Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
Arabic
stringlengths
1
24
Transliteration
stringlengths
2
25
بولك
Bulcke
جانوس
Janus
نالبانديان
Nalbandian
ييلين
Yellen
نييل
Neil
كيرتلاند
Kirtland
غالغاني
Galgani
موليندو
Mulendo
اكريسيوس
Acrisius
كاربتون
Carpton
ايامي
Ayame
فاليبورام
Valepuram
شوش
Shosh
دوناس
Dunas
بوتزخويتسيري
Potzkhoetseri
كراكي
Kracky
جينهاي
Jinhai
فوهيدوف
Vohidov
ماتوس
Matusse
سبارتينا
Spartina
كادجيك
Kadjic
فيان
Fian
ليشون
Leshawn
انكاس
Ankas
زيسكين
Ziskin
رانغو
Rango
ماساكالي
Masakali
فينيغاس
Venegas
ثورستينسون
Thorstenson
كاشان
Kashan
كوجاك
Kojack
ميهوريان
Mihorean
كونونوف
Kononov
كوتو
Kuto
كامبوزانو
Campuzano
ميزوهو
Mizuho
روهيليو
Rohelio
سوروكابا
Sorocaba
ريمييف
Remiev
كاتيتو
Katito
نيدومبارا
Nedumpara
زايرا
Zaira
كورني
Corney
بينلو
Benlo
ساماتا
Samata
باغول
Pagol
ماشهاد
Mashhad
فيكاسدهام
Vikasdham
جينسانا
Jinsana
مساد
Msad
زفورنيك
Zvornik
راديتش
Radić
بيلترو
Beltro
بويمورودوف
Boimurodov
الكوريزا
Alcoreza
هيسبانيولا
Hispaniola
فافا
Fafa
كانفيلد
Canfield
نارولا
Narula
بغيدي
Bgidi
رينزو
Renzo
زوروف
Zurov
نايناي
Nainai
مونتغرافت
Montgraft
تاسكا
Taska
بلازاس
Plazas
بيسواس
Biswas
نيابانيرا
Nyabanira
هاي
Hae
كيستروغا
Kistruga
بريدراغ
Predrag
روبينو
Rubino
فاساك
Vasak
سلوبودان
Slobodan
ووماك
Womack
روبراه
Ruprah
انتيا
Antia
بلوتو
Pluto
بيتكوس
Petkus
زوربا
Zorba
نسينكييري
Nsenkyire
فاسيكا
Vasika
اتيكو
Atiku
تامولبور
Tamulpur
دوبار
Dobar
مارجو
Marju
كلوني
Kloni
دورين
Duren
ابزوغ
Abzug
هارمان
Haarmann
ساهارانبور
Saharanpur
اندروبوف
Andropov
هوتشوت
Hotshot
بوكون
Pucon
لييس
Leis
هيندا
Hinda
فورلاني
Furlani
سارما
Sarma
فيوليتي
Violetti
ديس
Dees
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Card for ANETAC

Dataset Summary

[More Information Needed]

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@article{HADJAMEUR2017287,
title = "Arabic Machine Transliteration using an Attention-based Encoder-decoder Model",
journal = "Procedia Computer Science",
volume = "117",
pages = "287 - 297",
year = "2017",
note = "Arabic Computational Linguistics",
issn = "1877-0509",
doi = "https://doi.org/10.1016/j.procs.2017.10.120",
url = "http://www.sciencedirect.com/science/article/pii/S1877050917321774",
author = "Mohamed Seghir Hadj Ameur and Farid Meziane and Ahmed Guessoum",
keywords = "Natural Language Processing, Arabic Language, Arabic Transliteration, Deep Learning, Sequence-to-sequence Models, Encoder-decoder Architecture, Recurrent Neural Networks",
abstract = "Transliteration is the process of converting words from a given source language alphabet to a target language alphabet, in a way that best preserves the phonetic and orthographic aspects of the transliterated words. Even though an important effort has been made towards improving this process for many languages such as English, French and Chinese, little research work has been accomplished with regard to the Arabic language. In this work, an attention-based encoder-decoder system is proposed for the task of Machine Transliteration between the Arabic and English languages. Our experiments proved the efficiency of our proposal approach in comparison to some previous research developed in this area."
}

Contributions

Thanks to @github-username for adding this dataset.

Downloads last month
57

Collection including arbml/ANETAC