id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
3,236
def selector_func(method, callargs, switchover_timestamp): spec = method_specifications.get(method) if spec is None: return "redis" # default backend (possibly invoke base directly instead?) if switchover_timestamp and time.time() < switchover_timestamp: return "redis" # snuba does not yet have all data operation_type, model_extractor = spec backends = {model_backends[model][operation_type] for model in model_extractor(callargs)} assert len(backends) == 1, "request was not directed to a single backend" return backends.pop()
def selector_func(method, callargs, switchover_timestamp): spec = method_specifications.get(method) if spec is None: return "redis" # default backend (possibly invoke base directly instead?) if switchover_timestamp is not None and time.time() < switchover_timestamp: return "redis" # snuba does not yet have all data operation_type, model_extractor = spec backends = {model_backends[model][operation_type] for model in model_extractor(callargs)} assert len(backends) == 1, "request was not directed to a single backend" return backends.pop()
44,503
def build_importer_task_spec( dependent_task: pipeline_spec_pb2.PipelineTaskSpec, input_name: str, input_type_schema: str, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Build an importer task spec. Args: dependent_task: The task requires importer node. input_name: The name of the input artifact needs to be imported. input_type_schema: The type of the input artifact. Returns: An importer node task spec. """ dependent_task_name = dependent_task.task_info.name task_spec = pipeline_spec_pb2.PipelineTaskSpec() task_spec.task_info.name = '{}_{}_importer'.format(dependent_task_name, input_name) task_spec.outputs.artifacts[OUTPUT_KEY].artifact_type.instance_schema = ( input_type_schema) task_spec.executor_label = task_spec.task_info.name return task_spec
def build_importer_task_spec( dependent_task: pipeline_spec_pb2.PipelineTaskSpec, input_name: str, input_type_schema: str, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds an importer task spec. Args: dependent_task: The task requires importer node. input_name: The name of the input artifact needs to be imported. input_type_schema: The type of the input artifact. Returns: An importer node task spec. """ dependent_task_name = dependent_task.task_info.name task_spec = pipeline_spec_pb2.PipelineTaskSpec() task_spec.task_info.name = '{}_{}_importer'.format(dependent_task_name, input_name) task_spec.outputs.artifacts[OUTPUT_KEY].artifact_type.instance_schema = ( input_type_schema) task_spec.executor_label = task_spec.task_info.name return task_spec
3,906
def is_threshold_sequence(degree_sequence): """Returns True if the sequence is a threshold degree seqeunce. Uses the property that a threshold graph must be constructed by adding either dominating or isolated nodes. Thus, it can be deconstructed iteratively by removing a node of degree zero or a node that connects to the remaining nodes. If this deconstruction failes then the sequence is not a threshold sequence. Parameters ---------- degree_sequence The degree sequence Returns ------- False if not a threshold degree sequence, True otherwise """ ds = degree_sequence[:] # get a copy so we don't destroy original ds.sort() while ds: if ds[0] == 0: # if isolated node ds.pop(0) # remove it continue if ds[-1] != len(ds) - 1: # is the largest degree node dominating? return False # no, not a threshold degree sequence ds.pop() # yes, largest is the dominating node ds = [d - 1 for d in ds] # remove it and decrement all degrees return True
def is_threshold_sequence(degree_sequence): """Returns True if the sequence is a threshold degree sequence. Uses the property that a threshold graph must be constructed by adding either dominating or isolated nodes. Thus, it can be deconstructed iteratively by removing a node of degree zero or a node that connects to the remaining nodes. If this deconstruction failes then the sequence is not a threshold sequence. Parameters ---------- degree_sequence The degree sequence Returns ------- False if not a threshold degree sequence, True otherwise """ ds = degree_sequence[:] # get a copy so we don't destroy original ds.sort() while ds: if ds[0] == 0: # if isolated node ds.pop(0) # remove it continue if ds[-1] != len(ds) - 1: # is the largest degree node dominating? return False # no, not a threshold degree sequence ds.pop() # yes, largest is the dominating node ds = [d - 1 for d in ds] # remove it and decrement all degrees return True
1,618
def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator : estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe : boolean, optional If safe is false, clone will fall back to a deep copy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) elif isinstance(estimator, type): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' " "it is a class rather than instance of a class " % (repr(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in new_object_params.items(): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if param1 is not param2: raise RuntimeError('Cannot clone object %s, as the constructor ' 'either does not set or modifies parameter %s' % (estimator, name)) return new_object
def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator : estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe : boolean, optional If safe is false, clone will fall back to a deep copy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) elif isinstance(estimator, type): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' " "it is a class rather than an instance." % (repr(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in new_object_params.items(): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if param1 is not param2: raise RuntimeError('Cannot clone object %s, as the constructor ' 'either does not set or modifies parameter %s' % (estimator, name)) return new_object
32,383
def main(): try: targetList = demisto.args().get("list") engagement_list = demisto.executeCommand("getList", {"listName": targetList})[0]["Contents"].split(",") random.shuffle(engagement_list) buffer_list = "" for token in engagement_list: buffer_list = buffer_list + token.replace('"', '') + "," buffer_list = buffer_list[:-1] demisto.executeCommand("setList", {"listName": targetList, "listData": buffer_list}) return_results("List " + targetList + " successfully shuffled!") except Exception as ex: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute BaseScript. Error: {str(ex)}')
def main(): try: targetList = demisto.args().get("list") engagement_list = demisto.executeCommand("getList", {"listName": targetList})[0]["Contents"].split(",") random.shuffle(engagement_list) buffer_list = ','.join(engagement_list) buffer_list = buffer_list[:-1] demisto.executeCommand("setList", {"listName": targetList, "listData": buffer_list}) return_results("List " + targetList + " successfully shuffled!") except Exception as ex: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute BaseScript. Error: {str(ex)}')
11,816
def _getexif(self): # Extract EXIF information. This method is highly experimental, # and is likely to be replaced with something better in a future # version. # The EXIF record consists of a TIFF file embedded in a JPEG # application marker (!). try: data = self.info["exif"] except KeyError: return None file = io.BytesIO(data[6:]) head = file.read(8) # process dictionary info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif = dict(_fixup_dict(info)) # get exif extension try: # exif field 0x8769 is an offset pointer to the location # of the nested embedded exif ifd. # It should be a long, but may be corrupted. file.seek(exif[0x8769]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif.update(_fixup_dict(info)) # get gpsinfo extension try: # exif field 0x8825 is an offset pointer to the location # of the nested embedded gps exif ifd. # It should be a long, but may be corrupted. file.seek(exif[0x8825]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif[0x8825] = _fixup_dict(info) # get interop try: # exif field 0xa005 is an offset pointer to the location # of the nested embedded interop exif ifd. # It should be a long, but may be corrupted. file.seek(exif[0xa005]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif["interop"] = _fixup_dict(info) return exif
def _getexif(self): # Extract EXIF information. This method is highly experimental, # and is likely to be replaced with something better in a future # version. # The EXIF record consists of a TIFF file embedded in a JPEG # application marker (!). try: data = self.info["exif"] except KeyError: return None file = io.BytesIO(data[6:]) head = file.read(8) # process dictionary info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif = dict(_fixup_dict(info)) # get exif extension try: # exif field 0x8769 is an offset pointer to the location # of the nested embedded exif ifd. # It should be a long, but may be corrupted. file.seek(exif[0x8769]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif.update(_fixup_dict(info)) # get gpsinfo extension try: # exif field 0x8825 is an offset pointer to the location # of the nested embedded gps exif ifd. # It should be a long, but may be corrupted. file.seek(exif[0x8825]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif[0x8825] = _fixup_dict(info) # get interop try: # exif field 0xa005 is an offset pointer to the location # of the nested embedded interop Exif IFD. # It should be a long, but may be corrupted. file.seek(exif[0xa005]) except (KeyError, TypeError): pass else: info = TiffImagePlugin.ImageFileDirectory_v1(head) info.load(file) exif["interop"] = _fixup_dict(info) return exif
54,223
def test_text_diagrams(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') circuit = cirq.Circuit( cirq.X(a), cirq.Y(a), cirq.Z(a), cirq.Z(a) ** sympy.Symbol('x'), cirq.rx(sympy.Symbol('x')).on(a), cirq.CZ(a, b), cirq.CNOT(a, b), cirq.CNOT(b, a), (cirq.CNOT ** 0.5)(a, b), (cirq.CNOT ** 0.5)(b, a), cirq.H(a) ** 0.5, cirq.I(a), cirq.IdentityGate(2)(a, b), cirq.cphase(sympy.pi * sympy.Symbol('t')).on(a, b), ) cirq.testing.assert_has_diagram( circuit, """ a: ───X───Y───Z───Z^x───Rx(x)───@───@───X───@───────X^0.5───H^0.5───I───I───@───── β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ b: ─────────────────────────────@───X───@───X^0.5───@───────────────────I───@^t─── """, ) cirq.testing.assert_has_diagram( circuit, """ a: ---X---Y---Z---Z^x---Rx(x)---@---@---X---@-------X^0.5---H^0.5---I---I---@----- | | | | | | | b: -----------------------------@---X---@---X^0.5---@-------------------I---@^t--- """, use_unicode_characters=False, )
def test_text_diagrams(): a = cirq.NamedQubit('a') b = cirq.NamedQubit('b') circuit = cirq.Circuit( cirq.X(a), cirq.Y(a), cirq.Z(a), cirq.Z(a) ** sympy.Symbol('x'), cirq.rx(sympy.Symbol('x')).on(a), cirq.CZ(a, b), cirq.CNOT(a, b), cirq.CNOT(b, a), cirq.CNOT(a, b) ** 0.5, cirq.CNOT(a, b) ** 0.5, cirq.H(a) ** 0.5, cirq.I(a), cirq.IdentityGate(2)(a, b), cirq.cphase(sympy.pi * sympy.Symbol('t')).on(a, b), ) cirq.testing.assert_has_diagram( circuit, """ a: ───X───Y───Z───Z^x───Rx(x)───@───@───X───@───────X^0.5───H^0.5───I───I───@───── β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ b: ─────────────────────────────@───X───@───X^0.5───@───────────────────I───@^t─── """, ) cirq.testing.assert_has_diagram( circuit, """ a: ---X---Y---Z---Z^x---Rx(x)---@---@---X---@-------X^0.5---H^0.5---I---I---@----- | | | | | | | b: -----------------------------@---X---@---X^0.5---@-------------------I---@^t--- """, use_unicode_characters=False, )
30,791
def args(): """Retrieves a command / script arguments object Returns: dict: Arguments object """ return {}
def args(): """Retrieves a command / script arguments object Returns: dict. Arguments object """ return {}
38,972
def normalize_model_name(name: str) -> str: """Normalizes the given model name.""" return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name)
def normalize_name(name: str) -> str: """Normalizes the given model name.""" return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name)
40,084
def make_response_error(errmsg, in_httpcode=None, details=None): if details is None: details = {} if not in_httpcode: httpcode = 500 else: httpcode = in_httpcode msg = str(errmsg) ret = { 'message': msg, 'httpcode': int(httpcode), 'detail': details } if 'error_codes' not in ret['detail']: ret['detail']['error_codes'] = [] if isinstance(errmsg, Exception): if 'anchore_error_json' in errmsg.__dict__: # Try to load it as json try: anchore_error_json = errmsg.__dict__.get('anchore_error_json', None) if type(anchore_error_json) == dict: err_json = anchore_error_json else: err_json = json.loads(anchore_error_json) except (TypeError, ValueError): # Then it may just be a string, we cannot do anything with it logger.debug('Failed to parse anchore_error_json as json') return ret if {'message', 'httpcode', 'detail'}.issubset(set(err_json)): ret.update(err_json) try: if {'error_code'}.issubset(set(err_json)) and err_json.get('error_code', None): if 'error_codes' not in ret['detail']: ret['detail']['error_codes'] = [] ret['detail']['error_codes'].append(err_json.get('error_code')) except KeyError: logger.warn("unable to marshal error details: source error {}".format(errmsg.__dict__)) return ret
def make_response_error(errmsg, in_httpcode=None, details=None): if details is None: details = {} if not in_httpcode: httpcode = 500 else: httpcode = in_httpcode msg = str(errmsg) ret = { 'message': msg, 'httpcode': int(httpcode), 'detail': details } if 'error_codes' not in ret['detail']: ret['detail']['error_codes'] = [] if isinstance(errmsg, Exception): if 'anchore_error_json' in errmsg.__dict__: # Try to load it as json try: anchore_error_json = getattr(errmsg, "anchore_error_json", None) if type(anchore_error_json) == dict: err_json = anchore_error_json else: err_json = json.loads(anchore_error_json) except (TypeError, ValueError): # Then it may just be a string, we cannot do anything with it logger.debug('Failed to parse anchore_error_json as json') return ret if {'message', 'httpcode', 'detail'}.issubset(set(err_json)): ret.update(err_json) try: if {'error_code'}.issubset(set(err_json)) and err_json.get('error_code', None): if 'error_codes' not in ret['detail']: ret['detail']['error_codes'] = [] ret['detail']['error_codes'].append(err_json.get('error_code')) except KeyError: logger.warn("unable to marshal error details: source error {}".format(errmsg.__dict__)) return ret
38,988
def constr_lower(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': lower = field.type_.lower_str or config.anystr_lower if lower: v = v.strip() return v
def constr_lower(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': lower = field.type_.lower_str or config.anystr_lower if lower: v = v.lower() return v
32,910
def _default_span_processors_factory( trace_filters, # type: List[TraceFilter] trace_writer, # type: TraceWriter partial_flush_enabled, # type: bool partial_flush_min_spans, # type: int appsec_enabled, # type: bool ): # type: (...) -> List[SpanProcessor] """Construct the default list of span processors to use.""" trace_processors = [] # type: List[TraceProcessor] trace_processors += [TraceTagsProcessor()] trace_processors += [TraceSamplingProcessor()] trace_processors += [TraceTopLevelSpanProcessor()] trace_processors += trace_filters span_processors = [] # type: List[SpanProcessor] if appsec_enabled: try: from .appsec.processor import AppSecSpanProcessor appsec_span_processor = AppSecSpanProcessor() span_processors.append(appsec_span_processor) except Exception as e: # DDAS-001-01 log.error( "[DDAS-001-01] " "AppSec could not start because of an unexpected error. No security activities will be collected. " "Please contact support at https://docs.datadoghq.com/help/ for help. Error details: \n%s", repr(e), ) if config._raise: raise span_processors.append( SpanAggregator( partial_flush_enabled=partial_flush_enabled, partial_flush_min_spans=partial_flush_min_spans, trace_processors=trace_processors, writer=trace_writer, ) ) return span_processors
def _default_span_processors_factory( trace_filters, # type: List[TraceFilter] trace_writer, # type: TraceWriter partial_flush_enabled, # type: bool partial_flush_min_spans, # type: int appsec_enabled, # type: bool ): # type: (...) -> List[SpanProcessor] """Construct the default list of span processors to use.""" trace_processors = [TraceTagsProcessor(), TraceSamplingProcessor(), TraceTopLevelSpanProcessor()] + trace_filters # type: List[TraceProcessor] span_processors = [] # type: List[SpanProcessor] if appsec_enabled: try: from .appsec.processor import AppSecSpanProcessor appsec_span_processor = AppSecSpanProcessor() span_processors.append(appsec_span_processor) except Exception as e: # DDAS-001-01 log.error( "[DDAS-001-01] " "AppSec could not start because of an unexpected error. No security activities will be collected. " "Please contact support at https://docs.datadoghq.com/help/ for help. Error details: \n%s", repr(e), ) if config._raise: raise span_processors.append( SpanAggregator( partial_flush_enabled=partial_flush_enabled, partial_flush_min_spans=partial_flush_min_spans, trace_processors=trace_processors, writer=trace_writer, ) ) return span_processors
2,491
def test_gradient_boosting_early_stopping(): X, y = make_classification(n_samples=1000, random_state=0) gbc = GradientBoostingClassifier( n_estimators=100, n_iter_no_change=10, learning_rate=0.1, max_depth=3, random_state=42, ) gbr = GradientBoostingRegressor( n_estimators=100, n_iter_no_change=10, learning_rate=0.1, max_depth=3, random_state=42, ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # Check if early_stopping works as expected for est, tol, early_stop_n_estimators in ( (gbc, 1e-1, 28), (gbr, 1e-1, 13), (gbc, 1e-3, 70), (gbr, 1e-3, 28), ): est.set_params(tol=tol) est.fit(X_train, y_train) assert est.n_estimators_ == early_stop_n_estimators assert est.score(X_test, y_test) > 0.7 # Without early stopping gbc = GradientBoostingClassifier( n_estimators=5, learning_rate=0.1, max_depth=3, random_state=42 ) gbc.fit(X, y) gbr = GradientBoostingRegressor( n_estimators=10, learning_rate=0.1, max_depth=3, random_state=42 ) gbr.fit(X, y) assert gbc.n_estimators_ == 5 assert gbr.n_estimators_ == 10
def test_gradient_boosting_early_stopping(): X, y = make_classification(n_samples=1000, random_state=0) gbc = GradientBoostingClassifier( n_estimators=1000, n_iter_no_change=10, learning_rate=0.1, max_depth=3, random_state=42, ) gbr = GradientBoostingRegressor( n_estimators=100, n_iter_no_change=10, learning_rate=0.1, max_depth=3, random_state=42, ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # Check if early_stopping works as expected for est, tol, early_stop_n_estimators in ( (gbc, 1e-1, 28), (gbr, 1e-1, 13), (gbc, 1e-3, 70), (gbr, 1e-3, 28), ): est.set_params(tol=tol) est.fit(X_train, y_train) assert est.n_estimators_ == early_stop_n_estimators assert est.score(X_test, y_test) > 0.7 # Without early stopping gbc = GradientBoostingClassifier( n_estimators=5, learning_rate=0.1, max_depth=3, random_state=42 ) gbc.fit(X, y) gbr = GradientBoostingRegressor( n_estimators=10, learning_rate=0.1, max_depth=3, random_state=42 ) gbr.fit(X, y) assert gbc.n_estimators_ == 5 assert gbr.n_estimators_ == 10
30,969
def iam_command_success(user_profile, okta_user): """ Handles successful responses from Okta API by preparing the User Profile object with the user data. Args: user_profile (οΏΏIAMUserProfile): The User Profile object. okta_user (dict): The data retrieved from Okta. """ if demisto.command() == 'disable-user': active = False elif demisto.command() == 'enable-user': active = True else: active = False if okta_user.get('status') == DEPROVISIONED_STATUS else True user_profile.set_result( success=True, active=active, iden=okta_user.get('id'), email=okta_user.get('profile', {}).get('email'), username=okta_user.get('profile', {}).get('login'), details=okta_user )
def iam_command_success(user_profile, okta_user): """ Handles successful responses from Okta API by preparing the User Profile object with the user data. Args: user_profile (IAMUserProfile): The User Profile object. okta_user (dict): The data retrieved from Okta. """ if demisto.command() == 'disable-user': active = False elif demisto.command() == 'enable-user': active = True else: active = False if okta_user.get('status') == DEPROVISIONED_STATUS else True user_profile.set_result( success=True, active=active, iden=okta_user.get('id'), email=okta_user.get('profile', {}).get('email'), username=okta_user.get('profile', {}).get('login'), details=okta_user )
40,528
def upload_cmd_tree(): blob_file_name = 'extensionCommandTree.json' downloaded_file_name = 'extCmdTreeDownloaded.json' file_path = os.path.expanduser(os.path.join('~', '.azure', file_name)) client = BlockBlobService(account_name=STORAGE_ACCOUNT, account_key=STORAGE_ACCOUNT_KEY) client.create_blob_from_path(container_name=STORAGE_CONTAINER, blob_name=blob_file_name, file_path=file_path) url = client.make_blob_url(container_name=STORAGE_CONTAINER, blob_name=blob_file_name) download_file_path = os.path.expanduser(os.path.join('~', '.azure', downloaded_file_name)) download_file(url, download_file_path) if filecmp.cmp(file_path, download_file_path): print("extensionCommandTree.json uploaded successfully. URL: {}".format(url)) else: raise Exception("Failed to update extensionCommandTree.json in storage account")
def upload_cmd_tree(): blob_file_name = 'extensionCommandTree.json' downloaded_file_name = 'extCmdTreeDownloaded.json' file_path = os.path.expanduser(os.path.join('~', '.azure', file_name)) client = BlockBlobService(account_name=STORAGE_ACCOUNT, account_key=STORAGE_ACCOUNT_KEY) client.create_blob_from_path(container_name=STORAGE_CONTAINER, blob_name=blob_file_name, file_path=file_path) url = client.make_blob_url(container_name=STORAGE_CONTAINER, blob_name=blob_file_name) download_file_path = os.path.expanduser(os.path.join('~', '.azure', downloaded_file_name)) download_file(url, download_file_path) if filecmp.cmp(file_path, download_file_path): print("extensionCommandTree.json uploaded successfully. URL: {}".format(url)) else: raise Exception("Failed to update extensionCommandTree.json in the storage account")
25,776
def busmap_by_hac(network, n_clusters, buses_i=None, branch_components=["Line", "Link"], feature=None): """ Create a busmap accroding to Hierarchical Agglomerative Clustering. Parameters ---------- network : pypsa.Network n_clusters : int Final number of clusters desired. buses_i: None|pandas.Index Subset of buses to cluster. If None, all buses are considered. branch_components: List Subset of all branch_components in the network. Defaults to ["Line", "Link"]. feature: None | pandas.DataFrame Feature to be considered for the clustering. The DataFrame must be indexed with buses_i. If None, all buses have the same similarity. Returns ------- busmap : pandas.Series Mapping of network.buses to k-means clusters (indexed by non-negative integers). """ if find_spec('sklearn') is None: raise ModuleNotFoundError("Optional dependency 'sklearn' not found." "Install via 'conda install -c conda-forge scikit-learn' " "or 'pip install scikit-learn'") from sklearn.cluster import AgglomerativeClustering as HAC if buses_i is None: buses_i = network.buses.index if feature is None: logger.warning( "No feature is specified for Hierarchical Clustering. " "Falling back to default, where all buses have equal similarity. " "You can specify a feature as pandas.DataFrame indexed with buses_i." ) feature = pd.DataFrame(index=buses_i, columns=[""], data=0) buses_x = network.buses.index.get_indexer(buses_i) A = network.adjacency_matrix(branch_components=branch_components).todense() A = sp.sparse.coo_matrix(A[buses_x].T[buses_x].T) labels = HAC(n_clusters=n_clusters, connectivity=A, affinity='euclidean', linkage='ward').fit_predict(feature) busmap = pd.Series(data=labels, index=buses_i, dtype='str') return busmap
def busmap_by_hac(network, n_clusters, buses_i=None, branch_components=["Line", "Link"], feature=None): """ Create a busmap according to Hierarchical Agglomerative Clustering. Parameters ---------- network : pypsa.Network n_clusters : int Final number of clusters desired. buses_i: None|pandas.Index Subset of buses to cluster. If None, all buses are considered. branch_components: List Subset of all branch_components in the network. Defaults to ["Line", "Link"]. feature: None | pandas.DataFrame Feature to be considered for the clustering. The DataFrame must be indexed with buses_i. If None, all buses have the same similarity. Returns ------- busmap : pandas.Series Mapping of network.buses to k-means clusters (indexed by non-negative integers). """ if find_spec('sklearn') is None: raise ModuleNotFoundError("Optional dependency 'sklearn' not found." "Install via 'conda install -c conda-forge scikit-learn' " "or 'pip install scikit-learn'") from sklearn.cluster import AgglomerativeClustering as HAC if buses_i is None: buses_i = network.buses.index if feature is None: logger.warning( "No feature is specified for Hierarchical Clustering. " "Falling back to default, where all buses have equal similarity. " "You can specify a feature as pandas.DataFrame indexed with buses_i." ) feature = pd.DataFrame(index=buses_i, columns=[""], data=0) buses_x = network.buses.index.get_indexer(buses_i) A = network.adjacency_matrix(branch_components=branch_components).todense() A = sp.sparse.coo_matrix(A[buses_x].T[buses_x].T) labels = HAC(n_clusters=n_clusters, connectivity=A, affinity='euclidean', linkage='ward').fit_predict(feature) busmap = pd.Series(data=labels, index=buses_i, dtype='str') return busmap
38,250
def log_request(handler): """log a bit more information about each request than tornado's default - move static file get success to debug-level (reduces noise) - get proxied IP instead of proxy IP - log referer for redirect and failed requests - log user-agent for failed requests - record per-request metrics in prometheus """ status = handler.get_status() request = handler.request request_time = 1000.0 * handler.request.request_time() # milliseconds if status == 304 or ( status < 300 and ( isinstance(handler, StaticFileHandler) or getattr(handler, "log_success_debug", False) ) ): # static-file success and 304 Found are debug-level log_method = access_log.debug elif status < 400: log_method = access_log.info elif status < 500: log_method = access_log.warning else: log_method = access_log.error if request_time >= 1000 and log_method is access_log.debug: # slow responses are always logged at least INFO-level log_method = access_log.info uri = _scrub_uri(request.uri) headers = _scrub_headers(request.headers) try: user = handler.current_user except (HTTPError, RuntimeError): username = "" else: if user is None: username = "" elif isinstance(user, str): username = user elif isinstance(user, dict): username = user.get("name", "unknown") else: username = "unknown" ns = dict( status=status, method=request.method, ip=request.remote_ip, uri=uri, request_time=request_time, user=username, location="", ) msg = "{status} {method} {uri}{location} ({user}@{ip}) {request_time:.2f}ms" if status >= 500 and status not in {502, 503}: log_method(json.dumps(headers, indent=2)) elif status in {301, 302}: # log redirect targets # FIXME: _headers is private, but there doesn't appear to be a public way # to get headers from tornado location = handler._headers.get("Location") if location: ns["location"] = " -> {}".format(_scrub_uri(location)) log_method(msg.format(**ns))
def log_request(handler): """log a bit more information about each request than tornado's default - move static file get success to debug-level (reduces noise) - get proxied IP instead of proxy IP - log referer for redirect and failed requests - log user-agent for failed requests - record per-request metrics in prometheus """ status = handler.get_status() request = handler.request request_time = 1000.0 * handler.request.request_time() # micro- to milli-seconds if status == 304 or ( status < 300 and ( isinstance(handler, StaticFileHandler) or getattr(handler, "log_success_debug", False) ) ): # static-file success and 304 Found are debug-level log_method = access_log.debug elif status < 400: log_method = access_log.info elif status < 500: log_method = access_log.warning else: log_method = access_log.error if request_time >= 1000 and log_method is access_log.debug: # slow responses are always logged at least INFO-level log_method = access_log.info uri = _scrub_uri(request.uri) headers = _scrub_headers(request.headers) try: user = handler.current_user except (HTTPError, RuntimeError): username = "" else: if user is None: username = "" elif isinstance(user, str): username = user elif isinstance(user, dict): username = user.get("name", "unknown") else: username = "unknown" ns = dict( status=status, method=request.method, ip=request.remote_ip, uri=uri, request_time=request_time, user=username, location="", ) msg = "{status} {method} {uri}{location} ({user}@{ip}) {request_time:.2f}ms" if status >= 500 and status not in {502, 503}: log_method(json.dumps(headers, indent=2)) elif status in {301, 302}: # log redirect targets # FIXME: _headers is private, but there doesn't appear to be a public way # to get headers from tornado location = handler._headers.get("Location") if location: ns["location"] = " -> {}".format(_scrub_uri(location)) log_method(msg.format(**ns))
54,025
def prepare_environment(env=None): """Prepares an environment context to run Python on. If Python is being used from a conda environment, this is roughly equivalent to activating the conda environment by setting up the correct environment variables. Parameters ---------- env : dict, optional Dictionary of environment variables to modify. If ``None`` is passed, then this will create a copy of the current ``os.environ``. Returns ------- dict Updated environment variable dictionary. """ if env is None: env = os.environ.copy() if PYTHON_DIRECTORY: if is_windows(): lib_bin = os.path.join(PYTHON_DIRECTORY, 'Library', 'bin') if os.path.exists(lib_bin) and lib_bin not in env['PATH']: env['PATH'] = lib_bin + os.pathsep + env['PATH'] else: lib_bin = os.path.join(PYTHON_DIRECTORY, 'bin') if os.path.exists(lib_bin) and lib_bin not in env['PATH']: env['PATH'] = lib_bin + os.pathsep + env['PATH'] if CONDA_EXE: env['CONDA_EXE'] = CONDA_EXE return env
def prepare_environment(env=None): """Prepares an environment context to run Python on. If Python is being used from a conda environment, this is roughly equivalent to activating the conda environment by setting up the correct environment variables. Parameters ---------- env : dict, optional Dictionary of environment variables to modify. If ``None`` is passed, then this will create a copy of the current ``os.environ``. Returns ------- dict Updated environment variable dictionary. """ if env is None: env = os.environ.copy() if PYTHON_DIRECTORY: if is_windows(): lib_bin = os.path.join(PYTHON_DIRECTORY, 'Library', 'bin') else: lib_bin = os.path.join(PYTHON_DIRECTORY, 'bin') if os.path.exists(lib_bin) and lib_bin not in env['PATH']: env['PATH'] = lib_bin + os.pathsep + env['PATH'] if CONDA_EXE: env['CONDA_EXE'] = CONDA_EXE return env
47,345
def load_flax_weights_in_pytorch_model(pt_model, flax_state): """Load flax checkpoints in a PyTorch model""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see " "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." ) raise # check if we have bf16 weights is_type_bf16 = flatten_dict(jax.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).keys() if any(is_type_bf16): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) flax_state = jax.tree_map( lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state ) flax_state_dict = flatten_dict(flax_state) pt_model_dict = pt_model.state_dict() load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) # keep track of unexpected & missing keys unexpected_keys = [] missing_keys = set(pt_model_dict.keys()) for flax_key_tuple, flax_tensor in flax_state_dict.items(): has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: flax_key_tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: # conv layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: # linear layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_key = ".".join(flax_key_tuple) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) # remove from missing keys missing_keys.remove(flax_key) else: # weight is not expected by PyTorch model unexpected_keys.append(flax_key) pt_model.load_state_dict(pt_model_dict) # re-transform missing_keys to list missing_keys = list(missing_keys) if len(unexpected_keys) > 0: logger.warning( "Some weights of the Flax model were not used when " f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a Flax model trained on another task " "or with another architecture (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect " "to be exactly identical (e.g. initializing a BertForSequenceClassification model from a FlaxBertForSequenceClassification model)." ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model " f"and are newly initialized: {missing_keys}\n" "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
def load_flax_weights_in_pytorch_model(pt_model, flax_state): """Load flax checkpoints in a PyTorch model""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see " "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." ) raise # check if we have bf16 weights is_type_bf16 = flatten_dict(jax.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).keys() if jnp.any(is_type_bf16): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) flax_state = jax.tree_map( lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state ) flax_state_dict = flatten_dict(flax_state) pt_model_dict = pt_model.state_dict() load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in set([k.split(".")[0] for k in pt_model_dict.keys()]) ) # keep track of unexpected & missing keys unexpected_keys = [] missing_keys = set(pt_model_dict.keys()) for flax_key_tuple, flax_tensor in flax_state_dict.items(): has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: flax_key_tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: # conv layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: # linear layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_key = ".".join(flax_key_tuple) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) # remove from missing keys missing_keys.remove(flax_key) else: # weight is not expected by PyTorch model unexpected_keys.append(flax_key) pt_model.load_state_dict(pt_model_dict) # re-transform missing_keys to list missing_keys = list(missing_keys) if len(unexpected_keys) > 0: logger.warning( "Some weights of the Flax model were not used when " f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a Flax model trained on another task " "or with another architecture (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect " "to be exactly identical (e.g. initializing a BertForSequenceClassification model from a FlaxBertForSequenceClassification model)." ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model " f"and are newly initialized: {missing_keys}\n" "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
42,105
def upgrade(): bind = op.get_bind() sa.Enum(IntermediateValueModel.TrialIntermediateValueType).create(bind, checkfirst=True) # MySQL and PostgreSQL supports DEFAULT clause like 'ALTER TABLE <tbl_name> # ADD COLUMN <col_name> ... DEFAULT "FINITE_OR_NAN"', but seemingly Alembic # does not support such a SQL statement. So first add a column with schema-level # default value setting, then remove it by `batch_op.alter_column()`. with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.add_column( sa.Column( "intermediate_value_type", sa.Enum("FINITE", "INF_POS", "INF_NEG", "NAN", name="floattypeenum"), nullable=False, server_default="FINITE", ), ) with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.alter_column("intermediate_value_type", server_default=None) session = orm.Session(bind=bind) try: records = session.query(IntermediateValueModel).all() mapping = [] for r in records: value: float if np.isclose(r.intermediate_value, RDB_MAX_FLOAT) or np.isposinf( r.intermediate_value ): value = np.inf elif np.isclose(r.intermediate_value, RDB_MIN_FLOAT) or np.isneginf( r.intermediate_value ): value = -np.inf elif np.isnan(r.intermediate_value): value = np.nan else: value = r.intermediate_value ( sanitized_value, float_type, ) = IntermediateValueModel._intermediate_value_to_stored_repr(value) mapping.append( { "trial_intermediate_value_id": r.trial_intermediate_value_id, "intermediate_value_type": float_type, "intermediate_value": sanitized_value, } ) session.bulk_update_mappings(IntermediateValueModel, mapping) session.commit() except SQLAlchemyError as e: session.rollback() raise e finally: session.close()
def upgrade(): bind = op.get_bind() sa.Enum(IntermediateValueModel.TrialIntermediateValueType).create(bind, checkfirst=True) # MySQL and PostgreSQL supports DEFAULT clause like 'ALTER TABLE <tbl_name> # ADD COLUMN <col_name> ... DEFAULT "FINITE_OR_NAN"', but seemingly Alembic # does not support such a SQL statement. So first add a column with schema-level # default value setting, then remove it by `batch_op.alter_column()`. with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.add_column( sa.Column( "intermediate_value_type", sa.Enum("FINITE", "INF_POS", "INF_NEG", "NAN", name="floattypeenum"), nullable=False, server_default="FINITE", ), ) with op.batch_alter_table("trial_intermediate_values") as batch_op: batch_op.alter_column("intermediate_value_type", server_default=None) session = orm.Session(bind=bind) try: records = session.query(IntermediateValueModel).all() mapping = [] for r in records: value: float if np.isclose(r.intermediate_value, RDB_MAX_FLOAT) or np.isposinf( r.intermediate_value ): value = float("inf") elif np.isclose(r.intermediate_value, RDB_MIN_FLOAT) or np.isneginf( r.intermediate_value ): value = -np.inf elif np.isnan(r.intermediate_value): value = np.nan else: value = r.intermediate_value ( sanitized_value, float_type, ) = IntermediateValueModel._intermediate_value_to_stored_repr(value) mapping.append( { "trial_intermediate_value_id": r.trial_intermediate_value_id, "intermediate_value_type": float_type, "intermediate_value": sanitized_value, } ) session.bulk_update_mappings(IntermediateValueModel, mapping) session.commit() except SQLAlchemyError as e: session.rollback() raise e finally: session.close()
35,553
def read_sensor_events(duration_sec): sensor_events = messaging.sub_sock("sensorEvents", timeout=0.1) start_time_sec = time.time() events = [] while time.time() - start_time_sec < duration_sec: events += messaging.drain_sock(sensor_events) time.sleep(0.01) return events
def read_sensor_events(duration_sec): sensor_events = messaging.sub_sock("sensorEvents", timeout=0.1) start_time_sec = time.time() events = [] while time.monotonic() - start_time_sec < duration_sec: events += messaging.drain_sock(sensor_events) time.sleep(0.01) return events
3,676
def skip(skipcols): r""" Helper function for the `usecols` parameter of `loadtxt` and `genfromtxt`. The parameter `usecols` of `loadtxt` and `genfromtxt` allows the user to select specific columns from the text file. This `skip` function provides a simple way for the user to specify the columns that should be *skipped* instead of the columns that should be used. Parameters ---------- skipcols : int or sequence of ints The indices of the columns to be skipped. Returns ------- f : function Returns a function with the signature:: def f(n: int) -> List[int] that may be passed to the functions `numpy.loadtxt` and `numpy.genfromtxt`. The function is a closure that "rememebers" the list of columns that were passed to `skip`. The function returns ``list(range(n))`` with the values from `skipcols` removed. Examples -------- >>> from numpy.lib.npyio import skip >>> s = " 0 1 2 3 4 5\n10 11 12 13 14 15\n20 21 22 23 24 25" >>> print(s) 0 1 2 3 4 5 10 11 12 13 14 15 20 21 22 23 24 25 Use `skip` to skip the second column (column index 1) and the last column (column index -1). >>> np.loadtxt(s.splitlines(), dtype=int, usecols=skip([1, -1])) array([[ 0, 2, 3, 4], [10, 12, 13, 14], [20, 22, 23, 24]]) To see what `skip` actually does, call the returned function with ``n = 6``: >>> skip([1, -1])(6) [0, 2, 3, 4] """ try: skipcols = list(skipcols) except TypeError: # Presumably skipcols is an int, so wrap it in a list. skipcols = [skipcols] # Check that the values in skipcols are, in fact, ints. # (We can check the types, but we can't check the actual values until # we know how many columns are in the file.) for c in skipcols: try: opindex(c) except TypeError as e: e.args = (f'skipcols must be an int or a sequence of ints but ' f'it contains at least one element of type ' f'{type(c)}',) raise def skipper(n): normed_skipcols = [] for c in skipcols: try: newc = normalize_axis_index(c, n) except np.AxisError: raise IndexError(f'skip column index {c} out of range for ' f'file with {n} columns') from None normed_skipcols.append(newc) usecols = [c for c in range(n) if c not in normed_skipcols] return usecols return skipper
def skip(skipcols): r""" Helper function for the `usecols` parameter of `loadtxt` and `genfromtxt`. The parameter `usecols` of `loadtxt` and `genfromtxt` allows the user to select specific columns from the text file. This `skip` function provides a simple way for the user to specify the columns that should be *skipped* instead of the columns that should be used. Parameters ---------- skipcols : int or sequence of ints The indices of the columns to be skipped. Returns ------- f : function Returns a function with the signature:: def f(n: int) -> List[int] that may be passed to the functions `numpy.loadtxt` and `numpy.genfromtxt`. The function is a closure that "rememebers" the list of columns that were passed to `skip`. The function returns ``list(range(n))`` with the values from `skipcols` removed. Examples -------- >>> from numpy.lib.npyio import skip >>> s = " 0 1 2 3 4 5\n10 11 12 13 14 15\n20 21 22 23 24 25" >>> print(s) 0 1 2 3 4 5 10 11 12 13 14 15 20 21 22 23 24 25 Use `skip` to skip the second column (column index 1) and the last column (column index -1). >>> np.loadtxt(s.splitlines(), dtype=int, usecols=skip([1, -1])) array([[ 0, 2, 3, 4], [10, 12, 13, 14], [20, 22, 23, 24]]) To see what `skip` actually does, call the returned function with ``n = 6``: >>> skip([1, -1])(6) [0, 2, 3, 4] """ skipcols = _normalize_usecols_to_list(skipcols) # Check that the values in skipcols are, in fact, ints. # (We can check the types, but we can't check the actual values until # we know how many columns are in the file.) for c in skipcols: try: opindex(c) except TypeError as e: e.args = (f'skipcols must be an int or a sequence of ints but ' f'it contains at least one element of type ' f'{type(c)}',) raise def skipper(n): normed_skipcols = [] for c in skipcols: try: newc = normalize_axis_index(c, n) except np.AxisError: raise IndexError(f'skip column index {c} out of range for ' f'file with {n} columns') from None normed_skipcols.append(newc) usecols = [c for c in range(n) if c not in normed_skipcols] return usecols return skipper
8,426
def test_create_with_spectral_coord(): spectral_coord = SpectralCoord(np.arange(5100, 5150)*u.AA, radial_velocity = u.Quantity(1000.0, "km/s")) flux = np.random.randn(50)*u.Jy spec = Spectrum1D(spectral_axis = spectral_coord, flux = flux) assert spec.radial_velocity == u.Quantity(1000.0, "km/s") assert isinstance(spec.spectral_axis, SpectralCoord) assert spec.spectral_axis.size == 50
def test_create_with_spectral_coord(): spectral_coord = SpectralCoord(np.arange(5100, 5150)*u.AA, radial_velocity=u.Quantity(1000.0, "km/s")) flux = np.random.randn(50)*u.Jy spec = Spectrum1D(spectral_axis = spectral_coord, flux = flux) assert spec.radial_velocity == u.Quantity(1000.0, "km/s") assert isinstance(spec.spectral_axis, SpectralCoord) assert spec.spectral_axis.size == 50
34,112
def get_fs_and_path( uri: str, ) -> Tuple[Optional["pyarrow.fs.FileSystem"], Optional[str]]: if not pyarrow: return None, None parsed = urllib.parse.urlparse(uri) path = parsed.netloc + parsed.path cache_key = (parsed.scheme, parsed.netloc) if cache_key in _cached_fs: fs = _cached_fs[cache_key] return fs, path try: fs, path = pyarrow.fs.FileSystem.from_uri(uri) _cached_fs[cache_key] = fs return fs, path except (pyarrow.lib.ArrowInvalid, pyarrow.lib.ArrowNotImplementedError): # Raised when URI not recognized if not fsspec: # Only return if fsspec is not installed return None, None # Else, try to resolve protocol via fsspec try: fsspec_fs = fsspec.filesystem(parsed.scheme) except ValueError: # Raised when protocol not known return None, None fsspec_handler = pyarrow.fs.FSSpecHandler if parsed.scheme in ["gs", "gcs"]: # TODO(amogkam): Remove after https://github.com/fsspec/gcsfs/issues/498 is # resolved. try: import gcsfs if version.parse(gcsfs.__version__) > "2022.7.1": raise RuntimeError( "`gcsfs` versions greater than '2022.7.1' are not " f"compatible with Pyarrow. You have version " f"{gcsfs.__version__}. Please downgrade your gcsfs " f"version. See more details in " f"https://github.com/fsspec/gcsfs/issues/498." ) except ImportError: pass # GS doesn't support `create_parents` arg in `create_dir()` fsspec_handler = _CustomGCSHandler fs = pyarrow.fs.PyFileSystem(fsspec_handler(fsspec_fs)) _cached_fs[cache_key] = fs return fs, path
def get_fs_and_path( uri: str, ) -> Tuple[Optional["pyarrow.fs.FileSystem"], Optional[str]]: if not pyarrow: return None, None parsed = urllib.parse.urlparse(uri) path = parsed.netloc + parsed.path cache_key = (parsed.scheme, parsed.netloc) if cache_key in _cached_fs: fs = _cached_fs[cache_key] return fs, path try: fs, path = pyarrow.fs.FileSystem.from_uri(uri) _cached_fs[cache_key] = fs return fs, path except (pyarrow.lib.ArrowInvalid, pyarrow.lib.ArrowNotImplementedError): # Raised when URI not recognized if not fsspec: # Only return if fsspec is not installed return None, None # Else, try to resolve protocol via fsspec try: fsspec_fs = fsspec.filesystem(parsed.scheme) except ValueError: # Raised when protocol not known return None, None fsspec_handler = pyarrow.fs.FSSpecHandler if parsed.scheme in ["gs", "gcs"]: # TODO(amogkam): Remove after https://github.com/fsspec/gcsfs/issues/498 is # resolved. try: import gcsfs if version.parse(gcsfs.__version__) > "2022.7.1": raise RuntimeError( "`gcsfs` versions greater than '2022.7.1' are not " f"compatible with pyarrow. You have gcsfs version " f"{gcsfs.__version__}. Please downgrade your gcsfs " f"version. See more details in " f"https://github.com/fsspec/gcsfs/issues/498." ) except ImportError: pass # GS doesn't support `create_parents` arg in `create_dir()` fsspec_handler = _CustomGCSHandler fs = pyarrow.fs.PyFileSystem(fsspec_handler(fsspec_fs)) _cached_fs[cache_key] = fs return fs, path
35,272
def test_validate_parafac2_tensor(): rng = check_random_state(12345) true_shape = [(4, 5)]*3 true_rank = 2 weights, factors, projections = random_parafac2(true_shape, rank=true_rank) # Check shape and rank returned shape, rank = _validate_parafac2_tensor((weights, factors, projections)) assert_equal(shape, true_shape, err_msg='Returned incorrect shape (got {}, expected {})'.format( shape, true_shape)) assert_equal(rank, true_rank, err_msg='Returned incorrect rank (got {}, expected {})'.format( rank, true_rank)) # One of the factors has the wrong rank for mode in range(3): false_shape = (len(factors[mode]), true_rank+1) factors[mode], copy = tl.tensor(rng.random_sample(false_shape)), factors[mode] with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, projections)) factors[mode] = copy # Not three factor matrices with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors[1:], projections)) # Not enough projections with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, projections[1:])) # Wrong number of weights with assert_raises(ValueError): _validate_parafac2_tensor((weights[1:], factors, projections)) # The projections aren't orthogonal false_projections = [rng.random_sample(tl.shape(P)) for P in projections] with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, false_projections))
def test_validate_parafac2_tensor(): rng = check_random_state(12345) true_shape = [(4, 5)]*3 true_rank = 2 weights, factors, projections = random_parafac2(true_shape, rank=true_rank) # Check shape and rank returned shape, rank = _validate_parafac2_tensor((weights, factors, projections)) assert_equal(shape, true_shape, err_msg='Returned incorrect shape (got {}, expected {})'.format( shape, true_shape)) assert_equal(rank, true_rank, err_msg='Returned incorrect rank (got {}, expected {})'.format( rank, true_rank)) # One of the factors has the wrong rank for mode in range(3): false_shape = (len(factors[mode]), true_rank+1) factors[mode], copy = tl.tensor(rng.random_sample(false_shape)), factors[mode] with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, projections)) factors[mode] = copy # Not three factor matrices with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors[1:], projections)) # Not enough projections with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, projections[1:])) # Wrong number of weights with assert_raises(ValueError): _validate_parafac2_tensor((weights[1:], factors, projections)) # The projections aren't orthogonal false_projections = [tl.tensor(rng.random_sample(tl.shape(P))) for P in projections] with assert_raises(ValueError): _validate_parafac2_tensor((weights, factors, false_projections))
28,563
def plot_loo_pit( ax, figsize, ecdf, loo_pit, loo_pit_ecdf, unif_ecdf, p975, p025, fill_kwargs, ecdf_fill, use_hdi, x_vals, hdi_kwargs, hdi_odds, n_unif, unif, plot_unif_kwargs, loo_pit_kde, legend, y_hat, y, color, textsize, credible_interval, plot_kwargs, backend_kwargs, show, ): """Matplotlib loo pit plot.""" if backend_kwargs is None: backend_kwargs = {} backend_kwargs = { **backend_kwarg_defaults(), **backend_kwargs, } (figsize, _, _, xt_labelsize, linewidth, _) = _scale_fig_size(figsize, textsize, 1, 1) plot_kwargs = matplotlib_kwarg_dealiaser(plot_kwargs, "plot") plot_kwargs["color"] = to_hex(color) plot_kwargs.setdefault("linewidth", linewidth * 1.4) if isinstance(y, str): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y) elif isinstance(y, DataArray): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y.name) elif isinstance(y_hat, str): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y_hat) elif isinstance(y_hat, DataArray): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y_hat.name) else: label = "LOO-PIT ECDF" if ecdf else "LOO-PIT" plot_kwargs.setdefault("label", label) plot_kwargs.setdefault("zorder", 5) plot_unif_kwargs = matplotlib_kwarg_dealiaser(plot_unif_kwargs, "plot") light_color = rgb_to_hsv(to_rgb(plot_kwargs.get("color"))) light_color[1] /= 2 # pylint: disable=unsupported-assignment-operation light_color[2] += (1 - light_color[2]) / 2 # pylint: disable=unsupported-assignment-operation plot_unif_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) plot_unif_kwargs.setdefault("alpha", 0.5) plot_unif_kwargs.setdefault("linewidth", 0.6 * linewidth) if ecdf: n_data_points = loo_pit.size plot_kwargs.setdefault("drawstyle", "steps-mid" if n_data_points < 100 else "default") plot_unif_kwargs.setdefault("drawstyle", "steps-mid" if n_data_points < 100 else "default") if ecdf_fill: if fill_kwargs is None: fill_kwargs = {} fill_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) fill_kwargs.setdefault("alpha", 0.5) fill_kwargs.setdefault( "step", "mid" if plot_kwargs["drawstyle"] == "steps-mid" else None ) fill_kwargs.setdefault("label", "{:.3g}% credible interval".format(credible_interval)) elif use_hdi: if hdi_kwargs is None: hdi_kwargs = {} hdi_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) hdi_kwargs.setdefault("alpha", 0.35) hdi_kwargs.setdefault("label", "Uniform HDI") if ax is None: _, ax = plt.subplots(1, 1, figsize=figsize, **backend_kwargs) if ecdf: ax.plot( np.hstack((0, loo_pit, 1)), np.hstack((0, loo_pit - loo_pit_ecdf, 0)), **plot_kwargs ) if ecdf_fill: ax.fill_between(unif_ecdf, p975 - unif_ecdf, p025 - unif_ecdf, **fill_kwargs) else: ax.plot(unif_ecdf, p975 - unif_ecdf, unif_ecdf, p025 - unif_ecdf, **plot_unif_kwargs) else: x_ss = np.empty((n_unif, len(loo_pit_kde))) u_dens = np.empty((n_unif, len(loo_pit_kde))) if use_hdi: ax.axhspan(*hdi_odds, **hdi_kwargs) else: for idx in range(n_unif): unif_density, xmin, xmax = _fast_kde(unif[idx, :]) x_s = np.linspace(xmin, xmax, len(unif_density)) x_ss[idx] = x_s u_dens[idx] = unif_density ax.plot(x_ss.T, u_dens.T, **plot_unif_kwargs) ax.plot(x_vals, loo_pit_kde, **plot_kwargs) ax.set_xlim(0, 1) ax.set_ylim(0, None) ax.tick_params(labelsize=xt_labelsize) if legend: if not (use_hdi or (ecdf and ecdf_fill)): label = "{:.3g}% credible interval".format(credible_interval) if ecdf else "Uniform" ax.plot([], label=label, **plot_unif_kwargs) ax.legend() if backend_show(show): plt.show() return ax
def plot_loo_pit( ax, figsize, ecdf, loo_pit, loo_pit_ecdf, unif_ecdf, p975, p025, fill_kwargs, ecdf_fill, use_hdi, x_vals, hdi_kwargs, hdi_odds, n_unif, unif, plot_unif_kwargs, loo_pit_kde, legend, y_hat, y, color, textsize, credible_interval, plot_kwargs, backend_kwargs, show, ): """Matplotlib loo pit plot.""" if backend_kwargs is None: backend_kwargs = {} backend_kwargs = { **backend_kwarg_defaults(), **backend_kwargs, } (figsize, _, _, xt_labelsize, linewidth, _) = _scale_fig_size(figsize, textsize, 1, 1) plot_kwargs = matplotlib_kwarg_dealiaser(plot_kwargs, "plot") plot_kwargs["color"] = to_hex(color) plot_kwargs.setdefault("linewidth", linewidth * 1.4) if isinstance(y, str): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y) elif isinstance(y, DataArray) and y.name is not None: label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y.name) elif isinstance(y_hat, str): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y_hat) elif isinstance(y_hat, DataArray): label = ("{} LOO-PIT ECDF" if ecdf else "{} LOO-PIT").format(y_hat.name) else: label = "LOO-PIT ECDF" if ecdf else "LOO-PIT" plot_kwargs.setdefault("label", label) plot_kwargs.setdefault("zorder", 5) plot_unif_kwargs = matplotlib_kwarg_dealiaser(plot_unif_kwargs, "plot") light_color = rgb_to_hsv(to_rgb(plot_kwargs.get("color"))) light_color[1] /= 2 # pylint: disable=unsupported-assignment-operation light_color[2] += (1 - light_color[2]) / 2 # pylint: disable=unsupported-assignment-operation plot_unif_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) plot_unif_kwargs.setdefault("alpha", 0.5) plot_unif_kwargs.setdefault("linewidth", 0.6 * linewidth) if ecdf: n_data_points = loo_pit.size plot_kwargs.setdefault("drawstyle", "steps-mid" if n_data_points < 100 else "default") plot_unif_kwargs.setdefault("drawstyle", "steps-mid" if n_data_points < 100 else "default") if ecdf_fill: if fill_kwargs is None: fill_kwargs = {} fill_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) fill_kwargs.setdefault("alpha", 0.5) fill_kwargs.setdefault( "step", "mid" if plot_kwargs["drawstyle"] == "steps-mid" else None ) fill_kwargs.setdefault("label", "{:.3g}% credible interval".format(credible_interval)) elif use_hdi: if hdi_kwargs is None: hdi_kwargs = {} hdi_kwargs.setdefault("color", to_hex(hsv_to_rgb(light_color))) hdi_kwargs.setdefault("alpha", 0.35) hdi_kwargs.setdefault("label", "Uniform HDI") if ax is None: _, ax = plt.subplots(1, 1, figsize=figsize, **backend_kwargs) if ecdf: ax.plot( np.hstack((0, loo_pit, 1)), np.hstack((0, loo_pit - loo_pit_ecdf, 0)), **plot_kwargs ) if ecdf_fill: ax.fill_between(unif_ecdf, p975 - unif_ecdf, p025 - unif_ecdf, **fill_kwargs) else: ax.plot(unif_ecdf, p975 - unif_ecdf, unif_ecdf, p025 - unif_ecdf, **plot_unif_kwargs) else: x_ss = np.empty((n_unif, len(loo_pit_kde))) u_dens = np.empty((n_unif, len(loo_pit_kde))) if use_hdi: ax.axhspan(*hdi_odds, **hdi_kwargs) else: for idx in range(n_unif): unif_density, xmin, xmax = _fast_kde(unif[idx, :]) x_s = np.linspace(xmin, xmax, len(unif_density)) x_ss[idx] = x_s u_dens[idx] = unif_density ax.plot(x_ss.T, u_dens.T, **plot_unif_kwargs) ax.plot(x_vals, loo_pit_kde, **plot_kwargs) ax.set_xlim(0, 1) ax.set_ylim(0, None) ax.tick_params(labelsize=xt_labelsize) if legend: if not (use_hdi or (ecdf and ecdf_fill)): label = "{:.3g}% credible interval".format(credible_interval) if ecdf else "Uniform" ax.plot([], label=label, **plot_unif_kwargs) ax.legend() if backend_show(show): plt.show() return ax
24,076
def getTextInfoSpeech( # noqa: C901 info: textInfos.TextInfo, useCache: Union[bool, SpeakTextInfoState] = True, formatConfig: Dict[str, bool] = None, unit: Optional[str] = None, reason: OutputReason = OutputReason.QUERY, _prefixSpeechCommand: Optional[SpeechCommand] = None, onlyInitialFields: bool = False, suppressBlanks: bool = False ) -> Generator[SpeechSequence, None, bool]: onlyCache = reason == OutputReason.ONLYCACHE if isinstance(useCache,SpeakTextInfoState): speakTextInfoState=useCache elif useCache: speakTextInfoState=SpeakTextInfoState(info.obj) else: speakTextInfoState=None autoLanguageSwitching=config.conf['speech']['autoLanguageSwitching'] extraDetail=unit in (textInfos.UNIT_CHARACTER,textInfos.UNIT_WORD) if not formatConfig: formatConfig=config.conf["documentFormatting"] formatConfig=formatConfig.copy() if extraDetail: formatConfig['extraDetail']=True reportIndentation=unit==textInfos.UNIT_LINE and ( formatConfig["reportLineIndentation"] or formatConfig["reportLineIndentationWithTones"]) # For performance reasons, when navigating by paragraph or table cell, spelling errors will not be announced. if unit in (textInfos.UNIT_PARAGRAPH, textInfos.UNIT_CELL) and reason == OutputReason.CARET: formatConfig['reportSpellingErrors']=False #Fetch the last controlFieldStack, or make a blank one controlFieldStackCache=speakTextInfoState.controlFieldStackCache if speakTextInfoState else [] formatFieldAttributesCache=speakTextInfoState.formatFieldAttributesCache if speakTextInfoState else {} textWithFields=info.getTextWithFields(formatConfig) # We don't care about node bounds, especially when comparing fields. # Remove them. for command in textWithFields: if not isinstance(command,textInfos.FieldCommand): continue field=command.field if not field: continue try: del field["_startOfNode"] except KeyError: pass try: del field["_endOfNode"] except KeyError: pass #Make a new controlFieldStack and formatField from the textInfo's initialFields newControlFieldStack=[] newFormatField=textInfos.FormatField() initialFields=[] for field in textWithFields: if isinstance(field,textInfos.FieldCommand) and field.command in ("controlStart","formatChange"): initialFields.append(field.field) else: break if len(initialFields)>0: del textWithFields[0:len(initialFields)] endFieldCount=0 for field in reversed(textWithFields): if isinstance(field,textInfos.FieldCommand) and field.command=="controlEnd": endFieldCount+=1 else: break if endFieldCount>0: del textWithFields[0-endFieldCount:] for field in initialFields: if isinstance(field,textInfos.ControlField): newControlFieldStack.append(field) elif isinstance(field,textInfos.FormatField): newFormatField.update(field) else: raise ValueError("unknown field: %s"%field) #Calculate how many fields in the old and new controlFieldStacks are the same commonFieldCount=0 for count in range(min(len(newControlFieldStack),len(controlFieldStackCache))): # #2199: When comparing controlFields try using uniqueID if it exists before resorting to compairing the entire dictionary oldUniqueID=controlFieldStackCache[count].get('uniqueID') newUniqueID=newControlFieldStack[count].get('uniqueID') if ((oldUniqueID is not None or newUniqueID is not None) and newUniqueID==oldUniqueID) or (newControlFieldStack[count]==controlFieldStackCache[count]): commonFieldCount+=1 else: break speechSequence: SpeechSequence = [] # #2591: Only if the reason is not focus, Speak the exit of any controlFields not in the new stack. # We don't do this for focus because hearing "out of list", etc. isn't useful when tabbing or using quick navigation and makes navigation less efficient. if reason not in [OutputReason.FOCUS, OutputReason.QUICKNAV]: endingBlock=False for count in reversed(range(commonFieldCount,len(controlFieldStackCache))): fieldSequence = info.getControlFieldSpeech( controlFieldStackCache[count], controlFieldStackCache[0:count], "end_removedFromControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) if not endingBlock and reason == OutputReason.SAYALL: endingBlock=bool(int(controlFieldStackCache[count].get('isBlock',0))) if endingBlock: speechSequence.append(EndUtteranceCommand()) # The TextInfo should be considered blank if we are only exiting fields (i.e. we aren't # entering any new fields and there is no text). shouldConsiderTextInfoBlank = True if _prefixSpeechCommand is not None: assert isinstance(_prefixSpeechCommand, SpeechCommand) speechSequence.append(_prefixSpeechCommand) #Get speech text for any fields that are in both controlFieldStacks, if extra detail is not requested if not extraDetail: for count in range(commonFieldCount): field=newControlFieldStack[count] fieldSequence = info.getControlFieldSpeech( field, newControlFieldStack[0:count], "start_inControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) shouldConsiderTextInfoBlank = False if field.get("role")==controlTypes.Role.MATH: shouldConsiderTextInfoBlank = False _extendSpeechSequence_addMathForTextInfo(speechSequence, info, field) # When true, we are inside a clickable field, and should therefore not announce any more new clickable fields inClickable=False #Get speech text for any fields in the new controlFieldStack that are not in the old controlFieldStack for count in range(commonFieldCount,len(newControlFieldStack)): field=newControlFieldStack[count] if not inClickable and formatConfig['reportClickable']: states=field.get('states') if states and controlTypes.State.CLICKABLE in states: # We entered the most outer clickable, so announce it, if we won't be announcing anything else interesting for this field presCat=field.getPresentationCategory(newControlFieldStack[0:count],formatConfig,reason) if not presCat or presCat is field.PRESCAT_LAYOUT: speechSequence.append(controlTypes.State.CLICKABLE.displayString) shouldConsiderTextInfoBlank = False inClickable=True fieldSequence = info.getControlFieldSpeech( field, newControlFieldStack[0:count], "start_addedToControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) shouldConsiderTextInfoBlank = False if field.get("role")==controlTypes.Role.MATH: shouldConsiderTextInfoBlank = False _extendSpeechSequence_addMathForTextInfo(speechSequence, info, field) commonFieldCount+=1 #Fetch the text for format field attributes that have changed between what was previously cached, and this textInfo's initialFormatField. fieldSequence = info.getFormatFieldSpeech( newFormatField, formatFieldAttributesCache, formatConfig, reason=reason, unit=unit, extraDetail=extraDetail, initialFormat=True ) if fieldSequence: speechSequence.extend(fieldSequence) language = None if autoLanguageSwitching: language=newFormatField.get('language') speechSequence.append(LangChangeCommand(language)) lastLanguage=language def isControlEndFieldCommand(x): return isinstance(x, textInfos.FieldCommand) and x.command == "controlEnd" isWordOrCharUnit = unit in (textInfos.UNIT_CHARACTER, textInfos.UNIT_WORD) if onlyInitialFields or ( isWordOrCharUnit and len(textWithFields) > 0 and len(textWithFields[0].strip() if not textWithFields[0].isspace() else textWithFields[0]) == 1 and all(isControlEndFieldCommand(x) for x in itertools.islice(textWithFields, 1, None)) ): if not onlyCache: if onlyInitialFields or any(isinstance(x, str) for x in speechSequence): yield speechSequence if not onlyInitialFields: spellingSequence = list(getSpellingSpeech( textWithFields[0], locale=language )) logBadSequenceTypes(spellingSequence) yield spellingSequence if useCache: speakTextInfoState.controlFieldStackCache=newControlFieldStack speakTextInfoState.formatFieldAttributesCache=formatFieldAttributesCache if not isinstance(useCache,SpeakTextInfoState): speakTextInfoState.updateObj() return False # Similar to before, but If the most inner clickable is exited, then we allow announcing clickable for the next lot of clickable fields entered. inClickable=False #Move through the field commands, getting speech text for all controlStarts, controlEnds and formatChange commands #But also keep newControlFieldStack up to date as we will need it for the ends # Add any text to a separate list, as it must be handled differently. #Also make sure that LangChangeCommand objects are added before any controlField or formatField speech relativeSpeechSequence=[] inTextChunk=False allIndentation="" indentationDone=False for command in textWithFields: if isinstance(command,str): # Text should break a run of clickables inClickable=False if reportIndentation and not indentationDone: indentation,command=splitTextIndentation(command) # Combine all indentation into one string for later processing. allIndentation+=indentation if command: # There was content after the indentation, so there is no more indentation. indentationDone=True if command: if inTextChunk: relativeSpeechSequence[-1]+=command else: relativeSpeechSequence.append(command) inTextChunk=True elif isinstance(command,textInfos.FieldCommand): newLanguage=None if command.command=="controlStart": # Control fields always start a new chunk, even if they have no field text. inTextChunk=False fieldSequence = [] if not inClickable and formatConfig['reportClickable']: states=command.field.get('states') if states and controlTypes.State.CLICKABLE in states: # We have entered an outer most clickable or entered a new clickable after exiting a previous one # Announce it if there is nothing else interesting about the field, but not if the user turned it off. presCat=command.field.getPresentationCategory(newControlFieldStack[0:],formatConfig,reason) if not presCat or presCat is command.field.PRESCAT_LAYOUT: fieldSequence.append(controlTypes.State.CLICKABLE.displayString) inClickable=True fieldSequence.extend(info.getControlFieldSpeech( command.field, newControlFieldStack, "start_relative", formatConfig, extraDetail, reason=reason )) newControlFieldStack.append(command.field) elif command.command=="controlEnd": # Exiting a controlField should break a run of clickables inClickable=False # Control fields always start a new chunk, even if they have no field text. inTextChunk=False fieldSequence = info.getControlFieldSpeech( newControlFieldStack[-1], newControlFieldStack[0:-1], "end_relative", formatConfig, extraDetail, reason=reason ) del newControlFieldStack[-1] if commonFieldCount>len(newControlFieldStack): commonFieldCount=len(newControlFieldStack) elif command.command=="formatChange": fieldSequence = info.getFormatFieldSpeech( command.field, formatFieldAttributesCache, formatConfig, reason=reason, unit=unit, extraDetail=extraDetail ) if fieldSequence: inTextChunk=False if autoLanguageSwitching: newLanguage=command.field.get('language') if lastLanguage!=newLanguage: # The language has changed, so this starts a new text chunk. inTextChunk=False if not inTextChunk: if fieldSequence: if autoLanguageSwitching and lastLanguage is not None: # Fields must be spoken in the default language. relativeSpeechSequence.append(LangChangeCommand(None)) lastLanguage=None relativeSpeechSequence.extend(fieldSequence) if command.command=="controlStart" and command.field.get("role")==controlTypes.Role.MATH: _extendSpeechSequence_addMathForTextInfo(relativeSpeechSequence, info, command.field) if autoLanguageSwitching and newLanguage!=lastLanguage: relativeSpeechSequence.append(LangChangeCommand(newLanguage)) lastLanguage=newLanguage if reportIndentation and speakTextInfoState and allIndentation!=speakTextInfoState.indentationCache: indentationSpeech=getIndentationSpeech(allIndentation, formatConfig) if autoLanguageSwitching and speechSequence[-1].lang is not None: # Indentation must be spoken in the default language, # but the initial format field specified a different language. # Insert the indentation before the LangChangeCommand. langChange = speechSequence.pop() speechSequence.extend(indentationSpeech) speechSequence.append(langChange) else: speechSequence.extend(indentationSpeech) if speakTextInfoState: speakTextInfoState.indentationCache=allIndentation # Don't add this text if it is blank. relativeBlank=True for x in relativeSpeechSequence: if isinstance(x,str) and not isBlank(x): relativeBlank=False break if not relativeBlank: speechSequence.extend(relativeSpeechSequence) shouldConsiderTextInfoBlank = False #Finally get speech text for any fields left in new controlFieldStack that are common with the old controlFieldStack (for closing), if extra detail is not requested if autoLanguageSwitching and lastLanguage is not None: speechSequence.append( LangChangeCommand(None) ) lastLanguage=None if not extraDetail: for count in reversed(range(min(len(newControlFieldStack),commonFieldCount))): fieldSequence = info.getControlFieldSpeech( newControlFieldStack[count], newControlFieldStack[0:count], "end_inControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) shouldConsiderTextInfoBlank = False # If there is nothing that should cause the TextInfo to be considered # non-blank, blank should be reported, unless we are doing a say all. if not suppressBlanks and reason != OutputReason.SAYALL and shouldConsiderTextInfoBlank: # Translators: This is spoken when the line is considered blank. speechSequence.append(_("blank")) #Cache a copy of the new controlFieldStack for future use if useCache: speakTextInfoState.controlFieldStackCache=list(newControlFieldStack) speakTextInfoState.formatFieldAttributesCache=formatFieldAttributesCache if not isinstance(useCache,SpeakTextInfoState): speakTextInfoState.updateObj() if reason == OutputReason.ONLYCACHE or not speechSequence: return False yield speechSequence return True
def cancelDelayedPhoneticDescriptionIfPending() -> None: inClickable=False #Get speech text for any fields in the new controlFieldStack that are not in the old controlFieldStack for count in range(commonFieldCount,len(newControlFieldStack)): field=newControlFieldStack[count] if not inClickable and formatConfig['reportClickable']: states=field.get('states') if states and controlTypes.State.CLICKABLE in states: # We entered the most outer clickable, so announce it, if we won't be announcing anything else interesting for this field presCat=field.getPresentationCategory(newControlFieldStack[0:count],formatConfig,reason) if not presCat or presCat is field.PRESCAT_LAYOUT: speechSequence.append(controlTypes.State.CLICKABLE.displayString) shouldConsiderTextInfoBlank = False inClickable=True fieldSequence = info.getControlFieldSpeech( field, newControlFieldStack[0:count], "start_addedToControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) shouldConsiderTextInfoBlank = False if field.get("role")==controlTypes.Role.MATH: shouldConsiderTextInfoBlank = False _extendSpeechSequence_addMathForTextInfo(speechSequence, info, field) commonFieldCount+=1 #Fetch the text for format field attributes that have changed between what was previously cached, and this textInfo's initialFormatField. fieldSequence = info.getFormatFieldSpeech( newFormatField, formatFieldAttributesCache, formatConfig, reason=reason, unit=unit, extraDetail=extraDetail, initialFormat=True ) if fieldSequence: speechSequence.extend(fieldSequence) language = None if autoLanguageSwitching: language=newFormatField.get('language') speechSequence.append(LangChangeCommand(language)) lastLanguage=language def isControlEndFieldCommand(x): return isinstance(x, textInfos.FieldCommand) and x.command == "controlEnd" isWordOrCharUnit = unit in (textInfos.UNIT_CHARACTER, textInfos.UNIT_WORD) if onlyInitialFields or ( isWordOrCharUnit and len(textWithFields) > 0 and len(textWithFields[0].strip() if not textWithFields[0].isspace() else textWithFields[0]) == 1 and all(isControlEndFieldCommand(x) for x in itertools.islice(textWithFields, 1, None)) ): if not onlyCache: if onlyInitialFields or any(isinstance(x, str) for x in speechSequence): yield speechSequence if not onlyInitialFields: spellingSequence = list(getSpellingSpeech( textWithFields[0], locale=language )) logBadSequenceTypes(spellingSequence) yield spellingSequence if useCache: speakTextInfoState.controlFieldStackCache=newControlFieldStack speakTextInfoState.formatFieldAttributesCache=formatFieldAttributesCache if not isinstance(useCache,SpeakTextInfoState): speakTextInfoState.updateObj() return False # Similar to before, but If the most inner clickable is exited, then we allow announcing clickable for the next lot of clickable fields entered. inClickable=False #Move through the field commands, getting speech text for all controlStarts, controlEnds and formatChange commands #But also keep newControlFieldStack up to date as we will need it for the ends # Add any text to a separate list, as it must be handled differently. #Also make sure that LangChangeCommand objects are added before any controlField or formatField speech relativeSpeechSequence=[] inTextChunk=False allIndentation="" indentationDone=False for command in textWithFields: if isinstance(command,str): # Text should break a run of clickables inClickable=False if reportIndentation and not indentationDone: indentation,command=splitTextIndentation(command) # Combine all indentation into one string for later processing. allIndentation+=indentation if command: # There was content after the indentation, so there is no more indentation. indentationDone=True if command: if inTextChunk: relativeSpeechSequence[-1]+=command else: relativeSpeechSequence.append(command) inTextChunk=True elif isinstance(command,textInfos.FieldCommand): newLanguage=None if command.command=="controlStart": # Control fields always start a new chunk, even if they have no field text. inTextChunk=False fieldSequence = [] if not inClickable and formatConfig['reportClickable']: states=command.field.get('states') if states and controlTypes.State.CLICKABLE in states: # We have entered an outer most clickable or entered a new clickable after exiting a previous one # Announce it if there is nothing else interesting about the field, but not if the user turned it off. presCat=command.field.getPresentationCategory(newControlFieldStack[0:],formatConfig,reason) if not presCat or presCat is command.field.PRESCAT_LAYOUT: fieldSequence.append(controlTypes.State.CLICKABLE.displayString) inClickable=True fieldSequence.extend(info.getControlFieldSpeech( command.field, newControlFieldStack, "start_relative", formatConfig, extraDetail, reason=reason )) newControlFieldStack.append(command.field) elif command.command=="controlEnd": # Exiting a controlField should break a run of clickables inClickable=False # Control fields always start a new chunk, even if they have no field text. inTextChunk=False fieldSequence = info.getControlFieldSpeech( newControlFieldStack[-1], newControlFieldStack[0:-1], "end_relative", formatConfig, extraDetail, reason=reason ) del newControlFieldStack[-1] if commonFieldCount>len(newControlFieldStack): commonFieldCount=len(newControlFieldStack) elif command.command=="formatChange": fieldSequence = info.getFormatFieldSpeech( command.field, formatFieldAttributesCache, formatConfig, reason=reason, unit=unit, extraDetail=extraDetail ) if fieldSequence: inTextChunk=False if autoLanguageSwitching: newLanguage=command.field.get('language') if lastLanguage!=newLanguage: # The language has changed, so this starts a new text chunk. inTextChunk=False if not inTextChunk: if fieldSequence: if autoLanguageSwitching and lastLanguage is not None: # Fields must be spoken in the default language. relativeSpeechSequence.append(LangChangeCommand(None)) lastLanguage=None relativeSpeechSequence.extend(fieldSequence) if command.command=="controlStart" and command.field.get("role")==controlTypes.Role.MATH: _extendSpeechSequence_addMathForTextInfo(relativeSpeechSequence, info, command.field) if autoLanguageSwitching and newLanguage!=lastLanguage: relativeSpeechSequence.append(LangChangeCommand(newLanguage)) lastLanguage=newLanguage if reportIndentation and speakTextInfoState and allIndentation!=speakTextInfoState.indentationCache: indentationSpeech=getIndentationSpeech(allIndentation, formatConfig) if autoLanguageSwitching and speechSequence[-1].lang is not None: # Indentation must be spoken in the default language, # but the initial format field specified a different language. # Insert the indentation before the LangChangeCommand. langChange = speechSequence.pop() speechSequence.extend(indentationSpeech) speechSequence.append(langChange) else: speechSequence.extend(indentationSpeech) if speakTextInfoState: speakTextInfoState.indentationCache=allIndentation # Don't add this text if it is blank. relativeBlank=True for x in relativeSpeechSequence: if isinstance(x,str) and not isBlank(x): relativeBlank=False break if not relativeBlank: speechSequence.extend(relativeSpeechSequence) shouldConsiderTextInfoBlank = False #Finally get speech text for any fields left in new controlFieldStack that are common with the old controlFieldStack (for closing), if extra detail is not requested if autoLanguageSwitching and lastLanguage is not None: speechSequence.append( LangChangeCommand(None) ) lastLanguage=None if not extraDetail: for count in reversed(range(min(len(newControlFieldStack),commonFieldCount))): fieldSequence = info.getControlFieldSpeech( newControlFieldStack[count], newControlFieldStack[0:count], "end_inControlFieldStack", formatConfig, extraDetail, reason=reason ) if fieldSequence: speechSequence.extend(fieldSequence) shouldConsiderTextInfoBlank = False # If there is nothing that should cause the TextInfo to be considered # non-blank, blank should be reported, unless we are doing a say all. if not suppressBlanks and reason != OutputReason.SAYALL and shouldConsiderTextInfoBlank: # Translators: This is spoken when the line is considered blank. speechSequence.append(_("blank")) #Cache a copy of the new controlFieldStack for future use if useCache: speakTextInfoState.controlFieldStackCache=list(newControlFieldStack) speakTextInfoState.formatFieldAttributesCache=formatFieldAttributesCache if not isinstance(useCache,SpeakTextInfoState): speakTextInfoState.updateObj() if reason == OutputReason.ONLYCACHE or not speechSequence: return False yield speechSequence return True
55,851
def test_load_duplicate_keys_top() -> None: from yaml.constructor import ConstructorError try: with tempfile.NamedTemporaryFile(delete=False) as fp: fp.write("a:\n b: 1\na:\n b: 2\n".encode("utf-8")) with pytest.raises(ConstructorError): OmegaConf.load(fp.name) finally: os.unlink(fp.name)
def test_load_duplicate_keys_top() -> None: from yaml.constructor import ConstructorError try: with tempfile.NamedTemporaryFile(delete=False) as fp: content = """ a: b: 1 a: b: 2 """ fp.write(content.encode("utf-8")) with pytest.raises(ConstructorError): OmegaConf.load(fp.name) finally: os.unlink(fp.name)
44,161
def pattern_matching(circuit_dag, pattern_dag): r"""Function that applies the pattern matching algorithm and returns the list of maximal matches. Args: circuit_dag (.CommutationDAG): A commutation DAG representing the circuit to be optimized. pattern_dag(.CommutationDAG): A commutation DAG representing the pattern. Returns: list(Match): the list of maximal matches. **Example** First let's consider the following circuit .. code-block:: python def circuit(): qml.S(wires=0) qml.PauliZ(wires=0) qml.S(wires=1) qml.CZ(wires=[0, 1]) qml.S(wires=1) qml.S(wires=2) qml.CZ(wires=[1, 2]) qml.S(wires=2) return qml.expval(qml.PauliX(wires=0)) where we want to find all maximal matches of a pattern containing a sequence of two ``pennylane.S`` gates and a ``pennylane.PauliZ`` gate: .. code-block:: python with qml.tape.QuantumTape() as pattern: qml.S(wires=0) qml.S(wires=0) qml.PauliZ(wires=0) >>> circuit_dag = qml.commutation_dag(circuit)() >>> pattern_dag = qml.commutation_dag(pattern)() >>> all_max_matches = qml.pattern_matching(circuit_dag, pattern_dag) It is possible to access the matches by looping through the list. The first integers indices represent the gates in the pattern and the second intergers the gates in the circuit (by order of appearance). >>> for match_conf in all_max_matches: ... print(match_conf.match) [[0, 0], [2, 1]] [[0, 2], [1, 4]] [[0, 4], [1, 2]] [[0, 5], [1, 7]] [[0, 7], [1, 5]] **Reference:** [1] Iten, R., Moyard, R., Metger, T., Sutter, D. and Woerner, S., 2022. Exact and practical pattern matching for quantum circuit optimization. `doi.org/10.1145/3498325 <https://dl.acm.org/doi/abs/10.1145/3498325>`_ """ # Match list match_list = [] # Loop through all possible initial matches for node_c, node_p in itertools.product(circuit_dag.get_nodes(), pattern_dag.get_nodes()): # Initial matches between two identical gates (No qubits comparison) if _compare_operation_without_qubits(node_c[1], node_p[1]): # Fix qubits from the first (target fixed and control restrained) not_fixed_qubits_confs = _not_fixed_qubits( circuit_dag.num_wires, node_c[1].wires, pattern_dag.num_wires - len(node_p[1].wires) ) # Loop over all possible qubits configurations given the first match constrains for not_fixed_qubits_conf in not_fixed_qubits_confs: for not_fixed_qubits_conf_permuted in itertools.permutations(not_fixed_qubits_conf): for first_match_qubits_conf in _first_match_qubits( node_c[1], node_p[1], pattern_dag.num_wires ): # Qubits mapping between circuit and pattern qubits_conf = _merge_first_match_and_permutation( first_match_qubits_conf, not_fixed_qubits_conf_permuted ) # Update wires, target_wires, control_wires wires, target_wires, control_wires = _update_qubits( circuit_dag, qubits_conf ) # Forward match part of the algorithm forward = ForwardMatch( circuit_dag, pattern_dag, node_c[0], node_p[0], wires, target_wires, control_wires, ) forward.run_forward_match() # Backward match part of the algorithm backward = BackwardMatch( circuit_dag, pattern_dag, qubits_conf, forward.match, forward.circuit_matched_with, forward.circuit_blocked, forward.pattern_matched_with, node_c[0], node_p[0], wires, control_wires, target_wires, ) backward.run_backward_match() _add_match(match_list, backward.match_final) match_list.sort(key=lambda x: len(x.match), reverse=True) # Extract maximal matches and optimizes the circuit for compatible maximal matches if match_list: maximal = MaximalMatches(match_list) maximal.run_maximal_matches() max_matches = maximal.max_match_list return max_matches return match_list
def pattern_matching(circuit_dag, pattern_dag): r"""Function that applies the pattern matching algorithm and returns the list of maximal matches. Args: circuit_dag (.CommutationDAG): A commutation DAG representing the circuit to be optimized. pattern_dag(.CommutationDAG): A commutation DAG representing the pattern. Returns: list(Match): the list of maximal matches. **Example** First let's consider the following circuit .. code-block:: python def circuit(): qml.S(wires=0) qml.PauliZ(wires=0) qml.S(wires=1) qml.CZ(wires=[0, 1]) qml.S(wires=1) qml.S(wires=2) qml.CZ(wires=[1, 2]) qml.S(wires=2) return qml.expval(qml.PauliX(wires=0)) where we want to find all maximal matches of a pattern containing a sequence of two ``pennylane.S`` gates and a ``pennylane.PauliZ`` gate: .. code-block:: python def pattern(): qml.S(wires=0) qml.S(wires=0) qml.PauliZ(wires=0) >>> circuit_dag = qml.commutation_dag(circuit)() >>> pattern_dag = qml.commutation_dag(pattern)() >>> all_max_matches = qml.pattern_matching(circuit_dag, pattern_dag) It is possible to access the matches by looping through the list. The first integers indices represent the gates in the pattern and the second intergers the gates in the circuit (by order of appearance). >>> for match_conf in all_max_matches: ... print(match_conf.match) [[0, 0], [2, 1]] [[0, 2], [1, 4]] [[0, 4], [1, 2]] [[0, 5], [1, 7]] [[0, 7], [1, 5]] **Reference:** [1] Iten, R., Moyard, R., Metger, T., Sutter, D. and Woerner, S., 2022. Exact and practical pattern matching for quantum circuit optimization. `doi.org/10.1145/3498325 <https://dl.acm.org/doi/abs/10.1145/3498325>`_ """ # Match list match_list = [] # Loop through all possible initial matches for node_c, node_p in itertools.product(circuit_dag.get_nodes(), pattern_dag.get_nodes()): # Initial matches between two identical gates (No qubits comparison) if _compare_operation_without_qubits(node_c[1], node_p[1]): # Fix qubits from the first (target fixed and control restrained) not_fixed_qubits_confs = _not_fixed_qubits( circuit_dag.num_wires, node_c[1].wires, pattern_dag.num_wires - len(node_p[1].wires) ) # Loop over all possible qubits configurations given the first match constrains for not_fixed_qubits_conf in not_fixed_qubits_confs: for not_fixed_qubits_conf_permuted in itertools.permutations(not_fixed_qubits_conf): for first_match_qubits_conf in _first_match_qubits( node_c[1], node_p[1], pattern_dag.num_wires ): # Qubits mapping between circuit and pattern qubits_conf = _merge_first_match_and_permutation( first_match_qubits_conf, not_fixed_qubits_conf_permuted ) # Update wires, target_wires, control_wires wires, target_wires, control_wires = _update_qubits( circuit_dag, qubits_conf ) # Forward match part of the algorithm forward = ForwardMatch( circuit_dag, pattern_dag, node_c[0], node_p[0], wires, target_wires, control_wires, ) forward.run_forward_match() # Backward match part of the algorithm backward = BackwardMatch( circuit_dag, pattern_dag, qubits_conf, forward.match, forward.circuit_matched_with, forward.circuit_blocked, forward.pattern_matched_with, node_c[0], node_p[0], wires, control_wires, target_wires, ) backward.run_backward_match() _add_match(match_list, backward.match_final) match_list.sort(key=lambda x: len(x.match), reverse=True) # Extract maximal matches and optimizes the circuit for compatible maximal matches if match_list: maximal = MaximalMatches(match_list) maximal.run_maximal_matches() max_matches = maximal.max_match_list return max_matches return match_list
57,933
def get_user_login_profile(args, aws_client): client = aws_client.aws_session( service=SERVICE, role_arn=args.get('roleArn'), role_session_name=args.get('roleSessionName'), role_session_duration=args.get('roleSessionDuration'), ) user_name = args.get('userName') kwargs = { 'UserName': user_name } response = client.get_login_profile(**kwargs) user_profile = response['LoginProfile'] data = ({ 'UserName': user_profile.get('UserName', None), 'LoginProfile': { 'CreateDate': user_profile.get('CreateDate', None), 'PasswordResetRequired': user_profile.get('PasswordResetRequired', None) } }) ec = {'AWS.IAM.Users(val.UserName && val.UserName === obj.UserName)': data} human_readable = tableToMarkdown('AWS IAM Login Profile for user {}'.format(user_name), t=data.get('LoginProfile'), headers=['CreateDate', 'PasswordResetRequired'], removeNull=True, headerTransform=pascalToSpace) return_outputs(human_readable, ec)
def get_user_login_profile(args, aws_client): client = aws_client.aws_session( service=SERVICE, role_arn=args.get('roleArn'), role_session_name=args.get('roleSessionName'), role_session_duration=args.get('roleSessionDuration'), ) user_name = args.get('userName') kwargs = { 'UserName': user_name } response = client.get_login_profile(**kwargs) user_profile = response['LoginProfile'] data = { 'UserName': user_profile.get('UserName'), 'LoginProfile': { 'CreateDate': user_profile.get('CreateDate'), 'PasswordResetRequired': user_profile.get('PasswordResetRequired') } } ec = {'AWS.IAM.Users(val.UserName && val.UserName === obj.UserName)': data} human_readable = tableToMarkdown('AWS IAM Login Profile for user {}'.format(user_name), t=data.get('LoginProfile'), headers=['CreateDate', 'PasswordResetRequired'], removeNull=True, headerTransform=pascalToSpace) return_outputs(human_readable, ec)
54,103
def aggregate_to_substations(n, config, aggregation_strategies=dict(), buses_i=None): # can be used to aggregate a selection of buses to electrically closest neighbors # if no buses are given, nodes that are no substations or without offshore connection are aggregated if buses_i is None: logger.info("Aggregating buses that are no substations or have no valid offshore connection") buses_i = list(set(n.buses.index)-set(n.generators.bus)-set(n.loads.bus)) weight = pd.concat({'Line': n.lines.length/n.lines.s_nom.clip(1e-3), 'Link': n.links.length/n.links.p_nom.clip(1e-3)}) adj = n.adjacency_matrix(branch_components=['Line', 'Link'], weights=weight) bus_indexer = n.buses.index.get_indexer(buses_i) dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index) dist[buses_i] = np.inf # bus in buses_i should not be assigned to different bus in buses_i for c in n.buses.country.unique(): incountry_b = n.buses.country == c dist.loc[incountry_b, ~incountry_b] = np.inf busmap = n.buses.index.to_series() busmap.loc[buses_i] = dist.idxmin(1) # default aggregation strategies must be specified within the function, otherwise (when defaults are passed in # the function's definition) they get lost in case custom values for different variables are specified in the config bus_strategies = dict(country=_make_consense("Bus", "country")) bus_strategies.update(aggregation_strategies.get("buses", {})) generator_strategies = aggregation_strategies.get("generators", {"p_nom_max": "sum"}) # this snippet supports compatibility of PyPSA and PyPSA-EUR: if "p_nom_max" in generator_strategies: if generator_strategies["p_nom_max"] == "min": generator_strategies["p_nom_max"] = np.min clustering = get_clustering_from_busmap(n, busmap, bus_strategies=bus_strategies, aggregate_generators_weighted=True, aggregate_generators_carriers=None, aggregate_one_ports=["Load", "StorageUnit"], line_length_factor=1.0, generator_strategies=generator_strategies, scale_link_capital_costs=False) return clustering.network, busmap
def aggregate_to_substations(n, config, aggregation_strategies=dict(), buses_i=None): # can be used to aggregate a selection of buses to electrically closest neighbors # if no buses are given, nodes that are no substations or without offshore connection are aggregated if buses_i is None: logger.info("Aggregating buses that are no substations or have no valid offshore connection") buses_i = list(set(n.buses.index)-set(n.generators.bus)-set(n.loads.bus)) weight = pd.concat({'Line': n.lines.length/n.lines.s_nom.clip(1e-3), 'Link': n.links.length/n.links.p_nom.clip(1e-3)}) adj = n.adjacency_matrix(branch_components=['Line', 'Link'], weights=weight) bus_indexer = n.buses.index.get_indexer(buses_i) dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index) dist[buses_i] = np.inf # bus in buses_i should not be assigned to different bus in buses_i for c in n.buses.country.unique(): incountry_b = n.buses.country == c dist.loc[incountry_b, ~incountry_b] = np.inf busmap = n.buses.index.to_series() busmap.loc[buses_i] = dist.idxmin(1) # default aggregation strategies must be specified within the function, otherwise (when defaults are passed in # the function's definition) they get lost in case custom values for different variables are specified in the config bus_strategies = dict(country=_make_consense("Bus", "country")) bus_strategies.update(aggregation_strategies.get("buses", {})) generator_strategies = aggregation_strategies.get("generators", {"p_nom_max": "sum"}) # this snippet supports compatibility of PyPSA and PyPSA-EUR: if generator_strategies.get("p_nom_max") == "min": generator_strategies["p_nom_max"] = pd.Series.min clustering = get_clustering_from_busmap(n, busmap, bus_strategies=bus_strategies, aggregate_generators_weighted=True, aggregate_generators_carriers=None, aggregate_one_ports=["Load", "StorageUnit"], line_length_factor=1.0, generator_strategies=generator_strategies, scale_link_capital_costs=False) return clustering.network, busmap
31,190
def test_module(client): ts_from = ts_to = round(float(datetime.timestamp(datetime.utcnow()))) result = client.get_incidents(ts_from, ts_to) if not result.get('success'): raise DemistoException(result['message']) demisto.results("ok")
def test_module(client): ts_from = ts_to = round(float(datetime.timestamp(datetime.utcnow()))) result = client.get_incidents(ts_from, ts_to) if not result.get('success'): raise DemistoException(result['message']) return "ok"
14,622
def add_unseen_labels(train_label_dict, test_label_list): """ Merge test set labels that not seen in the training data with seen ones. Parameters ---------- train_label_dict : dict Dictionary mapping training set class labels to class indices. test_label_list : list List containing labels in the test set. Returns ------- train_and_test_label_dict : dict Dictionary mapping merged lables from both the training and test set to indices. """ # get the list of labels that were in the training set train_label_list = list(train_label_dict.keys()) # identify any unseen labels in the test set unseen_test_label_list = [label for label in test_label_list if label not in train_label_list] # create a new dictionary for these unseen labels with label indices # for them starting _after_ those for the training set labels unseen_label_dict = {label: i for i, label in enumerate(unseen_test_label_list, start=len(train_label_list))} # combine the train label dictionary with this unseen label one & return train_and_test_label_dict = train_label_dict.copy() train_and_test_label_dict.update(unseen_label_dict) return train_and_test_label_dict
def add_unseen_labels(train_label_dict, test_label_list): """ Merge test set labels that are not seen in the training data with seen ones. Parameters ---------- train_label_dict : dict Dictionary mapping training set class labels to class indices. test_label_list : list List containing labels in the test set. Returns ------- train_and_test_label_dict : dict Dictionary mapping merged lables from both the training and test set to indices. """ # get the list of labels that were in the training set train_label_list = list(train_label_dict.keys()) # identify any unseen labels in the test set unseen_test_label_list = [label for label in test_label_list if label not in train_label_list] # create a new dictionary for these unseen labels with label indices # for them starting _after_ those for the training set labels unseen_label_dict = {label: i for i, label in enumerate(unseen_test_label_list, start=len(train_label_list))} # combine the train label dictionary with this unseen label one & return train_and_test_label_dict = train_label_dict.copy() train_and_test_label_dict.update(unseen_label_dict) return train_and_test_label_dict
2,013
def _get_predictions(clf_fitted, X, label_encoder_): """Returns predictions for `X` and index of classes present in `X`. For predicitons, `decision_function` method of the `clf_fitted` is used. If this does not exist, `predict_proba` method used. Parameters ---------- clf_fitted : Estimator instance Fitted classifier instance. X : array-like Sample data used for the predictions. label_encoder_ : LabelEncoder instance LabelEncoder instance fitted on all the targets. Returns ------- df : array-like, shape (X.shape[0], len(clf_fitted.classes_)) The predictions. Note array is of shape (X.shape[0], 1) when there are 2 classes. idx_pos_class : array-like, shape (n_classes,) Indices of the classes present in `X`. """ if hasattr(clf_fitted, "decision_function"): df = clf_fitted.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(clf_fitted, "predict_proba"): df = clf_fitted.predict_proba(X) if len(label_encoder_.classes_) == 2: df = df[:, 1:] else: raise RuntimeError("'base_estimator' has no 'decision_function' or " "'predict_proba' method.") idx_pos_class = label_encoder_.transform(clf_fitted.classes_) return df, idx_pos_class
def _get_predictions(clf_fitted, X, label_encoder_): """Returns predictions for `X` and index of classes present in `X`. For predicitons, `decision_function` method of the `clf_fitted` is used. If this does not exist, `predict_proba` method used. Parameters ---------- clf_fitted : Estimator instance Fitted classifier instance. X : array-like Sample data used for the predictions. label_encoder_ : LabelEncoder instance LabelEncoder instance fitted on all the targets. Returns ------- df : array-like, shape (X.shape[0], len(clf_fitted.classes_)) The predictions. Note array is of shape (X.shape[0], 1) when there are 2 classes. pos_class_indices : array-like, shape (n_classes,) Indices of the classes present in `X`. """ if hasattr(clf_fitted, "decision_function"): df = clf_fitted.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(clf_fitted, "predict_proba"): df = clf_fitted.predict_proba(X) if len(label_encoder_.classes_) == 2: df = df[:, 1:] else: raise RuntimeError("'base_estimator' has no 'decision_function' or " "'predict_proba' method.") idx_pos_class = label_encoder_.transform(clf_fitted.classes_) return df, idx_pos_class
24,268
def test_discovery(aggregator): host = socket.gethostbyname(common.HOST) network = ipaddress.ip_network(u'{}/29'.format(host), strict=False).with_prefixlen check_tags = ['snmp_device:{}'.format(host), 'snmp_profile:profile1'] instance = { 'name': 'snmp_conf', # Make sure the check handles bytes 'network_address': network.encode('utf-8'), 'port': common.PORT, 'community_string': 'public', 'retries': 0, 'discovery_interval': 0, } init_config = { 'profiles': { 'profile1': {'definition': {'metrics': common.SUPPORTED_METRIC_TYPES, 'sysobjectid': '1.3.6.1.4.1.8072.*'}} } } check = SnmpCheck('snmp', init_config, [instance]) try: for _ in range(30): check.check(instance) if len(aggregator.metric_names) > 1: break time.sleep(1) aggregator.reset() finally: check._running = False del check for metric in common.SUPPORTED_METRIC_TYPES: metric_name = "snmp." + metric['name'] aggregator.assert_metric(metric_name, tags=check_tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance') aggregator.assert_metric('snmp.discovered_devices_count', tags=['network:{}'.format(network)]) aggregator.assert_all_metrics_covered()
def test_discovery(aggregator): host = socket.gethostbyname(common.HOST) network = ipaddress.ip_network(u'{}/29'.format(host), strict=False).with_prefixlen check_tags = ['snmp_device:{}'.format(host), 'snmp_profile:profile1'] instance = { 'name': 'snmp_conf', # Make sure the check handles bytes 'network_address': network.encode('utf-8'), 'port': common.PORT, 'community_string': 'public', 'retries': 0, 'discovery_interval': 0, } init_config = { 'profiles': { 'profile1': {'definition': {'metrics': common.SUPPORTED_METRIC_TYPES, 'sysobjectid': '1.3.6.1.4.1.8072.*'}} } } check = SnmpCheck('snmp', init_config, [instance]) try: for _ in range(30): check.check(instance) if len(aggregator.metric_names) > 1: break time.sleep(1) aggregator.reset() finally: check._running = False del check # This is what the Agent would do when unscheduling the check. for metric in common.SUPPORTED_METRIC_TYPES: metric_name = "snmp." + metric['name'] aggregator.assert_metric(metric_name, tags=check_tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance') aggregator.assert_metric('snmp.discovered_devices_count', tags=['network:{}'.format(network)]) aggregator.assert_all_metrics_covered()
46,613
def main(): # Warning: keep in sync with twisted/plugins/pyrdp_plugin.py parser = argparse.ArgumentParser() parser.add_argument("target", help="IP:port of the target RDP machine (ex: 192.168.1.10:3390)") parser.add_argument("-l", "--listen", help="Port number to listen on (default: 3389)", default=3389) parser.add_argument("-o", "--output", help="Output folder", default="pyrdp_output") parser.add_argument("-i", "--destination-ip", help="Destination IP address of the PyRDP player.If not specified, RDP events are not sent over the network.") parser.add_argument("-d", "--destination-port", help="Listening port of the PyRDP player (default: 3000).", default=3000) parser.add_argument("-k", "--private-key", help="Path to private key (for SSL)") parser.add_argument("-c", "--certificate", help="Path to certificate (for SSL)") parser.add_argument("-u", "--username", help="Username that will replace the client's username", default=None) parser.add_argument("-p", "--password", help="Password that will replace the client's password", default=None) parser.add_argument("-L", "--log-level", help="Console logging level. Logs saved to file are always verbose.", default="INFO", choices=["INFO", "DEBUG", "WARNING", "ERROR", "CRITICAL"]) parser.add_argument("-F", "--log-filter", help="Only show logs from this logger name (accepts '*' wildcards)", default="") parser.add_argument("-s", "--sensor-id", help="Sensor ID (to differentiate multiple instances of the MITM where logs are aggregated at one place)", default="PyRDP") parser.add_argument("--payload", help="Command to run automatically upon connection", default=None) parser.add_argument("--payload-powershell", help="PowerShell command to run automatically upon connection", default=None) parser.add_argument("--payload-powershell-file", help="PowerShell script to run automatically upon connection (as -EncodedCommand)", default=None) parser.add_argument("--payload-delay", help="Time to wait after a new connection before sending the payload, in milliseconds", default=None) parser.add_argument("--payload-duration", help="Amount of time for which input / output should be dropped, in milliseconds. This can be used to hide the payload screen.", default=None) parser.add_argument("--crawl", help="Enable automatic shared drive scraping", action="store_true") parser.add_argument("--crawler-match-file", help="File to be used by the crawler to chose what to download when scraping the client shared drives.", default=None) parser.add_argument("--crawler-ignore-file", help="File to be used by the crawler to chose what folders to avoid when scraping the client shared drives.", default=None) parser.add_argument("--no-replay", help="Disable replay recording", action="store_true") parser.add_argument("--gdi", help="Allow GDI passthrough (No video decoding)", action="store_true") args = parser.parse_args() outDir = Path(args.output) outDir.mkdir(exist_ok = True) logLevel = getattr(logging, args.log_level) pyrdpLogger = prepareLoggers(logLevel, args.log_filter, args.sensor_id, outDir) targetHost, targetPort = parseTarget(args.target) key, certificate = validateKeyAndCertificate(args.private_key, args.certificate) listenPort = int(args.listen) config = MITMConfig() config.targetHost = targetHost config.targetPort = targetPort config.privateKeyFileName = key config.certificateFileName = certificate config.attackerHost = args.destination_ip config.attackerPort = int(args.destination_port) config.replacementUsername = args.username config.replacementPassword = args.password config.outDir = outDir config.enableCrawler = args.crawl config.crawlerMatchFileName = args.crawler_match_file config.crawlerIgnoreFileName = args.crawler_ignore_file config.recordReplays = not args.no_replay config.allowGDI = args.gdi payload = None powershell = None if int(args.payload is not None) + int(args.payload_powershell is not None) + int(args.payload_powershell_file is not None) > 1: pyrdpLogger.error("Only one of --payload, --payload-powershell and --payload-powershell-file may be supplied.") sys.exit(1) if args.payload is not None: payload = args.payload pyrdpLogger.info("Using payload: %(payload)s", {"payload": args.payload}) elif args.payload_powershell is not None: powershell = args.payload_powershell pyrdpLogger.info("Using powershell payload: %(payload)s", {"payload": args.payload_powershell}) elif args.payload_powershell_file is not None: if not os.path.exists(args.payload_powershell_file): pyrdpLogger.error("Powershell file %(path)s does not exist.", {"path": args.payload_powershell_file}) sys.exit(1) try: with open(args.payload_powershell_file, "r") as f: powershell = f.read() except IOError as e: pyrdpLogger.error("Error when trying to read powershell file: %(error)s", {"error": e}) sys.exit(1) pyrdpLogger.info("Using payload from powershell file: %(path)s", {"path": args.payload_powershell_file}) if powershell is not None: payload = "powershell -EncodedCommand " + b64encode(powershell.encode("utf-16le")).decode() if payload is not None: if args.payload_delay is None: pyrdpLogger.error("--payload-delay must be provided if a payload is provided.") sys.exit(1) if args.payload_duration is None: pyrdpLogger.error("--payload-duration must be provided if a payload is provided.") sys.exit(1) try: config.payloadDelay = int(args.payload_delay) except ValueError: pyrdpLogger.error("Invalid payload delay. Payload delay must be an integral number of milliseconds.") sys.exit(1) if config.payloadDelay < 0: pyrdpLogger.error("Payload delay must not be negative.") sys.exit(1) if config.payloadDelay < 1000: pyrdpLogger.warning("You have provided a payload delay of less than 1 second. We recommend you use a slightly longer delay to make sure it runs properly.") try: config.payloadDuration = int(args.payload_duration) except ValueError: pyrdpLogger.error("Invalid payload duration. Payload duration must be an integral number of milliseconds.") sys.exit(1) if config.payloadDuration < 0: pyrdpLogger.error("Payload duration must not be negative.") sys.exit(1) config.payload = payload elif args.payload_delay is not None: pyrdpLogger.error("--payload-delay was provided but no payload was set.") sys.exit(1) logConfiguration(config) reactor.listenTCP(listenPort, MITMServerFactory(config)) pyrdpLogger.info("MITM Server listening on port %(port)d", {"port": listenPort}) reactor.run() pyrdpLogger.info("MITM terminated") logConfiguration(config)
def main(): # Warning: keep in sync with twisted/plugins/pyrdp_plugin.py parser = argparse.ArgumentParser() parser.add_argument("target", help="IP:port of the target RDP machine (ex: 192.168.1.10:3390)") parser.add_argument("-l", "--listen", help="Port number to listen on (default: 3389)", default=3389) parser.add_argument("-o", "--output", help="Output folder", default="pyrdp_output") parser.add_argument("-i", "--destination-ip", help="Destination IP address of the PyRDP player.If not specified, RDP events are not sent over the network.") parser.add_argument("-d", "--destination-port", help="Listening port of the PyRDP player (default: 3000).", default=3000) parser.add_argument("-k", "--private-key", help="Path to private key (for SSL)") parser.add_argument("-c", "--certificate", help="Path to certificate (for SSL)") parser.add_argument("-u", "--username", help="Username that will replace the client's username", default=None) parser.add_argument("-p", "--password", help="Password that will replace the client's password", default=None) parser.add_argument("-L", "--log-level", help="Console logging level. Logs saved to file are always verbose.", default="INFO", choices=["INFO", "DEBUG", "WARNING", "ERROR", "CRITICAL"]) parser.add_argument("-F", "--log-filter", help="Only show logs from this logger name (accepts '*' wildcards)", default="") parser.add_argument("-s", "--sensor-id", help="Sensor ID (to differentiate multiple instances of the MITM where logs are aggregated at one place)", default="PyRDP") parser.add_argument("--payload", help="Command to run automatically upon connection", default=None) parser.add_argument("--payload-powershell", help="PowerShell command to run automatically upon connection", default=None) parser.add_argument("--payload-powershell-file", help="PowerShell script to run automatically upon connection (as -EncodedCommand)", default=None) parser.add_argument("--payload-delay", help="Time to wait after a new connection before sending the payload, in milliseconds", default=None) parser.add_argument("--payload-duration", help="Amount of time for which input / output should be dropped, in milliseconds. This can be used to hide the payload screen.", default=None) parser.add_argument("--crawl", help="Enable automatic shared drive scraping", action="store_true") parser.add_argument("--crawler-match-file", help="File to be used by the crawler to chose what to download when scraping the client shared drives.", default=None) parser.add_argument("--crawler-ignore-file", help="File to be used by the crawler to chose what folders to avoid when scraping the client shared drives.", default=None) parser.add_argument("--no-replay", help="Disable replay recording", action="store_true") parser.add_argument("--gdi-passthrough", help="Allow GDI passthrough (No video decoding)", action="store_true") args = parser.parse_args() outDir = Path(args.output) outDir.mkdir(exist_ok = True) logLevel = getattr(logging, args.log_level) pyrdpLogger = prepareLoggers(logLevel, args.log_filter, args.sensor_id, outDir) targetHost, targetPort = parseTarget(args.target) key, certificate = validateKeyAndCertificate(args.private_key, args.certificate) listenPort = int(args.listen) config = MITMConfig() config.targetHost = targetHost config.targetPort = targetPort config.privateKeyFileName = key config.certificateFileName = certificate config.attackerHost = args.destination_ip config.attackerPort = int(args.destination_port) config.replacementUsername = args.username config.replacementPassword = args.password config.outDir = outDir config.enableCrawler = args.crawl config.crawlerMatchFileName = args.crawler_match_file config.crawlerIgnoreFileName = args.crawler_ignore_file config.recordReplays = not args.no_replay config.allowGDI = args.gdi payload = None powershell = None if int(args.payload is not None) + int(args.payload_powershell is not None) + int(args.payload_powershell_file is not None) > 1: pyrdpLogger.error("Only one of --payload, --payload-powershell and --payload-powershell-file may be supplied.") sys.exit(1) if args.payload is not None: payload = args.payload pyrdpLogger.info("Using payload: %(payload)s", {"payload": args.payload}) elif args.payload_powershell is not None: powershell = args.payload_powershell pyrdpLogger.info("Using powershell payload: %(payload)s", {"payload": args.payload_powershell}) elif args.payload_powershell_file is not None: if not os.path.exists(args.payload_powershell_file): pyrdpLogger.error("Powershell file %(path)s does not exist.", {"path": args.payload_powershell_file}) sys.exit(1) try: with open(args.payload_powershell_file, "r") as f: powershell = f.read() except IOError as e: pyrdpLogger.error("Error when trying to read powershell file: %(error)s", {"error": e}) sys.exit(1) pyrdpLogger.info("Using payload from powershell file: %(path)s", {"path": args.payload_powershell_file}) if powershell is not None: payload = "powershell -EncodedCommand " + b64encode(powershell.encode("utf-16le")).decode() if payload is not None: if args.payload_delay is None: pyrdpLogger.error("--payload-delay must be provided if a payload is provided.") sys.exit(1) if args.payload_duration is None: pyrdpLogger.error("--payload-duration must be provided if a payload is provided.") sys.exit(1) try: config.payloadDelay = int(args.payload_delay) except ValueError: pyrdpLogger.error("Invalid payload delay. Payload delay must be an integral number of milliseconds.") sys.exit(1) if config.payloadDelay < 0: pyrdpLogger.error("Payload delay must not be negative.") sys.exit(1) if config.payloadDelay < 1000: pyrdpLogger.warning("You have provided a payload delay of less than 1 second. We recommend you use a slightly longer delay to make sure it runs properly.") try: config.payloadDuration = int(args.payload_duration) except ValueError: pyrdpLogger.error("Invalid payload duration. Payload duration must be an integral number of milliseconds.") sys.exit(1) if config.payloadDuration < 0: pyrdpLogger.error("Payload duration must not be negative.") sys.exit(1) config.payload = payload elif args.payload_delay is not None: pyrdpLogger.error("--payload-delay was provided but no payload was set.") sys.exit(1) logConfiguration(config) reactor.listenTCP(listenPort, MITMServerFactory(config)) pyrdpLogger.info("MITM Server listening on port %(port)d", {"port": listenPort}) reactor.run() pyrdpLogger.info("MITM terminated") logConfiguration(config)
53,876
def load_nox_module(global_config: Namespace) -> Union[types.ModuleType, int]: """Load the user's noxfile and return the module object for it. .. note:: This task has two side effects; it makes ``global_config.noxfile`` an absolute path, and changes the working directory of the process. Args: global_config (.nox.main.GlobalConfig): The global config. Returns: module: The module designated by the Noxfile path. """ try: # Save the absolute path to the Noxfile. # This will inoculate it if nox changes paths because of an implicit # or explicit chdir (like the one below). global_config.noxfile = os.path.realpath( # Be sure to expand variables os.path.expandvars(global_config.noxfile) ) noxfile_parent_dir = os.path.realpath(os.path.dirname(global_config.noxfile)) # Check ``nox.needs_version`` by parsing the AST. check_nox_version(global_config.noxfile) # Move to the path where the Noxfile is. # This will ensure that the Noxfile's path is on sys.path, and that # import-time path resolutions work the way the Noxfile author would # guess. os.chdir(noxfile_parent_dir) return importlib.machinery.SourceFileLoader( "user_nox_module", global_config.noxfile ).load_module() except (VersionCheckFailed, InvalidVersionSpecifier) as error: logger.error(str(error)) return 2 except FileNotFoundError: logger.error(f"noxfile.py not found in {noxfile_parent_dir!r}.") return 2 except (IOError, OSError): logger.exception("Failed to load Noxfile {}".format(global_config.noxfile)) return 2
def load_nox_module(global_config: Namespace) -> Union[types.ModuleType, int]: """Load the user's noxfile and return the module object for it. .. note:: This task has two side effects; it makes ``global_config.noxfile`` an absolute path, and changes the working directory of the process. Args: global_config (.nox.main.GlobalConfig): The global config. Returns: module: The module designated by the Noxfile path. """ try: # Save the absolute path to the Noxfile. # This will inoculate it if nox changes paths because of an implicit # or explicit chdir (like the one below). global_config.noxfile = os.path.realpath( # Be sure to expand variables os.path.expandvars(global_config.noxfile) ) noxfile_parent_dir = os.path.realpath(os.path.dirname(global_config.noxfile)) # Check ``nox.needs_version`` by parsing the AST. check_nox_version(global_config.noxfile) # Move to the path where the Noxfile is. # This will ensure that the Noxfile's path is on sys.path, and that # import-time path resolutions work the way the Noxfile author would # guess. os.chdir(noxfile_parent_dir) return importlib.machinery.SourceFileLoader( "user_nox_module", global_config.noxfile ).load_module() except (VersionCheckFailed, InvalidVersionSpecifier) as error: logger.error(str(error)) return 2 except FileNotFoundError: logger.error("Failed to load Noxfile {}: no such file".format(global_config.noxfile)) return 2 except (IOError, OSError): logger.exception("Failed to load Noxfile {}".format(global_config.noxfile)) return 2
29,914
def test_scatter_output_filenames(tmpdir: py.path.local) -> None: """Check that when a scatter step produces same named output the final output is renamed correctly.""" cwd = tmpdir.chdir() rtc = RuntimeContext() rtc.outdir = str(cwd) factory = cwltool.factory.Factory(runtime_context=rtc) output_names = ['output.txt', 'output.txt_2', 'output.txt_3'] try: scatter_workflow = factory.make(get_data("tests/scatter_numbers.cwl")) result = scatter_workflow(range=3) assert( 'output' in result ) locations = [element['location'] for element in result['output']] assert( locations[0].endswith('output.txt') and locations[1].endswith('output.txt_2') and locations[2].endswith('output.txt_3'), "Locations {} do not end with {}".format(locations, output_names) ) finally: for filename in output_names: if os.path.exists(filename): os.remove(filename)
def test_scatter_output_filenames(tmpdir: py.path.local) -> None: """If a scatter step produces identically named output then confirm that the final output is renamed correctly.""" cwd = tmpdir.chdir() rtc = RuntimeContext() rtc.outdir = str(cwd) factory = cwltool.factory.Factory(runtime_context=rtc) output_names = ['output.txt', 'output.txt_2', 'output.txt_3'] try: scatter_workflow = factory.make(get_data("tests/scatter_numbers.cwl")) result = scatter_workflow(range=3) assert( 'output' in result ) locations = [element['location'] for element in result['output']] assert( locations[0].endswith('output.txt') and locations[1].endswith('output.txt_2') and locations[2].endswith('output.txt_3'), "Locations {} do not end with {}".format(locations, output_names) ) finally: for filename in output_names: if os.path.exists(filename): os.remove(filename)
34,665
def suggest_nlu_data(args: argparse.Namespace) -> None: """Load NLU training & evaluation data, paraphrases, an existing classification report, its corresponding config file and suggest additional training examples. Args: args: Commandline arguments """ nlu_training_data = rasa.shared.nlu.training_data.loading.load_data( args.nlu_training_data ) nlu_evaluation_data = rasa.shared.nlu.training_data.loading.load_data( args.nlu_evaluation_data ) paraphrases = rasa.shared.nlu.training_data.loading.load_data(args.paraphrases) classification_report = rasa.shared.utils.io.read_json_file( args.nlu_classification_report ) random.seed(args.random_seed) # Determine low data, low performing and frequently confused intents num_intents = len(nlu_training_data.intents) avg_size = int( reduce( lambda acc, num: acc + (num / num_intents), nlu_training_data.number_of_examples_per_intent.values(), 0, ) ) low_data_intents = sorted( nlu_training_data.number_of_examples_per_intent.items(), key=operator.itemgetter(1), )[: args.num_intents] low_precision_intents = sorted( map( lambda k: (k, classification_report[k]["precision"]), nlu_training_data.intents, ), key=operator.itemgetter(1), )[: args.num_intents] low_recall_intents = sorted( map( lambda k: (k, classification_report[k]["recall"]), nlu_training_data.intents ), key=operator.itemgetter(1), )[: args.num_intents] low_f1_intents = sorted( map( lambda k: (k, classification_report[k]["f1-score"]), nlu_training_data.intents, ), key=operator.itemgetter(1), )[: args.num_intents] freq_confused_intents = sorted( map( lambda k: (k, sum(classification_report[k]["confused_with"].values())), nlu_training_data.intents, ), key=operator.itemgetter(1), reverse=True, )[: args.num_intents] pooled_intents = ( set(map(lambda tp: tp[0], low_data_intents)) | set(map(lambda tp: tp[0], low_precision_intents)) | set(map(lambda tp: tp[0], low_recall_intents)) | set(map(lambda tp: tp[0], low_f1_intents)) | set(map(lambda tp: tp[0], freq_confused_intents)) ) # Retrieve paraphrase pool and training data pool paraphrase_pool = _create_paraphrase_pool( paraphrases, pooled_intents, args.paraphrase_score_threshold ) training_data_pool, training_data_vocab_per_intent = _create_training_data_pool( nlu_training_data, pooled_intents ) # Build augmentation pools based on the maximum vocabulary expansion criterion ("diverse") and random sampling max_vocab_expansion = _build_diverse_augmentation_pool( paraphrase_pool, training_data_vocab_per_intent ) random_expansion = _build_random_augmentation_pool(paraphrase_pool) # Build augmentation training set augmented_data_diverse, augmented_data_random = _build_augmentation_training_sets( nlu_training_data, training_data_pool, random_expansion, max_vocab_expansion, pooled_intents, avg_size, ) # Store training data files output_directory_diverse = os.path.join(args.out, "augmentation_diverse") if not os.path.exists(output_directory_diverse): os.makedirs(output_directory_diverse) output_directory_random = os.path.join(args.out, "augmentation_random") if not os.path.exists(output_directory_random): os.makedirs(output_directory_random) out_file_diverse = os.path.join( output_directory_diverse, "train_augmented_diverse.yml" ) augmented_data_diverse.persist_nlu(filename=out_file_diverse) out_file_random = os.path.join( output_directory_random, "train_augmented_random.yml" ) augmented_data_random.persist_nlu(filename=out_file_random) # Train NLU models on diverse and random augmentation sets model_path_diverse = train_nlu( config=args.config, nlu_data=out_file_diverse, output=output_directory_diverse, domain=args.domain, ) model_path_random = train_nlu( config=args.config, nlu_data=out_file_random, output=output_directory_random, domain=args.domain, ) # Evaluate NLU models on NLU evaluation data unpacked_model_path_diverse = get_model(model_path_diverse) nlu_model_path_diverse = os.path.join(unpacked_model_path_diverse, "nlu") interpreter = Interpreter.load(nlu_model_path_diverse) interpreter.pipeline = remove_pretrained_extractors(interpreter.pipeline) (intent_results, *_) = get_eval_data(interpreter, nlu_evaluation_data) intent_report_diverse = create_intent_report( intent_results=intent_results, add_confused_labels_to_report=True, metrics_as_dict=True, ) intent_errors_diverse = extract_intent_errors_from_results( intent_results=intent_results ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_diverse, "intent_errors.json"), intent_errors_diverse, ) unpacked_model_random = get_model(model_path_random) nlu_model_path_random = os.path.join(unpacked_model_random, "nlu") interpreter = Interpreter.load(nlu_model_path_random) interpreter.pipeline = remove_pretrained_extractors(interpreter.pipeline) (intent_results, *_) = get_eval_data(interpreter, nlu_evaluation_data) intent_report_random = create_intent_report( intent_results=intent_results, add_confused_labels_to_report=True, metrics_as_dict=True, ) intent_errors_random = extract_intent_errors_from_results( intent_results=intent_results ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_random, "intent_errors.json"), intent_errors_random, ) # Retrieve intents for which performance has changed changed_intents_diverse = ( _get_intents_with_performance_changes( classification_report, intent_report_diverse.report, nlu_training_data.intents, ) - pooled_intents ) changed_intents_random = ( _get_intents_with_performance_changes( classification_report, intent_report_random.report, nlu_training_data.intents, ) - pooled_intents ) # Create and update result reports report_tuple = _create_augmentation_summary( pooled_intents, changed_intents_diverse, classification_report, intent_report_diverse.report, ) intent_summary_diverse = report_tuple[0] intent_report_diverse.report.update(report_tuple[1]) report_tuple = _create_augmentation_summary( pooled_intents, changed_intents_random, classification_report, intent_report_random.report, ) intent_summary_random = report_tuple[0] intent_report_random.report.update(report_tuple[1]) # Store reports to file rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_diverse, "intent_report.json"), intent_report_diverse.report, ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_random, "intent_report.json"), intent_report_random.report, ) # Plot the summary reports _plot_summary_reports( intent_summary_diverse, intent_summary_random, changed_intents_diverse, changed_intents_random, output_directory_diverse, output_directory_random, ) telemetry.track_data_suggest()
def suggest_nlu_data(args: argparse.Namespace) -> None: """Load NLU training & evaluation data, paraphrases, an existing classification report, its corresponding config file and suggest additional training examples. Args: args: Command-line arguments. """ nlu_training_data = rasa.shared.nlu.training_data.loading.load_data( args.nlu_training_data ) nlu_evaluation_data = rasa.shared.nlu.training_data.loading.load_data( args.nlu_evaluation_data ) paraphrases = rasa.shared.nlu.training_data.loading.load_data(args.paraphrases) classification_report = rasa.shared.utils.io.read_json_file( args.nlu_classification_report ) random.seed(args.random_seed) # Determine low data, low performing and frequently confused intents num_intents = len(nlu_training_data.intents) avg_size = int( reduce( lambda acc, num: acc + (num / num_intents), nlu_training_data.number_of_examples_per_intent.values(), 0, ) ) low_data_intents = sorted( nlu_training_data.number_of_examples_per_intent.items(), key=operator.itemgetter(1), )[: args.num_intents] low_precision_intents = sorted( map( lambda k: (k, classification_report[k]["precision"]), nlu_training_data.intents, ), key=operator.itemgetter(1), )[: args.num_intents] low_recall_intents = sorted( map( lambda k: (k, classification_report[k]["recall"]), nlu_training_data.intents ), key=operator.itemgetter(1), )[: args.num_intents] low_f1_intents = sorted( map( lambda k: (k, classification_report[k]["f1-score"]), nlu_training_data.intents, ), key=operator.itemgetter(1), )[: args.num_intents] freq_confused_intents = sorted( map( lambda k: (k, sum(classification_report[k]["confused_with"].values())), nlu_training_data.intents, ), key=operator.itemgetter(1), reverse=True, )[: args.num_intents] pooled_intents = ( set(map(lambda tp: tp[0], low_data_intents)) | set(map(lambda tp: tp[0], low_precision_intents)) | set(map(lambda tp: tp[0], low_recall_intents)) | set(map(lambda tp: tp[0], low_f1_intents)) | set(map(lambda tp: tp[0], freq_confused_intents)) ) # Retrieve paraphrase pool and training data pool paraphrase_pool = _create_paraphrase_pool( paraphrases, pooled_intents, args.paraphrase_score_threshold ) training_data_pool, training_data_vocab_per_intent = _create_training_data_pool( nlu_training_data, pooled_intents ) # Build augmentation pools based on the maximum vocabulary expansion criterion ("diverse") and random sampling max_vocab_expansion = _build_diverse_augmentation_pool( paraphrase_pool, training_data_vocab_per_intent ) random_expansion = _build_random_augmentation_pool(paraphrase_pool) # Build augmentation training set augmented_data_diverse, augmented_data_random = _build_augmentation_training_sets( nlu_training_data, training_data_pool, random_expansion, max_vocab_expansion, pooled_intents, avg_size, ) # Store training data files output_directory_diverse = os.path.join(args.out, "augmentation_diverse") if not os.path.exists(output_directory_diverse): os.makedirs(output_directory_diverse) output_directory_random = os.path.join(args.out, "augmentation_random") if not os.path.exists(output_directory_random): os.makedirs(output_directory_random) out_file_diverse = os.path.join( output_directory_diverse, "train_augmented_diverse.yml" ) augmented_data_diverse.persist_nlu(filename=out_file_diverse) out_file_random = os.path.join( output_directory_random, "train_augmented_random.yml" ) augmented_data_random.persist_nlu(filename=out_file_random) # Train NLU models on diverse and random augmentation sets model_path_diverse = train_nlu( config=args.config, nlu_data=out_file_diverse, output=output_directory_diverse, domain=args.domain, ) model_path_random = train_nlu( config=args.config, nlu_data=out_file_random, output=output_directory_random, domain=args.domain, ) # Evaluate NLU models on NLU evaluation data unpacked_model_path_diverse = get_model(model_path_diverse) nlu_model_path_diverse = os.path.join(unpacked_model_path_diverse, "nlu") interpreter = Interpreter.load(nlu_model_path_diverse) interpreter.pipeline = remove_pretrained_extractors(interpreter.pipeline) (intent_results, *_) = get_eval_data(interpreter, nlu_evaluation_data) intent_report_diverse = create_intent_report( intent_results=intent_results, add_confused_labels_to_report=True, metrics_as_dict=True, ) intent_errors_diverse = extract_intent_errors_from_results( intent_results=intent_results ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_diverse, "intent_errors.json"), intent_errors_diverse, ) unpacked_model_random = get_model(model_path_random) nlu_model_path_random = os.path.join(unpacked_model_random, "nlu") interpreter = Interpreter.load(nlu_model_path_random) interpreter.pipeline = remove_pretrained_extractors(interpreter.pipeline) (intent_results, *_) = get_eval_data(interpreter, nlu_evaluation_data) intent_report_random = create_intent_report( intent_results=intent_results, add_confused_labels_to_report=True, metrics_as_dict=True, ) intent_errors_random = extract_intent_errors_from_results( intent_results=intent_results ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_random, "intent_errors.json"), intent_errors_random, ) # Retrieve intents for which performance has changed changed_intents_diverse = ( _get_intents_with_performance_changes( classification_report, intent_report_diverse.report, nlu_training_data.intents, ) - pooled_intents ) changed_intents_random = ( _get_intents_with_performance_changes( classification_report, intent_report_random.report, nlu_training_data.intents, ) - pooled_intents ) # Create and update result reports report_tuple = _create_augmentation_summary( pooled_intents, changed_intents_diverse, classification_report, intent_report_diverse.report, ) intent_summary_diverse = report_tuple[0] intent_report_diverse.report.update(report_tuple[1]) report_tuple = _create_augmentation_summary( pooled_intents, changed_intents_random, classification_report, intent_report_random.report, ) intent_summary_random = report_tuple[0] intent_report_random.report.update(report_tuple[1]) # Store reports to file rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_diverse, "intent_report.json"), intent_report_diverse.report, ) rasa.shared.utils.io.dump_obj_as_json_to_file( os.path.join(output_directory_random, "intent_report.json"), intent_report_random.report, ) # Plot the summary reports _plot_summary_reports( intent_summary_diverse, intent_summary_random, changed_intents_diverse, changed_intents_random, output_directory_diverse, output_directory_random, ) telemetry.track_data_suggest()
44,398
def _divide_by_sqrt_n_samp(oks, samples): """ divide Oβ±Όβ‚– by √n """ n_samp = samples.shape[0] * mpi.n_nodes # MPI sqrt_n = float(np.sqrt(n_samp, dtype=x.dtype)) # enforce weak type return jax.tree_map(lambda x: x / sqrt_n, oks)
def _divide_by_sqrt_n_samp(oks, samples): """ divide Oβ±Όβ‚– by √n """ n_samp = samples.shape[0] * mpi.n_nodes # MPI sqrt_n = math.sqrt(n_samp) # enforce weak type return jax.tree_map(lambda x: x / sqrt_n, oks)
6,930
def import_file_by_path(path, force=False, data_import=False, pre_process=None, ignore_version=None, reset_permissions=False, for_sync=False): if not frappe.flags.dt: frappe.flags.dt = [] try: docs = read_doc_from_file(path) except IOError: print(path + " missing") return curr_hash = md5(path) if docs: if not isinstance(docs, list): docs = [docs] for doc in docs: if not force: try: db_hash = frappe.db.get_value(doc["doctype"], doc["name"], "migration_hash") except Exception: frappe.flags.dt += [doc["doctype"]] db_hash = None if not db_hash: db_modified = frappe.db.get_value(doc["doctype"], doc["name"], "modified") if db_modified and doc.get("modified") == get_datetime_str(db_modified): return False if curr_hash == db_hash: return False original_modified = doc.get("modified") import_doc( docdict=doc, force=force, data_import=data_import, pre_process=pre_process, ignore_version=ignore_version, reset_permissions=reset_permissions, path=path, ) if doc["doctype"] == "DocType": if doc["name"] == "DocType": Doctype_table=frappe.qb.DocType("DocType") frappe.qb.update(Doctype_table).set(Doctype_table.migration_hash, curr_hash).where(Doctype_table.name == "DocType").run() else: frappe.db.set_value(doc["doctype"], doc["name"], "migration_hash", curr_hash) if original_modified: update_modified(original_modified, doc) return True
def import_file_by_path(path, force=False, data_import=False, pre_process=None, ignore_version=None, reset_permissions=False, for_sync=False): frappe.flags.dt = frappe.flags.dt or [] try: docs = read_doc_from_file(path) except IOError: print(path + " missing") return curr_hash = md5(path) if docs: if not isinstance(docs, list): docs = [docs] for doc in docs: if not force: try: db_hash = frappe.db.get_value(doc["doctype"], doc["name"], "migration_hash") except Exception: frappe.flags.dt += [doc["doctype"]] db_hash = None if not db_hash: db_modified = frappe.db.get_value(doc["doctype"], doc["name"], "modified") if db_modified and doc.get("modified") == get_datetime_str(db_modified): return False if curr_hash == db_hash: return False original_modified = doc.get("modified") import_doc( docdict=doc, force=force, data_import=data_import, pre_process=pre_process, ignore_version=ignore_version, reset_permissions=reset_permissions, path=path, ) if doc["doctype"] == "DocType": if doc["name"] == "DocType": Doctype_table=frappe.qb.DocType("DocType") frappe.qb.update(Doctype_table).set(Doctype_table.migration_hash, curr_hash).where(Doctype_table.name == "DocType").run() else: frappe.db.set_value(doc["doctype"], doc["name"], "migration_hash", curr_hash) if original_modified: update_modified(original_modified, doc) return True
40,672
def dice_coefficient(cm, ignore_index=None): """Calculates Dice Coefficient for a given Confusion Matrix. Args: cm (ConfusionMatrix): instance of confusion matrix metric ignore_index (int, optional): index to ignore, e.g. background index """ if not isinstance(cm, ConfusionMatrix): raise TypeError("Argument cm should be instance of ConfusionMatrix, but given {}".format(type(cm))) if ignore_index is not None: if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes): raise ValueError("ignore_index should be non-negative integer, but given {}".format(ignore_index)) tp = cm.confusion_matrix.diag().sum() fp_plus_fn = cm.confusion_matrix.sum() - tp return (2.0 * tp) / (2.0 * tp + fp_plus_fn)
def dice_coefficient(cm, ignore_index=None): """Calculates Dice Coefficient for a given Confusion Matrix. Args: cm (ConfusionMatrix): instance of confusion matrix metric ignore_index (int, optional): index to ignore, e.g. background index """ if not isinstance(cm, ConfusionMatrix): raise TypeError("Argument cm should be instance of ConfusionMatrix, but given {}".format(type(cm))) if ignore_index is not None: if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes): raise ValueError("ignore_index should be non-negative integer, but given {}".format(ignore_index)) tp = cm.confusion_matrix.diag().sum() fp_plus_fn = cm.confusion_matrix.sum() - tp return (2.0 * tp) / (2.0 * tp + fp_plus_fn + 1e-15)
40,277
def test_data(): torch_geometric.set_debug(True) x = torch.tensor([[1, 3, 5], [2, 4, 6]], dtype=torch.float).t() edge_index = torch.tensor([[0, 0, 1, 1, 2], [1, 1, 0, 2, 1]]) data = Data(x=x, edge_index=edge_index).to(torch.device('cpu')) N = data.num_nodes assert N == 3 assert data.x.tolist() == x.tolist() assert data['x'].tolist() == x.tolist() assert sorted(data.keys) == ['edge_index', 'x'] assert len(data) == 2 assert 'x' in data and 'edge_index' in data and 'pos' not in data D = data.to_dict() assert len(D) == 2 assert 'x' in D and 'edge_index' in D D = data.to_namedtuple() assert len(D) == 2 assert D.x is not None and D.edge_index is not None assert data.__cat_dim__('x', data.x) == 0 assert data.__cat_dim__('edge_index', data.edge_index) == -1 assert data.__inc__('x', data.x) == 0 assert data.__inc__('edge_index', data.edge_index) == data.num_nodes assert not data.x.is_contiguous() data.contiguous() assert data.x.is_contiguous() assert not data.is_coalesced() data = data.coalesce() assert data.is_coalesced() clone = data.clone() assert clone != data assert len(clone) == len(data) assert clone.x.tolist() == data.x.tolist() assert clone.edge_index.tolist() == data.edge_index.tolist() # test to_heterogenous hetero_data = data.to_heterogeneous() assert torch.allclose(data.x, hetero_data.node_stores[0]['x']) assert torch.allclose(data.edge_index, hetero_data.edge_stores[0]['edge_index']) data.edge_type = torch.tensor([0, 0, 1, 0]) hetero_data = data.to_heterogeneous() assert torch.allclose(data.x, hetero_data.node_stores[0]['x']) assert [3, 1] == [i.edge_index.size(1) for i in hetero_data.edge_stores] data.edge_type = None data['x'] = x + 1 assert data.x.tolist() == (x + 1).tolist() assert str(data) == 'Data(x=[3, 2], edge_index=[2, 4])' dictionary = {'x': data.x, 'edge_index': data.edge_index} data = Data.from_dict(dictionary) assert sorted(data.keys) == ['edge_index', 'x'] assert not data.has_isolated_nodes() assert not data.has_self_loops() assert data.is_undirected() assert not data.is_directed() assert data.num_nodes == 3 assert data.num_edges == 4 assert data.num_faces is None assert data.num_node_features == 2 assert data.num_features == 2 data.edge_attr = torch.randn(data.num_edges, 2) assert data.num_edge_features == 2 data.edge_attr = None data.x = None assert data.num_nodes == 3 data.edge_index = None assert data.num_nodes is None assert data.num_edges == 0 data.num_nodes = 4 assert data.num_nodes == 4 data = Data(x=x, attribute=x) assert len(data) == 2 assert data.x.tolist() == x.tolist() assert data.attribute.tolist() == x.tolist() face = torch.tensor([[0, 1], [1, 2], [2, 3]]) data = Data(num_nodes=4, face=face) assert data.num_faces == 2 assert data.num_nodes == 4 data = Data(title='test') assert str(data) == "Data(title='test')" assert data.num_node_features == 0 assert data.num_edge_features == 0 torch_geometric.set_debug(False)
def test_data(): torch_geometric.set_debug(True) x = torch.tensor([[1, 3, 5], [2, 4, 6]], dtype=torch.float).t() edge_index = torch.tensor([[0, 0, 1, 1, 2], [1, 1, 0, 2, 1]]) data = Data(x=x, edge_index=edge_index).to(torch.device('cpu')) N = data.num_nodes assert N == 3 assert data.x.tolist() == x.tolist() assert data['x'].tolist() == x.tolist() assert sorted(data.keys) == ['edge_index', 'x'] assert len(data) == 2 assert 'x' in data and 'edge_index' in data and 'pos' not in data D = data.to_dict() assert len(D) == 2 assert 'x' in D and 'edge_index' in D D = data.to_namedtuple() assert len(D) == 2 assert D.x is not None and D.edge_index is not None assert data.__cat_dim__('x', data.x) == 0 assert data.__cat_dim__('edge_index', data.edge_index) == -1 assert data.__inc__('x', data.x) == 0 assert data.__inc__('edge_index', data.edge_index) == data.num_nodes assert not data.x.is_contiguous() data.contiguous() assert data.x.is_contiguous() assert not data.is_coalesced() data = data.coalesce() assert data.is_coalesced() clone = data.clone() assert clone != data assert len(clone) == len(data) assert clone.x.tolist() == data.x.tolist() assert clone.edge_index.tolist() == data.edge_index.tolist() # test to_heterogenous hetero_data = data.to_heterogeneous() assert torch.allclose(data.x, hetero_data['0'].x) assert torch.allclose(data.edge_index, hetero_data.edge_stores[0]['edge_index']) data.edge_type = torch.tensor([0, 0, 1, 0]) hetero_data = data.to_heterogeneous() assert torch.allclose(data.x, hetero_data.node_stores[0]['x']) assert [3, 1] == [i.edge_index.size(1) for i in hetero_data.edge_stores] data.edge_type = None data['x'] = x + 1 assert data.x.tolist() == (x + 1).tolist() assert str(data) == 'Data(x=[3, 2], edge_index=[2, 4])' dictionary = {'x': data.x, 'edge_index': data.edge_index} data = Data.from_dict(dictionary) assert sorted(data.keys) == ['edge_index', 'x'] assert not data.has_isolated_nodes() assert not data.has_self_loops() assert data.is_undirected() assert not data.is_directed() assert data.num_nodes == 3 assert data.num_edges == 4 assert data.num_faces is None assert data.num_node_features == 2 assert data.num_features == 2 data.edge_attr = torch.randn(data.num_edges, 2) assert data.num_edge_features == 2 data.edge_attr = None data.x = None assert data.num_nodes == 3 data.edge_index = None assert data.num_nodes is None assert data.num_edges == 0 data.num_nodes = 4 assert data.num_nodes == 4 data = Data(x=x, attribute=x) assert len(data) == 2 assert data.x.tolist() == x.tolist() assert data.attribute.tolist() == x.tolist() face = torch.tensor([[0, 1], [1, 2], [2, 3]]) data = Data(num_nodes=4, face=face) assert data.num_faces == 2 assert data.num_nodes == 4 data = Data(title='test') assert str(data) == "Data(title='test')" assert data.num_node_features == 0 assert data.num_edge_features == 0 torch_geometric.set_debug(False)
18,788
def config_prefer_upstream(args): """Generate a packages config based on the configuration of all upstream installs.""" scope = args.scope if scope is None: scope = spack.config.default_modify_scope('packages') specs = spack.store.db.query(installed=[InstallStatuses.INSTALLED]) pref_specs = [] for spec in specs: upstream = None try: upstream = spec.package.installed_upstream except spack.repo.UnknownNamespaceError as err: tty.die( "Could not find package when checking spec {0} ({1}). " "This is usually due to your Spack instance not being " "configured to know about the upstream's repositories." .format(spec.name, err.message) ) if (upstream and not args.local) or (not upstream and args.local): pref_specs.append(spec) conflicting_variants = set() pkgs = {} for spec in pref_specs: # Collect all the upstream compilers and versions for this package. pkg = pkgs.get(spec.name, { 'version': [], 'compiler': [], }) pkgs[spec.name] = pkg # We have no existing variant if this is our first added version. existing_variants = pkg.get('variants', None if not pkg['version'] else '') version = spec.version.string if version not in pkg['version']: pkg['version'].append(version) compiler = str(spec.compiler) if compiler not in pkg['compiler']: pkg['compiler'].append(compiler) # Get and list all the variants that differ from the default. variants = [] for var_name, variant in spec.variants.items(): if (var_name in ['patches'] or var_name not in spec.package.variants): continue if variant.value != spec.package.variants[var_name].default: variants.append(str(variant)) variants.sort() variants = ' '.join(variants) if spec.name not in conflicting_variants: # Only specify the variants if there's a single variant # set across all versions/compilers. if existing_variants is not None and existing_variants != variants: conflicting_variants.add(spec.name) del pkg['variants'] elif variants: pkg['variants'] = variants if conflicting_variants: tty.warn( "The following packages have multiple conflicting upstream " "specs. You may have to specify, by " "concretized hash, which spec you want when building " "packages that depend on them:\n - {0}" .format("\n - ".join(sorted(conflicting_variants)))) # Simply write the config to the specified file. existing = spack.config.get('packages', scope=scope) new = spack.config.merge_yaml(existing, pkgs) spack.config.set('packages', new, scope) config_file = spack.config.config.get_config_filename(scope, section) tty.msg("Updated config at {0}".format(config_file))
def config_prefer_upstream(args): """Generate a packages config based on the configuration of all upstream installs.""" scope = args.scope if scope is None: scope = spack.config.default_modify_scope('packages') specs = spack.store.db.query(installed=True) pref_specs = [] for spec in specs: upstream = None try: upstream = spec.package.installed_upstream except spack.repo.UnknownNamespaceError as err: tty.die( "Could not find package when checking spec {0} ({1}). " "This is usually due to your Spack instance not being " "configured to know about the upstream's repositories." .format(spec.name, err.message) ) if (upstream and not args.local) or (not upstream and args.local): pref_specs.append(spec) conflicting_variants = set() pkgs = {} for spec in pref_specs: # Collect all the upstream compilers and versions for this package. pkg = pkgs.get(spec.name, { 'version': [], 'compiler': [], }) pkgs[spec.name] = pkg # We have no existing variant if this is our first added version. existing_variants = pkg.get('variants', None if not pkg['version'] else '') version = spec.version.string if version not in pkg['version']: pkg['version'].append(version) compiler = str(spec.compiler) if compiler not in pkg['compiler']: pkg['compiler'].append(compiler) # Get and list all the variants that differ from the default. variants = [] for var_name, variant in spec.variants.items(): if (var_name in ['patches'] or var_name not in spec.package.variants): continue if variant.value != spec.package.variants[var_name].default: variants.append(str(variant)) variants.sort() variants = ' '.join(variants) if spec.name not in conflicting_variants: # Only specify the variants if there's a single variant # set across all versions/compilers. if existing_variants is not None and existing_variants != variants: conflicting_variants.add(spec.name) del pkg['variants'] elif variants: pkg['variants'] = variants if conflicting_variants: tty.warn( "The following packages have multiple conflicting upstream " "specs. You may have to specify, by " "concretized hash, which spec you want when building " "packages that depend on them:\n - {0}" .format("\n - ".join(sorted(conflicting_variants)))) # Simply write the config to the specified file. existing = spack.config.get('packages', scope=scope) new = spack.config.merge_yaml(existing, pkgs) spack.config.set('packages', new, scope) config_file = spack.config.config.get_config_filename(scope, section) tty.msg("Updated config at {0}".format(config_file))
33,988
def _pack_dir( source_dir: str, files_stats: Optional[Dict[str, Tuple[float, int]]] = None ) -> io.BytesIO: """Pack whole directory contents into a uncompressed tarfile. This function accepts a ``files_stats`` argument. If given, only files whose stats differ from these stats will be packed. The main use case for this is that we can collect information about files already existing in the target directory, and only pack files that have been updated. This is similar to how cloud syncing utilities decide which files to transfer. Args: source_dir: Path to local directory to pack into tarfile. files_stats: Dict of relative filenames mapping to a tuple of (mtime, filesize). Only files that differ from these stats will be packed. Returns: Tarfile as a stream object. """ stream = io.BytesIO() with tarfile.open(fileobj=stream, mode="w", format=tarfile.PAX_FORMAT) as tar: if not files_stats: # If no `files_stats` is passed, pack whole directory tar.add(source_dir, arcname="", recursive=True) else: # Otherwise, only pack differing files tar.add(source_dir, arcname="", recursive=False) for root, dirs, files in os.walk(source_dir, topdown=False): rel_root = os.path.relpath(root, source_dir) # Always add all directories for dir in dirs: key = os.path.join(rel_root, dir) tar.add(os.path.join(source_dir, key), arcname=key, recursive=False) # Add files where our information differs for file in files: key = os.path.join(rel_root, file) stat = os.lstat(os.path.join(source_dir, key)) file_stat = stat.st_mtime, stat.st_size if key not in files_stats or file_stat != files_stats[key]: tar.add(os.path.join(source_dir, key), arcname=key) return stream
def _pack_dir( source_dir: str, files_stats: Optional[Dict[str, Tuple[float, int]]] = None ) -> io.BytesIO: """Pack whole directory contents into an uncompressed tarfile. This function accepts a ``files_stats`` argument. If given, only files whose stats differ from these stats will be packed. The main use case for this is that we can collect information about files already existing in the target directory, and only pack files that have been updated. This is similar to how cloud syncing utilities decide which files to transfer. Args: source_dir: Path to local directory to pack into tarfile. files_stats: Dict of relative filenames mapping to a tuple of (mtime, filesize). Only files that differ from these stats will be packed. Returns: Tarfile as a stream object. """ stream = io.BytesIO() with tarfile.open(fileobj=stream, mode="w", format=tarfile.PAX_FORMAT) as tar: if not files_stats: # If no `files_stats` is passed, pack whole directory tar.add(source_dir, arcname="", recursive=True) else: # Otherwise, only pack differing files tar.add(source_dir, arcname="", recursive=False) for root, dirs, files in os.walk(source_dir, topdown=False): rel_root = os.path.relpath(root, source_dir) # Always add all directories for dir in dirs: key = os.path.join(rel_root, dir) tar.add(os.path.join(source_dir, key), arcname=key, recursive=False) # Add files where our information differs for file in files: key = os.path.join(rel_root, file) stat = os.lstat(os.path.join(source_dir, key)) file_stat = stat.st_mtime, stat.st_size if key not in files_stats or file_stat != files_stats[key]: tar.add(os.path.join(source_dir, key), arcname=key) return stream
517
def _can_send_test_report(report_id, user, domain): try: report = ReportNotification.get(report_id) except ResourceNotFound: return False if report.domain != domain: return False if user._id != report.owner._id and not user.is_domain_admin(domain): return False return True
def _can_send_test_report(report_id, user, domain): try: report = ReportNotification.get(report_id) except ResourceNotFound: return False return _can_delete_scheduled_report(report, user, domain)
4,572
def _set_view_plot_surf_plotly(hemi, view): """Helper function for plot_surf with plotly engine. This function checks the selected hemisphere and view, and returns the cameras view. """ hemis = np.array(['left', 'right']) if hemi not in hemis: raise ValueError(f"'hemi' must be one of {VALID_HEMISPHERES}") if view == 'anterior': cameras_view = 'front' elif view == 'posterior': cameras_view = 'back' elif view == 'dorsal': cameras_view = 'top' elif view == 'ventral': cameras_view = 'bottom' elif view == 'lateral': cameras_view = hemi elif view == 'medial': cameras_view = hemis[hemis != hemi][0] else: raise ValueError(f"view must be one of {VALID_VIEWS}") return cameras_view
def _set_view_plot_surf_plotly(hemi, view): """Helper function for plot_surf with plotly engine. This function checks the selected hemisphere and view, and returns the cameras view. """ if hemi not in VALID_HEMISPHERES: raise ValueError(f"'hemi' must be one of {VALID_HEMISPHERES}") if view == 'anterior': cameras_view = 'front' elif view == 'posterior': cameras_view = 'back' elif view == 'dorsal': cameras_view = 'top' elif view == 'ventral': cameras_view = 'bottom' elif view == 'lateral': cameras_view = hemi elif view == 'medial': cameras_view = hemis[hemis != hemi][0] else: raise ValueError(f"view must be one of {VALID_VIEWS}") return cameras_view
31,195
def reopen_incidents_command(client, args): incident_ids = args.get('incident_ids') result = client.reopen_incidents(incident_ids) if not result.get('success'): raise DemistoException(result['message']) msg = result.get('message') markdown = "### " + msg return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.Incidents.reopen', outputs_key_field='', outputs=msg )
def reopen_incidents_command(client, args): incident_ids = argToList(args.get('incident_ids')) result = client.reopen_incidents(incident_ids) if not result.get('success'): raise DemistoException(result['message']) msg = result.get('message') markdown = "### " + msg return CommandResults( readable_output=markdown, outputs_prefix='LogPoint.Incidents.reopen', outputs_key_field='', outputs=msg )
26,432
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
57,576
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue): assert shared_memory is not None env = env_fn() observation_space = env.observation_space parent_pipe.close() try: while True: command, data = pipe.recv() if command == "reset": observation = env.reset() write_to_shared_memory( index, observation, shared_memory, observation_space ) pipe.send((None, True)) elif command == "step": observation, reward, done, info = env.step(data) if done: observation = env.reset() write_to_shared_memory( index, observation, shared_memory, observation_space ) pipe.send(((None, reward, done, info), True)) elif command == "seed": env.seed(data) pipe.send((None, True)) elif command == "close": pipe.send((None, True)) break elif command == "_call": name, args, kwargs = data if name in ["reset", "step", "seed", "close"]: raise ValueError( "Trying to call function `{0}` with " "`_call`. Use `{0}` directly instead.".format(name) ) function = getattr(env, name) if callable(function): pipe.send((function(*args, **kwargs), True)) else: pipe.send((function, True)) elif command == "_setattr": name, value = data setattr(env, name, value) pipe.send((None, True)) elif command == "_check_observation_space": pipe.send((data == observation_space, True)) else: raise RuntimeError( "Received unknown command `{0}`. Must " "be one of {`reset`, `step`, `seed`, `close`, `_call`, " "`_setattr`, `_check_observation_space`}.".format(command) ) except (KeyboardInterrupt, Exception): error_queue.put((index,) + sys.exc_info()[:2]) pipe.send((None, False)) finally: env.close()
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue): assert shared_memory is not None env = env_fn() observation_space = env.observation_space parent_pipe.close() try: while True: command, data = pipe.recv() if command == "reset": observation = env.reset() write_to_shared_memory( index, observation, shared_memory, observation_space ) pipe.send((None, True)) elif command == "step": observation, reward, done, info = env.step(data) if done: observation = env.reset() write_to_shared_memory( index, observation, shared_memory, observation_space ) pipe.send(((None, reward, done, info), True)) elif command == "seed": env.seed(data) pipe.send((None, True)) elif command == "close": pipe.send((None, True)) break elif command == "_call": name, args, kwargs = data if name in ["reset", "step", "seed", "close"]: raise ValueError( f"Trying to call function `{name}` with " f"`_call`. Use `{name}` directly instead." ) function = getattr(env, name) if callable(function): pipe.send((function(*args, **kwargs), True)) else: pipe.send((function, True)) elif command == "_setattr": name, value = data setattr(env, name, value) pipe.send((None, True)) elif command == "_check_observation_space": pipe.send((data == observation_space, True)) else: raise RuntimeError( "Received unknown command `{0}`. Must " "be one of {`reset`, `step`, `seed`, `close`, `_call`, " "`_setattr`, `_check_observation_space`}.".format(command) ) except (KeyboardInterrupt, Exception): error_queue.put((index,) + sys.exc_info()[:2]) pipe.send((None, False)) finally: env.close()
39,597
def _default_max_backend_connections(): try: import psutil except ImportError: total_mem = 1024 * 1024 * 1024 if sys.platform.startswith("linux"): with open('/proc/meminfo', 'rb') as f: for line in f: if line.startswith(b'MemTotal'): total_mem = int(line.split()[1]) * 1024 break else: total_mem = psutil.virtual_memory().total return int(total_mem / 1024 / 1024 / 100 * 8)
def _compute_default_max_backend_connections(): try: import psutil except ImportError: total_mem = 1024 * 1024 * 1024 if sys.platform.startswith("linux"): with open('/proc/meminfo', 'rb') as f: for line in f: if line.startswith(b'MemTotal'): total_mem = int(line.split()[1]) * 1024 break else: total_mem = psutil.virtual_memory().total return int(total_mem / 1024 / 1024 / 100 * 8)
58,914
def launch_mapdl( exec_file=None, run_location=None, jobname="file", nproc=2, ram=None, mode=None, override=False, loglevel="ERROR", additional_switches="", start_timeout=120, port=None, cleanup_on_exit=True, start_instance=None, ip=None, clear_on_connect=True, log_apdl=None, verbose_mapdl=False, license_server_check=True, license_type=None, print_com=False, **kwargs, ) -> _MapdlCore: """Start MAPDL locally. Parameters ---------- exec_file : str, optional The location of the MAPDL executable. Will use the cached location when left at the default ``None``. run_location : str, optional MAPDL working directory. Defaults to a temporary working directory. If directory doesn't exist, will create one. jobname : str, optional MAPDL jobname. Defaults to ``'file'``. nproc : int, optional Number of processors. Defaults to 2. ram : float, optional Fixed amount of memory to request for MAPDL. If ``None``, then MAPDL will use as much as available on the host machine. mode : str, optional Mode to launch MAPDL. Must be one of the following: - ``'grpc'`` - ``'corba'`` - ``'console'`` The ``'grpc'`` mode is available on ANSYS 2021R1 or newer and provides the best performance and stability. The ``'corba'`` mode is available from v17.0 and newer and is given legacy support. This mode requires the additional ``ansys_corba`` module. Finally, the ``'console'`` mode is for legacy use only Linux only prior to v17.0. This console mode is pending depreciation. override : bool, optional Attempts to delete the lock file at the run_location. Useful when a prior MAPDL session has exited prematurely and the lock file has not been deleted. loglevel : str, optional Sets which messages are printed to the console. ``'INFO'`` prints out all ANSYS messages, ``'WARNING``` prints only messages containing ANSYS warnings, and ``'ERROR'`` logs only error messages. additional_switches : str, optional Additional switches for MAPDL, for example ``'aa_r'``, the academic research license, would be added with: - ``additional_switches="-aa_r"`` Avoid adding switches like -i -o or -b as these are already included to start up the MAPDL server. See the notes section for additional details. start_timeout : float, optional Maximum allowable time to connect to the MAPDL server. port : int Port to launch MAPDL gRPC on. Final port will be the first port available after (or including) this port. Defaults to 50052. You can also override the default behavior of this keyword argument with the environment variable ``PYMAPDL_PORT=<VALID PORT>`` custom_bin : str, optional Path to the MAPDL custom executable. On release 2020R2 on Linux, if ``None``, will check to see if you have ``ansys.mapdl_bin`` installed and use that executable. cleanup_on_exit : bool, optional Exit MAPDL when python exits or the mapdl Python instance is garbage collected. start_instance : bool, optional When False, connect to an existing MAPDL instance at ``ip`` and ``port``, which default to ``'127.0.0.1'`` at 50052. Otherwise, launch a local instance of MAPDL. You can also override the default behavior of this keyword argument with the environment variable ``PYMAPDL_START_INSTANCE=FALSE``. ip : bool, optional Used only when ``start_instance`` is ``False``. If provided, it will force ``start_instance`` to be ``False``. You can also provide a hostname as an alternative to an IP address. Defaults to ``'127.0.0.1'``. You can also override the default behavior of this keyword argument with the environment variable "PYMAPDL_IP=FALSE". clear_on_connect : bool, optional Defaults to ``True``, giving you a fresh environment when connecting to MAPDL. Except if ``start_instance`` is specified then, it defaults to ``False``. log_apdl : str, optional Enables logging every APDL command to the local disk. This can be used to "record" all the commands that are sent to MAPDL via PyMAPDL so a script can be run within MAPDL without PyMAPDL. This string is the path of the output file (e.g. ``log_apdl='pymapdl_log.txt'``). By default this is disabled. remove_temp_files : bool, optional Removes temporary files on exit. Default ``False``. verbose_mapdl : bool, optional Enable printing of all output when launching and running MAPDL. This should be used for debugging only as output can be tracked within pymapdl. Default ``False``. license_server_check : bool, optional Check if the license server is available if MAPDL fails to start. Only available on ``mode='grpc'``. Defaults ``True``. license_type : str, optional Enable license type selection. You can input a string for its license name (for example ``'meba'`` or ``'ansys'``) or its description ("enterprise solver" or "enterprise" respectively). You can also use legacy licenses (for example ``'aa_t_a'``) but it will also raise a warning. If it is not used (``None``), no specific license will be requested, being up to the license server to provide a specific license type. Default is ``None``. print_com : bool, optional Print the command ``/COM`` arguments to the standard output. Default ``False``. Returns ------- ansys.mapdl.core.mapdl._MapdlCore An instance of Mapdl. Type depends on the selected ``mode``. Notes ----- These are the MAPDL switch options as of 2020R2 applicable for running MAPDL as a service via gRPC. Excluded switches such as ``"-j"`` either not applicable or are set via keyword arguments. \-acc <device> Enables the use of GPU hardware. See GPU Accelerator Capability in the Parallel Processing Guide for more information. \-amfg Enables the additive manufacturing capability. Requires an additive manufacturing license. For general information about this feature, see AM Process Simulation in ANSYS Workbench. \-ansexe <executable> Activates a custom mechanical APDL executable. In the ANSYS Workbench environment, activates a custom Mechanical APDL executable. \-custom <executable> Calls a custom Mechanical APDL executable See Running Your Custom Executable in the Programmer's Reference for more information. \-db value Initial memory allocation Defines the portion of workspace (memory) to be used as the initial allocation for the database. The default is 1024 MB. Specify a negative number to force a fixed size throughout the run; useful on small memory systems. \-dis Enables Distributed ANSYS See the Parallel Processing Guide for more information. \-dvt Enables ANSYS DesignXplorer advanced task (add-on). Requires DesignXplorer. \-l <language> Specifies a language file to use other than English This option is valid only if you have a translated message file in an appropriately named subdirectory in ``/ansys_inc/v201/ansys/docu`` or ``Program Files\\ANSYS\\Inc\\V201\\ANSYS\\docu`` \-m <workspace> Specifies the total size of the workspace Workspace (memory) in megabytes used for the initial allocation. If you omit the ``-m`` option, the default is 2 GB (2048 MB). Specify a negative number to force a fixed size throughout the run. \-machines <IP> Specifies the distributed machines Machines on which to run a Distributed ANSYS analysis. See Starting Distributed ANSYS in the Parallel Processing Guide for more information. \-mpi <value> Specifies the type of MPI to use. See the Parallel Processing Guide for more information. \-mpifile <appfile> Specifies an existing MPI file Specifies an existing MPI file (appfile) to be used in a Distributed ANSYS run. See Using MPI Files in the Parallel Processing Guide for more information. \-na <value> Specifies the number of GPU accelerator devices Number of GPU devices per machine or compute node when running with the GPU accelerator feature. See GPU Accelerator Capability in the Parallel Processing Guide for more information. \-name <value> Defines Mechanical APDL parameters Set mechanical APDL parameters at program start-up. The parameter name must be at least two characters long. For details about parameters, see the ANSYS Parametric Design Language Guide. \-p <productname> ANSYS session product Defines the ANSYS session product that will run during the session. For more detailed information about the ``-p`` option, see Selecting an ANSYS Product via the Command Line. \-ppf <license feature name> HPC license Specifies which HPC license to use during a parallel processing run. See HPC Licensing in the Parallel Processing Guide for more information. \-smp Enables shared-memory parallelism. See the Parallel Processing Guide for more information. If the environment is configured to use `PyPIM <https://pypim.docs.pyansys.com>`_ and ``start_instance`` is ``True``, then starting the instance will be delegated to PyPIM. In this event, most of the options will be ignored and the server side configuration will be used. Examples -------- Launch MAPDL using the best protocol. >>> from ansys.mapdl.core import launch_mapdl >>> mapdl = launch_mapdl() Run MAPDL with shared memory parallel and specify the location of the Ansys binary. >>> exec_file = 'C:/Program Files/ANSYS Inc/v201/ansys/bin/win64/ANSYS201.exe' >>> mapdl = launch_mapdl(exec_file, additional_switches='-smp') Connect to an existing instance of MAPDL at IP 192.168.1.30 and port 50001. This is only available using the latest ``'grpc'`` mode. >>> mapdl = launch_mapdl(start_instance=False, ip='192.168.1.30', ... port=50001) Force the usage of the CORBA protocol. >>> mapdl = launch_mapdl(mode='corba') Run MAPDL using the console mode (available only on Linux). >>> mapdl = launch_mapdl('/ansys_inc/v194/ansys/bin/ansys194', ... mode='console') """ # These parameters are partially used for unit testing set_no_abort = kwargs.get("set_no_abort", True) if ip is None: ip = os.environ.get("PYMAPDL_IP", LOCALHOST) else: # pragma: no cover start_instance = False ip = socket.gethostbyname(ip) # Converting ip or hostname to ip check_valid_ip(ip) # double check if port is None: port = int(os.environ.get("PYMAPDL_PORT", MAPDL_DEFAULT_PORT)) check_valid_port(port) # Start MAPDL with PyPIM if the environment is configured for it # and the user did not pass a directive on how to launch it. if _HAS_PIM and exec_file is None and pypim.is_configured(): LOG.info("Starting MAPDL remotely. The startup configuration will be ignored.") return launch_remote_mapdl(cleanup_on_exit=cleanup_on_exit) # connect to an existing instance if enabled if start_instance is None: start_instance = check_valid_start_instance( os.environ.get("PYMAPDL_START_INSTANCE", True) ) # special handling when building the gallery outside of CI. This # creates an instance of mapdl the first time if PYMAPDL start instance # is False. if pymapdl.BUILDING_GALLERY: # pragma: no cover # launch an instance of pymapdl if it does not already exist and # we're allowed to start instances if start_instance and GALLERY_INSTANCE[0] is None: mapdl = launch_mapdl( start_instance=True, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) GALLERY_INSTANCE[0] = {"ip": mapdl._ip, "port": mapdl._port} return mapdl # otherwise, connect to the existing gallery instance if available elif GALLERY_INSTANCE[0] is not None: mapdl = MapdlGrpc( ip=GALLERY_INSTANCE[0]["ip"], port=GALLERY_INSTANCE[0]["port"], cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl # finally, if running on CI/CD, connect to the default instance else: mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl if not start_instance: if clear_on_connect is None: clear_on_connect = False mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl # verify executable if exec_file is None: # Load cached path exec_file = get_ansys_path() if exec_file is None: raise FileNotFoundError( "Invalid exec_file path or cannot load cached " "mapdl path. Enter one manually by specifying " "exec_file=" ) else: # verify ansys exists at this location if not os.path.isfile(exec_file): raise FileNotFoundError( f'Invalid MAPDL executable at "{exec_file}"\n' "Enter one manually using exec_file=" ) # verify run location if run_location is None: temp_dir = tempfile.gettempdir() run_location = os.path.join(temp_dir, "ansys_%s" % random_string(10)) if not os.path.isdir(run_location): try: os.mkdir(run_location) except: raise RuntimeError( "Unable to create the temporary working " f'directory "{run_location}"\n' "Please specify run_location=" ) else: if not os.path.isdir(run_location): raise FileNotFoundError(f'"{run_location}" is not a valid directory') # verify no lock file and the mode is valid check_lock_file(run_location, jobname, override) mode = check_mode(mode, _version_from_path(exec_file)) # cache start parameters additional_switches = _validate_add_sw( additional_switches, exec_file, kwargs.pop("force_intel", False) ) if isinstance(license_type, str): # In newer license server versions an invalid license name just get discarded and produces no effect or warning. # For example: # ```bash # mapdl.exe -p meba # works fine because 'meba' is a valid license in ALLOWABLE_LICENSES. # mapdl.exe -p yoyoyo # The -p flag is ignored and it run the default license. # ``` # # In older versions probably it might raise an error. But not sure. license_type = license_type.lower().strip() if "enterprise" in license_type and "solver" not in license_type: license_type = "ansys" elif "enterprise" in license_type and "solver" in license_type: license_type = "meba" elif "premium" in license_type: license_type = "mech_2" elif "pro" in license_type: license_type = "mech_1" elif license_type not in ALLOWABLE_LICENSES: allow_lics = [f"'{each}'" for each in ALLOWABLE_LICENSES] warn_text = ( f"The keyword argument 'license_type' value ('{license_type}') is not a recognized license name or has been deprecated.\n" + "Still PyMAPDL will try to use it but in older versions you might experience problems connecting to the server.\n" + f"Recognized license names: {' '.join(allow_lics)}" ) warnings.warn(warn_text, UserWarning) additional_switches += " -p " + license_type LOG.debug( f"Using specified license name '{license_type}' in the 'license_type' keyword argument." ) elif "-p " in additional_switches: # There is already a license request in additional switches. license_type = re.findall(r"-p \b(\w*)", additional_switches)[ 0 ] # getting only the first product license. if license_type not in ALLOWABLE_LICENSES: allow_lics = [f"'{each}'" for each in ALLOWABLE_LICENSES] warn_text = ( f"The additional switch product value ('-p {license_type}') is not a recognized license name or has been deprecated.\n" + "Still PyMAPDL will try to use it but in older versions you might experience problems connecting to the server.\n" + f"Recognized license names: {' '.join(allow_lics)}" ) warnings.warn(warn_text, UserWarning) LOG.warning(warn_text) LOG.debug( f"Using specified license name '{license_type}' in the additional switches parameter." ) elif license_type is not None: raise TypeError("The argument 'license_type' does only accept str or None.") start_parm = { "exec_file": exec_file, "run_location": run_location, "additional_switches": additional_switches, "jobname": jobname, "nproc": nproc, "print_com": print_com, } if mode in ["console", "corba"]: start_parm["start_timeout"] = start_timeout else: start_parm["ram"] = ram start_parm["override"] = override start_parm["timeout"] = start_timeout # Check the license server if license_server_check: # configure timeout to be 90% of the wait time of the startup # time for Ansys. lic_check = LicenseChecker(timeout=start_timeout * 0.9, verbose=verbose_mapdl) lic_check.start() try: if mode == "console": from ansys.mapdl.core.mapdl_console import MapdlConsole mapdl = MapdlConsole(loglevel=loglevel, log_apdl=log_apdl, **start_parm) elif mode == "corba": try: # pending deprication to ansys-mapdl-corba from ansys.mapdl.core.mapdl_corba import MapdlCorba except ImportError: raise ImportError( "To use this feature, install the MAPDL CORBA package" " with:\n\npip install ansys_corba" ) from None broadcast = kwargs.get("log_broadcast", False) mapdl = MapdlCorba( loglevel=loglevel, log_apdl=log_apdl, log_broadcast=broadcast, verbose=verbose_mapdl, **start_parm, ) elif mode == "grpc": port, actual_run_location = launch_grpc( port=port, verbose=verbose_mapdl, ip=ip, **start_parm ) mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=cleanup_on_exit, loglevel=loglevel, set_no_abort=set_no_abort, remove_temp_files=kwargs.pop("remove_temp_files", False), log_apdl=log_apdl, **start_parm, ) if run_location is None: mapdl._path = actual_run_location except Exception as exception: # Failed to launch for some reason. Check if failure was due # to the license check if license_server_check: lic_check.check() # pass raise exception return mapdl
def launch_mapdl( exec_file=None, run_location=None, jobname="file", nproc=2, ram=None, mode=None, override=False, loglevel="ERROR", additional_switches="", start_timeout=120, port=None, cleanup_on_exit=True, start_instance=None, ip=None, clear_on_connect=True, log_apdl=None, verbose_mapdl=False, license_server_check=True, license_type=None, print_com=False, **kwargs, ) -> _MapdlCore: """Start MAPDL locally. Parameters ---------- exec_file : str, optional The location of the MAPDL executable. Will use the cached location when left at the default ``None``. run_location : str, optional MAPDL working directory. Defaults to a temporary working directory. If directory doesn't exist, will create one. jobname : str, optional MAPDL jobname. Defaults to ``'file'``. nproc : int, optional Number of processors. Defaults to 2. ram : float, optional Fixed amount of memory to request for MAPDL. If ``None``, then MAPDL will use as much as available on the host machine. mode : str, optional Mode to launch MAPDL. Must be one of the following: - ``'grpc'`` - ``'corba'`` - ``'console'`` The ``'grpc'`` mode is available on ANSYS 2021R1 or newer and provides the best performance and stability. The ``'corba'`` mode is available from v17.0 and newer and is given legacy support. This mode requires the additional ``ansys_corba`` module. Finally, the ``'console'`` mode is for legacy use only Linux only prior to v17.0. This console mode is pending depreciation. override : bool, optional Attempts to delete the lock file at the run_location. Useful when a prior MAPDL session has exited prematurely and the lock file has not been deleted. loglevel : str, optional Sets which messages are printed to the console. ``'INFO'`` prints out all ANSYS messages, ``'WARNING``` prints only messages containing ANSYS warnings, and ``'ERROR'`` logs only error messages. additional_switches : str, optional Additional switches for MAPDL, for example ``'aa_r'``, the academic research license, would be added with: - ``additional_switches="-aa_r"`` Avoid adding switches like -i -o or -b as these are already included to start up the MAPDL server. See the notes section for additional details. start_timeout : float, optional Maximum allowable time to connect to the MAPDL server. port : int Port to launch MAPDL gRPC on. Final port will be the first port available after (or including) this port. Defaults to 50052. You can also override the default behavior of this keyword argument with the environment variable ``PYMAPDL_PORT=<VALID PORT>`` custom_bin : str, optional Path to the MAPDL custom executable. On release 2020R2 on Linux, if ``None``, will check to see if you have ``ansys.mapdl_bin`` installed and use that executable. cleanup_on_exit : bool, optional Exit MAPDL when python exits or the mapdl Python instance is garbage collected. start_instance : bool, optional When False, connect to an existing MAPDL instance at ``ip`` and ``port``, which default to ``'127.0.0.1'`` at 50052. Otherwise, launch a local instance of MAPDL. You can also override the default behavior of this keyword argument with the environment variable ``PYMAPDL_START_INSTANCE=FALSE``. ip : bool, optional Used only when ``start_instance`` is ``False``. If provided, it will force ``start_instance`` to be ``False``. You can also provide a hostname as an alternative to an IP address. Defaults to ``'127.0.0.1'``. You can also override the default behavior of this keyword argument with the environment variable "PYMAPDL_IP=FALSE". clear_on_connect : bool, optional Defaults to ``True``, giving you a fresh environment when connecting to MAPDL. When if ``start_instance`` is specified it defaults to ``False``. log_apdl : str, optional Enables logging every APDL command to the local disk. This can be used to "record" all the commands that are sent to MAPDL via PyMAPDL so a script can be run within MAPDL without PyMAPDL. This string is the path of the output file (e.g. ``log_apdl='pymapdl_log.txt'``). By default this is disabled. remove_temp_files : bool, optional Removes temporary files on exit. Default ``False``. verbose_mapdl : bool, optional Enable printing of all output when launching and running MAPDL. This should be used for debugging only as output can be tracked within pymapdl. Default ``False``. license_server_check : bool, optional Check if the license server is available if MAPDL fails to start. Only available on ``mode='grpc'``. Defaults ``True``. license_type : str, optional Enable license type selection. You can input a string for its license name (for example ``'meba'`` or ``'ansys'``) or its description ("enterprise solver" or "enterprise" respectively). You can also use legacy licenses (for example ``'aa_t_a'``) but it will also raise a warning. If it is not used (``None``), no specific license will be requested, being up to the license server to provide a specific license type. Default is ``None``. print_com : bool, optional Print the command ``/COM`` arguments to the standard output. Default ``False``. Returns ------- ansys.mapdl.core.mapdl._MapdlCore An instance of Mapdl. Type depends on the selected ``mode``. Notes ----- These are the MAPDL switch options as of 2020R2 applicable for running MAPDL as a service via gRPC. Excluded switches such as ``"-j"`` either not applicable or are set via keyword arguments. \-acc <device> Enables the use of GPU hardware. See GPU Accelerator Capability in the Parallel Processing Guide for more information. \-amfg Enables the additive manufacturing capability. Requires an additive manufacturing license. For general information about this feature, see AM Process Simulation in ANSYS Workbench. \-ansexe <executable> Activates a custom mechanical APDL executable. In the ANSYS Workbench environment, activates a custom Mechanical APDL executable. \-custom <executable> Calls a custom Mechanical APDL executable See Running Your Custom Executable in the Programmer's Reference for more information. \-db value Initial memory allocation Defines the portion of workspace (memory) to be used as the initial allocation for the database. The default is 1024 MB. Specify a negative number to force a fixed size throughout the run; useful on small memory systems. \-dis Enables Distributed ANSYS See the Parallel Processing Guide for more information. \-dvt Enables ANSYS DesignXplorer advanced task (add-on). Requires DesignXplorer. \-l <language> Specifies a language file to use other than English This option is valid only if you have a translated message file in an appropriately named subdirectory in ``/ansys_inc/v201/ansys/docu`` or ``Program Files\\ANSYS\\Inc\\V201\\ANSYS\\docu`` \-m <workspace> Specifies the total size of the workspace Workspace (memory) in megabytes used for the initial allocation. If you omit the ``-m`` option, the default is 2 GB (2048 MB). Specify a negative number to force a fixed size throughout the run. \-machines <IP> Specifies the distributed machines Machines on which to run a Distributed ANSYS analysis. See Starting Distributed ANSYS in the Parallel Processing Guide for more information. \-mpi <value> Specifies the type of MPI to use. See the Parallel Processing Guide for more information. \-mpifile <appfile> Specifies an existing MPI file Specifies an existing MPI file (appfile) to be used in a Distributed ANSYS run. See Using MPI Files in the Parallel Processing Guide for more information. \-na <value> Specifies the number of GPU accelerator devices Number of GPU devices per machine or compute node when running with the GPU accelerator feature. See GPU Accelerator Capability in the Parallel Processing Guide for more information. \-name <value> Defines Mechanical APDL parameters Set mechanical APDL parameters at program start-up. The parameter name must be at least two characters long. For details about parameters, see the ANSYS Parametric Design Language Guide. \-p <productname> ANSYS session product Defines the ANSYS session product that will run during the session. For more detailed information about the ``-p`` option, see Selecting an ANSYS Product via the Command Line. \-ppf <license feature name> HPC license Specifies which HPC license to use during a parallel processing run. See HPC Licensing in the Parallel Processing Guide for more information. \-smp Enables shared-memory parallelism. See the Parallel Processing Guide for more information. If the environment is configured to use `PyPIM <https://pypim.docs.pyansys.com>`_ and ``start_instance`` is ``True``, then starting the instance will be delegated to PyPIM. In this event, most of the options will be ignored and the server side configuration will be used. Examples -------- Launch MAPDL using the best protocol. >>> from ansys.mapdl.core import launch_mapdl >>> mapdl = launch_mapdl() Run MAPDL with shared memory parallel and specify the location of the Ansys binary. >>> exec_file = 'C:/Program Files/ANSYS Inc/v201/ansys/bin/win64/ANSYS201.exe' >>> mapdl = launch_mapdl(exec_file, additional_switches='-smp') Connect to an existing instance of MAPDL at IP 192.168.1.30 and port 50001. This is only available using the latest ``'grpc'`` mode. >>> mapdl = launch_mapdl(start_instance=False, ip='192.168.1.30', ... port=50001) Force the usage of the CORBA protocol. >>> mapdl = launch_mapdl(mode='corba') Run MAPDL using the console mode (available only on Linux). >>> mapdl = launch_mapdl('/ansys_inc/v194/ansys/bin/ansys194', ... mode='console') """ # These parameters are partially used for unit testing set_no_abort = kwargs.get("set_no_abort", True) if ip is None: ip = os.environ.get("PYMAPDL_IP", LOCALHOST) else: # pragma: no cover start_instance = False ip = socket.gethostbyname(ip) # Converting ip or hostname to ip check_valid_ip(ip) # double check if port is None: port = int(os.environ.get("PYMAPDL_PORT", MAPDL_DEFAULT_PORT)) check_valid_port(port) # Start MAPDL with PyPIM if the environment is configured for it # and the user did not pass a directive on how to launch it. if _HAS_PIM and exec_file is None and pypim.is_configured(): LOG.info("Starting MAPDL remotely. The startup configuration will be ignored.") return launch_remote_mapdl(cleanup_on_exit=cleanup_on_exit) # connect to an existing instance if enabled if start_instance is None: start_instance = check_valid_start_instance( os.environ.get("PYMAPDL_START_INSTANCE", True) ) # special handling when building the gallery outside of CI. This # creates an instance of mapdl the first time if PYMAPDL start instance # is False. if pymapdl.BUILDING_GALLERY: # pragma: no cover # launch an instance of pymapdl if it does not already exist and # we're allowed to start instances if start_instance and GALLERY_INSTANCE[0] is None: mapdl = launch_mapdl( start_instance=True, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) GALLERY_INSTANCE[0] = {"ip": mapdl._ip, "port": mapdl._port} return mapdl # otherwise, connect to the existing gallery instance if available elif GALLERY_INSTANCE[0] is not None: mapdl = MapdlGrpc( ip=GALLERY_INSTANCE[0]["ip"], port=GALLERY_INSTANCE[0]["port"], cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl # finally, if running on CI/CD, connect to the default instance else: mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl if not start_instance: if clear_on_connect is None: clear_on_connect = False mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=False, loglevel=loglevel, set_no_abort=set_no_abort, ) if clear_on_connect: mapdl.clear() return mapdl # verify executable if exec_file is None: # Load cached path exec_file = get_ansys_path() if exec_file is None: raise FileNotFoundError( "Invalid exec_file path or cannot load cached " "mapdl path. Enter one manually by specifying " "exec_file=" ) else: # verify ansys exists at this location if not os.path.isfile(exec_file): raise FileNotFoundError( f'Invalid MAPDL executable at "{exec_file}"\n' "Enter one manually using exec_file=" ) # verify run location if run_location is None: temp_dir = tempfile.gettempdir() run_location = os.path.join(temp_dir, "ansys_%s" % random_string(10)) if not os.path.isdir(run_location): try: os.mkdir(run_location) except: raise RuntimeError( "Unable to create the temporary working " f'directory "{run_location}"\n' "Please specify run_location=" ) else: if not os.path.isdir(run_location): raise FileNotFoundError(f'"{run_location}" is not a valid directory') # verify no lock file and the mode is valid check_lock_file(run_location, jobname, override) mode = check_mode(mode, _version_from_path(exec_file)) # cache start parameters additional_switches = _validate_add_sw( additional_switches, exec_file, kwargs.pop("force_intel", False) ) if isinstance(license_type, str): # In newer license server versions an invalid license name just get discarded and produces no effect or warning. # For example: # ```bash # mapdl.exe -p meba # works fine because 'meba' is a valid license in ALLOWABLE_LICENSES. # mapdl.exe -p yoyoyo # The -p flag is ignored and it run the default license. # ``` # # In older versions probably it might raise an error. But not sure. license_type = license_type.lower().strip() if "enterprise" in license_type and "solver" not in license_type: license_type = "ansys" elif "enterprise" in license_type and "solver" in license_type: license_type = "meba" elif "premium" in license_type: license_type = "mech_2" elif "pro" in license_type: license_type = "mech_1" elif license_type not in ALLOWABLE_LICENSES: allow_lics = [f"'{each}'" for each in ALLOWABLE_LICENSES] warn_text = ( f"The keyword argument 'license_type' value ('{license_type}') is not a recognized license name or has been deprecated.\n" + "Still PyMAPDL will try to use it but in older versions you might experience problems connecting to the server.\n" + f"Recognized license names: {' '.join(allow_lics)}" ) warnings.warn(warn_text, UserWarning) additional_switches += " -p " + license_type LOG.debug( f"Using specified license name '{license_type}' in the 'license_type' keyword argument." ) elif "-p " in additional_switches: # There is already a license request in additional switches. license_type = re.findall(r"-p \b(\w*)", additional_switches)[ 0 ] # getting only the first product license. if license_type not in ALLOWABLE_LICENSES: allow_lics = [f"'{each}'" for each in ALLOWABLE_LICENSES] warn_text = ( f"The additional switch product value ('-p {license_type}') is not a recognized license name or has been deprecated.\n" + "Still PyMAPDL will try to use it but in older versions you might experience problems connecting to the server.\n" + f"Recognized license names: {' '.join(allow_lics)}" ) warnings.warn(warn_text, UserWarning) LOG.warning(warn_text) LOG.debug( f"Using specified license name '{license_type}' in the additional switches parameter." ) elif license_type is not None: raise TypeError("The argument 'license_type' does only accept str or None.") start_parm = { "exec_file": exec_file, "run_location": run_location, "additional_switches": additional_switches, "jobname": jobname, "nproc": nproc, "print_com": print_com, } if mode in ["console", "corba"]: start_parm["start_timeout"] = start_timeout else: start_parm["ram"] = ram start_parm["override"] = override start_parm["timeout"] = start_timeout # Check the license server if license_server_check: # configure timeout to be 90% of the wait time of the startup # time for Ansys. lic_check = LicenseChecker(timeout=start_timeout * 0.9, verbose=verbose_mapdl) lic_check.start() try: if mode == "console": from ansys.mapdl.core.mapdl_console import MapdlConsole mapdl = MapdlConsole(loglevel=loglevel, log_apdl=log_apdl, **start_parm) elif mode == "corba": try: # pending deprication to ansys-mapdl-corba from ansys.mapdl.core.mapdl_corba import MapdlCorba except ImportError: raise ImportError( "To use this feature, install the MAPDL CORBA package" " with:\n\npip install ansys_corba" ) from None broadcast = kwargs.get("log_broadcast", False) mapdl = MapdlCorba( loglevel=loglevel, log_apdl=log_apdl, log_broadcast=broadcast, verbose=verbose_mapdl, **start_parm, ) elif mode == "grpc": port, actual_run_location = launch_grpc( port=port, verbose=verbose_mapdl, ip=ip, **start_parm ) mapdl = MapdlGrpc( ip=ip, port=port, cleanup_on_exit=cleanup_on_exit, loglevel=loglevel, set_no_abort=set_no_abort, remove_temp_files=kwargs.pop("remove_temp_files", False), log_apdl=log_apdl, **start_parm, ) if run_location is None: mapdl._path = actual_run_location except Exception as exception: # Failed to launch for some reason. Check if failure was due # to the license check if license_server_check: lic_check.check() # pass raise exception return mapdl
20,386
def streams_list_from_dict(streams): "Converts a streams dictionary into a streams list" params = {} for k, v in streams.items(): if 'panel' in sys.modules: from panel.depends import param_value_if_widget v = param_value_if_widget(v) if (isinstance(v, param.Parameter) and (isinstance(v.owner, param.Parameterized) or issubclass(v.owner, param.Parameterized))): params[k] = v else: raise TypeError('Cannot handle value %r in streams dictionary' % v) return Params.from_params(params)
def streams_list_from_dict(streams): "Converts a streams dictionary into a streams list" params = {} for k, v in streams.items(): if 'panel' in sys.modules: from panel.depends import param_value_if_widget v = param_value_if_widget(v) if isinstance(v, param.Parameter) and v.owner is not None: params[k] = v else: raise TypeError('Cannot handle value %r in streams dictionary' % v) return Params.from_params(params)
48,855
def _get_dag_defaults(dag: Optional["DAG"], task_group: Optional["TaskGroup"]) -> Tuple[dict, ParamsDict]: if not dag: return {}, ParamsDict() dag_args = copy.copy(dag.default_args) dag_params = copy.deepcopy(dag.params) if task_group: if not isinstance(task_group.default_args, Dict) and task_group.default_args is not None: raise TypeError("default_args must be a dictionary") else: dag_args.update(task_group.default_args) return dag_args, dag_params
def _get_dag_defaults(dag: Optional["DAG"], task_group: Optional["TaskGroup"]) -> Tuple[dict, ParamsDict]: if not dag: return {}, ParamsDict() dag_args = copy.copy(dag.default_args) dag_params = copy.deepcopy(dag.params) if task_group: if task_group.default_args and not isinstance(task_group.default_args, collections.abc.Mapping): raise TypeError("default_args must be a mapping") dag_args.update(task_group.default_args) return dag_args, dag_params
30,336
def get_group(): """ retrieve a single Group """ group_type = demisto.args().get('group_type') group_id = int(demisto.args().get('group_id')) response = get_group_request(group_type, group_id) if group_type == 'adversaries': data = response.get('data', {}).get('adversarie', {}) if group_type == 'campaigns': data = response.get('data', {}).get('campaign', {}) if group_type == 'documents': data = response.get('data', {}).get('document', {}) if group_type == 'emails': data = response.get('data', {}).get('email', {}) if group_type == 'events': data = response.get('data', {}).get('event', {}) if group_type == 'incidents': data = response.get('data', {}).get('incident', {}) if group_type == 'intrusionSets': data = response.get('data', {}).get('intrusionSet', {}) if group_type == 'reports': data = response.get('data', {}).get('report', {}) if group_type == 'signatures': data = response.get('data', {}).get('signature', {}) if group_type == 'threats': data = response.get('data', {}).get('threat', {}) if response.get('status') == 'Success': contents = { 'ID': data.get('id'), 'Name': data.get('name'), 'Owner': data.get('owner'), 'DateAdded': data.get('dateAdded'), 'EventDate': data.get('eventDate'), 'Status': data.get('status') } else: return_error(response.get('message')) context = { 'TC.Group(val.ID && val.ID === obj.ID)': contents } return_outputs( tableToMarkdown('Group information', contents, removeNull=True), context )
def get_group(): """ retrieve a single Group """ group_type = demisto.args().get('group_type') group_id = int(demisto.args().get('group_id')) response = get_group_request(group_type, group_id) if group_type == 'adversaries': data = response.get('data', {}).get('adversarie', {}) if group_type == 'campaigns': data = response.get('data', {}).get('campaign', {}) if group_type == 'documents': data = response.get('data', {}).get('document', {}) if group_type == 'emails': data = response.get('data', {}).get('email', {}) if group_type == 'events': data = response.get('data', {}).get('event', {}) if group_type == 'incidents': data = response.get('data', {}).get('incident', {}) if group_type == 'intrusionSets': data = response.get('data', {}).get('intrusionSet', {}) if group_type == 'reports': data = response.get('data', {}).get('report', {}) if group_type == 'signatures': data = response.get('data', {}).get('signature', {}) if group_type == 'threats': data = response.get('data', {}).get('threat', {}) if response.get('status') == 'Success': contents = { 'ID': data.get('id'), 'Name': data.get('name'), 'Owner': data.get('owner'), 'DateAdded': data.get('dateAdded'), 'EventDate': data.get('eventDate'), 'Status': data.get('status') } else: return_error(response.get('message')) context = { 'TC.Group(val.ID && val.ID === obj.ID)': contents } return_outputs( tableToMarkdown('ThreatConnect Group information', contents, removeNull=True), context )
49,032
def maybe_deferred_to_future(d: Deferred) -> Union[Deferred, Future]: """ Converts a Deferred to something that can be awaited in a callback or other user coroutine. If the asyncio reactor is installed, coroutines are wrapped into Futures, and only Futures can be awaited inside them. Otherwise, coroutines are wrapped into Deferreds and Deferreds can be awaited directly inside them. """ if not is_asyncio_reactor_installed(): return d else: return deferred_to_future(d)
def maybe_deferred_to_future(d: Deferred) -> Union[Deferred, Future]: """Return *d* as an object that can be awaited from a :ref:`Scrapy callable defined as a coroutine <coroutine-support>`. What you can await in Scrapy callables defined as coroutines depends on the value of :setting:`TWISTED_REACTOR`: - When not using the asyncio reactor, you can only await on :class:`~twisted.internet.defer.Deferred` objects. - When :ref:`using the asyncio reactor <install-asyncio>`, you can only await on :class:`asyncio.Future` objects. If you want to write code that uses ``Deferred`` objects but works with any reactor, use this function on all ``Deferred`` objects:: class MySpider(Spider): ... async def parse(self, response): d = treq.get('https://example.com/additional') extra_response = await maybe_deferred_to_future(d) """ if not is_asyncio_reactor_installed(): return d else: return deferred_to_future(d)
39,296
def test_extract_surface(): # create a single hexahedral cell lin_pts = np.array([[-1, -1, -1], # node 0 [ 1, -1, -1], # node 1 [ 1, 1, -1], # node 2 [-1, 1, -1], # node 3 [-1, -1, 1], # node 4 [ 1, -1, 1], # node 5 [ 1, 1, 1], # node 6 [-1, 1, 1]], np.double) # node 7 quad_pts = np.array([ (lin_pts[1] + lin_pts[0])/2.0, (lin_pts[1] + lin_pts[2])/2.0, (lin_pts[2] + lin_pts[3])/2.0, (lin_pts[3] + lin_pts[0])/2.0, (lin_pts[4] + lin_pts[5])/2.0, (lin_pts[5] + lin_pts[6])/2.0, (lin_pts[6] + lin_pts[7])/2.0, (lin_pts[7] + lin_pts[4])/2.0, (lin_pts[0] + lin_pts[4])/2.0, (lin_pts[1] + lin_pts[5])/2.0, (lin_pts[2] + lin_pts[6])/2.0, (lin_pts[3] + lin_pts[7])/2.0], np.double) # introduce a minor variation to the location of the mid-side points quad_pts += np.random.random(quad_pts.shape)*0.25 pts = np.vstack((lin_pts, quad_pts)) cells = np.asarray([[20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]], dtype=np.int64) celltypes = np.array([VTK_QUADRATIC_HEXAHEDRON]) if pyvista._vtk.VTK9: grid = pyvista.UnstructuredGrid(cells, celltypes, pts) else: grid = pyvista.UnstructuredGrid(np.array([0]), cells, celltypes, pts) # expect each face to be divided 6 times since's it has a midside node surf = grid.extract_surface() assert surf.n_faces == 36 # expect each face to be divided several more times than the linear extraction surf_subdivided = grid.extract_surface(subdivision=5) assert surf_subdivided.n_faces > surf.n_faces
def test_extract_surface(): # create a single hexahedral cell lin_pts = np.array([[-1, -1, -1], # node 0 [ 1, -1, -1], # node 1 [ 1, 1, -1], # node 2 [-1, 1, -1], # node 3 [-1, -1, 1], # node 4 [ 1, -1, 1], # node 5 [ 1, 1, 1], # node 6 [-1, 1, 1]], np.double) # node 7 quad_pts = np.array([ (lin_pts[1] + lin_pts[0])/2.0, (lin_pts[1] + lin_pts[2])/2.0, (lin_pts[2] + lin_pts[3])/2.0, (lin_pts[3] + lin_pts[0])/2.0, (lin_pts[4] + lin_pts[5])/2.0, (lin_pts[5] + lin_pts[6])/2.0, (lin_pts[6] + lin_pts[7])/2.0, (lin_pts[7] + lin_pts[4])/2.0, (lin_pts[0] + lin_pts[4])/2.0, (lin_pts[1] + lin_pts[5])/2.0, (lin_pts[2] + lin_pts[6])/2.0, (lin_pts[3] + lin_pts[7])/2.0], np.double) # introduce a minor variation to the location of the mid-side points quad_pts += np.random.random(quad_pts.shape)*0.25 pts = np.vstack((lin_pts, quad_pts)) cells = np.asarray([[20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]], dtype=np.int64) celltypes = np.array([VTK_QUADRATIC_HEXAHEDRON]) if pyvista._vtk.VTK9: grid = pyvista.UnstructuredGrid(cells, celltypes, pts) else: grid = pyvista.UnstructuredGrid(np.array([0]), cells, celltypes, pts) # expect each face to be divided 6 times since it has a midside node surf = grid.extract_surface() assert surf.n_faces == 36 # expect each face to be divided several more times than the linear extraction surf_subdivided = grid.extract_surface(subdivision=5) assert surf_subdivided.n_faces > surf.n_faces
32,317
def get_upload_data(packs_results_file_path: str, stage: str) -> Tuple[dict, dict, dict, dict]: """ Loads the packs_results.json file to get the successful and failed packs together with uploaded images dicts Args: packs_results_file_path (str): The path to the file stage (str): can be BucketUploadFlow.PREPARE_CONTENT_FOR_TESTING or BucketUploadFlow.UPLOAD_PACKS_TO_MARKETPLACE_STORAGE Returns: dict: The successful packs dict dict: The failed packs dict dict : The successful private packs dict dict: The images data dict """ if os.path.exists(packs_results_file_path): packs_results_file = load_json(packs_results_file_path) stage_data: dict = packs_results_file.get(stage, {}) successful_packs_dict = stage_data.get(BucketUploadFlow.SUCCESSFUL_PACKS, {}) failed_packs_dict = stage_data.get(BucketUploadFlow.FAILED_PACKS, {}) successful_private_packs_dict = stage_data.get(BucketUploadFlow.SUCCESSFUL_PRIVATE_PACKS, {}) images_data_dict = stage_data.get(BucketUploadFlow.IMAGES, {}) return successful_packs_dict, failed_packs_dict, successful_private_packs_dict, images_data_dict return {}, {}, {}, {}
def get_upload_data(packs_results_file_path: str, stage: str) -> Tuple[dict, dict, dict, dict]: """ Loads the packs_results.json file to get the successful and failed packs together with uploaded images dicts return [int(pr_number) for pr_number in re.findall(PULL_REQUEST_PATTERN, log_info)] Args: packs_results_file_path (str): The path to the file stage (str): can be BucketUploadFlow.PREPARE_CONTENT_FOR_TESTING or BucketUploadFlow.UPLOAD_PACKS_TO_MARKETPLACE_STORAGE Returns: dict: The successful packs dict dict: The failed packs dict dict : The successful private packs dict dict: The images data dict """ if os.path.exists(packs_results_file_path): packs_results_file = load_json(packs_results_file_path) stage_data: dict = packs_results_file.get(stage, {}) successful_packs_dict = stage_data.get(BucketUploadFlow.SUCCESSFUL_PACKS, {}) failed_packs_dict = stage_data.get(BucketUploadFlow.FAILED_PACKS, {}) successful_private_packs_dict = stage_data.get(BucketUploadFlow.SUCCESSFUL_PRIVATE_PACKS, {}) images_data_dict = stage_data.get(BucketUploadFlow.IMAGES, {}) return successful_packs_dict, failed_packs_dict, successful_private_packs_dict, images_data_dict return {}, {}, {}, {}
15,356
def _extract_blueprint_from_community_topic( url, topic, ) -> ImportedBlueprint: """Extract a blueprint from a community post JSON. Async friendly. """ block_content = None blueprint = None post = topic["post_stream"]["posts"][0] for match in COMMUNITY_CODE_BLOCK.finditer(post["cooked"]): block_syntax, block_content = match.groups() if block_syntax not in ("auto", "yaml"): continue block_content = block_content.strip() try: data = yaml.parse_yaml(block_content) except HomeAssistantError: if block_syntax == "yaml": raise continue if not is_blueprint_config(data): continue blueprint = Blueprint(data) break if blueprint is None: return None return ImportedBlueprint(url, topic["slug"], block_content, blueprint)
def _extract_blueprint_from_community_topic( url, topic, ) -> Optional[ImportedBlueprint]: """Extract a blueprint from a community post JSON. Async friendly. """ block_content = None blueprint = None post = topic["post_stream"]["posts"][0] for match in COMMUNITY_CODE_BLOCK.finditer(post["cooked"]): block_syntax, block_content = match.groups() if block_syntax not in ("auto", "yaml"): continue block_content = block_content.strip() try: data = yaml.parse_yaml(block_content) except HomeAssistantError: if block_syntax == "yaml": raise continue if not is_blueprint_config(data): continue blueprint = Blueprint(data) break if blueprint is None: return None return ImportedBlueprint(url, topic["slug"], block_content, blueprint)
39,634
def convert_weights_disk_format(params): for name, param in params.items(): if name.endswith("_weight"): scaling_name = name[0:-6] + "scaling" if scaling_name in params: b_max = mx.nd.contrib.intgemm_maxabsolute(param.data()) params[scaling_name].set_data(b_max / 127.0) quantized = mx.nd.contrib.intgemm_prepare_data(param.data(), b_max) param.set_data(quantized) param.dtype = C.DTYPE_INT8
def convert_weights_disk_format(params: mx.gluon.parameter.ParameterDict): for name, param in params.items(): if name.endswith("_weight"): scaling_name = name[0:-6] + "scaling" if scaling_name in params: b_max = mx.nd.contrib.intgemm_maxabsolute(param.data()) params[scaling_name].set_data(b_max / 127.0) quantized = mx.nd.contrib.intgemm_prepare_data(param.data(), b_max) param.set_data(quantized) param.dtype = C.DTYPE_INT8
31,125
def ip_details_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ ip command: Returns IP details for a list of IPs """ ip_addresses_string = args.get('ip') ip_addresses_array = argToList(ip_addresses_string) invalid_ips = [] for ip_address in ip_addresses_array: # Check for Valid IP Inputs if not is_ip_valid(ip_address, accept_v6_ips=True): invalid_ips.append(ip_address) if invalid_ips: return_warning('The following IP Addresses were found invalid: {}'.format(', '.join(invalid_ips))) enhanced = argToBoolean(args.get('enhanced')) response = client.get_ip_details(ip_addresses_array, enhanced) ip_list = response.get("data", {}).get("results", {}) ip_data_list, ip_standard_list = [], [] for ip_data in ip_list: score = to_dbot_score(ip_data.get("score", 0)) dbot_score = Common.DBotScore( indicator=ip_data.get("name2"), indicator_type=DBotScoreType.IP, integration_name='CTIX', score=score ) ip_standard_context = Common.IP( ip=ip_data.get("name2"), asn=ip_data.get("asn"), dbot_score=dbot_score ) ip_standard_list.append(ip_standard_context) ip_data_list.append(ip_data) readable_output = tableToMarkdown('IP List', ip_data_list, removeNull=True) return CommandResults( readable_output=readable_output, outputs_prefix='CTIX.IP', outputs_key_field='name2', outputs=ip_data_list, indicators=ip_standard_list )
def ip_details_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ ip command: Returns IP details for a list of IPs """ ip_addresses_string = args.get('ip') ip_addresses_array = argToList(ip_addresses_string) invalid_ips = [] for ip_address in ip_addresses_array: # Check for Valid IP Inputs if not is_ip_valid(ip_address, accept_v6_ips=True): invalid_ips.append(ip_address) if invalid_ips: return_warning('The following IP Addresses were found invalid: {}'.format(', '.join(invalid_ips)), exit=len(invalid_ips) == len(ip_addresses_array)) enhanced = argToBoolean(args.get('enhanced')) response = client.get_ip_details(ip_addresses_array, enhanced) ip_list = response.get("data", {}).get("results", {}) ip_data_list, ip_standard_list = [], [] for ip_data in ip_list: score = to_dbot_score(ip_data.get("score", 0)) dbot_score = Common.DBotScore( indicator=ip_data.get("name2"), indicator_type=DBotScoreType.IP, integration_name='CTIX', score=score ) ip_standard_context = Common.IP( ip=ip_data.get("name2"), asn=ip_data.get("asn"), dbot_score=dbot_score ) ip_standard_list.append(ip_standard_context) ip_data_list.append(ip_data) readable_output = tableToMarkdown('IP List', ip_data_list, removeNull=True) return CommandResults( readable_output=readable_output, outputs_prefix='CTIX.IP', outputs_key_field='name2', outputs=ip_data_list, indicators=ip_standard_list )
23,180
def _cov_agg(_t, levels, ddof, std=False, sort=False): sums = [] muls = [] counts = [] # sometime we get a series back from concat combiner t = list(_t) cols = t[0][0].columns for x, mul, n, col_mapping in t: sums.append(x) muls.append(mul) counts.append(n) col_mapping = col_mapping total_sums = concat(sums).groupby(level=levels, sort=sort).sum() total_muls = concat(muls).groupby(level=levels, sort=sort).sum() total_counts = concat(counts).groupby(level=levels).sum() result = ( concat([total_sums, total_muls, total_counts], axis=1) .groupby(level=levels) .apply(_cov_finalizer, cols=cols, std=std) ) inv_col_mapping = {v: k for k, v in col_mapping.items()} idx_vals = result.index.names idx_mapping = list() # when index is None we probably have selected a particular column # df.groupby('a')[['b']].cov() if len(idx_vals) == 1 and all(n is None for n in idx_vals): idx_vals = list(inv_col_mapping.keys() - set(total_sums.columns)) for _, val in enumerate(idx_vals): idx_name = inv_col_mapping.get(val, val) idx_mapping.append(idx_name) if len(result.columns.levels[0]) < len(col_mapping): # removing index from col_mapping (produces incorrect multiindexes) try: col_mapping.pop(idx_name) except KeyError: # when slicing the col_map will not have the index pass keys = list(col_mapping.keys()) for level in range(len(result.columns.levels)): result.columns = result.columns.set_levels(keys, level=level) result.index.set_names(idx_mapping, inplace=True) # stacking can lead to a sorted index s_result = result.stack(dropna=False) assert is_dataframe_like(s_result) return s_result
def _cov_agg(_t, levels, ddof, std=False, sort=False): sums = [] muls = [] counts = [] # sometime we get a series back from concat combiner t = list(_t) cols = t[0][0].columns for x, mul, n, col_mapping in t: sums.append(x) muls.append(mul) counts.append(n) col_mapping = col_mapping total_sums = concat(sums).groupby(level=levels, sort=sort).sum() total_muls = concat(muls).groupby(level=levels, sort=sort).sum() total_counts = concat(counts).groupby(level=levels).sum() result = ( concat([total_sums, total_muls, total_counts], axis=1) .groupby(level=levels) .apply(_cov_finalizer, cols=cols, std=std) ) inv_col_mapping = {v: k for k, v in col_mapping.items()} idx_vals = result.index.names idx_mapping = list() # when index is None we probably have selected a particular column # df.groupby('a')[['b']].cov() if len(idx_vals) == 1 and all(n is None for n in idx_vals): idx_vals = list(inv_col_mapping.keys() - set(total_sums.columns)) for val in idx_vals: idx_name = inv_col_mapping.get(val, val) idx_mapping.append(idx_name) if len(result.columns.levels[0]) < len(col_mapping): # removing index from col_mapping (produces incorrect multiindexes) try: col_mapping.pop(idx_name) except KeyError: # when slicing the col_map will not have the index pass keys = list(col_mapping.keys()) for level in range(len(result.columns.levels)): result.columns = result.columns.set_levels(keys, level=level) result.index.set_names(idx_mapping, inplace=True) # stacking can lead to a sorted index s_result = result.stack(dropna=False) assert is_dataframe_like(s_result) return s_result
832
def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. If `f` has `period` attribute as trigonometric functions do, it will be used to determine the periodicity. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp, Function, pi, S >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) >>> class F(Function): ... nargs = 1 ... def _period(self, general_period, symbol): # This emulates trigonometric function's method. ... arg = self.args[0] ... if not arg.has(symbol): ... return S.Zero ... if arg == symbol: ... return general_period ... if symbol is arg.free_symbols: ... if arg.is_Mul: ... g, h = arg.as_independent(symbol) ... if h == symbol: ... return general_period/abs(g) ... if arg.is_Add: ... a, h = arg.as_independent(symbol) ... g, h = h.as_independent(symbol, as_Add=False) ... if h == symbol: ... return general_period/abs(g) ... raise NotImplementedError("Use the periodicity function instead.") ... def period(self, symbol): ... return self._period(2*pi, symbol) >>> periodicity(F(x), x) 2*pi """ from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree f = _sympify(f) temp = Dummy('x', real=True) f = f.subs(symbol, temp) symbol = temp def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if hasattr(f, 'period'): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if isinstance(f, exp): if re(f).has(f) or im(f).has(f): # Avoid infinite loop period = periodicity(f.args[0], symbol) elif im(f) != 0: period_real = periodicity(re(f), symbol) period_imag = periodicity(im(f), symbol) if period_real is not None and period_imag is not None: period = lcim([period_real, period_imag]) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) elif hasattr(a, 'period'): try: period = periodicity(a, symbol) except NotImplementedError: pass #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None
def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. If `f` has `period` attribute as trigonometric functions do, it will be used to determine the periodicity. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp, Function, pi, S >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) >>> class F(Function): ... nargs = 1 ... def _period(self, general_period, symbol): # This emulates trigonometric function's method. ... arg = self.args[0] ... if not arg.has(symbol): ... return S.Zero ... if arg == symbol: ... return general_period ... if symbol in arg.free_symbols: ... if arg.is_Mul: ... g, h = arg.as_independent(symbol) ... if h == symbol: ... return general_period/abs(g) ... if arg.is_Add: ... a, h = arg.as_independent(symbol) ... g, h = h.as_independent(symbol, as_Add=False) ... if h == symbol: ... return general_period/abs(g) ... raise NotImplementedError("Use the periodicity function instead.") ... def period(self, symbol): ... return self._period(2*pi, symbol) >>> periodicity(F(x), x) 2*pi """ from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree f = _sympify(f) temp = Dummy('x', real=True) f = f.subs(symbol, temp) symbol = temp def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if hasattr(f, 'period'): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if isinstance(f, exp): if re(f).has(f) or im(f).has(f): # Avoid infinite loop period = periodicity(f.args[0], symbol) elif im(f) != 0: period_real = periodicity(re(f), symbol) period_imag = periodicity(im(f), symbol) if period_real is not None and period_imag is not None: period = lcim([period_real, period_imag]) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) elif hasattr(a, 'period'): try: period = periodicity(a, symbol) except NotImplementedError: pass #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None
57,138
def validate(pending_deletion_request): """Checks that the domain object is valid. Raises: ValidationError. The field pseudonymizable_entity_mappings contains wrong key. """ for key in pending_deletion_request.pseudonymizable_entity_mappings.keys(): if key not in [name.value for name in models.NAMES]: raise utils.ValidationError( 'pseudonymizable_entity_mappings contain wrong key')
def validate_penging_deletion_request(pending_deletion_request): """Checks that the pending deletion request is valid. Raises: ValidationError. The field pseudonymizable_entity_mappings contains wrong key. """ for key in pending_deletion_request.pseudonymizable_entity_mappings.keys(): if key not in [name.value for name in models.NAMES]: raise utils.ValidationError( 'pseudonymizable_entity_mappings contain wrong key')
26,431
def light(app): """ Apply Light Theme to the Qt application instance. Args: app (QApplication): QApplication instance. """ lightPalette = QPalette() # base lightPalette.setColor(QPalette.WindowText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Button, QColor(240, 240, 240)) lightPalette.setColor(QPalette.Light, QColor(180, 180, 180)) lightPalette.setColor(QPalette.Midlight, QColor(200, 200, 200)) lightPalette.setColor(QPalette.Dark, QColor(225, 225, 225)) lightPalette.setColor(QPalette.Text, QColor(0, 0, 0)) lightPalette.setColor(QPalette.BrightText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.ButtonText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Base, QColor(237, 237, 237)) lightPalette.setColor(QPalette.Window, QColor(240, 240, 240)) lightPalette.setColor(QPalette.Shadow, QColor(20, 20, 20)) lightPalette.setColor(QPalette.Highlight, QColor(76, 163, 224)) lightPalette.setColor(QPalette.HighlightedText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Link, QColor(0, 162, 232)) lightPalette.setColor(QPalette.AlternateBase, QColor(225, 225, 225)) lightPalette.setColor(QPalette.ToolTipBase, QColor(240, 240, 240)) lightPalette.setColor(QPalette.ToolTipText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.LinkVisited, QColor(222, 222, 222)) # disabled lightPalette.setColor(QPalette.Disabled, QPalette.WindowText, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.Text, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.ButtonText, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.Highlight, QColor(190, 190, 190)) lightPalette.setColor(QPalette.Disabled, QPalette.HighlightedText, QColor(115, 115, 115)) app.style().unpolish(app) app.setPalette(lightPalette) app.setStyle('Fusion')
def light(app): """ Apply Light Theme to the Qt application instance. Args: app (QApplication): QApplication instance. """ light_palette = QPalette() # base lightPalette.setColor(QPalette.WindowText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Button, QColor(240, 240, 240)) lightPalette.setColor(QPalette.Light, QColor(180, 180, 180)) lightPalette.setColor(QPalette.Midlight, QColor(200, 200, 200)) lightPalette.setColor(QPalette.Dark, QColor(225, 225, 225)) lightPalette.setColor(QPalette.Text, QColor(0, 0, 0)) lightPalette.setColor(QPalette.BrightText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.ButtonText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Base, QColor(237, 237, 237)) lightPalette.setColor(QPalette.Window, QColor(240, 240, 240)) lightPalette.setColor(QPalette.Shadow, QColor(20, 20, 20)) lightPalette.setColor(QPalette.Highlight, QColor(76, 163, 224)) lightPalette.setColor(QPalette.HighlightedText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.Link, QColor(0, 162, 232)) lightPalette.setColor(QPalette.AlternateBase, QColor(225, 225, 225)) lightPalette.setColor(QPalette.ToolTipBase, QColor(240, 240, 240)) lightPalette.setColor(QPalette.ToolTipText, QColor(0, 0, 0)) lightPalette.setColor(QPalette.LinkVisited, QColor(222, 222, 222)) # disabled lightPalette.setColor(QPalette.Disabled, QPalette.WindowText, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.Text, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.ButtonText, QColor(115, 115, 115)) lightPalette.setColor(QPalette.Disabled, QPalette.Highlight, QColor(190, 190, 190)) lightPalette.setColor(QPalette.Disabled, QPalette.HighlightedText, QColor(115, 115, 115)) app.style().unpolish(app) app.setPalette(lightPalette) app.setStyle('Fusion')
51,612
def apply_thresholds(input, thresholds, choices): """Makes a choice based on an input and thresholds. From list of ``choices``, it selects one of them based on a list of inputs, depending on the position of each ``input`` whithin a list of ``thresholds``. It does so for each ``input`` provided. Args: input: A list of inputs to make a choice. thresholds: A list of thresholds to choose. choices: A list of the possible choices. Returns: :obj:`numpy.ndarray` of :obj:`float`: A list of the choices made. Raises: :exc:`AssertionError`: When the number of ``thresholds`` (t) and the number of choices (c) are not either t == c or t == c - 1. Examples: >>> apply_thresholds(np.array([4]), [5, 7], [10, 15, 20]) array([10]) >>> apply_thresholds(np.array([5]), [5, 7], [10, 15, 20]) array([10]) >>> apply_thresholds(np.array([6]), [5, 7], [10, 15, 20]) array([15]) >>> apply_thresholds(np.array([8]), [5, 7], [10, 15, 20]) array([20]) >>> apply_thresholds(np.array([10]), [5, 7, 9], [10, 15, 20]) array([0]) """ condlist = [input <= threshold for threshold in thresholds] if len(condlist) == len(choices) - 1: # If a choice is provided for input > highest threshold, last condition must be true to return it. condlist += [True] assert len(condlist) == len(choices), \ "apply_thresholds must be called with the same number of thresholds than choices, or one more choice" return numpy.select(condlist, choices)
def apply_thresholds(input, thresholds, choices): """Makes a choice based on an input and thresholds. From a list of ``choices``, this function selects one of these values based on a list of inputs, depending on the value of each ``input`` within a list of ``thresholds``. Args: input: A list of inputs to make a choice. thresholds: A list of thresholds to choose. choices: A list of the possible choices. Returns: :obj:`numpy.ndarray` of :obj:`float`: A list of the choices made. Raises: :exc:`AssertionError`: When the number of ``thresholds`` (t) and the number of choices (c) are not either t == c or t == c - 1. Examples: >>> apply_thresholds(np.array([4]), [5, 7], [10, 15, 20]) array([10]) >>> apply_thresholds(np.array([5]), [5, 7], [10, 15, 20]) array([10]) >>> apply_thresholds(np.array([6]), [5, 7], [10, 15, 20]) array([15]) >>> apply_thresholds(np.array([8]), [5, 7], [10, 15, 20]) array([20]) >>> apply_thresholds(np.array([10]), [5, 7, 9], [10, 15, 20]) array([0]) """ condlist = [input <= threshold for threshold in thresholds] if len(condlist) == len(choices) - 1: # If a choice is provided for input > highest threshold, last condition must be true to return it. condlist += [True] assert len(condlist) == len(choices), \ "apply_thresholds must be called with the same number of thresholds than choices, or one more choice" return numpy.select(condlist, choices)
25,129
def rmdir(store, path: Path = None): """Remove all items under the given path. If `store` provides a `rmdir` method, this will be called, otherwise will fall back to implementation via the `MutableMapping` interface.""" path = normalize_storage_path(path) if hasattr(store, 'rmdir'): # pass through store.rmdir(path) elif hasattr(store.fs, 'rmdir'): store.fs.rmdir(path) else: # slow version, delete one key at a time _rmdir_from_keys(store, path)
def rmdir(store, path: Path = None): """Remove all items under the given path. If `store` provides a `rmdir` method, this will be called, otherwise will fall back to implementation via the `MutableMapping` interface.""" path = normalize_storage_path(path) if hasattr(store, 'rmdir'): # pass through store.rmdir(path) elif hasattr(store, 'fs') and hasattr(store.fs, 'rmdir'): store.fs.rmdir(path) else: # slow version, delete one key at a time _rmdir_from_keys(store, path)
55,968
def convert_dataset_for_tensorflow(dataset, non_label_column_names, batch_size, labels, dataset_mode, drop_remainder): """Converts a Hugging Face dataset to a Tensorflow Dataset or Sequence object. We usually only want a Dataset when we're training on TPU, as we get the nice feature of variable-length batches when we put the data in a Sequence object instead.""" def densify_ragged_batch(features, labels=None): features = { feature: ragged_tensor.to_tensor(shape=batch_shape[feature]) for feature, ragged_tensor in features.items() } if labels is None: return features else: return features, labels feature_keys = list(set(dataset.features.keys()) - set(non_label_column_names + ["label"])) if dataset_mode == "variable_batch": batch_shape = {key: None for key in feature_keys} data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} if labels: labels = tf.convert_to_tensor(np.array(dataset["label"])) tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels)) else: tf_dataset = tf.data.Dataset.from_tensor_slices(data) tf_dataset = ( tf_dataset.shuffle(buffer_size=len(dataset)) .batch(batch_size=batch_size, drop_remainder=drop_remainder) .map(densify_ragged_batch) ) return tf_dataset elif dataset_mode == "constant_batch": data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} batch_shape = { key: tf.concat(([batch_size], ragged_tensor.bounding_shape()[1:]), axis=0) for key, ragged_tensor in data.items() } if labels: labels = tf.convert_to_tensor(np.array(dataset["label"])) tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels)) else: tf_dataset = tf.data.Dataset.from_tensor_slices(data) tf_dataset = ( tf_dataset.shuffle(buffer_size=len(dataset)) .batch(batch_size=batch_size, drop_remainder=drop_remainder) .map(densify_ragged_batch) ) return tf_dataset else: raise ValueError("Unknown dataset mode!")
def convert_dataset_for_tensorflow(dataset, non_label_column_names, batch_size, labels, dataset_mode, drop_remainder): """ Converts a Hugging Face dataset to a Tensorflow Dataset or Sequence object. We usually only want a Dataset when we're training on TPU, as we get the nice feature of variable-length batches when we put the data in a Sequence object instead. """ def densify_ragged_batch(features, labels=None): features = { feature: ragged_tensor.to_tensor(shape=batch_shape[feature]) for feature, ragged_tensor in features.items() } if labels is None: return features else: return features, labels feature_keys = list(set(dataset.features.keys()) - set(non_label_column_names + ["label"])) if dataset_mode == "variable_batch": batch_shape = {key: None for key in feature_keys} data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} if labels: labels = tf.convert_to_tensor(np.array(dataset["label"])) tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels)) else: tf_dataset = tf.data.Dataset.from_tensor_slices(data) tf_dataset = ( tf_dataset.shuffle(buffer_size=len(dataset)) .batch(batch_size=batch_size, drop_remainder=drop_remainder) .map(densify_ragged_batch) ) return tf_dataset elif dataset_mode == "constant_batch": data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys} batch_shape = { key: tf.concat(([batch_size], ragged_tensor.bounding_shape()[1:]), axis=0) for key, ragged_tensor in data.items() } if labels: labels = tf.convert_to_tensor(np.array(dataset["label"])) tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels)) else: tf_dataset = tf.data.Dataset.from_tensor_slices(data) tf_dataset = ( tf_dataset.shuffle(buffer_size=len(dataset)) .batch(batch_size=batch_size, drop_remainder=drop_remainder) .map(densify_ragged_batch) ) return tf_dataset else: raise ValueError("Unknown dataset mode!")
30,797
def link_forensics_artifacts_name_command(file_names, client: Client, args: dict) -> CommandResults: event_id = args.get("event_id", 0) if len(file_names) > 0: outputs = { 'eventId': int(event_id), 'Artifacts': file_names } return CommandResults( outputs_prefix='Illusive.Event', outputs_key_field='eventId', outputs=outputs ) else: readable_output = f'### event id {event_id} has no artifacts' return CommandResults( readable_output=readable_output, outputs_prefix='Illusive.Event', outputs_key_field='eventId', outputs={'eventId': int(event_id)} )
def link_forensics_artifacts_name_command(file_names: list, client: Client, args: dict) -> CommandResults: event_id = args.get("event_id", 0) if len(file_names) > 0: outputs = { 'eventId': int(event_id), 'Artifacts': file_names } return CommandResults( outputs_prefix='Illusive.Event', outputs_key_field='eventId', outputs=outputs ) else: readable_output = f'### event id {event_id} has no artifacts' return CommandResults( readable_output=readable_output, outputs_prefix='Illusive.Event', outputs_key_field='eventId', outputs={'eventId': int(event_id)} )
40,205
def intersection_polyline_plane(polyline, plane, expected_number_of_intersections=None, tol=1e-6): """Calculate the intersection point of a plane with a polyline. Return a list of intersection points. By default it will allow two intersections. Reduce expected_number_of_intersections to speed up. Parameters ---------- polyline : compas.geometry.Polyline polyline to test intersection plane : compas.Geometry.Plane plane to compute intersection tol : float, optional A tolerance for membership verification. Default is ``1e-6``. Returns ------- intersection_pts : list of compas.geometry.Point if there are intersection points, return point(s) in a list """ if not expected_number_of_intersections: expected_number_of_intersections = len(polyline) intersection_points = [] max_iter = 0 for segment in pairwise(polyline): pt = intersection_segment_plane(segment, plane, tol) if pt and max_iter < expected_number_of_intersections: intersection_points.append(pt) max_iter += 1 else: break if len(intersection_points) > 0: return intersection_points return None
def intersection_polyline_plane(polyline, plane, expected_number_of_intersections=None, tol=1e-6): """Calculate the intersection point of a plane with a polyline. Return a list of intersection points. By default it will allow two intersections. Reduce expected_number_of_intersections to speed up. Parameters ---------- polyline : compas.geometry.Polyline polyline to test intersection plane : compas.Geometry.Plane plane to compute intersection tol : float, optional A tolerance for membership verification. Default is ``1e-6``. Returns ------- list of :class:`compas.geometry.Point` if there are intersection points, return point(s) in a list """ if not expected_number_of_intersections: expected_number_of_intersections = len(polyline) intersection_points = [] max_iter = 0 for segment in pairwise(polyline): pt = intersection_segment_plane(segment, plane, tol) if pt and max_iter < expected_number_of_intersections: intersection_points.append(pt) max_iter += 1 else: break if len(intersection_points) > 0: return intersection_points return None
45,397
def concatenate(dfs): """ Concatenate pandas DataFrames with saving 'category' dtype. Parameters ---------- dfs : list List of pandas DataFrames to concatenate. Returns ------- pandas.DataFrame A pandas DataFrame. """ categoricals_column_names = set.intersection( *[set(df.select_dtypes("category").columns.tolist()) for df in dfs] ) for column_name in categoricals_column_names: # Build a list of all columns in all dfs with name column_name. categorical_columns_with_name = [] for df in dfs: categorical_columns_in_df = df[column_name] # Fast path for when the column name is unique. if type(categorical_columns_in_df) == pandas.Series: categorical_columns_with_name.append(categorical_columns_in_df) else: # If the column name is repeated, df[column_name] gives a # a dataframe with all matching columns instead of a series. categorical_columns_with_name.extend( categorical_columns_in_df.iloc[:, i] for i in range(len(categorical_columns_in_df.columns)) ) # Make a new category unioning all columns with the current name. categories = union_categoricals(categorical_columns_with_name).categories # Replace all columns having the current name with the new category. for df in dfs: categorical_columns_in_df = df[column_name] # Fast path for when the column name is unique. if type(categorical_columns_in_df) == pandas.Series: df[column_name] = pandas.Categorical( df[column_name], categories=categories ) else: for i in range(len(categorical_columns_in_df.columns)): df.iloc[:, i] = pandas.Categorical( df.iloc[:, i], categories=categories ) return pandas.concat(dfs)
def concatenate(dfs): """ Concatenate pandas DataFrames with saving 'category' dtype. Parameters ---------- dfs : list List of pandas DataFrames to concatenate. Returns ------- pandas.DataFrame A pandas DataFrame. """ categoricals_column_names = set.intersection( *[set(df.select_dtypes("category").columns.tolist()) for df in dfs] ) for column_name in categoricals_column_names: # Build a list of all columns in all dfs with name column_name. categorical_columns_with_name = [] for df in dfs: categorical_columns_in_df = df[column_name] # Fast path for when the column name is unique. if type(categorical_columns_in_df) == pandas.Series: categorical_columns_with_name.append(categorical_columns_in_df) else: # If the column name is repeated, df[column_name] gives a # a dataframe with all matching columns instead of a series. categorical_columns_with_name.extend( categorical_columns_in_df.iloc[:, i] for i in range(len(categorical_columns_in_df.columns)) ) # Make a new category unioning all columns with the current name. categories = union_categoricals(categorical_columns_with_name).categories # Replace all columns having the current name with the new category. for df in dfs: categorical_columns_in_df = df[column_name] # Fast path for when the column name is unique. if isinstance(categorical_columns_in_df, pandas.Series): df[column_name] = pandas.Categorical( df[column_name], categories=categories ) else: for i in range(len(categorical_columns_in_df.columns)): df.iloc[:, i] = pandas.Categorical( df.iloc[:, i], categories=categories ) return pandas.concat(dfs)
58,541
def sac_actor_critic_loss( policy: Policy, model: ModelV2, dist_class: Type[TFActionDistribution], train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]: """Constructs the loss for the Soft Actor Critic. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]: The action distr. class. train_batch (SampleBatch): The training data. Returns: Union[TensorType, List[TensorType]]: A single loss tensor or a list of loss tensors. """ # Should be True only for debugging purposes (e.g. test cases)! deterministic = policy.config["_deterministic_loss"] # Get the base model output from the train batch. model_out_t, _ = model({ "obs": train_batch[SampleBatch.CUR_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Get the base model output from the next observations in the train batch. model_out_tp1, _ = model({ "obs": train_batch[SampleBatch.NEXT_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Get the target model's base outputs from the next observations in the # train batch. target_model_out_tp1, _ = policy.target_model({ "obs": train_batch[SampleBatch.NEXT_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Discrete actions case. if model.discrete: # Get all action probs directly from pi and form their logp. log_pis_t = tf.nn.log_softmax(model.get_policy_output(model_out_t), -1) policy_t = tf.math.exp(log_pis_t) log_pis_tp1 = tf.nn.log_softmax( model.get_policy_output(model_out_tp1), -1) policy_tp1 = tf.math.exp(log_pis_tp1) # Q-values. q_t = model.get_q_values(model_out_t) # Target Q-values. q_tp1 = policy.target_model.get_q_values(target_model_out_tp1) if policy.config["twin_q"]: twin_q_t = model.get_twin_q_values(model_out_t) twin_q_tp1 = policy.target_model.get_twin_q_values( target_model_out_tp1) q_tp1 = tf.reduce_min((q_tp1, twin_q_tp1), axis=0) q_tp1 -= model.alpha * log_pis_tp1 # Actually selected Q-values (from the actions batch). one_hot = tf.one_hot( train_batch[SampleBatch.ACTIONS], depth=q_t.shape.as_list()[-1]) q_t_selected = tf.reduce_sum(q_t * one_hot, axis=-1) if policy.config["twin_q"]: twin_q_t_selected = tf.reduce_sum(twin_q_t * one_hot, axis=-1) # Discrete case: "Best" means weighted by the policy (prob) outputs. q_tp1_best = tf.reduce_sum(tf.multiply(policy_tp1, q_tp1), axis=-1) q_tp1_best_masked = \ (1.0 - tf.cast(train_batch[SampleBatch.DONES], tf.float32)) * \ q_tp1_best # Continuous actions case. else: # Sample simgle actions from distribution. action_dist_class = _get_dist_class(policy.config, policy.action_space) action_dist_t = action_dist_class( model.get_policy_output(model_out_t), policy.model) policy_t = action_dist_t.sample() if not deterministic else \ action_dist_t.deterministic_sample() log_pis_t = tf.expand_dims(action_dist_t.logp(policy_t), -1) action_dist_tp1 = action_dist_class( model.get_policy_output(model_out_tp1), policy.model) policy_tp1 = action_dist_tp1.sample() if not deterministic else \ action_dist_tp1.deterministic_sample() log_pis_tp1 = tf.expand_dims(action_dist_tp1.logp(policy_tp1), -1) # Q-values for the actually selected actions. q_t = model.get_q_values(model_out_t, tf.cast(train_batch[SampleBatch.ACTIONS], tf.float32)) if policy.config["twin_q"]: twin_q_t = model.get_twin_q_values( model_out_t, tf.cast(train_batch[SampleBatch.ACTIONS], tf.float32)) # Q-values for current policy in given current state. q_t_det_policy = model.get_q_values(model_out_t, policy_t) if policy.config["twin_q"]: twin_q_t_det_policy = model.get_twin_q_values( model_out_t, policy_t) q_t_det_policy = tf.reduce_min( (q_t_det_policy, twin_q_t_det_policy), axis=0) # target q network evaluation q_tp1 = policy.target_model.get_q_values(target_model_out_tp1, policy_tp1) if policy.config["twin_q"]: twin_q_tp1 = policy.target_model.get_twin_q_values( target_model_out_tp1, policy_tp1) # Take min over both twin-NNs. q_tp1 = tf.reduce_min((q_tp1, twin_q_tp1), axis=0) q_t_selected = tf.squeeze(q_t, axis=len(q_t.shape) - 1) if policy.config["twin_q"]: twin_q_t_selected = tf.squeeze(twin_q_t, axis=len(q_t.shape) - 1) q_tp1 -= model.alpha * log_pis_tp1 q_tp1_best = tf.squeeze(input=q_tp1, axis=len(q_tp1.shape) - 1) q_tp1_best_masked = (1.0 - tf.cast(train_batch[SampleBatch.DONES], tf.float32)) * q_tp1_best # Compute RHS of bellman equation for the Q-loss (critic(s)). q_t_selected_target = tf.stop_gradient( tf.cast(train_batch[SampleBatch.REWARDS], tf.float32) + policy.config["gamma"]**policy.config["n_step"] * q_tp1_best_masked) # Compute the TD-error (potentially clipped). base_td_error = tf.math.abs(q_t_selected - q_t_selected_target) if policy.config["twin_q"]: twin_td_error = tf.math.abs(twin_q_t_selected - q_t_selected_target) td_error = 0.5 * (base_td_error + twin_td_error) else: td_error = base_td_error # Calculate one or two critic losses (2 in the twin_q case). prio_weights = tf.cast(train_batch[PRIO_WEIGHTS], tf.float32) critic_loss = [tf.reduce_mean(prio_weights * huber_loss(base_td_error))] if policy.config["twin_q"]: critic_loss.append( tf.reduce_mean(prio_weights * huber_loss(twin_td_error))) # Alpha- and actor losses. # Note: In the papers, alpha is used directly, here we take the log. # Discrete case: Multiply the action probs as weights with the original # loss terms (no expectations needed). if model.discrete: alpha_loss = tf.reduce_mean( tf.reduce_sum( tf.multiply( tf.stop_gradient(policy_t), -model.log_alpha * tf.stop_gradient(log_pis_t + model.target_entropy)), axis=-1)) actor_loss = tf.reduce_mean( tf.reduce_sum( tf.multiply( # NOTE: No stop_grad around policy output here # (compare with q_t_det_policy for continuous case). policy_t, model.alpha * log_pis_t - tf.stop_gradient(q_t)), axis=-1)) else: alpha_loss = -tf.reduce_mean( model.log_alpha * tf.stop_gradient(log_pis_t + model.target_entropy)) actor_loss = tf.reduce_mean(model.alpha * log_pis_t - q_t_det_policy) # Save for stats function. policy.policy_t = policy_t policy.q_t = q_t policy.td_error = td_error policy.actor_loss = actor_loss policy.critic_loss = critic_loss policy.alpha_loss = alpha_loss policy.alpha_value = model.alpha policy.target_entropy = model.target_entropy # In a custom apply op we handle the losses separately, but return them # combined in one loss here. return actor_loss + tf.math.add_n(critic_loss) + alpha_loss
def sac_actor_critic_loss( policy: Policy, model: ModelV2, dist_class: Type[TFActionDistribution], train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]: """Constructs the loss for the Soft Actor Critic. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]: The action distr. class. train_batch (SampleBatch): The training data. Returns: Union[TensorType, List[TensorType]]: A single loss tensor or a list of loss tensors. """ # Should be True only for debugging purposes (e.g. test cases)! deterministic = policy.config["_deterministic_loss"] # Get the base model output from the train batch. model_out_t, _ = model({ "obs": train_batch[SampleBatch.CUR_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Get the base model output from the next observations in the train batch. model_out_tp1, _ = model({ "obs": train_batch[SampleBatch.NEXT_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Get the target model's base outputs from the next observations in the # train batch. target_model_out_tp1, _ = policy.target_model({ "obs": train_batch[SampleBatch.NEXT_OBS], "is_training": policy._get_is_training_placeholder(), }, [], None) # Discrete actions case. if model.discrete: # Get all action probs directly from pi and form their logp. log_pis_t = tf.nn.log_softmax(model.get_policy_output(model_out_t), -1) policy_t = tf.math.exp(log_pis_t) log_pis_tp1 = tf.nn.log_softmax( model.get_policy_output(model_out_tp1), -1) policy_tp1 = tf.math.exp(log_pis_tp1) # Q-values. q_t = model.get_q_values(model_out_t) # Target Q-values. q_tp1 = policy.target_model.get_q_values(target_model_out_tp1) if policy.config["twin_q"]: twin_q_t = model.get_twin_q_values(model_out_t) twin_q_tp1 = policy.target_model.get_twin_q_values( target_model_out_tp1) q_tp1 = tf.reduce_min((q_tp1, twin_q_tp1), axis=0) q_tp1 -= model.alpha * log_pis_tp1 # Actually selected Q-values (from the actions batch). one_hot = tf.one_hot( train_batch[SampleBatch.ACTIONS], depth=q_t.shape.as_list()[-1]) q_t_selected = tf.reduce_sum(q_t * one_hot, axis=-1) if policy.config["twin_q"]: twin_q_t_selected = tf.reduce_sum(twin_q_t * one_hot, axis=-1) # Discrete case: "Best" means weighted by the policy (prob) outputs. q_tp1_best = tf.reduce_sum(tf.multiply(policy_tp1, q_tp1), axis=-1) q_tp1_best_masked = \ (1.0 - tf.cast(train_batch[SampleBatch.DONES], tf.float32)) * \ q_tp1_best # Continuous actions case. else: # Sample simgle actions from distribution. action_dist_class = _get_dist_class(policy.config, policy.action_space) action_dist_t = action_dist_class( model.get_policy_output(model_out_t), policy.model) policy_t = action_dist_t.sample() if not deterministic else \ action_dist_t.deterministic_sample() log_pis_t = tf.expand_dims(action_dist_t.logp(policy_t), -1) action_dist_tp1 = action_dist_class( model.get_policy_output(model_out_tp1), policy.model) policy_tp1 = action_dist_tp1.sample() if not deterministic else \ action_dist_tp1.deterministic_sample() log_pis_tp1 = tf.expand_dims(action_dist_tp1.logp(policy_tp1), -1) # Q-values for the actually selected actions. q_t = model.get_q_values( model_out_t, tf.cast(train_batch[SampleBatch.ACTIONS], tf.float32)) if policy.config["twin_q"]: twin_q_t = model.get_twin_q_values( model_out_t, tf.cast(train_batch[SampleBatch.ACTIONS], tf.float32)) # Q-values for current policy in given current state. q_t_det_policy = model.get_q_values(model_out_t, policy_t) if policy.config["twin_q"]: twin_q_t_det_policy = model.get_twin_q_values( model_out_t, policy_t) q_t_det_policy = tf.reduce_min( (q_t_det_policy, twin_q_t_det_policy), axis=0) # target q network evaluation q_tp1 = policy.target_model.get_q_values(target_model_out_tp1, policy_tp1) if policy.config["twin_q"]: twin_q_tp1 = policy.target_model.get_twin_q_values( target_model_out_tp1, policy_tp1) # Take min over both twin-NNs. q_tp1 = tf.reduce_min((q_tp1, twin_q_tp1), axis=0) q_t_selected = tf.squeeze(q_t, axis=len(q_t.shape) - 1) if policy.config["twin_q"]: twin_q_t_selected = tf.squeeze(twin_q_t, axis=len(q_t.shape) - 1) q_tp1 -= model.alpha * log_pis_tp1 q_tp1_best = tf.squeeze(input=q_tp1, axis=len(q_tp1.shape) - 1) q_tp1_best_masked = (1.0 - tf.cast(train_batch[SampleBatch.DONES], tf.float32)) * q_tp1_best # Compute RHS of bellman equation for the Q-loss (critic(s)). q_t_selected_target = tf.stop_gradient( tf.cast(train_batch[SampleBatch.REWARDS], tf.float32) + policy.config["gamma"]**policy.config["n_step"] * q_tp1_best_masked) # Compute the TD-error (potentially clipped). base_td_error = tf.math.abs(q_t_selected - q_t_selected_target) if policy.config["twin_q"]: twin_td_error = tf.math.abs(twin_q_t_selected - q_t_selected_target) td_error = 0.5 * (base_td_error + twin_td_error) else: td_error = base_td_error # Calculate one or two critic losses (2 in the twin_q case). prio_weights = tf.cast(train_batch[PRIO_WEIGHTS], tf.float32) critic_loss = [tf.reduce_mean(prio_weights * huber_loss(base_td_error))] if policy.config["twin_q"]: critic_loss.append( tf.reduce_mean(prio_weights * huber_loss(twin_td_error))) # Alpha- and actor losses. # Note: In the papers, alpha is used directly, here we take the log. # Discrete case: Multiply the action probs as weights with the original # loss terms (no expectations needed). if model.discrete: alpha_loss = tf.reduce_mean( tf.reduce_sum( tf.multiply( tf.stop_gradient(policy_t), -model.log_alpha * tf.stop_gradient(log_pis_t + model.target_entropy)), axis=-1)) actor_loss = tf.reduce_mean( tf.reduce_sum( tf.multiply( # NOTE: No stop_grad around policy output here # (compare with q_t_det_policy for continuous case). policy_t, model.alpha * log_pis_t - tf.stop_gradient(q_t)), axis=-1)) else: alpha_loss = -tf.reduce_mean( model.log_alpha * tf.stop_gradient(log_pis_t + model.target_entropy)) actor_loss = tf.reduce_mean(model.alpha * log_pis_t - q_t_det_policy) # Save for stats function. policy.policy_t = policy_t policy.q_t = q_t policy.td_error = td_error policy.actor_loss = actor_loss policy.critic_loss = critic_loss policy.alpha_loss = alpha_loss policy.alpha_value = model.alpha policy.target_entropy = model.target_entropy # In a custom apply op we handle the losses separately, but return them # combined in one loss here. return actor_loss + tf.math.add_n(critic_loss) + alpha_loss
7,463
def deprecated(since, message='', name='', alternative='', pending=False, obj_type=None, warning_type=AstropyDeprecationWarning): """ Used to mark a function or class as deprecated. To mark an attribute as deprecated, use `deprecated_attribute`. Parameters ------------ since : str The release at which this API became deprecated. This is required. message : str, optional Override the default deprecation message. The format specifier ``func`` may be used for the name of the function, and ``alternative`` may be used in the deprecation message to insert the name of an alternative to the deprecated function. ``obj_type`` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated function or class; if not provided the name is automatically determined from the passed in function or class, though this is useful in the case of renamed functions, where the new function is just assigned to the name of the deprecated function. For example:: def new_function(): ... oldFunction = new_function alternative : str, optional An alternative function or class name that the user may use in place of the deprecated object. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a AstropyPendingDeprecationWarning instead of a AstropyDeprecationWarning. obj_type : str, optional The type of this object, if the automatically determined one needs to be overridden. warning_tyoe : warning Warning to be issued. Default is `~astropy.utils.exceptions.AstropyDeprecationWarning`. """ method_types = (classmethod, staticmethod, types.MethodType) def deprecate_doc(old_doc, message): """ Returns a given docstring with a deprecation message prepended to it. """ if not old_doc: old_doc = '' old_doc = textwrap.dedent(old_doc).strip('\n') new_doc = (('\n.. deprecated:: {since}' '\n {message}\n\n'.format( **{'since': since, 'message': message.strip()})) + old_doc) if not old_doc: # This is to prevent a spurious 'unexpected unindent' warning from # docutils when the original docstring was blank. new_doc += r'\ ' return new_doc def get_function(func): """ Given a function or classmethod (or other function wrapper type), get the function object. """ if isinstance(func, method_types): func = func.__func__ return func def deprecate_function(func, message, warning_type): """ Returns a wrapped function that displays ``warning_type`` when it is called. """ if isinstance(func, method_types): func_wrapper = type(func) else: func_wrapper = lambda f: f func = get_function(func) def deprecated_func(*args, **kwargs): if pending: category = AstropyPendingDeprecationWarning else: category = warning_type warnings.warn(message, category, stacklevel=2) return func(*args, **kwargs) # If this is an extension function, we can't call # functools.wraps on it, but we normally don't care. # This crazy way to get the type of a wrapper descriptor is # straight out of the Python 3.3 inspect module docs. if type(func) is not type(str.__dict__['__add__']): # nopep8 deprecated_func = functools.wraps(func)(deprecated_func) deprecated_func.__doc__ = deprecate_doc( deprecated_func.__doc__, message) return func_wrapper(deprecated_func) def deprecate_class(cls, message, warning_type): """ Update the docstring and wrap the ``__init__`` in-place (or ``__new__`` if the class or any of the bases overrides ``__new__``) so it will give a deprecation warning when an instance is created. This won't work for extension classes because these can't be modified in-place and the alternatives don't work in the general case: - Using a new class that looks and behaves like the original doesn't work because the __new__ method of extension types usually makes sure that it's the same class or a subclass. - Subclassing the class and return the subclass can lead to problems with pickle and will look weird in the Sphinx docs. """ cls.__doc__ = deprecate_doc(cls.__doc__, message) if cls.__new__ is object.__new__: cls.__init__ = deprecate_function(get_function(cls.__init__), message, warning_type) else: cls.__new__ = deprecate_function(get_function(cls.__new__), message, warning_type) return cls def deprecate(obj, message=message, name=name, alternative=alternative, pending=pending, warning_type=warning_type): if obj_type is None: if isinstance(obj, type): obj_type_name = 'class' elif inspect.isfunction(obj): obj_type_name = 'function' elif inspect.ismethod(obj) or isinstance(obj, method_types): obj_type_name = 'method' else: obj_type_name = 'object' else: obj_type_name = obj_type if not name: name = get_function(obj).__name__ altmessage = '' if not message or type(message) is type(deprecate): if pending: message = ('The {func} {obj_type} will be deprecated in a ' 'future version.') else: message = ('The {func} {obj_type} is deprecated and may ' 'be removed in a future version.') if alternative: altmessage = '\n Use {} instead.'.format(alternative) message = ((message.format(**{ 'func': name, 'name': name, 'alternative': alternative, 'obj_type': obj_type_name})) + altmessage) if isinstance(obj, type): return deprecate_class(obj, message, warning_type) else: return deprecate_function(obj, message, warning_type) if type(message) is type(deprecate): return deprecate(message) return deprecate
def deprecated(since, message='', name='', alternative='', pending=False, obj_type=None, warning_type=AstropyDeprecationWarning): """ Used to mark a function or class as deprecated. To mark an attribute as deprecated, use `deprecated_attribute`. Parameters ------------ since : str The release at which this API became deprecated. This is required. message : str, optional Override the default deprecation message. The format specifier ``func`` may be used for the name of the function, and ``alternative`` may be used in the deprecation message to insert the name of an alternative to the deprecated function. ``obj_type`` may be used to insert a friendly name for the type of object being deprecated. name : str, optional The name of the deprecated function or class; if not provided the name is automatically determined from the passed in function or class, though this is useful in the case of renamed functions, where the new function is just assigned to the name of the deprecated function. For example:: def new_function(): ... oldFunction = new_function alternative : str, optional An alternative function or class name that the user may use in place of the deprecated object. The deprecation warning will tell the user about this alternative if provided. pending : bool, optional If True, uses a AstropyPendingDeprecationWarning instead of a AstropyDeprecationWarning. obj_type : str, optional The type of this object, if the automatically determined one needs to be overridden. warning_type : warning Warning to be issued. Default is `~astropy.utils.exceptions.AstropyDeprecationWarning`. """ method_types = (classmethod, staticmethod, types.MethodType) def deprecate_doc(old_doc, message): """ Returns a given docstring with a deprecation message prepended to it. """ if not old_doc: old_doc = '' old_doc = textwrap.dedent(old_doc).strip('\n') new_doc = (('\n.. deprecated:: {since}' '\n {message}\n\n'.format( **{'since': since, 'message': message.strip()})) + old_doc) if not old_doc: # This is to prevent a spurious 'unexpected unindent' warning from # docutils when the original docstring was blank. new_doc += r'\ ' return new_doc def get_function(func): """ Given a function or classmethod (or other function wrapper type), get the function object. """ if isinstance(func, method_types): func = func.__func__ return func def deprecate_function(func, message, warning_type): """ Returns a wrapped function that displays ``warning_type`` when it is called. """ if isinstance(func, method_types): func_wrapper = type(func) else: func_wrapper = lambda f: f func = get_function(func) def deprecated_func(*args, **kwargs): if pending: category = AstropyPendingDeprecationWarning else: category = warning_type warnings.warn(message, category, stacklevel=2) return func(*args, **kwargs) # If this is an extension function, we can't call # functools.wraps on it, but we normally don't care. # This crazy way to get the type of a wrapper descriptor is # straight out of the Python 3.3 inspect module docs. if type(func) is not type(str.__dict__['__add__']): # nopep8 deprecated_func = functools.wraps(func)(deprecated_func) deprecated_func.__doc__ = deprecate_doc( deprecated_func.__doc__, message) return func_wrapper(deprecated_func) def deprecate_class(cls, message, warning_type): """ Update the docstring and wrap the ``__init__`` in-place (or ``__new__`` if the class or any of the bases overrides ``__new__``) so it will give a deprecation warning when an instance is created. This won't work for extension classes because these can't be modified in-place and the alternatives don't work in the general case: - Using a new class that looks and behaves like the original doesn't work because the __new__ method of extension types usually makes sure that it's the same class or a subclass. - Subclassing the class and return the subclass can lead to problems with pickle and will look weird in the Sphinx docs. """ cls.__doc__ = deprecate_doc(cls.__doc__, message) if cls.__new__ is object.__new__: cls.__init__ = deprecate_function(get_function(cls.__init__), message, warning_type) else: cls.__new__ = deprecate_function(get_function(cls.__new__), message, warning_type) return cls def deprecate(obj, message=message, name=name, alternative=alternative, pending=pending, warning_type=warning_type): if obj_type is None: if isinstance(obj, type): obj_type_name = 'class' elif inspect.isfunction(obj): obj_type_name = 'function' elif inspect.ismethod(obj) or isinstance(obj, method_types): obj_type_name = 'method' else: obj_type_name = 'object' else: obj_type_name = obj_type if not name: name = get_function(obj).__name__ altmessage = '' if not message or type(message) is type(deprecate): if pending: message = ('The {func} {obj_type} will be deprecated in a ' 'future version.') else: message = ('The {func} {obj_type} is deprecated and may ' 'be removed in a future version.') if alternative: altmessage = '\n Use {} instead.'.format(alternative) message = ((message.format(**{ 'func': name, 'name': name, 'alternative': alternative, 'obj_type': obj_type_name})) + altmessage) if isinstance(obj, type): return deprecate_class(obj, message, warning_type) else: return deprecate_function(obj, message, warning_type) if type(message) is type(deprecate): return deprecate(message) return deprecate
54,349
def main(root_data, output_data): # Curate the contents of the dataset to keep only folders and sort them contents_ds = [subdir for subdir in os.listdir(root_data) if os.path.isdir(os.path.join(root_data, subdir))] contents_ds.sort() # Loop across contents of each subdirectory for subdir in contents_ds: # Define subject id sub_id = "sub-demoMouse" + subdir.split('_')[3] # Define sample id sample_id = subdir.split('_')[4] # Get the path of each subdirectory path_subdir = os.path.join(root_data, subdir) # Get the contents of each subdirectory contents_subdir = os.listdir(path_subdir) # Define final bids subject id sub_bids_full = sub_id + "_sample-" + sample_id # Loop across the contents of each subdirectory for file in contents_subdir: # Get the path of each file path_file_in = os.path.join(path_subdir, file) # Check if the filename corresponds to the one in the images dictionary if file in images: # Most files go into the subject's data folder path_sub_id_dir_out = os.path.join(output_data, sub_id, 'microscopy') # Define the output file path path_file_out = os.path.join(path_sub_id_dir_out, sub_bids_full + images[file]) # Check if the filename corresponds to the one in the derivatives dictionary elif file in der: # Derivatives go somewhere else path_sub_id_dir_out = os.path.join(output_data, 'derivatives', 'labels', sub_id, 'microscopy') # Define the output file path path_file_out = os.path.join(path_sub_id_dir_out, sub_bids_full + der[file]) else: # not a file we recognize continue # Create output subdirecotries and copy files to output os.makedirs(os.path.dirname(path_file_out), exist_ok=True) shutil.copyfile(path_file_in, path_file_out) # Generate subject list sub_list = sorted(d for d in os.listdir(output_data) if d.startswith("sub-")) # Now that everything is curated, fill in the metadata for sub_id in sub_list: create_json_sidecar(output_data, sub_id) # Create participants.tsv and samples.tsv with open(output_data + '/samples.tsv', 'w') as samples, \ open(output_data + '/participants.tsv', 'w') as participants: tsv_writer_samples = csv.writer(samples, delimiter='\t', lineterminator='\n') tsv_writer_samples.writerow(["sample_id", "participant_id", "sample_type"]) tsv_writer_participants = csv.writer(participants, delimiter='\t', lineterminator='\n') tsv_writer_participants.writerow(["participant_id", "species"]) for subject in sub_list: row_sub = [] row_sub.append(subject) row_sub.append('mus musculus') tsv_writer_participants.writerow(row_sub) subject_samples = sorted(glob.glob(os.path.join(output_data, subject, 'microscopy', '*.png'))) for file_sample in subject_samples: row_sub_samples = [] row_sub_samples.append(os.path.basename(file_sample).split('_')[1]) row_sub_samples.append(subject) row_sub_samples.append('tissue') tsv_writer_samples.writerow(row_sub_samples) # Create dataset_description.json dataset_description = {"Name": "data_axondeepseg_tem", "BIDSVersion": "1.7.0", "License": "MIT" } with open(output_data + '/dataset_description.json', 'w') as json_file: json.dump(dataset_description, json_file, indent=4) # Create dataset_description.json for derivatives/labels dataset_description_derivatives = {"Name": "data_axondeepseg_tem labels", "BIDSVersion": "1.7.0", "PipelineDescription": { "Name": "Axon and myelin manual segmentation labels" }} with open(output_data + '/derivatives/labels/dataset_description.json', 'w') as json_file: json.dump(dataset_description_derivatives, json_file, indent=4) # Create participants.json data_json = { "participant_id": { "Description": "Unique participant ID" }, "species": { "Description": "Binomial species name from the NCBI Taxonomy (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi)" } } with open(output_data + '/participants.json', 'w') as json_file: json.dump(data_json, json_file, indent=4) # Create samples.json data_json = { "sample_id": { "Description": "Sample ID" }, "participant_id": { "Description": "Participant ID from whom tissue samples have been acquired" }, "sample_type": { "Description": "Type of sample from ENCODE Biosample Type (https://www.encodeproject.org/profiles/biosample_type)" } } with open(output_data + '/samples.json', 'w') as json_file: json.dump(data_json, json_file, indent=4) # Create README with open(output_data + '/README', 'w') as readme_file: print(dedent("""\ - Generate on 2022-03-09 - Created for demo purposes"""), file=readme_file)
def main(root_data, output_data): # Curate the contents of the dataset to keep only folders and sort them contents_ds = [subdir for subdir in os.listdir(root_data) if os.path.isdir(os.path.join(root_data, subdir))] contents_ds.sort() # Loop across contents of each subdirectory for subdir in contents_ds: # Define subject id sub_id = "sub-demoMouse" + subdir.split('_')[3] # Define sample id sample_id = subdir.split('_')[4] # Get the path of each subdirectory path_subdir = os.path.join(root_data, subdir) # Get the contents of each subdirectory contents_subdir = os.listdir(path_subdir) # Define final bids subject id sub_bids_full = sub_id + "_sample-" + sample_id # Loop across the contents of each subdirectory for file in contents_subdir: # Get the path of each file path_file_in = os.path.join(path_subdir, file) # Check if the filename corresponds to the one in the images dictionary if file in images: # Most files go into the subject's data folder path_sub_id_dir_out = os.path.join(output_data, sub_id, 'microscopy') # Define the output file path path_file_out = os.path.join(path_sub_id_dir_out, sub_bids_full + images[file]) # Check if the filename corresponds to the one in the derivatives dictionary elif file in der: # Derivatives go somewhere else path_sub_id_dir_out = os.path.join(output_data, 'derivatives', 'labels', sub_id, 'microscopy') # Define the output file path path_file_out = os.path.join(path_sub_id_dir_out, sub_bids_full + der[file]) else: # not a file we recognize continue # Create output subdirecotries and copy files to output os.makedirs(os.path.dirname(path_file_out), exist_ok=True) shutil.copyfile(path_file_in, path_file_out) # Generate subject list sub_list = sorted(d for d in os.listdir(output_data) if d.startswith("sub-")) # Now that everything is curated, fill in the metadata for sub_id in sub_list: create_json_sidecar(output_data, sub_id) # Create participants.tsv and samples.tsv with open(output_data + '/samples.tsv', 'w') as samples, \ open(output_data + '/participants.tsv', 'w') as participants: tsv_writer_samples = csv.writer(samples, delimiter='\t', lineterminator='\n') tsv_writer_samples.writerow(["sample_id", "participant_id", "sample_type"]) tsv_writer_participants = csv.writer(participants, delimiter='\t', lineterminator='\n') tsv_writer_participants.writerow(["participant_id", "species"]) for subject in sub_list: row_sub = [] row_sub.append(subject) row_sub.append('mus musculus') tsv_writer_participants.writerow(row_sub) subject_samples = sorted(glob.glob(os.path.join(output_data, subject, 'microscopy', '*.png'))) for file_sample in subject_samples: row_sub_samples = [] row_sub_samples.append(os.path.basename(file_sample).split('_')[1]) row_sub_samples.append(subject) row_sub_samples.append('tissue') tsv_writer_samples.writerow(row_sub_samples) # Create dataset_description.json dataset_description = {"Name": "demo dataset", "BIDSVersion": "1.7.0" } with open(output_data + '/dataset_description.json', 'w') as json_file: json.dump(dataset_description, json_file, indent=4) # Create dataset_description.json for derivatives/labels dataset_description_derivatives = {"Name": "data_axondeepseg_tem labels", "BIDSVersion": "1.7.0", "PipelineDescription": { "Name": "Axon and myelin manual segmentation labels" }} with open(output_data + '/derivatives/labels/dataset_description.json', 'w') as json_file: json.dump(dataset_description_derivatives, json_file, indent=4) # Create participants.json data_json = { "participant_id": { "Description": "Unique participant ID" }, "species": { "Description": "Binomial species name from the NCBI Taxonomy (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi)" } } with open(output_data + '/participants.json', 'w') as json_file: json.dump(data_json, json_file, indent=4) # Create samples.json data_json = { "sample_id": { "Description": "Sample ID" }, "participant_id": { "Description": "Participant ID from whom tissue samples have been acquired" }, "sample_type": { "Description": "Type of sample from ENCODE Biosample Type (https://www.encodeproject.org/profiles/biosample_type)" } } with open(output_data + '/samples.json', 'w') as json_file: json.dump(data_json, json_file, indent=4) # Create README with open(output_data + '/README', 'w') as readme_file: print(dedent("""\ - Generate on 2022-03-09 - Created for demo purposes"""), file=readme_file)
7,630
def test_equal(): obstime = 'B1955' sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, obstime=obstime) sc2 = SkyCoord([1, 20]*u.deg, [3, 4]*u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert sc1[0] == sc2[0] # (numpy True not Python True) assert not (sc1[0] != sc2[0]) # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s) sc2 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 20]*u.km/u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert sc1[0] == sc2[0] assert not (sc1[0] != sc2[0])
def test_equal(): obstime = 'B1955' sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, obstime=obstime) sc2 = SkyCoord([1, 20]*u.deg, [3, 4]*u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert sc1[0] == sc2[0] assert not (sc1[0] != sc2[0]) # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s) sc2 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 20]*u.km/u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert sc1[0] == sc2[0] assert not (sc1[0] != sc2[0])
7,895
def _vectfit_xs(energy, ce_xs, mts, rtol=1e-3, atol=1e-5, orders=None, n_vf_iter=30, log=False, path_out=None, **kwargs): r"""Convert point-wise cross section to multipole data via Vector Fitting. Parameters ---------- energy : np.ndarray Energy array ce_xs : np.ndarray Point-wise cross sections to be fitted mts : Iterable of int Reaction list rtol : float, optional Relative error tolerance atol : float, optional Absolute error tolerance orders : Iterable of int, optional A list of orders (number of poles) to be searched n_vf_iter : int, optional Number of maximum VF iterations log : bool or int, optional Whether to print running logs path_out : str, optional Path to save the figures **kwargs Additional keyword arguments Returns ------- Tuple (poles, residues) """ # import vectfit package: https://github.com/liangjg/vectfit import vectfit as vf ne = energy.size nmt = len(mts) if ce_xs.shape != (nmt, ne): raise ValueError('Inconsistent cross section data.') # construct test data: interpolate xs with finer grids N_FINER = 10 ne_test = (ne-1)*N_FINER + 1 test_energy = np.interp(np.arange(ne_test), np.arange(ne_test, step=N_FINER), energy) test_energy[[0, -1]] = energy[[0, -1]] # avoid numerical issue test_xs_ref = np.zeros((nmt, ne_test)) for i in range(nmt): test_xs_ref[i] = np.interp(test_energy, energy, ce_xs[i]) if log: print("Energy: {:.3e} to {:.3e} eV ({} points)".format( energy[0], energy[-1], ne)) # inputs f = ce_xs * energy # sigma*E s = np.sqrt(energy) # sqrt(E) test_s = np.sqrt(test_energy) weight = 1.0/f # very small cross sections can lead to huge weights, which will harm the # fitting accuracy MIN_CROSS_SECTION = 1e-7 for i in range(nmt): if np.all(ce_xs[i]<=MIN_CROSS_SECTION): weight[i] = 1.0 elif np.any(ce_xs[i]<=MIN_CROSS_SECTION): weight[i, ce_xs[i]<=MIN_CROSS_SECTION] = \ max(weight[i, ce_xs[i]>MIN_CROSS_SECTION]) # detect peaks (resonances) and determine VF order search range peaks, _ = find_peaks(ce_xs[0]+ce_xs[1]) n_peaks = peaks.size if orders is not None: # make sure orders are even integers orders = list(set([int(i/2)*2 for i in orders if i>=2])) else: lowest_order = max(2, 2*n_peaks) highest_order = max(200, 4*n_peaks) orders = list(range(lowest_order, highest_order+1, 2)) if log: print("Found {} peaks".format(n_peaks)) print("Fitting orders from {} to {}".format(orders[0], orders[-1])) # perform VF with increasing orders found_ideal = False n_discarded = 0 # for accelation, number of discarded searches best_quality = best_ratio = -np.inf for i, order in enumerate(orders): if log: print("Order={}({}/{})".format(order, i, len(orders))) # initial guessed poles poles = np.linspace(s[0], s[-1], order//2) poles = poles + poles*0.01j poles = np.sort(np.append(poles, np.conj(poles))) found_better = False # fitting iteration for i_vf in range(n_vf_iter): if log >= DETAILED_LOGGING: print("VF iteration {}/{}".format(i_vf+1, n_vf_iter)) # call vf try: poles, residues, cf, f_fit, rms = vf.vectfit(f, s, poles, weight) except: break # convert real pole to conjugate pairs n_real_poles = 0 new_poles = [] for p in poles: p_r, p_i = np.real(p), np.imag(p) if (s[0] <= p_r <= s[-1]) and p_i == 0.: new_poles += [p_r+p_r*0.01j, p_r-p_r*0.01j] n_real_poles += 1 else: new_poles += [p] new_poles = np.array(new_poles) # re-calculate residues if poles changed if n_real_poles > 0: if log >= DETAILED_LOGGING: print(" # real poles: {}".format(n_real_poles)) new_poles, residues, cf, f_fit, rms = \ vf.vectfit(f, s, new_poles, weight, skip_pole=True) # assess the result on test grid test_xs = vf.evaluate(test_s, new_poles, residues) / test_energy abserr = np.abs(test_xs - test_xs_ref) relerr = abserr / test_xs_ref if np.any(np.isnan(abserr)): maxre, ratio, ratio2 = np.inf, -np.inf, -np.inf elif np.all(abserr <= atol): maxre, ratio, ratio2 = 0., 1., 1. else: maxre = np.max(relerr[abserr > atol]) ratio = np.sum((relerr<rtol) | (abserr<atol)) / relerr.size ratio2 = np.sum((relerr<10*rtol) | (abserr<atol)) / relerr.size quality = ratio + ratio2 - min(0.1*maxre, 1) - 0.001*new_poles.size if np.any(test_xs < -atol): quality = -np.inf if log >= DETAILED_LOGGING: print(" # poles: {}".format(new_poles.size)) print(" Max relative error: {:.3f}%".format(maxre*100)) print(" Satisfaction: {:.1f}%, {:.1f}%".format(ratio*100, ratio2*100)) print(" Quality: {:.2f}".format(quality)) if quality > best_quality: if log >= DETAILED_LOGGING: print(" Best by far!") found_better = True best_quality, best_ratio = quality, ratio best_poles, best_residues = new_poles, residues best_test_xs, best_relerr = test_xs, relerr if best_ratio >= 1.0: if log: print("Found ideal results. Stop!") found_ideal = True break else: if log >= DETAILED_LOGGING: print(" Discarded!") if found_ideal: break # acceleration if found_better: n_discarded = 0 else: if order > max(2*n_peaks, 50) and best_ratio > 0.7: n_discarded += 1 if n_discarded >= 10 or (n_discarded >= 5 and best_ratio > 0.9): if log >= DETAILED_LOGGING: print("Couldn't get better results. Stop!") break # merge conjugate poles real_idx = [] conj_idx = [] found_conj = False for i, p in enumerate(best_poles): if found_conj: found_conj = False continue if np.imag(p) == 0.: real_idx.append(i) else: if i < best_poles.size and np.conj(p) == best_poles[i+1]: found_conj = True conj_idx.append(i) else: raise RuntimeError("Complex poles are not conjugate!") if log: print("Found {} real poles and {} conjugate complex pairs.".format( len(real_idx), len(conj_idx))) mp_poles = best_poles[real_idx+conj_idx] mp_residues = np.concatenate((best_residues[:, real_idx], best_residues[:, conj_idx]*2), axis=1)/1j if log: print("Final number of poles: {}".format(mp_poles.size)) if path_out: import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt if not os.path.exists(path_out): os.makedirs(path_out) for i, mt in enumerate(mts): fig, ax1 = plt.subplots() lns1 = ax1.loglog(test_energy, test_xs_ref[i], 'g', label="ACE xs") lns2 = ax1.loglog(test_energy, best_test_xs[i], 'b', label="VF xs") ax2 = ax1.twinx() lns3 = ax2.loglog(test_energy, best_relerr[i], 'r', label="Relative error", alpha=0.5) lns = lns1 + lns2 + lns3 labels = [l.get_label() for l in lns] ax1.legend(lns, labels, loc='best') ax1.set_xlabel('energy (eV)') ax1.set_ylabel('cross section (b)', color='b') ax1.tick_params('y', colors='b') ax2.set_ylabel('relative error', color='r') ax2.tick_params('y', colors='r') plt.title("MT {} vectfitted with {} poles".format(mt, mp_poles.size)) fig.tight_layout() fig_file = os.path.join(path_out, "{:.0f}-{:.0f}_MT{}.png".format( energy[0], energy[-1], mt)) plt.savefig(fig_file) plt.close() if log: print("Saved figure: {}".format(fig_file)) return (mp_poles, mp_residues)
def _vectfit_xs(energy, ce_xs, mts, rtol=1e-3, atol=1e-5, orders=None, n_vf_iter=30, log=False, path_out=None, **kwargs): r"""Convert point-wise cross section to multipole data via Vector Fitting. Parameters ---------- energy : np.ndarray Energy array ce_xs : np.ndarray Point-wise cross sections to be fitted mts : Iterable of int Reaction list rtol : float, optional Relative error tolerance atol : float, optional Absolute error tolerance orders : Iterable of int, optional A list of orders (number of poles) to be searched n_vf_iter : int, optional Number of maximum VF iterations log : bool or int, optional Whether to print running logs path_out : str, optional Path to save the figures **kwargs Additional keyword arguments Returns ------- Tuple (poles, residues) """ # import vectfit package: https://github.com/liangjg/vectfit import vectfit as vf ne = energy.size nmt = len(mts) if ce_xs.shape != (nmt, ne): raise ValueError('Inconsistent cross section data.') # construct test data: interpolate xs with finer grids N_FINER = 10 ne_test = (ne-1)*N_FINER + 1 test_energy = np.interp(np.arange(ne_test), np.arange(ne_test, step=N_FINER), energy) test_energy[[0, -1]] = energy[[0, -1]] # avoid numerical issue test_xs_ref = np.zeros((nmt, ne_test)) for i in range(nmt): test_xs_ref[i] = np.interp(test_energy, energy, ce_xs[i]) if log: print("Energy: {:.3e} to {:.3e} eV ({} points)".format( energy[0], energy[-1], ne)) # inputs f = ce_xs * energy # sigma*E s = np.sqrt(energy) # sqrt(E) test_s = np.sqrt(test_energy) weight = 1.0/f # very small cross sections can lead to huge weights, which will harm the # fitting accuracy MIN_CROSS_SECTION = 1e-7 for i in range(nmt): if np.all(ce_xs[i]<=MIN_CROSS_SECTION): weight[i] = 1.0 elif np.any(ce_xs[i]<=MIN_CROSS_SECTION): weight[i, ce_xs[i]<=MIN_CROSS_SECTION] = \ max(weight[i, ce_xs[i]>MIN_CROSS_SECTION]) # detect peaks (resonances) and determine VF order search range peaks, _ = find_peaks(ce_xs[0]+ce_xs[1]) n_peaks = peaks.size if orders is not None: # make sure orders are even integers orders = list(set([int(i/2)*2 for i in orders if i >= 2])) else: lowest_order = max(2, 2*n_peaks) highest_order = max(200, 4*n_peaks) orders = list(range(lowest_order, highest_order+1, 2)) if log: print("Found {} peaks".format(n_peaks)) print("Fitting orders from {} to {}".format(orders[0], orders[-1])) # perform VF with increasing orders found_ideal = False n_discarded = 0 # for accelation, number of discarded searches best_quality = best_ratio = -np.inf for i, order in enumerate(orders): if log: print("Order={}({}/{})".format(order, i, len(orders))) # initial guessed poles poles = np.linspace(s[0], s[-1], order//2) poles = poles + poles*0.01j poles = np.sort(np.append(poles, np.conj(poles))) found_better = False # fitting iteration for i_vf in range(n_vf_iter): if log >= DETAILED_LOGGING: print("VF iteration {}/{}".format(i_vf+1, n_vf_iter)) # call vf try: poles, residues, cf, f_fit, rms = vf.vectfit(f, s, poles, weight) except: break # convert real pole to conjugate pairs n_real_poles = 0 new_poles = [] for p in poles: p_r, p_i = np.real(p), np.imag(p) if (s[0] <= p_r <= s[-1]) and p_i == 0.: new_poles += [p_r+p_r*0.01j, p_r-p_r*0.01j] n_real_poles += 1 else: new_poles += [p] new_poles = np.array(new_poles) # re-calculate residues if poles changed if n_real_poles > 0: if log >= DETAILED_LOGGING: print(" # real poles: {}".format(n_real_poles)) new_poles, residues, cf, f_fit, rms = \ vf.vectfit(f, s, new_poles, weight, skip_pole=True) # assess the result on test grid test_xs = vf.evaluate(test_s, new_poles, residues) / test_energy abserr = np.abs(test_xs - test_xs_ref) relerr = abserr / test_xs_ref if np.any(np.isnan(abserr)): maxre, ratio, ratio2 = np.inf, -np.inf, -np.inf elif np.all(abserr <= atol): maxre, ratio, ratio2 = 0., 1., 1. else: maxre = np.max(relerr[abserr > atol]) ratio = np.sum((relerr<rtol) | (abserr<atol)) / relerr.size ratio2 = np.sum((relerr<10*rtol) | (abserr<atol)) / relerr.size quality = ratio + ratio2 - min(0.1*maxre, 1) - 0.001*new_poles.size if np.any(test_xs < -atol): quality = -np.inf if log >= DETAILED_LOGGING: print(" # poles: {}".format(new_poles.size)) print(" Max relative error: {:.3f}%".format(maxre*100)) print(" Satisfaction: {:.1f}%, {:.1f}%".format(ratio*100, ratio2*100)) print(" Quality: {:.2f}".format(quality)) if quality > best_quality: if log >= DETAILED_LOGGING: print(" Best by far!") found_better = True best_quality, best_ratio = quality, ratio best_poles, best_residues = new_poles, residues best_test_xs, best_relerr = test_xs, relerr if best_ratio >= 1.0: if log: print("Found ideal results. Stop!") found_ideal = True break else: if log >= DETAILED_LOGGING: print(" Discarded!") if found_ideal: break # acceleration if found_better: n_discarded = 0 else: if order > max(2*n_peaks, 50) and best_ratio > 0.7: n_discarded += 1 if n_discarded >= 10 or (n_discarded >= 5 and best_ratio > 0.9): if log >= DETAILED_LOGGING: print("Couldn't get better results. Stop!") break # merge conjugate poles real_idx = [] conj_idx = [] found_conj = False for i, p in enumerate(best_poles): if found_conj: found_conj = False continue if np.imag(p) == 0.: real_idx.append(i) else: if i < best_poles.size and np.conj(p) == best_poles[i+1]: found_conj = True conj_idx.append(i) else: raise RuntimeError("Complex poles are not conjugate!") if log: print("Found {} real poles and {} conjugate complex pairs.".format( len(real_idx), len(conj_idx))) mp_poles = best_poles[real_idx+conj_idx] mp_residues = np.concatenate((best_residues[:, real_idx], best_residues[:, conj_idx]*2), axis=1)/1j if log: print("Final number of poles: {}".format(mp_poles.size)) if path_out: import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt if not os.path.exists(path_out): os.makedirs(path_out) for i, mt in enumerate(mts): fig, ax1 = plt.subplots() lns1 = ax1.loglog(test_energy, test_xs_ref[i], 'g', label="ACE xs") lns2 = ax1.loglog(test_energy, best_test_xs[i], 'b', label="VF xs") ax2 = ax1.twinx() lns3 = ax2.loglog(test_energy, best_relerr[i], 'r', label="Relative error", alpha=0.5) lns = lns1 + lns2 + lns3 labels = [l.get_label() for l in lns] ax1.legend(lns, labels, loc='best') ax1.set_xlabel('energy (eV)') ax1.set_ylabel('cross section (b)', color='b') ax1.tick_params('y', colors='b') ax2.set_ylabel('relative error', color='r') ax2.tick_params('y', colors='r') plt.title("MT {} vectfitted with {} poles".format(mt, mp_poles.size)) fig.tight_layout() fig_file = os.path.join(path_out, "{:.0f}-{:.0f}_MT{}.png".format( energy[0], energy[-1], mt)) plt.savefig(fig_file) plt.close() if log: print("Saved figure: {}".format(fig_file)) return (mp_poles, mp_residues)
31,032
def test(): """ Test Function to test validity of access and refresh tokens""" report_json, status_code = get_dlp_report('1') if status_code in [200, 204]: return_results("ok") else: raise Exception("Integration test failed: Unexpected status ({})".format(status_code))
def test(): """ Test Function to test validity of access and refresh tokens""" report_json, status_code = get_dlp_report('1') if status_code in [200, 204]: return_results("ok") else: raise DemistoException("Integration test failed: Unexpected status ({})".format(status_code))
31,934
def fetch_notables(service, cache_object=None, enrich_notables=False): last_run_data = demisto.getLastRun() if not last_run_data: extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease first run') last_run_time = last_run_data and 'time' in last_run_data and last_run_data['time'] extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease last run is:\n {}'.format(last_run_data)) dem_params = demisto.params() occurred_look_behind = int(dem_params.get('occurrence_look_behind', 15) or 15) extensive_log('[SplunkPyPreRelease] occurrence look behind is: {}'.format(occurred_look_behind)) occured_start_time, now = get_fetch_start_times(dem_params, service, last_run_time, occurred_look_behind) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease last run time: {}, now: {}'.format(last_run_time, now)) default_batch_size = int(dem_params.get('batch_size', 200)) batch_size = last_run_data.get('batch_size') or default_batch_size extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease batch size is : {}'.format(batch_size)) kwargs_oneshot = build_fetch_kwargs(dem_params, batch_size, occured_start_time, now) fetch_query = build_fetch_query(dem_params) oneshotsearch_results = service.jobs.oneshot(fetch_query, **kwargs_oneshot) # type: ignore reader = results.ResultsReader(oneshotsearch_results) last_run_fetched_ids = last_run_data.get('found_incidents_ids', {}) incidents = [] # type: List[Dict] notables = [] incident_ids_to_add = {} for item in reader: if len(incidents) >= FETCH_LIMIT: break extensive_log('[SplunkPyPreRelease] Incident data before parsing to notable: {}'.format(item)) notable_incident = Notable(data=item) inc = notable_incident.to_incident() extensive_log('[SplunkPyPreRelease] Incident data after parsing to notable: {}'.format(inc)) incident_id = create_incident_custom_id(inc) if incident_id not in last_run_fetched_ids: incident_ids_to_add[incident_id] = splunk_time_to_datetime(inc["occurred"]).strftime(SPLUNK_TIME_FORMAT) # Save the occurrence time of each event in datetime format incidents.append(inc) notables.append(notable_incident) else: extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - Dropped incident {} due to duplication.'.format(incident_id)) extensive_log('[SplunkPyPreRelease] Size of last_run_fetched_ids before adding new IDs: {}'.format(len(last_run_fetched_ids))) for incident_id in incident_ids_to_add: last_run_fetched_ids[incident_id] = incident_ids_to_add[incident_id] # Adding the new incidents with the occurrence time. extensive_log( '[SplunkPyPreRelease] Size of last_run_fetched_ids after adding new IDs: {}'.format(len(last_run_fetched_ids))) last_run_fetched_ids = remove_old_incident_ids(last_run_fetched_ids, occured_start_time) extensive_log('[SplunkPyPreRelease] Size of last_run_fetched_ids after ' 'removing old IDs: {}'.format(len(last_run_fetched_ids))) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - incidents fetched on last run = {}'.format(last_run_fetched_ids)) debug_message = 'SplunkPyPreRelease - total number of incidents found: from {}\n to {}\n with the ' \ 'query: {} is: {}.'.format(last_run_time, now, fetch_query, len(incidents)) extensive_log(debug_message) if not enrich_notables: demisto.incidents(incidents) else: cache_object.not_yet_submitted_notables += notables if DUMMY not in last_run_data: # we add dummy data to the last run to differentiate between the fetch-incidents triggered to the # fetch-incidents running as part of "Pull from instance" in Classification & Mapping, as we don't # want to add data to the integration context (which will ruin the logic of the cache object) last_run_data.update({DUMMY: DUMMY}) if len(incidents) == 0: next_run = get_next_start_time(last_run_time, now, False) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - Next run time with no incidents found: {}.'.format(next_run)) new_last_run = { 'time': next_run, 'found_incidents_ids': last_run_fetched_ids, } else: if len(last_run_fetched_ids) + FETCH_LIMIT >= batch_size: # If we almost saw all the events return from the query, we should increase the batch size to reach # the new events. batch_size += default_batch_size latest_incident_fetched_time = get_latest_incident_time(incidents) next_run = get_next_start_time(latest_incident_fetched_time, now, were_new_incidents_found=True) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - ' 'Next run time with too many incidents: {}. Batch size: {}'.format(next_run, batch_size)) new_last_run = { 'time': next_run, 'found_incidents_ids': last_run_fetched_ids, 'batch_size': batch_size } last_run_data.update(new_last_run) demisto.setLastRun(last_run_data)
def fetch_notables(service, cache_object=None, enrich_notables=False): last_run_data = demisto.getLastRun() if not last_run_data: extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease first run') last_run_time = last_run_data and 'time' in last_run_data and last_run_data['time'] extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease last run is:\n {}'.format(last_run_data)) dem_params = demisto.params() occurred_look_behind = int(dem_params.get('occurrence_look_behind', 15) or 15) extensive_log('[SplunkPyPreRelease] occurrence look behind is: {}'.format(occurred_look_behind)) occured_start_time, now = get_fetch_start_times(dem_params, service, last_run_time, occurred_look_behind) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease last run time: {}, now: {}'.format(last_run_time, now)) default_batch_size = int(dem_params.get('batch_size', 200)) batch_size = last_run_data.get('batch_size') or default_batch_size extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease batch size is : {}'.format(batch_size)) kwargs_oneshot = build_fetch_kwargs(dem_params, batch_size, occured_start_time, now) fetch_query = build_fetch_query(dem_params) oneshotsearch_results = service.jobs.oneshot(fetch_query, **kwargs_oneshot) # type: ignore reader = results.ResultsReader(oneshotsearch_results) last_run_fetched_ids = last_run_data.get('found_incidents_ids', {}) incidents = [] # type: List[Dict] notables = [] incident_ids_to_add = {} for item in reader: if len(incidents) == FETCH_LIMIT: break extensive_log('[SplunkPyPreRelease] Incident data before parsing to notable: {}'.format(item)) notable_incident = Notable(data=item) inc = notable_incident.to_incident() extensive_log('[SplunkPyPreRelease] Incident data after parsing to notable: {}'.format(inc)) incident_id = create_incident_custom_id(inc) if incident_id not in last_run_fetched_ids: incident_ids_to_add[incident_id] = splunk_time_to_datetime(inc["occurred"]).strftime(SPLUNK_TIME_FORMAT) # Save the occurrence time of each event in datetime format incidents.append(inc) notables.append(notable_incident) else: extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - Dropped incident {} due to duplication.'.format(incident_id)) extensive_log('[SplunkPyPreRelease] Size of last_run_fetched_ids before adding new IDs: {}'.format(len(last_run_fetched_ids))) for incident_id in incident_ids_to_add: last_run_fetched_ids[incident_id] = incident_ids_to_add[incident_id] # Adding the new incidents with the occurrence time. extensive_log( '[SplunkPyPreRelease] Size of last_run_fetched_ids after adding new IDs: {}'.format(len(last_run_fetched_ids))) last_run_fetched_ids = remove_old_incident_ids(last_run_fetched_ids, occured_start_time) extensive_log('[SplunkPyPreRelease] Size of last_run_fetched_ids after ' 'removing old IDs: {}'.format(len(last_run_fetched_ids))) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - incidents fetched on last run = {}'.format(last_run_fetched_ids)) debug_message = 'SplunkPyPreRelease - total number of incidents found: from {}\n to {}\n with the ' \ 'query: {} is: {}.'.format(last_run_time, now, fetch_query, len(incidents)) extensive_log(debug_message) if not enrich_notables: demisto.incidents(incidents) else: cache_object.not_yet_submitted_notables += notables if DUMMY not in last_run_data: # we add dummy data to the last run to differentiate between the fetch-incidents triggered to the # fetch-incidents running as part of "Pull from instance" in Classification & Mapping, as we don't # want to add data to the integration context (which will ruin the logic of the cache object) last_run_data.update({DUMMY: DUMMY}) if len(incidents) == 0: next_run = get_next_start_time(last_run_time, now, False) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - Next run time with no incidents found: {}.'.format(next_run)) new_last_run = { 'time': next_run, 'found_incidents_ids': last_run_fetched_ids, } else: if len(last_run_fetched_ids) + FETCH_LIMIT >= batch_size: # If we almost saw all the events return from the query, we should increase the batch size to reach # the new events. batch_size += default_batch_size latest_incident_fetched_time = get_latest_incident_time(incidents) next_run = get_next_start_time(latest_incident_fetched_time, now, were_new_incidents_found=True) extensive_log('[SplunkPyPreRelease] SplunkPyPreRelease - ' 'Next run time with too many incidents: {}. Batch size: {}'.format(next_run, batch_size)) new_last_run = { 'time': next_run, 'found_incidents_ids': last_run_fetched_ids, 'batch_size': batch_size } last_run_data.update(new_last_run) demisto.setLastRun(last_run_data)
5,825
def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True, alternative="two-sided"): r""" T-test for means of two independent samples from descriptive statistics. This is a test for the null hypothesis that two independent samples have identical average (expected) values. Parameters ---------- mean1 : array_like The mean(s) of sample 1. std1 : array_like The unbiased estimate of the standard deviation(s) of sample 1 (i.e. `ddof=1`). nobs1 : array_like The number(s) of observations of sample 1. mean2 : array_like The mean(s) of sample 2. std2 : array_like The unbiased estimate of the standard deviations(s) of sample 2 (i.e. `ddof=1`). nobs2 : array_like The number(s) of observations of sample 2. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided': the means of the distributions are unequal. * 'less': the mean of the first distribution is less than the mean of the second distribution. * 'greater': the mean of the first distribution is greater than the mean of the second distribution. .. versionadded:: 1.6.0 Returns ------- statistic : float or array The calculated t-statistics. pvalue : float or array The two-tailed p-value. See Also -------- scipy.stats.ttest_ind Notes ----- The statistic is calculated as ``(mean1 - mean2)/se``, where ``se`` is the standard error. Therefore, the statistic will be positive when `mean1` is greater than `mean2` and negative when `mean1` is less than `mean2`. References ---------- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test Examples -------- Suppose we have the summary data for two samples, as follows (with the Samples Variance being the unbiased estimate):: Sample Sample Size Mean Variance Sample 1 13 15.0 87.5 Sample 2 11 12.0 39.0 Apply the t-test to this data (with the assumption that the population variances are equal): >>> from scipy.stats import ttest_ind_from_stats >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13, ... mean2=12.0, std2=np.sqrt(39.0), nobs2=11) Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487) For comparison, here is the data from which those summary statistics were taken. With this data, we can compute the same result using `scipy.stats.ttest_ind`: >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26]) >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21]) >>> from scipy.stats import ttest_ind >>> ttest_ind(a, b) Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486) Suppose we instead have binary data and would like to apply a t-test to compare the proportion of 1s in two independent groups:: Number of Sample Sample Size ones Mean Variance Sample 1 150 30 0.2 0.16 Sample 2 200 45 0.225 0.174375 The sample mean :math:`\hat{p}` is the proportion of ones in the sample and the variance for a binary observation is estimated by :math:`\hat{p}(1-\hat{p})`. >>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150, ... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200) Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874) For comparison, we could compute the t statistic and p-value using arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above. >>> group1 = np.array([1]*30 + [0]*(150-30)) >>> group2 = np.array([1]*45 + [0]*(200-45)) >>> ttest_ind(group1, group2) Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258) """ mean1 = np.asarray(mean1) std1 = np.asarray(std1) mean2 = np.asarray(mean2) std2 = np.asarray(std2) if equal_var: df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) else: df, denom = _unequal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) res = _ttest_ind_from_stats(mean1, mean2, denom, df, alternative) return Ttest_indResult(*res)
def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True, alternative="two-sided"): r""" T-test for means of two independent samples from descriptive statistics. This is a test for the null hypothesis that two independent samples have identical average (expected) values. Parameters ---------- mean1 : array_like The mean(s) of sample 1. std1 : array_like The unbiased estimate of the standard deviation(s) of sample 1 (i.e. `ddof=1`). nobs1 : array_like The number(s) of observations of sample 1. mean2 : array_like The mean(s) of sample 2. std2 : array_like The unbiased estimate of the standard deviations(s) of sample 2 (i.e. `ddof=1`). nobs2 : array_like The number(s) of observations of sample 2. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided': the means of the distributions are unequal. * 'less': the mean of the first distribution is less than the mean of the second distribution. * 'greater': the mean of the first distribution is greater than the mean of the second distribution. .. versionadded:: 1.6.0 Returns ------- statistic : float or array The calculated t-statistics. pvalue : float or array The two-tailed p-value. See Also -------- scipy.stats.ttest_ind Notes ----- The statistic is calculated as ``(mean1 - mean2)/se``, where ``se`` is the standard error. Therefore, the statistic will be positive when `mean1` is greater than `mean2` and negative when `mean1` is less than `mean2`. References ---------- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test Examples -------- Suppose we have the summary data for two samples, as follows (with the Sample Variance being the unbiased estimate):: Sample Sample Size Mean Variance Sample 1 13 15.0 87.5 Sample 2 11 12.0 39.0 Apply the t-test to this data (with the assumption that the population variances are equal): >>> from scipy.stats import ttest_ind_from_stats >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13, ... mean2=12.0, std2=np.sqrt(39.0), nobs2=11) Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487) For comparison, here is the data from which those summary statistics were taken. With this data, we can compute the same result using `scipy.stats.ttest_ind`: >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26]) >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21]) >>> from scipy.stats import ttest_ind >>> ttest_ind(a, b) Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486) Suppose we instead have binary data and would like to apply a t-test to compare the proportion of 1s in two independent groups:: Number of Sample Sample Size ones Mean Variance Sample 1 150 30 0.2 0.16 Sample 2 200 45 0.225 0.174375 The sample mean :math:`\hat{p}` is the proportion of ones in the sample and the variance for a binary observation is estimated by :math:`\hat{p}(1-\hat{p})`. >>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150, ... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200) Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874) For comparison, we could compute the t statistic and p-value using arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above. >>> group1 = np.array([1]*30 + [0]*(150-30)) >>> group2 = np.array([1]*45 + [0]*(200-45)) >>> ttest_ind(group1, group2) Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258) """ mean1 = np.asarray(mean1) std1 = np.asarray(std1) mean2 = np.asarray(mean2) std2 = np.asarray(std2) if equal_var: df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) else: df, denom = _unequal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) res = _ttest_ind_from_stats(mean1, mean2, denom, df, alternative) return Ttest_indResult(*res)
20,179
def request_is_admin() -> bool: if current_user.is_anonymous: return False if 'me' in request.path or current_user.sysadmin: return True return False
def request_is_admin_or_self() -> bool: if current_user.is_anonymous: return False if 'me' in request.path or current_user.sysadmin: return True return False
910
def step_response(system, **kwargs): r""" Return the unit step response of a continuous-time system. """ x = Symbol("x") expr = system.to_expr()/(system.var) y = inverse_laplace_transform(expr, system.var, x) return plot(y, (x, 0, 6), show=True, title="Unit Step Response", \ xlabel="Time (Seconds)", ylabel="Amplitude")
def step_response(system, **kwargs): r""" Return the unit step response of a continuous-time system. """ x = Symbol("x") expr = system.to_expr()/(system.var) y = inverse_laplace_transform(expr, system.var, x) return plot(y, (x, 0, 6), show=True, title="Unit Step Response", \ xlabel="Time (s)", ylabel="Amplitude")
880
def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. Explanation =========== For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Paramters ========= ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. Examples ======== >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) eq = _sympify(eq) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param, permute=permute)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name] permute_signs_check = [ HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, BinaryQuadratic.name] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): fl = factor_list(eq) if fl[0].is_Rational and fl[0] != 1: return diophantine(eq/fl[0], param=param, syms=syms, permute=permute) terms = fl[1] sols = set([]) for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ Linear.name, HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, GeneralPythagorean.name]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ BinaryQuadratic.name, GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name, Univariate.name]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set([]) for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln
def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. Explanation =========== For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Parameters ========= ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. Examples ======== >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) eq = _sympify(eq) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param, permute=permute)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name] permute_signs_check = [ HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, BinaryQuadratic.name] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): fl = factor_list(eq) if fl[0].is_Rational and fl[0] != 1: return diophantine(eq/fl[0], param=param, syms=syms, permute=permute) terms = fl[1] sols = set([]) for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ Linear.name, HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, GeneralPythagorean.name]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ BinaryQuadratic.name, GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name, Univariate.name]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set([]) for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln
46,376
def configure_buildah_container(container_name, working_dir=None, env_vars=None, labels=None, annotations=None, user=None, cmd=None, entrypoint=None, ports=None, volumes=None, debug=False): """ apply metadata on the container so they get inherited in an image :param container_name: name of the container to work in :param working_dir: str, path to a working directory within container image :param labels: dict with labels :param annotations: dict with annotations :param env_vars: dict with env vars :param cmd: str, command to run by default in the container :param entrypoint: str, entrypoint script to configure for the container :param user: str, username or uid; the container gets invoked with this user by default :param ports: list of str, ports to expose from container by default :param volumes: list of str; paths within the container which has data stored outside of the container :param debug: bool, make buildah print debug info """ config_args = [] if working_dir: config_args += ["--workingdir", working_dir] if env_vars: for k, v in env_vars.items(): config_args += ["-e", "%s=%s" % (k, v)] if labels: for k, v in labels.items(): config_args += ["-l", "%s=%s" % (k, v)] if annotations: for k, v in annotations.items(): config_args += ["--annotation", "%s=%s" % (k, v)] if user: if os.getuid() != 0: print("Setting user in rootless mode will create issues") if os.getuid() == 0: config_args += ["--user", user] if cmd: config_args += ["--cmd", cmd] if entrypoint: config_args += ["--entrypoint", entrypoint] if ports: for p in ports: config_args += ["-p", p] if volumes: for v in volumes: config_args += ["-v", v] if config_args: buildah("config", config_args + [container_name], debug=debug) return container_name
def configure_buildah_container(container_name, working_dir=None, env_vars=None, labels=None, annotations=None, user=None, cmd=None, entrypoint=None, ports=None, volumes=None, debug=False): """ apply metadata on the container so they get inherited in an image :param container_name: name of the container to work in :param working_dir: str, path to a working directory within container image :param labels: dict with labels :param annotations: dict with annotations :param env_vars: dict with env vars :param cmd: str, command to run by default in the container :param entrypoint: str, entrypoint script to configure for the container :param user: str, username or uid; the container gets invoked with this user by default :param ports: list of str, ports to expose from container by default :param volumes: list of str; paths within the container which has data stored outside of the container :param debug: bool, make buildah print debug info """ config_args = [] if working_dir: config_args += ["--workingdir", working_dir] if env_vars: for k, v in env_vars.items(): config_args += ["-e", "%s=%s" % (k, v)] if labels: for k, v in labels.items(): config_args += ["-l", "%s=%s" % (k, v)] if annotations: for k, v in annotations.items(): config_args += ["--annotation", "%s=%s" % (k, v)] if user: if os.getuid() != 0: print("Setting user in rootless mode will create issues") else: config_args += ["--user", user] if cmd: config_args += ["--cmd", cmd] if entrypoint: config_args += ["--entrypoint", entrypoint] if ports: for p in ports: config_args += ["-p", p] if volumes: for v in volumes: config_args += ["-v", v] if config_args: buildah("config", config_args + [container_name], debug=debug) return container_name
29,117
def _save_audio_file( raw_audio_file, filename, entity_type, entity_id, user_id): """Saves the given audio file in file system. Args: raw_audio_file: *. The raw audio data. filename: str. The filename of the audio. entity_type: str. The type of entity to which the audio belongs. entity_id: str. The id of the entity to which the audio belongs. user_id: str. The ID of the user saving the audio. Raises: Exception: If audio not supplied. Exception: If the filename extension is unsupported. """ allowed_formats = list(feconf.ACCEPTED_AUDIO_EXTENSIONS.keys()) if not raw_audio_file: raise Exception('No audio supplied') dot_index = filename.rfind('.') extension = filename[dot_index + 1:].lower() if dot_index == -1 or dot_index == 0: raise Exception( 'No filename extension: it should have ' 'one of the following extensions: %s' % allowed_formats) if extension not in feconf.ACCEPTED_AUDIO_EXTENSIONS: raise Exception( 'Invalid filename extension: it should have ' 'one of the following extensions: %s' % allowed_formats) tempbuffer = python_utils.string_io() tempbuffer.write(raw_audio_file) tempbuffer.seek(0) try: # For every accepted extension, use the mutagen-specific # constructor for that type. This will catch mismatched audio # types e.g. uploading a flac file with an MP3 extension. if extension == 'mp3': audio = mp3.MP3(tempbuffer) else: audio = mutagen.File(tempbuffer) except mutagen.MutagenError: # The calls to mp3.MP3() versus mutagen.File() seem to behave # differently upon not being able to interpret the audio. # mp3.MP3() raises a MutagenError whereas mutagen.File() # seems to return None. It's not clear if this is always # the case. Occasionally, mutagen.File() also seems to # raise a MutagenError. raise Exception('Audio not recognized as a %s file' % extension) tempbuffer.close() if audio is None: raise Exception('Audio not recognized as a %s file' % extension) if audio.info.length > feconf.MAX_AUDIO_FILE_LENGTH_SEC: raise Exception( 'Audio files must be under %s seconds in length. The uploaded ' 'file is %.2f seconds long.' % ( feconf.MAX_AUDIO_FILE_LENGTH_SEC, audio.info.length)) if len(set(audio.mime).intersection( set(feconf.ACCEPTED_AUDIO_EXTENSIONS[extension]))) == 0: raise Exception( 'Although the filename extension indicates the file ' 'is a %s file, it was not recognized as one. ' 'Found mime types: %s' % (extension, audio.mime)) mimetype = audio.mime[0] # For a strange, unknown reason, the audio variable must be # deleted before opening cloud storage. If not, cloud storage # throws a very mysterious error that entails a mutagen # object being recursively passed around in app engine. del audio # Audio files are stored to the datastore in the dev env, and to GCS # in production. file_system_class = fs_services.get_entity_file_system_class() fs = fs_domain.AbstractFileSystem(file_system_class(entity_type, entity_id)) fs.commit(user_id, 'audio/%s' % filename, raw_audio_file, mimetype=mimetype)
def _save_audio_file( raw_audio_file, filename, entity_type, entity_id, user_id): """Saves the given audio file in file system. Args: raw_audio_file: *. The raw audio data. filename: str. The filename of the audio. entity_type: str. The type of entity to which the audio belongs. entity_id: str. The id of the entity to which the audio belongs. user_id: str. The ID of the user saving the audio. Raises: Exception: If audio not supplied. Exception: If the filename extension is unsupported. """ allowed_formats = list(feconf.ACCEPTED_AUDIO_EXTENSIONS.keys()) if not raw_audio_file: raise Exception('No audio supplied') dot_index = filename.rfind('.') extension = filename[dot_index + 1:].lower() if dot_index == -1 or dot_index == 0: raise Exception( 'No filename extension provided. It should have ' 'one of the following extensions: %s' % allowed_formats) if extension not in feconf.ACCEPTED_AUDIO_EXTENSIONS: raise Exception( 'Invalid filename extension: it should have ' 'one of the following extensions: %s' % allowed_formats) tempbuffer = python_utils.string_io() tempbuffer.write(raw_audio_file) tempbuffer.seek(0) try: # For every accepted extension, use the mutagen-specific # constructor for that type. This will catch mismatched audio # types e.g. uploading a flac file with an MP3 extension. if extension == 'mp3': audio = mp3.MP3(tempbuffer) else: audio = mutagen.File(tempbuffer) except mutagen.MutagenError: # The calls to mp3.MP3() versus mutagen.File() seem to behave # differently upon not being able to interpret the audio. # mp3.MP3() raises a MutagenError whereas mutagen.File() # seems to return None. It's not clear if this is always # the case. Occasionally, mutagen.File() also seems to # raise a MutagenError. raise Exception('Audio not recognized as a %s file' % extension) tempbuffer.close() if audio is None: raise Exception('Audio not recognized as a %s file' % extension) if audio.info.length > feconf.MAX_AUDIO_FILE_LENGTH_SEC: raise Exception( 'Audio files must be under %s seconds in length. The uploaded ' 'file is %.2f seconds long.' % ( feconf.MAX_AUDIO_FILE_LENGTH_SEC, audio.info.length)) if len(set(audio.mime).intersection( set(feconf.ACCEPTED_AUDIO_EXTENSIONS[extension]))) == 0: raise Exception( 'Although the filename extension indicates the file ' 'is a %s file, it was not recognized as one. ' 'Found mime types: %s' % (extension, audio.mime)) mimetype = audio.mime[0] # For a strange, unknown reason, the audio variable must be # deleted before opening cloud storage. If not, cloud storage # throws a very mysterious error that entails a mutagen # object being recursively passed around in app engine. del audio # Audio files are stored to the datastore in the dev env, and to GCS # in production. file_system_class = fs_services.get_entity_file_system_class() fs = fs_domain.AbstractFileSystem(file_system_class(entity_type, entity_id)) fs.commit(user_id, 'audio/%s' % filename, raw_audio_file, mimetype=mimetype)
29,421
def load(obj, env=None, silent=None, key=None): """Reads and loads in to "settings" a single key or all keys from vault :param obj: the settings instance :param env: settings env default='DYNACONF' :param silent: if errors should raise :param key: if defined load a single key, else load all in env :return: None """ client = get_client(obj) try: if obj.VAULT_KV_VERSION_FOR_DYNACONF == 2: dirs = client.secrets.kv.v2.list_secrets( path=obj.VAULT_PATH_FOR_DYNACONF, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, )["data"]["keys"] else: dirs = client.secrets.kv.v1.list_secrets( path=obj.VAULT_PATH_FOR_DYNACONF, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, )["data"]["keys"] except InvalidPath: # The given path is not a directory dirs = [] # First look for secrets into environments less store if not obj.ENVIRONMENTS_FOR_DYNACONF: # By adding '', dynaconf will now read secrets from environments-less # store which are not written by `dynaconf write` to Vault store env_list = [obj.MAIN_ENV_FOR_DYNACONF.lower(), ""] # Finally, look for secret into all the environments else: env_list = dirs + build_env_list(obj, env) for env in env_list: path = "/".join([obj.VAULT_PATH_FOR_DYNACONF, env]) try: if obj.VAULT_KV_VERSION_FOR_DYNACONF == 2: data = client.secrets.kv.v2.read_secret_version( path, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF ) else: data = client.secrets.kv.read_secret( "data/" + path, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, ) except InvalidPath: # If the path doesn't exist, ignore it and set data to None data = None if data: # There seems to be a data dict within a data dict, # extract the inner data data = data.get("data", {}).get("data", {}) try: if data and key: value = parse_conf_data( data.get(key), tomlfy=True, box_settings=obj ) if value: obj.set(key, value) elif data: obj.update(data, loader_identifier=IDENTIFIER, tomlfy=True) except Exception: if silent: return False raise
def load(obj, env=None, silent=None, key=None): """Reads and loads in to "settings" a single key or all keys from vault :param obj: the settings instance :param env: settings env default='DYNACONF' :param silent: if errors should raise :param key: if defined load a single key, else load all in env :return: None """ client = get_client(obj) try: if obj.VAULT_KV_VERSION_FOR_DYNACONF == 2: dirs = client.secrets.kv.v2.list_secrets( path=obj.VAULT_PATH_FOR_DYNACONF, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, )["data"]["keys"] else: dirs = client.secrets.kv.v1.list_secrets( path=obj.VAULT_PATH_FOR_DYNACONF, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, )["data"]["keys"] except InvalidPath: # The given path is not a directory dirs = [] # First look for secrets into environments less store if not obj.ENVIRONMENTS_FOR_DYNACONF: # By adding '', dynaconf will now read secrets from environments-less # store which are not written by `dynaconf write` to Vault store env_list = [obj.MAIN_ENVIRONMENT_FOR_DYNACONF.lower(), ""] # Finally, look for secret into all the environments else: env_list = dirs + build_env_list(obj, env) for env in env_list: path = "/".join([obj.VAULT_PATH_FOR_DYNACONF, env]) try: if obj.VAULT_KV_VERSION_FOR_DYNACONF == 2: data = client.secrets.kv.v2.read_secret_version( path, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF ) else: data = client.secrets.kv.read_secret( "data/" + path, mount_point=obj.VAULT_MOUNT_POINT_FOR_DYNACONF, ) except InvalidPath: # If the path doesn't exist, ignore it and set data to None data = None if data: # There seems to be a data dict within a data dict, # extract the inner data data = data.get("data", {}).get("data", {}) try: if data and key: value = parse_conf_data( data.get(key), tomlfy=True, box_settings=obj ) if value: obj.set(key, value) elif data: obj.update(data, loader_identifier=IDENTIFIER, tomlfy=True) except Exception: if silent: return False raise
34,836
def _determine_model_name( fixed_model_name: Optional[Text], training_type: TrainingType ) -> Text: if fixed_model_name: model_file = Path(fixed_model_name) if not model_file.name.endswith(".tar.gz"): return model_file.with_suffix(".tar.gz").name return fixed_model_name prefix = "" if training_type in [TrainingType.CORE, TrainingType.NLU]: prefix = f"{training_type.model_type}-" time_format = "%Y%m%d-%H%M%S" return f"{prefix}{time.strftime(time_format)}_{randomname.get_name()}.tar.gz"
def _determine_model_name( fixed_model_name: Optional[Text], training_type: TrainingType ) -> Text: if fixed_model_name: model_file = Path(fixed_model_name) if not model_file.name.endswith(".tar.gz"): return model_file.with_suffix(".tar.gz").name return fixed_model_name prefix = "" if training_type in [TrainingType.CORE, TrainingType.NLU]: prefix = f"{training_type.model_type}-" time_format = "%Y%m%d-%H%M%S" return f"{prefix}{time.strftime(time_format)}-{randomname.get_name()}.tar.gz"
40,118
def create_meta_dict(fo: FileObject): ''' Creates a dictionary with some fields from fo ''' meta = {} _add_firmware_only_fields(fo, meta) _add_file_object_only_fields(fo, meta) _add_general_information(fo, meta) return meta
def create_meta_dict(fo: FileObject): ''' Creates a dictionary with the meta information contained in :class:`objects.file.FileObject` `fo` ''' meta = {} _add_firmware_only_fields(fo, meta) _add_file_object_only_fields(fo, meta) _add_general_information(fo, meta) return meta
53,887
def _get_valid_lonlats(vis: xr.DataArray) -> tuple[da.Array, da.Array]: lons, lats = vis.attrs['area'].get_lonlats(chunks=vis.data.chunks) lons = da.where(lons >= 1e30, np.nan, lons) lats = da.where(lats >= 1e30, np.nan, lats) return lons, lats
def _get_valid_lonlats(data_arr: xr.DataArray) -> tuple[da.Array, da.Array]: lons, lats = data_arr.attrs['area'].get_lonlats(chunks=data_arr.data.chunks) lons = da.where(lons >= 1e30, np.nan, lons) lats = da.where(lats >= 1e30, np.nan, lats) return lons, lats
954
def _solve_system(exprs, symbols, **flags): if not exprs: return False, [] if flags.pop('_split', True): # Split the system into connected components V = exprs symsset = set(symbols) exprsyms = {e: e.free_symbols & symsset for e in exprs} E = [] sym_indices = {sym: i for i, sym in enumerate(symbols)} for n, e1 in enumerate(exprs): for e2 in exprs[:n]: # Equations are connected if they share a symbol if exprsyms[e1] & exprsyms[e2]: E.append((e1, e2)) G = V, E subexprs = connected_components(G) if len(subexprs) > 1: subsols = [] linear = True for subexpr in subexprs: subsyms = set() for e in subexpr: subsyms |= exprsyms[e] subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x])) flags['_split'] = False # skip split step _linear, subsol = _solve_system(subexpr, subsyms, **flags) if linear: linear = linear and _linear if not isinstance(subsol, list): subsol = [subsol] subsols.append(subsol) # Full solution is cartesion product of subsystems sols = [] for soldicts in product(*subsols): sols.append(dict(item for sd in soldicts for item in sd.items())) return linear, sols polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [], None or list of tuples res = solve_poly_system(polys, *syms) if res: for r in set(res): skip = False for r1 in r: if got_s and any(ss in r1.free_symbols for ss in got_s): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.append([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in set(result)] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] # convert None or [] to [{}] result = result or [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = e.free_symbols & legal # Solve first for symbols that have lower degree in the equation. # Ideally we want to solve firstly for symbols that appear linearly # with rational coefficients e.g. if e = x*y + z then we should # solve for z first. def key(sym): ep = e.as_poly(sym) if ep is None: complexity = (S.Infinity, S.Infinity, S.Infinity) else: coeff_syms = ep.LC().free_symbols complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms)) return complexity + (default_sort_key(sym),) if sort: rv = sorted(rv, key=key) return rv legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _vsolve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s is being added in-place for sol in soln: if got_s and any(ss in sol.free_symbols for ss in got_s): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol # check that it is independent of previous solutions iset = set(rnew.items()) for i in newresult: if len(i) < len(iset) and not set(i.items()) - iset: # this is a superset of a known solution that # is smaller break else: # keep it newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) if not result: return False, [] # rely on linear system solvers to simplify default_simplify = bool(failed) or not linear if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] return linear, result
def _solve_system(exprs, symbols, **flags): if not exprs: return False, [] if flags.pop('_split', True): # Split the system into connected components V = exprs symsset = set(symbols) exprsyms = {e: e.free_symbols & symsset for e in exprs} E = [] sym_indices = {sym: i for i, sym in enumerate(symbols)} for n, e1 in enumerate(exprs): for e2 in exprs[:n]: # Equations are connected if they share a symbol if exprsyms[e1] & exprsyms[e2]: E.append((e1, e2)) G = V, E subexprs = connected_components(G) if len(subexprs) > 1: subsols = [] linear = True for subexpr in subexprs: subsyms = set() for e in subexpr: subsyms |= exprsyms[e] subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x])) flags['_split'] = False # skip split step _linear, subsol = _solve_system(subexpr, subsyms, **flags) if linear: linear = linear and _linear if not isinstance(subsol, list): subsol = [subsol] subsols.append(subsol) # Full solution is cartesion product of subsystems sols = [] for soldicts in product(*subsols): sols.append(dict(item for sd in soldicts for item in sd.items())) return linear, sols polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) result = [result] if result else [] if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [], None or list of tuples res = solve_poly_system(polys, *syms) if res: for r in set(res): skip = False for r1 in r: if got_s and any(ss in r1.free_symbols for ss in got_s): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.append([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in set(result)] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] # convert None or [] to [{}] result = result or [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = e.free_symbols & legal # Solve first for symbols that have lower degree in the equation. # Ideally we want to solve firstly for symbols that appear linearly # with rational coefficients e.g. if e = x*y + z then we should # solve for z first. def key(sym): ep = e.as_poly(sym) if ep is None: complexity = (S.Infinity, S.Infinity, S.Infinity) else: coeff_syms = ep.LC().free_symbols complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms)) return complexity + (default_sort_key(sym),) if sort: rv = sorted(rv, key=key) return rv legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _vsolve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s is being added in-place for sol in soln: if got_s and any(ss in sol.free_symbols for ss in got_s): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol # check that it is independent of previous solutions iset = set(rnew.items()) for i in newresult: if len(i) < len(iset) and not set(i.items()) - iset: # this is a superset of a known solution that # is smaller break else: # keep it newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) if not result: return False, [] # rely on linear system solvers to simplify default_simplify = bool(failed) or not linear if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] return linear, result
54,591
def runner_asserter(inp, ref_subject, method, basis, tnm, scramble, frame): qcprog = inp["call"] qc_module_in = inp["qc_module"] # returns "<qcprog>"|"<qcprog>-<module>" # input-specified routing qc_module_xptd = ( (qcprog + "-" + inp["xptd"]["qc_module"]) if inp.get("xptd", {}).get("qc_module", None) else None ) # expected routing driver = inp["driver"] reference = inp["reference"] fcae = inp["fcae"] if basis == "cfour-qz2p" and qcprog in ["gamess", "nwchem", "qchem"]: pytest.skip(f"basis {basis} not available in {qcprog} library") # <<< Molecule >>> # 1. ref mol: `ref_subject` nicely oriented mol taken from standard_suite_ref.py min_nonzero_coords = np.count_nonzero(np.abs(ref_subject.geometry) > 1.0e-10) if scramble is None: subject = ref_subject ref2in_mill = compute_scramble( len(subject.symbols), do_resort=False, do_shift=False, do_rotate=False, do_mirror=False ) # identity AlignmentMill else: subject, data = ref_subject.scramble(**scramble, do_test=False) ref2in_mill = data["mill"] # 2. input mol: `subject` now ready for `atin.molecule`. may have been scrambled away from nice ref orientation # <<< Reference Values >>> # ? precedence on these types -- not really applicable to qcng mp2_type = inp.get("corl_type", inp["keywords"].get("mp2_type", "df")) # hard-code of read_options.cc MP2_TYPE mp_type = inp.get("corl_type", inp["keywords"].get("mp_type", "conv")) # hard-code of read_options.cc MP_TYPE ci_type = inp.get("corl_type", inp["keywords"].get("ci_type", "conv")) # hard-code of read_options.cc CI_TYPE cc_type = inp.get("corl_type", inp["keywords"].get("cc_type", "conv")) # hard-code of read_options.cc CC_TYPE corl_natural_values = { "hf": "conv", # dummy to assure df/cd/conv scf_type refs available "mp2": mp2_type, "mp3": mp_type, "mp4(sdq)": mp_type, "mp4": mp_type, "cisd": ci_type, "qcisd": ci_type, "qcisd(t)": ci_type, "lccd": cc_type, "lccsd": cc_type, "ccd": cc_type, "ccsd": cc_type, "ccsd+t(ccsd)": cc_type, "ccsd(t)": cc_type, "a-ccsd(t)": cc_type, "ccsdt-1a": cc_type, "ccsdt-1b": cc_type, "ccsdt-2": cc_type, "ccsdt-3": cc_type, "ccsdt": cc_type, "ccsdt(q)": cc_type, "ccsdtq": cc_type, "pbe": "conv", "b3lyp": "conv", "b3lyp5": "conv", } corl_type = corl_natural_values[method] natural_ref = {"conv": "pk", "df": "df", "cd": "cd"} scf_type = inp["keywords"].get("scf_type", natural_ref[corl_type]) natural_values = {"pk": "pk", "direct": "pk", "df": "df", "mem_df": "df", "disk_df": "df", "cd": "cd"} scf_type = natural_values[scf_type] is_dft = method in ["pbe", "b3lyp", "b3lyp5"] atol_e, rtol_e = 2.0e-7, 1.0e-16 atol_g, rtol_g = 5.0e-7, 2.0e-5 atol_h, rtol_h = 1.0e-5, 2.0e-5 if is_dft: atol_g = 6.0e-6 chash = answer_hash( system=subject.name, basis=basis, fcae=fcae, scf_type=scf_type, reference=reference, corl_type=corl_type, ) ref_block = std_suite[chash] # check all calcs against conventional reference to looser tolerance atol_conv = 1.0e-4 rtol_conv = 1.0e-3 chash_conv = answer_hash( system=subject.name, basis=basis, fcae=fcae, reference=reference, corl_type="conv", scf_type="pk", ) ref_block_conv = std_suite[chash_conv] # <<< Prepare Calculation and Call API >>> atin = AtomicInput( **{ "molecule": subject, "driver": driver, "model": { "method": method, "basis": inp.get("basis", "(auto)"), }, "keywords": inp["keywords"], } ) local_options = {} # local_options = {"nnodes": 1, "ncores": 1} # debug if "error" in inp: errtype, errmatch, reason = inp["error"] with pytest.raises(errtype) as e: qcng.compute(atin, qcprog, raise_error=True, return_dict=True, local_options=local_options) assert re.search(errmatch, str(e.value)), f"Not found: {errtype} '{errmatch}' in {e.value}" # _recorder(qcprog, qc_module_in, driver, method, reference, fcae, scf_type, corl_type, "error", "nyi: " + reason) return wfn = qcng.compute(atin, qcprog, raise_error=True, local_options=local_options) print("WFN") pp.pprint(wfn.dict()) qc_module_out = wfn.provenance.creator.lower() if hasattr(wfn.provenance, "module"): qc_module_out += "-" + wfn.provenance.module # returns "<qcprog>-<module>" # assert 0, f"{qc_module_xptd=} {qc_module_in=} {qc_module_out=}" # debug # 3. output mol: `wfn.molecule` after calc. orientation for nonscalar quantities may be different from `subject` if fix_=False _, data = ref_subject.align(wfn.molecule, atoms_map=False, mols_align=True, verbose=0) ref2out_mill = data["mill"] if subject.fix_com and subject.fix_orientation: with np.printoptions(precision=3, suppress=True): assert compare_values( subject.geometry, wfn.molecule.geometry, atol=5.0e-8 ), f"coords: atres ({wfn.molecule.geometry}) != atin ({subject.geometry})" # 10 too much assert ( ref_subject.fix_com and ref_subject.fix_orientation and subject.fix_com and subject.fix_orientation and wfn.molecule.fix_com and wfn.molecule.fix_orientation ), f"fixed, so all T: {ref_subject.fix_com} {ref_subject.fix_orientation} {subject.fix_com} {subject.fix_orientation} {wfn.molecule.fix_com} {wfn.molecule.fix_orientation}" ref_block = mill_qcvars(ref2in_mill, ref_block) ref_block_conv = mill_qcvars(ref2in_mill, ref_block_conv) else: # this check assumes the qcprog will adjust an ugly Cartesian geometry into a pretty one (with more symmetry for computational efficiency). # if qcprog doesn't have that behavior, it will need to be excused from this check. with np.printoptions(precision=3, suppress=True): assert compare( min_nonzero_coords, np.count_nonzero(np.abs(wfn.molecule.geometry) > 1.0e-10), tnm + " !0 coords wfn" ), f"count !0 coords {wfn.molecule.geometry} != {min_nonzero_coords}" assert ( (not ref_subject.fix_com) and (not ref_subject.fix_orientation) and (not subject.fix_com) and (not subject.fix_orientation) and (not wfn.molecule.fix_com) and (not wfn.molecule.fix_orientation) ), f"free, so all F: {ref_subject.fix_com} {ref_subject.fix_orientation} {subject.fix_com} {subject.fix_orientation} {wfn.molecule.fix_com} {wfn.molecule.fix_orientation}" ref_block = mill_qcvars(ref2out_mill, ref_block) ref_block_conv = mill_qcvars(ref2out_mill, ref_block_conv) # <<< Comparison Tests >>> assert wfn.success is True if qc_module_in != qcprog: assert qc_module_out == qc_module_in, f"QC_MODULE used ({qc_module_out}) != requested ({qc_module_in})" if qc_module_xptd: assert qc_module_out == qc_module_xptd, f"QC_MODULE used ({qc_module_out}) != expected ({qc_module_xptd})" # qcvars contractual_args = [ qc_module_out, driver, reference, method, corl_type, fcae, ] asserter_args = [ [wfn.extras["qcvars"], wfn.properties], ref_block, [atol_e, atol_g, atol_h], [rtol_e, rtol_g, rtol_h], ref_block_conv, atol_conv, rtol_conv, tnm, ] def qcvar_assertions(): print("BLOCK", chash, contractual_args) if method == "hf": _asserter(asserter_args, contractual_args, contractual_hf) elif method == "mp2": _asserter(asserter_args, contractual_args, contractual_mp2) elif method == "mp3": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) elif method == "mp4(sdq)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) _asserter(asserter_args, contractual_args, contractual_mp4_prsdq_pr) elif method == "mp4": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) _asserter(asserter_args, contractual_args, contractual_mp4_prsdq_pr) _asserter(asserter_args, contractual_args, contractual_mp4) elif method == "cisd": _asserter(asserter_args, contractual_args, contractual_cisd) elif method == "qcisd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_qcisd) elif method == "qcisd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_qcisd) _asserter(asserter_args, contractual_args, contractual_qcisd_prt_pr) elif method == "lccd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_lccd) elif method == "lccsd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_lccsd) elif method == "ccd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccd) elif method == "ccsd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) elif method == "ccsd+t(ccsd)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_ccsdpt_prccsd_pr) elif method == "ccsd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_ccsd_prt_pr) elif method == "a-ccsd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_accsd_prt_pr) elif method == "ccsdt-1a": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt1a) elif method == "ccsdt-1b": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt1b) elif method == "ccsdt-2": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt2) elif method == "ccsdt-3": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt3) elif method == "ccsdt": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt) elif method == "ccsdt(q)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt) _asserter(asserter_args, contractual_args, contractual_ccsdt_prq_pr) elif method == "ccsdtq": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdtq) # separations here for DFT appropriate when qcvars are labeled by functional if "wrong" in inp: errmatch, reason = inp["wrong"] with pytest.raises(AssertionError) as e: qcvar_assertions() assert errmatch in str(e.value), f"Not found: AssertionError '{errmatch}' for '{reason}' in {e.value}" # _recorder(qcprog, qc_module_out, driver, method, reference, fcae, scf_type, corl_type, "wrong", reason + f" First wrong at `{errmatch}`.") pytest.xfail(reason) # primary label checks qcvar_assertions() # aliases checks asserter_args[0].pop() # checks not appropriate for properties if is_dft: _asserter(asserter_args, contractual_args, contractual_dft_current) else: _asserter(asserter_args, contractual_args, contractual_current) # returns checks if driver == "energy": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.return_result, tnm + " wfn", atol=atol_e, rtol=rtol_e, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.return_result, tnm + " wfn", atol=atol_e, rtol=rtol_e ), errmsg elif driver == "gradient": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.return_result, tnm + " grad wfn", atol=atol_g, rtol=rtol_g, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.return_result, tnm + " grad wfn", atol=atol_g, rtol=rtol_g, ), errmsg elif driver == "hessian": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.return_result, tnm + " hess wfn", atol=atol_h, rtol=rtol_h, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.return_result, tnm + " hess wfn", atol=atol_h, rtol=rtol_h ), errmsg if driver in ["energy", "gradient", "hessian"]: tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.properties.return_energy, tnm + " prop", atol=atol_e, rtol=rtol_e, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.properties.return_energy, tnm + " prop", atol=atol_e, rtol=rtol_e, ), errmsg if driver in ["gradient"]: # , "hessian"]: tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.properties.return_gradient, tnm + " grad prop", atol=atol_g, rtol=rtol_g, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.properties.return_gradient, tnm + " grad prop", atol=atol_g, rtol=rtol_g, ), errmsg if driver == "hessian": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.properties.return_hessian, tnm + " hess prop", atol=atol_h, rtol=rtol_h, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.properties.return_hessian, tnm + " hess prop", atol=atol_h, rtol=rtol_h, ), errmsg # generics # yapf: disable assert compare(ref_block["N BASIS FUNCTIONS"], wfn.properties.calcinfo_nbasis, tnm + " nbasis wfn"), f"nbasis {wfn.properties.calcinfo_nbasis} != {ref_block['N BASIS FUNCTIONS']}" assert compare(ref_block["N MOLECULAR ORBITALS"], wfn.properties.calcinfo_nmo, tnm + " nmo wfn"), f"nmo {wfn.properties.calcinfo_nmo} != {ref_block['N MOLECULAR ORBITALS']}" assert compare(ref_block["N ALPHA ELECTRONS"], wfn.properties.calcinfo_nalpha, tnm + " nalpha wfn"), f"nalpha {wfn.properties.calcinfo_nalpha} != {ref_block['N ALPHA ELECTRONS']}" assert compare(ref_block["N BETA ELECTRONS"], wfn.properties.calcinfo_nbeta, tnm + " nbeta wfn"), f"nbeta {wfn.properties.calcinfo_nbeta} != {ref_block['N BETA ELECTRONS']}" # yapf: enable
def runner_asserter(inp, ref_subject, method, basis, tnm, scramble, frame): qcprog = inp["call"] qc_module_in = inp["qc_module"] # returns "<qcprog>"|"<qcprog>-<module>" # input-specified routing qc_module_xptd = ( (qcprog + "-" + inp["xptd"]["qc_module"]) if inp.get("xptd", {}).get("qc_module", None) else None ) # expected routing driver = inp["driver"] reference = inp["reference"] fcae = inp["fcae"] if basis == "cfour-qz2p" and qcprog in ["gamess", "nwchem", "qchem"]: pytest.skip(f"basis {basis} not available in {qcprog} library") # <<< Molecule >>> # 1. ref mol: `ref_subject` nicely oriented mol taken from standard_suite_ref.py min_nonzero_coords = np.count_nonzero(np.abs(ref_subject.geometry) > 1.0e-10) if scramble is None: subject = ref_subject ref2in_mill = compute_scramble( len(subject.symbols), do_resort=False, do_shift=False, do_rotate=False, do_mirror=False ) # identity AlignmentMill else: subject, data = ref_subject.scramble(**scramble, do_test=False) ref2in_mill = data["mill"] # 2. input mol: `subject` now ready for `atin.molecule`. may have been scrambled away from nice ref orientation # <<< Reference Values >>> # ? precedence on these types -- not really applicable to qcng mp2_type = inp.get("corl_type", inp["keywords"].get("mp2_type", "df")) # hard-code of read_options.cc MP2_TYPE mp_type = inp.get("corl_type", inp["keywords"].get("mp_type", "conv")) # hard-code of read_options.cc MP_TYPE ci_type = inp.get("corl_type", inp["keywords"].get("ci_type", "conv")) # hard-code of read_options.cc CI_TYPE cc_type = inp.get("corl_type", inp["keywords"].get("cc_type", "conv")) # hard-code of read_options.cc CC_TYPE corl_natural_values = { "hf": "conv", # dummy to assure df/cd/conv scf_type refs available "mp2": mp2_type, "mp3": mp_type, "mp4(sdq)": mp_type, "mp4": mp_type, "cisd": ci_type, "qcisd": ci_type, "qcisd(t)": ci_type, "lccd": cc_type, "lccsd": cc_type, "ccd": cc_type, "ccsd": cc_type, "ccsd+t(ccsd)": cc_type, "ccsd(t)": cc_type, "a-ccsd(t)": cc_type, "ccsdt-1a": cc_type, "ccsdt-1b": cc_type, "ccsdt-2": cc_type, "ccsdt-3": cc_type, "ccsdt": cc_type, "ccsdt(q)": cc_type, "ccsdtq": cc_type, "pbe": "conv", "b3lyp": "conv", "b3lyp5": "conv", } corl_type = corl_natural_values[method] natural_ref = {"conv": "pk", "df": "df", "cd": "cd"} scf_type = inp["keywords"].get("scf_type", natural_ref[corl_type]) natural_values = {"pk": "pk", "direct": "pk", "df": "df", "mem_df": "df", "disk_df": "df", "cd": "cd"} scf_type = natural_values[scf_type] is_dft = method in ["pbe", "b3lyp", "b3lyp5"] atol_e, rtol_e = 2.0e-7, 1.0e-16 atol_g, rtol_g = 5.0e-7, 2.0e-5 atol_h, rtol_h = 1.0e-5, 2.0e-5 if is_dft: atol_g = 6.0e-6 chash = answer_hash( system=subject.name, basis=basis, fcae=fcae, scf_type=scf_type, reference=reference, corl_type=corl_type, ) ref_block = std_suite[chash] # check all calcs against conventional reference to looser tolerance atol_conv = 1.0e-4 rtol_conv = 1.0e-3 chash_conv = answer_hash( system=subject.name, basis=basis, fcae=fcae, reference=reference, corl_type="conv", scf_type="pk", ) ref_block_conv = std_suite[chash_conv] # <<< Prepare Calculation and Call API >>> atin = AtomicInput( **{ "molecule": subject, "driver": driver, "model": { "method": method, "basis": inp.get("basis", "(auto)"), }, "keywords": inp["keywords"], } ) # local_options = {} # debug with default (parallel) local_options = {"nnodes": 1, "ncores": 1} # run serial by default if "error" in inp: errtype, errmatch, reason = inp["error"] with pytest.raises(errtype) as e: qcng.compute(atin, qcprog, raise_error=True, return_dict=True, local_options=local_options) assert re.search(errmatch, str(e.value)), f"Not found: {errtype} '{errmatch}' in {e.value}" # _recorder(qcprog, qc_module_in, driver, method, reference, fcae, scf_type, corl_type, "error", "nyi: " + reason) return wfn = qcng.compute(atin, qcprog, raise_error=True, local_options=local_options) print("WFN") pp.pprint(wfn.dict()) qc_module_out = wfn.provenance.creator.lower() if hasattr(wfn.provenance, "module"): qc_module_out += "-" + wfn.provenance.module # returns "<qcprog>-<module>" # assert 0, f"{qc_module_xptd=} {qc_module_in=} {qc_module_out=}" # debug # 3. output mol: `wfn.molecule` after calc. orientation for nonscalar quantities may be different from `subject` if fix_=False _, data = ref_subject.align(wfn.molecule, atoms_map=False, mols_align=True, verbose=0) ref2out_mill = data["mill"] if subject.fix_com and subject.fix_orientation: with np.printoptions(precision=3, suppress=True): assert compare_values( subject.geometry, wfn.molecule.geometry, atol=5.0e-8 ), f"coords: atres ({wfn.molecule.geometry}) != atin ({subject.geometry})" # 10 too much assert ( ref_subject.fix_com and ref_subject.fix_orientation and subject.fix_com and subject.fix_orientation and wfn.molecule.fix_com and wfn.molecule.fix_orientation ), f"fixed, so all T: {ref_subject.fix_com} {ref_subject.fix_orientation} {subject.fix_com} {subject.fix_orientation} {wfn.molecule.fix_com} {wfn.molecule.fix_orientation}" ref_block = mill_qcvars(ref2in_mill, ref_block) ref_block_conv = mill_qcvars(ref2in_mill, ref_block_conv) else: # this check assumes the qcprog will adjust an ugly Cartesian geometry into a pretty one (with more symmetry for computational efficiency). # if qcprog doesn't have that behavior, it will need to be excused from this check. with np.printoptions(precision=3, suppress=True): assert compare( min_nonzero_coords, np.count_nonzero(np.abs(wfn.molecule.geometry) > 1.0e-10), tnm + " !0 coords wfn" ), f"count !0 coords {wfn.molecule.geometry} != {min_nonzero_coords}" assert ( (not ref_subject.fix_com) and (not ref_subject.fix_orientation) and (not subject.fix_com) and (not subject.fix_orientation) and (not wfn.molecule.fix_com) and (not wfn.molecule.fix_orientation) ), f"free, so all F: {ref_subject.fix_com} {ref_subject.fix_orientation} {subject.fix_com} {subject.fix_orientation} {wfn.molecule.fix_com} {wfn.molecule.fix_orientation}" ref_block = mill_qcvars(ref2out_mill, ref_block) ref_block_conv = mill_qcvars(ref2out_mill, ref_block_conv) # <<< Comparison Tests >>> assert wfn.success is True if qc_module_in != qcprog: assert qc_module_out == qc_module_in, f"QC_MODULE used ({qc_module_out}) != requested ({qc_module_in})" if qc_module_xptd: assert qc_module_out == qc_module_xptd, f"QC_MODULE used ({qc_module_out}) != expected ({qc_module_xptd})" # qcvars contractual_args = [ qc_module_out, driver, reference, method, corl_type, fcae, ] asserter_args = [ [wfn.extras["qcvars"], wfn.properties], ref_block, [atol_e, atol_g, atol_h], [rtol_e, rtol_g, rtol_h], ref_block_conv, atol_conv, rtol_conv, tnm, ] def qcvar_assertions(): print("BLOCK", chash, contractual_args) if method == "hf": _asserter(asserter_args, contractual_args, contractual_hf) elif method == "mp2": _asserter(asserter_args, contractual_args, contractual_mp2) elif method == "mp3": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) elif method == "mp4(sdq)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) _asserter(asserter_args, contractual_args, contractual_mp4_prsdq_pr) elif method == "mp4": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_mp2p5) _asserter(asserter_args, contractual_args, contractual_mp3) _asserter(asserter_args, contractual_args, contractual_mp4_prsdq_pr) _asserter(asserter_args, contractual_args, contractual_mp4) elif method == "cisd": _asserter(asserter_args, contractual_args, contractual_cisd) elif method == "qcisd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_qcisd) elif method == "qcisd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_qcisd) _asserter(asserter_args, contractual_args, contractual_qcisd_prt_pr) elif method == "lccd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_lccd) elif method == "lccsd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_lccsd) elif method == "ccd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccd) elif method == "ccsd": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) elif method == "ccsd+t(ccsd)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_ccsdpt_prccsd_pr) elif method == "ccsd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_ccsd_prt_pr) elif method == "a-ccsd(t)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsd) _asserter(asserter_args, contractual_args, contractual_accsd_prt_pr) elif method == "ccsdt-1a": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt1a) elif method == "ccsdt-1b": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt1b) elif method == "ccsdt-2": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt2) elif method == "ccsdt-3": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt3) elif method == "ccsdt": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt) elif method == "ccsdt(q)": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdt) _asserter(asserter_args, contractual_args, contractual_ccsdt_prq_pr) elif method == "ccsdtq": _asserter(asserter_args, contractual_args, contractual_mp2) _asserter(asserter_args, contractual_args, contractual_ccsdtq) # separations here for DFT appropriate when qcvars are labeled by functional if "wrong" in inp: errmatch, reason = inp["wrong"] with pytest.raises(AssertionError) as e: qcvar_assertions() assert errmatch in str(e.value), f"Not found: AssertionError '{errmatch}' for '{reason}' in {e.value}" # _recorder(qcprog, qc_module_out, driver, method, reference, fcae, scf_type, corl_type, "wrong", reason + f" First wrong at `{errmatch}`.") pytest.xfail(reason) # primary label checks qcvar_assertions() # aliases checks asserter_args[0].pop() # checks not appropriate for properties if is_dft: _asserter(asserter_args, contractual_args, contractual_dft_current) else: _asserter(asserter_args, contractual_args, contractual_current) # returns checks if driver == "energy": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.return_result, tnm + " wfn", atol=atol_e, rtol=rtol_e, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.return_result, tnm + " wfn", atol=atol_e, rtol=rtol_e ), errmsg elif driver == "gradient": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.return_result, tnm + " grad wfn", atol=atol_g, rtol=rtol_g, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.return_result, tnm + " grad wfn", atol=atol_g, rtol=rtol_g, ), errmsg elif driver == "hessian": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.return_result, tnm + " hess wfn", atol=atol_h, rtol=rtol_h, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.return_result, tnm + " hess wfn", atol=atol_h, rtol=rtol_h ), errmsg if driver in ["energy", "gradient", "hessian"]: tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.properties.return_energy, tnm + " prop", atol=atol_e, rtol=rtol_e, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL ENERGY"], wfn.properties.return_energy, tnm + " prop", atol=atol_e, rtol=rtol_e, ), errmsg if driver in ["gradient"]: # , "hessian"]: tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.properties.return_gradient, tnm + " grad prop", atol=atol_g, rtol=rtol_g, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL GRADIENT"], wfn.properties.return_gradient, tnm + " grad prop", atol=atol_g, rtol=rtol_g, ), errmsg if driver == "hessian": tf, errmsg = compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.properties.return_hessian, tnm + " hess prop", atol=atol_h, rtol=rtol_h, return_message=True, quiet=True, ) assert compare_values( ref_block[f"{method.upper()} TOTAL HESSIAN"], wfn.properties.return_hessian, tnm + " hess prop", atol=atol_h, rtol=rtol_h, ), errmsg # generics # yapf: disable assert compare(ref_block["N BASIS FUNCTIONS"], wfn.properties.calcinfo_nbasis, tnm + " nbasis wfn"), f"nbasis {wfn.properties.calcinfo_nbasis} != {ref_block['N BASIS FUNCTIONS']}" assert compare(ref_block["N MOLECULAR ORBITALS"], wfn.properties.calcinfo_nmo, tnm + " nmo wfn"), f"nmo {wfn.properties.calcinfo_nmo} != {ref_block['N MOLECULAR ORBITALS']}" assert compare(ref_block["N ALPHA ELECTRONS"], wfn.properties.calcinfo_nalpha, tnm + " nalpha wfn"), f"nalpha {wfn.properties.calcinfo_nalpha} != {ref_block['N ALPHA ELECTRONS']}" assert compare(ref_block["N BETA ELECTRONS"], wfn.properties.calcinfo_nbeta, tnm + " nbeta wfn"), f"nbeta {wfn.properties.calcinfo_nbeta} != {ref_block['N BETA ELECTRONS']}" # yapf: enable
46,576
def invalid_cases(): rng = Random(1234) for (name, (typ, offsets)) in PRESET_CONTAINERS.items(): # using mode_max_count, so that the extra byte cannot be picked up as normal list content yield f'{name}_extra_byte', \ invalid_test_case(lambda: serialize( container_case_fn(rng, RandomizationMode.mode_max_count, typ)) + b'\xff') if len(offsets) != 0: # Note: there are many more ways to have invalid offsets, # these are just example to get clients started looking into hardening ssz. for mode in [RandomizationMode.mode_random, RandomizationMode.mode_nil_count, RandomizationMode.mode_one_count, RandomizationMode.mode_max_count]: if len(offsets) != 0: for index, offset_index in enumerate(offsets): yield f'{name}_{mode.to_name()}_offset_{offset_index}_plus_one', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: x + 1 )) yield f'{name}_{mode.to_name()}_offset_{offset_index}_zeroed', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: 0 )) if index == 0: yield f'{name}_{mode.to_name()}_first offset_{offset_index}_minus_one', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: x - 1 )) if mode == RandomizationMode.mode_max_count: serialized = serialize(container_case_fn(rng, mode, typ)) serialized = serialized + serialized[0:2] yield f'{name}_{mode.to_name()}_last offset_{offset_index}_overflow', \ invalid_test_case(lambda: serialized) if mode == RandomizationMode.mode_one_count: serialized = serialize(container_case_fn(rng, mode, typ)) serialized = serialized + serialized[0:1] yield f'{name}_{mode.to_name()}_last offset_{offset_index}_wrong_byte_length', \ invalid_test_case(lambda: serialized)
def invalid_cases(): rng = Random(1234) for (name, (typ, offsets)) in PRESET_CONTAINERS.items(): # using mode_max_count, so that the extra byte cannot be picked up as normal list content yield f'{name}_extra_byte', \ invalid_test_case(lambda: serialize( container_case_fn(rng, RandomizationMode.mode_max_count, typ)) + b'\xff') if len(offsets) != 0: # Note: there are many more ways to have invalid offsets, # these are just example to get clients started looking into hardening ssz. for mode in [RandomizationMode.mode_random, RandomizationMode.mode_nil_count, RandomizationMode.mode_one_count, RandomizationMode.mode_max_count]: if len(offsets) != 0: for index, offset_index in enumerate(offsets): yield f'{name}_{mode.to_name()}_offset_{offset_index}_plus_one', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: x + 1 )) yield f'{name}_{mode.to_name()}_offset_{offset_index}_zeroed', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: 0 )) if index == 0: yield f'{name}_{mode.to_name()}_first offset_{offset_index}_minus_one', \ invalid_test_case(lambda: mod_offset( b=serialize(container_case_fn(rng, mode, typ)), offset_index=offset_index, change=lambda x: x - 1 )) if mode == RandomizationMode.mode_max_count: serialized = serialize(container_case_fn(rng, mode, typ)) serialized = serialized + serialized[0:2] yield f'{name}_{mode.to_name()}_last_offset_{offset_index}_overflow', \ invalid_test_case(lambda: serialized) if mode == RandomizationMode.mode_one_count: serialized = serialize(container_case_fn(rng, mode, typ)) serialized = serialized + serialized[0:1] yield f'{name}_{mode.to_name()}_last offset_{offset_index}_wrong_byte_length', \ invalid_test_case(lambda: serialized)
35,278
def initialize_decomposition(tensor_slices, rank, init='random', svd='numpy_svd', random_state=None): r"""Initiate a random PARAFAC2 decomposition given rank and tensor slices Parameters ---------- tensor_slices : Iterable of ndarray rank : int init : {'random', 'svd', KruskalTensor, Parafac2Tensor}, optional random_state : `np.random.RandomState` Returns ------- parafac2_tensor : Parafac2Tensor List of initialized factors of the CP decomposition where element `i` is of shape (tensor.shape[i], rank) """ context = tl.context(tensor_slices[0]) shapes = [m.shape for m in tensor_slices] if init == 'random': return random_parafac2(shapes, rank, full=False, random_state=random_state, **context) elif init == 'svd': try: svd_fun = tl.SVD_FUNS[svd] except KeyError: message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format( svd, tl.get_backend(), tl.SVD_FUNS) raise ValueError(message) padded_tensor = _pad_by_zeros(tensor_slices) A = T.ones((padded_tensor.shape[0], rank), **context) unfolded_mode_2 = unfold(padded_tensor, 2) if T.shape(unfolded_mode_2)[0] < rank: raise ValueError("Cannot perform SVD init if rank ({}) is less than the number of columns in each tensor slice ({})".format( rank, T.shape(unfolded_mode_2)[0] )) C = svd_fun(unfold(padded_tensor, 2), n_eigenvecs=rank)[0] B = T.eye(rank, **context) projections = _compute_projections(tensor_slices, (A, B, C), svd_fun) return Parafac2Tensor((None, [A, B, C], projections)) elif isinstance(init, (tuple, list, Parafac2Tensor, KruskalTensor)): try: decomposition = Parafac2Tensor.from_kruskaltensor(init, parafac2_tensor_ok=True) except ValueError: raise ValueError( 'If initialization method is a mapping, then it must ' 'be possible to convert it to a Parafac2Tensor instance' ) if decomposition.rank != rank: raise ValueError('Cannot init with a decomposition of different rank') return decomposition raise ValueError('Initialization method "{}" not recognized'.format(init))
def initialize_decomposition(tensor_slices, rank, init='random', svd='numpy_svd', random_state=None): r"""Initiate a random PARAFAC2 decomposition given rank and tensor slices Parameters ---------- tensor_slices : Iterable of ndarray rank : int init : {'random', 'svd', KruskalTensor, Parafac2Tensor}, optional random_state : `np.random.RandomState` Returns ------- parafac2_tensor : Parafac2Tensor List of initialized factors of the CP decomposition where element `i` is of shape (tensor.shape[i], rank) """ context = tl.context(tensor_slices[0]) shapes = [m.shape for m in tensor_slices] if init == 'random': return random_parafac2(shapes, rank, full=False, random_state=random_state, **context) elif init == 'svd': try: svd_fun = tl.SVD_FUNS[svd] except KeyError: message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format( svd, tl.get_backend(), tl.SVD_FUNS) raise ValueError(message) padded_tensor = _pad_by_zeros(tensor_slices) A = T.ones((padded_tensor.shape[0], rank), **context) unfolded_mode_2 = unfold(padded_tensor, 2) if T.shape(unfolded_mode_2)[0] < rank: raise ValueError("Cannot perform SVD init if rank ({}) is greater than the number of columns in each tensor slice ({})".format( rank, T.shape(unfolded_mode_2)[0] )) C = svd_fun(unfold(padded_tensor, 2), n_eigenvecs=rank)[0] B = T.eye(rank, **context) projections = _compute_projections(tensor_slices, (A, B, C), svd_fun) return Parafac2Tensor((None, [A, B, C], projections)) elif isinstance(init, (tuple, list, Parafac2Tensor, KruskalTensor)): try: decomposition = Parafac2Tensor.from_kruskaltensor(init, parafac2_tensor_ok=True) except ValueError: raise ValueError( 'If initialization method is a mapping, then it must ' 'be possible to convert it to a Parafac2Tensor instance' ) if decomposition.rank != rank: raise ValueError('Cannot init with a decomposition of different rank') return decomposition raise ValueError('Initialization method "{}" not recognized'.format(init))
1,685
def _yield_transformer_checks(name, transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if not _safe_tags(transformer, "no_validation"): yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors yield check_transformer_general # it's not important to preserve types with Clustering if not isinstance(transformer, ClusterMixin): yield check_estimators_preserve_dtypes yield partial(check_transformer_general, readonly_memmap=True) if not _safe_tags(transformer, "stateless"): yield check_transformers_unfitted # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if name not in external_solver: yield check_transformer_n_iter
def _yield_transformer_checks(name, transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if not _safe_tags(transformer, "no_validation"): yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors yield check_transformer_general # it's not possible to preserve dtypes in transform with clustering if not isinstance(transformer, ClusterMixin): yield check_estimators_preserve_dtypes yield partial(check_transformer_general, readonly_memmap=True) if not _safe_tags(transformer, "stateless"): yield check_transformers_unfitted # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if name not in external_solver: yield check_transformer_n_iter
57,881
def create_member(args): try: client = aws_session( region=args.get('region'), roleArn=args.get('roleArn'), roleSessionName=args.get('roleSessionName'), roleSessionDuration=args.get('roleSessionDuration'), ) accountDetails = [] account = {'AccountId': args.get('accountId'), 'Email': args.get('email')} accountDetails.append(account) response = client.create_members( DetectorId=args.get('detectorId'), AccountDetails=accountDetails ) unprocessed_accounts = response.get('UnprocessedAccounts', []) ec = {"AWS.GuardDuty.CreateMember.UnprocessedAccounts": unprocessed_accounts} \ if unprocessed_accounts else None return create_entry('AWS GuardDuty Create Member', unprocessed_accounts, ec) except Exception as e: return raise_error(e)
def create_member(args): try: client = aws_session( region=args.get('region'), roleArn=args.get('roleArn'), roleSessionName=args.get('roleSessionName'), roleSessionDuration=args.get('roleSessionDuration'), ) accountDetails = [] account = {'AccountId': args.get('accountId'), 'Email': args.get('email')} accountDetails.append(account) response = client.create_members( DetectorId=args.get('detectorId'), AccountDetails= account_details ) unprocessed_accounts = response.get('UnprocessedAccounts', []) ec = {"AWS.GuardDuty.CreateMember.UnprocessedAccounts": unprocessed_accounts} \ if unprocessed_accounts else None return create_entry('AWS GuardDuty Create Member', unprocessed_accounts, ec) except Exception as e: return raise_error(e)
6,383
def _check_agent_availability(agent_email,scheduled_time): appointemnts_at_scheduled_time = frappe.get_list('Appointment', filters={'scheduled_time':scheduled_time}) for appointment in appointemnts_at_scheduled_time: if appointment._assign == agent_email: return False return True
def _check_agent_availability(agent_email,scheduled_time): appointments_at_scheduled_time = frappe.get_list('Appointment', filters={'scheduled_time': scheduled_time}) for appointment in appointemnts_at_scheduled_time: if appointment._assign == agent_email: return False return True
57,342
def _ffmpeg_call(infile, output, fmt='f32le', sample_rate=None, num_channels=1, skip=None, max_len=None, cmd='ffmpeg', rg_mode=None, rg_preamp_db=0.0): """ Create a sequence of strings indicating ffmpeg how to be called as well as the parameters necessary to decode the given input (file) to the given format, at the given offset and for the given length to the given output. Parameters ---------- infile : str Name of the audio sound file to decode. output : str Where to decode to. fmt : {'f32le', 's16le'}, optional Format of the samples: - 'f32le' for float32, little-endian, - 's16le' for signed 16-bit int, little-endian. sample_rate : int, optional Sample rate to re-sample the signal to (if set) [Hz]. num_channels : int, optional Number of channels to reduce the signal to. skip : float, optional Number of seconds to skip at beginning of file. max_len : float, optional Maximum length in seconds to decode. cmd : {'ffmpeg','avconv'}, optional Decoding command (defaults to ffmpeg, alternatively supports avconv). rg_mode : {'track','album', None}, optional Specify the ReplayGain volume-levelling mode (None to disable). rg_preamp_db : float, optional Increase the volume by this many dB after applying ReplayGain tags. Returns ------- list ffmpeg call. Notes ----- 'avconv' rounds decoding positions and decodes in blocks of 4096 length resulting in incorrect start and stop positions. Thus it should only be used to decode complete files. """ # Note: avconv rounds decoding positions and decodes in blocks of 4096 # length resulting in incorrect start and stop positions if cmd == 'avconv' and skip is not None and max_len is not None: raise RuntimeError('avconv has a bug, which results in wrong audio ' 'slices! Decode the audio files to .wav first or ' 'use ffmpeg.') # input type handling if isinstance(infile, Signal): in_fmt = _ffmpeg_fmt(infile.dtype) in_ac = str(int(infile.num_channels)) in_ar = str(int(infile.sample_rate)) infile = str("pipe:0") else: infile = str(infile) # general options call = [cmd, "-v", "quiet", "-y"] # input options if skip: # use "%f" to avoid scientific float notation call.extend(["-ss", "%f" % float(skip)]) # if we decode from STDIN, the format must be specified if infile == "pipe:0": call.extend(["-f", in_fmt, "-ac", in_ac, "-ar", in_ar]) call.extend(["-i", infile]) if rg_mode: audio_filter = ("volume=replaygain=%s:replaygain_preamp=%.1f" % (rg_mode, rg_preamp_db)) call.extend(["-af", audio_filter]) # output options call.extend(["-f", str(fmt)]) if max_len: # use "%f" to avoid scientific float notation call.extend(["-t", "%f" % float(max_len)]) # output options if num_channels: call.extend(["-ac", str(int(num_channels))]) if sample_rate: call.extend(["-ar", str(int(sample_rate))]) call.append(output) return call
def _ffmpeg_call(infile, output, fmt='f32le', sample_rate=None, num_channels=1, skip=None, max_len=None, cmd='ffmpeg', rg_mode=None, rg_preamp_db=0.0): """ Create a sequence of strings indicating ffmpeg how to be called as well as the parameters necessary to decode the given input (file) to the given format, at the given offset and for the given length to the given output. Parameters ---------- infile : str Name of the audio sound file to decode. output : str Where to decode to. fmt : {'f32le', 's16le'}, optional Format of the samples: - 'f32le' for float32, little-endian, - 's16le' for signed 16-bit int, little-endian. sample_rate : int, optional Sample rate to re-sample the signal to (if set) [Hz]. num_channels : int, optional Number of channels to reduce the signal to. skip : float, optional Number of seconds to skip at beginning of file. max_len : float, optional Maximum length in seconds to decode. cmd : {'ffmpeg','avconv'}, optional Decoding command (defaults to ffmpeg, alternatively supports avconv). rg_mode : {'track','album', None}, optional Specify the ReplayGain volume-levelling mode (None to disable). rg_preamp_db : float, optional replaygain_preamp : float, optional ReplayGain preamp volume change level (in dB). Returns ------- list ffmpeg call. Notes ----- 'avconv' rounds decoding positions and decodes in blocks of 4096 length resulting in incorrect start and stop positions. Thus it should only be used to decode complete files. """ # Note: avconv rounds decoding positions and decodes in blocks of 4096 # length resulting in incorrect start and stop positions if cmd == 'avconv' and skip is not None and max_len is not None: raise RuntimeError('avconv has a bug, which results in wrong audio ' 'slices! Decode the audio files to .wav first or ' 'use ffmpeg.') # input type handling if isinstance(infile, Signal): in_fmt = _ffmpeg_fmt(infile.dtype) in_ac = str(int(infile.num_channels)) in_ar = str(int(infile.sample_rate)) infile = str("pipe:0") else: infile = str(infile) # general options call = [cmd, "-v", "quiet", "-y"] # input options if skip: # use "%f" to avoid scientific float notation call.extend(["-ss", "%f" % float(skip)]) # if we decode from STDIN, the format must be specified if infile == "pipe:0": call.extend(["-f", in_fmt, "-ac", in_ac, "-ar", in_ar]) call.extend(["-i", infile]) if rg_mode: audio_filter = ("volume=replaygain=%s:replaygain_preamp=%.1f" % (rg_mode, rg_preamp_db)) call.extend(["-af", audio_filter]) # output options call.extend(["-f", str(fmt)]) if max_len: # use "%f" to avoid scientific float notation call.extend(["-t", "%f" % float(max_len)]) # output options if num_channels: call.extend(["-ac", str(int(num_channels))]) if sample_rate: call.extend(["-ar", str(int(sample_rate))]) call.append(output) return call
4,401
def test_exclude(): """Test exclude parameter.""" exclude = ["I1", "I2", "I3", "I4"] # list of excluded channels raw = read_raw_edf(edf_path, exclude=["I1", "I2", "I3", "I4"]) for ch in exclude: assert ch not in raw.ch_names raw = read_raw_edf(edf_path, exclude = "I[1-4]") for ch in exclude: assert ch not in raw.ch_names
def test_exclude(): """Test exclude parameter.""" exclude = ["I1", "I2", "I3", "I4"] # list of excluded channels raw = read_raw_edf(edf_path, exclude=["I1", "I2", "I3", "I4"]) for ch in exclude: assert ch not in raw.ch_names raw = read_raw_edf(edf_path, exclude="I[1-4]") for ch in exclude: assert ch not in raw.ch_names
23,458
def check_kite_installers_availability(): """Check if Kite installers are available.""" url = LINUX_URL if os.name == 'os': url = WINDOWS_URL elif sys.platform == 'darwin': url = MAC_URL req = requests.head(url) available = req.ok if req.ok: if req.is_redirect: loc = req.headers['Location'] req = requests.head(loc) available = req.ok return available
def check_kite_installers_availability(): """Check if Kite installers are available.""" url = LINUX_URL if os.name == 'nt': url = WINDOWS_URL elif sys.platform == 'darwin': url = MAC_URL req = requests.head(url) available = req.ok if req.ok: if req.is_redirect: loc = req.headers['Location'] req = requests.head(loc) available = req.ok return available
13,573
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-np.real(ew)) elif which == 'SR': idx = np.argsort(np.real(ew)) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted ritzvalues as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-ew.real) elif which == 'SR': idx = np.argsort(np.real(ew)) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted ritzvalues as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
37,828
def main() -> None: platform: PlatformName parser = argparse.ArgumentParser( description="Build wheels for all the platforms.", epilog=""" Most options are supplied via environment variables or in --config-file (pyproject.toml usually). See https://github.com/pypa/cibuildwheel#options for info. """, ) parser.add_argument( "--platform", choices=["auto", "linux", "macos", "windows"], default=os.environ.get("CIBW_PLATFORM", "auto"), help=""" Platform to build for. Use this option to override the auto-detected platform or to run cibuildwheel on your development machine. Specifying "macos" or "windows" only works on that operating system, but "linux" works on all three, as long as Docker is installed. Default: auto. """, ) arch_list_str = ", ".join(a.name for a in Architecture) parser.add_argument( "--archs", default=None, help=f""" Comma-separated list of CPU architectures to build for. When set to 'auto', builds the architectures natively supported on this machine. Set this option to build an architecture via emulation, for example, using binfmt_misc and QEMU. Default: auto. Choices: auto, auto64, auto32, native, all, {arch_list_str} """, ) parser.add_argument( "--output-dir", help="Destination folder for the wheels. Default: wheelhouse.", ) parser.add_argument( "--config-file", default="", help=""" TOML config file. Default: "", meaning {package}/pyproject.toml, if it exists. """, ) parser.add_argument( "package_dir", default=".", nargs="?", help=""" Path to the package that you want wheels for. Must be either a a subdirectory of the working directory or a source distribution (sdist) archive file. Note that the working directory is always the 'project' directory and is what is copied into the Docker container on Linux. Default: the working directory. """, ) parser.add_argument( "--print-build-identifiers", action="store_true", help="Print the build identifiers matched by the current invocation and exit.", ) parser.add_argument( "--allow-empty", action="store_true", help="Do not report an error code if the build does not match any wheels.", ) parser.add_argument( "--prerelease-pythons", action="store_true", help="Enable pre-release Python versions if available.", ) args = parser.parse_args(namespace=CommandLineArguments()) if args.platform != "auto": platform = args.platform else: ci_provider = detect_ci_provider() if ci_provider is None: print( textwrap.dedent( """ cibuildwheel: Unable to detect platform. cibuildwheel should run on your CI server; Travis CI, AppVeyor, Azure Pipelines, GitHub Actions, CircleCI, and Gitlab are supported. You can run on your development machine or other CI providers using the --platform argument. Check --help output for more information. """ ), file=sys.stderr, ) sys.exit(2) if sys.platform.startswith("linux"): platform = "linux" elif sys.platform == "darwin": platform = "macos" elif sys.platform == "win32": platform = "windows" else: print( 'cibuildwheel: Unable to detect platform from "sys.platform" in a CI environment. You can run ' "cibuildwheel using the --platform argument. Check --help output for more information.", file=sys.stderr, ) sys.exit(2) if platform not in PLATFORMS: print(f"cibuildwheel: Unsupported platform: {platform}", file=sys.stderr) sys.exit(2) options = compute_options(platform=platform, command_line_arguments=args) package_dir = options.globals.package_dir from_sdist = package_dir.is_file() from_dir = not from_sdist if from_dir: package_files = {"setup.py", "setup.cfg", "pyproject.toml"} if not any(package_dir.joinpath(name).exists() for name in package_files): names = ", ".join(sorted(package_files, reverse=True)) msg = f"cibuildwheel: Could not find any of {{{names}}} at root of package" print(msg, file=sys.stderr) sys.exit(2) elif from_sdist: if not str(package_dir).endswith(".tar.gz"): msg = f"cibuildwheel: Package is not an sdist'.tar.gz' tarball" print(msg, file=sys.stderr) sys.exit(2) identifiers = get_build_identifiers( platform=platform, build_selector=options.globals.build_selector, architectures=options.globals.architectures, ) if args.print_build_identifiers: for identifier in identifiers: print(identifier) sys.exit(0) # Add CIBUILDWHEEL environment variable # This needs to be passed on to the docker container in linux.py os.environ["CIBUILDWHEEL"] = "1" # Python is buffering by default when running on the CI platforms, giving problems interleaving subprocess call output with unflushed calls to 'print' sys.stdout = Unbuffered(sys.stdout) # type: ignore[assignment] # create the cache dir before it gets printed & builds performed CIBW_CACHE_PATH.mkdir(parents=True, exist_ok=True) print_preamble(platform=platform, options=options, identifiers=identifiers) try: options.check_for_invalid_configuration(identifiers) allowed_architectures_check(platform, options.globals.architectures) except ValueError as err: print("cibuildwheel:", *err.args, file=sys.stderr) sys.exit(4) if not identifiers: print( f"cibuildwheel: No build identifiers selected: {options.globals.build_selector}", file=sys.stderr, ) if not args.allow_empty: sys.exit(3) output_dir = options.globals.output_dir if not output_dir.exists(): output_dir.mkdir(parents=True) tmp_path = Path(mkdtemp(prefix="cibw-run-")).resolve(strict=True) try: with cibuildwheel.util.print_new_wheels( "\n{n} wheels produced in {m:.0f} minutes:", output_dir ): if platform == "linux": cibuildwheel.linux.build(options, tmp_path) elif platform == "windows": cibuildwheel.windows.build(options, tmp_path) elif platform == "macos": cibuildwheel.macos.build(options, tmp_path) else: assert_never(platform) finally: shutil.rmtree(tmp_path, ignore_errors=sys.platform.startswith("win")) if tmp_path.exists(): log.warning(f"Can't delete temporary folder '{str(tmp_path)}'")
def main() -> None: platform: PlatformName parser = argparse.ArgumentParser( description="Build wheels for all the platforms.", epilog=""" Most options are supplied via environment variables or in --config-file (pyproject.toml usually). See https://github.com/pypa/cibuildwheel#options for info. """, ) parser.add_argument( "--platform", choices=["auto", "linux", "macos", "windows"], default=os.environ.get("CIBW_PLATFORM", "auto"), help=""" Platform to build for. Use this option to override the auto-detected platform or to run cibuildwheel on your development machine. Specifying "macos" or "windows" only works on that operating system, but "linux" works on all three, as long as Docker is installed. Default: auto. """, ) arch_list_str = ", ".join(a.name for a in Architecture) parser.add_argument( "--archs", default=None, help=f""" Comma-separated list of CPU architectures to build for. When set to 'auto', builds the architectures natively supported on this machine. Set this option to build an architecture via emulation, for example, using binfmt_misc and QEMU. Default: auto. Choices: auto, auto64, auto32, native, all, {arch_list_str} """, ) parser.add_argument( "--output-dir", help="Destination folder for the wheels. Default: wheelhouse.", ) parser.add_argument( "--config-file", default="", help=""" TOML config file. Default: "", meaning {package}/pyproject.toml, if it exists. """, ) parser.add_argument( "package_dir", default=".", nargs="?", help=""" Path to the package that you want wheels for. Must be either a a subdirectory of the working directory or a source distribution (sdist) archive file. Note that the working directory is always the 'project' directory and is what is copied into the Docker container on Linux. Default: the working directory. """, ) parser.add_argument( "--print-build-identifiers", action="store_true", help="Print the build identifiers matched by the current invocation and exit.", ) parser.add_argument( "--allow-empty", action="store_true", help="Do not report an error code if the build does not match any wheels.", ) parser.add_argument( "--prerelease-pythons", action="store_true", help="Enable pre-release Python versions if available.", ) args = parser.parse_args(namespace=CommandLineArguments()) if args.platform != "auto": platform = args.platform else: ci_provider = detect_ci_provider() if ci_provider is None: print( textwrap.dedent( """ cibuildwheel: Unable to detect platform. cibuildwheel should run on your CI server; Travis CI, AppVeyor, Azure Pipelines, GitHub Actions, CircleCI, and Gitlab are supported. You can run on your development machine or other CI providers using the --platform argument. Check --help output for more information. """ ), file=sys.stderr, ) sys.exit(2) if sys.platform.startswith("linux"): platform = "linux" elif sys.platform == "darwin": platform = "macos" elif sys.platform == "win32": platform = "windows" else: print( 'cibuildwheel: Unable to detect platform from "sys.platform" in a CI environment. You can run ' "cibuildwheel using the --platform argument. Check --help output for more information.", file=sys.stderr, ) sys.exit(2) if platform not in PLATFORMS: print(f"cibuildwheel: Unsupported platform: {platform}", file=sys.stderr) sys.exit(2) options = compute_options(platform=platform, command_line_arguments=args) package_dir = options.globals.package_dir from_sdist = package_dir.is_file() from_dir = not from_sdist if from_dir: package_files = {"setup.py", "setup.cfg", "pyproject.toml"} if not any(package_dir.joinpath(name).exists() for name in package_files): names = ", ".join(sorted(package_files, reverse=True)) msg = f"cibuildwheel: Could not find any of {{{names}}} at root of package" print(msg, file=sys.stderr) sys.exit(2) elif from_sdist: if not str(package_dir).endswith(".tar.gz"): msg = f"cibuildwheel: Package {package_dir} is not an sdist '.tar.gz' tarball" print(msg, file=sys.stderr) sys.exit(2) identifiers = get_build_identifiers( platform=platform, build_selector=options.globals.build_selector, architectures=options.globals.architectures, ) if args.print_build_identifiers: for identifier in identifiers: print(identifier) sys.exit(0) # Add CIBUILDWHEEL environment variable # This needs to be passed on to the docker container in linux.py os.environ["CIBUILDWHEEL"] = "1" # Python is buffering by default when running on the CI platforms, giving problems interleaving subprocess call output with unflushed calls to 'print' sys.stdout = Unbuffered(sys.stdout) # type: ignore[assignment] # create the cache dir before it gets printed & builds performed CIBW_CACHE_PATH.mkdir(parents=True, exist_ok=True) print_preamble(platform=platform, options=options, identifiers=identifiers) try: options.check_for_invalid_configuration(identifiers) allowed_architectures_check(platform, options.globals.architectures) except ValueError as err: print("cibuildwheel:", *err.args, file=sys.stderr) sys.exit(4) if not identifiers: print( f"cibuildwheel: No build identifiers selected: {options.globals.build_selector}", file=sys.stderr, ) if not args.allow_empty: sys.exit(3) output_dir = options.globals.output_dir if not output_dir.exists(): output_dir.mkdir(parents=True) tmp_path = Path(mkdtemp(prefix="cibw-run-")).resolve(strict=True) try: with cibuildwheel.util.print_new_wheels( "\n{n} wheels produced in {m:.0f} minutes:", output_dir ): if platform == "linux": cibuildwheel.linux.build(options, tmp_path) elif platform == "windows": cibuildwheel.windows.build(options, tmp_path) elif platform == "macos": cibuildwheel.macos.build(options, tmp_path) else: assert_never(platform) finally: shutil.rmtree(tmp_path, ignore_errors=sys.platform.startswith("win")) if tmp_path.exists(): log.warning(f"Can't delete temporary folder '{str(tmp_path)}'")