697951391339302, -0.19422657787799835, 0.411838561296463, -0.20533928275108337, -0.15898044407367706, 0.053007595241069794, 0.10066012293100357, -0.11761000752449036, 0.3257850110530853, -0.3543219566345215, -0.0740363672375679, -0.07025756686925888, -0.21413515508174896, 0.10646257549524307, 0.45084306597709656, 0.07952582836151123, 0.23600159585475922, -0.14523987472057343, 0.0526544451713562, 0.08450479805469513, 0.11271192878484726, 0.10704656690359116, -0.20862504839897156, 0.37680304050445557, 0.20336467027664185, 0.007198477629572153, -0.38626471161842346, 0.12449026107788086, -0.3595886826515198, -0.45908457040786743, 0.12551748752593994, -0.17708082497119904, 0.2942012846469879, -0.2412126064300537, 0.18948455154895782, 0.028681399300694466, 0.0004607912851497531, 0.12556739151477814, 0.020513541996479034, 0.18144769966602325, 0.38077735900878906, -0.02026015892624855, -0.419660747051239, -0.0334516316652298, 0.166219562292099, 0.000793531711678952, 0.2514371871948242, 0.36384910345077515, -0.040699563920497894, -0.03578175976872444, -0.24256551265716553, -0.21627946197986603, -0.4363137185573578, -0.11387899518013, 0.2943446934223175, 0.092097707092762, 0.17395660281181335, 0.11550775915384293, 0.24730205535888672, 0.05702560022473335, 0.05258087068796158, 0.08016743510961533, -0.48857465386390686, 0.19310393929481506, -0.028779078274965286, -0.13976718485355377, 0.13698793947696686, -0.0747048407793045, 0.23657938838005066, 0.06570795923471451, 0.05166896432638168, -0.2957157790660858, -0.1675570011138916, -0.11781122535467148, -0.025816066190600395, -0.16185720264911652, -0.1259128302335739, 0.04135383665561676, 0.08271429687738419, 0.07512814551591873, -0.08218728005886078, -0.035324834287166595, -0.18889084458351135, 0.10417065769433975, 0.1273990422487259, 0.07882899045944214, 0.18925976753234863, -0.13165193796157837, -0.45766741037368774, -0.14486977458000183, -0.35319751501083374, 0.11292342096567154, 0.045981019735336304, 0.07414082437753677, 0.09926049411296844, 0.2913088798522949, 0.3127301335334778, 0.1848028004169464, 0.2687439024448395, -0.44187867641448975, -0.00934537872672081, 0.16262423992156982, 0.12643615901470184, 0.06363574415445328, 0.16829371452331543, -0.233718603849411, -0.04215383157134056, 0.058037471026182175, 0.2631934881210327, -0.05121101066470146, -0.19489504396915436, 0.002889967290684581, -0.13890449702739716, 0.18379074335098267, 0.6173473596572876, 0.015209672972559929, -0.5521917343139648, 0.15069302916526794, 0.15565384924411774, -0.24414514005184174, 0.21165409684181213, -0.054729290306568146, 0.43765342235565186, -0.010482831858098507, 0.2724597454071045, 0.2875722646713257, 0.17696835100650787, -0.14320266246795654, -0.017197618260979652, 0.3120470345020294, 0.055348023772239685, 0.37015485763549805, 0.07855329662561417, 0.12383577227592468, 0.03755779191851616, 0.15840381383895874, -0.10392658412456512, -0.16509445011615753, 0.21372060477733612, -0.016312800347805023, 0.31387531757354736, -0.1796160489320755, -0.09924579411745071, 0.13611045479774475, -0.15025867521762848, -0.03854898735880852, 0.8459669351577759, -0.01613486371934414, 0.16084299981594086, 0.3227769136428833, 0.38654425740242004, -0.3852498233318329, -0.12796874344348907, -0.44798025488853455, -0.12925691902637482, -0.04151736944913864, -0.06600809097290039, -0.04349271208047867, 0.021512988954782486, -0.18416079878807068, 0.14295293390750885, -0.1311575472354889, -0.11422788351774216, -0.027445759624242783, 0.12467209994792938, -0.16555219888687134, -0.5515326261520386, 0.40797361731529236, -0.038977671414613724, 0.37587934732437134, -0.09090905636548996, 0.22647757828235626, -0.21930398046970367, 0.09741993248462677, 0.11956755071878433, 0.08587680757045746, 0.17305497825145721, 0.7899258732795715, -0.3634604513645172, -0.21632638573646545, -0.16526365280151367, 0.08567395806312561, -0.08641514927148819, 0.27286583185195923, -0.01512383297085762, -0.13412311673164368, 0.4716495871543884, 0.07519562542438507, -0.07717908918857574, 0.27714481949806213, 0.3830427825450897, 0.08131299167871475, -0.06716281175613403, 0.48099303245544434, 0.05377284809947014, 0.023943593725562096, -0.04305867850780487, 0.2462712675333023, -0.355451375246048, -0.15717767179012299, -0.07620227336883545, 0.0188971646130085, -0.15880580246448517, -0.2214757651090622, 0.06298315525054932, -0.09467124938964844, 0.45749637484550476, 0.29138869047164917, 0.2396603226661682, -0.3542177975177765, -0.2383309304714203, -0.6219890713691711, 0.17198580503463745, 0.06919514387845993, -0.02350182831287384, -0.23157364130020142, 0.36247754096984863, -0.3814333975315094, -0.008728103712201118, -0.4201944172382355, 0.35392361879348755, -0.09659545123577118, 0.03811352327466011, -0.5740280747413635, 0.0038931656163185835, -0.5121837854385376, -0.21964935958385468, -0.08177894353866577, -0.41475236415863037, -0.05345159024000168, -0.30100786685943604, -0.06599928438663483, -0.04116455465555191, 0.3028205931186676, 0.08586902171373367, 0.4274734854698181, 0.303376704454422, 0.1091608852148056, 0.35284167528152466, 0.05523771420121193, -0.07557833939790726, -0.3462197184562683, -0.09922713786363602, -0.3638624846935272, 0.25363993644714355, 0.10998081415891647, 0.1332288682460785, 0.001336806220933795, 0.3380189836025238, -0.18647144734859467, 0.44350746273994446, 0.025188211351633072, 0.1968640238046646, -0.3721695840358734, -0.20783185958862305, -0.14903011918067932, 0.06542245298624039, -0.11958259344100952, 0.10910811275243759, 0.05821631848812103, 0.04859624058008194, -0.23535902798175812, -0.16287663578987122, 0.436043918132782, -0.14769867062568665, -0.21438083052635193, -0.06880680471658707, 0.2742978036403656, 0.12841953337192535, -0.2526894807815552, -0.43344923853874207, 0.0609666109085083, 0.26954883337020874, -0.005994063802063465, 0.14710314571857452, 0.3941020667552948, -0.006194333080202341, 0.14050684869289398, -0.19483955204486847, 0.04969646781682968, -0.1301542967557907, -0.23978574573993683, -0.09459416568279266, -0.22265662252902985 ]
https://github.com/huggingface/datasets/issues/240
Deterministic dataset loading
I'm pretty sure it would solve the problem too. The only other dataset that is not deterministic right now is `blog_authorship_corpus` (see #215) but this is a problem related to string encodings.
When calling: ```python import nlp dataset = nlp.load_dataset("trivia_qa", split="validation[:1%]") ``` the resulting dataset is not deterministic over different google colabs. After talking to @thomwolf, I suspect the reason to be the use of `glob.glob` in line: https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/datasets/trivia_qa/trivia_qa.py#L180 which seems to return an ordering of files that depends on the filesystem: https://stackoverflow.com/questions/6773584/how-is-pythons-glob-glob-ordered I think we should go through all the dataset scripts and make sure to have deterministic behavior. A simple solution for `glob.glob()` would be to just replace it with `sorted(glob.glob())` to have everything sorted by name. What do you think @lhoestq?
32
Deterministic dataset loading When calling: ```python import nlp dataset = nlp.load_dataset("trivia_qa", split="validation[:1%]") ``` the resulting dataset is not deterministic over different google colabs. After talking to @thomwolf, I suspect the reason to be the use of `glob.glob` in line: https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/datasets/trivia_qa/trivia_qa.py#L180 which seems to return an ordering of files that depends on the filesystem: https://stackoverflow.com/questions/6773584/how-is-pythons-glob-glob-ordered I think we should go through all the dataset scripts and make sure to have deterministic behavior. A simple solution for `glob.glob()` would be to just replace it with `sorted(glob.glob())` to have everything sorted by name. What do you think @lhoestq? I'm pretty sure it would solve the problem too. The only other dataset that is not deterministic right now is `blog_authorship_corpus` (see #215) but this is a problem related to string encodings.
[ 0.11379483342170715, 0.17885465919971466, 0.01895262859761715, 0.169595867395401, 0.14818470180034637, -0.06933742761611938, 0.21049854159355164, 0.11594659835100174, 0.1663961559534073, 0.003602290526032448, 0.12946641445159912, 0.381007581949234, -0.16160733997821808, 0.10549796372652054, -0.042115483433008194, -0.0011639995500445366, -0.0110059455037117, 0.18283627927303314, 0.023403428494930267, -0.21691976487636566, -0.30327436327934265, 0.09481696039438248, -0.4922882914543152, -0.4265715181827545, -0.2638102173805237, 0.05053221806883812, -0.049449142068624496, 0.07281718403100967, -0.08217978477478027, -0.42664384841918945, 0.08840397745370865, 0.5214290022850037, 0.12974391877651215, 0.20864205062389374, -0.00011583462037378922, -0.27808165550231934, 0.3429810106754303, -0.1384103149175644, -0.40349188446998596, -0.4584885537624359, -0.4235267639160156, 0.0029782624915242195, 0.08928481489419937, -0.017120037227869034, -0.2904820740222931, 0.11056187748908997, 0.4717695415019989, -0.26517775654792786, 0.25561243295669556, 0.1604442000389099, 0.17069773375988007, -0.1325586438179016, -0.006910721771419048, 0.16139303147792816, 0.008452835492789745, 0.1136065423488617, -0.07889171689748764, 0.36573708057403564, 0.05994921177625656, -0.2372901290655136, -0.102632075548172, 0.12624621391296387, -0.012331071309745312, 0.08537741005420685, 0.41084185242652893, 0.12941861152648926, -0.2025601863861084, -0.419025182723999, -0.04824519902467728, 0.285198450088501, 0.5857834219932556, -0.1489485800266266, -0.2884298861026764, -0.3177916407585144, 0.2706145942211151, -0.06862004101276398, 0.16447392106056213, 0.4762817323207855, -0.1837817281484604, -0.07727209478616714, 0.009502220898866653, 0.21651771664619446, -0.16723626852035522, 0.12563303112983704, 0.0550948865711689, 0.5633863210678101, 0.020567819476127625, -0.04643024131655693, 0.04032082110643387, 0.1976744681596756, 0.26653072237968445, -0.20731915533542633, -0.014917205087840557, 0.10456623136997223, -0.2946226894855499, -0.1331092119216919, 0.1327408403158188, 0.41688334941864014, 0.1423320174217224, 0.18876910209655762, 0.18841803073883057, 0.12478379160165787, -0.1409158706665039, 0.027752308174967766, 0.36606431007385254, 0.44431230425834656, 0.04693155363202095, 0.08828391134738922, 0.4415363669395447, 0.0005818814970552921, -0.14010271430015564, 0.2631995379924774, -0.045180875808000565, -0.24479392170906067, 0.1352209448814392, 0.09173844754695892, 0.18280187249183655, -0.24483855068683624, -0.4639568030834198, -0.20881062746047974, -0.2868313193321228, -0.047272104769945145, -0.07362628728151321, 0.2372119128704071, -0.2772257626056671, 0.170880526304245, -0.27236124873161316, 0.23964978754520416, -0.09439733624458313, -0.06687094271183014, -0.05132954567670822, -0.14786487817764282, -0.3596418499946594, 0.17182742059230804, 0.17158369719982147, 0.0433012917637825, 0.15750400722026825, 0.23338672518730164, -0.23060068488121033, -0.13134583830833435, 0.06312260776758194, -0.38461536169052124, 0.07070289552211761, -0.05325453728437424, 0.12675584852695465, -0.06794600188732147, -0.2007550597190857, -0.22584792971611023, -0.3948824107646942, 0.07321720570325851, -0.18758705258369446, -0.041598767042160034, -0.0811908021569252, 0.1269271969795227, -0.30068057775497437, -0.1601521372795105, -0.37782663106918335, 0.41544124484062195, 0.1039692759513855, -0.039990101009607315, -0.12125851213932037, -0.22154855728149414, -0.3228256404399872, -0.3081772029399872, -0.20479077100753784, 0.5929179787635803, -0.25095492601394653, 0.13471630215644836, -0.014427106827497482, 0.3353874981403351, 0.3447004556655884, 0.3423044979572296, 0.09490334242582321, 0.18372659385204315, -0.20548851788043976, 0.03158523887395859, 0.0978195071220398, -0.1302892118692398, -0.11563966423273087, 0.12164821475744247, -0.1305006742477417, 0.3174395263195038, -0.0036310432478785515, 0.2452239692211151, 0.07085853815078735, -0.295288622379303, 0.13270553946495056, 0.5699853897094727, 0.09178828448057175, 0.16612353920936584, -0.20988088846206665, -0.12399820983409882, 0.15350231528282166, 0.0869186669588089, -0.07332491129636765, 0.24377542734146118, -0.026379136368632317, -0.06938572227954865, 0.19956299662590027, 0.038173820823431015, -0.35440924763679504, 0.11357250809669495, 0.4417835474014282, 0.02597741223871708, 0.017402086406946182, 0.0321628712117672, -0.6761289238929749, 0.2036518007516861, -0.08102985471487045, 0.2807788550853729, -0.13864852488040924, -0.18944542109966278, -0.03126107528805733, -0.21770918369293213, -0.3511204719543457, 0.01804524101316929, 0.12515926361083984, 0.46107614040374756, 0.29653623700141907, 0.33133476972579956, 0.11297624558210373, 0.44522103667259216, 0.02777254581451416, -0.1577458679676056, -0.47016239166259766, 0.34229910373687744, -0.06479555368423462, -0.16054756939411163, 0.2936733663082123, 0.26502832770347595, -0.011513996869325638, -0.207468643784523, -0.08900652080774307, 0.30129823088645935, 0.20347455143928528, 0.1466958224773407, 0.19650022685527802, -0.0047541349194943905, 0.0571858175098896, -0.04782452806830406, 0.1256566345691681, 0.33278509974479675, -0.07415153086185455, -0.09177559614181519, -0.04371582716703415, 0.42655500769615173, -0.10519376397132874, 0.24555367231369019, 0.06030839681625366, -0.06336871534585953, 0.14090673625469208, 0.01012382097542286, 0.03380615636706352, -0.2565670907497406, 0.31411558389663696, 0.1884610503911972, 0.4168977737426758, 0.43183499574661255, -0.6472996473312378, 0.2532055974006653, 0.6687130331993103, 0.13112404942512512, 0.13378959894180298, 0.047086186707019806, 0.10586445033550262, -0.26049166917800903, 0.1974283903837204, 0.3241913616657257, 0.47866567969322205, 0.17111127078533173, -0.08000801503658295, -0.07539098709821701, -0.13652752339839935, -0.3183977007865906, 0.010921252891421318, -0.05123390629887581, 0.18632078170776367, 0.11051304638385773, 0.3885011076927185, 0.21454386413097382, -0.30575627088546753, -0.07537667453289032, -0.09780509024858475, 0.015089212916791439, -0.10579122602939606, 0.17744745314121246, -0.3200417757034302, -0.29723650217056274, -0.38058337569236755, -0.07747969031333923, -0.3543398678302765, -0.2322288602590561, 0.12335903942584991, 0.26579099893569946, 0.03655815124511719, -0.07076498866081238, 0.15330320596694946, 0.27847591042518616, -0.04488396644592285, -0.44757792353630066, -0.2064393311738968, -0.08436793088912964, -0.3556400537490845, -0.04007573053240776, 0.4606669247150421, 0.24197067320346832, 0.4747900366783142, -0.1962222158908844, -0.2092663198709488, 0.06628433614969254, -0.30684927105903625, -0.08876679092645645, -0.3029898703098297, 0.36681732535362244, -0.09317699074745178, -0.12271203100681305, -0.030036697164177895, -0.06842642277479172, -0.004123616963624954, 0.03556295484304428, -0.08859477937221527, 0.11383865028619766, 0.028828805312514305, -0.03520568087697029, -0.011494437232613564, -0.3158365488052368, -0.2380983680486679, -0.16397763788700104, 0.11473072320222855, 0.31208476424217224, 0.18281102180480957, 0.30574992299079895, -0.09691216796636581, -0.30698153376579285, 0.11507780104875565, 0.09789140522480011, -0.09680398553609848, -0.03913959115743637, 0.41574010252952576, -0.1858072578907013, -0.23013927042484283, -0.3322431147098541, -0.15928342938423157, -0.10929526388645172, 0.11760053783655167, -0.2903527617454529, -0.2713474929332733, -0.3909585773944855, 0.057260628789663315, -0.02905460260808468, -0.3220250606536865, 0.41013044118881226, 0.06309453397989273, 0.0524795837700367, 0.13031244277954102, 0.0009940715972334146, 0.20093314349651337, 0.2924930155277252, 0.3757009208202362, 0.1786860227584839, -0.00035981449764221907, 0.017692897468805313, 0.43010392785072327, 0.09234824776649475, -0.3738054931163788, 0.22872808575630188, 0.13664954900741577, 0.31639325618743896, -0.4368554353713989, -0.02898407354950905, 0.26675331592559814, 0.26250162720680237, -0.08199768513441086, 0.5508414506912231, -0.016408594325184822, -0.07001316547393799, -0.09534069895744324, 0.2730460464954376, -0.2342892438173294, -0.21628060936927795, 0.025558466091752052, -0.27624672651290894, -0.1469482183456421, 0.12631948292255402, 0.14955033361911774, 0.08502024412155151, -0.44249993562698364, -0.23435673117637634, 0.1243245080113411, 0.1346530318260193, 0.06921607255935669, 0.26027029752731323, 0.07623408734798431, -0.6774930357933044, 0.1283615380525589, 0.004722320940345526, 0.11812909692525864, 0.014970626682043076, -0.08967907726764679, 0.2548971176147461, -0.03828674554824829, 0.19863362610340118, -0.1041276678442955, 0.1607324630022049, -0.0685262605547905, 0.11130276322364807, 0.062202658504247665, -0.2332189530134201, -0.3385125398635864, 0.019941028207540512, 0.12854471802711487, 0.22121983766555786, -0.43351903557777405, -0.09375365823507309, 0.0029250076040625572, 0.13440001010894775, 0.028258485719561577, -0.47299331426620483, -0.5182256698608398, -0.04306073114275932, 0.20437070727348328, -0.13219985365867615, -0.042318616062402725, 0.10510037839412689, -0.40836456418037415, -0.17321817576885223, -0.041686106473207474, -0.23626984655857086, 0.3166965842247009, 0.308319628238678, 0.23213613033294678, 0.02483099326491356, 0.024881776422262192, 0.06790046393871307, 0.09191134572029114, 0.22810716927051544, 0.3187702000141144, 0.007566546089947224, -0.2902907431125641, -0.19192571938037872, -0.1961439698934555, 0.022884922102093697, 0.2732429504394531, -0.06384989619255066, -0.158274307847023, -0.6268547177314758, 0.04514054208993912, -0.2855335772037506, 0.20332789421081543, 0.2178162932395935, -0.09050191938877106, -0.4762636423110962, -0.37623119354248047, 0.5591686964035034, 0.12710125744342804, -0.23292838037014008, 0.36571505665779114, -0.04319553077220917, -0.4890762269496918, 0.5494599938392639, 0.310014933347702, 0.7622923254966736, -0.2927528917789459, 0.030072292312979698, 0.236369326710701, 0.06429947167634964, 0.5886330604553223, 0.1454038918018341, 0.4201721251010895, -0.5156992077827454, -0.2689719796180725, -0.028115857392549515, -0.04442676529288292, -0.11504698544740677, 0.28564152121543884, -0.44193369150161743, 0.4760814905166626, 0.014062352478504181, 0.15718205273151398, 0.018744591623544693, 0.5202622413635254, -0.16113880276679993, -0.05763690918684006, -0.31301766633987427, 0.0954439789056778, -0.20469796657562256, 0.35861507058143616, -0.14189480245113373, -0.12247088551521301, 0.07692660391330719, 0.09465483576059341, -0.16011404991149902, 0.31486600637435913, -0.33924323320388794, -0.04668043181300163, 0.04138339310884476, -0.2778503894805908, 0.07198745012283325, 0.4186517298221588, 0.19133207201957703, 0.2318599671125412, -0.16486620903015137, 0.052733685821294785, 0.18181811273097992, 0.09413058310747147, 0.1307242065668106, -0.24075986444950104, 0.4110294580459595, 0.2103670835494995, 0.03688656911253929, -0.3947608470916748, 0.19934900104999542, -0.3416985869407654, -0.4910692870616913, 0.09180999547243118, -0.24263349175453186, 0.32648488879203796, -0.2010721117258072, 0.14210639894008636, 0.0114905321970582, -0.026200268417596817, 0.12757539749145508, -0.046830590814352036, 0.248981773853302, 0.39282557368278503, -0.012045786716043949, -0.43475809693336487, -0.02742062881588936, 0.13086514174938202, 0.026886863633990288, 0.2842247188091278, 0.3605414927005768, -0.033177606761455536, -0.06605604290962219, -0.2653253674507141, -0.17219002544879913, -0.5158193707466125, -0.09475689381361008, 0.29796934127807617, 0.03571949526667595, 0.11082511395215988, 0.1081375703215599, 0.28122130036354065, -0.038382936269044876, 0.010206880047917366, 0.06101715937256813, -0.470398873090744, 0.21520505845546722, -0.006740357726812363, -0.06765487790107727, 0.09686796367168427, -0.095120869576931, 0.279760479927063, -0.000764769094530493, 0.09797964990139008, -0.2943921387195587, -0.21692439913749695, -0.17940522730350494, 0.043816614896059036, -0.1472645401954651, -0.06505298614501953, 0.049781396985054016, 0.06324803084135056, 0.05257299914956093, -0.028461920097470284, -0.016356220468878746, -0.191046804189682, 0.03601115196943283, 0.12801426649093628, 0.07515213638544083, 0.1878376305103302, -0.11149930208921432, -0.4070805311203003, -0.18924905359745026, -0.4432772696018219, 0.03956599906086922, 0.08884494751691818, 0.029298905283212662, 0.15439726412296295, 0.1824588030576706, 0.27113083004951477, 0.1931787133216858, 0.16989366710186005, -0.45262402296066284, -0.03655500337481499, 0.14585505425930023, 0.1609913557767868, 0.07739187777042389, 0.18308964371681213, -0.2489253580570221, -0.012200125493109226, 0.07747156918048859, 0.20768606662750244, -0.06409972906112671, -0.21602056920528412, -0.04018527641892433, -0.06090936064720154, 0.14011111855506897, 0.6141613125801086, 0.04224244877696037, -0.587252676486969, 0.1972767412662506, 0.1555662453174591, -0.283226877450943, 0.19960837066173553, -0.09180373698472977, 0.41793715953826904, 0.02508319914340973, 0.2798303961753845, 0.26908716559410095, 0.08119495213031769, -0.1195589229464531, -0.0003814180672634393, 0.3048420250415802, -0.04199856519699097, 0.3419766128063202, 0.036451876163482666, 0.21215347945690155, 0.03868820518255234, 0.15499010682106018, -0.1711127907037735, -0.15030543506145477, 0.22968333959579468, 0.06488582491874695, 0.2850760221481323, -0.18672426044940948, -0.15707017481327057, 0.1521880179643631, -0.09781807661056519, 0.04136741906404495, 0.7915147542953491, -0.007006227504462004, 0.2106831669807434, 0.3884541690349579, 0.4452921748161316, -0.38181984424591064, -0.09551473706960678, -0.506069004535675, -0.131394162774086, -0.035357214510440826, -0.09416215866804123, -0.10144096612930298, 0.006801388692110777, -0.1248140037059784, 0.08568722754716873, -0.08186101913452148, -0.05897115543484688, 0.017477724701166153, 0.17327605187892914, -0.173609659075737, -0.612601637840271, 0.4208391308784485, -0.08909961581230164, 0.3969837427139282, -0.12267149239778519, 0.2771201729774475, -0.2097461074590683, 0.04110027104616165, 0.11428532004356384, 0.15733934938907623, 0.167644202709198, 0.7388732433319092, -0.34038102626800537, -0.19363310933113098, -0.268272340297699, 0.06406271457672119, -0.05717743933200836, 0.29445651173591614, -0.012330657802522182, -0.08725708723068237, 0.46127942204475403, 0.0693923830986023, -0.06574772298336029, 0.2757761776447296, 0.4123494327068329, 0.084669329226017, -0.03822724521160126, 0.4324910342693329, 0.10083890706300735, 0.029452860355377197, -0.027844712138175964, 0.14071939885616302, -0.33301296830177307, -0.10363795608282089, -0.023359570652246475, 0.0021101764868944883, -0.12464157491922379, -0.2778749465942383, 0.05767453834414482, -0.04927061125636101, 0.4179219901561737, 0.2882559597492218, 0.1979348063468933, -0.2882438004016876, -0.20998722314834595, -0.5732440948486328, 0.24515829980373383, -0.02296062558889389, -0.017885636538267136, -0.27198293805122375, 0.36996185779571533, -0.3169696033000946, -0.004687824752181768, -0.4700045585632324, 0.3447813391685486, -0.13758715987205505, 0.0838925912976265, -0.5932186841964722, -0.018963363021612167, -0.5143899917602539, -0.2227606177330017, -0.0878075435757637, -0.41620761156082153, -0.033026352524757385, -0.27584806084632874, -0.06263017654418945, 0.00958387739956379, 0.30214887857437134, 0.05746423825621605, 0.4434831738471985, 0.2620719373226166, 0.17335101962089539, 0.3690350651741028, -0.04310930520296097, -0.02404937520623207, -0.3146226108074188, -0.03226453438401222, -0.4741530120372772, 0.23222647607326508, 0.10998208075761795, 0.1636192351579666, -0.04513503983616829, 0.321047842502594, -0.15691541135311127, 0.5310440063476562, -0.004238350782543421, 0.16210244596004486, -0.3588050901889801, -0.14239777624607086, -0.1609206348657608, 0.07543262839317322, -0.1320369839668274, 0.11837848275899887, 0.0437263585627079, 0.0036475923843681812, -0.25474390387535095, -0.28213372826576233, 0.39778316020965576, -0.23989684879779816, -0.2634277939796448, -0.11078143119812012, 0.25222837924957275, 0.16575999557971954, -0.258973628282547, -0.48412832617759705, 0.06080039590597153, 0.22510334849357605, 0.031652096658945084, 0.12194038182497025, 0.33861100673675537, 0.022022690623998642, 0.1309366226196289, -0.20101015269756317, 0.1215447410941124, -0.06637078523635864, -0.3270970582962036, -0.12180083245038986, -0.23555007576942444 ]
https://github.com/huggingface/datasets/issues/239
[Creating new dataset] Not found dataset_info.json
@lhoestq - this seems to happen quite often (already the 2nd issue). Can we maybe delete this automatically?
Hi, I am trying to create Toronto Book Corpus. #131 I ran `~/nlp % python nlp-cli test datasets/bookcorpus --save_infos --all_configs` but this doesn't create `dataset_info.json` and try to use it ``` INFO:nlp.load:Checking datasets/bookcorpus/bookcorpus.py for additional imports. INFO:filelock:Lock 139795325778640 acquired on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.load:Found main folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus INFO:nlp.load:Found specific version folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9 INFO:nlp.load:Found script file from datasets/bookcorpus/bookcorpus.py to /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.py INFO:nlp.load:Couldn't find dataset infos file at datasets/bookcorpus/dataset_infos.json INFO:nlp.load:Found metadata file for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.json INFO:filelock:Lock 139795325778640 released on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.builder:Overwrite dataset info from restored data version. INFO:nlp.info:Loading Dataset info from /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0 Traceback (most recent call last): File "nlp-cli", line 37, in <module> service.run() File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/commands/test.py", line 78, in run builders.append(builder_cls(name=config.name, data_dir=self._data_dir)) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 610, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 152, in __init__ self.info = DatasetInfo.from_directory(self._cache_dir) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/info.py", line 157, in from_directory with open(os.path.join(dataset_info_dir, DATASET_INFO_FILENAME), "r") as f: FileNotFoundError: [Errno 2] No such file or directory: '/home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/dataset_info.json' ``` btw, `ls /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/` show me nothing is in the directory. I have also pushed the script to my fork [bookcorpus.py](https://github.com/richardyy1188/nlp/blob/bookcorpusdev/datasets/bookcorpus/bookcorpus.py).
18
[Creating new dataset] Not found dataset_info.json Hi, I am trying to create Toronto Book Corpus. #131 I ran `~/nlp % python nlp-cli test datasets/bookcorpus --save_infos --all_configs` but this doesn't create `dataset_info.json` and try to use it ``` INFO:nlp.load:Checking datasets/bookcorpus/bookcorpus.py for additional imports. INFO:filelock:Lock 139795325778640 acquired on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.load:Found main folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus INFO:nlp.load:Found specific version folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9 INFO:nlp.load:Found script file from datasets/bookcorpus/bookcorpus.py to /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.py INFO:nlp.load:Couldn't find dataset infos file at datasets/bookcorpus/dataset_infos.json INFO:nlp.load:Found metadata file for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.json INFO:filelock:Lock 139795325778640 released on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.builder:Overwrite dataset info from restored data version. INFO:nlp.info:Loading Dataset info from /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0 Traceback (most recent call last): File "nlp-cli", line 37, in <module> service.run() File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/commands/test.py", line 78, in run builders.append(builder_cls(name=config.name, data_dir=self._data_dir)) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 610, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 152, in __init__ self.info = DatasetInfo.from_directory(self._cache_dir) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/info.py", line 157, in from_directory with open(os.path.join(dataset_info_dir, DATASET_INFO_FILENAME), "r") as f: FileNotFoundError: [Errno 2] No such file or directory: '/home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/dataset_info.json' ``` btw, `ls /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/` show me nothing is in the directory. I have also pushed the script to my fork [bookcorpus.py](https://github.com/richardyy1188/nlp/blob/bookcorpusdev/datasets/bookcorpus/bookcorpus.py). @lhoestq - this seems to happen quite often (already the 2nd issue). Can we maybe delete this automatically?
[ -0.11650625616312027, 0.12424958497285843, -0.08600329607725143, 0.05706369876861572, 0.017675325274467468, 0.14669127762317657, 0.16692200303077698, 0.3094632923603058, -0.20071397721767426, 0.021816449239850044, 0.060289330780506134, 0.5790067911148071, -0.09350918978452682, 0.08411607146263123, 0.2967386245727539, -0.06326766312122345, 0.07989373058080673, 0.35474979877471924, 0.4398043155670166, -0.17095540463924408, -0.3041882812976837, 0.333865225315094, -0.08771339058876038, 0.013870400376617908, -0.33899179100990295, -0.13993869721889496, -0.1987461894750595, 0.15173564851284027, -0.36890166997909546, -0.24407564103603363, 0.4867267608642578, -0.07338839024305344, 0.10366123169660568, 0.5475574135780334, -0.00011407752026570961, 0.010212338529527187, 0.37250179052352905, -0.15201830863952637, -0.4637061357498169, -0.5580251812934875, -0.009793912060558796, -0.4027790427207947, 0.11497432738542557, -0.3410837948322296, -0.12306180596351624, -0.3242848217487335, 0.20140330493450165, -0.13952846825122833, -0.11613030731678009, 0.45088323950767517, 0.17983712255954742, 0.06183250620961189, 0.1842108815908432, -0.08671928197145462, 0.00012554375280160457, 0.27621525526046753, -0.2401406317949295, 0.20989374816417694, 0.5791470408439636, -0.03125740587711334, 0.2688179314136505, -0.04652158170938492, -0.06592702865600586, -0.29323455691337585, 0.2591237723827362, 0.15986402332782745, 0.01561792939901352, -0.49659428000450134, 0.026163587346673012, 0.07965247333049774, 0.7736669778823853, -0.5069001913070679, -0.34755486249923706, 0.07921192049980164, 0.19489116966724396, 0.0815228670835495, 0.026132822036743164, 0.3870604932308197, -0.0036244026850908995, -0.14681784808635712, -0.4909808039665222, -0.38367795944213867, -0.13943104445934296, 0.3541181981563568, 0.21877266466617584, 0.24535143375396729, -0.03379565849900246, 0.04224700853228569, -0.016015343368053436, -0.05356837809085846, -0.13028819859027863, -0.18597032129764557, -0.1286575049161911, 0.25328871607780457, -0.053666453808546066, -0.5121890902519226, 0.16871654987335205, -0.0076869032345712185, -0.08953665941953659, 0.06112807244062424, -0.032622188329696655, -0.27464136481285095, -0.2865625321865082, 0.18327660858631134, 0.2046547681093216, -0.11063592880964279, 0.27965855598449707, 0.0797303318977356, 0.07748330384492874, 0.05583815649151802, 0.07856927067041397, -0.0678013265132904, -0.033566221594810486, 0.015616528689861298, -0.1277637630701065, -0.09943252801895142, 0.3245656192302704, -0.0741782858967781, 0.07186024636030197, 0.0012808102183043957, -0.19816924631595612, -0.13331195712089539, 0.11727077513933182, 0.29368290305137634, -0.0719577893614769, -0.2800121307373047, -0.025149760767817497, 0.2071141004562378, -0.4114207327365875, -0.01166051160544157, -0.16452337801456451, 0.49445679783821106, -0.20560231804847717, -0.026228629052639008, 0.3875795006752014, 0.10167042911052704, 0.333884596824646, -0.013086945749819279, -0.3687381148338318, -0.15569227933883667, 0.3918464779853821, -0.212174192070961, -0.17901194095611572, 0.2289535403251648, 0.11604568362236023, 0.11397744715213776, -0.0378628671169281, -0.36688774824142456, -0.38329121470451355, 0.19166448712348938, -0.23506073653697968, -0.3481476902961731, -0.28387218713760376, 0.1933898776769638, 0.06136832758784294, -0.23428453505039215, -0.31460675597190857, 0.27518850564956665, 0.309775173664093, -0.3435211479663849, 0.06339675933122635, 0.07586312294006348, -0.13430064916610718, -0.23051320016384125, -0.09996935725212097, 0.399872750043869, -0.48367995023727417, -0.07219935208559036, -0.3215027153491974, -0.009418731555342674, 0.19101376831531525, -0.03528225049376488, -0.20967544615268707, 0.5171995162963867, -0.1338474005460739, 0.11128513514995575, 0.5153874158859253, -0.1893324851989746, -0.18746145069599152, 0.26959291100502014, -0.19403086602687836, -0.29285964369773865, 0.07255559414625168, 0.2507293224334717, -0.041414953768253326, -0.16878671944141388, 0.13270960748195648, 0.09178578108549118, -0.12619233131408691, 0.04947354272007942, 0.08353870362043381, -0.006045306101441383, 0.05104028433561325, 0.11938074976205826, -0.2383526861667633, 0.10864436626434326, 0.13550683856010437, 0.2590746581554413, 0.09780135750770569, -0.031227508559823036, 0.17799165844917297, 0.4847249388694763, 0.38852986693382263, -0.00594668323174119, -0.02281414531171322, -0.07083287835121155, -0.33621490001678467, -0.08187180012464523, -0.23699958622455597, 0.4043169915676117, 0.033765677362680435, -0.0027959265280514956, -0.4716329574584961, -0.19266773760318756, 0.03348204120993614, -0.11761463433504105, 0.08502407371997833, 0.016210928559303284, 0.39784470200538635, 0.10037919133901596, -0.2538142800331116, 0.07752429693937302, -0.17115579545497894, 0.06652303040027618, -0.8675049543380737, 0.34719544649124146, -0.20132295787334442, -0.20943792164325714, 0.2470540851354599, 0.23108258843421936, -0.017621614038944244, -0.14729630947113037, 0.1502859890460968, 0.2265685349702835, -0.14524248242378235, 0.33610522747039795, 0.22270822525024414, 0.12884308397769928, 0.28853464126586914, -0.2038087397813797, 0.14635738730430603, 0.04937615990638733, 0.1962345391511917, -0.02172168344259262, -0.08311395347118378, 0.053555604070425034, 0.1434142142534256, -0.05503024533390999, 0.16171787679195404, -0.04391327500343323, 0.14021261036396027, -0.17860858142375946, 0.07698763906955719, -0.24211734533309937, 0.1755625307559967, 0.07551044970750809, 0.13160811364650726, 0.048625096678733826, -0.0772269144654274, 0.2307499796152115, 0.3067059814929962, 0.053100720047950745, 0.043187808245420456, 0.15799443423748016, 0.03988128900527954, -0.09149589389562607, -0.16357798874378204, 0.2864361107349396, 0.43378937244415283, 0.13054430484771729, -0.1725737303495407, -0.044597506523132324, -0.10544004291296005, -0.2338736355304718, 0.17621274292469025, -0.14458677172660828, 0.1815699338912964, 0.0553755909204483, 0.20645718276500702, -0.09188299626111984, -0.1981731504201889, -0.4503076672554016, 0.2582755386829376, 0.29156196117401123, 0.01253239344805479, 0.23301911354064941, -0.048360105603933334, -0.2889663875102997, -0.10235710442066193, -0.219996839761734, -0.027930602431297302, -0.10974550992250443, 0.04495163634419441, 0.21489781141281128, 0.2119140326976776, -0.12067195028066635, -0.19590197503566742, 0.1891423910856247, -0.08827932924032211, -0.357513964176178, -0.08856132626533508, -0.2564783990383148, -0.18699006736278534, 0.10573486238718033, 0.03482470661401749, 0.14009971916675568, 0.24952469766139984, -0.18439124524593353, 0.010568732395768166, -0.16604527831077576, -0.25708192586898804, 0.018080903217196465, -0.1595323532819748, 0.19502755999565125, 0.17406295239925385, 0.05979163944721222, -0.26083266735076904, -0.4254712462425232, 0.07756555080413818, -0.011626696214079857, -0.4032613933086395, 0.0009179050102829933, -0.17336933314800262, -0.12209708988666534, -0.04074849933385849, -0.7119969725608826, -0.32513827085494995, -0.2131606936454773, -0.015593145042657852, 0.16318093240261078, 0.19772635400295258, 0.4130185544490814, -0.07574572414159775, 0.10820794850587845, 0.1723184883594513, 0.23164872825145721, -0.06923388689756393, -0.3634282350540161, 0.3943188190460205, -0.5005175471305847, -0.2842503488063812, 0.18892329931259155, -0.4618217647075653, 0.23753400146961212, -0.1741819977760315, -0.5138141512870789, 0.01680814102292061, -0.29809895157814026, 0.005920235067605972, 0.13436760008335114, 0.23399440944194794, 0.4963959753513336, -0.02793765813112259, -0.05390625074505806, -0.10333141684532166, -0.4580046832561493, 0.022857269272208214, 0.4239569902420044, 0.648378849029541, -0.0955793634057045, 0.17668746411800385, -0.43665531277656555, 0.13951052725315094, 0.3806610703468323, -0.022997494786977768, 0.45965805649757385, -0.06421402841806412, 0.28421783447265625, -0.2890718877315521, -0.37762168049812317, 0.20217221975326538, 0.28460296988487244, -0.09684190899133682, 0.19153887033462524, 0.08896620571613312, -0.19004984200000763, -0.18134479224681854, -0.12971535325050354, -0.4387229084968567, -0.06704115122556686, -0.16066932678222656, -0.015446128323674202, 0.2671150267124176, 0.08936939388513565, -0.06376698613166809, -0.14562614262104034, -0.27571460604667664, -0.22359111905097961, 0.4727539122104645, 0.19740988314151764, 0.12087202817201614, -0.2766304314136505, -0.0612071193754673, -0.30730748176574707, -0.0377948135137558, 0.023885289207100868, 0.2937769591808319, -0.20295433700084686, 0.25542229413986206, 0.06291992962360382, -0.012339828535914421, 0.5490015149116516, -0.29085955023765564, -0.20555153489112854, 0.26330044865608215, -0.05804252251982689, -0.2241145819425583, 0.18051381409168243, -0.10403378307819366, 0.6076478362083435, 0.2433527261018753, 0.5753419995307922, -0.3115655779838562, 0.2990727424621582, 0.12145122140645981, 0.37018412351608276, -0.23179857432842255, -0.28618961572647095, -0.19550058245658875, -0.4630237817764282, -0.13890425860881805, -0.30914491415023804, -0.3363453149795532, 0.4752546548843384, 0.23033148050308228, 0.17040199041366577, 0.3116016685962677, -0.11960607022047043, 0.28410616517066956, 0.11535444110631943, 0.257638156414032, 0.23350413143634796, 0.4246393144130707, -0.10522749274969101, -0.06710536032915115, 0.36698269844055176, 0.6004722714424133, 0.20311005413532257, -0.09567286819219589, 0.1284203678369522, -0.03640348091721535, 0.39536723494529724, -0.013245221227407455, 0.2669263184070587, -0.10981966555118561, 0.02109428495168686, -0.218412384390831, -0.11553150415420532, -0.023410024121403694, -0.019397225230932236, -0.22414636611938477, -0.6888647079467773, -0.39393150806427, 0.24238024652004242, -0.010685502551496029, 0.30029770731925964, 0.2865830063819885, 0.14248141646385193, -0.22004304826259613, 0.47148627042770386, -0.21347549557685852, 0.8308842182159424, -0.05265554413199425, -0.02797010727226734, 0.04540907219052315, 0.15106657147407532, 0.7034148573875427, -0.5142813324928284, 0.4126511514186859, -0.3891030251979828, -0.02690894342958927, 0.05157841742038727, -0.17580032348632812, 0.17506341636180878, 0.4178829789161682, -0.43252578377723694, 0.19300444424152374, -0.0822676420211792, -0.11858312040567398, -0.1702665388584137, 0.4646311402320862, -0.12328139692544937, -0.36816272139549255, -0.38786640763282776, 0.12439016997814178, -0.15596136450767517, 0.3885233998298645, -0.09368190169334412, -0.01732604019343853, -0.5373472571372986, -0.02376752533018589, -0.2104976326227188, -0.022060144692659378, 0.3186565935611725, 0.24980521202087402, 0.542542040348053, -0.39588677883148193, 0.16806147992610931, 0.15377292037010193, 0.5115234851837158, 0.3233714699745178, -0.21308322250843048, -0.043141596019268036, -0.008564678020775318, -0.41504380106925964, 0.08617473393678665, 0.023316847160458565, 0.32594019174575806, 0.002713095396757126, -0.24869295954704285, 0.1554378718137741, -0.09102272242307663, -0.053070615977048874, -0.09715529531240463, -0.14653384685516357, -0.24173027276992798, -0.2759905457496643, -0.3625262379646301, 0.25870075821876526, -0.16885356605052948, -0.14154526591300964, 0.07883621007204056, 0.29711630940437317, -0.1353914439678192, 0.11851539462804794, 0.020256642252206802, -0.18127769231796265, -0.22068998217582703, 0.23206566274166107, 0.3509170711040497, -0.17117828130722046, 0.4593077003955841, 0.2199610024690628, -0.0807437002658844, -0.2345266342163086, 0.10708862543106079, 0.12530694901943207, -0.12980160117149353, 0.21123309433460236, 0.36168476939201355, 0.15047189593315125, 0.28391575813293457, 0.36081087589263916, -0.16636307537555695, 0.163248211145401, 0.07301384210586548, -0.38630029559135437, -0.43665221333503723, 0.2469574213027954, 0.02442801371216774, 0.09015443176031113, 0.13847827911376953, 0.38774973154067993, 0.2723524570465088, 0.03506160527467728, -0.2648818790912628, -0.04556705430150032, -0.36969056725502014, 0.2637806832790375, 0.24916163086891174, 0.06050153076648712, -0.2160845249891281, -0.057571008801460266, 0.05101483315229416, -0.20329958200454712, -0.02904282696545124, -0.15440796315670013, -0.22161291539669037, 0.15202651917934418, 0.12606331706047058, 0.015447748824954033, -0.12458042800426483, -0.22966693341732025, -0.2332467883825302, -0.019940165802836418, -0.260507196187973, 0.17805366218090057, 0.10190998762845993, 0.15461766719818115, 0.09359771013259888, -0.32697808742523193, -0.10735540091991425, -0.014843600802123547, -0.061953380703926086, 0.3862457871437073, 0.08435332775115967, 0.04523322358727455, 0.11616627126932144, 0.04253889247775078, -0.40281346440315247, 0.07011236250400543, -0.15169362723827362, 0.08376248180866241, 0.14908622205257416, -0.1571449339389801, 0.26674312353134155, 0.021798714995384216, 0.10998378694057465, 0.34660661220550537, -0.1359734982252121, 0.1405172199010849, 0.2605534493923187, 0.11154504120349884, -0.16209042072296143, -0.04408000037074089, 0.3279462158679962, 0.043480224907398224, -0.012227384373545647, 0.31466034054756165, -0.1331053376197815, 0.13106931746006012, -0.14787757396697998, 0.1849879026412964, 0.3246780335903168, -0.06314750760793686, 0.257734477519989, 0.13640998303890228, 0.0012924954062327743, -0.09770216047763824, 0.2594440281391144, 0.18815243244171143, -0.08532145619392395, 0.18237799406051636, 0.04508909955620766, 0.3973941504955292, 0.30235201120376587, 0.286118745803833, 0.21092641353607178, -0.22499965131282806, 0.05044667422771454, -0.20212353765964508, 0.25073421001434326, -0.041925814002752304, 0.08260241150856018, 0.21872463822364807, -0.19586820900440216, 0.30180758237838745, -0.178041011095047, 0.10303790867328644, -0.3208485245704651, -0.06559976190328598, -0.11257011443376541, -0.2674717307090759, 0.25465884804725647, -0.08747997879981995, 0.029255565255880356, -0.10721854120492935, -0.15491318702697754, -0.053178735077381134, -0.05561206117272377, -0.32744303345680237, 0.4158904552459717, -0.01481185108423233, 0.020926743745803833, -0.10051329433917999, 0.31730398535728455, -0.16874611377716064, -0.12283176928758621, -0.12241152673959732, 0.3447619378566742, 0.30761298537254333, 0.3469654321670532, 0.13811159133911133, 0.2645433247089386, -0.07761766761541367, -0.19061791896820068, 0.11390797048807144, 0.4997585415840149, 0.4584064483642578, -0.10555899888277054, 0.02512768842279911, 0.059028077870607376, -0.02446492575109005, 0.13379596173763275, 0.515647292137146, 0.03814980015158653, 0.16639670729637146, 0.4495268166065216, -0.11990986764431, -0.12360382825136185, -0.2566172480583191, 0.2996981143951416, -0.40785929560661316, -0.12763597071170807, 0.5206470489501953, 0.04034671187400818, -0.009024536237120628, -0.3289627730846405, 0.07926288992166519, -0.04677233099937439, 0.2938726544380188, 0.37015438079833984, 0.12014271318912506, -0.26257815957069397, -0.2484816312789917, -0.32965025305747986, -0.06240670010447502, -0.11113978922367096, -0.16207773983478546, -0.22522112727165222, 0.3631656765937805, 0.026146044954657555, 0.18046055734157562, -0.36288344860076904, 0.2894384562969208, -0.148556649684906, 0.0748760998249054, -0.14089807868003845, -0.33819007873535156, -0.15416359901428223, 0.1900702714920044, -0.08194968849420547, -0.08714402467012405, -0.018498528748750687, -0.2756524085998535, -0.011309622786939144, -0.4327605068683624, -0.2158629596233368, 0.2175656408071518, 0.34732693433761597, 0.10093336552381516, 0.07363937795162201, 0.3765217065811157, -0.2977442443370819, -0.18720898032188416, -0.1939508616924286, -0.2278357446193695, -0.09512056410312653, 0.2785030007362366, 0.2827717959880829, 0.3774256408214569, -0.30154621601104736, 0.3614303171634674, -0.14139342308044434, 0.09885403513908386, -0.030948230996727943, 0.11747513711452484, -0.09106148779392242, 0.012101618573069572, -0.2916091978549957, -0.09359456598758698, 0.07177749276161194, 0.272419273853302, 0.003391374135389924, 0.32026493549346924, -0.09971429407596588, -0.4491748809814453, 0.4673534333705902, -0.2092692255973816, -0.18863201141357422, -0.02794787660241127, 0.0273697879165411, -0.2985507845878601, -0.2551031708717346, -0.24643093347549438, 0.07022540271282196, 0.35536712408065796, -0.28132686018943787, 0.01821630261838436, 0.09182600677013397, -0.19161611795425415, 0.04781400412321091, -0.026989739388227463, 0.1780257225036621, 0.10363849997520447, 0.008863905444741249, -0.11351370811462402, 0.04193831607699394 ]
https://github.com/huggingface/datasets/issues/239
[Creating new dataset] Not found dataset_info.json
Hi, I rebase my local copy to `fix-empty-cache-dir`, and try to run again `python nlp-cli test datasets/bookcorpus --save_infos --all_configs`. I got this, ``` Traceback (most recent call last): File "nlp-cli", line 10, in <module> from nlp.commands.run_beam import RunBeamCommand File "/home/yisiang/nlp/src/nlp/commands/run_beam.py", line 6, in <module> import apache_beam as beam ModuleNotFoundError: No module named 'apache_beam' ``` And after I installed it. I got this ``` File "/home/yisiang/nlp/src/nlp/datasets/bookcorpus/aea0bd5142d26df645a8fce23d6110bb95ecb81772bb2a1f29012e329191962c/bookcorpus.py", line 88, in _split_generators downloaded_path_or_paths = dl_manager.download_custom(_GDRIVE_FILE_ID, download_file_from_google_drive) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 128, in download_custom downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls) File "/home/yisiang/nlp/src/nlp/utils/py_utils.py", line 172, in map_nested return function(data_struct) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 126, in url_to_downloaded_path return os.path.join(self._download_config.cache_dir, hash_url_to_filename(url)) File "/home/yisiang/miniconda3/envs/nlppr/lib/python3.7/posixpath.py", line 80, in join a = os.fspath(a) ``` The problem is when I print `self._download_config.cache_dir` using pdb, it is `None`. Did I miss something ? Or can you provide a workaround first so I can keep testing my script ?
Hi, I am trying to create Toronto Book Corpus. #131 I ran `~/nlp % python nlp-cli test datasets/bookcorpus --save_infos --all_configs` but this doesn't create `dataset_info.json` and try to use it ``` INFO:nlp.load:Checking datasets/bookcorpus/bookcorpus.py for additional imports. INFO:filelock:Lock 139795325778640 acquired on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.load:Found main folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus INFO:nlp.load:Found specific version folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9 INFO:nlp.load:Found script file from datasets/bookcorpus/bookcorpus.py to /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.py INFO:nlp.load:Couldn't find dataset infos file at datasets/bookcorpus/dataset_infos.json INFO:nlp.load:Found metadata file for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.json INFO:filelock:Lock 139795325778640 released on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.builder:Overwrite dataset info from restored data version. INFO:nlp.info:Loading Dataset info from /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0 Traceback (most recent call last): File "nlp-cli", line 37, in <module> service.run() File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/commands/test.py", line 78, in run builders.append(builder_cls(name=config.name, data_dir=self._data_dir)) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 610, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 152, in __init__ self.info = DatasetInfo.from_directory(self._cache_dir) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/info.py", line 157, in from_directory with open(os.path.join(dataset_info_dir, DATASET_INFO_FILENAME), "r") as f: FileNotFoundError: [Errno 2] No such file or directory: '/home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/dataset_info.json' ``` btw, `ls /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/` show me nothing is in the directory. I have also pushed the script to my fork [bookcorpus.py](https://github.com/richardyy1188/nlp/blob/bookcorpusdev/datasets/bookcorpus/bookcorpus.py).
142
[Creating new dataset] Not found dataset_info.json Hi, I am trying to create Toronto Book Corpus. #131 I ran `~/nlp % python nlp-cli test datasets/bookcorpus --save_infos --all_configs` but this doesn't create `dataset_info.json` and try to use it ``` INFO:nlp.load:Checking datasets/bookcorpus/bookcorpus.py for additional imports. INFO:filelock:Lock 139795325778640 acquired on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.load:Found main folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus INFO:nlp.load:Found specific version folder for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9 INFO:nlp.load:Found script file from datasets/bookcorpus/bookcorpus.py to /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.py INFO:nlp.load:Couldn't find dataset infos file at datasets/bookcorpus/dataset_infos.json INFO:nlp.load:Found metadata file for dataset datasets/bookcorpus/bookcorpus.py at /home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/datasets/bookcorpus/8e84759446cf68d0b0deb3417e60cc331f30a3bbe58843de18a0f48e87d1efd9/bookcorpus.json INFO:filelock:Lock 139795325778640 released on datasets/bookcorpus/bookcorpus.py.lock INFO:nlp.builder:Overwrite dataset info from restored data version. INFO:nlp.info:Loading Dataset info from /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0 Traceback (most recent call last): File "nlp-cli", line 37, in <module> service.run() File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/commands/test.py", line 78, in run builders.append(builder_cls(name=config.name, data_dir=self._data_dir)) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 610, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/builder.py", line 152, in __init__ self.info = DatasetInfo.from_directory(self._cache_dir) File "/home/yisiang/miniconda3/envs/ml/lib/python3.7/site-packages/nlp/info.py", line 157, in from_directory with open(os.path.join(dataset_info_dir, DATASET_INFO_FILENAME), "r") as f: FileNotFoundError: [Errno 2] No such file or directory: '/home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/dataset_info.json' ``` btw, `ls /home/yisiang/.cache/huggingface/datasets/book_corpus/plain_text/1.0.0/` show me nothing is in the directory. I have also pushed the script to my fork [bookcorpus.py](https://github.com/richardyy1188/nlp/blob/bookcorpusdev/datasets/bookcorpus/bookcorpus.py). Hi, I rebase my local copy to `fix-empty-cache-dir`, and try to run again `python nlp-cli test datasets/bookcorpus --save_infos --all_configs`. I got this, ``` Traceback (most recent call last): File "nlp-cli", line 10, in <module> from nlp.commands.run_beam import RunBeamCommand File "/home/yisiang/nlp/src/nlp/commands/run_beam.py", line 6, in <module> import apache_beam as beam ModuleNotFoundError: No module named 'apache_beam' ``` And after I installed it. I got this ``` File "/home/yisiang/nlp/src/nlp/datasets/bookcorpus/aea0bd5142d26df645a8fce23d6110bb95ecb81772bb2a1f29012e329191962c/bookcorpus.py", line 88, in _split_generators downloaded_path_or_paths = dl_manager.download_custom(_GDRIVE_FILE_ID, download_file_from_google_drive) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 128, in download_custom downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls) File "/home/yisiang/nlp/src/nlp/utils/py_utils.py", line 172, in map_nested return function(data_struct) File "/home/yisiang/nlp/src/nlp/utils/download_manager.py", line 126, in url_to_downloaded_path return os.path.join(self._download_config.cache_dir, hash_url_to_filename(url)) File "/home/yisiang/miniconda3/envs/nlppr/lib/python3.7/posixpath.py", line 80, in join a = os.fspath(a) ``` The problem is when I print `self._download_config.cache_dir` using pdb, it is `None`. Did I miss something ? Or can you provide a workaround first so I can keep testing my script ?
[ -0.11650625616312027, 0.12424958497285843, -0.08600329607725143, 0.05706369876861572, 0.017675325274467468, 0.14669127762317657, 0.16692200303077698, 0.3094632923603058, -0.20071397721767426, 0.021816449239850044, 0.060289330780506134, 0.5790067911148071, -0.09350918978452682, 0.08411607146263123, 0.2967386245727539, -0.06326766312122345, 0.07989373058080673, 0.35474979877471924, 0.4398043155670166, -0.17095540463924408, -0.3041882812976837, 0.333865225315094, -0.08771339058876038, 0.013870400376617908, -0.33899179100990295, -0.13993869721889496, -0.1987461894750595, 0.15173564851284027, -0.36890166997909546, -0.24407564103603363, 0.4867267608642578, -0.07338839024305344, 0.10366123169660568, 0.5475574135780334, -0.00011407752026570961, 0.010212338529527187, 0.37250179052352905, -0.15201830863952637, -0.4637061357498169, -0.5580251812934875, -0.009793912060558796, -0.4027790427207947, 0.11497432738542557, -0.3410837948322296, -0.12306180596351624, -0.3242848217487335, 0.20140330493450165, -0.13952846825122833, -0.11613030731678009, 0.45088323950767517, 0.17983712255954742, 0.06183250620961189, 0.1842108815908432, -0.08671928197145462, 0.00012554375280160457, 0.27621525526046753, -0.2401406317949295, 0.20989374816417694, 0.5791470408439636, -0.03125740587711334, 0.2688179314136505, -0.04652158170938492, -0.06592702865600586, -0.29323455691337585, 0.2591237723827362, 0.15986402332782745, 0.01561792939901352, -0.49659428000450134, 0.026163587346673012, 0.07965247333049774, 0.7736669778823853, -0.5069001913070679, -0.34755486249923706, 0.07921192049980164, 0.19489116966724396, 0.0815228670835495, 0.026132822036743164, 0.3870604932308197, -0.0036244026850908995, -0.14681784808635712, -0.4909808039665222, -0.38367795944213867, -0.13943104445934296, 0.3541181981563568, 0.21877266466617584, 0.24535143375396729, -0.03379565849900246, 0.04224700853228569, -0.016015343368053436, -0.05356837809085846, -0.13028819859027863, -0.18597032129764557, -0.1286575049161911, 0.25328871607780457, -0.053666453808546066, -0.5121890902519226, 0.16871654987335205, -0.0076869032345712185, -0.08953665941953659, 0.06112807244062424, -0.032622188329696655, -0.27464136481285095, -0.2865625321865082, 0.18327660858631134, 0.2046547681093216, -0.11063592880964279, 0.27965855598449707, 0.0797303318977356, 0.07748330384492874, 0.05583815649151802, 0.07856927067041397, -0.0678013265132904, -0.033566221594810486, 0.015616528689861298, -0.1277637630701065, -0.09943252801895142, 0.3245656192302704, -0.0741782858967781, 0.07186024636030197, 0.0012808102183043957, -0.19816924631595612, -0.13331195712089539, 0.11727077513933182, 0.29368290305137634, -0.0719577893614769, -0.2800121307373047, -0.025149760767817497, 0.2071141004562378, -0.4114207327365875, -0.01166051160544157, -0.16452337801456451, 0.49445679783821106, -0.20560231804847717, -0.026228629052639008, 0.3875795006752014, 0.10167042911052704, 0.333884596824646, -0.013086945749819279, -0.3687381148338318, -0.15569227933883667, 0.3918464779853821, -0.212174192070961, -0.17901194095611572, 0.2289535403251648, 0.11604568362236023, 0.11397744715213776, -0.0378628671169281, -0.36688774824142456, -0.38329121470451355, 0.19166448712348938, -0.23506073653697968, -0.3481476902961731, -0.28387218713760376, 0.1933898776769638, 0.06136832758784294, -0.23428453505039215, -0.31460675597190857, 0.27518850564956665, 0.309775173664093, -0.3435211479663849, 0.06339675933122635, 0.07586312294006348, -0.13430064916610718, -0.23051320016384125, -0.09996935725212097, 0.399872750043869, -0.48367995023727417, -0.07219935208559036, -0.3215027153491974, -0.009418731555342674, 0.19101376831531525, -0.03528225049376488, -0.20967544615268707, 0.5171995162963867, -0.1338474005460739, 0.11128513514995575, 0.5153874158859253, -0.1893324851989746, -0.18746145069599152, 0.26959291100502014, -0.19403086602687836, -0.29285964369773865, 0.07255559414625168, 0.2507293224334717, -0.041414953768253326, -0.16878671944141388, 0.13270960748195648, 0.09178578108549118, -0.12619233131408691, 0.04947354272007942, 0.08353870362043381, -0.006045306101441383, 0.05104028433561325, 0.11938074976205826, -0.2383526861667633, 0.10864436626434326, 0.13550683856010437, 0.2590746581554413, 0.09780135750770569, -0.031227508559823036, 0.17799165844917297, 0.4847249388694763, 0.38852986693382263, -0.00594668323174119, -0.02281414531171322, -0.07083287835121155, -0.33621490001678467, -0.08187180012464523, -0.23699958622455597, 0.4043169915676117, 0.033765677362680435, -0.0027959265280514956, -0.4716329574584961, -0.19266773760318756, 0.03348204120993614, -0.11761463433504105, 0.08502407371997833, 0.016210928559303284, 0.39784470200538635, 0.10037919133901596, -0.2538142800331116, 0.07752429693937302, -0.17115579545497894, 0.06652303040027618, -0.8675049543380737, 0.34719544649124146, -0.20132295787334442, -0.20943792164325714, 0.2470540851354599, 0.23108258843421936, -0.017621614038944244, -0.14729630947113037, 0.1502859890460968, 0.2265685349702835, -0.14524248242378235, 0.33610522747039795, 0.22270822525024414, 0.12884308397769928, 0.28853464126586914, -0.2038087397813797, 0.14635738730430603, 0.04937615990638733, 0.1962345391511917, -0.02172168344259262, -0.08311395347118378, 0.053555604070425034, 0.1434142142534256, -0.05503024533390999, 0.16171787679195404, -0.04391327500343323, 0.14021261036396027, -0.17860858142375946, 0.07698763906955719, -0.24211734533309937, 0.1755625307559967, 0.07551044970750809, 0.13160811364650726, 0.048625096678733826, -0.0772269144654274, 0.2307499796152115, 0.3067059814929962, 0.053100720047950745, 0.043187808245420456, 0.15799443423748016, 0.03988128900527954, -0.09149589389562607, -0.16357798874378204, 0.2864361107349396, 0.43378937244415283, 0.13054430484771729, -0.1725737303495407, -0.044597506523132324, -0.10544004291296005, -0.2338736355304718, 0.17621274292469025, -0.14458677172660828, 0.1815699338912964, 0.0553755909204483, 0.20645718276500702, -0.09188299626111984, -0.1981731504201889, -0.4503076672554016, 0.2582755386829376, 0.29156196117401123, 0.01253239344805479, 0.23301911354064941, -0.048360105603933334, -0.2889663875102997, -0.10235710442066193, -0.219996839761734, -0.027930602431297302, -0.10974550992250443, 0.04495163634419441, 0.21489781141281128, 0.2119140326976776, -0.12067195028066635, -0.19590197503566742, 0.1891423910856247, -0.08827932924032211, -0.357513964176178, -0.08856132626533508, -0.2564783990383148, -0.18699006736278534, 0.10573486238718033, 0.03482470661401749, 0.14009971916675568, 0.24952469766139984, -0.18439124524593353, 0.010568732395768166, -0.16604527831077576, -0.25708192586898804, 0.018080903217196465, -0.1595323532819748, 0.19502755999565125, 0.17406295239925385, 0.05979163944721222, -0.26083266735076904, -0.4254712462425232, 0.07756555080413818, -0.011626696214079857, -0.4032613933086395, 0.0009179050102829933, -0.17336933314800262, -0.12209708988666534, -0.04074849933385849, -0.7119969725608826, -0.32513827085494995, -0.2131606936454773, -0.015593145042657852, 0.16318093240261078, 0.19772635400295258, 0.4130185544490814, -0.07574572414159775, 0.10820794850587845, 0.1723184883594513, 0.23164872825145721, -0.06923388689756393, -0.3634282350540161, 0.3943188190460205, -0.5005175471305847, -0.2842503488063812, 0.18892329931259155, -0.4618217647075653, 0.23753400146961212, -0.1741819977760315, -0.5138141512870789, 0.01680814102292061, -0.29809895157814026, 0.005920235067605972, 0.13436760008335114, 0.23399440944194794, 0.4963959753513336, -0.02793765813112259, -0.05390625074505806, -0.10333141684532166, -0.4580046832561493, 0.022857269272208214, 0.4239569902420044, 0.648378849029541, -0.0955793634057045, 0.17668746411800385, -0.43665531277656555, 0.13951052725315094, 0.3806610703468323, -0.022997494786977768, 0.45965805649757385, -0.06421402841806412, 0.28421783447265625, -0.2890718877315521, -0.37762168049812317, 0.20217221975326538, 0.28460296988487244, -0.09684190899133682, 0.19153887033462524, 0.08896620571613312, -0.19004984200000763, -0.18134479224681854, -0.12971535325050354, -0.4387229084968567, -0.06704115122556686, -0.16066932678222656, -0.015446128323674202, 0.2671150267124176, 0.08936939388513565, -0.06376698613166809, -0.14562614262104034, -0.27571460604667664, -0.22359111905097961, 0.4727539122104645, 0.19740988314151764, 0.12087202817201614, -0.2766304314136505, -0.0612071193754673, -0.30730748176574707, -0.0377948135137558, 0.023885289207100868, 0.2937769591808319, -0.20295433700084686, 0.25542229413986206, 0.06291992962360382, -0.012339828535914421, 0.5490015149116516, -0.29085955023765564, -0.20555153489112854, 0.26330044865608215, -0.05804252251982689, -0.2241145819425583, 0.18051381409168243, -0.10403378307819366, 0.6076478362083435, 0.2433527261018753, 0.5753419995307922, -0.3115655779838562, 0.2990727424621582, 0.12145122140645981, 0.37018412351608276, -0.23179857432842255, -0.28618961572647095, -0.19550058245658875, -0.4630237817764282, -0.13890425860881805, -0.30914491415023804, -0.3363453149795532, 0.4752546548843384, 0.23033148050308228, 0.17040199041366577, 0.3116016685962677, -0.11960607022047043, 0.28410616517066956, 0.11535444110631943, 0.257638156414032, 0.23350413143634796, 0.4246393144130707, -0.10522749274969101, -0.06710536032915115, 0.36698269844055176, 0.6004722714424133, 0.20311005413532257, -0.09567286819219589, 0.1284203678369522, -0.03640348091721535, 0.39536723494529724, -0.013245221227407455, 0.2669263184070587, -0.10981966555118561, 0.02109428495168686, -0.218412384390831, -0.11553150415420532, -0.023410024121403694, -0.019397225230932236, -0.22414636611938477, -0.6888647079467773, -0.39393150806427, 0.24238024652004242, -0.010685502551496029, 0.30029770731925964, 0.2865830063819885, 0.14248141646385193, -0.22004304826259613, 0.47148627042770386, -0.21347549557685852, 0.8308842182159424, -0.05265554413199425, -0.02797010727226734, 0.04540907219052315, 0.15106657147407532, 0.7034148573875427, -0.5142813324928284, 0.4126511514186859, -0.3891030251979828, -0.02690894342958927, 0.05157841742038727, -0.17580032348632812, 0.17506341636180878, 0.4178829789161682, -0.43252578377723694, 0.19300444424152374, -0.0822676420211792, -0.11858312040567398, -0.1702665388584137, 0.4646311402320862, -0.12328139692544937, -0.36816272139549255, -0.38786640763282776, 0.12439016997814178, -0.15596136450767517, 0.3885233998298645, -0.09368190169334412, -0.01732604019343853, -0.5373472571372986, -0.02376752533018589, -0.2104976326227188, -0.022060144692659378, 0.3186565935611725, 0.24980521202087402, 0.542542040348053, -0.39588677883148193, 0.16806147992610931, 0.15377292037010193, 0.5115234851837158, 0.3233714699745178, -0.21308322250843048, -0.043141596019268036, -0.008564678020775318, -0.41504380106925964, 0.08617473393678665, 0.023316847160458565, 0.32594019174575806, 0.002713095396757126, -0.24869295954704285, 0.1554378718137741, -0.09102272242307663, -0.053070615977048874, -0.09715529531240463, -0.14653384685516357, -0.24173027276992798, -0.2759905457496643, -0.3625262379646301, 0.25870075821876526, -0.16885356605052948, -0.14154526591300964, 0.07883621007204056, 0.29711630940437317, -0.1353914439678192, 0.11851539462804794, 0.020256642252206802, -0.18127769231796265, -0.22068998217582703, 0.23206566274166107, 0.3509170711040497, -0.17117828130722046, 0.4593077003955841, 0.2199610024690628, -0.0807437002658844, -0.2345266342163086, 0.10708862543106079, 0.12530694901943207, -0.12980160117149353, 0.21123309433460236, 0.36168476939201355, 0.15047189593315125, 0.28391575813293457, 0.36081087589263916, -0.16636307537555695, 0.163248211145401, 0.07301384210586548, -0.38630029559135437, -0.43665221333503723, 0.2469574213027954, 0.02442801371216774, 0.09015443176031113, 0.13847827911376953, 0.38774973154067993, 0.2723524570465088, 0.03506160527467728, -0.2648818790912628, -0.04556705430150032, -0.36969056725502014, 0.2637806832790375, 0.24916163086891174, 0.06050153076648712, -0.2160845249891281, -0.057571008801460266, 0.05101483315229416, -0.20329958200454712, -0.02904282696545124, -0.15440796315670013, -0.22161291539669037, 0.15202651917934418, 0.12606331706047058, 0.015447748824954033, -0.12458042800426483, -0.22966693341732025, -0.2332467883825302, -0.019940165802836418, -0.260507196187973, 0.17805366218090057, 0.10190998762845993, 0.15461766719818115, 0.09359771013259888, -0.32697808742523193, -0.10735540091991425, -0.014843600802123547, -0.061953380703926086, 0.3862457871437073, 0.08435332775115967, 0.04523322358727455, 0.11616627126932144, 0.04253889247775078, -0.40281346440315247, 0.07011236250400543, -0.15169362723827362, 0.08376248180866241, 0.14908622205257416, -0.1571449339389801, 0.26674312353134155, 0.021798714995384216, 0.10998378694057465, 0.34660661220550537, -0.1359734982252121, 0.1405172199010849, 0.2605534493923187, 0.11154504120349884, -0.16209042072296143, -0.04408000037074089, 0.3279462158679962, 0.043480224907398224, -0.012227384373545647, 0.31466034054756165, -0.1331053376197815, 0.13106931746006012, -0.14787757396697998, 0.1849879026412964, 0.3246780335903168, -0.06314750760793686, 0.257734477519989, 0.13640998303890228, 0.0012924954062327743, -0.09770216047763824, 0.2594440281391144, 0.18815243244171143, -0.08532145619392395, 0.18237799406051636, 0.04508909955620766, 0.3973941504955292, 0.30235201120376587, 0.286118745803833, 0.21092641353607178, -0.22499965131282806, 0.05044667422771454, -0.20212353765964508, 0.25073421001434326, -0.041925814002752304, 0.08260241150856018, 0.21872463822364807, -0.19586820900440216, 0.30180758237838745, -0.178041011095047, 0.10303790867328644, -0.3208485245704651, -0.06559976190328598, -0.11257011443376541, -0.2674717307090759, 0.25465884804725647, -0.08747997879981995, 0.029255565255880356, -0.10721854120492935, -0.15491318702697754, -0.053178735077381134, -0.05561206117272377, -0.32744303345680237, 0.4158904552459717, -0.01481185108423233, 0.020926743745803833, -0.10051329433917999, 0.31730398535728455, -0.16874611377716064, -0.12283176928758621, -0.12241152673959732, 0.3447619378566742, 0.30761298537254333, 0.3469654321670532, 0.13811159133911133, 0.2645433247089386, -0.07761766761541367, -0.19061791896820068, 0.11390797048807144, 0.4997585415840149, 0.4584064483642578, -0.10555899888277054, 0.02512768842279911, 0.059028077870607376, -0.02446492575109005, 0.13379596173763275, 0.515647292137146, 0.03814980015158653, 0.16639670729637146, 0.4495268166065216, -0.11990986764431, -0.12360382825136185, -0.2566172480583191, 0.2996981143951416, -0.40785929560661316, -0.12763597071170807, 0.5206470489501953, 0.04034671187400818, -0.009024536237120628, -0.3289627730846405, 0.07926288992166519, -0.04677233099937439, 0.2938726544380188, 0.37015438079833984, 0.12014271318912506, -0.26257815957069397, -0.2484816312789917, -0.32965025305747986, -0.06240670010447502, -0.11113978922367096, -0.16207773983478546, -0.22522112727165222, 0.3631656765937805, 0.026146044954657555, 0.18046055734157562, -0.36288344860076904, 0.2894384562969208, -0.148556649684906, 0.0748760998249054, -0.14089807868003845, -0.33819007873535156, -0.15416359901428223, 0.1900702714920044, -0.08194968849420547, -0.08714402467012405, -0.018498528748750687, -0.2756524085998535, -0.011309622786939144, -0.4327605068683624, -0.2158629596233368, 0.2175656408071518, 0.34732693433761597, 0.10093336552381516, 0.07363937795162201, 0.3765217065811157, -0.2977442443370819, -0.18720898032188416, -0.1939508616924286, -0.2278357446193695, -0.09512056410312653, 0.2785030007362366, 0.2827717959880829, 0.3774256408214569, -0.30154621601104736, 0.3614303171634674, -0.14139342308044434, 0.09885403513908386, -0.030948230996727943, 0.11747513711452484, -0.09106148779392242, 0.012101618573069572, -0.2916091978549957, -0.09359456598758698, 0.07177749276161194, 0.272419273853302, 0.003391374135389924, 0.32026493549346924, -0.09971429407596588, -0.4491748809814453, 0.4673534333705902, -0.2092692255973816, -0.18863201141357422, -0.02794787660241127, 0.0273697879165411, -0.2985507845878601, -0.2551031708717346, -0.24643093347549438, 0.07022540271282196, 0.35536712408065796, -0.28132686018943787, 0.01821630261838436, 0.09182600677013397, -0.19161611795425415, 0.04781400412321091, -0.026989739388227463, 0.1780257225036621, 0.10363849997520447, 0.008863905444741249, -0.11351370811462402, 0.04193831607699394 ]
https://github.com/huggingface/datasets/issues/238
[Metric] Bertscore : Warning : Empty candidate sentence; Setting recall to be 0.
This print statement comes from the official implementation of bert_score (see [here](https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py#L343)). The warning shows up only if the attention mask outputs no candidate. Right now we want to only use official code for metrics to have fair evaluations, so I'm not sure we can do anything about it. Maybe you can try to create an issue on their [repo](https://github.com/Tiiiger/bert_score) ?
When running BERT-Score, I'm meeting this warning : > Warning: Empty candidate sentence; Setting recall to be 0. Code : ``` import nlp metric = nlp.load_metric("bertscore") scores = metric.compute(["swag", "swags"], ["swags", "totally something different"], lang="en", device=0) ``` --- **What am I doing wrong / How can I hide this warning ?**
61
[Metric] Bertscore : Warning : Empty candidate sentence; Setting recall to be 0. When running BERT-Score, I'm meeting this warning : > Warning: Empty candidate sentence; Setting recall to be 0. Code : ``` import nlp metric = nlp.load_metric("bertscore") scores = metric.compute(["swag", "swags"], ["swags", "totally something different"], lang="en", device=0) ``` --- **What am I doing wrong / How can I hide this warning ?** This print statement comes from the official implementation of bert_score (see [here](https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py#L343)). The warning shows up only if the attention mask outputs no candidate. Right now we want to only use official code for metrics to have fair evaluations, so I'm not sure we can do anything about it. Maybe you can try to create an issue on their [repo](https://github.com/Tiiiger/bert_score) ?
[ 0.21720853447914124, -0.13527561724185944, 0.14042671024799347, 0.1618989259004593, 0.17440587282180786, 0.06719134002923965, -0.030321894213557243, 0.26454973220825195, 0.43676066398620605, 0.3824988901615143, 0.4003356397151947, 0.12437181174755096, -0.25700119137763977, -0.49317166209220886, -0.19989773631095886, -0.13574257493019104, 0.06772002577781677, 0.45222535729408264, 0.5661286115646362, -0.2519271969795227, -0.2824740707874298, -0.09532858431339264, -0.3659341037273407, 0.22466742992401123, -0.26901975274086, 0.055260755121707916, 0.022139299660921097, -0.2626543641090393, -0.18086305260658264, -0.5885033011436462, 0.17385034263134003, -0.18839333951473236, -0.2331288605928421, 0.23774182796478271, -0.00012839818373322487, -0.2515508830547333, 0.41556602716445923, -0.0837014764547348, 0.2523784935474396, -0.431039035320282, -0.41886135935783386, -0.13713254034519196, 0.23613499104976654, -0.23898057639598846, 0.018732409924268723, 0.2030012160539627, 0.15170785784721375, -0.16453228890895844, 0.06861710548400879, 0.18617132306098938, 0.012134860269725323, 0.2936767041683197, -0.10588815808296204, -0.061105966567993164, 0.022768191993236542, -0.13133855164051056, -0.027575436979532242, 0.04138714075088501, -0.19263437390327454, -0.2139684408903122, -0.049575936049222946, 0.5230771899223328, -0.39526790380477905, 0.12015611678361893, 0.634587824344635, 0.0905858650803566, 0.23154759407043457, -0.21044711768627167, 0.01478300429880619, 0.273721307516098, -0.12098599225282669, -0.11754967272281647, -0.027836883440613747, -0.07351239025592804, 0.30219149589538574, -0.34315016865730286, 0.18524006009101868, 0.07069314271211624, -0.01429121382534504, -0.21163272857666016, -0.3099202811717987, -0.23575372993946075, -0.2747385501861572, -0.04520724341273308, -0.047243259847164154, 0.3264417052268982, 0.07715897262096405, -0.06478998810052872, 0.28564324975013733, -0.14467819035053253, -0.09321354329586029, -0.18928533792495728, -0.1289050430059433, 0.19410832226276398, -0.08560963720083237, -0.29212912917137146, 0.18141373991966248, -0.39836084842681885, 0.24138599634170532, -0.4822862148284912, 0.13002103567123413, -0.1615932136774063, 0.012531949207186699, 0.020525721833109856, 0.2635146975517273, 0.4210566580295563, 0.2929510176181793, 0.2104574292898178, -0.26322492957115173, 0.18330854177474976, 0.1879095584154129, -0.03038647025823593, 0.13825365900993347, 0.1980031579732895, 0.4277031123638153, 0.2182934582233429, -0.0025751718785613775, -0.30605843663215637, -0.37877795100212097, 0.3667081892490387, -0.6508224010467529, -0.1554354876279831, 0.17796622216701508, 0.09617850184440613, -0.1908063441514969, 0.19779826700687408, -0.12019510567188263, 0.15263469517230988, -0.2993704080581665, -0.22512125968933105, -0.2421465367078781, 0.10630512982606888, -0.2950400114059448, -0.010946261696517467, 0.12676095962524414, 0.16873565316200256, 0.20338334143161774, -0.003216179320588708, 0.4691496789455414, 0.14475533366203308, -0.0030007301829755306, -0.41757744550704956, 0.36531129479408264, 0.2870751619338989, 0.001698042149655521, -0.07931104302406311, 0.367093026638031, -0.14234766364097595, -0.11156181246042252, 0.4028784930706024, -0.1367291510105133, -0.14106574654579163, 0.1487502008676529, 0.04095791280269623, -0.5017949342727661, -0.010037845000624657, -0.12011095136404037, 0.433676153421402, -0.1826024353504181, 0.045326583087444305, 0.11144637316465378, -0.0820745900273323, -0.1678713858127594, -0.0720646008849144, 0.39504295587539673, 0.6641337871551514, -0.03115294873714447, -0.15087737143039703, 0.034299738705158234, 0.1536741405725479, 0.20910334587097168, -0.02247825637459755, 0.126063272356987, 0.29541534185409546, 0.02102651260793209, 0.2190592885017395, 0.16167855262756348, -0.5407570004463196, -0.08255312591791153, -0.11912916600704193, -0.08885640650987625, -0.04525155946612358, -0.03992857038974762, -0.012578332796692848, -0.14459574222564697, -0.07708454132080078, 0.1568504422903061, -0.4318296015262604, -0.0828230082988739, 0.0029680754523724318, -0.3594413995742798, -0.2030716985464096, 0.24268776178359985, -0.2542192041873932, 0.19529889523983002, 0.1229349672794342, -0.37159013748168945, 0.6814709305763245, -0.0656106024980545, -0.03771727904677391, 0.028673438355326653, -0.21802832186222076, 0.2738714814186096, -0.021870095282793045, -0.17361563444137573, 0.07164552807807922, 0.13279305398464203, -0.018219182267785072, -0.4321424067020416, 0.1299903392791748, 0.2906797528266907, -0.2665610909461975, -0.2060011327266693, -0.14741086959838867, -0.21998530626296997, -0.19806601107120514, 0.012501619756221771, -0.2633134722709656, 0.009122317656874657, 0.18021176755428314, -0.21413500607013702, -0.2851107120513916, -0.17544935643672943, 0.08871272951364517, 0.14574947953224182, -0.14548024535179138, 0.11120379716157913, -0.10304135084152222, 0.07960975170135498, 0.4481423497200012, 0.4937629997730255, 0.3303023874759674, 0.01611679047346115, 0.20670191943645477, 0.01045188121497631, -0.13259699940681458, 0.03502598777413368, 0.05395969748497009, 0.17249536514282227, -0.43147262930870056, 0.13359588384628296, 0.18339957296848297, -0.02597099542617798, 0.0959281325340271, -0.134539395570755, 0.03906121477484703, 0.08922097086906433, 0.29430967569351196, -0.23724700510501862, -0.12048929929733276, -0.35906118154525757, -0.07625287771224976, 0.15675590932369232, -0.26414188742637634, -0.021587371826171875, 0.055471017956733704, -0.05854802951216698, -0.03924321010708809, -0.13430199027061462, -0.2703165113925934, 0.2294280081987381, 0.22749537229537964, 0.1667667180299759, 0.0886533334851265, 0.06643358618021011, -0.20243202149868011, -0.04732835292816162, -0.4831433594226837, 0.23713821172714233, 0.17029668390750885, -0.04705953225493431, 0.08297105878591537, -0.2728654146194458, -0.14483816921710968, 0.053109850734472275, 0.4124593138694763, -0.20576733350753784, -0.04805217310786247, -0.006830546073615551, 0.04760715737938881, 0.09825427830219269, 0.05628111958503723, -0.09622666984796524, 0.2895216643810272, -0.3335222899913788, 0.08283641934394836, 0.04709421843290329, -0.19011051952838898, -0.16286830604076385, 0.032619185745716095, -0.33116042613983154, -0.07701108604669571, 0.20445851981639862, -0.1896677315235138, -0.06714773923158646, 0.15454669296741486, -0.0388699509203434, 0.2940202057361603, -0.04482739791274071, -0.029598621651530266, -0.13415013253688812, -0.08877956122159958, -0.22490814328193665, -0.02499113604426384, -0.3071596324443817, 0.2817915678024292, 0.10915832221508026, -0.18894654512405396, -0.13185018301010132, 0.16483336687088013, -0.17325887084007263, 0.17265304923057556, -0.2086051106452942, -0.0028179942164570093, 0.024670850485563278, -0.02319818176329136, -0.521491527557373, 0.09408843517303467, 0.1555963158607483, -0.11032568663358688, 0.03985948860645294, 0.06145835667848587, 0.1027323454618454, 0.33873650431632996, -0.27066951990127563, -0.36210542917251587, 0.26697131991386414, 0.03264239802956581, 0.0121542327105999, -0.0966365858912468, 0.13886089622974396, -0.026236282661557198, 0.08837416023015976, 0.314615398645401, -0.26637691259384155, -0.2583741545677185, -0.17628368735313416, -0.28777363896369934, 0.2703222632408142, 0.010318171232938766, -0.10036471486091614, 0.3193665146827698, -0.15774786472320557, 0.1230216771364212, -0.49593695998191833, -0.3708246946334839, -0.6145668029785156, 0.18393754959106445, -0.4545837640762329, -0.15912309288978577, -0.000666515901684761, 0.11899752914905548, -0.07649204134941101, 0.003376556793227792, -0.08857087790966034, 0.07328853756189346, 0.2426484227180481, -0.40847641229629517, 0.42192286252975464, -0.25832363963127136, -0.21406866610050201, -0.10206567496061325, 0.4282717704772949, 0.3861437439918518, 0.22283725440502167, -0.02949952892959118, 0.1557052880525589, 0.3310788571834564, -0.030148914083838463, -0.024395858868956566, 0.17027394473552704, 0.5506830215454102, -0.014459029771387577, 0.12744596600532532, -0.2651348114013672, 0.1473623663187027, -0.027989031746983528, -0.16485704481601715, 0.014629836194217205, -0.2897578179836273, 0.07213854044675827, 0.09702790528535843, 0.2634500563144684, -0.02004336379468441, 0.12034980207681656, 0.011450177058577538, -0.3101598024368286, -0.11343158781528473, 0.06941422075033188, 0.5498434901237488, 0.010073080658912659, 0.11184899508953094, -0.30501312017440796, -0.38058051466941833, 0.1755412071943283, 0.14606544375419617, 0.2111583650112152, -0.1778203696012497, 0.059271350502967834, 0.19559340178966522, 0.2941500246524811, 0.4730266332626343, -0.12436670064926147, 0.16178958117961884, 0.30884894728660583, 0.20173263549804688, 0.24597835540771484, 0.16906388103961945, -0.36907893419265747, -0.4282011091709137, 0.10558521747589111, -0.10164695233106613, -0.4301857054233551, -0.1570994108915329, 0.3982708752155304, -0.0855376198887825, -0.18569263815879822, -0.1426784098148346, -0.6614423394203186, 0.19826175272464752, 0.19894267618656158, 0.42208945751190186, 0.09530015289783478, 0.42856571078300476, 0.2011745125055313, 0.26416951417922974, 0.09672307968139648, -0.011139221489429474, 0.354506254196167, 0.05938001349568367, 0.21952566504478455, 0.09096512943506241, -0.04813227429986, 0.4085187315940857, -0.19146288931369781, 0.22223417460918427, 0.059028029441833496, -0.10556880384683609, -0.5071741342544556, 0.09683477878570557, 0.09931567311286926, 0.5091097354888916, 0.12251099199056625, 0.28019970655441284, 0.07547453045845032, -0.22580449283123016, 0.2871665358543396, -0.2117871195077896, 0.36908769607543945, 0.22396321594715118, -0.11886367201805115, 0.11578725278377533, -0.14643411338329315, 0.2851329743862152, 0.19577322900295258, 0.048054542392492294, -0.31509122252464294, 0.43768879771232605, 0.01445494219660759, 0.1409289687871933, 0.42755112051963806, 0.95756596326828, 0.07306086272001266, 0.04362524673342705, 0.25490784645080566, -0.03264259546995163, 0.7441514730453491, -0.2148560732603073, 0.08979305624961853, -0.06835082918405533, 0.2148379534482956, 0.022926514968276024, -0.002236586296930909, 0.06073560565710068, -0.043957680463790894, -0.21711505949497223, 0.6109150648117065, -0.17330972850322723, -0.11760364472866058, 0.02468966692686081, -0.02709333226084709, 0.10401520878076553, -0.16345714032649994, -0.08123493939638138, -0.07236364483833313, -0.05229591950774193, 0.22826461493968964, -0.010793877765536308, -0.055117953568696976, 0.23779898881912231, -0.20941288769245148, -0.2974383234977722, -0.0019061211496591568, 0.026966743171215057, -0.5267811417579651, 0.14646252989768982, -0.26752352714538574, 0.3607984185218811, 0.03210144490003586, 0.46352148056030273, 0.41840940713882446, -0.18074683845043182, 0.10511647909879684, -0.1527436226606369, -0.006737872026860714, -0.14569011330604553, 0.24803826212882996, 0.09907566010951996, -0.020511552691459656, -0.5675644278526306, 0.3666433095932007, -0.2406548708677292, 0.19315814971923828, -0.10599417239427567, -0.1459559202194214, 0.5476582646369934, -0.03665487468242645, 0.10459842532873154, 0.056962914764881134, 0.39167845249176025, 0.07116448134183884, 0.05389506369829178, 0.07446320354938507, -0.019362512975931168, -0.1514970362186432, 0.09091528505086899, -0.5053489804267883, 0.16305795311927795, 0.09837035089731216, 0.2054317444562912, -0.44333648681640625, 0.390697717666626, -0.4139958620071411, 0.0797681212425232, -0.09928450733423233, -0.06095894053578377, 0.20840223133563995, -0.13743539154529572, 0.0007637611706741154, 0.36733278632164, -0.08686816692352295, 0.0770057886838913, 0.447748601436615, 0.13020536303520203, 0.2307722121477127, -0.03810819983482361, 0.06822650879621506, -0.12081294506788254, 0.239772230386734, -0.2980876564979553, -0.1675778329372406, 0.037304311990737915, 0.3075709939002991, 0.33014175295829773, -0.014357984997332096, -0.13382786512374878, -0.1941985785961151, -0.5053741335868835, 0.15809084475040436, -0.43431827425956726, 0.15748122334480286, 0.20920048654079437, -0.13374310731887817, -0.17195291817188263, 0.10557881742715836, -0.23207908868789673, -0.013411363586783409, -0.1455429196357727, 0.23515057563781738, 0.03847745060920715, 0.18238399922847748, -0.23042713105678558, -0.05990225076675415, 0.16588008403778076, -0.05324231833219528, -0.16792289912700653, 0.15519441664218903, 0.09452752023935318, 0.545892059803009, -0.06375767290592194, 0.41769859194755554, -0.2863662838935852, -0.28152480721473694, 0.2375335693359375, 0.22738085687160492, -0.11168676614761353, -0.09166460484266281, 0.05896386131644249, -0.0863119587302208, 0.15686097741127014, 0.07994434237480164, 0.12329474836587906, 0.1209651529788971, -0.017210550606250763, 0.1809316724538803, 0.19521766901016235, -0.06115284562110901, -0.347381591796875, -0.21226365864276886, 0.022534549236297607, -0.39778614044189453, 0.26052120327949524, 0.05957424268126488, -0.2505081593990326, 0.05349116027355194, -0.17548303306102753, 0.6088403463363647, 0.029005266726017, 0.23864585161209106, -0.14072328805923462, -0.019469741731882095, 0.28785476088523865, 0.18510892987251282, 0.15939036011695862, -0.20718741416931152, 0.010496119037270546, 0.1525927633047104, -0.27478328347206116, 0.03430867940187454, 0.35002174973487854, -0.0032981843687593937, 0.20547547936439514, 0.3160899877548218, 0.1943971812725067, 0.5569952726364136, -0.34458163380622864, 0.19174519181251526, -0.3911084830760956, 0.036738406866788864, -0.4599294364452362, 0.3406834900379181, 0.17214658856391907, 0.08621558547019958, -0.017071232199668884, 0.3387983739376068, -0.1774635761976242, -0.16927339136600494, 0.13066500425338745, -0.2018558531999588, 0.01655891165137291, 0.15368881821632385, -0.3063328266143799, 0.05596126243472099, -0.016245732083916664, -0.03212329000234604, 0.32993897795677185, 0.03100675344467163, -0.022487610578536987, -0.08655307441949844, -0.171852245926857, 0.2852020561695099, -0.2707396447658539, 0.5228371620178223, 0.3205713927745819, -0.0340740792453289, -0.0056131016463041306, 0.09219352900981903, -0.007832142524421215, 0.3110417425632477, 0.7324508428573608, 0.036104436963796616, 0.18166416883468628, 0.13033978641033173, -0.3069494366645813, -0.11715412884950638, -0.00293031451292336, 0.03157288581132889, 0.1452593356370926, 0.42662742733955383, -0.2096414715051651, -0.09887994825839996, -0.11294899135828018, -0.02237054333090782, 0.3930734694004059, -0.07005884498357773, 0.17036086320877075, -0.17088231444358826, 0.5136821866035461, 0.3483603000640869, 0.12149452418088913, -0.16428495943546295, -0.057026222348213196, -0.48373815417289734, 0.4891712963581085, -0.1586376279592514, 0.18536339700222015, -0.10415501147508621, -0.21719473600387573, -0.0022509044501930475, 0.0689253881573677, 0.1474958211183548, 0.22316190600395203, -0.3148413896560669, -0.6887146234512329, 0.07003358751535416, -0.8960806131362915, 0.2602878510951996, -0.05604074150323868, 0.12098710238933563, 0.25140413641929626, 0.03395509347319603, -0.463675320148468, 0.25576919317245483, -0.22053638100624084, 0.1959710568189621, -0.2555966377258301, -0.25989413261413574, -0.21256598830223083, 0.06279602646827698, -0.05939965695142746, -0.19813956320285797, 0.05035250261425972, 0.20902670919895172, 0.10862709581851959, -0.2327679991722107, -0.09535679966211319, 0.2643115520477295, -0.1359296292066574, -0.013214580714702606, 0.9460548162460327, 0.03358357027173042, 0.2863447368144989, 0.33996978402137756, 0.055416762828826904, -0.028228620067238808, 0.15829570591449738, 0.36546942591667175, -0.13598550856113434, -0.1616923213005066, 0.05979312211275101, 0.1284502148628235, -0.39443105459213257, 0.16751253604888916, -0.08594919741153717, 0.4445442259311676, 0.08250966668128967, -0.2452305257320404, -0.45012202858924866, 0.27838006615638733, -0.038834430277347565, 0.149382546544075, -0.2521257698535919, -0.12940028309822083, 0.09984610229730606, 0.12449779361486435, -0.3044617176055908, -0.014317316934466362, 0.3623259365558624, -0.5114167928695679, -0.12458862364292145, -0.3022938072681427, 0.3139731287956238, 0.09410004317760468, -0.3380867838859558, -1.1964467763900757, -0.058251507580280304, 0.20869523286819458, 0.3192470371723175, -0.29331082105636597, -0.17053642868995667, -0.4087942838668823, 0.029031002894043922, -0.09392395615577698, 0.21714064478874207, 0.0920901745557785, 0.04591568186879158, 0.3510318100452423, -0.427411288022995 ]
https://github.com/huggingface/datasets/issues/237
Can't download MultiNLI
Thanks! I thought I had to use the same code displayed in the live viewer: ```python !pip install nlp from nlp import load_dataset dataset = load_dataset('multi_nli', 'plain_text') ``` Your suggestion works, even if then I got a different issue (#242).
When I try to download MultiNLI with ```python dataset = load_dataset('multi_nli') ``` I get this long error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-13-3b11f6be4cb9> in <module> 1 # Load a dataset and print the first examples in the training set 2 # nli_dataset = nlp.load_dataset('multi_nli') ----> 3 dataset = load_dataset('multi_nli') 4 # nli_dataset = nlp.load_dataset('multi_nli', split='validation_matched[:10%]') 5 # print(nli_dataset['train'][0]) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 514 515 # Download and prepare data --> 516 builder_instance.download_and_prepare( 517 download_config=download_config, 518 download_mode=download_mode, ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 417 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 418 verify_infos = not save_infos and not ignore_verifications --> 419 self._download_and_prepare( 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 455 split_dict = SplitDict(dataset_name=self.name) 456 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 457 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 458 # Checksums verification 459 if verify_infos: ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\multi_nli\60774175381b9f3f1e6ae1028229e3cdb270d50379f45b9f2c01008f50f09e6b\multi_nli.py in _split_generators(self, dl_manager) 99 def _split_generators(self, dl_manager): 100 --> 101 downloaded_dir = dl_manager.download_and_extract( 102 "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip" 103 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in download_and_extract(self, url_or_urls) 214 extracted_path(s): `str`, extracted paths of given URL(s). 215 """ --> 216 return self.extract(self.download(url_or_urls)) 217 218 def get_recorded_sizes_checksums(self): ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in extract(self, path_or_paths) 194 path_or_paths. 195 """ --> 196 return map_nested( 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\py_utils.py in map_nested(function, data_struct, dict_only, map_tuple) 168 return tuple(mapped) 169 # Singleton --> 170 return function(data_struct) 171 172 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in <lambda>(path) 195 """ 196 return map_nested( --> 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) 199 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 231 if is_zipfile(output_path): 232 with ZipFile(output_path, "r") as zip_file: --> 233 zip_file.extractall(output_path_extracted) 234 zip_file.close() 235 elif tarfile.is_tarfile(output_path): ~\Miniconda3\envs\nlp\lib\zipfile.py in extractall(self, path, members, pwd) 1644 1645 for zipinfo in members: -> 1646 self._extract_member(zipinfo, path, pwd) 1647 1648 @classmethod ~\Miniconda3\envs\nlp\lib\zipfile.py in _extract_member(self, member, targetpath, pwd) 1698 1699 with self.open(member, pwd=pwd) as source, \ -> 1700 open(targetpath, "wb") as target: 1701 shutil.copyfileobj(source, target) 1702 OSError: [Errno 22] Invalid argument: 'C:\\Users\\Python\\.cache\\huggingface\\datasets\\3e12413b8ec69f22dfcfd54a79d1ba9e7aac2e18e334bbb6b81cca64fd16bffc\\multinli_1.0\\Icon\r' ```
40
Can't download MultiNLI When I try to download MultiNLI with ```python dataset = load_dataset('multi_nli') ``` I get this long error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-13-3b11f6be4cb9> in <module> 1 # Load a dataset and print the first examples in the training set 2 # nli_dataset = nlp.load_dataset('multi_nli') ----> 3 dataset = load_dataset('multi_nli') 4 # nli_dataset = nlp.load_dataset('multi_nli', split='validation_matched[:10%]') 5 # print(nli_dataset['train'][0]) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 514 515 # Download and prepare data --> 516 builder_instance.download_and_prepare( 517 download_config=download_config, 518 download_mode=download_mode, ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 417 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 418 verify_infos = not save_infos and not ignore_verifications --> 419 self._download_and_prepare( 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 455 split_dict = SplitDict(dataset_name=self.name) 456 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 457 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 458 # Checksums verification 459 if verify_infos: ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\multi_nli\60774175381b9f3f1e6ae1028229e3cdb270d50379f45b9f2c01008f50f09e6b\multi_nli.py in _split_generators(self, dl_manager) 99 def _split_generators(self, dl_manager): 100 --> 101 downloaded_dir = dl_manager.download_and_extract( 102 "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip" 103 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in download_and_extract(self, url_or_urls) 214 extracted_path(s): `str`, extracted paths of given URL(s). 215 """ --> 216 return self.extract(self.download(url_or_urls)) 217 218 def get_recorded_sizes_checksums(self): ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in extract(self, path_or_paths) 194 path_or_paths. 195 """ --> 196 return map_nested( 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\py_utils.py in map_nested(function, data_struct, dict_only, map_tuple) 168 return tuple(mapped) 169 # Singleton --> 170 return function(data_struct) 171 172 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in <lambda>(path) 195 """ 196 return map_nested( --> 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) 199 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 231 if is_zipfile(output_path): 232 with ZipFile(output_path, "r") as zip_file: --> 233 zip_file.extractall(output_path_extracted) 234 zip_file.close() 235 elif tarfile.is_tarfile(output_path): ~\Miniconda3\envs\nlp\lib\zipfile.py in extractall(self, path, members, pwd) 1644 1645 for zipinfo in members: -> 1646 self._extract_member(zipinfo, path, pwd) 1647 1648 @classmethod ~\Miniconda3\envs\nlp\lib\zipfile.py in _extract_member(self, member, targetpath, pwd) 1698 1699 with self.open(member, pwd=pwd) as source, \ -> 1700 open(targetpath, "wb") as target: 1701 shutil.copyfileobj(source, target) 1702 OSError: [Errno 22] Invalid argument: 'C:\\Users\\Python\\.cache\\huggingface\\datasets\\3e12413b8ec69f22dfcfd54a79d1ba9e7aac2e18e334bbb6b81cca64fd16bffc\\multinli_1.0\\Icon\r' ``` Thanks! I thought I had to use the same code displayed in the live viewer: ```python !pip install nlp from nlp import load_dataset dataset = load_dataset('multi_nli', 'plain_text') ``` Your suggestion works, even if then I got a different issue (#242).
[ -0.08402502536773682, -0.022191856056451797, -0.0726870521903038, 0.04233880713582039, 0.19818420708179474, 0.06649282574653625, 0.4571826159954071, 0.08013768494129181, 0.10337913781404495, 0.08837532997131348, -0.16412460803985596, 0.24532374739646912, -0.19553053379058838, -0.08169753104448318, -0.0615132600069046, -0.27902349829673767, -0.03297057002782822, -0.0675983652472496, 0.028705326840281487, 0.1370822638273239, -0.21844302117824554, 0.1371098756790161, -0.21224279701709747, 0.21034814417362213, -0.18341946601867676, -0.15587298572063446, -0.2034408003091812, 0.23280072212219238, -0.3381272852420807, -0.3609943091869354, 0.18646536767482758, -0.10970558226108551, 0.2480325698852539, 0.01568034291267395, -0.00010717275290517136, 0.10856420546770096, 0.17798900604248047, -0.06570875644683838, -0.40635770559310913, -0.1557624191045761, -0.11275818943977356, -0.3171512186527252, 0.16040432453155518, -0.39091891050338745, 0.303619384765625, 0.34981390833854675, 0.044329702854156494, 0.04560551419854164, 0.11746980994939804, 0.4848158061504364, 0.26771610975265503, 0.4489550292491913, 0.3633486330509186, -0.07207319885492325, -0.04706201329827309, -0.2057536244392395, 0.012758027762174606, 0.3778340816497803, -0.10258487612009048, -0.17611399292945862, 0.09094039350748062, 0.07363671064376831, -0.148623988032341, 0.32257306575775146, -0.1937520056962967, -0.005293633788824081, 0.30847403407096863, -0.2554345428943634, -0.07744558155536652, 0.2574423849582672, 0.032942935824394226, 0.08301924169063568, -0.32297617197036743, 0.02415769174695015, 0.2695622444152832, -0.3627428710460663, 0.0999654158949852, 0.43507421016693115, -0.33513882756233215, -0.09220914542675018, -0.24660006165504456, -0.16574878990650177, -0.15898507833480835, 0.3905084431171417, -0.31127235293388367, 0.5100568532943726, 0.1047358363866806, 0.105752132833004, 0.43421486020088196, -0.2032005786895752, -0.2787938416004181, -0.05308462679386139, 0.04596848413348198, 0.1960388869047165, -0.32867854833602905, 0.018972883000969887, -0.03016383945941925, -0.232498437166214, 0.15844035148620605, 0.13010285794734955, -0.023443737998604774, -0.23427388072013855, -0.19086039066314697, 0.20343677699565887, 0.04834356904029846, 0.06421036273241043, -0.2885983884334564, 0.12499631196260452, 0.10281535238027573, 0.229122132062912, 0.2289712131023407, 0.03921709954738617, -0.11887616664171219, -0.09183081984519958, -0.11672360450029373, 0.0861230120062828, 0.2541336417198181, 0.09224830567836761, -0.45950859785079956, -0.19941751658916473, -0.5215697884559631, -0.01999540813267231, 0.29257509112358093, 0.14654763042926788, -0.11265456676483154, 0.340151309967041, 0.1732838898897171, 0.39759111404418945, -0.2035050243139267, -0.33436888456344604, -0.13727200031280518, 0.16713817417621613, -0.12311439216136932, -0.041910093277692795, 0.43523406982421875, -0.05952151492238045, 0.31100761890411377, -0.015945332124829292, -0.08545543998479843, -0.09518545866012573, 0.11144306510686874, -0.095086008310318, -0.3110275864601135, 0.25618070363998413, 0.17043806612491608, 0.07221028208732605, 0.16979317367076874, -0.13139966130256653, -0.05205080285668373, 0.005872171837836504, -0.3391163647174835, -0.43124687671661377, -0.3035265803337097, 0.2793094217777252, 0.09683507680892944, -0.10500314086675644, 0.14019986987113953, -0.4007652997970581, 0.21240152418613434, -0.03303176537156105, -0.06387805193662643, -0.2944985330104828, -0.09886201471090317, -0.2295626401901245, 0.25936058163642883, 0.2700575888156891, 0.18030360341072083, -0.0016139540821313858, -0.3492784798145294, -0.16569529473781586, 0.2533246576786041, 0.5466471314430237, -0.20353032648563385, 0.15084731578826904, -0.18046945333480835, 0.03481578081846237, 0.5982270836830139, -0.4164566695690155, -0.0977124497294426, 0.2224084883928299, -0.33464208245277405, 0.044387638568878174, 0.007629940286278725, 0.17985054850578308, 0.06427068263292313, 0.10571208596229553, 0.3237137794494629, 0.514892041683197, -0.17978981137275696, 0.07943856716156006, -0.1894708126783371, -0.2525603473186493, 0.18896223604679108, 0.3776637315750122, 0.05214102193713188, 0.07108162343502045, -0.12936407327651978, 0.47295475006103516, 0.45861026644706726, 0.005411607678979635, 0.06879524141550064, 0.08226964622735977, 0.1454695463180542, -0.09017116576433182, -0.3268410563468933, -0.03324922174215317, -0.38703086972236633, 0.12790706753730774, 0.039568185806274414, 0.10327362269163132, -0.02672160416841507, 0.08823859691619873, -0.10365936905145645, 0.04945063963532448, -0.19201743602752686, -0.12529318034648895, 0.1495800018310547, 0.2034473717212677, 0.0919264554977417, 0.02422551065683365, 0.023436956107616425, 0.5169647932052612, -0.030806686729192734, 0.13072310388088226, -0.4853765368461609, 0.24790285527706146, -0.36647456884384155, -0.04308800771832466, 0.026626138016581535, 0.021789105609059334, -0.06374777108430862, 0.04763096198439598, -0.09674973785877228, 0.3046734035015106, -0.03968535363674164, -0.4234546720981598, -0.10475124418735504, -0.1042768731713295, 0.11548293381929398, -0.1144758090376854, 0.13060933351516724, 0.3364744484424591, 0.06668724119663239, -0.04999600723385811, -0.30639198422431946, 0.33378344774246216, 0.03076552227139473, 0.090029276907444, -0.003102158196270466, 0.3673851788043976, 0.30187416076660156, -0.020217912271618843, -0.037255678325891495, -0.16803431510925293, 0.33377933502197266, 0.03727395087480545, 0.04853300377726555, -0.2252468317747116, -0.3169656991958618, -0.16647881269454956, 0.30116790533065796, 0.04148995131254196, 0.030544891953468323, 0.04215126484632492, 0.18877935409545898, 0.04921538755297661, -0.11622295528650284, 0.004849259741604328, 0.46699821949005127, 0.0854077860713005, 0.10949783772230148, -0.02269195020198822, -0.18930549919605255, -0.29929646849632263, 0.06442566215991974, -0.019086964428424835, 0.20575052499771118, -0.05915652588009834, 0.13096745312213898, -0.1099567711353302, -0.04013040289282799, -0.4957755208015442, 0.2854010760784149, 0.47156596183776855, -0.20183390378952026, 0.06350646913051605, -0.34738466143608093, -0.530687153339386, -0.23372025787830353, -0.20725522935390472, -0.38060882687568665, -0.33953529596328735, -0.165243998169899, 0.4490942358970642, 0.08724768459796906, 0.020227769389748573, -0.01636735536158085, -0.23106980323791504, 0.27137497067451477, -0.03954847902059555, 0.20371288061141968, -0.07126937806606293, -0.2772779166698456, 0.1511176973581314, 0.33647748827934265, -0.021462488919496536, 0.25275173783302307, -0.1002354621887207, -0.17335356771945953, -0.26810380816459656, 0.015854939818382263, -0.22356106340885162, 0.09388314932584763, -0.2643565535545349, 0.25119131803512573, 0.3671226501464844, 0.046039845794439316, -0.23253649473190308, 0.21556313335895538, -0.01895119622349739, -0.14204305410385132, 0.32799556851387024, 0.0061513278633356094, 0.09732875972986221, -0.14993540942668915, -0.3068365156650543, -0.367719829082489, -0.4596533477306366, 0.21241730451583862, -0.055887553840875626, 0.21250903606414795, 0.37406566739082336, 0.04551101103425026, 0.19765233993530273, 0.03390240669250488, -0.13301196694374084, 0.036339323967695236, 0.047851961106061935, 0.1572209745645523, -0.18953602015972137, -0.3011140525341034, -0.078162282705307, 0.20414133369922638, 0.2132147252559662, 0.0037160273641347885, -0.37802523374557495, -0.025708816945552826, 0.030842214822769165, 0.27462533116340637, -0.1909337192773819, -0.043815597891807556, 0.21224455535411835, -0.3453695774078369, -0.04116148501634598, 0.21667158603668213, 0.04302557185292244, 0.08033522963523865, 0.21866074204444885, 0.45158666372299194, -0.14153361320495605, 0.5075711011886597, 0.04848449304699898, 0.39511778950691223, 0.25679200887680054, -0.019462810829281807, 0.372537225484848, -0.021026233211159706, -0.06965126842260361, 0.021604282781481743, -0.402484267950058, -0.006774706766009331, -0.1218656376004219, 0.15624728798866272, -0.028096428140997887, -0.10814829915761948, -0.3482312560081482, -0.17430438101291656, 0.09584688395261765, 0.10263051092624664, -0.20526151359081268, 0.09995458275079727, -0.24396109580993652, 0.026900647208094597, 0.010568580590188503, -0.09340926259756088, -0.035763535648584366, -0.17128732800483704, -0.3353481888771057, 0.3295467495918274, -0.20561805367469788, -0.007514811586588621, -0.06466373056173325, -0.16376985609531403, -0.2538134753704071, 0.038105033338069916, 0.17867253720760345, 0.5281777381896973, 0.0313175730407238, 0.11330575495958328, 0.15176936984062195, -0.05792158469557762, 0.3662664592266083, 0.04317762702703476, 0.11232851445674896, 0.310398131608963, 0.16554418206214905, -0.5614235401153564, -0.31843334436416626, -0.39138785004615784, 0.2710353136062622, 0.722453773021698, 0.22563394904136658, -0.13292744755744934, -0.08333543688058853, 0.3776693046092987, 0.13778848946094513, -0.09112036228179932, -0.17005203664302826, -0.37104347348213196, -0.32177025079727173, -0.4575536251068115, 0.05405578017234802, -0.06567175686359406, 0.3394946753978729, 0.10823594033718109, 0.26551419496536255, 0.12299133092164993, 0.00199071504175663, -0.1314438432455063, -0.09602896124124527, -0.16691969335079193, 0.2519846558570862, 0.1203189566731453, -0.20486219227313995, 0.1100887805223465, -0.012151813134551048, 0.5492681860923767, -0.05373580381274223, -0.21998529136180878, 0.23303569853305817, -0.04173566401004791, 0.017732514068484306, 0.04704133793711662, 0.1685982644557953, 0.11726044118404388, 0.09612555801868439, 0.1955200731754303, 0.31625664234161377, 0.177906796336174, 0.2874184846878052, -0.26692625880241394, -0.2842009961605072, -0.2203262448310852, 0.4090631306171417, 0.06504439562559128, 0.19391131401062012, 0.24376612901687622, -0.5065386891365051, 0.06952033191919327, -0.038530219346284866, 0.14288868010044098, 0.5448485016822815, -0.16019006073474884, 0.20569121837615967, 0.36976251006126404, -0.14225542545318604, 0.49981749057769775, -0.33426427841186523, 0.17927120625972748, -0.19360285997390747, 0.23062066733837128, 0.08422614634037018, 0.02709769643843174, -0.033559322357177734, 0.16266071796417236, -0.22061961889266968, 0.1645318865776062, 0.12993454933166504, -0.05531482771039009, 0.1815408319234848, 0.5320361256599426, 0.009405833669006824, -0.3416411280632019, -0.22745805978775024, 0.20656326413154602, -0.16394254565238953, 0.3153635561466217, -0.09486128389835358, -0.07713251560926437, 0.10907656699419022, -0.16552551090717316, -0.3335943818092346, 0.2814987897872925, -0.0834190770983696, 0.5441376566886902, -0.07002762705087662, -0.05367579311132431, -0.06540462374687195, 0.2200275957584381, 0.07941289991140366, -0.1387493908405304, -0.05445186421275139, -0.09175456315279007, -0.0884905606508255, -0.27477461099624634, -0.13513800501823425, 0.02277396060526371, 0.2547706663608551, -0.3102383315563202, -0.35998207330703735, 0.2084232121706009, 0.04348757117986679, -0.27683061361312866, 0.1300094723701477, 0.29661130905151367, -0.10797082632780075, 0.11719420552253723, 0.07998067885637283, -0.06041582673788071, 0.10194825381040573, -0.09148197621107101, 0.1378287822008133, 0.1844535768032074, -0.2723408639431, 0.0384073480963707, -0.07254984974861145, -0.12654531002044678, 0.03027586080133915, 0.5448253750801086, 0.07951134443283081, 0.01466747373342514, 0.4382506310939789, 0.2637689709663391, 0.04875621572136879, -0.3331160843372345, 0.12422525137662888, -0.20902110636234283, -0.21657595038414001, -0.03299768269062042, 0.03891214355826378, 0.22347046434879303, 0.059257153421640396, 0.10320041328668594, 0.14492428302764893, 0.1771891862154007, 0.15251868963241577, -0.6146884560585022, -0.4120767116546631, -0.050767093896865845, -0.11351717263460159, -0.10179749131202698, -0.097270667552948, 0.2015438675880432, 0.28375834226608276, 0.03644954040646553, -0.2931177020072937, 0.02957102842628956, -0.39406338334083557, 0.07470492273569107, 0.44344592094421387, -0.295584499835968, -0.009802794083952904, 0.20643484592437744, 0.2212136685848236, -0.19654381275177002, -0.14492785930633545, -0.2474174052476883, -0.026847336441278458, 0.06838026642799377, 0.016964683309197426, -0.1980534791946411, 0.15768687427043915, -0.35120710730552673, -0.24849627912044525, 0.19244106113910675, -0.07229174673557281, 0.03838728368282318, 0.07087696343660355, 0.1221814826130867, -0.16020838916301727, 0.16789695620536804, -0.08344978094100952, 0.014651964418590069, -0.27050748467445374, 0.07710934430360794, 0.11173059791326523, 0.3172301650047302, 0.21723918616771698, -0.004561403300613165, -0.6347708702087402, -0.17394427955150604, -0.24527610838413239, -0.0842614397406578, 0.09532314538955688, -0.35595664381980896, -0.014027508907020092, -0.22922329604625702, 0.06166582927107811, 0.2297004610300064, -0.11127644032239914, 0.043565697968006134, 0.3644261360168457, 0.2506195306777954, -0.1571572721004486, -0.01379026472568512, 0.2758881151676178, 0.02771848812699318, 0.009881110861897469, 0.2398216277360916, -0.10482717305421829, -0.07613780349493027, 0.1575661450624466, 0.07760466635227203, 0.10168026387691498, 0.09764757007360458, -0.00924878939986229, 0.3073762357234955, -0.19900864362716675, -0.05383266136050224, 0.036504220217466354, -0.0043838112615048885, 0.2784198522567749, 0.313498854637146, -0.27198970317840576, 0.2696479260921478, -0.07016938924789429, 0.05118245258927345, 0.14697299897670746, -0.20849895477294922, -0.31382429599761963, -0.014103383757174015, -0.24583566188812256, -0.029514124616980553, -0.15945571660995483, 0.34837448596954346, -0.3062150478363037, -0.2602593004703522, -0.3952547609806061, 0.5272894501686096, -0.17804782092571259, 0.05312853679060936, -0.3437129855155945, -0.09361103922128677, -0.27327996492385864, 0.18696781992912292, 0.050593435764312744, 0.07760925590991974, 0.4932883679866791, 0.3244488537311554, -0.15094204246997833, -0.5531565546989441, -0.1860020011663437, 0.2678629159927368, 0.015663886442780495, -0.3500515818595886, 0.28934401273727417, 0.4177258610725403, -0.2784987986087799, -0.009164754301309586, 0.09575927257537842, 0.5214704871177673, 0.2982959747314453, 0.17874105274677277, 0.10023205727338791, -0.047297120094299316, -0.03253630921244621, -0.025406068190932274, -0.057355426251888275, 0.47769927978515625, 0.210508793592453, 0.3830703794956207, 0.09772957116365433, -0.22195732593536377, 0.17007753252983093, 0.09212423861026764, -0.105058953166008, -0.10364898294210434, 0.41123825311660767, -0.021900134161114693, 0.009776869788765907, -0.23978407680988312, 0.06705664098262787, -0.5321537256240845, 0.08143334090709686, 0.026707615703344345, 0.1320955455303192, 0.14712484180927277, 0.04539685323834419, 0.05070871487259865, 0.009732979349792004, 0.5457183122634888, 0.3034781813621521, 0.21150435507297516, -0.29450446367263794, -0.28238171339035034, -0.6838548183441162, 0.09728621691465378, -0.5811140537261963, -0.10109909623861313, -0.04636886715888977, 0.23086264729499817, -0.20032963156700134, 0.21887348592281342, 0.03419387713074684, 0.03454143926501274, 0.18187810480594635, 0.27352240681648254, -0.3600362539291382, -0.08478172868490219, 0.21785134077072144, -0.018979119136929512, 0.03384331986308098, -0.3433583974838257, 0.06985117495059967, -0.2905690371990204, 0.0890478566288948, -0.20073159039020538, -0.07836263626813889, 0.10260296612977982, 0.28207263350486755, 0.0038190812338143587, 0.12707746028900146, 0.4972708821296692, 0.1928173005580902, -0.3524490296840668, -0.22494962811470032, 0.20275874435901642, -0.1610056459903717, 0.013193256221711636, 0.2036266177892685, 0.4022214710712433, -0.10290984064340591, 0.14341475069522858, -0.3461364805698395, 0.5090779662132263, -0.12394337356090546, -0.17005403339862823, -0.07957268506288528, 0.05447414889931679, 0.05632806196808815, 0.11478616297245026, 0.22201035916805267, 0.03505963087081909, -0.025366539135575294, 0.039400484412908554, -0.3940596878528595, -0.21150276064872742, 0.3609004616737366, -0.09750744700431824, -0.2655796706676483, -0.1804897040128708, 0.22695302963256836, -0.3209322988986969, 0.28803208470344543, -0.555557131767273, 0.12516199052333832, 0.2969510853290558, -0.08232886344194412, -0.5224146246910095, 0.12004692107439041, 0.12428737431764603, -0.16984198987483978, -0.007210870273411274, 0.00020561387646012008, 0.08076641708612442, -0.4523904025554657, 0.2310974895954132, -0.11049660295248032 ]
https://github.com/huggingface/datasets/issues/237
Can't download MultiNLI
Glad it helps ! Though I am not one of hf team, but maybe you should close this issue first.
When I try to download MultiNLI with ```python dataset = load_dataset('multi_nli') ``` I get this long error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-13-3b11f6be4cb9> in <module> 1 # Load a dataset and print the first examples in the training set 2 # nli_dataset = nlp.load_dataset('multi_nli') ----> 3 dataset = load_dataset('multi_nli') 4 # nli_dataset = nlp.load_dataset('multi_nli', split='validation_matched[:10%]') 5 # print(nli_dataset['train'][0]) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 514 515 # Download and prepare data --> 516 builder_instance.download_and_prepare( 517 download_config=download_config, 518 download_mode=download_mode, ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 417 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 418 verify_infos = not save_infos and not ignore_verifications --> 419 self._download_and_prepare( 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 455 split_dict = SplitDict(dataset_name=self.name) 456 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 457 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 458 # Checksums verification 459 if verify_infos: ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\multi_nli\60774175381b9f3f1e6ae1028229e3cdb270d50379f45b9f2c01008f50f09e6b\multi_nli.py in _split_generators(self, dl_manager) 99 def _split_generators(self, dl_manager): 100 --> 101 downloaded_dir = dl_manager.download_and_extract( 102 "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip" 103 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in download_and_extract(self, url_or_urls) 214 extracted_path(s): `str`, extracted paths of given URL(s). 215 """ --> 216 return self.extract(self.download(url_or_urls)) 217 218 def get_recorded_sizes_checksums(self): ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in extract(self, path_or_paths) 194 path_or_paths. 195 """ --> 196 return map_nested( 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\py_utils.py in map_nested(function, data_struct, dict_only, map_tuple) 168 return tuple(mapped) 169 # Singleton --> 170 return function(data_struct) 171 172 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in <lambda>(path) 195 """ 196 return map_nested( --> 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) 199 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 231 if is_zipfile(output_path): 232 with ZipFile(output_path, "r") as zip_file: --> 233 zip_file.extractall(output_path_extracted) 234 zip_file.close() 235 elif tarfile.is_tarfile(output_path): ~\Miniconda3\envs\nlp\lib\zipfile.py in extractall(self, path, members, pwd) 1644 1645 for zipinfo in members: -> 1646 self._extract_member(zipinfo, path, pwd) 1647 1648 @classmethod ~\Miniconda3\envs\nlp\lib\zipfile.py in _extract_member(self, member, targetpath, pwd) 1698 1699 with self.open(member, pwd=pwd) as source, \ -> 1700 open(targetpath, "wb") as target: 1701 shutil.copyfileobj(source, target) 1702 OSError: [Errno 22] Invalid argument: 'C:\\Users\\Python\\.cache\\huggingface\\datasets\\3e12413b8ec69f22dfcfd54a79d1ba9e7aac2e18e334bbb6b81cca64fd16bffc\\multinli_1.0\\Icon\r' ```
20
Can't download MultiNLI When I try to download MultiNLI with ```python dataset = load_dataset('multi_nli') ``` I get this long error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-13-3b11f6be4cb9> in <module> 1 # Load a dataset and print the first examples in the training set 2 # nli_dataset = nlp.load_dataset('multi_nli') ----> 3 dataset = load_dataset('multi_nli') 4 # nli_dataset = nlp.load_dataset('multi_nli', split='validation_matched[:10%]') 5 # print(nli_dataset['train'][0]) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 514 515 # Download and prepare data --> 516 builder_instance.download_and_prepare( 517 download_config=download_config, 518 download_mode=download_mode, ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 417 with utils.temporary_assignment(self, "_cache_dir", tmp_data_dir): 418 verify_infos = not save_infos and not ignore_verifications --> 419 self._download_and_prepare( 420 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 421 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 455 split_dict = SplitDict(dataset_name=self.name) 456 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 457 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 458 # Checksums verification 459 if verify_infos: ~\Miniconda3\envs\nlp\lib\site-packages\nlp\datasets\multi_nli\60774175381b9f3f1e6ae1028229e3cdb270d50379f45b9f2c01008f50f09e6b\multi_nli.py in _split_generators(self, dl_manager) 99 def _split_generators(self, dl_manager): 100 --> 101 downloaded_dir = dl_manager.download_and_extract( 102 "http://storage.googleapis.com/tfds-data/downloads/multi_nli/multinli_1.0.zip" 103 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in download_and_extract(self, url_or_urls) 214 extracted_path(s): `str`, extracted paths of given URL(s). 215 """ --> 216 return self.extract(self.download(url_or_urls)) 217 218 def get_recorded_sizes_checksums(self): ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in extract(self, path_or_paths) 194 path_or_paths. 195 """ --> 196 return map_nested( 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\py_utils.py in map_nested(function, data_struct, dict_only, map_tuple) 168 return tuple(mapped) 169 # Singleton --> 170 return function(data_struct) 171 172 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\download_manager.py in <lambda>(path) 195 """ 196 return map_nested( --> 197 lambda path: cached_path(path, extract_compressed_file=True, force_extract=False), path_or_paths, 198 ) 199 ~\Miniconda3\envs\nlp\lib\site-packages\nlp\utils\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 231 if is_zipfile(output_path): 232 with ZipFile(output_path, "r") as zip_file: --> 233 zip_file.extractall(output_path_extracted) 234 zip_file.close() 235 elif tarfile.is_tarfile(output_path): ~\Miniconda3\envs\nlp\lib\zipfile.py in extractall(self, path, members, pwd) 1644 1645 for zipinfo in members: -> 1646 self._extract_member(zipinfo, path, pwd) 1647 1648 @classmethod ~\Miniconda3\envs\nlp\lib\zipfile.py in _extract_member(self, member, targetpath, pwd) 1698 1699 with self.open(member, pwd=pwd) as source, \ -> 1700 open(targetpath, "wb") as target: 1701 shutil.copyfileobj(source, target) 1702 OSError: [Errno 22] Invalid argument: 'C:\\Users\\Python\\.cache\\huggingface\\datasets\\3e12413b8ec69f22dfcfd54a79d1ba9e7aac2e18e334bbb6b81cca64fd16bffc\\multinli_1.0\\Icon\r' ``` Glad it helps ! Though I am not one of hf team, but maybe you should close this issue first.
[ -0.08402502536773682, -0.022191856056451797, -0.0726870521903038, 0.04233880713582039, 0.19818420708179474, 0.06649282574653625, 0.4571826159954071, 0.08013768494129181, 0.10337913781404495, 0.08837532997131348, -0.16412460803985596, 0.24532374739646912, -0.19553053379058838, -0.08169753104448318, -0.0615132600069046, -0.27902349829673767, -0.03297057002782822, -0.0675983652472496, 0.028705326840281487, 0.1370822638273239, -0.21844302117824554, 0.1371098756790161, -0.21224279701709747, 0.21034814417362213, -0.18341946601867676, -0.15587298572063446, -0.2034408003091812, 0.23280072212219238, -0.3381272852420807, -0.3609943091869354, 0.18646536767482758, -0.10970558226108551, 0.2480325698852539, 0.01568034291267395, -0.00010717275290517136, 0.10856420546770096, 0.17798900604248047, -0.06570875644683838, -0.40635770559310913, -0.1557624191045761, -0.11275818943977356, -0.3171512186527252, 0.16040432453155518, -0.39091891050338745, 0.303619384765625, 0.34981390833854675, 0.044329702854156494, 0.04560551419854164, 0.11746980994939804, 0.4848158061504364, 0.26771610975265503, 0.4489550292491913, 0.3633486330509186, -0.07207319885492325, -0.04706201329827309, -0.2057536244392395, 0.012758027762174606, 0.3778340816497803, -0.10258487612009048, -0.17611399292945862, 0.09094039350748062, 0.07363671064376831, -0.148623988032341, 0.32257306575775146, -0.1937520056962967, -0.005293633788824081, 0.30847403407096863, -0.2554345428943634, -0.07744558155536652, 0.2574423849582672, 0.032942935824394226, 0.08301924169063568, -0.32297617197036743, 0.02415769174695015, 0.2695622444152832, -0.3627428710460663, 0.0999654158949852, 0.43507421016693115, -0.33513882756233215, -0.09220914542675018, -0.24660006165504456, -0.16574878990650177, -0.15898507833480835, 0.3905084431171417, -0.31127235293388367, 0.5100568532943726, 0.1047358363866806, 0.105752132833004, 0.43421486020088196, -0.2032005786895752, -0.2787938416004181, -0.05308462679386139, 0.04596848413348198, 0.1960388869047165, -0.32867854833602905, 0.018972883000969887, -0.03016383945941925, -0.232498437166214, 0.15844035148620605, 0.13010285794734955, -0.023443737998604774, -0.23427388072013855, -0.19086039066314697, 0.20343677699565887, 0.04834356904029846, 0.06421036273241043, -0.2885983884334564, 0.12499631196260452, 0.10281535238027573, 0.229122132062912, 0.2289712131023407, 0.03921709954738617, -0.11887616664171219, -0.09183081984519958, -0.11672360450029373, 0.0861230120062828, 0.2541336417198181, 0.09224830567836761, -0.45950859785079956, -0.19941751658916473, -0.5215697884559631, -0.01999540813267231, 0.29257509112358093, 0.14654763042926788, -0.11265456676483154, 0.340151309967041, 0.1732838898897171, 0.39759111404418945, -0.2035050243139267, -0.33436888456344604, -0.13727200031280518, 0.16713817417621613, -0.12311439216136932, -0.041910093277692795, 0.43523406982421875, -0.05952151492238045, 0.31100761890411377, -0.015945332124829292, -0.08545543998479843, -0.09518545866012573, 0.11144306510686874, -0.095086008310318, -0.3110275864601135, 0.25618070363998413, 0.17043806612491608, 0.07221028208732605, 0.16979317367076874, -0.13139966130256653, -0.05205080285668373, 0.005872171837836504, -0.3391163647174835, -0.43124687671661377, -0.3035265803337097, 0.2793094217777252, 0.09683507680892944, -0.10500314086675644, 0.14019986987113953, -0.4007652997970581, 0.21240152418613434, -0.03303176537156105, -0.06387805193662643, -0.2944985330104828, -0.09886201471090317, -0.2295626401901245, 0.25936058163642883, 0.2700575888156891, 0.18030360341072083, -0.0016139540821313858, -0.3492784798145294, -0.16569529473781586, 0.2533246576786041, 0.5466471314430237, -0.20353032648563385, 0.15084731578826904, -0.18046945333480835, 0.03481578081846237, 0.5982270836830139, -0.4164566695690155, -0.0977124497294426, 0.2224084883928299, -0.33464208245277405, 0.044387638568878174, 0.007629940286278725, 0.17985054850578308, 0.06427068263292313, 0.10571208596229553, 0.3237137794494629, 0.514892041683197, -0.17978981137275696, 0.07943856716156006, -0.1894708126783371, -0.2525603473186493, 0.18896223604679108, 0.3776637315750122, 0.05214102193713188, 0.07108162343502045, -0.12936407327651978, 0.47295475006103516, 0.45861026644706726, 0.005411607678979635, 0.06879524141550064, 0.08226964622735977, 0.1454695463180542, -0.09017116576433182, -0.3268410563468933, -0.03324922174215317, -0.38703086972236633, 0.12790706753730774, 0.039568185806274414, 0.10327362269163132, -0.02672160416841507, 0.08823859691619873, -0.10365936905145645, 0.04945063963532448, -0.19201743602752686, -0.12529318034648895, 0.1495800018310547, 0.2034473717212677, 0.0919264554977417, 0.02422551065683365, 0.023436956107616425, 0.5169647932052612, -0.030806686729192734, 0.13072310388088226, -0.4853765368461609, 0.24790285527706146, -0.36647456884384155, -0.04308800771832466, 0.026626138016581535, 0.021789105609059334, -0.06374777108430862, 0.04763096198439598, -0.09674973785877228, 0.3046734035015106, -0.03968535363674164, -0.4234546720981598, -0.10475124418735504, -0.1042768731713295, 0.11548293381929398, -0.1144758090376854, 0.13060933351516724, 0.3364744484424591, 0.06668724119663239, -0.04999600723385811, -0.30639198422431946, 0.33378344774246216, 0.03076552227139473, 0.090029276907444, -0.003102158196270466, 0.3673851788043976, 0.30187416076660156, -0.020217912271618843, -0.037255678325891495, -0.16803431510925293, 0.33377933502197266, 0.03727395087480545, 0.04853300377726555, -0.2252468317747116, -0.3169656991958618, -0.16647881269454956, 0.30116790533065796, 0.04148995131254196, 0.030544891953468323, 0.04215126484632492, 0.18877935409545898, 0.04921538755297661, -0.11622295528650284, 0.004849259741604328, 0.46699821949005127, 0.0854077860713005, 0.10949783772230148, -0.02269195020198822, -0.18930549919605255, -0.29929646849632263, 0.06442566215991974, -0.019086964428424835, 0.20575052499771118, -0.05915652588009834, 0.13096745312213898, -0.1099567711353302, -0.04013040289282799, -0.4957755208015442, 0.2854010760784149, 0.47156596183776855, -0.20183390378952026, 0.06350646913051605, -0.34738466143608093, -0.530687153339386, -0.23372025787830353, -0.20725522935390472, -0.38060882687568665, -0.33953529596328735, -0.165243998169899, 0.4490942358970642, 0.08724768459796906, 0.020227769389748573, -0.01636735536158085, -0.23106980323791504, 0.27137497067451477, -0.03954847902059555, 0.20371288061141968, -0.07126937806606293, -0.2772779166698456, 0.1511176973581314, 0.33647748827934265, -0.021462488919496536, 0.25275173783302307, -0.1002354621887207, -0.17335356771945953, -0.26810380816459656, 0.015854939818382263, -0.22356106340885162, 0.09388314932584763, -0.2643565535545349, 0.25119131803512573, 0.3671226501464844, 0.046039845794439316, -0.23253649473190308, 0.21556313335895538, -0.01895119622349739, -0.14204305410385132, 0.32799556851387024, 0.0061513278633356094, 0.09732875972986221, -0.14993540942668915, -0.3068365156650543, -0.367719829082489, -0.4596533477306366, 0.21241730451583862, -0.055887553840875626, 0.21250903606414795, 0.37406566739082336, 0.04551101103425026, 0.19765233993530273, 0.03390240669250488, -0.13301196694374084, 0.036339323967695236, 0.047851961106061935, 0.1572209745645523, -0.18953602015972137, -0.3011140525341034, -0.078162282705307, 0.20414133369922638, 0.2132147252559662, 0.0037160273641347885, -0.37802523374557495, -0.025708816945552826, 0.030842214822769165, 0.27462533116340637, -0.1909337192773819, -0.043815597891807556, 0.21224455535411835, -0.3453695774078369, -0.04116148501634598, 0.21667158603668213, 0.04302557185292244, 0.08033522963523865, 0.21866074204444885, 0.45158666372299194, -0.14153361320495605, 0.5075711011886597, 0.04848449304699898, 0.39511778950691223, 0.25679200887680054, -0.019462810829281807, 0.372537225484848, -0.021026233211159706, -0.06965126842260361, 0.021604282781481743, -0.402484267950058, -0.006774706766009331, -0.1218656376004219, 0.15624728798866272, -0.028096428140997887, -0.10814829915761948, -0.3482312560081482, -0.17430438101291656, 0.09584688395261765, 0.10263051092624664, -0.20526151359081268, 0.09995458275079727, -0.24396109580993652, 0.026900647208094597, 0.010568580590188503, -0.09340926259756088, -0.035763535648584366, -0.17128732800483704, -0.3353481888771057, 0.3295467495918274, -0.20561805367469788, -0.007514811586588621, -0.06466373056173325, -0.16376985609531403, -0.2538134753704071, 0.038105033338069916, 0.17867253720760345, 0.5281777381896973, 0.0313175730407238, 0.11330575495958328, 0.15176936984062195, -0.05792158469557762, 0.3662664592266083, 0.04317762702703476, 0.11232851445674896, 0.310398131608963, 0.16554418206214905, -0.5614235401153564, -0.31843334436416626, -0.39138785004615784, 0.2710353136062622, 0.722453773021698, 0.22563394904136658, -0.13292744755744934, -0.08333543688058853, 0.3776693046092987, 0.13778848946094513, -0.09112036228179932, -0.17005203664302826, -0.37104347348213196, -0.32177025079727173, -0.4575536251068115, 0.05405578017234802, -0.06567175686359406, 0.3394946753978729, 0.10823594033718109, 0.26551419496536255, 0.12299133092164993, 0.00199071504175663, -0.1314438432455063, -0.09602896124124527, -0.16691969335079193, 0.2519846558570862, 0.1203189566731453, -0.20486219227313995, 0.1100887805223465, -0.012151813134551048, 0.5492681860923767, -0.05373580381274223, -0.21998529136180878, 0.23303569853305817, -0.04173566401004791, 0.017732514068484306, 0.04704133793711662, 0.1685982644557953, 0.11726044118404388, 0.09612555801868439, 0.1955200731754303, 0.31625664234161377, 0.177906796336174, 0.2874184846878052, -0.26692625880241394, -0.2842009961605072, -0.2203262448310852, 0.4090631306171417, 0.06504439562559128, 0.19391131401062012, 0.24376612901687622, -0.5065386891365051, 0.06952033191919327, -0.038530219346284866, 0.14288868010044098, 0.5448485016822815, -0.16019006073474884, 0.20569121837615967, 0.36976251006126404, -0.14225542545318604, 0.49981749057769775, -0.33426427841186523, 0.17927120625972748, -0.19360285997390747, 0.23062066733837128, 0.08422614634037018, 0.02709769643843174, -0.033559322357177734, 0.16266071796417236, -0.22061961889266968, 0.1645318865776062, 0.12993454933166504, -0.05531482771039009, 0.1815408319234848, 0.5320361256599426, 0.009405833669006824, -0.3416411280632019, -0.22745805978775024, 0.20656326413154602, -0.16394254565238953, 0.3153635561466217, -0.09486128389835358, -0.07713251560926437, 0.10907656699419022, -0.16552551090717316, -0.3335943818092346, 0.2814987897872925, -0.0834190770983696, 0.5441376566886902, -0.07002762705087662, -0.05367579311132431, -0.06540462374687195, 0.2200275957584381, 0.07941289991140366, -0.1387493908405304, -0.05445186421275139, -0.09175456315279007, -0.0884905606508255, -0.27477461099624634, -0.13513800501823425, 0.02277396060526371, 0.2547706663608551, -0.3102383315563202, -0.35998207330703735, 0.2084232121706009, 0.04348757117986679, -0.27683061361312866, 0.1300094723701477, 0.29661130905151367, -0.10797082632780075, 0.11719420552253723, 0.07998067885637283, -0.06041582673788071, 0.10194825381040573, -0.09148197621107101, 0.1378287822008133, 0.1844535768032074, -0.2723408639431, 0.0384073480963707, -0.07254984974861145, -0.12654531002044678, 0.03027586080133915, 0.5448253750801086, 0.07951134443283081, 0.01466747373342514, 0.4382506310939789, 0.2637689709663391, 0.04875621572136879, -0.3331160843372345, 0.12422525137662888, -0.20902110636234283, -0.21657595038414001, -0.03299768269062042, 0.03891214355826378, 0.22347046434879303, 0.059257153421640396, 0.10320041328668594, 0.14492428302764893, 0.1771891862154007, 0.15251868963241577, -0.6146884560585022, -0.4120767116546631, -0.050767093896865845, -0.11351717263460159, -0.10179749131202698, -0.097270667552948, 0.2015438675880432, 0.28375834226608276, 0.03644954040646553, -0.2931177020072937, 0.02957102842628956, -0.39406338334083557, 0.07470492273569107, 0.44344592094421387, -0.295584499835968, -0.009802794083952904, 0.20643484592437744, 0.2212136685848236, -0.19654381275177002, -0.14492785930633545, -0.2474174052476883, -0.026847336441278458, 0.06838026642799377, 0.016964683309197426, -0.1980534791946411, 0.15768687427043915, -0.35120710730552673, -0.24849627912044525, 0.19244106113910675, -0.07229174673557281, 0.03838728368282318, 0.07087696343660355, 0.1221814826130867, -0.16020838916301727, 0.16789695620536804, -0.08344978094100952, 0.014651964418590069, -0.27050748467445374, 0.07710934430360794, 0.11173059791326523, 0.3172301650047302, 0.21723918616771698, -0.004561403300613165, -0.6347708702087402, -0.17394427955150604, -0.24527610838413239, -0.0842614397406578, 0.09532314538955688, -0.35595664381980896, -0.014027508907020092, -0.22922329604625702, 0.06166582927107811, 0.2297004610300064, -0.11127644032239914, 0.043565697968006134, 0.3644261360168457, 0.2506195306777954, -0.1571572721004486, -0.01379026472568512, 0.2758881151676178, 0.02771848812699318, 0.009881110861897469, 0.2398216277360916, -0.10482717305421829, -0.07613780349493027, 0.1575661450624466, 0.07760466635227203, 0.10168026387691498, 0.09764757007360458, -0.00924878939986229, 0.3073762357234955, -0.19900864362716675, -0.05383266136050224, 0.036504220217466354, -0.0043838112615048885, 0.2784198522567749, 0.313498854637146, -0.27198970317840576, 0.2696479260921478, -0.07016938924789429, 0.05118245258927345, 0.14697299897670746, -0.20849895477294922, -0.31382429599761963, -0.014103383757174015, -0.24583566188812256, -0.029514124616980553, -0.15945571660995483, 0.34837448596954346, -0.3062150478363037, -0.2602593004703522, -0.3952547609806061, 0.5272894501686096, -0.17804782092571259, 0.05312853679060936, -0.3437129855155945, -0.09361103922128677, -0.27327996492385864, 0.18696781992912292, 0.050593435764312744, 0.07760925590991974, 0.4932883679866791, 0.3244488537311554, -0.15094204246997833, -0.5531565546989441, -0.1860020011663437, 0.2678629159927368, 0.015663886442780495, -0.3500515818595886, 0.28934401273727417, 0.4177258610725403, -0.2784987986087799, -0.009164754301309586, 0.09575927257537842, 0.5214704871177673, 0.2982959747314453, 0.17874105274677277, 0.10023205727338791, -0.047297120094299316, -0.03253630921244621, -0.025406068190932274, -0.057355426251888275, 0.47769927978515625, 0.210508793592453, 0.3830703794956207, 0.09772957116365433, -0.22195732593536377, 0.17007753252983093, 0.09212423861026764, -0.105058953166008, -0.10364898294210434, 0.41123825311660767, -0.021900134161114693, 0.009776869788765907, -0.23978407680988312, 0.06705664098262787, -0.5321537256240845, 0.08143334090709686, 0.026707615703344345, 0.1320955455303192, 0.14712484180927277, 0.04539685323834419, 0.05070871487259865, 0.009732979349792004, 0.5457183122634888, 0.3034781813621521, 0.21150435507297516, -0.29450446367263794, -0.28238171339035034, -0.6838548183441162, 0.09728621691465378, -0.5811140537261963, -0.10109909623861313, -0.04636886715888977, 0.23086264729499817, -0.20032963156700134, 0.21887348592281342, 0.03419387713074684, 0.03454143926501274, 0.18187810480594635, 0.27352240681648254, -0.3600362539291382, -0.08478172868490219, 0.21785134077072144, -0.018979119136929512, 0.03384331986308098, -0.3433583974838257, 0.06985117495059967, -0.2905690371990204, 0.0890478566288948, -0.20073159039020538, -0.07836263626813889, 0.10260296612977982, 0.28207263350486755, 0.0038190812338143587, 0.12707746028900146, 0.4972708821296692, 0.1928173005580902, -0.3524490296840668, -0.22494962811470032, 0.20275874435901642, -0.1610056459903717, 0.013193256221711636, 0.2036266177892685, 0.4022214710712433, -0.10290984064340591, 0.14341475069522858, -0.3461364805698395, 0.5090779662132263, -0.12394337356090546, -0.17005403339862823, -0.07957268506288528, 0.05447414889931679, 0.05632806196808815, 0.11478616297245026, 0.22201035916805267, 0.03505963087081909, -0.025366539135575294, 0.039400484412908554, -0.3940596878528595, -0.21150276064872742, 0.3609004616737366, -0.09750744700431824, -0.2655796706676483, -0.1804897040128708, 0.22695302963256836, -0.3209322988986969, 0.28803208470344543, -0.555557131767273, 0.12516199052333832, 0.2969510853290558, -0.08232886344194412, -0.5224146246910095, 0.12004692107439041, 0.12428737431764603, -0.16984198987483978, -0.007210870273411274, 0.00020561387646012008, 0.08076641708612442, -0.4523904025554657, 0.2310974895954132, -0.11049660295248032 ]
https://github.com/huggingface/datasets/issues/234
Huggingface NLP, Uploading custom dataset
What do you mean 'custom' ? You may want to elaborate on it when ask a question. Anyway, there are two things you may interested `nlp.Dataset.from_file` and `load_dataset(..., cache_dir=)`
Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you!
29
Huggingface NLP, Uploading custom dataset Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you! What do you mean 'custom' ? You may want to elaborate on it when ask a question. Anyway, there are two things you may interested `nlp.Dataset.from_file` and `load_dataset(..., cache_dir=)`
[ 0.2511943578720093, -0.18680284917354584, 0.05262879282236099, 0.08167660981416702, -0.010631298646330833, 0.09125577658414841, 0.30547797679901123, -0.0391974076628685, 0.12936483323574066, -0.14881065487861633, -0.268948495388031, 0.19393916428089142, -0.060502782464027405, 0.2208997905254364, 0.549804151058197, -0.006288192700594664, -0.06923109292984009, 0.20221342146396637, -0.05701456591486931, -0.1058281809091568, -0.18565362691879272, 0.22076129913330078, -0.1370270550251007, 0.17038589715957642, -0.12144726514816284, -0.022545630112290382, -0.06619608402252197, 0.5867700576782227, -0.1426355391740799, -0.4699001610279083, 0.3383304178714752, 0.1335824429988861, 0.23018686473369598, 0.3451359272003174, -0.00011740773334167898, -0.24252000451087952, 0.08668985217809677, -0.25883519649505615, -0.27613329887390137, -0.2854752242565155, 0.18599817156791687, -0.5186662077903748, 0.29832884669303894, -0.3381853699684143, -0.013423719443380833, 0.08143004029989243, 0.29439032077789307, -0.12601609528064728, 0.5597588419914246, 0.06129155680537224, 0.10115272551774979, 0.2022673636674881, -0.24724555015563965, 0.07984711229801178, -0.1332535445690155, 0.19417521357536316, 0.02775680460035801, 0.10694006830453873, 0.35069596767425537, -0.297198086977005, -0.030400507152080536, -0.09052986651659012, 0.11015623807907104, -0.08725760132074356, 0.5247399806976318, 0.1906173676252365, -0.2882419526576996, -0.12822262942790985, -0.1692812442779541, 0.21190935373306274, 0.4062781035900116, -0.34146735072135925, -0.17412972450256348, -0.39762839674949646, 0.11346807330846786, -0.17957645654678345, 0.2533886134624481, 0.18681101500988007, -0.29271069169044495, 0.018950296565890312, -0.2960909903049469, -0.12775683403015137, -0.26048365235328674, 0.19483497738838196, 0.37700968980789185, 0.031241921707987785, -0.15058383345603943, 0.11210460960865021, 0.20198938250541687, -0.2020060122013092, -0.2376164197921753, 0.08168300241231918, 0.14842824637889862, 0.6347582936286926, -0.34982535243034363, -0.22184494137763977, -0.1809399127960205, 0.1708836555480957, 0.2634722590446472, 0.031383007764816284, 0.30429965257644653, -0.01904989220201969, -0.17808955907821655, 0.0734456479549408, 0.3316248655319214, 0.06215265020728111, 0.47917795181274414, -0.19504699110984802, -0.08322790265083313, -0.060264430940151215, -0.09062624722719193, -0.027898326516151428, -0.3807085454463959, 0.06101636588573456, -0.13432347774505615, -0.22064948081970215, 0.027176624163985252, -0.1832776516675949, 0.10382011532783508, -0.3341500163078308, 0.3256415128707886, -0.17063499987125397, 0.10458215326070786, 0.20520853996276855, -0.04137866199016571, -0.20973986387252808, -0.08401817828416824, 0.03381374105811119, -0.07525051385164261, -0.25284484028816223, -0.03280835598707199, -0.03978222981095314, -0.17268875241279602, 0.09845513850450516, 0.3442995250225067, -0.23360061645507812, 0.42957252264022827, -0.08073985576629639, 0.06001345440745354, 0.02335774526000023, -0.06948935240507126, 0.12546932697296143, -0.21327735483646393, -0.26061731576919556, 0.22509798407554626, -0.08941644430160522, 0.1706474870443344, -0.3729168772697449, -0.18357738852500916, -0.008838536217808723, -0.22097444534301758, -0.04548374190926552, -0.3162703812122345, 0.05114998295903206, -0.21372422575950623, -0.41070327162742615, -0.21107742190361023, 0.4020387828350067, -0.10216108709573746, -0.2433483898639679, -0.04819994792342186, 0.2307528257369995, -0.19705253839492798, -0.09704433381557465, 0.07521042227745056, 0.2437962293624878, -0.4955698251724243, -0.312112957239151, 0.1605290174484253, -0.17991775274276733, -0.1182234063744545, 0.20048484206199646, -0.2654596269130707, 0.03575073555111885, -0.1790159046649933, 0.24510151147842407, 0.668556272983551, -0.3615260422229767, -0.25454601645469666, 0.12915249168872833, -0.3375507891178131, 0.05039243772625923, -0.05110766738653183, 0.23125508427619934, 0.27277061343193054, -0.026181405410170555, 0.11953626573085785, 0.7563422918319702, 0.03043779544532299, -0.04576719552278519, -0.014619369059801102, 0.012817153707146645, 0.19135397672653198, 0.08804675191640854, -0.3754504323005676, 0.19402199983596802, 0.15280263125896454, 0.16382509469985962, 0.1648673266172409, -0.02000420168042183, -0.1410517394542694, -0.0115684624761343, -0.08746444433927536, 0.3733658790588379, -0.011961603537201881, 0.09379856288433075, -0.7424095273017883, 0.25079575181007385, -0.3227907419204712, 0.026596475392580032, 0.3197612166404724, -0.05729197338223457, -0.5034210681915283, -0.15676496922969818, -0.12506943941116333, 0.13943853974342346, 0.0035270764492452145, 0.12848089635372162, 0.11616310477256775, -0.15004272758960724, -0.39176398515701294, 0.47880658507347107, -0.2969137728214264, 0.25986623764038086, -0.414413720369339, 0.02796240523457527, 0.25134265422821045, -0.0867767482995987, 0.057843729853630066, 0.3452287018299103, 0.1667337268590927, -0.09235638380050659, 0.08540456742048264, 0.3543488085269928, -0.1966009885072708, 0.31609606742858887, 0.38581791520118713, -0.07989238947629929, -0.011925747618079185, 0.059039872139692307, 0.2474551647901535, -0.18684130907058716, 0.10454843193292618, -0.23731639981269836, -0.37555280327796936, 0.20339161157608032, -0.12668944895267487, 0.11381854116916656, 0.05868799611926079, -0.22126826643943787, 0.0994340032339096, -0.05098746344447136, -0.24956956505775452, 0.022863807156682014, 0.13932529091835022, 0.18468967080116272, 0.5775022506713867, 0.029377516359090805, -0.12295402586460114, -0.09379708021879196, 0.5493197441101074, -0.06944532692432404, 0.09780661016702652, 0.23144732415676117, -0.0945177674293518, -0.23995688557624817, 0.12456244975328445, -0.1773858517408371, 0.27808263897895813, 0.23193183541297913, -0.07778704166412354, 0.04740862548351288, -0.1571727991104126, 0.0460166409611702, -0.06323229521512985, -0.05983173847198486, -0.07554014027118683, -0.24135304987430573, 0.2460101991891861, -0.15205852687358856, -0.4141058921813965, 0.12024477124214172, -0.08437038958072662, -0.08879019320011139, -0.17913858592510223, 0.032783351838588715, 0.02585078962147236, -0.3187445402145386, -0.2578936815261841, -0.26062288880348206, -0.5657714009284973, 0.1098887026309967, -0.31939607858657837, -0.16999927163124084, 0.5434663891792297, -0.0426332987844944, 0.08944655954837799, 0.6790096759796143, -0.15814758837223053, -0.16858457028865814, 0.1133376732468605, -0.059793103486299515, -0.2973834276199341, -0.03805838152766228, 0.1349499225616455, 0.2562674880027771, 0.4579533040523529, -0.00919780321419239, 0.1660221517086029, 0.12558768689632416, -0.22809664905071259, 0.0864354819059372, -0.14824485778808594, 0.23355799913406372, 0.15089884400367737, 0.19805440306663513, -0.12742073833942413, -0.05720571428537369, 0.05234934017062187, -0.13856664299964905, -0.17902378737926483, -0.2404356747865677, 0.0019240833353251219, 0.24375665187835693, -0.03726433217525482, -0.13209252059459686, -0.49515166878700256, -0.2063332051038742, 0.5470711588859558, 0.36379939317703247, 0.10085684806108475, 0.2450055032968521, -0.33797988295555115, 0.43631839752197266, -0.20134037733078003, -0.029893914237618446, -0.24312780797481537, -0.5314008593559265, 0.11105358600616455, -0.22127407789230347, -0.18704521656036377, 0.10945632308721542, 0.04110964387655258, 0.11783263087272644, -0.26801103353500366, -0.20268787443637848, -0.286025732755661, 0.25300607085227966, -0.0214735995978117, -0.05311719700694084, 0.06862418353557587, 0.19881221652030945, -0.3225414752960205, 0.11685369908809662, -0.0986805260181427, -0.3786765933036804, 0.19312098622322083, 0.3867782652378082, 0.24450521171092987, 0.22834660112857819, 0.13129441440105438, -0.015844549983739853, 0.6685090661048889, 0.02752763219177723, -0.10567668080329895, 0.38606584072113037, -0.005733920726925135, 0.22161075472831726, 0.01894509606063366, -0.4455030858516693, 0.09687279909849167, 0.22945483028888702, 0.23099777102470398, 0.40191343426704407, 0.23499491810798645, 0.06012042239308357, -0.29356664419174194, 0.0045255012810230255, -0.17966368794441223, 0.13437840342521667, -0.10143191367387772, 0.25868967175483704, -0.055722519755363464, 0.14421141147613525, -0.1377076953649521, -0.5438348054885864, -0.2991218864917755, -0.25036343932151794, 0.19443929195404053, 0.1576121747493744, 0.2664286196231842, -0.741515040397644, 0.08207805454730988, -0.4755273759365082, 0.2280854433774948, 0.04251248016953468, 0.14764907956123352, -0.004253882449120283, -0.008556501939892769, 0.20614928007125854, 0.16839811205863953, 0.5750077962875366, 0.2543751895427704, -0.14793099462985992, -0.05841168761253357, 0.09461523592472076, -0.46495315432548523, 0.30179062485694885, 0.14238372445106506, 0.32813411951065063, 0.3223801553249359, 0.5257137417793274, -0.23889219760894775, -0.2450679987668991, 0.1613657921552658, 0.010956472717225552, -0.35797590017318726, -0.34288206696510315, -0.355977326631546, -0.1083637923002243, -0.014247828163206577, -0.1077907457947731, -0.1859327256679535, 0.15852822363376617, 0.17609477043151855, 0.0644015446305275, 0.12746651470661163, 0.026516323909163475, 0.07253265380859375, 0.20336969196796417, -0.03365365043282509, 0.46353989839553833, -0.1895829737186432, 0.3946459889411926, 0.25903862714767456, -0.537486732006073, 0.6323099732398987, -0.42855289578437805, -0.33771082758903503, -0.1661480814218521, -0.002746752230450511, 0.5326379537582397, 0.25963589549064636, 0.41004201769828796, 0.11357709765434265, -0.15311108529567719, -0.11274805665016174, -0.27995461225509644, 0.20604461431503296, 0.21882319450378418, -0.08878523111343384, -0.1724356710910797, -0.41153091192245483, 0.6642171144485474, -0.12536950409412384, -0.014211724512279034, 0.1717306673526764, 0.1919853538274765, -0.22118064761161804, 0.09170638769865036, -0.153161883354187, 0.9541113376617432, -0.38732486963272095, 0.35260775685310364, 0.11970596015453339, -0.009999241679906845, 0.7712205648422241, -0.18179282546043396, -0.16259163618087769, -0.3657715916633606, 0.029169052839279175, -0.08124538511037827, -0.0940425768494606, 0.21807798743247986, 0.6166027784347534, -0.14231766760349274, 0.32557007670402527, 0.17679767310619354, -0.09277112036943436, 0.10795480757951736, 0.4875272214412689, 0.1843470335006714, -0.5538485050201416, -0.7102075815200806, 0.060351453721523285, -0.33408284187316895, 0.204970583319664, -0.1655217558145523, -0.09053345769643784, 0.034811314195394516, -0.20155729353427887, 0.06625992804765701, 0.014890436083078384, -0.20541709661483765, -0.29795950651168823, 0.33459994196891785, -0.3240867555141449, 0.041493985801935196, 0.5139352679252625, 0.15722441673278809, -0.031051287427544594, -0.008866547606885433, -0.006347259972244501, -0.09182858467102051, -0.030101049691438675, -0.2045815885066986, 0.30193451046943665, 0.2518041133880615, -0.11729579418897629, -0.03177079185843468, 0.022239327430725098, 0.11663704365491867, -0.21175517141819, -0.28350701928138733, 0.23799005150794983, 0.1996231973171234, -0.30223509669303894, -0.5194165110588074, -0.0023244484327733517, 0.21108341217041016, 0.0864514634013176, 0.02393118478357792, 0.2017681896686554, -0.07063306123018265, -0.11390115320682526, 0.4379000663757324, -0.04184829816222191, 0.12888164818286896, 0.4388934373855591, -0.3553408980369568, -0.471487820148468, 0.41886597871780396, 0.22820785641670227, 0.1188080906867981, 0.0019891338888555765, 0.16962005198001862, 0.07910491526126862, -0.13070549070835114, -0.16766603291034698, 0.4686751067638397, -0.013889558613300323, -0.07966890186071396, 0.1723971962928772, 0.16188092529773712, -0.14815178513526917, 0.12804611027240753, -0.19390197098255157, -0.3550579845905304, 0.10703103244304657, -0.02647346630692482, -0.034785058349370956, 0.46840837597846985, -0.03691883012652397, 0.23164120316505432, 0.28301674127578735, -0.18940646946430206, 0.1614173799753189, -0.2517106831073761, 0.1376013308763504, 0.565325915813446, -0.17130720615386963, 0.012841245159506798, 0.13651040196418762, 0.018145112320780754, 0.05783025547862053, -0.12796926498413086, -0.12722760438919067, -0.2523893713951111, 0.19877159595489502, 0.15508998930454254, -0.10448703914880753, -0.12226815521717072, -0.18352945148944855, -0.07821192592382431, -0.11624648422002792, 0.01861429400742054, 0.14674408733844757, 0.12449867278337479, 0.37031638622283936, 0.07197738438844681, 0.2226102352142334, -0.0038891183212399483, 0.029005715623497963, 0.14881908893585205, 0.20564953982830048, 0.13843077421188354, -0.04021761938929558, -0.17970599234104156, 0.03342312574386597, -0.24606440961360931, 0.2219080924987793, 0.5597797632217407, 0.0894269198179245, 0.08146282285451889, -0.08000174909830093, 0.09240257740020752, -0.07620581984519958, 0.03494967892765999, 0.13038139045238495, -0.17928843200206757, 0.14317002892494202, 0.232859805226326, 0.057485003024339676, -0.1401287466287613, -0.12643367052078247, 0.621996283531189, -0.10618364065885544, -0.06477334350347519, 0.25043946504592896, -0.13102678954601288, 0.2922583520412445, -0.1190716102719307, -0.2139938622713089, 0.43408119678497314, 0.15132273733615875, -0.1202649176120758, -0.13434641063213348, -0.2251223623752594, -0.2415362149477005, 0.27511054277420044, 0.3698020875453949, 0.1239178255200386, 0.06801804900169373, -0.1743525117635727, 0.13090257346630096, -0.28668156266212463, 0.13940492272377014, 0.3228423595428467, -0.44480714201927185, -0.12809592485427856, 0.34350714087486267, 0.2870287001132965, 0.5161550641059875, -0.25240999460220337, 0.9262967705726624, -0.20937353372573853, -0.14747245609760284, -0.08282393962144852, 0.11014310270547867, 0.12064436078071594, -0.14019113779067993, -0.18657895922660828, -0.02024160884320736, -0.12502163648605347, -0.07591120153665543, -0.20391102135181427, -0.4526926875114441, -0.21748796105384827, -0.12416424602270126, 0.16285474598407745, -0.06012875214219093, -0.2560819685459137, 0.2250671237707138, -0.08954308927059174, -0.08974584192037582, 0.23541566729545593, -0.08403103798627853, 0.23721829056739807, 0.49167051911354065, 0.12200109660625458, -0.12696436047554016, 0.20954740047454834, 0.06390606611967087, 0.13985399901866913, -0.017569096758961678, 0.04401810094714165, 0.0074539706110954285, 0.07874123752117157, 0.013279694132506847, 0.060407139360904694, 0.11713559180498123, 0.04650852829217911, -0.04964372143149376, -0.018524032086133957, 0.17799128592014313, -0.018203821033239365, -0.42967087030410767, 0.1741539090871811, -0.19356606900691986, -0.13364912569522858, -0.4657388925552368, 0.2527318596839905, -0.5220649838447571, -0.12877625226974487, 0.06206616014242172, 0.25692105293273926, 0.09894245862960815, -0.2657579779624939, 0.02985130436718464, -0.21851284801959991, 0.5074789524078369, 0.21223442256450653, 0.03208053857088089, 0.09515199810266495, -0.2340485006570816, -0.5880166292190552, 0.19936993718147278, 0.16457833349704742, -0.27122199535369873, 0.01898851804435253, 0.06461270898580551, -0.040102630853652954, 0.19942858815193176, -0.09023726731538773, -0.05190460756421089, -0.15301413834095, -0.08055262267589569, -0.26618486642837524, -0.26015427708625793, -0.10913032293319702, 0.2602447271347046, 0.05568410083651543, 0.028598999604582787, -0.08167173713445663, 0.2017633616924286, -0.18710140883922577, -0.133767232298851, 0.058980777859687805, -0.011732250452041626, -0.012500020675361156, 0.11309489607810974, -0.24795866012573242, 0.3801165223121643, 0.13108083605766296, 0.01623675227165222, 0.12624840438365936, 0.0024318404030054808, -0.26384490728378296, 0.05473841354250908, -0.07138257473707199, 0.3061407506465912, -0.2006978988647461, 0.05200731381773949, -0.15536579489707947, 0.1286509782075882, -0.08898895978927612, -0.15102934837341309, -0.17711585760116577, -0.11246030032634735, -0.10704643279314041, -0.03721119090914726, 0.1936522275209427, 0.5496386885643005, -0.06957731395959854, 0.1962144374847412, -0.08951202034950256, 0.1812867522239685, 0.48636385798454285, -0.48676052689552307, -0.09125066548585892, 0.16946905851364136, 0.21917186677455902, 0.11145713925361633, -0.33029061555862427, -0.42944082617759705, 0.1502026617527008, 0.365363210439682, 0.0011044441489502788, 0.0691453069448471, 0.41497138142585754, -0.48035019636154175, -0.02951415628194809, -0.09052283316850662, -0.01665489748120308, 0.28017404675483704, 0.16563671827316284, 0.08428122848272324, -0.07443392276763916 ]
https://github.com/huggingface/datasets/issues/234
Huggingface NLP, Uploading custom dataset
To load a dataset you need to have a script that defines the format of the examples, the splits and the way to generate examples. As your dataset has the same format of squad, you can just copy the squad script (see the [datasets](https://github.com/huggingface/nlp/tree/master/datasets) forlder) and just replace the url to load the data to your local or remote path. Then what you can do is `load_dataset(<path/to/your/script>)`
Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you!
67
Huggingface NLP, Uploading custom dataset Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you! To load a dataset you need to have a script that defines the format of the examples, the splits and the way to generate examples. As your dataset has the same format of squad, you can just copy the squad script (see the [datasets](https://github.com/huggingface/nlp/tree/master/datasets) forlder) and just replace the url to load the data to your local or remote path. Then what you can do is `load_dataset(<path/to/your/script>)`
[ 0.16326181590557098, -0.21372850239276886, 0.06531181931495667, 0.16295267641544342, -0.062489937990903854, 0.0928255170583725, 0.25121626257896423, -0.043066706508398056, 0.14747238159179688, -0.14725172519683838, -0.20299498736858368, 0.18710413575172424, -0.10824799537658691, 0.37453389167785645, 0.6062445640563965, -0.0716351866722107, -0.11528978496789932, 0.17533372342586517, -0.05153483524918556, -0.03770655766129494, -0.1981057971715927, 0.25601619482040405, -0.12575584650039673, 0.20883144438266754, -0.1571895331144333, 0.06457911431789398, -0.12926456332206726, 0.6166015863418579, -0.04322781041264534, -0.465325266122818, 0.4585709869861603, 0.1644793301820755, 0.3075275421142578, 0.3923654854297638, -0.00011831419396912679, -0.23410740494728088, 0.132063090801239, -0.26587221026420593, -0.2585262656211853, -0.43514934182167053, 0.11573020368814468, -0.41351237893104553, 0.35766899585723877, -0.2580884099006653, -0.0757833793759346, 0.10122299939393997, 0.25670087337493896, -0.07171323895454407, 0.5230122804641724, 0.08411308377981186, 0.07940061390399933, 0.17528820037841797, -0.1973441243171692, 0.006930103059858084, -0.07992598414421082, 0.27473002672195435, 0.11854197084903717, 0.2547323405742645, 0.4028346836566925, -0.31940069794654846, -0.01099846139550209, -0.1588701754808426, 0.07885648310184479, -0.07656479626893997, 0.5086483359336853, 0.1393875777721405, -0.3838793933391571, -0.1076972633600235, -0.186026468873024, 0.26056140661239624, 0.4418686330318451, -0.41102418303489685, -0.16385293006896973, -0.349408358335495, 0.11573021113872528, -0.08194072544574738, 0.20043179392814636, 0.24703404307365417, -0.23331916332244873, -0.0007750359945930541, -0.3248104751110077, -0.08140785247087479, -0.2789476215839386, 0.26529645919799805, 0.42474621534347534, -0.02823549509048462, -0.17577505111694336, 0.13227201998233795, 0.14658810198307037, -0.1842675656080246, -0.22983556985855103, 0.041031114757061005, 0.12780649960041046, 0.5799483060836792, -0.265823632478714, -0.22679653763771057, -0.16166764497756958, 0.1954275220632553, 0.3089895248413086, 0.07298822700977325, 0.266996294260025, 0.008543386124074459, -0.23983560502529144, 0.08319215476512909, 0.37220925092697144, 0.05666223168373108, 0.49182137846946716, -0.16845928132534027, -0.13711848855018616, 0.019394833594560623, -0.1130542978644371, -0.027967147529125214, -0.44326433539390564, 0.04358853027224541, -0.24435089528560638, -0.2097705453634262, 0.053598470985889435, -0.21778026223182678, 0.04560628533363342, -0.309979110956192, 0.2870749831199646, -0.14718681573867798, 0.10018797218799591, 0.22488565742969513, -0.00653478829190135, -0.1765410155057907, -0.04195333272218704, 0.13135002553462982, -0.08768276870250702, -0.2424858957529068, 0.015461482107639313, -0.02599673718214035, -0.15021467208862305, 0.18160970509052277, 0.30114564299583435, -0.16263526678085327, 0.47799569368362427, -0.11165158450603485, 0.0032148531172424555, -0.07901190966367722, -0.0785931646823883, 0.20462147891521454, -0.27472323179244995, -0.2280542254447937, 0.29845669865608215, -0.11991140991449356, 0.27670273184776306, -0.2447420209646225, -0.195059135556221, -0.016200074926018715, -0.1980808675289154, -0.09980808198451996, -0.2604425251483917, 0.029850617051124573, -0.24147635698318481, -0.42902612686157227, -0.3082432150840759, 0.41734418272972107, -0.18800464272499084, -0.24434779584407806, -0.06525799632072449, 0.22109414637088776, -0.2627894878387451, -0.10887639969587326, 0.14350584149360657, 0.32038241624832153, -0.5170243382453918, -0.34340623021125793, 0.1513793021440506, -0.08548731356859207, -0.16925758123397827, 0.14773619174957275, -0.31765317916870117, 0.15248914062976837, -0.20475758612155914, 0.22173798084259033, 0.5584893226623535, -0.2829345166683197, -0.1232934445142746, 0.204812690615654, -0.3473908305168152, -0.059961795806884766, -0.062330733984708786, 0.21365854144096375, 0.2472444325685501, -0.01824765093624592, 0.030618567019701004, 0.6990076303482056, 0.04606371745467186, -0.04945962503552437, 0.044329818338155746, -0.05560499057173729, 0.11617178469896317, 0.12398479878902435, -0.43935027718544006, 0.20055128633975983, 0.1385040581226349, 0.15597252547740936, 0.1280869096517563, -0.006327403709292412, -0.16632576286792755, 0.01467842422425747, -0.04241897910833359, 0.38896283507347107, -0.018627600744366646, 0.005716993007808924, -0.6861994862556458, 0.24283042550086975, -0.3102068603038788, -0.1179862841963768, 0.35374942421913147, -0.07474778592586517, -0.5600332617759705, -0.1199532300233841, -0.05217413604259491, 0.14236365258693695, -0.031013108789920807, 0.07152417302131653, 0.23519161343574524, -0.15593814849853516, -0.4199756681919098, 0.3658934235572815, -0.265414297580719, 0.2219630777835846, -0.44220617413520813, 0.07150683552026749, 0.2992538511753082, -0.11903148144483566, 0.17114681005477905, 0.34485960006713867, 0.18592959642410278, -0.1832340657711029, 0.1324019730091095, 0.4043012261390686, -0.08981375396251678, 0.30380168557167053, 0.3436339199542999, -0.11675537377595901, -0.045720528811216354, 0.018000643700361252, 0.25735002756118774, -0.072276771068573, 0.16223330795764923, -0.23562245070934296, -0.3941667377948761, 0.24697238206863403, -0.16628201305866241, 0.19555777311325073, 0.0855969488620758, -0.14042116701602936, 0.07530396431684494, -0.1076563224196434, -0.28797203302383423, 0.030881142243742943, 0.12613306939601898, 0.1642037034034729, 0.5432069301605225, 0.015149233862757683, -0.07429292052984238, -0.1375359445810318, 0.45891448855400085, -0.16215869784355164, 0.04833740368485451, 0.2757793664932251, -0.21519818902015686, -0.16496610641479492, 0.09675171971321106, -0.1139988899230957, 0.3100784718990326, 0.21747805178165436, -0.19152894616127014, 0.12095191329717636, -0.15468676388263702, 0.01679362542927265, -0.07760588079690933, 0.009665410965681076, -0.07242290675640106, -0.293423056602478, 0.02898349240422249, -0.16824480891227722, -0.31653013825416565, 0.007310229819267988, -0.08372002094984055, -0.05273948237299919, -0.27976396679878235, 0.08461787551641464, -0.023807693272829056, -0.33302462100982666, -0.33260446786880493, -0.3089469075202942, -0.4092172384262085, 0.11759324371814728, -0.3757776618003845, -0.089881032705307, 0.521932065486908, -0.06749315559864044, 0.07894641906023026, 0.5729559063911438, -0.19674411416053772, -0.14011859893798828, 0.14926430583000183, -0.12344390153884888, -0.3371568024158478, -0.058183085173368454, 0.2175438404083252, 0.38722163438796997, 0.48302894830703735, -0.09626999497413635, 0.16980968415737152, 0.14312833547592163, -0.15509870648384094, 0.07612373679876328, -0.11705794930458069, 0.1787734180688858, 0.22817513346672058, 0.20395305752754211, -0.11202225834131241, -0.09224960207939148, 0.06992551684379578, -0.14413036406040192, -0.09470447897911072, -0.2146957516670227, 0.006522709038108587, 0.14879624545574188, -0.06929867714643478, -0.2026621252298355, -0.392604261636734, -0.20460256934165955, 0.5442578196525574, 0.31791573762893677, 0.09456629306077957, 0.14862023293972015, -0.200494185090065, 0.5334940552711487, -0.27265897393226624, -0.09559810161590576, -0.15342214703559875, -0.505312979221344, 0.043326400220394135, -0.18283553421497345, -0.23921413719654083, 0.17315714061260223, -0.0023851890582591295, 0.08039359748363495, -0.27211567759513855, -0.21416500210762024, -0.3095806837081909, 0.16588766872882843, -0.12431556731462479, 0.01111647393554449, 0.06369441002607346, 0.19316914677619934, -0.35192909836769104, 0.14231963455677032, -0.08009690046310425, -0.37167394161224365, 0.1727837473154068, 0.30585959553718567, 0.1259484738111496, 0.3053834140300751, 0.29322800040245056, -0.08386941999197006, 0.5675317049026489, 0.12912635505199432, -0.1714799851179123, 0.34436649084091187, -0.04026683792471886, 0.17897678911685944, 0.06799213588237762, -0.35601329803466797, 0.03802165761590004, 0.17957983911037445, 0.22006820142269135, 0.47535112500190735, 0.26605451107025146, 0.18119069933891296, -0.29314419627189636, -0.07267508655786514, -0.16380587220191956, 0.09776970744132996, -0.049273937940597534, 0.11757217347621918, -0.03603513911366463, 0.06425740569829941, -0.15071724355220795, -0.45463651418685913, -0.297787070274353, -0.2510933578014374, 0.2559708058834076, 0.1712978333234787, 0.2918233871459961, -0.6364762783050537, 0.07136575877666473, -0.3645474314689636, 0.26038771867752075, 0.020470401272177696, 0.14054927229881287, 0.006777561269700527, 0.03541913256049156, 0.21483752131462097, 0.17906558513641357, 0.4744753837585449, 0.2818923592567444, -0.12754152715206146, -0.08299314975738525, 0.014544039033353329, -0.5307666659355164, 0.2800445258617401, 0.09369006007909775, 0.3389354944229126, 0.30420592427253723, 0.5084879994392395, -0.25090470910072327, -0.22832143306732178, 0.19436222314834595, 0.04912443831562996, -0.30412599444389343, -0.39142560958862305, -0.29282137751579285, -0.10528735816478729, -0.1562434434890747, -0.14473696053028107, -0.15887032449245453, 0.0910780131816864, 0.12527503073215485, 0.0737438052892685, 0.10210831463336945, -0.06542254984378815, 0.10059353709220886, 0.12420324981212616, 0.025987252593040466, 0.4303334057331085, -0.2099972516298294, 0.3520072102546692, 0.24236147105693817, -0.5084125399589539, 0.6294353008270264, -0.27647966146469116, -0.336792916059494, -0.20209139585494995, -0.001883542980067432, 0.5229843854904175, 0.09896443784236908, 0.3765937089920044, 0.07718011736869812, -0.07112368196249008, -0.12964287400245667, -0.3097158968448639, 0.23323599994182587, 0.13512524962425232, -0.0911625549197197, -0.1205737441778183, -0.44872409105300903, 0.6946144104003906, -0.10617730021476746, 0.015946490690112114, 0.07893087714910507, 0.16301493346691132, -0.19947144389152527, 0.13256874680519104, -0.1868543028831482, 0.7473622560501099, -0.3751450777053833, 0.3902587890625, 0.1302453726530075, 0.0035097096115350723, 0.7170395851135254, -0.09506765007972717, -0.24417008459568024, -0.35085761547088623, 0.10995461046695709, -0.14574860036373138, -0.11183840781450272, 0.15438531339168549, 0.6320904493331909, -0.20974820852279663, 0.3886798918247223, 0.10370802134275436, -0.0029979830142110586, 0.14807607233524323, 0.5094795227050781, 0.15458442270755768, -0.5113893747329712, -0.690239667892456, 0.056722115725278854, -0.29976406693458557, 0.2571174204349518, -0.1179744228720665, -0.09644133597612381, -0.017441969364881516, -0.2025996595621109, -0.0157733503729105, 0.05931052193045616, -0.22451213002204895, -0.3230780065059662, 0.2293540984392166, -0.27824556827545166, 0.16244587302207947, 0.5821107625961304, 0.12423897534608841, -0.025937490165233612, -0.09180332720279694, -0.053145866841077805, -0.1775505542755127, -0.0915537029504776, -0.19871143996715546, 0.23407606780529022, 0.20427201688289642, -0.04266877472400665, -0.01672166772186756, -0.01919250749051571, 0.19432273507118225, -0.10673335939645767, -0.27947700023651123, 0.21976196765899658, 0.12900596857070923, -0.35576727986335754, -0.6285936832427979, -0.021685928106307983, 0.19410766661167145, 0.09406541287899017, -0.011000835336744785, 0.23769977688789368, -0.06376001983880997, -0.118545301258564, 0.40867236256599426, -0.04356265813112259, 0.10402750223875046, 0.3902846574783325, -0.3402026295661926, -0.3956837058067322, 0.470895379781723, 0.29093942046165466, 0.2221643626689911, 0.002817508764564991, 0.2171221226453781, 0.21110229194164276, -0.2119380384683609, -0.14505359530448914, 0.5018591284751892, 0.07193455845117569, 0.017211752012372017, 0.1696600317955017, 0.14556072652339935, -0.14448270201683044, 0.16084571182727814, -0.2607406973838806, -0.36152613162994385, 0.12321993708610535, 0.023434503003954887, 0.022999774664640427, 0.41832974553108215, 0.03865504264831543, 0.2411438226699829, 0.22139592468738556, -0.1426660269498825, 0.19204145669937134, -0.18994839489459991, 0.07882079482078552, 0.5557520985603333, -0.053768329322338104, 0.010327426716685295, 0.12894369661808014, -0.023226169869303703, 0.05559387803077698, -0.02898215502500534, -0.0895431637763977, -0.26426613330841064, 0.21327175199985504, 0.18990854918956757, -0.107060007750988, -0.14782419800758362, -0.18727385997772217, -0.03413216024637222, -0.11362341791391373, -0.012284268625080585, 0.11210528761148453, 0.1320393681526184, 0.31770554184913635, 0.06299733370542526, 0.21327778697013855, -0.05236898362636566, 0.06454325467348099, 0.049233511090278625, 0.229568213224411, 0.13814431428909302, -0.04919822886586189, -0.06079157814383507, 0.01874355785548687, -0.30086278915405273, 0.229180246591568, 0.615952730178833, 0.04216776788234711, 0.054297804832458496, -0.04866266995668411, 0.10308877378702164, -0.13135255873203278, 0.09905308485031128, 0.16448764503002167, -0.11996389180421829, 0.14642219245433807, 0.3028819262981415, 0.01817680522799492, -0.10554257780313492, 0.029366767033934593, 0.5654892921447754, -0.08959857374429703, -0.08291386812925339, 0.22933946549892426, -0.16961002349853516, 0.30178302526474, -0.1773395985364914, -0.2049771398305893, 0.3812519907951355, 0.280301958322525, -0.055213212966918945, -0.11865737289190292, -0.15816105902194977, -0.24888303875923157, 0.14530408382415771, 0.35153937339782715, 0.14398528635501862, -0.08572148531675339, -0.2017531841993332, 0.21222011744976044, -0.3304883539676666, 0.14399157464504242, 0.3951112627983093, -0.44312235713005066, -0.19522318243980408, 0.3206202983856201, 0.3337939977645874, 0.45311862230300903, -0.3040759563446045, 0.9252222776412964, -0.22914506494998932, -0.09722044318914413, -0.14219839870929718, 0.1182338073849678, 0.15550215542316437, -0.17791621387004852, -0.21839340031147003, 0.051137130707502365, -0.06418941915035248, -0.08021605014801025, -0.16750361025333405, -0.49030810594558716, -0.20196795463562012, -0.13635163009166718, 0.12418890744447708, -0.11704892665147781, -0.23638856410980225, 0.24890470504760742, -0.18509961664676666, -0.07985909283161163, 0.21283932030200958, -0.03386369347572327, 0.25753846764564514, 0.5040981769561768, 0.08443635702133179, -0.04762927442789078, 0.1965443342924118, 0.011971728876233101, 0.17206457257270813, -0.03355488181114197, 0.07781600207090378, 0.0594719722867012, 0.06235434114933014, -0.06200169399380684, 0.1188877671957016, 0.13646449148654938, 0.04334264248609543, -0.004625520668923855, -0.06814034283161163, 0.15303581953048706, -0.002530262805521488, -0.4499545097351074, 0.2142452895641327, -0.2077813446521759, -0.08220210671424866, -0.48685339093208313, 0.2683149576187134, -0.5577458739280701, -0.1333117038011551, 0.044222865253686905, 0.26689890027046204, 0.09385643154382706, -0.2231745570898056, 0.012700062245130539, -0.22354428470134735, 0.5138812065124512, 0.19056850671768188, 0.10778611153364182, 0.03241351991891861, -0.2708287239074707, -0.5493532419204712, 0.12317103147506714, 0.09535907208919525, -0.3297887444496155, 0.023941224440932274, -0.00938419159501791, -0.09095681458711624, 0.1794675588607788, -0.2185574471950531, -0.06680452078580856, -0.20225796103477478, -0.026249602437019348, -0.1942461133003235, -0.31716811656951904, -0.19571182131767273, 0.3553723692893982, 0.05703575164079666, 0.08779255300760269, -0.15571343898773193, 0.15836085379123688, -0.22109615802764893, -0.13772115111351013, 0.13679154217243195, -0.004368159454315901, -0.0802052766084671, -0.021576957777142525, -0.2114245742559433, 0.4362390339374542, 0.14454935491085052, 0.1189907044172287, 0.008803075179457664, -0.0007142040994949639, -0.2326342910528183, 0.09279446303844452, -0.09735395014286041, 0.27496594190597534, -0.2632637321949005, 0.06230673938989639, -0.1764577478170395, 0.06021983548998833, -0.09631546586751938, -0.12512801587581635, -0.08287538588047028, -0.06680430471897125, -0.17805206775665283, -0.006144504062831402, 0.23773807287216187, 0.5563530921936035, -0.10588721930980682, 0.23053592443466187, 0.03344208002090454, 0.153697207570076, 0.42282330989837646, -0.46477818489074707, -0.06686343252658844, 0.2159598171710968, 0.22182296216487885, -0.009811904281377792, -0.32322588562965393, -0.41804060339927673, 0.20031434297561646, 0.3468031883239746, 0.04228608310222626, 0.13560907542705536, 0.41169294714927673, -0.36179932951927185, -0.055130939930677414, -0.07707547396421432, 0.08785251528024673, 0.2676624059677124, 0.1341017186641693, 0.0872887521982193, -0.10152028501033783 ]
https://github.com/huggingface/datasets/issues/234
Huggingface NLP, Uploading custom dataset
Also if you want to upload your script, you should be able to use the `nlp-cli`. Unfortunately the upload feature was not shipped in the latest version 0.2.0. so right now you can either clone the repo to use it or wait for the next release. We will add some docs to explain how to upload datasets.
Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you!
57
Huggingface NLP, Uploading custom dataset Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you! Also if you want to upload your script, you should be able to use the `nlp-cli`. Unfortunately the upload feature was not shipped in the latest version 0.2.0. so right now you can either clone the repo to use it or wait for the next release. We will add some docs to explain how to upload datasets.
[ 0.17646817862987518, -0.14044614136219025, 0.08491941541433334, -0.018281463533639908, -0.07171382009983063, 0.07580344378948212, 0.34370797872543335, -0.03492956608533859, 0.195490762591362, -0.08000192046165466, -0.20744435489177704, 0.28856736421585083, -0.05533911660313606, 0.31747886538505554, 0.6837018132209778, -0.008231240324676037, -0.11098365485668182, 0.22706332802772522, -0.11070027947425842, -0.07272506505250931, -0.18845242261886597, 0.24829864501953125, -0.1515675187110901, 0.14278830587863922, -0.09049740433692932, 0.03273545205593109, -0.13684307038784027, 0.5879561901092529, -0.03475828096270561, -0.46278414130210876, 0.3801744282245636, 0.18507632613182068, 0.2705674469470978, 0.2915576100349426, -0.00011991956853307784, -0.3151123821735382, 0.21961678564548492, -0.22838923335075378, -0.199208602309227, -0.38862958550453186, 0.22902527451515198, -0.49958354234695435, 0.3296053409576416, -0.25454503297805786, 0.02291017770767212, 0.048030462116003036, 0.3462795615196228, -0.046934597194194794, 0.44745737314224243, 0.11200449615716934, 0.0682484433054924, 0.2357684075832367, -0.2086908519268036, 0.01658855937421322, -0.12611208856105804, 0.20234836637973785, 0.03649129346013069, 0.09822257608175278, 0.4745081961154938, -0.37675973773002625, -0.020459935069084167, -0.2292882800102234, 0.11504488438367844, -0.22555121779441833, 0.5860815048217773, 0.16504746675491333, -0.2993726432323456, -0.1718950718641281, -0.14956414699554443, 0.26306092739105225, 0.42059025168418884, -0.3851596415042877, -0.15772107243537903, -0.35617727041244507, 0.16024558246135712, -0.09329058974981308, 0.24202661216259003, 0.21689046919345856, -0.19881999492645264, -0.04087570682168007, -0.30090177059173584, -0.08359075337648392, -0.30489271879196167, 0.23690670728683472, 0.4349042773246765, 0.07357731461524963, -0.07486893981695175, 0.12352785468101501, 0.25850892066955566, -0.2515002489089966, -0.1675400733947754, 0.12066501379013062, 0.09021789580583572, 0.6502203941345215, -0.2848992645740509, -0.3007371723651886, -0.18031510710716248, 0.15863417088985443, 0.34655848145484924, 0.0871058776974678, 0.23400957882404327, -0.03795239329338074, -0.23158828914165497, 0.0632525086402893, 0.41352397203445435, 0.07228807359933853, 0.5410383939743042, -0.2067289650440216, -0.10946013033390045, -0.07465633004903793, -0.007131962105631828, -0.03877554461359978, -0.34368351101875305, 0.06668812036514282, -0.210196852684021, -0.20719413459300995, -0.003997611813247204, -0.2105838507413864, 0.08842302113771439, -0.3016292452812195, 0.3965156376361847, -0.20215655863285065, 0.033717378973960876, 0.23376847803592682, -0.02627943828701973, -0.19907748699188232, -0.00662850309163332, 0.163959801197052, -0.024070674553513527, -0.28336116671562195, 0.027740461751818657, 0.029035629704594612, -0.14417164027690887, 0.12921884655952454, 0.3083161413669586, -0.1191636323928833, 0.42920058965682983, -0.14623095095157623, 0.11517947912216187, 0.034417860209941864, -0.18534110486507416, 0.20043660700321198, -0.2792133390903473, -0.21166057884693146, 0.299044132232666, -0.1502888798713684, 0.12452394515275955, -0.3165315091609955, -0.17800496518611908, 0.056684087961912155, -0.1173616275191307, -0.02228057198226452, -0.3355039656162262, -0.000865811831317842, -0.15766394138336182, -0.5109565854072571, -0.21104004979133606, 0.40583285689353943, -0.20449338853359222, -0.2549586892127991, -0.09434868395328522, 0.14545407891273499, -0.2338821142911911, -0.09564394503831863, 0.08039137721061707, 0.23958902060985565, -0.5089075565338135, -0.3144395351409912, 0.134762704372406, -0.055729687213897705, -0.09099206328392029, 0.12362619489431381, -0.2257532924413681, 0.011353894136846066, -0.13733695447444916, 0.264873206615448, 0.6306740641593933, -0.3635214567184448, -0.17081306874752045, 0.1660255640745163, -0.2847301661968231, -0.01269819401204586, -0.07833164185285568, 0.24037301540374756, 0.2574869692325592, -0.043333470821380615, -0.007261527702212334, 0.7859995365142822, 0.020399726927280426, -0.030374648049473763, 0.01995747536420822, -0.045524194836616516, 0.18738308548927307, 0.1366535872220993, -0.34325334429740906, 0.2071157842874527, 0.16151799261569977, 0.1116490513086319, 0.1957995742559433, 0.016168612986803055, -0.16043324768543243, -0.03869469091296196, -0.07260649651288986, 0.3785211741924286, 0.016535533592104912, 0.03755922615528107, -0.6924954056739807, 0.20666736364364624, -0.418810099363327, -0.014900627546012402, 0.3599672317504883, -0.05279796943068504, -0.5092002153396606, -0.11824880540370941, -0.0001261227298527956, 0.17533615231513977, -0.03502411022782326, 0.08832725137472153, 0.14143262803554535, -0.13199760019779205, -0.4686155617237091, 0.4200883209705353, -0.2656463384628296, 0.215939000248909, -0.3839912712574005, 0.09863750636577606, 0.25031447410583496, -0.18720181286334991, 0.1851067692041397, 0.34107649326324463, 0.1777304857969284, -0.13370126485824585, 0.10101071000099182, 0.36268794536590576, -0.19582343101501465, 0.29497087001800537, 0.4155726432800293, -0.0886101946234703, -0.05294555798172951, 0.08553781360387802, 0.2579505741596222, -0.11008439213037491, 0.04297040402889252, -0.27111169695854187, -0.39200517535209656, 0.2096698135137558, -0.11772941052913666, 0.1833425909280777, 0.03824330121278763, -0.13591645658016205, 0.06670305132865906, -0.12947990000247955, -0.3018997311592102, 0.059398140758275986, 0.09138331562280655, 0.13989605009555817, 0.5469385385513306, -0.08448472619056702, -0.11833269149065018, -0.049496058374643326, 0.5501147508621216, -0.1140013039112091, 0.07795983552932739, 0.2512153387069702, -0.10554578900337219, -0.14686521887779236, 0.12600453197956085, -0.1908879429101944, 0.2596572935581207, 0.228375643491745, -0.22714729607105255, 0.07373654842376709, -0.20616742968559265, 0.045952536165714264, -0.0846225917339325, -0.11731933802366257, -0.05271032825112343, -0.26956334710121155, 0.1740245521068573, -0.18824045360088348, -0.40446966886520386, 0.08697047084569931, -0.14704307913780212, -0.06930981576442719, -0.20848232507705688, 0.0153290294110775, 0.0022148811258375645, -0.32389333844184875, -0.22590318322181702, -0.26588553190231323, -0.49109554290771484, 0.05261944606900215, -0.3498057723045349, -0.10627710819244385, 0.5295963287353516, -0.05207245424389839, 0.15739129483699799, 0.6836400032043457, -0.14989931881427765, -0.06607124954462051, 0.07184185832738876, -0.02698226273059845, -0.2955062687397003, -0.059819623827934265, 0.1493523269891739, 0.2859880328178406, 0.40510112047195435, -0.049348555505275726, 0.19536593556404114, 0.12785141170024872, -0.2362930178642273, 0.07498199492692947, -0.16106249392032623, 0.15668751299381256, 0.19230183959007263, 0.1800319254398346, -0.09953834116458893, -0.07370733469724655, 0.04708082601428032, -0.19552171230316162, -0.14397287368774414, -0.19436529278755188, 0.013751080259680748, 0.051859788596630096, -0.11143650114536285, -0.16014015674591064, -0.4644371569156647, -0.2090989053249359, 0.5759684443473816, 0.4488876163959503, 0.13236404955387115, 0.1834958791732788, -0.23225116729736328, 0.47054287791252136, -0.2687542140483856, -0.09736162424087524, -0.13508892059326172, -0.43221360445022583, 0.1380232572555542, -0.23099969327449799, -0.26513972878456116, 0.20417365431785583, 0.08503161370754242, 0.0729781836271286, -0.3694362938404083, -0.1806652992963791, -0.29828059673309326, 0.23050329089164734, -0.06450799107551575, 0.014478906989097595, 0.08362549543380737, 0.22016280889511108, -0.30170145630836487, 0.16907799243927002, -0.11467252671718597, -0.4005320966243744, 0.1927463412284851, 0.4177708923816681, 0.21123450994491577, 0.3016076982021332, 0.1985856592655182, -0.12167945504188538, 0.49306049942970276, 0.09624718874692917, -0.16695314645767212, 0.35871878266334534, -0.05108364298939705, 0.2181679904460907, 0.038996145129203796, -0.4225400686264038, 0.0670209750533104, 0.2781136929988861, 0.26943108439445496, 0.4079965353012085, 0.19092224538326263, 0.06481380760669708, -0.3097715377807617, -0.03768383339047432, -0.03745013847947121, 0.14918000996112823, -0.09806512296199799, 0.2544051706790924, -0.12425137311220169, 0.07800418138504028, -0.11707520484924316, -0.531674325466156, -0.3109455406665802, -0.1986847221851349, 0.20320716500282288, 0.2260257452726364, 0.2644035816192627, -0.7062581181526184, 0.08572214841842651, -0.5139963030815125, 0.21984225511550903, -0.014595265500247478, 0.11830496788024902, -0.03375723958015442, 0.004515095613896847, 0.1651841700077057, 0.1520136147737503, 0.5225440859794617, 0.1951160430908203, -0.19386982917785645, -0.03984494507312775, 0.1011938601732254, -0.5167877674102783, 0.29032862186431885, 0.05748206004500389, 0.267843633890152, 0.3412584960460663, 0.4525688886642456, -0.17916083335876465, -0.19648998975753784, 0.2660776376724243, -0.012856518849730492, -0.35775598883628845, -0.43036288022994995, -0.31040120124816895, -0.10453402251005173, -0.11241970211267471, -0.16670125722885132, -0.19237224757671356, 0.13978780806064606, 0.15492714941501617, -0.016902966424822807, 0.15461097657680511, -0.06443741917610168, 0.09797447174787521, 0.17278224229812622, -0.029972484335303307, 0.5414876341819763, -0.2067311555147171, 0.3115108907222748, 0.2032037377357483, -0.49543583393096924, 0.5356373190879822, -0.3347659409046173, -0.340384304523468, -0.18914741277694702, -0.066427081823349, 0.6379998326301575, 0.18678826093673706, 0.4127139449119568, 0.07166093587875366, -0.17011025547981262, -0.1324494332075119, -0.20605216920375824, 0.15229758620262146, 0.18082699179649353, -0.08185611665248871, -0.06207047775387764, -0.37837088108062744, 0.6578393578529358, -0.14843830466270447, 0.015240918844938278, 0.14286008477210999, 0.13147927820682526, -0.20739831030368805, 0.16788741946220398, -0.17566373944282532, 0.9181860685348511, -0.40137359499931335, 0.3045083284378052, 0.0658271536231041, -0.002399057149887085, 0.6905838251113892, -0.12637662887573242, -0.15757985413074493, -0.44691920280456543, 0.03181635960936546, -0.12453551590442657, -0.11170762777328491, 0.1562141329050064, 0.606044590473175, -0.29041579365730286, 0.3330255150794983, 0.10226324945688248, -0.1566513031721115, 0.08574584126472473, 0.547410249710083, 0.19547945261001587, -0.5521776080131531, -0.6150880455970764, 0.0507822185754776, -0.27130958437919617, 0.2174413651227951, -0.1225028932094574, -0.1444709599018097, 0.017699623480439186, -0.15260039269924164, 0.020933177322149277, 0.15391311049461365, -0.1413407176733017, -0.378711074590683, 0.3384372293949127, -0.1711134910583496, 0.12888450920581818, 0.5490387082099915, 0.17901611328125, 0.02110978215932846, -0.014078548178076744, -0.02787194773554802, -0.1363571733236313, -0.09822317957878113, -0.20088417828083038, 0.34736672043800354, 0.2184486836194992, -0.10026304423809052, -0.08787519484758377, 0.028443345800042152, 0.1698329746723175, -0.20469024777412415, -0.2876245975494385, 0.21397167444229126, 0.17740888893604279, -0.3118364214897156, -0.5614942312240601, 0.06107473000884056, 0.17317776381969452, 0.11749614775180817, -0.0024520070292055607, 0.2749668061733246, -0.026865540072321892, -0.06745173782110214, 0.4489808976650238, 0.03273614123463631, 0.12775249779224396, 0.36428722739219666, -0.34379568696022034, -0.47465816140174866, 0.3770824074745178, 0.34552982449531555, 0.1867717206478119, 0.028346171602606773, 0.10174189507961273, 0.12650921940803528, -0.12534156441688538, -0.15239782631397247, 0.46365293860435486, -0.0035684648901224136, -0.08247995376586914, 0.23973290622234344, 0.09790191799402237, -0.11809229850769043, 0.09511174261569977, -0.1770329773426056, -0.4044646620750427, 0.07996086776256561, 0.03426109254360199, -0.003044671379029751, 0.44009754061698914, 0.029263528063893318, 0.23412127792835236, 0.27326926589012146, -0.1530267298221588, 0.08129558712244034, -0.20514459908008575, 0.10957780480384827, 0.6422364711761475, -0.11817537248134613, 0.015841323882341385, 0.1295916587114334, -0.03905106708407402, 0.002629134338349104, -0.0799180269241333, -0.059064336121082306, -0.2287059873342514, 0.2000667154788971, 0.22071689367294312, -0.06376864016056061, -0.19220498204231262, -0.2222703993320465, -0.10119026899337769, -0.1705964207649231, -0.02011665143072605, 0.1290999799966812, 0.03932885080575943, 0.33614543080329895, 0.14205743372440338, 0.16373834013938904, 0.05622656270861626, 0.006903126835823059, 0.1409444808959961, 0.22138208150863647, 0.08761677891016006, -0.014739050529897213, -0.12369837611913681, 0.038800403475761414, -0.20339620113372803, 0.23366966843605042, 0.5907527804374695, 0.12117502093315125, 0.10969176888465881, -0.06944290548563004, 0.056830521672964096, -0.12753643095493317, 0.011659224517643452, 0.09617438167333603, -0.18265698850154877, 0.19297632575035095, 0.22574205696582794, 0.009845352731645107, -0.13600602746009827, -0.03107277862727642, 0.6075594425201416, -0.00047381711192429066, -0.10093449056148529, 0.27806445956230164, -0.16592709720134735, 0.20912377536296844, -0.04506842792034149, -0.17108996212482452, 0.42754700779914856, 0.14246854186058044, -0.15237167477607727, -0.1849137842655182, -0.24273690581321716, -0.26528865098953247, 0.25192785263061523, 0.33146142959594727, 0.13315734267234802, -0.028207438066601753, -0.21606086194515228, 0.158128559589386, -0.28440892696380615, 0.07290627062320709, 0.3556307554244995, -0.3562241494655609, -0.1422438621520996, 0.35301560163497925, 0.38484206795692444, 0.49204424023628235, -0.18131260573863983, 0.9246281981468201, -0.16086262464523315, -0.17582891881465912, -0.13731355965137482, 0.14745435118675232, 0.10820676386356354, -0.11519613116979599, -0.2877683639526367, 0.030165165662765503, -0.07291393727064133, -0.12022276967763901, -0.15345436334609985, -0.45753297209739685, -0.18007217347621918, -0.12112708389759064, 0.15828652679920197, -0.019068269059062004, -0.2579401135444641, 0.2206992357969284, -0.08390980958938599, -0.05150304362177849, 0.20334306359291077, -0.15974098443984985, 0.300635427236557, 0.4441353678703308, 0.13426542282104492, -0.06689342856407166, 0.30138272047042847, 0.13330359756946564, 0.22550073266029358, -0.0017809208948165178, 0.036703530699014664, 0.14650370180606842, 0.08348057419061661, -0.035627372562885284, 0.13136951625347137, 0.08633892238140106, 0.013292751275002956, -0.01395263709127903, -0.08098091930150986, 0.16866517066955566, 0.023933133110404015, -0.3790726065635681, 0.20585469901561737, -0.1466255486011505, -0.15224523842334747, -0.5125372409820557, 0.2595130205154419, -0.5331442952156067, -0.19097276031970978, 0.054069846868515015, 0.2861727178096771, 0.05845880135893822, -0.326122909784317, 0.014925215393304825, -0.23371736705303192, 0.465311199426651, 0.22235019505023956, 0.017187856137752533, 0.09722590446472168, -0.27382272481918335, -0.4709034860134125, 0.19583173096179962, 0.14038026332855225, -0.28560033440589905, 0.006215893197804689, 0.06370586156845093, -0.08303461968898773, 0.12769676744937897, -0.018934916704893112, -0.11041498184204102, -0.15458469092845917, -0.12863051891326904, -0.26020175218582153, -0.22901296615600586, -0.11742495000362396, 0.25239795446395874, 0.08273285627365112, 0.14469914138317108, -0.11544381827116013, 0.14315806329250336, -0.20019274950027466, -0.13660189509391785, 0.12379878759384155, -0.017678238451480865, -0.024524906650185585, 0.10671983659267426, -0.273410826921463, 0.4452265501022339, 0.13415983319282532, 0.043843258172273636, 0.09751790016889572, -0.031451307237148285, -0.2656066119670868, 0.059604451060295105, -0.1217646449804306, 0.24349921941757202, -0.1983080506324768, 0.08611005544662476, -0.13477610051631927, 0.09997951984405518, -0.1467714011669159, -0.15715590119361877, -0.10599836707115173, -0.08119543641805649, -0.1691465824842453, 0.0005241765175014734, 0.1726083755493164, 0.41379207372665405, -0.07056847959756851, 0.17745046317577362, -0.04481983557343483, 0.18754486739635468, 0.4689193367958069, -0.4195563793182373, -0.1246415376663208, 0.1551664173603058, 0.1519247442483902, -0.06559228152036667, -0.313016414642334, -0.4497196674346924, 0.13875478506088257, 0.2284654676914215, 0.05157436430454254, 0.09158382564783096, 0.41123464703559875, -0.5065767765045166, -0.04044819250702858, -0.10211479663848877, -0.03951447457075119, 0.34363433718681335, 0.09743066877126694, -0.0060920496471226215, -0.07712436467409134 ]
https://github.com/huggingface/datasets/issues/234
Huggingface NLP, Uploading custom dataset
Since the latest release 0.2.1 you can use ```bash nlp-cli upload_dataset <path/to/dataset> ``` where `<path/to/dataset>` is a path to a folder containing your script (ex: `squad.py`). This will upload the script under your namespace on our S3. Optionally the folder can also contain `dataset_infos.json` generated using ```bash nlp-cli test <path/to/dataset> --all_configs --save_infos ``` Then you should be able to do ```python nlp.load_dataset("my_namespace/dataset_name") ```
Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you!
63
Huggingface NLP, Uploading custom dataset Hello, Does anyone know how we can call our custom dataset using the nlp.load command? Let's say that I have a dataset based on the same format as that of squad-v1.1, how am I supposed to load it using huggingface nlp. Thank you! Since the latest release 0.2.1 you can use ```bash nlp-cli upload_dataset <path/to/dataset> ``` where `<path/to/dataset>` is a path to a folder containing your script (ex: `squad.py`). This will upload the script under your namespace on our S3. Optionally the folder can also contain `dataset_infos.json` generated using ```bash nlp-cli test <path/to/dataset> --all_configs --save_infos ``` Then you should be able to do ```python nlp.load_dataset("my_namespace/dataset_name") ```
[ 0.280041366815567, -0.2268892228603363, 0.12016207724809647, 0.11589673906564713, -0.06247618794441223, -0.011173850856721401, 0.2993094027042389, -0.03620445728302002, 0.08475770056247711, -0.09561610966920853, -0.2538747787475586, 0.31674429774284363, -0.07992322742938995, 0.33061379194259644, 0.5891803503036499, 0.12801386415958405, 0.0025302660651504993, 0.2043105661869049, -0.0012189603876322508, -0.058797914534807205, -0.2672671675682068, 0.37348473072052, -0.17168089747428894, 0.11104456335306168, -0.04108670353889465, 0.19172509014606476, -0.10793155431747437, 0.5931819081306458, -0.06794675439596176, -0.6077473759651184, 0.4877357482910156, 0.19383297860622406, 0.3708674907684326, 0.4090645909309387, -0.0001233943912666291, -0.313319593667984, 0.2694943845272064, -0.2316977083683014, -0.3273890018463135, -0.3374842703342438, 0.12491478770971298, -0.460906982421875, 0.36824989318847656, -0.23264934122562408, -0.06764664500951767, 0.12876640260219574, 0.23500290513038635, -0.08527939766645432, 0.47627341747283936, 0.08236994594335556, 0.015970740467309952, 0.2765754163265228, -0.3785422444343567, 0.05095301568508148, 0.0250984076410532, 0.25649964809417725, 0.009582963772118092, 0.08974424749612808, 0.43417882919311523, -0.36984387040138245, 0.09351912885904312, -0.03850599378347397, 0.04293427616357803, -0.13255757093429565, 0.6434711217880249, 0.19184158742427826, -0.3280694782733917, -0.1321467012166977, -0.23903773725032806, 0.23976179957389832, 0.34194985032081604, -0.4234243631362915, -0.32564017176628113, -0.4911620616912842, 0.13157501816749573, -0.15634958446025848, 0.24537384510040283, 0.06972116231918335, -0.1712663322687149, -0.06486458331346512, -0.33849695324897766, -0.13900871574878693, -0.3118108808994293, 0.24292737245559692, 0.2955785393714905, 0.22809426486492157, -0.22060514986515045, 0.15832452476024628, 0.2351910024881363, -0.20583470165729523, -0.08868861943483353, 0.10071547329425812, 0.10647853463888168, 0.5646867156028748, -0.3737165033817291, -0.28991857171058655, -0.116546131670475, 0.10073971003293991, 0.2578739821910858, 0.13445241749286652, 0.17701895534992218, -0.03596620261669159, -0.12339577078819275, 0.09136687964200974, 0.39031463861465454, -0.0014644898474216461, 0.5357534885406494, -0.15987655520439148, -0.08518394827842712, 0.025178540498018265, 0.05509543791413307, -0.08502717316150665, -0.46569809317588806, -0.013429186306893826, -0.27899232506752014, -0.205391526222229, 0.16227586567401886, -0.2037164717912674, 0.08752615749835968, -0.2311067134141922, 0.3427424728870392, -0.10163455456495285, 0.14438238739967346, 0.22770901024341583, -0.035327762365341187, -0.1291588842868805, -0.02052299864590168, 0.1601542830467224, -0.07326459884643555, -0.1987454742193222, 0.059083182364702225, -0.04914397373795509, -0.1831963211297989, 0.09380508959293365, 0.3327327370643616, -0.09044849127531052, 0.42799410223960876, -0.1487330198287964, 0.1311015635728836, -0.010218162089586258, -0.12468654662370682, 0.2425009310245514, -0.180186927318573, -0.12581536173820496, 0.28807657957077026, -0.018998002633452415, 0.11539901047945023, -0.3117889165878296, -0.22955802083015442, -0.05229368060827255, -0.1529916375875473, -0.06166982278227806, -0.3780478537082672, -0.02689281664788723, -0.3280342221260071, -0.49071556329727173, -0.267651230096817, 0.2743683159351349, -0.15329094231128693, -0.23388701677322388, -0.03033536486327648, 0.15200704336166382, -0.26744526624679565, -0.10861167311668396, 0.1839228868484497, 0.29698318243026733, -0.4266987144947052, -0.3021622896194458, 0.04203484207391739, -0.012394260615110397, -0.10560954362154007, 0.1387210190296173, -0.247209370136261, -0.05426383018493652, -0.15707910060882568, 0.25558364391326904, 0.5747652053833008, -0.48370906710624695, -0.13884028792381287, 0.2292325645685196, -0.27198776602745056, 0.013199828565120697, 0.06393881887197495, 0.24635136127471924, 0.17478792369365692, 0.010458044707775116, -0.0625673234462738, 0.7491365075111389, 0.034771066159009933, -0.06528715789318085, 0.07933799177408218, -0.020167553797364235, 0.1566516011953354, 0.13463130593299866, -0.3383796811103821, 0.15313340723514557, 0.09221844375133514, 0.19802607595920563, 0.1743171662092209, -0.09805244207382202, -0.07396675646305084, 0.03419267758727074, 0.11237642914056778, 0.41715094447135925, 0.0026159065309911966, 0.03738797828555107, -0.6957998275756836, 0.28702443838119507, -0.28568845987319946, -0.002605566754937172, 0.29080894589424133, -0.08496484905481339, -0.4383992552757263, -0.11230491101741791, -0.10521044582128525, 0.1792888045310974, -0.08189114928245544, 0.16968458890914917, 0.23800210654735565, -0.19645307958126068, -0.42153406143188477, 0.35960498452186584, -0.12289304286241531, 0.26095208525657654, -0.48648548126220703, 0.044427454471588135, 0.24456380307674408, -0.17973923683166504, 0.11385776847600937, 0.3458593785762787, 0.21493078768253326, -0.15126414597034454, 0.19701193273067474, 0.3514064848423004, -0.1065540686249733, 0.3253592252731323, 0.3652247488498688, 0.01499255746603012, -0.05110110715031624, 0.12663884460926056, 0.2454584538936615, -0.12205305695533752, 0.07218296825885773, -0.13804437220096588, -0.3422391414642334, 0.3357031047344208, -0.16492123901844025, 0.2453160285949707, -0.0025176953058689833, -0.14623236656188965, 0.05325061082839966, -0.08916894346475601, -0.4279448688030243, -0.0027038035914301872, 0.03522178903222084, 0.11982779949903488, 0.39819249510765076, -0.013512123376131058, -0.0769132748246193, -0.09738617390394211, 0.6103424429893494, -0.10325486958026886, 0.037677448242902756, 0.2313651591539383, -0.10375140607357025, -0.19619609415531158, 0.14414232969284058, -0.0011320824269205332, 0.3079432249069214, 0.17000585794448853, -0.1886395663022995, 0.04649219661951065, -0.08740385621786118, 0.07124295085668564, -0.03343025967478752, 0.00017177902918774635, 0.016619373112916946, -0.28346720337867737, 0.20291045308113098, -0.14894242584705353, -0.3170861303806305, 0.05813753604888916, -0.07949090749025345, -0.10553556680679321, -0.2577175199985504, 0.13300848007202148, 0.002569240052253008, -0.3521050810813904, -0.22811388969421387, -0.30586886405944824, -0.49798673391342163, 0.08253052085638046, -0.3920712172985077, -0.08140110969543457, 0.5837751030921936, -0.0671752467751503, 0.13211707770824432, 0.5852802991867065, -0.1560717672109604, -0.1986924409866333, 0.07284708321094513, -0.018418222665786743, -0.27931272983551025, -0.12371212244033813, 0.05958324298262596, 0.18152756989002228, 0.3396260738372803, -0.07619504630565643, 0.19564461708068848, 0.08061111718416214, -0.2836531698703766, 0.07866847515106201, -0.19906513392925262, 0.18724782764911652, 0.35215023159980774, 0.11347322165966034, -0.1329290270805359, 0.008325529284775257, 0.1063302531838417, -0.15379349887371063, -0.11829494684934616, -0.07441536337137222, 0.0029164417646825314, 0.07503383606672287, -0.12075871229171753, -0.08567406982183456, -0.3339979350566864, -0.14054960012435913, 0.5175917148590088, 0.3240981996059418, 0.11710131913423538, 0.1943240761756897, -0.21627335250377655, 0.46452948451042175, -0.308376282453537, -0.008930293843150139, -0.13562028110027313, -0.5117285251617432, 0.032069042325019836, -0.14159326255321503, -0.13791245222091675, 0.17673788964748383, 0.11912894994020462, 0.12141606956720352, -0.3518002927303314, -0.19299109280109406, -0.42881250381469727, 0.2198195457458496, 0.021519258618354797, 0.03498341143131256, 0.12493165582418442, 0.22291845083236694, -0.22140191495418549, 0.19177216291427612, -0.1415400356054306, -0.4419390559196472, 0.07362154126167297, 0.41862422227859497, 0.2334134578704834, 0.26500067114830017, 0.245713472366333, -0.02086048573255539, 0.5214277505874634, 0.15158671140670776, -0.18956077098846436, 0.39771342277526855, -0.04355676844716072, 0.20108424127101898, 0.13131152093410492, -0.3892538547515869, 0.06049245595932007, 0.26690244674682617, 0.2402644008398056, 0.367243230342865, 0.1753043234348297, 0.14850075542926788, -0.26906734704971313, 0.07156922668218613, -0.13034270703792572, 0.17850476503372192, -0.1290690004825592, 0.2322728931903839, -0.043136727064847946, 0.045335933566093445, -0.14909370243549347, -0.4444144666194916, -0.24478502571582794, -0.18724316358566284, 0.24591244757175446, 0.247455433011055, 0.3023858368396759, -0.6653095483779907, -0.08875966817140579, -0.48300686478614807, 0.19676285982131958, -0.09480953216552734, 0.1488327980041504, 0.07120024412870407, 0.04556480795145035, 0.16871377825737, 0.054494261741638184, 0.6477315425872803, 0.07249756157398224, -0.18941009044647217, -0.05386676639318466, 0.01329471729695797, -0.6558191180229187, 0.2496967911720276, 0.06324458867311478, 0.2618875801563263, 0.3039628863334656, 0.5747793316841125, -0.18605738878250122, -0.29088762402534485, 0.15416507422924042, -0.030249031260609627, -0.31782442331314087, -0.3237394690513611, -0.37653934955596924, -0.14855742454528809, -0.14103230834007263, -0.21144379675388336, -0.17808622121810913, 0.14674293994903564, 0.22639454901218414, 0.04759489372372627, 0.12169769406318665, 0.02490254119038582, 0.05782522261142731, 0.2943684458732605, -0.058411430567502975, 0.527275025844574, -0.13760952651500702, 0.2554585933685303, 0.16545283794403076, -0.3756716549396515, 0.6000043749809265, -0.25587865710258484, -0.4437696635723114, -0.1565437912940979, 0.11671826243400574, 0.639487624168396, 0.19682668149471283, 0.3234359622001648, 0.1490115225315094, -0.09358857572078705, -0.10954061150550842, -0.3384190499782562, 0.13362225890159607, 0.24349486827850342, -0.04315193369984627, 0.06639566272497177, -0.38703158497810364, 0.5882587432861328, -0.10434861481189728, -0.03446812555193901, -0.10319918394088745, 0.20371390879154205, -0.22247086465358734, 0.1742636114358902, -0.11802592873573303, 0.892544150352478, -0.40422335267066956, 0.39915645122528076, 0.19491033256053925, -0.00833930540829897, 0.771212637424469, -0.07109124213457108, -0.1952485889196396, -0.44219261407852173, 0.2296811044216156, -0.1013706773519516, -0.1051742434501648, 0.13289637863636017, 0.47395017743110657, -0.23397943377494812, 0.3612964451313019, 0.13415957987308502, -0.19846782088279724, 0.06031305342912674, 0.5681426525115967, 0.20757076144218445, -0.5780227780342102, -0.6750756502151489, 0.019689643755555153, -0.3262571096420288, 0.28488197922706604, -0.10954850167036057, -0.088895782828331, -0.048178039491176605, -0.1542111337184906, 0.04464832693338394, 0.11387011408805847, -0.04319271072745323, -0.46163082122802734, 0.32028988003730774, -0.3091631829738617, 0.15718616545200348, 0.5623395442962646, 0.2044418603181839, 0.046131763607263565, -0.003100633854046464, -0.028660966083407402, -0.0935126468539238, -0.10510584712028503, -0.19757810235023499, 0.19080060720443726, 0.08552621304988861, -0.09972928464412689, -0.07414953410625458, -0.06598082929849625, 0.246498703956604, -0.1773233860731125, -0.13601498305797577, 0.21079032123088837, 0.12824885547161102, -0.3042231798171997, -0.543520987033844, -0.022783393040299416, 0.1489763706922531, 0.09474407136440277, -0.022178933024406433, 0.2583085298538208, -0.10682415217161179, -0.12021775543689728, 0.3054864704608917, -0.031273648142814636, 0.15519313514232635, 0.4183870255947113, -0.38589951395988464, -0.36370259523391724, 0.33824750781059265, 0.38333195447921753, 0.20174269378185272, 0.015798527747392654, 0.09013640135526657, 0.09293598681688309, -0.09880925714969635, -0.12921024858951569, 0.49748992919921875, -0.10880491137504578, 0.006756440736353397, 0.10917141288518906, 0.1795966625213623, -0.18277432024478912, 0.11140798032283783, -0.19404488801956177, -0.23641112446784973, 0.08535107225179672, 0.03327273577451706, 0.023359419777989388, 0.43628233671188354, -0.1379798799753189, 0.15521976351737976, 0.09488525241613388, -0.1214115098118782, 0.10921680927276611, -0.20492485165596008, 0.18282712996006012, 0.48410898447036743, -0.1927681714296341, 0.060560159385204315, 0.07248099148273468, -0.06120821088552475, -0.05920722335577011, -0.06547866761684418, -0.05389563366770744, -0.25604450702667236, 0.22777637839317322, 0.2528778314590454, -0.09924010932445526, -0.11356687545776367, -0.2043853998184204, -0.14388516545295715, -0.20038318634033203, 0.02888474613428116, 0.1565559059381485, 0.14493520557880402, 0.3754050135612488, -0.005571340210735798, 0.07534254342317581, 0.07913810759782791, 0.030109860002994537, 0.10337906330823898, 0.13224336504936218, 0.07794645428657532, 0.09889457374811172, -0.07017573714256287, 0.021039562299847603, -0.20545630156993866, 0.2262936383485794, 0.5412855744361877, 0.11874231696128845, 0.08732523769140244, -0.16803283989429474, 0.017701847478747368, -0.10149168223142624, 0.15154901146888733, 0.1994532346725464, -0.17980220913887024, 0.07972435653209686, 0.18123102188110352, -0.008394910953938961, -0.05125701054930687, -0.13403823971748352, 0.4174160957336426, -0.02174985222518444, -0.05972151458263397, 0.355925053358078, -0.1728089153766632, 0.29911306500434875, -0.14054985344409943, -0.1669454425573349, 0.4358365833759308, 0.28236907720565796, -0.12057920545339584, -0.15963587164878845, -0.19515325129032135, -0.23293538391590118, 0.26519158482551575, 0.31513136625289917, 0.0482664592564106, 0.024040954187512398, -0.2267836481332779, 0.12745487689971924, -0.20086918771266937, 0.1938612312078476, 0.30031803250312805, -0.3114255666732788, -0.13483399152755737, 0.24873021245002747, 0.32202228903770447, 0.46069374680519104, -0.251205176115036, 0.8900502324104309, -0.20825137197971344, -0.13270042836666107, -0.16701406240463257, 0.1701212227344513, 0.13144414126873016, -0.274299681186676, -0.29924359917640686, 0.08761490881443024, -0.026515552774071693, -0.072176493704319, -0.1698850691318512, -0.5302137136459351, -0.20902495086193085, -0.0866338312625885, 0.21203027665615082, -0.09657780081033707, -0.25253021717071533, 0.23648367822170258, -0.11750238388776779, -0.10240675508975983, 0.22977721691131592, -0.1354081928730011, 0.27585381269454956, 0.38820692896842957, 0.09754221141338348, 0.050895944237709045, 0.256430983543396, 0.03382668271660805, 0.20853076875209808, 0.001193714328110218, 0.024833938106894493, 0.04244152829051018, -0.0014726733788847923, -0.09368662536144257, 0.22201377153396606, 0.041209399700164795, -0.006753477733582258, 0.013494168408215046, -0.12611795961856842, 0.0829007476568222, -0.03293914347887039, -0.31179025769233704, 0.22231443226337433, -0.20632566511631012, -0.08749837428331375, -0.446542352437973, 0.4152689278125763, -0.6194021701812744, -0.13291868567466736, 0.26201388239860535, 0.3689610958099365, 0.10955307632684708, -0.2574585974216461, -0.004685330204665661, -0.22741509974002838, 0.48478034138679504, 0.11430197954177856, 0.08273087441921234, 0.05587444081902504, -0.1872495710849762, -0.4674099087715149, 0.1330845057964325, 0.0694470927119255, -0.3638957142829895, 0.046531084924936295, 0.15304896235466003, -0.15592798590660095, 0.08245822042226791, -0.10722453892230988, -0.050137221813201904, -0.1673273891210556, 0.020895207300782204, -0.21432767808437347, -0.19702312350273132, -0.11900635063648224, 0.24081815779209137, 0.12044263631105423, 0.07520540058612823, -0.15019674599170685, 0.09257299453020096, -0.2727144956588745, -0.13404126465320587, 0.14921964704990387, 0.06373699009418488, 0.0014252433320507407, 0.20920875668525696, -0.2594483196735382, 0.4553106725215912, 0.09309316426515579, -0.052321601659059525, -0.037529584020376205, -0.07080644369125366, -0.3093707263469696, 0.10263637453317642, -0.23823729157447815, 0.2546861171722412, -0.21112020313739777, 0.1825416088104248, -0.2470242977142334, 0.04960927367210388, -0.05566023662686348, -0.21573621034622192, -0.009199108928442001, -0.005039546173065901, -0.210075244307518, 0.09723891317844391, 0.1297473907470703, 0.40952441096305847, -0.027216168120503426, 0.20138680934906006, -0.1416337639093399, 0.07134239375591278, 0.48243433237075806, -0.5757668018341064, -0.09965407848358154, 0.1804000288248062, 0.23155489563941956, -0.10074517130851746, -0.41906416416168213, -0.5331853628158569, 0.21772395074367523, 0.25800737738609314, 0.07074816524982452, -0.004404681734740734, 0.3593481481075287, -0.43322324752807617, -0.06310851126909256, -0.11096925288438797, -0.029266519472002983, 0.2962114214897156, 0.07803396135568619, 0.0435730442404747, -0.08950252085924149 ]
https://github.com/huggingface/datasets/issues/233
Fail to download c4 english corpus
Hello ! Thanks for noticing this bug, let me fix that. Also for information, as specified in the changelog of the latest release, C4 currently needs to have a runtime for apache beam to work on. Apache beam is used to process this very big dataset and it can work on dataflow, spark, flink, apex, etc. You can find more info on beam datasets [here](https://github.com/huggingface/nlp/blob/master/docs/beam_dataset.md). Our goal in the future is to make available an already-processed version of C4 (as we do for wikipedia for example) so that users without apache beam runtimes can load it.
i run following code to download c4 English corpus. ``` dataset = nlp.load_dataset('c4', 'en', beam_runner='DirectRunner' , data_dir='/mypath') ``` and i met failure as follows ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/adam/.cache/huggingface/datasets/c4/en/2.3.0... Traceback (most recent call last): File "download_corpus.py", line 38, in <module> , data_dir='/home/adam/data/corpus/en/c4') File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 420, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 816, in _download_and_prepare dl_manager, verify_infos=False, pipeline=pipeline, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 457, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/datasets/c4/f545de9f63300d8d02a6795e2eb34e140c47e62a803f572ac5599e170ee66ecc/c4.py", line 175, in _split_generators dl_manager.download_checksums(_CHECKSUMS_URL) AttributeError: 'DownloadManager' object has no attribute 'download_checksums ``` can i get any advice?
96
Fail to download c4 english corpus i run following code to download c4 English corpus. ``` dataset = nlp.load_dataset('c4', 'en', beam_runner='DirectRunner' , data_dir='/mypath') ``` and i met failure as follows ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/adam/.cache/huggingface/datasets/c4/en/2.3.0... Traceback (most recent call last): File "download_corpus.py", line 38, in <module> , data_dir='/home/adam/data/corpus/en/c4') File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 420, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 816, in _download_and_prepare dl_manager, verify_infos=False, pipeline=pipeline, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 457, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/datasets/c4/f545de9f63300d8d02a6795e2eb34e140c47e62a803f572ac5599e170ee66ecc/c4.py", line 175, in _split_generators dl_manager.download_checksums(_CHECKSUMS_URL) AttributeError: 'DownloadManager' object has no attribute 'download_checksums ``` can i get any advice? Hello ! Thanks for noticing this bug, let me fix that. Also for information, as specified in the changelog of the latest release, C4 currently needs to have a runtime for apache beam to work on. Apache beam is used to process this very big dataset and it can work on dataflow, spark, flink, apex, etc. You can find more info on beam datasets [here](https://github.com/huggingface/nlp/blob/master/docs/beam_dataset.md). Our goal in the future is to make available an already-processed version of C4 (as we do for wikipedia for example) so that users without apache beam runtimes can load it.
[ 0.011554836295545101, 0.09108605235815048, -0.0556439645588398, 0.2902231812477112, 0.1486303210258484, 0.165297269821167, -0.06323659420013428, 0.31740131974220276, -0.11661405861377716, 0.0394292026758194, -0.1543145626783371, 0.008751311339437962, 0.026757964864373207, 0.08450008183717728, 0.13103629648685455, -0.5472639203071594, -0.2235967516899109, 0.15271468460559845, -0.13122034072875977, -0.1412544548511505, -0.04234261438250542, 0.425819456577301, -0.11378829926252365, -0.17473654448986053, -0.060003820806741714, -0.13748638331890106, -0.1974727064371109, -0.05506964400410652, -0.206342875957489, -0.5448324680328369, 0.4454171657562256, 0.0049822283908724785, 0.1893908828496933, 0.3470120429992676, -0.00010940983338514343, -0.017852723598480225, 0.4102250039577484, -0.1208093985915184, -0.24889123439788818, -0.39947474002838135, 0.17930305004119873, -0.32142797112464905, -0.0999806746840477, -0.3226756453514099, -0.22828543186187744, -0.13052566349506378, 0.1668986976146698, -0.2270071804523468, 0.04316183179616928, 0.31656414270401, 0.27359774708747864, -0.02551410160958767, 0.28026527166366577, -0.13305135071277618, -0.18314756453037262, -0.24020244181156158, -0.09089802205562592, 0.23933732509613037, 0.16672825813293457, 0.2533930838108063, -0.09512829035520554, 0.15294644236564636, 0.050275906920433044, 0.013414686545729637, -0.10940220952033997, -0.22099772095680237, 0.04897070303559303, -0.2720613479614258, 0.3356460928916931, 0.05530325323343277, 0.7832090258598328, -0.28178685903549194, -0.16184261441230774, 0.16128337383270264, 0.2839297950267792, -0.21231360733509064, 0.2203889638185501, 0.42824068665504456, -0.13925319910049438, 0.000720260024536401, -0.32490992546081543, -0.09991490095853806, -0.18179000914096832, 0.20378312468528748, 0.020981663838028908, 0.008731251582503319, -0.08046534657478333, -0.010057920590043068, 0.21736912429332733, 0.10147811472415924, 0.07938104122877121, -0.07899791747331619, -0.2777694761753082, 0.29618018865585327, -0.2832443118095398, 0.020596779882907867, -0.14629711210727692, 0.5204558968544006, 0.025380078703165054, -0.36212971806526184, -0.1353999376296997, -0.1054488867521286, 0.07566574215888977, 0.027679964900016785, -0.053336258977651596, 0.33945122361183167, 0.10876891016960144, 0.028519798070192337, 0.07979916781187057, 0.1301851123571396, 0.07434216886758804, -0.04996660351753235, -0.1396477073431015, -0.22278472781181335, -0.29879510402679443, 0.27473413944244385, -0.12344938516616821, -0.3272612690925598, -0.152159184217453, 0.0012160702608525753, -0.20873026549816132, -0.03460110351443291, -0.09959448873996735, 0.44142651557922363, -0.15790197253227234, 0.15262065827846527, 0.08801556378602982, 0.181705504655838, -0.19471216201782227, -0.36601343750953674, -0.14900997281074524, 0.20088206231594086, -0.4686216115951538, -0.3205321729183197, 0.24913661181926727, -0.31658536195755005, 0.43263155221939087, -0.08860336989164352, 0.10732515901327133, -0.10228720307350159, -0.14219854772090912, -0.22252364456653595, -0.25826147198677063, 0.18804460763931274, 0.06787674874067307, 0.2651395797729492, 0.012081077322363853, -0.032829076051712036, -0.007649990729987621, -0.24501898884773254, -0.12950891256332397, -0.19092749059200287, -0.07252581417560577, 0.17847749590873718, -0.010353424586355686, -0.13389432430267334, -0.5229305028915405, 0.049976151436567307, 0.19104844331741333, 0.03806271776556969, -0.002433453919366002, -0.2078721523284912, -0.23149988055229187, -0.20859836041927338, 0.11716810613870621, 0.5448203086853027, -0.01881347969174385, 0.028378581628203392, -0.043567460030317307, -0.011956041678786278, 0.4996945858001709, 0.3720760941505432, -0.09973928332328796, 0.17216771841049194, -0.20958589017391205, 0.1426471471786499, 0.16642680764198303, -0.5432875752449036, -0.22140532732009888, 0.24188481271266937, -0.04924983158707619, 0.09035564213991165, 0.032922592014074326, -0.4252801537513733, 0.2009977102279663, -0.13091635704040527, 0.11172951012849808, 0.2759278118610382, 0.09924531728029251, 0.12656046450138092, -0.24118490517139435, -0.1267588585615158, 0.24730096757411957, 0.10466139763593674, 0.16901753842830658, -0.10204527527093887, 0.2604553699493408, 0.18707899749279022, 0.26134735345840454, -0.12082542479038239, 0.3596663475036621, 0.2470407485961914, -0.26252278685569763, -0.30720555782318115, 0.10502215474843979, 0.19859431684017181, -0.33054354786872864, 0.20660102367401123, -0.2245476245880127, 0.2911973297595978, 0.05326284468173981, -0.021892886608839035, -0.32561975717544556, -0.20640774071216583, -0.24103625118732452, -0.20117612183094025, 0.17741981148719788, -0.042908716946840286, 0.32806962728500366, 0.16727864742279053, 0.11972077190876007, 0.3532952070236206, -0.30633121728897095, -0.10966163873672485, -0.10674040764570236, 0.10267000645399094, -0.24342705309391022, -0.07219044864177704, 0.32417479157447815, 0.24245412647724152, 0.2653384804725647, -0.15683673322200775, -0.13989250361919403, 0.07293418794870377, -0.1470297873020172, 0.41556471586227417, -0.1165601834654808, -0.12037429213523865, 0.36946365237236023, -0.38100001215934753, 0.40821364521980286, 0.3177173137664795, 0.06451413035392761, -0.07451402395963669, 0.30472713708877563, -0.24469633400440216, 0.05164717510342598, 0.0077798874117434025, 0.08690767735242844, -0.12712867558002472, 0.3317699730396271, -0.09151478111743927, 0.1778368204832077, -0.03593473136425018, 0.5329715013504028, -0.09439806640148163, 0.25456175208091736, -0.15274499356746674, -0.19701990485191345, 0.027612850069999695, 0.4264928698539734, 0.08075893670320511, -0.11451499164104462, 0.17100749909877777, -0.12888385355472565, -0.17582887411117554, 0.27580976486206055, 0.11890335381031036, 0.11022785305976868, 0.16510067880153656, 0.17313417792320251, 0.1311655193567276, 0.13357995450496674, -0.21879170835018158, 0.25292491912841797, -0.2158297598361969, 0.17182861268520355, 0.3353053629398346, 0.16610932350158691, -0.002951380331069231, -0.43208736181259155, -0.028696980327367783, 0.21439890563488007, 0.17780756950378418, -0.06852693855762482, -0.0997375026345253, -0.24677592515945435, -0.4081360101699829, -0.3134777843952179, -0.11854375153779984, 0.037131838500499725, 0.01724589802324772, -0.1968255341053009, 0.11412043869495392, -0.040705304592847824, -0.007626950275152922, -0.2748730778694153, -0.31127381324768066, -0.19947753846645355, -0.28509384393692017, -0.17256510257720947, 0.005929688457399607, -0.40908509492874146, 0.12316156923770905, 0.14126478135585785, 0.059434086084365845, 0.35669955611228943, -0.33560609817504883, -0.08273731917142868, -0.22347404062747955, -0.0705547109246254, 0.2513359785079956, -0.06519898772239685, -0.15453606843948364, 0.02216861955821514, 0.20069779455661774, -0.22271715104579926, -0.19328506290912628, 0.01556774228811264, -0.1274448186159134, -0.18748340010643005, 0.014690998941659927, -0.23348264396190643, -0.15572009980678558, -0.15952713787555695, -0.6133766174316406, -0.47461816668510437, -0.4864417314529419, 0.059995390474796295, -0.1413521021604538, 0.1965738981962204, 0.39358237385749817, -0.20145271718502045, 0.1657385379076004, 0.13731850683689117, 0.14365428686141968, -0.2028479427099228, -0.02627146802842617, 0.11786183714866638, -0.32325243949890137, -0.45436951518058777, 0.1173180565237999, 0.023861316964030266, 0.4150661826133728, 0.16472379863262177, -0.30464044213294983, 0.3316364288330078, -0.03227067366242409, 0.12915319204330444, 0.09138042479753494, 0.14185908436775208, 0.4941840171813965, -0.09971112757921219, -0.002217276254668832, 0.029206596314907074, 0.11091788113117218, -0.006735009141266346, 0.2292228639125824, 0.41094622015953064, -0.2725372910499573, 0.15089213848114014, 0.16940566897392273, 0.30103105306625366, 0.39882004261016846, -0.232613667845726, 0.6556059122085571, 0.3299940824508667, 0.1660485863685608, -0.07856053113937378, -0.22315995395183563, 0.4240542948246002, -0.0242031030356884, 0.050451792776584625, 0.39433977007865906, -0.16810761392116547, -0.5607067346572876, -0.11067616939544678, -0.41605839133262634, -0.40698719024658203, -0.06559905409812927, -0.005862243473529816, 0.1179787889122963, 0.40663567185401917, 0.04121735692024231, 0.17972931265830994, 0.25866907835006714, -0.28919345140457153, 0.15880200266838074, 0.22211094200611115, 0.030703643336892128, 0.2962246239185333, -0.08447860926389694, -0.1370987594127655, -0.7133893966674805, 0.31576135754585266, 0.28924059867858887, 0.16818109154701233, -0.14718396961688995, 0.3811459243297577, 0.0132089052349329, -0.1939181536436081, 0.540184497833252, -0.2146279662847519, 0.11722275614738464, 0.03856658563017845, 0.03946787491440773, -0.0822896733880043, 0.010347378440201283, 0.06700972467660904, 0.11764790862798691, 0.4223916530609131, 0.058951959013938904, -0.4840071499347687, -0.0881330743432045, -0.02180582284927368, 0.47672396898269653, 0.17085520923137665, -0.21849951148033142, -0.04999390244483948, -0.5328351855278015, -0.23357968032360077, 0.007856124080717564, 0.018049893900752068, 0.3688517212867737, -0.02341323159635067, -0.007777506951242685, 0.17834864556789398, 0.07187868654727936, 0.18671613931655884, 0.14257946610450745, 0.2800193727016449, 0.2922777533531189, 0.20065055787563324, 0.32970863580703735, 0.004377646837383509, 0.1921951174736023, 0.31830939650535583, -0.14868037402629852, 0.14024507999420166, -0.05302531644701958, 0.11649199575185776, 0.1367502361536026, 0.20459407567977905, 0.030132759362459183, -0.06275241822004318, -0.14156372845172882, -0.1979990154504776, 0.14650781452655792, 0.08352538198232651, 0.0963885635137558, 0.12574337422847748, -0.5703756809234619, -0.3882587254047394, 0.27962788939476013, -0.32025161385536194, 0.1595815122127533, 0.15448196232318878, 0.30578187108039856, -0.3391074538230896, 0.25593289732933044, 0.07954619824886322, 0.7368466258049011, -0.04026932269334793, 0.07664398103952408, 0.028607869520783424, 0.07720005512237549, 0.2957969605922699, -0.3393849730491638, 0.17917956411838531, -0.2431396096944809, 0.1196991503238678, -0.003681796370074153, 0.07773411273956299, -0.020392214879393578, 0.13655848801136017, -0.39119601249694824, 0.5633782148361206, 0.07773406058549881, -0.04482671990990639, 0.06428186595439911, 0.37384232878685, -0.141971617937088, -0.37668535113334656, -0.400392085313797, 0.18190637230873108, -0.3179159462451935, 0.3305777311325073, -0.20887888967990875, -0.08868356049060822, 0.10623431205749512, -0.102108895778656, -0.33046072721481323, 0.41570529341697693, -0.28299030661582947, 0.02536240965127945, -0.0954856351017952, -0.1803961992263794, 0.49802958965301514, 0.24747908115386963, 0.33054786920547485, 0.3744562268257141, -0.2370954006910324, 0.12063196301460266, 0.10322118550539017, -0.5300794243812561, 0.24470628798007965, 0.02162661962211132, 0.054736390709877014, -0.3400762677192688, -0.21754592657089233, 0.09308896213769913, -0.041183292865753174, -0.05254027619957924, 0.2623300850391388, -0.1425354778766632, -0.3336847722530365, 0.010510656051337719, -0.3549550771713257, 0.26264336705207825, -0.004656319972127676, 0.03925004601478577, 0.12762625515460968, -0.08342649787664413, -0.17889530956745148, 0.11126824468374252, 0.164037823677063, -0.21929259598255157, -0.09325580298900604, 0.311394602060318, 0.12255982309579849, -0.3694099485874176, 0.47010791301727295, 0.26933515071868896, -0.2435082644224167, -0.19013331830501556, -0.6724636554718018, -0.29658812284469604, -0.3600969910621643, -0.008136535994708538, -0.006864284630864859, 0.03629561513662338, -0.14320454001426697, 0.3669493794441223, -0.02891707234084606, -0.00734534440562129, 0.22492751479148865, -0.3883950710296631, -0.2859395444393158, 0.06967372447252274, -0.15974487364292145, 0.028575263917446136, 0.2387288212776184, 0.2828911244869232, 0.19142703711986542, 0.11299814283847809, -0.2709113657474518, -0.045179806649684906, -0.3741307854652405, 0.0734555795788765, 0.291336327791214, -0.10154294967651367, 0.3328826129436493, 0.11200129240751266, 0.10916994512081146, 0.25574246048927307, -0.2520967125892639, -0.2090446650981903, -0.11032947897911072, 0.08477605134248734, 0.1579771637916565, 0.08173822611570358, 0.32286664843559265, -0.3832601010799408, -0.14949475228786469, -0.028482496738433838, 0.12609505653381348, 0.30184003710746765, -0.033936742693185806, 0.1260330229997635, 0.240669384598732, 0.06285526603460312, -0.0867634192109108, 0.14244961738586426, 0.11672045290470123, 0.09450003504753113, -0.021135911345481873, 0.1423724889755249, 0.06791995465755463, -0.08107183128595352, -0.14362995326519012, -0.014484747312963009, 0.11094912141561508, 0.04996741563081741, 0.15437184274196625, -0.036877475678920746, 0.10275144129991531, -0.005485037807375193, -0.045493535697460175, 0.007430011406540871, -0.023452382534742355, -0.03580089285969734, 0.3045821785926819, 0.20666144788265228, -0.2701679766178131, 0.176081120967865, -0.01842333748936653, 0.1721588522195816, 0.004592226818203926, 0.013947135768830776, 0.32610633969306946, -0.2998712658882141, 0.19545288383960724, 0.09732896834611893, 0.3590957522392273, -0.13008540868759155, -0.1550515592098236, -0.02822447568178177, 0.061275143176317215, 0.041527070105075836, 0.22455252707004547, -0.1463567614555359, 0.008698230609297752, 0.13488878309726715, -0.08931224048137665, -0.011678782291710377, 0.27344566583633423, 0.2953782081604004, -0.06546156108379364, -0.21158775687217712, 0.007216877304017544, 0.301155686378479, 0.2955465614795685, 0.2288535088300705, 0.1197466254234314, 0.19592055678367615, 0.1732967048883438, -0.20004889369010925, -0.32755178213119507, 0.37516698241233826, -0.07891663163900375, 0.03933113440871239, -0.19251877069473267, -0.21869321167469025, -0.08184481412172318, 0.13606013357639313, -0.18722712993621826, -0.06594356894493103, 0.19626101851463318, 0.21847881376743317, -0.21869388222694397, -0.4077450931072235, -0.04353266581892967, 0.016043446958065033, 0.15761467814445496, -0.2169870287179947, 0.4991551339626312, 0.2705327272415161, -0.05466008931398392, -0.16325069963932037, 0.31408581137657166, 0.44854462146759033, 0.2007250040769577, -0.1284497231245041, 0.09777571260929108, 0.12251945585012436, -0.010440620593726635, -0.0364384800195694, 0.42975836992263794, 0.3452330529689789, 0.11359167844057083, 0.2829185724258423, 0.10922464728355408, -0.2205701768398285, -0.09852924942970276, 0.09332350641489029, -0.056722868233919144, 0.12509004771709442, 0.45122575759887695, 0.004477081820368767, 0.07499099522829056, -0.33516865968704224, 0.048538342118263245, -0.48050686717033386, 0.43050500750541687, 0.49336859583854675, -0.19419163465499878, -0.01261254120618105, -0.10424742102622986, 0.08645523339509964, 0.0925588384270668, 0.32883960008621216, 0.2744682729244232, 0.4959403872489929, -0.4177182614803314, -0.3438931703567505, -0.33430448174476624, 0.1863345503807068, -0.29574984312057495, 0.1797839105129242, -0.25193914771080017, 0.05943450704216957, 0.14345873892307281, 0.10078197717666626, -0.12724964320659637, 0.36669251322746277, 0.1858077049255371, 0.22374454140663147, -0.12960800528526306, 0.11506518721580505, -0.163008913397789, 0.0071015250869095325, -0.006841439753770828, -0.48519760370254517, -0.14542809128761292, -0.07270404696464539, 0.06646881252527237, -0.25896966457366943, 0.0846332311630249, 0.04418185353279114, -0.15182961523532867, 0.13502250611782074, 0.027905968949198723, 0.6574344038963318, -0.23933963477611542, -0.1950957030057907, -0.2961331605911255, -0.2016223967075348, -0.18503469228744507, -0.02865864895284176, 0.09899276494979858, 0.3526170253753662, 0.0663159042596817, 0.15086492896080017, -0.1567121148109436, 0.43801024556159973, 0.16986306011676788, 0.34537288546562195, -0.13653288781642914, 0.10781005769968033, -0.3517186939716339, -0.12050823122262955, 0.04667595028877258, 0.5064769983291626, 0.0218659695237875, -0.17843884229660034, -0.29264897108078003, -0.5317478179931641, 0.5479227900505066, -0.8124227523803711, -0.2576376497745514, 0.07841914892196655, 0.0957217738032341, -0.011472937650978565, -0.2659360468387604, -0.5267436504364014, 0.2552783787250519, 0.09849096089601517, -0.07824144512414932, -0.3275497555732727, 0.11571633815765381, -0.09428267180919647, -0.06467649340629578, -0.052635401487350464, 0.3443566560745239, 0.1893858164548874, -0.27996203303337097, -0.19547449052333832, -0.3156384527683258 ]
https://github.com/huggingface/datasets/issues/233
Fail to download c4 english corpus
@lhoestq I am facing `IsADirectoryError` while downloading with this command. Can you pls look into it & help me. I'm using version 0.4.0 of `nlp`. ``` dataset = load_dataset("c4", 'en', data_dir='.', beam_runner='DirectRunner') ``` Here's the complete stack trace. ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, post-processed: Unknown sizetotal: Unknown size) to /home/devops/.cache/huggingface/datasets/c4/en/2.3.0/096df5a27756d51957c959a2499453e60a08154971fceb017bbb29f54b11bef7... --------------------------------------------------------------------------- IsADirectoryError Traceback (most recent call last) <ipython-input-11-f622e6705e03> in <module> ----> 1 dataset = load_dataset("c4", 'en', data_dir='.', beam_runner='DirectRunner') /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 547 # Download and prepare data 548 builder_instance.download_and_prepare( --> 549 download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, 550 ) 551 /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 461 if not downloaded_from_gcs: 462 self._download_and_prepare( --> 463 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 464 ) 465 # Sync info /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 964 pipeline = beam_utils.BeamPipeline(runner=beam_runner, options=beam_options,) 965 super(BeamBasedBuilder, self)._download_and_prepare( --> 966 dl_manager, verify_infos=False, pipeline=pipeline, 967 ) # TODO handle verify_infos in beam datasets 968 # Run pipeline /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 516 split_dict = SplitDict(dataset_name=self.name) 517 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 518 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 519 # Checksums verification 520 if verify_infos: /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/datasets/c4/096df5a27756d51957c959a2499453e60a08154971fceb017bbb29f54b11bef7/c4.py in _split_generators(self, dl_manager, pipeline) 187 if self.config.realnewslike: 188 files_to_download["realnews_domains"] = _REALNEWS_DOMAINS_URL --> 189 file_paths = dl_manager.download_and_extract(files_to_download) 190 191 if self.config.webtextlike: /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in download_and_extract(self, url_or_urls) 218 extracted_path(s): `str`, extracted paths of given URL(s). 219 """ --> 220 return self.extract(self.download(url_or_urls)) 221 222 def get_recorded_sizes_checksums(self): /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in download(self, url_or_urls) 156 lambda url: cached_path(url, download_config=self._download_config,), url_or_urls, 157 ) --> 158 self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) 159 return downloaded_path_or_paths 160 /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in _record_sizes_checksums(self, url_or_urls, downloaded_path_or_paths) 106 flattened_downloaded_path_or_paths = flatten_nested(downloaded_path_or_paths) 107 for url, path in zip(flattened_urls_or_urls, flattened_downloaded_path_or_paths): --> 108 self._recorded_sizes_checksums[url] = get_size_checksum_dict(path) 109 110 def download_custom(self, url_or_urls, custom_download): /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/info_utils.py in get_size_checksum_dict(path) 77 """Compute the file size and the sha256 checksum of a file""" 78 m = sha256() ---> 79 with open(path, "rb") as f: 80 for chunk in iter(lambda: f.read(1 << 20), b""): 81 m.update(chunk) IsADirectoryError: [Errno 21] Is a directory: '/' ``` Can anyone please try to see what I am doing wrong or is this a bug?
i run following code to download c4 English corpus. ``` dataset = nlp.load_dataset('c4', 'en', beam_runner='DirectRunner' , data_dir='/mypath') ``` and i met failure as follows ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/adam/.cache/huggingface/datasets/c4/en/2.3.0... Traceback (most recent call last): File "download_corpus.py", line 38, in <module> , data_dir='/home/adam/data/corpus/en/c4') File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 420, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 816, in _download_and_prepare dl_manager, verify_infos=False, pipeline=pipeline, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 457, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/datasets/c4/f545de9f63300d8d02a6795e2eb34e140c47e62a803f572ac5599e170ee66ecc/c4.py", line 175, in _split_generators dl_manager.download_checksums(_CHECKSUMS_URL) AttributeError: 'DownloadManager' object has no attribute 'download_checksums ``` can i get any advice?
341
Fail to download c4 english corpus i run following code to download c4 English corpus. ``` dataset = nlp.load_dataset('c4', 'en', beam_runner='DirectRunner' , data_dir='/mypath') ``` and i met failure as follows ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, total: Unknown size) to /home/adam/.cache/huggingface/datasets/c4/en/2.3.0... Traceback (most recent call last): File "download_corpus.py", line 38, in <module> , data_dir='/home/adam/data/corpus/en/c4') File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/load.py", line 520, in load_dataset save_infos=save_infos, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 420, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 816, in _download_and_prepare dl_manager, verify_infos=False, pipeline=pipeline, File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/builder.py", line 457, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/adam/anaconda3/envs/adam/lib/python3.7/site-packages/nlp/datasets/c4/f545de9f63300d8d02a6795e2eb34e140c47e62a803f572ac5599e170ee66ecc/c4.py", line 175, in _split_generators dl_manager.download_checksums(_CHECKSUMS_URL) AttributeError: 'DownloadManager' object has no attribute 'download_checksums ``` can i get any advice? @lhoestq I am facing `IsADirectoryError` while downloading with this command. Can you pls look into it & help me. I'm using version 0.4.0 of `nlp`. ``` dataset = load_dataset("c4", 'en', data_dir='.', beam_runner='DirectRunner') ``` Here's the complete stack trace. ``` Downloading and preparing dataset c4/en (download: Unknown size, generated: Unknown size, post-processed: Unknown sizetotal: Unknown size) to /home/devops/.cache/huggingface/datasets/c4/en/2.3.0/096df5a27756d51957c959a2499453e60a08154971fceb017bbb29f54b11bef7... --------------------------------------------------------------------------- IsADirectoryError Traceback (most recent call last) <ipython-input-11-f622e6705e03> in <module> ----> 1 dataset = load_dataset("c4", 'en', data_dir='.', beam_runner='DirectRunner') /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 547 # Download and prepare data 548 builder_instance.download_and_prepare( --> 549 download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, 550 ) 551 /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 461 if not downloaded_from_gcs: 462 self._download_and_prepare( --> 463 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 464 ) 465 # Sync info /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 964 pipeline = beam_utils.BeamPipeline(runner=beam_runner, options=beam_options,) 965 super(BeamBasedBuilder, self)._download_and_prepare( --> 966 dl_manager, verify_infos=False, pipeline=pipeline, 967 ) # TODO handle verify_infos in beam datasets 968 # Run pipeline /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 516 split_dict = SplitDict(dataset_name=self.name) 517 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 518 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 519 # Checksums verification 520 if verify_infos: /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/datasets/c4/096df5a27756d51957c959a2499453e60a08154971fceb017bbb29f54b11bef7/c4.py in _split_generators(self, dl_manager, pipeline) 187 if self.config.realnewslike: 188 files_to_download["realnews_domains"] = _REALNEWS_DOMAINS_URL --> 189 file_paths = dl_manager.download_and_extract(files_to_download) 190 191 if self.config.webtextlike: /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in download_and_extract(self, url_or_urls) 218 extracted_path(s): `str`, extracted paths of given URL(s). 219 """ --> 220 return self.extract(self.download(url_or_urls)) 221 222 def get_recorded_sizes_checksums(self): /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in download(self, url_or_urls) 156 lambda url: cached_path(url, download_config=self._download_config,), url_or_urls, 157 ) --> 158 self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) 159 return downloaded_path_or_paths 160 /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/download_manager.py in _record_sizes_checksums(self, url_or_urls, downloaded_path_or_paths) 106 flattened_downloaded_path_or_paths = flatten_nested(downloaded_path_or_paths) 107 for url, path in zip(flattened_urls_or_urls, flattened_downloaded_path_or_paths): --> 108 self._recorded_sizes_checksums[url] = get_size_checksum_dict(path) 109 110 def download_custom(self, url_or_urls, custom_download): /data/anaconda/envs/hf/lib/python3.6/site-packages/nlp/utils/info_utils.py in get_size_checksum_dict(path) 77 """Compute the file size and the sha256 checksum of a file""" 78 m = sha256() ---> 79 with open(path, "rb") as f: 80 for chunk in iter(lambda: f.read(1 << 20), b""): 81 m.update(chunk) IsADirectoryError: [Errno 21] Is a directory: '/' ``` Can anyone please try to see what I am doing wrong or is this a bug?
[ 0.011554836295545101, 0.09108605235815048, -0.0556439645588398, 0.2902231812477112, 0.1486303210258484, 0.165297269821167, -0.06323659420013428, 0.31740131974220276, -0.11661405861377716, 0.0394292026758194, -0.1543145626783371, 0.008751311339437962, 0.026757964864373207, 0.08450008183717728, 0.13103629648685455, -0.5472639203071594, -0.2235967516899109, 0.15271468460559845, -0.13122034072875977, -0.1412544548511505, -0.04234261438250542, 0.425819456577301, -0.11378829926252365, -0.17473654448986053, -0.060003820806741714, -0.13748638331890106, -0.1974727064371109, -0.05506964400410652, -0.206342875957489, -0.5448324680328369, 0.4454171657562256, 0.0049822283908724785, 0.1893908828496933, 0.3470120429992676, -0.00010940983338514343, -0.017852723598480225, 0.4102250039577484, -0.1208093985915184, -0.24889123439788818, -0.39947474002838135, 0.17930305004119873, -0.32142797112464905, -0.0999806746840477, -0.3226756453514099, -0.22828543186187744, -0.13052566349506378, 0.1668986976146698, -0.2270071804523468, 0.04316183179616928, 0.31656414270401, 0.27359774708747864, -0.02551410160958767, 0.28026527166366577, -0.13305135071277618, -0.18314756453037262, -0.24020244181156158, -0.09089802205562592, 0.23933732509613037, 0.16672825813293457, 0.2533930838108063, -0.09512829035520554, 0.15294644236564636, 0.050275906920433044, 0.013414686545729637, -0.10940220952033997, -0.22099772095680237, 0.04897070303559303, -0.2720613479614258, 0.3356460928916931, 0.05530325323343277, 0.7832090258598328, -0.28178685903549194, -0.16184261441230774, 0.16128337383270264, 0.2839297950267792, -0.21231360733509064, 0.2203889638185501, 0.42824068665504456, -0.13925319910049438, 0.000720260024536401, -0.32490992546081543, -0.09991490095853806, -0.18179000914096832, 0.20378312468528748, 0.020981663838028908, 0.008731251582503319, -0.08046534657478333, -0.010057920590043068, 0.21736912429332733, 0.10147811472415924, 0.07938104122877121, -0.07899791747331619, -0.2777694761753082, 0.29618018865585327, -0.2832443118095398, 0.020596779882907867, -0.14629711210727692, 0.5204558968544006, 0.025380078703165054, -0.36212971806526184, -0.1353999376296997, -0.1054488867521286, 0.07566574215888977, 0.027679964900016785, -0.053336258977651596, 0.33945122361183167, 0.10876891016960144, 0.028519798070192337, 0.07979916781187057, 0.1301851123571396, 0.07434216886758804, -0.04996660351753235, -0.1396477073431015, -0.22278472781181335, -0.29879510402679443, 0.27473413944244385, -0.12344938516616821, -0.3272612690925598, -0.152159184217453, 0.0012160702608525753, -0.20873026549816132, -0.03460110351443291, -0.09959448873996735, 0.44142651557922363, -0.15790197253227234, 0.15262065827846527, 0.08801556378602982, 0.181705504655838, -0.19471216201782227, -0.36601343750953674, -0.14900997281074524, 0.20088206231594086, -0.4686216115951538, -0.3205321729183197, 0.24913661181926727, -0.31658536195755005, 0.43263155221939087, -0.08860336989164352, 0.10732515901327133, -0.10228720307350159, -0.14219854772090912, -0.22252364456653595, -0.25826147198677063, 0.18804460763931274, 0.06787674874067307, 0.2651395797729492, 0.012081077322363853, -0.032829076051712036, -0.007649990729987621, -0.24501898884773254, -0.12950891256332397, -0.19092749059200287, -0.07252581417560577, 0.17847749590873718, -0.010353424586355686, -0.13389432430267334, -0.5229305028915405, 0.049976151436567307, 0.19104844331741333, 0.03806271776556969, -0.002433453919366002, -0.2078721523284912, -0.23149988055229187, -0.20859836041927338, 0.11716810613870621, 0.5448203086853027, -0.01881347969174385, 0.028378581628203392, -0.043567460030317307, -0.011956041678786278, 0.4996945858001709, 0.3720760941505432, -0.09973928332328796, 0.17216771841049194, -0.20958589017391205, 0.1426471471786499, 0.16642680764198303, -0.5432875752449036, -0.22140532732009888, 0.24188481271266937, -0.04924983158707619, 0.09035564213991165, 0.032922592014074326, -0.4252801537513733, 0.2009977102279663, -0.13091635704040527, 0.11172951012849808, 0.2759278118610382, 0.09924531728029251, 0.12656046450138092, -0.24118490517139435, -0.1267588585615158, 0.24730096757411957, 0.10466139763593674, 0.16901753842830658, -0.10204527527093887, 0.2604553699493408, 0.18707899749279022, 0.26134735345840454, -0.12082542479038239, 0.3596663475036621, 0.2470407485961914, -0.26252278685569763, -0.30720555782318115, 0.10502215474843979, 0.19859431684017181, -0.33054354786872864, 0.20660102367401123, -0.2245476245880127, 0.2911973297595978, 0.05326284468173981, -0.021892886608839035, -0.32561975717544556, -0.20640774071216583, -0.24103625118732452, -0.20117612183094025, 0.17741981148719788, -0.042908716946840286, 0.32806962728500366, 0.16727864742279053, 0.11972077190876007, 0.3532952070236206, -0.30633121728897095, -0.10966163873672485, -0.10674040764570236, 0.10267000645399094, -0.24342705309391022, -0.07219044864177704, 0.32417479157447815, 0.24245412647724152, 0.2653384804725647, -0.15683673322200775, -0.13989250361919403, 0.07293418794870377, -0.1470297873020172, 0.41556471586227417, -0.1165601834654808, -0.12037429213523865, 0.36946365237236023, -0.38100001215934753, 0.40821364521980286, 0.3177173137664795, 0.06451413035392761, -0.07451402395963669, 0.30472713708877563, -0.24469633400440216, 0.05164717510342598, 0.0077798874117434025, 0.08690767735242844, -0.12712867558002472, 0.3317699730396271, -0.09151478111743927, 0.1778368204832077, -0.03593473136425018, 0.5329715013504028, -0.09439806640148163, 0.25456175208091736, -0.15274499356746674, -0.19701990485191345, 0.027612850069999695, 0.4264928698539734, 0.08075893670320511, -0.11451499164104462, 0.17100749909877777, -0.12888385355472565, -0.17582887411117554, 0.27580976486206055, 0.11890335381031036, 0.11022785305976868, 0.16510067880153656, 0.17313417792320251, 0.1311655193567276, 0.13357995450496674, -0.21879170835018158, 0.25292491912841797, -0.2158297598361969, 0.17182861268520355, 0.3353053629398346, 0.16610932350158691, -0.002951380331069231, -0.43208736181259155, -0.028696980327367783, 0.21439890563488007, 0.17780756950378418, -0.06852693855762482, -0.0997375026345253, -0.24677592515945435, -0.4081360101699829, -0.3134777843952179, -0.11854375153779984, 0.037131838500499725, 0.01724589802324772, -0.1968255341053009, 0.11412043869495392, -0.040705304592847824, -0.007626950275152922, -0.2748730778694153, -0.31127381324768066, -0.19947753846645355, -0.28509384393692017, -0.17256510257720947, 0.005929688457399607, -0.40908509492874146, 0.12316156923770905, 0.14126478135585785, 0.059434086084365845, 0.35669955611228943, -0.33560609817504883, -0.08273731917142868, -0.22347404062747955, -0.0705547109246254, 0.2513359785079956, -0.06519898772239685, -0.15453606843948364, 0.02216861955821514, 0.20069779455661774, -0.22271715104579926, -0.19328506290912628, 0.01556774228811264, -0.1274448186159134, -0.18748340010643005, 0.014690998941659927, -0.23348264396190643, -0.15572009980678558, -0.15952713787555695, -0.6133766174316406, -0.47461816668510437, -0.4864417314529419, 0.059995390474796295, -0.1413521021604538, 0.1965738981962204, 0.39358237385749817, -0.20145271718502045, 0.1657385379076004, 0.13731850683689117, 0.14365428686141968, -0.2028479427099228, -0.02627146802842617, 0.11786183714866638, -0.32325243949890137, -0.45436951518058777, 0.1173180565237999, 0.023861316964030266, 0.4150661826133728, 0.16472379863262177, -0.30464044213294983, 0.3316364288330078, -0.03227067366242409, 0.12915319204330444, 0.09138042479753494, 0.14185908436775208, 0.4941840171813965, -0.09971112757921219, -0.002217276254668832, 0.029206596314907074, 0.11091788113117218, -0.006735009141266346, 0.2292228639125824, 0.41094622015953064, -0.2725372910499573, 0.15089213848114014, 0.16940566897392273, 0.30103105306625366, 0.39882004261016846, -0.232613667845726, 0.6556059122085571, 0.3299940824508667, 0.1660485863685608, -0.07856053113937378, -0.22315995395183563, 0.4240542948246002, -0.0242031030356884, 0.050451792776584625, 0.39433977007865906, -0.16810761392116547, -0.5607067346572876, -0.11067616939544678, -0.41605839133262634, -0.40698719024658203, -0.06559905409812927, -0.005862243473529816, 0.1179787889122963, 0.40663567185401917, 0.04121735692024231, 0.17972931265830994, 0.25866907835006714, -0.28919345140457153, 0.15880200266838074, 0.22211094200611115, 0.030703643336892128, 0.2962246239185333, -0.08447860926389694, -0.1370987594127655, -0.7133893966674805, 0.31576135754585266, 0.28924059867858887, 0.16818109154701233, -0.14718396961688995, 0.3811459243297577, 0.0132089052349329, -0.1939181536436081, 0.540184497833252, -0.2146279662847519, 0.11722275614738464, 0.03856658563017845, 0.03946787491440773, -0.0822896733880043, 0.010347378440201283, 0.06700972467660904, 0.11764790862798691, 0.4223916530609131, 0.058951959013938904, -0.4840071499347687, -0.0881330743432045, -0.02180582284927368, 0.47672396898269653, 0.17085520923137665, -0.21849951148033142, -0.04999390244483948, -0.5328351855278015, -0.23357968032360077, 0.007856124080717564, 0.018049893900752068, 0.3688517212867737, -0.02341323159635067, -0.007777506951242685, 0.17834864556789398, 0.07187868654727936, 0.18671613931655884, 0.14257946610450745, 0.2800193727016449, 0.2922777533531189, 0.20065055787563324, 0.32970863580703735, 0.004377646837383509, 0.1921951174736023, 0.31830939650535583, -0.14868037402629852, 0.14024507999420166, -0.05302531644701958, 0.11649199575185776, 0.1367502361536026, 0.20459407567977905, 0.030132759362459183, -0.06275241822004318, -0.14156372845172882, -0.1979990154504776, 0.14650781452655792, 0.08352538198232651, 0.0963885635137558, 0.12574337422847748, -0.5703756809234619, -0.3882587254047394, 0.27962788939476013, -0.32025161385536194, 0.1595815122127533, 0.15448196232318878, 0.30578187108039856, -0.3391074538230896, 0.25593289732933044, 0.07954619824886322, 0.7368466258049011, -0.04026932269334793, 0.07664398103952408, 0.028607869520783424, 0.07720005512237549, 0.2957969605922699, -0.3393849730491638, 0.17917956411838531, -0.2431396096944809, 0.1196991503238678, -0.003681796370074153, 0.07773411273956299, -0.020392214879393578, 0.13655848801136017, -0.39119601249694824, 0.5633782148361206, 0.07773406058549881, -0.04482671990990639, 0.06428186595439911, 0.37384232878685, -0.141971617937088, -0.37668535113334656, -0.400392085313797, 0.18190637230873108, -0.3179159462451935, 0.3305777311325073, -0.20887888967990875, -0.08868356049060822, 0.10623431205749512, -0.102108895778656, -0.33046072721481323, 0.41570529341697693, -0.28299030661582947, 0.02536240965127945, -0.0954856351017952, -0.1803961992263794, 0.49802958965301514, 0.24747908115386963, 0.33054786920547485, 0.3744562268257141, -0.2370954006910324, 0.12063196301460266, 0.10322118550539017, -0.5300794243812561, 0.24470628798007965, 0.02162661962211132, 0.054736390709877014, -0.3400762677192688, -0.21754592657089233, 0.09308896213769913, -0.041183292865753174, -0.05254027619957924, 0.2623300850391388, -0.1425354778766632, -0.3336847722530365, 0.010510656051337719, -0.3549550771713257, 0.26264336705207825, -0.004656319972127676, 0.03925004601478577, 0.12762625515460968, -0.08342649787664413, -0.17889530956745148, 0.11126824468374252, 0.164037823677063, -0.21929259598255157, -0.09325580298900604, 0.311394602060318, 0.12255982309579849, -0.3694099485874176, 0.47010791301727295, 0.26933515071868896, -0.2435082644224167, -0.19013331830501556, -0.6724636554718018, -0.29658812284469604, -0.3600969910621643, -0.008136535994708538, -0.006864284630864859, 0.03629561513662338, -0.14320454001426697, 0.3669493794441223, -0.02891707234084606, -0.00734534440562129, 0.22492751479148865, -0.3883950710296631, -0.2859395444393158, 0.06967372447252274, -0.15974487364292145, 0.028575263917446136, 0.2387288212776184, 0.2828911244869232, 0.19142703711986542, 0.11299814283847809, -0.2709113657474518, -0.045179806649684906, -0.3741307854652405, 0.0734555795788765, 0.291336327791214, -0.10154294967651367, 0.3328826129436493, 0.11200129240751266, 0.10916994512081146, 0.25574246048927307, -0.2520967125892639, -0.2090446650981903, -0.11032947897911072, 0.08477605134248734, 0.1579771637916565, 0.08173822611570358, 0.32286664843559265, -0.3832601010799408, -0.14949475228786469, -0.028482496738433838, 0.12609505653381348, 0.30184003710746765, -0.033936742693185806, 0.1260330229997635, 0.240669384598732, 0.06285526603460312, -0.0867634192109108, 0.14244961738586426, 0.11672045290470123, 0.09450003504753113, -0.021135911345481873, 0.1423724889755249, 0.06791995465755463, -0.08107183128595352, -0.14362995326519012, -0.014484747312963009, 0.11094912141561508, 0.04996741563081741, 0.15437184274196625, -0.036877475678920746, 0.10275144129991531, -0.005485037807375193, -0.045493535697460175, 0.007430011406540871, -0.023452382534742355, -0.03580089285969734, 0.3045821785926819, 0.20666144788265228, -0.2701679766178131, 0.176081120967865, -0.01842333748936653, 0.1721588522195816, 0.004592226818203926, 0.013947135768830776, 0.32610633969306946, -0.2998712658882141, 0.19545288383960724, 0.09732896834611893, 0.3590957522392273, -0.13008540868759155, -0.1550515592098236, -0.02822447568178177, 0.061275143176317215, 0.041527070105075836, 0.22455252707004547, -0.1463567614555359, 0.008698230609297752, 0.13488878309726715, -0.08931224048137665, -0.011678782291710377, 0.27344566583633423, 0.2953782081604004, -0.06546156108379364, -0.21158775687217712, 0.007216877304017544, 0.301155686378479, 0.2955465614795685, 0.2288535088300705, 0.1197466254234314, 0.19592055678367615, 0.1732967048883438, -0.20004889369010925, -0.32755178213119507, 0.37516698241233826, -0.07891663163900375, 0.03933113440871239, -0.19251877069473267, -0.21869321167469025, -0.08184481412172318, 0.13606013357639313, -0.18722712993621826, -0.06594356894493103, 0.19626101851463318, 0.21847881376743317, -0.21869388222694397, -0.4077450931072235, -0.04353266581892967, 0.016043446958065033, 0.15761467814445496, -0.2169870287179947, 0.4991551339626312, 0.2705327272415161, -0.05466008931398392, -0.16325069963932037, 0.31408581137657166, 0.44854462146759033, 0.2007250040769577, -0.1284497231245041, 0.09777571260929108, 0.12251945585012436, -0.010440620593726635, -0.0364384800195694, 0.42975836992263794, 0.3452330529689789, 0.11359167844057083, 0.2829185724258423, 0.10922464728355408, -0.2205701768398285, -0.09852924942970276, 0.09332350641489029, -0.056722868233919144, 0.12509004771709442, 0.45122575759887695, 0.004477081820368767, 0.07499099522829056, -0.33516865968704224, 0.048538342118263245, -0.48050686717033386, 0.43050500750541687, 0.49336859583854675, -0.19419163465499878, -0.01261254120618105, -0.10424742102622986, 0.08645523339509964, 0.0925588384270668, 0.32883960008621216, 0.2744682729244232, 0.4959403872489929, -0.4177182614803314, -0.3438931703567505, -0.33430448174476624, 0.1863345503807068, -0.29574984312057495, 0.1797839105129242, -0.25193914771080017, 0.05943450704216957, 0.14345873892307281, 0.10078197717666626, -0.12724964320659637, 0.36669251322746277, 0.1858077049255371, 0.22374454140663147, -0.12960800528526306, 0.11506518721580505, -0.163008913397789, 0.0071015250869095325, -0.006841439753770828, -0.48519760370254517, -0.14542809128761292, -0.07270404696464539, 0.06646881252527237, -0.25896966457366943, 0.0846332311630249, 0.04418185353279114, -0.15182961523532867, 0.13502250611782074, 0.027905968949198723, 0.6574344038963318, -0.23933963477611542, -0.1950957030057907, -0.2961331605911255, -0.2016223967075348, -0.18503469228744507, -0.02865864895284176, 0.09899276494979858, 0.3526170253753662, 0.0663159042596817, 0.15086492896080017, -0.1567121148109436, 0.43801024556159973, 0.16986306011676788, 0.34537288546562195, -0.13653288781642914, 0.10781005769968033, -0.3517186939716339, -0.12050823122262955, 0.04667595028877258, 0.5064769983291626, 0.0218659695237875, -0.17843884229660034, -0.29264897108078003, -0.5317478179931641, 0.5479227900505066, -0.8124227523803711, -0.2576376497745514, 0.07841914892196655, 0.0957217738032341, -0.011472937650978565, -0.2659360468387604, -0.5267436504364014, 0.2552783787250519, 0.09849096089601517, -0.07824144512414932, -0.3275497555732727, 0.11571633815765381, -0.09428267180919647, -0.06467649340629578, -0.052635401487350464, 0.3443566560745239, 0.1893858164548874, -0.27996203303337097, -0.19547449052333832, -0.3156384527683258 ]